]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_display.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs...
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/vgaarb.h>
33 #include "drmP.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "drm_dp_helper.h"
39
40 #include "drm_crtc_helper.h"
41
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
43
44 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
45 static void intel_update_watermarks(struct drm_device *dev);
46 static void intel_increase_pllclock(struct drm_crtc *crtc);
47 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
48
49 typedef struct {
50 /* given values */
51 int n;
52 int m1, m2;
53 int p1, p2;
54 /* derived values */
55 int dot;
56 int vco;
57 int m;
58 int p;
59 } intel_clock_t;
60
61 typedef struct {
62 int min, max;
63 } intel_range_t;
64
65 typedef struct {
66 int dot_limit;
67 int p2_slow, p2_fast;
68 } intel_p2_t;
69
70 #define INTEL_P2_NUM 2
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73 intel_range_t dot, vco, n, m, m1, m2, p, p1;
74 intel_p2_t p2;
75 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
76 int, int, intel_clock_t *);
77 };
78
79 #define I8XX_DOT_MIN 25000
80 #define I8XX_DOT_MAX 350000
81 #define I8XX_VCO_MIN 930000
82 #define I8XX_VCO_MAX 1400000
83 #define I8XX_N_MIN 3
84 #define I8XX_N_MAX 16
85 #define I8XX_M_MIN 96
86 #define I8XX_M_MAX 140
87 #define I8XX_M1_MIN 18
88 #define I8XX_M1_MAX 26
89 #define I8XX_M2_MIN 6
90 #define I8XX_M2_MAX 16
91 #define I8XX_P_MIN 4
92 #define I8XX_P_MAX 128
93 #define I8XX_P1_MIN 2
94 #define I8XX_P1_MAX 33
95 #define I8XX_P1_LVDS_MIN 1
96 #define I8XX_P1_LVDS_MAX 6
97 #define I8XX_P2_SLOW 4
98 #define I8XX_P2_FAST 2
99 #define I8XX_P2_LVDS_SLOW 14
100 #define I8XX_P2_LVDS_FAST 7
101 #define I8XX_P2_SLOW_LIMIT 165000
102
103 #define I9XX_DOT_MIN 20000
104 #define I9XX_DOT_MAX 400000
105 #define I9XX_VCO_MIN 1400000
106 #define I9XX_VCO_MAX 2800000
107 #define PINEVIEW_VCO_MIN 1700000
108 #define PINEVIEW_VCO_MAX 3500000
109 #define I9XX_N_MIN 1
110 #define I9XX_N_MAX 6
111 /* Pineview's Ncounter is a ring counter */
112 #define PINEVIEW_N_MIN 3
113 #define PINEVIEW_N_MAX 6
114 #define I9XX_M_MIN 70
115 #define I9XX_M_MAX 120
116 #define PINEVIEW_M_MIN 2
117 #define PINEVIEW_M_MAX 256
118 #define I9XX_M1_MIN 10
119 #define I9XX_M1_MAX 22
120 #define I9XX_M2_MIN 5
121 #define I9XX_M2_MAX 9
122 /* Pineview M1 is reserved, and must be 0 */
123 #define PINEVIEW_M1_MIN 0
124 #define PINEVIEW_M1_MAX 0
125 #define PINEVIEW_M2_MIN 0
126 #define PINEVIEW_M2_MAX 254
127 #define I9XX_P_SDVO_DAC_MIN 5
128 #define I9XX_P_SDVO_DAC_MAX 80
129 #define I9XX_P_LVDS_MIN 7
130 #define I9XX_P_LVDS_MAX 98
131 #define PINEVIEW_P_LVDS_MIN 7
132 #define PINEVIEW_P_LVDS_MAX 112
133 #define I9XX_P1_MIN 1
134 #define I9XX_P1_MAX 8
135 #define I9XX_P2_SDVO_DAC_SLOW 10
136 #define I9XX_P2_SDVO_DAC_FAST 5
137 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
138 #define I9XX_P2_LVDS_SLOW 14
139 #define I9XX_P2_LVDS_FAST 7
140 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
141
142 /*The parameter is for SDVO on G4x platform*/
143 #define G4X_DOT_SDVO_MIN 25000
144 #define G4X_DOT_SDVO_MAX 270000
145 #define G4X_VCO_MIN 1750000
146 #define G4X_VCO_MAX 3500000
147 #define G4X_N_SDVO_MIN 1
148 #define G4X_N_SDVO_MAX 4
149 #define G4X_M_SDVO_MIN 104
150 #define G4X_M_SDVO_MAX 138
151 #define G4X_M1_SDVO_MIN 17
152 #define G4X_M1_SDVO_MAX 23
153 #define G4X_M2_SDVO_MIN 5
154 #define G4X_M2_SDVO_MAX 11
155 #define G4X_P_SDVO_MIN 10
156 #define G4X_P_SDVO_MAX 30
157 #define G4X_P1_SDVO_MIN 1
158 #define G4X_P1_SDVO_MAX 3
159 #define G4X_P2_SDVO_SLOW 10
160 #define G4X_P2_SDVO_FAST 10
161 #define G4X_P2_SDVO_LIMIT 270000
162
163 /*The parameter is for HDMI_DAC on G4x platform*/
164 #define G4X_DOT_HDMI_DAC_MIN 22000
165 #define G4X_DOT_HDMI_DAC_MAX 400000
166 #define G4X_N_HDMI_DAC_MIN 1
167 #define G4X_N_HDMI_DAC_MAX 4
168 #define G4X_M_HDMI_DAC_MIN 104
169 #define G4X_M_HDMI_DAC_MAX 138
170 #define G4X_M1_HDMI_DAC_MIN 16
171 #define G4X_M1_HDMI_DAC_MAX 23
172 #define G4X_M2_HDMI_DAC_MIN 5
173 #define G4X_M2_HDMI_DAC_MAX 11
174 #define G4X_P_HDMI_DAC_MIN 5
175 #define G4X_P_HDMI_DAC_MAX 80
176 #define G4X_P1_HDMI_DAC_MIN 1
177 #define G4X_P1_HDMI_DAC_MAX 8
178 #define G4X_P2_HDMI_DAC_SLOW 10
179 #define G4X_P2_HDMI_DAC_FAST 5
180 #define G4X_P2_HDMI_DAC_LIMIT 165000
181
182 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
184 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
186 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
188 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
190 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
192 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
194 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
196 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
199 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
200
201 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
203 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
204 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
205 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
206 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
207 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
209 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
211 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
212 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
213 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
215 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
216 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
218 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
219
220 /*The parameter is for DISPLAY PORT on G4x platform*/
221 #define G4X_DOT_DISPLAY_PORT_MIN 161670
222 #define G4X_DOT_DISPLAY_PORT_MAX 227000
223 #define G4X_N_DISPLAY_PORT_MIN 1
224 #define G4X_N_DISPLAY_PORT_MAX 2
225 #define G4X_M_DISPLAY_PORT_MIN 97
226 #define G4X_M_DISPLAY_PORT_MAX 108
227 #define G4X_M1_DISPLAY_PORT_MIN 0x10
228 #define G4X_M1_DISPLAY_PORT_MAX 0x12
229 #define G4X_M2_DISPLAY_PORT_MIN 0x05
230 #define G4X_M2_DISPLAY_PORT_MAX 0x06
231 #define G4X_P_DISPLAY_PORT_MIN 10
232 #define G4X_P_DISPLAY_PORT_MAX 20
233 #define G4X_P1_DISPLAY_PORT_MIN 1
234 #define G4X_P1_DISPLAY_PORT_MAX 2
235 #define G4X_P2_DISPLAY_PORT_SLOW 10
236 #define G4X_P2_DISPLAY_PORT_FAST 10
237 #define G4X_P2_DISPLAY_PORT_LIMIT 0
238
239 /* Ironlake / Sandybridge */
240 /* as we calculate clock using (register_value + 2) for
241 N/M1/M2, so here the range value for them is (actual_value-2).
242 */
243 #define IRONLAKE_DOT_MIN 25000
244 #define IRONLAKE_DOT_MAX 350000
245 #define IRONLAKE_VCO_MIN 1760000
246 #define IRONLAKE_VCO_MAX 3510000
247 #define IRONLAKE_M1_MIN 12
248 #define IRONLAKE_M1_MAX 22
249 #define IRONLAKE_M2_MIN 5
250 #define IRONLAKE_M2_MAX 9
251 #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
252
253 /* We have parameter ranges for different type of outputs. */
254
255 /* DAC & HDMI Refclk 120Mhz */
256 #define IRONLAKE_DAC_N_MIN 1
257 #define IRONLAKE_DAC_N_MAX 5
258 #define IRONLAKE_DAC_M_MIN 79
259 #define IRONLAKE_DAC_M_MAX 127
260 #define IRONLAKE_DAC_P_MIN 5
261 #define IRONLAKE_DAC_P_MAX 80
262 #define IRONLAKE_DAC_P1_MIN 1
263 #define IRONLAKE_DAC_P1_MAX 8
264 #define IRONLAKE_DAC_P2_SLOW 10
265 #define IRONLAKE_DAC_P2_FAST 5
266
267 /* LVDS single-channel 120Mhz refclk */
268 #define IRONLAKE_LVDS_S_N_MIN 1
269 #define IRONLAKE_LVDS_S_N_MAX 3
270 #define IRONLAKE_LVDS_S_M_MIN 79
271 #define IRONLAKE_LVDS_S_M_MAX 118
272 #define IRONLAKE_LVDS_S_P_MIN 28
273 #define IRONLAKE_LVDS_S_P_MAX 112
274 #define IRONLAKE_LVDS_S_P1_MIN 2
275 #define IRONLAKE_LVDS_S_P1_MAX 8
276 #define IRONLAKE_LVDS_S_P2_SLOW 14
277 #define IRONLAKE_LVDS_S_P2_FAST 14
278
279 /* LVDS dual-channel 120Mhz refclk */
280 #define IRONLAKE_LVDS_D_N_MIN 1
281 #define IRONLAKE_LVDS_D_N_MAX 3
282 #define IRONLAKE_LVDS_D_M_MIN 79
283 #define IRONLAKE_LVDS_D_M_MAX 127
284 #define IRONLAKE_LVDS_D_P_MIN 14
285 #define IRONLAKE_LVDS_D_P_MAX 56
286 #define IRONLAKE_LVDS_D_P1_MIN 2
287 #define IRONLAKE_LVDS_D_P1_MAX 8
288 #define IRONLAKE_LVDS_D_P2_SLOW 7
289 #define IRONLAKE_LVDS_D_P2_FAST 7
290
291 /* LVDS single-channel 100Mhz refclk */
292 #define IRONLAKE_LVDS_S_SSC_N_MIN 1
293 #define IRONLAKE_LVDS_S_SSC_N_MAX 2
294 #define IRONLAKE_LVDS_S_SSC_M_MIN 79
295 #define IRONLAKE_LVDS_S_SSC_M_MAX 126
296 #define IRONLAKE_LVDS_S_SSC_P_MIN 28
297 #define IRONLAKE_LVDS_S_SSC_P_MAX 112
298 #define IRONLAKE_LVDS_S_SSC_P1_MIN 2
299 #define IRONLAKE_LVDS_S_SSC_P1_MAX 8
300 #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
301 #define IRONLAKE_LVDS_S_SSC_P2_FAST 14
302
303 /* LVDS dual-channel 100Mhz refclk */
304 #define IRONLAKE_LVDS_D_SSC_N_MIN 1
305 #define IRONLAKE_LVDS_D_SSC_N_MAX 3
306 #define IRONLAKE_LVDS_D_SSC_M_MIN 79
307 #define IRONLAKE_LVDS_D_SSC_M_MAX 126
308 #define IRONLAKE_LVDS_D_SSC_P_MIN 14
309 #define IRONLAKE_LVDS_D_SSC_P_MAX 42
310 #define IRONLAKE_LVDS_D_SSC_P1_MIN 2
311 #define IRONLAKE_LVDS_D_SSC_P1_MAX 6
312 #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
313 #define IRONLAKE_LVDS_D_SSC_P2_FAST 7
314
315 /* DisplayPort */
316 #define IRONLAKE_DP_N_MIN 1
317 #define IRONLAKE_DP_N_MAX 2
318 #define IRONLAKE_DP_M_MIN 81
319 #define IRONLAKE_DP_M_MAX 90
320 #define IRONLAKE_DP_P_MIN 10
321 #define IRONLAKE_DP_P_MAX 20
322 #define IRONLAKE_DP_P2_FAST 10
323 #define IRONLAKE_DP_P2_SLOW 10
324 #define IRONLAKE_DP_P2_LIMIT 0
325 #define IRONLAKE_DP_P1_MIN 1
326 #define IRONLAKE_DP_P1_MAX 2
327
328 /* FDI */
329 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
330
331 static bool
332 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
333 int target, int refclk, intel_clock_t *best_clock);
334 static bool
335 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
336 int target, int refclk, intel_clock_t *best_clock);
337
338 static bool
339 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
340 int target, int refclk, intel_clock_t *best_clock);
341 static bool
342 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
343 int target, int refclk, intel_clock_t *best_clock);
344
345 static inline u32 /* units of 100MHz */
346 intel_fdi_link_freq(struct drm_device *dev)
347 {
348 if (IS_GEN5(dev)) {
349 struct drm_i915_private *dev_priv = dev->dev_private;
350 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
351 } else
352 return 27;
353 }
354
355 static const intel_limit_t intel_limits_i8xx_dvo = {
356 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
357 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
358 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
359 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
360 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
361 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
362 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
363 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
364 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
365 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
366 .find_pll = intel_find_best_PLL,
367 };
368
369 static const intel_limit_t intel_limits_i8xx_lvds = {
370 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
371 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
372 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
373 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
374 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
375 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
376 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
377 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
378 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
379 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
380 .find_pll = intel_find_best_PLL,
381 };
382
383 static const intel_limit_t intel_limits_i9xx_sdvo = {
384 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
385 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
386 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
387 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
388 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
389 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
390 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
391 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
392 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
393 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
394 .find_pll = intel_find_best_PLL,
395 };
396
397 static const intel_limit_t intel_limits_i9xx_lvds = {
398 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
399 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
400 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
401 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
402 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
403 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
404 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
405 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
406 /* The single-channel range is 25-112Mhz, and dual-channel
407 * is 80-224Mhz. Prefer single channel as much as possible.
408 */
409 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
410 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
411 .find_pll = intel_find_best_PLL,
412 };
413
414 /* below parameter and function is for G4X Chipset Family*/
415 static const intel_limit_t intel_limits_g4x_sdvo = {
416 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
417 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
418 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
419 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
420 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
421 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
422 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
423 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
424 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
425 .p2_slow = G4X_P2_SDVO_SLOW,
426 .p2_fast = G4X_P2_SDVO_FAST
427 },
428 .find_pll = intel_g4x_find_best_PLL,
429 };
430
431 static const intel_limit_t intel_limits_g4x_hdmi = {
432 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
433 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
434 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
435 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
436 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
437 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
438 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
439 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
440 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
441 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
442 .p2_fast = G4X_P2_HDMI_DAC_FAST
443 },
444 .find_pll = intel_g4x_find_best_PLL,
445 };
446
447 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
448 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
449 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
450 .vco = { .min = G4X_VCO_MIN,
451 .max = G4X_VCO_MAX },
452 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
453 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
454 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
455 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
456 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
457 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
458 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
459 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
460 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
461 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
462 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
463 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
464 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
465 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
466 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
467 },
468 .find_pll = intel_g4x_find_best_PLL,
469 };
470
471 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
472 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
473 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
474 .vco = { .min = G4X_VCO_MIN,
475 .max = G4X_VCO_MAX },
476 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
477 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
478 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
479 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
480 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
481 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
482 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
483 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
484 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
485 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
486 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
487 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
488 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
489 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
490 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
491 },
492 .find_pll = intel_g4x_find_best_PLL,
493 };
494
495 static const intel_limit_t intel_limits_g4x_display_port = {
496 .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
497 .max = G4X_DOT_DISPLAY_PORT_MAX },
498 .vco = { .min = G4X_VCO_MIN,
499 .max = G4X_VCO_MAX},
500 .n = { .min = G4X_N_DISPLAY_PORT_MIN,
501 .max = G4X_N_DISPLAY_PORT_MAX },
502 .m = { .min = G4X_M_DISPLAY_PORT_MIN,
503 .max = G4X_M_DISPLAY_PORT_MAX },
504 .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
505 .max = G4X_M1_DISPLAY_PORT_MAX },
506 .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
507 .max = G4X_M2_DISPLAY_PORT_MAX },
508 .p = { .min = G4X_P_DISPLAY_PORT_MIN,
509 .max = G4X_P_DISPLAY_PORT_MAX },
510 .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
511 .max = G4X_P1_DISPLAY_PORT_MAX},
512 .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
513 .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
514 .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
515 .find_pll = intel_find_pll_g4x_dp,
516 };
517
518 static const intel_limit_t intel_limits_pineview_sdvo = {
519 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
520 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
521 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
522 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
523 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
524 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
525 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
526 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
527 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
528 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
529 .find_pll = intel_find_best_PLL,
530 };
531
532 static const intel_limit_t intel_limits_pineview_lvds = {
533 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
534 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
535 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
536 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
537 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
538 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
539 .p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX },
540 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
541 /* Pineview only supports single-channel mode. */
542 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
543 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
544 .find_pll = intel_find_best_PLL,
545 };
546
547 static const intel_limit_t intel_limits_ironlake_dac = {
548 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
549 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
550 .n = { .min = IRONLAKE_DAC_N_MIN, .max = IRONLAKE_DAC_N_MAX },
551 .m = { .min = IRONLAKE_DAC_M_MIN, .max = IRONLAKE_DAC_M_MAX },
552 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
553 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
554 .p = { .min = IRONLAKE_DAC_P_MIN, .max = IRONLAKE_DAC_P_MAX },
555 .p1 = { .min = IRONLAKE_DAC_P1_MIN, .max = IRONLAKE_DAC_P1_MAX },
556 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
557 .p2_slow = IRONLAKE_DAC_P2_SLOW,
558 .p2_fast = IRONLAKE_DAC_P2_FAST },
559 .find_pll = intel_g4x_find_best_PLL,
560 };
561
562 static const intel_limit_t intel_limits_ironlake_single_lvds = {
563 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
564 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
565 .n = { .min = IRONLAKE_LVDS_S_N_MIN, .max = IRONLAKE_LVDS_S_N_MAX },
566 .m = { .min = IRONLAKE_LVDS_S_M_MIN, .max = IRONLAKE_LVDS_S_M_MAX },
567 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
568 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
569 .p = { .min = IRONLAKE_LVDS_S_P_MIN, .max = IRONLAKE_LVDS_S_P_MAX },
570 .p1 = { .min = IRONLAKE_LVDS_S_P1_MIN, .max = IRONLAKE_LVDS_S_P1_MAX },
571 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
572 .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
573 .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
574 .find_pll = intel_g4x_find_best_PLL,
575 };
576
577 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
578 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
579 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
580 .n = { .min = IRONLAKE_LVDS_D_N_MIN, .max = IRONLAKE_LVDS_D_N_MAX },
581 .m = { .min = IRONLAKE_LVDS_D_M_MIN, .max = IRONLAKE_LVDS_D_M_MAX },
582 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
583 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
584 .p = { .min = IRONLAKE_LVDS_D_P_MIN, .max = IRONLAKE_LVDS_D_P_MAX },
585 .p1 = { .min = IRONLAKE_LVDS_D_P1_MIN, .max = IRONLAKE_LVDS_D_P1_MAX },
586 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
587 .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
588 .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
589 .find_pll = intel_g4x_find_best_PLL,
590 };
591
592 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
593 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
594 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
595 .n = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
596 .m = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
597 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
598 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
599 .p = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
600 .p1 = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
601 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
602 .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
603 .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
604 .find_pll = intel_g4x_find_best_PLL,
605 };
606
607 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
608 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
609 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
610 .n = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
611 .m = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
612 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
613 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
614 .p = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
615 .p1 = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
616 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
617 .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
618 .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
619 .find_pll = intel_g4x_find_best_PLL,
620 };
621
622 static const intel_limit_t intel_limits_ironlake_display_port = {
623 .dot = { .min = IRONLAKE_DOT_MIN,
624 .max = IRONLAKE_DOT_MAX },
625 .vco = { .min = IRONLAKE_VCO_MIN,
626 .max = IRONLAKE_VCO_MAX},
627 .n = { .min = IRONLAKE_DP_N_MIN,
628 .max = IRONLAKE_DP_N_MAX },
629 .m = { .min = IRONLAKE_DP_M_MIN,
630 .max = IRONLAKE_DP_M_MAX },
631 .m1 = { .min = IRONLAKE_M1_MIN,
632 .max = IRONLAKE_M1_MAX },
633 .m2 = { .min = IRONLAKE_M2_MIN,
634 .max = IRONLAKE_M2_MAX },
635 .p = { .min = IRONLAKE_DP_P_MIN,
636 .max = IRONLAKE_DP_P_MAX },
637 .p1 = { .min = IRONLAKE_DP_P1_MIN,
638 .max = IRONLAKE_DP_P1_MAX},
639 .p2 = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
640 .p2_slow = IRONLAKE_DP_P2_SLOW,
641 .p2_fast = IRONLAKE_DP_P2_FAST },
642 .find_pll = intel_find_pll_ironlake_dp,
643 };
644
645 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
646 int refclk)
647 {
648 struct drm_device *dev = crtc->dev;
649 struct drm_i915_private *dev_priv = dev->dev_private;
650 const intel_limit_t *limit;
651
652 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
653 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
654 LVDS_CLKB_POWER_UP) {
655 /* LVDS dual channel */
656 if (refclk == 100000)
657 limit = &intel_limits_ironlake_dual_lvds_100m;
658 else
659 limit = &intel_limits_ironlake_dual_lvds;
660 } else {
661 if (refclk == 100000)
662 limit = &intel_limits_ironlake_single_lvds_100m;
663 else
664 limit = &intel_limits_ironlake_single_lvds;
665 }
666 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
667 HAS_eDP)
668 limit = &intel_limits_ironlake_display_port;
669 else
670 limit = &intel_limits_ironlake_dac;
671
672 return limit;
673 }
674
675 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
676 {
677 struct drm_device *dev = crtc->dev;
678 struct drm_i915_private *dev_priv = dev->dev_private;
679 const intel_limit_t *limit;
680
681 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
682 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
683 LVDS_CLKB_POWER_UP)
684 /* LVDS with dual channel */
685 limit = &intel_limits_g4x_dual_channel_lvds;
686 else
687 /* LVDS with dual channel */
688 limit = &intel_limits_g4x_single_channel_lvds;
689 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
690 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
691 limit = &intel_limits_g4x_hdmi;
692 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
693 limit = &intel_limits_g4x_sdvo;
694 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
695 limit = &intel_limits_g4x_display_port;
696 } else /* The option is for other outputs */
697 limit = &intel_limits_i9xx_sdvo;
698
699 return limit;
700 }
701
702 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
703 {
704 struct drm_device *dev = crtc->dev;
705 const intel_limit_t *limit;
706
707 if (HAS_PCH_SPLIT(dev))
708 limit = intel_ironlake_limit(crtc, refclk);
709 else if (IS_G4X(dev)) {
710 limit = intel_g4x_limit(crtc);
711 } else if (IS_PINEVIEW(dev)) {
712 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
713 limit = &intel_limits_pineview_lvds;
714 else
715 limit = &intel_limits_pineview_sdvo;
716 } else if (!IS_GEN2(dev)) {
717 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
718 limit = &intel_limits_i9xx_lvds;
719 else
720 limit = &intel_limits_i9xx_sdvo;
721 } else {
722 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
723 limit = &intel_limits_i8xx_lvds;
724 else
725 limit = &intel_limits_i8xx_dvo;
726 }
727 return limit;
728 }
729
730 /* m1 is reserved as 0 in Pineview, n is a ring counter */
731 static void pineview_clock(int refclk, intel_clock_t *clock)
732 {
733 clock->m = clock->m2 + 2;
734 clock->p = clock->p1 * clock->p2;
735 clock->vco = refclk * clock->m / clock->n;
736 clock->dot = clock->vco / clock->p;
737 }
738
739 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
740 {
741 if (IS_PINEVIEW(dev)) {
742 pineview_clock(refclk, clock);
743 return;
744 }
745 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
746 clock->p = clock->p1 * clock->p2;
747 clock->vco = refclk * clock->m / (clock->n + 2);
748 clock->dot = clock->vco / clock->p;
749 }
750
751 /**
752 * Returns whether any output on the specified pipe is of the specified type
753 */
754 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
755 {
756 struct drm_device *dev = crtc->dev;
757 struct drm_mode_config *mode_config = &dev->mode_config;
758 struct intel_encoder *encoder;
759
760 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
761 if (encoder->base.crtc == crtc && encoder->type == type)
762 return true;
763
764 return false;
765 }
766
767 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
768 /**
769 * Returns whether the given set of divisors are valid for a given refclk with
770 * the given connectors.
771 */
772
773 static bool intel_PLL_is_valid(struct drm_device *dev,
774 const intel_limit_t *limit,
775 const intel_clock_t *clock)
776 {
777 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
778 INTELPllInvalid ("p1 out of range\n");
779 if (clock->p < limit->p.min || limit->p.max < clock->p)
780 INTELPllInvalid ("p out of range\n");
781 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
782 INTELPllInvalid ("m2 out of range\n");
783 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
784 INTELPllInvalid ("m1 out of range\n");
785 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
786 INTELPllInvalid ("m1 <= m2\n");
787 if (clock->m < limit->m.min || limit->m.max < clock->m)
788 INTELPllInvalid ("m out of range\n");
789 if (clock->n < limit->n.min || limit->n.max < clock->n)
790 INTELPllInvalid ("n out of range\n");
791 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
792 INTELPllInvalid ("vco out of range\n");
793 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
794 * connector, etc., rather than just a single range.
795 */
796 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
797 INTELPllInvalid ("dot out of range\n");
798
799 return true;
800 }
801
802 static bool
803 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
804 int target, int refclk, intel_clock_t *best_clock)
805
806 {
807 struct drm_device *dev = crtc->dev;
808 struct drm_i915_private *dev_priv = dev->dev_private;
809 intel_clock_t clock;
810 int err = target;
811
812 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
813 (I915_READ(LVDS)) != 0) {
814 /*
815 * For LVDS, if the panel is on, just rely on its current
816 * settings for dual-channel. We haven't figured out how to
817 * reliably set up different single/dual channel state, if we
818 * even can.
819 */
820 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
821 LVDS_CLKB_POWER_UP)
822 clock.p2 = limit->p2.p2_fast;
823 else
824 clock.p2 = limit->p2.p2_slow;
825 } else {
826 if (target < limit->p2.dot_limit)
827 clock.p2 = limit->p2.p2_slow;
828 else
829 clock.p2 = limit->p2.p2_fast;
830 }
831
832 memset (best_clock, 0, sizeof (*best_clock));
833
834 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
835 clock.m1++) {
836 for (clock.m2 = limit->m2.min;
837 clock.m2 <= limit->m2.max; clock.m2++) {
838 /* m1 is always 0 in Pineview */
839 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
840 break;
841 for (clock.n = limit->n.min;
842 clock.n <= limit->n.max; clock.n++) {
843 for (clock.p1 = limit->p1.min;
844 clock.p1 <= limit->p1.max; clock.p1++) {
845 int this_err;
846
847 intel_clock(dev, refclk, &clock);
848 if (!intel_PLL_is_valid(dev, limit,
849 &clock))
850 continue;
851
852 this_err = abs(clock.dot - target);
853 if (this_err < err) {
854 *best_clock = clock;
855 err = this_err;
856 }
857 }
858 }
859 }
860 }
861
862 return (err != target);
863 }
864
865 static bool
866 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
867 int target, int refclk, intel_clock_t *best_clock)
868 {
869 struct drm_device *dev = crtc->dev;
870 struct drm_i915_private *dev_priv = dev->dev_private;
871 intel_clock_t clock;
872 int max_n;
873 bool found;
874 /* approximately equals target * 0.00585 */
875 int err_most = (target >> 8) + (target >> 9);
876 found = false;
877
878 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
879 int lvds_reg;
880
881 if (HAS_PCH_SPLIT(dev))
882 lvds_reg = PCH_LVDS;
883 else
884 lvds_reg = LVDS;
885 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
886 LVDS_CLKB_POWER_UP)
887 clock.p2 = limit->p2.p2_fast;
888 else
889 clock.p2 = limit->p2.p2_slow;
890 } else {
891 if (target < limit->p2.dot_limit)
892 clock.p2 = limit->p2.p2_slow;
893 else
894 clock.p2 = limit->p2.p2_fast;
895 }
896
897 memset(best_clock, 0, sizeof(*best_clock));
898 max_n = limit->n.max;
899 /* based on hardware requirement, prefer smaller n to precision */
900 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
901 /* based on hardware requirement, prefere larger m1,m2 */
902 for (clock.m1 = limit->m1.max;
903 clock.m1 >= limit->m1.min; clock.m1--) {
904 for (clock.m2 = limit->m2.max;
905 clock.m2 >= limit->m2.min; clock.m2--) {
906 for (clock.p1 = limit->p1.max;
907 clock.p1 >= limit->p1.min; clock.p1--) {
908 int this_err;
909
910 intel_clock(dev, refclk, &clock);
911 if (!intel_PLL_is_valid(dev, limit,
912 &clock))
913 continue;
914
915 this_err = abs(clock.dot - target);
916 if (this_err < err_most) {
917 *best_clock = clock;
918 err_most = this_err;
919 max_n = clock.n;
920 found = true;
921 }
922 }
923 }
924 }
925 }
926 return found;
927 }
928
929 static bool
930 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
931 int target, int refclk, intel_clock_t *best_clock)
932 {
933 struct drm_device *dev = crtc->dev;
934 intel_clock_t clock;
935
936 if (target < 200000) {
937 clock.n = 1;
938 clock.p1 = 2;
939 clock.p2 = 10;
940 clock.m1 = 12;
941 clock.m2 = 9;
942 } else {
943 clock.n = 2;
944 clock.p1 = 1;
945 clock.p2 = 10;
946 clock.m1 = 14;
947 clock.m2 = 8;
948 }
949 intel_clock(dev, refclk, &clock);
950 memcpy(best_clock, &clock, sizeof(intel_clock_t));
951 return true;
952 }
953
954 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
955 static bool
956 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
957 int target, int refclk, intel_clock_t *best_clock)
958 {
959 intel_clock_t clock;
960 if (target < 200000) {
961 clock.p1 = 2;
962 clock.p2 = 10;
963 clock.n = 2;
964 clock.m1 = 23;
965 clock.m2 = 8;
966 } else {
967 clock.p1 = 1;
968 clock.p2 = 10;
969 clock.n = 1;
970 clock.m1 = 14;
971 clock.m2 = 2;
972 }
973 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
974 clock.p = (clock.p1 * clock.p2);
975 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
976 clock.vco = 0;
977 memcpy(best_clock, &clock, sizeof(intel_clock_t));
978 return true;
979 }
980
981 /**
982 * intel_wait_for_vblank - wait for vblank on a given pipe
983 * @dev: drm device
984 * @pipe: pipe to wait for
985 *
986 * Wait for vblank to occur on a given pipe. Needed for various bits of
987 * mode setting code.
