]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: [GEN7] Use HW scheduler for fixed function shaders
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/cpufreq.h>
29 #include <linux/module.h>
30 #include <linux/input.h>
31 #include <linux/i2c.h>
32 #include <linux/kernel.h>
33 #include <linux/slab.h>
34 #include <linux/vgaarb.h>
35 #include <drm/drm_edid.h>
36 #include "drmP.h"
37 #include "intel_drv.h"
38 #include "i915_drm.h"
39 #include "i915_drv.h"
40 #include "i915_trace.h"
41 #include "drm_dp_helper.h"
42 #include "drm_crtc_helper.h"
43 #include <linux/dma_remapping.h>
44
45 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
46
47 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
48 static void intel_increase_pllclock(struct drm_crtc *crtc);
49 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
50
51 typedef struct {
52 /* given values */
53 int n;
54 int m1, m2;
55 int p1, p2;
56 /* derived values */
57 int dot;
58 int vco;
59 int m;
60 int p;
61 } intel_clock_t;
62
63 typedef struct {
64 int min, max;
65 } intel_range_t;
66
67 typedef struct {
68 int dot_limit;
69 int p2_slow, p2_fast;
70 } intel_p2_t;
71
72 #define INTEL_P2_NUM 2
73 typedef struct intel_limit intel_limit_t;
74 struct intel_limit {
75 intel_range_t dot, vco, n, m, m1, m2, p, p1;
76 intel_p2_t p2;
77 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
78 int, int, intel_clock_t *, intel_clock_t *);
79 };
80
81 /* FDI */
82 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
83
84 static bool
85 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
86 int target, int refclk, intel_clock_t *match_clock,
87 intel_clock_t *best_clock);
88 static bool
89 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
90 int target, int refclk, intel_clock_t *match_clock,
91 intel_clock_t *best_clock);
92
93 static bool
94 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
95 int target, int refclk, intel_clock_t *match_clock,
96 intel_clock_t *best_clock);
97 static bool
98 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
99 int target, int refclk, intel_clock_t *match_clock,
100 intel_clock_t *best_clock);
101
102 static inline u32 /* units of 100MHz */
103 intel_fdi_link_freq(struct drm_device *dev)
104 {
105 if (IS_GEN5(dev)) {
106 struct drm_i915_private *dev_priv = dev->dev_private;
107 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
108 } else
109 return 27;
110 }
111
112 static const intel_limit_t intel_limits_i8xx_dvo = {
113 .dot = { .min = 25000, .max = 350000 },
114 .vco = { .min = 930000, .max = 1400000 },
115 .n = { .min = 3, .max = 16 },
116 .m = { .min = 96, .max = 140 },
117 .m1 = { .min = 18, .max = 26 },
118 .m2 = { .min = 6, .max = 16 },
119 .p = { .min = 4, .max = 128 },
120 .p1 = { .min = 2, .max = 33 },
121 .p2 = { .dot_limit = 165000,
122 .p2_slow = 4, .p2_fast = 2 },
123 .find_pll = intel_find_best_PLL,
124 };
125
126 static const intel_limit_t intel_limits_i8xx_lvds = {
127 .dot = { .min = 25000, .max = 350000 },
128 .vco = { .min = 930000, .max = 1400000 },
129 .n = { .min = 3, .max = 16 },
130 .m = { .min = 96, .max = 140 },
131 .m1 = { .min = 18, .max = 26 },
132 .m2 = { .min = 6, .max = 16 },
133 .p = { .min = 4, .max = 128 },
134 .p1 = { .min = 1, .max = 6 },
135 .p2 = { .dot_limit = 165000,
136 .p2_slow = 14, .p2_fast = 7 },
137 .find_pll = intel_find_best_PLL,
138 };
139
140 static const intel_limit_t intel_limits_i9xx_sdvo = {
141 .dot = { .min = 20000, .max = 400000 },
142 .vco = { .min = 1400000, .max = 2800000 },
143 .n = { .min = 1, .max = 6 },
144 .m = { .min = 70, .max = 120 },
145 .m1 = { .min = 10, .max = 22 },
146 .m2 = { .min = 5, .max = 9 },
147 .p = { .min = 5, .max = 80 },
148 .p1 = { .min = 1, .max = 8 },
149 .p2 = { .dot_limit = 200000,
150 .p2_slow = 10, .p2_fast = 5 },
151 .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i9xx_lvds = {
155 .dot = { .min = 20000, .max = 400000 },
156 .vco = { .min = 1400000, .max = 2800000 },
157 .n = { .min = 1, .max = 6 },
158 .m = { .min = 70, .max = 120 },
159 .m1 = { .min = 10, .max = 22 },
160 .m2 = { .min = 5, .max = 9 },
161 .p = { .min = 7, .max = 98 },
162 .p1 = { .min = 1, .max = 8 },
163 .p2 = { .dot_limit = 112000,
164 .p2_slow = 14, .p2_fast = 7 },
165 .find_pll = intel_find_best_PLL,
166 };
167
168
169 static const intel_limit_t intel_limits_g4x_sdvo = {
170 .dot = { .min = 25000, .max = 270000 },
171 .vco = { .min = 1750000, .max = 3500000},
172 .n = { .min = 1, .max = 4 },
173 .m = { .min = 104, .max = 138 },
174 .m1 = { .min = 17, .max = 23 },
175 .m2 = { .min = 5, .max = 11 },
176 .p = { .min = 10, .max = 30 },
177 .p1 = { .min = 1, .max = 3},
178 .p2 = { .dot_limit = 270000,
179 .p2_slow = 10,
180 .p2_fast = 10
181 },
182 .find_pll = intel_g4x_find_best_PLL,
183 };
184
185 static const intel_limit_t intel_limits_g4x_hdmi = {
186 .dot = { .min = 22000, .max = 400000 },
187 .vco = { .min = 1750000, .max = 3500000},
188 .n = { .min = 1, .max = 4 },
189 .m = { .min = 104, .max = 138 },
190 .m1 = { .min = 16, .max = 23 },
191 .m2 = { .min = 5, .max = 11 },
192 .p = { .min = 5, .max = 80 },
193 .p1 = { .min = 1, .max = 8},
194 .p2 = { .dot_limit = 165000,
195 .p2_slow = 10, .p2_fast = 5 },
196 .find_pll = intel_g4x_find_best_PLL,
197 };
198
199 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
200 .dot = { .min = 20000, .max = 115000 },
201 .vco = { .min = 1750000, .max = 3500000 },
202 .n = { .min = 1, .max = 3 },
203 .m = { .min = 104, .max = 138 },
204 .m1 = { .min = 17, .max = 23 },
205 .m2 = { .min = 5, .max = 11 },
206 .p = { .min = 28, .max = 112 },
207 .p1 = { .min = 2, .max = 8 },
208 .p2 = { .dot_limit = 0,
209 .p2_slow = 14, .p2_fast = 14
210 },
211 .find_pll = intel_g4x_find_best_PLL,
212 };
213
214 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
215 .dot = { .min = 80000, .max = 224000 },
216 .vco = { .min = 1750000, .max = 3500000 },
217 .n = { .min = 1, .max = 3 },
218 .m = { .min = 104, .max = 138 },
219 .m1 = { .min = 17, .max = 23 },
220 .m2 = { .min = 5, .max = 11 },
221 .p = { .min = 14, .max = 42 },
222 .p1 = { .min = 2, .max = 6 },
223 .p2 = { .dot_limit = 0,
224 .p2_slow = 7, .p2_fast = 7
225 },
226 .find_pll = intel_g4x_find_best_PLL,
227 };
228
229 static const intel_limit_t intel_limits_g4x_display_port = {
230 .dot = { .min = 161670, .max = 227000 },
231 .vco = { .min = 1750000, .max = 3500000},
232 .n = { .min = 1, .max = 2 },
233 .m = { .min = 97, .max = 108 },
234 .m1 = { .min = 0x10, .max = 0x12 },
235 .m2 = { .min = 0x05, .max = 0x06 },
236 .p = { .min = 10, .max = 20 },
237 .p1 = { .min = 1, .max = 2},
238 .p2 = { .dot_limit = 0,
239 .p2_slow = 10, .p2_fast = 10 },
240 .find_pll = intel_find_pll_g4x_dp,
241 };
242
243 static const intel_limit_t intel_limits_pineview_sdvo = {
244 .dot = { .min = 20000, .max = 400000},
245 .vco = { .min = 1700000, .max = 3500000 },
246 /* Pineview's Ncounter is a ring counter */
247 .n = { .min = 3, .max = 6 },
248 .m = { .min = 2, .max = 256 },
249 /* Pineview only has one combined m divider, which we treat as m2. */
250 .m1 = { .min = 0, .max = 0 },
251 .m2 = { .min = 0, .max = 254 },
252 .p = { .min = 5, .max = 80 },
253 .p1 = { .min = 1, .max = 8 },
254 .p2 = { .dot_limit = 200000,
255 .p2_slow = 10, .p2_fast = 5 },
256 .find_pll = intel_find_best_PLL,
257 };
258
259 static const intel_limit_t intel_limits_pineview_lvds = {
260 .dot = { .min = 20000, .max = 400000 },
261 .vco = { .min = 1700000, .max = 3500000 },
262 .n = { .min = 3, .max = 6 },
263 .m = { .min = 2, .max = 256 },
264 .m1 = { .min = 0, .max = 0 },
265 .m2 = { .min = 0, .max = 254 },
266 .p = { .min = 7, .max = 112 },
267 .p1 = { .min = 1, .max = 8 },
268 .p2 = { .dot_limit = 112000,
269 .p2_slow = 14, .p2_fast = 14 },
270 .find_pll = intel_find_best_PLL,
271 };
272
273 /* Ironlake / Sandybridge
274 *
275 * We calculate clock using (register_value + 2) for N/M1/M2, so here
276 * the range value for them is (actual_value - 2).
277 */
278 static const intel_limit_t intel_limits_ironlake_dac = {
279 .dot = { .min = 25000, .max = 350000 },
280 .vco = { .min = 1760000, .max = 3510000 },
281 .n = { .min = 1, .max = 5 },
282 .m = { .min = 79, .max = 127 },
283 .m1 = { .min = 12, .max = 22 },
284 .m2 = { .min = 5, .max = 9 },
285 .p = { .min = 5, .max = 80 },
286 .p1 = { .min = 1, .max = 8 },
287 .p2 = { .dot_limit = 225000,
288 .p2_slow = 10, .p2_fast = 5 },
289 .find_pll = intel_g4x_find_best_PLL,
290 };
291
292 static const intel_limit_t intel_limits_ironlake_single_lvds = {
293 .dot = { .min = 25000, .max = 350000 },
294 .vco = { .min = 1760000, .max = 3510000 },
295 .n = { .min = 1, .max = 3 },
296 .m = { .min = 79, .max = 118 },
297 .m1 = { .min = 12, .max = 22 },
298 .m2 = { .min = 5, .max = 9 },
299 .p = { .min = 28, .max = 112 },
300 .p1 = { .min = 2, .max = 8 },
301 .p2 = { .dot_limit = 225000,
302 .p2_slow = 14, .p2_fast = 14 },
303 .find_pll = intel_g4x_find_best_PLL,
304 };
305
306 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
307 .dot = { .min = 25000, .max = 350000 },
308 .vco = { .min = 1760000, .max = 3510000 },
309 .n = { .min = 1, .max = 3 },
310 .m = { .min = 79, .max = 127 },
311 .m1 = { .min = 12, .max = 22 },
312 .m2 = { .min = 5, .max = 9 },
313 .p = { .min = 14, .max = 56 },
314 .p1 = { .min = 2, .max = 8 },
315 .p2 = { .dot_limit = 225000,
316 .p2_slow = 7, .p2_fast = 7 },
317 .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 /* LVDS 100mhz refclk limits. */
321 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
322 .dot = { .min = 25000, .max = 350000 },
323 .vco = { .min = 1760000, .max = 3510000 },
324 .n = { .min = 1, .max = 2 },
325 .m = { .min = 79, .max = 126 },
326 .m1 = { .min = 12, .max = 22 },
327 .m2 = { .min = 5, .max = 9 },
328 .p = { .min = 28, .max = 112 },
329 .p1 = { .min = 2, .max = 8 },
330 .p2 = { .dot_limit = 225000,
331 .p2_slow = 14, .p2_fast = 14 },
332 .find_pll = intel_g4x_find_best_PLL,
333 };
334
335 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
336 .dot = { .min = 25000, .max = 350000 },
337 .vco = { .min = 1760000, .max = 3510000 },
338 .n = { .min = 1, .max = 3 },
339 .m = { .min = 79, .max = 126 },
340 .m1 = { .min = 12, .max = 22 },
341 .m2 = { .min = 5, .max = 9 },
342 .p = { .min = 14, .max = 42 },
343 .p1 = { .min = 2, .max = 6 },
344 .p2 = { .dot_limit = 225000,
345 .p2_slow = 7, .p2_fast = 7 },
346 .find_pll = intel_g4x_find_best_PLL,
347 };
348
349 static const intel_limit_t intel_limits_ironlake_display_port = {
350 .dot = { .min = 25000, .max = 350000 },
351 .vco = { .min = 1760000, .max = 3510000},
352 .n = { .min = 1, .max = 2 },
353 .m = { .min = 81, .max = 90 },
354 .m1 = { .min = 12, .max = 22 },
355 .m2 = { .min = 5, .max = 9 },
356 .p = { .min = 10, .max = 20 },
357 .p1 = { .min = 1, .max = 2},
358 .p2 = { .dot_limit = 0,
359 .p2_slow = 10, .p2_fast = 10 },
360 .find_pll = intel_find_pll_ironlake_dp,
361 };
362
363 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
364 {
365 unsigned long flags;
366 u32 val = 0;
367
368 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
369 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
370 DRM_ERROR("DPIO idle wait timed out\n");
371 goto out_unlock;
372 }
373
374 I915_WRITE(DPIO_REG, reg);
375 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
376 DPIO_BYTE);
377 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
378 DRM_ERROR("DPIO read wait timed out\n");
379 goto out_unlock;
380 }
381 val = I915_READ(DPIO_DATA);
382
383 out_unlock:
384 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
385 return val;
386 }
387
388 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
389 u32 val)
390 {
391 unsigned long flags;
392
393 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
394 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
395 DRM_ERROR("DPIO idle wait timed out\n");
396 goto out_unlock;
397 }
398
399 I915_WRITE(DPIO_DATA, val);
400 I915_WRITE(DPIO_REG, reg);
401 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
402 DPIO_BYTE);
403 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
404 DRM_ERROR("DPIO write wait timed out\n");
405
406 out_unlock:
407 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
408 }
409
410 static void vlv_init_dpio(struct drm_device *dev)
411 {
412 struct drm_i915_private *dev_priv = dev->dev_private;
413
414 /* Reset the DPIO config */
415 I915_WRITE(DPIO_CTL, 0);
416 POSTING_READ(DPIO_CTL);
417 I915_WRITE(DPIO_CTL, 1);
418 POSTING_READ(DPIO_CTL);
419 }
420
421 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
422 {
423 DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
424 return 1;
425 }
426
427 static const struct dmi_system_id intel_dual_link_lvds[] = {
428 {
429 .callback = intel_dual_link_lvds_callback,
430 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
431 .matches = {
432 DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
433 DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
434 },
435 },
436 { } /* terminating entry */
437 };
438
439 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
440 unsigned int reg)
441 {
442 unsigned int val;
443
444 /* use the module option value if specified */
445 if (i915_lvds_channel_mode > 0)
446 return i915_lvds_channel_mode == 2;
447
448 if (dmi_check_system(intel_dual_link_lvds))
449 return true;
450
451 if (dev_priv->lvds_val)
452 val = dev_priv->lvds_val;
453 else {
454 /* BIOS should set the proper LVDS register value at boot, but
455 * in reality, it doesn't set the value when the lid is closed;
456 * we need to check "the value to be set" in VBT when LVDS
457 * register is uninitialized.
458 */
459 val = I915_READ(reg);
460 if (!(val & ~LVDS_DETECTED))
461 val = dev_priv->bios_lvds_val;
462 dev_priv->lvds_val = val;
463 }
464 return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
465 }
466
467 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
468 int refclk)
469 {
470 struct drm_device *dev = crtc->dev;
471 struct drm_i915_private *dev_priv = dev->dev_private;
472 const intel_limit_t *limit;
473
474 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
475 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
476 /* LVDS dual channel */
477 if (refclk == 100000)
478 limit = &intel_limits_ironlake_dual_lvds_100m;
479 else
480 limit = &intel_limits_ironlake_dual_lvds;
481 } else {
482 if (refclk == 100000)
483 limit = &intel_limits_ironlake_single_lvds_100m;
484 else
485 limit = &intel_limits_ironlake_single_lvds;
486 }
487 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
488 HAS_eDP)
489 limit = &intel_limits_ironlake_display_port;
490 else
491 limit = &intel_limits_ironlake_dac;
492
493 return limit;
494 }
495
496 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
497 {
498 struct drm_device *dev = crtc->dev;
499 struct drm_i915_private *dev_priv = dev->dev_private;
500 const intel_limit_t *limit;
501
502 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
503 if (is_dual_link_lvds(dev_priv, LVDS))
504 /* LVDS with dual channel */
505 limit = &intel_limits_g4x_dual_channel_lvds;
506 else
507 /* LVDS with dual channel */
508 limit = &intel_limits_g4x_single_channel_lvds;
509 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
510 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
511 limit = &intel_limits_g4x_hdmi;
512 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
513 limit = &intel_limits_g4x_sdvo;
514 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
515 limit = &intel_limits_g4x_display_port;
516 } else /* The option is for other outputs */
517 limit = &intel_limits_i9xx_sdvo;
518
519 return limit;
520 }
521
522 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
523 {
524 struct drm_device *dev = crtc->dev;
525 const intel_limit_t *limit;
526
527 if (HAS_PCH_SPLIT(dev))
528 limit = intel_ironlake_limit(crtc, refclk);
529 else if (IS_G4X(dev)) {
530 limit = intel_g4x_limit(crtc);
531 } else if (IS_PINEVIEW(dev)) {
532 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
533 limit = &intel_limits_pineview_lvds;
534 else
535 limit = &intel_limits_pineview_sdvo;
536 } else if (!IS_GEN2(dev)) {
537 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
538 limit = &intel_limits_i9xx_lvds;
539 else
540 limit = &intel_limits_i9xx_sdvo;
541 } else {
542 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
543 limit = &intel_limits_i8xx_lvds;
544 else
545 limit = &intel_limits_i8xx_dvo;
546 }
547 return limit;
548 }
549
550 /* m1 is reserved as 0 in Pineview, n is a ring counter */
551 static void pineview_clock(int refclk, intel_clock_t *clock)
552 {
553 clock->m = clock->m2 + 2;
554 clock->p = clock->p1 * clock->p2;
555 clock->vco = refclk * clock->m / clock->n;
556 clock->dot = clock->vco / clock->p;
557 }
558
559 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
560 {
561 if (IS_PINEVIEW(dev)) {
562 pineview_clock(refclk, clock);
563 return;
564 }
565 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
566 clock->p = clock->p1 * clock->p2;
567 clock->vco = refclk * clock->m / (clock->n + 2);
568 clock->dot = clock->vco / clock->p;
569 }
570
571 /**
572 * Returns whether any output on the specified pipe is of the specified type
573 */
574 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
575 {
576 struct drm_device *dev = crtc->dev;
577 struct drm_mode_config *mode_config = &dev->mode_config;
578 struct intel_encoder *encoder;
579
580 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
581 if (encoder->base.crtc == crtc && encoder->type == type)
582 return true;
583
584 return false;
585 }
586
587 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
588 /**
589 * Returns whether the given set of divisors are valid for a given refclk with
590 * the given connectors.
591 */
592
593 static bool intel_PLL_is_valid(struct drm_device *dev,
594 const intel_limit_t *limit,
595 const intel_clock_t *clock)
596 {
597 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
598 INTELPllInvalid("p1 out of range\n");
599 if (clock->p < limit->p.min || limit->p.max < clock->p)
600 INTELPllInvalid("p out of range\n");
601 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
602 INTELPllInvalid("m2 out of range\n");
603 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
604 INTELPllInvalid("m1 out of range\n");
605 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
606 INTELPllInvalid("m1 <= m2\n");
607 if (clock->m < limit->m.min || limit->m.max < clock->m)
608 INTELPllInvalid("m out of range\n");
609 if (clock->n < limit->n.min || limit->n.max < clock->n)
610 INTELPllInvalid("n out of range\n");
611 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
612 INTELPllInvalid("vco out of range\n");
613 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
614 * connector, etc., rather than just a single range.
615 */
616 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
617 INTELPllInvalid("dot out of range\n");
618
619 return true;
620 }
621
622 static bool
623 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
624 int target, int refclk, intel_clock_t *match_clock,
625 intel_clock_t *best_clock)
626
627 {
628 struct drm_device *dev = crtc->dev;
629 struct drm_i915_private *dev_priv = dev->dev_private;
630 intel_clock_t clock;
631 int err = target;
632
633 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
634 (I915_READ(LVDS)) != 0) {
635 /*
636 * For LVDS, if the panel is on, just rely on its current
637 * settings for dual-channel. We haven't figured out how to
638 * reliably set up different single/dual channel state, if we
639 * even can.
640 */
641 if (is_dual_link_lvds(dev_priv, LVDS))
642 clock.p2 = limit->p2.p2_fast;
643 else
644 clock.p2 = limit->p2.p2_slow;
645 } else {
646 if (target < limit->p2.dot_limit)
647 clock.p2 = limit->p2.p2_slow;
648 else
649 clock.p2 = limit->p2.p2_fast;
650 }
651
652 memset(best_clock, 0, sizeof(*best_clock));
653
654 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
655 clock.m1++) {
656 for (clock.m2 = limit->m2.min;
657 clock.m2 <= limit->m2.max; clock.m2++) {
658 /* m1 is always 0 in Pineview */
659 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
660 break;
661 for (clock.n = limit->n.min;
662 clock.n <= limit->n.max; clock.n++) {
663 for (clock.p1 = limit->p1.min;
664 clock.p1 <= limit->p1.max; clock.p1++) {
665 int this_err;
666
667 intel_clock(dev, refclk, &clock);
668 if (!intel_PLL_is_valid(dev, limit,
669 &clock))
670 continue;
671 if (match_clock &&
672 clock.p != match_clock->p)
673 continue;
674
675 this_err = abs(clock.dot - target);
676 if (this_err < err) {
677 *best_clock = clock;
678 err = this_err;
679 }
680 }
681 }
682 }
683 }
684
685 return (err != target);
686 }
687
688 static bool
689 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
690 int target, int refclk, intel_clock_t *match_clock,
691 intel_clock_t *best_clock)
692 {
693 struct drm_device *dev = crtc->dev;
694 struct drm_i915_private *dev_priv = dev->dev_private;
695 intel_clock_t clock;
696 int max_n;
697 bool found;
698 /* approximately equals target * 0.00585 */
699 int err_most = (target >> 8) + (target >> 9);
700 found = false;
701
702 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
703 int lvds_reg;
704
705 if (HAS_PCH_SPLIT(dev))
706 lvds_reg = PCH_LVDS;
707 else
708 lvds_reg = LVDS;
709 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
710 LVDS_CLKB_POWER_UP)
711 clock.p2 = limit->p2.p2_fast;
712 else
713 clock.p2 = limit->p2.p2_slow;
714 } else {
715 if (target < limit->p2.dot_limit)
716 clock.p2 = limit->p2.p2_slow;
717 else
718 clock.p2 = limit->p2.p2_fast;
719 }
720
721 memset(best_clock, 0, sizeof(*best_clock));
722 max_n = limit->n.max;
723 /* based on hardware requirement, prefer smaller n to precision */
724 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
725 /* based on hardware requirement, prefere larger m1,m2 */
726 for (clock.m1 = limit->m1.max;
727 clock.m1 >= limit->m1.min; clock.m1--) {
728 for (clock.m2 = limit->m2.max;
729 clock.m2 >= limit->m2.min; clock.m2--) {
730 for (clock.p1 = limit->p1.max;
731 clock.p1 >= limit->p1.min; clock.p1--) {
732 int this_err;
733
734 intel_clock(dev, refclk, &clock);
735 if (!intel_PLL_is_valid(dev, limit,
736 &clock))
737 continue;
738 if (match_clock &&
739 clock.p != match_clock->p)
740 continue;
741
742 this_err = abs(clock.dot - target);
743 if (this_err < err_most) {
744 *best_clock = clock;
745 err_most = this_err;
746 max_n = clock.n;
747 found = true;
748 }
749 }
750 }
751 }
752 }
753 return found;
754 }
755
756 static bool
757 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
758 int target, int refclk, intel_clock_t *match_clock,
759 intel_clock_t *best_clock)
760 {
761 struct drm_device *dev = crtc->dev;
762 intel_clock_t clock;
763
764 if (target < 200000) {
765 clock.n = 1;
766 clock.p1 = 2;
767 clock.p2 = 10;
768 clock.m1 = 12;
769 clock.m2 = 9;
770 } else {
771 clock.n = 2;
772 clock.p1 = 1;
773 clock.p2 = 10;
774 clock.m1 = 14;
775 clock.m2 = 8;
776 }
777 intel_clock(dev, refclk, &clock);
778 memcpy(best_clock, &clock, sizeof(intel_clock_t));
779 return true;
780 }
781
782 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
783 static bool
784 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
785 int target, int refclk, intel_clock_t *match_clock,
786 intel_clock_t *best_clock)
787 {
788 intel_clock_t clock;
789 if (target < 200000) {
790 clock.p1 = 2;
791 clock.p2 = 10;
792 clock.n = 2;
793 clock.m1 = 23;
794 clock.m2 = 8;
795 } else {
796 clock.p1 = 1;
797 clock.p2 = 10;
798 clock.n = 1;
799 clock.m1 = 14;
800 clock.m2 = 2;
801 }
802 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
803 clock.p = (clock.p1 * clock.p2);
804 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
805 clock.vco = 0;
806 memcpy(best_clock, &clock, sizeof(intel_clock_t));
807 return true;
808 }
809
810 /**
811 * intel_wait_for_vblank - wait for vblank on a given pipe
812 * @dev: drm device
813 * @pipe: pipe to wait for
814 *
815 * Wait for vblank to occur on a given pipe. Needed for various bits of
816 * mode setting code.
817 */
818 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
819 {
820 struct drm_i915_private *dev_priv = dev->dev_private;
821 int pipestat_reg = PIPESTAT(pipe);
822
823 /* Clear existing vblank status. Note this will clear any other
824 * sticky status fields as well.
825 *
826 * This races with i915_driver_irq_handler() with the result
827 * that either function could miss a vblank event. Here it is not
828 * fatal, as we will either wait upon the next vblank interrupt or
829 * timeout. Generally speaking intel_wait_for_vblank() is only
830 * called during modeset at which time the GPU should be idle and
831 * should *not* be performing page flips and thus not waiting on
832 * vblanks...
833 * Currently, the result of us stealing a vblank from the irq
834 * handler is that a single frame will be skipped during swapbuffers.
835 */
836 I915_WRITE(pipestat_reg,
837 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
838
839 /* Wait for vblank interrupt bit to set */
840 if (wait_for(I915_READ(pipestat_reg) &
841 PIPE_VBLANK_INTERRUPT_STATUS,
842 50))
843 DRM_DEBUG_KMS("vblank wait timed out\n");
844 }
845
846 /*
847 * intel_wait_for_pipe_off - wait for pipe to turn off
848 * @dev: drm device
849 * @pipe: pipe to wait for
850 *
851 * After disabling a pipe, we can't wait for vblank in the usual way,
852 * spinning on the vblank interrupt status bit, since we won't actually
853 * see an interrupt when the pipe is disabled.
854 *
855 * On Gen4 and above:
856 * wait for the pipe register state bit to turn off
857 *
858 * Otherwise:
859 * wait for the display line value to settle (it usually
860 * ends up stopping at the start of the next frame).
861 *
862 */
863 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
864 {
865 struct drm_i915_private *dev_priv = dev->dev_private;
866
867 if (INTEL_INFO(dev)->gen >= 4) {
868 int reg = PIPECONF(pipe);
869
870 /* Wait for the Pipe State to go off */
871 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
872 100))
873 DRM_DEBUG_KMS("pipe_off wait timed out\n");
874 } else {
875 u32 last_line;
876 int reg = PIPEDSL(pipe);
877 unsigned long timeout = jiffies + msecs_to_jiffies(100);
878
879 /* Wait for the display line to settle */
880 do {
881 last_line = I915_READ(reg) & DSL_LINEMASK;
882 mdelay(5);
883 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
884 time_after(timeout, jiffies));
885 if (time_after(jiffies, timeout))
886 DRM_DEBUG_KMS("pipe_off wait timed out\n");
887 }
888 }
889
890 static const char *state_string(bool enabled)
891 {
892 return enabled ? "on" : "off";
893 }
894
895 /* Only for pre-ILK configs */
896 static void assert_pll(struct drm_i915_private *dev_priv,
897 enum pipe pipe, bool state)
898 {
899 int reg;
900 u32 val;
901 bool cur_state;
902
903 reg = DPLL(pipe);
904 val = I915_READ(reg);
905 cur_state = !!(val & DPLL_VCO_ENABLE);
906 WARN(cur_state != state,
907 "PLL state assertion failure (expected %s, current %s)\n",
908 state_string(state), state_string(cur_state));
909 }
910 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
911 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
912
913 /* For ILK+ */
914 static void assert_pch_pll(struct drm_i915_private *dev_priv,
915 enum pipe pipe, bool state)
916 {
917 int reg;
918 u32 val;
919 bool cur_state;
920
921 if (HAS_PCH_CPT(dev_priv->dev)) {
922 u32 pch_dpll;
923
924 pch_dpll = I915_READ(PCH_DPLL_SEL);
925
926 /* Make sure the selected PLL is enabled to the transcoder */
927 WARN(!((pch_dpll >> (4 * pipe)) & 8),
928 "transcoder %d PLL not enabled\n", pipe);
929
930 /* Convert the transcoder pipe number to a pll pipe number */
931 pipe = (pch_dpll >> (4 * pipe)) & 1;
932 }
933
934 reg = PCH_DPLL(pipe);
935 val = I915_READ(reg);
936 cur_state = !!(val & DPLL_VCO_ENABLE);
937 WARN(cur_state != state,
938 "PCH PLL state assertion failure (expected %s, current %s)\n",
939 state_string(state), state_string(cur_state));
940 }
941 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
942 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
943
944 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
945 enum pipe pipe, bool state)
946 {
947 int reg;
948 u32 val;
949 bool cur_state;
950
951 reg = FDI_TX_CTL(pipe);
952 val = I915_READ(reg);
953 cur_state = !!(val & FDI_TX_ENABLE);
954 WARN(cur_state != state,
955 "FDI TX state assertion failure (expected %s, current %s)\n",
956 state_string(state), state_string(cur_state));
957 }
958 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
959 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
960
961 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
962 enum pipe pipe, bool state)
963 {
964 int reg;
965 u32 val;
966 bool cur_state;
967
968 reg = FDI_RX_CTL(pipe);
969 val = I915_READ(reg);
970 cur_state = !!(val & FDI_RX_ENABLE);
971 WARN(cur_state != state,
972 "FDI RX state assertion failure (expected %s, current %s)\n",
973 state_string(state), state_string(cur_state));
974 }
975 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
976 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
977
978 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
979 enum pipe pipe)
980 {
981 int reg;
982 u32 val;
983
984 /* ILK FDI PLL is always enabled */
985 if (dev_priv->info->gen == 5)
986 return;
987
988 reg = FDI_TX_CTL(pipe);
989 val = I915_READ(reg);
990 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
991 }
992
993 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
994 enum pipe pipe)
995 {
996 int reg;
997 u32 val;
998
999 reg = FDI_RX_CTL(pipe);
1000 val = I915_READ(reg);
1001 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1002 }
1003
1004 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1005 enum pipe pipe)
1006 {
1007 int pp_reg, lvds_reg;
1008 u32 val;
1009 enum pipe panel_pipe = PIPE_A;
1010 bool locked = true;
1011
1012 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1013 pp_reg = PCH_PP_CONTROL;
1014 lvds_reg = PCH_LVDS;
1015 } else {
1016 pp_reg = PP_CONTROL;
1017 lvds_reg = LVDS;
1018 }
1019
1020 val = I915_READ(pp_reg);
1021 if (!(val & PANEL_POWER_ON) ||
1022 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1023 locked = false;
1024
1025 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1026 panel_pipe = PIPE_B;
1027
1028 WARN(panel_pipe == pipe && locked,
1029 "panel assertion failure, pipe %c regs locked\n",
1030 pipe_name(pipe));
1031 }
1032
1033 void assert_pipe(struct drm_i915_private *dev_priv,
1034 enum pipe pipe, bool state)
1035 {
1036 int reg;
1037 u32 val;
1038 bool cur_state;
1039
1040 /* if we need the pipe A quirk it must be always on */
1041 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1042 state = true;
1043
1044 reg = PIPECONF(pipe);
1045 val = I915_READ(reg);
1046 cur_state = !!(val & PIPECONF_ENABLE);
1047 WARN(cur_state != state,
1048 "pipe %c assertion failure (expected %s, current %s)\n",
1049 pipe_name(pipe), state_string(state), state_string(cur_state));
1050 }
1051
1052 static void assert_plane(struct drm_i915_private *dev_priv,
1053 enum plane plane, bool state)
1054 {
1055 int reg;
1056 u32 val;
1057 bool cur_state;
1058
1059 reg = DSPCNTR(plane);
1060 val = I915_READ(reg);
1061 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1062 WARN(cur_state != state,
1063 "plane %c assertion failure (expected %s, current %s)\n",
1064 plane_name(plane), state_string(state), state_string(cur_state));
1065 }
1066
1067 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1068 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1069
1070 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1071 enum pipe pipe)
1072 {
1073 int reg, i;
1074 u32 val;
1075 int cur_pipe;
1076
1077 /* Planes are fixed to pipes on ILK+ */
1078 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1079 reg = DSPCNTR(pipe);
1080 val = I915_READ(reg);
1081 WARN((val & DISPLAY_PLANE_ENABLE),
1082 "plane %c assertion failure, should be disabled but not\n",
1083 plane_name(pipe));
1084 return;
1085 }
1086
1087 /* Need to check both planes against the pipe */
1088 for (i = 0; i < 2; i++) {
1089 reg = DSPCNTR(i);
1090 val = I915_READ(reg);
1091 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1092 DISPPLANE_SEL_PIPE_SHIFT;
1093 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1094 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1095 plane_name(i), pipe_name(pipe));
1096 }
1097 }
1098
1099 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1100 {
1101 u32 val;
1102 bool enabled;
1103
1104 val = I915_READ(PCH_DREF_CONTROL);
1105 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1106 DREF_SUPERSPREAD_SOURCE_MASK));
1107 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1108 }
1109
1110 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1111 enum pipe pipe)
1112 {
1113 int reg;
1114 u32 val;
1115 bool enabled;
1116
1117 reg = TRANSCONF(pipe);
1118 val = I915_READ(reg);
1119 enabled = !!(val & TRANS_ENABLE);
1120 WARN(enabled,
1121 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1122 pipe_name(pipe));
1123 }
1124
1125 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1126 enum pipe pipe, u32 port_sel, u32 val)
1127 {
1128 if ((val & DP_PORT_EN) == 0)
1129 return false;
1130
1131 if (HAS_PCH_CPT(dev_priv->dev)) {
1132 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1133 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1134 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1135 return false;
1136 } else {
1137 if ((val & DP_PIPE_MASK) != (pipe << 30))
1138 return false;
1139 }
1140 return true;
1141 }
1142
1143 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1144 enum pipe pipe, u32 val)
1145 {
1146 if ((val & PORT_ENABLE) == 0)
1147 return false;
1148
1149 if (HAS_PCH_CPT(dev_priv->dev)) {
1150 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1151 return false;
1152 } else {
1153 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1154 return false;
1155 }
1156 return true;
1157 }
1158
1159 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1160 enum pipe pipe, u32 val)
1161 {
1162 if ((val & LVDS_PORT_EN) == 0)
1163 return false;
1164
1165 if (HAS_PCH_CPT(dev_priv->dev)) {
1166 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1167 return false;
1168 } else {
1169 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1170 return false;
1171 }
1172 return true;
1173 }
1174
1175 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1176 enum pipe pipe, u32 val)
1177 {
1178 if ((val & ADPA_DAC_ENABLE) == 0)
1179 return false;
1180 if (HAS_PCH_CPT(dev_priv->dev)) {
1181 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1182 return false;
1183 } else {
1184 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1185 return false;
1186 }
1187 return true;
1188 }
1189
1190 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1191 enum pipe pipe, int reg, u32 port_sel)
1192 {
1193 u32 val = I915_READ(reg);
1194 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1195 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1196 reg, pipe_name(pipe));
1197 }
1198
1199 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1200 enum pipe pipe, int reg)
1201 {
1202 u32 val = I915_READ(reg);
1203 WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
1204 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1205 reg, pipe_name(pipe));
1206 }
1207
1208 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1209 enum pipe pipe)
1210 {
1211 int reg;
1212 u32 val;
1213
1214 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1215 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1216 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1217
1218 reg = PCH_ADPA;
1219 val = I915_READ(reg);
1220 WARN(adpa_pipe_enabled(dev_priv, val, pipe),
1221 "PCH VGA enabled on transcoder %c, should be disabled\n",
1222 pipe_name(pipe));
1223
1224 reg = PCH_LVDS;
1225 val = I915_READ(reg);
1226 WARN(lvds_pipe_enabled(dev_priv, val, pipe),
1227 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1228 pipe_name(pipe));
1229
1230 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1231 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1232 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1233 }
1234
1235 /**
1236 * intel_enable_pll - enable a PLL
1237 * @dev_priv: i915 private structure
1238 * @pipe: pipe PLL to enable
1239 *
1240 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1241 * make sure the PLL reg is writable first though, since the panel write
1242 * protect mechanism may be enabled.
