]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: check fb->pixel_format instead of bits_per_pixel
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49 /* given values */
50 int n;
51 int m1, m2;
52 int p1, p2;
53 /* derived values */
54 int dot;
55 int vco;
56 int m;
57 int p;
58 } intel_clock_t;
59
60 typedef struct {
61 int min, max;
62 } intel_range_t;
63
64 typedef struct {
65 int dot_limit;
66 int p2_slow, p2_fast;
67 } intel_p2_t;
68
69 #define INTEL_P2_NUM 2
70 typedef struct intel_limit intel_limit_t;
71 struct intel_limit {
72 intel_range_t dot, vco, n, m, m1, m2, p, p1;
73 intel_p2_t p2;
74 /**
75 * find_pll() - Find the best values for the PLL
76 * @limit: limits for the PLL
77 * @crtc: current CRTC
78 * @target: target frequency in kHz
79 * @refclk: reference clock frequency in kHz
80 * @match_clock: if provided, @best_clock P divider must
81 * match the P divider from @match_clock
82 * used for LVDS downclocking
83 * @best_clock: best PLL values found
84 *
85 * Returns true on success, false on failure.
86 */
87 bool (*find_pll)(const intel_limit_t *limit,
88 struct drm_crtc *crtc,
89 int target, int refclk,
90 intel_clock_t *match_clock,
91 intel_clock_t *best_clock);
92 };
93
94 /* FDI */
95 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
96
97 int
98 intel_pch_rawclk(struct drm_device *dev)
99 {
100 struct drm_i915_private *dev_priv = dev->dev_private;
101
102 WARN_ON(!HAS_PCH_SPLIT(dev));
103
104 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
105 }
106
107 static bool
108 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
109 int target, int refclk, intel_clock_t *match_clock,
110 intel_clock_t *best_clock);
111 static bool
112 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
113 int target, int refclk, intel_clock_t *match_clock,
114 intel_clock_t *best_clock);
115
116 static bool
117 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
118 int target, int refclk, intel_clock_t *match_clock,
119 intel_clock_t *best_clock);
120 static bool
121 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
122 int target, int refclk, intel_clock_t *match_clock,
123 intel_clock_t *best_clock);
124
125 static bool
126 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
127 int target, int refclk, intel_clock_t *match_clock,
128 intel_clock_t *best_clock);
129
130 static inline u32 /* units of 100MHz */
131 intel_fdi_link_freq(struct drm_device *dev)
132 {
133 if (IS_GEN5(dev)) {
134 struct drm_i915_private *dev_priv = dev->dev_private;
135 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
136 } else
137 return 27;
138 }
139
140 static const intel_limit_t intel_limits_i8xx_dvo = {
141 .dot = { .min = 25000, .max = 350000 },
142 .vco = { .min = 930000, .max = 1400000 },
143 .n = { .min = 3, .max = 16 },
144 .m = { .min = 96, .max = 140 },
145 .m1 = { .min = 18, .max = 26 },
146 .m2 = { .min = 6, .max = 16 },
147 .p = { .min = 4, .max = 128 },
148 .p1 = { .min = 2, .max = 33 },
149 .p2 = { .dot_limit = 165000,
150 .p2_slow = 4, .p2_fast = 2 },
151 .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i8xx_lvds = {
155 .dot = { .min = 25000, .max = 350000 },
156 .vco = { .min = 930000, .max = 1400000 },
157 .n = { .min = 3, .max = 16 },
158 .m = { .min = 96, .max = 140 },
159 .m1 = { .min = 18, .max = 26 },
160 .m2 = { .min = 6, .max = 16 },
161 .p = { .min = 4, .max = 128 },
162 .p1 = { .min = 1, .max = 6 },
163 .p2 = { .dot_limit = 165000,
164 .p2_slow = 14, .p2_fast = 7 },
165 .find_pll = intel_find_best_PLL,
166 };
167
168 static const intel_limit_t intel_limits_i9xx_sdvo = {
169 .dot = { .min = 20000, .max = 400000 },
170 .vco = { .min = 1400000, .max = 2800000 },
171 .n = { .min = 1, .max = 6 },
172 .m = { .min = 70, .max = 120 },
173 .m1 = { .min = 8, .max = 18 },
174 .m2 = { .min = 3, .max = 7 },
175 .p = { .min = 5, .max = 80 },
176 .p1 = { .min = 1, .max = 8 },
177 .p2 = { .dot_limit = 200000,
178 .p2_slow = 10, .p2_fast = 5 },
179 .find_pll = intel_find_best_PLL,
180 };
181
182 static const intel_limit_t intel_limits_i9xx_lvds = {
183 .dot = { .min = 20000, .max = 400000 },
184 .vco = { .min = 1400000, .max = 2800000 },
185 .n = { .min = 1, .max = 6 },
186 .m = { .min = 70, .max = 120 },
187 .m1 = { .min = 8, .max = 18 },
188 .m2 = { .min = 3, .max = 7 },
189 .p = { .min = 7, .max = 98 },
190 .p1 = { .min = 1, .max = 8 },
191 .p2 = { .dot_limit = 112000,
192 .p2_slow = 14, .p2_fast = 7 },
193 .find_pll = intel_find_best_PLL,
194 };
195
196
197 static const intel_limit_t intel_limits_g4x_sdvo = {
198 .dot = { .min = 25000, .max = 270000 },
199 .vco = { .min = 1750000, .max = 3500000},
200 .n = { .min = 1, .max = 4 },
201 .m = { .min = 104, .max = 138 },
202 .m1 = { .min = 17, .max = 23 },
203 .m2 = { .min = 5, .max = 11 },
204 .p = { .min = 10, .max = 30 },
205 .p1 = { .min = 1, .max = 3},
206 .p2 = { .dot_limit = 270000,
207 .p2_slow = 10,
208 .p2_fast = 10
209 },
210 .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_hdmi = {
214 .dot = { .min = 22000, .max = 400000 },
215 .vco = { .min = 1750000, .max = 3500000},
216 .n = { .min = 1, .max = 4 },
217 .m = { .min = 104, .max = 138 },
218 .m1 = { .min = 16, .max = 23 },
219 .m2 = { .min = 5, .max = 11 },
220 .p = { .min = 5, .max = 80 },
221 .p1 = { .min = 1, .max = 8},
222 .p2 = { .dot_limit = 165000,
223 .p2_slow = 10, .p2_fast = 5 },
224 .find_pll = intel_g4x_find_best_PLL,
225 };
226
227 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
228 .dot = { .min = 20000, .max = 115000 },
229 .vco = { .min = 1750000, .max = 3500000 },
230 .n = { .min = 1, .max = 3 },
231 .m = { .min = 104, .max = 138 },
232 .m1 = { .min = 17, .max = 23 },
233 .m2 = { .min = 5, .max = 11 },
234 .p = { .min = 28, .max = 112 },
235 .p1 = { .min = 2, .max = 8 },
236 .p2 = { .dot_limit = 0,
237 .p2_slow = 14, .p2_fast = 14
238 },
239 .find_pll = intel_g4x_find_best_PLL,
240 };
241
242 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
243 .dot = { .min = 80000, .max = 224000 },
244 .vco = { .min = 1750000, .max = 3500000 },
245 .n = { .min = 1, .max = 3 },
246 .m = { .min = 104, .max = 138 },
247 .m1 = { .min = 17, .max = 23 },
248 .m2 = { .min = 5, .max = 11 },
249 .p = { .min = 14, .max = 42 },
250 .p1 = { .min = 2, .max = 6 },
251 .p2 = { .dot_limit = 0,
252 .p2_slow = 7, .p2_fast = 7
253 },
254 .find_pll = intel_g4x_find_best_PLL,
255 };
256
257 static const intel_limit_t intel_limits_g4x_display_port = {
258 .dot = { .min = 161670, .max = 227000 },
259 .vco = { .min = 1750000, .max = 3500000},
260 .n = { .min = 1, .max = 2 },
261 .m = { .min = 97, .max = 108 },
262 .m1 = { .min = 0x10, .max = 0x12 },
263 .m2 = { .min = 0x05, .max = 0x06 },
264 .p = { .min = 10, .max = 20 },
265 .p1 = { .min = 1, .max = 2},
266 .p2 = { .dot_limit = 0,
267 .p2_slow = 10, .p2_fast = 10 },
268 .find_pll = intel_find_pll_g4x_dp,
269 };
270
271 static const intel_limit_t intel_limits_pineview_sdvo = {
272 .dot = { .min = 20000, .max = 400000},
273 .vco = { .min = 1700000, .max = 3500000 },
274 /* Pineview's Ncounter is a ring counter */
275 .n = { .min = 3, .max = 6 },
276 .m = { .min = 2, .max = 256 },
277 /* Pineview only has one combined m divider, which we treat as m2. */
278 .m1 = { .min = 0, .max = 0 },
279 .m2 = { .min = 0, .max = 254 },
280 .p = { .min = 5, .max = 80 },
281 .p1 = { .min = 1, .max = 8 },
282 .p2 = { .dot_limit = 200000,
283 .p2_slow = 10, .p2_fast = 5 },
284 .find_pll = intel_find_best_PLL,
285 };
286
287 static const intel_limit_t intel_limits_pineview_lvds = {
288 .dot = { .min = 20000, .max = 400000 },
289 .vco = { .min = 1700000, .max = 3500000 },
290 .n = { .min = 3, .max = 6 },
291 .m = { .min = 2, .max = 256 },
292 .m1 = { .min = 0, .max = 0 },
293 .m2 = { .min = 0, .max = 254 },
294 .p = { .min = 7, .max = 112 },
295 .p1 = { .min = 1, .max = 8 },
296 .p2 = { .dot_limit = 112000,
297 .p2_slow = 14, .p2_fast = 14 },
298 .find_pll = intel_find_best_PLL,
299 };
300
301 /* Ironlake / Sandybridge
302 *
303 * We calculate clock using (register_value + 2) for N/M1/M2, so here
304 * the range value for them is (actual_value - 2).
305 */
306 static const intel_limit_t intel_limits_ironlake_dac = {
307 .dot = { .min = 25000, .max = 350000 },
308 .vco = { .min = 1760000, .max = 3510000 },
309 .n = { .min = 1, .max = 5 },
310 .m = { .min = 79, .max = 127 },
311 .m1 = { .min = 12, .max = 22 },
312 .m2 = { .min = 5, .max = 9 },
313 .p = { .min = 5, .max = 80 },
314 .p1 = { .min = 1, .max = 8 },
315 .p2 = { .dot_limit = 225000,
316 .p2_slow = 10, .p2_fast = 5 },
317 .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 static const intel_limit_t intel_limits_ironlake_single_lvds = {
321 .dot = { .min = 25000, .max = 350000 },
322 .vco = { .min = 1760000, .max = 3510000 },
323 .n = { .min = 1, .max = 3 },
324 .m = { .min = 79, .max = 118 },
325 .m1 = { .min = 12, .max = 22 },
326 .m2 = { .min = 5, .max = 9 },
327 .p = { .min = 28, .max = 112 },
328 .p1 = { .min = 2, .max = 8 },
329 .p2 = { .dot_limit = 225000,
330 .p2_slow = 14, .p2_fast = 14 },
331 .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
335 .dot = { .min = 25000, .max = 350000 },
336 .vco = { .min = 1760000, .max = 3510000 },
337 .n = { .min = 1, .max = 3 },
338 .m = { .min = 79, .max = 127 },
339 .m1 = { .min = 12, .max = 22 },
340 .m2 = { .min = 5, .max = 9 },
341 .p = { .min = 14, .max = 56 },
342 .p1 = { .min = 2, .max = 8 },
343 .p2 = { .dot_limit = 225000,
344 .p2_slow = 7, .p2_fast = 7 },
345 .find_pll = intel_g4x_find_best_PLL,
346 };
347
348 /* LVDS 100mhz refclk limits. */
349 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
350 .dot = { .min = 25000, .max = 350000 },
351 .vco = { .min = 1760000, .max = 3510000 },
352 .n = { .min = 1, .max = 2 },
353 .m = { .min = 79, .max = 126 },
354 .m1 = { .min = 12, .max = 22 },
355 .m2 = { .min = 5, .max = 9 },
356 .p = { .min = 28, .max = 112 },
357 .p1 = { .min = 2, .max = 8 },
358 .p2 = { .dot_limit = 225000,
359 .p2_slow = 14, .p2_fast = 14 },
360 .find_pll = intel_g4x_find_best_PLL,
361 };
362
363 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
364 .dot = { .min = 25000, .max = 350000 },
365 .vco = { .min = 1760000, .max = 3510000 },
366 .n = { .min = 1, .max = 3 },
367 .m = { .min = 79, .max = 126 },
368 .m1 = { .min = 12, .max = 22 },
369 .m2 = { .min = 5, .max = 9 },
370 .p = { .min = 14, .max = 42 },
371 .p1 = { .min = 2, .max = 6 },
372 .p2 = { .dot_limit = 225000,
373 .p2_slow = 7, .p2_fast = 7 },
374 .find_pll = intel_g4x_find_best_PLL,
375 };
376
377 static const intel_limit_t intel_limits_ironlake_display_port = {
378 .dot = { .min = 25000, .max = 350000 },
379 .vco = { .min = 1760000, .max = 3510000},
380 .n = { .min = 1, .max = 2 },
381 .m = { .min = 81, .max = 90 },
382 .m1 = { .min = 12, .max = 22 },
383 .m2 = { .min = 5, .max = 9 },
384 .p = { .min = 10, .max = 20 },
385 .p1 = { .min = 1, .max = 2},
386 .p2 = { .dot_limit = 0,
387 .p2_slow = 10, .p2_fast = 10 },
388 .find_pll = intel_find_pll_ironlake_dp,
389 };
390
391 static const intel_limit_t intel_limits_vlv_dac = {
392 .dot = { .min = 25000, .max = 270000 },
393 .vco = { .min = 4000000, .max = 6000000 },
394 .n = { .min = 1, .max = 7 },
395 .m = { .min = 22, .max = 450 }, /* guess */
396 .m1 = { .min = 2, .max = 3 },
397 .m2 = { .min = 11, .max = 156 },
398 .p = { .min = 10, .max = 30 },
399 .p1 = { .min = 2, .max = 3 },
400 .p2 = { .dot_limit = 270000,
401 .p2_slow = 2, .p2_fast = 20 },
402 .find_pll = intel_vlv_find_best_pll,
403 };
404
405 static const intel_limit_t intel_limits_vlv_hdmi = {
406 .dot = { .min = 20000, .max = 165000 },
407 .vco = { .min = 4000000, .max = 5994000},
408 .n = { .min = 1, .max = 7 },
409 .m = { .min = 60, .max = 300 }, /* guess */
410 .m1 = { .min = 2, .max = 3 },
411 .m2 = { .min = 11, .max = 156 },
412 .p = { .min = 10, .max = 30 },
413 .p1 = { .min = 2, .max = 3 },
414 .p2 = { .dot_limit = 270000,
415 .p2_slow = 2, .p2_fast = 20 },
416 .find_pll = intel_vlv_find_best_pll,
417 };
418
419 static const intel_limit_t intel_limits_vlv_dp = {
420 .dot = { .min = 25000, .max = 270000 },
421 .vco = { .min = 4000000, .max = 6000000 },
422 .n = { .min = 1, .max = 7 },
423 .m = { .min = 22, .max = 450 },
424 .m1 = { .min = 2, .max = 3 },
425 .m2 = { .min = 11, .max = 156 },
426 .p = { .min = 10, .max = 30 },
427 .p1 = { .min = 2, .max = 3 },
428 .p2 = { .dot_limit = 270000,
429 .p2_slow = 2, .p2_fast = 20 },
430 .find_pll = intel_vlv_find_best_pll,
431 };
432
433 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
434 {
435 WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
436
437 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
438 DRM_ERROR("DPIO idle wait timed out\n");
439 return 0;
440 }
441
442 I915_WRITE(DPIO_REG, reg);
443 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
444 DPIO_BYTE);
445 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
446 DRM_ERROR("DPIO read wait timed out\n");
447 return 0;
448 }
449
450 return I915_READ(DPIO_DATA);
451 }
452
453 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
454 u32 val)
455 {
456 WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
457
458 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
459 DRM_ERROR("DPIO idle wait timed out\n");
460 return;
461 }
462
463 I915_WRITE(DPIO_DATA, val);
464 I915_WRITE(DPIO_REG, reg);
465 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
466 DPIO_BYTE);
467 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
468 DRM_ERROR("DPIO write wait timed out\n");
469 }
470
471 static void vlv_init_dpio(struct drm_device *dev)
472 {
473 struct drm_i915_private *dev_priv = dev->dev_private;
474
475 /* Reset the DPIO config */
476 I915_WRITE(DPIO_CTL, 0);
477 POSTING_READ(DPIO_CTL);
478 I915_WRITE(DPIO_CTL, 1);
479 POSTING_READ(DPIO_CTL);
480 }
481
482 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
483 int refclk)
484 {
485 struct drm_device *dev = crtc->dev;
486 const intel_limit_t *limit;
487
488 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
489 if (intel_is_dual_link_lvds(dev)) {
490 if (refclk == 100000)
491 limit = &intel_limits_ironlake_dual_lvds_100m;
492 else
493 limit = &intel_limits_ironlake_dual_lvds;
494 } else {
495 if (refclk == 100000)
496 limit = &intel_limits_ironlake_single_lvds_100m;
497 else
498 limit = &intel_limits_ironlake_single_lvds;
499 }
500 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
501 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
502 limit = &intel_limits_ironlake_display_port;
503 else
504 limit = &intel_limits_ironlake_dac;
505
506 return limit;
507 }
508
509 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
510 {
511 struct drm_device *dev = crtc->dev;
512 const intel_limit_t *limit;
513
514 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
515 if (intel_is_dual_link_lvds(dev))
516 limit = &intel_limits_g4x_dual_channel_lvds;
517 else
518 limit = &intel_limits_g4x_single_channel_lvds;
519 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
520 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
521 limit = &intel_limits_g4x_hdmi;
522 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
523 limit = &intel_limits_g4x_sdvo;
524 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
525 limit = &intel_limits_g4x_display_port;
526 } else /* The option is for other outputs */
527 limit = &intel_limits_i9xx_sdvo;
528
529 return limit;
530 }
531
532 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
533 {
534 struct drm_device *dev = crtc->dev;
535 const intel_limit_t *limit;
536
537 if (HAS_PCH_SPLIT(dev))
538 limit = intel_ironlake_limit(crtc, refclk);
539 else if (IS_G4X(dev)) {
540 limit = intel_g4x_limit(crtc);
541 } else if (IS_PINEVIEW(dev)) {
542 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
543 limit = &intel_limits_pineview_lvds;
544 else
545 limit = &intel_limits_pineview_sdvo;
546 } else if (IS_VALLEYVIEW(dev)) {
547 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
548 limit = &intel_limits_vlv_dac;
549 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
550 limit = &intel_limits_vlv_hdmi;
551 else
552 limit = &intel_limits_vlv_dp;
553 } else if (!IS_GEN2(dev)) {
554 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
555 limit = &intel_limits_i9xx_lvds;
556 else
557 limit = &intel_limits_i9xx_sdvo;
558 } else {
559 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
560 limit = &intel_limits_i8xx_lvds;
561 else
562 limit = &intel_limits_i8xx_dvo;
563 }
564 return limit;
565 }
566
567 /* m1 is reserved as 0 in Pineview, n is a ring counter */
568 static void pineview_clock(int refclk, intel_clock_t *clock)
569 {
570 clock->m = clock->m2 + 2;
571 clock->p = clock->p1 * clock->p2;
572 clock->vco = refclk * clock->m / clock->n;
573 clock->dot = clock->vco / clock->p;
574 }
575
576 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
577 {
578 if (IS_PINEVIEW(dev)) {
579 pineview_clock(refclk, clock);
580 return;
581 }
582 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
583 clock->p = clock->p1 * clock->p2;
584 clock->vco = refclk * clock->m / (clock->n + 2);
585 clock->dot = clock->vco / clock->p;
586 }
587
588 /**
589 * Returns whether any output on the specified pipe is of the specified type
590 */
591 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
592 {
593 struct drm_device *dev = crtc->dev;
594 struct intel_encoder *encoder;
595
596 for_each_encoder_on_crtc(dev, crtc, encoder)
597 if (encoder->type == type)
598 return true;
599
600 return false;
601 }
602
603 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
604 /**
605 * Returns whether the given set of divisors are valid for a given refclk with
606 * the given connectors.
607 */
608
609 static bool intel_PLL_is_valid(struct drm_device *dev,
610 const intel_limit_t *limit,
611 const intel_clock_t *clock)
612 {
613 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
614 INTELPllInvalid("p1 out of range\n");
615 if (clock->p < limit->p.min || limit->p.max < clock->p)
616 INTELPllInvalid("p out of range\n");
617 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
618 INTELPllInvalid("m2 out of range\n");
619 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
620 INTELPllInvalid("m1 out of range\n");
621 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
622 INTELPllInvalid("m1 <= m2\n");
623 if (clock->m < limit->m.min || limit->m.max < clock->m)
624 INTELPllInvalid("m out of range\n");
625 if (clock->n < limit->n.min || limit->n.max < clock->n)
626 INTELPllInvalid("n out of range\n");
627 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
628 INTELPllInvalid("vco out of range\n");
629 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
630 * connector, etc., rather than just a single range.
631 */
632 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
633 INTELPllInvalid("dot out of range\n");
634
635 return true;
636 }
637
638 static bool
639 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
640 int target, int refclk, intel_clock_t *match_clock,
641 intel_clock_t *best_clock)
642
643 {
644 struct drm_device *dev = crtc->dev;
645 intel_clock_t clock;
646 int err = target;
647
648 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
649 /*
650 * For LVDS just rely on its current settings for dual-channel.
651 * We haven't figured out how to reliably set up different
652 * single/dual channel state, if we even can.
653 */
654 if (intel_is_dual_link_lvds(dev))
655 clock.p2 = limit->p2.p2_fast;
656 else
657 clock.p2 = limit->p2.p2_slow;
658 } else {
659 if (target < limit->p2.dot_limit)
660 clock.p2 = limit->p2.p2_slow;
661 else
662 clock.p2 = limit->p2.p2_fast;
663 }
664
665 memset(best_clock, 0, sizeof(*best_clock));
666
667 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
668 clock.m1++) {
669 for (clock.m2 = limit->m2.min;
670 clock.m2 <= limit->m2.max; clock.m2++) {
671 /* m1 is always 0 in Pineview */
672 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
673 break;
674 for (clock.n = limit->n.min;
675 clock.n <= limit->n.max; clock.n++) {
676 for (clock.p1 = limit->p1.min;
677 clock.p1 <= limit->p1.max; clock.p1++) {
678 int this_err;
679
680 intel_clock(dev, refclk, &clock);
681 if (!intel_PLL_is_valid(dev, limit,
682 &clock))
683 continue;
684 if (match_clock &&
685 clock.p != match_clock->p)
686 continue;
687
688 this_err = abs(clock.dot - target);
689 if (this_err < err) {
690 *best_clock = clock;
691 err = this_err;
692 }
693 }
694 }
695 }
696 }
697
698 return (err != target);
699 }
700
701 static bool
702 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
703 int target, int refclk, intel_clock_t *match_clock,
704 intel_clock_t *best_clock)
705 {
706 struct drm_device *dev = crtc->dev;
707 intel_clock_t clock;
708 int max_n;
709 bool found;
710 /* approximately equals target * 0.00585 */
711 int err_most = (target >> 8) + (target >> 9);
712 found = false;
713
714 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
715 int lvds_reg;
716
717 if (HAS_PCH_SPLIT(dev))
718 lvds_reg = PCH_LVDS;
719 else
720 lvds_reg = LVDS;
721 if (intel_is_dual_link_lvds(dev))
722 clock.p2 = limit->p2.p2_fast;
723 else
724 clock.p2 = limit->p2.p2_slow;
725 } else {
726 if (target < limit->p2.dot_limit)
727 clock.p2 = limit->p2.p2_slow;
728 else
729 clock.p2 = limit->p2.p2_fast;
730 }
731
732 memset(best_clock, 0, sizeof(*best_clock));
733 max_n = limit->n.max;
734 /* based on hardware requirement, prefer smaller n to precision */
735 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
736 /* based on hardware requirement, prefere larger m1,m2 */
737 for (clock.m1 = limit->m1.max;
738 clock.m1 >= limit->m1.min; clock.m1--) {
739 for (clock.m2 = limit->m2.max;
740 clock.m2 >= limit->m2.min; clock.m2--) {
741 for (clock.p1 = limit->p1.max;
742 clock.p1 >= limit->p1.min; clock.p1--) {
743 int this_err;
744
745 intel_clock(dev, refclk, &clock);
746 if (!intel_PLL_is_valid(dev, limit,
747 &clock))
748 continue;
749 if (match_clock &&
750 clock.p != match_clock->p)
751 continue;
752
753 this_err = abs(clock.dot - target);
754 if (this_err < err_most) {
755 *best_clock = clock;
756 err_most = this_err;
757 max_n = clock.n;
758 found = true;
759 }
760 }
761 }
762 }
763 }
764 return found;
765 }
766
767 static bool
768 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
769 int target, int refclk, intel_clock_t *match_clock,
770 intel_clock_t *best_clock)
771 {
772 struct drm_device *dev = crtc->dev;
773 intel_clock_t clock;
774
775 if (target < 200000) {
776 clock.n = 1;
777 clock.p1 = 2;
778 clock.p2 = 10;
779 clock.m1 = 12;
780 clock.m2 = 9;
781 } else {
782 clock.n = 2;
783 clock.p1 = 1;
784 clock.p2 = 10;
785 clock.m1 = 14;
786 clock.m2 = 8;
787 }
788 intel_clock(dev, refclk, &clock);
789 memcpy(best_clock, &clock, sizeof(intel_clock_t));
790 return true;
791 }
792
793 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
794 static bool
795 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
796 int target, int refclk, intel_clock_t *match_clock,
797 intel_clock_t *best_clock)
798 {
799 intel_clock_t clock;
800 if (target < 200000) {
801 clock.p1 = 2;
802 clock.p2 = 10;
803 clock.n = 2;
804 clock.m1 = 23;
805 clock.m2 = 8;
806 } else {
807 clock.p1 = 1;
808 clock.p2 = 10;
809 clock.n = 1;
810 clock.m1 = 14;
811 clock.m2 = 2;
812 }
813 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
814 clock.p = (clock.p1 * clock.p2);
815 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
816 clock.vco = 0;
817 memcpy(best_clock, &clock, sizeof(intel_clock_t));
818 return true;
819 }
820 static bool
821 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
822 int target, int refclk, intel_clock_t *match_clock,
823 intel_clock_t *best_clock)
824 {
825 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
826 u32 m, n, fastclk;
827 u32 updrate, minupdate, fracbits, p;
828 unsigned long bestppm, ppm, absppm;
829 int dotclk, flag;
830
831 flag = 0;
832 dotclk = target * 1000;
833 bestppm = 1000000;
834 ppm = absppm = 0;
835 fastclk = dotclk / (2*100);
836 updrate = 0;
837 minupdate = 19200;
838 fracbits = 1;
839 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
840 bestm1 = bestm2 = bestp1 = bestp2 = 0;
841
842 /* based on hardware requirement, prefer smaller n to precision */
843 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
844 updrate = refclk / n;
845 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
846 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
847 if (p2 > 10)
848 p2 = p2 - 1;
849 p = p1 * p2;
850 /* based on hardware requirement, prefer bigger m1,m2 values */
851 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
852 m2 = (((2*(fastclk * p * n / m1 )) +
853 refclk) / (2*refclk));
854 m = m1 * m2;
855 vco = updrate * m;
856 if (vco >= limit->vco.min && vco < limit->vco.max) {
857 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
858 absppm = (ppm > 0) ? ppm : (-ppm);
859 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
860 bestppm = 0;
861 flag = 1;
862 }
863 if (absppm < bestppm - 10) {
864 bestppm = absppm;
865 flag = 1;
866 }
867 if (flag) {
868 bestn = n;
869 bestm1 = m1;
870 bestm2 = m2;
871 bestp1 = p1;
872 bestp2 = p2;
873 flag = 0;
874 }
875 }
876 }
877 }
878 }
879 }
880 best_clock->n = bestn;
881 best_clock->m1 = bestm1;
882 best_clock->m2 = bestm2;
883 best_clock->p1 = bestp1;
884 best_clock->p2 = bestp2;
885
886 return true;
887 }
888
889 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
890 enum pipe pipe)
891 {
892 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
893 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
894
895 return intel_crtc->cpu_transcoder;
896 }
897
898 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
899 {
900 struct drm_i915_private *dev_priv = dev->dev_private;
901 u32 frame, frame_reg = PIPEFRAME(pipe);
902
903 frame = I915_READ(frame_reg);
904
905 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
906 DRM_DEBUG_KMS("vblank wait timed out\n");
907 }
908
909 /**
910 * intel_wait_for_vblank - wait for vblank on a given pipe
911 * @dev: drm device
912 * @pipe: pipe to wait for
913 *
914 * Wait for vblank to occur on a given pipe. Needed for various bits of
915 * mode setting code.
916 */
917 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
918 {
919 struct drm_i915_private *dev_priv = dev->dev_private;
920 int pipestat_reg = PIPESTAT(pipe);
921
922 if (INTEL_INFO(dev)->gen >= 5) {
923 ironlake_wait_for_vblank(dev, pipe);
924 return;
925 }
926
927 /* Clear existing vblank status. Note this will clear any other
928 * sticky status fields as well.
929 *
930 * This races with i915_driver_irq_handler() with the result
931 * that either function could miss a vblank event. Here it is not
932 * fatal, as we will either wait upon the next vblank interrupt or
933 * timeout. Generally speaking intel_wait_for_vblank() is only
934 * called during modeset at which time the GPU should be idle and
935 * should *not* be performing page flips and thus not waiting on
936 * vblanks...
937 * Currently, the result of us stealing a vblank from the irq
938 * handler is that a single frame will be skipped during swapbuffers.
939 */
940 I915_WRITE(pipestat_reg,
941 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
942
943 /* Wait for vblank interrupt bit to set */
944 if (wait_for(I915_READ(pipestat_reg) &
945 PIPE_VBLANK_INTERRUPT_STATUS,
946 50))
947 DRM_DEBUG_KMS("vblank wait timed out\n");
948 }
949
950 /*
951 * intel_wait_for_pipe_off - wait for pipe to turn off
952 * @dev: drm device
953 * @pipe: pipe to wait for
954 *
955 * After disabling a pipe, we can't wait for vblank in the usual way,
956 * spinning on the vblank interrupt status bit, since we won't actually
957 * see an interrupt when the pipe is disabled.
958 *
959 * On Gen4 and above:
960 * wait for the pipe register state bit to turn off
961 *
962 * Otherwise:
963 * wait for the display line value to settle (it usually
964 * ends up stopping at the start of the next frame).
965 *
966 */
967 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
968 {
969 struct drm_i915_private *dev_priv = dev->dev_private;
970 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
971 pipe);
972
973 if (INTEL_INFO(dev)->gen >= 4) {
974 int reg = PIPECONF(cpu_transcoder);
975
976 /* Wait for the Pipe State to go off */
977 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
978 100))
979 WARN(1, "pipe_off wait timed out\n");
980 } else {
981 u32 last_line, line_mask;
982 int reg = PIPEDSL(pipe);
983 unsigned long timeout = jiffies + msecs_to_jiffies(100);
984
985 if (IS_GEN2(dev))
986 line_mask = DSL_LINEMASK_GEN2;
987 else
988 line_mask = DSL_LINEMASK_GEN3;
989
990 /* Wait for the display line to settle */
991 do {
992 last_line = I915_READ(reg) & line_mask;
993 mdelay(5);
994 } while (((I915_READ(reg) & line_mask) != last_line) &&
995 time_after(timeout, jiffies));
996 if (time_after(jiffies, timeout))
997 WARN(1, "pipe_off wait timed out\n");
998 }
999 }
1000
1001 /*
1002 * ibx_digital_port_connected - is the specified port connected?
1003 * @dev_priv: i915 private structure
1004 * @port: the port to test
1005 *
1006 * Returns true if @port is connected, false otherwise.