988 */
989 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
990 {
991 struct drm_i915_private *dev_priv = dev->dev_private;
992 int pipestat_reg = PIPESTAT(pipe);
993
994 /* Clear existing vblank status. Note this will clear any other
995 * sticky status fields as well.
996 *
997 * This races with i915_driver_irq_handler() with the result
998 * that either function could miss a vblank event. Here it is not
999 * fatal, as we will either wait upon the next vblank interrupt or
1000 * timeout. Generally speaking intel_wait_for_vblank() is only
1001 * called during modeset at which time the GPU should be idle and
1002 * should *not* be performing page flips and thus not waiting on
1003 * vblanks...
1004 * Currently, the result of us stealing a vblank from the irq
1005 * handler is that a single frame will be skipped during swapbuffers.
1006 */
1007 I915_WRITE(pipestat_reg,
1008 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
1009
1010 /* Wait for vblank interrupt bit to set */
1011 if (wait_for(I915_READ(pipestat_reg) &
1012 PIPE_VBLANK_INTERRUPT_STATUS,
1013 50))
1014 DRM_DEBUG_KMS("vblank wait timed out\n");
1015 }
1016
1017 /*
1018 * intel_wait_for_pipe_off - wait for pipe to turn off
1019 * @dev: drm device
1020 * @pipe: pipe to wait for
1021 *
1022 * After disabling a pipe, we can't wait for vblank in the usual way,
1023 * spinning on the vblank interrupt status bit, since we won't actually
1024 * see an interrupt when the pipe is disabled.
1025 *
1026 * On Gen4 and above:
1027 * wait for the pipe register state bit to turn off
1028 *
1029 * Otherwise:
1030 * wait for the display line value to settle (it usually
1031 * ends up stopping at the start of the next frame).
1032 *
1033 */
1034 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1035 {
1036 struct drm_i915_private *dev_priv = dev->dev_private;
1037
1038 if (INTEL_INFO(dev)->gen >= 4) {
1039 int reg = PIPECONF(pipe);
1040
1041 /* Wait for the Pipe State to go off */
1042 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1043 100))
1044 DRM_DEBUG_KMS("pipe_off wait timed out\n");
1045 } else {
1046 u32 last_line;
1047 int reg = PIPEDSL(pipe);
1048 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1049
1050 /* Wait for the display line to settle */
1051 do {
1052 last_line = I915_READ(reg) & DSL_LINEMASK;
1053 mdelay(5);
1054 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
1055 time_after(timeout, jiffies));
1056 if (time_after(jiffies, timeout))
1057 DRM_DEBUG_KMS("pipe_off wait timed out\n");
1058 }
1059 }
1060
1061 static const char *state_string(bool enabled)
1062 {
1063 return enabled ? "on" : "off";
1064 }
1065
1066 /* Only for pre-ILK configs */
1067 static void assert_pll(struct drm_i915_private *dev_priv,
1068 enum pipe pipe, bool state)
1069 {
1070 int reg;
1071 u32 val;
1072 bool cur_state;
1073
1074 reg = DPLL(pipe);
1075 val = I915_READ(reg);
1076 cur_state = !!(val & DPLL_VCO_ENABLE);
1077 WARN(cur_state != state,
1078 "PLL state assertion failure (expected %s, current %s)\n",
1079 state_string(state), state_string(cur_state));
1080 }
1081 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1082 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1083
1084 /* For ILK+ */
1085 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1086 enum pipe pipe, bool state)
1087 {
1088 int reg;
1089 u32 val;
1090 bool cur_state;
1091
1092 reg = PCH_DPLL(pipe);
1093 val = I915_READ(reg);
1094 cur_state = !!(val & DPLL_VCO_ENABLE);
1095 WARN(cur_state != state,
1096 "PCH PLL state assertion failure (expected %s, current %s)\n",
1097 state_string(state), state_string(cur_state));
1098 }
1099 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
1100 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
1101
1102 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1103 enum pipe pipe, bool state)
1104 {
1105 int reg;
1106 u32 val;
1107 bool cur_state;
1108
1109 reg = FDI_TX_CTL(pipe);
1110 val = I915_READ(reg);
1111 cur_state = !!(val & FDI_TX_ENABLE);
1112 WARN(cur_state != state,
1113 "FDI TX state assertion failure (expected %s, current %s)\n",
1114 state_string(state), state_string(cur_state));
1115 }
1116 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1117 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1118
1119 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1120 enum pipe pipe, bool state)
1121 {
1122 int reg;
1123 u32 val;
1124 bool cur_state;
1125
1126 reg = FDI_RX_CTL(pipe);
1127 val = I915_READ(reg);
1128 cur_state = !!(val & FDI_RX_ENABLE);
1129 WARN(cur_state != state,
1130 "FDI RX state assertion failure (expected %s, current %s)\n",
1131 state_string(state), state_string(cur_state));
1132 }
1133 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1134 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1135
1136 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1137 enum pipe pipe)
1138 {
1139 int reg;
1140 u32 val;
1141
1142 /* ILK FDI PLL is always enabled */
1143 if (dev_priv->info->gen == 5)
1144 return;
1145
1146 reg = FDI_TX_CTL(pipe);
1147 val = I915_READ(reg);
1148 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1149 }
1150
1151 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1152 enum pipe pipe)
1153 {
1154 int reg;
1155 u32 val;
1156
1157 reg = FDI_RX_CTL(pipe);
1158 val = I915_READ(reg);
1159 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1160 }
1161
1162 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1163 enum pipe pipe)
1164 {
1165 int pp_reg, lvds_reg;
1166 u32 val;
1167 enum pipe panel_pipe = PIPE_A;
1168 bool locked = locked;
1169
1170 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1171 pp_reg = PCH_PP_CONTROL;
1172 lvds_reg = PCH_LVDS;
1173 } else {
1174 pp_reg = PP_CONTROL;
1175 lvds_reg = LVDS;
1176 }
1177
1178 val = I915_READ(pp_reg);
1179 if (!(val & PANEL_POWER_ON) ||
1180 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1181 locked = false;
1182
1183 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1184 panel_pipe = PIPE_B;
1185
1186 WARN(panel_pipe == pipe && locked,
1187 "panel assertion failure, pipe %c regs locked\n",
1188 pipe_name(pipe));
1189 }
1190
1191 static void assert_pipe(struct drm_i915_private *dev_priv,
1192 enum pipe pipe, bool state)
1193 {
1194 int reg;
1195 u32 val;
1196 bool cur_state;
1197
1198 reg = PIPECONF(pipe);
1199 val = I915_READ(reg);
1200 cur_state = !!(val & PIPECONF_ENABLE);
1201 WARN(cur_state != state,
1202 "pipe %c assertion failure (expected %s, current %s)\n",
1203 pipe_name(pipe), state_string(state), state_string(cur_state));
1204 }
1205 #define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
1206 #define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
1207
1208 static void assert_plane_enabled(struct drm_i915_private *dev_priv,
1209 enum plane plane)
1210 {
1211 int reg;
1212 u32 val;
1213
1214 reg = DSPCNTR(plane);
1215 val = I915_READ(reg);
1216 WARN(!(val & DISPLAY_PLANE_ENABLE),
1217 "plane %c assertion failure, should be active but is disabled\n",
1218 plane_name(plane));
1219 }
1220
1221 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1222 enum pipe pipe)
1223 {
1224 int reg, i;
1225 u32 val;
1226 int cur_pipe;
1227
1228 /* Planes are fixed to pipes on ILK+ */
1229 if (HAS_PCH_SPLIT(dev_priv->dev))
1230 return;
1231
1232 /* Need to check both planes against the pipe */
1233 for (i = 0; i < 2; i++) {
1234 reg = DSPCNTR(i);
1235 val = I915_READ(reg);
1236 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1237 DISPPLANE_SEL_PIPE_SHIFT;
1238 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1239 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1240 plane_name(i), pipe_name(pipe));
1241 }
1242 }
1243
1244 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1245 {
1246 u32 val;
1247 bool enabled;
1248
1249 val = I915_READ(PCH_DREF_CONTROL);
1250 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1251 DREF_SUPERSPREAD_SOURCE_MASK));
1252 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1253 }
1254
1255 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1256 enum pipe pipe)
1257 {
1258 int reg;
1259 u32 val;
1260 bool enabled;
1261
1262 reg = TRANSCONF(pipe);
1263 val = I915_READ(reg);
1264 enabled = !!(val & TRANS_ENABLE);
1265 WARN(enabled,
1266 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1267 pipe_name(pipe));
1268 }
1269
1270 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1271 enum pipe pipe, int reg)
1272 {
1273 u32 val = I915_READ(reg);
1274 WARN(DP_PIPE_ENABLED(val, pipe),
1275 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1276 reg, pipe_name(pipe));
1277 }
1278
1279 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1280 enum pipe pipe, int reg)
1281 {
1282 u32 val = I915_READ(reg);
1283 WARN(HDMI_PIPE_ENABLED(val, pipe),
1284 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1285 reg, pipe_name(pipe));
1286 }
1287
1288 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1289 enum pipe pipe)
1290 {
1291 int reg;
1292 u32 val;
1293
1294 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B);
1295 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C);
1296 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D);
1297
1298 reg = PCH_ADPA;
1299 val = I915_READ(reg);
1300 WARN(ADPA_PIPE_ENABLED(val, pipe),
1301 "PCH VGA enabled on transcoder %c, should be disabled\n",
1302 pipe_name(pipe));
1303
1304 reg = PCH_LVDS;
1305 val = I915_READ(reg);
1306 WARN(LVDS_PIPE_ENABLED(val, pipe),
1307 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1308 pipe_name(pipe));
1309
1310 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1311 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1312 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1313 }
1314
1315 /**
1316 * intel_enable_pll - enable a PLL
1317 * @dev_priv: i915 private structure
1318 * @pipe: pipe PLL to enable
1319 *
1320 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1321 * make sure the PLL reg is writable first though, since the panel write
1322 * protect mechanism may be enabled.
1323 *
1324 * Note! This is for pre-ILK only.
1325 */
1326 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1327 {
1328 int reg;
1329 u32 val;
1330
1331 /* No really, not for ILK+ */
1332 BUG_ON(dev_priv->info->gen >= 5);
1333
1334 /* PLL is protected by panel, make sure we can write it */
1335 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1336 assert_panel_unlocked(dev_priv, pipe);
1337
1338 reg = DPLL(pipe);
1339 val = I915_READ(reg);
1340 val |= DPLL_VCO_ENABLE;
1341
1342 /* We do this three times for luck */
1343 I915_WRITE(reg, val);
1344 POSTING_READ(reg);
1345 udelay(150); /* wait for warmup */
1346 I915_WRITE(reg, val);
1347 POSTING_READ(reg);
1348 udelay(150); /* wait for warmup */
1349 I915_WRITE(reg, val);
1350 POSTING_READ(reg);
1351 udelay(150); /* wait for warmup */
1352 }
1353
1354 /**
1355 * intel_disable_pll - disable a PLL
1356 * @dev_priv: i915 private structure
1357 * @pipe: pipe PLL to disable
1358 *
1359 * Disable the PLL for @pipe, making sure the pipe is off first.
1360 *
1361 * Note! This is for pre-ILK only.
1362 */
1363 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1364 {
1365 int reg;
1366 u32 val;
1367
1368 /* Don't disable pipe A or pipe A PLLs if needed */
1369 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1370 return;
1371
1372 /* Make sure the pipe isn't still relying on us */
1373 assert_pipe_disabled(dev_priv, pipe);
1374
1375 reg = DPLL(pipe);
1376 val = I915_READ(reg);
1377 val &= ~DPLL_VCO_ENABLE;
1378 I915_WRITE(reg, val);
1379 POSTING_READ(reg);
1380 }
1381
1382 /**
1383 * intel_enable_pch_pll - enable PCH PLL
1384 * @dev_priv: i915 private structure
1385 * @pipe: pipe PLL to enable
1386 *
1387 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1388 * drives the transcoder clock.
1389 */
1390 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1391 enum pipe pipe)
1392 {
1393 int reg;
1394 u32 val;
1395
1396 /* PCH only available on ILK+ */
1397 BUG_ON(dev_priv->info->gen < 5);
1398
1399 /* PCH refclock must be enabled first */
1400 assert_pch_refclk_enabled(dev_priv);
1401
1402 reg = PCH_DPLL(pipe);
1403 val = I915_READ(reg);
1404 val |= DPLL_VCO_ENABLE;
1405 I915_WRITE(reg, val);
1406 POSTING_READ(reg);
1407 udelay(200);
1408 }
1409
1410 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1411 enum pipe pipe)
1412 {
1413 int reg;
1414 u32 val;
1415
1416 /* PCH only available on ILK+ */
1417 BUG_ON(dev_priv->info->gen < 5);
1418
1419 /* Make sure transcoder isn't still depending on us */
1420 assert_transcoder_disabled(dev_priv, pipe);
1421
1422 reg = PCH_DPLL(pipe);
1423 val = I915_READ(reg);
1424 val &= ~DPLL_VCO_ENABLE;
1425 I915_WRITE(reg, val);
1426 POSTING_READ(reg);
1427 udelay(200);
1428 }
1429
1430 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1431 enum pipe pipe)
1432 {
1433 int reg;
1434 u32 val;
1435
1436 /* PCH only available on ILK+ */
1437 BUG_ON(dev_priv->info->gen < 5);
1438
1439 /* Make sure PCH DPLL is enabled */
1440 assert_pch_pll_enabled(dev_priv, pipe);
1441
1442 /* FDI must be feeding us bits for PCH ports */
1443 assert_fdi_tx_enabled(dev_priv, pipe);
1444 assert_fdi_rx_enabled(dev_priv, pipe);
1445
1446 reg = TRANSCONF(pipe);
1447 val = I915_READ(reg);
1448 /*
1449 * make the BPC in transcoder be consistent with
1450 * that in pipeconf reg.
1451 */
1452 val &= ~PIPE_BPC_MASK;
1453 val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1454 I915_WRITE(reg, val | TRANS_ENABLE);
1455 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1456 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1457 }
1458
1459 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1460 enum pipe pipe)
1461 {
1462 int reg;
1463 u32 val;
1464
1465 /* FDI relies on the transcoder */
1466 assert_fdi_tx_disabled(dev_priv, pipe);
1467 assert_fdi_rx_disabled(dev_priv, pipe);
1468
1469 /* Ports must be off as well */
1470 assert_pch_ports_disabled(dev_priv, pipe);
1471
1472 reg = TRANSCONF(pipe);
1473 val = I915_READ(reg);
1474 val &= ~TRANS_ENABLE;
1475 I915_WRITE(reg, val);
1476 /* wait for PCH transcoder off, transcoder state */
1477 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1478 DRM_ERROR("failed to disable transcoder\n");
1479 }
1480
1481 /**
1482 * intel_enable_pipe - enable a pipe, asserting requirements
1483 * @dev_priv: i915 private structure
1484 * @pipe: pipe to enable
1485 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1486 *
1487 * Enable @pipe, making sure that various hardware specific requirements
1488 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1489 *
1490 * @pipe should be %PIPE_A or %PIPE_B.
1491 *
1492 * Will wait until the pipe is actually running (i.e. first vblank) before
1493 * returning.
1494 */
1495 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1496 bool pch_port)
1497 {
1498 int reg;
1499 u32 val;
1500
1501 /*
1502 * A pipe without a PLL won't actually be able to drive bits from
1503 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1504 * need the check.
1505 */
1506 if (!HAS_PCH_SPLIT(dev_priv->dev))
1507 assert_pll_enabled(dev_priv, pipe);
1508 else {
1509 if (pch_port) {
1510 /* if driving the PCH, we need FDI enabled */
1511 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1512 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1513 }
1514 /* FIXME: assert CPU port conditions for SNB+ */
1515 }
1516
1517 reg = PIPECONF(pipe);
1518 val = I915_READ(reg);
1519 if (val & PIPECONF_ENABLE)
1520 return;
1521
1522 I915_WRITE(reg, val | PIPECONF_ENABLE);
1523 intel_wait_for_vblank(dev_priv->dev, pipe);
1524 }
1525
1526 /**
1527 * intel_disable_pipe - disable a pipe, asserting requirements
1528 * @dev_priv: i915 private structure
1529 * @pipe: pipe to disable
1530 *
1531 * Disable @pipe, making sure that various hardware specific requirements
1532 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1533 *
1534 * @pipe should be %PIPE_A or %PIPE_B.
1535 *
1536 * Will wait until the pipe has shut down before returning.
1537 */
1538 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1539 enum pipe pipe)
1540 {
1541 int reg;
1542 u32 val;
1543
1544 /*
1545 * Make sure planes won't keep trying to pump pixels to us,
1546 * or we might hang the display.
1547 */
1548 assert_planes_disabled(dev_priv, pipe);
1549
1550 /* Don't disable pipe A or pipe A PLLs if needed */
1551 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1552 return;
1553
1554 reg = PIPECONF(pipe);
1555 val = I915_READ(reg);
1556 if ((val & PIPECONF_ENABLE) == 0)
1557 return;
1558
1559 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1560 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1561 }
1562
1563 /**
1564 * intel_enable_plane - enable a display plane on a given pipe
1565 * @dev_priv: i915 private structure
1566 * @plane: plane to enable
1567 * @pipe: pipe being fed
1568 *
1569 * Enable @plane on @pipe, making sure that @pipe is running first.
1570 */
1571 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1572 enum plane plane, enum pipe pipe)
1573 {
1574 int reg;
1575 u32 val;
1576
1577 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1578 assert_pipe_enabled(dev_priv, pipe);
1579
1580 reg = DSPCNTR(plane);
1581 val = I915_READ(reg);
1582 if (val & DISPLAY_PLANE_ENABLE)
1583 return;
1584
1585 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1586 intel_wait_for_vblank(dev_priv->dev, pipe);
1587 }
1588
1589 /*
1590 * Plane regs are double buffered, going from enabled->disabled needs a
1591 * trigger in order to latch. The display address reg provides this.
1592 */
1593 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1594 enum plane plane)
1595 {
1596 u32 reg = DSPADDR(plane);
1597 I915_WRITE(reg, I915_READ(reg));
1598 }
1599
1600 /**
1601 * intel_disable_plane - disable a display plane
1602 * @dev_priv: i915 private structure
1603 * @plane: plane to disable
1604 * @pipe: pipe consuming the data
1605 *
1606 * Disable @plane; should be an independent operation.
1607 */
1608 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1609 enum plane plane, enum pipe pipe)
1610 {
1611 int reg;
1612 u32 val;
1613
1614 reg = DSPCNTR(plane);
1615 val = I915_READ(reg);
1616 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1617 return;
1618
1619 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1620 intel_flush_display_plane(dev_priv, plane);
1621 intel_wait_for_vblank(dev_priv->dev, pipe);
1622 }
1623
1624 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1625 enum pipe pipe, int reg)
1626 {
1627 u32 val = I915_READ(reg);
1628 if (DP_PIPE_ENABLED(val, pipe))
1629 I915_WRITE(reg, val & ~DP_PORT_EN);
1630 }
1631
1632 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1633 enum pipe pipe, int reg)
1634 {
1635 u32 val = I915_READ(reg);
1636 if (HDMI_PIPE_ENABLED(val, pipe))
1637 I915_WRITE(reg, val & ~PORT_ENABLE);
1638 }
1639
1640 /* Disable any ports connected to this transcoder */
1641 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1642 enum pipe pipe)
1643 {
1644 u32 reg, val;
1645
1646 val = I915_READ(PCH_PP_CONTROL);
1647 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1648
1649 disable_pch_dp(dev_priv, pipe, PCH_DP_B);
1650 disable_pch_dp(dev_priv, pipe, PCH_DP_C);
1651 disable_pch_dp(dev_priv, pipe, PCH_DP_D);
1652
1653 reg = PCH_ADPA;
1654 val = I915_READ(reg);
1655 if (ADPA_PIPE_ENABLED(val, pipe))
1656 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1657
1658 reg = PCH_LVDS;
1659 val = I915_READ(reg);
1660 if (LVDS_PIPE_ENABLED(val, pipe)) {
1661 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1662 POSTING_READ(reg);
1663 udelay(100);
1664 }
1665
1666 disable_pch_hdmi(dev_priv, pipe, HDMIB);
1667 disable_pch_hdmi(dev_priv, pipe, HDMIC);
1668 disable_pch_hdmi(dev_priv, pipe, HDMID);
1669 }
1670
1671 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1672 {
1673 struct drm_device *dev = crtc->dev;
1674 struct drm_i915_private *dev_priv = dev->dev_private;
1675 struct drm_framebuffer *fb = crtc->fb;
1676 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1677 struct drm_i915_gem_object *obj = intel_fb->obj;
1678 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1679 int plane, i;
1680 u32 fbc_ctl, fbc_ctl2;
1681
1682 if (fb->pitch == dev_priv->cfb_pitch &&
1683 obj->fence_reg == dev_priv->cfb_fence &&
1684 intel_crtc->plane == dev_priv->cfb_plane &&
1685 I915_READ(FBC_CONTROL) & FBC_CTL_EN)
1686 return;
1687
1688 i8xx_disable_fbc(dev);
1689
1690 dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1691
1692 if (fb->pitch < dev_priv->cfb_pitch)
1693 dev_priv->cfb_pitch = fb->pitch;
1694
1695 /* FBC_CTL wants 64B units */
1696 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1697 dev_priv->cfb_fence = obj->fence_reg;
1698 dev_priv->cfb_plane = intel_crtc->plane;
1699 plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1700
1701 /* Clear old tags */
1702 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1703 I915_WRITE(FBC_TAG + (i * 4), 0);
1704
1705 /* Set it up... */
1706 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1707 if (obj->tiling_mode != I915_TILING_NONE)
1708 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1709 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1710 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1711
1712 /* enable it... */
1713 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1714 if (IS_I945GM(dev))
1715 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1716 fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1717 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1718 if (obj->tiling_mode != I915_TILING_NONE)
1719 fbc_ctl |= dev_priv->cfb_fence;
1720 I915_WRITE(FBC_CONTROL, fbc_ctl);
1721
1722 DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1723 dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1724 }
1725
1726 void i8xx_disable_fbc(struct drm_device *dev)
1727 {
1728 struct drm_i915_private *dev_priv = dev->dev_private;
1729 u32 fbc_ctl;
1730
1731 /* Disable compression */
1732 fbc_ctl = I915_READ(FBC_CONTROL);
1733 if ((fbc_ctl & FBC_CTL_EN) == 0)
1734 return;
1735
1736 fbc_ctl &= ~FBC_CTL_EN;
1737 I915_WRITE(FBC_CONTROL, fbc_ctl);
1738
1739 /* Wait for compressing bit to clear */
1740 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1741 DRM_DEBUG_KMS("FBC idle timed out\n");
1742 return;
1743 }
1744
1745 DRM_DEBUG_KMS("disabled FBC\n");
1746 }
1747
1748 static bool i8xx_fbc_enabled(struct drm_device *dev)
1749 {
1750 struct drm_i915_private *dev_priv = dev->dev_private;
1751
1752 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1753 }
1754
1755 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1756 {
1757 struct drm_device *dev = crtc->dev;
1758 struct drm_i915_private *dev_priv = dev->dev_private;
1759 struct drm_framebuffer *fb = crtc->fb;
1760 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1761 struct drm_i915_gem_object *obj = intel_fb->obj;
1762 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1763 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1764 unsigned long stall_watermark = 200;
1765 u32 dpfc_ctl;
1766
1767 dpfc_ctl = I915_READ(DPFC_CONTROL);
1768 if (dpfc_ctl & DPFC_CTL_EN) {
1769 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1770 dev_priv->cfb_fence == obj->fence_reg &&
1771 dev_priv->cfb_plane == intel_crtc->plane &&
1772 dev_priv->cfb_y == crtc->y)
1773 return;
1774
1775 I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1776 intel_wait_for_vblank(dev, intel_crtc->pipe);
1777 }
1778
1779 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1780 dev_priv->cfb_fence = obj->fence_reg;
1781 dev_priv->cfb_plane = intel_crtc->plane;
1782 dev_priv->cfb_y = crtc->y;
1783
1784 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1785 if (obj->tiling_mode != I915_TILING_NONE) {
1786 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1787 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1788 } else {
1789 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1790 }
1791
1792 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1793 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1794 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1795 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1796
1797 /* enable it... */
1798 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1799
1800 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1801 }
1802
1803 void g4x_disable_fbc(struct drm_device *dev)
1804 {
1805 struct drm_i915_private *dev_priv = dev->dev_private;
1806 u32 dpfc_ctl;
1807
1808 /* Disable compression */
1809 dpfc_ctl = I915_READ(DPFC_CONTROL);
1810 if (dpfc_ctl & DPFC_CTL_EN) {
1811 dpfc_ctl &= ~DPFC_CTL_EN;
1812 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1813
1814 DRM_DEBUG_KMS("disabled FBC\n");
1815 }
1816 }
1817
1818 static bool g4x_fbc_enabled(struct drm_device *dev)
1819 {
1820 struct drm_i915_private *dev_priv = dev->dev_private;
1821
1822 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1823 }
1824
1825 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1826 {
1827 struct drm_i915_private *dev_priv = dev->dev_private;
1828 u32 blt_ecoskpd;
1829
1830 /* Make sure blitter notifies FBC of writes */
1831 __gen6_gt_force_wake_get(dev_priv);
1832 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1833 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1834 GEN6_BLITTER_LOCK_SHIFT;
1835 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1836 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1837 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1838 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1839 GEN6_BLITTER_LOCK_SHIFT);
1840 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1841 POSTING_READ(GEN6_BLITTER_ECOSKPD);
1842 __gen6_gt_force_wake_put(dev_priv);
1843 }
1844
1845 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1846 {
1847 struct drm_device *dev = crtc->dev;
1848 struct drm_i915_private *dev_priv = dev->dev_private;
1849 struct drm_framebuffer *fb = crtc->fb;
1850 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1851 struct drm_i915_gem_object *obj = intel_fb->obj;
1852 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1853 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1854 unsigned long stall_watermark = 200;
1855 u32 dpfc_ctl;
1856
1857 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1858 if (dpfc_ctl & DPFC_CTL_EN) {
1859 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1860 dev_priv->cfb_fence == obj->fence_reg &&
1861 dev_priv->cfb_plane == intel_crtc->plane &&
1862 dev_priv->cfb_offset == obj->gtt_offset &&
1863 dev_priv->cfb_y == crtc->y)
1864 return;
1865
1866 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1867 intel_wait_for_vblank(dev, intel_crtc->pipe);
1868 }
1869
1870 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1871 dev_priv->cfb_fence = obj->fence_reg;
1872 dev_priv->cfb_plane = intel_crtc->plane;
1873 dev_priv->cfb_offset = obj->gtt_offset;
1874 dev_priv->cfb_y = crtc->y;
1875
1876 dpfc_ctl &= DPFC_RESERVED;
1877 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1878 if (obj->tiling_mode != I915_TILING_NONE) {
1879 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1880 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1881 } else {
1882 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1883 }
1884
1885 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1886 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1887 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1888 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1889 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1890 /* enable it... */
1891 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1892
1893 if (IS_GEN6(dev)) {
1894 I915_WRITE(SNB_DPFC_CTL_SA,
1895 SNB_CPU_FENCE_ENABLE | dev_priv->cfb_fence);
1896 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1897 sandybridge_blit_fbc_update(dev);
1898 }
1899
1900 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1901 }
1902
1903 void ironlake_disable_fbc(struct drm_device *dev)
1904 {
1905 struct drm_i915_private *dev_priv = dev->dev_private;
1906 u32 dpfc_ctl;
1907
1908 /* Disable compression */
1909 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1910 if (dpfc_ctl & DPFC_CTL_EN) {
1911 dpfc_ctl &= ~DPFC_CTL_EN;
1912 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1913
1914 DRM_DEBUG_KMS("disabled FBC\n");
1915 }
1916 }
1917
1918 static bool ironlake_fbc_enabled(struct drm_device *dev)
1919 {
1920 struct drm_i915_private *dev_priv = dev->dev_private;
1921
1922 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1923 }
1924
1925 bool intel_fbc_enabled(struct drm_device *dev)
1926 {
1927 struct drm_i915_private *dev_priv = dev->dev_private;
1928
1929 if (!dev_priv->display.fbc_enabled)
1930 return false;
1931
1932 return dev_priv->display.fbc_enabled(dev);
1933 }
1934
1935 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1936 {
1937 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1938
1939 if (!dev_priv->display.enable_fbc)
1940 return;
1941
1942 dev_priv->display.enable_fbc(crtc, interval);
1943 }
1944
1945 void intel_disable_fbc(struct drm_device *dev)
1946 {
1947 struct drm_i915_private *dev_priv = dev->dev_private;
1948
1949 if (!dev_priv->display.disable_fbc)
1950 return;
1951
1952 dev_priv->display.disable_fbc(dev);
1953 }
1954
1955 /**
1956 * intel_update_fbc - enable/disable FBC as needed
1957 * @dev: the drm_device
1958 *
1959 * Set up the framebuffer compression hardware at mode set time. We
1960 * enable it if possible:
1961 * - plane A only (on pre-965)
1962 * - no pixel mulitply/line duplication
1963 * - no alpha buffer discard
1964 * - no dual wide
1965 * - framebuffer <= 2048 in width, 1536 in height
1966 *
1967 * We can't assume that any compression will take place (worst case),
1968 * so the compressed buffer has to be the same size as the uncompressed
1969 * one. It also must reside (along with the line length buffer) in
1970 * stolen memory.
1971 *
1972 * We need to enable/disable FBC on a global basis.