1243 *
1244 * Note! This is for pre-ILK only.
1245 */
1246 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1247 {
1248 int reg;
1249 u32 val;
1250
1251 /* No really, not for ILK+ */
1252 BUG_ON(dev_priv->info->gen >= 5);
1253
1254 /* PLL is protected by panel, make sure we can write it */
1255 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1256 assert_panel_unlocked(dev_priv, pipe);
1257
1258 reg = DPLL(pipe);
1259 val = I915_READ(reg);
1260 val |= DPLL_VCO_ENABLE;
1261
1262 /* We do this three times for luck */
1263 I915_WRITE(reg, val);
1264 POSTING_READ(reg);
1265 udelay(150); /* wait for warmup */
1266 I915_WRITE(reg, val);
1267 POSTING_READ(reg);
1268 udelay(150); /* wait for warmup */
1269 I915_WRITE(reg, val);
1270 POSTING_READ(reg);
1271 udelay(150); /* wait for warmup */
1272 }
1273
1274 /**
1275 * intel_disable_pll - disable a PLL
1276 * @dev_priv: i915 private structure
1277 * @pipe: pipe PLL to disable
1278 *
1279 * Disable the PLL for @pipe, making sure the pipe is off first.
1280 *
1281 * Note! This is for pre-ILK only.
1282 */
1283 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1284 {
1285 int reg;
1286 u32 val;
1287
1288 /* Don't disable pipe A or pipe A PLLs if needed */
1289 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1290 return;
1291
1292 /* Make sure the pipe isn't still relying on us */
1293 assert_pipe_disabled(dev_priv, pipe);
1294
1295 reg = DPLL(pipe);
1296 val = I915_READ(reg);
1297 val &= ~DPLL_VCO_ENABLE;
1298 I915_WRITE(reg, val);
1299 POSTING_READ(reg);
1300 }
1301
1302 /**
1303 * intel_enable_pch_pll - enable PCH PLL
1304 * @dev_priv: i915 private structure
1305 * @pipe: pipe PLL to enable
1306 *
1307 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1308 * drives the transcoder clock.
1309 */
1310 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1311 enum pipe pipe)
1312 {
1313 int reg;
1314 u32 val;
1315
1316 if (pipe > 1)
1317 return;
1318
1319 /* PCH only available on ILK+ */
1320 BUG_ON(dev_priv->info->gen < 5);
1321
1322 /* PCH refclock must be enabled first */
1323 assert_pch_refclk_enabled(dev_priv);
1324
1325 reg = PCH_DPLL(pipe);
1326 val = I915_READ(reg);
1327 val |= DPLL_VCO_ENABLE;
1328 I915_WRITE(reg, val);
1329 POSTING_READ(reg);
1330 udelay(200);
1331 }
1332
1333 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1334 enum pipe pipe)
1335 {
1336 int reg;
1337 u32 val, pll_mask = TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL,
1338 pll_sel = TRANSC_DPLL_ENABLE;
1339
1340 if (pipe > 1)
1341 return;
1342
1343 /* PCH only available on ILK+ */
1344 BUG_ON(dev_priv->info->gen < 5);
1345
1346 /* Make sure transcoder isn't still depending on us */
1347 assert_transcoder_disabled(dev_priv, pipe);
1348
1349 if (pipe == 0)
1350 pll_sel |= TRANSC_DPLLA_SEL;
1351 else if (pipe == 1)
1352 pll_sel |= TRANSC_DPLLB_SEL;
1353
1354
1355 if ((I915_READ(PCH_DPLL_SEL) & pll_mask) == pll_sel)
1356 return;
1357
1358 reg = PCH_DPLL(pipe);
1359 val = I915_READ(reg);
1360 val &= ~DPLL_VCO_ENABLE;
1361 I915_WRITE(reg, val);
1362 POSTING_READ(reg);
1363 udelay(200);
1364 }
1365
1366 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1367 enum pipe pipe)
1368 {
1369 int reg;
1370 u32 val, pipeconf_val;
1371 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1372
1373 /* PCH only available on ILK+ */
1374 BUG_ON(dev_priv->info->gen < 5);
1375
1376 /* Make sure PCH DPLL is enabled */
1377 assert_pch_pll_enabled(dev_priv, pipe);
1378
1379 /* FDI must be feeding us bits for PCH ports */
1380 assert_fdi_tx_enabled(dev_priv, pipe);
1381 assert_fdi_rx_enabled(dev_priv, pipe);
1382
1383 reg = TRANSCONF(pipe);
1384 val = I915_READ(reg);
1385 pipeconf_val = I915_READ(PIPECONF(pipe));
1386
1387 if (HAS_PCH_IBX(dev_priv->dev)) {
1388 /*
1389 * make the BPC in transcoder be consistent with
1390 * that in pipeconf reg.
1391 */
1392 val &= ~PIPE_BPC_MASK;
1393 val |= pipeconf_val & PIPE_BPC_MASK;
1394 }
1395
1396 val &= ~TRANS_INTERLACE_MASK;
1397 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1398 if (HAS_PCH_IBX(dev_priv->dev) &&
1399 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1400 val |= TRANS_LEGACY_INTERLACED_ILK;
1401 else
1402 val |= TRANS_INTERLACED;
1403 else
1404 val |= TRANS_PROGRESSIVE;
1405
1406 I915_WRITE(reg, val | TRANS_ENABLE);
1407 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1408 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1409 }
1410
1411 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1412 enum pipe pipe)
1413 {
1414 int reg;
1415 u32 val;
1416
1417 /* FDI relies on the transcoder */
1418 assert_fdi_tx_disabled(dev_priv, pipe);
1419 assert_fdi_rx_disabled(dev_priv, pipe);
1420
1421 /* Ports must be off as well */
1422 assert_pch_ports_disabled(dev_priv, pipe);
1423
1424 reg = TRANSCONF(pipe);
1425 val = I915_READ(reg);
1426 val &= ~TRANS_ENABLE;
1427 I915_WRITE(reg, val);
1428 /* wait for PCH transcoder off, transcoder state */
1429 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1430 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1431 }
1432
1433 /**
1434 * intel_enable_pipe - enable a pipe, asserting requirements
1435 * @dev_priv: i915 private structure
1436 * @pipe: pipe to enable
1437 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1438 *
1439 * Enable @pipe, making sure that various hardware specific requirements
1440 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1441 *
1442 * @pipe should be %PIPE_A or %PIPE_B.
1443 *
1444 * Will wait until the pipe is actually running (i.e. first vblank) before
1445 * returning.
1446 */
1447 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1448 bool pch_port)
1449 {
1450 int reg;
1451 u32 val;
1452
1453 /*
1454 * A pipe without a PLL won't actually be able to drive bits from
1455 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1456 * need the check.
1457 */
1458 if (!HAS_PCH_SPLIT(dev_priv->dev))
1459 assert_pll_enabled(dev_priv, pipe);
1460 else {
1461 if (pch_port) {
1462 /* if driving the PCH, we need FDI enabled */
1463 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1464 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1465 }
1466 /* FIXME: assert CPU port conditions for SNB+ */
1467 }
1468
1469 reg = PIPECONF(pipe);
1470 val = I915_READ(reg);
1471 if (val & PIPECONF_ENABLE)
1472 return;
1473
1474 I915_WRITE(reg, val | PIPECONF_ENABLE);
1475 intel_wait_for_vblank(dev_priv->dev, pipe);
1476 }
1477
1478 /**
1479 * intel_disable_pipe - disable a pipe, asserting requirements
1480 * @dev_priv: i915 private structure
1481 * @pipe: pipe to disable
1482 *
1483 * Disable @pipe, making sure that various hardware specific requirements
1484 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1485 *
1486 * @pipe should be %PIPE_A or %PIPE_B.
1487 *
1488 * Will wait until the pipe has shut down before returning.
1489 */
1490 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1491 enum pipe pipe)
1492 {
1493 int reg;
1494 u32 val;
1495
1496 /*
1497 * Make sure planes won't keep trying to pump pixels to us,
1498 * or we might hang the display.
1499 */
1500 assert_planes_disabled(dev_priv, pipe);
1501
1502 /* Don't disable pipe A or pipe A PLLs if needed */
1503 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1504 return;
1505
1506 reg = PIPECONF(pipe);
1507 val = I915_READ(reg);
1508 if ((val & PIPECONF_ENABLE) == 0)
1509 return;
1510
1511 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1512 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1513 }
1514
1515 /*
1516 * Plane regs are double buffered, going from enabled->disabled needs a
1517 * trigger in order to latch. The display address reg provides this.
1518 */
1519 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1520 enum plane plane)
1521 {
1522 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1523 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1524 }
1525
1526 /**
1527 * intel_enable_plane - enable a display plane on a given pipe
1528 * @dev_priv: i915 private structure
1529 * @plane: plane to enable
1530 * @pipe: pipe being fed
1531 *
1532 * Enable @plane on @pipe, making sure that @pipe is running first.
1533 */
1534 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1535 enum plane plane, enum pipe pipe)
1536 {
1537 int reg;
1538 u32 val;
1539
1540 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1541 assert_pipe_enabled(dev_priv, pipe);
1542
1543 reg = DSPCNTR(plane);
1544 val = I915_READ(reg);
1545 if (val & DISPLAY_PLANE_ENABLE)
1546 return;
1547
1548 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1549 intel_flush_display_plane(dev_priv, plane);
1550 intel_wait_for_vblank(dev_priv->dev, pipe);
1551 }
1552
1553 /**
1554 * intel_disable_plane - disable a display plane
1555 * @dev_priv: i915 private structure
1556 * @plane: plane to disable
1557 * @pipe: pipe consuming the data
1558 *
1559 * Disable @plane; should be an independent operation.
1560 */
1561 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1562 enum plane plane, enum pipe pipe)
1563 {
1564 int reg;
1565 u32 val;
1566
1567 reg = DSPCNTR(plane);
1568 val = I915_READ(reg);
1569 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1570 return;
1571
1572 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1573 intel_flush_display_plane(dev_priv, plane);
1574 intel_wait_for_vblank(dev_priv->dev, pipe);
1575 }
1576
1577 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1578 enum pipe pipe, int reg, u32 port_sel)
1579 {
1580 u32 val = I915_READ(reg);
1581 if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1582 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1583 I915_WRITE(reg, val & ~DP_PORT_EN);
1584 }
1585 }
1586
1587 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1588 enum pipe pipe, int reg)
1589 {
1590 u32 val = I915_READ(reg);
1591 if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1592 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1593 reg, pipe);
1594 I915_WRITE(reg, val & ~PORT_ENABLE);
1595 }
1596 }
1597
1598 /* Disable any ports connected to this transcoder */
1599 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1600 enum pipe pipe)
1601 {
1602 u32 reg, val;
1603
1604 val = I915_READ(PCH_PP_CONTROL);
1605 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1606
1607 disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1608 disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1609 disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1610
1611 reg = PCH_ADPA;
1612 val = I915_READ(reg);
1613 if (adpa_pipe_enabled(dev_priv, val, pipe))
1614 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1615
1616 reg = PCH_LVDS;
1617 val = I915_READ(reg);
1618 if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1619 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1620 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1621 POSTING_READ(reg);
1622 udelay(100);
1623 }
1624
1625 disable_pch_hdmi(dev_priv, pipe, HDMIB);
1626 disable_pch_hdmi(dev_priv, pipe, HDMIC);
1627 disable_pch_hdmi(dev_priv, pipe, HDMID);
1628 }
1629
1630 static void i8xx_disable_fbc(struct drm_device *dev)
1631 {
1632 struct drm_i915_private *dev_priv = dev->dev_private;
1633 u32 fbc_ctl;
1634
1635 /* Disable compression */
1636 fbc_ctl = I915_READ(FBC_CONTROL);
1637 if ((fbc_ctl & FBC_CTL_EN) == 0)
1638 return;
1639
1640 fbc_ctl &= ~FBC_CTL_EN;
1641 I915_WRITE(FBC_CONTROL, fbc_ctl);
1642
1643 /* Wait for compressing bit to clear */
1644 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1645 DRM_DEBUG_KMS("FBC idle timed out\n");
1646 return;
1647 }
1648
1649 DRM_DEBUG_KMS("disabled FBC\n");
1650 }
1651
1652 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1653 {
1654 struct drm_device *dev = crtc->dev;
1655 struct drm_i915_private *dev_priv = dev->dev_private;
1656 struct drm_framebuffer *fb = crtc->fb;
1657 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1658 struct drm_i915_gem_object *obj = intel_fb->obj;
1659 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1660 int cfb_pitch;
1661 int plane, i;
1662 u32 fbc_ctl, fbc_ctl2;
1663
1664 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1665 if (fb->pitches[0] < cfb_pitch)
1666 cfb_pitch = fb->pitches[0];
1667
1668 /* FBC_CTL wants 64B units */
1669 cfb_pitch = (cfb_pitch / 64) - 1;
1670 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1671
1672 /* Clear old tags */
1673 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1674 I915_WRITE(FBC_TAG + (i * 4), 0);
1675
1676 /* Set it up... */
1677 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1678 fbc_ctl2 |= plane;
1679 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1680 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1681
1682 /* enable it... */
1683 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1684 if (IS_I945GM(dev))
1685 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1686 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1687 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1688 fbc_ctl |= obj->fence_reg;
1689 I915_WRITE(FBC_CONTROL, fbc_ctl);
1690
1691 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1692 cfb_pitch, crtc->y, intel_crtc->plane);
1693 }
1694
1695 static bool i8xx_fbc_enabled(struct drm_device *dev)
1696 {
1697 struct drm_i915_private *dev_priv = dev->dev_private;
1698
1699 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1700 }
1701
1702 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1703 {
1704 struct drm_device *dev = crtc->dev;
1705 struct drm_i915_private *dev_priv = dev->dev_private;
1706 struct drm_framebuffer *fb = crtc->fb;
1707 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1708 struct drm_i915_gem_object *obj = intel_fb->obj;
1709 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1710 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1711 unsigned long stall_watermark = 200;
1712 u32 dpfc_ctl;
1713
1714 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1715 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
1716 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1717
1718 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1719 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1720 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1721 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1722
1723 /* enable it... */
1724 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1725
1726 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1727 }
1728
1729 static void g4x_disable_fbc(struct drm_device *dev)
1730 {
1731 struct drm_i915_private *dev_priv = dev->dev_private;
1732 u32 dpfc_ctl;
1733
1734 /* Disable compression */
1735 dpfc_ctl = I915_READ(DPFC_CONTROL);
1736 if (dpfc_ctl & DPFC_CTL_EN) {
1737 dpfc_ctl &= ~DPFC_CTL_EN;
1738 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1739
1740 DRM_DEBUG_KMS("disabled FBC\n");
1741 }
1742 }
1743
1744 static bool g4x_fbc_enabled(struct drm_device *dev)
1745 {
1746 struct drm_i915_private *dev_priv = dev->dev_private;
1747
1748 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1749 }
1750
1751 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1752 {
1753 struct drm_i915_private *dev_priv = dev->dev_private;
1754 u32 blt_ecoskpd;
1755
1756 /* Make sure blitter notifies FBC of writes */
1757 gen6_gt_force_wake_get(dev_priv);
1758 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1759 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1760 GEN6_BLITTER_LOCK_SHIFT;
1761 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1762 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1763 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1764 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1765 GEN6_BLITTER_LOCK_SHIFT);
1766 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1767 POSTING_READ(GEN6_BLITTER_ECOSKPD);
1768 gen6_gt_force_wake_put(dev_priv);
1769 }
1770
1771 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1772 {
1773 struct drm_device *dev = crtc->dev;
1774 struct drm_i915_private *dev_priv = dev->dev_private;
1775 struct drm_framebuffer *fb = crtc->fb;
1776 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1777 struct drm_i915_gem_object *obj = intel_fb->obj;
1778 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1779 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1780 unsigned long stall_watermark = 200;
1781 u32 dpfc_ctl;
1782
1783 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1784 dpfc_ctl &= DPFC_RESERVED;
1785 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1786 /* Set persistent mode for front-buffer rendering, ala X. */
1787 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
1788 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
1789 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1790
1791 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1792 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1793 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1794 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1795 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1796 /* enable it... */
1797 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1798
1799 if (IS_GEN6(dev)) {
1800 I915_WRITE(SNB_DPFC_CTL_SA,
1801 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
1802 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1803 sandybridge_blit_fbc_update(dev);
1804 }
1805
1806 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1807 }
1808
1809 static void ironlake_disable_fbc(struct drm_device *dev)
1810 {
1811 struct drm_i915_private *dev_priv = dev->dev_private;
1812 u32 dpfc_ctl;
1813
1814 /* Disable compression */
1815 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1816 if (dpfc_ctl & DPFC_CTL_EN) {
1817 dpfc_ctl &= ~DPFC_CTL_EN;
1818 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1819
1820 DRM_DEBUG_KMS("disabled FBC\n");
1821 }
1822 }
1823
1824 static bool ironlake_fbc_enabled(struct drm_device *dev)
1825 {
1826 struct drm_i915_private *dev_priv = dev->dev_private;
1827
1828 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1829 }
1830
1831 bool intel_fbc_enabled(struct drm_device *dev)
1832 {
1833 struct drm_i915_private *dev_priv = dev->dev_private;
1834
1835 if (!dev_priv->display.fbc_enabled)
1836 return false;
1837
1838 return dev_priv->display.fbc_enabled(dev);
1839 }
1840
1841 static void intel_fbc_work_fn(struct work_struct *__work)
1842 {
1843 struct intel_fbc_work *work =
1844 container_of(to_delayed_work(__work),
1845 struct intel_fbc_work, work);
1846 struct drm_device *dev = work->crtc->dev;
1847 struct drm_i915_private *dev_priv = dev->dev_private;
1848
1849 mutex_lock(&dev->struct_mutex);
1850 if (work == dev_priv->fbc_work) {
1851 /* Double check that we haven't switched fb without cancelling
1852 * the prior work.
1853 */
1854 if (work->crtc->fb == work->fb) {
1855 dev_priv->display.enable_fbc(work->crtc,
1856 work->interval);
1857
1858 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1859 dev_priv->cfb_fb = work->crtc->fb->base.id;
1860 dev_priv->cfb_y = work->crtc->y;
1861 }
1862
1863 dev_priv->fbc_work = NULL;
1864 }
1865 mutex_unlock(&dev->struct_mutex);
1866
1867 kfree(work);
1868 }
1869
1870 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1871 {
1872 if (dev_priv->fbc_work == NULL)
1873 return;
1874
1875 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1876
1877 /* Synchronisation is provided by struct_mutex and checking of
1878 * dev_priv->fbc_work, so we can perform the cancellation
1879 * entirely asynchronously.
1880 */
1881 if (cancel_delayed_work(&dev_priv->fbc_work->work))
1882 /* tasklet was killed before being run, clean up */
1883 kfree(dev_priv->fbc_work);
1884
1885 /* Mark the work as no longer wanted so that if it does
1886 * wake-up (because the work was already running and waiting
1887 * for our mutex), it will discover that is no longer
1888 * necessary to run.
1889 */
1890 dev_priv->fbc_work = NULL;
1891 }
1892
1893 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1894 {
1895 struct intel_fbc_work *work;
1896 struct drm_device *dev = crtc->dev;
1897 struct drm_i915_private *dev_priv = dev->dev_private;
1898
1899 if (!dev_priv->display.enable_fbc)
1900 return;
1901
1902 intel_cancel_fbc_work(dev_priv);
1903
1904 work = kzalloc(sizeof *work, GFP_KERNEL);
1905 if (work == NULL) {
1906 dev_priv->display.enable_fbc(crtc, interval);
1907 return;
1908 }
1909
1910 work->crtc = crtc;
1911 work->fb = crtc->fb;
1912 work->interval = interval;
1913 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
1914
1915 dev_priv->fbc_work = work;
1916
1917 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1918
1919 /* Delay the actual enabling to let pageflipping cease and the
1920 * display to settle before starting the compression. Note that
1921 * this delay also serves a second purpose: it allows for a
1922 * vblank to pass after disabling the FBC before we attempt
1923 * to modify the control registers.
1924 *
1925 * A more complicated solution would involve tracking vblanks
1926 * following the termination of the page-flipping sequence
1927 * and indeed performing the enable as a co-routine and not
1928 * waiting synchronously upon the vblank.
1929 */
1930 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
1931 }
1932
1933 void intel_disable_fbc(struct drm_device *dev)
1934 {
1935 struct drm_i915_private *dev_priv = dev->dev_private;
1936
1937 intel_cancel_fbc_work(dev_priv);
1938
1939 if (!dev_priv->display.disable_fbc)
1940 return;
1941
1942 dev_priv->display.disable_fbc(dev);
1943 dev_priv->cfb_plane = -1;
1944 }
1945
1946 /**
1947 * intel_update_fbc - enable/disable FBC as needed
1948 * @dev: the drm_device
1949 *
1950 * Set up the framebuffer compression hardware at mode set time. We
1951 * enable it if possible:
1952 * - plane A only (on pre-965)
1953 * - no pixel mulitply/line duplication
1954 * - no alpha buffer discard
1955 * - no dual wide
1956 * - framebuffer <= 2048 in width, 1536 in height
1957 *
1958 * We can't assume that any compression will take place (worst case),
1959 * so the compressed buffer has to be the same size as the uncompressed
1960 * one. It also must reside (along with the line length buffer) in
1961 * stolen memory.
1962 *
1963 * We need to enable/disable FBC on a global basis.
1964 */
1965 static void intel_update_fbc(struct drm_device *dev)
1966 {
1967 struct drm_i915_private *dev_priv = dev->dev_private;
1968 struct drm_crtc *crtc = NULL, *tmp_crtc;
1969 struct intel_crtc *intel_crtc;
1970 struct drm_framebuffer *fb;
1971 struct intel_framebuffer *intel_fb;
1972 struct drm_i915_gem_object *obj;
1973 int enable_fbc;
1974
1975 DRM_DEBUG_KMS("\n");
1976
1977 if (!i915_powersave)
1978 return;
1979
1980 if (!I915_HAS_FBC(dev))
1981 return;
1982
1983 /*
1984 * If FBC is already on, we just have to verify that we can
1985 * keep it that way...
1986 * Need to disable if:
1987 * - more than one pipe is active
1988 * - changing FBC params (stride, fence, mode)
1989 * - new fb is too large to fit in compressed buffer
1990 * - going to an unsupported config (interlace, pixel multiply, etc.)
1991 */
1992 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1993 if (tmp_crtc->enabled && tmp_crtc->fb) {
1994 if (crtc) {
1995 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1996 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1997 goto out_disable;
1998 }
1999 crtc = tmp_crtc;
2000 }
2001 }
2002
2003 if (!crtc || crtc->fb == NULL) {
2004 DRM_DEBUG_KMS("no output, disabling\n");
2005 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
2006 goto out_disable;
2007 }
2008
2009 intel_crtc = to_intel_crtc(crtc);
2010 fb = crtc->fb;
2011 intel_fb = to_intel_framebuffer(fb);
2012 obj = intel_fb->obj;
2013
2014 enable_fbc = i915_enable_fbc;
2015 if (enable_fbc < 0) {
2016 DRM_DEBUG_KMS("fbc set to per-chip default\n");
2017 enable_fbc = 1;
2018 if (INTEL_INFO(dev)->gen <= 6)
2019 enable_fbc = 0;
2020 }
2021 if (!enable_fbc) {
2022 DRM_DEBUG_KMS("fbc disabled per module param\n");
2023 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
2024 goto out_disable;
2025 }
2026 if (intel_fb->obj->base.size > dev_priv->cfb_size) {
2027 DRM_DEBUG_KMS("framebuffer too large, disabling "
2028 "compression\n");
2029 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
2030 goto out_disable;
2031 }
2032 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
2033 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
2034 DRM_DEBUG_KMS("mode incompatible with compression, "
2035 "disabling\n");
2036 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
2037 goto out_disable;
2038 }
2039 if ((crtc->mode.hdisplay > 2048) ||
2040 (crtc->mode.vdisplay > 1536)) {
2041 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
2042 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
2043 goto out_disable;
2044 }
2045 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
2046 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
2047 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
2048 goto out_disable;
2049 }
2050
2051 /* The use of a CPU fence is mandatory in order to detect writes
2052 * by the CPU to the scanout and trigger updates to the FBC.
2053 */
2054 if (obj->tiling_mode != I915_TILING_X ||
2055 obj->fence_reg == I915_FENCE_REG_NONE) {
2056 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
2057 dev_priv->no_fbc_reason = FBC_NOT_TILED;
2058 goto out_disable;
2059 }
2060
2061 /* If the kernel debugger is active, always disable compression */
2062 if (in_dbg_master())
2063 goto out_disable;
2064
2065 /* If the scanout has not changed, don't modify the FBC settings.
2066 * Note that we make the fundamental assumption that the fb->obj
2067 * cannot be unpinned (and have its GTT offset and fence revoked)
2068 * without first being decoupled from the scanout and FBC disabled.
2069 */
2070 if (dev_priv->cfb_plane == intel_crtc->plane &&
2071 dev_priv->cfb_fb == fb->base.id &&
2072 dev_priv->cfb_y == crtc->y)
2073 return;
2074
2075 if (intel_fbc_enabled(dev)) {
2076 /* We update FBC along two paths, after changing fb/crtc
2077 * configuration (modeswitching) and after page-flipping
2078 * finishes. For the latter, we know that not only did
2079 * we disable the FBC at the start of the page-flip
2080 * sequence, but also more than one vblank has passed.
2081 *
2082 * For the former case of modeswitching, it is possible
2083 * to switch between two FBC valid configurations
2084 * instantaneously so we do need to disable the FBC
2085 * before we can modify its control registers. We also
2086 * have to wait for the next vblank for that to take
2087 * effect. However, since we delay enabling FBC we can
2088 * assume that a vblank has passed since disabling and
2089 * that we can safely alter the registers in the deferred
2090 * callback.
2091 *
2092 * In the scenario that we go from a valid to invalid
2093 * and then back to valid FBC configuration we have
2094 * no strict enforcement that a vblank occurred since
2095 * disabling the FBC. However, along all current pipe
2096 * disabling paths we do need to wait for a vblank at
2097 * some point. And we wait before enabling FBC anyway.
2098 */
2099 DRM_DEBUG_KMS("disabling active FBC for update\n");
2100 intel_disable_fbc(dev);
2101 }
2102
2103 intel_enable_fbc(crtc, 500);
2104 return;
2105
2106 out_disable:
2107 /* Multiple disables should be harmless */
2108 if (intel_fbc_enabled(dev)) {
2109 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
2110 intel_disable_fbc(dev);
2111 }
2112 }
2113
2114 int
2115 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2116 struct drm_i915_gem_object *obj,
2117 struct intel_ring_buffer *pipelined)
2118 {
2119 struct drm_i915_private *dev_priv = dev->dev_private;
2120 u32 alignment;
2121 int ret;
2122
2123 switch (obj->tiling_mode) {
2124 case I915_TILING_NONE:
2125 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2126 alignment = 128 * 1024;
2127 else if (INTEL_INFO(dev)->gen >= 4)
2128 alignment = 4 * 1024;
2129 else
2130 alignment = 64 * 1024;
2131 break;
2132 case I915_TILING_X:
2133 /* pin() will align the object as required by fence */
2134 alignment = 0;
2135 break;
2136 case I915_TILING_Y:
2137 /* FIXME: Is this true? */
2138 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
2139 return -EINVAL;
2140 default:
2141 BUG();
2142 }
2143
2144 dev_priv->mm.interruptible = false;
2145 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2146 if (ret)
2147 goto err_interruptible;
2148
2149 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2150 * fence, whereas 965+ only requires a fence if using
2151 * framebuffer compression. For simplicity, we always install
2152 * a fence as the cost is not that onerous.
2153 */
2154 ret = i915_gem_object_get_fence(obj, pipelined);
2155 if (ret)
2156 goto err_unpin;
2157
2158 i915_gem_object_pin_fence(obj);
2159
2160 dev_priv->mm.interruptible = true;
2161 return 0;
2162
2163 err_unpin:
2164 i915_gem_object_unpin(obj);
2165 err_interruptible:
2166 dev_priv->mm.interruptible = true;
2167 return ret;
2168 }
2169
2170 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2171 {
2172 i915_gem_object_unpin_fence(obj);
2173 i915_gem_object_unpin(obj);
2174 }
2175
2176 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2177 int x, int y)
2178 {
2179 struct drm_device *dev = crtc->dev;
2180 struct drm_i915_private *dev_priv = dev->dev_private;
2181 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2182 struct intel_framebuffer *intel_fb;
2183 struct drm_i915_gem_object *obj;
2184 int plane = intel_crtc->plane;
2185 unsigned long Start, Offset;
2186 u32 dspcntr;
2187 u32 reg;
2188
2189 switch (plane) {
2190 case 0:
2191 case 1:
2192 break;
2193 default:
2194 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2195 return -EINVAL;
2196 }
2197
2198 intel_fb = to_intel_framebuffer(fb);
2199 obj = intel_fb->obj;
2200
2201 reg = DSPCNTR(plane);
2202 dspcntr = I915_READ(reg);
2203 /* Mask out pixel format bits in case we change it */
2204 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2205 switch (fb->bits_per_pixel) {
2206 case 8:
2207 dspcntr |= DISPPLANE_8BPP;
2208 break;
2209 case 16:
2210 if (fb->depth == 15)
2211 dspcntr |= DISPPLANE_15_16BPP;
2212 else
2213 dspcntr |= DISPPLANE_16BPP;
2214 break;
2215 case 24:
2216 case 32:
2217 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2218 break;
2219 default:
2220 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2221 return -EINVAL;
2222 }
2223 if (INTEL_INFO(dev)->gen >= 4) {
2224 if (obj->tiling_mode != I915_TILING_NONE)
2225 dspcntr |= DISPPLANE_TILED;
2226 else
2227 dspcntr &= ~DISPPLANE_TILED;
2228 }
2229
2230 I915_WRITE(reg, dspcntr);
2231
2232 Start = obj->gtt_offset;
2233 Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2234
2235 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2236 Start, Offset, x, y, fb->pitches[0]);
2237 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2238 if (INTEL_INFO(dev)->gen >= 4) {
2239 I915_MODIFY_DISPBASE(DSPSURF(plane), Start);
2240 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2241 I915_WRITE(DSPADDR(plane), Offset);
2242 } else
2243 I915_WRITE(DSPADDR(plane), Start + Offset);
2244 POSTING_READ(reg);
2245
2246 return 0;
2247 }
2248
2249 static int ironlake_update_plane(struct drm_crtc *crtc,
2250 struct drm_framebuffer *fb, int x, int y)
2251 {
2252 struct drm_device *dev = crtc->dev;
2253 struct drm_i915_private *dev_priv = dev->dev_private;
2254 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2255 struct intel_framebuffer *intel_fb;
2256 struct drm_i915_gem_object *obj;
2257 int plane = intel_crtc->plane;
2258 unsigned long Start, Offset;
2259 u32 dspcntr;
2260 u32 reg;
2261
2262 switch (plane) {
2263 case 0:
2264 case 1:
2265 case 2:
2266 break;
2267 default:
2268 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2269 return -EINVAL;
2270 }
2271
2272 intel_fb = to_intel_framebuffer(fb);
2273 obj = intel_fb->obj;
2274
2275 reg = DSPCNTR(plane);
2276 dspcntr = I915_READ(reg);
2277 /* Mask out pixel format bits in case we change it */
2278 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2279 switch (fb->bits_per_pixel) {
2280 case 8:
2281 dspcntr |= DISPPLANE_8BPP;
2282 break;
2283 case 16:
2284 if (fb->depth != 16)
2285 return -EINVAL;
2286
2287 dspcntr |= DISPPLANE_16BPP;
2288 break;
2289 case 24:
2290 case 32:
2291 if (fb->depth == 24)
2292 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2293 else if (fb->depth == 30)
2294 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2295 else
2296 return -EINVAL;
2297 break;
2298 default:
2299 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2300 return -EINVAL;
2301 }
2302
2303 if (obj->tiling_mode != I915_TILING_NONE)
2304 dspcntr |= DISPPLANE_TILED;
2305 else
2306 dspcntr &= ~DISPPLANE_TILED;
2307
2308 /* must disable */
2309 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2310
2311 I915_WRITE(reg, dspcntr);
2312
2313 Start = obj->gtt_offset;
2314 Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2315
2316 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2317 Start, Offset, x, y, fb->pitches[0]);
2318 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2319 I915_MODIFY_DISPBASE(DSPSURF(plane), Start);
2320 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2321 I915_WRITE(DSPADDR(plane), Offset);
2322 POSTING_READ(reg);
2323
2324 return 0;
2325 }
2326
2327 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2328 static int
2329 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2330 int x, int y, enum mode_set_atomic state)
2331 {
2332 struct drm_device *dev = crtc->dev;
2333 struct drm_i915_private *dev_priv = dev->dev_private;
2334 int ret;
2335
2336 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2337 if (ret)
2338 return ret;
2339
2340 intel_update_fbc(dev);
2341 intel_increase_pllclock(crtc);
2342
2343 return 0;
2344 }
2345
2346 static int
2347 intel_finish_fb(struct drm_framebuffer *old_fb)
2348 {
2349 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2350 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2351 bool was_interruptible = dev_priv->mm.interruptible;
2352 int ret;
2353
2354 wait_event(dev_priv->pending_flip_queue,
2355 atomic_read(&dev_priv->mm.wedged) ||
2356 atomic_read(&obj->pending_flip) == 0);
2357
2358 /* Big Hammer, we also need to ensure that any pending
2359 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2360 * current scanout is retired before unpinning the old
2361 * framebuffer.