1007 */
1008 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1009 struct intel_digital_port *port)
1010 {
1011 u32 bit;
1012
1013 if (HAS_PCH_IBX(dev_priv->dev)) {
1014 switch(port->port) {
1015 case PORT_B:
1016 bit = SDE_PORTB_HOTPLUG;
1017 break;
1018 case PORT_C:
1019 bit = SDE_PORTC_HOTPLUG;
1020 break;
1021 case PORT_D:
1022 bit = SDE_PORTD_HOTPLUG;
1023 break;
1024 default:
1025 return true;
1026 }
1027 } else {
1028 switch(port->port) {
1029 case PORT_B:
1030 bit = SDE_PORTB_HOTPLUG_CPT;
1031 break;
1032 case PORT_C:
1033 bit = SDE_PORTC_HOTPLUG_CPT;
1034 break;
1035 case PORT_D:
1036 bit = SDE_PORTD_HOTPLUG_CPT;
1037 break;
1038 default:
1039 return true;
1040 }
1041 }
1042
1043 return I915_READ(SDEISR) & bit;
1044 }
1045
1046 static const char *state_string(bool enabled)
1047 {
1048 return enabled ? "on" : "off";
1049 }
1050
1051 /* Only for pre-ILK configs */
1052 static void assert_pll(struct drm_i915_private *dev_priv,
1053 enum pipe pipe, bool state)
1054 {
1055 int reg;
1056 u32 val;
1057 bool cur_state;
1058
1059 reg = DPLL(pipe);
1060 val = I915_READ(reg);
1061 cur_state = !!(val & DPLL_VCO_ENABLE);
1062 WARN(cur_state != state,
1063 "PLL state assertion failure (expected %s, current %s)\n",
1064 state_string(state), state_string(cur_state));
1065 }
1066 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1067 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1068
1069 /* For ILK+ */
1070 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1071 struct intel_pch_pll *pll,
1072 struct intel_crtc *crtc,
1073 bool state)
1074 {
1075 u32 val;
1076 bool cur_state;
1077
1078 if (HAS_PCH_LPT(dev_priv->dev)) {
1079 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1080 return;
1081 }
1082
1083 if (WARN (!pll,
1084 "asserting PCH PLL %s with no PLL\n", state_string(state)))
1085 return;
1086
1087 val = I915_READ(pll->pll_reg);
1088 cur_state = !!(val & DPLL_VCO_ENABLE);
1089 WARN(cur_state != state,
1090 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1091 pll->pll_reg, state_string(state), state_string(cur_state), val);
1092
1093 /* Make sure the selected PLL is correctly attached to the transcoder */
1094 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1095 u32 pch_dpll;
1096
1097 pch_dpll = I915_READ(PCH_DPLL_SEL);
1098 cur_state = pll->pll_reg == _PCH_DPLL_B;
1099 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1100 "PLL[%d] not attached to this transcoder %d: %08x\n",
1101 cur_state, crtc->pipe, pch_dpll)) {
1102 cur_state = !!(val >> (4*crtc->pipe + 3));
1103 WARN(cur_state != state,
1104 "PLL[%d] not %s on this transcoder %d: %08x\n",
1105 pll->pll_reg == _PCH_DPLL_B,
1106 state_string(state),
1107 crtc->pipe,
1108 val);
1109 }
1110 }
1111 }
1112 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1113 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1114
1115 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1116 enum pipe pipe, bool state)
1117 {
1118 int reg;
1119 u32 val;
1120 bool cur_state;
1121 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1122 pipe);
1123
1124 if (HAS_DDI(dev_priv->dev)) {
1125 /* DDI does not have a specific FDI_TX register */
1126 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1127 val = I915_READ(reg);
1128 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1129 } else {
1130 reg = FDI_TX_CTL(pipe);
1131 val = I915_READ(reg);
1132 cur_state = !!(val & FDI_TX_ENABLE);
1133 }
1134 WARN(cur_state != state,
1135 "FDI TX state assertion failure (expected %s, current %s)\n",
1136 state_string(state), state_string(cur_state));
1137 }
1138 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1139 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1140
1141 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1142 enum pipe pipe, bool state)
1143 {
1144 int reg;
1145 u32 val;
1146 bool cur_state;
1147
1148 reg = FDI_RX_CTL(pipe);
1149 val = I915_READ(reg);
1150 cur_state = !!(val & FDI_RX_ENABLE);
1151 WARN(cur_state != state,
1152 "FDI RX state assertion failure (expected %s, current %s)\n",
1153 state_string(state), state_string(cur_state));
1154 }
1155 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1156 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1157
1158 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1159 enum pipe pipe)
1160 {
1161 int reg;
1162 u32 val;
1163
1164 /* ILK FDI PLL is always enabled */
1165 if (dev_priv->info->gen == 5)
1166 return;
1167
1168 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1169 if (HAS_DDI(dev_priv->dev))
1170 return;
1171
1172 reg = FDI_TX_CTL(pipe);
1173 val = I915_READ(reg);
1174 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175 }
1176
1177 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1178 enum pipe pipe)
1179 {
1180 int reg;
1181 u32 val;
1182
1183 reg = FDI_RX_CTL(pipe);
1184 val = I915_READ(reg);
1185 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1186 }
1187
1188 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1189 enum pipe pipe)
1190 {
1191 int pp_reg, lvds_reg;
1192 u32 val;
1193 enum pipe panel_pipe = PIPE_A;
1194 bool locked = true;
1195
1196 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1197 pp_reg = PCH_PP_CONTROL;
1198 lvds_reg = PCH_LVDS;
1199 } else {
1200 pp_reg = PP_CONTROL;
1201 lvds_reg = LVDS;
1202 }
1203
1204 val = I915_READ(pp_reg);
1205 if (!(val & PANEL_POWER_ON) ||
1206 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1207 locked = false;
1208
1209 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1210 panel_pipe = PIPE_B;
1211
1212 WARN(panel_pipe == pipe && locked,
1213 "panel assertion failure, pipe %c regs locked\n",
1214 pipe_name(pipe));
1215 }
1216
1217 void assert_pipe(struct drm_i915_private *dev_priv,
1218 enum pipe pipe, bool state)
1219 {
1220 int reg;
1221 u32 val;
1222 bool cur_state;
1223 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1224 pipe);
1225
1226 /* if we need the pipe A quirk it must be always on */
1227 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1228 state = true;
1229
1230 if (IS_HASWELL(dev_priv->dev) && cpu_transcoder != TRANSCODER_EDP &&
1231 !(I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_ENABLE)) {
1232 cur_state = false;
1233 } else {
1234 reg = PIPECONF(cpu_transcoder);
1235 val = I915_READ(reg);
1236 cur_state = !!(val & PIPECONF_ENABLE);
1237 }
1238
1239 WARN(cur_state != state,
1240 "pipe %c assertion failure (expected %s, current %s)\n",
1241 pipe_name(pipe), state_string(state), state_string(cur_state));
1242 }
1243
1244 static void assert_plane(struct drm_i915_private *dev_priv,
1245 enum plane plane, bool state)
1246 {
1247 int reg;
1248 u32 val;
1249 bool cur_state;
1250
1251 reg = DSPCNTR(plane);
1252 val = I915_READ(reg);
1253 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1254 WARN(cur_state != state,
1255 "plane %c assertion failure (expected %s, current %s)\n",
1256 plane_name(plane), state_string(state), state_string(cur_state));
1257 }
1258
1259 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1260 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1261
1262 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1263 enum pipe pipe)
1264 {
1265 int reg, i;
1266 u32 val;
1267 int cur_pipe;
1268
1269 /* Planes are fixed to pipes on ILK+ */
1270 if (HAS_PCH_SPLIT(dev_priv->dev) || IS_VALLEYVIEW(dev_priv->dev)) {
1271 reg = DSPCNTR(pipe);
1272 val = I915_READ(reg);
1273 WARN((val & DISPLAY_PLANE_ENABLE),
1274 "plane %c assertion failure, should be disabled but not\n",
1275 plane_name(pipe));
1276 return;
1277 }
1278
1279 /* Need to check both planes against the pipe */
1280 for (i = 0; i < 2; i++) {
1281 reg = DSPCNTR(i);
1282 val = I915_READ(reg);
1283 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1284 DISPPLANE_SEL_PIPE_SHIFT;
1285 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1286 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1287 plane_name(i), pipe_name(pipe));
1288 }
1289 }
1290
1291 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1292 {
1293 u32 val;
1294 bool enabled;
1295
1296 if (HAS_PCH_LPT(dev_priv->dev)) {
1297 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1298 return;
1299 }
1300
1301 val = I915_READ(PCH_DREF_CONTROL);
1302 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1303 DREF_SUPERSPREAD_SOURCE_MASK));
1304 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1305 }
1306
1307 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1308 enum pipe pipe)
1309 {
1310 int reg;
1311 u32 val;
1312 bool enabled;
1313
1314 reg = TRANSCONF(pipe);
1315 val = I915_READ(reg);
1316 enabled = !!(val & TRANS_ENABLE);
1317 WARN(enabled,
1318 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1319 pipe_name(pipe));
1320 }
1321
1322 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1323 enum pipe pipe, u32 port_sel, u32 val)
1324 {
1325 if ((val & DP_PORT_EN) == 0)
1326 return false;
1327
1328 if (HAS_PCH_CPT(dev_priv->dev)) {
1329 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1330 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1331 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1332 return false;
1333 } else {
1334 if ((val & DP_PIPE_MASK) != (pipe << 30))
1335 return false;
1336 }
1337 return true;
1338 }
1339
1340 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1341 enum pipe pipe, u32 val)
1342 {
1343 if ((val & SDVO_ENABLE) == 0)
1344 return false;
1345
1346 if (HAS_PCH_CPT(dev_priv->dev)) {
1347 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1348 return false;
1349 } else {
1350 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1351 return false;
1352 }
1353 return true;
1354 }
1355
1356 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1357 enum pipe pipe, u32 val)
1358 {
1359 if ((val & LVDS_PORT_EN) == 0)
1360 return false;
1361
1362 if (HAS_PCH_CPT(dev_priv->dev)) {
1363 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1364 return false;
1365 } else {
1366 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1367 return false;
1368 }
1369 return true;
1370 }
1371
1372 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1373 enum pipe pipe, u32 val)
1374 {
1375 if ((val & ADPA_DAC_ENABLE) == 0)
1376 return false;
1377 if (HAS_PCH_CPT(dev_priv->dev)) {
1378 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1379 return false;
1380 } else {
1381 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1382 return false;
1383 }
1384 return true;
1385 }
1386
1387 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1388 enum pipe pipe, int reg, u32 port_sel)
1389 {
1390 u32 val = I915_READ(reg);
1391 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1392 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1393 reg, pipe_name(pipe));
1394
1395 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1396 && (val & DP_PIPEB_SELECT),
1397 "IBX PCH dp port still using transcoder B\n");
1398 }
1399
1400 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1401 enum pipe pipe, int reg)
1402 {
1403 u32 val = I915_READ(reg);
1404 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1405 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1406 reg, pipe_name(pipe));
1407
1408 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1409 && (val & SDVO_PIPE_B_SELECT),
1410 "IBX PCH hdmi port still using transcoder B\n");
1411 }
1412
1413 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1414 enum pipe pipe)
1415 {
1416 int reg;
1417 u32 val;
1418
1419 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1420 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1421 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1422
1423 reg = PCH_ADPA;
1424 val = I915_READ(reg);
1425 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1426 "PCH VGA enabled on transcoder %c, should be disabled\n",
1427 pipe_name(pipe));
1428
1429 reg = PCH_LVDS;
1430 val = I915_READ(reg);
1431 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1432 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1433 pipe_name(pipe));
1434
1435 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1436 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1437 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1438 }
1439
1440 /**
1441 * intel_enable_pll - enable a PLL
1442 * @dev_priv: i915 private structure
1443 * @pipe: pipe PLL to enable
1444 *
1445 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1446 * make sure the PLL reg is writable first though, since the panel write
1447 * protect mechanism may be enabled.
1448 *
1449 * Note! This is for pre-ILK only.
1450 *
1451 * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1452 */
1453 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1454 {
1455 int reg;
1456 u32 val;
1457
1458 /* No really, not for ILK+ */
1459 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1460
1461 /* PLL is protected by panel, make sure we can write it */
1462 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1463 assert_panel_unlocked(dev_priv, pipe);
1464
1465 reg = DPLL(pipe);
1466 val = I915_READ(reg);
1467 val |= DPLL_VCO_ENABLE;
1468
1469 /* We do this three times for luck */
1470 I915_WRITE(reg, val);
1471 POSTING_READ(reg);
1472 udelay(150); /* wait for warmup */
1473 I915_WRITE(reg, val);
1474 POSTING_READ(reg);
1475 udelay(150); /* wait for warmup */
1476 I915_WRITE(reg, val);
1477 POSTING_READ(reg);
1478 udelay(150); /* wait for warmup */
1479 }
1480
1481 /**
1482 * intel_disable_pll - disable a PLL
1483 * @dev_priv: i915 private structure
1484 * @pipe: pipe PLL to disable
1485 *
1486 * Disable the PLL for @pipe, making sure the pipe is off first.
1487 *
1488 * Note! This is for pre-ILK only.
1489 */
1490 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1491 {
1492 int reg;
1493 u32 val;
1494
1495 /* Don't disable pipe A or pipe A PLLs if needed */
1496 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1497 return;
1498
1499 /* Make sure the pipe isn't still relying on us */
1500 assert_pipe_disabled(dev_priv, pipe);
1501
1502 reg = DPLL(pipe);
1503 val = I915_READ(reg);
1504 val &= ~DPLL_VCO_ENABLE;
1505 I915_WRITE(reg, val);
1506 POSTING_READ(reg);
1507 }
1508
1509 /* SBI access */
1510 static void
1511 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
1512 enum intel_sbi_destination destination)
1513 {
1514 u32 tmp;
1515
1516 WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1517
1518 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1519 100)) {
1520 DRM_ERROR("timeout waiting for SBI to become ready\n");
1521 return;
1522 }
1523
1524 I915_WRITE(SBI_ADDR, (reg << 16));
1525 I915_WRITE(SBI_DATA, value);
1526
1527 if (destination == SBI_ICLK)
1528 tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
1529 else
1530 tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
1531 I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
1532
1533 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1534 100)) {
1535 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1536 return;
1537 }
1538 }
1539
1540 static u32
1541 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
1542 enum intel_sbi_destination destination)
1543 {
1544 u32 value = 0;
1545 WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1546
1547 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1548 100)) {
1549 DRM_ERROR("timeout waiting for SBI to become ready\n");
1550 return 0;
1551 }
1552
1553 I915_WRITE(SBI_ADDR, (reg << 16));
1554
1555 if (destination == SBI_ICLK)
1556 value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
1557 else
1558 value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
1559 I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
1560
1561 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1562 100)) {
1563 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1564 return 0;
1565 }
1566
1567 return I915_READ(SBI_DATA);
1568 }
1569
1570 /**
1571 * ironlake_enable_pch_pll - enable PCH PLL
1572 * @dev_priv: i915 private structure
1573 * @pipe: pipe PLL to enable
1574 *
1575 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1576 * drives the transcoder clock.
1577 */
1578 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1579 {
1580 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1581 struct intel_pch_pll *pll;
1582 int reg;
1583 u32 val;
1584
1585 /* PCH PLLs only available on ILK, SNB and IVB */
1586 BUG_ON(dev_priv->info->gen < 5);
1587 pll = intel_crtc->pch_pll;
1588 if (pll == NULL)
1589 return;
1590
1591 if (WARN_ON(pll->refcount == 0))
1592 return;
1593
1594 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1595 pll->pll_reg, pll->active, pll->on,
1596 intel_crtc->base.base.id);
1597
1598 /* PCH refclock must be enabled first */
1599 assert_pch_refclk_enabled(dev_priv);
1600
1601 if (pll->active++ && pll->on) {
1602 assert_pch_pll_enabled(dev_priv, pll, NULL);
1603 return;
1604 }
1605
1606 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1607
1608 reg = pll->pll_reg;
1609 val = I915_READ(reg);
1610 val |= DPLL_VCO_ENABLE;
1611 I915_WRITE(reg, val);
1612 POSTING_READ(reg);
1613 udelay(200);
1614
1615 pll->on = true;
1616 }
1617
1618 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1619 {
1620 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1621 struct intel_pch_pll *pll = intel_crtc->pch_pll;
1622 int reg;
1623 u32 val;
1624
1625 /* PCH only available on ILK+ */
1626 BUG_ON(dev_priv->info->gen < 5);
1627 if (pll == NULL)
1628 return;
1629
1630 if (WARN_ON(pll->refcount == 0))
1631 return;
1632
1633 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1634 pll->pll_reg, pll->active, pll->on,
1635 intel_crtc->base.base.id);
1636
1637 if (WARN_ON(pll->active == 0)) {
1638 assert_pch_pll_disabled(dev_priv, pll, NULL);
1639 return;
1640 }
1641
1642 if (--pll->active) {
1643 assert_pch_pll_enabled(dev_priv, pll, NULL);
1644 return;
1645 }
1646
1647 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1648
1649 /* Make sure transcoder isn't still depending on us */
1650 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1651
1652 reg = pll->pll_reg;
1653 val = I915_READ(reg);
1654 val &= ~DPLL_VCO_ENABLE;
1655 I915_WRITE(reg, val);
1656 POSTING_READ(reg);
1657 udelay(200);
1658
1659 pll->on = false;
1660 }
1661
1662 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1663 enum pipe pipe)
1664 {
1665 struct drm_device *dev = dev_priv->dev;
1666 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1667 uint32_t reg, val, pipeconf_val;
1668
1669 /* PCH only available on ILK+ */
1670 BUG_ON(dev_priv->info->gen < 5);
1671
1672 /* Make sure PCH DPLL is enabled */
1673 assert_pch_pll_enabled(dev_priv,
1674 to_intel_crtc(crtc)->pch_pll,
1675 to_intel_crtc(crtc));
1676
1677 /* FDI must be feeding us bits for PCH ports */
1678 assert_fdi_tx_enabled(dev_priv, pipe);
1679 assert_fdi_rx_enabled(dev_priv, pipe);
1680
1681 if (HAS_PCH_CPT(dev)) {
1682 /* Workaround: Set the timing override bit before enabling the
1683 * pch transcoder. */
1684 reg = TRANS_CHICKEN2(pipe);
1685 val = I915_READ(reg);
1686 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1687 I915_WRITE(reg, val);
1688 }
1689
1690 reg = TRANSCONF(pipe);
1691 val = I915_READ(reg);
1692 pipeconf_val = I915_READ(PIPECONF(pipe));
1693
1694 if (HAS_PCH_IBX(dev_priv->dev)) {
1695 /*
1696 * make the BPC in transcoder be consistent with
1697 * that in pipeconf reg.
1698 */
1699 val &= ~PIPECONF_BPC_MASK;
1700 val |= pipeconf_val & PIPECONF_BPC_MASK;
1701 }
1702
1703 val &= ~TRANS_INTERLACE_MASK;
1704 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1705 if (HAS_PCH_IBX(dev_priv->dev) &&
1706 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1707 val |= TRANS_LEGACY_INTERLACED_ILK;
1708 else
1709 val |= TRANS_INTERLACED;
1710 else
1711 val |= TRANS_PROGRESSIVE;
1712
1713 I915_WRITE(reg, val | TRANS_ENABLE);
1714 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1715 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1716 }
1717
1718 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1719 enum transcoder cpu_transcoder)
1720 {
1721 u32 val, pipeconf_val;
1722
1723 /* PCH only available on ILK+ */
1724 BUG_ON(dev_priv->info->gen < 5);
1725
1726 /* FDI must be feeding us bits for PCH ports */
1727 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1728 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1729
1730 /* Workaround: set timing override bit. */
1731 val = I915_READ(_TRANSA_CHICKEN2);
1732 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1733 I915_WRITE(_TRANSA_CHICKEN2, val);
1734
1735 val = TRANS_ENABLE;
1736 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1737
1738 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1739 PIPECONF_INTERLACED_ILK)
1740 val |= TRANS_INTERLACED;
1741 else
1742 val |= TRANS_PROGRESSIVE;
1743
1744 I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1745 if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1746 DRM_ERROR("Failed to enable PCH transcoder\n");
1747 }
1748
1749 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1750 enum pipe pipe)
1751 {
1752 struct drm_device *dev = dev_priv->dev;
1753 uint32_t reg, val;
1754
1755 /* FDI relies on the transcoder */
1756 assert_fdi_tx_disabled(dev_priv, pipe);
1757 assert_fdi_rx_disabled(dev_priv, pipe);
1758
1759 /* Ports must be off as well */
1760 assert_pch_ports_disabled(dev_priv, pipe);
1761
1762 reg = TRANSCONF(pipe);
1763 val = I915_READ(reg);
1764 val &= ~TRANS_ENABLE;
1765 I915_WRITE(reg, val);
1766 /* wait for PCH transcoder off, transcoder state */
1767 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1768 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1769
1770 if (!HAS_PCH_IBX(dev)) {
1771 /* Workaround: Clear the timing override chicken bit again. */
1772 reg = TRANS_CHICKEN2(pipe);
1773 val = I915_READ(reg);
1774 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1775 I915_WRITE(reg, val);
1776 }
1777 }
1778
1779 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1780 {
1781 u32 val;
1782
1783 val = I915_READ(_TRANSACONF);
1784 val &= ~TRANS_ENABLE;
1785 I915_WRITE(_TRANSACONF, val);
1786 /* wait for PCH transcoder off, transcoder state */
1787 if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1788 DRM_ERROR("Failed to disable PCH transcoder\n");
1789
1790 /* Workaround: clear timing override bit. */
1791 val = I915_READ(_TRANSA_CHICKEN2);
1792 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1793 I915_WRITE(_TRANSA_CHICKEN2, val);
1794 }
1795
1796 /**
1797 * intel_enable_pipe - enable a pipe, asserting requirements
1798 * @dev_priv: i915 private structure
1799 * @pipe: pipe to enable
1800 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1801 *
1802 * Enable @pipe, making sure that various hardware specific requirements
1803 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1804 *
1805 * @pipe should be %PIPE_A or %PIPE_B.
1806 *
1807 * Will wait until the pipe is actually running (i.e. first vblank) before
1808 * returning.
1809 */
1810 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1811 bool pch_port)
1812 {
1813 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1814 pipe);
1815 enum pipe pch_transcoder;
1816 int reg;
1817 u32 val;
1818
1819 if (HAS_PCH_LPT(dev_priv->dev))
1820 pch_transcoder = TRANSCODER_A;
1821 else
1822 pch_transcoder = pipe;
1823
1824 /*
1825 * A pipe without a PLL won't actually be able to drive bits from
1826 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1827 * need the check.
1828 */
1829 if (!HAS_PCH_SPLIT(dev_priv->dev))
1830 assert_pll_enabled(dev_priv, pipe);
1831 else {
1832 if (pch_port) {
1833 /* if driving the PCH, we need FDI enabled */
1834 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1835 assert_fdi_tx_pll_enabled(dev_priv,
1836 (enum pipe) cpu_transcoder);
1837 }
1838 /* FIXME: assert CPU port conditions for SNB+ */
1839 }
1840
1841 reg = PIPECONF(cpu_transcoder);
1842 val = I915_READ(reg);
1843 if (val & PIPECONF_ENABLE)
1844 return;
1845
1846 I915_WRITE(reg, val | PIPECONF_ENABLE);
1847 intel_wait_for_vblank(dev_priv->dev, pipe);
1848 }
1849
1850 /**
1851 * intel_disable_pipe - disable a pipe, asserting requirements
1852 * @dev_priv: i915 private structure
1853 * @pipe: pipe to disable
1854 *
1855 * Disable @pipe, making sure that various hardware specific requirements
1856 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1857 *
1858 * @pipe should be %PIPE_A or %PIPE_B.
1859 *
1860 * Will wait until the pipe has shut down before returning.
1861 */
1862 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1863 enum pipe pipe)
1864 {
1865 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1866 pipe);
1867 int reg;
1868 u32 val;
1869
1870 /*
1871 * Make sure planes won't keep trying to pump pixels to us,
1872 * or we might hang the display.
1873 */
1874 assert_planes_disabled(dev_priv, pipe);
1875
1876 /* Don't disable pipe A or pipe A PLLs if needed */
1877 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1878 return;
1879
1880 reg = PIPECONF(cpu_transcoder);
1881 val = I915_READ(reg);
1882 if ((val & PIPECONF_ENABLE) == 0)
1883 return;
1884
1885 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1886 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1887 }
1888
1889 /*
1890 * Plane regs are double buffered, going from enabled->disabled needs a
1891 * trigger in order to latch. The display address reg provides this.
1892 */
1893 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1894 enum plane plane)
1895 {
1896 if (dev_priv->info->gen >= 4)
1897 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1898 else
1899 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1900 }
1901
1902 /**
1903 * intel_enable_plane - enable a display plane on a given pipe
1904 * @dev_priv: i915 private structure
1905 * @plane: plane to enable
1906 * @pipe: pipe being fed
1907 *
1908 * Enable @plane on @pipe, making sure that @pipe is running first.
1909 */
1910 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1911 enum plane plane, enum pipe pipe)
1912 {
1913 int reg;
1914 u32 val;
1915
1916 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1917 assert_pipe_enabled(dev_priv, pipe);
1918
1919 reg = DSPCNTR(plane);
1920 val = I915_READ(reg);
1921 if (val & DISPLAY_PLANE_ENABLE)
1922 return;
1923
1924 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1925 intel_flush_display_plane(dev_priv, plane);
1926 intel_wait_for_vblank(dev_priv->dev, pipe);
1927 }
1928
1929 /**
1930 * intel_disable_plane - disable a display plane
1931 * @dev_priv: i915 private structure
1932 * @plane: plane to disable
1933 * @pipe: pipe consuming the data
1934 *
1935 * Disable @plane; should be an independent operation.
1936 */
1937 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1938 enum plane plane, enum pipe pipe)
1939 {
1940 int reg;
1941 u32 val;
1942
1943 reg = DSPCNTR(plane);
1944 val = I915_READ(reg);
1945 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1946 return;
1947
1948 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1949 intel_flush_display_plane(dev_priv, plane);
1950 intel_wait_for_vblank(dev_priv->dev, pipe);
1951 }
1952
1953 static bool need_vtd_wa(struct drm_device *dev)
1954 {
1955 #ifdef CONFIG_INTEL_IOMMU
1956 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1957 return true;
1958 #endif
1959 return false;
1960 }
1961
1962 int
1963 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1964 struct drm_i915_gem_object *obj,
1965 struct intel_ring_buffer *pipelined)
1966 {
1967 struct drm_i915_private *dev_priv = dev->dev_private;
1968 u32 alignment;
1969 int ret;
1970
1971 switch (obj->tiling_mode) {
1972 case I915_TILING_NONE:
1973 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1974 alignment = 128 * 1024;
1975 else if (INTEL_INFO(dev)->gen >= 4)
1976 alignment = 4 * 1024;
1977 else
1978 alignment = 64 * 1024;
1979 break;
1980 case I915_TILING_X:
1981 /* pin() will align the object as required by fence */
1982 alignment = 0;
1983 break;
1984 case I915_TILING_Y:
1985 /* FIXME: Is this true? */
1986 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1987 return -EINVAL;
1988 default:
1989 BUG();
1990 }
1991
1992 /* Note that the w/a also requires 64 PTE of padding following the
1993 * bo. We currently fill all unused PTE with the shadow page and so
1994 * we should always have valid PTE following the scanout preventing
1995 * the VT-d warning.
1996 */
1997 if (need_vtd_wa(dev) && alignment < 256 * 1024)
1998 alignment = 256 * 1024;
1999
2000 dev_priv->mm.interruptible = false;
2001 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2002 if (ret)
2003 goto err_interruptible;
2004
2005 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2006 * fence, whereas 965+ only requires a fence if using
2007 * framebuffer compression. For simplicity, we always install
2008 * a fence as the cost is not that onerous.
2009 */
2010 ret = i915_gem_object_get_fence(obj);
2011 if (ret)
2012 goto err_unpin;
2013
2014 i915_gem_object_pin_fence(obj);
2015
2016 dev_priv->mm.interruptible = true;
2017 return 0;
2018
2019 err_unpin:
2020 i915_gem_object_unpin(obj);
2021 err_interruptible:
2022 dev_priv->mm.interruptible = true;
2023 return ret;
2024 }
2025
2026 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2027 {
2028 i915_gem_object_unpin_fence(obj);
2029 i915_gem_object_unpin(obj);
2030 }
2031
2032 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2033 * is assumed to be a power-of-two. */
2034 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2035 unsigned int tiling_mode,
2036 unsigned int cpp,
2037 unsigned int pitch)
2038 {
2039 if (tiling_mode != I915_TILING_NONE) {
2040 unsigned int tile_rows, tiles;
2041
2042 tile_rows = *y / 8;
2043 *y %= 8;
2044
2045 tiles = *x / (512/cpp);
2046 *x %= 512/cpp;
2047
2048 return tile_rows * pitch * 8 + tiles * 4096;
2049 } else {
2050 unsigned int offset;
2051
2052 offset = *y * pitch + *x * cpp;
2053 *y = 0;
2054 *x = (offset & 4095) / cpp;
2055 return offset & -4096;
2056 }
2057 }
2058
2059 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2060 int x, int y)
2061 {
2062 struct drm_device *dev = crtc->dev;
2063 struct drm_i915_private *dev_priv = dev->dev_private;
2064 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2065 struct intel_framebuffer *intel_fb;
2066 struct drm_i915_gem_object *obj;
2067 int plane = intel_crtc->plane;
2068 unsigned long linear_offset;
2069 u32 dspcntr;
2070 u32 reg;
2071
2072 switch (plane) {
2073 case 0:
2074 case 1:
2075 break;
2076 default:
2077 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2078 return -EINVAL;
2079 }
2080
2081 intel_fb = to_intel_framebuffer(fb);
2082 obj = intel_fb->obj;
2083
2084 reg = DSPCNTR(plane);
2085 dspcntr = I915_READ(reg);
2086 /* Mask out pixel format bits in case we change it */
2087 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2088 switch (fb->pixel_format) {
2089 case DRM_FORMAT_C8:
2090 dspcntr |= DISPPLANE_8BPP;
2091 break;
2092 case DRM_FORMAT_XRGB1555:
2093 case DRM_FORMAT_ARGB1555:
2094 dspcntr |= DISPPLANE_BGRX555;
2095 break;
2096 case DRM_FORMAT_RGB565:
2097 dspcntr |= DISPPLANE_BGRX565;
2098 break;
2099 case DRM_FORMAT_XRGB8888:
2100 case DRM_FORMAT_ARGB8888:
2101 dspcntr |= DISPPLANE_BGRX888;
2102 break;
2103 case DRM_FORMAT_XBGR8888:
2104 case DRM_FORMAT_ABGR8888:
2105 dspcntr |= DISPPLANE_RGBX888;
2106 break;
2107 case DRM_FORMAT_XRGB2101010:
2108 case DRM_FORMAT_ARGB2101010:
2109 dspcntr |= DISPPLANE_BGRX101010;
2110 break;
2111 case DRM_FORMAT_XBGR2101010:
2112 case DRM_FORMAT_ABGR2101010:
2113 dspcntr |= DISPPLANE_RGBX101010;
2114 break;
2115 default:
2116 BUG();
2117 }
2118
2119 if (INTEL_INFO(dev)->gen >= 4) {
2120 if (obj->tiling_mode != I915_TILING_NONE)
2121 dspcntr |= DISPPLANE_TILED;
2122 else
2123 dspcntr &= ~DISPPLANE_TILED;
2124 }
2125
2126 I915_WRITE(reg, dspcntr);
2127
2128 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2129
2130 if (INTEL_INFO(dev)->gen >= 4) {
2131 intel_crtc->dspaddr_offset =
2132 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2133 fb->bits_per_pixel / 8,
2134 fb->pitches[0]);
2135 linear_offset -= intel_crtc->dspaddr_offset;
2136 } else {
2137 intel_crtc->dspaddr_offset = linear_offset;
2138 }
2139
2140 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2141 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2142 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2143 if (INTEL_INFO(dev)->gen >= 4) {
2144 I915_MODIFY_DISPBASE(DSPSURF(plane),
2145 obj->gtt_offset + intel_crtc->dspaddr_offset);
2146 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2147 I915_WRITE(DSPLINOFF(plane), linear_offset);
2148 } else
2149 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2150 POSTING_READ(reg);
2151
2152 return 0;
2153 }
2154
2155 static int ironlake_update_plane(struct drm_crtc *crtc,
2156 struct drm_framebuffer *fb, int x, int y)
2157 {
2158 struct drm_device *dev = crtc->dev;
2159 struct drm_i915_private *dev_priv = dev->dev_private;
2160 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2161 struct intel_framebuffer *intel_fb;
2162 struct drm_i915_gem_object *obj;
2163 int plane = intel_crtc->plane;
2164 unsigned long linear_offset;
2165 u32 dspcntr;
2166 u32 reg;
2167
2168 switch (plane) {
2169 case 0:
2170 case 1:
2171 case 2:
2172 break;
2173 default:
2174 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2175 return -EINVAL;
2176 }
2177
2178 intel_fb = to_intel_framebuffer(fb);
2179 obj = intel_fb->obj;
2180
2181 reg = DSPCNTR(plane);
2182 dspcntr = I915_READ(reg);
2183 /* Mask out pixel format bits in case we change it */
2184 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2185 switch (fb->pixel_format) {
2186 case DRM_FORMAT_C8:
2187 dspcntr |= DISPPLANE_8BPP;
2188 break;
2189 case DRM_FORMAT_RGB565:
2190 dspcntr |= DISPPLANE_BGRX565;
2191 break;
2192 case DRM_FORMAT_XRGB8888:
2193 case DRM_FORMAT_ARGB8888:
2194 dspcntr |= DISPPLANE_BGRX888;
2195 break;
2196 case DRM_FORMAT_XBGR8888:
2197 case DRM_FORMAT_ABGR8888:
2198 dspcntr |= DISPPLANE_RGBX888;
2199 break;
2200 case DRM_FORMAT_XRGB2101010:
2201 case DRM_FORMAT_ARGB2101010:
2202 dspcntr |= DISPPLANE_BGRX101010;
2203 break;
2204 case DRM_FORMAT_XBGR2101010:
2205 case DRM_FORMAT_ABGR2101010:
2206 dspcntr |= DISPPLANE_RGBX101010;
2207 break;
2208 default:
2209 BUG();
2210 }
2211
2212 if (obj->tiling_mode != I915_TILING_NONE)
2213 dspcntr |= DISPPLANE_TILED;
2214 else
2215 dspcntr &= ~DISPPLANE_TILED;
2216
2217 /* must disable */
2218 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2219
2220 I915_WRITE(reg, dspcntr);
2221
2222 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2223 intel_crtc->dspaddr_offset =
2224 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2225 fb->bits_per_pixel / 8,
2226 fb->pitches[0]);
2227 linear_offset -= intel_crtc->dspaddr_offset;
2228
2229 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2230 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2231 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2232 I915_MODIFY_DISPBASE(DSPSURF(plane),
2233 obj->gtt_offset + intel_crtc->dspaddr_offset);
2234 if (IS_HASWELL(dev)) {
2235 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2236 } else {
2237 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2238 I915_WRITE(DSPLINOFF(plane), linear_offset);
2239 }
2240 POSTING_READ(reg);
2241
2242 return 0;
2243 }
2244
2245 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2246 static int
2247 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2248 int x, int y, enum mode_set_atomic state)
2249 {
2250 struct drm_device *dev = crtc->dev;
2251 struct drm_i915_private *dev_priv = dev->dev_private;
2252
2253 if (dev_priv->display.disable_fbc)
2254 dev_priv->display.disable_fbc(dev);
2255 intel_increase_pllclock(crtc);
2256
2257 return dev_priv->display.update_plane(crtc, fb, x, y);
2258 }
2259
2260 void intel_display_handle_reset(struct drm_device *dev)
2261 {
2262 struct drm_i915_private *dev_priv = dev->dev_private;
2263 struct drm_crtc *crtc;
2264
2265 /*
2266 * Flips in the rings have been nuked by the reset,
2267 * so complete all pending flips so that user space
2268 * will get its events and not get stuck.
2269 *
2270 * Also update the base address of all primary
2271 * planes to the the last fb to make sure we're
2272 * showing the correct fb after a reset.
2273 *
2274 * Need to make two loops over the crtcs so that we
2275 * don't try to grab a crtc mutex before the
2276 * pending_flip_queue really got woken up.
2277 */
2278
2279 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2280 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2281 enum plane plane = intel_crtc->plane;
2282
2283 intel_prepare_page_flip(dev, plane);
2284 intel_finish_page_flip_plane(dev, plane);
2285 }
2286
2287 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2288 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2289
2290 mutex_lock(&crtc->mutex);
2291 if (intel_crtc->active)
2292 dev_priv->display.update_plane(crtc, crtc->fb,
2293 crtc->x, crtc->y);
2294 mutex_unlock(&crtc->mutex);
2295 }
2296 }
2297
2298 static int
2299 intel_finish_fb(struct drm_framebuffer *old_fb)
2300 {
2301 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2302 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2303 bool was_interruptible = dev_priv->mm.interruptible;
2304 int ret;
2305
2306 /* Big Hammer, we also need to ensure that any pending
2307 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2308 * current scanout is retired before unpinning the old
2309 * framebuffer.
2310 *
2311 * This should only fail upon a hung GPU, in which case we
2312 * can safely continue.