1973 */
1974 static void intel_update_fbc(struct drm_device *dev)
1975 {
1976 struct drm_i915_private *dev_priv = dev->dev_private;
1977 struct drm_crtc *crtc = NULL, *tmp_crtc;
1978 struct intel_crtc *intel_crtc;
1979 struct drm_framebuffer *fb;
1980 struct intel_framebuffer *intel_fb;
1981 struct drm_i915_gem_object *obj;
1982
1983 DRM_DEBUG_KMS("\n");
1984
1985 if (!i915_powersave)
1986 return;
1987
1988 if (!I915_HAS_FBC(dev))
1989 return;
1990
1991 /*
1992 * If FBC is already on, we just have to verify that we can
1993 * keep it that way...
1994 * Need to disable if:
1995 * - more than one pipe is active
1996 * - changing FBC params (stride, fence, mode)
1997 * - new fb is too large to fit in compressed buffer
1998 * - going to an unsupported config (interlace, pixel multiply, etc.)
1999 */
2000 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
2001 if (tmp_crtc->enabled && tmp_crtc->fb) {
2002 if (crtc) {
2003 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
2004 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
2005 goto out_disable;
2006 }
2007 crtc = tmp_crtc;
2008 }
2009 }
2010
2011 if (!crtc || crtc->fb == NULL) {
2012 DRM_DEBUG_KMS("no output, disabling\n");
2013 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
2014 goto out_disable;
2015 }
2016
2017 intel_crtc = to_intel_crtc(crtc);
2018 fb = crtc->fb;
2019 intel_fb = to_intel_framebuffer(fb);
2020 obj = intel_fb->obj;
2021
2022 if (intel_fb->obj->base.size > dev_priv->cfb_size) {
2023 DRM_DEBUG_KMS("framebuffer too large, disabling "
2024 "compression\n");
2025 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
2026 goto out_disable;
2027 }
2028 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
2029 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
2030 DRM_DEBUG_KMS("mode incompatible with compression, "
2031 "disabling\n");
2032 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
2033 goto out_disable;
2034 }
2035 if ((crtc->mode.hdisplay > 2048) ||
2036 (crtc->mode.vdisplay > 1536)) {
2037 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
2038 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
2039 goto out_disable;
2040 }
2041 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
2042 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
2043 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
2044 goto out_disable;
2045 }
2046 if (obj->tiling_mode != I915_TILING_X) {
2047 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
2048 dev_priv->no_fbc_reason = FBC_NOT_TILED;
2049 goto out_disable;
2050 }
2051
2052 /* If the kernel debugger is active, always disable compression */
2053 if (in_dbg_master())
2054 goto out_disable;
2055
2056 intel_enable_fbc(crtc, 500);
2057 return;
2058
2059 out_disable:
2060 /* Multiple disables should be harmless */
2061 if (intel_fbc_enabled(dev)) {
2062 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
2063 intel_disable_fbc(dev);
2064 }
2065 }
2066
2067 int
2068 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2069 struct drm_i915_gem_object *obj,
2070 struct intel_ring_buffer *pipelined)
2071 {
2072 struct drm_i915_private *dev_priv = dev->dev_private;
2073 u32 alignment;
2074 int ret;
2075
2076 switch (obj->tiling_mode) {
2077 case I915_TILING_NONE:
2078 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2079 alignment = 128 * 1024;
2080 else if (INTEL_INFO(dev)->gen >= 4)
2081 alignment = 4 * 1024;
2082 else
2083 alignment = 64 * 1024;
2084 break;
2085 case I915_TILING_X:
2086 /* pin() will align the object as required by fence */
2087 alignment = 0;
2088 break;
2089 case I915_TILING_Y:
2090 /* FIXME: Is this true? */
2091 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
2092 return -EINVAL;
2093 default:
2094 BUG();
2095 }
2096
2097 dev_priv->mm.interruptible = false;
2098 ret = i915_gem_object_pin(obj, alignment, true);
2099 if (ret)
2100 goto err_interruptible;
2101
2102 ret = i915_gem_object_set_to_display_plane(obj, pipelined);
2103 if (ret)
2104 goto err_unpin;
2105
2106 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2107 * fence, whereas 965+ only requires a fence if using
2108 * framebuffer compression. For simplicity, we always install
2109 * a fence as the cost is not that onerous.
2110 */
2111 if (obj->tiling_mode != I915_TILING_NONE) {
2112 ret = i915_gem_object_get_fence(obj, pipelined);
2113 if (ret)
2114 goto err_unpin;
2115 }
2116
2117 dev_priv->mm.interruptible = true;
2118 return 0;
2119
2120 err_unpin:
2121 i915_gem_object_unpin(obj);
2122 err_interruptible:
2123 dev_priv->mm.interruptible = true;
2124 return ret;
2125 }
2126
2127 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2128 static int
2129 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2130 int x, int y, enum mode_set_atomic state)
2131 {
2132 struct drm_device *dev = crtc->dev;
2133 struct drm_i915_private *dev_priv = dev->dev_private;
2134 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2135 struct intel_framebuffer *intel_fb;
2136 struct drm_i915_gem_object *obj;
2137 int plane = intel_crtc->plane;
2138 unsigned long Start, Offset;
2139 u32 dspcntr;
2140 u32 reg;
2141
2142 switch (plane) {
2143 case 0:
2144 case 1:
2145 break;
2146 default:
2147 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2148 return -EINVAL;
2149 }
2150
2151 intel_fb = to_intel_framebuffer(fb);
2152 obj = intel_fb->obj;
2153
2154 reg = DSPCNTR(plane);
2155 dspcntr = I915_READ(reg);
2156 /* Mask out pixel format bits in case we change it */
2157 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2158 switch (fb->bits_per_pixel) {
2159 case 8:
2160 dspcntr |= DISPPLANE_8BPP;
2161 break;
2162 case 16:
2163 if (fb->depth == 15)
2164 dspcntr |= DISPPLANE_15_16BPP;
2165 else
2166 dspcntr |= DISPPLANE_16BPP;
2167 break;
2168 case 24:
2169 case 32:
2170 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2171 break;
2172 default:
2173 DRM_ERROR("Unknown color depth\n");
2174 return -EINVAL;
2175 }
2176 if (INTEL_INFO(dev)->gen >= 4) {
2177 if (obj->tiling_mode != I915_TILING_NONE)
2178 dspcntr |= DISPPLANE_TILED;
2179 else
2180 dspcntr &= ~DISPPLANE_TILED;
2181 }
2182
2183 if (HAS_PCH_SPLIT(dev))
2184 /* must disable */
2185 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2186
2187 I915_WRITE(reg, dspcntr);
2188
2189 Start = obj->gtt_offset;
2190 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2191
2192 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2193 Start, Offset, x, y, fb->pitch);
2194 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
2195 if (INTEL_INFO(dev)->gen >= 4) {
2196 I915_WRITE(DSPSURF(plane), Start);
2197 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2198 I915_WRITE(DSPADDR(plane), Offset);
2199 } else
2200 I915_WRITE(DSPADDR(plane), Start + Offset);
2201 POSTING_READ(reg);
2202
2203 intel_update_fbc(dev);
2204 intel_increase_pllclock(crtc);
2205
2206 return 0;
2207 }
2208
2209 static int
2210 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2211 struct drm_framebuffer *old_fb)
2212 {
2213 struct drm_device *dev = crtc->dev;
2214 struct drm_i915_master_private *master_priv;
2215 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2216 int ret;
2217
2218 /* no fb bound */
2219 if (!crtc->fb) {
2220 DRM_DEBUG_KMS("No FB bound\n");
2221 return 0;
2222 }
2223
2224 switch (intel_crtc->plane) {
2225 case 0:
2226 case 1:
2227 break;
2228 default:
2229 return -EINVAL;
2230 }
2231
2232 mutex_lock(&dev->struct_mutex);
2233 ret = intel_pin_and_fence_fb_obj(dev,
2234 to_intel_framebuffer(crtc->fb)->obj,
2235 NULL);
2236 if (ret != 0) {
2237 mutex_unlock(&dev->struct_mutex);
2238 return ret;
2239 }
2240
2241 if (old_fb) {
2242 struct drm_i915_private *dev_priv = dev->dev_private;
2243 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2244
2245 wait_event(dev_priv->pending_flip_queue,
2246 atomic_read(&dev_priv->mm.wedged) ||
2247 atomic_read(&obj->pending_flip) == 0);
2248
2249 /* Big Hammer, we also need to ensure that any pending
2250 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2251 * current scanout is retired before unpinning the old
2252 * framebuffer.
2253 *
2254 * This should only fail upon a hung GPU, in which case we
2255 * can safely continue.
2256 */
2257 ret = i915_gem_object_flush_gpu(obj);
2258 (void) ret;
2259 }
2260
2261 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2262 LEAVE_ATOMIC_MODE_SET);
2263 if (ret) {
2264 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2265 mutex_unlock(&dev->struct_mutex);
2266 return ret;
2267 }
2268
2269 if (old_fb) {
2270 intel_wait_for_vblank(dev, intel_crtc->pipe);
2271 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
2272 }
2273
2274 mutex_unlock(&dev->struct_mutex);
2275
2276 if (!dev->primary->master)
2277 return 0;
2278
2279 master_priv = dev->primary->master->driver_priv;
2280 if (!master_priv->sarea_priv)
2281 return 0;
2282
2283 if (intel_crtc->pipe) {
2284 master_priv->sarea_priv->pipeB_x = x;
2285 master_priv->sarea_priv->pipeB_y = y;
2286 } else {
2287 master_priv->sarea_priv->pipeA_x = x;
2288 master_priv->sarea_priv->pipeA_y = y;
2289 }
2290
2291 return 0;
2292 }
2293
2294 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2295 {
2296 struct drm_device *dev = crtc->dev;
2297 struct drm_i915_private *dev_priv = dev->dev_private;
2298 u32 dpa_ctl;
2299
2300 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2301 dpa_ctl = I915_READ(DP_A);
2302 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2303
2304 if (clock < 200000) {
2305 u32 temp;
2306 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2307 /* workaround for 160Mhz:
2308 1) program 0x4600c bits 15:0 = 0x8124
2309 2) program 0x46010 bit 0 = 1
2310 3) program 0x46034 bit 24 = 1
2311 4) program 0x64000 bit 14 = 1
2312 */
2313 temp = I915_READ(0x4600c);
2314 temp &= 0xffff0000;
2315 I915_WRITE(0x4600c, temp | 0x8124);
2316
2317 temp = I915_READ(0x46010);
2318 I915_WRITE(0x46010, temp | 1);
2319
2320 temp = I915_READ(0x46034);
2321 I915_WRITE(0x46034, temp | (1 << 24));
2322 } else {
2323 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2324 }
2325 I915_WRITE(DP_A, dpa_ctl);
2326
2327 POSTING_READ(DP_A);
2328 udelay(500);
2329 }
2330
2331 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2332 {
2333 struct drm_device *dev = crtc->dev;
2334 struct drm_i915_private *dev_priv = dev->dev_private;
2335 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2336 int pipe = intel_crtc->pipe;
2337 u32 reg, temp;
2338
2339 /* enable normal train */
2340 reg = FDI_TX_CTL(pipe);
2341 temp = I915_READ(reg);
2342 temp &= ~FDI_LINK_TRAIN_NONE;
2343 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2344 I915_WRITE(reg, temp);
2345
2346 reg = FDI_RX_CTL(pipe);
2347 temp = I915_READ(reg);
2348 if (HAS_PCH_CPT(dev)) {
2349 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2350 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2351 } else {
2352 temp &= ~FDI_LINK_TRAIN_NONE;
2353 temp |= FDI_LINK_TRAIN_NONE;
2354 }
2355 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2356
2357 /* wait one idle pattern time */
2358 POSTING_READ(reg);
2359 udelay(1000);
2360 }
2361
2362 /* The FDI link training functions for ILK/Ibexpeak. */
2363 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2364 {
2365 struct drm_device *dev = crtc->dev;
2366 struct drm_i915_private *dev_priv = dev->dev_private;
2367 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2368 int pipe = intel_crtc->pipe;
2369 int plane = intel_crtc->plane;
2370 u32 reg, temp, tries;
2371
2372 /* FDI needs bits from pipe & plane first */
2373 assert_pipe_enabled(dev_priv, pipe);
2374 assert_plane_enabled(dev_priv, plane);
2375
2376 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2377 for train result */
2378 reg = FDI_RX_IMR(pipe);
2379 temp = I915_READ(reg);
2380 temp &= ~FDI_RX_SYMBOL_LOCK;
2381 temp &= ~FDI_RX_BIT_LOCK;
2382 I915_WRITE(reg, temp);
2383 I915_READ(reg);
2384 udelay(150);
2385
2386 /* enable CPU FDI TX and PCH FDI RX */
2387 reg = FDI_TX_CTL(pipe);
2388 temp = I915_READ(reg);
2389 temp &= ~(7 << 19);
2390 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2391 temp &= ~FDI_LINK_TRAIN_NONE;
2392 temp |= FDI_LINK_TRAIN_PATTERN_1;
2393 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2394
2395 reg = FDI_RX_CTL(pipe);
2396 temp = I915_READ(reg);
2397 temp &= ~FDI_LINK_TRAIN_NONE;
2398 temp |= FDI_LINK_TRAIN_PATTERN_1;
2399 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2400
2401 POSTING_READ(reg);
2402 udelay(150);
2403
2404 /* Ironlake workaround, enable clock pointer after FDI enable*/
2405 if (HAS_PCH_IBX(dev)) {
2406 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2407 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2408 FDI_RX_PHASE_SYNC_POINTER_EN);
2409 }
2410
2411 reg = FDI_RX_IIR(pipe);
2412 for (tries = 0; tries < 5; tries++) {
2413 temp = I915_READ(reg);
2414 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2415
2416 if ((temp & FDI_RX_BIT_LOCK)) {
2417 DRM_DEBUG_KMS("FDI train 1 done.\n");
2418 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2419 break;
2420 }
2421 }
2422 if (tries == 5)
2423 DRM_ERROR("FDI train 1 fail!\n");
2424
2425 /* Train 2 */
2426 reg = FDI_TX_CTL(pipe);
2427 temp = I915_READ(reg);
2428 temp &= ~FDI_LINK_TRAIN_NONE;
2429 temp |= FDI_LINK_TRAIN_PATTERN_2;
2430 I915_WRITE(reg, temp);
2431
2432 reg = FDI_RX_CTL(pipe);
2433 temp = I915_READ(reg);
2434 temp &= ~FDI_LINK_TRAIN_NONE;
2435 temp |= FDI_LINK_TRAIN_PATTERN_2;
2436 I915_WRITE(reg, temp);
2437
2438 POSTING_READ(reg);
2439 udelay(150);
2440
2441 reg = FDI_RX_IIR(pipe);
2442 for (tries = 0; tries < 5; tries++) {
2443 temp = I915_READ(reg);
2444 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2445
2446 if (temp & FDI_RX_SYMBOL_LOCK) {
2447 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2448 DRM_DEBUG_KMS("FDI train 2 done.\n");
2449 break;
2450 }
2451 }
2452 if (tries == 5)
2453 DRM_ERROR("FDI train 2 fail!\n");
2454
2455 DRM_DEBUG_KMS("FDI train done\n");
2456
2457 }
2458
2459 static const int snb_b_fdi_train_param [] = {
2460 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2461 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2462 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2463 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2464 };
2465
2466 /* The FDI link training functions for SNB/Cougarpoint. */
2467 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2468 {
2469 struct drm_device *dev = crtc->dev;
2470 struct drm_i915_private *dev_priv = dev->dev_private;
2471 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2472 int pipe = intel_crtc->pipe;
2473 u32 reg, temp, i;
2474
2475 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2476 for train result */
2477 reg = FDI_RX_IMR(pipe);
2478 temp = I915_READ(reg);
2479 temp &= ~FDI_RX_SYMBOL_LOCK;
2480 temp &= ~FDI_RX_BIT_LOCK;
2481 I915_WRITE(reg, temp);
2482
2483 POSTING_READ(reg);
2484 udelay(150);
2485
2486 /* enable CPU FDI TX and PCH FDI RX */
2487 reg = FDI_TX_CTL(pipe);
2488 temp = I915_READ(reg);
2489 temp &= ~(7 << 19);
2490 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2491 temp &= ~FDI_LINK_TRAIN_NONE;
2492 temp |= FDI_LINK_TRAIN_PATTERN_1;
2493 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2494 /* SNB-B */
2495 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2496 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2497
2498 reg = FDI_RX_CTL(pipe);
2499 temp = I915_READ(reg);
2500 if (HAS_PCH_CPT(dev)) {
2501 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2502 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2503 } else {
2504 temp &= ~FDI_LINK_TRAIN_NONE;
2505 temp |= FDI_LINK_TRAIN_PATTERN_1;
2506 }
2507 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2508
2509 POSTING_READ(reg);
2510 udelay(150);
2511
2512 for (i = 0; i < 4; i++ ) {
2513 reg = FDI_TX_CTL(pipe);
2514 temp = I915_READ(reg);
2515 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2516 temp |= snb_b_fdi_train_param[i];
2517 I915_WRITE(reg, temp);
2518
2519 POSTING_READ(reg);
2520 udelay(500);
2521
2522 reg = FDI_RX_IIR(pipe);
2523 temp = I915_READ(reg);
2524 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2525
2526 if (temp & FDI_RX_BIT_LOCK) {
2527 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2528 DRM_DEBUG_KMS("FDI train 1 done.\n");
2529 break;
2530 }
2531 }
2532 if (i == 4)
2533 DRM_ERROR("FDI train 1 fail!\n");
2534
2535 /* Train 2 */
2536 reg = FDI_TX_CTL(pipe);
2537 temp = I915_READ(reg);
2538 temp &= ~FDI_LINK_TRAIN_NONE;
2539 temp |= FDI_LINK_TRAIN_PATTERN_2;
2540 if (IS_GEN6(dev)) {
2541 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2542 /* SNB-B */
2543 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2544 }
2545 I915_WRITE(reg, temp);
2546
2547 reg = FDI_RX_CTL(pipe);
2548 temp = I915_READ(reg);
2549 if (HAS_PCH_CPT(dev)) {
2550 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2551 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2552 } else {
2553 temp &= ~FDI_LINK_TRAIN_NONE;
2554 temp |= FDI_LINK_TRAIN_PATTERN_2;
2555 }
2556 I915_WRITE(reg, temp);
2557
2558 POSTING_READ(reg);
2559 udelay(150);
2560
2561 for (i = 0; i < 4; i++ ) {
2562 reg = FDI_TX_CTL(pipe);
2563 temp = I915_READ(reg);
2564 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2565 temp |= snb_b_fdi_train_param[i];
2566 I915_WRITE(reg, temp);
2567
2568 POSTING_READ(reg);
2569 udelay(500);
2570
2571 reg = FDI_RX_IIR(pipe);
2572 temp = I915_READ(reg);
2573 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2574
2575 if (temp & FDI_RX_SYMBOL_LOCK) {
2576 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2577 DRM_DEBUG_KMS("FDI train 2 done.\n");
2578 break;
2579 }
2580 }
2581 if (i == 4)
2582 DRM_ERROR("FDI train 2 fail!\n");
2583
2584 DRM_DEBUG_KMS("FDI train done.\n");
2585 }
2586
2587 static void ironlake_fdi_enable(struct drm_crtc *crtc)
2588 {
2589 struct drm_device *dev = crtc->dev;
2590 struct drm_i915_private *dev_priv = dev->dev_private;
2591 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2592 int pipe = intel_crtc->pipe;
2593 u32 reg, temp;
2594
2595 /* Write the TU size bits so error detection works */
2596 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2597 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2598
2599 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2600 reg = FDI_RX_CTL(pipe);
2601 temp = I915_READ(reg);
2602 temp &= ~((0x7 << 19) | (0x7 << 16));
2603 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2604 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2605 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2606
2607 POSTING_READ(reg);
2608 udelay(200);
2609
2610 /* Switch from Rawclk to PCDclk */
2611 temp = I915_READ(reg);
2612 I915_WRITE(reg, temp | FDI_PCDCLK);
2613
2614 POSTING_READ(reg);
2615 udelay(200);
2616
2617 /* Enable CPU FDI TX PLL, always on for Ironlake */
2618 reg = FDI_TX_CTL(pipe);
2619 temp = I915_READ(reg);
2620 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2621 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2622
2623 POSTING_READ(reg);
2624 udelay(100);
2625 }
2626 }
2627
2628 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2629 {
2630 struct drm_device *dev = crtc->dev;
2631 struct drm_i915_private *dev_priv = dev->dev_private;
2632 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2633 int pipe = intel_crtc->pipe;
2634 u32 reg, temp;
2635
2636 /* disable CPU FDI tx and PCH FDI rx */
2637 reg = FDI_TX_CTL(pipe);
2638 temp = I915_READ(reg);
2639 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2640 POSTING_READ(reg);
2641
2642 reg = FDI_RX_CTL(pipe);
2643 temp = I915_READ(reg);
2644 temp &= ~(0x7 << 16);
2645 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2646 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2647
2648 POSTING_READ(reg);
2649 udelay(100);
2650
2651 /* Ironlake workaround, disable clock pointer after downing FDI */
2652 if (HAS_PCH_IBX(dev)) {
2653 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2654 I915_WRITE(FDI_RX_CHICKEN(pipe),
2655 I915_READ(FDI_RX_CHICKEN(pipe) &
2656 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2657 }
2658
2659 /* still set train pattern 1 */
2660 reg = FDI_TX_CTL(pipe);
2661 temp = I915_READ(reg);
2662 temp &= ~FDI_LINK_TRAIN_NONE;
2663 temp |= FDI_LINK_TRAIN_PATTERN_1;
2664 I915_WRITE(reg, temp);
2665
2666 reg = FDI_RX_CTL(pipe);
2667 temp = I915_READ(reg);
2668 if (HAS_PCH_CPT(dev)) {
2669 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2670 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2671 } else {
2672 temp &= ~FDI_LINK_TRAIN_NONE;
2673 temp |= FDI_LINK_TRAIN_PATTERN_1;
2674 }
2675 /* BPC in FDI rx is consistent with that in PIPECONF */
2676 temp &= ~(0x07 << 16);
2677 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2678 I915_WRITE(reg, temp);
2679
2680 POSTING_READ(reg);
2681 udelay(100);
2682 }
2683
2684 /*
2685 * When we disable a pipe, we need to clear any pending scanline wait events
2686 * to avoid hanging the ring, which we assume we are waiting on.
2687 */
2688 static void intel_clear_scanline_wait(struct drm_device *dev)
2689 {
2690 struct drm_i915_private *dev_priv = dev->dev_private;
2691 struct intel_ring_buffer *ring;
2692 u32 tmp;
2693
2694 if (IS_GEN2(dev))
2695 /* Can't break the hang on i8xx */
2696 return;
2697
2698 ring = LP_RING(dev_priv);
2699 tmp = I915_READ_CTL(ring);
2700 if (tmp & RING_WAIT)
2701 I915_WRITE_CTL(ring, tmp);
2702 }
2703
2704 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2705 {
2706 struct drm_i915_gem_object *obj;
2707 struct drm_i915_private *dev_priv;
2708
2709 if (crtc->fb == NULL)
2710 return;
2711
2712 obj = to_intel_framebuffer(crtc->fb)->obj;
2713 dev_priv = crtc->dev->dev_private;
2714 wait_event(dev_priv->pending_flip_queue,
2715 atomic_read(&obj->pending_flip) == 0);
2716 }
2717
2718 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2719 {
2720 struct drm_device *dev = crtc->dev;
2721 struct drm_mode_config *mode_config = &dev->mode_config;
2722 struct intel_encoder *encoder;
2723
2724 /*
2725 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2726 * must be driven by its own crtc; no sharing is possible.
2727 */
2728 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2729 if (encoder->base.crtc != crtc)
2730 continue;
2731
2732 switch (encoder->type) {
2733 case INTEL_OUTPUT_EDP:
2734 if (!intel_encoder_is_pch_edp(&encoder->base))
2735 return false;
2736 continue;
2737 }
2738 }
2739
2740 return true;
2741 }
2742
2743 /*
2744 * Enable PCH resources required for PCH ports:
2745 * - PCH PLLs
2746 * - FDI training & RX/TX
2747 * - update transcoder timings
2748 * - DP transcoding bits
2749 * - transcoder
2750 */
2751 static void ironlake_pch_enable(struct drm_crtc *crtc)
2752 {
2753 struct drm_device *dev = crtc->dev;
2754 struct drm_i915_private *dev_priv = dev->dev_private;
2755 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2756 int pipe = intel_crtc->pipe;
2757 u32 reg, temp;
2758
2759 /* For PCH output, training FDI link */
2760 if (IS_GEN6(dev))
2761 gen6_fdi_link_train(crtc);
2762 else
2763 ironlake_fdi_link_train(crtc);
2764
2765 intel_enable_pch_pll(dev_priv, pipe);
2766
2767 if (HAS_PCH_CPT(dev)) {
2768 /* Be sure PCH DPLL SEL is set */
2769 temp = I915_READ(PCH_DPLL_SEL);
2770 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2771 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2772 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2773 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2774 I915_WRITE(PCH_DPLL_SEL, temp);
2775 }
2776
2777 /* set transcoder timing, panel must allow it */
2778 assert_panel_unlocked(dev_priv, pipe);
2779 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2780 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2781 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
2782
2783 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2784 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2785 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
2786
2787 intel_fdi_normal_train(crtc);
2788
2789 /* For PCH DP, enable TRANS_DP_CTL */
2790 if (HAS_PCH_CPT(dev) &&
2791 intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2792 reg = TRANS_DP_CTL(pipe);
2793 temp = I915_READ(reg);
2794 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2795 TRANS_DP_SYNC_MASK |
2796 TRANS_DP_BPC_MASK);
2797 temp |= (TRANS_DP_OUTPUT_ENABLE |
2798 TRANS_DP_ENH_FRAMING);
2799 temp |= TRANS_DP_8BPC;
2800
2801 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2802 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2803 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2804 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2805
2806 switch (intel_trans_dp_port_sel(crtc)) {
2807 case PCH_DP_B:
2808 temp |= TRANS_DP_PORT_SEL_B;
2809 break;
2810 case PCH_DP_C:
2811 temp |= TRANS_DP_PORT_SEL_C;
2812 break;
2813 case PCH_DP_D:
2814 temp |= TRANS_DP_PORT_SEL_D;
2815 break;
2816 default:
2817 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2818 temp |= TRANS_DP_PORT_SEL_B;
2819 break;
2820 }
2821
2822 I915_WRITE(reg, temp);
2823 }
2824
2825 intel_enable_transcoder(dev_priv, pipe);
2826 }
2827
2828 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2829 {
2830 struct drm_device *dev = crtc->dev;
2831 struct drm_i915_private *dev_priv = dev->dev_private;
2832 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2833 int pipe = intel_crtc->pipe;
2834 int plane = intel_crtc->plane;
2835 u32 temp;
2836 bool is_pch_port;
2837
2838 if (intel_crtc->active)
2839 return;
2840
2841 intel_crtc->active = true;
2842 intel_update_watermarks(dev);
2843
2844 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2845 temp = I915_READ(PCH_LVDS);
2846 if ((temp & LVDS_PORT_EN) == 0)
2847 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2848 }
2849
2850 is_pch_port = intel_crtc_driving_pch(crtc);
2851
2852 if (is_pch_port)
2853 ironlake_fdi_enable(crtc);
2854 else
2855 ironlake_fdi_disable(crtc);
2856
2857 /* Enable panel fitting for LVDS */
2858 if (dev_priv->pch_pf_size &&
2859 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2860 /* Force use of hard-coded filter coefficients
2861 * as some pre-programmed values are broken,
2862 * e.g. x201.
2863 */
2864 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
2865 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
2866 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
2867 }
2868
2869 intel_enable_pipe(dev_priv, pipe, is_pch_port);
2870 intel_enable_plane(dev_priv, plane, pipe);
2871
2872 if (is_pch_port)
2873 ironlake_pch_enable(crtc);
2874
2875 intel_crtc_load_lut(crtc);
2876 intel_update_fbc(dev);
2877 intel_crtc_update_cursor(crtc, true);
2878 }
2879
2880 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2881 {
2882 struct drm_device *dev = crtc->dev;
2883 struct drm_i915_private *dev_priv = dev->dev_private;
2884 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2885 int pipe = intel_crtc->pipe;
2886 int plane = intel_crtc->plane;
2887 u32 reg, temp;
2888
2889 if (!intel_crtc->active)
2890 return;
2891
2892 intel_crtc_wait_for_pending_flips(crtc);
2893 drm_vblank_off(dev, pipe);
2894 intel_crtc_update_cursor(crtc, false);
2895
2896 intel_disable_plane(dev_priv, plane, pipe);
2897
2898 if (dev_priv->cfb_plane == plane &&
2899 dev_priv->display.disable_fbc)
2900 dev_priv->display.disable_fbc(dev);
2901
2902 intel_disable_pipe(dev_priv, pipe);
2903
2904 /* Disable PF */
2905 I915_WRITE(PF_CTL(pipe), 0);
2906 I915_WRITE(PF_WIN_SZ(pipe), 0);
2907
2908 ironlake_fdi_disable(crtc);
2909
2910 /* This is a horrible layering violation; we should be doing this in
2911 * the connector/encoder ->prepare instead, but we don't always have
2912 * enough information there about the config to know whether it will
2913 * actually be necessary or just cause undesired flicker.