2362 *
2363 * This should only fail upon a hung GPU, in which case we
2364 * can safely continue.
2365 */
2366 dev_priv->mm.interruptible = false;
2367 ret = i915_gem_object_finish_gpu(obj);
2368 dev_priv->mm.interruptible = was_interruptible;
2369
2370 return ret;
2371 }
2372
2373 static int
2374 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2375 struct drm_framebuffer *old_fb)
2376 {
2377 struct drm_device *dev = crtc->dev;
2378 struct drm_i915_master_private *master_priv;
2379 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2380 int ret;
2381
2382 /* no fb bound */
2383 if (!crtc->fb) {
2384 DRM_ERROR("No FB bound\n");
2385 return 0;
2386 }
2387
2388 switch (intel_crtc->plane) {
2389 case 0:
2390 case 1:
2391 break;
2392 case 2:
2393 if (IS_IVYBRIDGE(dev))
2394 break;
2395 /* fall through otherwise */
2396 default:
2397 DRM_ERROR("no plane for crtc\n");
2398 return -EINVAL;
2399 }
2400
2401 mutex_lock(&dev->struct_mutex);
2402 ret = intel_pin_and_fence_fb_obj(dev,
2403 to_intel_framebuffer(crtc->fb)->obj,
2404 NULL);
2405 if (ret != 0) {
2406 mutex_unlock(&dev->struct_mutex);
2407 DRM_ERROR("pin & fence failed\n");
2408 return ret;
2409 }
2410
2411 if (old_fb)
2412 intel_finish_fb(old_fb);
2413
2414 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2415 LEAVE_ATOMIC_MODE_SET);
2416 if (ret) {
2417 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
2418 mutex_unlock(&dev->struct_mutex);
2419 DRM_ERROR("failed to update base address\n");
2420 return ret;
2421 }
2422
2423 if (old_fb) {
2424 intel_wait_for_vblank(dev, intel_crtc->pipe);
2425 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2426 }
2427
2428 mutex_unlock(&dev->struct_mutex);
2429
2430 if (!dev->primary->master)
2431 return 0;
2432
2433 master_priv = dev->primary->master->driver_priv;
2434 if (!master_priv->sarea_priv)
2435 return 0;
2436
2437 if (intel_crtc->pipe) {
2438 master_priv->sarea_priv->pipeB_x = x;
2439 master_priv->sarea_priv->pipeB_y = y;
2440 } else {
2441 master_priv->sarea_priv->pipeA_x = x;
2442 master_priv->sarea_priv->pipeA_y = y;
2443 }
2444
2445 return 0;
2446 }
2447
2448 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2449 {
2450 struct drm_device *dev = crtc->dev;
2451 struct drm_i915_private *dev_priv = dev->dev_private;
2452 u32 dpa_ctl;
2453
2454 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2455 dpa_ctl = I915_READ(DP_A);
2456 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2457
2458 if (clock < 200000) {
2459 u32 temp;
2460 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2461 /* workaround for 160Mhz:
2462 1) program 0x4600c bits 15:0 = 0x8124
2463 2) program 0x46010 bit 0 = 1
2464 3) program 0x46034 bit 24 = 1
2465 4) program 0x64000 bit 14 = 1
2466 */
2467 temp = I915_READ(0x4600c);
2468 temp &= 0xffff0000;
2469 I915_WRITE(0x4600c, temp | 0x8124);
2470
2471 temp = I915_READ(0x46010);
2472 I915_WRITE(0x46010, temp | 1);
2473
2474 temp = I915_READ(0x46034);
2475 I915_WRITE(0x46034, temp | (1 << 24));
2476 } else {
2477 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2478 }
2479 I915_WRITE(DP_A, dpa_ctl);
2480
2481 POSTING_READ(DP_A);
2482 udelay(500);
2483 }
2484
2485 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2486 {
2487 struct drm_device *dev = crtc->dev;
2488 struct drm_i915_private *dev_priv = dev->dev_private;
2489 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2490 int pipe = intel_crtc->pipe;
2491 u32 reg, temp;
2492
2493 /* enable normal train */
2494 reg = FDI_TX_CTL(pipe);
2495 temp = I915_READ(reg);
2496 if (IS_IVYBRIDGE(dev)) {
2497 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2498 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2499 } else {
2500 temp &= ~FDI_LINK_TRAIN_NONE;
2501 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2502 }
2503 I915_WRITE(reg, temp);
2504
2505 reg = FDI_RX_CTL(pipe);
2506 temp = I915_READ(reg);
2507 if (HAS_PCH_CPT(dev)) {
2508 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2509 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2510 } else {
2511 temp &= ~FDI_LINK_TRAIN_NONE;
2512 temp |= FDI_LINK_TRAIN_NONE;
2513 }
2514 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2515
2516 /* wait one idle pattern time */
2517 POSTING_READ(reg);
2518 udelay(1000);
2519
2520 /* IVB wants error correction enabled */
2521 if (IS_IVYBRIDGE(dev))
2522 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2523 FDI_FE_ERRC_ENABLE);
2524 }
2525
2526 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2527 {
2528 struct drm_i915_private *dev_priv = dev->dev_private;
2529 u32 flags = I915_READ(SOUTH_CHICKEN1);
2530
2531 flags |= FDI_PHASE_SYNC_OVR(pipe);
2532 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2533 flags |= FDI_PHASE_SYNC_EN(pipe);
2534 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2535 POSTING_READ(SOUTH_CHICKEN1);
2536 }
2537
2538 /* The FDI link training functions for ILK/Ibexpeak. */
2539 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2540 {
2541 struct drm_device *dev = crtc->dev;
2542 struct drm_i915_private *dev_priv = dev->dev_private;
2543 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2544 int pipe = intel_crtc->pipe;
2545 int plane = intel_crtc->plane;
2546 u32 reg, temp, tries;
2547
2548 /* FDI needs bits from pipe & plane first */
2549 assert_pipe_enabled(dev_priv, pipe);
2550 assert_plane_enabled(dev_priv, plane);
2551
2552 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2553 for train result */
2554 reg = FDI_RX_IMR(pipe);
2555 temp = I915_READ(reg);
2556 temp &= ~FDI_RX_SYMBOL_LOCK;
2557 temp &= ~FDI_RX_BIT_LOCK;
2558 I915_WRITE(reg, temp);
2559 I915_READ(reg);
2560 udelay(150);
2561
2562 /* enable CPU FDI TX and PCH FDI RX */
2563 reg = FDI_TX_CTL(pipe);
2564 temp = I915_READ(reg);
2565 temp &= ~(7 << 19);
2566 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2567 temp &= ~FDI_LINK_TRAIN_NONE;
2568 temp |= FDI_LINK_TRAIN_PATTERN_1;
2569 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2570
2571 reg = FDI_RX_CTL(pipe);
2572 temp = I915_READ(reg);
2573 temp &= ~FDI_LINK_TRAIN_NONE;
2574 temp |= FDI_LINK_TRAIN_PATTERN_1;
2575 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2576
2577 POSTING_READ(reg);
2578 udelay(150);
2579
2580 /* Ironlake workaround, enable clock pointer after FDI enable*/
2581 if (HAS_PCH_IBX(dev)) {
2582 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2583 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2584 FDI_RX_PHASE_SYNC_POINTER_EN);
2585 }
2586
2587 reg = FDI_RX_IIR(pipe);
2588 for (tries = 0; tries < 5; tries++) {
2589 temp = I915_READ(reg);
2590 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2591
2592 if ((temp & FDI_RX_BIT_LOCK)) {
2593 DRM_DEBUG_KMS("FDI train 1 done.\n");
2594 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2595 break;
2596 }
2597 }
2598 if (tries == 5)
2599 DRM_ERROR("FDI train 1 fail!\n");
2600
2601 /* Train 2 */
2602 reg = FDI_TX_CTL(pipe);
2603 temp = I915_READ(reg);
2604 temp &= ~FDI_LINK_TRAIN_NONE;
2605 temp |= FDI_LINK_TRAIN_PATTERN_2;
2606 I915_WRITE(reg, temp);
2607
2608 reg = FDI_RX_CTL(pipe);
2609 temp = I915_READ(reg);
2610 temp &= ~FDI_LINK_TRAIN_NONE;
2611 temp |= FDI_LINK_TRAIN_PATTERN_2;
2612 I915_WRITE(reg, temp);
2613
2614 POSTING_READ(reg);
2615 udelay(150);
2616
2617 reg = FDI_RX_IIR(pipe);
2618 for (tries = 0; tries < 5; tries++) {
2619 temp = I915_READ(reg);
2620 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2621
2622 if (temp & FDI_RX_SYMBOL_LOCK) {
2623 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2624 DRM_DEBUG_KMS("FDI train 2 done.\n");
2625 break;
2626 }
2627 }
2628 if (tries == 5)
2629 DRM_ERROR("FDI train 2 fail!\n");
2630
2631 DRM_DEBUG_KMS("FDI train done\n");
2632
2633 }
2634
2635 static const int snb_b_fdi_train_param[] = {
2636 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2637 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2638 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2639 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2640 };
2641
2642 /* The FDI link training functions for SNB/Cougarpoint. */
2643 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2644 {
2645 struct drm_device *dev = crtc->dev;
2646 struct drm_i915_private *dev_priv = dev->dev_private;
2647 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2648 int pipe = intel_crtc->pipe;
2649 u32 reg, temp, i, retry;
2650
2651 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2652 for train result */
2653 reg = FDI_RX_IMR(pipe);
2654 temp = I915_READ(reg);
2655 temp &= ~FDI_RX_SYMBOL_LOCK;
2656 temp &= ~FDI_RX_BIT_LOCK;
2657 I915_WRITE(reg, temp);
2658
2659 POSTING_READ(reg);
2660 udelay(150);
2661
2662 /* enable CPU FDI TX and PCH FDI RX */
2663 reg = FDI_TX_CTL(pipe);
2664 temp = I915_READ(reg);
2665 temp &= ~(7 << 19);
2666 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2667 temp &= ~FDI_LINK_TRAIN_NONE;
2668 temp |= FDI_LINK_TRAIN_PATTERN_1;
2669 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2670 /* SNB-B */
2671 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2672 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2673
2674 reg = FDI_RX_CTL(pipe);
2675 temp = I915_READ(reg);
2676 if (HAS_PCH_CPT(dev)) {
2677 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2678 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2679 } else {
2680 temp &= ~FDI_LINK_TRAIN_NONE;
2681 temp |= FDI_LINK_TRAIN_PATTERN_1;
2682 }
2683 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2684
2685 POSTING_READ(reg);
2686 udelay(150);
2687
2688 if (HAS_PCH_CPT(dev))
2689 cpt_phase_pointer_enable(dev, pipe);
2690
2691 for (i = 0; i < 4; i++) {
2692 reg = FDI_TX_CTL(pipe);
2693 temp = I915_READ(reg);
2694 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2695 temp |= snb_b_fdi_train_param[i];
2696 I915_WRITE(reg, temp);
2697
2698 POSTING_READ(reg);
2699 udelay(500);
2700
2701 for (retry = 0; retry < 5; retry++) {
2702 reg = FDI_RX_IIR(pipe);
2703 temp = I915_READ(reg);
2704 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2705 if (temp & FDI_RX_BIT_LOCK) {
2706 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2707 DRM_DEBUG_KMS("FDI train 1 done.\n");
2708 break;
2709 }
2710 udelay(50);
2711 }
2712 if (retry < 5)
2713 break;
2714 }
2715 if (i == 4)
2716 DRM_ERROR("FDI train 1 fail!\n");
2717
2718 /* Train 2 */
2719 reg = FDI_TX_CTL(pipe);
2720 temp = I915_READ(reg);
2721 temp &= ~FDI_LINK_TRAIN_NONE;
2722 temp |= FDI_LINK_TRAIN_PATTERN_2;
2723 if (IS_GEN6(dev)) {
2724 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2725 /* SNB-B */
2726 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2727 }
2728 I915_WRITE(reg, temp);
2729
2730 reg = FDI_RX_CTL(pipe);
2731 temp = I915_READ(reg);
2732 if (HAS_PCH_CPT(dev)) {
2733 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2734 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2735 } else {
2736 temp &= ~FDI_LINK_TRAIN_NONE;
2737 temp |= FDI_LINK_TRAIN_PATTERN_2;
2738 }
2739 I915_WRITE(reg, temp);
2740
2741 POSTING_READ(reg);
2742 udelay(150);
2743
2744 for (i = 0; i < 4; i++) {
2745 reg = FDI_TX_CTL(pipe);
2746 temp = I915_READ(reg);
2747 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2748 temp |= snb_b_fdi_train_param[i];
2749 I915_WRITE(reg, temp);
2750
2751 POSTING_READ(reg);
2752 udelay(500);
2753
2754 for (retry = 0; retry < 5; retry++) {
2755 reg = FDI_RX_IIR(pipe);
2756 temp = I915_READ(reg);
2757 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2758 if (temp & FDI_RX_SYMBOL_LOCK) {
2759 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2760 DRM_DEBUG_KMS("FDI train 2 done.\n");
2761 break;
2762 }
2763 udelay(50);
2764 }
2765 if (retry < 5)
2766 break;
2767 }
2768 if (i == 4)
2769 DRM_ERROR("FDI train 2 fail!\n");
2770
2771 DRM_DEBUG_KMS("FDI train done.\n");
2772 }
2773
2774 /* Manual link training for Ivy Bridge A0 parts */
2775 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2776 {
2777 struct drm_device *dev = crtc->dev;
2778 struct drm_i915_private *dev_priv = dev->dev_private;
2779 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2780 int pipe = intel_crtc->pipe;
2781 u32 reg, temp, i;
2782
2783 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2784 for train result */
2785 reg = FDI_RX_IMR(pipe);
2786 temp = I915_READ(reg);
2787 temp &= ~FDI_RX_SYMBOL_LOCK;
2788 temp &= ~FDI_RX_BIT_LOCK;
2789 I915_WRITE(reg, temp);
2790
2791 POSTING_READ(reg);
2792 udelay(150);
2793
2794 /* enable CPU FDI TX and PCH FDI RX */
2795 reg = FDI_TX_CTL(pipe);
2796 temp = I915_READ(reg);
2797 temp &= ~(7 << 19);
2798 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2799 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2800 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2801 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2802 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2803 temp |= FDI_COMPOSITE_SYNC;
2804 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2805
2806 reg = FDI_RX_CTL(pipe);
2807 temp = I915_READ(reg);
2808 temp &= ~FDI_LINK_TRAIN_AUTO;
2809 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2810 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2811 temp |= FDI_COMPOSITE_SYNC;
2812 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2813
2814 POSTING_READ(reg);
2815 udelay(150);
2816
2817 if (HAS_PCH_CPT(dev))
2818 cpt_phase_pointer_enable(dev, pipe);
2819
2820 for (i = 0; i < 4; i++) {
2821 reg = FDI_TX_CTL(pipe);
2822 temp = I915_READ(reg);
2823 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2824 temp |= snb_b_fdi_train_param[i];
2825 I915_WRITE(reg, temp);
2826
2827 POSTING_READ(reg);
2828 udelay(500);
2829
2830 reg = FDI_RX_IIR(pipe);
2831 temp = I915_READ(reg);
2832 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2833
2834 if (temp & FDI_RX_BIT_LOCK ||
2835 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2836 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2837 DRM_DEBUG_KMS("FDI train 1 done.\n");
2838 break;
2839 }
2840 }
2841 if (i == 4)
2842 DRM_ERROR("FDI train 1 fail!\n");
2843
2844 /* Train 2 */
2845 reg = FDI_TX_CTL(pipe);
2846 temp = I915_READ(reg);
2847 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2848 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2849 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2850 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2851 I915_WRITE(reg, temp);
2852
2853 reg = FDI_RX_CTL(pipe);
2854 temp = I915_READ(reg);
2855 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2856 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2857 I915_WRITE(reg, temp);
2858
2859 POSTING_READ(reg);
2860 udelay(150);
2861
2862 for (i = 0; i < 4; i++) {
2863 reg = FDI_TX_CTL(pipe);
2864 temp = I915_READ(reg);
2865 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2866 temp |= snb_b_fdi_train_param[i];
2867 I915_WRITE(reg, temp);
2868
2869 POSTING_READ(reg);
2870 udelay(500);
2871
2872 reg = FDI_RX_IIR(pipe);
2873 temp = I915_READ(reg);
2874 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2875
2876 if (temp & FDI_RX_SYMBOL_LOCK) {
2877 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2878 DRM_DEBUG_KMS("FDI train 2 done.\n");
2879 break;
2880 }
2881 }
2882 if (i == 4)
2883 DRM_ERROR("FDI train 2 fail!\n");
2884
2885 DRM_DEBUG_KMS("FDI train done.\n");
2886 }
2887
2888 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2889 {
2890 struct drm_device *dev = crtc->dev;
2891 struct drm_i915_private *dev_priv = dev->dev_private;
2892 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2893 int pipe = intel_crtc->pipe;
2894 u32 reg, temp;
2895
2896 /* Write the TU size bits so error detection works */
2897 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2898 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2899
2900 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2901 reg = FDI_RX_CTL(pipe);
2902 temp = I915_READ(reg);
2903 temp &= ~((0x7 << 19) | (0x7 << 16));
2904 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2905 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2906 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2907
2908 POSTING_READ(reg);
2909 udelay(200);
2910
2911 /* Switch from Rawclk to PCDclk */
2912 temp = I915_READ(reg);
2913 I915_WRITE(reg, temp | FDI_PCDCLK);
2914
2915 POSTING_READ(reg);
2916 udelay(200);
2917
2918 /* Enable CPU FDI TX PLL, always on for Ironlake */
2919 reg = FDI_TX_CTL(pipe);
2920 temp = I915_READ(reg);
2921 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2922 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2923
2924 POSTING_READ(reg);
2925 udelay(100);
2926 }
2927 }
2928
2929 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2930 {
2931 struct drm_i915_private *dev_priv = dev->dev_private;
2932 u32 flags = I915_READ(SOUTH_CHICKEN1);
2933
2934 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2935 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2936 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2937 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2938 POSTING_READ(SOUTH_CHICKEN1);
2939 }
2940 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2941 {
2942 struct drm_device *dev = crtc->dev;
2943 struct drm_i915_private *dev_priv = dev->dev_private;
2944 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2945 int pipe = intel_crtc->pipe;
2946 u32 reg, temp;
2947
2948 /* disable CPU FDI tx and PCH FDI rx */
2949 reg = FDI_TX_CTL(pipe);
2950 temp = I915_READ(reg);
2951 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2952 POSTING_READ(reg);
2953
2954 reg = FDI_RX_CTL(pipe);
2955 temp = I915_READ(reg);
2956 temp &= ~(0x7 << 16);
2957 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2958 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2959
2960 POSTING_READ(reg);
2961 udelay(100);
2962
2963 /* Ironlake workaround, disable clock pointer after downing FDI */
2964 if (HAS_PCH_IBX(dev)) {
2965 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2966 I915_WRITE(FDI_RX_CHICKEN(pipe),
2967 I915_READ(FDI_RX_CHICKEN(pipe) &
2968 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2969 } else if (HAS_PCH_CPT(dev)) {
2970 cpt_phase_pointer_disable(dev, pipe);
2971 }
2972
2973 /* still set train pattern 1 */
2974 reg = FDI_TX_CTL(pipe);
2975 temp = I915_READ(reg);
2976 temp &= ~FDI_LINK_TRAIN_NONE;
2977 temp |= FDI_LINK_TRAIN_PATTERN_1;
2978 I915_WRITE(reg, temp);
2979
2980 reg = FDI_RX_CTL(pipe);
2981 temp = I915_READ(reg);
2982 if (HAS_PCH_CPT(dev)) {
2983 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2984 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2985 } else {
2986 temp &= ~FDI_LINK_TRAIN_NONE;
2987 temp |= FDI_LINK_TRAIN_PATTERN_1;
2988 }
2989 /* BPC in FDI rx is consistent with that in PIPECONF */
2990 temp &= ~(0x07 << 16);
2991 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2992 I915_WRITE(reg, temp);
2993
2994 POSTING_READ(reg);
2995 udelay(100);
2996 }
2997
2998 /*
2999 * When we disable a pipe, we need to clear any pending scanline wait events
3000 * to avoid hanging the ring, which we assume we are waiting on.
3001 */
3002 static void intel_clear_scanline_wait(struct drm_device *dev)
3003 {
3004 struct drm_i915_private *dev_priv = dev->dev_private;
3005 struct intel_ring_buffer *ring;
3006 u32 tmp;
3007
3008 if (IS_GEN2(dev))
3009 /* Can't break the hang on i8xx */
3010 return;
3011
3012 ring = LP_RING(dev_priv);
3013 tmp = I915_READ_CTL(ring);
3014 if (tmp & RING_WAIT)
3015 I915_WRITE_CTL(ring, tmp);
3016 }
3017
3018 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3019 {
3020 struct drm_i915_gem_object *obj;
3021 struct drm_i915_private *dev_priv;
3022
3023 if (crtc->fb == NULL)
3024 return;
3025
3026 obj = to_intel_framebuffer(crtc->fb)->obj;
3027 dev_priv = crtc->dev->dev_private;
3028 wait_event(dev_priv->pending_flip_queue,
3029 atomic_read(&obj->pending_flip) == 0);
3030 }
3031
3032 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
3033 {
3034 struct drm_device *dev = crtc->dev;
3035 struct drm_mode_config *mode_config = &dev->mode_config;
3036 struct intel_encoder *encoder;
3037
3038 /*
3039 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
3040 * must be driven by its own crtc; no sharing is possible.
3041 */
3042 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3043 if (encoder->base.crtc != crtc)
3044 continue;
3045
3046 switch (encoder->type) {
3047 case INTEL_OUTPUT_EDP:
3048 if (!intel_encoder_is_pch_edp(&encoder->base))
3049 return false;
3050 continue;
3051 }
3052 }
3053
3054 return true;
3055 }
3056
3057 /*
3058 * Enable PCH resources required for PCH ports:
3059 * - PCH PLLs
3060 * - FDI training & RX/TX
3061 * - update transcoder timings
3062 * - DP transcoding bits
3063 * - transcoder
3064 */
3065 static void ironlake_pch_enable(struct drm_crtc *crtc)
3066 {
3067 struct drm_device *dev = crtc->dev;
3068 struct drm_i915_private *dev_priv = dev->dev_private;
3069 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3070 int pipe = intel_crtc->pipe;
3071 u32 reg, temp, transc_sel;
3072
3073 /* For PCH output, training FDI link */
3074 dev_priv->display.fdi_link_train(crtc);
3075
3076 intel_enable_pch_pll(dev_priv, pipe);
3077
3078 if (HAS_PCH_CPT(dev)) {
3079 transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
3080 TRANSC_DPLLB_SEL;
3081
3082 /* Be sure PCH DPLL SEL is set */
3083 temp = I915_READ(PCH_DPLL_SEL);
3084 if (pipe == 0) {
3085 temp &= ~(TRANSA_DPLLB_SEL);
3086 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
3087 } else if (pipe == 1) {
3088 temp &= ~(TRANSB_DPLLB_SEL);
3089 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3090 } else if (pipe == 2) {
3091 temp &= ~(TRANSC_DPLLB_SEL);
3092 temp |= (TRANSC_DPLL_ENABLE | transc_sel);
3093 }
3094 I915_WRITE(PCH_DPLL_SEL, temp);
3095 }
3096
3097 /* set transcoder timing, panel must allow it */
3098 assert_panel_unlocked(dev_priv, pipe);
3099 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3100 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3101 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
3102
3103 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3104 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3105 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
3106 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
3107
3108 intel_fdi_normal_train(crtc);
3109
3110 /* For PCH DP, enable TRANS_DP_CTL */
3111 if (HAS_PCH_CPT(dev) &&
3112 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3113 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3114 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3115 reg = TRANS_DP_CTL(pipe);
3116 temp = I915_READ(reg);
3117 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3118 TRANS_DP_SYNC_MASK |
3119 TRANS_DP_BPC_MASK);
3120 temp |= (TRANS_DP_OUTPUT_ENABLE |
3121 TRANS_DP_ENH_FRAMING);
3122 temp |= bpc << 9; /* same format but at 11:9 */
3123
3124 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3125 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3126 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3127 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3128
3129 switch (intel_trans_dp_port_sel(crtc)) {
3130 case PCH_DP_B:
3131 temp |= TRANS_DP_PORT_SEL_B;
3132 break;
3133 case PCH_DP_C:
3134 temp |= TRANS_DP_PORT_SEL_C;
3135 break;
3136 case PCH_DP_D:
3137 temp |= TRANS_DP_PORT_SEL_D;
3138 break;
3139 default:
3140 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
3141 temp |= TRANS_DP_PORT_SEL_B;
3142 break;
3143 }
3144
3145 I915_WRITE(reg, temp);
3146 }
3147
3148 intel_enable_transcoder(dev_priv, pipe);
3149 }
3150
3151 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3152 {
3153 struct drm_i915_private *dev_priv = dev->dev_private;
3154 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3155 u32 temp;
3156
3157 temp = I915_READ(dslreg);
3158 udelay(500);
3159 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3160 /* Without this, mode sets may fail silently on FDI */
3161 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3162 udelay(250);
3163 I915_WRITE(tc2reg, 0);
3164 if (wait_for(I915_READ(dslreg) != temp, 5))
3165 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3166 }
3167 }
3168
3169 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3170 {
3171 struct drm_device *dev = crtc->dev;
3172 struct drm_i915_private *dev_priv = dev->dev_private;
3173 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3174 int pipe = intel_crtc->pipe;
3175 int plane = intel_crtc->plane;
3176 u32 temp;
3177 bool is_pch_port;
3178
3179 if (intel_crtc->active)
3180 return;
3181
3182 intel_crtc->active = true;
3183 intel_update_watermarks(dev);
3184
3185 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3186 temp = I915_READ(PCH_LVDS);
3187 if ((temp & LVDS_PORT_EN) == 0)
3188 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3189 }
3190
3191 is_pch_port = intel_crtc_driving_pch(crtc);
3192
3193 if (is_pch_port)
3194 ironlake_fdi_pll_enable(crtc);
3195 else
3196 ironlake_fdi_disable(crtc);
3197
3198 /* Enable panel fitting for LVDS */
3199 if (dev_priv->pch_pf_size &&
3200 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3201 /* Force use of hard-coded filter coefficients
3202 * as some pre-programmed values are broken,
3203 * e.g. x201.
3204 */
3205 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3206 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3207 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3208 }
3209
3210 /*
3211 * On ILK+ LUT must be loaded before the pipe is running but with
3212 * clocks enabled
3213 */
3214 intel_crtc_load_lut(crtc);
3215
3216 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3217 intel_enable_plane(dev_priv, plane, pipe);
3218
3219 if (is_pch_port)
3220 ironlake_pch_enable(crtc);
3221
3222 mutex_lock(&dev->struct_mutex);
3223 intel_update_fbc(dev);
3224 mutex_unlock(&dev->struct_mutex);
3225
3226 intel_crtc_update_cursor(crtc, true);
3227 }
3228
3229 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3230 {
3231 struct drm_device *dev = crtc->dev;
3232 struct drm_i915_private *dev_priv = dev->dev_private;
3233 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3234 int pipe = intel_crtc->pipe;
3235 int plane = intel_crtc->plane;
3236 u32 reg, temp;
3237
3238 if (!intel_crtc->active)
3239 return;
3240
3241 intel_crtc_wait_for_pending_flips(crtc);
3242 drm_vblank_off(dev, pipe);
3243 intel_crtc_update_cursor(crtc, false);
3244
3245 intel_disable_plane(dev_priv, plane, pipe);
3246
3247 if (dev_priv->cfb_plane == plane)
3248 intel_disable_fbc(dev);
3249
3250 intel_disable_pipe(dev_priv, pipe);
3251
3252 /* Disable PF */
3253 I915_WRITE(PF_CTL(pipe), 0);
3254 I915_WRITE(PF_WIN_SZ(pipe), 0);
3255
3256 ironlake_fdi_disable(crtc);
3257
3258 /* This is a horrible layering violation; we should be doing this in
3259 * the connector/encoder ->prepare instead, but we don't always have
3260 * enough information there about the config to know whether it will
3261 * actually be necessary or just cause undesired flicker.
3262 */
3263 intel_disable_pch_ports(dev_priv, pipe);
3264
3265 intel_disable_transcoder(dev_priv, pipe);
3266
3267 if (HAS_PCH_CPT(dev)) {
3268 /* disable TRANS_DP_CTL */
3269 reg = TRANS_DP_CTL(pipe);
3270 temp = I915_READ(reg);
3271 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3272 temp |= TRANS_DP_PORT_SEL_NONE;
3273 I915_WRITE(reg, temp);
3274
3275 /* disable DPLL_SEL */
3276 temp = I915_READ(PCH_DPLL_SEL);
3277 switch (pipe) {
3278 case 0:
3279 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3280 break;
3281 case 1:
3282 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3283 break;
3284 case 2:
3285 /* C shares PLL A or B */
3286 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3287 break;
3288 default:
3289 BUG(); /* wtf */
3290 }
3291 I915_WRITE(PCH_DPLL_SEL, temp);
3292 }
3293
3294 /* disable PCH DPLL */
3295 if (!intel_crtc->no_pll)
3296 intel_disable_pch_pll(dev_priv, pipe);
3297
3298 /* Switch from PCDclk to Rawclk */
3299 reg = FDI_RX_CTL(pipe);
3300 temp = I915_READ(reg);
3301 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3302
3303 /* Disable CPU FDI TX PLL */
3304 reg = FDI_TX_CTL(pipe);
3305 temp = I915_READ(reg);
3306 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3307
3308 POSTING_READ(reg);
3309 udelay(100);
3310
3311 reg = FDI_RX_CTL(pipe);
3312 temp = I915_READ(reg);
3313 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3314
3315 /* Wait for the clocks to turn off. */
3316 POSTING_READ(reg);
3317 udelay(100);
3318
3319 intel_crtc->active = false;
3320 intel_update_watermarks(dev);
3321
3322 mutex_lock(&dev->struct_mutex);
3323 intel_update_fbc(dev);
3324 intel_clear_scanline_wait(dev);
3325 mutex_unlock(&dev->struct_mutex);
3326 }
3327
3328 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3329 {
3330 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3331 int pipe = intel_crtc->pipe;
3332 int plane = intel_crtc->plane;
3333
3334 /* XXX: When our outputs are all unaware of DPMS modes other than off
3335 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3336 */
3337 switch (mode) {
3338 case DRM_MODE_DPMS_ON:
3339 case DRM_MODE_DPMS_STANDBY:
3340 case DRM_MODE_DPMS_SUSPEND:
3341 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3342 ironlake_crtc_enable(crtc);
3343 break;
3344
3345 case DRM_MODE_DPMS_OFF:
3346 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3347 ironlake_crtc_disable(crtc);
3348 break;
3349 }
3350 }
3351
3352 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3353 {
3354 if (!enable && intel_crtc->overlay) {
3355 struct drm_device *dev = intel_crtc->base.dev;
3356 struct drm_i915_private *dev_priv = dev->dev_private;
3357
3358 mutex_lock(&dev->struct_mutex);
3359 dev_priv->mm.interruptible = false;
3360 (void) intel_overlay_switch_off(intel_crtc->overlay);
3361 dev_priv->mm.interruptible = true;
3362 mutex_unlock(&dev->struct_mutex);
3363 }
3364
3365 /* Let userspace switch the overlay on again. In most cases userspace
3366 * has to recompute where to put it anyway.