2313 */
2314 dev_priv->mm.interruptible = false;
2315 ret = i915_gem_object_finish_gpu(obj);
2316 dev_priv->mm.interruptible = was_interruptible;
2317
2318 return ret;
2319 }
2320
2321 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2322 {
2323 struct drm_device *dev = crtc->dev;
2324 struct drm_i915_master_private *master_priv;
2325 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2326
2327 if (!dev->primary->master)
2328 return;
2329
2330 master_priv = dev->primary->master->driver_priv;
2331 if (!master_priv->sarea_priv)
2332 return;
2333
2334 switch (intel_crtc->pipe) {
2335 case 0:
2336 master_priv->sarea_priv->pipeA_x = x;
2337 master_priv->sarea_priv->pipeA_y = y;
2338 break;
2339 case 1:
2340 master_priv->sarea_priv->pipeB_x = x;
2341 master_priv->sarea_priv->pipeB_y = y;
2342 break;
2343 default:
2344 break;
2345 }
2346 }
2347
2348 static int
2349 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2350 struct drm_framebuffer *fb)
2351 {
2352 struct drm_device *dev = crtc->dev;
2353 struct drm_i915_private *dev_priv = dev->dev_private;
2354 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2355 struct drm_framebuffer *old_fb;
2356 int ret;
2357
2358 /* no fb bound */
2359 if (!fb) {
2360 DRM_ERROR("No FB bound\n");
2361 return 0;
2362 }
2363
2364 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2365 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2366 intel_crtc->plane,
2367 INTEL_INFO(dev)->num_pipes);
2368 return -EINVAL;
2369 }
2370
2371 mutex_lock(&dev->struct_mutex);
2372 ret = intel_pin_and_fence_fb_obj(dev,
2373 to_intel_framebuffer(fb)->obj,
2374 NULL);
2375 if (ret != 0) {
2376 mutex_unlock(&dev->struct_mutex);
2377 DRM_ERROR("pin & fence failed\n");
2378 return ret;
2379 }
2380
2381 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2382 if (ret) {
2383 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2384 mutex_unlock(&dev->struct_mutex);
2385 DRM_ERROR("failed to update base address\n");
2386 return ret;
2387 }
2388
2389 old_fb = crtc->fb;
2390 crtc->fb = fb;
2391 crtc->x = x;
2392 crtc->y = y;
2393
2394 if (old_fb) {
2395 intel_wait_for_vblank(dev, intel_crtc->pipe);
2396 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2397 }
2398
2399 intel_update_fbc(dev);
2400 mutex_unlock(&dev->struct_mutex);
2401
2402 intel_crtc_update_sarea_pos(crtc, x, y);
2403
2404 return 0;
2405 }
2406
2407 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2408 {
2409 struct drm_device *dev = crtc->dev;
2410 struct drm_i915_private *dev_priv = dev->dev_private;
2411 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2412 int pipe = intel_crtc->pipe;
2413 u32 reg, temp;
2414
2415 /* enable normal train */
2416 reg = FDI_TX_CTL(pipe);
2417 temp = I915_READ(reg);
2418 if (IS_IVYBRIDGE(dev)) {
2419 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2420 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2421 } else {
2422 temp &= ~FDI_LINK_TRAIN_NONE;
2423 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2424 }
2425 I915_WRITE(reg, temp);
2426
2427 reg = FDI_RX_CTL(pipe);
2428 temp = I915_READ(reg);
2429 if (HAS_PCH_CPT(dev)) {
2430 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2431 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2432 } else {
2433 temp &= ~FDI_LINK_TRAIN_NONE;
2434 temp |= FDI_LINK_TRAIN_NONE;
2435 }
2436 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2437
2438 /* wait one idle pattern time */
2439 POSTING_READ(reg);
2440 udelay(1000);
2441
2442 /* IVB wants error correction enabled */
2443 if (IS_IVYBRIDGE(dev))
2444 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2445 FDI_FE_ERRC_ENABLE);
2446 }
2447
2448 static void ivb_modeset_global_resources(struct drm_device *dev)
2449 {
2450 struct drm_i915_private *dev_priv = dev->dev_private;
2451 struct intel_crtc *pipe_B_crtc =
2452 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2453 struct intel_crtc *pipe_C_crtc =
2454 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2455 uint32_t temp;
2456
2457 /* When everything is off disable fdi C so that we could enable fdi B
2458 * with all lanes. XXX: This misses the case where a pipe is not using
2459 * any pch resources and so doesn't need any fdi lanes. */
2460 if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2461 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2462 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2463
2464 temp = I915_READ(SOUTH_CHICKEN1);
2465 temp &= ~FDI_BC_BIFURCATION_SELECT;
2466 DRM_DEBUG_KMS("disabling fdi C rx\n");
2467 I915_WRITE(SOUTH_CHICKEN1, temp);
2468 }
2469 }
2470
2471 /* The FDI link training functions for ILK/Ibexpeak. */
2472 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2473 {
2474 struct drm_device *dev = crtc->dev;
2475 struct drm_i915_private *dev_priv = dev->dev_private;
2476 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2477 int pipe = intel_crtc->pipe;
2478 int plane = intel_crtc->plane;
2479 u32 reg, temp, tries;
2480
2481 /* FDI needs bits from pipe & plane first */
2482 assert_pipe_enabled(dev_priv, pipe);
2483 assert_plane_enabled(dev_priv, plane);
2484
2485 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2486 for train result */
2487 reg = FDI_RX_IMR(pipe);
2488 temp = I915_READ(reg);
2489 temp &= ~FDI_RX_SYMBOL_LOCK;
2490 temp &= ~FDI_RX_BIT_LOCK;
2491 I915_WRITE(reg, temp);
2492 I915_READ(reg);
2493 udelay(150);
2494
2495 /* enable CPU FDI TX and PCH FDI RX */
2496 reg = FDI_TX_CTL(pipe);
2497 temp = I915_READ(reg);
2498 temp &= ~(7 << 19);
2499 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2500 temp &= ~FDI_LINK_TRAIN_NONE;
2501 temp |= FDI_LINK_TRAIN_PATTERN_1;
2502 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2503
2504 reg = FDI_RX_CTL(pipe);
2505 temp = I915_READ(reg);
2506 temp &= ~FDI_LINK_TRAIN_NONE;
2507 temp |= FDI_LINK_TRAIN_PATTERN_1;
2508 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2509
2510 POSTING_READ(reg);
2511 udelay(150);
2512
2513 /* Ironlake workaround, enable clock pointer after FDI enable*/
2514 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2515 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2516 FDI_RX_PHASE_SYNC_POINTER_EN);
2517
2518 reg = FDI_RX_IIR(pipe);
2519 for (tries = 0; tries < 5; tries++) {
2520 temp = I915_READ(reg);
2521 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2522
2523 if ((temp & FDI_RX_BIT_LOCK)) {
2524 DRM_DEBUG_KMS("FDI train 1 done.\n");
2525 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2526 break;
2527 }
2528 }
2529 if (tries == 5)
2530 DRM_ERROR("FDI train 1 fail!\n");
2531
2532 /* Train 2 */
2533 reg = FDI_TX_CTL(pipe);
2534 temp = I915_READ(reg);
2535 temp &= ~FDI_LINK_TRAIN_NONE;
2536 temp |= FDI_LINK_TRAIN_PATTERN_2;
2537 I915_WRITE(reg, temp);
2538
2539 reg = FDI_RX_CTL(pipe);
2540 temp = I915_READ(reg);
2541 temp &= ~FDI_LINK_TRAIN_NONE;
2542 temp |= FDI_LINK_TRAIN_PATTERN_2;
2543 I915_WRITE(reg, temp);
2544
2545 POSTING_READ(reg);
2546 udelay(150);
2547
2548 reg = FDI_RX_IIR(pipe);
2549 for (tries = 0; tries < 5; tries++) {
2550 temp = I915_READ(reg);
2551 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2552
2553 if (temp & FDI_RX_SYMBOL_LOCK) {
2554 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2555 DRM_DEBUG_KMS("FDI train 2 done.\n");
2556 break;
2557 }
2558 }
2559 if (tries == 5)
2560 DRM_ERROR("FDI train 2 fail!\n");
2561
2562 DRM_DEBUG_KMS("FDI train done\n");
2563
2564 }
2565
2566 static const int snb_b_fdi_train_param[] = {
2567 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2568 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2569 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2570 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2571 };
2572
2573 /* The FDI link training functions for SNB/Cougarpoint. */
2574 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2575 {
2576 struct drm_device *dev = crtc->dev;
2577 struct drm_i915_private *dev_priv = dev->dev_private;
2578 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2579 int pipe = intel_crtc->pipe;
2580 u32 reg, temp, i, retry;
2581
2582 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2583 for train result */
2584 reg = FDI_RX_IMR(pipe);
2585 temp = I915_READ(reg);
2586 temp &= ~FDI_RX_SYMBOL_LOCK;
2587 temp &= ~FDI_RX_BIT_LOCK;
2588 I915_WRITE(reg, temp);
2589
2590 POSTING_READ(reg);
2591 udelay(150);
2592
2593 /* enable CPU FDI TX and PCH FDI RX */
2594 reg = FDI_TX_CTL(pipe);
2595 temp = I915_READ(reg);
2596 temp &= ~(7 << 19);
2597 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2598 temp &= ~FDI_LINK_TRAIN_NONE;
2599 temp |= FDI_LINK_TRAIN_PATTERN_1;
2600 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2601 /* SNB-B */
2602 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2603 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2604
2605 I915_WRITE(FDI_RX_MISC(pipe),
2606 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2607
2608 reg = FDI_RX_CTL(pipe);
2609 temp = I915_READ(reg);
2610 if (HAS_PCH_CPT(dev)) {
2611 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2612 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2613 } else {
2614 temp &= ~FDI_LINK_TRAIN_NONE;
2615 temp |= FDI_LINK_TRAIN_PATTERN_1;
2616 }
2617 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2618
2619 POSTING_READ(reg);
2620 udelay(150);
2621
2622 for (i = 0; i < 4; i++) {
2623 reg = FDI_TX_CTL(pipe);
2624 temp = I915_READ(reg);
2625 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2626 temp |= snb_b_fdi_train_param[i];
2627 I915_WRITE(reg, temp);
2628
2629 POSTING_READ(reg);
2630 udelay(500);
2631
2632 for (retry = 0; retry < 5; retry++) {
2633 reg = FDI_RX_IIR(pipe);
2634 temp = I915_READ(reg);
2635 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2636 if (temp & FDI_RX_BIT_LOCK) {
2637 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2638 DRM_DEBUG_KMS("FDI train 1 done.\n");
2639 break;
2640 }
2641 udelay(50);
2642 }
2643 if (retry < 5)
2644 break;
2645 }
2646 if (i == 4)
2647 DRM_ERROR("FDI train 1 fail!\n");
2648
2649 /* Train 2 */
2650 reg = FDI_TX_CTL(pipe);
2651 temp = I915_READ(reg);
2652 temp &= ~FDI_LINK_TRAIN_NONE;
2653 temp |= FDI_LINK_TRAIN_PATTERN_2;
2654 if (IS_GEN6(dev)) {
2655 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2656 /* SNB-B */
2657 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2658 }
2659 I915_WRITE(reg, temp);
2660
2661 reg = FDI_RX_CTL(pipe);
2662 temp = I915_READ(reg);
2663 if (HAS_PCH_CPT(dev)) {
2664 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2665 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2666 } else {
2667 temp &= ~FDI_LINK_TRAIN_NONE;
2668 temp |= FDI_LINK_TRAIN_PATTERN_2;
2669 }
2670 I915_WRITE(reg, temp);
2671
2672 POSTING_READ(reg);
2673 udelay(150);
2674
2675 for (i = 0; i < 4; i++) {
2676 reg = FDI_TX_CTL(pipe);
2677 temp = I915_READ(reg);
2678 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2679 temp |= snb_b_fdi_train_param[i];
2680 I915_WRITE(reg, temp);
2681
2682 POSTING_READ(reg);
2683 udelay(500);
2684
2685 for (retry = 0; retry < 5; retry++) {
2686 reg = FDI_RX_IIR(pipe);
2687 temp = I915_READ(reg);
2688 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2689 if (temp & FDI_RX_SYMBOL_LOCK) {
2690 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2691 DRM_DEBUG_KMS("FDI train 2 done.\n");
2692 break;
2693 }
2694 udelay(50);
2695 }
2696 if (retry < 5)
2697 break;
2698 }
2699 if (i == 4)
2700 DRM_ERROR("FDI train 2 fail!\n");
2701
2702 DRM_DEBUG_KMS("FDI train done.\n");
2703 }
2704
2705 /* Manual link training for Ivy Bridge A0 parts */
2706 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2707 {
2708 struct drm_device *dev = crtc->dev;
2709 struct drm_i915_private *dev_priv = dev->dev_private;
2710 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2711 int pipe = intel_crtc->pipe;
2712 u32 reg, temp, i;
2713
2714 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2715 for train result */
2716 reg = FDI_RX_IMR(pipe);
2717 temp = I915_READ(reg);
2718 temp &= ~FDI_RX_SYMBOL_LOCK;
2719 temp &= ~FDI_RX_BIT_LOCK;
2720 I915_WRITE(reg, temp);
2721
2722 POSTING_READ(reg);
2723 udelay(150);
2724
2725 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2726 I915_READ(FDI_RX_IIR(pipe)));
2727
2728 /* enable CPU FDI TX and PCH FDI RX */
2729 reg = FDI_TX_CTL(pipe);
2730 temp = I915_READ(reg);
2731 temp &= ~(7 << 19);
2732 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2733 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2734 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2735 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2736 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2737 temp |= FDI_COMPOSITE_SYNC;
2738 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2739
2740 I915_WRITE(FDI_RX_MISC(pipe),
2741 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2742
2743 reg = FDI_RX_CTL(pipe);
2744 temp = I915_READ(reg);
2745 temp &= ~FDI_LINK_TRAIN_AUTO;
2746 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2747 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2748 temp |= FDI_COMPOSITE_SYNC;
2749 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2750
2751 POSTING_READ(reg);
2752 udelay(150);
2753
2754 for (i = 0; i < 4; i++) {
2755 reg = FDI_TX_CTL(pipe);
2756 temp = I915_READ(reg);
2757 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2758 temp |= snb_b_fdi_train_param[i];
2759 I915_WRITE(reg, temp);
2760
2761 POSTING_READ(reg);
2762 udelay(500);
2763
2764 reg = FDI_RX_IIR(pipe);
2765 temp = I915_READ(reg);
2766 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2767
2768 if (temp & FDI_RX_BIT_LOCK ||
2769 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2770 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2771 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2772 break;
2773 }
2774 }
2775 if (i == 4)
2776 DRM_ERROR("FDI train 1 fail!\n");
2777
2778 /* Train 2 */
2779 reg = FDI_TX_CTL(pipe);
2780 temp = I915_READ(reg);
2781 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2782 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2783 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2784 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2785 I915_WRITE(reg, temp);
2786
2787 reg = FDI_RX_CTL(pipe);
2788 temp = I915_READ(reg);
2789 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2790 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2791 I915_WRITE(reg, temp);
2792
2793 POSTING_READ(reg);
2794 udelay(150);
2795
2796 for (i = 0; i < 4; i++) {
2797 reg = FDI_TX_CTL(pipe);
2798 temp = I915_READ(reg);
2799 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2800 temp |= snb_b_fdi_train_param[i];
2801 I915_WRITE(reg, temp);
2802
2803 POSTING_READ(reg);
2804 udelay(500);
2805
2806 reg = FDI_RX_IIR(pipe);
2807 temp = I915_READ(reg);
2808 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2809
2810 if (temp & FDI_RX_SYMBOL_LOCK) {
2811 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2812 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2813 break;
2814 }
2815 }
2816 if (i == 4)
2817 DRM_ERROR("FDI train 2 fail!\n");
2818
2819 DRM_DEBUG_KMS("FDI train done.\n");
2820 }
2821
2822 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2823 {
2824 struct drm_device *dev = intel_crtc->base.dev;
2825 struct drm_i915_private *dev_priv = dev->dev_private;
2826 int pipe = intel_crtc->pipe;
2827 u32 reg, temp;
2828
2829
2830 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2831 reg = FDI_RX_CTL(pipe);
2832 temp = I915_READ(reg);
2833 temp &= ~((0x7 << 19) | (0x7 << 16));
2834 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2835 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2836 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2837
2838 POSTING_READ(reg);
2839 udelay(200);
2840
2841 /* Switch from Rawclk to PCDclk */
2842 temp = I915_READ(reg);
2843 I915_WRITE(reg, temp | FDI_PCDCLK);
2844
2845 POSTING_READ(reg);
2846 udelay(200);
2847
2848 /* Enable CPU FDI TX PLL, always on for Ironlake */
2849 reg = FDI_TX_CTL(pipe);
2850 temp = I915_READ(reg);
2851 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2852 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2853
2854 POSTING_READ(reg);
2855 udelay(100);
2856 }
2857 }
2858
2859 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2860 {
2861 struct drm_device *dev = intel_crtc->base.dev;
2862 struct drm_i915_private *dev_priv = dev->dev_private;
2863 int pipe = intel_crtc->pipe;
2864 u32 reg, temp;
2865
2866 /* Switch from PCDclk to Rawclk */
2867 reg = FDI_RX_CTL(pipe);
2868 temp = I915_READ(reg);
2869 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2870
2871 /* Disable CPU FDI TX PLL */
2872 reg = FDI_TX_CTL(pipe);
2873 temp = I915_READ(reg);
2874 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2875
2876 POSTING_READ(reg);
2877 udelay(100);
2878
2879 reg = FDI_RX_CTL(pipe);
2880 temp = I915_READ(reg);
2881 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2882
2883 /* Wait for the clocks to turn off. */
2884 POSTING_READ(reg);
2885 udelay(100);
2886 }
2887
2888 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2889 {
2890 struct drm_device *dev = crtc->dev;
2891 struct drm_i915_private *dev_priv = dev->dev_private;
2892 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2893 int pipe = intel_crtc->pipe;
2894 u32 reg, temp;
2895
2896 /* disable CPU FDI tx and PCH FDI rx */
2897 reg = FDI_TX_CTL(pipe);
2898 temp = I915_READ(reg);
2899 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2900 POSTING_READ(reg);
2901
2902 reg = FDI_RX_CTL(pipe);
2903 temp = I915_READ(reg);
2904 temp &= ~(0x7 << 16);
2905 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2906 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2907
2908 POSTING_READ(reg);
2909 udelay(100);
2910
2911 /* Ironlake workaround, disable clock pointer after downing FDI */
2912 if (HAS_PCH_IBX(dev)) {
2913 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2914 }
2915
2916 /* still set train pattern 1 */
2917 reg = FDI_TX_CTL(pipe);
2918 temp = I915_READ(reg);
2919 temp &= ~FDI_LINK_TRAIN_NONE;
2920 temp |= FDI_LINK_TRAIN_PATTERN_1;
2921 I915_WRITE(reg, temp);
2922
2923 reg = FDI_RX_CTL(pipe);
2924 temp = I915_READ(reg);
2925 if (HAS_PCH_CPT(dev)) {
2926 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2927 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2928 } else {
2929 temp &= ~FDI_LINK_TRAIN_NONE;
2930 temp |= FDI_LINK_TRAIN_PATTERN_1;
2931 }
2932 /* BPC in FDI rx is consistent with that in PIPECONF */
2933 temp &= ~(0x07 << 16);
2934 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2935 I915_WRITE(reg, temp);
2936
2937 POSTING_READ(reg);
2938 udelay(100);
2939 }
2940
2941 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2942 {
2943 struct drm_device *dev = crtc->dev;
2944 struct drm_i915_private *dev_priv = dev->dev_private;
2945 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2946 unsigned long flags;
2947 bool pending;
2948
2949 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2950 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2951 return false;
2952
2953 spin_lock_irqsave(&dev->event_lock, flags);
2954 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2955 spin_unlock_irqrestore(&dev->event_lock, flags);
2956
2957 return pending;
2958 }
2959
2960 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2961 {
2962 struct drm_device *dev = crtc->dev;
2963 struct drm_i915_private *dev_priv = dev->dev_private;
2964
2965 if (crtc->fb == NULL)
2966 return;
2967
2968 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2969
2970 wait_event(dev_priv->pending_flip_queue,
2971 !intel_crtc_has_pending_flip(crtc));
2972
2973 mutex_lock(&dev->struct_mutex);
2974 intel_finish_fb(crtc->fb);
2975 mutex_unlock(&dev->struct_mutex);
2976 }
2977
2978 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2979 {
2980 return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
2981 }
2982
2983 /* Program iCLKIP clock to the desired frequency */
2984 static void lpt_program_iclkip(struct drm_crtc *crtc)
2985 {
2986 struct drm_device *dev = crtc->dev;
2987 struct drm_i915_private *dev_priv = dev->dev_private;
2988 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2989 u32 temp;
2990
2991 mutex_lock(&dev_priv->dpio_lock);
2992
2993 /* It is necessary to ungate the pixclk gate prior to programming
2994 * the divisors, and gate it back when it is done.
2995 */
2996 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2997
2998 /* Disable SSCCTL */
2999 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3000 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3001 SBI_SSCCTL_DISABLE,
3002 SBI_ICLK);
3003
3004 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3005 if (crtc->mode.clock == 20000) {
3006 auxdiv = 1;
3007 divsel = 0x41;
3008 phaseinc = 0x20;
3009 } else {
3010 /* The iCLK virtual clock root frequency is in MHz,
3011 * but the crtc->mode.clock in in KHz. To get the divisors,
3012 * it is necessary to divide one by another, so we
3013 * convert the virtual clock precision to KHz here for higher
3014 * precision.
3015 */
3016 u32 iclk_virtual_root_freq = 172800 * 1000;
3017 u32 iclk_pi_range = 64;
3018 u32 desired_divisor, msb_divisor_value, pi_value;
3019
3020 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
3021 msb_divisor_value = desired_divisor / iclk_pi_range;
3022 pi_value = desired_divisor % iclk_pi_range;
3023
3024 auxdiv = 0;
3025 divsel = msb_divisor_value - 2;
3026 phaseinc = pi_value;
3027 }
3028
3029 /* This should not happen with any sane values */
3030 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3031 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3032 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3033 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3034
3035 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3036 crtc->mode.clock,
3037 auxdiv,
3038 divsel,
3039 phasedir,
3040 phaseinc);
3041
3042 /* Program SSCDIVINTPHASE6 */
3043 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3044 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3045 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3046 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3047 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3048 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3049 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3050 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3051
3052 /* Program SSCAUXDIV */
3053 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3054 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3055 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3056 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3057
3058 /* Enable modulator and associated divider */
3059 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3060 temp &= ~SBI_SSCCTL_DISABLE;
3061 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3062
3063 /* Wait for initialization time */
3064 udelay(24);
3065
3066 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3067
3068 mutex_unlock(&dev_priv->dpio_lock);
3069 }
3070
3071 /*
3072 * Enable PCH resources required for PCH ports:
3073 * - PCH PLLs
3074 * - FDI training & RX/TX
3075 * - update transcoder timings
3076 * - DP transcoding bits
3077 * - transcoder
3078 */
3079 static void ironlake_pch_enable(struct drm_crtc *crtc)
3080 {
3081 struct drm_device *dev = crtc->dev;
3082 struct drm_i915_private *dev_priv = dev->dev_private;
3083 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3084 int pipe = intel_crtc->pipe;
3085 u32 reg, temp;
3086
3087 assert_transcoder_disabled(dev_priv, pipe);
3088
3089 /* Write the TU size bits before fdi link training, so that error
3090 * detection works. */
3091 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3092 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3093
3094 /* For PCH output, training FDI link */
3095 dev_priv->display.fdi_link_train(crtc);
3096
3097 /* XXX: pch pll's can be enabled any time before we enable the PCH
3098 * transcoder, and we actually should do this to not upset any PCH
3099 * transcoder that already use the clock when we share it.
3100 *
3101 * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3102 * unconditionally resets the pll - we need that to have the right LVDS
3103 * enable sequence. */
3104 ironlake_enable_pch_pll(intel_crtc);
3105
3106 if (HAS_PCH_CPT(dev)) {
3107 u32 sel;
3108
3109 temp = I915_READ(PCH_DPLL_SEL);
3110 switch (pipe) {
3111 default:
3112 case 0:
3113 temp |= TRANSA_DPLL_ENABLE;
3114 sel = TRANSA_DPLLB_SEL;
3115 break;
3116 case 1:
3117 temp |= TRANSB_DPLL_ENABLE;
3118 sel = TRANSB_DPLLB_SEL;
3119 break;
3120 case 2:
3121 temp |= TRANSC_DPLL_ENABLE;
3122 sel = TRANSC_DPLLB_SEL;
3123 break;
3124 }
3125 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3126 temp |= sel;
3127 else
3128 temp &= ~sel;
3129 I915_WRITE(PCH_DPLL_SEL, temp);
3130 }
3131
3132 /* set transcoder timing, panel must allow it */
3133 assert_panel_unlocked(dev_priv, pipe);
3134 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3135 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3136 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
3137
3138 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3139 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3140 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
3141 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
3142
3143 intel_fdi_normal_train(crtc);
3144
3145 /* For PCH DP, enable TRANS_DP_CTL */
3146 if (HAS_PCH_CPT(dev) &&
3147 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3148 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3149 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3150 reg = TRANS_DP_CTL(pipe);
3151 temp = I915_READ(reg);
3152 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3153 TRANS_DP_SYNC_MASK |
3154 TRANS_DP_BPC_MASK);
3155 temp |= (TRANS_DP_OUTPUT_ENABLE |
3156 TRANS_DP_ENH_FRAMING);
3157 temp |= bpc << 9; /* same format but at 11:9 */
3158
3159 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3160 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3161 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3162 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3163
3164 switch (intel_trans_dp_port_sel(crtc)) {
3165 case PCH_DP_B:
3166 temp |= TRANS_DP_PORT_SEL_B;
3167 break;
3168 case PCH_DP_C:
3169 temp |= TRANS_DP_PORT_SEL_C;
3170 break;
3171 case PCH_DP_D:
3172 temp |= TRANS_DP_PORT_SEL_D;
3173 break;
3174 default:
3175 BUG();
3176 }
3177
3178 I915_WRITE(reg, temp);
3179 }
3180
3181 ironlake_enable_pch_transcoder(dev_priv, pipe);
3182 }
3183
3184 static void lpt_pch_enable(struct drm_crtc *crtc)
3185 {
3186 struct drm_device *dev = crtc->dev;
3187 struct drm_i915_private *dev_priv = dev->dev_private;
3188 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3189 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3190
3191 assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3192
3193 lpt_program_iclkip(crtc);
3194
3195 /* Set transcoder timing. */
3196 I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3197 I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3198 I915_WRITE(_TRANS_HSYNC_A, I915_READ(HSYNC(cpu_transcoder)));
3199
3200 I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3201 I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3202 I915_WRITE(_TRANS_VSYNC_A, I915_READ(VSYNC(cpu_transcoder)));
3203 I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3204
3205 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3206 }
3207
3208 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3209 {
3210 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3211
3212 if (pll == NULL)
3213 return;
3214
3215 if (pll->refcount == 0) {
3216 WARN(1, "bad PCH PLL refcount\n");
3217 return;
3218 }
3219
3220 --pll->refcount;
3221 intel_crtc->pch_pll = NULL;
3222 }
3223
3224 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3225 {
3226 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3227 struct intel_pch_pll *pll;
3228 int i;
3229
3230 pll = intel_crtc->pch_pll;
3231 if (pll) {
3232 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3233 intel_crtc->base.base.id, pll->pll_reg);
3234 goto prepare;
3235 }
3236
3237 if (HAS_PCH_IBX(dev_priv->dev)) {
3238 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3239 i = intel_crtc->pipe;
3240 pll = &dev_priv->pch_plls[i];
3241
3242 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3243 intel_crtc->base.base.id, pll->pll_reg);
3244
3245 goto found;
3246 }
3247
3248 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3249 pll = &dev_priv->pch_plls[i];
3250
3251 /* Only want to check enabled timings first */
3252 if (pll->refcount == 0)
3253 continue;
3254
3255 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3256 fp == I915_READ(pll->fp0_reg)) {
3257 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3258 intel_crtc->base.base.id,
3259 pll->pll_reg, pll->refcount, pll->active);
3260
3261 goto found;
3262 }
3263 }
3264
3265 /* Ok no matching timings, maybe there's a free one? */
3266 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3267 pll = &dev_priv->pch_plls[i];
3268 if (pll->refcount == 0) {
3269 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3270 intel_crtc->base.base.id, pll->pll_reg);
3271 goto found;
3272 }
3273 }
3274
3275 return NULL;
3276
3277 found:
3278 intel_crtc->pch_pll = pll;
3279 pll->refcount++;
3280 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3281 prepare: /* separate function? */
3282 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3283
3284 /* Wait for the clocks to stabilize before rewriting the regs */
3285 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3286 POSTING_READ(pll->pll_reg);
3287 udelay(150);
3288
3289 I915_WRITE(pll->fp0_reg, fp);
3290 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3291 pll->on = false;
3292 return pll;
3293 }
3294
3295 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3296 {
3297 struct drm_i915_private *dev_priv = dev->dev_private;
3298 int dslreg = PIPEDSL(pipe);
3299 u32 temp;
3300
3301 temp = I915_READ(dslreg);
3302 udelay(500);
3303 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3304 if (wait_for(I915_READ(dslreg) != temp, 5))
3305 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3306 }
3307 }
3308
3309 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3310 {
3311 struct drm_device *dev = crtc->dev;
3312 struct drm_i915_private *dev_priv = dev->dev_private;
3313 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3314 struct intel_encoder *encoder;
3315 int pipe = intel_crtc->pipe;
3316 int plane = intel_crtc->plane;
3317 u32 temp;
3318
3319 WARN_ON(!crtc->enabled);
3320
3321 if (intel_crtc->active)
3322 return;
3323
3324 intel_crtc->active = true;
3325 intel_update_watermarks(dev);
3326
3327 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3328 temp = I915_READ(PCH_LVDS);
3329 if ((temp & LVDS_PORT_EN) == 0)
3330 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3331 }
3332
3333
3334 if (intel_crtc->config.has_pch_encoder) {
3335 /* Note: FDI PLL enabling _must_ be done before we enable the
3336 * cpu pipes, hence this is separate from all the other fdi/pch
3337 * enabling. */
3338 ironlake_fdi_pll_enable(intel_crtc);
3339 } else {
3340 assert_fdi_tx_disabled(dev_priv, pipe);
3341 assert_fdi_rx_disabled(dev_priv, pipe);
3342 }
3343
3344 for_each_encoder_on_crtc(dev, crtc, encoder)
3345 if (encoder->pre_enable)
3346 encoder->pre_enable(encoder);
3347
3348 /* Enable panel fitting for LVDS */
3349 if (dev_priv->pch_pf_size &&
3350 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3351 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3352 /* Force use of hard-coded filter coefficients
3353 * as some pre-programmed values are broken,
3354 * e.g. x201.
3355 */
3356 if (IS_IVYBRIDGE(dev))
3357 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3358 PF_PIPE_SEL_IVB(pipe));
3359 else
3360 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3361 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3362 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3363 }
3364
3365 /*
3366 * On ILK+ LUT must be loaded before the pipe is running but with
3367 * clocks enabled
3368 */
3369 intel_crtc_load_lut(crtc);
3370
3371 intel_enable_pipe(dev_priv, pipe,
3372 intel_crtc->config.has_pch_encoder);
3373 intel_enable_plane(dev_priv, plane, pipe);
3374
3375 if (intel_crtc->config.has_pch_encoder)
3376 ironlake_pch_enable(crtc);
3377
3378 mutex_lock(&dev->struct_mutex);
3379 intel_update_fbc(dev);
3380 mutex_unlock(&dev->struct_mutex);
3381
3382 intel_crtc_update_cursor(crtc, true);
3383
3384 for_each_encoder_on_crtc(dev, crtc, encoder)
3385 encoder->enable(encoder);
3386
3387 if (HAS_PCH_CPT(dev))
3388 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3389
3390 /*
3391 * There seems to be a race in PCH platform hw (at least on some
3392 * outputs) where an enabled pipe still completes any pageflip right
3393 * away (as if the pipe is off) instead of waiting for vblank. As soon
3394 * as the first vblank happend, everything works as expected. Hence just
3395 * wait for one vblank before returning to avoid strange things
3396 * happening.
3397 */
3398 intel_wait_for_vblank(dev, intel_crtc->pipe);
3399 }
3400
3401 static void haswell_crtc_enable(struct drm_crtc *crtc)
3402 {
3403 struct drm_device *dev = crtc->dev;
3404 struct drm_i915_private *dev_priv = dev->dev_private;
3405 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3406 struct intel_encoder *encoder;
3407 int pipe = intel_crtc->pipe;
3408 int plane = intel_crtc->plane;
3409
3410 WARN_ON(!crtc->enabled);
3411
3412 if (intel_crtc->active)
3413 return;
3414
3415 intel_crtc->active = true;
3416 intel_update_watermarks(dev);
3417
3418 if (intel_crtc->config.has_pch_encoder)
3419 dev_priv->display.fdi_link_train(crtc);
3420
3421 for_each_encoder_on_crtc(dev, crtc, encoder)
3422 if (encoder->pre_enable)
3423 encoder->pre_enable(encoder);
3424
3425 intel_ddi_enable_pipe_clock(intel_crtc);
3426
3427 /* Enable panel fitting for eDP */
3428 if (dev_priv->pch_pf_size &&
3429 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3430 /* Force use of hard-coded filter coefficients
3431 * as some pre-programmed values are broken,
3432 * e.g. x201.
3433 */
3434 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3435 PF_PIPE_SEL_IVB(pipe));
3436 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3437 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3438 }
3439
3440 /*
3441 * On ILK+ LUT must be loaded before the pipe is running but with
3442 * clocks enabled
3443 */
3444 intel_crtc_load_lut(crtc);
3445
3446 intel_ddi_set_pipe_settings(crtc);
3447 intel_ddi_enable_transcoder_func(crtc);
3448
3449 intel_enable_pipe(dev_priv, pipe,
3450 intel_crtc->config.has_pch_encoder);
3451 intel_enable_plane(dev_priv, plane, pipe);
3452
3453 if (intel_crtc->config.has_pch_encoder)
3454 lpt_pch_enable(crtc);
3455
3456 mutex_lock(&dev->struct_mutex);
3457 intel_update_fbc(dev);
3458 mutex_unlock(&dev->struct_mutex);
3459
3460 intel_crtc_update_cursor(crtc, true);
3461
3462 for_each_encoder_on_crtc(dev, crtc, encoder)
3463 encoder->enable(encoder);
3464
3465 /*
3466 * There seems to be a race in PCH platform hw (at least on some
3467 * outputs) where an enabled pipe still completes any pageflip right
3468 * away (as if the pipe is off) instead of waiting for vblank. As soon
3469 * as the first vblank happend, everything works as expected. Hence just
3470 * wait for one vblank before returning to avoid strange things
3471 * happening.