2914 */
2915 intel_disable_pch_ports(dev_priv, pipe);
2916
2917 intel_disable_transcoder(dev_priv, pipe);
2918
2919 if (HAS_PCH_CPT(dev)) {
2920 /* disable TRANS_DP_CTL */
2921 reg = TRANS_DP_CTL(pipe);
2922 temp = I915_READ(reg);
2923 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2924 temp |= TRANS_DP_PORT_SEL_NONE;
2925 I915_WRITE(reg, temp);
2926
2927 /* disable DPLL_SEL */
2928 temp = I915_READ(PCH_DPLL_SEL);
2929 switch (pipe) {
2930 case 0:
2931 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2932 break;
2933 case 1:
2934 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2935 break;
2936 case 2:
2937 /* FIXME: manage transcoder PLLs? */
2938 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
2939 break;
2940 default:
2941 BUG(); /* wtf */
2942 }
2943 I915_WRITE(PCH_DPLL_SEL, temp);
2944 }
2945
2946 /* disable PCH DPLL */
2947 intel_disable_pch_pll(dev_priv, pipe);
2948
2949 /* Switch from PCDclk to Rawclk */
2950 reg = FDI_RX_CTL(pipe);
2951 temp = I915_READ(reg);
2952 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2953
2954 /* Disable CPU FDI TX PLL */
2955 reg = FDI_TX_CTL(pipe);
2956 temp = I915_READ(reg);
2957 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2958
2959 POSTING_READ(reg);
2960 udelay(100);
2961
2962 reg = FDI_RX_CTL(pipe);
2963 temp = I915_READ(reg);
2964 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2965
2966 /* Wait for the clocks to turn off. */
2967 POSTING_READ(reg);
2968 udelay(100);
2969
2970 intel_crtc->active = false;
2971 intel_update_watermarks(dev);
2972 intel_update_fbc(dev);
2973 intel_clear_scanline_wait(dev);
2974 }
2975
2976 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2977 {
2978 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2979 int pipe = intel_crtc->pipe;
2980 int plane = intel_crtc->plane;
2981
2982 /* XXX: When our outputs are all unaware of DPMS modes other than off
2983 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2984 */
2985 switch (mode) {
2986 case DRM_MODE_DPMS_ON:
2987 case DRM_MODE_DPMS_STANDBY:
2988 case DRM_MODE_DPMS_SUSPEND:
2989 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2990 ironlake_crtc_enable(crtc);
2991 break;
2992
2993 case DRM_MODE_DPMS_OFF:
2994 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2995 ironlake_crtc_disable(crtc);
2996 break;
2997 }
2998 }
2999
3000 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3001 {
3002 if (!enable && intel_crtc->overlay) {
3003 struct drm_device *dev = intel_crtc->base.dev;
3004 struct drm_i915_private *dev_priv = dev->dev_private;
3005
3006 mutex_lock(&dev->struct_mutex);
3007 dev_priv->mm.interruptible = false;
3008 (void) intel_overlay_switch_off(intel_crtc->overlay);
3009 dev_priv->mm.interruptible = true;
3010 mutex_unlock(&dev->struct_mutex);
3011 }
3012
3013 /* Let userspace switch the overlay on again. In most cases userspace
3014 * has to recompute where to put it anyway.
3015 */
3016 }
3017
3018 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3019 {
3020 struct drm_device *dev = crtc->dev;
3021 struct drm_i915_private *dev_priv = dev->dev_private;
3022 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3023 int pipe = intel_crtc->pipe;
3024 int plane = intel_crtc->plane;
3025
3026 if (intel_crtc->active)
3027 return;
3028
3029 intel_crtc->active = true;
3030 intel_update_watermarks(dev);
3031
3032 intel_enable_pll(dev_priv, pipe);
3033 intel_enable_pipe(dev_priv, pipe, false);
3034 intel_enable_plane(dev_priv, plane, pipe);
3035
3036 intel_crtc_load_lut(crtc);
3037 intel_update_fbc(dev);
3038
3039 /* Give the overlay scaler a chance to enable if it's on this pipe */
3040 intel_crtc_dpms_overlay(intel_crtc, true);
3041 intel_crtc_update_cursor(crtc, true);
3042 }
3043
3044 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3045 {
3046 struct drm_device *dev = crtc->dev;
3047 struct drm_i915_private *dev_priv = dev->dev_private;
3048 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3049 int pipe = intel_crtc->pipe;
3050 int plane = intel_crtc->plane;
3051
3052 if (!intel_crtc->active)
3053 return;
3054
3055 /* Give the overlay scaler a chance to disable if it's on this pipe */
3056 intel_crtc_wait_for_pending_flips(crtc);
3057 drm_vblank_off(dev, pipe);
3058 intel_crtc_dpms_overlay(intel_crtc, false);
3059 intel_crtc_update_cursor(crtc, false);
3060
3061 if (dev_priv->cfb_plane == plane &&
3062 dev_priv->display.disable_fbc)
3063 dev_priv->display.disable_fbc(dev);
3064
3065 intel_disable_plane(dev_priv, plane, pipe);
3066 intel_disable_pipe(dev_priv, pipe);
3067 intel_disable_pll(dev_priv, pipe);
3068
3069 intel_crtc->active = false;
3070 intel_update_fbc(dev);
3071 intel_update_watermarks(dev);
3072 intel_clear_scanline_wait(dev);
3073 }
3074
3075 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3076 {
3077 /* XXX: When our outputs are all unaware of DPMS modes other than off
3078 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3079 */
3080 switch (mode) {
3081 case DRM_MODE_DPMS_ON:
3082 case DRM_MODE_DPMS_STANDBY:
3083 case DRM_MODE_DPMS_SUSPEND:
3084 i9xx_crtc_enable(crtc);
3085 break;
3086 case DRM_MODE_DPMS_OFF:
3087 i9xx_crtc_disable(crtc);
3088 break;
3089 }
3090 }
3091
3092 /**
3093 * Sets the power management mode of the pipe and plane.
3094 */
3095 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3096 {
3097 struct drm_device *dev = crtc->dev;
3098 struct drm_i915_private *dev_priv = dev->dev_private;
3099 struct drm_i915_master_private *master_priv;
3100 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3101 int pipe = intel_crtc->pipe;
3102 bool enabled;
3103
3104 if (intel_crtc->dpms_mode == mode)
3105 return;
3106
3107 intel_crtc->dpms_mode = mode;
3108
3109 dev_priv->display.dpms(crtc, mode);
3110
3111 if (!dev->primary->master)
3112 return;
3113
3114 master_priv = dev->primary->master->driver_priv;
3115 if (!master_priv->sarea_priv)
3116 return;
3117
3118 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3119
3120 switch (pipe) {
3121 case 0:
3122 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3123 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3124 break;
3125 case 1:
3126 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3127 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3128 break;
3129 default:
3130 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3131 break;
3132 }
3133 }
3134
3135 static void intel_crtc_disable(struct drm_crtc *crtc)
3136 {
3137 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3138 struct drm_device *dev = crtc->dev;
3139
3140 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3141
3142 if (crtc->fb) {
3143 mutex_lock(&dev->struct_mutex);
3144 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
3145 mutex_unlock(&dev->struct_mutex);
3146 }
3147 }
3148
3149 /* Prepare for a mode set.
3150 *
3151 * Note we could be a lot smarter here. We need to figure out which outputs
3152 * will be enabled, which disabled (in short, how the config will changes)
3153 * and perform the minimum necessary steps to accomplish that, e.g. updating
3154 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3155 * panel fitting is in the proper state, etc.
3156 */
3157 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3158 {
3159 i9xx_crtc_disable(crtc);
3160 }
3161
3162 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3163 {
3164 i9xx_crtc_enable(crtc);
3165 }
3166
3167 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3168 {
3169 ironlake_crtc_disable(crtc);
3170 }
3171
3172 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3173 {
3174 ironlake_crtc_enable(crtc);
3175 }
3176
3177 void intel_encoder_prepare (struct drm_encoder *encoder)
3178 {
3179 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3180 /* lvds has its own version of prepare see intel_lvds_prepare */
3181 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3182 }
3183
3184 void intel_encoder_commit (struct drm_encoder *encoder)
3185 {
3186 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3187 /* lvds has its own version of commit see intel_lvds_commit */
3188 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3189 }
3190
3191 void intel_encoder_destroy(struct drm_encoder *encoder)
3192 {
3193 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3194
3195 drm_encoder_cleanup(encoder);
3196 kfree(intel_encoder);
3197 }
3198
3199 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3200 struct drm_display_mode *mode,
3201 struct drm_display_mode *adjusted_mode)
3202 {
3203 struct drm_device *dev = crtc->dev;
3204
3205 if (HAS_PCH_SPLIT(dev)) {
3206 /* FDI link clock is fixed at 2.7G */
3207 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3208 return false;
3209 }
3210
3211 /* XXX some encoders set the crtcinfo, others don't.
3212 * Obviously we need some form of conflict resolution here...
3213 */
3214 if (adjusted_mode->crtc_htotal == 0)
3215 drm_mode_set_crtcinfo(adjusted_mode, 0);
3216
3217 return true;
3218 }
3219
3220 static int i945_get_display_clock_speed(struct drm_device *dev)
3221 {
3222 return 400000;
3223 }
3224
3225 static int i915_get_display_clock_speed(struct drm_device *dev)
3226 {
3227 return 333000;
3228 }
3229
3230 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3231 {
3232 return 200000;
3233 }
3234
3235 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3236 {
3237 u16 gcfgc = 0;
3238
3239 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3240
3241 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3242 return 133000;
3243 else {
3244 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3245 case GC_DISPLAY_CLOCK_333_MHZ:
3246 return 333000;
3247 default:
3248 case GC_DISPLAY_CLOCK_190_200_MHZ:
3249 return 190000;
3250 }
3251 }
3252 }
3253
3254 static int i865_get_display_clock_speed(struct drm_device *dev)
3255 {
3256 return 266000;
3257 }
3258
3259 static int i855_get_display_clock_speed(struct drm_device *dev)
3260 {
3261 u16 hpllcc = 0;
3262 /* Assume that the hardware is in the high speed state. This
3263 * should be the default.
3264 */
3265 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3266 case GC_CLOCK_133_200:
3267 case GC_CLOCK_100_200:
3268 return 200000;
3269 case GC_CLOCK_166_250:
3270 return 250000;
3271 case GC_CLOCK_100_133:
3272 return 133000;
3273 }
3274
3275 /* Shouldn't happen */
3276 return 0;
3277 }
3278
3279 static int i830_get_display_clock_speed(struct drm_device *dev)
3280 {
3281 return 133000;
3282 }
3283
3284 struct fdi_m_n {
3285 u32 tu;
3286 u32 gmch_m;
3287 u32 gmch_n;
3288 u32 link_m;
3289 u32 link_n;
3290 };
3291
3292 static void
3293 fdi_reduce_ratio(u32 *num, u32 *den)
3294 {
3295 while (*num > 0xffffff || *den > 0xffffff) {
3296 *num >>= 1;
3297 *den >>= 1;
3298 }
3299 }
3300
3301 static void
3302 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3303 int link_clock, struct fdi_m_n *m_n)
3304 {
3305 m_n->tu = 64; /* default size */
3306
3307 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3308 m_n->gmch_m = bits_per_pixel * pixel_clock;
3309 m_n->gmch_n = link_clock * nlanes * 8;
3310 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3311
3312 m_n->link_m = pixel_clock;
3313 m_n->link_n = link_clock;
3314 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3315 }
3316
3317
3318 struct intel_watermark_params {
3319 unsigned long fifo_size;
3320 unsigned long max_wm;
3321 unsigned long default_wm;
3322 unsigned long guard_size;
3323 unsigned long cacheline_size;
3324 };
3325
3326 /* Pineview has different values for various configs */
3327 static const struct intel_watermark_params pineview_display_wm = {
3328 PINEVIEW_DISPLAY_FIFO,
3329 PINEVIEW_MAX_WM,
3330 PINEVIEW_DFT_WM,
3331 PINEVIEW_GUARD_WM,
3332 PINEVIEW_FIFO_LINE_SIZE
3333 };
3334 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3335 PINEVIEW_DISPLAY_FIFO,
3336 PINEVIEW_MAX_WM,
3337 PINEVIEW_DFT_HPLLOFF_WM,
3338 PINEVIEW_GUARD_WM,
3339 PINEVIEW_FIFO_LINE_SIZE
3340 };
3341 static const struct intel_watermark_params pineview_cursor_wm = {
3342 PINEVIEW_CURSOR_FIFO,
3343 PINEVIEW_CURSOR_MAX_WM,
3344 PINEVIEW_CURSOR_DFT_WM,
3345 PINEVIEW_CURSOR_GUARD_WM,
3346 PINEVIEW_FIFO_LINE_SIZE,
3347 };
3348 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3349 PINEVIEW_CURSOR_FIFO,
3350 PINEVIEW_CURSOR_MAX_WM,
3351 PINEVIEW_CURSOR_DFT_WM,
3352 PINEVIEW_CURSOR_GUARD_WM,
3353 PINEVIEW_FIFO_LINE_SIZE
3354 };
3355 static const struct intel_watermark_params g4x_wm_info = {
3356 G4X_FIFO_SIZE,
3357 G4X_MAX_WM,
3358 G4X_MAX_WM,
3359 2,
3360 G4X_FIFO_LINE_SIZE,
3361 };
3362 static const struct intel_watermark_params g4x_cursor_wm_info = {
3363 I965_CURSOR_FIFO,
3364 I965_CURSOR_MAX_WM,
3365 I965_CURSOR_DFT_WM,
3366 2,
3367 G4X_FIFO_LINE_SIZE,
3368 };
3369 static const struct intel_watermark_params i965_cursor_wm_info = {
3370 I965_CURSOR_FIFO,
3371 I965_CURSOR_MAX_WM,
3372 I965_CURSOR_DFT_WM,
3373 2,
3374 I915_FIFO_LINE_SIZE,
3375 };
3376 static const struct intel_watermark_params i945_wm_info = {
3377 I945_FIFO_SIZE,
3378 I915_MAX_WM,
3379 1,
3380 2,
3381 I915_FIFO_LINE_SIZE
3382 };
3383 static const struct intel_watermark_params i915_wm_info = {
3384 I915_FIFO_SIZE,
3385 I915_MAX_WM,
3386 1,
3387 2,
3388 I915_FIFO_LINE_SIZE
3389 };
3390 static const struct intel_watermark_params i855_wm_info = {
3391 I855GM_FIFO_SIZE,
3392 I915_MAX_WM,
3393 1,
3394 2,
3395 I830_FIFO_LINE_SIZE
3396 };
3397 static const struct intel_watermark_params i830_wm_info = {
3398 I830_FIFO_SIZE,
3399 I915_MAX_WM,
3400 1,
3401 2,
3402 I830_FIFO_LINE_SIZE
3403 };
3404
3405 static const struct intel_watermark_params ironlake_display_wm_info = {
3406 ILK_DISPLAY_FIFO,
3407 ILK_DISPLAY_MAXWM,
3408 ILK_DISPLAY_DFTWM,
3409 2,
3410 ILK_FIFO_LINE_SIZE
3411 };
3412 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3413 ILK_CURSOR_FIFO,
3414 ILK_CURSOR_MAXWM,
3415 ILK_CURSOR_DFTWM,
3416 2,
3417 ILK_FIFO_LINE_SIZE
3418 };
3419 static const struct intel_watermark_params ironlake_display_srwm_info = {
3420 ILK_DISPLAY_SR_FIFO,
3421 ILK_DISPLAY_MAX_SRWM,
3422 ILK_DISPLAY_DFT_SRWM,
3423 2,
3424 ILK_FIFO_LINE_SIZE
3425 };
3426 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3427 ILK_CURSOR_SR_FIFO,
3428 ILK_CURSOR_MAX_SRWM,
3429 ILK_CURSOR_DFT_SRWM,
3430 2,
3431 ILK_FIFO_LINE_SIZE
3432 };
3433
3434 static const struct intel_watermark_params sandybridge_display_wm_info = {
3435 SNB_DISPLAY_FIFO,
3436 SNB_DISPLAY_MAXWM,
3437 SNB_DISPLAY_DFTWM,
3438 2,
3439 SNB_FIFO_LINE_SIZE
3440 };
3441 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3442 SNB_CURSOR_FIFO,
3443 SNB_CURSOR_MAXWM,
3444 SNB_CURSOR_DFTWM,
3445 2,
3446 SNB_FIFO_LINE_SIZE
3447 };
3448 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3449 SNB_DISPLAY_SR_FIFO,
3450 SNB_DISPLAY_MAX_SRWM,
3451 SNB_DISPLAY_DFT_SRWM,
3452 2,
3453 SNB_FIFO_LINE_SIZE
3454 };
3455 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3456 SNB_CURSOR_SR_FIFO,
3457 SNB_CURSOR_MAX_SRWM,
3458 SNB_CURSOR_DFT_SRWM,
3459 2,
3460 SNB_FIFO_LINE_SIZE
3461 };
3462
3463
3464 /**
3465 * intel_calculate_wm - calculate watermark level
3466 * @clock_in_khz: pixel clock
3467 * @wm: chip FIFO params
3468 * @pixel_size: display pixel size
3469 * @latency_ns: memory latency for the platform
3470 *
3471 * Calculate the watermark level (the level at which the display plane will
3472 * start fetching from memory again). Each chip has a different display
3473 * FIFO size and allocation, so the caller needs to figure that out and pass
3474 * in the correct intel_watermark_params structure.
3475 *
3476 * As the pixel clock runs, the FIFO will be drained at a rate that depends
3477 * on the pixel size. When it reaches the watermark level, it'll start
3478 * fetching FIFO line sized based chunks from memory until the FIFO fills
3479 * past the watermark point. If the FIFO drains completely, a FIFO underrun
3480 * will occur, and a display engine hang could result.
3481 */
3482 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3483 const struct intel_watermark_params *wm,
3484 int fifo_size,
3485 int pixel_size,
3486 unsigned long latency_ns)
3487 {
3488 long entries_required, wm_size;
3489
3490 /*
3491 * Note: we need to make sure we don't overflow for various clock &
3492 * latency values.
3493 * clocks go from a few thousand to several hundred thousand.
3494 * latency is usually a few thousand
3495 */
3496 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3497 1000;
3498 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3499
3500 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
3501
3502 wm_size = fifo_size - (entries_required + wm->guard_size);
3503
3504 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
3505
3506 /* Don't promote wm_size to unsigned... */
3507 if (wm_size > (long)wm->max_wm)
3508 wm_size = wm->max_wm;
3509 if (wm_size <= 0)
3510 wm_size = wm->default_wm;
3511 return wm_size;
3512 }
3513
3514 struct cxsr_latency {
3515 int is_desktop;
3516 int is_ddr3;
3517 unsigned long fsb_freq;
3518 unsigned long mem_freq;
3519 unsigned long display_sr;
3520 unsigned long display_hpll_disable;
3521 unsigned long cursor_sr;
3522 unsigned long cursor_hpll_disable;
3523 };
3524
3525 static const struct cxsr_latency cxsr_latency_table[] = {
3526 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
3527 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
3528 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
3529 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
3530 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
3531
3532 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
3533 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
3534 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
3535 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
3536 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
3537
3538 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
3539 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
3540 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
3541 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
3542 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
3543
3544 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
3545 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
3546 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
3547 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
3548 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
3549
3550 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
3551 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
3552 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
3553 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
3554 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
3555
3556 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
3557 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
3558 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
3559 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
3560 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
3561 };
3562
3563 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3564 int is_ddr3,
3565 int fsb,
3566 int mem)
3567 {
3568 const struct cxsr_latency *latency;
3569 int i;
3570
3571 if (fsb == 0 || mem == 0)
3572 return NULL;
3573
3574 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3575 latency = &cxsr_latency_table[i];
3576 if (is_desktop == latency->is_desktop &&
3577 is_ddr3 == latency->is_ddr3 &&
3578 fsb == latency->fsb_freq && mem == latency->mem_freq)
3579 return latency;
3580 }
3581
3582 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3583
3584 return NULL;
3585 }
3586
3587 static void pineview_disable_cxsr(struct drm_device *dev)
3588 {
3589 struct drm_i915_private *dev_priv = dev->dev_private;
3590
3591 /* deactivate cxsr */
3592 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3593 }
3594
3595 /*
3596 * Latency for FIFO fetches is dependent on several factors:
3597 * - memory configuration (speed, channels)
3598 * - chipset
3599 * - current MCH state
3600 * It can be fairly high in some situations, so here we assume a fairly
3601 * pessimal value. It's a tradeoff between extra memory fetches (if we
3602 * set this value too high, the FIFO will fetch frequently to stay full)
3603 * and power consumption (set it too low to save power and we might see
3604 * FIFO underruns and display "flicker").
3605 *
3606 * A value of 5us seems to be a good balance; safe for very low end
3607 * platforms but not overly aggressive on lower latency configs.
3608 */
3609 static const int latency_ns = 5000;
3610
3611 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3612 {
3613 struct drm_i915_private *dev_priv = dev->dev_private;
3614 uint32_t dsparb = I915_READ(DSPARB);
3615 int size;
3616
3617 size = dsparb & 0x7f;
3618 if (plane)
3619 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3620
3621 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3622 plane ? "B" : "A", size);
3623
3624 return size;
3625 }
3626
3627 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3628 {
3629 struct drm_i915_private *dev_priv = dev->dev_private;
3630 uint32_t dsparb = I915_READ(DSPARB);
3631 int size;
3632
3633 size = dsparb & 0x1ff;
3634 if (plane)
3635 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3636 size >>= 1; /* Convert to cachelines */
3637
3638 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3639 plane ? "B" : "A", size);
3640
3641 return size;
3642 }
3643
3644 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3645 {
3646 struct drm_i915_private *dev_priv = dev->dev_private;
3647 uint32_t dsparb = I915_READ(DSPARB);
3648 int size;
3649
3650 size = dsparb & 0x7f;
3651 size >>= 2; /* Convert to cachelines */
3652
3653 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3654 plane ? "B" : "A",
3655 size);
3656
3657 return size;
3658 }
3659
3660 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3661 {
3662 struct drm_i915_private *dev_priv = dev->dev_private;
3663 uint32_t dsparb = I915_READ(DSPARB);
3664 int size;
3665
3666 size = dsparb & 0x7f;
3667 size >>= 1; /* Convert to cachelines */
3668
3669 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3670 plane ? "B" : "A", size);
3671
3672 return size;
3673 }
3674
3675 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3676 {
3677 struct drm_crtc *crtc, *enabled = NULL;
3678
3679 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3680 if (crtc->enabled && crtc->fb) {
3681 if (enabled)
3682 return NULL;
3683 enabled = crtc;
3684 }
3685 }
3686
3687 return enabled;
3688 }
3689
3690 static void pineview_update_wm(struct drm_device *dev)
3691 {
3692 struct drm_i915_private *dev_priv = dev->dev_private;
3693 struct drm_crtc *crtc;
3694 const struct cxsr_latency *latency;
3695 u32 reg;
3696 unsigned long wm;
3697
3698 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3699 dev_priv->fsb_freq, dev_priv->mem_freq);
3700 if (!latency) {
3701 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3702 pineview_disable_cxsr(dev);
3703 return;
3704 }
3705
3706 crtc = single_enabled_crtc(dev);
3707 if (crtc) {
3708 int clock = crtc->mode.clock;
3709 int pixel_size = crtc->fb->bits_per_pixel / 8;
3710
3711 /* Display SR */
3712 wm = intel_calculate_wm(clock, &pineview_display_wm,
3713 pineview_display_wm.fifo_size,
3714 pixel_size, latency->display_sr);
3715 reg = I915_READ(DSPFW1);
3716 reg &= ~DSPFW_SR_MASK;
3717 reg |= wm << DSPFW_SR_SHIFT;
3718 I915_WRITE(DSPFW1, reg);
3719 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3720
3721 /* cursor SR */
3722 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3723 pineview_display_wm.fifo_size,
3724 pixel_size, latency->cursor_sr);
3725 reg = I915_READ(DSPFW3);
3726 reg &= ~DSPFW_CURSOR_SR_MASK;
3727 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3728 I915_WRITE(DSPFW3, reg);
3729
3730 /* Display HPLL off SR */
3731 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3732 pineview_display_hplloff_wm.fifo_size,
3733 pixel_size, latency->display_hpll_disable);
3734 reg = I915_READ(DSPFW3);
3735 reg &= ~DSPFW_HPLL_SR_MASK;
3736 reg |= wm & DSPFW_HPLL_SR_MASK;
3737 I915_WRITE(DSPFW3, reg);
3738
3739 /* cursor HPLL off SR */
3740 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3741 pineview_display_hplloff_wm.fifo_size,
3742 pixel_size, latency->cursor_hpll_disable);
3743 reg = I915_READ(DSPFW3);
3744 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3745 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3746 I915_WRITE(DSPFW3, reg);
3747 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3748
3749 /* activate cxsr */
3750 I915_WRITE(DSPFW3,
3751 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3752 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3753 } else {
3754 pineview_disable_cxsr(dev);
3755 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3756 }
3757 }
3758
3759 static bool g4x_compute_wm0(struct drm_device *dev,
3760 int plane,
3761 const struct intel_watermark_params *display,
3762 int display_latency_ns,
3763 const struct intel_watermark_params *cursor,
3764 int cursor_latency_ns,
3765 int *plane_wm,
3766 int *cursor_wm)
3767 {
3768 struct drm_crtc *crtc;
3769 int htotal, hdisplay, clock, pixel_size;
3770 int line_time_us, line_count;
3771 int entries, tlb_miss;
3772
3773 crtc = intel_get_crtc_for_plane(dev, plane);
3774 if (crtc->fb == NULL || !crtc->enabled)
3775 return false;
3776
3777 htotal = crtc->mode.htotal;
3778 hdisplay = crtc->mode.hdisplay;
3779 clock = crtc->mode.clock;
3780 pixel_size = crtc->fb->bits_per_pixel / 8;
3781
3782 /* Use the small buffer method to calculate plane watermark */
3783 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3784 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3785 if (tlb_miss > 0)
3786 entries += tlb_miss;
3787 entries = DIV_ROUND_UP(entries, display->cacheline_size);
3788 *plane_wm = entries + display->guard_size;
3789 if (*plane_wm > (int)display->max_wm)
3790 *plane_wm = display->max_wm;
3791
3792 /* Use the large buffer method to calculate cursor watermark */
3793 line_time_us = ((htotal * 1000) / clock);
3794 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3795 entries = line_count * 64 * pixel_size;
3796 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3797 if (tlb_miss > 0)
3798 entries += tlb_miss;
3799 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3800 *cursor_wm = entries + cursor->guard_size;
3801 if (*cursor_wm > (int)cursor->max_wm)
3802 *cursor_wm = (int)cursor->max_wm;
3803
3804 return true;
3805 }
3806
3807 /*
3808 * Check the wm result.
3809 *
3810 * If any calculated watermark values is larger than the maximum value that
3811 * can be programmed into the associated watermark register, that watermark
3812 * must be disabled.
3813 */
3814 static bool g4x_check_srwm(struct drm_device *dev,
3815 int display_wm, int cursor_wm,
3816 const struct intel_watermark_params *display,
3817 const struct intel_watermark_params *cursor)
3818 {
3819 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
3820 display_wm, cursor_wm);
3821
3822 if (display_wm > display->max_wm) {
3823 DRM_DEBUG_KMS("display watermark is too large(%d), disabling\n",
3824 display_wm, display->max_wm);
3825 return false;
3826 }
3827
3828 if (cursor_wm > cursor->max_wm) {
3829 DRM_DEBUG_KMS("cursor watermark is too large(%d), disabling\n",
3830 cursor_wm, cursor->max_wm);
3831 return false;
3832 }
3833
3834 if (!(display_wm || cursor_wm)) {
3835 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
3836 return false;
3837 }
3838
3839 return true;
3840 }
3841
3842 static bool g4x_compute_srwm(struct drm_device *dev,
3843 int plane,
3844 int latency_ns,
3845 const struct intel_watermark_params *display,
3846 const struct intel_watermark_params *cursor,
3847 int *display_wm, int *cursor_wm)
3848 {
3849 struct drm_crtc *crtc;
3850 int hdisplay, htotal, pixel_size, clock;
3851 unsigned long line_time_us;
3852 int line_count, line_size;
3853 int small, large;
3854 int entries;
3855
3856 if (!latency_ns) {
3857 *display_wm = *cursor_wm = 0;
3858 return false;
3859 }
3860
3861 crtc = intel_get_crtc_for_plane(dev, plane);
3862 hdisplay = crtc->mode.hdisplay;
3863 htotal = crtc->mode.htotal;
3864 clock = crtc->mode.clock;
3865 pixel_size = crtc->fb->bits_per_pixel / 8;
3866
3867 line_time_us = (htotal * 1000) / clock;
3868 line_count = (latency_ns / line_time_us + 1000) / 1000;
3869 line_size = hdisplay * pixel_size;
3870
3871 /* Use the minimum of the small and large buffer method for primary */
3872 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
3873 large = line_count * line_size;
3874
3875 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
3876 *display_wm = entries + display->guard_size;
3877
3878 /* calculate the self-refresh watermark for display cursor */
3879 entries = line_count * pixel_size * 64;
3880 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3881 *cursor_wm = entries + cursor->guard_size;
3882
3883 return g4x_check_srwm(dev,
3884 *display_wm, *cursor_wm,
3885 display, cursor);
3886 }
3887
3888 #define single_plane_enabled(mask) is_power_of_2(mask)
3889
3890 static void g4x_update_wm(struct drm_device *dev)
3891 {
3892 static const int sr_latency_ns = 12000;
3893 struct drm_i915_private *dev_priv = dev->dev_private;
3894 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
3895 int plane_sr, cursor_sr;
3896 unsigned int enabled = 0;
3897
3898 if (g4x_compute_wm0(dev, 0,
3899 &g4x_wm_info, latency_ns,
3900 &g4x_cursor_wm_info, latency_ns,
3901 &planea_wm, &cursora_wm))
3902 enabled |= 1;
3903
3904 if (g4x_compute_wm0(dev, 1,
3905 &g4x_wm_info, latency_ns,
3906 &g4x_cursor_wm_info, latency_ns,
3907 &planeb_wm, &cursorb_wm))
3908 enabled |= 2;
3909
3910 plane_sr = cursor_sr = 0;
3911 if (single_plane_enabled(enabled) &&
3912 g4x_compute_srwm(dev, ffs(enabled) - 1,
3913 sr_latency_ns,
3914 &g4x_wm_info,
3915 &g4x_cursor_wm_info,
3916 &plane_sr, &cursor_sr))
3917 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3918 else
3919 I915_WRITE(FW_BLC_SELF,
3920 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
3921
3922 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
3923 planea_wm, cursora_wm,
3924 planeb_wm, cursorb_wm,
3925 plane_sr, cursor_sr);
3926
3927 I915_WRITE(DSPFW1,
3928 (plane_sr << DSPFW_SR_SHIFT) |
3929 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3930 (planeb_wm << DSPFW_PLANEB_SHIFT) |
3931 planea_wm);
3932 I915_WRITE(DSPFW2,
3933 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3934 (cursora_wm << DSPFW_CURSORA_SHIFT));
3935 /* HPLL off in SR has some issues on G4x... disable it */
3936 I915_WRITE(DSPFW3,
3937 (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3938 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3939 }
3940
3941 static void i965_update_wm(struct drm_device *dev)
3942 {
3943 struct drm_i915_private *dev_priv = dev->dev_private;
3944 struct drm_crtc *crtc;
3945 int srwm = 1;
3946 int cursor_sr = 16;
3947
3948 /* Calc sr entries for one plane configs */
3949 crtc = single_enabled_crtc(dev);
3950 if (crtc) {
3951 /* self-refresh has much higher latency */
3952 static const int sr_latency_ns = 12000;
3953 int clock = crtc->mode.clock;
3954 int htotal = crtc->mode.htotal;
3955 int hdisplay = crtc->mode.hdisplay;
3956 int pixel_size = crtc->fb->bits_per_pixel / 8;
3957 unsigned long line_time_us;
3958 int entries;
3959
3960 line_time_us = ((htotal * 1000) / clock);
3961
3962 /* Use ns/us then divide to preserve precision */
3963 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3964 pixel_size * hdisplay;
3965 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
3966 srwm = I965_FIFO_SIZE - entries;
3967 if (srwm < 0)
3968 srwm = 1;
3969 srwm &= 0x1ff;
3970 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
3971 entries, srwm);
3972
3973 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3974 pixel_size * 64;
3975 entries = DIV_ROUND_UP(entries,
3976 i965_cursor_wm_info.cacheline_size);
3977 cursor_sr = i965_cursor_wm_info.fifo_size -
3978 (entries + i965_cursor_wm_info.guard_size);
3979
3980 if (cursor_sr > i965_cursor_wm_info.max_wm)
3981 cursor_sr = i965_cursor_wm_info.max_wm;
3982
3983 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3984 "cursor %d\n", srwm, cursor_sr);
3985
3986 if (IS_CRESTLINE(dev))
3987 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3988 } else {
3989 /* Turn off self refresh if both pipes are enabled */
3990 if (IS_CRESTLINE(dev))
3991 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3992 & ~FW_BLC_SELF_EN);
3993 }
3994
3995 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3996 srwm);
3997
3998 /* 965 has limitations... */
3999 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4000 (8 << 16) | (8 << 8) | (8 << 0));
4001 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4002 /* update cursor SR watermark */
4003 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4004 }
4005
4006 static void i9xx_update_wm(struct drm_device *dev)
4007 {
4008 struct drm_i915_private *dev_priv = dev->dev_private;
4009 const struct intel_watermark_params *wm_info;
4010 uint32_t fwater_lo;
4011 uint32_t fwater_hi;
4012 int cwm, srwm = 1;
4013 int fifo_size;
4014 int planea_wm, planeb_wm;
4015 struct drm_crtc *crtc, *enabled = NULL;
4016
4017 if (IS_I945GM(dev))
4018 wm_info = &i945_wm_info;
4019 else if (!IS_GEN2(dev))
4020 wm_info = &i915_wm_info;
4021 else
4022 wm_info = &i855_wm_info;
4023
4024 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4025 crtc = intel_get_crtc_for_plane(dev, 0);
4026 if (crtc->enabled && crtc->fb) {
4027 planea_wm = intel_calculate_wm(crtc->mode.clock,
4028 wm_info, fifo_size,
4029 crtc->fb->bits_per_pixel / 8,
4030 latency_ns);
4031 enabled = crtc;
4032 } else
4033 planea_wm = fifo_size - wm_info->guard_size;
4034
4035 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4036 crtc = intel_get_crtc_for_plane(dev, 1);
4037 if (crtc->enabled && crtc->fb) {
4038 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4039 wm_info, fifo_size,
4040 crtc->fb->bits_per_pixel / 8,
4041 latency_ns);
4042 if (enabled == NULL)
4043 enabled = crtc;
4044 else
4045 enabled = NULL;
4046 } else
4047 planeb_wm = fifo_size - wm_info->guard_size;
4048
4049 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
4050
4051 /*
4052 * Overlay gets an aggressive default since video jitter is bad.