3367 */
3368 }
3369
3370 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3371 {
3372 struct drm_device *dev = crtc->dev;
3373 struct drm_i915_private *dev_priv = dev->dev_private;
3374 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3375 int pipe = intel_crtc->pipe;
3376 int plane = intel_crtc->plane;
3377
3378 if (intel_crtc->active)
3379 return;
3380
3381 intel_crtc->active = true;
3382 intel_update_watermarks(dev);
3383
3384 intel_enable_pll(dev_priv, pipe);
3385 intel_enable_pipe(dev_priv, pipe, false);
3386 intel_enable_plane(dev_priv, plane, pipe);
3387
3388 intel_crtc_load_lut(crtc);
3389 intel_update_fbc(dev);
3390
3391 /* Give the overlay scaler a chance to enable if it's on this pipe */
3392 intel_crtc_dpms_overlay(intel_crtc, true);
3393 intel_crtc_update_cursor(crtc, true);
3394 }
3395
3396 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3397 {
3398 struct drm_device *dev = crtc->dev;
3399 struct drm_i915_private *dev_priv = dev->dev_private;
3400 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3401 int pipe = intel_crtc->pipe;
3402 int plane = intel_crtc->plane;
3403
3404 if (!intel_crtc->active)
3405 return;
3406
3407 /* Give the overlay scaler a chance to disable if it's on this pipe */
3408 intel_crtc_wait_for_pending_flips(crtc);
3409 drm_vblank_off(dev, pipe);
3410 intel_crtc_dpms_overlay(intel_crtc, false);
3411 intel_crtc_update_cursor(crtc, false);
3412
3413 if (dev_priv->cfb_plane == plane)
3414 intel_disable_fbc(dev);
3415
3416 intel_disable_plane(dev_priv, plane, pipe);
3417 intel_disable_pipe(dev_priv, pipe);
3418 intel_disable_pll(dev_priv, pipe);
3419
3420 intel_crtc->active = false;
3421 intel_update_fbc(dev);
3422 intel_update_watermarks(dev);
3423 intel_clear_scanline_wait(dev);
3424 }
3425
3426 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3427 {
3428 /* XXX: When our outputs are all unaware of DPMS modes other than off
3429 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3430 */
3431 switch (mode) {
3432 case DRM_MODE_DPMS_ON:
3433 case DRM_MODE_DPMS_STANDBY:
3434 case DRM_MODE_DPMS_SUSPEND:
3435 i9xx_crtc_enable(crtc);
3436 break;
3437 case DRM_MODE_DPMS_OFF:
3438 i9xx_crtc_disable(crtc);
3439 break;
3440 }
3441 }
3442
3443 /**
3444 * Sets the power management mode of the pipe and plane.
3445 */
3446 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3447 {
3448 struct drm_device *dev = crtc->dev;
3449 struct drm_i915_private *dev_priv = dev->dev_private;
3450 struct drm_i915_master_private *master_priv;
3451 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3452 int pipe = intel_crtc->pipe;
3453 bool enabled;
3454
3455 if (intel_crtc->dpms_mode == mode)
3456 return;
3457
3458 intel_crtc->dpms_mode = mode;
3459
3460 dev_priv->display.dpms(crtc, mode);
3461
3462 if (!dev->primary->master)
3463 return;
3464
3465 master_priv = dev->primary->master->driver_priv;
3466 if (!master_priv->sarea_priv)
3467 return;
3468
3469 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3470
3471 switch (pipe) {
3472 case 0:
3473 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3474 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3475 break;
3476 case 1:
3477 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3478 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3479 break;
3480 default:
3481 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3482 break;
3483 }
3484 }
3485
3486 static void intel_crtc_disable(struct drm_crtc *crtc)
3487 {
3488 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3489 struct drm_device *dev = crtc->dev;
3490
3491 /* Flush any pending WAITs before we disable the pipe. Note that
3492 * we need to drop the struct_mutex in order to acquire it again
3493 * during the lowlevel dpms routines around a couple of the
3494 * operations. It does not look trivial nor desirable to move
3495 * that locking higher. So instead we leave a window for the
3496 * submission of further commands on the fb before we can actually
3497 * disable it. This race with userspace exists anyway, and we can
3498 * only rely on the pipe being disabled by userspace after it
3499 * receives the hotplug notification and has flushed any pending
3500 * batches.
3501 */
3502 if (crtc->fb) {
3503 mutex_lock(&dev->struct_mutex);
3504 intel_finish_fb(crtc->fb);
3505 mutex_unlock(&dev->struct_mutex);
3506 }
3507
3508 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3509 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3510 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3511
3512 if (crtc->fb) {
3513 mutex_lock(&dev->struct_mutex);
3514 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3515 mutex_unlock(&dev->struct_mutex);
3516 }
3517 }
3518
3519 /* Prepare for a mode set.
3520 *
3521 * Note we could be a lot smarter here. We need to figure out which outputs
3522 * will be enabled, which disabled (in short, how the config will changes)
3523 * and perform the minimum necessary steps to accomplish that, e.g. updating
3524 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3525 * panel fitting is in the proper state, etc.
3526 */
3527 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3528 {
3529 i9xx_crtc_disable(crtc);
3530 }
3531
3532 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3533 {
3534 i9xx_crtc_enable(crtc);
3535 }
3536
3537 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3538 {
3539 ironlake_crtc_disable(crtc);
3540 }
3541
3542 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3543 {
3544 ironlake_crtc_enable(crtc);
3545 }
3546
3547 void intel_encoder_prepare(struct drm_encoder *encoder)
3548 {
3549 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3550 /* lvds has its own version of prepare see intel_lvds_prepare */
3551 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3552 }
3553
3554 void intel_encoder_commit(struct drm_encoder *encoder)
3555 {
3556 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3557 struct drm_device *dev = encoder->dev;
3558 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3559 struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
3560
3561 /* lvds has its own version of commit see intel_lvds_commit */
3562 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3563
3564 if (HAS_PCH_CPT(dev))
3565 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3566 }
3567
3568 void intel_encoder_destroy(struct drm_encoder *encoder)
3569 {
3570 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3571
3572 drm_encoder_cleanup(encoder);
3573 kfree(intel_encoder);
3574 }
3575
3576 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3577 struct drm_display_mode *mode,
3578 struct drm_display_mode *adjusted_mode)
3579 {
3580 struct drm_device *dev = crtc->dev;
3581
3582 if (HAS_PCH_SPLIT(dev)) {
3583 /* FDI link clock is fixed at 2.7G */
3584 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3585 return false;
3586 }
3587
3588 /* All interlaced capable intel hw wants timings in frames. */
3589 drm_mode_set_crtcinfo(adjusted_mode, 0);
3590
3591 return true;
3592 }
3593
3594 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3595 {
3596 return 400000; /* FIXME */
3597 }
3598
3599 static int i945_get_display_clock_speed(struct drm_device *dev)
3600 {
3601 return 400000;
3602 }
3603
3604 static int i915_get_display_clock_speed(struct drm_device *dev)
3605 {
3606 return 333000;
3607 }
3608
3609 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3610 {
3611 return 200000;
3612 }
3613
3614 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3615 {
3616 u16 gcfgc = 0;
3617
3618 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3619
3620 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3621 return 133000;
3622 else {
3623 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3624 case GC_DISPLAY_CLOCK_333_MHZ:
3625 return 333000;
3626 default:
3627 case GC_DISPLAY_CLOCK_190_200_MHZ:
3628 return 190000;
3629 }
3630 }
3631 }
3632
3633 static int i865_get_display_clock_speed(struct drm_device *dev)
3634 {
3635 return 266000;
3636 }
3637
3638 static int i855_get_display_clock_speed(struct drm_device *dev)
3639 {
3640 u16 hpllcc = 0;
3641 /* Assume that the hardware is in the high speed state. This
3642 * should be the default.
3643 */
3644 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3645 case GC_CLOCK_133_200:
3646 case GC_CLOCK_100_200:
3647 return 200000;
3648 case GC_CLOCK_166_250:
3649 return 250000;
3650 case GC_CLOCK_100_133:
3651 return 133000;
3652 }
3653
3654 /* Shouldn't happen */
3655 return 0;
3656 }
3657
3658 static int i830_get_display_clock_speed(struct drm_device *dev)
3659 {
3660 return 133000;
3661 }
3662
3663 struct fdi_m_n {
3664 u32 tu;
3665 u32 gmch_m;
3666 u32 gmch_n;
3667 u32 link_m;
3668 u32 link_n;
3669 };
3670
3671 static void
3672 fdi_reduce_ratio(u32 *num, u32 *den)
3673 {
3674 while (*num > 0xffffff || *den > 0xffffff) {
3675 *num >>= 1;
3676 *den >>= 1;
3677 }
3678 }
3679
3680 static void
3681 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3682 int link_clock, struct fdi_m_n *m_n)
3683 {
3684 m_n->tu = 64; /* default size */
3685
3686 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3687 m_n->gmch_m = bits_per_pixel * pixel_clock;
3688 m_n->gmch_n = link_clock * nlanes * 8;
3689 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3690
3691 m_n->link_m = pixel_clock;
3692 m_n->link_n = link_clock;
3693 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3694 }
3695
3696
3697 struct intel_watermark_params {
3698 unsigned long fifo_size;
3699 unsigned long max_wm;
3700 unsigned long default_wm;
3701 unsigned long guard_size;
3702 unsigned long cacheline_size;
3703 };
3704
3705 /* Pineview has different values for various configs */
3706 static const struct intel_watermark_params pineview_display_wm = {
3707 PINEVIEW_DISPLAY_FIFO,
3708 PINEVIEW_MAX_WM,
3709 PINEVIEW_DFT_WM,
3710 PINEVIEW_GUARD_WM,
3711 PINEVIEW_FIFO_LINE_SIZE
3712 };
3713 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3714 PINEVIEW_DISPLAY_FIFO,
3715 PINEVIEW_MAX_WM,
3716 PINEVIEW_DFT_HPLLOFF_WM,
3717 PINEVIEW_GUARD_WM,
3718 PINEVIEW_FIFO_LINE_SIZE
3719 };
3720 static const struct intel_watermark_params pineview_cursor_wm = {
3721 PINEVIEW_CURSOR_FIFO,
3722 PINEVIEW_CURSOR_MAX_WM,
3723 PINEVIEW_CURSOR_DFT_WM,
3724 PINEVIEW_CURSOR_GUARD_WM,
3725 PINEVIEW_FIFO_LINE_SIZE,
3726 };
3727 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3728 PINEVIEW_CURSOR_FIFO,
3729 PINEVIEW_CURSOR_MAX_WM,
3730 PINEVIEW_CURSOR_DFT_WM,
3731 PINEVIEW_CURSOR_GUARD_WM,
3732 PINEVIEW_FIFO_LINE_SIZE
3733 };
3734 static const struct intel_watermark_params g4x_wm_info = {
3735 G4X_FIFO_SIZE,
3736 G4X_MAX_WM,
3737 G4X_MAX_WM,
3738 2,
3739 G4X_FIFO_LINE_SIZE,
3740 };
3741 static const struct intel_watermark_params g4x_cursor_wm_info = {
3742 I965_CURSOR_FIFO,
3743 I965_CURSOR_MAX_WM,
3744 I965_CURSOR_DFT_WM,
3745 2,
3746 G4X_FIFO_LINE_SIZE,
3747 };
3748 static const struct intel_watermark_params valleyview_wm_info = {
3749 VALLEYVIEW_FIFO_SIZE,
3750 VALLEYVIEW_MAX_WM,
3751 VALLEYVIEW_MAX_WM,
3752 2,
3753 G4X_FIFO_LINE_SIZE,
3754 };
3755 static const struct intel_watermark_params valleyview_cursor_wm_info = {
3756 I965_CURSOR_FIFO,
3757 VALLEYVIEW_CURSOR_MAX_WM,
3758 I965_CURSOR_DFT_WM,
3759 2,
3760 G4X_FIFO_LINE_SIZE,
3761 };
3762 static const struct intel_watermark_params i965_cursor_wm_info = {
3763 I965_CURSOR_FIFO,
3764 I965_CURSOR_MAX_WM,
3765 I965_CURSOR_DFT_WM,
3766 2,
3767 I915_FIFO_LINE_SIZE,
3768 };
3769 static const struct intel_watermark_params i945_wm_info = {
3770 I945_FIFO_SIZE,
3771 I915_MAX_WM,
3772 1,
3773 2,
3774 I915_FIFO_LINE_SIZE
3775 };
3776 static const struct intel_watermark_params i915_wm_info = {
3777 I915_FIFO_SIZE,
3778 I915_MAX_WM,
3779 1,
3780 2,
3781 I915_FIFO_LINE_SIZE
3782 };
3783 static const struct intel_watermark_params i855_wm_info = {
3784 I855GM_FIFO_SIZE,
3785 I915_MAX_WM,
3786 1,
3787 2,
3788 I830_FIFO_LINE_SIZE
3789 };
3790 static const struct intel_watermark_params i830_wm_info = {
3791 I830_FIFO_SIZE,
3792 I915_MAX_WM,
3793 1,
3794 2,
3795 I830_FIFO_LINE_SIZE
3796 };
3797
3798 static const struct intel_watermark_params ironlake_display_wm_info = {
3799 ILK_DISPLAY_FIFO,
3800 ILK_DISPLAY_MAXWM,
3801 ILK_DISPLAY_DFTWM,
3802 2,
3803 ILK_FIFO_LINE_SIZE
3804 };
3805 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3806 ILK_CURSOR_FIFO,
3807 ILK_CURSOR_MAXWM,
3808 ILK_CURSOR_DFTWM,
3809 2,
3810 ILK_FIFO_LINE_SIZE
3811 };
3812 static const struct intel_watermark_params ironlake_display_srwm_info = {
3813 ILK_DISPLAY_SR_FIFO,
3814 ILK_DISPLAY_MAX_SRWM,
3815 ILK_DISPLAY_DFT_SRWM,
3816 2,
3817 ILK_FIFO_LINE_SIZE
3818 };
3819 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3820 ILK_CURSOR_SR_FIFO,
3821 ILK_CURSOR_MAX_SRWM,
3822 ILK_CURSOR_DFT_SRWM,
3823 2,
3824 ILK_FIFO_LINE_SIZE
3825 };
3826
3827 static const struct intel_watermark_params sandybridge_display_wm_info = {
3828 SNB_DISPLAY_FIFO,
3829 SNB_DISPLAY_MAXWM,
3830 SNB_DISPLAY_DFTWM,
3831 2,
3832 SNB_FIFO_LINE_SIZE
3833 };
3834 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3835 SNB_CURSOR_FIFO,
3836 SNB_CURSOR_MAXWM,
3837 SNB_CURSOR_DFTWM,
3838 2,
3839 SNB_FIFO_LINE_SIZE
3840 };
3841 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3842 SNB_DISPLAY_SR_FIFO,
3843 SNB_DISPLAY_MAX_SRWM,
3844 SNB_DISPLAY_DFT_SRWM,
3845 2,
3846 SNB_FIFO_LINE_SIZE
3847 };
3848 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3849 SNB_CURSOR_SR_FIFO,
3850 SNB_CURSOR_MAX_SRWM,
3851 SNB_CURSOR_DFT_SRWM,
3852 2,
3853 SNB_FIFO_LINE_SIZE
3854 };
3855
3856
3857 /**
3858 * intel_calculate_wm - calculate watermark level
3859 * @clock_in_khz: pixel clock
3860 * @wm: chip FIFO params
3861 * @pixel_size: display pixel size
3862 * @latency_ns: memory latency for the platform
3863 *
3864 * Calculate the watermark level (the level at which the display plane will
3865 * start fetching from memory again). Each chip has a different display
3866 * FIFO size and allocation, so the caller needs to figure that out and pass
3867 * in the correct intel_watermark_params structure.
3868 *
3869 * As the pixel clock runs, the FIFO will be drained at a rate that depends
3870 * on the pixel size. When it reaches the watermark level, it'll start
3871 * fetching FIFO line sized based chunks from memory until the FIFO fills
3872 * past the watermark point. If the FIFO drains completely, a FIFO underrun
3873 * will occur, and a display engine hang could result.
3874 */
3875 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3876 const struct intel_watermark_params *wm,
3877 int fifo_size,
3878 int pixel_size,
3879 unsigned long latency_ns)
3880 {
3881 long entries_required, wm_size;
3882
3883 /*
3884 * Note: we need to make sure we don't overflow for various clock &
3885 * latency values.
3886 * clocks go from a few thousand to several hundred thousand.
3887 * latency is usually a few thousand
3888 */
3889 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3890 1000;
3891 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3892
3893 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3894
3895 wm_size = fifo_size - (entries_required + wm->guard_size);
3896
3897 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3898
3899 /* Don't promote wm_size to unsigned... */
3900 if (wm_size > (long)wm->max_wm)
3901 wm_size = wm->max_wm;
3902 if (wm_size <= 0)
3903 wm_size = wm->default_wm;
3904 return wm_size;
3905 }
3906
3907 struct cxsr_latency {
3908 int is_desktop;
3909 int is_ddr3;
3910 unsigned long fsb_freq;
3911 unsigned long mem_freq;
3912 unsigned long display_sr;
3913 unsigned long display_hpll_disable;
3914 unsigned long cursor_sr;
3915 unsigned long cursor_hpll_disable;
3916 };
3917
3918 static const struct cxsr_latency cxsr_latency_table[] = {
3919 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
3920 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
3921 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
3922 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
3923 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
3924
3925 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
3926 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
3927 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
3928 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
3929 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
3930
3931 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
3932 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
3933 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
3934 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
3935 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
3936
3937 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
3938 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
3939 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
3940 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
3941 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
3942
3943 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
3944 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
3945 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
3946 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
3947 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
3948
3949 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
3950 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
3951 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
3952 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
3953 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
3954 };
3955
3956 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3957 int is_ddr3,
3958 int fsb,
3959 int mem)
3960 {
3961 const struct cxsr_latency *latency;
3962 int i;
3963
3964 if (fsb == 0 || mem == 0)
3965 return NULL;
3966
3967 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3968 latency = &cxsr_latency_table[i];
3969 if (is_desktop == latency->is_desktop &&
3970 is_ddr3 == latency->is_ddr3 &&
3971 fsb == latency->fsb_freq && mem == latency->mem_freq)
3972 return latency;
3973 }
3974
3975 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3976
3977 return NULL;
3978 }
3979
3980 static void pineview_disable_cxsr(struct drm_device *dev)
3981 {
3982 struct drm_i915_private *dev_priv = dev->dev_private;
3983
3984 /* deactivate cxsr */
3985 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3986 }
3987
3988 /*
3989 * Latency for FIFO fetches is dependent on several factors:
3990 * - memory configuration (speed, channels)
3991 * - chipset
3992 * - current MCH state
3993 * It can be fairly high in some situations, so here we assume a fairly
3994 * pessimal value. It's a tradeoff between extra memory fetches (if we
3995 * set this value too high, the FIFO will fetch frequently to stay full)
3996 * and power consumption (set it too low to save power and we might see
3997 * FIFO underruns and display "flicker").
3998 *
3999 * A value of 5us seems to be a good balance; safe for very low end
4000 * platforms but not overly aggressive on lower latency configs.
4001 */
4002 static const int latency_ns = 5000;
4003
4004 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
4005 {
4006 struct drm_i915_private *dev_priv = dev->dev_private;
4007 uint32_t dsparb = I915_READ(DSPARB);
4008 int size;
4009
4010 size = dsparb & 0x7f;
4011 if (plane)
4012 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
4013
4014 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
4015 plane ? "B" : "A", size);
4016
4017 return size;
4018 }
4019
4020 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
4021 {
4022 struct drm_i915_private *dev_priv = dev->dev_private;
4023 uint32_t dsparb = I915_READ(DSPARB);
4024 int size;
4025
4026 size = dsparb & 0x1ff;
4027 if (plane)
4028 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
4029 size >>= 1; /* Convert to cachelines */
4030
4031 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
4032 plane ? "B" : "A", size);
4033
4034 return size;
4035 }
4036
4037 static int i845_get_fifo_size(struct drm_device *dev, int plane)
4038 {
4039 struct drm_i915_private *dev_priv = dev->dev_private;
4040 uint32_t dsparb = I915_READ(DSPARB);
4041 int size;
4042
4043 size = dsparb & 0x7f;
4044 size >>= 2; /* Convert to cachelines */
4045
4046 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
4047 plane ? "B" : "A",
4048 size);
4049
4050 return size;
4051 }
4052
4053 static int i830_get_fifo_size(struct drm_device *dev, int plane)
4054 {
4055 struct drm_i915_private *dev_priv = dev->dev_private;
4056 uint32_t dsparb = I915_READ(DSPARB);
4057 int size;
4058
4059 size = dsparb & 0x7f;
4060 size >>= 1; /* Convert to cachelines */
4061
4062 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
4063 plane ? "B" : "A", size);
4064
4065 return size;
4066 }
4067
4068 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
4069 {
4070 struct drm_crtc *crtc, *enabled = NULL;
4071
4072 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4073 if (crtc->enabled && crtc->fb) {
4074 if (enabled)
4075 return NULL;
4076 enabled = crtc;
4077 }
4078 }
4079
4080 return enabled;
4081 }
4082
4083 static void pineview_update_wm(struct drm_device *dev)
4084 {
4085 struct drm_i915_private *dev_priv = dev->dev_private;
4086 struct drm_crtc *crtc;
4087 const struct cxsr_latency *latency;
4088 u32 reg;
4089 unsigned long wm;
4090
4091 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
4092 dev_priv->fsb_freq, dev_priv->mem_freq);
4093 if (!latency) {
4094 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
4095 pineview_disable_cxsr(dev);
4096 return;
4097 }
4098
4099 crtc = single_enabled_crtc(dev);
4100 if (crtc) {
4101 int clock = crtc->mode.clock;
4102 int pixel_size = crtc->fb->bits_per_pixel / 8;
4103
4104 /* Display SR */
4105 wm = intel_calculate_wm(clock, &pineview_display_wm,
4106 pineview_display_wm.fifo_size,
4107 pixel_size, latency->display_sr);
4108 reg = I915_READ(DSPFW1);
4109 reg &= ~DSPFW_SR_MASK;
4110 reg |= wm << DSPFW_SR_SHIFT;
4111 I915_WRITE(DSPFW1, reg);
4112 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
4113
4114 /* cursor SR */
4115 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
4116 pineview_display_wm.fifo_size,
4117 pixel_size, latency->cursor_sr);
4118 reg = I915_READ(DSPFW3);
4119 reg &= ~DSPFW_CURSOR_SR_MASK;
4120 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
4121 I915_WRITE(DSPFW3, reg);
4122
4123 /* Display HPLL off SR */
4124 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
4125 pineview_display_hplloff_wm.fifo_size,
4126 pixel_size, latency->display_hpll_disable);
4127 reg = I915_READ(DSPFW3);
4128 reg &= ~DSPFW_HPLL_SR_MASK;
4129 reg |= wm & DSPFW_HPLL_SR_MASK;
4130 I915_WRITE(DSPFW3, reg);
4131
4132 /* cursor HPLL off SR */
4133 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
4134 pineview_display_hplloff_wm.fifo_size,
4135 pixel_size, latency->cursor_hpll_disable);
4136 reg = I915_READ(DSPFW3);
4137 reg &= ~DSPFW_HPLL_CURSOR_MASK;
4138 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
4139 I915_WRITE(DSPFW3, reg);
4140 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
4141
4142 /* activate cxsr */
4143 I915_WRITE(DSPFW3,
4144 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
4145 DRM_DEBUG_KMS("Self-refresh is enabled\n");
4146 } else {
4147 pineview_disable_cxsr(dev);
4148 DRM_DEBUG_KMS("Self-refresh is disabled\n");
4149 }
4150 }
4151
4152 static bool g4x_compute_wm0(struct drm_device *dev,
4153 int plane,
4154 const struct intel_watermark_params *display,
4155 int display_latency_ns,
4156 const struct intel_watermark_params *cursor,
4157 int cursor_latency_ns,
4158 int *plane_wm,
4159 int *cursor_wm)
4160 {
4161 struct drm_crtc *crtc;
4162 int htotal, hdisplay, clock, pixel_size;
4163 int line_time_us, line_count;
4164 int entries, tlb_miss;
4165
4166 crtc = intel_get_crtc_for_plane(dev, plane);
4167 if (crtc->fb == NULL || !crtc->enabled) {
4168 *cursor_wm = cursor->guard_size;
4169 *plane_wm = display->guard_size;
4170 return false;
4171 }
4172
4173 htotal = crtc->mode.htotal;
4174 hdisplay = crtc->mode.hdisplay;
4175 clock = crtc->mode.clock;
4176 pixel_size = crtc->fb->bits_per_pixel / 8;
4177
4178 /* Use the small buffer method to calculate plane watermark */
4179 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4180 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
4181 if (tlb_miss > 0)
4182 entries += tlb_miss;
4183 entries = DIV_ROUND_UP(entries, display->cacheline_size);
4184 *plane_wm = entries + display->guard_size;
4185 if (*plane_wm > (int)display->max_wm)
4186 *plane_wm = display->max_wm;
4187
4188 /* Use the large buffer method to calculate cursor watermark */
4189 line_time_us = ((htotal * 1000) / clock);
4190 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
4191 entries = line_count * 64 * pixel_size;
4192 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
4193 if (tlb_miss > 0)
4194 entries += tlb_miss;
4195 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4196 *cursor_wm = entries + cursor->guard_size;
4197 if (*cursor_wm > (int)cursor->max_wm)
4198 *cursor_wm = (int)cursor->max_wm;
4199
4200 return true;
4201 }
4202
4203 /*
4204 * Check the wm result.
4205 *
4206 * If any calculated watermark values is larger than the maximum value that
4207 * can be programmed into the associated watermark register, that watermark
4208 * must be disabled.
4209 */
4210 static bool g4x_check_srwm(struct drm_device *dev,
4211 int display_wm, int cursor_wm,
4212 const struct intel_watermark_params *display,
4213 const struct intel_watermark_params *cursor)
4214 {
4215 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
4216 display_wm, cursor_wm);
4217
4218 if (display_wm > display->max_wm) {
4219 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
4220 display_wm, display->max_wm);
4221 return false;
4222 }
4223
4224 if (cursor_wm > cursor->max_wm) {
4225 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
4226 cursor_wm, cursor->max_wm);
4227 return false;
4228 }
4229
4230 if (!(display_wm || cursor_wm)) {
4231 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
4232 return false;
4233 }
4234
4235 return true;
4236 }
4237
4238 static bool g4x_compute_srwm(struct drm_device *dev,
4239 int plane,
4240 int latency_ns,
4241 const struct intel_watermark_params *display,
4242 const struct intel_watermark_params *cursor,
4243 int *display_wm, int *cursor_wm)
4244 {
4245 struct drm_crtc *crtc;
4246 int hdisplay, htotal, pixel_size, clock;
4247 unsigned long line_time_us;
4248 int line_count, line_size;
4249 int small, large;
4250 int entries;
4251
4252 if (!latency_ns) {
4253 *display_wm = *cursor_wm = 0;
4254 return false;
4255 }
4256
4257 crtc = intel_get_crtc_for_plane(dev, plane);
4258 hdisplay = crtc->mode.hdisplay;
4259 htotal = crtc->mode.htotal;
4260 clock = crtc->mode.clock;
4261 pixel_size = crtc->fb->bits_per_pixel / 8;
4262
4263 line_time_us = (htotal * 1000) / clock;
4264 line_count = (latency_ns / line_time_us + 1000) / 1000;
4265 line_size = hdisplay * pixel_size;
4266
4267 /* Use the minimum of the small and large buffer method for primary */
4268 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4269 large = line_count * line_size;
4270
4271 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4272 *display_wm = entries + display->guard_size;
4273
4274 /* calculate the self-refresh watermark for display cursor */
4275 entries = line_count * pixel_size * 64;
4276 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4277 *cursor_wm = entries + cursor->guard_size;
4278
4279 return g4x_check_srwm(dev,
4280 *display_wm, *cursor_wm,
4281 display, cursor);
4282 }
4283
4284 static bool vlv_compute_drain_latency(struct drm_device *dev,
4285 int plane,
4286 int *plane_prec_mult,
4287 int *plane_dl,
4288 int *cursor_prec_mult,
4289 int *cursor_dl)
4290 {
4291 struct drm_crtc *crtc;
4292 int clock, pixel_size;
4293 int entries;
4294
4295 crtc = intel_get_crtc_for_plane(dev, plane);
4296 if (crtc->fb == NULL || !crtc->enabled)
4297 return false;
4298
4299 clock = crtc->mode.clock; /* VESA DOT Clock */
4300 pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
4301
4302 entries = (clock / 1000) * pixel_size;
4303 *plane_prec_mult = (entries > 256) ?
4304 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
4305 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
4306 pixel_size);
4307
4308 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
4309 *cursor_prec_mult = (entries > 256) ?
4310 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
4311 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
4312
4313 return true;
4314 }
4315
4316 /*
4317 * Update drain latency registers of memory arbiter
4318 *
4319 * Valleyview SoC has a new memory arbiter and needs drain latency registers
4320 * to be programmed. Each plane has a drain latency multiplier and a drain
4321 * latency value.
4322 */
4323
4324 static void vlv_update_drain_latency(struct drm_device *dev)
4325 {
4326 struct drm_i915_private *dev_priv = dev->dev_private;
4327 int planea_prec, planea_dl, planeb_prec, planeb_dl;
4328 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
4329 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
4330 either 16 or 32 */
4331
4332 /* For plane A, Cursor A */
4333 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
4334 &cursor_prec_mult, &cursora_dl)) {
4335 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
4336 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
4337 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
4338 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
4339
4340 I915_WRITE(VLV_DDL1, cursora_prec |
4341 (cursora_dl << DDL_CURSORA_SHIFT) |
4342 planea_prec | planea_dl);
4343 }
4344
4345 /* For plane B, Cursor B */
4346 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
4347 &cursor_prec_mult, &cursorb_dl)) {
4348 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
4349 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
4350 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
4351 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
4352
4353 I915_WRITE(VLV_DDL2, cursorb_prec |
4354 (cursorb_dl << DDL_CURSORB_SHIFT) |
4355 planeb_prec | planeb_dl);
4356 }
4357 }
4358
4359 #define single_plane_enabled(mask) is_power_of_2(mask)
4360
4361 static void valleyview_update_wm(struct drm_device *dev)
4362 {
4363 static const int sr_latency_ns = 12000;
4364 struct drm_i915_private *dev_priv = dev->dev_private;
4365 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
4366 int plane_sr, cursor_sr;
4367 unsigned int enabled = 0;
4368
4369 vlv_update_drain_latency(dev);
4370
4371 if (g4x_compute_wm0(dev, 0,
4372 &valleyview_wm_info, latency_ns,
4373 &valleyview_cursor_wm_info, latency_ns,
4374 &planea_wm, &cursora_wm))
4375 enabled |= 1;
4376
4377 if (g4x_compute_wm0(dev, 1,
4378 &valleyview_wm_info, latency_ns,
4379 &valleyview_cursor_wm_info, latency_ns,
4380 &planeb_wm, &cursorb_wm))
4381 enabled |= 2;
4382
4383 plane_sr = cursor_sr = 0;
4384 if (single_plane_enabled(enabled) &&
4385 g4x_compute_srwm(dev, ffs(enabled) - 1,
4386 sr_latency_ns,
4387 &valleyview_wm_info,
4388 &valleyview_cursor_wm_info,
4389 &plane_sr, &cursor_sr))
4390 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
4391 else
4392 I915_WRITE(FW_BLC_SELF_VLV,
4393 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
4394
4395 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4396 planea_wm, cursora_wm,
4397 planeb_wm, cursorb_wm,
4398 plane_sr, cursor_sr);
4399
4400 I915_WRITE(DSPFW1,
4401 (plane_sr << DSPFW_SR_SHIFT) |
4402 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
4403 (planeb_wm << DSPFW_PLANEB_SHIFT) |
4404 planea_wm);
4405 I915_WRITE(DSPFW2,
4406 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
4407 (cursora_wm << DSPFW_CURSORA_SHIFT));
4408 I915_WRITE(DSPFW3,
4409 (I915_READ(DSPFW3) | (cursor_sr << DSPFW_CURSOR_SR_SHIFT)));
4410 }
4411
4412 static void g4x_update_wm(struct drm_device *dev)
4413 {
4414 static const int sr_latency_ns = 12000;
4415 struct drm_i915_private *dev_priv = dev->dev_private;
4416 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
4417 int plane_sr, cursor_sr;
4418 unsigned int enabled = 0;
4419
4420 if (g4x_compute_wm0(dev, 0,
4421 &g4x_wm_info, latency_ns,
4422 &g4x_cursor_wm_info, latency_ns,
4423 &planea_wm, &cursora_wm))
4424 enabled |= 1;
4425
4426 if (g4x_compute_wm0(dev, 1,
4427 &g4x_wm_info, latency_ns,
4428 &g4x_cursor_wm_info, latency_ns,
4429 &planeb_wm, &cursorb_wm))
4430 enabled |= 2;
4431
4432 plane_sr = cursor_sr = 0;
4433 if (single_plane_enabled(enabled) &&
4434 g4x_compute_srwm(dev, ffs(enabled) - 1,
4435 sr_latency_ns,
4436 &g4x_wm_info,
4437 &g4x_cursor_wm_info,
4438 &plane_sr, &cursor_sr))
4439 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4440 else
4441 I915_WRITE(FW_BLC_SELF,
4442 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
4443
4444 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4445 planea_wm, cursora_wm,
4446 planeb_wm, cursorb_wm,
4447 plane_sr, cursor_sr);
4448
4449 I915_WRITE(DSPFW1,
4450 (plane_sr << DSPFW_SR_SHIFT) |
4451 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
4452 (planeb_wm << DSPFW_PLANEB_SHIFT) |
4453 planea_wm);
4454 I915_WRITE(DSPFW2,
4455 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
4456 (cursora_wm << DSPFW_CURSORA_SHIFT));
4457 /* HPLL off in SR has some issues on G4x... disable it */
4458 I915_WRITE(DSPFW3,
4459 (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
4460 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4461 }
4462
4463 static void i965_update_wm(struct drm_device *dev)
4464 {
4465 struct drm_i915_private *dev_priv = dev->dev_private;
4466 struct drm_crtc *crtc;
4467 int srwm = 1;
4468 int cursor_sr = 16;
4469
4470 /* Calc sr entries for one plane configs */
4471 crtc = single_enabled_crtc(dev);
4472 if (crtc) {
4473 /* self-refresh has much higher latency */
4474 static const int sr_latency_ns = 12000;
4475 int clock = crtc->mode.clock;
4476 int htotal = crtc->mode.htotal;
4477 int hdisplay = crtc->mode.hdisplay;
4478 int pixel_size = crtc->fb->bits_per_pixel / 8;
4479 unsigned long line_time_us;
4480 int entries;
4481
4482 line_time_us = ((htotal * 1000) / clock);
4483
4484 /* Use ns/us then divide to preserve precision */
4485 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4486 pixel_size * hdisplay;
4487 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
4488 srwm = I965_FIFO_SIZE - entries;
4489 if (srwm < 0)
4490 srwm = 1;
4491 srwm &= 0x1ff;
4492 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4493 entries, srwm);
4494
4495 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4496 pixel_size * 64;
4497 entries = DIV_ROUND_UP(entries,
4498 i965_cursor_wm_info.cacheline_size);
4499 cursor_sr = i965_cursor_wm_info.fifo_size -
4500 (entries + i965_cursor_wm_info.guard_size);
4501
4502 if (cursor_sr > i965_cursor_wm_info.max_wm)
4503 cursor_sr = i965_cursor_wm_info.max_wm;
4504
4505 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4506 "cursor %d\n", srwm, cursor_sr);
4507
4508 if (IS_CRESTLINE(dev))
4509 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4510 } else {
4511 /* Turn off self refresh if both pipes are enabled */
4512 if (IS_CRESTLINE(dev))
4513 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4514 & ~FW_BLC_SELF_EN);
4515 }
4516
4517 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4518 srwm);
4519
4520 /* 965 has limitations... */
4521 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4522 (8 << 16) | (8 << 8) | (8 << 0));
4523 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4524 /* update cursor SR watermark */
4525 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4526 }
4527
4528 static void i9xx_update_wm(struct drm_device *dev)
4529 {
4530 struct drm_i915_private *dev_priv = dev->dev_private;
4531 const struct intel_watermark_params *wm_info;
4532 uint32_t fwater_lo;
4533 uint32_t fwater_hi;
4534 int cwm, srwm = 1;
4535 int fifo_size;
4536 int planea_wm, planeb_wm;
4537 struct drm_crtc *crtc, *enabled = NULL;
4538
4539 if (IS_I945GM(dev))
4540 wm_info = &i945_wm_info;
4541 else if (!IS_GEN2(dev))
4542 wm_info = &i915_wm_info;
4543 else
4544 wm_info = &i855_wm_info;
4545
4546 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4547 crtc = intel_get_crtc_for_plane(dev, 0);
4548 if (crtc->enabled && crtc->fb) {
4549 planea_wm = intel_calculate_wm(crtc->mode.clock,
4550 wm_info, fifo_size,
4551 crtc->fb->bits_per_pixel / 8,
4552 latency_ns);
4553 enabled = crtc;
4554 } else
4555 planea_wm = fifo_size - wm_info->guard_size;
4556
4557 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4558 crtc = intel_get_crtc_for_plane(dev, 1);
4559 if (crtc->enabled && crtc->fb) {
4560 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4561 wm_info, fifo_size,
4562 crtc->fb->bits_per_pixel / 8,
4563 latency_ns);
4564 if (enabled == NULL)
4565 enabled = crtc;
4566 else
4567 enabled = NULL;
4568 } else
4569 planeb_wm = fifo_size - wm_info->guard_size;
4570
4571 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
4572
4573 /*
4574 * Overlay gets an aggressive default since video jitter is bad.