3472 */
3473 intel_wait_for_vblank(dev, intel_crtc->pipe);
3474 }
3475
3476 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3477 {
3478 struct drm_device *dev = crtc->dev;
3479 struct drm_i915_private *dev_priv = dev->dev_private;
3480 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3481 struct intel_encoder *encoder;
3482 int pipe = intel_crtc->pipe;
3483 int plane = intel_crtc->plane;
3484 u32 reg, temp;
3485
3486
3487 if (!intel_crtc->active)
3488 return;
3489
3490 for_each_encoder_on_crtc(dev, crtc, encoder)
3491 encoder->disable(encoder);
3492
3493 intel_crtc_wait_for_pending_flips(crtc);
3494 drm_vblank_off(dev, pipe);
3495 intel_crtc_update_cursor(crtc, false);
3496
3497 intel_disable_plane(dev_priv, plane, pipe);
3498
3499 if (dev_priv->cfb_plane == plane)
3500 intel_disable_fbc(dev);
3501
3502 intel_disable_pipe(dev_priv, pipe);
3503
3504 /* Disable PF */
3505 I915_WRITE(PF_CTL(pipe), 0);
3506 I915_WRITE(PF_WIN_SZ(pipe), 0);
3507
3508 for_each_encoder_on_crtc(dev, crtc, encoder)
3509 if (encoder->post_disable)
3510 encoder->post_disable(encoder);
3511
3512 ironlake_fdi_disable(crtc);
3513
3514 ironlake_disable_pch_transcoder(dev_priv, pipe);
3515
3516 if (HAS_PCH_CPT(dev)) {
3517 /* disable TRANS_DP_CTL */
3518 reg = TRANS_DP_CTL(pipe);
3519 temp = I915_READ(reg);
3520 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3521 temp |= TRANS_DP_PORT_SEL_NONE;
3522 I915_WRITE(reg, temp);
3523
3524 /* disable DPLL_SEL */
3525 temp = I915_READ(PCH_DPLL_SEL);
3526 switch (pipe) {
3527 case 0:
3528 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3529 break;
3530 case 1:
3531 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3532 break;
3533 case 2:
3534 /* C shares PLL A or B */
3535 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3536 break;
3537 default:
3538 BUG(); /* wtf */
3539 }
3540 I915_WRITE(PCH_DPLL_SEL, temp);
3541 }
3542
3543 /* disable PCH DPLL */
3544 intel_disable_pch_pll(intel_crtc);
3545
3546 ironlake_fdi_pll_disable(intel_crtc);
3547
3548 intel_crtc->active = false;
3549 intel_update_watermarks(dev);
3550
3551 mutex_lock(&dev->struct_mutex);
3552 intel_update_fbc(dev);
3553 mutex_unlock(&dev->struct_mutex);
3554 }
3555
3556 static void haswell_crtc_disable(struct drm_crtc *crtc)
3557 {
3558 struct drm_device *dev = crtc->dev;
3559 struct drm_i915_private *dev_priv = dev->dev_private;
3560 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3561 struct intel_encoder *encoder;
3562 int pipe = intel_crtc->pipe;
3563 int plane = intel_crtc->plane;
3564 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3565 bool is_pch_port;
3566
3567 if (!intel_crtc->active)
3568 return;
3569
3570 is_pch_port = haswell_crtc_driving_pch(crtc);
3571
3572 for_each_encoder_on_crtc(dev, crtc, encoder)
3573 encoder->disable(encoder);
3574
3575 intel_crtc_wait_for_pending_flips(crtc);
3576 drm_vblank_off(dev, pipe);
3577 intel_crtc_update_cursor(crtc, false);
3578
3579 intel_disable_plane(dev_priv, plane, pipe);
3580
3581 if (dev_priv->cfb_plane == plane)
3582 intel_disable_fbc(dev);
3583
3584 intel_disable_pipe(dev_priv, pipe);
3585
3586 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3587
3588 /* Disable PF */
3589 I915_WRITE(PF_CTL(pipe), 0);
3590 I915_WRITE(PF_WIN_SZ(pipe), 0);
3591
3592 intel_ddi_disable_pipe_clock(intel_crtc);
3593
3594 for_each_encoder_on_crtc(dev, crtc, encoder)
3595 if (encoder->post_disable)
3596 encoder->post_disable(encoder);
3597
3598 if (is_pch_port) {
3599 lpt_disable_pch_transcoder(dev_priv);
3600 intel_ddi_fdi_disable(crtc);
3601 }
3602
3603 intel_crtc->active = false;
3604 intel_update_watermarks(dev);
3605
3606 mutex_lock(&dev->struct_mutex);
3607 intel_update_fbc(dev);
3608 mutex_unlock(&dev->struct_mutex);
3609 }
3610
3611 static void ironlake_crtc_off(struct drm_crtc *crtc)
3612 {
3613 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3614 intel_put_pch_pll(intel_crtc);
3615 }
3616
3617 static void haswell_crtc_off(struct drm_crtc *crtc)
3618 {
3619 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3620
3621 /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3622 * start using it. */
3623 intel_crtc->cpu_transcoder = (enum transcoder) intel_crtc->pipe;
3624
3625 intel_ddi_put_crtc_pll(crtc);
3626 }
3627
3628 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3629 {
3630 if (!enable && intel_crtc->overlay) {
3631 struct drm_device *dev = intel_crtc->base.dev;
3632 struct drm_i915_private *dev_priv = dev->dev_private;
3633
3634 mutex_lock(&dev->struct_mutex);
3635 dev_priv->mm.interruptible = false;
3636 (void) intel_overlay_switch_off(intel_crtc->overlay);
3637 dev_priv->mm.interruptible = true;
3638 mutex_unlock(&dev->struct_mutex);
3639 }
3640
3641 /* Let userspace switch the overlay on again. In most cases userspace
3642 * has to recompute where to put it anyway.
3643 */
3644 }
3645
3646 /**
3647 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3648 * cursor plane briefly if not already running after enabling the display
3649 * plane.
3650 * This workaround avoids occasional blank screens when self refresh is
3651 * enabled.
3652 */
3653 static void
3654 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3655 {
3656 u32 cntl = I915_READ(CURCNTR(pipe));
3657
3658 if ((cntl & CURSOR_MODE) == 0) {
3659 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3660
3661 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3662 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3663 intel_wait_for_vblank(dev_priv->dev, pipe);
3664 I915_WRITE(CURCNTR(pipe), cntl);
3665 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3666 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3667 }
3668 }
3669
3670 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3671 {
3672 struct drm_device *dev = crtc->dev;
3673 struct drm_i915_private *dev_priv = dev->dev_private;
3674 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3675 struct intel_encoder *encoder;
3676 int pipe = intel_crtc->pipe;
3677 int plane = intel_crtc->plane;
3678
3679 WARN_ON(!crtc->enabled);
3680
3681 if (intel_crtc->active)
3682 return;
3683
3684 intel_crtc->active = true;
3685 intel_update_watermarks(dev);
3686
3687 intel_enable_pll(dev_priv, pipe);
3688
3689 for_each_encoder_on_crtc(dev, crtc, encoder)
3690 if (encoder->pre_enable)
3691 encoder->pre_enable(encoder);
3692
3693 intel_enable_pipe(dev_priv, pipe, false);
3694 intel_enable_plane(dev_priv, plane, pipe);
3695 if (IS_G4X(dev))
3696 g4x_fixup_plane(dev_priv, pipe);
3697
3698 intel_crtc_load_lut(crtc);
3699 intel_update_fbc(dev);
3700
3701 /* Give the overlay scaler a chance to enable if it's on this pipe */
3702 intel_crtc_dpms_overlay(intel_crtc, true);
3703 intel_crtc_update_cursor(crtc, true);
3704
3705 for_each_encoder_on_crtc(dev, crtc, encoder)
3706 encoder->enable(encoder);
3707 }
3708
3709 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3710 {
3711 struct drm_device *dev = crtc->dev;
3712 struct drm_i915_private *dev_priv = dev->dev_private;
3713 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3714 struct intel_encoder *encoder;
3715 int pipe = intel_crtc->pipe;
3716 int plane = intel_crtc->plane;
3717 u32 pctl;
3718
3719
3720 if (!intel_crtc->active)
3721 return;
3722
3723 for_each_encoder_on_crtc(dev, crtc, encoder)
3724 encoder->disable(encoder);
3725
3726 /* Give the overlay scaler a chance to disable if it's on this pipe */
3727 intel_crtc_wait_for_pending_flips(crtc);
3728 drm_vblank_off(dev, pipe);
3729 intel_crtc_dpms_overlay(intel_crtc, false);
3730 intel_crtc_update_cursor(crtc, false);
3731
3732 if (dev_priv->cfb_plane == plane)
3733 intel_disable_fbc(dev);
3734
3735 intel_disable_plane(dev_priv, plane, pipe);
3736 intel_disable_pipe(dev_priv, pipe);
3737
3738 /* Disable pannel fitter if it is on this pipe. */
3739 pctl = I915_READ(PFIT_CONTROL);
3740 if ((pctl & PFIT_ENABLE) &&
3741 ((pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT) == pipe)
3742 I915_WRITE(PFIT_CONTROL, 0);
3743
3744 intel_disable_pll(dev_priv, pipe);
3745
3746 intel_crtc->active = false;
3747 intel_update_fbc(dev);
3748 intel_update_watermarks(dev);
3749 }
3750
3751 static void i9xx_crtc_off(struct drm_crtc *crtc)
3752 {
3753 }
3754
3755 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3756 bool enabled)
3757 {
3758 struct drm_device *dev = crtc->dev;
3759 struct drm_i915_master_private *master_priv;
3760 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3761 int pipe = intel_crtc->pipe;
3762
3763 if (!dev->primary->master)
3764 return;
3765
3766 master_priv = dev->primary->master->driver_priv;
3767 if (!master_priv->sarea_priv)
3768 return;
3769
3770 switch (pipe) {
3771 case 0:
3772 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3773 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3774 break;
3775 case 1:
3776 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3777 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3778 break;
3779 default:
3780 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3781 break;
3782 }
3783 }
3784
3785 /**
3786 * Sets the power management mode of the pipe and plane.
3787 */
3788 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3789 {
3790 struct drm_device *dev = crtc->dev;
3791 struct drm_i915_private *dev_priv = dev->dev_private;
3792 struct intel_encoder *intel_encoder;
3793 bool enable = false;
3794
3795 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3796 enable |= intel_encoder->connectors_active;
3797
3798 if (enable)
3799 dev_priv->display.crtc_enable(crtc);
3800 else
3801 dev_priv->display.crtc_disable(crtc);
3802
3803 intel_crtc_update_sarea(crtc, enable);
3804 }
3805
3806 static void intel_crtc_disable(struct drm_crtc *crtc)
3807 {
3808 struct drm_device *dev = crtc->dev;
3809 struct drm_connector *connector;
3810 struct drm_i915_private *dev_priv = dev->dev_private;
3811 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3812
3813 /* crtc should still be enabled when we disable it. */
3814 WARN_ON(!crtc->enabled);
3815
3816 intel_crtc->eld_vld = false;
3817 dev_priv->display.crtc_disable(crtc);
3818 intel_crtc_update_sarea(crtc, false);
3819 dev_priv->display.off(crtc);
3820
3821 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3822 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3823
3824 if (crtc->fb) {
3825 mutex_lock(&dev->struct_mutex);
3826 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3827 mutex_unlock(&dev->struct_mutex);
3828 crtc->fb = NULL;
3829 }
3830
3831 /* Update computed state. */
3832 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3833 if (!connector->encoder || !connector->encoder->crtc)
3834 continue;
3835
3836 if (connector->encoder->crtc != crtc)
3837 continue;
3838
3839 connector->dpms = DRM_MODE_DPMS_OFF;
3840 to_intel_encoder(connector->encoder)->connectors_active = false;
3841 }
3842 }
3843
3844 void intel_modeset_disable(struct drm_device *dev)
3845 {
3846 struct drm_crtc *crtc;
3847
3848 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3849 if (crtc->enabled)
3850 intel_crtc_disable(crtc);
3851 }
3852 }
3853
3854 void intel_encoder_destroy(struct drm_encoder *encoder)
3855 {
3856 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3857
3858 drm_encoder_cleanup(encoder);
3859 kfree(intel_encoder);
3860 }
3861
3862 /* Simple dpms helper for encodres with just one connector, no cloning and only
3863 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3864 * state of the entire output pipe. */
3865 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3866 {
3867 if (mode == DRM_MODE_DPMS_ON) {
3868 encoder->connectors_active = true;
3869
3870 intel_crtc_update_dpms(encoder->base.crtc);
3871 } else {
3872 encoder->connectors_active = false;
3873
3874 intel_crtc_update_dpms(encoder->base.crtc);
3875 }
3876 }
3877
3878 /* Cross check the actual hw state with our own modeset state tracking (and it's
3879 * internal consistency). */
3880 static void intel_connector_check_state(struct intel_connector *connector)
3881 {
3882 if (connector->get_hw_state(connector)) {
3883 struct intel_encoder *encoder = connector->encoder;
3884 struct drm_crtc *crtc;
3885 bool encoder_enabled;
3886 enum pipe pipe;
3887
3888 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3889 connector->base.base.id,
3890 drm_get_connector_name(&connector->base));
3891
3892 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3893 "wrong connector dpms state\n");
3894 WARN(connector->base.encoder != &encoder->base,
3895 "active connector not linked to encoder\n");
3896 WARN(!encoder->connectors_active,
3897 "encoder->connectors_active not set\n");
3898
3899 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3900 WARN(!encoder_enabled, "encoder not enabled\n");
3901 if (WARN_ON(!encoder->base.crtc))
3902 return;
3903
3904 crtc = encoder->base.crtc;
3905
3906 WARN(!crtc->enabled, "crtc not enabled\n");
3907 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3908 WARN(pipe != to_intel_crtc(crtc)->pipe,
3909 "encoder active on the wrong pipe\n");
3910 }
3911 }
3912
3913 /* Even simpler default implementation, if there's really no special case to
3914 * consider. */
3915 void intel_connector_dpms(struct drm_connector *connector, int mode)
3916 {
3917 struct intel_encoder *encoder = intel_attached_encoder(connector);
3918
3919 /* All the simple cases only support two dpms states. */
3920 if (mode != DRM_MODE_DPMS_ON)
3921 mode = DRM_MODE_DPMS_OFF;
3922
3923 if (mode == connector->dpms)
3924 return;
3925
3926 connector->dpms = mode;
3927
3928 /* Only need to change hw state when actually enabled */
3929 if (encoder->base.crtc)
3930 intel_encoder_dpms(encoder, mode);
3931 else
3932 WARN_ON(encoder->connectors_active != false);
3933
3934 intel_modeset_check_state(connector->dev);
3935 }
3936
3937 /* Simple connector->get_hw_state implementation for encoders that support only
3938 * one connector and no cloning and hence the encoder state determines the state
3939 * of the connector. */
3940 bool intel_connector_get_hw_state(struct intel_connector *connector)
3941 {
3942 enum pipe pipe = 0;
3943 struct intel_encoder *encoder = connector->encoder;
3944
3945 return encoder->get_hw_state(encoder, &pipe);
3946 }
3947
3948 static bool intel_crtc_compute_config(struct drm_crtc *crtc,
3949 struct intel_crtc_config *pipe_config)
3950 {
3951 struct drm_device *dev = crtc->dev;
3952 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
3953
3954 if (HAS_PCH_SPLIT(dev)) {
3955 /* FDI link clock is fixed at 2.7G */
3956 if (pipe_config->requested_mode.clock * 3
3957 > IRONLAKE_FDI_FREQ * 4)
3958 return false;
3959 }
3960
3961 /* All interlaced capable intel hw wants timings in frames. Note though
3962 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3963 * timings, so we need to be careful not to clobber these.*/
3964 if (!pipe_config->timings_set)
3965 drm_mode_set_crtcinfo(adjusted_mode, 0);
3966
3967 /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3968 * with a hsync front porch of 0.
3969 */
3970 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3971 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3972 return false;
3973
3974 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10) {
3975 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
3976 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8) {
3977 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
3978 * for lvds. */
3979 pipe_config->pipe_bpp = 8*3;
3980 }
3981
3982 return true;
3983 }
3984
3985 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3986 {
3987 return 400000; /* FIXME */
3988 }
3989
3990 static int i945_get_display_clock_speed(struct drm_device *dev)
3991 {
3992 return 400000;
3993 }
3994
3995 static int i915_get_display_clock_speed(struct drm_device *dev)
3996 {
3997 return 333000;
3998 }
3999
4000 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4001 {
4002 return 200000;
4003 }
4004
4005 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4006 {
4007 u16 gcfgc = 0;
4008
4009 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4010
4011 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4012 return 133000;
4013 else {
4014 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4015 case GC_DISPLAY_CLOCK_333_MHZ:
4016 return 333000;
4017 default:
4018 case GC_DISPLAY_CLOCK_190_200_MHZ:
4019 return 190000;
4020 }
4021 }
4022 }
4023
4024 static int i865_get_display_clock_speed(struct drm_device *dev)
4025 {
4026 return 266000;
4027 }
4028
4029 static int i855_get_display_clock_speed(struct drm_device *dev)
4030 {
4031 u16 hpllcc = 0;
4032 /* Assume that the hardware is in the high speed state. This
4033 * should be the default.
4034 */
4035 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4036 case GC_CLOCK_133_200:
4037 case GC_CLOCK_100_200:
4038 return 200000;
4039 case GC_CLOCK_166_250:
4040 return 250000;
4041 case GC_CLOCK_100_133:
4042 return 133000;
4043 }
4044
4045 /* Shouldn't happen */
4046 return 0;
4047 }
4048
4049 static int i830_get_display_clock_speed(struct drm_device *dev)
4050 {
4051 return 133000;
4052 }
4053
4054 static void
4055 intel_reduce_ratio(uint32_t *num, uint32_t *den)
4056 {
4057 while (*num > 0xffffff || *den > 0xffffff) {
4058 *num >>= 1;
4059 *den >>= 1;
4060 }
4061 }
4062
4063 void
4064 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4065 int pixel_clock, int link_clock,
4066 struct intel_link_m_n *m_n)
4067 {
4068 m_n->tu = 64;
4069 m_n->gmch_m = bits_per_pixel * pixel_clock;
4070 m_n->gmch_n = link_clock * nlanes * 8;
4071 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4072 m_n->link_m = pixel_clock;
4073 m_n->link_n = link_clock;
4074 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
4075 }
4076
4077 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4078 {
4079 if (i915_panel_use_ssc >= 0)
4080 return i915_panel_use_ssc != 0;
4081 return dev_priv->lvds_use_ssc
4082 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4083 }
4084
4085 static int vlv_get_refclk(struct drm_crtc *crtc)
4086 {
4087 struct drm_device *dev = crtc->dev;
4088 struct drm_i915_private *dev_priv = dev->dev_private;
4089 int refclk = 27000; /* for DP & HDMI */
4090
4091 return 100000; /* only one validated so far */
4092
4093 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4094 refclk = 96000;
4095 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4096 if (intel_panel_use_ssc(dev_priv))
4097 refclk = 100000;
4098 else
4099 refclk = 96000;
4100 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4101 refclk = 100000;
4102 }
4103
4104 return refclk;
4105 }
4106
4107 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4108 {
4109 struct drm_device *dev = crtc->dev;
4110 struct drm_i915_private *dev_priv = dev->dev_private;
4111 int refclk;
4112
4113 if (IS_VALLEYVIEW(dev)) {
4114 refclk = vlv_get_refclk(crtc);
4115 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4116 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4117 refclk = dev_priv->lvds_ssc_freq * 1000;
4118 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4119 refclk / 1000);
4120 } else if (!IS_GEN2(dev)) {
4121 refclk = 96000;
4122 } else {
4123 refclk = 48000;
4124 }
4125
4126 return refclk;
4127 }
4128
4129 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4130 intel_clock_t *clock)
4131 {
4132 /* SDVO TV has fixed PLL values depend on its clock range,
4133 this mirrors vbios setting. */
4134 if (adjusted_mode->clock >= 100000
4135 && adjusted_mode->clock < 140500) {
4136 clock->p1 = 2;
4137 clock->p2 = 10;
4138 clock->n = 3;
4139 clock->m1 = 16;
4140 clock->m2 = 8;
4141 } else if (adjusted_mode->clock >= 140500
4142 && adjusted_mode->clock <= 200000) {
4143 clock->p1 = 1;
4144 clock->p2 = 10;
4145 clock->n = 6;
4146 clock->m1 = 12;
4147 clock->m2 = 8;
4148 }
4149 }
4150
4151 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4152 intel_clock_t *clock,
4153 intel_clock_t *reduced_clock)
4154 {
4155 struct drm_device *dev = crtc->dev;
4156 struct drm_i915_private *dev_priv = dev->dev_private;
4157 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4158 int pipe = intel_crtc->pipe;
4159 u32 fp, fp2 = 0;
4160
4161 if (IS_PINEVIEW(dev)) {
4162 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4163 if (reduced_clock)
4164 fp2 = (1 << reduced_clock->n) << 16 |
4165 reduced_clock->m1 << 8 | reduced_clock->m2;
4166 } else {
4167 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4168 if (reduced_clock)
4169 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4170 reduced_clock->m2;
4171 }
4172
4173 I915_WRITE(FP0(pipe), fp);
4174
4175 intel_crtc->lowfreq_avail = false;
4176 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4177 reduced_clock && i915_powersave) {
4178 I915_WRITE(FP1(pipe), fp2);
4179 intel_crtc->lowfreq_avail = true;
4180 } else {
4181 I915_WRITE(FP1(pipe), fp);
4182 }
4183 }
4184
4185 static void vlv_update_pll(struct drm_crtc *crtc,
4186 intel_clock_t *clock, intel_clock_t *reduced_clock,
4187 int num_connectors)
4188 {
4189 struct drm_device *dev = crtc->dev;
4190 struct drm_i915_private *dev_priv = dev->dev_private;
4191 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4192 struct drm_display_mode *adjusted_mode =
4193 &intel_crtc->config.adjusted_mode;
4194 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4195 int pipe = intel_crtc->pipe;
4196 u32 dpll, mdiv, pdiv;
4197 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4198 bool is_sdvo;
4199 u32 temp;
4200
4201 mutex_lock(&dev_priv->dpio_lock);
4202
4203 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4204 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4205
4206 dpll = DPLL_VGA_MODE_DIS;
4207 dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4208 dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4209 dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4210
4211 I915_WRITE(DPLL(pipe), dpll);
4212 POSTING_READ(DPLL(pipe));
4213
4214 bestn = clock->n;
4215 bestm1 = clock->m1;
4216 bestm2 = clock->m2;
4217 bestp1 = clock->p1;
4218 bestp2 = clock->p2;
4219
4220 /*
4221 * In Valleyview PLL and program lane counter registers are exposed
4222 * through DPIO interface
4223 */
4224 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4225 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4226 mdiv |= ((bestn << DPIO_N_SHIFT));
4227 mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4228 mdiv |= (1 << DPIO_K_SHIFT);
4229 mdiv |= DPIO_ENABLE_CALIBRATION;
4230 intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4231
4232 intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4233
4234 pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4235 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4236 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4237 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4238 intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4239
4240 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4241
4242 dpll |= DPLL_VCO_ENABLE;
4243 I915_WRITE(DPLL(pipe), dpll);
4244 POSTING_READ(DPLL(pipe));
4245 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4246 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4247
4248 intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4249
4250 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4251 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4252
4253 I915_WRITE(DPLL(pipe), dpll);
4254
4255 /* Wait for the clocks to stabilize. */
4256 POSTING_READ(DPLL(pipe));
4257 udelay(150);
4258
4259 temp = 0;
4260 if (is_sdvo) {
4261 temp = 0;
4262 if (intel_crtc->config.pixel_multiplier > 1) {
4263 temp = (intel_crtc->config.pixel_multiplier - 1)
4264 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4265 }
4266 }
4267 I915_WRITE(DPLL_MD(pipe), temp);
4268 POSTING_READ(DPLL_MD(pipe));
4269
4270 /* Now program lane control registers */
4271 if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4272 || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4273 {
4274 temp = 0x1000C4;
4275 if(pipe == 1)
4276 temp |= (1 << 21);
4277 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4278 }
4279 if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4280 {
4281 temp = 0x1000C4;
4282 if(pipe == 1)
4283 temp |= (1 << 21);
4284 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4285 }
4286
4287 mutex_unlock(&dev_priv->dpio_lock);
4288 }
4289
4290 static void i9xx_update_pll(struct drm_crtc *crtc,
4291 intel_clock_t *clock, intel_clock_t *reduced_clock,
4292 int num_connectors)
4293 {
4294 struct drm_device *dev = crtc->dev;
4295 struct drm_i915_private *dev_priv = dev->dev_private;
4296 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4297 struct drm_display_mode *adjusted_mode =
4298 &intel_crtc->config.adjusted_mode;
4299 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4300 struct intel_encoder *encoder;
4301 int pipe = intel_crtc->pipe;
4302 u32 dpll;
4303 bool is_sdvo;
4304
4305 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4306
4307 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4308 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4309
4310 dpll = DPLL_VGA_MODE_DIS;
4311
4312 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4313 dpll |= DPLLB_MODE_LVDS;
4314 else
4315 dpll |= DPLLB_MODE_DAC_SERIAL;
4316
4317 if (is_sdvo) {
4318 if ((intel_crtc->config.pixel_multiplier > 1) &&
4319 (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))) {
4320 dpll |= (intel_crtc->config.pixel_multiplier - 1)
4321 << SDVO_MULTIPLIER_SHIFT_HIRES;
4322 }
4323 dpll |= DPLL_DVO_HIGH_SPEED;
4324 }
4325 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4326 dpll |= DPLL_DVO_HIGH_SPEED;
4327
4328 /* compute bitmask from p1 value */
4329 if (IS_PINEVIEW(dev))
4330 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4331 else {
4332 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4333 if (IS_G4X(dev) && reduced_clock)
4334 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4335 }
4336 switch (clock->p2) {
4337 case 5:
4338 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4339 break;
4340 case 7:
4341 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4342 break;
4343 case 10:
4344 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4345 break;
4346 case 14:
4347 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4348 break;
4349 }
4350 if (INTEL_INFO(dev)->gen >= 4)
4351 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4352
4353 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4354 dpll |= PLL_REF_INPUT_TVCLKINBC;
4355 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4356 /* XXX: just matching BIOS for now */
4357 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4358 dpll |= 3;
4359 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4360 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4361 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4362 else
4363 dpll |= PLL_REF_INPUT_DREFCLK;
4364
4365 dpll |= DPLL_VCO_ENABLE;
4366 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4367 POSTING_READ(DPLL(pipe));
4368 udelay(150);
4369
4370 for_each_encoder_on_crtc(dev, crtc, encoder)
4371 if (encoder->pre_pll_enable)
4372 encoder->pre_pll_enable(encoder);
4373
4374 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4375 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4376
4377 I915_WRITE(DPLL(pipe), dpll);
4378
4379 /* Wait for the clocks to stabilize. */
4380 POSTING_READ(DPLL(pipe));
4381 udelay(150);
4382
4383 if (INTEL_INFO(dev)->gen >= 4) {
4384 u32 temp = 0;
4385 if (is_sdvo) {
4386 temp = 0;
4387 if (intel_crtc->config.pixel_multiplier > 1) {
4388 temp = (intel_crtc->config.pixel_multiplier - 1)
4389 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4390 }
4391 }
4392 I915_WRITE(DPLL_MD(pipe), temp);
4393 } else {
4394 /* The pixel multiplier can only be updated once the
4395 * DPLL is enabled and the clocks are stable.
4396 *
4397 * So write it again.
4398 */
4399 I915_WRITE(DPLL(pipe), dpll);
4400 }
4401 }
4402
4403 static void i8xx_update_pll(struct drm_crtc *crtc,
4404 struct drm_display_mode *adjusted_mode,
4405 intel_clock_t *clock, intel_clock_t *reduced_clock,
4406 int num_connectors)
4407 {
4408 struct drm_device *dev = crtc->dev;
4409 struct drm_i915_private *dev_priv = dev->dev_private;
4410 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4411 struct intel_encoder *encoder;
4412 int pipe = intel_crtc->pipe;
4413 u32 dpll;
4414
4415 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4416
4417 dpll = DPLL_VGA_MODE_DIS;
4418
4419 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4420 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4421 } else {
4422 if (clock->p1 == 2)
4423 dpll |= PLL_P1_DIVIDE_BY_TWO;
4424 else
4425 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4426 if (clock->p2 == 4)
4427 dpll |= PLL_P2_DIVIDE_BY_4;
4428 }
4429
4430 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4431 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4432 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4433 else
4434 dpll |= PLL_REF_INPUT_DREFCLK;
4435
4436 dpll |= DPLL_VCO_ENABLE;
4437 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4438 POSTING_READ(DPLL(pipe));
4439 udelay(150);
4440
4441 for_each_encoder_on_crtc(dev, crtc, encoder)
4442 if (encoder->pre_pll_enable)
4443 encoder->pre_pll_enable(encoder);
4444
4445 I915_WRITE(DPLL(pipe), dpll);
4446
4447 /* Wait for the clocks to stabilize. */
4448 POSTING_READ(DPLL(pipe));
4449 udelay(150);
4450
4451 /* The pixel multiplier can only be updated once the
4452 * DPLL is enabled and the clocks are stable.
4453 *
4454 * So write it again.
4455 */
4456 I915_WRITE(DPLL(pipe), dpll);
4457 }
4458
4459 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4460 struct drm_display_mode *mode,
4461 struct drm_display_mode *adjusted_mode)
4462 {
4463 struct drm_device *dev = intel_crtc->base.dev;
4464 struct drm_i915_private *dev_priv = dev->dev_private;
4465 enum pipe pipe = intel_crtc->pipe;
4466 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4467 uint32_t vsyncshift;
4468
4469 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4470 /* the chip adds 2 halflines automatically */
4471 adjusted_mode->crtc_vtotal -= 1;
4472 adjusted_mode->crtc_vblank_end -= 1;
4473 vsyncshift = adjusted_mode->crtc_hsync_start
4474 - adjusted_mode->crtc_htotal / 2;
4475 } else {
4476 vsyncshift = 0;
4477 }
4478
4479 if (INTEL_INFO(dev)->gen > 3)
4480 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4481
4482 I915_WRITE(HTOTAL(cpu_transcoder),
4483 (adjusted_mode->crtc_hdisplay - 1) |
4484 ((adjusted_mode->crtc_htotal - 1) << 16));
4485 I915_WRITE(HBLANK(cpu_transcoder),
4486 (adjusted_mode->crtc_hblank_start - 1) |
4487 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4488 I915_WRITE(HSYNC(cpu_transcoder),
4489 (adjusted_mode->crtc_hsync_start - 1) |
4490 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4491
4492 I915_WRITE(VTOTAL(cpu_transcoder),
4493 (adjusted_mode->crtc_vdisplay - 1) |
4494 ((adjusted_mode->crtc_vtotal - 1) << 16));
4495 I915_WRITE(VBLANK(cpu_transcoder),
4496 (adjusted_mode->crtc_vblank_start - 1) |
4497 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4498 I915_WRITE(VSYNC(cpu_transcoder),
4499 (adjusted_mode->crtc_vsync_start - 1) |
4500 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4501
4502 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4503 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4504 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4505 * bits. */
4506 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4507 (pipe == PIPE_B || pipe == PIPE_C))
4508 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4509
4510 /* pipesrc controls the size that is scaled from, which should
4511 * always be the user's requested size.
4512 */
4513 I915_WRITE(PIPESRC(pipe),
4514 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4515 }
4516
4517 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4518 int x, int y,
4519 struct drm_framebuffer *fb)
4520 {
4521 struct drm_device *dev = crtc->dev;
4522 struct drm_i915_private *dev_priv = dev->dev_private;
4523 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4524 struct drm_display_mode *adjusted_mode =
4525 &intel_crtc->config.adjusted_mode;
4526 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4527 int pipe = intel_crtc->pipe;
4528 int plane = intel_crtc->plane;
4529 int refclk, num_connectors = 0;
4530 intel_clock_t clock, reduced_clock;
4531 u32 dspcntr, pipeconf;
4532 bool ok, has_reduced_clock = false, is_sdvo = false;
4533 bool is_lvds = false, is_tv = false, is_dp = false;
4534 struct intel_encoder *encoder;
4535 const intel_limit_t *limit;
4536 int ret;
4537
4538 for_each_encoder_on_crtc(dev, crtc, encoder) {
4539 switch (encoder->type) {
4540 case INTEL_OUTPUT_LVDS:
4541 is_lvds = true;
4542 break;
4543 case INTEL_OUTPUT_SDVO:
4544 case INTEL_OUTPUT_HDMI:
4545 is_sdvo = true;
4546 if (encoder->needs_tv_clock)
4547 is_tv = true;
4548 break;
4549 case INTEL_OUTPUT_TVOUT:
4550 is_tv = true;
4551 break;
4552 case INTEL_OUTPUT_DISPLAYPORT:
4553 is_dp = true;
4554 break;
4555 }
4556
4557 num_connectors++;
4558 }
4559
4560 refclk = i9xx_get_refclk(crtc, num_connectors);
4561
4562 /*
4563 * Returns a set of divisors for the desired target clock with the given
4564 * refclk, or FALSE. The returned values represent the clock equation:
4565 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4566 */
4567 limit = intel_limit(crtc, refclk);
4568 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4569 &clock);
4570 if (!ok) {
4571 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4572 return -EINVAL;
4573 }
4574
4575 /* Ensure that the cursor is valid for the new mode before changing... */
4576 intel_crtc_update_cursor(crtc, true);
4577
4578 if (is_lvds && dev_priv->lvds_downclock_avail) {
4579 /*
4580 * Ensure we match the reduced clock's P to the target clock.
4581 * If the clocks don't match, we can't switch the display clock
4582 * by using the FP0/FP1. In such case we will disable the LVDS
4583 * downclock feature.
4584 */
4585 has_reduced_clock = limit->find_pll(limit, crtc,
4586 dev_priv->lvds_downclock,
4587 refclk,
4588 &clock,
4589 &reduced_clock);
4590 }
4591
4592 if (is_sdvo && is_tv)
4593 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4594
4595 if (IS_GEN2(dev))
4596 i8xx_update_pll(crtc, adjusted_mode, &clock,
4597 has_reduced_clock ? &reduced_clock : NULL,
4598 num_connectors);
4599 else if (IS_VALLEYVIEW(dev))
4600 vlv_update_pll(crtc, &clock,
4601 has_reduced_clock ? &reduced_clock : NULL,
4602 num_connectors);
4603 else
4604 i9xx_update_pll(crtc, &clock,
4605 has_reduced_clock ? &reduced_clock : NULL,
4606 num_connectors);
4607
4608 /* setup pipeconf */
4609 pipeconf = I915_READ(PIPECONF(pipe));
4610
4611 /* Set up the display plane register */
4612 dspcntr = DISPPLANE_GAMMA_ENABLE;
4613
4614 if (!IS_VALLEYVIEW(dev)) {
4615 if (pipe == 0)
4616 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4617 else
4618 dspcntr |= DISPPLANE_SEL_PIPE_B;
4619 }
4620
4621 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4622 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4623 * core speed.
4624 *
4625 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4626 * pipe == 0 check?
4627 */
4628 if (mode->clock >
4629 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4630 pipeconf |= PIPECONF_DOUBLE_WIDE;
4631 else
4632 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4633 }
4634
4635 /* default to 8bpc */
4636 pipeconf &= ~(PIPECONF_BPC_MASK | PIPECONF_DITHER_EN);
4637 if (is_dp) {
4638 if (intel_crtc->config.dither) {
4639 pipeconf |= PIPECONF_6BPC |
4640 PIPECONF_DITHER_EN |
4641 PIPECONF_DITHER_TYPE_SP;
4642 }
4643 }
4644
4645 if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4646 if (intel_crtc->config.dither) {
4647 pipeconf |= PIPECONF_6BPC |
4648 PIPECONF_ENABLE |
4649 I965_PIPECONF_ACTIVE;
4650 }
4651 }
4652
4653 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4654 drm_mode_debug_printmodeline(mode);
4655
4656 if (HAS_PIPE_CXSR(dev)) {
4657 if (intel_crtc->lowfreq_avail) {
4658 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4659 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4660 } else {
4661 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4662 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4663 }
4664 }
4665
4666 pipeconf &= ~PIPECONF_INTERLACE_MASK;
4667 if (!IS_GEN2(dev) &&
4668 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4669 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4670 else
4671 pipeconf |= PIPECONF_PROGRESSIVE;
4672
4673 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4674
4675 /* pipesrc and dspsize control the size that is scaled from,
4676 * which should always be the user's requested size.