4053 */
4054 cwm = 2;
4055
4056 /* Play safe and disable self-refresh before adjusting watermarks. */
4057 if (IS_I945G(dev) || IS_I945GM(dev))
4058 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4059 else if (IS_I915GM(dev))
4060 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4061
4062 /* Calc sr entries for one plane configs */
4063 if (HAS_FW_BLC(dev) && enabled) {
4064 /* self-refresh has much higher latency */
4065 static const int sr_latency_ns = 6000;
4066 int clock = enabled->mode.clock;
4067 int htotal = enabled->mode.htotal;
4068 int hdisplay = enabled->mode.hdisplay;
4069 int pixel_size = enabled->fb->bits_per_pixel / 8;
4070 unsigned long line_time_us;
4071 int entries;
4072
4073 line_time_us = (htotal * 1000) / clock;
4074
4075 /* Use ns/us then divide to preserve precision */
4076 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4077 pixel_size * hdisplay;
4078 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4079 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4080 srwm = wm_info->fifo_size - entries;
4081 if (srwm < 0)
4082 srwm = 1;
4083
4084 if (IS_I945G(dev) || IS_I945GM(dev))
4085 I915_WRITE(FW_BLC_SELF,
4086 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4087 else if (IS_I915GM(dev))
4088 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4089 }
4090
4091 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4092 planea_wm, planeb_wm, cwm, srwm);
4093
4094 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4095 fwater_hi = (cwm & 0x1f);
4096
4097 /* Set request length to 8 cachelines per fetch */
4098 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4099 fwater_hi = fwater_hi | (1 << 8);
4100
4101 I915_WRITE(FW_BLC, fwater_lo);
4102 I915_WRITE(FW_BLC2, fwater_hi);
4103
4104 if (HAS_FW_BLC(dev)) {
4105 if (enabled) {
4106 if (IS_I945G(dev) || IS_I945GM(dev))
4107 I915_WRITE(FW_BLC_SELF,
4108 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4109 else if (IS_I915GM(dev))
4110 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4111 DRM_DEBUG_KMS("memory self refresh enabled\n");
4112 } else
4113 DRM_DEBUG_KMS("memory self refresh disabled\n");
4114 }
4115 }
4116
4117 static void i830_update_wm(struct drm_device *dev)
4118 {
4119 struct drm_i915_private *dev_priv = dev->dev_private;
4120 struct drm_crtc *crtc;
4121 uint32_t fwater_lo;
4122 int planea_wm;
4123
4124 crtc = single_enabled_crtc(dev);
4125 if (crtc == NULL)
4126 return;
4127
4128 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4129 dev_priv->display.get_fifo_size(dev, 0),
4130 crtc->fb->bits_per_pixel / 8,
4131 latency_ns);
4132 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4133 fwater_lo |= (3<<8) | planea_wm;
4134
4135 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4136
4137 I915_WRITE(FW_BLC, fwater_lo);
4138 }
4139
4140 #define ILK_LP0_PLANE_LATENCY 700
4141 #define ILK_LP0_CURSOR_LATENCY 1300
4142
4143 static bool ironlake_compute_wm0(struct drm_device *dev,
4144 int pipe,
4145 const struct intel_watermark_params *display,
4146 int display_latency_ns,
4147 const struct intel_watermark_params *cursor,
4148 int cursor_latency_ns,
4149 int *plane_wm,
4150 int *cursor_wm)
4151 {
4152 struct drm_crtc *crtc;
4153 int htotal, hdisplay, clock, pixel_size;
4154 int line_time_us, line_count;
4155 int entries, tlb_miss;
4156
4157 crtc = intel_get_crtc_for_pipe(dev, pipe);
4158 if (crtc->fb == NULL || !crtc->enabled)
4159 return false;
4160
4161 htotal = crtc->mode.htotal;
4162 hdisplay = crtc->mode.hdisplay;
4163 clock = crtc->mode.clock;
4164 pixel_size = crtc->fb->bits_per_pixel / 8;
4165
4166 /* Use the small buffer method to calculate plane watermark */
4167 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4168 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
4169 if (tlb_miss > 0)
4170 entries += tlb_miss;
4171 entries = DIV_ROUND_UP(entries, display->cacheline_size);
4172 *plane_wm = entries + display->guard_size;
4173 if (*plane_wm > (int)display->max_wm)
4174 *plane_wm = display->max_wm;
4175
4176 /* Use the large buffer method to calculate cursor watermark */
4177 line_time_us = ((htotal * 1000) / clock);
4178 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
4179 entries = line_count * 64 * pixel_size;
4180 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
4181 if (tlb_miss > 0)
4182 entries += tlb_miss;
4183 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4184 *cursor_wm = entries + cursor->guard_size;
4185 if (*cursor_wm > (int)cursor->max_wm)
4186 *cursor_wm = (int)cursor->max_wm;
4187
4188 return true;
4189 }
4190
4191 /*
4192 * Check the wm result.
4193 *
4194 * If any calculated watermark values is larger than the maximum value that
4195 * can be programmed into the associated watermark register, that watermark
4196 * must be disabled.
4197 */
4198 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4199 int fbc_wm, int display_wm, int cursor_wm,
4200 const struct intel_watermark_params *display,
4201 const struct intel_watermark_params *cursor)
4202 {
4203 struct drm_i915_private *dev_priv = dev->dev_private;
4204
4205 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4206 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4207
4208 if (fbc_wm > SNB_FBC_MAX_SRWM) {
4209 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4210 fbc_wm, SNB_FBC_MAX_SRWM, level);
4211
4212 /* fbc has it's own way to disable FBC WM */
4213 I915_WRITE(DISP_ARB_CTL,
4214 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4215 return false;
4216 }
4217
4218 if (display_wm > display->max_wm) {
4219 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4220 display_wm, SNB_DISPLAY_MAX_SRWM, level);
4221 return false;
4222 }
4223
4224 if (cursor_wm > cursor->max_wm) {
4225 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4226 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4227 return false;
4228 }
4229
4230 if (!(fbc_wm || display_wm || cursor_wm)) {
4231 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4232 return false;
4233 }
4234
4235 return true;
4236 }
4237
4238 /*
4239 * Compute watermark values of WM[1-3],
4240 */
4241 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4242 int latency_ns,
4243 const struct intel_watermark_params *display,
4244 const struct intel_watermark_params *cursor,
4245 int *fbc_wm, int *display_wm, int *cursor_wm)
4246 {
4247 struct drm_crtc *crtc;
4248 unsigned long line_time_us;
4249 int hdisplay, htotal, pixel_size, clock;
4250 int line_count, line_size;
4251 int small, large;
4252 int entries;
4253
4254 if (!latency_ns) {
4255 *fbc_wm = *display_wm = *cursor_wm = 0;
4256 return false;
4257 }
4258
4259 crtc = intel_get_crtc_for_plane(dev, plane);
4260 hdisplay = crtc->mode.hdisplay;
4261 htotal = crtc->mode.htotal;
4262 clock = crtc->mode.clock;
4263 pixel_size = crtc->fb->bits_per_pixel / 8;
4264
4265 line_time_us = (htotal * 1000) / clock;
4266 line_count = (latency_ns / line_time_us + 1000) / 1000;
4267 line_size = hdisplay * pixel_size;
4268
4269 /* Use the minimum of the small and large buffer method for primary */
4270 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4271 large = line_count * line_size;
4272
4273 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4274 *display_wm = entries + display->guard_size;
4275
4276 /*
4277 * Spec says:
4278 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4279 */
4280 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4281
4282 /* calculate the self-refresh watermark for display cursor */
4283 entries = line_count * pixel_size * 64;
4284 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4285 *cursor_wm = entries + cursor->guard_size;
4286
4287 return ironlake_check_srwm(dev, level,
4288 *fbc_wm, *display_wm, *cursor_wm,
4289 display, cursor);
4290 }
4291
4292 static void ironlake_update_wm(struct drm_device *dev)
4293 {
4294 struct drm_i915_private *dev_priv = dev->dev_private;
4295 int fbc_wm, plane_wm, cursor_wm;
4296 unsigned int enabled;
4297
4298 enabled = 0;
4299 if (ironlake_compute_wm0(dev, 0,
4300 &ironlake_display_wm_info,
4301 ILK_LP0_PLANE_LATENCY,
4302 &ironlake_cursor_wm_info,
4303 ILK_LP0_CURSOR_LATENCY,
4304 &plane_wm, &cursor_wm)) {
4305 I915_WRITE(WM0_PIPEA_ILK,
4306 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4307 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4308 " plane %d, " "cursor: %d\n",
4309 plane_wm, cursor_wm);
4310 enabled |= 1;
4311 }
4312
4313 if (ironlake_compute_wm0(dev, 1,
4314 &ironlake_display_wm_info,
4315 ILK_LP0_PLANE_LATENCY,
4316 &ironlake_cursor_wm_info,
4317 ILK_LP0_CURSOR_LATENCY,
4318 &plane_wm, &cursor_wm)) {
4319 I915_WRITE(WM0_PIPEB_ILK,
4320 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4321 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4322 " plane %d, cursor: %d\n",
4323 plane_wm, cursor_wm);
4324 enabled |= 2;
4325 }
4326
4327 /*
4328 * Calculate and update the self-refresh watermark only when one
4329 * display plane is used.
4330 */
4331 I915_WRITE(WM3_LP_ILK, 0);
4332 I915_WRITE(WM2_LP_ILK, 0);
4333 I915_WRITE(WM1_LP_ILK, 0);
4334
4335 if (!single_plane_enabled(enabled))
4336 return;
4337 enabled = ffs(enabled) - 1;
4338
4339 /* WM1 */
4340 if (!ironlake_compute_srwm(dev, 1, enabled,
4341 ILK_READ_WM1_LATENCY() * 500,
4342 &ironlake_display_srwm_info,
4343 &ironlake_cursor_srwm_info,
4344 &fbc_wm, &plane_wm, &cursor_wm))
4345 return;
4346
4347 I915_WRITE(WM1_LP_ILK,
4348 WM1_LP_SR_EN |
4349 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4350 (fbc_wm << WM1_LP_FBC_SHIFT) |
4351 (plane_wm << WM1_LP_SR_SHIFT) |
4352 cursor_wm);
4353
4354 /* WM2 */
4355 if (!ironlake_compute_srwm(dev, 2, enabled,
4356 ILK_READ_WM2_LATENCY() * 500,
4357 &ironlake_display_srwm_info,
4358 &ironlake_cursor_srwm_info,
4359 &fbc_wm, &plane_wm, &cursor_wm))
4360 return;
4361
4362 I915_WRITE(WM2_LP_ILK,
4363 WM2_LP_EN |
4364 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4365 (fbc_wm << WM1_LP_FBC_SHIFT) |
4366 (plane_wm << WM1_LP_SR_SHIFT) |
4367 cursor_wm);
4368
4369 /*
4370 * WM3 is unsupported on ILK, probably because we don't have latency
4371 * data for that power state
4372 */
4373 }
4374
4375 static void sandybridge_update_wm(struct drm_device *dev)
4376 {
4377 struct drm_i915_private *dev_priv = dev->dev_private;
4378 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
4379 int fbc_wm, plane_wm, cursor_wm;
4380 unsigned int enabled;
4381
4382 enabled = 0;
4383 if (ironlake_compute_wm0(dev, 0,
4384 &sandybridge_display_wm_info, latency,
4385 &sandybridge_cursor_wm_info, latency,
4386 &plane_wm, &cursor_wm)) {
4387 I915_WRITE(WM0_PIPEA_ILK,
4388 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4389 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4390 " plane %d, " "cursor: %d\n",
4391 plane_wm, cursor_wm);
4392 enabled |= 1;
4393 }
4394
4395 if (ironlake_compute_wm0(dev, 1,
4396 &sandybridge_display_wm_info, latency,
4397 &sandybridge_cursor_wm_info, latency,
4398 &plane_wm, &cursor_wm)) {
4399 I915_WRITE(WM0_PIPEB_ILK,
4400 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4401 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4402 " plane %d, cursor: %d\n",
4403 plane_wm, cursor_wm);
4404 enabled |= 2;
4405 }
4406
4407 /*
4408 * Calculate and update the self-refresh watermark only when one
4409 * display plane is used.
4410 *
4411 * SNB support 3 levels of watermark.
4412 *
4413 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4414 * and disabled in the descending order
4415 *
4416 */
4417 I915_WRITE(WM3_LP_ILK, 0);
4418 I915_WRITE(WM2_LP_ILK, 0);
4419 I915_WRITE(WM1_LP_ILK, 0);
4420
4421 if (!single_plane_enabled(enabled))
4422 return;
4423 enabled = ffs(enabled) - 1;
4424
4425 /* WM1 */
4426 if (!ironlake_compute_srwm(dev, 1, enabled,
4427 SNB_READ_WM1_LATENCY() * 500,
4428 &sandybridge_display_srwm_info,
4429 &sandybridge_cursor_srwm_info,
4430 &fbc_wm, &plane_wm, &cursor_wm))
4431 return;
4432
4433 I915_WRITE(WM1_LP_ILK,
4434 WM1_LP_SR_EN |
4435 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4436 (fbc_wm << WM1_LP_FBC_SHIFT) |
4437 (plane_wm << WM1_LP_SR_SHIFT) |
4438 cursor_wm);
4439
4440 /* WM2 */
4441 if (!ironlake_compute_srwm(dev, 2, enabled,
4442 SNB_READ_WM2_LATENCY() * 500,
4443 &sandybridge_display_srwm_info,
4444 &sandybridge_cursor_srwm_info,
4445 &fbc_wm, &plane_wm, &cursor_wm))
4446 return;
4447
4448 I915_WRITE(WM2_LP_ILK,
4449 WM2_LP_EN |
4450 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4451 (fbc_wm << WM1_LP_FBC_SHIFT) |
4452 (plane_wm << WM1_LP_SR_SHIFT) |
4453 cursor_wm);
4454
4455 /* WM3 */
4456 if (!ironlake_compute_srwm(dev, 3, enabled,
4457 SNB_READ_WM3_LATENCY() * 500,
4458 &sandybridge_display_srwm_info,
4459 &sandybridge_cursor_srwm_info,
4460 &fbc_wm, &plane_wm, &cursor_wm))
4461 return;
4462
4463 I915_WRITE(WM3_LP_ILK,
4464 WM3_LP_EN |
4465 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4466 (fbc_wm << WM1_LP_FBC_SHIFT) |
4467 (plane_wm << WM1_LP_SR_SHIFT) |
4468 cursor_wm);
4469 }
4470
4471 /**
4472 * intel_update_watermarks - update FIFO watermark values based on current modes
4473 *
4474 * Calculate watermark values for the various WM regs based on current mode
4475 * and plane configuration.
4476 *
4477 * There are several cases to deal with here:
4478 * - normal (i.e. non-self-refresh)
4479 * - self-refresh (SR) mode
4480 * - lines are large relative to FIFO size (buffer can hold up to 2)
4481 * - lines are small relative to FIFO size (buffer can hold more than 2
4482 * lines), so need to account for TLB latency
4483 *
4484 * The normal calculation is:
4485 * watermark = dotclock * bytes per pixel * latency
4486 * where latency is platform & configuration dependent (we assume pessimal
4487 * values here).
4488 *
4489 * The SR calculation is:
4490 * watermark = (trunc(latency/line time)+1) * surface width *
4491 * bytes per pixel
4492 * where
4493 * line time = htotal / dotclock
4494 * surface width = hdisplay for normal plane and 64 for cursor
4495 * and latency is assumed to be high, as above.
4496 *
4497 * The final value programmed to the register should always be rounded up,
4498 * and include an extra 2 entries to account for clock crossings.
4499 *
4500 * We don't use the sprite, so we can ignore that. And on Crestline we have
4501 * to set the non-SR watermarks to 8.
4502 */
4503 static void intel_update_watermarks(struct drm_device *dev)
4504 {
4505 struct drm_i915_private *dev_priv = dev->dev_private;
4506
4507 if (dev_priv->display.update_wm)
4508 dev_priv->display.update_wm(dev);
4509 }
4510
4511 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4512 {
4513 return dev_priv->lvds_use_ssc && i915_panel_use_ssc;
4514 }
4515
4516 static int intel_crtc_mode_set(struct drm_crtc *crtc,
4517 struct drm_display_mode *mode,
4518 struct drm_display_mode *adjusted_mode,
4519 int x, int y,
4520 struct drm_framebuffer *old_fb)
4521 {
4522 struct drm_device *dev = crtc->dev;
4523 struct drm_i915_private *dev_priv = dev->dev_private;
4524 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4525 int pipe = intel_crtc->pipe;
4526 int plane = intel_crtc->plane;
4527 u32 fp_reg, dpll_reg;
4528 int refclk, num_connectors = 0;
4529 intel_clock_t clock, reduced_clock;
4530 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4531 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
4532 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4533 struct intel_encoder *has_edp_encoder = NULL;
4534 struct drm_mode_config *mode_config = &dev->mode_config;
4535 struct intel_encoder *encoder;
4536 const intel_limit_t *limit;
4537 int ret;
4538 struct fdi_m_n m_n = {0};
4539 u32 reg, temp;
4540 u32 lvds_sync = 0;
4541 int target_clock;
4542
4543 drm_vblank_pre_modeset(dev, pipe);
4544
4545 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4546 if (encoder->base.crtc != crtc)
4547 continue;
4548
4549 switch (encoder->type) {
4550 case INTEL_OUTPUT_LVDS:
4551 is_lvds = true;
4552 break;
4553 case INTEL_OUTPUT_SDVO:
4554 case INTEL_OUTPUT_HDMI:
4555 is_sdvo = true;
4556 if (encoder->needs_tv_clock)
4557 is_tv = true;
4558 break;
4559 case INTEL_OUTPUT_DVO:
4560 is_dvo = true;
4561 break;
4562 case INTEL_OUTPUT_TVOUT:
4563 is_tv = true;
4564 break;
4565 case INTEL_OUTPUT_ANALOG:
4566 is_crt = true;
4567 break;
4568 case INTEL_OUTPUT_DISPLAYPORT:
4569 is_dp = true;
4570 break;
4571 case INTEL_OUTPUT_EDP:
4572 has_edp_encoder = encoder;
4573 break;
4574 }
4575
4576 num_connectors++;
4577 }
4578
4579 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4580 refclk = dev_priv->lvds_ssc_freq * 1000;
4581 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4582 refclk / 1000);
4583 } else if (!IS_GEN2(dev)) {
4584 refclk = 96000;
4585 if (HAS_PCH_SPLIT(dev) &&
4586 (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)))
4587 refclk = 120000; /* 120Mhz refclk */
4588 } else {
4589 refclk = 48000;
4590 }
4591
4592 /*
4593 * Returns a set of divisors for the desired target clock with the given
4594 * refclk, or FALSE. The returned values represent the clock equation:
4595 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4596 */
4597 limit = intel_limit(crtc, refclk);
4598 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4599 if (!ok) {
4600 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4601 drm_vblank_post_modeset(dev, pipe);
4602 return -EINVAL;
4603 }
4604
4605 /* Ensure that the cursor is valid for the new mode before changing... */
4606 intel_crtc_update_cursor(crtc, true);
4607
4608 if (is_lvds && dev_priv->lvds_downclock_avail) {
4609 has_reduced_clock = limit->find_pll(limit, crtc,
4610 dev_priv->lvds_downclock,
4611 refclk,
4612 &reduced_clock);
4613 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4614 /*
4615 * If the different P is found, it means that we can't
4616 * switch the display clock by using the FP0/FP1.
4617 * In such case we will disable the LVDS downclock
4618 * feature.
4619 */
4620 DRM_DEBUG_KMS("Different P is found for "
4621 "LVDS clock/downclock\n");
4622 has_reduced_clock = 0;
4623 }
4624 }
4625 /* SDVO TV has fixed PLL values depend on its clock range,
4626 this mirrors vbios setting. */
4627 if (is_sdvo && is_tv) {
4628 if (adjusted_mode->clock >= 100000
4629 && adjusted_mode->clock < 140500) {
4630 clock.p1 = 2;
4631 clock.p2 = 10;
4632 clock.n = 3;
4633 clock.m1 = 16;
4634 clock.m2 = 8;
4635 } else if (adjusted_mode->clock >= 140500
4636 && adjusted_mode->clock <= 200000) {
4637 clock.p1 = 1;
4638 clock.p2 = 10;
4639 clock.n = 6;
4640 clock.m1 = 12;
4641 clock.m2 = 8;
4642 }
4643 }
4644
4645 /* FDI link */
4646 if (HAS_PCH_SPLIT(dev)) {
4647 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4648 int lane = 0, link_bw, bpp;
4649 /* CPU eDP doesn't require FDI link, so just set DP M/N
4650 according to current link config */
4651 if (has_edp_encoder && !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4652 target_clock = mode->clock;
4653 intel_edp_link_config(has_edp_encoder,
4654 &lane, &link_bw);
4655 } else {
4656 /* [e]DP over FDI requires target mode clock
4657 instead of link clock */
4658 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
4659 target_clock = mode->clock;
4660 else
4661 target_clock = adjusted_mode->clock;
4662
4663 /* FDI is a binary signal running at ~2.7GHz, encoding
4664 * each output octet as 10 bits. The actual frequency
4665 * is stored as a divider into a 100MHz clock, and the
4666 * mode pixel clock is stored in units of 1KHz.
4667 * Hence the bw of each lane in terms of the mode signal
4668 * is:
4669 */
4670 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4671 }
4672
4673 /* determine panel color depth */
4674 temp = I915_READ(PIPECONF(pipe));
4675 temp &= ~PIPE_BPC_MASK;
4676 if (is_lvds) {
4677 /* the BPC will be 6 if it is 18-bit LVDS panel */
4678 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
4679 temp |= PIPE_8BPC;
4680 else
4681 temp |= PIPE_6BPC;
4682 } else if (has_edp_encoder) {
4683 switch (dev_priv->edp.bpp/3) {
4684 case 8:
4685 temp |= PIPE_8BPC;
4686 break;
4687 case 10:
4688 temp |= PIPE_10BPC;
4689 break;
4690 case 6:
4691 temp |= PIPE_6BPC;
4692 break;
4693 case 12:
4694 temp |= PIPE_12BPC;
4695 break;
4696 }
4697 } else
4698 temp |= PIPE_8BPC;
4699 I915_WRITE(PIPECONF(pipe), temp);
4700
4701 switch (temp & PIPE_BPC_MASK) {
4702 case PIPE_8BPC:
4703 bpp = 24;
4704 break;
4705 case PIPE_10BPC:
4706 bpp = 30;
4707 break;
4708 case PIPE_6BPC:
4709 bpp = 18;
4710 break;
4711 case PIPE_12BPC:
4712 bpp = 36;
4713 break;
4714 default:
4715 DRM_ERROR("unknown pipe bpc value\n");
4716 bpp = 24;
4717 }
4718
4719 if (!lane) {
4720 /*
4721 * Account for spread spectrum to avoid
4722 * oversubscribing the link. Max center spread
4723 * is 2.5%; use 5% for safety's sake.
4724 */
4725 u32 bps = target_clock * bpp * 21 / 20;
4726 lane = bps / (link_bw * 8) + 1;
4727 }
4728
4729 intel_crtc->fdi_lanes = lane;
4730
4731 if (pixel_multiplier > 1)
4732 link_bw *= pixel_multiplier;
4733 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
4734 }
4735
4736 /* Ironlake: try to setup display ref clock before DPLL
4737 * enabling. This is only under driver's control after
4738 * PCH B stepping, previous chipset stepping should be
4739 * ignoring this setting.
4740 */
4741 if (HAS_PCH_SPLIT(dev)) {
4742 temp = I915_READ(PCH_DREF_CONTROL);
4743 /* Always enable nonspread source */
4744 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4745 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4746 temp &= ~DREF_SSC_SOURCE_MASK;
4747 temp |= DREF_SSC_SOURCE_ENABLE;
4748 I915_WRITE(PCH_DREF_CONTROL, temp);
4749
4750 POSTING_READ(PCH_DREF_CONTROL);
4751 udelay(200);
4752
4753 if (has_edp_encoder) {
4754 if (intel_panel_use_ssc(dev_priv)) {
4755 temp |= DREF_SSC1_ENABLE;
4756 I915_WRITE(PCH_DREF_CONTROL, temp);
4757
4758 POSTING_READ(PCH_DREF_CONTROL);
4759 udelay(200);
4760 }
4761 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4762
4763 /* Enable CPU source on CPU attached eDP */
4764 if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4765 if (intel_panel_use_ssc(dev_priv))
4766 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4767 else
4768 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4769 } else {
4770 /* Enable SSC on PCH eDP if needed */
4771 if (intel_panel_use_ssc(dev_priv)) {
4772 DRM_ERROR("enabling SSC on PCH\n");
4773 temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
4774 }
4775 }
4776 I915_WRITE(PCH_DREF_CONTROL, temp);
4777 POSTING_READ(PCH_DREF_CONTROL);
4778 udelay(200);
4779 }
4780 }
4781
4782 if (IS_PINEVIEW(dev)) {
4783 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
4784 if (has_reduced_clock)
4785 fp2 = (1 << reduced_clock.n) << 16 |
4786 reduced_clock.m1 << 8 | reduced_clock.m2;
4787 } else {
4788 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4789 if (has_reduced_clock)
4790 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4791 reduced_clock.m2;
4792 }
4793
4794 /* Enable autotuning of the PLL clock (if permissible) */
4795 if (HAS_PCH_SPLIT(dev)) {
4796 int factor = 21;
4797
4798 if (is_lvds) {
4799 if ((intel_panel_use_ssc(dev_priv) &&
4800 dev_priv->lvds_ssc_freq == 100) ||
4801 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4802 factor = 25;
4803 } else if (is_sdvo && is_tv)
4804 factor = 20;
4805
4806 if (clock.m1 < factor * clock.n)
4807 fp |= FP_CB_TUNE;
4808 }
4809
4810 dpll = 0;
4811 if (!HAS_PCH_SPLIT(dev))
4812 dpll = DPLL_VGA_MODE_DIS;
4813
4814 if (!IS_GEN2(dev)) {
4815 if (is_lvds)
4816 dpll |= DPLLB_MODE_LVDS;
4817 else
4818 dpll |= DPLLB_MODE_DAC_SERIAL;
4819 if (is_sdvo) {
4820 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4821 if (pixel_multiplier > 1) {
4822 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4823 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4824 else if (HAS_PCH_SPLIT(dev))
4825 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
4826 }
4827 dpll |= DPLL_DVO_HIGH_SPEED;
4828 }
4829 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
4830 dpll |= DPLL_DVO_HIGH_SPEED;
4831
4832 /* compute bitmask from p1 value */
4833 if (IS_PINEVIEW(dev))
4834 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4835 else {
4836 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4837 /* also FPA1 */
4838 if (HAS_PCH_SPLIT(dev))
4839 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4840 if (IS_G4X(dev) && has_reduced_clock)
4841 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4842 }
4843 switch (clock.p2) {
4844 case 5:
4845 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4846 break;
4847 case 7:
4848 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4849 break;
4850 case 10:
4851 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4852 break;
4853 case 14:
4854 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4855 break;
4856 }
4857 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev))
4858 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4859 } else {
4860 if (is_lvds) {
4861 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4862 } else {
4863 if (clock.p1 == 2)
4864 dpll |= PLL_P1_DIVIDE_BY_TWO;
4865 else
4866 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4867 if (clock.p2 == 4)
4868 dpll |= PLL_P2_DIVIDE_BY_4;
4869 }
4870 }
4871
4872 if (is_sdvo && is_tv)
4873 dpll |= PLL_REF_INPUT_TVCLKINBC;
4874 else if (is_tv)
4875 /* XXX: just matching BIOS for now */
4876 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4877 dpll |= 3;
4878 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4879 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4880 else
4881 dpll |= PLL_REF_INPUT_DREFCLK;
4882
4883 /* setup pipeconf */
4884 pipeconf = I915_READ(PIPECONF(pipe));
4885
4886 /* Set up the display plane register */
4887 dspcntr = DISPPLANE_GAMMA_ENABLE;
4888
4889 /* Ironlake's plane is forced to pipe, bit 24 is to
4890 enable color space conversion */
4891 if (!HAS_PCH_SPLIT(dev)) {
4892 if (pipe == 0)
4893 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4894 else
4895 dspcntr |= DISPPLANE_SEL_PIPE_B;
4896 }
4897
4898 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4899 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4900 * core speed.