4575 */
4576 cwm = 2;
4577
4578 /* Play safe and disable self-refresh before adjusting watermarks. */
4579 if (IS_I945G(dev) || IS_I945GM(dev))
4580 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4581 else if (IS_I915GM(dev))
4582 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4583
4584 /* Calc sr entries for one plane configs */
4585 if (HAS_FW_BLC(dev) && enabled) {
4586 /* self-refresh has much higher latency */
4587 static const int sr_latency_ns = 6000;
4588 int clock = enabled->mode.clock;
4589 int htotal = enabled->mode.htotal;
4590 int hdisplay = enabled->mode.hdisplay;
4591 int pixel_size = enabled->fb->bits_per_pixel / 8;
4592 unsigned long line_time_us;
4593 int entries;
4594
4595 line_time_us = (htotal * 1000) / clock;
4596
4597 /* Use ns/us then divide to preserve precision */
4598 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4599 pixel_size * hdisplay;
4600 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4601 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4602 srwm = wm_info->fifo_size - entries;
4603 if (srwm < 0)
4604 srwm = 1;
4605
4606 if (IS_I945G(dev) || IS_I945GM(dev))
4607 I915_WRITE(FW_BLC_SELF,
4608 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4609 else if (IS_I915GM(dev))
4610 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4611 }
4612
4613 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4614 planea_wm, planeb_wm, cwm, srwm);
4615
4616 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4617 fwater_hi = (cwm & 0x1f);
4618
4619 /* Set request length to 8 cachelines per fetch */
4620 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4621 fwater_hi = fwater_hi | (1 << 8);
4622
4623 I915_WRITE(FW_BLC, fwater_lo);
4624 I915_WRITE(FW_BLC2, fwater_hi);
4625
4626 if (HAS_FW_BLC(dev)) {
4627 if (enabled) {
4628 if (IS_I945G(dev) || IS_I945GM(dev))
4629 I915_WRITE(FW_BLC_SELF,
4630 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4631 else if (IS_I915GM(dev))
4632 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4633 DRM_DEBUG_KMS("memory self refresh enabled\n");
4634 } else
4635 DRM_DEBUG_KMS("memory self refresh disabled\n");
4636 }
4637 }
4638
4639 static void i830_update_wm(struct drm_device *dev)
4640 {
4641 struct drm_i915_private *dev_priv = dev->dev_private;
4642 struct drm_crtc *crtc;
4643 uint32_t fwater_lo;
4644 int planea_wm;
4645
4646 crtc = single_enabled_crtc(dev);
4647 if (crtc == NULL)
4648 return;
4649
4650 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4651 dev_priv->display.get_fifo_size(dev, 0),
4652 crtc->fb->bits_per_pixel / 8,
4653 latency_ns);
4654 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4655 fwater_lo |= (3<<8) | planea_wm;
4656
4657 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4658
4659 I915_WRITE(FW_BLC, fwater_lo);
4660 }
4661
4662 #define ILK_LP0_PLANE_LATENCY 700
4663 #define ILK_LP0_CURSOR_LATENCY 1300
4664
4665 /*
4666 * Check the wm result.
4667 *
4668 * If any calculated watermark values is larger than the maximum value that
4669 * can be programmed into the associated watermark register, that watermark
4670 * must be disabled.
4671 */
4672 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4673 int fbc_wm, int display_wm, int cursor_wm,
4674 const struct intel_watermark_params *display,
4675 const struct intel_watermark_params *cursor)
4676 {
4677 struct drm_i915_private *dev_priv = dev->dev_private;
4678
4679 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4680 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4681
4682 if (fbc_wm > SNB_FBC_MAX_SRWM) {
4683 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4684 fbc_wm, SNB_FBC_MAX_SRWM, level);
4685
4686 /* fbc has it's own way to disable FBC WM */
4687 I915_WRITE(DISP_ARB_CTL,
4688 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4689 return false;
4690 }
4691
4692 if (display_wm > display->max_wm) {
4693 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4694 display_wm, SNB_DISPLAY_MAX_SRWM, level);
4695 return false;
4696 }
4697
4698 if (cursor_wm > cursor->max_wm) {
4699 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4700 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4701 return false;
4702 }
4703
4704 if (!(fbc_wm || display_wm || cursor_wm)) {
4705 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4706 return false;
4707 }
4708
4709 return true;
4710 }
4711
4712 /*
4713 * Compute watermark values of WM[1-3],
4714 */
4715 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4716 int latency_ns,
4717 const struct intel_watermark_params *display,
4718 const struct intel_watermark_params *cursor,
4719 int *fbc_wm, int *display_wm, int *cursor_wm)
4720 {
4721 struct drm_crtc *crtc;
4722 unsigned long line_time_us;
4723 int hdisplay, htotal, pixel_size, clock;
4724 int line_count, line_size;
4725 int small, large;
4726 int entries;
4727
4728 if (!latency_ns) {
4729 *fbc_wm = *display_wm = *cursor_wm = 0;
4730 return false;
4731 }
4732
4733 crtc = intel_get_crtc_for_plane(dev, plane);
4734 hdisplay = crtc->mode.hdisplay;
4735 htotal = crtc->mode.htotal;
4736 clock = crtc->mode.clock;
4737 pixel_size = crtc->fb->bits_per_pixel / 8;
4738
4739 line_time_us = (htotal * 1000) / clock;
4740 line_count = (latency_ns / line_time_us + 1000) / 1000;
4741 line_size = hdisplay * pixel_size;
4742
4743 /* Use the minimum of the small and large buffer method for primary */
4744 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4745 large = line_count * line_size;
4746
4747 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4748 *display_wm = entries + display->guard_size;
4749
4750 /*
4751 * Spec says:
4752 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4753 */
4754 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4755
4756 /* calculate the self-refresh watermark for display cursor */
4757 entries = line_count * pixel_size * 64;
4758 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4759 *cursor_wm = entries + cursor->guard_size;
4760
4761 return ironlake_check_srwm(dev, level,
4762 *fbc_wm, *display_wm, *cursor_wm,
4763 display, cursor);
4764 }
4765
4766 static void ironlake_update_wm(struct drm_device *dev)
4767 {
4768 struct drm_i915_private *dev_priv = dev->dev_private;
4769 int fbc_wm, plane_wm, cursor_wm;
4770 unsigned int enabled;
4771
4772 enabled = 0;
4773 if (g4x_compute_wm0(dev, 0,
4774 &ironlake_display_wm_info,
4775 ILK_LP0_PLANE_LATENCY,
4776 &ironlake_cursor_wm_info,
4777 ILK_LP0_CURSOR_LATENCY,
4778 &plane_wm, &cursor_wm)) {
4779 I915_WRITE(WM0_PIPEA_ILK,
4780 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4781 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4782 " plane %d, " "cursor: %d\n",
4783 plane_wm, cursor_wm);
4784 enabled |= 1;
4785 }
4786
4787 if (g4x_compute_wm0(dev, 1,
4788 &ironlake_display_wm_info,
4789 ILK_LP0_PLANE_LATENCY,
4790 &ironlake_cursor_wm_info,
4791 ILK_LP0_CURSOR_LATENCY,
4792 &plane_wm, &cursor_wm)) {
4793 I915_WRITE(WM0_PIPEB_ILK,
4794 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4795 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4796 " plane %d, cursor: %d\n",
4797 plane_wm, cursor_wm);
4798 enabled |= 2;
4799 }
4800
4801 /*
4802 * Calculate and update the self-refresh watermark only when one
4803 * display plane is used.
4804 */
4805 I915_WRITE(WM3_LP_ILK, 0);
4806 I915_WRITE(WM2_LP_ILK, 0);
4807 I915_WRITE(WM1_LP_ILK, 0);
4808
4809 if (!single_plane_enabled(enabled))
4810 return;
4811 enabled = ffs(enabled) - 1;
4812
4813 /* WM1 */
4814 if (!ironlake_compute_srwm(dev, 1, enabled,
4815 ILK_READ_WM1_LATENCY() * 500,
4816 &ironlake_display_srwm_info,
4817 &ironlake_cursor_srwm_info,
4818 &fbc_wm, &plane_wm, &cursor_wm))
4819 return;
4820
4821 I915_WRITE(WM1_LP_ILK,
4822 WM1_LP_SR_EN |
4823 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4824 (fbc_wm << WM1_LP_FBC_SHIFT) |
4825 (plane_wm << WM1_LP_SR_SHIFT) |
4826 cursor_wm);
4827
4828 /* WM2 */
4829 if (!ironlake_compute_srwm(dev, 2, enabled,
4830 ILK_READ_WM2_LATENCY() * 500,
4831 &ironlake_display_srwm_info,
4832 &ironlake_cursor_srwm_info,
4833 &fbc_wm, &plane_wm, &cursor_wm))
4834 return;
4835
4836 I915_WRITE(WM2_LP_ILK,
4837 WM2_LP_EN |
4838 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4839 (fbc_wm << WM1_LP_FBC_SHIFT) |
4840 (plane_wm << WM1_LP_SR_SHIFT) |
4841 cursor_wm);
4842
4843 /*
4844 * WM3 is unsupported on ILK, probably because we don't have latency
4845 * data for that power state
4846 */
4847 }
4848
4849 static void sandybridge_update_wm(struct drm_device *dev)
4850 {
4851 struct drm_i915_private *dev_priv = dev->dev_private;
4852 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
4853 u32 val;
4854 int fbc_wm, plane_wm, cursor_wm;
4855 unsigned int enabled;
4856
4857 enabled = 0;
4858 if (g4x_compute_wm0(dev, 0,
4859 &sandybridge_display_wm_info, latency,
4860 &sandybridge_cursor_wm_info, latency,
4861 &plane_wm, &cursor_wm)) {
4862 val = I915_READ(WM0_PIPEA_ILK);
4863 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4864 I915_WRITE(WM0_PIPEA_ILK, val |
4865 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4866 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4867 " plane %d, " "cursor: %d\n",
4868 plane_wm, cursor_wm);
4869 enabled |= 1;
4870 }
4871
4872 if (g4x_compute_wm0(dev, 1,
4873 &sandybridge_display_wm_info, latency,
4874 &sandybridge_cursor_wm_info, latency,
4875 &plane_wm, &cursor_wm)) {
4876 val = I915_READ(WM0_PIPEB_ILK);
4877 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4878 I915_WRITE(WM0_PIPEB_ILK, val |
4879 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4880 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4881 " plane %d, cursor: %d\n",
4882 plane_wm, cursor_wm);
4883 enabled |= 2;
4884 }
4885
4886 /* IVB has 3 pipes */
4887 if (IS_IVYBRIDGE(dev) &&
4888 g4x_compute_wm0(dev, 2,
4889 &sandybridge_display_wm_info, latency,
4890 &sandybridge_cursor_wm_info, latency,
4891 &plane_wm, &cursor_wm)) {
4892 val = I915_READ(WM0_PIPEC_IVB);
4893 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4894 I915_WRITE(WM0_PIPEC_IVB, val |
4895 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4896 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
4897 " plane %d, cursor: %d\n",
4898 plane_wm, cursor_wm);
4899 enabled |= 3;
4900 }
4901
4902 /*
4903 * Calculate and update the self-refresh watermark only when one
4904 * display plane is used.
4905 *
4906 * SNB support 3 levels of watermark.
4907 *
4908 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4909 * and disabled in the descending order
4910 *
4911 */
4912 I915_WRITE(WM3_LP_ILK, 0);
4913 I915_WRITE(WM2_LP_ILK, 0);
4914 I915_WRITE(WM1_LP_ILK, 0);
4915
4916 if (!single_plane_enabled(enabled) ||
4917 dev_priv->sprite_scaling_enabled)
4918 return;
4919 enabled = ffs(enabled) - 1;
4920
4921 /* WM1 */
4922 if (!ironlake_compute_srwm(dev, 1, enabled,
4923 SNB_READ_WM1_LATENCY() * 500,
4924 &sandybridge_display_srwm_info,
4925 &sandybridge_cursor_srwm_info,
4926 &fbc_wm, &plane_wm, &cursor_wm))
4927 return;
4928
4929 I915_WRITE(WM1_LP_ILK,
4930 WM1_LP_SR_EN |
4931 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4932 (fbc_wm << WM1_LP_FBC_SHIFT) |
4933 (plane_wm << WM1_LP_SR_SHIFT) |
4934 cursor_wm);
4935
4936 /* WM2 */
4937 if (!ironlake_compute_srwm(dev, 2, enabled,
4938 SNB_READ_WM2_LATENCY() * 500,
4939 &sandybridge_display_srwm_info,
4940 &sandybridge_cursor_srwm_info,
4941 &fbc_wm, &plane_wm, &cursor_wm))
4942 return;
4943
4944 I915_WRITE(WM2_LP_ILK,
4945 WM2_LP_EN |
4946 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4947 (fbc_wm << WM1_LP_FBC_SHIFT) |
4948 (plane_wm << WM1_LP_SR_SHIFT) |
4949 cursor_wm);
4950
4951 /* WM3 */
4952 if (!ironlake_compute_srwm(dev, 3, enabled,
4953 SNB_READ_WM3_LATENCY() * 500,
4954 &sandybridge_display_srwm_info,
4955 &sandybridge_cursor_srwm_info,
4956 &fbc_wm, &plane_wm, &cursor_wm))
4957 return;
4958
4959 I915_WRITE(WM3_LP_ILK,
4960 WM3_LP_EN |
4961 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4962 (fbc_wm << WM1_LP_FBC_SHIFT) |
4963 (plane_wm << WM1_LP_SR_SHIFT) |
4964 cursor_wm);
4965 }
4966
4967 static bool
4968 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
4969 uint32_t sprite_width, int pixel_size,
4970 const struct intel_watermark_params *display,
4971 int display_latency_ns, int *sprite_wm)
4972 {
4973 struct drm_crtc *crtc;
4974 int clock;
4975 int entries, tlb_miss;
4976
4977 crtc = intel_get_crtc_for_plane(dev, plane);
4978 if (crtc->fb == NULL || !crtc->enabled) {
4979 *sprite_wm = display->guard_size;
4980 return false;
4981 }
4982
4983 clock = crtc->mode.clock;
4984
4985 /* Use the small buffer method to calculate the sprite watermark */
4986 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4987 tlb_miss = display->fifo_size*display->cacheline_size -
4988 sprite_width * 8;
4989 if (tlb_miss > 0)
4990 entries += tlb_miss;
4991 entries = DIV_ROUND_UP(entries, display->cacheline_size);
4992 *sprite_wm = entries + display->guard_size;
4993 if (*sprite_wm > (int)display->max_wm)
4994 *sprite_wm = display->max_wm;
4995
4996 return true;
4997 }
4998
4999 static bool
5000 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
5001 uint32_t sprite_width, int pixel_size,
5002 const struct intel_watermark_params *display,
5003 int latency_ns, int *sprite_wm)
5004 {
5005 struct drm_crtc *crtc;
5006 unsigned long line_time_us;
5007 int clock;
5008 int line_count, line_size;
5009 int small, large;
5010 int entries;
5011
5012 if (!latency_ns) {
5013 *sprite_wm = 0;
5014 return false;
5015 }
5016
5017 crtc = intel_get_crtc_for_plane(dev, plane);
5018 clock = crtc->mode.clock;
5019 if (!clock) {
5020 *sprite_wm = 0;
5021 return false;
5022 }
5023
5024 line_time_us = (sprite_width * 1000) / clock;
5025 if (!line_time_us) {
5026 *sprite_wm = 0;
5027 return false;
5028 }
5029
5030 line_count = (latency_ns / line_time_us + 1000) / 1000;
5031 line_size = sprite_width * pixel_size;
5032
5033 /* Use the minimum of the small and large buffer method for primary */
5034 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
5035 large = line_count * line_size;
5036
5037 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
5038 *sprite_wm = entries + display->guard_size;
5039
5040 return *sprite_wm > 0x3ff ? false : true;
5041 }
5042
5043 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
5044 uint32_t sprite_width, int pixel_size)
5045 {
5046 struct drm_i915_private *dev_priv = dev->dev_private;
5047 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
5048 u32 val;
5049 int sprite_wm, reg;
5050 int ret;
5051
5052 switch (pipe) {
5053 case 0:
5054 reg = WM0_PIPEA_ILK;
5055 break;
5056 case 1:
5057 reg = WM0_PIPEB_ILK;
5058 break;
5059 case 2:
5060 reg = WM0_PIPEC_IVB;
5061 break;
5062 default:
5063 return; /* bad pipe */
5064 }
5065
5066 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
5067 &sandybridge_display_wm_info,
5068 latency, &sprite_wm);
5069 if (!ret) {
5070 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
5071 pipe);
5072 return;
5073 }
5074
5075 val = I915_READ(reg);
5076 val &= ~WM0_PIPE_SPRITE_MASK;
5077 I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
5078 DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
5079
5080
5081 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
5082 pixel_size,
5083 &sandybridge_display_srwm_info,
5084 SNB_READ_WM1_LATENCY() * 500,
5085 &sprite_wm);
5086 if (!ret) {
5087 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
5088 pipe);
5089 return;
5090 }
5091 I915_WRITE(WM1S_LP_ILK, sprite_wm);
5092
5093 /* Only IVB has two more LP watermarks for sprite */
5094 if (!IS_IVYBRIDGE(dev))
5095 return;
5096
5097 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
5098 pixel_size,
5099 &sandybridge_display_srwm_info,
5100 SNB_READ_WM2_LATENCY() * 500,
5101 &sprite_wm);
5102 if (!ret) {
5103 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
5104 pipe);
5105 return;
5106 }
5107 I915_WRITE(WM2S_LP_IVB, sprite_wm);
5108
5109 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
5110 pixel_size,
5111 &sandybridge_display_srwm_info,
5112 SNB_READ_WM3_LATENCY() * 500,
5113 &sprite_wm);
5114 if (!ret) {
5115 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
5116 pipe);
5117 return;
5118 }
5119 I915_WRITE(WM3S_LP_IVB, sprite_wm);
5120 }
5121
5122 /**
5123 * intel_update_watermarks - update FIFO watermark values based on current modes
5124 *
5125 * Calculate watermark values for the various WM regs based on current mode
5126 * and plane configuration.
5127 *
5128 * There are several cases to deal with here:
5129 * - normal (i.e. non-self-refresh)
5130 * - self-refresh (SR) mode
5131 * - lines are large relative to FIFO size (buffer can hold up to 2)
5132 * - lines are small relative to FIFO size (buffer can hold more than 2
5133 * lines), so need to account for TLB latency
5134 *
5135 * The normal calculation is:
5136 * watermark = dotclock * bytes per pixel * latency
5137 * where latency is platform & configuration dependent (we assume pessimal
5138 * values here).
5139 *
5140 * The SR calculation is:
5141 * watermark = (trunc(latency/line time)+1) * surface width *
5142 * bytes per pixel
5143 * where
5144 * line time = htotal / dotclock
5145 * surface width = hdisplay for normal plane and 64 for cursor
5146 * and latency is assumed to be high, as above.
5147 *
5148 * The final value programmed to the register should always be rounded up,
5149 * and include an extra 2 entries to account for clock crossings.
5150 *
5151 * We don't use the sprite, so we can ignore that. And on Crestline we have
5152 * to set the non-SR watermarks to 8.
5153 */
5154 void intel_update_watermarks(struct drm_device *dev)
5155 {
5156 struct drm_i915_private *dev_priv = dev->dev_private;
5157
5158 if (dev_priv->display.update_wm)
5159 dev_priv->display.update_wm(dev);
5160 }
5161
5162 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
5163 uint32_t sprite_width, int pixel_size)
5164 {
5165 struct drm_i915_private *dev_priv = dev->dev_private;
5166
5167 if (dev_priv->display.update_sprite_wm)
5168 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
5169 pixel_size);
5170 }
5171
5172 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5173 {
5174 if (i915_panel_use_ssc >= 0)
5175 return i915_panel_use_ssc != 0;
5176 return dev_priv->lvds_use_ssc
5177 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5178 }
5179
5180 /**
5181 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
5182 * @crtc: CRTC structure
5183 * @mode: requested mode
5184 *
5185 * A pipe may be connected to one or more outputs. Based on the depth of the
5186 * attached framebuffer, choose a good color depth to use on the pipe.
5187 *
5188 * If possible, match the pipe depth to the fb depth. In some cases, this
5189 * isn't ideal, because the connected output supports a lesser or restricted
5190 * set of depths. Resolve that here:
5191 * LVDS typically supports only 6bpc, so clamp down in that case
5192 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
5193 * Displays may support a restricted set as well, check EDID and clamp as
5194 * appropriate.
5195 * DP may want to dither down to 6bpc to fit larger modes
5196 *
5197 * RETURNS:
5198 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
5199 * true if they don't match).
5200 */
5201 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
5202 unsigned int *pipe_bpp,
5203 struct drm_display_mode *mode)
5204 {
5205 struct drm_device *dev = crtc->dev;
5206 struct drm_i915_private *dev_priv = dev->dev_private;
5207 struct drm_encoder *encoder;
5208 struct drm_connector *connector;
5209 unsigned int display_bpc = UINT_MAX, bpc;
5210
5211 /* Walk the encoders & connectors on this crtc, get min bpc */
5212 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
5213 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5214
5215 if (encoder->crtc != crtc)
5216 continue;
5217
5218 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
5219 unsigned int lvds_bpc;
5220
5221 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
5222 LVDS_A3_POWER_UP)
5223 lvds_bpc = 8;
5224 else
5225 lvds_bpc = 6;
5226
5227 if (lvds_bpc < display_bpc) {
5228 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
5229 display_bpc = lvds_bpc;
5230 }
5231 continue;
5232 }
5233
5234 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
5235 /* Use VBT settings if we have an eDP panel */
5236 unsigned int edp_bpc = dev_priv->edp.bpp / 3;
5237
5238 if (edp_bpc < display_bpc) {
5239 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
5240 display_bpc = edp_bpc;
5241 }
5242 continue;
5243 }
5244
5245 /* Not one of the known troublemakers, check the EDID */
5246 list_for_each_entry(connector, &dev->mode_config.connector_list,
5247 head) {
5248 if (connector->encoder != encoder)
5249 continue;
5250
5251 /* Don't use an invalid EDID bpc value */
5252 if (connector->display_info.bpc &&
5253 connector->display_info.bpc < display_bpc) {
5254 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
5255 display_bpc = connector->display_info.bpc;
5256 }
5257 }
5258
5259 /*
5260 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
5261 * through, clamp it down. (Note: >12bpc will be caught below.)
5262 */
5263 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
5264 if (display_bpc > 8 && display_bpc < 12) {
5265 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
5266 display_bpc = 12;
5267 } else {
5268 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
5269 display_bpc = 8;
5270 }
5271 }
5272 }
5273
5274 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
5275 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
5276 display_bpc = 6;
5277 }
5278
5279 /*
5280 * We could just drive the pipe at the highest bpc all the time and
5281 * enable dithering as needed, but that costs bandwidth. So choose
5282 * the minimum value that expresses the full color range of the fb but
5283 * also stays within the max display bpc discovered above.
5284 */
5285
5286 switch (crtc->fb->depth) {
5287 case 8:
5288 bpc = 8; /* since we go through a colormap */
5289 break;
5290 case 15:
5291 case 16:
5292 bpc = 6; /* min is 18bpp */
5293 break;
5294 case 24:
5295 bpc = 8;
5296 break;
5297 case 30:
5298 bpc = 10;
5299 break;
5300 case 48:
5301 bpc = 12;
5302 break;
5303 default:
5304 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
5305 bpc = min((unsigned int)8, display_bpc);
5306 break;
5307 }
5308
5309 display_bpc = min(display_bpc, bpc);
5310
5311 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
5312 bpc, display_bpc);
5313
5314 *pipe_bpp = display_bpc * 3;
5315
5316 return display_bpc != bpc;
5317 }
5318
5319 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5320 {
5321 struct drm_device *dev = crtc->dev;
5322 struct drm_i915_private *dev_priv = dev->dev_private;
5323 int refclk;
5324
5325 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5326 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5327 refclk = dev_priv->lvds_ssc_freq * 1000;
5328 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5329 refclk / 1000);
5330 } else if (!IS_GEN2(dev)) {
5331 refclk = 96000;
5332 } else {
5333 refclk = 48000;
5334 }
5335
5336 return refclk;
5337 }
5338
5339 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
5340 intel_clock_t *clock)
5341 {
5342 /* SDVO TV has fixed PLL values depend on its clock range,
5343 this mirrors vbios setting. */
5344 if (adjusted_mode->clock >= 100000
5345 && adjusted_mode->clock < 140500) {
5346 clock->p1 = 2;
5347 clock->p2 = 10;
5348 clock->n = 3;
5349 clock->m1 = 16;
5350 clock->m2 = 8;
5351 } else if (adjusted_mode->clock >= 140500
5352 && adjusted_mode->clock <= 200000) {
5353 clock->p1 = 1;
5354 clock->p2 = 10;
5355 clock->n = 6;
5356 clock->m1 = 12;
5357 clock->m2 = 8;
5358 }
5359 }
5360
5361 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
5362 intel_clock_t *clock,
5363 intel_clock_t *reduced_clock)
5364 {
5365 struct drm_device *dev = crtc->dev;
5366 struct drm_i915_private *dev_priv = dev->dev_private;
5367 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5368 int pipe = intel_crtc->pipe;
5369 u32 fp, fp2 = 0;
5370
5371 if (IS_PINEVIEW(dev)) {
5372 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
5373 if (reduced_clock)
5374 fp2 = (1 << reduced_clock->n) << 16 |
5375 reduced_clock->m1 << 8 | reduced_clock->m2;
5376 } else {
5377 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
5378 if (reduced_clock)
5379 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
5380 reduced_clock->m2;
5381 }
5382
5383 I915_WRITE(FP0(pipe), fp);
5384
5385 intel_crtc->lowfreq_avail = false;
5386 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5387 reduced_clock && i915_powersave) {
5388 I915_WRITE(FP1(pipe), fp2);
5389 intel_crtc->lowfreq_avail = true;
5390 } else {
5391 I915_WRITE(FP1(pipe), fp);
5392 }
5393 }
5394
5395 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
5396 struct drm_display_mode *adjusted_mode)
5397 {
5398 struct drm_device *dev = crtc->dev;
5399 struct drm_i915_private *dev_priv = dev->dev_private;
5400 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5401 int pipe = intel_crtc->pipe;
5402 u32 temp, lvds_sync = 0;
5403
5404 temp = I915_READ(LVDS);
5405 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5406 if (pipe == 1) {
5407 temp |= LVDS_PIPEB_SELECT;
5408 } else {
5409 temp &= ~LVDS_PIPEB_SELECT;
5410 }
5411 /* set the corresponsding LVDS_BORDER bit */
5412 temp |= dev_priv->lvds_border_bits;
5413 /* Set the B0-B3 data pairs corresponding to whether we're going to
5414 * set the DPLLs for dual-channel mode or not.
5415 */
5416 if (clock->p2 == 7)
5417 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5418 else
5419 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5420
5421 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5422 * appropriately here, but we need to look more thoroughly into how
5423 * panels behave in the two modes.
5424 */
5425 /* set the dithering flag on LVDS as needed */
5426 if (INTEL_INFO(dev)->gen >= 4) {
5427 if (dev_priv->lvds_dither)
5428 temp |= LVDS_ENABLE_DITHER;
5429 else
5430 temp &= ~LVDS_ENABLE_DITHER;
5431 }
5432 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5433 lvds_sync |= LVDS_HSYNC_POLARITY;
5434 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5435 lvds_sync |= LVDS_VSYNC_POLARITY;
5436 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5437 != lvds_sync) {
5438 char flags[2] = "-+";
5439 DRM_INFO("Changing LVDS panel from "
5440 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5441 flags[!(temp & LVDS_HSYNC_POLARITY)],
5442 flags[!(temp & LVDS_VSYNC_POLARITY)],
5443 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5444 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5445 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5446 temp |= lvds_sync;
5447 }
5448 I915_WRITE(LVDS, temp);
5449 }
5450
5451 static void i9xx_update_pll(struct drm_crtc *crtc,
5452 struct drm_display_mode *mode,
5453 struct drm_display_mode *adjusted_mode,
5454 intel_clock_t *clock, intel_clock_t *reduced_clock,
5455 int num_connectors)
5456 {
5457 struct drm_device *dev = crtc->dev;
5458 struct drm_i915_private *dev_priv = dev->dev_private;
5459 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5460 int pipe = intel_crtc->pipe;
5461 u32 dpll;
5462 bool is_sdvo;
5463
5464 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
5465 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
5466
5467 dpll = DPLL_VGA_MODE_DIS;
5468
5469 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
5470 dpll |= DPLLB_MODE_LVDS;
5471 else
5472 dpll |= DPLLB_MODE_DAC_SERIAL;
5473 if (is_sdvo) {
5474 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5475 if (pixel_multiplier > 1) {
5476 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5477 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
5478 }
5479 dpll |= DPLL_DVO_HIGH_SPEED;
5480 }
5481 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
5482 dpll |= DPLL_DVO_HIGH_SPEED;
5483
5484 /* compute bitmask from p1 value */
5485 if (IS_PINEVIEW(dev))
5486 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5487 else {
5488 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5489 if (IS_G4X(dev) && reduced_clock)
5490 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5491 }
5492 switch (clock->p2) {
5493 case 5:
5494 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5495 break;
5496 case 7:
5497 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5498 break;
5499 case 10:
5500 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5501 break;
5502 case 14:
5503 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5504 break;
5505 }
5506 if (INTEL_INFO(dev)->gen >= 4)
5507 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5508
5509 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
5510 dpll |= PLL_REF_INPUT_TVCLKINBC;
5511 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
5512 /* XXX: just matching BIOS for now */
5513 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5514 dpll |= 3;
5515 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5516 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5517 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5518 else
5519 dpll |= PLL_REF_INPUT_DREFCLK;
5520
5521 dpll |= DPLL_VCO_ENABLE;
5522 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5523 POSTING_READ(DPLL(pipe));
5524 udelay(150);
5525
5526 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5527 * This is an exception to the general rule that mode_set doesn't turn
5528 * things on.
5529 */
5530 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
5531 intel_update_lvds(crtc, clock, adjusted_mode);
5532
5533 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
5534 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5535
5536 I915_WRITE(DPLL(pipe), dpll);
5537
5538 /* Wait for the clocks to stabilize. */
5539 POSTING_READ(DPLL(pipe));
5540 udelay(150);
5541
5542 if (INTEL_INFO(dev)->gen >= 4) {
5543 u32 temp = 0;
5544 if (is_sdvo) {
5545 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5546 if (temp > 1)
5547 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5548 else
5549 temp = 0;
5550 }
5551 I915_WRITE(DPLL_MD(pipe), temp);
5552 } else {
5553 /* The pixel multiplier can only be updated once the
5554 * DPLL is enabled and the clocks are stable.
5555 *
5556 * So write it again.