4677 */
4678 I915_WRITE(DSPSIZE(plane),
4679 ((mode->vdisplay - 1) << 16) |
4680 (mode->hdisplay - 1));
4681 I915_WRITE(DSPPOS(plane), 0);
4682
4683 I915_WRITE(PIPECONF(pipe), pipeconf);
4684 POSTING_READ(PIPECONF(pipe));
4685 intel_enable_pipe(dev_priv, pipe, false);
4686
4687 intel_wait_for_vblank(dev, pipe);
4688
4689 I915_WRITE(DSPCNTR(plane), dspcntr);
4690 POSTING_READ(DSPCNTR(plane));
4691
4692 ret = intel_pipe_set_base(crtc, x, y, fb);
4693
4694 intel_update_watermarks(dev);
4695
4696 return ret;
4697 }
4698
4699 static void ironlake_init_pch_refclk(struct drm_device *dev)
4700 {
4701 struct drm_i915_private *dev_priv = dev->dev_private;
4702 struct drm_mode_config *mode_config = &dev->mode_config;
4703 struct intel_encoder *encoder;
4704 u32 temp;
4705 bool has_lvds = false;
4706 bool has_cpu_edp = false;
4707 bool has_pch_edp = false;
4708 bool has_panel = false;
4709 bool has_ck505 = false;
4710 bool can_ssc = false;
4711
4712 /* We need to take the global config into account */
4713 list_for_each_entry(encoder, &mode_config->encoder_list,
4714 base.head) {
4715 switch (encoder->type) {
4716 case INTEL_OUTPUT_LVDS:
4717 has_panel = true;
4718 has_lvds = true;
4719 break;
4720 case INTEL_OUTPUT_EDP:
4721 has_panel = true;
4722 if (intel_encoder_is_pch_edp(&encoder->base))
4723 has_pch_edp = true;
4724 else
4725 has_cpu_edp = true;
4726 break;
4727 }
4728 }
4729
4730 if (HAS_PCH_IBX(dev)) {
4731 has_ck505 = dev_priv->display_clock_mode;
4732 can_ssc = has_ck505;
4733 } else {
4734 has_ck505 = false;
4735 can_ssc = true;
4736 }
4737
4738 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4739 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4740 has_ck505);
4741
4742 /* Ironlake: try to setup display ref clock before DPLL
4743 * enabling. This is only under driver's control after
4744 * PCH B stepping, previous chipset stepping should be
4745 * ignoring this setting.
4746 */
4747 temp = I915_READ(PCH_DREF_CONTROL);
4748 /* Always enable nonspread source */
4749 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4750
4751 if (has_ck505)
4752 temp |= DREF_NONSPREAD_CK505_ENABLE;
4753 else
4754 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4755
4756 if (has_panel) {
4757 temp &= ~DREF_SSC_SOURCE_MASK;
4758 temp |= DREF_SSC_SOURCE_ENABLE;
4759
4760 /* SSC must be turned on before enabling the CPU output */
4761 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4762 DRM_DEBUG_KMS("Using SSC on panel\n");
4763 temp |= DREF_SSC1_ENABLE;
4764 } else
4765 temp &= ~DREF_SSC1_ENABLE;
4766
4767 /* Get SSC going before enabling the outputs */
4768 I915_WRITE(PCH_DREF_CONTROL, temp);
4769 POSTING_READ(PCH_DREF_CONTROL);
4770 udelay(200);
4771
4772 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4773
4774 /* Enable CPU source on CPU attached eDP */
4775 if (has_cpu_edp) {
4776 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4777 DRM_DEBUG_KMS("Using SSC on eDP\n");
4778 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4779 }
4780 else
4781 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4782 } else
4783 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4784
4785 I915_WRITE(PCH_DREF_CONTROL, temp);
4786 POSTING_READ(PCH_DREF_CONTROL);
4787 udelay(200);
4788 } else {
4789 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4790
4791 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4792
4793 /* Turn off CPU output */
4794 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4795
4796 I915_WRITE(PCH_DREF_CONTROL, temp);
4797 POSTING_READ(PCH_DREF_CONTROL);
4798 udelay(200);
4799
4800 /* Turn off the SSC source */
4801 temp &= ~DREF_SSC_SOURCE_MASK;
4802 temp |= DREF_SSC_SOURCE_DISABLE;
4803
4804 /* Turn off SSC1 */
4805 temp &= ~ DREF_SSC1_ENABLE;
4806
4807 I915_WRITE(PCH_DREF_CONTROL, temp);
4808 POSTING_READ(PCH_DREF_CONTROL);
4809 udelay(200);
4810 }
4811 }
4812
4813 /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
4814 static void lpt_init_pch_refclk(struct drm_device *dev)
4815 {
4816 struct drm_i915_private *dev_priv = dev->dev_private;
4817 struct drm_mode_config *mode_config = &dev->mode_config;
4818 struct intel_encoder *encoder;
4819 bool has_vga = false;
4820 bool is_sdv = false;
4821 u32 tmp;
4822
4823 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4824 switch (encoder->type) {
4825 case INTEL_OUTPUT_ANALOG:
4826 has_vga = true;
4827 break;
4828 }
4829 }
4830
4831 if (!has_vga)
4832 return;
4833
4834 mutex_lock(&dev_priv->dpio_lock);
4835
4836 /* XXX: Rip out SDV support once Haswell ships for real. */
4837 if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
4838 is_sdv = true;
4839
4840 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4841 tmp &= ~SBI_SSCCTL_DISABLE;
4842 tmp |= SBI_SSCCTL_PATHALT;
4843 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4844
4845 udelay(24);
4846
4847 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4848 tmp &= ~SBI_SSCCTL_PATHALT;
4849 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4850
4851 if (!is_sdv) {
4852 tmp = I915_READ(SOUTH_CHICKEN2);
4853 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
4854 I915_WRITE(SOUTH_CHICKEN2, tmp);
4855
4856 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
4857 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
4858 DRM_ERROR("FDI mPHY reset assert timeout\n");
4859
4860 tmp = I915_READ(SOUTH_CHICKEN2);
4861 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
4862 I915_WRITE(SOUTH_CHICKEN2, tmp);
4863
4864 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
4865 FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
4866 100))
4867 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
4868 }
4869
4870 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
4871 tmp &= ~(0xFF << 24);
4872 tmp |= (0x12 << 24);
4873 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
4874
4875 if (!is_sdv) {
4876 tmp = intel_sbi_read(dev_priv, 0x808C, SBI_MPHY);
4877 tmp &= ~(0x3 << 6);
4878 tmp |= (1 << 6) | (1 << 0);
4879 intel_sbi_write(dev_priv, 0x808C, tmp, SBI_MPHY);
4880 }
4881
4882 if (is_sdv) {
4883 tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
4884 tmp |= 0x7FFF;
4885 intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
4886 }
4887
4888 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
4889 tmp |= (1 << 11);
4890 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
4891
4892 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
4893 tmp |= (1 << 11);
4894 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
4895
4896 if (is_sdv) {
4897 tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
4898 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
4899 intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
4900
4901 tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
4902 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
4903 intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
4904
4905 tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
4906 tmp |= (0x3F << 8);
4907 intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
4908
4909 tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
4910 tmp |= (0x3F << 8);
4911 intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
4912 }
4913
4914 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
4915 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
4916 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
4917
4918 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
4919 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
4920 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
4921
4922 if (!is_sdv) {
4923 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
4924 tmp &= ~(7 << 13);
4925 tmp |= (5 << 13);
4926 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
4927
4928 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
4929 tmp &= ~(7 << 13);
4930 tmp |= (5 << 13);
4931 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
4932 }
4933
4934 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
4935 tmp &= ~0xFF;
4936 tmp |= 0x1C;
4937 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
4938
4939 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
4940 tmp &= ~0xFF;
4941 tmp |= 0x1C;
4942 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
4943
4944 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
4945 tmp &= ~(0xFF << 16);
4946 tmp |= (0x1C << 16);
4947 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
4948
4949 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
4950 tmp &= ~(0xFF << 16);
4951 tmp |= (0x1C << 16);
4952 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
4953
4954 if (!is_sdv) {
4955 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
4956 tmp |= (1 << 27);
4957 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
4958
4959 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
4960 tmp |= (1 << 27);
4961 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
4962
4963 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
4964 tmp &= ~(0xF << 28);
4965 tmp |= (4 << 28);
4966 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
4967
4968 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
4969 tmp &= ~(0xF << 28);
4970 tmp |= (4 << 28);
4971 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
4972 }
4973
4974 /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
4975 tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
4976 tmp |= SBI_DBUFF0_ENABLE;
4977 intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
4978
4979 mutex_unlock(&dev_priv->dpio_lock);
4980 }
4981
4982 /*
4983 * Initialize reference clocks when the driver loads
4984 */
4985 void intel_init_pch_refclk(struct drm_device *dev)
4986 {
4987 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4988 ironlake_init_pch_refclk(dev);
4989 else if (HAS_PCH_LPT(dev))
4990 lpt_init_pch_refclk(dev);
4991 }
4992
4993 static int ironlake_get_refclk(struct drm_crtc *crtc)
4994 {
4995 struct drm_device *dev = crtc->dev;
4996 struct drm_i915_private *dev_priv = dev->dev_private;
4997 struct intel_encoder *encoder;
4998 struct intel_encoder *edp_encoder = NULL;
4999 int num_connectors = 0;
5000 bool is_lvds = false;
5001
5002 for_each_encoder_on_crtc(dev, crtc, encoder) {
5003 switch (encoder->type) {
5004 case INTEL_OUTPUT_LVDS:
5005 is_lvds = true;
5006 break;
5007 case INTEL_OUTPUT_EDP:
5008 edp_encoder = encoder;
5009 break;
5010 }
5011 num_connectors++;
5012 }
5013
5014 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5015 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5016 dev_priv->lvds_ssc_freq);
5017 return dev_priv->lvds_ssc_freq * 1000;
5018 }
5019
5020 return 120000;
5021 }
5022
5023 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5024 struct drm_display_mode *adjusted_mode,
5025 bool dither)
5026 {
5027 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5028 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5029 int pipe = intel_crtc->pipe;
5030 uint32_t val;
5031
5032 val = I915_READ(PIPECONF(pipe));
5033
5034 val &= ~PIPECONF_BPC_MASK;
5035 switch (intel_crtc->config.pipe_bpp) {
5036 case 18:
5037 val |= PIPECONF_6BPC;
5038 break;
5039 case 24:
5040 val |= PIPECONF_8BPC;
5041 break;
5042 case 30:
5043 val |= PIPECONF_10BPC;
5044 break;
5045 case 36:
5046 val |= PIPECONF_12BPC;
5047 break;
5048 default:
5049 /* Case prevented by intel_choose_pipe_bpp_dither. */
5050 BUG();
5051 }
5052
5053 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5054 if (dither)
5055 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5056
5057 val &= ~PIPECONF_INTERLACE_MASK;
5058 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5059 val |= PIPECONF_INTERLACED_ILK;
5060 else
5061 val |= PIPECONF_PROGRESSIVE;
5062
5063 if (intel_crtc->config.limited_color_range)
5064 val |= PIPECONF_COLOR_RANGE_SELECT;
5065 else
5066 val &= ~PIPECONF_COLOR_RANGE_SELECT;
5067
5068 I915_WRITE(PIPECONF(pipe), val);
5069 POSTING_READ(PIPECONF(pipe));
5070 }
5071
5072 /*
5073 * Set up the pipe CSC unit.
5074 *
5075 * Currently only full range RGB to limited range RGB conversion
5076 * is supported, but eventually this should handle various
5077 * RGB<->YCbCr scenarios as well.
5078 */
5079 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5080 {
5081 struct drm_device *dev = crtc->dev;
5082 struct drm_i915_private *dev_priv = dev->dev_private;
5083 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5084 int pipe = intel_crtc->pipe;
5085 uint16_t coeff = 0x7800; /* 1.0 */
5086
5087 /*
5088 * TODO: Check what kind of values actually come out of the pipe
5089 * with these coeff/postoff values and adjust to get the best
5090 * accuracy. Perhaps we even need to take the bpc value into
5091 * consideration.
5092 */
5093
5094 if (intel_crtc->config.limited_color_range)
5095 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5096
5097 /*
5098 * GY/GU and RY/RU should be the other way around according
5099 * to BSpec, but reality doesn't agree. Just set them up in
5100 * a way that results in the correct picture.
5101 */
5102 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5103 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5104
5105 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5106 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5107
5108 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5109 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5110
5111 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5112 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5113 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5114
5115 if (INTEL_INFO(dev)->gen > 6) {
5116 uint16_t postoff = 0;
5117
5118 if (intel_crtc->config.limited_color_range)
5119 postoff = (16 * (1 << 13) / 255) & 0x1fff;
5120
5121 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5122 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5123 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5124
5125 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5126 } else {
5127 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5128
5129 if (intel_crtc->config.limited_color_range)
5130 mode |= CSC_BLACK_SCREEN_OFFSET;
5131
5132 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5133 }
5134 }
5135
5136 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5137 struct drm_display_mode *adjusted_mode,
5138 bool dither)
5139 {
5140 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5141 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5142 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5143 uint32_t val;
5144
5145 val = I915_READ(PIPECONF(cpu_transcoder));
5146
5147 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5148 if (dither)
5149 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5150
5151 val &= ~PIPECONF_INTERLACE_MASK_HSW;
5152 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5153 val |= PIPECONF_INTERLACED_ILK;
5154 else
5155 val |= PIPECONF_PROGRESSIVE;
5156
5157 I915_WRITE(PIPECONF(cpu_transcoder), val);
5158 POSTING_READ(PIPECONF(cpu_transcoder));
5159 }
5160
5161 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5162 struct drm_display_mode *adjusted_mode,
5163 intel_clock_t *clock,
5164 bool *has_reduced_clock,
5165 intel_clock_t *reduced_clock)
5166 {
5167 struct drm_device *dev = crtc->dev;
5168 struct drm_i915_private *dev_priv = dev->dev_private;
5169 struct intel_encoder *intel_encoder;
5170 int refclk;
5171 const intel_limit_t *limit;
5172 bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5173
5174 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5175 switch (intel_encoder->type) {
5176 case INTEL_OUTPUT_LVDS:
5177 is_lvds = true;
5178 break;
5179 case INTEL_OUTPUT_SDVO:
5180 case INTEL_OUTPUT_HDMI:
5181 is_sdvo = true;
5182 if (intel_encoder->needs_tv_clock)
5183 is_tv = true;
5184 break;
5185 case INTEL_OUTPUT_TVOUT:
5186 is_tv = true;
5187 break;
5188 }
5189 }
5190
5191 refclk = ironlake_get_refclk(crtc);
5192
5193 /*
5194 * Returns a set of divisors for the desired target clock with the given
5195 * refclk, or FALSE. The returned values represent the clock equation:
5196 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5197 */
5198 limit = intel_limit(crtc, refclk);
5199 ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5200 clock);
5201 if (!ret)
5202 return false;
5203
5204 if (is_lvds && dev_priv->lvds_downclock_avail) {
5205 /*
5206 * Ensure we match the reduced clock's P to the target clock.
5207 * If the clocks don't match, we can't switch the display clock
5208 * by using the FP0/FP1. In such case we will disable the LVDS
5209 * downclock feature.
5210 */
5211 *has_reduced_clock = limit->find_pll(limit, crtc,
5212 dev_priv->lvds_downclock,
5213 refclk,
5214 clock,
5215 reduced_clock);
5216 }
5217
5218 if (is_sdvo && is_tv)
5219 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5220
5221 return true;
5222 }
5223
5224 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5225 {
5226 struct drm_i915_private *dev_priv = dev->dev_private;
5227 uint32_t temp;
5228
5229 temp = I915_READ(SOUTH_CHICKEN1);
5230 if (temp & FDI_BC_BIFURCATION_SELECT)
5231 return;
5232
5233 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5234 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5235
5236 temp |= FDI_BC_BIFURCATION_SELECT;
5237 DRM_DEBUG_KMS("enabling fdi C rx\n");
5238 I915_WRITE(SOUTH_CHICKEN1, temp);
5239 POSTING_READ(SOUTH_CHICKEN1);
5240 }
5241
5242 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5243 {
5244 struct drm_device *dev = intel_crtc->base.dev;
5245 struct drm_i915_private *dev_priv = dev->dev_private;
5246 struct intel_crtc *pipe_B_crtc =
5247 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5248
5249 DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5250 intel_crtc->pipe, intel_crtc->fdi_lanes);
5251 if (intel_crtc->fdi_lanes > 4) {
5252 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5253 intel_crtc->pipe, intel_crtc->fdi_lanes);
5254 /* Clamp lanes to avoid programming the hw with bogus values. */
5255 intel_crtc->fdi_lanes = 4;
5256
5257 return false;
5258 }
5259
5260 if (INTEL_INFO(dev)->num_pipes == 2)
5261 return true;
5262
5263 switch (intel_crtc->pipe) {
5264 case PIPE_A:
5265 return true;
5266 case PIPE_B:
5267 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5268 intel_crtc->fdi_lanes > 2) {
5269 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5270 intel_crtc->pipe, intel_crtc->fdi_lanes);
5271 /* Clamp lanes to avoid programming the hw with bogus values. */
5272 intel_crtc->fdi_lanes = 2;
5273
5274 return false;
5275 }
5276
5277 if (intel_crtc->fdi_lanes > 2)
5278 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5279 else
5280 cpt_enable_fdi_bc_bifurcation(dev);
5281
5282 return true;
5283 case PIPE_C:
5284 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5285 if (intel_crtc->fdi_lanes > 2) {
5286 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5287 intel_crtc->pipe, intel_crtc->fdi_lanes);
5288 /* Clamp lanes to avoid programming the hw with bogus values. */
5289 intel_crtc->fdi_lanes = 2;
5290
5291 return false;
5292 }
5293 } else {
5294 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5295 return false;
5296 }
5297
5298 cpt_enable_fdi_bc_bifurcation(dev);
5299
5300 return true;
5301 default:
5302 BUG();
5303 }
5304 }
5305
5306 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5307 {
5308 /*
5309 * Account for spread spectrum to avoid
5310 * oversubscribing the link. Max center spread
5311 * is 2.5%; use 5% for safety's sake.
5312 */
5313 u32 bps = target_clock * bpp * 21 / 20;
5314 return bps / (link_bw * 8) + 1;
5315 }
5316
5317 static void ironlake_set_m_n(struct drm_crtc *crtc)
5318 {
5319 struct drm_device *dev = crtc->dev;
5320 struct drm_i915_private *dev_priv = dev->dev_private;
5321 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5322 struct drm_display_mode *adjusted_mode =
5323 &intel_crtc->config.adjusted_mode;
5324 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5325 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5326 struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5327 struct intel_link_m_n m_n = {0};
5328 int target_clock, lane, link_bw;
5329 bool is_dp = false, is_cpu_edp = false;
5330
5331 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5332 switch (intel_encoder->type) {
5333 case INTEL_OUTPUT_DISPLAYPORT:
5334 is_dp = true;
5335 break;
5336 case INTEL_OUTPUT_EDP:
5337 is_dp = true;
5338 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5339 is_cpu_edp = true;
5340 edp_encoder = intel_encoder;
5341 break;
5342 }
5343 }
5344
5345 /* FDI link */
5346 lane = 0;
5347 /* CPU eDP doesn't require FDI link, so just set DP M/N
5348 according to current link config */
5349 if (is_cpu_edp) {
5350 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5351 } else {
5352 /* FDI is a binary signal running at ~2.7GHz, encoding
5353 * each output octet as 10 bits. The actual frequency
5354 * is stored as a divider into a 100MHz clock, and the
5355 * mode pixel clock is stored in units of 1KHz.
5356 * Hence the bw of each lane in terms of the mode signal
5357 * is:
5358 */
5359 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5360 }
5361
5362 /* [e]DP over FDI requires target mode clock instead of link clock. */
5363 if (edp_encoder)
5364 target_clock = intel_edp_target_clock(edp_encoder, mode);
5365 else if (is_dp)
5366 target_clock = mode->clock;
5367 else
5368 target_clock = adjusted_mode->clock;
5369
5370 if (!lane)
5371 lane = ironlake_get_lanes_required(target_clock, link_bw,
5372 intel_crtc->config.pipe_bpp);
5373
5374 intel_crtc->fdi_lanes = lane;
5375
5376 if (intel_crtc->config.pixel_multiplier > 1)
5377 link_bw *= intel_crtc->config.pixel_multiplier;
5378 intel_link_compute_m_n(intel_crtc->config.pipe_bpp, lane, target_clock,
5379 link_bw, &m_n);
5380
5381 I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5382 I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5383 I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5384 I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5385 }
5386
5387 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5388 intel_clock_t *clock, u32 fp)
5389 {
5390 struct drm_crtc *crtc = &intel_crtc->base;
5391 struct drm_device *dev = crtc->dev;
5392 struct drm_i915_private *dev_priv = dev->dev_private;
5393 struct intel_encoder *intel_encoder;
5394 uint32_t dpll;
5395 int factor, num_connectors = 0;
5396 bool is_lvds = false, is_sdvo = false, is_tv = false;
5397 bool is_dp = false, is_cpu_edp = false;
5398
5399 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5400 switch (intel_encoder->type) {
5401 case INTEL_OUTPUT_LVDS:
5402 is_lvds = true;
5403 break;
5404 case INTEL_OUTPUT_SDVO:
5405 case INTEL_OUTPUT_HDMI:
5406 is_sdvo = true;
5407 if (intel_encoder->needs_tv_clock)
5408 is_tv = true;
5409 break;
5410 case INTEL_OUTPUT_TVOUT:
5411 is_tv = true;
5412 break;
5413 case INTEL_OUTPUT_DISPLAYPORT:
5414 is_dp = true;
5415 break;
5416 case INTEL_OUTPUT_EDP:
5417 is_dp = true;
5418 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5419 is_cpu_edp = true;
5420 break;
5421 }
5422
5423 num_connectors++;
5424 }
5425
5426 /* Enable autotuning of the PLL clock (if permissible) */
5427 factor = 21;
5428 if (is_lvds) {
5429 if ((intel_panel_use_ssc(dev_priv) &&
5430 dev_priv->lvds_ssc_freq == 100) ||
5431 intel_is_dual_link_lvds(dev))
5432 factor = 25;
5433 } else if (is_sdvo && is_tv)
5434 factor = 20;
5435
5436 if (clock->m < factor * clock->n)
5437 fp |= FP_CB_TUNE;
5438
5439 dpll = 0;
5440
5441 if (is_lvds)
5442 dpll |= DPLLB_MODE_LVDS;
5443 else
5444 dpll |= DPLLB_MODE_DAC_SERIAL;
5445 if (is_sdvo) {
5446 if (intel_crtc->config.pixel_multiplier > 1) {
5447 dpll |= (intel_crtc->config.pixel_multiplier - 1)
5448 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5449 }
5450 dpll |= DPLL_DVO_HIGH_SPEED;
5451 }
5452 if (is_dp && !is_cpu_edp)
5453 dpll |= DPLL_DVO_HIGH_SPEED;
5454
5455 /* compute bitmask from p1 value */
5456 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5457 /* also FPA1 */
5458 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5459
5460 switch (clock->p2) {
5461 case 5:
5462 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5463 break;
5464 case 7:
5465 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5466 break;
5467 case 10:
5468 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5469 break;
5470 case 14:
5471 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5472 break;
5473 }
5474
5475 if (is_sdvo && is_tv)
5476 dpll |= PLL_REF_INPUT_TVCLKINBC;
5477 else if (is_tv)
5478 /* XXX: just matching BIOS for now */
5479 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5480 dpll |= 3;
5481 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5482 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5483 else
5484 dpll |= PLL_REF_INPUT_DREFCLK;
5485
5486 return dpll;
5487 }
5488
5489 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5490 int x, int y,
5491 struct drm_framebuffer *fb)
5492 {
5493 struct drm_device *dev = crtc->dev;
5494 struct drm_i915_private *dev_priv = dev->dev_private;
5495 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5496 struct drm_display_mode *adjusted_mode =
5497 &intel_crtc->config.adjusted_mode;
5498 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5499 int pipe = intel_crtc->pipe;
5500 int plane = intel_crtc->plane;
5501 int num_connectors = 0;
5502 intel_clock_t clock, reduced_clock;
5503 u32 dpll, fp = 0, fp2 = 0;
5504 bool ok, has_reduced_clock = false;
5505 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5506 struct intel_encoder *encoder;
5507 int ret;
5508 bool dither, fdi_config_ok;
5509
5510 for_each_encoder_on_crtc(dev, crtc, encoder) {
5511 switch (encoder->type) {
5512 case INTEL_OUTPUT_LVDS:
5513 is_lvds = true;
5514 break;
5515 case INTEL_OUTPUT_DISPLAYPORT:
5516 is_dp = true;
5517 break;
5518 case INTEL_OUTPUT_EDP:
5519 is_dp = true;
5520 if (!intel_encoder_is_pch_edp(&encoder->base))
5521 is_cpu_edp = true;
5522 break;
5523 }
5524
5525 num_connectors++;
5526 }
5527
5528 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5529 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5530
5531 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5532 &has_reduced_clock, &reduced_clock);
5533 if (!ok) {
5534 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5535 return -EINVAL;
5536 }
5537
5538 /* Ensure that the cursor is valid for the new mode before changing... */
5539 intel_crtc_update_cursor(crtc, true);
5540
5541 /* determine panel color depth */
5542 dither = intel_crtc->config.dither;
5543 if (is_lvds && dev_priv->lvds_dither)
5544 dither = true;
5545
5546 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5547 if (has_reduced_clock)
5548 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5549 reduced_clock.m2;
5550
5551 dpll = ironlake_compute_dpll(intel_crtc, &clock, fp);
5552
5553 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5554 drm_mode_debug_printmodeline(mode);
5555
5556 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5557 if (!is_cpu_edp) {
5558 struct intel_pch_pll *pll;
5559
5560 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5561 if (pll == NULL) {
5562 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5563 pipe);
5564 return -EINVAL;
5565 }
5566 } else
5567 intel_put_pch_pll(intel_crtc);
5568
5569 if (is_dp && !is_cpu_edp)
5570 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5571
5572 for_each_encoder_on_crtc(dev, crtc, encoder)
5573 if (encoder->pre_pll_enable)
5574 encoder->pre_pll_enable(encoder);
5575
5576 if (intel_crtc->pch_pll) {
5577 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5578
5579 /* Wait for the clocks to stabilize. */
5580 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5581 udelay(150);
5582
5583 /* The pixel multiplier can only be updated once the
5584 * DPLL is enabled and the clocks are stable.
5585 *
5586 * So write it again.
5587 */
5588 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5589 }
5590
5591 intel_crtc->lowfreq_avail = false;
5592 if (intel_crtc->pch_pll) {
5593 if (is_lvds && has_reduced_clock && i915_powersave) {
5594 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5595 intel_crtc->lowfreq_avail = true;
5596 } else {
5597 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5598 }
5599 }
5600
5601 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5602
5603 /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5604 * ironlake_check_fdi_lanes. */
5605 ironlake_set_m_n(crtc);
5606
5607 fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5608
5609 ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5610
5611 intel_wait_for_vblank(dev, pipe);
5612
5613 /* Set up the display plane register */
5614 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5615 POSTING_READ(DSPCNTR(plane));
5616
5617 ret = intel_pipe_set_base(crtc, x, y, fb);
5618
5619 intel_update_watermarks(dev);
5620
5621 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5622
5623 return fdi_config_ok ? ret : -EINVAL;
5624 }
5625
5626 static void haswell_modeset_global_resources(struct drm_device *dev)
5627 {
5628 struct drm_i915_private *dev_priv = dev->dev_private;
5629 bool enable = false;
5630 struct intel_crtc *crtc;
5631 struct intel_encoder *encoder;
5632
5633 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
5634 if (crtc->pipe != PIPE_A && crtc->base.enabled)
5635 enable = true;
5636 /* XXX: Should check for edp transcoder here, but thanks to init
5637 * sequence that's not yet available. Just in case desktop eDP
5638 * on PORT D is possible on haswell, too. */
5639 }
5640
5641 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
5642 base.head) {
5643 if (encoder->type != INTEL_OUTPUT_EDP &&
5644 encoder->connectors_active)
5645 enable = true;
5646 }
5647
5648 /* Even the eDP panel fitter is outside the always-on well. */
5649 if (dev_priv->pch_pf_size)
5650 enable = true;
5651
5652 intel_set_power_well(dev, enable);
5653 }
5654
5655 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5656 int x, int y,
5657 struct drm_framebuffer *fb)
5658 {
5659 struct drm_device *dev = crtc->dev;
5660 struct drm_i915_private *dev_priv = dev->dev_private;
5661 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5662 struct drm_display_mode *adjusted_mode =
5663 &intel_crtc->config.adjusted_mode;
5664 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5665 int pipe = intel_crtc->pipe;
5666 int plane = intel_crtc->plane;
5667 int num_connectors = 0;
5668 bool is_dp = false, is_cpu_edp = false;
5669 struct intel_encoder *encoder;
5670 int ret;
5671 bool dither;
5672
5673 for_each_encoder_on_crtc(dev, crtc, encoder) {
5674 switch (encoder->type) {
5675 case INTEL_OUTPUT_DISPLAYPORT:
5676 is_dp = true;
5677 break;
5678 case INTEL_OUTPUT_EDP:
5679 is_dp = true;
5680 if (!intel_encoder_is_pch_edp(&encoder->base))
5681 is_cpu_edp = true;
5682 break;
5683 }
5684
5685 num_connectors++;
5686 }
5687
5688 /* We are not sure yet this won't happen. */
5689 WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5690 INTEL_PCH_TYPE(dev));
5691
5692 WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5693 num_connectors, pipe_name(pipe));
5694
5695 WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5696 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5697
5698 WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5699
5700 if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5701 return -EINVAL;
5702
5703 /* Ensure that the cursor is valid for the new mode before changing... */
5704 intel_crtc_update_cursor(crtc, true);
5705
5706 /* determine panel color depth */
5707 dither = intel_crtc->config.dither;
5708
5709 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5710 drm_mode_debug_printmodeline(mode);
5711
5712 if (is_dp && !is_cpu_edp)
5713 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5714
5715 intel_crtc->lowfreq_avail = false;
5716
5717 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5718
5719 if (!is_dp || is_cpu_edp)
5720 ironlake_set_m_n(crtc);
5721
5722 haswell_set_pipeconf(crtc, adjusted_mode, dither);
5723
5724 intel_set_pipe_csc(crtc);
5725
5726 /* Set up the display plane register */
5727 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
5728 POSTING_READ(DSPCNTR(plane));
5729
5730 ret = intel_pipe_set_base(crtc, x, y, fb);
5731
5732 intel_update_watermarks(dev);
5733
5734 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5735
5736 return ret;
5737 }
5738
5739 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5740 int x, int y,
5741 struct drm_framebuffer *fb)
5742 {
5743 struct drm_device *dev = crtc->dev;
5744 struct drm_i915_private *dev_priv = dev->dev_private;
5745 struct drm_encoder_helper_funcs *encoder_funcs;
5746 struct intel_encoder *encoder;
5747 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5748 struct drm_display_mode *adjusted_mode =
5749 &intel_crtc->config.adjusted_mode;
5750 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5751 int pipe = intel_crtc->pipe;
5752 int ret;
5753
5754 if (IS_HASWELL(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
5755 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5756 else
5757 intel_crtc->cpu_transcoder = pipe;
5758
5759 drm_vblank_pre_modeset(dev, pipe);
5760
5761 ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
5762
5763 drm_vblank_post_modeset(dev, pipe);
5764
5765 if (ret != 0)
5766 return ret;
5767
5768 for_each_encoder_on_crtc(dev, crtc, encoder) {
5769 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5770 encoder->base.base.id,
5771 drm_get_encoder_name(&encoder->base),
5772 mode->base.id, mode->name);
5773 if (encoder->mode_set) {
5774 encoder->mode_set(encoder);
5775 } else {
5776 encoder_funcs = encoder->base.helper_private;
5777 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5778 }
5779 }
5780
5781 return 0;
5782 }
5783
5784 static bool intel_eld_uptodate(struct drm_connector *connector,
5785 int reg_eldv, uint32_t bits_eldv,
5786 int reg_elda, uint32_t bits_elda,
5787 int reg_edid)
5788 {
5789 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5790 uint8_t *eld = connector->eld;
5791 uint32_t i;
5792
5793 i = I915_READ(reg_eldv);
5794 i &= bits_eldv;
5795
5796 if (!eld[0])
5797 return !i;
5798
5799 if (!i)
5800 return false;
5801
5802 i = I915_READ(reg_elda);
5803 i &= ~bits_elda;
5804 I915_WRITE(reg_elda, i);
5805
5806 for (i = 0; i < eld[2]; i++)
5807 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5808 return false;
5809
5810 return true;
5811 }
5812
5813 static void g4x_write_eld(struct drm_connector *connector,
5814 struct drm_crtc *crtc)
5815 {
5816 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5817 uint8_t *eld = connector->eld;
5818 uint32_t eldv;
5819 uint32_t len;
5820 uint32_t i;
5821
5822 i = I915_READ(G4X_AUD_VID_DID);
5823
5824 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5825 eldv = G4X_ELDV_DEVCL_DEVBLC;
5826 else
5827 eldv = G4X_ELDV_DEVCTG;
5828
5829 if (intel_eld_uptodate(connector,
5830 G4X_AUD_CNTL_ST, eldv,
5831 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5832 G4X_HDMIW_HDMIEDID))
5833 return;
5834
5835 i = I915_READ(G4X_AUD_CNTL_ST);
5836 i &= ~(eldv | G4X_ELD_ADDR);
5837 len = (i >> 9) & 0x1f; /* ELD buffer size */
5838 I915_WRITE(G4X_AUD_CNTL_ST, i);
5839
5840 if (!eld[0])
5841 return;
5842
5843 len = min_t(uint8_t, eld[2], len);
5844 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5845 for (i = 0; i < len; i++)
5846 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5847
5848 i = I915_READ(G4X_AUD_CNTL_ST);
5849 i |= eldv;
5850 I915_WRITE(G4X_AUD_CNTL_ST, i);
5851 }
5852
5853 static void haswell_write_eld(struct drm_connector *connector,
5854 struct drm_crtc *crtc)
5855 {
5856 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5857 uint8_t *eld = connector->eld;
5858 struct drm_device *dev = crtc->dev;
5859 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5860 uint32_t eldv;
5861 uint32_t i;
5862 int len;
5863 int pipe = to_intel_crtc(crtc)->pipe;
5864 int tmp;
5865
5866 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5867 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5868 int aud_config = HSW_AUD_CFG(pipe);
5869 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5870
5871
5872 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5873
5874 /* Audio output enable */
5875 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5876 tmp = I915_READ(aud_cntrl_st2);
5877 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5878 I915_WRITE(aud_cntrl_st2, tmp);
5879
5880 /* Wait for 1 vertical blank */
5881 intel_wait_for_vblank(dev, pipe);
5882
5883 /* Set ELD valid state */
5884 tmp = I915_READ(aud_cntrl_st2);
5885 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5886 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5887 I915_WRITE(aud_cntrl_st2, tmp);
5888 tmp = I915_READ(aud_cntrl_st2);
5889 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5890
5891 /* Enable HDMI mode */
5892 tmp = I915_READ(aud_config);
5893 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5894 /* clear N_programing_enable and N_value_index */
5895 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5896 I915_WRITE(aud_config, tmp);
5897
5898 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5899
5900 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5901 intel_crtc->eld_vld = true;
5902
5903 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5904 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5905 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5906 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5907 } else
5908 I915_WRITE(aud_config, 0);
5909
5910 if (intel_eld_uptodate(connector,
5911 aud_cntrl_st2, eldv,
5912 aud_cntl_st, IBX_ELD_ADDRESS,
5913 hdmiw_hdmiedid))
5914 return;
5915
5916 i = I915_READ(aud_cntrl_st2);
5917 i &= ~eldv;
5918 I915_WRITE(aud_cntrl_st2, i);
5919
5920 if (!eld[0])
5921 return;
5922
5923 i = I915_READ(aud_cntl_st);
5924 i &= ~IBX_ELD_ADDRESS;
5925 I915_WRITE(aud_cntl_st, i);
5926 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5927 DRM_DEBUG_DRIVER("port num:%d\n", i);
5928
5929 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5930 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5931 for (i = 0; i < len; i++)
5932 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5933
5934 i = I915_READ(aud_cntrl_st2);
5935 i |= eldv;
5936 I915_WRITE(aud_cntrl_st2, i);
5937
5938 }
5939
5940 static void ironlake_write_eld(struct drm_connector *connector,
5941 struct drm_crtc *crtc)
5942 {
5943 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5944 uint8_t *eld = connector->eld;
5945 uint32_t eldv;
5946 uint32_t i;
5947 int len;
5948 int hdmiw_hdmiedid;
5949 int aud_config;
5950 int aud_cntl_st;
5951 int aud_cntrl_st2;
5952 int pipe = to_intel_crtc(crtc)->pipe;
5953
5954 if (HAS_PCH_IBX(connector->dev)) {
5955 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
5956 aud_config = IBX_AUD_CFG(pipe);
5957 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
5958 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
5959 } else {
5960 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
5961 aud_config = CPT_AUD_CFG(pipe);
5962 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
5963 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
5964 }
5965
5966 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5967
5968 i = I915_READ(aud_cntl_st);
5969 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5970 if (!i) {
5971 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5972 /* operate blindly on all ports */
5973 eldv = IBX_ELD_VALIDB;
5974 eldv |= IBX_ELD_VALIDB << 4;
5975 eldv |= IBX_ELD_VALIDB << 8;
5976 } else {
5977 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5978 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
5979 }
5980
5981 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5982 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5983 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5984 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5985 } else
5986 I915_WRITE(aud_config, 0);
5987
5988 if (intel_eld_uptodate(connector,
5989 aud_cntrl_st2, eldv,
5990 aud_cntl_st, IBX_ELD_ADDRESS,
5991 hdmiw_hdmiedid))
5992 return;
5993
5994 i = I915_READ(aud_cntrl_st2);
5995 i &= ~eldv;
5996 I915_WRITE(aud_cntrl_st2, i);
5997
5998 if (!eld[0])
5999 return;
6000
6001 i = I915_READ(aud_cntl_st);
6002 i &= ~IBX_ELD_ADDRESS;
6003 I915_WRITE(aud_cntl_st, i);
6004
6005 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6006 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6007 for (i = 0; i < len; i++)
6008 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6009
6010 i = I915_READ(aud_cntrl_st2);
6011 i |= eldv;
6012 I915_WRITE(aud_cntrl_st2, i);
6013 }
6014
6015 void intel_write_eld(struct drm_encoder *encoder,
6016 struct drm_display_mode *mode)
6017 {
6018 struct drm_crtc *crtc = encoder->crtc;
6019 struct drm_connector *connector;
6020 struct drm_device *dev = encoder->dev;
6021 struct drm_i915_private *dev_priv = dev->dev_private;
6022
6023 connector = drm_select_eld(encoder, mode);
6024 if (!connector)
6025 return;
6026
6027 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6028 connector->base.id,
6029 drm_get_connector_name(connector),
6030 connector->encoder->base.id,
6031 drm_get_encoder_name(connector->encoder));
6032
6033 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6034
6035 if (dev_priv->display.write_eld)
6036 dev_priv->display.write_eld(connector, crtc);
6037 }
6038
6039 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6040 void intel_crtc_load_lut(struct drm_crtc *crtc)
6041 {
6042 struct drm_device *dev = crtc->dev;
6043 struct drm_i915_private *dev_priv = dev->dev_private;
6044 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6045 int palreg = PALETTE(intel_crtc->pipe);
6046 int i;
6047
6048 /* The clocks have to be on to load the palette. */
6049 if (!crtc->enabled || !intel_crtc->active)
6050 return;
6051
6052 /* use legacy palette for Ironlake */
6053 if (HAS_PCH_SPLIT(dev))
6054 palreg = LGC_PALETTE(intel_crtc->pipe);
6055
6056 for (i = 0; i < 256; i++) {
6057 I915_WRITE(palreg + 4 * i,
6058 (intel_crtc->lut_r[i] << 16) |
6059 (intel_crtc->lut_g[i] << 8) |
6060 intel_crtc->lut_b[i]);
6061 }
6062 }
6063
6064 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6065 {
6066 struct drm_device *dev = crtc->dev;
6067 struct drm_i915_private *dev_priv = dev->dev_private;
6068 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6069 bool visible = base != 0;
6070 u32 cntl;
6071
6072 if (intel_crtc->cursor_visible == visible)
6073 return;
6074
6075 cntl = I915_READ(_CURACNTR);
6076 if (visible) {
6077 /* On these chipsets we can only modify the base whilst
6078 * the cursor is disabled.