4901 *
4902 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4903 * pipe == 0 check?
4904 */
4905 if (mode->clock >
4906 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4907 pipeconf |= PIPECONF_DOUBLE_WIDE;
4908 else
4909 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4910 }
4911
4912 if (!HAS_PCH_SPLIT(dev))
4913 dpll |= DPLL_VCO_ENABLE;
4914
4915 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4916 drm_mode_debug_printmodeline(mode);
4917
4918 /* assign to Ironlake registers */
4919 if (HAS_PCH_SPLIT(dev)) {
4920 fp_reg = PCH_FP0(pipe);
4921 dpll_reg = PCH_DPLL(pipe);
4922 } else {
4923 fp_reg = FP0(pipe);
4924 dpll_reg = DPLL(pipe);
4925 }
4926
4927 /* PCH eDP needs FDI, but CPU eDP does not */
4928 if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4929 I915_WRITE(fp_reg, fp);
4930 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
4931
4932 POSTING_READ(dpll_reg);
4933 udelay(150);
4934 }
4935
4936 /* enable transcoder DPLL */
4937 if (HAS_PCH_CPT(dev)) {
4938 temp = I915_READ(PCH_DPLL_SEL);
4939 switch (pipe) {
4940 case 0:
4941 temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
4942 break;
4943 case 1:
4944 temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
4945 break;
4946 case 2:
4947 /* FIXME: manage transcoder PLLs? */
4948 temp |= TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL;
4949 break;
4950 default:
4951 BUG();
4952 }
4953 I915_WRITE(PCH_DPLL_SEL, temp);
4954
4955 POSTING_READ(PCH_DPLL_SEL);
4956 udelay(150);
4957 }
4958
4959 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4960 * This is an exception to the general rule that mode_set doesn't turn
4961 * things on.
4962 */
4963 if (is_lvds) {
4964 reg = LVDS;
4965 if (HAS_PCH_SPLIT(dev))
4966 reg = PCH_LVDS;
4967
4968 temp = I915_READ(reg);
4969 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4970 if (pipe == 1) {
4971 if (HAS_PCH_CPT(dev))
4972 temp |= PORT_TRANS_B_SEL_CPT;
4973 else
4974 temp |= LVDS_PIPEB_SELECT;
4975 } else {
4976 if (HAS_PCH_CPT(dev))
4977 temp &= ~PORT_TRANS_SEL_MASK;
4978 else
4979 temp &= ~LVDS_PIPEB_SELECT;
4980 }
4981 /* set the corresponsding LVDS_BORDER bit */
4982 temp |= dev_priv->lvds_border_bits;
4983 /* Set the B0-B3 data pairs corresponding to whether we're going to
4984 * set the DPLLs for dual-channel mode or not.
4985 */
4986 if (clock.p2 == 7)
4987 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4988 else
4989 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4990
4991 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4992 * appropriately here, but we need to look more thoroughly into how
4993 * panels behave in the two modes.
4994 */
4995 /* set the dithering flag on non-PCH LVDS as needed */
4996 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
4997 if (dev_priv->lvds_dither)
4998 temp |= LVDS_ENABLE_DITHER;
4999 else
5000 temp &= ~LVDS_ENABLE_DITHER;
5001 }
5002 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5003 lvds_sync |= LVDS_HSYNC_POLARITY;
5004 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5005 lvds_sync |= LVDS_VSYNC_POLARITY;
5006 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5007 != lvds_sync) {
5008 char flags[2] = "-+";
5009 DRM_INFO("Changing LVDS panel from "
5010 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5011 flags[!(temp & LVDS_HSYNC_POLARITY)],
5012 flags[!(temp & LVDS_VSYNC_POLARITY)],
5013 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5014 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5015 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5016 temp |= lvds_sync;
5017 }
5018 I915_WRITE(reg, temp);
5019 }
5020
5021 /* set the dithering flag and clear for anything other than a panel. */
5022 if (HAS_PCH_SPLIT(dev)) {
5023 pipeconf &= ~PIPECONF_DITHER_EN;
5024 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5025 if (dev_priv->lvds_dither && (is_lvds || has_edp_encoder)) {
5026 pipeconf |= PIPECONF_DITHER_EN;
5027 pipeconf |= PIPECONF_DITHER_TYPE_ST1;
5028 }
5029 }
5030
5031 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5032 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5033 } else if (HAS_PCH_SPLIT(dev)) {
5034 /* For non-DP output, clear any trans DP clock recovery setting.*/
5035 I915_WRITE(TRANSDATA_M1(pipe), 0);
5036 I915_WRITE(TRANSDATA_N1(pipe), 0);
5037 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5038 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5039 }
5040
5041 if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5042 I915_WRITE(dpll_reg, dpll);
5043
5044 /* Wait for the clocks to stabilize. */
5045 POSTING_READ(dpll_reg);
5046 udelay(150);
5047
5048 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
5049 temp = 0;
5050 if (is_sdvo) {
5051 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5052 if (temp > 1)
5053 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5054 else
5055 temp = 0;
5056 }
5057 I915_WRITE(DPLL_MD(pipe), temp);
5058 } else {
5059 /* The pixel multiplier can only be updated once the
5060 * DPLL is enabled and the clocks are stable.
5061 *
5062 * So write it again.
5063 */
5064 I915_WRITE(dpll_reg, dpll);
5065 }
5066 }
5067
5068 intel_crtc->lowfreq_avail = false;
5069 if (is_lvds && has_reduced_clock && i915_powersave) {
5070 I915_WRITE(fp_reg + 4, fp2);
5071 intel_crtc->lowfreq_avail = true;
5072 if (HAS_PIPE_CXSR(dev)) {
5073 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5074 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5075 }
5076 } else {
5077 I915_WRITE(fp_reg + 4, fp);
5078 if (HAS_PIPE_CXSR(dev)) {
5079 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5080 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5081 }
5082 }
5083
5084 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5085 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5086 /* the chip adds 2 halflines automatically */
5087 adjusted_mode->crtc_vdisplay -= 1;
5088 adjusted_mode->crtc_vtotal -= 1;
5089 adjusted_mode->crtc_vblank_start -= 1;
5090 adjusted_mode->crtc_vblank_end -= 1;
5091 adjusted_mode->crtc_vsync_end -= 1;
5092 adjusted_mode->crtc_vsync_start -= 1;
5093 } else
5094 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5095
5096 I915_WRITE(HTOTAL(pipe),
5097 (adjusted_mode->crtc_hdisplay - 1) |
5098 ((adjusted_mode->crtc_htotal - 1) << 16));
5099 I915_WRITE(HBLANK(pipe),
5100 (adjusted_mode->crtc_hblank_start - 1) |
5101 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5102 I915_WRITE(HSYNC(pipe),
5103 (adjusted_mode->crtc_hsync_start - 1) |
5104 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5105
5106 I915_WRITE(VTOTAL(pipe),
5107 (adjusted_mode->crtc_vdisplay - 1) |
5108 ((adjusted_mode->crtc_vtotal - 1) << 16));
5109 I915_WRITE(VBLANK(pipe),
5110 (adjusted_mode->crtc_vblank_start - 1) |
5111 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5112 I915_WRITE(VSYNC(pipe),
5113 (adjusted_mode->crtc_vsync_start - 1) |
5114 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5115
5116 /* pipesrc and dspsize control the size that is scaled from,
5117 * which should always be the user's requested size.
5118 */
5119 if (!HAS_PCH_SPLIT(dev)) {
5120 I915_WRITE(DSPSIZE(plane),
5121 ((mode->vdisplay - 1) << 16) |
5122 (mode->hdisplay - 1));
5123 I915_WRITE(DSPPOS(plane), 0);
5124 }
5125 I915_WRITE(PIPESRC(pipe),
5126 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5127
5128 if (HAS_PCH_SPLIT(dev)) {
5129 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5130 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5131 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5132 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5133
5134 if (has_edp_encoder && !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5135 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5136 }
5137 }
5138
5139 I915_WRITE(PIPECONF(pipe), pipeconf);
5140 POSTING_READ(PIPECONF(pipe));
5141 if (!HAS_PCH_SPLIT(dev))
5142 intel_enable_pipe(dev_priv, pipe, false);
5143
5144 intel_wait_for_vblank(dev, pipe);
5145
5146 if (IS_GEN5(dev)) {
5147 /* enable address swizzle for tiling buffer */
5148 temp = I915_READ(DISP_ARB_CTL);
5149 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5150 }
5151
5152 I915_WRITE(DSPCNTR(plane), dspcntr);
5153 POSTING_READ(DSPCNTR(plane));
5154 if (!HAS_PCH_SPLIT(dev))
5155 intel_enable_plane(dev_priv, plane, pipe);
5156
5157 ret = intel_pipe_set_base(crtc, x, y, old_fb);
5158
5159 intel_update_watermarks(dev);
5160
5161 drm_vblank_post_modeset(dev, pipe);
5162
5163 return ret;
5164 }
5165
5166 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5167 void intel_crtc_load_lut(struct drm_crtc *crtc)
5168 {
5169 struct drm_device *dev = crtc->dev;
5170 struct drm_i915_private *dev_priv = dev->dev_private;
5171 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5172 int palreg = PALETTE(intel_crtc->pipe);
5173 int i;
5174
5175 /* The clocks have to be on to load the palette. */
5176 if (!crtc->enabled)
5177 return;
5178
5179 /* use legacy palette for Ironlake */
5180 if (HAS_PCH_SPLIT(dev))
5181 palreg = LGC_PALETTE(intel_crtc->pipe);
5182
5183 for (i = 0; i < 256; i++) {
5184 I915_WRITE(palreg + 4 * i,
5185 (intel_crtc->lut_r[i] << 16) |
5186 (intel_crtc->lut_g[i] << 8) |
5187 intel_crtc->lut_b[i]);
5188 }
5189 }
5190
5191 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5192 {
5193 struct drm_device *dev = crtc->dev;
5194 struct drm_i915_private *dev_priv = dev->dev_private;
5195 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5196 bool visible = base != 0;
5197 u32 cntl;
5198
5199 if (intel_crtc->cursor_visible == visible)
5200 return;
5201
5202 cntl = I915_READ(_CURACNTR);
5203 if (visible) {
5204 /* On these chipsets we can only modify the base whilst
5205 * the cursor is disabled.
5206 */
5207 I915_WRITE(_CURABASE, base);
5208
5209 cntl &= ~(CURSOR_FORMAT_MASK);
5210 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5211 cntl |= CURSOR_ENABLE |
5212 CURSOR_GAMMA_ENABLE |
5213 CURSOR_FORMAT_ARGB;
5214 } else
5215 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5216 I915_WRITE(_CURACNTR, cntl);
5217
5218 intel_crtc->cursor_visible = visible;
5219 }
5220
5221 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5222 {
5223 struct drm_device *dev = crtc->dev;
5224 struct drm_i915_private *dev_priv = dev->dev_private;
5225 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5226 int pipe = intel_crtc->pipe;
5227 bool visible = base != 0;
5228
5229 if (intel_crtc->cursor_visible != visible) {
5230 uint32_t cntl = I915_READ(CURCNTR(pipe));
5231 if (base) {
5232 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5233 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5234 cntl |= pipe << 28; /* Connect to correct pipe */
5235 } else {
5236 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5237 cntl |= CURSOR_MODE_DISABLE;
5238 }
5239 I915_WRITE(CURCNTR(pipe), cntl);
5240
5241 intel_crtc->cursor_visible = visible;
5242 }
5243 /* and commit changes on next vblank */
5244 I915_WRITE(CURBASE(pipe), base);
5245 }
5246
5247 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5248 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5249 bool on)
5250 {
5251 struct drm_device *dev = crtc->dev;
5252 struct drm_i915_private *dev_priv = dev->dev_private;
5253 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5254 int pipe = intel_crtc->pipe;
5255 int x = intel_crtc->cursor_x;
5256 int y = intel_crtc->cursor_y;
5257 u32 base, pos;
5258 bool visible;
5259
5260 pos = 0;
5261
5262 if (on && crtc->enabled && crtc->fb) {
5263 base = intel_crtc->cursor_addr;
5264 if (x > (int) crtc->fb->width)
5265 base = 0;
5266
5267 if (y > (int) crtc->fb->height)
5268 base = 0;
5269 } else
5270 base = 0;
5271
5272 if (x < 0) {
5273 if (x + intel_crtc->cursor_width < 0)
5274 base = 0;
5275
5276 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5277 x = -x;
5278 }
5279 pos |= x << CURSOR_X_SHIFT;
5280
5281 if (y < 0) {
5282 if (y + intel_crtc->cursor_height < 0)
5283 base = 0;
5284
5285 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5286 y = -y;
5287 }
5288 pos |= y << CURSOR_Y_SHIFT;
5289
5290 visible = base != 0;
5291 if (!visible && !intel_crtc->cursor_visible)
5292 return;
5293
5294 I915_WRITE(CURPOS(pipe), pos);
5295 if (IS_845G(dev) || IS_I865G(dev))
5296 i845_update_cursor(crtc, base);
5297 else
5298 i9xx_update_cursor(crtc, base);
5299
5300 if (visible)
5301 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
5302 }
5303
5304 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5305 struct drm_file *file,
5306 uint32_t handle,
5307 uint32_t width, uint32_t height)
5308 {
5309 struct drm_device *dev = crtc->dev;
5310 struct drm_i915_private *dev_priv = dev->dev_private;
5311 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5312 struct drm_i915_gem_object *obj;
5313 uint32_t addr;
5314 int ret;
5315
5316 DRM_DEBUG_KMS("\n");
5317
5318 /* if we want to turn off the cursor ignore width and height */
5319 if (!handle) {
5320 DRM_DEBUG_KMS("cursor off\n");
5321 addr = 0;
5322 obj = NULL;
5323 mutex_lock(&dev->struct_mutex);
5324 goto finish;
5325 }
5326
5327 /* Currently we only support 64x64 cursors */
5328 if (width != 64 || height != 64) {
5329 DRM_ERROR("we currently only support 64x64 cursors\n");
5330 return -EINVAL;
5331 }
5332
5333 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5334 if (&obj->base == NULL)
5335 return -ENOENT;
5336
5337 if (obj->base.size < width * height * 4) {
5338 DRM_ERROR("buffer is to small\n");
5339 ret = -ENOMEM;
5340 goto fail;
5341 }
5342
5343 /* we only need to pin inside GTT if cursor is non-phy */
5344 mutex_lock(&dev->struct_mutex);
5345 if (!dev_priv->info->cursor_needs_physical) {
5346 if (obj->tiling_mode) {
5347 DRM_ERROR("cursor cannot be tiled\n");
5348 ret = -EINVAL;
5349 goto fail_locked;
5350 }
5351
5352 ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
5353 if (ret) {
5354 DRM_ERROR("failed to pin cursor bo\n");
5355 goto fail_locked;
5356 }
5357
5358 ret = i915_gem_object_set_to_gtt_domain(obj, 0);
5359 if (ret) {
5360 DRM_ERROR("failed to move cursor bo into the GTT\n");
5361 goto fail_unpin;
5362 }
5363
5364 ret = i915_gem_object_put_fence(obj);
5365 if (ret) {
5366 DRM_ERROR("failed to move cursor bo into the GTT\n");
5367 goto fail_unpin;
5368 }
5369
5370 addr = obj->gtt_offset;
5371 } else {
5372 int align = IS_I830(dev) ? 16 * 1024 : 256;
5373 ret = i915_gem_attach_phys_object(dev, obj,
5374 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5375 align);
5376 if (ret) {
5377 DRM_ERROR("failed to attach phys object\n");
5378 goto fail_locked;
5379 }
5380 addr = obj->phys_obj->handle->busaddr;
5381 }
5382
5383 if (IS_GEN2(dev))
5384 I915_WRITE(CURSIZE, (height << 12) | width);
5385
5386 finish:
5387 if (intel_crtc->cursor_bo) {
5388 if (dev_priv->info->cursor_needs_physical) {
5389 if (intel_crtc->cursor_bo != obj)
5390 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5391 } else
5392 i915_gem_object_unpin(intel_crtc->cursor_bo);
5393 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5394 }
5395
5396 mutex_unlock(&dev->struct_mutex);
5397
5398 intel_crtc->cursor_addr = addr;
5399 intel_crtc->cursor_bo = obj;
5400 intel_crtc->cursor_width = width;
5401 intel_crtc->cursor_height = height;
5402
5403 intel_crtc_update_cursor(crtc, true);
5404
5405 return 0;
5406 fail_unpin:
5407 i915_gem_object_unpin(obj);
5408 fail_locked:
5409 mutex_unlock(&dev->struct_mutex);
5410 fail:
5411 drm_gem_object_unreference_unlocked(&obj->base);
5412 return ret;
5413 }
5414
5415 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5416 {
5417 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5418
5419 intel_crtc->cursor_x = x;
5420 intel_crtc->cursor_y = y;
5421
5422 intel_crtc_update_cursor(crtc, true);
5423
5424 return 0;
5425 }
5426
5427 /** Sets the color ramps on behalf of RandR */
5428 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5429 u16 blue, int regno)
5430 {
5431 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5432
5433 intel_crtc->lut_r[regno] = red >> 8;
5434 intel_crtc->lut_g[regno] = green >> 8;
5435 intel_crtc->lut_b[regno] = blue >> 8;
5436 }
5437
5438 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5439 u16 *blue, int regno)
5440 {
5441 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5442
5443 *red = intel_crtc->lut_r[regno] << 8;
5444 *green = intel_crtc->lut_g[regno] << 8;
5445 *blue = intel_crtc->lut_b[regno] << 8;
5446 }
5447
5448 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5449 u16 *blue, uint32_t start, uint32_t size)
5450 {
5451 int end = (start + size > 256) ? 256 : start + size, i;
5452 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5453
5454 for (i = start; i < end; i++) {
5455 intel_crtc->lut_r[i] = red[i] >> 8;
5456 intel_crtc->lut_g[i] = green[i] >> 8;
5457 intel_crtc->lut_b[i] = blue[i] >> 8;
5458 }
5459
5460 intel_crtc_load_lut(crtc);
5461 }
5462
5463 /**
5464 * Get a pipe with a simple mode set on it for doing load-based monitor
5465 * detection.
5466 *
5467 * It will be up to the load-detect code to adjust the pipe as appropriate for
5468 * its requirements. The pipe will be connected to no other encoders.
5469 *
5470 * Currently this code will only succeed if there is a pipe with no encoders
5471 * configured for it. In the future, it could choose to temporarily disable
5472 * some outputs to free up a pipe for its use.
5473 *
5474 * \return crtc, or NULL if no pipes are available.
5475 */
5476
5477 /* VESA 640x480x72Hz mode to set on the pipe */
5478 static struct drm_display_mode load_detect_mode = {
5479 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5480 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5481 };
5482
5483 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
5484 struct drm_connector *connector,
5485 struct drm_display_mode *mode,
5486 int *dpms_mode)
5487 {
5488 struct intel_crtc *intel_crtc;
5489 struct drm_crtc *possible_crtc;
5490 struct drm_crtc *supported_crtc =NULL;
5491 struct drm_encoder *encoder = &intel_encoder->base;
5492 struct drm_crtc *crtc = NULL;
5493 struct drm_device *dev = encoder->dev;
5494 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
5495 struct drm_crtc_helper_funcs *crtc_funcs;
5496 int i = -1;
5497
5498 /*
5499 * Algorithm gets a little messy:
5500 * - if the connector already has an assigned crtc, use it (but make
5501 * sure it's on first)
5502 * - try to find the first unused crtc that can drive this connector,
5503 * and use that if we find one
5504 * - if there are no unused crtcs available, try to use the first
5505 * one we found that supports the connector
5506 */
5507
5508 /* See if we already have a CRTC for this connector */
5509 if (encoder->crtc) {
5510 crtc = encoder->crtc;
5511 /* Make sure the crtc and connector are running */
5512 intel_crtc = to_intel_crtc(crtc);
5513 *dpms_mode = intel_crtc->dpms_mode;
5514 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
5515 crtc_funcs = crtc->helper_private;
5516 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
5517 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
5518 }
5519 return crtc;
5520 }
5521
5522 /* Find an unused one (if possible) */
5523 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5524 i++;
5525 if (!(encoder->possible_crtcs & (1 << i)))
5526 continue;
5527 if (!possible_crtc->enabled) {
5528 crtc = possible_crtc;
5529 break;
5530 }
5531 if (!supported_crtc)
5532 supported_crtc = possible_crtc;
5533 }
5534
5535 /*
5536 * If we didn't find an unused CRTC, don't use any.
5537 */
5538 if (!crtc) {
5539 return NULL;
5540 }
5541
5542 encoder->crtc = crtc;
5543 connector->encoder = encoder;
5544 intel_encoder->load_detect_temp = true;
5545
5546 intel_crtc = to_intel_crtc(crtc);
5547 *dpms_mode = intel_crtc->dpms_mode;
5548
5549 if (!crtc->enabled) {
5550 if (!mode)
5551 mode = &load_detect_mode;
5552 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
5553 } else {
5554 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
5555 crtc_funcs = crtc->helper_private;
5556 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
5557 }
5558
5559 /* Add this connector to the crtc */
5560 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
5561 encoder_funcs->commit(encoder);
5562 }
5563 /* let the connector get through one full cycle before testing */
5564 intel_wait_for_vblank(dev, intel_crtc->pipe);
5565
5566 return crtc;
5567 }
5568
5569 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
5570 struct drm_connector *connector, int dpms_mode)
5571 {
5572 struct drm_encoder *encoder = &intel_encoder->base;
5573 struct drm_device *dev = encoder->dev;
5574 struct drm_crtc *crtc = encoder->crtc;
5575 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
5576 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
5577
5578 if (intel_encoder->load_detect_temp) {
5579 encoder->crtc = NULL;
5580 connector->encoder = NULL;
5581 intel_encoder->load_detect_temp = false;
5582 crtc->enabled = drm_helper_crtc_in_use(crtc);
5583 drm_helper_disable_unused_functions(dev);
5584 }
5585
5586 /* Switch crtc and encoder back off if necessary */
5587 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
5588 if (encoder->crtc == crtc)
5589 encoder_funcs->dpms(encoder, dpms_mode);
5590 crtc_funcs->dpms(crtc, dpms_mode);
5591 }
5592 }
5593
5594 /* Returns the clock of the currently programmed mode of the given pipe. */
5595 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5596 {
5597 struct drm_i915_private *dev_priv = dev->dev_private;
5598 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5599 int pipe = intel_crtc->pipe;
5600 u32 dpll = I915_READ(DPLL(pipe));
5601 u32 fp;
5602 intel_clock_t clock;
5603
5604 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5605 fp = FP0(pipe);
5606 else
5607 fp = FP1(pipe);
5608
5609 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5610 if (IS_PINEVIEW(dev)) {
5611 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5612 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
5613 } else {
5614 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5615 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5616 }
5617
5618 if (!IS_GEN2(dev)) {
5619 if (IS_PINEVIEW(dev))
5620 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5621 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
5622 else
5623 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
5624 DPLL_FPA01_P1_POST_DIV_SHIFT);
5625
5626 switch (dpll & DPLL_MODE_MASK) {
5627 case DPLLB_MODE_DAC_SERIAL:
5628 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5629 5 : 10;
5630 break;
5631 case DPLLB_MODE_LVDS:
5632 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
5633 7 : 14;
5634 break;
5635 default:
5636 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
5637 "mode\n", (int)(dpll & DPLL_MODE_MASK));
5638 return 0;
5639 }
5640
5641 /* XXX: Handle the 100Mhz refclk */
5642 intel_clock(dev, 96000, &clock);
5643 } else {
5644 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
5645
5646 if (is_lvds) {
5647 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
5648 DPLL_FPA01_P1_POST_DIV_SHIFT);
5649 clock.p2 = 14;
5650
5651 if ((dpll & PLL_REF_INPUT_MASK) ==
5652 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
5653 /* XXX: might not be 66MHz */
5654 intel_clock(dev, 66000, &clock);
5655 } else
5656 intel_clock(dev, 48000, &clock);
5657 } else {
5658 if (dpll & PLL_P1_DIVIDE_BY_TWO)
5659 clock.p1 = 2;
5660 else {
5661 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
5662 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
5663 }
5664 if (dpll & PLL_P2_DIVIDE_BY_4)
5665 clock.p2 = 4;
5666 else
5667 clock.p2 = 2;
5668
5669 intel_clock(dev, 48000, &clock);
5670 }
5671 }
5672
5673 /* XXX: It would be nice to validate the clocks, but we can't reuse
5674 * i830PllIsValid() because it relies on the xf86_config connector
5675 * configuration being accurate, which it isn't necessarily.
5676 */
5677
5678 return clock.dot;
5679 }
5680
5681 /** Returns the currently programmed mode of the given pipe. */
5682 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
5683 struct drm_crtc *crtc)
5684 {
5685 struct drm_i915_private *dev_priv = dev->dev_private;
5686 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5687 int pipe = intel_crtc->pipe;
5688 struct drm_display_mode *mode;
5689 int htot = I915_READ(HTOTAL(pipe));
5690 int hsync = I915_READ(HSYNC(pipe));
5691 int vtot = I915_READ(VTOTAL(pipe));
5692 int vsync = I915_READ(VSYNC(pipe));
5693
5694 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
5695 if (!mode)
5696 return NULL;
5697
5698 mode->clock = intel_crtc_clock_get(dev, crtc);
5699 mode->hdisplay = (htot & 0xffff) + 1;
5700 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
5701 mode->hsync_start = (hsync & 0xffff) + 1;
5702 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
5703 mode->vdisplay = (vtot & 0xffff) + 1;
5704 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
5705 mode->vsync_start = (vsync & 0xffff) + 1;
5706 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
5707
5708 drm_mode_set_name(mode);
5709 drm_mode_set_crtcinfo(mode, 0);
5710
5711 return mode;
5712 }
5713
5714 #define GPU_IDLE_TIMEOUT 500 /* ms */
5715
5716 /* When this timer fires, we've been idle for awhile */
5717 static void intel_gpu_idle_timer(unsigned long arg)
5718 {
5719 struct drm_device *dev = (struct drm_device *)arg;
5720 drm_i915_private_t *dev_priv = dev->dev_private;
5721
5722 if (!list_empty(&dev_priv->mm.active_list)) {
5723 /* Still processing requests, so just re-arm the timer. */
5724 mod_timer(&dev_priv->idle_timer, jiffies +
5725 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5726 return;
5727 }
5728
5729 dev_priv->busy = false;
5730 queue_work(dev_priv->wq, &dev_priv->idle_work);
5731 }
5732
5733 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
5734
5735 static void intel_crtc_idle_timer(unsigned long arg)
5736 {
5737 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
5738 struct drm_crtc *crtc = &intel_crtc->base;
5739 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
5740 struct intel_framebuffer *intel_fb;
5741
5742 intel_fb = to_intel_framebuffer(crtc->fb);
5743 if (intel_fb && intel_fb->obj->active) {
5744 /* The framebuffer is still being accessed by the GPU. */
5745 mod_timer(&intel_crtc->idle_timer, jiffies +
5746 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5747 return;
5748 }
5749
5750 intel_crtc->busy = false;
5751 queue_work(dev_priv->wq, &dev_priv->idle_work);
5752 }
5753
5754 static void intel_increase_pllclock(struct drm_crtc *crtc)
5755 {
5756 struct drm_device *dev = crtc->dev;
5757 drm_i915_private_t *dev_priv = dev->dev_private;
5758 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5759 int pipe = intel_crtc->pipe;
5760 int dpll_reg = DPLL(pipe);
5761 int dpll;
5762
5763 if (HAS_PCH_SPLIT(dev))
5764 return;
5765
5766 if (!dev_priv->lvds_downclock_avail)
5767 return;
5768
5769 dpll = I915_READ(dpll_reg);
5770 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
5771 DRM_DEBUG_DRIVER("upclocking LVDS\n");
5772
5773 /* Unlock panel regs */
5774 I915_WRITE(PP_CONTROL,
5775 I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
5776
5777 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
5778 I915_WRITE(dpll_reg, dpll);
5779 intel_wait_for_vblank(dev, pipe);
5780
5781 dpll = I915_READ(dpll_reg);
5782 if (dpll & DISPLAY_RATE_SELECT_FPA1)
5783 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
5784
5785 /* ...and lock them again */
5786 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
5787 }
5788
5789 /* Schedule downclock */
5790 mod_timer(&intel_crtc->idle_timer, jiffies +
5791 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5792 }
5793
5794 static void intel_decrease_pllclock(struct drm_crtc *crtc)
5795 {
5796 struct drm_device *dev = crtc->dev;
5797 drm_i915_private_t *dev_priv = dev->dev_private;
5798 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5799 int pipe = intel_crtc->pipe;
5800 int dpll_reg = DPLL(pipe);
5801 int dpll = I915_READ(dpll_reg);
5802
5803 if (HAS_PCH_SPLIT(dev))
5804 return;
5805
5806 if (!dev_priv->lvds_downclock_avail)
5807 return;
5808
5809 /*
5810 * Since this is called by a timer, we should never get here in
5811 * the manual case.