5557 */
5558 I915_WRITE(DPLL(pipe), dpll);
5559 }
5560 }
5561
5562 static void i8xx_update_pll(struct drm_crtc *crtc,
5563 struct drm_display_mode *adjusted_mode,
5564 intel_clock_t *clock,
5565 int num_connectors)
5566 {
5567 struct drm_device *dev = crtc->dev;
5568 struct drm_i915_private *dev_priv = dev->dev_private;
5569 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5570 int pipe = intel_crtc->pipe;
5571 u32 dpll;
5572
5573 dpll = DPLL_VGA_MODE_DIS;
5574
5575 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
5576 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5577 } else {
5578 if (clock->p1 == 2)
5579 dpll |= PLL_P1_DIVIDE_BY_TWO;
5580 else
5581 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5582 if (clock->p2 == 4)
5583 dpll |= PLL_P2_DIVIDE_BY_4;
5584 }
5585
5586 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
5587 /* XXX: just matching BIOS for now */
5588 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5589 dpll |= 3;
5590 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5591 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5592 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5593 else
5594 dpll |= PLL_REF_INPUT_DREFCLK;
5595
5596 dpll |= DPLL_VCO_ENABLE;
5597 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5598 POSTING_READ(DPLL(pipe));
5599 udelay(150);
5600
5601 I915_WRITE(DPLL(pipe), dpll);
5602
5603 /* Wait for the clocks to stabilize. */
5604 POSTING_READ(DPLL(pipe));
5605 udelay(150);
5606
5607 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5608 * This is an exception to the general rule that mode_set doesn't turn
5609 * things on.
5610 */
5611 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
5612 intel_update_lvds(crtc, clock, adjusted_mode);
5613
5614 /* The pixel multiplier can only be updated once the
5615 * DPLL is enabled and the clocks are stable.
5616 *
5617 * So write it again.
5618 */
5619 I915_WRITE(DPLL(pipe), dpll);
5620 }
5621
5622 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5623 struct drm_display_mode *mode,
5624 struct drm_display_mode *adjusted_mode,
5625 int x, int y,
5626 struct drm_framebuffer *old_fb)
5627 {
5628 struct drm_device *dev = crtc->dev;
5629 struct drm_i915_private *dev_priv = dev->dev_private;
5630 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5631 int pipe = intel_crtc->pipe;
5632 int plane = intel_crtc->plane;
5633 int refclk, num_connectors = 0;
5634 intel_clock_t clock, reduced_clock;
5635 u32 dspcntr, pipeconf, vsyncshift;
5636 bool ok, has_reduced_clock = false, is_sdvo = false;
5637 bool is_lvds = false, is_tv = false, is_dp = false;
5638 struct drm_mode_config *mode_config = &dev->mode_config;
5639 struct intel_encoder *encoder;
5640 const intel_limit_t *limit;
5641 int ret;
5642
5643 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5644 if (encoder->base.crtc != crtc)
5645 continue;
5646
5647 switch (encoder->type) {
5648 case INTEL_OUTPUT_LVDS:
5649 is_lvds = true;
5650 break;
5651 case INTEL_OUTPUT_SDVO:
5652 case INTEL_OUTPUT_HDMI:
5653 is_sdvo = true;
5654 if (encoder->needs_tv_clock)
5655 is_tv = true;
5656 break;
5657 case INTEL_OUTPUT_TVOUT:
5658 is_tv = true;
5659 break;
5660 case INTEL_OUTPUT_DISPLAYPORT:
5661 is_dp = true;
5662 break;
5663 }
5664
5665 num_connectors++;
5666 }
5667
5668 refclk = i9xx_get_refclk(crtc, num_connectors);
5669
5670 /*
5671 * Returns a set of divisors for the desired target clock with the given
5672 * refclk, or FALSE. The returned values represent the clock equation:
5673 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5674 */
5675 limit = intel_limit(crtc, refclk);
5676 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5677 &clock);
5678 if (!ok) {
5679 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5680 return -EINVAL;
5681 }
5682
5683 /* Ensure that the cursor is valid for the new mode before changing... */
5684 intel_crtc_update_cursor(crtc, true);
5685
5686 if (is_lvds && dev_priv->lvds_downclock_avail) {
5687 /*
5688 * Ensure we match the reduced clock's P to the target clock.
5689 * If the clocks don't match, we can't switch the display clock
5690 * by using the FP0/FP1. In such case we will disable the LVDS
5691 * downclock feature.
5692 */
5693 has_reduced_clock = limit->find_pll(limit, crtc,
5694 dev_priv->lvds_downclock,
5695 refclk,
5696 &clock,
5697 &reduced_clock);
5698 }
5699
5700 if (is_sdvo && is_tv)
5701 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
5702
5703 i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
5704 &reduced_clock : NULL);
5705
5706 if (IS_GEN2(dev))
5707 i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
5708 else
5709 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
5710 has_reduced_clock ? &reduced_clock : NULL,
5711 num_connectors);
5712
5713 /* setup pipeconf */
5714 pipeconf = I915_READ(PIPECONF(pipe));
5715
5716 /* Set up the display plane register */
5717 dspcntr = DISPPLANE_GAMMA_ENABLE;
5718
5719 if (pipe == 0)
5720 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5721 else
5722 dspcntr |= DISPPLANE_SEL_PIPE_B;
5723
5724 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
5725 /* Enable pixel doubling when the dot clock is > 90% of the (display)
5726 * core speed.
5727 *
5728 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
5729 * pipe == 0 check?
5730 */
5731 if (mode->clock >
5732 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5733 pipeconf |= PIPECONF_DOUBLE_WIDE;
5734 else
5735 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
5736 }
5737
5738 /* default to 8bpc */
5739 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
5740 if (is_dp) {
5741 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
5742 pipeconf |= PIPECONF_BPP_6 |
5743 PIPECONF_DITHER_EN |
5744 PIPECONF_DITHER_TYPE_SP;
5745 }
5746 }
5747
5748 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5749 drm_mode_debug_printmodeline(mode);
5750
5751 if (HAS_PIPE_CXSR(dev)) {
5752 if (intel_crtc->lowfreq_avail) {
5753 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5754 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5755 } else {
5756 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5757 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5758 }
5759 }
5760
5761 pipeconf &= ~PIPECONF_INTERLACE_MASK;
5762 if (!IS_GEN2(dev) &&
5763 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5764 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5765 /* the chip adds 2 halflines automatically */
5766 adjusted_mode->crtc_vtotal -= 1;
5767 adjusted_mode->crtc_vblank_end -= 1;
5768 vsyncshift = adjusted_mode->crtc_hsync_start
5769 - adjusted_mode->crtc_htotal/2;
5770 } else {
5771 pipeconf |= PIPECONF_PROGRESSIVE;
5772 vsyncshift = 0;
5773 }
5774
5775 if (!IS_GEN3(dev))
5776 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
5777
5778 I915_WRITE(HTOTAL(pipe),
5779 (adjusted_mode->crtc_hdisplay - 1) |
5780 ((adjusted_mode->crtc_htotal - 1) << 16));
5781 I915_WRITE(HBLANK(pipe),
5782 (adjusted_mode->crtc_hblank_start - 1) |
5783 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5784 I915_WRITE(HSYNC(pipe),
5785 (adjusted_mode->crtc_hsync_start - 1) |
5786 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5787
5788 I915_WRITE(VTOTAL(pipe),
5789 (adjusted_mode->crtc_vdisplay - 1) |
5790 ((adjusted_mode->crtc_vtotal - 1) << 16));
5791 I915_WRITE(VBLANK(pipe),
5792 (adjusted_mode->crtc_vblank_start - 1) |
5793 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5794 I915_WRITE(VSYNC(pipe),
5795 (adjusted_mode->crtc_vsync_start - 1) |
5796 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5797
5798 /* pipesrc and dspsize control the size that is scaled from,
5799 * which should always be the user's requested size.
5800 */
5801 I915_WRITE(DSPSIZE(plane),
5802 ((mode->vdisplay - 1) << 16) |
5803 (mode->hdisplay - 1));
5804 I915_WRITE(DSPPOS(plane), 0);
5805 I915_WRITE(PIPESRC(pipe),
5806 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5807
5808 I915_WRITE(PIPECONF(pipe), pipeconf);
5809 POSTING_READ(PIPECONF(pipe));
5810 intel_enable_pipe(dev_priv, pipe, false);
5811
5812 intel_wait_for_vblank(dev, pipe);
5813
5814 I915_WRITE(DSPCNTR(plane), dspcntr);
5815 POSTING_READ(DSPCNTR(plane));
5816 intel_enable_plane(dev_priv, plane, pipe);
5817
5818 ret = intel_pipe_set_base(crtc, x, y, old_fb);
5819
5820 intel_update_watermarks(dev);
5821
5822 return ret;
5823 }
5824
5825 /*
5826 * Initialize reference clocks when the driver loads
5827 */
5828 void ironlake_init_pch_refclk(struct drm_device *dev)
5829 {
5830 struct drm_i915_private *dev_priv = dev->dev_private;
5831 struct drm_mode_config *mode_config = &dev->mode_config;
5832 struct intel_encoder *encoder;
5833 u32 temp;
5834 bool has_lvds = false;
5835 bool has_cpu_edp = false;
5836 bool has_pch_edp = false;
5837 bool has_panel = false;
5838 bool has_ck505 = false;
5839 bool can_ssc = false;
5840
5841 /* We need to take the global config into account */
5842 list_for_each_entry(encoder, &mode_config->encoder_list,
5843 base.head) {
5844 switch (encoder->type) {
5845 case INTEL_OUTPUT_LVDS:
5846 has_panel = true;
5847 has_lvds = true;
5848 break;
5849 case INTEL_OUTPUT_EDP:
5850 has_panel = true;
5851 if (intel_encoder_is_pch_edp(&encoder->base))
5852 has_pch_edp = true;
5853 else
5854 has_cpu_edp = true;
5855 break;
5856 }
5857 }
5858
5859 if (HAS_PCH_IBX(dev)) {
5860 has_ck505 = dev_priv->display_clock_mode;
5861 can_ssc = has_ck505;
5862 } else {
5863 has_ck505 = false;
5864 can_ssc = true;
5865 }
5866
5867 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
5868 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
5869 has_ck505);
5870
5871 /* Ironlake: try to setup display ref clock before DPLL
5872 * enabling. This is only under driver's control after
5873 * PCH B stepping, previous chipset stepping should be
5874 * ignoring this setting.
5875 */
5876 temp = I915_READ(PCH_DREF_CONTROL);
5877 /* Always enable nonspread source */
5878 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5879
5880 if (has_ck505)
5881 temp |= DREF_NONSPREAD_CK505_ENABLE;
5882 else
5883 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5884
5885 if (has_panel) {
5886 temp &= ~DREF_SSC_SOURCE_MASK;
5887 temp |= DREF_SSC_SOURCE_ENABLE;
5888
5889 /* SSC must be turned on before enabling the CPU output */
5890 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5891 DRM_DEBUG_KMS("Using SSC on panel\n");
5892 temp |= DREF_SSC1_ENABLE;
5893 } else
5894 temp &= ~DREF_SSC1_ENABLE;
5895
5896 /* Get SSC going before enabling the outputs */
5897 I915_WRITE(PCH_DREF_CONTROL, temp);
5898 POSTING_READ(PCH_DREF_CONTROL);
5899 udelay(200);
5900
5901 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5902
5903 /* Enable CPU source on CPU attached eDP */
5904 if (has_cpu_edp) {
5905 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5906 DRM_DEBUG_KMS("Using SSC on eDP\n");
5907 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5908 }
5909 else
5910 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5911 } else
5912 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5913
5914 I915_WRITE(PCH_DREF_CONTROL, temp);
5915 POSTING_READ(PCH_DREF_CONTROL);
5916 udelay(200);
5917 } else {
5918 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5919
5920 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5921
5922 /* Turn off CPU output */
5923 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5924
5925 I915_WRITE(PCH_DREF_CONTROL, temp);
5926 POSTING_READ(PCH_DREF_CONTROL);
5927 udelay(200);
5928
5929 /* Turn off the SSC source */
5930 temp &= ~DREF_SSC_SOURCE_MASK;
5931 temp |= DREF_SSC_SOURCE_DISABLE;
5932
5933 /* Turn off SSC1 */
5934 temp &= ~ DREF_SSC1_ENABLE;
5935
5936 I915_WRITE(PCH_DREF_CONTROL, temp);
5937 POSTING_READ(PCH_DREF_CONTROL);
5938 udelay(200);
5939 }
5940 }
5941
5942 static int ironlake_get_refclk(struct drm_crtc *crtc)
5943 {
5944 struct drm_device *dev = crtc->dev;
5945 struct drm_i915_private *dev_priv = dev->dev_private;
5946 struct intel_encoder *encoder;
5947 struct drm_mode_config *mode_config = &dev->mode_config;
5948 struct intel_encoder *edp_encoder = NULL;
5949 int num_connectors = 0;
5950 bool is_lvds = false;
5951
5952 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5953 if (encoder->base.crtc != crtc)
5954 continue;
5955
5956 switch (encoder->type) {
5957 case INTEL_OUTPUT_LVDS:
5958 is_lvds = true;
5959 break;
5960 case INTEL_OUTPUT_EDP:
5961 edp_encoder = encoder;
5962 break;
5963 }
5964 num_connectors++;
5965 }
5966
5967 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5968 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5969 dev_priv->lvds_ssc_freq);
5970 return dev_priv->lvds_ssc_freq * 1000;
5971 }
5972
5973 return 120000;
5974 }
5975
5976 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5977 struct drm_display_mode *mode,
5978 struct drm_display_mode *adjusted_mode,
5979 int x, int y,
5980 struct drm_framebuffer *old_fb)
5981 {
5982 struct drm_device *dev = crtc->dev;
5983 struct drm_i915_private *dev_priv = dev->dev_private;
5984 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5985 int pipe = intel_crtc->pipe;
5986 int plane = intel_crtc->plane;
5987 int refclk, num_connectors = 0;
5988 intel_clock_t clock, reduced_clock;
5989 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
5990 bool ok, has_reduced_clock = false, is_sdvo = false;
5991 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5992 struct drm_mode_config *mode_config = &dev->mode_config;
5993 struct intel_encoder *encoder, *edp_encoder = NULL;
5994 const intel_limit_t *limit;
5995 int ret;
5996 struct fdi_m_n m_n = {0};
5997 u32 temp;
5998 u32 lvds_sync = 0;
5999 int target_clock, pixel_multiplier, lane, link_bw, factor;
6000 unsigned int pipe_bpp;
6001 bool dither;
6002 bool is_cpu_edp = false, is_pch_edp = false;
6003
6004 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6005 if (encoder->base.crtc != crtc)
6006 continue;
6007
6008 switch (encoder->type) {
6009 case INTEL_OUTPUT_LVDS:
6010 is_lvds = true;
6011 break;
6012 case INTEL_OUTPUT_SDVO:
6013 case INTEL_OUTPUT_HDMI:
6014 is_sdvo = true;
6015 if (encoder->needs_tv_clock)
6016 is_tv = true;
6017 break;
6018 case INTEL_OUTPUT_TVOUT:
6019 is_tv = true;
6020 break;
6021 case INTEL_OUTPUT_ANALOG:
6022 is_crt = true;
6023 break;
6024 case INTEL_OUTPUT_DISPLAYPORT:
6025 is_dp = true;
6026 break;
6027 case INTEL_OUTPUT_EDP:
6028 is_dp = true;
6029 if (intel_encoder_is_pch_edp(&encoder->base))
6030 is_pch_edp = true;
6031 else
6032 is_cpu_edp = true;
6033 edp_encoder = encoder;
6034 break;
6035 }
6036
6037 num_connectors++;
6038 }
6039
6040 refclk = ironlake_get_refclk(crtc);
6041
6042 /*
6043 * Returns a set of divisors for the desired target clock with the given
6044 * refclk, or FALSE. The returned values represent the clock equation:
6045 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6046 */
6047 limit = intel_limit(crtc, refclk);
6048 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
6049 &clock);
6050 if (!ok) {
6051 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6052 return -EINVAL;
6053 }
6054
6055 /* Ensure that the cursor is valid for the new mode before changing... */
6056 intel_crtc_update_cursor(crtc, true);
6057
6058 if (is_lvds && dev_priv->lvds_downclock_avail) {
6059 /*
6060 * Ensure we match the reduced clock's P to the target clock.
6061 * If the clocks don't match, we can't switch the display clock
6062 * by using the FP0/FP1. In such case we will disable the LVDS
6063 * downclock feature.
6064 */
6065 has_reduced_clock = limit->find_pll(limit, crtc,
6066 dev_priv->lvds_downclock,
6067 refclk,
6068 &clock,
6069 &reduced_clock);
6070 }
6071 /* SDVO TV has fixed PLL values depend on its clock range,
6072 this mirrors vbios setting. */
6073 if (is_sdvo && is_tv) {
6074 if (adjusted_mode->clock >= 100000
6075 && adjusted_mode->clock < 140500) {
6076 clock.p1 = 2;
6077 clock.p2 = 10;
6078 clock.n = 3;
6079 clock.m1 = 16;
6080 clock.m2 = 8;
6081 } else if (adjusted_mode->clock >= 140500
6082 && adjusted_mode->clock <= 200000) {
6083 clock.p1 = 1;
6084 clock.p2 = 10;
6085 clock.n = 6;
6086 clock.m1 = 12;
6087 clock.m2 = 8;
6088 }
6089 }
6090
6091 /* FDI link */
6092 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
6093 lane = 0;
6094 /* CPU eDP doesn't require FDI link, so just set DP M/N
6095 according to current link config */
6096 if (is_cpu_edp) {
6097 target_clock = mode->clock;
6098 intel_edp_link_config(edp_encoder, &lane, &link_bw);
6099 } else {
6100 /* [e]DP over FDI requires target mode clock
6101 instead of link clock */
6102 if (is_dp)
6103 target_clock = mode->clock;
6104 else
6105 target_clock = adjusted_mode->clock;
6106
6107 /* FDI is a binary signal running at ~2.7GHz, encoding
6108 * each output octet as 10 bits. The actual frequency
6109 * is stored as a divider into a 100MHz clock, and the
6110 * mode pixel clock is stored in units of 1KHz.
6111 * Hence the bw of each lane in terms of the mode signal
6112 * is:
6113 */
6114 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6115 }
6116
6117 /* determine panel color depth */
6118 temp = I915_READ(PIPECONF(pipe));
6119 temp &= ~PIPE_BPC_MASK;
6120 dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
6121 switch (pipe_bpp) {
6122 case 18:
6123 temp |= PIPE_6BPC;
6124 break;
6125 case 24:
6126 temp |= PIPE_8BPC;
6127 break;
6128 case 30:
6129 temp |= PIPE_10BPC;
6130 break;
6131 case 36:
6132 temp |= PIPE_12BPC;
6133 break;
6134 default:
6135 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
6136 pipe_bpp);
6137 temp |= PIPE_8BPC;
6138 pipe_bpp = 24;
6139 break;
6140 }
6141
6142 intel_crtc->bpp = pipe_bpp;
6143 I915_WRITE(PIPECONF(pipe), temp);
6144
6145 if (!lane) {
6146 /*
6147 * Account for spread spectrum to avoid
6148 * oversubscribing the link. Max center spread
6149 * is 2.5%; use 5% for safety's sake.
6150 */
6151 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
6152 lane = bps / (link_bw * 8) + 1;
6153 }
6154
6155 intel_crtc->fdi_lanes = lane;
6156
6157 if (pixel_multiplier > 1)
6158 link_bw *= pixel_multiplier;
6159 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
6160 &m_n);
6161
6162 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
6163 if (has_reduced_clock)
6164 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
6165 reduced_clock.m2;
6166
6167 /* Enable autotuning of the PLL clock (if permissible) */
6168 factor = 21;
6169 if (is_lvds) {
6170 if ((intel_panel_use_ssc(dev_priv) &&
6171 dev_priv->lvds_ssc_freq == 100) ||
6172 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
6173 factor = 25;
6174 } else if (is_sdvo && is_tv)
6175 factor = 20;
6176
6177 if (clock.m < factor * clock.n)
6178 fp |= FP_CB_TUNE;
6179
6180 dpll = 0;
6181
6182 if (is_lvds)
6183 dpll |= DPLLB_MODE_LVDS;
6184 else
6185 dpll |= DPLLB_MODE_DAC_SERIAL;
6186 if (is_sdvo) {
6187 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
6188 if (pixel_multiplier > 1) {
6189 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
6190 }
6191 dpll |= DPLL_DVO_HIGH_SPEED;
6192 }
6193 if (is_dp && !is_cpu_edp)
6194 dpll |= DPLL_DVO_HIGH_SPEED;
6195
6196 /* compute bitmask from p1 value */
6197 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6198 /* also FPA1 */
6199 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6200
6201 switch (clock.p2) {
6202 case 5:
6203 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6204 break;
6205 case 7:
6206 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6207 break;
6208 case 10:
6209 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6210 break;
6211 case 14:
6212 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6213 break;
6214 }
6215
6216 if (is_sdvo && is_tv)
6217 dpll |= PLL_REF_INPUT_TVCLKINBC;
6218 else if (is_tv)
6219 /* XXX: just matching BIOS for now */
6220 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
6221 dpll |= 3;
6222 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6223 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6224 else
6225 dpll |= PLL_REF_INPUT_DREFCLK;
6226
6227 /* setup pipeconf */
6228 pipeconf = I915_READ(PIPECONF(pipe));
6229
6230 /* Set up the display plane register */
6231 dspcntr = DISPPLANE_GAMMA_ENABLE;
6232
6233 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
6234 drm_mode_debug_printmodeline(mode);
6235
6236 /* PCH eDP needs FDI, but CPU eDP does not */
6237 if (!intel_crtc->no_pll) {
6238 if (!is_cpu_edp) {
6239 I915_WRITE(PCH_FP0(pipe), fp);
6240 I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
6241
6242 POSTING_READ(PCH_DPLL(pipe));
6243 udelay(150);
6244 }
6245 } else {
6246 if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
6247 fp == I915_READ(PCH_FP0(0))) {
6248 intel_crtc->use_pll_a = true;
6249 DRM_DEBUG_KMS("using pipe a dpll\n");
6250 } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
6251 fp == I915_READ(PCH_FP0(1))) {
6252 intel_crtc->use_pll_a = false;
6253 DRM_DEBUG_KMS("using pipe b dpll\n");
6254 } else {
6255 DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
6256 return -EINVAL;
6257 }
6258 }
6259
6260 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
6261 * This is an exception to the general rule that mode_set doesn't turn
6262 * things on.
6263 */
6264 if (is_lvds) {
6265 temp = I915_READ(PCH_LVDS);
6266 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
6267 if (HAS_PCH_CPT(dev)) {
6268 temp &= ~PORT_TRANS_SEL_MASK;
6269 temp |= PORT_TRANS_SEL_CPT(pipe);
6270 } else {
6271 if (pipe == 1)
6272 temp |= LVDS_PIPEB_SELECT;
6273 else
6274 temp &= ~LVDS_PIPEB_SELECT;
6275 }
6276
6277 /* set the corresponsding LVDS_BORDER bit */
6278 temp |= dev_priv->lvds_border_bits;
6279 /* Set the B0-B3 data pairs corresponding to whether we're going to
6280 * set the DPLLs for dual-channel mode or not.
6281 */
6282 if (clock.p2 == 7)
6283 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
6284 else
6285 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
6286
6287 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
6288 * appropriately here, but we need to look more thoroughly into how
6289 * panels behave in the two modes.
6290 */
6291 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
6292 lvds_sync |= LVDS_HSYNC_POLARITY;
6293 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
6294 lvds_sync |= LVDS_VSYNC_POLARITY;
6295 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
6296 != lvds_sync) {
6297 char flags[2] = "-+";
6298 DRM_INFO("Changing LVDS panel from "
6299 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
6300 flags[!(temp & LVDS_HSYNC_POLARITY)],
6301 flags[!(temp & LVDS_VSYNC_POLARITY)],
6302 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
6303 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
6304 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
6305 temp |= lvds_sync;
6306 }
6307 I915_WRITE(PCH_LVDS, temp);
6308 }
6309
6310 pipeconf &= ~PIPECONF_DITHER_EN;
6311 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
6312 if ((is_lvds && dev_priv->lvds_dither) || dither) {
6313 pipeconf |= PIPECONF_DITHER_EN;
6314 pipeconf |= PIPECONF_DITHER_TYPE_SP;
6315 }
6316 if (is_dp && !is_cpu_edp) {
6317 intel_dp_set_m_n(crtc, mode, adjusted_mode);
6318 } else {
6319 /* For non-DP output, clear any trans DP clock recovery setting.*/
6320 I915_WRITE(TRANSDATA_M1(pipe), 0);
6321 I915_WRITE(TRANSDATA_N1(pipe), 0);
6322 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
6323 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
6324 }
6325
6326 if (!intel_crtc->no_pll && (!edp_encoder || is_pch_edp)) {
6327 I915_WRITE(PCH_DPLL(pipe), dpll);
6328
6329 /* Wait for the clocks to stabilize. */
6330 POSTING_READ(PCH_DPLL(pipe));
6331 udelay(150);
6332
6333 /* The pixel multiplier can only be updated once the
6334 * DPLL is enabled and the clocks are stable.
6335 *
6336 * So write it again.
6337 */
6338 I915_WRITE(PCH_DPLL(pipe), dpll);
6339 }
6340
6341 intel_crtc->lowfreq_avail = false;
6342 if (!intel_crtc->no_pll) {
6343 if (is_lvds && has_reduced_clock && i915_powersave) {
6344 I915_WRITE(PCH_FP1(pipe), fp2);
6345 intel_crtc->lowfreq_avail = true;
6346 if (HAS_PIPE_CXSR(dev)) {
6347 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6348 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6349 }
6350 } else {
6351 I915_WRITE(PCH_FP1(pipe), fp);
6352 if (HAS_PIPE_CXSR(dev)) {
6353 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6354 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
6355 }
6356 }
6357 }
6358
6359 pipeconf &= ~PIPECONF_INTERLACE_MASK;
6360 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6361 pipeconf |= PIPECONF_INTERLACED_ILK;
6362 /* the chip adds 2 halflines automatically */
6363 adjusted_mode->crtc_vtotal -= 1;
6364 adjusted_mode->crtc_vblank_end -= 1;
6365 I915_WRITE(VSYNCSHIFT(pipe),
6366 adjusted_mode->crtc_hsync_start
6367 - adjusted_mode->crtc_htotal/2);
6368 } else {
6369 pipeconf |= PIPECONF_PROGRESSIVE;
6370 I915_WRITE(VSYNCSHIFT(pipe), 0);
6371 }
6372
6373 I915_WRITE(HTOTAL(pipe),
6374 (adjusted_mode->crtc_hdisplay - 1) |
6375 ((adjusted_mode->crtc_htotal - 1) << 16));
6376 I915_WRITE(HBLANK(pipe),
6377 (adjusted_mode->crtc_hblank_start - 1) |
6378 ((adjusted_mode->crtc_hblank_end - 1) << 16));
6379 I915_WRITE(HSYNC(pipe),
6380 (adjusted_mode->crtc_hsync_start - 1) |
6381 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6382
6383 I915_WRITE(VTOTAL(pipe),
6384 (adjusted_mode->crtc_vdisplay - 1) |
6385 ((adjusted_mode->crtc_vtotal - 1) << 16));
6386 I915_WRITE(VBLANK(pipe),
6387 (adjusted_mode->crtc_vblank_start - 1) |
6388 ((adjusted_mode->crtc_vblank_end - 1) << 16));
6389 I915_WRITE(VSYNC(pipe),
6390 (adjusted_mode->crtc_vsync_start - 1) |
6391 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6392
6393 /* pipesrc controls the size that is scaled from, which should
6394 * always be the user's requested size.
6395 */
6396 I915_WRITE(PIPESRC(pipe),
6397 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
6398
6399 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
6400 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
6401 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
6402 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
6403
6404 if (is_cpu_edp)
6405 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
6406
6407 I915_WRITE(PIPECONF(pipe), pipeconf);
6408 POSTING_READ(PIPECONF(pipe));
6409
6410 intel_wait_for_vblank(dev, pipe);
6411
6412 I915_WRITE(DSPCNTR(plane), dspcntr);
6413 POSTING_READ(DSPCNTR(plane));
6414
6415 ret = intel_pipe_set_base(crtc, x, y, old_fb);
6416
6417 intel_update_watermarks(dev);
6418
6419 return ret;
6420 }
6421
6422 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6423 struct drm_display_mode *mode,
6424 struct drm_display_mode *adjusted_mode,
6425 int x, int y,
6426 struct drm_framebuffer *old_fb)
6427 {
6428 struct drm_device *dev = crtc->dev;
6429 struct drm_i915_private *dev_priv = dev->dev_private;
6430 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6431 int pipe = intel_crtc->pipe;
6432 int ret;
6433
6434 drm_vblank_pre_modeset(dev, pipe);
6435
6436 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
6437 x, y, old_fb);
6438 drm_vblank_post_modeset(dev, pipe);
6439
6440 if (ret)
6441 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
6442 else
6443 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
6444
6445 return ret;
6446 }
6447
6448 static bool intel_eld_uptodate(struct drm_connector *connector,
6449 int reg_eldv, uint32_t bits_eldv,
6450 int reg_elda, uint32_t bits_elda,
6451 int reg_edid)
6452 {
6453 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6454 uint8_t *eld = connector->eld;
6455 uint32_t i;
6456
6457 i = I915_READ(reg_eldv);
6458 i &= bits_eldv;
6459
6460 if (!eld[0])
6461 return !i;
6462
6463 if (!i)
6464 return false;
6465
6466 i = I915_READ(reg_elda);
6467 i &= ~bits_elda;
6468 I915_WRITE(reg_elda, i);
6469
6470 for (i = 0; i < eld[2]; i++)
6471 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6472 return false;
6473
6474 return true;
6475 }
6476
6477 static void g4x_write_eld(struct drm_connector *connector,
6478 struct drm_crtc *crtc)
6479 {
6480 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6481 uint8_t *eld = connector->eld;
6482 uint32_t eldv;
6483 uint32_t len;
6484 uint32_t i;
6485
6486 i = I915_READ(G4X_AUD_VID_DID);
6487
6488 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6489 eldv = G4X_ELDV_DEVCL_DEVBLC;
6490 else
6491 eldv = G4X_ELDV_DEVCTG;
6492
6493 if (intel_eld_uptodate(connector,
6494 G4X_AUD_CNTL_ST, eldv,
6495 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6496 G4X_HDMIW_HDMIEDID))
6497 return;
6498
6499 i = I915_READ(G4X_AUD_CNTL_ST);
6500 i &= ~(eldv | G4X_ELD_ADDR);
6501 len = (i >> 9) & 0x1f; /* ELD buffer size */
6502 I915_WRITE(G4X_AUD_CNTL_ST, i);
6503
6504 if (!eld[0])
6505 return;
6506
6507 len = min_t(uint8_t, eld[2], len);
6508 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6509 for (i = 0; i < len; i++)
6510 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6511
6512 i = I915_READ(G4X_AUD_CNTL_ST);
6513 i |= eldv;
6514 I915_WRITE(G4X_AUD_CNTL_ST, i);
6515 }
6516
6517 static void ironlake_write_eld(struct drm_connector *connector,
6518 struct drm_crtc *crtc)
6519 {
6520 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6521 uint8_t *eld = connector->eld;
6522 uint32_t eldv;
6523 uint32_t i;
6524 int len;
6525 int hdmiw_hdmiedid;
6526 int aud_config;
6527 int aud_cntl_st;
6528 int aud_cntrl_st2;
6529
6530 if (HAS_PCH_IBX(connector->dev)) {
6531 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
6532 aud_config = IBX_AUD_CONFIG_A;
6533 aud_cntl_st = IBX_AUD_CNTL_ST_A;
6534 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6535 } else {
6536 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
6537 aud_config = CPT_AUD_CONFIG_A;
6538 aud_cntl_st = CPT_AUD_CNTL_ST_A;
6539 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6540 }
6541
6542 i = to_intel_crtc(crtc)->pipe;
6543 hdmiw_hdmiedid += i * 0x100;
6544 aud_cntl_st += i * 0x100;
6545 aud_config += i * 0x100;
6546
6547 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
6548
6549 i = I915_READ(aud_cntl_st);
6550 i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
6551 if (!i) {
6552 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6553 /* operate blindly on all ports */
6554 eldv = IBX_ELD_VALIDB;
6555 eldv |= IBX_ELD_VALIDB << 4;
6556 eldv |= IBX_ELD_VALIDB << 8;
6557 } else {
6558 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6559 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6560 }
6561
6562 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6563 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6564 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6565 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6566 } else
6567 I915_WRITE(aud_config, 0);
6568
6569 if (intel_eld_uptodate(connector,
6570 aud_cntrl_st2, eldv,
6571 aud_cntl_st, IBX_ELD_ADDRESS,
6572 hdmiw_hdmiedid))
6573 return;
6574
6575 i = I915_READ(aud_cntrl_st2);
6576 i &= ~eldv;
6577 I915_WRITE(aud_cntrl_st2, i);
6578
6579 if (!eld[0])
6580 return;
6581
6582 i = I915_READ(aud_cntl_st);
6583 i &= ~IBX_ELD_ADDRESS;
6584 I915_WRITE(aud_cntl_st, i);
6585
6586 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6587 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6588 for (i = 0; i < len; i++)
6589 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6590
6591 i = I915_READ(aud_cntrl_st2);
6592 i |= eldv;
6593 I915_WRITE(aud_cntrl_st2, i);
6594 }
6595
6596 void intel_write_eld(struct drm_encoder *encoder,
6597 struct drm_display_mode *mode)
6598 {
6599 struct drm_crtc *crtc = encoder->crtc;
6600 struct drm_connector *connector;
6601 struct drm_device *dev = encoder->dev;
6602 struct drm_i915_private *dev_priv = dev->dev_private;
6603
6604 connector = drm_select_eld(encoder, mode);
6605 if (!connector)
6606 return;
6607
6608 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6609 connector->base.id,
6610 drm_get_connector_name(connector),
6611 connector->encoder->base.id,
6612 drm_get_encoder_name(connector->encoder));
6613
6614 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6615
6616 if (dev_priv->display.write_eld)
6617 dev_priv->display.write_eld(connector, crtc);
6618 }
6619
6620 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6621 void intel_crtc_load_lut(struct drm_crtc *crtc)
6622 {
6623 struct drm_device *dev = crtc->dev;
6624 struct drm_i915_private *dev_priv = dev->dev_private;
6625 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6626 int palreg = PALETTE(intel_crtc->pipe);
6627 int i;
6628
6629 /* The clocks have to be on to load the palette. */
6630 if (!crtc->enabled || !intel_crtc->active)
6631 return;
6632
6633 /* use legacy palette for Ironlake */
6634 if (HAS_PCH_SPLIT(dev))
6635 palreg = LGC_PALETTE(intel_crtc->pipe);
6636
6637 for (i = 0; i < 256; i++) {
6638 I915_WRITE(palreg + 4 * i,
6639 (intel_crtc->lut_r[i] << 16) |
6640 (intel_crtc->lut_g[i] << 8) |
6641 intel_crtc->lut_b[i]);
6642 }
6643 }
6644
6645 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6646 {
6647 struct drm_device *dev = crtc->dev;
6648 struct drm_i915_private *dev_priv = dev->dev_private;
6649 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6650 bool visible = base != 0;
6651 u32 cntl;
6652
6653 if (intel_crtc->cursor_visible == visible)
6654 return;
6655
6656 cntl = I915_READ(_CURACNTR);
6657 if (visible) {
6658 /* On these chipsets we can only modify the base whilst
6659 * the cursor is disabled.