6079 */
6080 I915_WRITE(_CURABASE, base);
6081
6082 cntl &= ~(CURSOR_FORMAT_MASK);
6083 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6084 cntl |= CURSOR_ENABLE |
6085 CURSOR_GAMMA_ENABLE |
6086 CURSOR_FORMAT_ARGB;
6087 } else
6088 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6089 I915_WRITE(_CURACNTR, cntl);
6090
6091 intel_crtc->cursor_visible = visible;
6092 }
6093
6094 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6095 {
6096 struct drm_device *dev = crtc->dev;
6097 struct drm_i915_private *dev_priv = dev->dev_private;
6098 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6099 int pipe = intel_crtc->pipe;
6100 bool visible = base != 0;
6101
6102 if (intel_crtc->cursor_visible != visible) {
6103 uint32_t cntl = I915_READ(CURCNTR(pipe));
6104 if (base) {
6105 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6106 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6107 cntl |= pipe << 28; /* Connect to correct pipe */
6108 } else {
6109 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6110 cntl |= CURSOR_MODE_DISABLE;
6111 }
6112 I915_WRITE(CURCNTR(pipe), cntl);
6113
6114 intel_crtc->cursor_visible = visible;
6115 }
6116 /* and commit changes on next vblank */
6117 I915_WRITE(CURBASE(pipe), base);
6118 }
6119
6120 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6121 {
6122 struct drm_device *dev = crtc->dev;
6123 struct drm_i915_private *dev_priv = dev->dev_private;
6124 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6125 int pipe = intel_crtc->pipe;
6126 bool visible = base != 0;
6127
6128 if (intel_crtc->cursor_visible != visible) {
6129 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6130 if (base) {
6131 cntl &= ~CURSOR_MODE;
6132 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6133 } else {
6134 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6135 cntl |= CURSOR_MODE_DISABLE;
6136 }
6137 if (IS_HASWELL(dev))
6138 cntl |= CURSOR_PIPE_CSC_ENABLE;
6139 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6140
6141 intel_crtc->cursor_visible = visible;
6142 }
6143 /* and commit changes on next vblank */
6144 I915_WRITE(CURBASE_IVB(pipe), base);
6145 }
6146
6147 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6148 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6149 bool on)
6150 {
6151 struct drm_device *dev = crtc->dev;
6152 struct drm_i915_private *dev_priv = dev->dev_private;
6153 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6154 int pipe = intel_crtc->pipe;
6155 int x = intel_crtc->cursor_x;
6156 int y = intel_crtc->cursor_y;
6157 u32 base, pos;
6158 bool visible;
6159
6160 pos = 0;
6161
6162 if (on && crtc->enabled && crtc->fb) {
6163 base = intel_crtc->cursor_addr;
6164 if (x > (int) crtc->fb->width)
6165 base = 0;
6166
6167 if (y > (int) crtc->fb->height)
6168 base = 0;
6169 } else
6170 base = 0;
6171
6172 if (x < 0) {
6173 if (x + intel_crtc->cursor_width < 0)
6174 base = 0;
6175
6176 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6177 x = -x;
6178 }
6179 pos |= x << CURSOR_X_SHIFT;
6180
6181 if (y < 0) {
6182 if (y + intel_crtc->cursor_height < 0)
6183 base = 0;
6184
6185 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6186 y = -y;
6187 }
6188 pos |= y << CURSOR_Y_SHIFT;
6189
6190 visible = base != 0;
6191 if (!visible && !intel_crtc->cursor_visible)
6192 return;
6193
6194 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6195 I915_WRITE(CURPOS_IVB(pipe), pos);
6196 ivb_update_cursor(crtc, base);
6197 } else {
6198 I915_WRITE(CURPOS(pipe), pos);
6199 if (IS_845G(dev) || IS_I865G(dev))
6200 i845_update_cursor(crtc, base);
6201 else
6202 i9xx_update_cursor(crtc, base);
6203 }
6204 }
6205
6206 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6207 struct drm_file *file,
6208 uint32_t handle,
6209 uint32_t width, uint32_t height)
6210 {
6211 struct drm_device *dev = crtc->dev;
6212 struct drm_i915_private *dev_priv = dev->dev_private;
6213 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6214 struct drm_i915_gem_object *obj;
6215 uint32_t addr;
6216 int ret;
6217
6218 /* if we want to turn off the cursor ignore width and height */
6219 if (!handle) {
6220 DRM_DEBUG_KMS("cursor off\n");
6221 addr = 0;
6222 obj = NULL;
6223 mutex_lock(&dev->struct_mutex);
6224 goto finish;
6225 }
6226
6227 /* Currently we only support 64x64 cursors */
6228 if (width != 64 || height != 64) {
6229 DRM_ERROR("we currently only support 64x64 cursors\n");
6230 return -EINVAL;
6231 }
6232
6233 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6234 if (&obj->base == NULL)
6235 return -ENOENT;
6236
6237 if (obj->base.size < width * height * 4) {
6238 DRM_ERROR("buffer is to small\n");
6239 ret = -ENOMEM;
6240 goto fail;
6241 }
6242
6243 /* we only need to pin inside GTT if cursor is non-phy */
6244 mutex_lock(&dev->struct_mutex);
6245 if (!dev_priv->info->cursor_needs_physical) {
6246 unsigned alignment;
6247
6248 if (obj->tiling_mode) {
6249 DRM_ERROR("cursor cannot be tiled\n");
6250 ret = -EINVAL;
6251 goto fail_locked;
6252 }
6253
6254 /* Note that the w/a also requires 2 PTE of padding following
6255 * the bo. We currently fill all unused PTE with the shadow
6256 * page and so we should always have valid PTE following the
6257 * cursor preventing the VT-d warning.
6258 */
6259 alignment = 0;
6260 if (need_vtd_wa(dev))
6261 alignment = 64*1024;
6262
6263 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6264 if (ret) {
6265 DRM_ERROR("failed to move cursor bo into the GTT\n");
6266 goto fail_locked;
6267 }
6268
6269 ret = i915_gem_object_put_fence(obj);
6270 if (ret) {
6271 DRM_ERROR("failed to release fence for cursor");
6272 goto fail_unpin;
6273 }
6274
6275 addr = obj->gtt_offset;
6276 } else {
6277 int align = IS_I830(dev) ? 16 * 1024 : 256;
6278 ret = i915_gem_attach_phys_object(dev, obj,
6279 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6280 align);
6281 if (ret) {
6282 DRM_ERROR("failed to attach phys object\n");
6283 goto fail_locked;
6284 }
6285 addr = obj->phys_obj->handle->busaddr;
6286 }
6287
6288 if (IS_GEN2(dev))
6289 I915_WRITE(CURSIZE, (height << 12) | width);
6290
6291 finish:
6292 if (intel_crtc->cursor_bo) {
6293 if (dev_priv->info->cursor_needs_physical) {
6294 if (intel_crtc->cursor_bo != obj)
6295 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6296 } else
6297 i915_gem_object_unpin(intel_crtc->cursor_bo);
6298 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6299 }
6300
6301 mutex_unlock(&dev->struct_mutex);
6302
6303 intel_crtc->cursor_addr = addr;
6304 intel_crtc->cursor_bo = obj;
6305 intel_crtc->cursor_width = width;
6306 intel_crtc->cursor_height = height;
6307
6308 intel_crtc_update_cursor(crtc, true);
6309
6310 return 0;
6311 fail_unpin:
6312 i915_gem_object_unpin(obj);
6313 fail_locked:
6314 mutex_unlock(&dev->struct_mutex);
6315 fail:
6316 drm_gem_object_unreference_unlocked(&obj->base);
6317 return ret;
6318 }
6319
6320 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6321 {
6322 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6323
6324 intel_crtc->cursor_x = x;
6325 intel_crtc->cursor_y = y;
6326
6327 intel_crtc_update_cursor(crtc, true);
6328
6329 return 0;
6330 }
6331
6332 /** Sets the color ramps on behalf of RandR */
6333 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6334 u16 blue, int regno)
6335 {
6336 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6337
6338 intel_crtc->lut_r[regno] = red >> 8;
6339 intel_crtc->lut_g[regno] = green >> 8;
6340 intel_crtc->lut_b[regno] = blue >> 8;
6341 }
6342
6343 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6344 u16 *blue, int regno)
6345 {
6346 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6347
6348 *red = intel_crtc->lut_r[regno] << 8;
6349 *green = intel_crtc->lut_g[regno] << 8;
6350 *blue = intel_crtc->lut_b[regno] << 8;
6351 }
6352
6353 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6354 u16 *blue, uint32_t start, uint32_t size)
6355 {
6356 int end = (start + size > 256) ? 256 : start + size, i;
6357 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6358
6359 for (i = start; i < end; i++) {
6360 intel_crtc->lut_r[i] = red[i] >> 8;
6361 intel_crtc->lut_g[i] = green[i] >> 8;
6362 intel_crtc->lut_b[i] = blue[i] >> 8;
6363 }
6364
6365 intel_crtc_load_lut(crtc);
6366 }
6367
6368 /* VESA 640x480x72Hz mode to set on the pipe */
6369 static struct drm_display_mode load_detect_mode = {
6370 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6371 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6372 };
6373
6374 static struct drm_framebuffer *
6375 intel_framebuffer_create(struct drm_device *dev,
6376 struct drm_mode_fb_cmd2 *mode_cmd,
6377 struct drm_i915_gem_object *obj)
6378 {
6379 struct intel_framebuffer *intel_fb;
6380 int ret;
6381
6382 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6383 if (!intel_fb) {
6384 drm_gem_object_unreference_unlocked(&obj->base);
6385 return ERR_PTR(-ENOMEM);
6386 }
6387
6388 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6389 if (ret) {
6390 drm_gem_object_unreference_unlocked(&obj->base);
6391 kfree(intel_fb);
6392 return ERR_PTR(ret);
6393 }
6394
6395 return &intel_fb->base;
6396 }
6397
6398 static u32
6399 intel_framebuffer_pitch_for_width(int width, int bpp)
6400 {
6401 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6402 return ALIGN(pitch, 64);
6403 }
6404
6405 static u32
6406 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6407 {
6408 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6409 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6410 }
6411
6412 static struct drm_framebuffer *
6413 intel_framebuffer_create_for_mode(struct drm_device *dev,
6414 struct drm_display_mode *mode,
6415 int depth, int bpp)
6416 {
6417 struct drm_i915_gem_object *obj;
6418 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6419
6420 obj = i915_gem_alloc_object(dev,
6421 intel_framebuffer_size_for_mode(mode, bpp));
6422 if (obj == NULL)
6423 return ERR_PTR(-ENOMEM);
6424
6425 mode_cmd.width = mode->hdisplay;
6426 mode_cmd.height = mode->vdisplay;
6427 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6428 bpp);
6429 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6430
6431 return intel_framebuffer_create(dev, &mode_cmd, obj);
6432 }
6433
6434 static struct drm_framebuffer *
6435 mode_fits_in_fbdev(struct drm_device *dev,
6436 struct drm_display_mode *mode)
6437 {
6438 struct drm_i915_private *dev_priv = dev->dev_private;
6439 struct drm_i915_gem_object *obj;
6440 struct drm_framebuffer *fb;
6441
6442 if (dev_priv->fbdev == NULL)
6443 return NULL;
6444
6445 obj = dev_priv->fbdev->ifb.obj;
6446 if (obj == NULL)
6447 return NULL;
6448
6449 fb = &dev_priv->fbdev->ifb.base;
6450 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6451 fb->bits_per_pixel))
6452 return NULL;
6453
6454 if (obj->base.size < mode->vdisplay * fb->pitches[0])
6455 return NULL;
6456
6457 return fb;
6458 }
6459
6460 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6461 struct drm_display_mode *mode,
6462 struct intel_load_detect_pipe *old)
6463 {
6464 struct intel_crtc *intel_crtc;
6465 struct intel_encoder *intel_encoder =
6466 intel_attached_encoder(connector);
6467 struct drm_crtc *possible_crtc;
6468 struct drm_encoder *encoder = &intel_encoder->base;
6469 struct drm_crtc *crtc = NULL;
6470 struct drm_device *dev = encoder->dev;
6471 struct drm_framebuffer *fb;
6472 int i = -1;
6473
6474 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6475 connector->base.id, drm_get_connector_name(connector),
6476 encoder->base.id, drm_get_encoder_name(encoder));
6477
6478 /*
6479 * Algorithm gets a little messy:
6480 *
6481 * - if the connector already has an assigned crtc, use it (but make
6482 * sure it's on first)
6483 *
6484 * - try to find the first unused crtc that can drive this connector,
6485 * and use that if we find one
6486 */
6487
6488 /* See if we already have a CRTC for this connector */
6489 if (encoder->crtc) {
6490 crtc = encoder->crtc;
6491
6492 mutex_lock(&crtc->mutex);
6493
6494 old->dpms_mode = connector->dpms;
6495 old->load_detect_temp = false;
6496
6497 /* Make sure the crtc and connector are running */
6498 if (connector->dpms != DRM_MODE_DPMS_ON)
6499 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6500
6501 return true;
6502 }
6503
6504 /* Find an unused one (if possible) */
6505 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6506 i++;
6507 if (!(encoder->possible_crtcs & (1 << i)))
6508 continue;
6509 if (!possible_crtc->enabled) {
6510 crtc = possible_crtc;
6511 break;
6512 }
6513 }
6514
6515 /*
6516 * If we didn't find an unused CRTC, don't use any.
6517 */
6518 if (!crtc) {
6519 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6520 return false;
6521 }
6522
6523 mutex_lock(&crtc->mutex);
6524 intel_encoder->new_crtc = to_intel_crtc(crtc);
6525 to_intel_connector(connector)->new_encoder = intel_encoder;
6526
6527 intel_crtc = to_intel_crtc(crtc);
6528 old->dpms_mode = connector->dpms;
6529 old->load_detect_temp = true;
6530 old->release_fb = NULL;
6531
6532 if (!mode)
6533 mode = &load_detect_mode;
6534
6535 /* We need a framebuffer large enough to accommodate all accesses
6536 * that the plane may generate whilst we perform load detection.
6537 * We can not rely on the fbcon either being present (we get called
6538 * during its initialisation to detect all boot displays, or it may
6539 * not even exist) or that it is large enough to satisfy the
6540 * requested mode.
6541 */
6542 fb = mode_fits_in_fbdev(dev, mode);
6543 if (fb == NULL) {
6544 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6545 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6546 old->release_fb = fb;
6547 } else
6548 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6549 if (IS_ERR(fb)) {
6550 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6551 mutex_unlock(&crtc->mutex);
6552 return false;
6553 }
6554
6555 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6556 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6557 if (old->release_fb)
6558 old->release_fb->funcs->destroy(old->release_fb);
6559 mutex_unlock(&crtc->mutex);
6560 return false;
6561 }
6562
6563 /* let the connector get through one full cycle before testing */
6564 intel_wait_for_vblank(dev, intel_crtc->pipe);
6565 return true;
6566 }
6567
6568 void intel_release_load_detect_pipe(struct drm_connector *connector,
6569 struct intel_load_detect_pipe *old)
6570 {
6571 struct intel_encoder *intel_encoder =
6572 intel_attached_encoder(connector);
6573 struct drm_encoder *encoder = &intel_encoder->base;
6574 struct drm_crtc *crtc = encoder->crtc;
6575
6576 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6577 connector->base.id, drm_get_connector_name(connector),
6578 encoder->base.id, drm_get_encoder_name(encoder));
6579
6580 if (old->load_detect_temp) {
6581 to_intel_connector(connector)->new_encoder = NULL;
6582 intel_encoder->new_crtc = NULL;
6583 intel_set_mode(crtc, NULL, 0, 0, NULL);
6584
6585 if (old->release_fb) {
6586 drm_framebuffer_unregister_private(old->release_fb);
6587 drm_framebuffer_unreference(old->release_fb);
6588 }
6589
6590 mutex_unlock(&crtc->mutex);
6591 return;
6592 }
6593
6594 /* Switch crtc and encoder back off if necessary */
6595 if (old->dpms_mode != DRM_MODE_DPMS_ON)
6596 connector->funcs->dpms(connector, old->dpms_mode);
6597
6598 mutex_unlock(&crtc->mutex);
6599 }
6600
6601 /* Returns the clock of the currently programmed mode of the given pipe. */
6602 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6603 {
6604 struct drm_i915_private *dev_priv = dev->dev_private;
6605 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6606 int pipe = intel_crtc->pipe;
6607 u32 dpll = I915_READ(DPLL(pipe));
6608 u32 fp;
6609 intel_clock_t clock;
6610
6611 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6612 fp = I915_READ(FP0(pipe));
6613 else
6614 fp = I915_READ(FP1(pipe));
6615
6616 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6617 if (IS_PINEVIEW(dev)) {
6618 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6619 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6620 } else {
6621 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6622 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6623 }
6624
6625 if (!IS_GEN2(dev)) {
6626 if (IS_PINEVIEW(dev))
6627 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6628 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6629 else
6630 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6631 DPLL_FPA01_P1_POST_DIV_SHIFT);
6632
6633 switch (dpll & DPLL_MODE_MASK) {
6634 case DPLLB_MODE_DAC_SERIAL:
6635 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6636 5 : 10;
6637 break;
6638 case DPLLB_MODE_LVDS:
6639 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6640 7 : 14;
6641 break;
6642 default:
6643 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6644 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6645 return 0;
6646 }
6647
6648 /* XXX: Handle the 100Mhz refclk */
6649 intel_clock(dev, 96000, &clock);
6650 } else {
6651 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6652
6653 if (is_lvds) {
6654 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6655 DPLL_FPA01_P1_POST_DIV_SHIFT);
6656 clock.p2 = 14;
6657
6658 if ((dpll & PLL_REF_INPUT_MASK) ==
6659 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6660 /* XXX: might not be 66MHz */
6661 intel_clock(dev, 66000, &clock);
6662 } else
6663 intel_clock(dev, 48000, &clock);
6664 } else {
6665 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6666 clock.p1 = 2;
6667 else {
6668 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6669 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6670 }
6671 if (dpll & PLL_P2_DIVIDE_BY_4)
6672 clock.p2 = 4;
6673 else
6674 clock.p2 = 2;
6675
6676 intel_clock(dev, 48000, &clock);
6677 }
6678 }
6679
6680 /* XXX: It would be nice to validate the clocks, but we can't reuse
6681 * i830PllIsValid() because it relies on the xf86_config connector
6682 * configuration being accurate, which it isn't necessarily.
6683 */
6684
6685 return clock.dot;
6686 }
6687
6688 /** Returns the currently programmed mode of the given pipe. */
6689 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6690 struct drm_crtc *crtc)
6691 {
6692 struct drm_i915_private *dev_priv = dev->dev_private;
6693 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6694 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6695 struct drm_display_mode *mode;
6696 int htot = I915_READ(HTOTAL(cpu_transcoder));
6697 int hsync = I915_READ(HSYNC(cpu_transcoder));
6698 int vtot = I915_READ(VTOTAL(cpu_transcoder));
6699 int vsync = I915_READ(VSYNC(cpu_transcoder));
6700
6701 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6702 if (!mode)
6703 return NULL;
6704
6705 mode->clock = intel_crtc_clock_get(dev, crtc);
6706 mode->hdisplay = (htot & 0xffff) + 1;
6707 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6708 mode->hsync_start = (hsync & 0xffff) + 1;
6709 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6710 mode->vdisplay = (vtot & 0xffff) + 1;
6711 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6712 mode->vsync_start = (vsync & 0xffff) + 1;
6713 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6714
6715 drm_mode_set_name(mode);
6716
6717 return mode;
6718 }
6719
6720 static void intel_increase_pllclock(struct drm_crtc *crtc)
6721 {
6722 struct drm_device *dev = crtc->dev;
6723 drm_i915_private_t *dev_priv = dev->dev_private;
6724 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6725 int pipe = intel_crtc->pipe;
6726 int dpll_reg = DPLL(pipe);
6727 int dpll;
6728
6729 if (HAS_PCH_SPLIT(dev))
6730 return;
6731
6732 if (!dev_priv->lvds_downclock_avail)
6733 return;
6734
6735 dpll = I915_READ(dpll_reg);
6736 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6737 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6738
6739 assert_panel_unlocked(dev_priv, pipe);
6740
6741 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6742 I915_WRITE(dpll_reg, dpll);
6743 intel_wait_for_vblank(dev, pipe);
6744
6745 dpll = I915_READ(dpll_reg);
6746 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6747 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6748 }
6749 }
6750
6751 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6752 {
6753 struct drm_device *dev = crtc->dev;
6754 drm_i915_private_t *dev_priv = dev->dev_private;
6755 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6756
6757 if (HAS_PCH_SPLIT(dev))
6758 return;
6759
6760 if (!dev_priv->lvds_downclock_avail)
6761 return;
6762
6763 /*
6764 * Since this is called by a timer, we should never get here in
6765 * the manual case.
6766 */
6767 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6768 int pipe = intel_crtc->pipe;
6769 int dpll_reg = DPLL(pipe);
6770 int dpll;
6771
6772 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6773
6774 assert_panel_unlocked(dev_priv, pipe);
6775
6776 dpll = I915_READ(dpll_reg);
6777 dpll |= DISPLAY_RATE_SELECT_FPA1;
6778 I915_WRITE(dpll_reg, dpll);
6779 intel_wait_for_vblank(dev, pipe);
6780 dpll = I915_READ(dpll_reg);
6781 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6782 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6783 }
6784
6785 }
6786
6787 void intel_mark_busy(struct drm_device *dev)
6788 {
6789 i915_update_gfx_val(dev->dev_private);
6790 }
6791
6792 void intel_mark_idle(struct drm_device *dev)
6793 {
6794 struct drm_crtc *crtc;
6795
6796 if (!i915_powersave)
6797 return;
6798
6799 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6800 if (!crtc->fb)
6801 continue;
6802
6803 intel_decrease_pllclock(crtc);
6804 }
6805 }
6806
6807 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6808 {
6809 struct drm_device *dev = obj->base.dev;
6810 struct drm_crtc *crtc;
6811
6812 if (!i915_powersave)
6813 return;
6814
6815 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6816 if (!crtc->fb)
6817 continue;
6818
6819 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6820 intel_increase_pllclock(crtc);
6821 }
6822 }
6823
6824 static void intel_crtc_destroy(struct drm_crtc *crtc)
6825 {
6826 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6827 struct drm_device *dev = crtc->dev;
6828 struct intel_unpin_work *work;
6829 unsigned long flags;
6830
6831 spin_lock_irqsave(&dev->event_lock, flags);
6832 work = intel_crtc->unpin_work;
6833 intel_crtc->unpin_work = NULL;
6834 spin_unlock_irqrestore(&dev->event_lock, flags);
6835
6836 if (work) {
6837 cancel_work_sync(&work->work);
6838 kfree(work);
6839 }
6840
6841 drm_crtc_cleanup(crtc);
6842
6843 kfree(intel_crtc);
6844 }
6845
6846 static void intel_unpin_work_fn(struct work_struct *__work)
6847 {
6848 struct intel_unpin_work *work =
6849 container_of(__work, struct intel_unpin_work, work);
6850 struct drm_device *dev = work->crtc->dev;
6851
6852 mutex_lock(&dev->struct_mutex);
6853 intel_unpin_fb_obj(work->old_fb_obj);
6854 drm_gem_object_unreference(&work->pending_flip_obj->base);
6855 drm_gem_object_unreference(&work->old_fb_obj->base);
6856
6857 intel_update_fbc(dev);
6858 mutex_unlock(&dev->struct_mutex);
6859
6860 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
6861 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
6862
6863 kfree(work);
6864 }
6865
6866 static void do_intel_finish_page_flip(struct drm_device *dev,
6867 struct drm_crtc *crtc)
6868 {
6869 drm_i915_private_t *dev_priv = dev->dev_private;
6870 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6871 struct intel_unpin_work *work;
6872 unsigned long flags;
6873
6874 /* Ignore early vblank irqs */
6875 if (intel_crtc == NULL)
6876 return;
6877
6878 spin_lock_irqsave(&dev->event_lock, flags);
6879 work = intel_crtc->unpin_work;
6880
6881 /* Ensure we don't miss a work->pending update ... */
6882 smp_rmb();
6883
6884 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6885 spin_unlock_irqrestore(&dev->event_lock, flags);
6886 return;
6887 }
6888
6889 /* and that the unpin work is consistent wrt ->pending. */
6890 smp_rmb();
6891
6892 intel_crtc->unpin_work = NULL;
6893
6894 if (work->event)
6895 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6896
6897 drm_vblank_put(dev, intel_crtc->pipe);
6898
6899 spin_unlock_irqrestore(&dev->event_lock, flags);
6900
6901 wake_up_all(&dev_priv->pending_flip_queue);
6902
6903 queue_work(dev_priv->wq, &work->work);
6904
6905 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6906 }
6907
6908 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6909 {
6910 drm_i915_private_t *dev_priv = dev->dev_private;
6911 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6912
6913 do_intel_finish_page_flip(dev, crtc);
6914 }
6915
6916 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6917 {
6918 drm_i915_private_t *dev_priv = dev->dev_private;
6919 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6920
6921 do_intel_finish_page_flip(dev, crtc);
6922 }
6923
6924 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6925 {
6926 drm_i915_private_t *dev_priv = dev->dev_private;
6927 struct intel_crtc *intel_crtc =
6928 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6929 unsigned long flags;
6930
6931 /* NB: An MMIO update of the plane base pointer will also
6932 * generate a page-flip completion irq, i.e. every modeset
6933 * is also accompanied by a spurious intel_prepare_page_flip().
6934 */
6935 spin_lock_irqsave(&dev->event_lock, flags);
6936 if (intel_crtc->unpin_work)
6937 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6938 spin_unlock_irqrestore(&dev->event_lock, flags);
6939 }
6940
6941 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
6942 {
6943 /* Ensure that the work item is consistent when activating it ... */
6944 smp_wmb();
6945 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
6946 /* and that it is marked active as soon as the irq could fire. */
6947 smp_wmb();
6948 }
6949
6950 static int intel_gen2_queue_flip(struct drm_device *dev,
6951 struct drm_crtc *crtc,
6952 struct drm_framebuffer *fb,
6953 struct drm_i915_gem_object *obj)
6954 {
6955 struct drm_i915_private *dev_priv = dev->dev_private;
6956 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6957 u32 flip_mask;
6958 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6959 int ret;
6960
6961 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6962 if (ret)
6963 goto err;
6964
6965 ret = intel_ring_begin(ring, 6);
6966 if (ret)
6967 goto err_unpin;
6968
6969 /* Can't queue multiple flips, so wait for the previous
6970 * one to finish before executing the next.
6971 */
6972 if (intel_crtc->plane)
6973 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6974 else
6975 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6976 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6977 intel_ring_emit(ring, MI_NOOP);
6978 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6979 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6980 intel_ring_emit(ring, fb->pitches[0]);
6981 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6982 intel_ring_emit(ring, 0); /* aux display base address, unused */
6983
6984 intel_mark_page_flip_active(intel_crtc);
6985 intel_ring_advance(ring);
6986 return 0;
6987
6988 err_unpin:
6989 intel_unpin_fb_obj(obj);
6990 err:
6991 return ret;
6992 }
6993
6994 static int intel_gen3_queue_flip(struct drm_device *dev,
6995 struct drm_crtc *crtc,
6996 struct drm_framebuffer *fb,
6997 struct drm_i915_gem_object *obj)
6998 {
6999 struct drm_i915_private *dev_priv = dev->dev_private;
7000 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7001 u32 flip_mask;
7002 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7003 int ret;
7004
7005 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7006 if (ret)
7007 goto err;
7008
7009 ret = intel_ring_begin(ring, 6);
7010 if (ret)
7011 goto err_unpin;
7012
7013 if (intel_crtc->plane)
7014 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7015 else
7016 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7017 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7018 intel_ring_emit(ring, MI_NOOP);
7019 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7020 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7021 intel_ring_emit(ring, fb->pitches[0]);
7022 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7023 intel_ring_emit(ring, MI_NOOP);
7024
7025 intel_mark_page_flip_active(intel_crtc);
7026 intel_ring_advance(ring);
7027 return 0;
7028
7029 err_unpin:
7030 intel_unpin_fb_obj(obj);
7031 err:
7032 return ret;
7033 }
7034
7035 static int intel_gen4_queue_flip(struct drm_device *dev,
7036 struct drm_crtc *crtc,
7037 struct drm_framebuffer *fb,
7038 struct drm_i915_gem_object *obj)
7039 {
7040 struct drm_i915_private *dev_priv = dev->dev_private;
7041 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7042 uint32_t pf, pipesrc;
7043 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7044 int ret;
7045
7046 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7047 if (ret)
7048 goto err;
7049
7050 ret = intel_ring_begin(ring, 4);
7051 if (ret)
7052 goto err_unpin;
7053
7054 /* i965+ uses the linear or tiled offsets from the
7055 * Display Registers (which do not change across a page-flip)
7056 * so we need only reprogram the base address.
7057 */
7058 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7059 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7060 intel_ring_emit(ring, fb->pitches[0]);
7061 intel_ring_emit(ring,
7062 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7063 obj->tiling_mode);
7064
7065 /* XXX Enabling the panel-fitter across page-flip is so far
7066 * untested on non-native modes, so ignore it for now.