5812 */
5813 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
5814 DRM_DEBUG_DRIVER("downclocking LVDS\n");
5815
5816 /* Unlock panel regs */
5817 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
5818 PANEL_UNLOCK_REGS);
5819
5820 dpll |= DISPLAY_RATE_SELECT_FPA1;
5821 I915_WRITE(dpll_reg, dpll);
5822 intel_wait_for_vblank(dev, pipe);
5823 dpll = I915_READ(dpll_reg);
5824 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
5825 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
5826
5827 /* ...and lock them again */
5828 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
5829 }
5830
5831 }
5832
5833 /**
5834 * intel_idle_update - adjust clocks for idleness
5835 * @work: work struct
5836 *
5837 * Either the GPU or display (or both) went idle. Check the busy status
5838 * here and adjust the CRTC and GPU clocks as necessary.
5839 */
5840 static void intel_idle_update(struct work_struct *work)
5841 {
5842 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
5843 idle_work);
5844 struct drm_device *dev = dev_priv->dev;
5845 struct drm_crtc *crtc;
5846 struct intel_crtc *intel_crtc;
5847
5848 if (!i915_powersave)
5849 return;
5850
5851 mutex_lock(&dev->struct_mutex);
5852
5853 i915_update_gfx_val(dev_priv);
5854
5855 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5856 /* Skip inactive CRTCs */
5857 if (!crtc->fb)
5858 continue;
5859
5860 intel_crtc = to_intel_crtc(crtc);
5861 if (!intel_crtc->busy)
5862 intel_decrease_pllclock(crtc);
5863 }
5864
5865
5866 mutex_unlock(&dev->struct_mutex);
5867 }
5868
5869 /**
5870 * intel_mark_busy - mark the GPU and possibly the display busy
5871 * @dev: drm device
5872 * @obj: object we're operating on
5873 *
5874 * Callers can use this function to indicate that the GPU is busy processing
5875 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
5876 * buffer), we'll also mark the display as busy, so we know to increase its
5877 * clock frequency.
5878 */
5879 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
5880 {
5881 drm_i915_private_t *dev_priv = dev->dev_private;
5882 struct drm_crtc *crtc = NULL;
5883 struct intel_framebuffer *intel_fb;
5884 struct intel_crtc *intel_crtc;
5885
5886 if (!drm_core_check_feature(dev, DRIVER_MODESET))
5887 return;
5888
5889 if (!dev_priv->busy)
5890 dev_priv->busy = true;
5891 else
5892 mod_timer(&dev_priv->idle_timer, jiffies +
5893 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5894
5895 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5896 if (!crtc->fb)
5897 continue;
5898
5899 intel_crtc = to_intel_crtc(crtc);
5900 intel_fb = to_intel_framebuffer(crtc->fb);
5901 if (intel_fb->obj == obj) {
5902 if (!intel_crtc->busy) {
5903 /* Non-busy -> busy, upclock */
5904 intel_increase_pllclock(crtc);
5905 intel_crtc->busy = true;
5906 } else {
5907 /* Busy -> busy, put off timer */
5908 mod_timer(&intel_crtc->idle_timer, jiffies +
5909 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5910 }
5911 }
5912 }
5913 }
5914
5915 static void intel_crtc_destroy(struct drm_crtc *crtc)
5916 {
5917 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5918 struct drm_device *dev = crtc->dev;
5919 struct intel_unpin_work *work;
5920 unsigned long flags;
5921
5922 spin_lock_irqsave(&dev->event_lock, flags);
5923 work = intel_crtc->unpin_work;
5924 intel_crtc->unpin_work = NULL;
5925 spin_unlock_irqrestore(&dev->event_lock, flags);
5926
5927 if (work) {
5928 cancel_work_sync(&work->work);
5929 kfree(work);
5930 }
5931
5932 drm_crtc_cleanup(crtc);
5933
5934 kfree(intel_crtc);
5935 }
5936
5937 static void intel_unpin_work_fn(struct work_struct *__work)
5938 {
5939 struct intel_unpin_work *work =
5940 container_of(__work, struct intel_unpin_work, work);
5941
5942 mutex_lock(&work->dev->struct_mutex);
5943 i915_gem_object_unpin(work->old_fb_obj);
5944 drm_gem_object_unreference(&work->pending_flip_obj->base);
5945 drm_gem_object_unreference(&work->old_fb_obj->base);
5946
5947 mutex_unlock(&work->dev->struct_mutex);
5948 kfree(work);
5949 }
5950
5951 static void do_intel_finish_page_flip(struct drm_device *dev,
5952 struct drm_crtc *crtc)
5953 {
5954 drm_i915_private_t *dev_priv = dev->dev_private;
5955 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5956 struct intel_unpin_work *work;
5957 struct drm_i915_gem_object *obj;
5958 struct drm_pending_vblank_event *e;
5959 struct timeval tnow, tvbl;
5960 unsigned long flags;
5961
5962 /* Ignore early vblank irqs */
5963 if (intel_crtc == NULL)
5964 return;
5965
5966 do_gettimeofday(&tnow);
5967
5968 spin_lock_irqsave(&dev->event_lock, flags);
5969 work = intel_crtc->unpin_work;
5970 if (work == NULL || !work->pending) {
5971 spin_unlock_irqrestore(&dev->event_lock, flags);
5972 return;
5973 }
5974
5975 intel_crtc->unpin_work = NULL;
5976
5977 if (work->event) {
5978 e = work->event;
5979 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
5980
5981 /* Called before vblank count and timestamps have
5982 * been updated for the vblank interval of flip
5983 * completion? Need to increment vblank count and
5984 * add one videorefresh duration to returned timestamp
5985 * to account for this. We assume this happened if we
5986 * get called over 0.9 frame durations after the last
5987 * timestamped vblank.
5988 *
5989 * This calculation can not be used with vrefresh rates
5990 * below 5Hz (10Hz to be on the safe side) without
5991 * promoting to 64 integers.
5992 */
5993 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
5994 9 * crtc->framedur_ns) {
5995 e->event.sequence++;
5996 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
5997 crtc->framedur_ns);
5998 }
5999
6000 e->event.tv_sec = tvbl.tv_sec;
6001 e->event.tv_usec = tvbl.tv_usec;
6002
6003 list_add_tail(&e->base.link,
6004 &e->base.file_priv->event_list);
6005 wake_up_interruptible(&e->base.file_priv->event_wait);
6006 }
6007
6008 drm_vblank_put(dev, intel_crtc->pipe);
6009
6010 spin_unlock_irqrestore(&dev->event_lock, flags);
6011
6012 obj = work->old_fb_obj;
6013
6014 atomic_clear_mask(1 << intel_crtc->plane,
6015 &obj->pending_flip.counter);
6016 if (atomic_read(&obj->pending_flip) == 0)
6017 wake_up(&dev_priv->pending_flip_queue);
6018
6019 schedule_work(&work->work);
6020
6021 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6022 }
6023
6024 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6025 {
6026 drm_i915_private_t *dev_priv = dev->dev_private;
6027 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6028
6029 do_intel_finish_page_flip(dev, crtc);
6030 }
6031
6032 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6033 {
6034 drm_i915_private_t *dev_priv = dev->dev_private;
6035 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6036
6037 do_intel_finish_page_flip(dev, crtc);
6038 }
6039
6040 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6041 {
6042 drm_i915_private_t *dev_priv = dev->dev_private;
6043 struct intel_crtc *intel_crtc =
6044 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6045 unsigned long flags;
6046
6047 spin_lock_irqsave(&dev->event_lock, flags);
6048 if (intel_crtc->unpin_work) {
6049 if ((++intel_crtc->unpin_work->pending) > 1)
6050 DRM_ERROR("Prepared flip multiple times\n");
6051 } else {
6052 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6053 }
6054 spin_unlock_irqrestore(&dev->event_lock, flags);
6055 }
6056
6057 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6058 struct drm_framebuffer *fb,
6059 struct drm_pending_vblank_event *event)
6060 {
6061 struct drm_device *dev = crtc->dev;
6062 struct drm_i915_private *dev_priv = dev->dev_private;
6063 struct intel_framebuffer *intel_fb;
6064 struct drm_i915_gem_object *obj;
6065 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6066 struct intel_unpin_work *work;
6067 unsigned long flags, offset;
6068 int pipe = intel_crtc->pipe;
6069 u32 pf, pipesrc;
6070 int ret;
6071
6072 work = kzalloc(sizeof *work, GFP_KERNEL);
6073 if (work == NULL)
6074 return -ENOMEM;
6075
6076 work->event = event;
6077 work->dev = crtc->dev;
6078 intel_fb = to_intel_framebuffer(crtc->fb);
6079 work->old_fb_obj = intel_fb->obj;
6080 INIT_WORK(&work->work, intel_unpin_work_fn);
6081
6082 /* We borrow the event spin lock for protecting unpin_work */
6083 spin_lock_irqsave(&dev->event_lock, flags);
6084 if (intel_crtc->unpin_work) {
6085 spin_unlock_irqrestore(&dev->event_lock, flags);
6086 kfree(work);
6087
6088 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6089 return -EBUSY;
6090 }
6091 intel_crtc->unpin_work = work;
6092 spin_unlock_irqrestore(&dev->event_lock, flags);
6093
6094 intel_fb = to_intel_framebuffer(fb);
6095 obj = intel_fb->obj;
6096
6097 mutex_lock(&dev->struct_mutex);
6098 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6099 if (ret)
6100 goto cleanup_work;
6101
6102 /* Reference the objects for the scheduled work. */
6103 drm_gem_object_reference(&work->old_fb_obj->base);
6104 drm_gem_object_reference(&obj->base);
6105
6106 crtc->fb = fb;
6107
6108 ret = drm_vblank_get(dev, intel_crtc->pipe);
6109 if (ret)
6110 goto cleanup_objs;
6111
6112 if (IS_GEN3(dev) || IS_GEN2(dev)) {
6113 u32 flip_mask;
6114
6115 /* Can't queue multiple flips, so wait for the previous
6116 * one to finish before executing the next.
6117 */
6118 ret = BEGIN_LP_RING(2);
6119 if (ret)
6120 goto cleanup_objs;
6121
6122 if (intel_crtc->plane)
6123 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6124 else
6125 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6126 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6127 OUT_RING(MI_NOOP);
6128 ADVANCE_LP_RING();
6129 }
6130
6131 work->pending_flip_obj = obj;
6132
6133 work->enable_stall_check = true;
6134
6135 /* Offset into the new buffer for cases of shared fbs between CRTCs */
6136 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6137
6138 ret = BEGIN_LP_RING(4);
6139 if (ret)
6140 goto cleanup_objs;
6141
6142 /* Block clients from rendering to the new back buffer until
6143 * the flip occurs and the object is no longer visible.
6144 */
6145 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6146
6147 switch (INTEL_INFO(dev)->gen) {
6148 case 2:
6149 OUT_RING(MI_DISPLAY_FLIP |
6150 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6151 OUT_RING(fb->pitch);
6152 OUT_RING(obj->gtt_offset + offset);
6153 OUT_RING(MI_NOOP);
6154 break;
6155
6156 case 3:
6157 OUT_RING(MI_DISPLAY_FLIP_I915 |
6158 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6159 OUT_RING(fb->pitch);
6160 OUT_RING(obj->gtt_offset + offset);
6161 OUT_RING(MI_NOOP);
6162 break;
6163
6164 case 4:
6165 case 5:
6166 /* i965+ uses the linear or tiled offsets from the
6167 * Display Registers (which do not change across a page-flip)
6168 * so we need only reprogram the base address.
6169 */
6170 OUT_RING(MI_DISPLAY_FLIP |
6171 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6172 OUT_RING(fb->pitch);
6173 OUT_RING(obj->gtt_offset | obj->tiling_mode);
6174
6175 /* XXX Enabling the panel-fitter across page-flip is so far
6176 * untested on non-native modes, so ignore it for now.
6177 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6178 */
6179 pf = 0;
6180 pipesrc = I915_READ(PIPESRC(pipe)) & 0x0fff0fff;
6181 OUT_RING(pf | pipesrc);
6182 break;
6183
6184 case 6:
6185 OUT_RING(MI_DISPLAY_FLIP |
6186 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6187 OUT_RING(fb->pitch | obj->tiling_mode);
6188 OUT_RING(obj->gtt_offset);
6189
6190 pf = I915_READ(PF_CTL(pipe)) & PF_ENABLE;
6191 pipesrc = I915_READ(PIPESRC(pipe)) & 0x0fff0fff;
6192 OUT_RING(pf | pipesrc);
6193 break;
6194 }
6195 ADVANCE_LP_RING();
6196
6197 mutex_unlock(&dev->struct_mutex);
6198
6199 trace_i915_flip_request(intel_crtc->plane, obj);
6200
6201 return 0;
6202
6203 cleanup_objs:
6204 drm_gem_object_unreference(&work->old_fb_obj->base);
6205 drm_gem_object_unreference(&obj->base);
6206 cleanup_work:
6207 mutex_unlock(&dev->struct_mutex);
6208
6209 spin_lock_irqsave(&dev->event_lock, flags);
6210 intel_crtc->unpin_work = NULL;
6211 spin_unlock_irqrestore(&dev->event_lock, flags);
6212
6213 kfree(work);
6214
6215 return ret;
6216 }
6217
6218 static void intel_crtc_reset(struct drm_crtc *crtc)
6219 {
6220 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6221
6222 /* Reset flags back to the 'unknown' status so that they
6223 * will be correctly set on the initial modeset.
6224 */
6225 intel_crtc->dpms_mode = -1;
6226 }
6227
6228 static struct drm_crtc_helper_funcs intel_helper_funcs = {
6229 .dpms = intel_crtc_dpms,
6230 .mode_fixup = intel_crtc_mode_fixup,
6231 .mode_set = intel_crtc_mode_set,
6232 .mode_set_base = intel_pipe_set_base,
6233 .mode_set_base_atomic = intel_pipe_set_base_atomic,
6234 .load_lut = intel_crtc_load_lut,
6235 .disable = intel_crtc_disable,
6236 };
6237
6238 static const struct drm_crtc_funcs intel_crtc_funcs = {
6239 .reset = intel_crtc_reset,
6240 .cursor_set = intel_crtc_cursor_set,
6241 .cursor_move = intel_crtc_cursor_move,
6242 .gamma_set = intel_crtc_gamma_set,
6243 .set_config = drm_crtc_helper_set_config,
6244 .destroy = intel_crtc_destroy,
6245 .page_flip = intel_crtc_page_flip,
6246 };
6247
6248 static void intel_sanitize_modesetting(struct drm_device *dev,
6249 int pipe, int plane)
6250 {
6251 struct drm_i915_private *dev_priv = dev->dev_private;
6252 u32 reg, val;
6253
6254 if (HAS_PCH_SPLIT(dev))
6255 return;
6256
6257 /* Who knows what state these registers were left in by the BIOS or
6258 * grub?
6259 *
6260 * If we leave the registers in a conflicting state (e.g. with the
6261 * display plane reading from the other pipe than the one we intend
6262 * to use) then when we attempt to teardown the active mode, we will
6263 * not disable the pipes and planes in the correct order -- leaving
6264 * a plane reading from a disabled pipe and possibly leading to
6265 * undefined behaviour.
6266 */
6267
6268 reg = DSPCNTR(plane);
6269 val = I915_READ(reg);
6270
6271 if ((val & DISPLAY_PLANE_ENABLE) == 0)
6272 return;
6273 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
6274 return;
6275
6276 /* This display plane is active and attached to the other CPU pipe. */
6277 pipe = !pipe;
6278
6279 /* Disable the plane and wait for it to stop reading from the pipe. */
6280 intel_disable_plane(dev_priv, plane, pipe);
6281 intel_disable_pipe(dev_priv, pipe);
6282 }
6283
6284 static void intel_crtc_init(struct drm_device *dev, int pipe)
6285 {
6286 drm_i915_private_t *dev_priv = dev->dev_private;
6287 struct intel_crtc *intel_crtc;
6288 int i;
6289
6290 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
6291 if (intel_crtc == NULL)
6292 return;
6293
6294 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
6295
6296 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
6297 for (i = 0; i < 256; i++) {
6298 intel_crtc->lut_r[i] = i;
6299 intel_crtc->lut_g[i] = i;
6300 intel_crtc->lut_b[i] = i;
6301 }
6302
6303 /* Swap pipes & planes for FBC on pre-965 */
6304 intel_crtc->pipe = pipe;
6305 intel_crtc->plane = pipe;
6306 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
6307 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
6308 intel_crtc->plane = !pipe;
6309 }
6310
6311 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
6312 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
6313 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
6314 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
6315
6316 intel_crtc_reset(&intel_crtc->base);
6317 intel_crtc->active = true; /* force the pipe off on setup_init_config */
6318
6319 if (HAS_PCH_SPLIT(dev)) {
6320 intel_helper_funcs.prepare = ironlake_crtc_prepare;
6321 intel_helper_funcs.commit = ironlake_crtc_commit;
6322 } else {
6323 intel_helper_funcs.prepare = i9xx_crtc_prepare;
6324 intel_helper_funcs.commit = i9xx_crtc_commit;
6325 }
6326
6327 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
6328
6329 intel_crtc->busy = false;
6330
6331 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
6332 (unsigned long)intel_crtc);
6333
6334 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
6335 }
6336
6337 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
6338 struct drm_file *file)
6339 {
6340 drm_i915_private_t *dev_priv = dev->dev_private;
6341 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
6342 struct drm_mode_object *drmmode_obj;
6343 struct intel_crtc *crtc;
6344
6345 if (!dev_priv) {
6346 DRM_ERROR("called with no initialization\n");
6347 return -EINVAL;
6348 }
6349
6350 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
6351 DRM_MODE_OBJECT_CRTC);
6352
6353 if (!drmmode_obj) {
6354 DRM_ERROR("no such CRTC id\n");
6355 return -EINVAL;
6356 }
6357
6358 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
6359 pipe_from_crtc_id->pipe = crtc->pipe;
6360
6361 return 0;
6362 }
6363
6364 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
6365 {
6366 struct intel_encoder *encoder;
6367 int index_mask = 0;
6368 int entry = 0;
6369
6370 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6371 if (type_mask & encoder->clone_mask)
6372 index_mask |= (1 << entry);
6373 entry++;
6374 }
6375
6376 return index_mask;
6377 }
6378
6379 static bool has_edp_a(struct drm_device *dev)
6380 {
6381 struct drm_i915_private *dev_priv = dev->dev_private;
6382
6383 if (!IS_MOBILE(dev))
6384 return false;
6385
6386 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
6387 return false;
6388
6389 if (IS_GEN5(dev) &&
6390 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
6391 return false;
6392
6393 return true;
6394 }
6395
6396 static void intel_setup_outputs(struct drm_device *dev)
6397 {
6398 struct drm_i915_private *dev_priv = dev->dev_private;
6399 struct intel_encoder *encoder;
6400 bool dpd_is_edp = false;
6401 bool has_lvds = false;
6402
6403 if (IS_MOBILE(dev) && !IS_I830(dev))
6404 has_lvds = intel_lvds_init(dev);
6405 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
6406 /* disable the panel fitter on everything but LVDS */
6407 I915_WRITE(PFIT_CONTROL, 0);
6408 }
6409
6410 if (HAS_PCH_SPLIT(dev)) {
6411 dpd_is_edp = intel_dpd_is_edp(dev);
6412
6413 if (has_edp_a(dev))
6414 intel_dp_init(dev, DP_A);
6415
6416 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6417 intel_dp_init(dev, PCH_DP_D);
6418 }
6419
6420 intel_crt_init(dev);
6421
6422 if (HAS_PCH_SPLIT(dev)) {
6423 int found;
6424
6425 if (I915_READ(HDMIB) & PORT_DETECTED) {
6426 /* PCH SDVOB multiplex with HDMIB */
6427 found = intel_sdvo_init(dev, PCH_SDVOB);
6428 if (!found)
6429 intel_hdmi_init(dev, HDMIB);
6430 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
6431 intel_dp_init(dev, PCH_DP_B);
6432 }
6433
6434 if (I915_READ(HDMIC) & PORT_DETECTED)
6435 intel_hdmi_init(dev, HDMIC);
6436
6437 if (I915_READ(HDMID) & PORT_DETECTED)
6438 intel_hdmi_init(dev, HDMID);
6439
6440 if (I915_READ(PCH_DP_C) & DP_DETECTED)
6441 intel_dp_init(dev, PCH_DP_C);
6442
6443 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6444 intel_dp_init(dev, PCH_DP_D);
6445
6446 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
6447 bool found = false;
6448
6449 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6450 DRM_DEBUG_KMS("probing SDVOB\n");
6451 found = intel_sdvo_init(dev, SDVOB);
6452 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
6453 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
6454 intel_hdmi_init(dev, SDVOB);
6455 }
6456
6457 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
6458 DRM_DEBUG_KMS("probing DP_B\n");
6459 intel_dp_init(dev, DP_B);
6460 }
6461 }
6462
6463 /* Before G4X SDVOC doesn't have its own detect register */
6464
6465 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6466 DRM_DEBUG_KMS("probing SDVOC\n");
6467 found = intel_sdvo_init(dev, SDVOC);
6468 }
6469
6470 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
6471
6472 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
6473 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
6474 intel_hdmi_init(dev, SDVOC);
6475 }
6476 if (SUPPORTS_INTEGRATED_DP(dev)) {
6477 DRM_DEBUG_KMS("probing DP_C\n");
6478 intel_dp_init(dev, DP_C);
6479 }
6480 }
6481
6482 if (SUPPORTS_INTEGRATED_DP(dev) &&
6483 (I915_READ(DP_D) & DP_DETECTED)) {
6484 DRM_DEBUG_KMS("probing DP_D\n");
6485 intel_dp_init(dev, DP_D);
6486 }
6487 } else if (IS_GEN2(dev))
6488 intel_dvo_init(dev);
6489
6490 if (SUPPORTS_TV(dev))
6491 intel_tv_init(dev);
6492
6493 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6494 encoder->base.possible_crtcs = encoder->crtc_mask;
6495 encoder->base.possible_clones =
6496 intel_encoder_clones(dev, encoder->clone_mask);
6497 }
6498
6499 intel_panel_setup_backlight(dev);
6500 }
6501
6502 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
6503 {
6504 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6505
6506 drm_framebuffer_cleanup(fb);
6507 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
6508
6509 kfree(intel_fb);
6510 }
6511
6512 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
6513 struct drm_file *file,
6514 unsigned int *handle)
6515 {
6516 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6517 struct drm_i915_gem_object *obj = intel_fb->obj;
6518
6519 return drm_gem_handle_create(file, &obj->base, handle);
6520 }
6521
6522 static const struct drm_framebuffer_funcs intel_fb_funcs = {
6523 .destroy = intel_user_framebuffer_destroy,
6524 .create_handle = intel_user_framebuffer_create_handle,
6525 };
6526
6527 int intel_framebuffer_init(struct drm_device *dev,
6528 struct intel_framebuffer *intel_fb,
6529 struct drm_mode_fb_cmd *mode_cmd,
6530 struct drm_i915_gem_object *obj)
6531 {
6532 int ret;
6533
6534 if (obj->tiling_mode == I915_TILING_Y)
6535 return -EINVAL;
6536
6537 if (mode_cmd->pitch & 63)
6538 return -EINVAL;
6539
6540 switch (mode_cmd->bpp) {
6541 case 8:
6542 case 16:
6543 case 24:
6544 case 32:
6545 break;
6546 default:
6547 return -EINVAL;
6548 }
6549
6550 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
6551 if (ret) {
6552 DRM_ERROR("framebuffer init failed %d\n", ret);
6553 return ret;
6554 }
6555
6556 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
6557 intel_fb->obj = obj;
6558 return 0;
6559 }
6560
6561 static struct drm_framebuffer *
6562 intel_user_framebuffer_create(struct drm_device *dev,
6563 struct drm_file *filp,
6564 struct drm_mode_fb_cmd *mode_cmd)
6565 {
6566 struct drm_i915_gem_object *obj;
6567 struct intel_framebuffer *intel_fb;
6568 int ret;
6569
6570 obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
6571 if (&obj->base == NULL)
6572 return ERR_PTR(-ENOENT);
6573
6574 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6575 if (!intel_fb)
6576 return ERR_PTR(-ENOMEM);
6577
6578 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6579 if (ret) {
6580 drm_gem_object_unreference_unlocked(&obj->base);
6581 kfree(intel_fb);
6582 return ERR_PTR(ret);
6583 }
6584
6585 return &intel_fb->base;
6586 }
6587
6588 static const struct drm_mode_config_funcs intel_mode_funcs = {
6589 .fb_create = intel_user_framebuffer_create,
6590 .output_poll_changed = intel_fb_output_poll_changed,
6591 };
6592
6593 static struct drm_i915_gem_object *
6594 intel_alloc_context_page(struct drm_device *dev)
6595 {
6596 struct drm_i915_gem_object *ctx;
6597 int ret;
6598
6599 ctx = i915_gem_alloc_object(dev, 4096);
6600 if (!ctx) {
6601 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
6602 return NULL;
6603 }
6604
6605 mutex_lock(&dev->struct_mutex);
6606 ret = i915_gem_object_pin(ctx, 4096, true);
6607 if (ret) {
6608 DRM_ERROR("failed to pin power context: %d\n", ret);
6609 goto err_unref;
6610 }
6611
6612 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
6613 if (ret) {
6614 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
6615 goto err_unpin;
6616 }
6617 mutex_unlock(&dev->struct_mutex);
6618
6619 return ctx;
6620
6621 err_unpin:
6622 i915_gem_object_unpin(ctx);
6623 err_unref:
6624 drm_gem_object_unreference(&ctx->base);
6625 mutex_unlock(&dev->struct_mutex);
6626 return NULL;
6627 }
6628
6629 bool ironlake_set_drps(struct drm_device *dev, u8 val)
6630 {
6631 struct drm_i915_private *dev_priv = dev->dev_private;
6632 u16 rgvswctl;
6633
6634 rgvswctl = I915_READ16(MEMSWCTL);
6635 if (rgvswctl & MEMCTL_CMD_STS) {
6636 DRM_DEBUG("gpu busy, RCS change rejected\n");
6637 return false; /* still busy with another command */
6638 }
6639
6640 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
6641 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
6642 I915_WRITE16(MEMSWCTL, rgvswctl);
6643 POSTING_READ16(MEMSWCTL);
6644
6645 rgvswctl |= MEMCTL_CMD_STS;
6646 I915_WRITE16(MEMSWCTL, rgvswctl);
6647
6648 return true;
6649 }
6650
6651 void ironlake_enable_drps(struct drm_device *dev)
6652 {
6653 struct drm_i915_private *dev_priv = dev->dev_private;
6654 u32 rgvmodectl = I915_READ(MEMMODECTL);
6655 u8 fmax, fmin, fstart, vstart;
6656
6657 /* Enable temp reporting */
6658 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
6659 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
6660
6661 /* 100ms RC evaluation intervals */
6662 I915_WRITE(RCUPEI, 100000);
6663 I915_WRITE(RCDNEI, 100000);
6664
6665 /* Set max/min thresholds to 90ms and 80ms respectively */
6666 I915_WRITE(RCBMAXAVG, 90000);
6667 I915_WRITE(RCBMINAVG, 80000);
6668
6669 I915_WRITE(MEMIHYST, 1);
6670
6671 /* Set up min, max, and cur for interrupt handling */
6672 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
6673 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
6674 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
6675 MEMMODE_FSTART_SHIFT;
6676
6677 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
6678 PXVFREQ_PX_SHIFT;
6679
6680 dev_priv->fmax = fmax; /* IPS callback will increase this */
6681 dev_priv->fstart = fstart;
6682
6683 dev_priv->max_delay = fstart;
6684 dev_priv->min_delay = fmin;
6685 dev_priv->cur_delay = fstart;
6686
6687 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
6688 fmax, fmin, fstart);
6689
6690 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
6691
6692 /*
6693 * Interrupts will be enabled in ironlake_irq_postinstall
6694 */
6695
6696 I915_WRITE(VIDSTART, vstart);
6697 POSTING_READ(VIDSTART);
6698
6699 rgvmodectl |= MEMMODE_SWMODE_EN;
6700 I915_WRITE(MEMMODECTL, rgvmodectl);
6701
6702 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6703 DRM_ERROR("stuck trying to change perf mode\n");
6704 msleep(1);
6705
6706 ironlake_set_drps(dev, fstart);
6707
6708 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
6709 I915_READ(0x112e0);
6710 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
6711 dev_priv->last_count2 = I915_READ(0x112f4);
6712 getrawmonotonic(&dev_priv->last_time2);
6713 }
6714
6715 void ironlake_disable_drps(struct drm_device *dev)
6716 {
6717 struct drm_i915_private *dev_priv = dev->dev_private;
6718 u16 rgvswctl = I915_READ16(MEMSWCTL);
6719
6720 /* Ack interrupts, disable EFC interrupt */
6721 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
6722 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
6723 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
6724 I915_WRITE(DEIIR, DE_PCU_EVENT);
6725 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
6726
6727 /* Go back to the starting frequency */
6728 ironlake_set_drps(dev, dev_priv->fstart);
6729 msleep(1);
6730 rgvswctl |= MEMCTL_CMD_STS;
6731 I915_WRITE(MEMSWCTL, rgvswctl);
6732 msleep(1);
6733
6734 }
6735
6736 void gen6_set_rps(struct drm_device *dev, u8 val)
6737 {
6738 struct drm_i915_private *dev_priv = dev->dev_private;
6739 u32 swreq;
6740
6741 swreq = (val & 0x3ff) << 25;
6742 I915_WRITE(GEN6_RPNSWREQ, swreq);
6743 }
6744
6745 void gen6_disable_rps(struct drm_device *dev)
6746 {
6747 struct drm_i915_private *dev_priv = dev->dev_private;
6748
6749 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6750 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
6751 I915_WRITE(GEN6_PMIER, 0);
6752 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
6753 }
6754
6755 static unsigned long intel_pxfreq(u32 vidfreq)
6756 {
6757 unsigned long freq;
6758 int div = (vidfreq & 0x3f0000) >> 16;
6759 int post = (vidfreq & 0x3000) >> 12;
6760 int pre = (vidfreq & 0x7);
6761
6762 if (!pre)
6763 return 0;
6764
6765 freq = ((div * 133333) / ((1<<post) * pre));
6766
6767 return freq;
6768 }
6769
6770 void intel_init_emon(struct drm_device *dev)
6771 {
6772 struct drm_i915_private *dev_priv = dev->dev_private;
6773 u32 lcfuse;
6774 u8 pxw[16];
6775 int i;
6776
6777 /* Disable to program */
6778 I915_WRITE(ECR, 0);
6779 POSTING_READ(ECR);
6780
6781 /* Program energy weights for various events */
6782 I915_WRITE(SDEW, 0x15040d00);
6783 I915_WRITE(CSIEW0, 0x007f0000);
6784 I915_WRITE(CSIEW1, 0x1e220004);
6785 I915_WRITE(CSIEW2, 0x04000004);
6786
6787 for (i = 0; i < 5; i++)
6788 I915_WRITE(PEW + (i * 4), 0);
6789 for (i = 0; i < 3; i++)
6790 I915_WRITE(DEW + (i * 4), 0);
6791
6792 /* Program P-state weights to account for frequency power adjustment */
6793 for (i = 0; i < 16; i++) {
6794 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
6795 unsigned long freq = intel_pxfreq(pxvidfreq);
6796 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6797 PXVFREQ_PX_SHIFT;
6798 unsigned long val;
6799
6800 val = vid * vid;
6801 val *= (freq / 1000);
6802 val *= 255;
6803 val /= (127*127*900);
6804 if (val > 0xff)
6805 DRM_ERROR("bad pxval: %ld\n", val);
6806 pxw[i] = val;
6807 }
6808 /* Render standby states get 0 weight */
6809 pxw[14] = 0;
6810 pxw[15] = 0;
6811
6812 for (i = 0; i < 4; i++) {
6813 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6814 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6815 I915_WRITE(PXW + (i * 4), val);
6816 }
6817
6818 /* Adjust magic regs to magic values (more experimental results) */
6819 I915_WRITE(OGW0, 0);
6820 I915_WRITE(OGW1, 0);
6821 I915_WRITE(EG0, 0x00007f00);
6822 I915_WRITE(EG1, 0x0000000e);
6823 I915_WRITE(EG2, 0x000e0000);
6824 I915_WRITE(EG3, 0x68000300);
6825 I915_WRITE(EG4, 0x42000000);
6826 I915_WRITE(EG5, 0x00140031);
6827 I915_WRITE(EG6, 0);
6828 I915_WRITE(EG7, 0);
6829
6830 for (i = 0; i < 8; i++)
6831 I915_WRITE(PXWL + (i * 4), 0);
6832
6833 /* Enable PMON + select events */
6834 I915_WRITE(ECR, 0x80000019);
6835
6836 lcfuse = I915_READ(LCFUSE02);
6837
6838 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
6839 }
6840
6841 void gen6_enable_rps(struct drm_i915_private *dev_priv)
6842 {
6843 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6844 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
6845 u32 pcu_mbox;
6846 int cur_freq, min_freq, max_freq;
6847 int i;
6848
6849 /* Here begins a magic sequence of register writes to enable
6850 * auto-downclocking.