6660 */
6661 I915_WRITE(_CURABASE, base);
6662
6663 cntl &= ~(CURSOR_FORMAT_MASK);
6664 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6665 cntl |= CURSOR_ENABLE |
6666 CURSOR_GAMMA_ENABLE |
6667 CURSOR_FORMAT_ARGB;
6668 } else
6669 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6670 I915_WRITE(_CURACNTR, cntl);
6671
6672 intel_crtc->cursor_visible = visible;
6673 }
6674
6675 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6676 {
6677 struct drm_device *dev = crtc->dev;
6678 struct drm_i915_private *dev_priv = dev->dev_private;
6679 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6680 int pipe = intel_crtc->pipe;
6681 bool visible = base != 0;
6682
6683 if (intel_crtc->cursor_visible != visible) {
6684 uint32_t cntl = I915_READ(CURCNTR(pipe));
6685 if (base) {
6686 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6687 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6688 cntl |= pipe << 28; /* Connect to correct pipe */
6689 } else {
6690 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6691 cntl |= CURSOR_MODE_DISABLE;
6692 }
6693 I915_WRITE(CURCNTR(pipe), cntl);
6694
6695 intel_crtc->cursor_visible = visible;
6696 }
6697 /* and commit changes on next vblank */
6698 I915_WRITE(CURBASE(pipe), base);
6699 }
6700
6701 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6702 {
6703 struct drm_device *dev = crtc->dev;
6704 struct drm_i915_private *dev_priv = dev->dev_private;
6705 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6706 int pipe = intel_crtc->pipe;
6707 bool visible = base != 0;
6708
6709 if (intel_crtc->cursor_visible != visible) {
6710 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6711 if (base) {
6712 cntl &= ~CURSOR_MODE;
6713 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6714 } else {
6715 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6716 cntl |= CURSOR_MODE_DISABLE;
6717 }
6718 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6719
6720 intel_crtc->cursor_visible = visible;
6721 }
6722 /* and commit changes on next vblank */
6723 I915_WRITE(CURBASE_IVB(pipe), base);
6724 }
6725
6726 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6727 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6728 bool on)
6729 {
6730 struct drm_device *dev = crtc->dev;
6731 struct drm_i915_private *dev_priv = dev->dev_private;
6732 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6733 int pipe = intel_crtc->pipe;
6734 int x = intel_crtc->cursor_x;
6735 int y = intel_crtc->cursor_y;
6736 u32 base, pos;
6737 bool visible;
6738
6739 pos = 0;
6740
6741 if (on && crtc->enabled && crtc->fb) {
6742 base = intel_crtc->cursor_addr;
6743 if (x > (int) crtc->fb->width)
6744 base = 0;
6745
6746 if (y > (int) crtc->fb->height)
6747 base = 0;
6748 } else
6749 base = 0;
6750
6751 if (x < 0) {
6752 if (x + intel_crtc->cursor_width < 0)
6753 base = 0;
6754
6755 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6756 x = -x;
6757 }
6758 pos |= x << CURSOR_X_SHIFT;
6759
6760 if (y < 0) {
6761 if (y + intel_crtc->cursor_height < 0)
6762 base = 0;
6763
6764 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6765 y = -y;
6766 }
6767 pos |= y << CURSOR_Y_SHIFT;
6768
6769 visible = base != 0;
6770 if (!visible && !intel_crtc->cursor_visible)
6771 return;
6772
6773 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6774 I915_WRITE(CURPOS_IVB(pipe), pos);
6775 ivb_update_cursor(crtc, base);
6776 } else {
6777 I915_WRITE(CURPOS(pipe), pos);
6778 if (IS_845G(dev) || IS_I865G(dev))
6779 i845_update_cursor(crtc, base);
6780 else
6781 i9xx_update_cursor(crtc, base);
6782 }
6783
6784 if (visible)
6785 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
6786 }
6787
6788 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6789 struct drm_file *file,
6790 uint32_t handle,
6791 uint32_t width, uint32_t height)
6792 {
6793 struct drm_device *dev = crtc->dev;
6794 struct drm_i915_private *dev_priv = dev->dev_private;
6795 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6796 struct drm_i915_gem_object *obj;
6797 uint32_t addr;
6798 int ret;
6799
6800 DRM_DEBUG_KMS("\n");
6801
6802 /* if we want to turn off the cursor ignore width and height */
6803 if (!handle) {
6804 DRM_DEBUG_KMS("cursor off\n");
6805 addr = 0;
6806 obj = NULL;
6807 mutex_lock(&dev->struct_mutex);
6808 goto finish;
6809 }
6810
6811 /* Currently we only support 64x64 cursors */
6812 if (width != 64 || height != 64) {
6813 DRM_ERROR("we currently only support 64x64 cursors\n");
6814 return -EINVAL;
6815 }
6816
6817 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6818 if (&obj->base == NULL)
6819 return -ENOENT;
6820
6821 if (obj->base.size < width * height * 4) {
6822 DRM_ERROR("buffer is to small\n");
6823 ret = -ENOMEM;
6824 goto fail;
6825 }
6826
6827 /* we only need to pin inside GTT if cursor is non-phy */
6828 mutex_lock(&dev->struct_mutex);
6829 if (!dev_priv->info->cursor_needs_physical) {
6830 if (obj->tiling_mode) {
6831 DRM_ERROR("cursor cannot be tiled\n");
6832 ret = -EINVAL;
6833 goto fail_locked;
6834 }
6835
6836 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6837 if (ret) {
6838 DRM_ERROR("failed to move cursor bo into the GTT\n");
6839 goto fail_locked;
6840 }
6841
6842 ret = i915_gem_object_put_fence(obj);
6843 if (ret) {
6844 DRM_ERROR("failed to release fence for cursor");
6845 goto fail_unpin;
6846 }
6847
6848 addr = obj->gtt_offset;
6849 } else {
6850 int align = IS_I830(dev) ? 16 * 1024 : 256;
6851 ret = i915_gem_attach_phys_object(dev, obj,
6852 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6853 align);
6854 if (ret) {
6855 DRM_ERROR("failed to attach phys object\n");
6856 goto fail_locked;
6857 }
6858 addr = obj->phys_obj->handle->busaddr;
6859 }
6860
6861 if (IS_GEN2(dev))
6862 I915_WRITE(CURSIZE, (height << 12) | width);
6863
6864 finish:
6865 if (intel_crtc->cursor_bo) {
6866 if (dev_priv->info->cursor_needs_physical) {
6867 if (intel_crtc->cursor_bo != obj)
6868 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6869 } else
6870 i915_gem_object_unpin(intel_crtc->cursor_bo);
6871 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6872 }
6873
6874 mutex_unlock(&dev->struct_mutex);
6875
6876 intel_crtc->cursor_addr = addr;
6877 intel_crtc->cursor_bo = obj;
6878 intel_crtc->cursor_width = width;
6879 intel_crtc->cursor_height = height;
6880
6881 intel_crtc_update_cursor(crtc, true);
6882
6883 return 0;
6884 fail_unpin:
6885 i915_gem_object_unpin(obj);
6886 fail_locked:
6887 mutex_unlock(&dev->struct_mutex);
6888 fail:
6889 drm_gem_object_unreference_unlocked(&obj->base);
6890 return ret;
6891 }
6892
6893 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6894 {
6895 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6896
6897 intel_crtc->cursor_x = x;
6898 intel_crtc->cursor_y = y;
6899
6900 intel_crtc_update_cursor(crtc, true);
6901
6902 return 0;
6903 }
6904
6905 /** Sets the color ramps on behalf of RandR */
6906 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6907 u16 blue, int regno)
6908 {
6909 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6910
6911 intel_crtc->lut_r[regno] = red >> 8;
6912 intel_crtc->lut_g[regno] = green >> 8;
6913 intel_crtc->lut_b[regno] = blue >> 8;
6914 }
6915
6916 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6917 u16 *blue, int regno)
6918 {
6919 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6920
6921 *red = intel_crtc->lut_r[regno] << 8;
6922 *green = intel_crtc->lut_g[regno] << 8;
6923 *blue = intel_crtc->lut_b[regno] << 8;
6924 }
6925
6926 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6927 u16 *blue, uint32_t start, uint32_t size)
6928 {
6929 int end = (start + size > 256) ? 256 : start + size, i;
6930 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6931
6932 for (i = start; i < end; i++) {
6933 intel_crtc->lut_r[i] = red[i] >> 8;
6934 intel_crtc->lut_g[i] = green[i] >> 8;
6935 intel_crtc->lut_b[i] = blue[i] >> 8;
6936 }
6937
6938 intel_crtc_load_lut(crtc);
6939 }
6940
6941 /**
6942 * Get a pipe with a simple mode set on it for doing load-based monitor
6943 * detection.
6944 *
6945 * It will be up to the load-detect code to adjust the pipe as appropriate for
6946 * its requirements. The pipe will be connected to no other encoders.
6947 *
6948 * Currently this code will only succeed if there is a pipe with no encoders
6949 * configured for it. In the future, it could choose to temporarily disable
6950 * some outputs to free up a pipe for its use.
6951 *
6952 * \return crtc, or NULL if no pipes are available.
6953 */
6954
6955 /* VESA 640x480x72Hz mode to set on the pipe */
6956 static struct drm_display_mode load_detect_mode = {
6957 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6958 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6959 };
6960
6961 static struct drm_framebuffer *
6962 intel_framebuffer_create(struct drm_device *dev,
6963 struct drm_mode_fb_cmd2 *mode_cmd,
6964 struct drm_i915_gem_object *obj)
6965 {
6966 struct intel_framebuffer *intel_fb;
6967 int ret;
6968
6969 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6970 if (!intel_fb) {
6971 drm_gem_object_unreference_unlocked(&obj->base);
6972 return ERR_PTR(-ENOMEM);
6973 }
6974
6975 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6976 if (ret) {
6977 drm_gem_object_unreference_unlocked(&obj->base);
6978 kfree(intel_fb);
6979 return ERR_PTR(ret);
6980 }
6981
6982 return &intel_fb->base;
6983 }
6984
6985 static u32
6986 intel_framebuffer_pitch_for_width(int width, int bpp)
6987 {
6988 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6989 return ALIGN(pitch, 64);
6990 }
6991
6992 static u32
6993 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6994 {
6995 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6996 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6997 }
6998
6999 static struct drm_framebuffer *
7000 intel_framebuffer_create_for_mode(struct drm_device *dev,
7001 struct drm_display_mode *mode,
7002 int depth, int bpp)
7003 {
7004 struct drm_i915_gem_object *obj;
7005 struct drm_mode_fb_cmd2 mode_cmd;
7006
7007 obj = i915_gem_alloc_object(dev,
7008 intel_framebuffer_size_for_mode(mode, bpp));
7009 if (obj == NULL)
7010 return ERR_PTR(-ENOMEM);
7011
7012 mode_cmd.width = mode->hdisplay;
7013 mode_cmd.height = mode->vdisplay;
7014 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7015 bpp);
7016 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7017
7018 return intel_framebuffer_create(dev, &mode_cmd, obj);
7019 }
7020
7021 static struct drm_framebuffer *
7022 mode_fits_in_fbdev(struct drm_device *dev,
7023 struct drm_display_mode *mode)
7024 {
7025 struct drm_i915_private *dev_priv = dev->dev_private;
7026 struct drm_i915_gem_object *obj;
7027 struct drm_framebuffer *fb;
7028
7029 if (dev_priv->fbdev == NULL)
7030 return NULL;
7031
7032 obj = dev_priv->fbdev->ifb.obj;
7033 if (obj == NULL)
7034 return NULL;
7035
7036 fb = &dev_priv->fbdev->ifb.base;
7037 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7038 fb->bits_per_pixel))
7039 return NULL;
7040
7041 if (obj->base.size < mode->vdisplay * fb->pitches[0])
7042 return NULL;
7043
7044 return fb;
7045 }
7046
7047 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
7048 struct drm_connector *connector,
7049 struct drm_display_mode *mode,
7050 struct intel_load_detect_pipe *old)
7051 {
7052 struct intel_crtc *intel_crtc;
7053 struct drm_crtc *possible_crtc;
7054 struct drm_encoder *encoder = &intel_encoder->base;
7055 struct drm_crtc *crtc = NULL;
7056 struct drm_device *dev = encoder->dev;
7057 struct drm_framebuffer *old_fb;
7058 int i = -1;
7059
7060 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7061 connector->base.id, drm_get_connector_name(connector),
7062 encoder->base.id, drm_get_encoder_name(encoder));
7063
7064 /*
7065 * Algorithm gets a little messy:
7066 *
7067 * - if the connector already has an assigned crtc, use it (but make
7068 * sure it's on first)
7069 *
7070 * - try to find the first unused crtc that can drive this connector,
7071 * and use that if we find one
7072 */
7073
7074 /* See if we already have a CRTC for this connector */
7075 if (encoder->crtc) {
7076 crtc = encoder->crtc;
7077
7078 intel_crtc = to_intel_crtc(crtc);
7079 old->dpms_mode = intel_crtc->dpms_mode;
7080 old->load_detect_temp = false;
7081
7082 /* Make sure the crtc and connector are running */
7083 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
7084 struct drm_encoder_helper_funcs *encoder_funcs;
7085 struct drm_crtc_helper_funcs *crtc_funcs;
7086
7087 crtc_funcs = crtc->helper_private;
7088 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
7089
7090 encoder_funcs = encoder->helper_private;
7091 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
7092 }
7093
7094 return true;
7095 }
7096
7097 /* Find an unused one (if possible) */
7098 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7099 i++;
7100 if (!(encoder->possible_crtcs & (1 << i)))
7101 continue;
7102 if (!possible_crtc->enabled) {
7103 crtc = possible_crtc;
7104 break;
7105 }
7106 }
7107
7108 /*
7109 * If we didn't find an unused CRTC, don't use any.
7110 */
7111 if (!crtc) {
7112 DRM_DEBUG_KMS("no pipe available for load-detect\n");
7113 return false;
7114 }
7115
7116 encoder->crtc = crtc;
7117 connector->encoder = encoder;
7118
7119 intel_crtc = to_intel_crtc(crtc);
7120 old->dpms_mode = intel_crtc->dpms_mode;
7121 old->load_detect_temp = true;
7122 old->release_fb = NULL;
7123
7124 if (!mode)
7125 mode = &load_detect_mode;
7126
7127 old_fb = crtc->fb;
7128
7129 /* We need a framebuffer large enough to accommodate all accesses
7130 * that the plane may generate whilst we perform load detection.
7131 * We can not rely on the fbcon either being present (we get called
7132 * during its initialisation to detect all boot displays, or it may
7133 * not even exist) or that it is large enough to satisfy the
7134 * requested mode.
7135 */
7136 crtc->fb = mode_fits_in_fbdev(dev, mode);
7137 if (crtc->fb == NULL) {
7138 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7139 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7140 old->release_fb = crtc->fb;
7141 } else
7142 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7143 if (IS_ERR(crtc->fb)) {
7144 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7145 crtc->fb = old_fb;
7146 return false;
7147 }
7148
7149 if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
7150 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7151 if (old->release_fb)
7152 old->release_fb->funcs->destroy(old->release_fb);
7153 crtc->fb = old_fb;
7154 return false;
7155 }
7156
7157 /* let the connector get through one full cycle before testing */
7158 intel_wait_for_vblank(dev, intel_crtc->pipe);
7159
7160 return true;
7161 }
7162
7163 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
7164 struct drm_connector *connector,
7165 struct intel_load_detect_pipe *old)
7166 {
7167 struct drm_encoder *encoder = &intel_encoder->base;
7168 struct drm_device *dev = encoder->dev;
7169 struct drm_crtc *crtc = encoder->crtc;
7170 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
7171 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
7172
7173 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7174 connector->base.id, drm_get_connector_name(connector),
7175 encoder->base.id, drm_get_encoder_name(encoder));
7176
7177 if (old->load_detect_temp) {
7178 connector->encoder = NULL;
7179 drm_helper_disable_unused_functions(dev);
7180
7181 if (old->release_fb)
7182 old->release_fb->funcs->destroy(old->release_fb);
7183
7184 return;
7185 }
7186
7187 /* Switch crtc and encoder back off if necessary */
7188 if (old->dpms_mode != DRM_MODE_DPMS_ON) {
7189 encoder_funcs->dpms(encoder, old->dpms_mode);
7190 crtc_funcs->dpms(crtc, old->dpms_mode);
7191 }
7192 }
7193
7194 /* Returns the clock of the currently programmed mode of the given pipe. */
7195 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
7196 {
7197 struct drm_i915_private *dev_priv = dev->dev_private;
7198 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7199 int pipe = intel_crtc->pipe;
7200 u32 dpll = I915_READ(DPLL(pipe));
7201 u32 fp;
7202 intel_clock_t clock;
7203
7204 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7205 fp = I915_READ(FP0(pipe));
7206 else
7207 fp = I915_READ(FP1(pipe));
7208
7209 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7210 if (IS_PINEVIEW(dev)) {
7211 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7212 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7213 } else {
7214 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7215 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7216 }
7217
7218 if (!IS_GEN2(dev)) {
7219 if (IS_PINEVIEW(dev))
7220 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7221 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7222 else
7223 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7224 DPLL_FPA01_P1_POST_DIV_SHIFT);
7225
7226 switch (dpll & DPLL_MODE_MASK) {
7227 case DPLLB_MODE_DAC_SERIAL:
7228 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7229 5 : 10;
7230 break;
7231 case DPLLB_MODE_LVDS:
7232 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7233 7 : 14;
7234 break;
7235 default:
7236 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7237 "mode\n", (int)(dpll & DPLL_MODE_MASK));
7238 return 0;
7239 }
7240
7241 /* XXX: Handle the 100Mhz refclk */
7242 intel_clock(dev, 96000, &clock);
7243 } else {
7244 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7245
7246 if (is_lvds) {
7247 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7248 DPLL_FPA01_P1_POST_DIV_SHIFT);
7249 clock.p2 = 14;
7250
7251 if ((dpll & PLL_REF_INPUT_MASK) ==
7252 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7253 /* XXX: might not be 66MHz */
7254 intel_clock(dev, 66000, &clock);
7255 } else
7256 intel_clock(dev, 48000, &clock);
7257 } else {
7258 if (dpll & PLL_P1_DIVIDE_BY_TWO)
7259 clock.p1 = 2;
7260 else {
7261 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7262 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7263 }
7264 if (dpll & PLL_P2_DIVIDE_BY_4)
7265 clock.p2 = 4;
7266 else
7267 clock.p2 = 2;
7268
7269 intel_clock(dev, 48000, &clock);
7270 }
7271 }
7272
7273 /* XXX: It would be nice to validate the clocks, but we can't reuse
7274 * i830PllIsValid() because it relies on the xf86_config connector
7275 * configuration being accurate, which it isn't necessarily.
7276 */
7277
7278 return clock.dot;
7279 }
7280
7281 /** Returns the currently programmed mode of the given pipe. */
7282 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7283 struct drm_crtc *crtc)
7284 {
7285 struct drm_i915_private *dev_priv = dev->dev_private;
7286 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7287 int pipe = intel_crtc->pipe;
7288 struct drm_display_mode *mode;
7289 int htot = I915_READ(HTOTAL(pipe));
7290 int hsync = I915_READ(HSYNC(pipe));
7291 int vtot = I915_READ(VTOTAL(pipe));
7292 int vsync = I915_READ(VSYNC(pipe));
7293
7294 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7295 if (!mode)
7296 return NULL;
7297
7298 mode->clock = intel_crtc_clock_get(dev, crtc);
7299 mode->hdisplay = (htot & 0xffff) + 1;
7300 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7301 mode->hsync_start = (hsync & 0xffff) + 1;
7302 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7303 mode->vdisplay = (vtot & 0xffff) + 1;
7304 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7305 mode->vsync_start = (vsync & 0xffff) + 1;
7306 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7307
7308 drm_mode_set_name(mode);
7309 drm_mode_set_crtcinfo(mode, 0);
7310
7311 return mode;
7312 }
7313
7314 #define GPU_IDLE_TIMEOUT 500 /* ms */
7315
7316 /* When this timer fires, we've been idle for awhile */
7317 static void intel_gpu_idle_timer(unsigned long arg)
7318 {
7319 struct drm_device *dev = (struct drm_device *)arg;
7320 drm_i915_private_t *dev_priv = dev->dev_private;
7321
7322 if (!list_empty(&dev_priv->mm.active_list)) {
7323 /* Still processing requests, so just re-arm the timer. */
7324 mod_timer(&dev_priv->idle_timer, jiffies +
7325 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
7326 return;
7327 }
7328
7329 dev_priv->busy = false;
7330 queue_work(dev_priv->wq, &dev_priv->idle_work);
7331 }
7332
7333 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
7334
7335 static void intel_crtc_idle_timer(unsigned long arg)
7336 {
7337 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
7338 struct drm_crtc *crtc = &intel_crtc->base;
7339 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
7340 struct intel_framebuffer *intel_fb;
7341
7342 intel_fb = to_intel_framebuffer(crtc->fb);
7343 if (intel_fb && intel_fb->obj->active) {
7344 /* The framebuffer is still being accessed by the GPU. */
7345 mod_timer(&intel_crtc->idle_timer, jiffies +
7346 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
7347 return;
7348 }
7349
7350 intel_crtc->busy = false;
7351 queue_work(dev_priv->wq, &dev_priv->idle_work);
7352 }
7353
7354 static void intel_increase_pllclock(struct drm_crtc *crtc)
7355 {
7356 struct drm_device *dev = crtc->dev;
7357 drm_i915_private_t *dev_priv = dev->dev_private;
7358 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7359 int pipe = intel_crtc->pipe;
7360 int dpll_reg = DPLL(pipe);
7361 int dpll;
7362
7363 if (HAS_PCH_SPLIT(dev))
7364 return;
7365
7366 if (!dev_priv->lvds_downclock_avail)
7367 return;
7368
7369 dpll = I915_READ(dpll_reg);
7370 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7371 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7372
7373 assert_panel_unlocked(dev_priv, pipe);
7374
7375 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7376 I915_WRITE(dpll_reg, dpll);
7377 intel_wait_for_vblank(dev, pipe);
7378
7379 dpll = I915_READ(dpll_reg);
7380 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7381 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7382 }
7383
7384 /* Schedule downclock */
7385 mod_timer(&intel_crtc->idle_timer, jiffies +
7386 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
7387 }
7388
7389 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7390 {
7391 struct drm_device *dev = crtc->dev;
7392 drm_i915_private_t *dev_priv = dev->dev_private;
7393 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7394 int pipe = intel_crtc->pipe;
7395 int dpll_reg = DPLL(pipe);
7396 int dpll = I915_READ(dpll_reg);
7397
7398 if (HAS_PCH_SPLIT(dev))
7399 return;
7400
7401 if (!dev_priv->lvds_downclock_avail)
7402 return;
7403
7404 /*
7405 * Since this is called by a timer, we should never get here in
7406 * the manual case.
7407 */
7408 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7409 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7410
7411 assert_panel_unlocked(dev_priv, pipe);
7412
7413 dpll |= DISPLAY_RATE_SELECT_FPA1;
7414 I915_WRITE(dpll_reg, dpll);
7415 intel_wait_for_vblank(dev, pipe);
7416 dpll = I915_READ(dpll_reg);
7417 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7418 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7419 }
7420
7421 }
7422
7423 /**
7424 * intel_idle_update - adjust clocks for idleness
7425 * @work: work struct
7426 *
7427 * Either the GPU or display (or both) went idle. Check the busy status
7428 * here and adjust the CRTC and GPU clocks as necessary.
7429 */
7430 static void intel_idle_update(struct work_struct *work)
7431 {
7432 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
7433 idle_work);
7434 struct drm_device *dev = dev_priv->dev;
7435 struct drm_crtc *crtc;
7436 struct intel_crtc *intel_crtc;
7437
7438 if (!i915_powersave)
7439 return;
7440
7441 mutex_lock(&dev->struct_mutex);
7442
7443 i915_update_gfx_val(dev_priv);
7444
7445 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7446 /* Skip inactive CRTCs */
7447 if (!crtc->fb)
7448 continue;
7449
7450 intel_crtc = to_intel_crtc(crtc);
7451 if (!intel_crtc->busy)
7452 intel_decrease_pllclock(crtc);
7453 }
7454
7455
7456 mutex_unlock(&dev->struct_mutex);
7457 }
7458
7459 /**
7460 * intel_mark_busy - mark the GPU and possibly the display busy
7461 * @dev: drm device
7462 * @obj: object we're operating on
7463 *
7464 * Callers can use this function to indicate that the GPU is busy processing
7465 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
7466 * buffer), we'll also mark the display as busy, so we know to increase its
7467 * clock frequency.
7468 */
7469 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
7470 {
7471 drm_i915_private_t *dev_priv = dev->dev_private;
7472 struct drm_crtc *crtc = NULL;
7473 struct intel_framebuffer *intel_fb;
7474 struct intel_crtc *intel_crtc;
7475
7476 if (!drm_core_check_feature(dev, DRIVER_MODESET))
7477 return;
7478
7479 if (!dev_priv->busy)
7480 dev_priv->busy = true;
7481 else
7482 mod_timer(&dev_priv->idle_timer, jiffies +
7483 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
7484
7485 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7486 if (!crtc->fb)
7487 continue;
7488
7489 intel_crtc = to_intel_crtc(crtc);
7490 intel_fb = to_intel_framebuffer(crtc->fb);
7491 if (intel_fb->obj == obj) {
7492 if (!intel_crtc->busy) {
7493 /* Non-busy -> busy, upclock */
7494 intel_increase_pllclock(crtc);
7495 intel_crtc->busy = true;
7496 } else {
7497 /* Busy -> busy, put off timer */
7498 mod_timer(&intel_crtc->idle_timer, jiffies +
7499 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
7500 }
7501 }
7502 }
7503 }
7504
7505 static void intel_crtc_destroy(struct drm_crtc *crtc)
7506 {
7507 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7508 struct drm_device *dev = crtc->dev;
7509 struct intel_unpin_work *work;
7510 unsigned long flags;
7511
7512 spin_lock_irqsave(&dev->event_lock, flags);
7513 work = intel_crtc->unpin_work;
7514 intel_crtc->unpin_work = NULL;
7515 spin_unlock_irqrestore(&dev->event_lock, flags);
7516
7517 if (work) {
7518 cancel_work_sync(&work->work);
7519 kfree(work);
7520 }
7521
7522 drm_crtc_cleanup(crtc);
7523
7524 kfree(intel_crtc);
7525 }
7526
7527 static void intel_unpin_work_fn(struct work_struct *__work)
7528 {
7529 struct intel_unpin_work *work =
7530 container_of(__work, struct intel_unpin_work, work);
7531
7532 mutex_lock(&work->dev->struct_mutex);
7533 intel_unpin_fb_obj(work->old_fb_obj);
7534 drm_gem_object_unreference(&work->pending_flip_obj->base);
7535 drm_gem_object_unreference(&work->old_fb_obj->base);
7536
7537 intel_update_fbc(work->dev);
7538 mutex_unlock(&work->dev->struct_mutex);
7539 kfree(work);
7540 }
7541
7542 static void do_intel_finish_page_flip(struct drm_device *dev,
7543 struct drm_crtc *crtc)
7544 {
7545 drm_i915_private_t *dev_priv = dev->dev_private;
7546 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7547 struct intel_unpin_work *work;
7548 struct drm_i915_gem_object *obj;
7549 struct drm_pending_vblank_event *e;
7550 struct timeval tnow, tvbl;
7551 unsigned long flags;
7552
7553 /* Ignore early vblank irqs */
7554 if (intel_crtc == NULL)
7555 return;
7556
7557 do_gettimeofday(&tnow);
7558
7559 spin_lock_irqsave(&dev->event_lock, flags);
7560 work = intel_crtc->unpin_work;
7561 if (work == NULL || !work->pending) {
7562 spin_unlock_irqrestore(&dev->event_lock, flags);
7563 return;
7564 }
7565
7566 intel_crtc->unpin_work = NULL;
7567
7568 if (work->event) {
7569 e = work->event;
7570 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
7571
7572 /* Called before vblank count and timestamps have
7573 * been updated for the vblank interval of flip
7574 * completion? Need to increment vblank count and
7575 * add one videorefresh duration to returned timestamp
7576 * to account for this. We assume this happened if we
7577 * get called over 0.9 frame durations after the last
7578 * timestamped vblank.
7579 *
7580 * This calculation can not be used with vrefresh rates
7581 * below 5Hz (10Hz to be on the safe side) without
7582 * promoting to 64 integers.
7583 */
7584 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
7585 9 * crtc->framedur_ns) {
7586 e->event.sequence++;
7587 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
7588 crtc->framedur_ns);
7589 }
7590
7591 e->event.tv_sec = tvbl.tv_sec;
7592 e->event.tv_usec = tvbl.tv_usec;
7593
7594 list_add_tail(&e->base.link,
7595 &e->base.file_priv->event_list);
7596 wake_up_interruptible(&e->base.file_priv->event_wait);
7597 }
7598
7599 drm_vblank_put(dev, intel_crtc->pipe);
7600
7601 spin_unlock_irqrestore(&dev->event_lock, flags);
7602
7603 obj = work->old_fb_obj;
7604
7605 atomic_clear_mask(1 << intel_crtc->plane,
7606 &obj->pending_flip.counter);
7607 if (atomic_read(&obj->pending_flip) == 0)
7608 wake_up(&dev_priv->pending_flip_queue);
7609
7610 schedule_work(&work->work);
7611
7612 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7613 }
7614
7615 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7616 {
7617 drm_i915_private_t *dev_priv = dev->dev_private;
7618 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7619
7620 do_intel_finish_page_flip(dev, crtc);
7621 }
7622
7623 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7624 {
7625 drm_i915_private_t *dev_priv = dev->dev_private;
7626 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7627
7628 do_intel_finish_page_flip(dev, crtc);
7629 }
7630
7631 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7632 {
7633 drm_i915_private_t *dev_priv = dev->dev_private;
7634 struct intel_crtc *intel_crtc =
7635 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7636 unsigned long flags;
7637
7638 spin_lock_irqsave(&dev->event_lock, flags);
7639 if (intel_crtc->unpin_work) {
7640 if ((++intel_crtc->unpin_work->pending) > 1)
7641 DRM_ERROR("Prepared flip multiple times\n");
7642 } else {
7643 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
7644 }
7645 spin_unlock_irqrestore(&dev->event_lock, flags);
7646 }
7647
7648 static int intel_gen2_queue_flip(struct drm_device *dev,
7649 struct drm_crtc *crtc,
7650 struct drm_framebuffer *fb,
7651 struct drm_i915_gem_object *obj)
7652 {
7653 struct drm_i915_private *dev_priv = dev->dev_private;
7654 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7655 unsigned long offset;
7656 u32 flip_mask;
7657 int ret;
7658
7659 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7660 if (ret)
7661 goto out;
7662
7663 /* Offset into the new buffer for cases of shared fbs between CRTCs */
7664 offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7665
7666 ret = BEGIN_LP_RING(6);
7667 if (ret)
7668 goto out;
7669
7670 /* Can't queue multiple flips, so wait for the previous
7671 * one to finish before executing the next.
7672 */
7673 if (intel_crtc->plane)
7674 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7675 else
7676 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7677 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7678 OUT_RING(MI_NOOP);
7679 OUT_RING(MI_DISPLAY_FLIP |
7680 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7681 OUT_RING(fb->pitches[0]);
7682 OUT_RING(obj->gtt_offset + offset);
7683 OUT_RING(0); /* aux display base address, unused */
7684 ADVANCE_LP_RING();
7685 out:
7686 return ret;
7687 }
7688
7689 static int intel_gen3_queue_flip(struct drm_device *dev,
7690 struct drm_crtc *crtc,
7691 struct drm_framebuffer *fb,
7692 struct drm_i915_gem_object *obj)
7693 {
7694 struct drm_i915_private *dev_priv = dev->dev_private;
7695 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7696 unsigned long offset;
7697 u32 flip_mask;
7698 int ret;
7699
7700 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7701 if (ret)
7702 goto out;
7703
7704 /* Offset into the new buffer for cases of shared fbs between CRTCs */
7705 offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7706
7707 ret = BEGIN_LP_RING(6);
7708 if (ret)
7709 goto out;
7710
7711 if (intel_crtc->plane)
7712 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7713 else
7714 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7715 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7716 OUT_RING(MI_NOOP);
7717 OUT_RING(MI_DISPLAY_FLIP_I915 |
7718 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7719 OUT_RING(fb->pitches[0]);
7720 OUT_RING(obj->gtt_offset + offset);
7721 OUT_RING(MI_NOOP);
7722
7723 ADVANCE_LP_RING();
7724 out:
7725 return ret;
7726 }
7727
7728 static int intel_gen4_queue_flip(struct drm_device *dev,
7729 struct drm_crtc *crtc,
7730 struct drm_framebuffer *fb,
7731 struct drm_i915_gem_object *obj)
7732 {
7733 struct drm_i915_private *dev_priv = dev->dev_private;
7734 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7735 uint32_t pf, pipesrc;
7736 int ret;
7737
7738 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7739 if (ret)
7740 goto out;
7741
7742 ret = BEGIN_LP_RING(4);
7743 if (ret)
7744 goto out;
7745
7746 /* i965+ uses the linear or tiled offsets from the
7747 * Display Registers (which do not change across a page-flip)
7748 * so we need only reprogram the base address.
7749 */
7750 OUT_RING(MI_DISPLAY_FLIP |
7751 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7752 OUT_RING(fb->pitches[0]);
7753 OUT_RING(obj->gtt_offset | obj->tiling_mode);
7754
7755 /* XXX Enabling the panel-fitter across page-flip is so far
7756 * untested on non-native modes, so ignore it for now.