7067 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7068 */
7069 pf = 0;
7070 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7071 intel_ring_emit(ring, pf | pipesrc);
7072
7073 intel_mark_page_flip_active(intel_crtc);
7074 intel_ring_advance(ring);
7075 return 0;
7076
7077 err_unpin:
7078 intel_unpin_fb_obj(obj);
7079 err:
7080 return ret;
7081 }
7082
7083 static int intel_gen6_queue_flip(struct drm_device *dev,
7084 struct drm_crtc *crtc,
7085 struct drm_framebuffer *fb,
7086 struct drm_i915_gem_object *obj)
7087 {
7088 struct drm_i915_private *dev_priv = dev->dev_private;
7089 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7090 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7091 uint32_t pf, pipesrc;
7092 int ret;
7093
7094 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7095 if (ret)
7096 goto err;
7097
7098 ret = intel_ring_begin(ring, 4);
7099 if (ret)
7100 goto err_unpin;
7101
7102 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7103 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7104 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7105 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7106
7107 /* Contrary to the suggestions in the documentation,
7108 * "Enable Panel Fitter" does not seem to be required when page
7109 * flipping with a non-native mode, and worse causes a normal
7110 * modeset to fail.
7111 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7112 */
7113 pf = 0;
7114 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7115 intel_ring_emit(ring, pf | pipesrc);
7116
7117 intel_mark_page_flip_active(intel_crtc);
7118 intel_ring_advance(ring);
7119 return 0;
7120
7121 err_unpin:
7122 intel_unpin_fb_obj(obj);
7123 err:
7124 return ret;
7125 }
7126
7127 /*
7128 * On gen7 we currently use the blit ring because (in early silicon at least)
7129 * the render ring doesn't give us interrpts for page flip completion, which
7130 * means clients will hang after the first flip is queued. Fortunately the
7131 * blit ring generates interrupts properly, so use it instead.
7132 */
7133 static int intel_gen7_queue_flip(struct drm_device *dev,
7134 struct drm_crtc *crtc,
7135 struct drm_framebuffer *fb,
7136 struct drm_i915_gem_object *obj)
7137 {
7138 struct drm_i915_private *dev_priv = dev->dev_private;
7139 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7140 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7141 uint32_t plane_bit = 0;
7142 int ret;
7143
7144 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7145 if (ret)
7146 goto err;
7147
7148 switch(intel_crtc->plane) {
7149 case PLANE_A:
7150 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7151 break;
7152 case PLANE_B:
7153 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7154 break;
7155 case PLANE_C:
7156 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7157 break;
7158 default:
7159 WARN_ONCE(1, "unknown plane in flip command\n");
7160 ret = -ENODEV;
7161 goto err_unpin;
7162 }
7163
7164 ret = intel_ring_begin(ring, 4);
7165 if (ret)
7166 goto err_unpin;
7167
7168 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7169 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7170 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7171 intel_ring_emit(ring, (MI_NOOP));
7172
7173 intel_mark_page_flip_active(intel_crtc);
7174 intel_ring_advance(ring);
7175 return 0;
7176
7177 err_unpin:
7178 intel_unpin_fb_obj(obj);
7179 err:
7180 return ret;
7181 }
7182
7183 static int intel_default_queue_flip(struct drm_device *dev,
7184 struct drm_crtc *crtc,
7185 struct drm_framebuffer *fb,
7186 struct drm_i915_gem_object *obj)
7187 {
7188 return -ENODEV;
7189 }
7190
7191 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7192 struct drm_framebuffer *fb,
7193 struct drm_pending_vblank_event *event)
7194 {
7195 struct drm_device *dev = crtc->dev;
7196 struct drm_i915_private *dev_priv = dev->dev_private;
7197 struct drm_framebuffer *old_fb = crtc->fb;
7198 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7199 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7200 struct intel_unpin_work *work;
7201 unsigned long flags;
7202 int ret;
7203
7204 /* Can't change pixel format via MI display flips. */
7205 if (fb->pixel_format != crtc->fb->pixel_format)
7206 return -EINVAL;
7207
7208 /*
7209 * TILEOFF/LINOFF registers can't be changed via MI display flips.
7210 * Note that pitch changes could also affect these register.
7211 */
7212 if (INTEL_INFO(dev)->gen > 3 &&
7213 (fb->offsets[0] != crtc->fb->offsets[0] ||
7214 fb->pitches[0] != crtc->fb->pitches[0]))
7215 return -EINVAL;
7216
7217 work = kzalloc(sizeof *work, GFP_KERNEL);
7218 if (work == NULL)
7219 return -ENOMEM;
7220
7221 work->event = event;
7222 work->crtc = crtc;
7223 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7224 INIT_WORK(&work->work, intel_unpin_work_fn);
7225
7226 ret = drm_vblank_get(dev, intel_crtc->pipe);
7227 if (ret)
7228 goto free_work;
7229
7230 /* We borrow the event spin lock for protecting unpin_work */
7231 spin_lock_irqsave(&dev->event_lock, flags);
7232 if (intel_crtc->unpin_work) {
7233 spin_unlock_irqrestore(&dev->event_lock, flags);
7234 kfree(work);
7235 drm_vblank_put(dev, intel_crtc->pipe);
7236
7237 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7238 return -EBUSY;
7239 }
7240 intel_crtc->unpin_work = work;
7241 spin_unlock_irqrestore(&dev->event_lock, flags);
7242
7243 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7244 flush_workqueue(dev_priv->wq);
7245
7246 ret = i915_mutex_lock_interruptible(dev);
7247 if (ret)
7248 goto cleanup;
7249
7250 /* Reference the objects for the scheduled work. */
7251 drm_gem_object_reference(&work->old_fb_obj->base);
7252 drm_gem_object_reference(&obj->base);
7253
7254 crtc->fb = fb;
7255
7256 work->pending_flip_obj = obj;
7257
7258 work->enable_stall_check = true;
7259
7260 atomic_inc(&intel_crtc->unpin_work_count);
7261 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7262
7263 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7264 if (ret)
7265 goto cleanup_pending;
7266
7267 intel_disable_fbc(dev);
7268 intel_mark_fb_busy(obj);
7269 mutex_unlock(&dev->struct_mutex);
7270
7271 trace_i915_flip_request(intel_crtc->plane, obj);
7272
7273 return 0;
7274
7275 cleanup_pending:
7276 atomic_dec(&intel_crtc->unpin_work_count);
7277 crtc->fb = old_fb;
7278 drm_gem_object_unreference(&work->old_fb_obj->base);
7279 drm_gem_object_unreference(&obj->base);
7280 mutex_unlock(&dev->struct_mutex);
7281
7282 cleanup:
7283 spin_lock_irqsave(&dev->event_lock, flags);
7284 intel_crtc->unpin_work = NULL;
7285 spin_unlock_irqrestore(&dev->event_lock, flags);
7286
7287 drm_vblank_put(dev, intel_crtc->pipe);
7288 free_work:
7289 kfree(work);
7290
7291 return ret;
7292 }
7293
7294 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7295 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7296 .load_lut = intel_crtc_load_lut,
7297 };
7298
7299 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7300 {
7301 struct intel_encoder *other_encoder;
7302 struct drm_crtc *crtc = &encoder->new_crtc->base;
7303
7304 if (WARN_ON(!crtc))
7305 return false;
7306
7307 list_for_each_entry(other_encoder,
7308 &crtc->dev->mode_config.encoder_list,
7309 base.head) {
7310
7311 if (&other_encoder->new_crtc->base != crtc ||
7312 encoder == other_encoder)
7313 continue;
7314 else
7315 return true;
7316 }
7317
7318 return false;
7319 }
7320
7321 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7322 struct drm_crtc *crtc)
7323 {
7324 struct drm_device *dev;
7325 struct drm_crtc *tmp;
7326 int crtc_mask = 1;
7327
7328 WARN(!crtc, "checking null crtc?\n");
7329
7330 dev = crtc->dev;
7331
7332 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7333 if (tmp == crtc)
7334 break;
7335 crtc_mask <<= 1;
7336 }
7337
7338 if (encoder->possible_crtcs & crtc_mask)
7339 return true;
7340 return false;
7341 }
7342
7343 /**
7344 * intel_modeset_update_staged_output_state
7345 *
7346 * Updates the staged output configuration state, e.g. after we've read out the
7347 * current hw state.
7348 */
7349 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7350 {
7351 struct intel_encoder *encoder;
7352 struct intel_connector *connector;
7353
7354 list_for_each_entry(connector, &dev->mode_config.connector_list,
7355 base.head) {
7356 connector->new_encoder =
7357 to_intel_encoder(connector->base.encoder);
7358 }
7359
7360 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7361 base.head) {
7362 encoder->new_crtc =
7363 to_intel_crtc(encoder->base.crtc);
7364 }
7365 }
7366
7367 /**
7368 * intel_modeset_commit_output_state
7369 *
7370 * This function copies the stage display pipe configuration to the real one.
7371 */
7372 static void intel_modeset_commit_output_state(struct drm_device *dev)
7373 {
7374 struct intel_encoder *encoder;
7375 struct intel_connector *connector;
7376
7377 list_for_each_entry(connector, &dev->mode_config.connector_list,
7378 base.head) {
7379 connector->base.encoder = &connector->new_encoder->base;
7380 }
7381
7382 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7383 base.head) {
7384 encoder->base.crtc = &encoder->new_crtc->base;
7385 }
7386 }
7387
7388 static int
7389 pipe_config_set_bpp(struct drm_crtc *crtc,
7390 struct drm_framebuffer *fb,
7391 struct intel_crtc_config *pipe_config)
7392 {
7393 struct drm_device *dev = crtc->dev;
7394 struct drm_connector *connector;
7395 int bpp;
7396
7397 switch (fb->depth) {
7398 case 8:
7399 bpp = 8*3; /* since we go through a colormap */
7400 break;
7401 case 15:
7402 case 16:
7403 bpp = 6*3; /* min is 18bpp */
7404 break;
7405 case 24:
7406 bpp = 8*3;
7407 break;
7408 case 30:
7409 if (INTEL_INFO(dev)->gen < 4) {
7410 DRM_DEBUG_KMS("10 bpc not supported on gen2/3\n");
7411 return -EINVAL;
7412 }
7413
7414 bpp = 10*3;
7415 break;
7416 /* TODO: gen4+ supports 16 bpc floating point, too. */
7417 default:
7418 DRM_DEBUG_KMS("unsupported depth\n");
7419 return -EINVAL;
7420 }
7421
7422 pipe_config->pipe_bpp = bpp;
7423
7424 /* Clamp display bpp to EDID value */
7425 list_for_each_entry(connector, &dev->mode_config.connector_list,
7426 head) {
7427 if (connector->encoder && connector->encoder->crtc != crtc)
7428 continue;
7429
7430 /* Don't use an invalid EDID bpc value */
7431 if (connector->display_info.bpc &&
7432 connector->display_info.bpc * 3 < bpp) {
7433 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
7434 bpp, connector->display_info.bpc*3);
7435 pipe_config->pipe_bpp = connector->display_info.bpc*3;
7436 }
7437 }
7438
7439 return bpp;
7440 }
7441
7442 static struct intel_crtc_config *
7443 intel_modeset_pipe_config(struct drm_crtc *crtc,
7444 struct drm_framebuffer *fb,
7445 struct drm_display_mode *mode)
7446 {
7447 struct drm_device *dev = crtc->dev;
7448 struct drm_encoder_helper_funcs *encoder_funcs;
7449 struct intel_encoder *encoder;
7450 struct intel_crtc_config *pipe_config;
7451 int plane_bpp;
7452
7453 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7454 if (!pipe_config)
7455 return ERR_PTR(-ENOMEM);
7456
7457 drm_mode_copy(&pipe_config->adjusted_mode, mode);
7458 drm_mode_copy(&pipe_config->requested_mode, mode);
7459
7460 plane_bpp = pipe_config_set_bpp(crtc, fb, pipe_config);
7461 if (plane_bpp < 0)
7462 goto fail;
7463
7464 /* Pass our mode to the connectors and the CRTC to give them a chance to
7465 * adjust it according to limitations or connector properties, and also
7466 * a chance to reject the mode entirely.
7467 */
7468 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7469 base.head) {
7470
7471 if (&encoder->new_crtc->base != crtc)
7472 continue;
7473
7474 if (encoder->compute_config) {
7475 if (!(encoder->compute_config(encoder, pipe_config))) {
7476 DRM_DEBUG_KMS("Encoder config failure\n");
7477 goto fail;
7478 }
7479
7480 continue;
7481 }
7482
7483 encoder_funcs = encoder->base.helper_private;
7484 if (!(encoder_funcs->mode_fixup(&encoder->base,
7485 &pipe_config->requested_mode,
7486 &pipe_config->adjusted_mode))) {
7487 DRM_DEBUG_KMS("Encoder fixup failed\n");
7488 goto fail;
7489 }
7490 }
7491
7492 if (!(intel_crtc_compute_config(crtc, pipe_config))) {
7493 DRM_DEBUG_KMS("CRTC fixup failed\n");
7494 goto fail;
7495 }
7496 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7497
7498 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
7499 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
7500 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
7501
7502 return pipe_config;
7503 fail:
7504 kfree(pipe_config);
7505 return ERR_PTR(-EINVAL);
7506 }
7507
7508 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7509 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7510 static void
7511 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7512 unsigned *prepare_pipes, unsigned *disable_pipes)
7513 {
7514 struct intel_crtc *intel_crtc;
7515 struct drm_device *dev = crtc->dev;
7516 struct intel_encoder *encoder;
7517 struct intel_connector *connector;
7518 struct drm_crtc *tmp_crtc;
7519
7520 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7521
7522 /* Check which crtcs have changed outputs connected to them, these need
7523 * to be part of the prepare_pipes mask. We don't (yet) support global
7524 * modeset across multiple crtcs, so modeset_pipes will only have one
7525 * bit set at most. */
7526 list_for_each_entry(connector, &dev->mode_config.connector_list,
7527 base.head) {
7528 if (connector->base.encoder == &connector->new_encoder->base)
7529 continue;
7530
7531 if (connector->base.encoder) {
7532 tmp_crtc = connector->base.encoder->crtc;
7533
7534 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7535 }
7536
7537 if (connector->new_encoder)
7538 *prepare_pipes |=
7539 1 << connector->new_encoder->new_crtc->pipe;
7540 }
7541
7542 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7543 base.head) {
7544 if (encoder->base.crtc == &encoder->new_crtc->base)
7545 continue;
7546
7547 if (encoder->base.crtc) {
7548 tmp_crtc = encoder->base.crtc;
7549
7550 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7551 }
7552
7553 if (encoder->new_crtc)
7554 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7555 }
7556
7557 /* Check for any pipes that will be fully disabled ... */
7558 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7559 base.head) {
7560 bool used = false;
7561
7562 /* Don't try to disable disabled crtcs. */
7563 if (!intel_crtc->base.enabled)
7564 continue;
7565
7566 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7567 base.head) {
7568 if (encoder->new_crtc == intel_crtc)
7569 used = true;
7570 }
7571
7572 if (!used)
7573 *disable_pipes |= 1 << intel_crtc->pipe;
7574 }
7575
7576
7577 /* set_mode is also used to update properties on life display pipes. */
7578 intel_crtc = to_intel_crtc(crtc);
7579 if (crtc->enabled)
7580 *prepare_pipes |= 1 << intel_crtc->pipe;
7581
7582 /* We only support modeset on one single crtc, hence we need to do that
7583 * only for the passed in crtc iff we change anything else than just
7584 * disable crtcs.
7585 *
7586 * This is actually not true, to be fully compatible with the old crtc
7587 * helper we automatically disable _any_ output (i.e. doesn't need to be
7588 * connected to the crtc we're modesetting on) if it's disconnected.
7589 * Which is a rather nutty api (since changed the output configuration
7590 * without userspace's explicit request can lead to confusion), but
7591 * alas. Hence we currently need to modeset on all pipes we prepare. */
7592 if (*prepare_pipes)
7593 *modeset_pipes = *prepare_pipes;
7594
7595 /* ... and mask these out. */
7596 *modeset_pipes &= ~(*disable_pipes);
7597 *prepare_pipes &= ~(*disable_pipes);
7598 }
7599
7600 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7601 {
7602 struct drm_encoder *encoder;
7603 struct drm_device *dev = crtc->dev;
7604
7605 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7606 if (encoder->crtc == crtc)
7607 return true;
7608
7609 return false;
7610 }
7611
7612 static void
7613 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7614 {
7615 struct intel_encoder *intel_encoder;
7616 struct intel_crtc *intel_crtc;
7617 struct drm_connector *connector;
7618
7619 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7620 base.head) {
7621 if (!intel_encoder->base.crtc)
7622 continue;
7623
7624 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7625
7626 if (prepare_pipes & (1 << intel_crtc->pipe))
7627 intel_encoder->connectors_active = false;
7628 }
7629
7630 intel_modeset_commit_output_state(dev);
7631
7632 /* Update computed state. */
7633 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7634 base.head) {
7635 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7636 }
7637
7638 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7639 if (!connector->encoder || !connector->encoder->crtc)
7640 continue;
7641
7642 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7643
7644 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7645 struct drm_property *dpms_property =
7646 dev->mode_config.dpms_property;
7647
7648 connector->dpms = DRM_MODE_DPMS_ON;
7649 drm_object_property_set_value(&connector->base,
7650 dpms_property,
7651 DRM_MODE_DPMS_ON);
7652
7653 intel_encoder = to_intel_encoder(connector->encoder);
7654 intel_encoder->connectors_active = true;
7655 }
7656 }
7657
7658 }
7659
7660 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7661 list_for_each_entry((intel_crtc), \
7662 &(dev)->mode_config.crtc_list, \
7663 base.head) \
7664 if (mask & (1 <<(intel_crtc)->pipe)) \
7665
7666 void
7667 intel_modeset_check_state(struct drm_device *dev)
7668 {
7669 struct intel_crtc *crtc;
7670 struct intel_encoder *encoder;
7671 struct intel_connector *connector;
7672
7673 list_for_each_entry(connector, &dev->mode_config.connector_list,
7674 base.head) {
7675 /* This also checks the encoder/connector hw state with the
7676 * ->get_hw_state callbacks. */
7677 intel_connector_check_state(connector);
7678
7679 WARN(&connector->new_encoder->base != connector->base.encoder,
7680 "connector's staged encoder doesn't match current encoder\n");
7681 }
7682
7683 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7684 base.head) {
7685 bool enabled = false;
7686 bool active = false;
7687 enum pipe pipe, tracked_pipe;
7688
7689 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7690 encoder->base.base.id,
7691 drm_get_encoder_name(&encoder->base));
7692
7693 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7694 "encoder's stage crtc doesn't match current crtc\n");
7695 WARN(encoder->connectors_active && !encoder->base.crtc,
7696 "encoder's active_connectors set, but no crtc\n");
7697
7698 list_for_each_entry(connector, &dev->mode_config.connector_list,
7699 base.head) {
7700 if (connector->base.encoder != &encoder->base)
7701 continue;
7702 enabled = true;
7703 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7704 active = true;
7705 }
7706 WARN(!!encoder->base.crtc != enabled,
7707 "encoder's enabled state mismatch "
7708 "(expected %i, found %i)\n",
7709 !!encoder->base.crtc, enabled);
7710 WARN(active && !encoder->base.crtc,
7711 "active encoder with no crtc\n");
7712
7713 WARN(encoder->connectors_active != active,
7714 "encoder's computed active state doesn't match tracked active state "
7715 "(expected %i, found %i)\n", active, encoder->connectors_active);
7716
7717 active = encoder->get_hw_state(encoder, &pipe);
7718 WARN(active != encoder->connectors_active,
7719 "encoder's hw state doesn't match sw tracking "
7720 "(expected %i, found %i)\n",
7721 encoder->connectors_active, active);
7722
7723 if (!encoder->base.crtc)
7724 continue;
7725
7726 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7727 WARN(active && pipe != tracked_pipe,
7728 "active encoder's pipe doesn't match"
7729 "(expected %i, found %i)\n",
7730 tracked_pipe, pipe);
7731
7732 }
7733
7734 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7735 base.head) {
7736 bool enabled = false;
7737 bool active = false;
7738
7739 DRM_DEBUG_KMS("[CRTC:%d]\n",
7740 crtc->base.base.id);
7741
7742 WARN(crtc->active && !crtc->base.enabled,
7743 "active crtc, but not enabled in sw tracking\n");
7744
7745 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7746 base.head) {
7747 if (encoder->base.crtc != &crtc->base)
7748 continue;
7749 enabled = true;
7750 if (encoder->connectors_active)
7751 active = true;
7752 }
7753 WARN(active != crtc->active,
7754 "crtc's computed active state doesn't match tracked active state "
7755 "(expected %i, found %i)\n", active, crtc->active);
7756 WARN(enabled != crtc->base.enabled,
7757 "crtc's computed enabled state doesn't match tracked enabled state "
7758 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7759
7760 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7761 }
7762 }
7763
7764 int intel_set_mode(struct drm_crtc *crtc,
7765 struct drm_display_mode *mode,
7766 int x, int y, struct drm_framebuffer *fb)
7767 {
7768 struct drm_device *dev = crtc->dev;
7769 drm_i915_private_t *dev_priv = dev->dev_private;
7770 struct drm_display_mode *saved_mode, *saved_hwmode;
7771 struct intel_crtc_config *pipe_config = NULL;
7772 struct intel_crtc *intel_crtc;
7773 unsigned disable_pipes, prepare_pipes, modeset_pipes;
7774 int ret = 0;
7775
7776 saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
7777 if (!saved_mode)
7778 return -ENOMEM;
7779 saved_hwmode = saved_mode + 1;
7780
7781 intel_modeset_affected_pipes(crtc, &modeset_pipes,
7782 &prepare_pipes, &disable_pipes);
7783
7784 *saved_hwmode = crtc->hwmode;
7785 *saved_mode = crtc->mode;
7786
7787 /* Hack: Because we don't (yet) support global modeset on multiple
7788 * crtcs, we don't keep track of the new mode for more than one crtc.
7789 * Hence simply check whether any bit is set in modeset_pipes in all the
7790 * pieces of code that are not yet converted to deal with mutliple crtcs
7791 * changing their mode at the same time. */
7792 if (modeset_pipes) {
7793 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
7794 if (IS_ERR(pipe_config)) {
7795 ret = PTR_ERR(pipe_config);
7796 pipe_config = NULL;
7797
7798 goto out;
7799 }
7800 }
7801
7802 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7803 modeset_pipes, prepare_pipes, disable_pipes);
7804
7805 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7806 intel_crtc_disable(&intel_crtc->base);
7807
7808 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7809 if (intel_crtc->base.enabled)
7810 dev_priv->display.crtc_disable(&intel_crtc->base);
7811 }
7812
7813 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7814 * to set it here already despite that we pass it down the callchain.
7815 */
7816 if (modeset_pipes) {
7817 crtc->mode = *mode;
7818 /* mode_set/enable/disable functions rely on a correct pipe
7819 * config. */
7820 to_intel_crtc(crtc)->config = *pipe_config;
7821 }
7822
7823 /* Only after disabling all output pipelines that will be changed can we
7824 * update the the output configuration. */
7825 intel_modeset_update_state(dev, prepare_pipes);
7826
7827 if (dev_priv->display.modeset_global_resources)
7828 dev_priv->display.modeset_global_resources(dev);
7829
7830 /* Set up the DPLL and any encoders state that needs to adjust or depend
7831 * on the DPLL.
7832 */
7833 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7834 ret = intel_crtc_mode_set(&intel_crtc->base,
7835 x, y, fb);
7836 if (ret)
7837 goto done;
7838 }
7839
7840 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7841 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7842 dev_priv->display.crtc_enable(&intel_crtc->base);
7843
7844 if (modeset_pipes) {
7845 /* Store real post-adjustment hardware mode. */
7846 crtc->hwmode = pipe_config->adjusted_mode;
7847
7848 /* Calculate and store various constants which
7849 * are later needed by vblank and swap-completion
7850 * timestamping. They are derived from true hwmode.
7851 */
7852 drm_calc_timestamping_constants(crtc);
7853 }
7854
7855 /* FIXME: add subpixel order */
7856 done:
7857 if (ret && crtc->enabled) {
7858 crtc->hwmode = *saved_hwmode;
7859 crtc->mode = *saved_mode;
7860 } else {
7861 intel_modeset_check_state(dev);
7862 }
7863
7864 out:
7865 kfree(pipe_config);
7866 kfree(saved_mode);
7867 return ret;
7868 }
7869
7870 void intel_crtc_restore_mode(struct drm_crtc *crtc)
7871 {
7872 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
7873 }
7874
7875 #undef for_each_intel_crtc_masked
7876
7877 static void intel_set_config_free(struct intel_set_config *config)
7878 {
7879 if (!config)
7880 return;
7881
7882 kfree(config->save_connector_encoders);
7883 kfree(config->save_encoder_crtcs);
7884 kfree(config);
7885 }
7886
7887 static int intel_set_config_save_state(struct drm_device *dev,
7888 struct intel_set_config *config)
7889 {
7890 struct drm_encoder *encoder;
7891 struct drm_connector *connector;
7892 int count;
7893
7894 config->save_encoder_crtcs =
7895 kcalloc(dev->mode_config.num_encoder,
7896 sizeof(struct drm_crtc *), GFP_KERNEL);
7897 if (!config->save_encoder_crtcs)
7898 return -ENOMEM;
7899
7900 config->save_connector_encoders =
7901 kcalloc(dev->mode_config.num_connector,
7902 sizeof(struct drm_encoder *), GFP_KERNEL);
7903 if (!config->save_connector_encoders)
7904 return -ENOMEM;
7905
7906 /* Copy data. Note that driver private data is not affected.
7907 * Should anything bad happen only the expected state is
7908 * restored, not the drivers personal bookkeeping.