6851 *
6852 * Perhaps there might be some value in exposing these to
6853 * userspace...
6854 */
6855 I915_WRITE(GEN6_RC_STATE, 0);
6856 __gen6_gt_force_wake_get(dev_priv);
6857
6858 /* disable the counters and set deterministic thresholds */
6859 I915_WRITE(GEN6_RC_CONTROL, 0);
6860
6861 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
6862 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
6863 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
6864 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6865 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6866
6867 for (i = 0; i < I915_NUM_RINGS; i++)
6868 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
6869
6870 I915_WRITE(GEN6_RC_SLEEP, 0);
6871 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
6872 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
6873 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
6874 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
6875
6876 I915_WRITE(GEN6_RC_CONTROL,
6877 GEN6_RC_CTL_RC6p_ENABLE |
6878 GEN6_RC_CTL_RC6_ENABLE |
6879 GEN6_RC_CTL_EI_MODE(1) |
6880 GEN6_RC_CTL_HW_ENABLE);
6881
6882 I915_WRITE(GEN6_RPNSWREQ,
6883 GEN6_FREQUENCY(10) |
6884 GEN6_OFFSET(0) |
6885 GEN6_AGGRESSIVE_TURBO);
6886 I915_WRITE(GEN6_RC_VIDEO_FREQ,
6887 GEN6_FREQUENCY(12));
6888
6889 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6890 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
6891 18 << 24 |
6892 6 << 16);
6893 I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
6894 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
6895 I915_WRITE(GEN6_RP_UP_EI, 100000);
6896 I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
6897 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6898 I915_WRITE(GEN6_RP_CONTROL,
6899 GEN6_RP_MEDIA_TURBO |
6900 GEN6_RP_USE_NORMAL_FREQ |
6901 GEN6_RP_MEDIA_IS_GFX |
6902 GEN6_RP_ENABLE |
6903 GEN6_RP_UP_BUSY_AVG |
6904 GEN6_RP_DOWN_IDLE_CONT);
6905
6906 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6907 500))
6908 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
6909
6910 I915_WRITE(GEN6_PCODE_DATA, 0);
6911 I915_WRITE(GEN6_PCODE_MAILBOX,
6912 GEN6_PCODE_READY |
6913 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
6914 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6915 500))
6916 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
6917
6918 min_freq = (rp_state_cap & 0xff0000) >> 16;
6919 max_freq = rp_state_cap & 0xff;
6920 cur_freq = (gt_perf_status & 0xff00) >> 8;
6921
6922 /* Check for overclock support */
6923 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6924 500))
6925 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
6926 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
6927 pcu_mbox = I915_READ(GEN6_PCODE_DATA);
6928 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6929 500))
6930 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
6931 if (pcu_mbox & (1<<31)) { /* OC supported */
6932 max_freq = pcu_mbox & 0xff;
6933 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
6934 }
6935
6936 /* In units of 100MHz */
6937 dev_priv->max_delay = max_freq;
6938 dev_priv->min_delay = min_freq;
6939 dev_priv->cur_delay = cur_freq;
6940
6941 /* requires MSI enabled */
6942 I915_WRITE(GEN6_PMIER,
6943 GEN6_PM_MBOX_EVENT |
6944 GEN6_PM_THERMAL_EVENT |
6945 GEN6_PM_RP_DOWN_TIMEOUT |
6946 GEN6_PM_RP_UP_THRESHOLD |
6947 GEN6_PM_RP_DOWN_THRESHOLD |
6948 GEN6_PM_RP_UP_EI_EXPIRED |
6949 GEN6_PM_RP_DOWN_EI_EXPIRED);
6950 I915_WRITE(GEN6_PMIMR, 0);
6951 /* enable all PM interrupts */
6952 I915_WRITE(GEN6_PMINTRMSK, 0);
6953
6954 __gen6_gt_force_wake_put(dev_priv);
6955 }
6956
6957 void intel_enable_clock_gating(struct drm_device *dev)
6958 {
6959 struct drm_i915_private *dev_priv = dev->dev_private;
6960 int pipe;
6961
6962 /*
6963 * Disable clock gating reported to work incorrectly according to the
6964 * specs, but enable as much else as we can.
6965 */
6966 if (HAS_PCH_SPLIT(dev)) {
6967 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
6968
6969 if (IS_GEN5(dev)) {
6970 /* Required for FBC */
6971 dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
6972 DPFCRUNIT_CLOCK_GATE_DISABLE |
6973 DPFDUNIT_CLOCK_GATE_DISABLE;
6974 /* Required for CxSR */
6975 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
6976
6977 I915_WRITE(PCH_3DCGDIS0,
6978 MARIUNIT_CLOCK_GATE_DISABLE |
6979 SVSMUNIT_CLOCK_GATE_DISABLE);
6980 I915_WRITE(PCH_3DCGDIS1,
6981 VFMUNIT_CLOCK_GATE_DISABLE);
6982 }
6983
6984 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
6985
6986 /*
6987 * On Ibex Peak and Cougar Point, we need to disable clock
6988 * gating for the panel power sequencer or it will fail to
6989 * start up when no ports are active.
6990 */
6991 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6992
6993 /*
6994 * According to the spec the following bits should be set in
6995 * order to enable memory self-refresh
6996 * The bit 22/21 of 0x42004
6997 * The bit 5 of 0x42020
6998 * The bit 15 of 0x45000
6999 */
7000 if (IS_GEN5(dev)) {
7001 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7002 (I915_READ(ILK_DISPLAY_CHICKEN2) |
7003 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7004 I915_WRITE(ILK_DSPCLK_GATE,
7005 (I915_READ(ILK_DSPCLK_GATE) |
7006 ILK_DPARB_CLK_GATE));
7007 I915_WRITE(DISP_ARB_CTL,
7008 (I915_READ(DISP_ARB_CTL) |
7009 DISP_FBC_WM_DIS));
7010 I915_WRITE(WM3_LP_ILK, 0);
7011 I915_WRITE(WM2_LP_ILK, 0);
7012 I915_WRITE(WM1_LP_ILK, 0);
7013 }
7014 /*
7015 * Based on the document from hardware guys the following bits
7016 * should be set unconditionally in order to enable FBC.
7017 * The bit 22 of 0x42000
7018 * The bit 22 of 0x42004
7019 * The bit 7,8,9 of 0x42020.
7020 */
7021 if (IS_IRONLAKE_M(dev)) {
7022 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7023 I915_READ(ILK_DISPLAY_CHICKEN1) |
7024 ILK_FBCQ_DIS);
7025 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7026 I915_READ(ILK_DISPLAY_CHICKEN2) |
7027 ILK_DPARB_GATE);
7028 I915_WRITE(ILK_DSPCLK_GATE,
7029 I915_READ(ILK_DSPCLK_GATE) |
7030 ILK_DPFC_DIS1 |
7031 ILK_DPFC_DIS2 |
7032 ILK_CLK_FBC);
7033 }
7034
7035 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7036 I915_READ(ILK_DISPLAY_CHICKEN2) |
7037 ILK_ELPIN_409_SELECT);
7038
7039 if (IS_GEN5(dev)) {
7040 I915_WRITE(_3D_CHICKEN2,
7041 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
7042 _3D_CHICKEN2_WM_READ_PIPELINED);
7043 }
7044
7045 if (IS_GEN6(dev)) {
7046 I915_WRITE(WM3_LP_ILK, 0);
7047 I915_WRITE(WM2_LP_ILK, 0);
7048 I915_WRITE(WM1_LP_ILK, 0);
7049
7050 /*
7051 * According to the spec the following bits should be
7052 * set in order to enable memory self-refresh and fbc:
7053 * The bit21 and bit22 of 0x42000
7054 * The bit21 and bit22 of 0x42004
7055 * The bit5 and bit7 of 0x42020
7056 * The bit14 of 0x70180
7057 * The bit14 of 0x71180
7058 */
7059 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7060 I915_READ(ILK_DISPLAY_CHICKEN1) |
7061 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7062 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7063 I915_READ(ILK_DISPLAY_CHICKEN2) |
7064 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7065 I915_WRITE(ILK_DSPCLK_GATE,
7066 I915_READ(ILK_DSPCLK_GATE) |
7067 ILK_DPARB_CLK_GATE |
7068 ILK_DPFD_CLK_GATE);
7069
7070 for_each_pipe(pipe)
7071 I915_WRITE(DSPCNTR(pipe),
7072 I915_READ(DSPCNTR(pipe)) |
7073 DISPPLANE_TRICKLE_FEED_DISABLE);
7074 }
7075 } else if (IS_G4X(dev)) {
7076 uint32_t dspclk_gate;
7077 I915_WRITE(RENCLK_GATE_D1, 0);
7078 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7079 GS_UNIT_CLOCK_GATE_DISABLE |
7080 CL_UNIT_CLOCK_GATE_DISABLE);
7081 I915_WRITE(RAMCLK_GATE_D, 0);
7082 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7083 OVRUNIT_CLOCK_GATE_DISABLE |
7084 OVCUNIT_CLOCK_GATE_DISABLE;
7085 if (IS_GM45(dev))
7086 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7087 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7088 } else if (IS_CRESTLINE(dev)) {
7089 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7090 I915_WRITE(RENCLK_GATE_D2, 0);
7091 I915_WRITE(DSPCLK_GATE_D, 0);
7092 I915_WRITE(RAMCLK_GATE_D, 0);
7093 I915_WRITE16(DEUC, 0);
7094 } else if (IS_BROADWATER(dev)) {
7095 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7096 I965_RCC_CLOCK_GATE_DISABLE |
7097 I965_RCPB_CLOCK_GATE_DISABLE |
7098 I965_ISC_CLOCK_GATE_DISABLE |
7099 I965_FBC_CLOCK_GATE_DISABLE);
7100 I915_WRITE(RENCLK_GATE_D2, 0);
7101 } else if (IS_GEN3(dev)) {
7102 u32 dstate = I915_READ(D_STATE);
7103
7104 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7105 DSTATE_DOT_CLOCK_GATING;
7106 I915_WRITE(D_STATE, dstate);
7107 } else if (IS_I85X(dev) || IS_I865G(dev)) {
7108 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7109 } else if (IS_I830(dev)) {
7110 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7111 }
7112 }
7113
7114 static void ironlake_teardown_rc6(struct drm_device *dev)
7115 {
7116 struct drm_i915_private *dev_priv = dev->dev_private;
7117
7118 if (dev_priv->renderctx) {
7119 i915_gem_object_unpin(dev_priv->renderctx);
7120 drm_gem_object_unreference(&dev_priv->renderctx->base);
7121 dev_priv->renderctx = NULL;
7122 }
7123
7124 if (dev_priv->pwrctx) {
7125 i915_gem_object_unpin(dev_priv->pwrctx);
7126 drm_gem_object_unreference(&dev_priv->pwrctx->base);
7127 dev_priv->pwrctx = NULL;
7128 }
7129 }
7130
7131 static void ironlake_disable_rc6(struct drm_device *dev)
7132 {
7133 struct drm_i915_private *dev_priv = dev->dev_private;
7134
7135 if (I915_READ(PWRCTXA)) {
7136 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
7137 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
7138 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
7139 50);
7140
7141 I915_WRITE(PWRCTXA, 0);
7142 POSTING_READ(PWRCTXA);
7143
7144 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
7145 POSTING_READ(RSTDBYCTL);
7146 }
7147
7148 ironlake_teardown_rc6(dev);
7149 }
7150
7151 static int ironlake_setup_rc6(struct drm_device *dev)
7152 {
7153 struct drm_i915_private *dev_priv = dev->dev_private;
7154
7155 if (dev_priv->renderctx == NULL)
7156 dev_priv->renderctx = intel_alloc_context_page(dev);
7157 if (!dev_priv->renderctx)
7158 return -ENOMEM;
7159
7160 if (dev_priv->pwrctx == NULL)
7161 dev_priv->pwrctx = intel_alloc_context_page(dev);
7162 if (!dev_priv->pwrctx) {
7163 ironlake_teardown_rc6(dev);
7164 return -ENOMEM;
7165 }
7166
7167 return 0;
7168 }
7169
7170 void ironlake_enable_rc6(struct drm_device *dev)
7171 {
7172 struct drm_i915_private *dev_priv = dev->dev_private;
7173 int ret;
7174
7175 /* rc6 disabled by default due to repeated reports of hanging during
7176 * boot and resume.
7177 */
7178 if (!i915_enable_rc6)
7179 return;
7180
7181 ret = ironlake_setup_rc6(dev);
7182 if (ret)
7183 return;
7184
7185 /*
7186 * GPU can automatically power down the render unit if given a page
7187 * to save state.
7188 */
7189 ret = BEGIN_LP_RING(6);
7190 if (ret) {
7191 ironlake_teardown_rc6(dev);
7192 return;
7193 }
7194
7195 OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
7196 OUT_RING(MI_SET_CONTEXT);
7197 OUT_RING(dev_priv->renderctx->gtt_offset |
7198 MI_MM_SPACE_GTT |
7199 MI_SAVE_EXT_STATE_EN |
7200 MI_RESTORE_EXT_STATE_EN |
7201 MI_RESTORE_INHIBIT);
7202 OUT_RING(MI_SUSPEND_FLUSH);
7203 OUT_RING(MI_NOOP);
7204 OUT_RING(MI_FLUSH);
7205 ADVANCE_LP_RING();
7206
7207 I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
7208 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
7209 }
7210
7211
7212 /* Set up chip specific display functions */
7213 static void intel_init_display(struct drm_device *dev)
7214 {
7215 struct drm_i915_private *dev_priv = dev->dev_private;
7216
7217 /* We always want a DPMS function */
7218 if (HAS_PCH_SPLIT(dev))
7219 dev_priv->display.dpms = ironlake_crtc_dpms;
7220 else
7221 dev_priv->display.dpms = i9xx_crtc_dpms;
7222
7223 if (I915_HAS_FBC(dev)) {
7224 if (HAS_PCH_SPLIT(dev)) {
7225 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7226 dev_priv->display.enable_fbc = ironlake_enable_fbc;
7227 dev_priv->display.disable_fbc = ironlake_disable_fbc;
7228 } else if (IS_GM45(dev)) {
7229 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
7230 dev_priv->display.enable_fbc = g4x_enable_fbc;
7231 dev_priv->display.disable_fbc = g4x_disable_fbc;
7232 } else if (IS_CRESTLINE(dev)) {
7233 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
7234 dev_priv->display.enable_fbc = i8xx_enable_fbc;
7235 dev_priv->display.disable_fbc = i8xx_disable_fbc;
7236 }
7237 /* 855GM needs testing */
7238 }
7239
7240 /* Returns the core display clock speed */
7241 if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
7242 dev_priv->display.get_display_clock_speed =
7243 i945_get_display_clock_speed;
7244 else if (IS_I915G(dev))
7245 dev_priv->display.get_display_clock_speed =
7246 i915_get_display_clock_speed;
7247 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
7248 dev_priv->display.get_display_clock_speed =
7249 i9xx_misc_get_display_clock_speed;
7250 else if (IS_I915GM(dev))
7251 dev_priv->display.get_display_clock_speed =
7252 i915gm_get_display_clock_speed;
7253 else if (IS_I865G(dev))
7254 dev_priv->display.get_display_clock_speed =
7255 i865_get_display_clock_speed;
7256 else if (IS_I85X(dev))
7257 dev_priv->display.get_display_clock_speed =
7258 i855_get_display_clock_speed;
7259 else /* 852, 830 */
7260 dev_priv->display.get_display_clock_speed =
7261 i830_get_display_clock_speed;
7262
7263 /* For FIFO watermark updates */
7264 if (HAS_PCH_SPLIT(dev)) {
7265 if (IS_GEN5(dev)) {
7266 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
7267 dev_priv->display.update_wm = ironlake_update_wm;
7268 else {
7269 DRM_DEBUG_KMS("Failed to get proper latency. "
7270 "Disable CxSR\n");
7271 dev_priv->display.update_wm = NULL;
7272 }
7273 } else if (IS_GEN6(dev)) {
7274 if (SNB_READ_WM0_LATENCY()) {
7275 dev_priv->display.update_wm = sandybridge_update_wm;
7276 } else {
7277 DRM_DEBUG_KMS("Failed to read display plane latency. "
7278 "Disable CxSR\n");
7279 dev_priv->display.update_wm = NULL;
7280 }
7281 } else
7282 dev_priv->display.update_wm = NULL;
7283 } else if (IS_PINEVIEW(dev)) {
7284 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7285 dev_priv->is_ddr3,
7286 dev_priv->fsb_freq,
7287 dev_priv->mem_freq)) {
7288 DRM_INFO("failed to find known CxSR latency "
7289 "(found ddr%s fsb freq %d, mem freq %d), "
7290 "disabling CxSR\n",
7291 (dev_priv->is_ddr3 == 1) ? "3": "2",
7292 dev_priv->fsb_freq, dev_priv->mem_freq);
7293 /* Disable CxSR and never update its watermark again */
7294 pineview_disable_cxsr(dev);
7295 dev_priv->display.update_wm = NULL;
7296 } else
7297 dev_priv->display.update_wm = pineview_update_wm;
7298 } else if (IS_G4X(dev))
7299 dev_priv->display.update_wm = g4x_update_wm;
7300 else if (IS_GEN4(dev))
7301 dev_priv->display.update_wm = i965_update_wm;
7302 else if (IS_GEN3(dev)) {
7303 dev_priv->display.update_wm = i9xx_update_wm;
7304 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7305 } else if (IS_I85X(dev)) {
7306 dev_priv->display.update_wm = i9xx_update_wm;
7307 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
7308 } else {
7309 dev_priv->display.update_wm = i830_update_wm;
7310 if (IS_845G(dev))
7311 dev_priv->display.get_fifo_size = i845_get_fifo_size;
7312 else
7313 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7314 }
7315 }
7316
7317 /*
7318 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
7319 * resume, or other times. This quirk makes sure that's the case for
7320 * affected systems.
7321 */
7322 static void quirk_pipea_force (struct drm_device *dev)
7323 {
7324 struct drm_i915_private *dev_priv = dev->dev_private;
7325
7326 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
7327 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
7328 }
7329
7330 struct intel_quirk {
7331 int device;
7332 int subsystem_vendor;
7333 int subsystem_device;
7334 void (*hook)(struct drm_device *dev);
7335 };
7336
7337 struct intel_quirk intel_quirks[] = {
7338 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
7339 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
7340 /* HP Mini needs pipe A force quirk (LP: #322104) */
7341 { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
7342
7343 /* Thinkpad R31 needs pipe A force quirk */
7344 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
7345 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
7346 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
7347
7348 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
7349 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
7350 /* ThinkPad X40 needs pipe A force quirk */
7351
7352 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
7353 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
7354
7355 /* 855 & before need to leave pipe A & dpll A up */
7356 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7357 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7358 };
7359
7360 static void intel_init_quirks(struct drm_device *dev)
7361 {
7362 struct pci_dev *d = dev->pdev;
7363 int i;
7364
7365 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
7366 struct intel_quirk *q = &intel_quirks[i];
7367
7368 if (d->device == q->device &&
7369 (d->subsystem_vendor == q->subsystem_vendor ||
7370 q->subsystem_vendor == PCI_ANY_ID) &&
7371 (d->subsystem_device == q->subsystem_device ||
7372 q->subsystem_device == PCI_ANY_ID))
7373 q->hook(dev);
7374 }
7375 }
7376
7377 /* Disable the VGA plane that we never use */
7378 static void i915_disable_vga(struct drm_device *dev)
7379 {
7380 struct drm_i915_private *dev_priv = dev->dev_private;
7381 u8 sr1;
7382 u32 vga_reg;
7383
7384 if (HAS_PCH_SPLIT(dev))
7385 vga_reg = CPU_VGACNTRL;
7386 else
7387 vga_reg = VGACNTRL;
7388
7389 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
7390 outb(1, VGA_SR_INDEX);
7391 sr1 = inb(VGA_SR_DATA);
7392 outb(sr1 | 1<<5, VGA_SR_DATA);
7393 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
7394 udelay(300);
7395
7396 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
7397 POSTING_READ(vga_reg);
7398 }
7399
7400 void intel_modeset_init(struct drm_device *dev)
7401 {
7402 struct drm_i915_private *dev_priv = dev->dev_private;
7403 int i;
7404
7405 drm_mode_config_init(dev);
7406
7407 dev->mode_config.min_width = 0;
7408 dev->mode_config.min_height = 0;
7409
7410 dev->mode_config.funcs = (void *)&intel_mode_funcs;
7411
7412 intel_init_quirks(dev);
7413
7414 intel_init_display(dev);
7415
7416 if (IS_GEN2(dev)) {
7417 dev->mode_config.max_width = 2048;
7418 dev->mode_config.max_height = 2048;
7419 } else if (IS_GEN3(dev)) {
7420 dev->mode_config.max_width = 4096;
7421 dev->mode_config.max_height = 4096;
7422 } else {
7423 dev->mode_config.max_width = 8192;
7424 dev->mode_config.max_height = 8192;
7425 }
7426 dev->mode_config.fb_base = dev->agp->base;
7427
7428 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7429 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
7430
7431 for (i = 0; i < dev_priv->num_pipe; i++) {
7432 intel_crtc_init(dev, i);
7433 }
7434
7435 intel_setup_outputs(dev);
7436
7437 intel_enable_clock_gating(dev);
7438
7439 /* Just disable it once at startup */
7440 i915_disable_vga(dev);
7441
7442 if (IS_IRONLAKE_M(dev)) {
7443 ironlake_enable_drps(dev);
7444 intel_init_emon(dev);
7445 }
7446
7447 if (IS_GEN6(dev))
7448 gen6_enable_rps(dev_priv);
7449
7450 if (IS_IRONLAKE_M(dev))
7451 ironlake_enable_rc6(dev);
7452
7453 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
7454 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
7455 (unsigned long)dev);
7456
7457 intel_setup_overlay(dev);
7458 }
7459
7460 void intel_modeset_cleanup(struct drm_device *dev)
7461 {
7462 struct drm_i915_private *dev_priv = dev->dev_private;
7463 struct drm_crtc *crtc;
7464 struct intel_crtc *intel_crtc;
7465
7466 drm_kms_helper_poll_fini(dev);
7467 mutex_lock(&dev->struct_mutex);
7468
7469 intel_unregister_dsm_handler();
7470
7471
7472 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7473 /* Skip inactive CRTCs */
7474 if (!crtc->fb)
7475 continue;
7476
7477 intel_crtc = to_intel_crtc(crtc);
7478 intel_increase_pllclock(crtc);
7479 }
7480
7481 if (dev_priv->display.disable_fbc)
7482 dev_priv->display.disable_fbc(dev);
7483
7484 if (IS_IRONLAKE_M(dev))
7485 ironlake_disable_drps(dev);
7486 if (IS_GEN6(dev))
7487 gen6_disable_rps(dev);
7488
7489 if (IS_IRONLAKE_M(dev))
7490 ironlake_disable_rc6(dev);
7491
7492 mutex_unlock(&dev->struct_mutex);
7493
7494 /* Disable the irq before mode object teardown, for the irq might
7495 * enqueue unpin/hotplug work. */
7496 drm_irq_uninstall(dev);
7497 cancel_work_sync(&dev_priv->hotplug_work);
7498
7499 /* Shut off idle work before the crtcs get freed. */
7500 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7501 intel_crtc = to_intel_crtc(crtc);
7502 del_timer_sync(&intel_crtc->idle_timer);
7503 }
7504 del_timer_sync(&dev_priv->idle_timer);
7505 cancel_work_sync(&dev_priv->idle_work);
7506
7507 drm_mode_config_cleanup(dev);
7508 }
7509
7510 /*
7511 * Return which encoder is currently attached for connector.
7512 */
7513 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
7514 {
7515 return &intel_attached_encoder(connector)->base;
7516 }
7517
7518 void intel_connector_attach_encoder(struct intel_connector *connector,
7519 struct intel_encoder *encoder)
7520 {
7521 connector->encoder = encoder;
7522 drm_mode_connector_attach_encoder(&connector->base,
7523 &encoder->base);
7524 }
7525
7526 /*
7527 * set vga decode state - true == enable VGA decode
7528 */
7529 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
7530 {
7531 struct drm_i915_private *dev_priv = dev->dev_private;
7532 u16 gmch_ctrl;
7533
7534 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
7535 if (state)
7536 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
7537 else
7538 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
7539 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
7540 return 0;
7541 }
7542
7543 #ifdef CONFIG_DEBUG_FS
7544 #include <linux/seq_file.h>
7545
7546 struct intel_display_error_state {
7547 struct intel_cursor_error_state {
7548 u32 control;
7549 u32 position;
7550 u32 base;
7551 u32 size;
7552 } cursor[2];
7553
7554 struct intel_pipe_error_state {
7555 u32 conf;
7556 u32 source;
7557
7558 u32 htotal;
7559 u32 hblank;
7560 u32 hsync;
7561 u32 vtotal;
7562 u32 vblank;
7563 u32 vsync;
7564 } pipe[2];
7565
7566 struct intel_plane_error_state {
7567 u32 control;
7568 u32 stride;
7569 u32 size;
7570 u32 pos;
7571 u32 addr;
7572 u32 surface;
7573 u32 tile_offset;
7574 } plane[2];
7575 };
7576
7577 struct intel_display_error_state *
7578 intel_display_capture_error_state(struct drm_device *dev)
7579 {
7580 drm_i915_private_t *dev_priv = dev->dev_private;
7581 struct intel_display_error_state *error;
7582 int i;
7583
7584 error = kmalloc(sizeof(*error), GFP_ATOMIC);
7585 if (error == NULL)
7586 return NULL;
7587
7588 for (i = 0; i < 2; i++) {
7589 error->cursor[i].control = I915_READ(CURCNTR(i));
7590 error->cursor[i].position = I915_READ(CURPOS(i));
7591 error->cursor[i].base = I915_READ(CURBASE(i));
7592
7593 error->plane[i].control = I915_READ(DSPCNTR(i));
7594 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
7595 error->plane[i].size = I915_READ(DSPSIZE(i));
7596 error->plane[i].pos= I915_READ(DSPPOS(i));
7597 error->plane[i].addr = I915_READ(DSPADDR(i));
7598 if (INTEL_INFO(dev)->gen >= 4) {
7599 error->plane[i].surface = I915_READ(DSPSURF(i));
7600 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
7601 }
7602
7603 error->pipe[i].conf = I915_READ(PIPECONF(i));
7604 error->pipe[i].source = I915_READ(PIPESRC(i));
7605 error->pipe[i].htotal = I915_READ(HTOTAL(i));
7606 error->pipe[i].hblank = I915_READ(HBLANK(i));
7607 error->pipe[i].hsync = I915_READ(HSYNC(i));
7608 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
7609 error->pipe[i].vblank = I915_READ(VBLANK(i));
7610 error->pipe[i].vsync = I915_READ(VSYNC(i));
7611 }
7612
7613 return error;
7614 }
7615
7616 void
7617 intel_display_print_error_state(struct seq_file *m,
7618 struct drm_device *dev,
7619 struct intel_display_error_state *error)
7620 {
7621 int i;
7622
7623 for (i = 0; i < 2; i++) {
7624 seq_printf(m, "Pipe [%d]:\n", i);
7625 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
7626 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
7627 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
7628 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
7629 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
7630 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
7631 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
7632 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
7633
7634 seq_printf(m, "Plane [%d]:\n", i);
7635 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
7636 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
7637 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
7638 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
7639 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
7640 if (INTEL_INFO(dev)->gen >= 4) {
7641 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
7642 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
7643 }
7644
7645 seq_printf(m, "Cursor [%d]:\n", i);
7646 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
7647 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
7648 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
7649 }
7650 }
7651 #endif