7909 */
7910 count = 0;
7911 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7912 config->save_encoder_crtcs[count++] = encoder->crtc;
7913 }
7914
7915 count = 0;
7916 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7917 config->save_connector_encoders[count++] = connector->encoder;
7918 }
7919
7920 return 0;
7921 }
7922
7923 static void intel_set_config_restore_state(struct drm_device *dev,
7924 struct intel_set_config *config)
7925 {
7926 struct intel_encoder *encoder;
7927 struct intel_connector *connector;
7928 int count;
7929
7930 count = 0;
7931 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7932 encoder->new_crtc =
7933 to_intel_crtc(config->save_encoder_crtcs[count++]);
7934 }
7935
7936 count = 0;
7937 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7938 connector->new_encoder =
7939 to_intel_encoder(config->save_connector_encoders[count++]);
7940 }
7941 }
7942
7943 static void
7944 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7945 struct intel_set_config *config)
7946 {
7947
7948 /* We should be able to check here if the fb has the same properties
7949 * and then just flip_or_move it */
7950 if (set->crtc->fb != set->fb) {
7951 /* If we have no fb then treat it as a full mode set */
7952 if (set->crtc->fb == NULL) {
7953 DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7954 config->mode_changed = true;
7955 } else if (set->fb == NULL) {
7956 config->mode_changed = true;
7957 } else if (set->fb->pixel_format !=
7958 set->crtc->fb->pixel_format) {
7959 config->mode_changed = true;
7960 } else
7961 config->fb_changed = true;
7962 }
7963
7964 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7965 config->fb_changed = true;
7966
7967 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7968 DRM_DEBUG_KMS("modes are different, full mode set\n");
7969 drm_mode_debug_printmodeline(&set->crtc->mode);
7970 drm_mode_debug_printmodeline(set->mode);
7971 config->mode_changed = true;
7972 }
7973 }
7974
7975 static int
7976 intel_modeset_stage_output_state(struct drm_device *dev,
7977 struct drm_mode_set *set,
7978 struct intel_set_config *config)
7979 {
7980 struct drm_crtc *new_crtc;
7981 struct intel_connector *connector;
7982 struct intel_encoder *encoder;
7983 int count, ro;
7984
7985 /* The upper layers ensure that we either disable a crtc or have a list
7986 * of connectors. For paranoia, double-check this. */
7987 WARN_ON(!set->fb && (set->num_connectors != 0));
7988 WARN_ON(set->fb && (set->num_connectors == 0));
7989
7990 count = 0;
7991 list_for_each_entry(connector, &dev->mode_config.connector_list,
7992 base.head) {
7993 /* Otherwise traverse passed in connector list and get encoders
7994 * for them. */
7995 for (ro = 0; ro < set->num_connectors; ro++) {
7996 if (set->connectors[ro] == &connector->base) {
7997 connector->new_encoder = connector->encoder;
7998 break;
7999 }
8000 }
8001
8002 /* If we disable the crtc, disable all its connectors. Also, if
8003 * the connector is on the changing crtc but not on the new
8004 * connector list, disable it. */
8005 if ((!set->fb || ro == set->num_connectors) &&
8006 connector->base.encoder &&
8007 connector->base.encoder->crtc == set->crtc) {
8008 connector->new_encoder = NULL;
8009
8010 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8011 connector->base.base.id,
8012 drm_get_connector_name(&connector->base));
8013 }
8014
8015
8016 if (&connector->new_encoder->base != connector->base.encoder) {
8017 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8018 config->mode_changed = true;
8019 }
8020 }
8021 /* connector->new_encoder is now updated for all connectors. */
8022
8023 /* Update crtc of enabled connectors. */
8024 count = 0;
8025 list_for_each_entry(connector, &dev->mode_config.connector_list,
8026 base.head) {
8027 if (!connector->new_encoder)
8028 continue;
8029
8030 new_crtc = connector->new_encoder->base.crtc;
8031
8032 for (ro = 0; ro < set->num_connectors; ro++) {
8033 if (set->connectors[ro] == &connector->base)
8034 new_crtc = set->crtc;
8035 }
8036
8037 /* Make sure the new CRTC will work with the encoder */
8038 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8039 new_crtc)) {
8040 return -EINVAL;
8041 }
8042 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8043
8044 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8045 connector->base.base.id,
8046 drm_get_connector_name(&connector->base),
8047 new_crtc->base.id);
8048 }
8049
8050 /* Check for any encoders that needs to be disabled. */
8051 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8052 base.head) {
8053 list_for_each_entry(connector,
8054 &dev->mode_config.connector_list,
8055 base.head) {
8056 if (connector->new_encoder == encoder) {
8057 WARN_ON(!connector->new_encoder->new_crtc);
8058
8059 goto next_encoder;
8060 }
8061 }
8062 encoder->new_crtc = NULL;
8063 next_encoder:
8064 /* Only now check for crtc changes so we don't miss encoders
8065 * that will be disabled. */
8066 if (&encoder->new_crtc->base != encoder->base.crtc) {
8067 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8068 config->mode_changed = true;
8069 }
8070 }
8071 /* Now we've also updated encoder->new_crtc for all encoders. */
8072
8073 return 0;
8074 }
8075
8076 static int intel_crtc_set_config(struct drm_mode_set *set)
8077 {
8078 struct drm_device *dev;
8079 struct drm_mode_set save_set;
8080 struct intel_set_config *config;
8081 int ret;
8082
8083 BUG_ON(!set);
8084 BUG_ON(!set->crtc);
8085 BUG_ON(!set->crtc->helper_private);
8086
8087 /* Enforce sane interface api - has been abused by the fb helper. */
8088 BUG_ON(!set->mode && set->fb);
8089 BUG_ON(set->fb && set->num_connectors == 0);
8090
8091 if (set->fb) {
8092 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8093 set->crtc->base.id, set->fb->base.id,
8094 (int)set->num_connectors, set->x, set->y);
8095 } else {
8096 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8097 }
8098
8099 dev = set->crtc->dev;
8100
8101 ret = -ENOMEM;
8102 config = kzalloc(sizeof(*config), GFP_KERNEL);
8103 if (!config)
8104 goto out_config;
8105
8106 ret = intel_set_config_save_state(dev, config);
8107 if (ret)
8108 goto out_config;
8109
8110 save_set.crtc = set->crtc;
8111 save_set.mode = &set->crtc->mode;
8112 save_set.x = set->crtc->x;
8113 save_set.y = set->crtc->y;
8114 save_set.fb = set->crtc->fb;
8115
8116 /* Compute whether we need a full modeset, only an fb base update or no
8117 * change at all. In the future we might also check whether only the
8118 * mode changed, e.g. for LVDS where we only change the panel fitter in
8119 * such cases. */
8120 intel_set_config_compute_mode_changes(set, config);
8121
8122 ret = intel_modeset_stage_output_state(dev, set, config);
8123 if (ret)
8124 goto fail;
8125
8126 if (config->mode_changed) {
8127 if (set->mode) {
8128 DRM_DEBUG_KMS("attempting to set mode from"
8129 " userspace\n");
8130 drm_mode_debug_printmodeline(set->mode);
8131 }
8132
8133 ret = intel_set_mode(set->crtc, set->mode,
8134 set->x, set->y, set->fb);
8135 if (ret) {
8136 DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
8137 set->crtc->base.id, ret);
8138 goto fail;
8139 }
8140 } else if (config->fb_changed) {
8141 intel_crtc_wait_for_pending_flips(set->crtc);
8142
8143 ret = intel_pipe_set_base(set->crtc,
8144 set->x, set->y, set->fb);
8145 }
8146
8147 intel_set_config_free(config);
8148
8149 return 0;
8150
8151 fail:
8152 intel_set_config_restore_state(dev, config);
8153
8154 /* Try to restore the config */
8155 if (config->mode_changed &&
8156 intel_set_mode(save_set.crtc, save_set.mode,
8157 save_set.x, save_set.y, save_set.fb))
8158 DRM_ERROR("failed to restore config after modeset failure\n");
8159
8160 out_config:
8161 intel_set_config_free(config);
8162 return ret;
8163 }
8164
8165 static const struct drm_crtc_funcs intel_crtc_funcs = {
8166 .cursor_set = intel_crtc_cursor_set,
8167 .cursor_move = intel_crtc_cursor_move,
8168 .gamma_set = intel_crtc_gamma_set,
8169 .set_config = intel_crtc_set_config,
8170 .destroy = intel_crtc_destroy,
8171 .page_flip = intel_crtc_page_flip,
8172 };
8173
8174 static void intel_cpu_pll_init(struct drm_device *dev)
8175 {
8176 if (HAS_DDI(dev))
8177 intel_ddi_pll_init(dev);
8178 }
8179
8180 static void intel_pch_pll_init(struct drm_device *dev)
8181 {
8182 drm_i915_private_t *dev_priv = dev->dev_private;
8183 int i;
8184
8185 if (dev_priv->num_pch_pll == 0) {
8186 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8187 return;
8188 }
8189
8190 for (i = 0; i < dev_priv->num_pch_pll; i++) {
8191 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8192 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8193 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8194 }
8195 }
8196
8197 static void intel_crtc_init(struct drm_device *dev, int pipe)
8198 {
8199 drm_i915_private_t *dev_priv = dev->dev_private;
8200 struct intel_crtc *intel_crtc;
8201 int i;
8202
8203 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8204 if (intel_crtc == NULL)
8205 return;
8206
8207 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8208
8209 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8210 for (i = 0; i < 256; i++) {
8211 intel_crtc->lut_r[i] = i;
8212 intel_crtc->lut_g[i] = i;
8213 intel_crtc->lut_b[i] = i;
8214 }
8215
8216 /* Swap pipes & planes for FBC on pre-965 */
8217 intel_crtc->pipe = pipe;
8218 intel_crtc->plane = pipe;
8219 intel_crtc->cpu_transcoder = pipe;
8220 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8221 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8222 intel_crtc->plane = !pipe;
8223 }
8224
8225 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8226 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8227 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8228 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8229
8230 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8231 }
8232
8233 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8234 struct drm_file *file)
8235 {
8236 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8237 struct drm_mode_object *drmmode_obj;
8238 struct intel_crtc *crtc;
8239
8240 if (!drm_core_check_feature(dev, DRIVER_MODESET))
8241 return -ENODEV;
8242
8243 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8244 DRM_MODE_OBJECT_CRTC);
8245
8246 if (!drmmode_obj) {
8247 DRM_ERROR("no such CRTC id\n");
8248 return -EINVAL;
8249 }
8250
8251 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8252 pipe_from_crtc_id->pipe = crtc->pipe;
8253
8254 return 0;
8255 }
8256
8257 static int intel_encoder_clones(struct intel_encoder *encoder)
8258 {
8259 struct drm_device *dev = encoder->base.dev;
8260 struct intel_encoder *source_encoder;
8261 int index_mask = 0;
8262 int entry = 0;
8263
8264 list_for_each_entry(source_encoder,
8265 &dev->mode_config.encoder_list, base.head) {
8266
8267 if (encoder == source_encoder)
8268 index_mask |= (1 << entry);
8269
8270 /* Intel hw has only one MUX where enocoders could be cloned. */
8271 if (encoder->cloneable && source_encoder->cloneable)
8272 index_mask |= (1 << entry);
8273
8274 entry++;
8275 }
8276
8277 return index_mask;
8278 }
8279
8280 static bool has_edp_a(struct drm_device *dev)
8281 {
8282 struct drm_i915_private *dev_priv = dev->dev_private;
8283
8284 if (!IS_MOBILE(dev))
8285 return false;
8286
8287 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8288 return false;
8289
8290 if (IS_GEN5(dev) &&
8291 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8292 return false;
8293
8294 return true;
8295 }
8296
8297 static void intel_setup_outputs(struct drm_device *dev)
8298 {
8299 struct drm_i915_private *dev_priv = dev->dev_private;
8300 struct intel_encoder *encoder;
8301 bool dpd_is_edp = false;
8302 bool has_lvds;
8303
8304 has_lvds = intel_lvds_init(dev);
8305 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8306 /* disable the panel fitter on everything but LVDS */
8307 I915_WRITE(PFIT_CONTROL, 0);
8308 }
8309
8310 if (!(HAS_DDI(dev) && (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)))
8311 intel_crt_init(dev);
8312
8313 if (HAS_DDI(dev)) {
8314 int found;
8315
8316 /* Haswell uses DDI functions to detect digital outputs */
8317 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8318 /* DDI A only supports eDP */
8319 if (found)
8320 intel_ddi_init(dev, PORT_A);
8321
8322 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8323 * register */
8324 found = I915_READ(SFUSE_STRAP);
8325
8326 if (found & SFUSE_STRAP_DDIB_DETECTED)
8327 intel_ddi_init(dev, PORT_B);
8328 if (found & SFUSE_STRAP_DDIC_DETECTED)
8329 intel_ddi_init(dev, PORT_C);
8330 if (found & SFUSE_STRAP_DDID_DETECTED)
8331 intel_ddi_init(dev, PORT_D);
8332 } else if (HAS_PCH_SPLIT(dev)) {
8333 int found;
8334 dpd_is_edp = intel_dpd_is_edp(dev);
8335
8336 if (has_edp_a(dev))
8337 intel_dp_init(dev, DP_A, PORT_A);
8338
8339 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
8340 /* PCH SDVOB multiplex with HDMIB */
8341 found = intel_sdvo_init(dev, PCH_SDVOB, true);
8342 if (!found)
8343 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
8344 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8345 intel_dp_init(dev, PCH_DP_B, PORT_B);
8346 }
8347
8348 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
8349 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
8350
8351 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
8352 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
8353
8354 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8355 intel_dp_init(dev, PCH_DP_C, PORT_C);
8356
8357 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8358 intel_dp_init(dev, PCH_DP_D, PORT_D);
8359 } else if (IS_VALLEYVIEW(dev)) {
8360 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8361 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
8362 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
8363
8364 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
8365 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
8366 PORT_B);
8367 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
8368 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
8369 }
8370 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8371 bool found = false;
8372
8373 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8374 DRM_DEBUG_KMS("probing SDVOB\n");
8375 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
8376 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8377 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8378 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
8379 }
8380
8381 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8382 DRM_DEBUG_KMS("probing DP_B\n");
8383 intel_dp_init(dev, DP_B, PORT_B);
8384 }
8385 }
8386
8387 /* Before G4X SDVOC doesn't have its own detect register */
8388
8389 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8390 DRM_DEBUG_KMS("probing SDVOC\n");
8391 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
8392 }
8393
8394 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
8395
8396 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8397 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8398 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
8399 }
8400 if (SUPPORTS_INTEGRATED_DP(dev)) {
8401 DRM_DEBUG_KMS("probing DP_C\n");
8402 intel_dp_init(dev, DP_C, PORT_C);
8403 }
8404 }
8405
8406 if (SUPPORTS_INTEGRATED_DP(dev) &&
8407 (I915_READ(DP_D) & DP_DETECTED)) {
8408 DRM_DEBUG_KMS("probing DP_D\n");
8409 intel_dp_init(dev, DP_D, PORT_D);
8410 }
8411 } else if (IS_GEN2(dev))
8412 intel_dvo_init(dev);
8413
8414 if (SUPPORTS_TV(dev))
8415 intel_tv_init(dev);
8416
8417 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8418 encoder->base.possible_crtcs = encoder->crtc_mask;
8419 encoder->base.possible_clones =
8420 intel_encoder_clones(encoder);
8421 }
8422
8423 intel_init_pch_refclk(dev);
8424
8425 drm_helper_move_panel_connectors_to_head(dev);
8426 }
8427
8428 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8429 {
8430 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8431
8432 drm_framebuffer_cleanup(fb);
8433 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8434
8435 kfree(intel_fb);
8436 }
8437
8438 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8439 struct drm_file *file,
8440 unsigned int *handle)
8441 {
8442 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8443 struct drm_i915_gem_object *obj = intel_fb->obj;
8444
8445 return drm_gem_handle_create(file, &obj->base, handle);
8446 }
8447
8448 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8449 .destroy = intel_user_framebuffer_destroy,
8450 .create_handle = intel_user_framebuffer_create_handle,
8451 };
8452
8453 int intel_framebuffer_init(struct drm_device *dev,
8454 struct intel_framebuffer *intel_fb,
8455 struct drm_mode_fb_cmd2 *mode_cmd,
8456 struct drm_i915_gem_object *obj)
8457 {
8458 int ret;
8459
8460 if (obj->tiling_mode == I915_TILING_Y) {
8461 DRM_DEBUG("hardware does not support tiling Y\n");
8462 return -EINVAL;
8463 }
8464
8465 if (mode_cmd->pitches[0] & 63) {
8466 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
8467 mode_cmd->pitches[0]);
8468 return -EINVAL;
8469 }
8470
8471 /* FIXME <= Gen4 stride limits are bit unclear */
8472 if (mode_cmd->pitches[0] > 32768) {
8473 DRM_DEBUG("pitch (%d) must be at less than 32768\n",
8474 mode_cmd->pitches[0]);
8475 return -EINVAL;
8476 }
8477
8478 if (obj->tiling_mode != I915_TILING_NONE &&
8479 mode_cmd->pitches[0] != obj->stride) {
8480 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
8481 mode_cmd->pitches[0], obj->stride);
8482 return -EINVAL;
8483 }
8484
8485 /* Reject formats not supported by any plane early. */
8486 switch (mode_cmd->pixel_format) {
8487 case DRM_FORMAT_C8:
8488 case DRM_FORMAT_RGB565:
8489 case DRM_FORMAT_XRGB8888:
8490 case DRM_FORMAT_ARGB8888:
8491 break;
8492 case DRM_FORMAT_XRGB1555:
8493 case DRM_FORMAT_ARGB1555:
8494 if (INTEL_INFO(dev)->gen > 3) {
8495 DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8496 return -EINVAL;
8497 }
8498 break;
8499 case DRM_FORMAT_XBGR8888:
8500 case DRM_FORMAT_ABGR8888:
8501 case DRM_FORMAT_XRGB2101010:
8502 case DRM_FORMAT_ARGB2101010:
8503 case DRM_FORMAT_XBGR2101010:
8504 case DRM_FORMAT_ABGR2101010:
8505 if (INTEL_INFO(dev)->gen < 4) {
8506 DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8507 return -EINVAL;
8508 }
8509 break;
8510 case DRM_FORMAT_YUYV:
8511 case DRM_FORMAT_UYVY:
8512 case DRM_FORMAT_YVYU:
8513 case DRM_FORMAT_VYUY:
8514 if (INTEL_INFO(dev)->gen < 5) {
8515 DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8516 return -EINVAL;
8517 }
8518 break;
8519 default:
8520 DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8521 return -EINVAL;
8522 }
8523
8524 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8525 if (mode_cmd->offsets[0] != 0)
8526 return -EINVAL;
8527
8528 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8529 intel_fb->obj = obj;
8530
8531 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8532 if (ret) {
8533 DRM_ERROR("framebuffer init failed %d\n", ret);
8534 return ret;
8535 }
8536
8537 return 0;
8538 }
8539
8540 static struct drm_framebuffer *
8541 intel_user_framebuffer_create(struct drm_device *dev,
8542 struct drm_file *filp,
8543 struct drm_mode_fb_cmd2 *mode_cmd)
8544 {
8545 struct drm_i915_gem_object *obj;
8546
8547 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8548 mode_cmd->handles[0]));
8549 if (&obj->base == NULL)
8550 return ERR_PTR(-ENOENT);
8551
8552 return intel_framebuffer_create(dev, mode_cmd, obj);
8553 }
8554
8555 static const struct drm_mode_config_funcs intel_mode_funcs = {
8556 .fb_create = intel_user_framebuffer_create,
8557 .output_poll_changed = intel_fb_output_poll_changed,
8558 };
8559
8560 /* Set up chip specific display functions */
8561 static void intel_init_display(struct drm_device *dev)
8562 {
8563 struct drm_i915_private *dev_priv = dev->dev_private;
8564
8565 if (HAS_DDI(dev)) {
8566 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8567 dev_priv->display.crtc_enable = haswell_crtc_enable;
8568 dev_priv->display.crtc_disable = haswell_crtc_disable;
8569 dev_priv->display.off = haswell_crtc_off;
8570 dev_priv->display.update_plane = ironlake_update_plane;
8571 } else if (HAS_PCH_SPLIT(dev)) {
8572 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8573 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8574 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8575 dev_priv->display.off = ironlake_crtc_off;
8576 dev_priv->display.update_plane = ironlake_update_plane;
8577 } else {
8578 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8579 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8580 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8581 dev_priv->display.off = i9xx_crtc_off;
8582 dev_priv->display.update_plane = i9xx_update_plane;
8583 }
8584
8585 /* Returns the core display clock speed */
8586 if (IS_VALLEYVIEW(dev))
8587 dev_priv->display.get_display_clock_speed =
8588 valleyview_get_display_clock_speed;
8589 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8590 dev_priv->display.get_display_clock_speed =
8591 i945_get_display_clock_speed;
8592 else if (IS_I915G(dev))
8593 dev_priv->display.get_display_clock_speed =
8594 i915_get_display_clock_speed;
8595 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8596 dev_priv->display.get_display_clock_speed =
8597 i9xx_misc_get_display_clock_speed;
8598 else if (IS_I915GM(dev))
8599 dev_priv->display.get_display_clock_speed =
8600 i915gm_get_display_clock_speed;
8601 else if (IS_I865G(dev))
8602 dev_priv->display.get_display_clock_speed =
8603 i865_get_display_clock_speed;
8604 else if (IS_I85X(dev))
8605 dev_priv->display.get_display_clock_speed =
8606 i855_get_display_clock_speed;
8607 else /* 852, 830 */
8608 dev_priv->display.get_display_clock_speed =
8609 i830_get_display_clock_speed;
8610
8611 if (HAS_PCH_SPLIT(dev)) {
8612 if (IS_GEN5(dev)) {
8613 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8614 dev_priv->display.write_eld = ironlake_write_eld;
8615 } else if (IS_GEN6(dev)) {
8616 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8617 dev_priv->display.write_eld = ironlake_write_eld;
8618 } else if (IS_IVYBRIDGE(dev)) {
8619 /* FIXME: detect B0+ stepping and use auto training */
8620 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8621 dev_priv->display.write_eld = ironlake_write_eld;
8622 dev_priv->display.modeset_global_resources =
8623 ivb_modeset_global_resources;
8624 } else if (IS_HASWELL(dev)) {
8625 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8626 dev_priv->display.write_eld = haswell_write_eld;
8627 dev_priv->display.modeset_global_resources =
8628 haswell_modeset_global_resources;
8629 }
8630 } else if (IS_G4X(dev)) {
8631 dev_priv->display.write_eld = g4x_write_eld;
8632 }
8633
8634 /* Default just returns -ENODEV to indicate unsupported */
8635 dev_priv->display.queue_flip = intel_default_queue_flip;
8636
8637 switch (INTEL_INFO(dev)->gen) {
8638 case 2:
8639 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8640 break;
8641
8642 case 3:
8643 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8644 break;
8645
8646 case 4:
8647 case 5:
8648 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8649 break;
8650
8651 case 6:
8652 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8653 break;
8654 case 7:
8655 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8656 break;
8657 }
8658 }
8659
8660 /*
8661 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8662 * resume, or other times. This quirk makes sure that's the case for
8663 * affected systems.
8664 */
8665 static void quirk_pipea_force(struct drm_device *dev)
8666 {
8667 struct drm_i915_private *dev_priv = dev->dev_private;
8668
8669 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8670 DRM_INFO("applying pipe a force quirk\n");
8671 }
8672
8673 /*
8674 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8675 */
8676 static void quirk_ssc_force_disable(struct drm_device *dev)
8677 {
8678 struct drm_i915_private *dev_priv = dev->dev_private;
8679 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8680 DRM_INFO("applying lvds SSC disable quirk\n");
8681 }
8682
8683 /*
8684 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8685 * brightness value
8686 */
8687 static void quirk_invert_brightness(struct drm_device *dev)
8688 {
8689 struct drm_i915_private *dev_priv = dev->dev_private;
8690 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8691 DRM_INFO("applying inverted panel brightness quirk\n");
8692 }
8693
8694 struct intel_quirk {
8695 int device;
8696 int subsystem_vendor;
8697 int subsystem_device;
8698 void (*hook)(struct drm_device *dev);
8699 };
8700
8701 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
8702 struct intel_dmi_quirk {
8703 void (*hook)(struct drm_device *dev);
8704 const struct dmi_system_id (*dmi_id_list)[];
8705 };
8706
8707 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
8708 {
8709 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
8710 return 1;
8711 }
8712
8713 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
8714 {
8715 .dmi_id_list = &(const struct dmi_system_id[]) {
8716 {
8717 .callback = intel_dmi_reverse_brightness,
8718 .ident = "NCR Corporation",
8719 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
8720 DMI_MATCH(DMI_PRODUCT_NAME, ""),
8721 },
8722 },
8723 { } /* terminating entry */
8724 },
8725 .hook = quirk_invert_brightness,
8726 },
8727 };
8728
8729 static struct intel_quirk intel_quirks[] = {
8730 /* HP Mini needs pipe A force quirk (LP: #322104) */
8731 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8732
8733 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8734 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8735
8736 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8737 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8738
8739 /* 830/845 need to leave pipe A & dpll A up */
8740 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8741 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8742
8743 /* Lenovo U160 cannot use SSC on LVDS */
8744 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8745
8746 /* Sony Vaio Y cannot use SSC on LVDS */
8747 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8748
8749 /* Acer Aspire 5734Z must invert backlight brightness */
8750 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8751
8752 /* Acer/eMachines G725 */
8753 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
8754
8755 /* Acer/eMachines e725 */
8756 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
8757
8758 /* Acer/Packard Bell NCL20 */
8759 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
8760
8761 /* Acer Aspire 4736Z */
8762 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
8763 };
8764
8765 static void intel_init_quirks(struct drm_device *dev)
8766 {
8767 struct pci_dev *d = dev->pdev;
8768 int i;
8769
8770 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8771 struct intel_quirk *q = &intel_quirks[i];
8772
8773 if (d->device == q->device &&
8774 (d->subsystem_vendor == q->subsystem_vendor ||
8775 q->subsystem_vendor == PCI_ANY_ID) &&
8776 (d->subsystem_device == q->subsystem_device ||
8777 q->subsystem_device == PCI_ANY_ID))
8778 q->hook(dev);
8779 }
8780 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
8781 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
8782 intel_dmi_quirks[i].hook(dev);
8783 }
8784 }
8785
8786 /* Disable the VGA plane that we never use */
8787 static void i915_disable_vga(struct drm_device *dev)
8788 {
8789 struct drm_i915_private *dev_priv = dev->dev_private;
8790 u8 sr1;
8791 u32 vga_reg = i915_vgacntrl_reg(dev);
8792
8793 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8794 outb(SR01, VGA_SR_INDEX);
8795 sr1 = inb(VGA_SR_DATA);
8796 outb(sr1 | 1<<5, VGA_SR_DATA);
8797 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8798 udelay(300);
8799
8800 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8801 POSTING_READ(vga_reg);
8802 }
8803
8804 void intel_modeset_init_hw(struct drm_device *dev)
8805 {
8806 intel_init_power_well(dev);
8807
8808 intel_prepare_ddi(dev);
8809
8810 intel_init_clock_gating(dev);
8811
8812 mutex_lock(&dev->struct_mutex);
8813 intel_enable_gt_powersave(dev);
8814 mutex_unlock(&dev->struct_mutex);
8815 }
8816
8817 void intel_modeset_init(struct drm_device *dev)
8818 {
8819 struct drm_i915_private *dev_priv = dev->dev_private;
8820 int i, ret;
8821
8822 drm_mode_config_init(dev);
8823
8824 dev->mode_config.min_width = 0;
8825 dev->mode_config.min_height = 0;
8826
8827 dev->mode_config.preferred_depth = 24;
8828 dev->mode_config.prefer_shadow = 1;
8829
8830 dev->mode_config.funcs = &intel_mode_funcs;
8831
8832 intel_init_quirks(dev);
8833
8834 intel_init_pm(dev);
8835
8836 intel_init_display(dev);
8837
8838 if (IS_GEN2(dev)) {
8839 dev->mode_config.max_width = 2048;
8840 dev->mode_config.max_height = 2048;
8841 } else if (IS_GEN3(dev)) {
8842 dev->mode_config.max_width = 4096;
8843 dev->mode_config.max_height = 4096;
8844 } else {
8845 dev->mode_config.max_width = 8192;
8846 dev->mode_config.max_height = 8192;
8847 }
8848 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
8849
8850 DRM_DEBUG_KMS("%d display pipe%s available.\n",
8851 INTEL_INFO(dev)->num_pipes,
8852 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
8853
8854 for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
8855 intel_crtc_init(dev, i);
8856 ret = intel_plane_init(dev, i);
8857 if (ret)
8858 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8859 }
8860
8861 intel_cpu_pll_init(dev);
8862 intel_pch_pll_init(dev);
8863
8864 /* Just disable it once at startup */
8865 i915_disable_vga(dev);
8866 intel_setup_outputs(dev);
8867
8868 /* Just in case the BIOS is doing something questionable. */
8869 intel_disable_fbc(dev);
8870 }
8871
8872 static void
8873 intel_connector_break_all_links(struct intel_connector *connector)
8874 {
8875 connector->base.dpms = DRM_MODE_DPMS_OFF;
8876 connector->base.encoder = NULL;
8877 connector->encoder->connectors_active = false;
8878 connector->encoder->base.crtc = NULL;
8879 }
8880
8881 static void intel_enable_pipe_a(struct drm_device *dev)
8882 {
8883 struct intel_connector *connector;
8884 struct drm_connector *crt = NULL;
8885 struct intel_load_detect_pipe load_detect_temp;
8886
8887 /* We can't just switch on the pipe A, we need to set things up with a
8888 * proper mode and output configuration. As a gross hack, enable pipe A
8889 * by enabling the load detect pipe once. */
8890 list_for_each_entry(connector,
8891 &dev->mode_config.connector_list,
8892 base.head) {
8893 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8894 crt = &connector->base;
8895 break;
8896 }
8897 }
8898
8899 if (!crt)
8900 return;
8901
8902 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8903 intel_release_load_detect_pipe(crt, &load_detect_temp);
8904
8905
8906 }
8907
8908 static bool
8909 intel_check_plane_mapping(struct intel_crtc *crtc)
8910 {
8911 struct drm_device *dev = crtc->base.dev;
8912 struct drm_i915_private *dev_priv = dev->dev_private;
8913 u32 reg, val;
8914
8915 if (INTEL_INFO(dev)->num_pipes == 1)
8916 return true;
8917
8918 reg = DSPCNTR(!crtc->plane);
8919 val = I915_READ(reg);
8920
8921 if ((val & DISPLAY_PLANE_ENABLE) &&
8922 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8923 return false;
8924
8925 return true;
8926 }
8927
8928 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8929 {
8930 struct drm_device *dev = crtc->base.dev;
8931 struct drm_i915_private *dev_priv = dev->dev_private;
8932 u32 reg;
8933
8934 /* Clear any frame start delays used for debugging left by the BIOS */
8935 reg = PIPECONF(crtc->cpu_transcoder);
8936 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8937
8938 /* We need to sanitize the plane -> pipe mapping first because this will
8939 * disable the crtc (and hence change the state) if it is wrong. Note
8940 * that gen4+ has a fixed plane -> pipe mapping. */
8941 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8942 struct intel_connector *connector;
8943 bool plane;
8944
8945 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8946 crtc->base.base.id);
8947
8948 /* Pipe has the wrong plane attached and the plane is active.
8949 * Temporarily change the plane mapping and disable everything
8950 * ... */
8951 plane = crtc->plane;
8952 crtc->plane = !plane;
8953 dev_priv->display.crtc_disable(&crtc->base);
8954 crtc->plane = plane;
8955
8956 /* ... and break all links. */
8957 list_for_each_entry(connector, &dev->mode_config.connector_list,
8958 base.head) {
8959 if (connector->encoder->base.crtc != &crtc->base)
8960 continue;
8961
8962 intel_connector_break_all_links(connector);
8963 }
8964
8965 WARN_ON(crtc->active);
8966 crtc->base.enabled = false;
8967 }
8968
8969 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8970 crtc->pipe == PIPE_A && !crtc->active) {
8971 /* BIOS forgot to enable pipe A, this mostly happens after
8972 * resume. Force-enable the pipe to fix this, the update_dpms
8973 * call below we restore the pipe to the right state, but leave
8974 * the required bits on. */
8975 intel_enable_pipe_a(dev);
8976 }
8977
8978 /* Adjust the state of the output pipe according to whether we
8979 * have active connectors/encoders. */
8980 intel_crtc_update_dpms(&crtc->base);
8981
8982 if (crtc->active != crtc->base.enabled) {
8983 struct intel_encoder *encoder;
8984
8985 /* This can happen either due to bugs in the get_hw_state
8986 * functions or because the pipe is force-enabled due to the
8987 * pipe A quirk. */
8988 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8989 crtc->base.base.id,
8990 crtc->base.enabled ? "enabled" : "disabled",
8991 crtc->active ? "enabled" : "disabled");
8992
8993 crtc->base.enabled = crtc->active;
8994
8995 /* Because we only establish the connector -> encoder ->
8996 * crtc links if something is active, this means the
8997 * crtc is now deactivated. Break the links. connector
8998 * -> encoder links are only establish when things are
8999 * actually up, hence no need to break them. */
9000 WARN_ON(crtc->active);
9001
9002 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9003 WARN_ON(encoder->connectors_active);
9004 encoder->base.crtc = NULL;
9005 }
9006 }
9007 }
9008
9009 static void intel_sanitize_encoder(struct intel_encoder *encoder)
9010 {
9011 struct intel_connector *connector;
9012 struct drm_device *dev = encoder->base.dev;
9013
9014 /* We need to check both for a crtc link (meaning that the
9015 * encoder is active and trying to read from a pipe) and the
9016 * pipe itself being active. */
9017 bool has_active_crtc = encoder->base.crtc &&
9018 to_intel_crtc(encoder->base.crtc)->active;
9019
9020 if (encoder->connectors_active && !has_active_crtc) {
9021 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9022 encoder->base.base.id,
9023 drm_get_encoder_name(&encoder->base));
9024
9025 /* Connector is active, but has no active pipe. This is
9026 * fallout from our resume register restoring. Disable
9027 * the encoder manually again. */
9028 if (encoder->base.crtc) {
9029 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9030 encoder->base.base.id,
9031 drm_get_encoder_name(&encoder->base));
9032 encoder->disable(encoder);
9033 }
9034
9035 /* Inconsistent output/port/pipe state happens presumably due to
9036 * a bug in one of the get_hw_state functions. Or someplace else
9037 * in our code, like the register restore mess on resume. Clamp
9038 * things to off as a safer default. */
9039 list_for_each_entry(connector,
9040 &dev->mode_config.connector_list,
9041 base.head) {
9042 if (connector->encoder != encoder)
9043 continue;
9044
9045 intel_connector_break_all_links(connector);
9046 }
9047 }
9048 /* Enabled encoders without active connectors will be fixed in
9049 * the crtc fixup. */
9050 }
9051
9052 void i915_redisable_vga(struct drm_device *dev)
9053 {
9054 struct drm_i915_private *dev_priv = dev->dev_private;
9055 u32 vga_reg = i915_vgacntrl_reg(dev);
9056
9057 if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9058 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9059 i915_disable_vga(dev);
9060 }
9061 }
9062
9063 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9064 * and i915 state tracking structures. */
9065 void intel_modeset_setup_hw_state(struct drm_device *dev,
9066 bool force_restore)
9067 {
9068 struct drm_i915_private *dev_priv = dev->dev_private;
9069 enum pipe pipe;
9070 u32 tmp;
9071 struct drm_plane *plane;
9072 struct intel_crtc *crtc;
9073 struct intel_encoder *encoder;
9074 struct intel_connector *connector;
9075
9076 if (HAS_DDI(dev)) {
9077 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9078
9079 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9080 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9081 case TRANS_DDI_EDP_INPUT_A_ON:
9082 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9083 pipe = PIPE_A;
9084 break;
9085 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9086 pipe = PIPE_B;
9087 break;
9088 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9089 pipe = PIPE_C;
9090 break;
9091 default:
9092 /* A bogus value has been programmed, disable
9093 * the transcoder */
9094 WARN(1, "Bogus eDP source %08x\n", tmp);
9095 intel_ddi_disable_transcoder_func(dev_priv,
9096 TRANSCODER_EDP);
9097 goto setup_pipes;
9098 }
9099
9100 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9101 crtc->cpu_transcoder = TRANSCODER_EDP;
9102
9103 DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9104 pipe_name(pipe));
9105 }
9106 }
9107
9108 setup_pipes:
9109 for_each_pipe(pipe) {
9110 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9111
9112 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
9113 if (tmp & PIPECONF_ENABLE)
9114 crtc->active = true;
9115 else
9116 crtc->active = false;
9117
9118 crtc->base.enabled = crtc->active;
9119
9120 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9121 crtc->base.base.id,
9122 crtc->active ? "enabled" : "disabled");
9123 }
9124
9125 if (HAS_DDI(dev))
9126 intel_ddi_setup_hw_pll_state(dev);
9127
9128 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9129 base.head) {
9130 pipe = 0;
9131
9132 if (encoder->get_hw_state(encoder, &pipe)) {
9133 encoder->base.crtc =
9134 dev_priv->pipe_to_crtc_mapping[pipe];
9135 } else {
9136 encoder->base.crtc = NULL;
9137 }
9138
9139 encoder->connectors_active = false;
9140 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9141 encoder->base.base.id,
9142 drm_get_encoder_name(&encoder->base),
9143 encoder->base.crtc ? "enabled" : "disabled",
9144 pipe);
9145 }
9146
9147 list_for_each_entry(connector, &dev->mode_config.connector_list,
9148 base.head) {
9149 if (connector->get_hw_state(connector)) {
9150 connector->base.dpms = DRM_MODE_DPMS_ON;
9151 connector->encoder->connectors_active = true;
9152 connector->base.encoder = &connector->encoder->base;
9153 } else {
9154 connector->base.dpms = DRM_MODE_DPMS_OFF;
9155 connector->base.encoder = NULL;
9156 }
9157 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9158 connector->base.base.id,
9159 drm_get_connector_name(&connector->base),
9160 connector->base.encoder ? "enabled" : "disabled");
9161 }
9162
9163 /* HW state is read out, now we need to sanitize this mess. */
9164 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9165 base.head) {
9166 intel_sanitize_encoder(encoder);
9167 }
9168
9169 for_each_pipe(pipe) {
9170 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9171 intel_sanitize_crtc(crtc);
9172 }
9173
9174 if (force_restore) {
9175 for_each_pipe(pipe) {
9176 struct drm_crtc *crtc =
9177 dev_priv->pipe_to_crtc_mapping[pipe];
9178 intel_crtc_restore_mode(crtc);
9179 }
9180 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
9181 intel_plane_restore(plane);
9182
9183 i915_redisable_vga(dev);
9184 } else {
9185 intel_modeset_update_staged_output_state(dev);
9186 }
9187
9188 intel_modeset_check_state(dev);
9189
9190 drm_mode_config_reset(dev);
9191 }
9192
9193 void intel_modeset_gem_init(struct drm_device *dev)
9194 {
9195 intel_modeset_init_hw(dev);
9196
9197 intel_setup_overlay(dev);
9198
9199 intel_modeset_setup_hw_state(dev, false);
9200 }
9201
9202 void intel_modeset_cleanup(struct drm_device *dev)
9203 {
9204 struct drm_i915_private *dev_priv = dev->dev_private;
9205 struct drm_crtc *crtc;
9206 struct intel_crtc *intel_crtc;
9207
9208 drm_kms_helper_poll_fini(dev);
9209 mutex_lock(&dev->struct_mutex);
9210
9211 intel_unregister_dsm_handler();
9212
9213
9214 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9215 /* Skip inactive CRTCs */
9216 if (!crtc->fb)
9217 continue;
9218
9219 intel_crtc = to_intel_crtc(crtc);
9220 intel_increase_pllclock(crtc);
9221 }
9222
9223 intel_disable_fbc(dev);
9224
9225 intel_disable_gt_powersave(dev);
9226
9227 ironlake_teardown_rc6(dev);
9228
9229 if (IS_VALLEYVIEW(dev))
9230 vlv_init_dpio(dev);
9231
9232 mutex_unlock(&dev->struct_mutex);
9233
9234 /* Disable the irq before mode object teardown, for the irq might
9235 * enqueue unpin/hotplug work. */
9236 drm_irq_uninstall(dev);
9237 cancel_work_sync(&dev_priv->hotplug_work);
9238 cancel_work_sync(&dev_priv->rps.work);
9239
9240 /* flush any delayed tasks or pending work */
9241 flush_scheduled_work();
9242
9243 drm_mode_config_cleanup(dev);
9244
9245 intel_cleanup_overlay(dev);
9246 }
9247
9248 /*
9249 * Return which encoder is currently attached for connector.
9250 */
9251 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9252 {
9253 return &intel_attached_encoder(connector)->base;
9254 }
9255
9256 void intel_connector_attach_encoder(struct intel_connector *connector,
9257 struct intel_encoder *encoder)
9258 {
9259 connector->encoder = encoder;
9260 drm_mode_connector_attach_encoder(&connector->base,
9261 &encoder->base);
9262 }
9263
9264 /*
9265 * set vga decode state - true == enable VGA decode
9266 */
9267 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9268 {
9269 struct drm_i915_private *dev_priv = dev->dev_private;
9270 u16 gmch_ctrl;
9271
9272 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9273 if (state)
9274 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9275 else
9276 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9277 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9278 return 0;
9279 }
9280
9281 #ifdef CONFIG_DEBUG_FS
9282 #include <linux/seq_file.h>
9283
9284 struct intel_display_error_state {
9285 struct intel_cursor_error_state {
9286 u32 control;
9287 u32 position;
9288 u32 base;
9289 u32 size;
9290 } cursor[I915_MAX_PIPES];
9291
9292 struct intel_pipe_error_state {
9293 u32 conf;
9294 u32 source;
9295
9296 u32 htotal;
9297 u32 hblank;
9298 u32 hsync;
9299 u32 vtotal;
9300 u32 vblank;
9301 u32 vsync;
9302 } pipe[I915_MAX_PIPES];
9303
9304 struct intel_plane_error_state {
9305 u32 control;
9306 u32 stride;
9307 u32 size;
9308 u32 pos;
9309 u32 addr;
9310 u32 surface;
9311 u32 tile_offset;
9312 } plane[I915_MAX_PIPES];
9313 };
9314
9315 struct intel_display_error_state *
9316 intel_display_capture_error_state(struct drm_device *dev)
9317 {
9318 drm_i915_private_t *dev_priv = dev->dev_private;
9319 struct intel_display_error_state *error;
9320 enum transcoder cpu_transcoder;
9321 int i;
9322
9323 error = kmalloc(sizeof(*error), GFP_ATOMIC);
9324 if (error == NULL)
9325 return NULL;
9326
9327 for_each_pipe(i) {
9328 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9329
9330 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
9331 error->cursor[i].control = I915_READ(CURCNTR(i));
9332 error->cursor[i].position = I915_READ(CURPOS(i));
9333 error->cursor[i].base = I915_READ(CURBASE(i));
9334 } else {
9335 error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
9336 error->cursor[i].position = I915_READ(CURPOS_IVB(i));
9337 error->cursor[i].base = I915_READ(CURBASE_IVB(i));
9338 }
9339
9340 error->plane[i].control = I915_READ(DSPCNTR(i));
9341 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9342 if (INTEL_INFO(dev)->gen <= 3) {
9343 error->plane[i].size = I915_READ(DSPSIZE(i));
9344 error->plane[i].pos = I915_READ(DSPPOS(i));
9345 }
9346 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9347 error->plane[i].addr = I915_READ(DSPADDR(i));
9348 if (INTEL_INFO(dev)->gen >= 4) {
9349 error->plane[i].surface = I915_READ(DSPSURF(i));
9350 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9351 }
9352
9353 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9354 error->pipe[i].source = I915_READ(PIPESRC(i));
9355 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9356 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9357 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9358 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9359 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9360 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9361 }
9362
9363 return error;
9364 }
9365
9366 void
9367 intel_display_print_error_state(struct seq_file *m,
9368 struct drm_device *dev,
9369 struct intel_display_error_state *error)
9370 {
9371 int i;
9372
9373 seq_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
9374 for_each_pipe(i) {
9375 seq_printf(m, "Pipe [%d]:\n", i);
9376 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
9377 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
9378 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
9379 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
9380 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
9381 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
9382 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
9383 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
9384
9385 seq_printf(m, "Plane [%d]:\n", i);
9386 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
9387 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
9388 if (INTEL_INFO(dev)->gen <= 3) {
9389 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
9390 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
9391 }
9392 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9393 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
9394 if (INTEL_INFO(dev)->gen >= 4) {
9395 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
9396 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
9397 }
9398
9399 seq_printf(m, "Cursor [%d]:\n", i);
9400 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
9401 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
9402 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
9403 }
9404 }
9405 #endif