7757 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7758 */
7759 pf = 0;
7760 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7761 OUT_RING(pf | pipesrc);
7762 ADVANCE_LP_RING();
7763 out:
7764 return ret;
7765 }
7766
7767 static int intel_gen6_queue_flip(struct drm_device *dev,
7768 struct drm_crtc *crtc,
7769 struct drm_framebuffer *fb,
7770 struct drm_i915_gem_object *obj)
7771 {
7772 struct drm_i915_private *dev_priv = dev->dev_private;
7773 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7774 uint32_t pf, pipesrc;
7775 int ret;
7776
7777 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7778 if (ret)
7779 goto out;
7780
7781 ret = BEGIN_LP_RING(4);
7782 if (ret)
7783 goto out;
7784
7785 OUT_RING(MI_DISPLAY_FLIP |
7786 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7787 OUT_RING(fb->pitches[0] | obj->tiling_mode);
7788 OUT_RING(obj->gtt_offset);
7789
7790 pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7791 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7792 OUT_RING(pf | pipesrc);
7793 ADVANCE_LP_RING();
7794 out:
7795 return ret;
7796 }
7797
7798 /*
7799 * On gen7 we currently use the blit ring because (in early silicon at least)
7800 * the render ring doesn't give us interrpts for page flip completion, which
7801 * means clients will hang after the first flip is queued. Fortunately the
7802 * blit ring generates interrupts properly, so use it instead.
7803 */
7804 static int intel_gen7_queue_flip(struct drm_device *dev,
7805 struct drm_crtc *crtc,
7806 struct drm_framebuffer *fb,
7807 struct drm_i915_gem_object *obj)
7808 {
7809 struct drm_i915_private *dev_priv = dev->dev_private;
7810 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7811 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7812 int ret;
7813
7814 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7815 if (ret)
7816 goto out;
7817
7818 ret = intel_ring_begin(ring, 4);
7819 if (ret)
7820 goto out;
7821
7822 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
7823 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7824 intel_ring_emit(ring, (obj->gtt_offset));
7825 intel_ring_emit(ring, (MI_NOOP));
7826 intel_ring_advance(ring);
7827 out:
7828 return ret;
7829 }
7830
7831 static int intel_default_queue_flip(struct drm_device *dev,
7832 struct drm_crtc *crtc,
7833 struct drm_framebuffer *fb,
7834 struct drm_i915_gem_object *obj)
7835 {
7836 return -ENODEV;
7837 }
7838
7839 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7840 struct drm_framebuffer *fb,
7841 struct drm_pending_vblank_event *event)
7842 {
7843 struct drm_device *dev = crtc->dev;
7844 struct drm_i915_private *dev_priv = dev->dev_private;
7845 struct intel_framebuffer *intel_fb;
7846 struct drm_i915_gem_object *obj;
7847 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7848 struct intel_unpin_work *work;
7849 unsigned long flags;
7850 int ret;
7851
7852 work = kzalloc(sizeof *work, GFP_KERNEL);
7853 if (work == NULL)
7854 return -ENOMEM;
7855
7856 work->event = event;
7857 work->dev = crtc->dev;
7858 intel_fb = to_intel_framebuffer(crtc->fb);
7859 work->old_fb_obj = intel_fb->obj;
7860 INIT_WORK(&work->work, intel_unpin_work_fn);
7861
7862 ret = drm_vblank_get(dev, intel_crtc->pipe);
7863 if (ret)
7864 goto free_work;
7865
7866 /* We borrow the event spin lock for protecting unpin_work */
7867 spin_lock_irqsave(&dev->event_lock, flags);
7868 if (intel_crtc->unpin_work) {
7869 spin_unlock_irqrestore(&dev->event_lock, flags);
7870 kfree(work);
7871 drm_vblank_put(dev, intel_crtc->pipe);
7872
7873 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7874 return -EBUSY;
7875 }
7876 intel_crtc->unpin_work = work;
7877 spin_unlock_irqrestore(&dev->event_lock, flags);
7878
7879 intel_fb = to_intel_framebuffer(fb);
7880 obj = intel_fb->obj;
7881
7882 mutex_lock(&dev->struct_mutex);
7883
7884 /* Reference the objects for the scheduled work. */
7885 drm_gem_object_reference(&work->old_fb_obj->base);
7886 drm_gem_object_reference(&obj->base);
7887
7888 crtc->fb = fb;
7889
7890 work->pending_flip_obj = obj;
7891
7892 work->enable_stall_check = true;
7893
7894 /* Block clients from rendering to the new back buffer until
7895 * the flip occurs and the object is no longer visible.
7896 */
7897 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7898
7899 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7900 if (ret)
7901 goto cleanup_pending;
7902
7903 intel_disable_fbc(dev);
7904 mutex_unlock(&dev->struct_mutex);
7905
7906 trace_i915_flip_request(intel_crtc->plane, obj);
7907
7908 return 0;
7909
7910 cleanup_pending:
7911 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7912 drm_gem_object_unreference(&work->old_fb_obj->base);
7913 drm_gem_object_unreference(&obj->base);
7914 mutex_unlock(&dev->struct_mutex);
7915
7916 spin_lock_irqsave(&dev->event_lock, flags);
7917 intel_crtc->unpin_work = NULL;
7918 spin_unlock_irqrestore(&dev->event_lock, flags);
7919
7920 drm_vblank_put(dev, intel_crtc->pipe);
7921 free_work:
7922 kfree(work);
7923
7924 return ret;
7925 }
7926
7927 static void intel_sanitize_modesetting(struct drm_device *dev,
7928 int pipe, int plane)
7929 {
7930 struct drm_i915_private *dev_priv = dev->dev_private;
7931 u32 reg, val;
7932
7933 /* Clear any frame start delays used for debugging left by the BIOS */
7934 for_each_pipe(pipe) {
7935 reg = PIPECONF(pipe);
7936 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
7937 }
7938
7939 if (HAS_PCH_SPLIT(dev))
7940 return;
7941
7942 /* Who knows what state these registers were left in by the BIOS or
7943 * grub?
7944 *
7945 * If we leave the registers in a conflicting state (e.g. with the
7946 * display plane reading from the other pipe than the one we intend
7947 * to use) then when we attempt to teardown the active mode, we will
7948 * not disable the pipes and planes in the correct order -- leaving
7949 * a plane reading from a disabled pipe and possibly leading to
7950 * undefined behaviour.
7951 */
7952
7953 reg = DSPCNTR(plane);
7954 val = I915_READ(reg);
7955
7956 if ((val & DISPLAY_PLANE_ENABLE) == 0)
7957 return;
7958 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
7959 return;
7960
7961 /* This display plane is active and attached to the other CPU pipe. */
7962 pipe = !pipe;
7963
7964 /* Disable the plane and wait for it to stop reading from the pipe. */
7965 intel_disable_plane(dev_priv, plane, pipe);
7966 intel_disable_pipe(dev_priv, pipe);
7967 }
7968
7969 static void intel_crtc_reset(struct drm_crtc *crtc)
7970 {
7971 struct drm_device *dev = crtc->dev;
7972 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7973
7974 /* Reset flags back to the 'unknown' status so that they
7975 * will be correctly set on the initial modeset.
7976 */
7977 intel_crtc->dpms_mode = -1;
7978
7979 /* We need to fix up any BIOS configuration that conflicts with
7980 * our expectations.
7981 */
7982 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
7983 }
7984
7985 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7986 .dpms = intel_crtc_dpms,
7987 .mode_fixup = intel_crtc_mode_fixup,
7988 .mode_set = intel_crtc_mode_set,
7989 .mode_set_base = intel_pipe_set_base,
7990 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7991 .load_lut = intel_crtc_load_lut,
7992 .disable = intel_crtc_disable,
7993 };
7994
7995 static const struct drm_crtc_funcs intel_crtc_funcs = {
7996 .reset = intel_crtc_reset,
7997 .cursor_set = intel_crtc_cursor_set,
7998 .cursor_move = intel_crtc_cursor_move,
7999 .gamma_set = intel_crtc_gamma_set,
8000 .set_config = drm_crtc_helper_set_config,
8001 .destroy = intel_crtc_destroy,
8002 .page_flip = intel_crtc_page_flip,
8003 };
8004
8005 static void intel_crtc_init(struct drm_device *dev, int pipe)
8006 {
8007 drm_i915_private_t *dev_priv = dev->dev_private;
8008 struct intel_crtc *intel_crtc;
8009 int i;
8010
8011 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8012 if (intel_crtc == NULL)
8013 return;
8014
8015 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8016
8017 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8018 for (i = 0; i < 256; i++) {
8019 intel_crtc->lut_r[i] = i;
8020 intel_crtc->lut_g[i] = i;
8021 intel_crtc->lut_b[i] = i;
8022 }
8023
8024 /* Swap pipes & planes for FBC on pre-965 */
8025 intel_crtc->pipe = pipe;
8026 intel_crtc->plane = pipe;
8027 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8028 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8029 intel_crtc->plane = !pipe;
8030 }
8031
8032 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8033 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8034 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8035 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8036
8037 intel_crtc_reset(&intel_crtc->base);
8038 intel_crtc->active = true; /* force the pipe off on setup_init_config */
8039 intel_crtc->bpp = 24; /* default for pre-Ironlake */
8040
8041 if (HAS_PCH_SPLIT(dev)) {
8042 if (pipe == 2 && IS_IVYBRIDGE(dev))
8043 intel_crtc->no_pll = true;
8044 intel_helper_funcs.prepare = ironlake_crtc_prepare;
8045 intel_helper_funcs.commit = ironlake_crtc_commit;
8046 } else {
8047 intel_helper_funcs.prepare = i9xx_crtc_prepare;
8048 intel_helper_funcs.commit = i9xx_crtc_commit;
8049 }
8050
8051 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8052
8053 intel_crtc->busy = false;
8054
8055 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
8056 (unsigned long)intel_crtc);
8057 }
8058
8059 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8060 struct drm_file *file)
8061 {
8062 drm_i915_private_t *dev_priv = dev->dev_private;
8063 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8064 struct drm_mode_object *drmmode_obj;
8065 struct intel_crtc *crtc;
8066
8067 if (!dev_priv) {
8068 DRM_ERROR("called with no initialization\n");
8069 return -EINVAL;
8070 }
8071
8072 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8073 DRM_MODE_OBJECT_CRTC);
8074
8075 if (!drmmode_obj) {
8076 DRM_ERROR("no such CRTC id\n");
8077 return -EINVAL;
8078 }
8079
8080 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8081 pipe_from_crtc_id->pipe = crtc->pipe;
8082
8083 return 0;
8084 }
8085
8086 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
8087 {
8088 struct intel_encoder *encoder;
8089 int index_mask = 0;
8090 int entry = 0;
8091
8092 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8093 if (type_mask & encoder->clone_mask)
8094 index_mask |= (1 << entry);
8095 entry++;
8096 }
8097
8098 return index_mask;
8099 }
8100
8101 static bool has_edp_a(struct drm_device *dev)
8102 {
8103 struct drm_i915_private *dev_priv = dev->dev_private;
8104
8105 if (!IS_MOBILE(dev))
8106 return false;
8107
8108 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8109 return false;
8110
8111 if (IS_GEN5(dev) &&
8112 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8113 return false;
8114
8115 return true;
8116 }
8117
8118 static void intel_setup_outputs(struct drm_device *dev)
8119 {
8120 struct drm_i915_private *dev_priv = dev->dev_private;
8121 struct intel_encoder *encoder;
8122 bool dpd_is_edp = false;
8123 bool has_lvds;
8124
8125 has_lvds = intel_lvds_init(dev);
8126 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8127 /* disable the panel fitter on everything but LVDS */
8128 I915_WRITE(PFIT_CONTROL, 0);
8129 }
8130
8131 if (HAS_PCH_SPLIT(dev)) {
8132 dpd_is_edp = intel_dpd_is_edp(dev);
8133
8134 if (has_edp_a(dev))
8135 intel_dp_init(dev, DP_A);
8136
8137 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8138 intel_dp_init(dev, PCH_DP_D);
8139 }
8140
8141 intel_crt_init(dev);
8142
8143 if (HAS_PCH_SPLIT(dev)) {
8144 int found;
8145
8146 if (I915_READ(HDMIB) & PORT_DETECTED) {
8147 /* PCH SDVOB multiplex with HDMIB */
8148 found = intel_sdvo_init(dev, PCH_SDVOB, true);
8149 if (!found)
8150 intel_hdmi_init(dev, HDMIB);
8151 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8152 intel_dp_init(dev, PCH_DP_B);
8153 }
8154
8155 if (I915_READ(HDMIC) & PORT_DETECTED)
8156 intel_hdmi_init(dev, HDMIC);
8157
8158 if (I915_READ(HDMID) & PORT_DETECTED)
8159 intel_hdmi_init(dev, HDMID);
8160
8161 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8162 intel_dp_init(dev, PCH_DP_C);
8163
8164 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8165 intel_dp_init(dev, PCH_DP_D);
8166
8167 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8168 bool found = false;
8169
8170 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8171 DRM_DEBUG_KMS("probing SDVOB\n");
8172 found = intel_sdvo_init(dev, SDVOB, true);
8173 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8174 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8175 intel_hdmi_init(dev, SDVOB);
8176 }
8177
8178 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8179 DRM_DEBUG_KMS("probing DP_B\n");
8180 intel_dp_init(dev, DP_B);
8181 }
8182 }
8183
8184 /* Before G4X SDVOC doesn't have its own detect register */
8185
8186 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8187 DRM_DEBUG_KMS("probing SDVOC\n");
8188 found = intel_sdvo_init(dev, SDVOC, false);
8189 }
8190
8191 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8192
8193 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8194 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8195 intel_hdmi_init(dev, SDVOC);
8196 }
8197 if (SUPPORTS_INTEGRATED_DP(dev)) {
8198 DRM_DEBUG_KMS("probing DP_C\n");
8199 intel_dp_init(dev, DP_C);
8200 }
8201 }
8202
8203 if (SUPPORTS_INTEGRATED_DP(dev) &&
8204 (I915_READ(DP_D) & DP_DETECTED)) {
8205 DRM_DEBUG_KMS("probing DP_D\n");
8206 intel_dp_init(dev, DP_D);
8207 }
8208 } else if (IS_GEN2(dev))
8209 intel_dvo_init(dev);
8210
8211 if (SUPPORTS_TV(dev))
8212 intel_tv_init(dev);
8213
8214 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8215 encoder->base.possible_crtcs = encoder->crtc_mask;
8216 encoder->base.possible_clones =
8217 intel_encoder_clones(dev, encoder->clone_mask);
8218 }
8219
8220 /* disable all the possible outputs/crtcs before entering KMS mode */
8221 drm_helper_disable_unused_functions(dev);
8222
8223 if (HAS_PCH_SPLIT(dev))
8224 ironlake_init_pch_refclk(dev);
8225 }
8226
8227 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8228 {
8229 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8230
8231 drm_framebuffer_cleanup(fb);
8232 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8233
8234 kfree(intel_fb);
8235 }
8236
8237 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8238 struct drm_file *file,
8239 unsigned int *handle)
8240 {
8241 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8242 struct drm_i915_gem_object *obj = intel_fb->obj;
8243
8244 return drm_gem_handle_create(file, &obj->base, handle);
8245 }
8246
8247 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8248 .destroy = intel_user_framebuffer_destroy,
8249 .create_handle = intel_user_framebuffer_create_handle,
8250 };
8251
8252 int intel_framebuffer_init(struct drm_device *dev,
8253 struct intel_framebuffer *intel_fb,
8254 struct drm_mode_fb_cmd2 *mode_cmd,
8255 struct drm_i915_gem_object *obj)
8256 {
8257 int ret;
8258
8259 if (obj->tiling_mode == I915_TILING_Y)
8260 return -EINVAL;
8261
8262 if (mode_cmd->pitches[0] & 63)
8263 return -EINVAL;
8264
8265 switch (mode_cmd->pixel_format) {
8266 case DRM_FORMAT_RGB332:
8267 case DRM_FORMAT_RGB565:
8268 case DRM_FORMAT_XRGB8888:
8269 case DRM_FORMAT_XBGR8888:
8270 case DRM_FORMAT_ARGB8888:
8271 case DRM_FORMAT_XRGB2101010:
8272 case DRM_FORMAT_ARGB2101010:
8273 /* RGB formats are common across chipsets */
8274 break;
8275 case DRM_FORMAT_YUYV:
8276 case DRM_FORMAT_UYVY:
8277 case DRM_FORMAT_YVYU:
8278 case DRM_FORMAT_VYUY:
8279 break;
8280 default:
8281 DRM_DEBUG_KMS("unsupported pixel format %u\n",
8282 mode_cmd->pixel_format);
8283 return -EINVAL;
8284 }
8285
8286 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8287 if (ret) {
8288 DRM_ERROR("framebuffer init failed %d\n", ret);
8289 return ret;
8290 }
8291
8292 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8293 intel_fb->obj = obj;
8294 return 0;
8295 }
8296
8297 static struct drm_framebuffer *
8298 intel_user_framebuffer_create(struct drm_device *dev,
8299 struct drm_file *filp,
8300 struct drm_mode_fb_cmd2 *mode_cmd)
8301 {
8302 struct drm_i915_gem_object *obj;
8303
8304 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8305 mode_cmd->handles[0]));
8306 if (&obj->base == NULL)
8307 return ERR_PTR(-ENOENT);
8308
8309 return intel_framebuffer_create(dev, mode_cmd, obj);
8310 }
8311
8312 static const struct drm_mode_config_funcs intel_mode_funcs = {
8313 .fb_create = intel_user_framebuffer_create,
8314 .output_poll_changed = intel_fb_output_poll_changed,
8315 };
8316
8317 static struct drm_i915_gem_object *
8318 intel_alloc_context_page(struct drm_device *dev)
8319 {
8320 struct drm_i915_gem_object *ctx;
8321 int ret;
8322
8323 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8324
8325 ctx = i915_gem_alloc_object(dev, 4096);
8326 if (!ctx) {
8327 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
8328 return NULL;
8329 }
8330
8331 ret = i915_gem_object_pin(ctx, 4096, true);
8332 if (ret) {
8333 DRM_ERROR("failed to pin power context: %d\n", ret);
8334 goto err_unref;
8335 }
8336
8337 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
8338 if (ret) {
8339 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
8340 goto err_unpin;
8341 }
8342
8343 return ctx;
8344
8345 err_unpin:
8346 i915_gem_object_unpin(ctx);
8347 err_unref:
8348 drm_gem_object_unreference(&ctx->base);
8349 mutex_unlock(&dev->struct_mutex);
8350 return NULL;
8351 }
8352
8353 bool ironlake_set_drps(struct drm_device *dev, u8 val)
8354 {
8355 struct drm_i915_private *dev_priv = dev->dev_private;
8356 u16 rgvswctl;
8357
8358 rgvswctl = I915_READ16(MEMSWCTL);
8359 if (rgvswctl & MEMCTL_CMD_STS) {
8360 DRM_DEBUG("gpu busy, RCS change rejected\n");
8361 return false; /* still busy with another command */
8362 }
8363
8364 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
8365 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
8366 I915_WRITE16(MEMSWCTL, rgvswctl);
8367 POSTING_READ16(MEMSWCTL);
8368
8369 rgvswctl |= MEMCTL_CMD_STS;
8370 I915_WRITE16(MEMSWCTL, rgvswctl);
8371
8372 return true;
8373 }
8374
8375 void ironlake_enable_drps(struct drm_device *dev)
8376 {
8377 struct drm_i915_private *dev_priv = dev->dev_private;
8378 u32 rgvmodectl = I915_READ(MEMMODECTL);
8379 u8 fmax, fmin, fstart, vstart;
8380
8381 /* Enable temp reporting */
8382 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
8383 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
8384
8385 /* 100ms RC evaluation intervals */
8386 I915_WRITE(RCUPEI, 100000);
8387 I915_WRITE(RCDNEI, 100000);
8388
8389 /* Set max/min thresholds to 90ms and 80ms respectively */
8390 I915_WRITE(RCBMAXAVG, 90000);
8391 I915_WRITE(RCBMINAVG, 80000);
8392
8393 I915_WRITE(MEMIHYST, 1);
8394
8395 /* Set up min, max, and cur for interrupt handling */
8396 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
8397 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
8398 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
8399 MEMMODE_FSTART_SHIFT;
8400
8401 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
8402 PXVFREQ_PX_SHIFT;
8403
8404 dev_priv->fmax = fmax; /* IPS callback will increase this */
8405 dev_priv->fstart = fstart;
8406
8407 dev_priv->max_delay = fstart;
8408 dev_priv->min_delay = fmin;
8409 dev_priv->cur_delay = fstart;
8410
8411 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
8412 fmax, fmin, fstart);
8413
8414 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
8415
8416 /*
8417 * Interrupts will be enabled in ironlake_irq_postinstall
8418 */
8419
8420 I915_WRITE(VIDSTART, vstart);
8421 POSTING_READ(VIDSTART);
8422
8423 rgvmodectl |= MEMMODE_SWMODE_EN;
8424 I915_WRITE(MEMMODECTL, rgvmodectl);
8425
8426 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
8427 DRM_ERROR("stuck trying to change perf mode\n");
8428 msleep(1);
8429
8430 ironlake_set_drps(dev, fstart);
8431
8432 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
8433 I915_READ(0x112e0);
8434 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
8435 dev_priv->last_count2 = I915_READ(0x112f4);
8436 getrawmonotonic(&dev_priv->last_time2);
8437 }
8438
8439 void ironlake_disable_drps(struct drm_device *dev)
8440 {
8441 struct drm_i915_private *dev_priv = dev->dev_private;
8442 u16 rgvswctl = I915_READ16(MEMSWCTL);
8443
8444 /* Ack interrupts, disable EFC interrupt */
8445 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
8446 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
8447 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
8448 I915_WRITE(DEIIR, DE_PCU_EVENT);
8449 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
8450
8451 /* Go back to the starting frequency */
8452 ironlake_set_drps(dev, dev_priv->fstart);
8453 msleep(1);
8454 rgvswctl |= MEMCTL_CMD_STS;
8455 I915_WRITE(MEMSWCTL, rgvswctl);
8456 msleep(1);
8457
8458 }
8459
8460 void gen6_set_rps(struct drm_device *dev, u8 val)
8461 {
8462 struct drm_i915_private *dev_priv = dev->dev_private;
8463 u32 swreq;
8464
8465 swreq = (val & 0x3ff) << 25;
8466 I915_WRITE(GEN6_RPNSWREQ, swreq);
8467 }
8468
8469 void gen6_disable_rps(struct drm_device *dev)
8470 {
8471 struct drm_i915_private *dev_priv = dev->dev_private;
8472
8473 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
8474 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
8475 I915_WRITE(GEN6_PMIER, 0);
8476 /* Complete PM interrupt masking here doesn't race with the rps work
8477 * item again unmasking PM interrupts because that is using a different
8478 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
8479 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
8480
8481 spin_lock_irq(&dev_priv->rps_lock);
8482 dev_priv->pm_iir = 0;
8483 spin_unlock_irq(&dev_priv->rps_lock);
8484
8485 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
8486 }
8487
8488 static unsigned long intel_pxfreq(u32 vidfreq)
8489 {
8490 unsigned long freq;
8491 int div = (vidfreq & 0x3f0000) >> 16;
8492 int post = (vidfreq & 0x3000) >> 12;
8493 int pre = (vidfreq & 0x7);
8494
8495 if (!pre)
8496 return 0;
8497
8498 freq = ((div * 133333) / ((1<<post) * pre));
8499
8500 return freq;
8501 }
8502
8503 void intel_init_emon(struct drm_device *dev)
8504 {
8505 struct drm_i915_private *dev_priv = dev->dev_private;
8506 u32 lcfuse;
8507 u8 pxw[16];
8508 int i;
8509
8510 /* Disable to program */
8511 I915_WRITE(ECR, 0);
8512 POSTING_READ(ECR);
8513
8514 /* Program energy weights for various events */
8515 I915_WRITE(SDEW, 0x15040d00);
8516 I915_WRITE(CSIEW0, 0x007f0000);
8517 I915_WRITE(CSIEW1, 0x1e220004);
8518 I915_WRITE(CSIEW2, 0x04000004);
8519
8520 for (i = 0; i < 5; i++)
8521 I915_WRITE(PEW + (i * 4), 0);
8522 for (i = 0; i < 3; i++)
8523 I915_WRITE(DEW + (i * 4), 0);
8524
8525 /* Program P-state weights to account for frequency power adjustment */
8526 for (i = 0; i < 16; i++) {
8527 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
8528 unsigned long freq = intel_pxfreq(pxvidfreq);
8529 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8530 PXVFREQ_PX_SHIFT;
8531 unsigned long val;
8532
8533 val = vid * vid;
8534 val *= (freq / 1000);
8535 val *= 255;
8536 val /= (127*127*900);
8537 if (val > 0xff)
8538 DRM_ERROR("bad pxval: %ld\n", val);
8539 pxw[i] = val;
8540 }
8541 /* Render standby states get 0 weight */
8542 pxw[14] = 0;
8543 pxw[15] = 0;
8544
8545 for (i = 0; i < 4; i++) {
8546 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8547 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8548 I915_WRITE(PXW + (i * 4), val);
8549 }
8550
8551 /* Adjust magic regs to magic values (more experimental results) */
8552 I915_WRITE(OGW0, 0);
8553 I915_WRITE(OGW1, 0);
8554 I915_WRITE(EG0, 0x00007f00);
8555 I915_WRITE(EG1, 0x0000000e);
8556 I915_WRITE(EG2, 0x000e0000);
8557 I915_WRITE(EG3, 0x68000300);
8558 I915_WRITE(EG4, 0x42000000);
8559 I915_WRITE(EG5, 0x00140031);
8560 I915_WRITE(EG6, 0);
8561 I915_WRITE(EG7, 0);
8562
8563 for (i = 0; i < 8; i++)
8564 I915_WRITE(PXWL + (i * 4), 0);
8565
8566 /* Enable PMON + select events */
8567 I915_WRITE(ECR, 0x80000019);
8568
8569 lcfuse = I915_READ(LCFUSE02);
8570
8571 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
8572 }
8573
8574 int intel_enable_rc6(const struct drm_device *dev)
8575 {
8576 /*
8577 * Respect the kernel parameter if it is set
8578 */
8579 if (i915_enable_rc6 >= 0)
8580 return i915_enable_rc6;
8581
8582 /*
8583 * Disable RC6 on Ironlake
8584 */
8585 if (INTEL_INFO(dev)->gen == 5)
8586 return 0;
8587
8588 /* Sorry Haswell, no RC6 for you for now. */
8589 if (IS_HASWELL(dev))
8590 return 0;
8591
8592 /*
8593 * Disable rc6 on Sandybridge
8594 */
8595 if (INTEL_INFO(dev)->gen == 6) {
8596 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
8597 return INTEL_RC6_ENABLE;
8598 }
8599 DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
8600 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
8601 }
8602
8603 void gen6_enable_rps(struct drm_i915_private *dev_priv)
8604 {
8605 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
8606 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
8607 u32 pcu_mbox, rc6_mask = 0;
8608 u32 gtfifodbg;
8609 int cur_freq, min_freq, max_freq;
8610 int rc6_mode;
8611 int i;
8612
8613 /* Here begins a magic sequence of register writes to enable
8614 * auto-downclocking.
8615 *
8616 * Perhaps there might be some value in exposing these to
8617 * userspace...
8618 */
8619 I915_WRITE(GEN6_RC_STATE, 0);
8620 mutex_lock(&dev_priv->dev->struct_mutex);
8621
8622 /* Clear the DBG now so we don't confuse earlier errors */
8623 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
8624 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
8625 I915_WRITE(GTFIFODBG, gtfifodbg);
8626 }
8627
8628 gen6_gt_force_wake_get(dev_priv);
8629
8630 /* disable the counters and set deterministic thresholds */
8631 I915_WRITE(GEN6_RC_CONTROL, 0);
8632
8633 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
8634 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
8635 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
8636 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
8637 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
8638
8639 for (i = 0; i < I915_NUM_RINGS; i++)
8640 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
8641
8642 I915_WRITE(GEN6_RC_SLEEP, 0);
8643 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
8644 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
8645 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
8646 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
8647
8648 rc6_mode = intel_enable_rc6(dev_priv->dev);
8649 if (rc6_mode & INTEL_RC6_ENABLE)
8650 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
8651
8652 if (rc6_mode & INTEL_RC6p_ENABLE)
8653 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
8654
8655 if (rc6_mode & INTEL_RC6pp_ENABLE)
8656 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
8657
8658 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
8659 (rc6_mode & INTEL_RC6_ENABLE) ? "on" : "off",
8660 (rc6_mode & INTEL_RC6p_ENABLE) ? "on" : "off",
8661 (rc6_mode & INTEL_RC6pp_ENABLE) ? "on" : "off");
8662
8663 I915_WRITE(GEN6_RC_CONTROL,
8664 rc6_mask |
8665 GEN6_RC_CTL_EI_MODE(1) |
8666 GEN6_RC_CTL_HW_ENABLE);
8667
8668 I915_WRITE(GEN6_RPNSWREQ,
8669 GEN6_FREQUENCY(10) |
8670 GEN6_OFFSET(0) |
8671 GEN6_AGGRESSIVE_TURBO);
8672 I915_WRITE(GEN6_RC_VIDEO_FREQ,
8673 GEN6_FREQUENCY(12));
8674
8675 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
8676 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
8677 18 << 24 |
8678 6 << 16);
8679 I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
8680 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
8681 I915_WRITE(GEN6_RP_UP_EI, 100000);
8682 I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
8683 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
8684 I915_WRITE(GEN6_RP_CONTROL,
8685 GEN6_RP_MEDIA_TURBO |
8686 GEN6_RP_MEDIA_HW_MODE |
8687 GEN6_RP_MEDIA_IS_GFX |
8688 GEN6_RP_ENABLE |
8689 GEN6_RP_UP_BUSY_AVG |
8690 GEN6_RP_DOWN_IDLE_CONT);
8691
8692 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8693 500))
8694 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8695
8696 I915_WRITE(GEN6_PCODE_DATA, 0);
8697 I915_WRITE(GEN6_PCODE_MAILBOX,
8698 GEN6_PCODE_READY |
8699 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8700 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8701 500))
8702 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8703
8704 min_freq = (rp_state_cap & 0xff0000) >> 16;
8705 max_freq = rp_state_cap & 0xff;
8706 cur_freq = (gt_perf_status & 0xff00) >> 8;
8707
8708 /* Check for overclock support */
8709 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8710 500))
8711 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8712 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
8713 pcu_mbox = I915_READ(GEN6_PCODE_DATA);
8714 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8715 500))
8716 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8717 if (pcu_mbox & (1<<31)) { /* OC supported */
8718 max_freq = pcu_mbox & 0xff;
8719 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
8720 }
8721
8722 /* In units of 100MHz */
8723 dev_priv->max_delay = max_freq;
8724 dev_priv->min_delay = min_freq;
8725 dev_priv->cur_delay = cur_freq;
8726
8727 /* requires MSI enabled */
8728 I915_WRITE(GEN6_PMIER,
8729 GEN6_PM_MBOX_EVENT |
8730 GEN6_PM_THERMAL_EVENT |
8731 GEN6_PM_RP_DOWN_TIMEOUT |
8732 GEN6_PM_RP_UP_THRESHOLD |
8733 GEN6_PM_RP_DOWN_THRESHOLD |
8734 GEN6_PM_RP_UP_EI_EXPIRED |
8735 GEN6_PM_RP_DOWN_EI_EXPIRED);
8736 spin_lock_irq(&dev_priv->rps_lock);
8737 WARN_ON(dev_priv->pm_iir != 0);
8738 I915_WRITE(GEN6_PMIMR, 0);
8739 spin_unlock_irq(&dev_priv->rps_lock);
8740 /* enable all PM interrupts */
8741 I915_WRITE(GEN6_PMINTRMSK, 0);
8742
8743 gen6_gt_force_wake_put(dev_priv);
8744 mutex_unlock(&dev_priv->dev->struct_mutex);
8745 }
8746
8747 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
8748 {
8749 int min_freq = 15;
8750 int gpu_freq, ia_freq, max_ia_freq;
8751 int scaling_factor = 180;
8752
8753 max_ia_freq = cpufreq_quick_get_max(0);
8754 /*
8755 * Default to measured freq if none found, PCU will ensure we don't go
8756 * over
8757 */
8758 if (!max_ia_freq)
8759 max_ia_freq = tsc_khz;
8760
8761 /* Convert from kHz to MHz */
8762 max_ia_freq /= 1000;
8763
8764 mutex_lock(&dev_priv->dev->struct_mutex);
8765
8766 /*
8767 * For each potential GPU frequency, load a ring frequency we'd like
8768 * to use for memory access. We do this by specifying the IA frequency
8769 * the PCU should use as a reference to determine the ring frequency.
8770 */
8771 for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
8772 gpu_freq--) {
8773 int diff = dev_priv->max_delay - gpu_freq;
8774
8775 /*
8776 * For GPU frequencies less than 750MHz, just use the lowest
8777 * ring freq.
8778 */
8779 if (gpu_freq < min_freq)
8780 ia_freq = 800;
8781 else
8782 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
8783 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
8784
8785 I915_WRITE(GEN6_PCODE_DATA,
8786 (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
8787 gpu_freq);
8788 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
8789 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8790 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
8791 GEN6_PCODE_READY) == 0, 10)) {
8792 DRM_ERROR("pcode write of freq table timed out\n");
8793 continue;
8794 }
8795 }
8796
8797 mutex_unlock(&dev_priv->dev->struct_mutex);
8798 }
8799
8800 static void ironlake_init_clock_gating(struct drm_device *dev)
8801 {
8802 struct drm_i915_private *dev_priv = dev->dev_private;
8803 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8804
8805 /* Required for FBC */
8806 dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
8807 DPFCRUNIT_CLOCK_GATE_DISABLE |
8808 DPFDUNIT_CLOCK_GATE_DISABLE;
8809 /* Required for CxSR */
8810 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
8811
8812 I915_WRITE(PCH_3DCGDIS0,
8813 MARIUNIT_CLOCK_GATE_DISABLE |
8814 SVSMUNIT_CLOCK_GATE_DISABLE);
8815 I915_WRITE(PCH_3DCGDIS1,
8816 VFMUNIT_CLOCK_GATE_DISABLE);
8817
8818 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8819
8820 /*
8821 * According to the spec the following bits should be set in
8822 * order to enable memory self-refresh
8823 * The bit 22/21 of 0x42004
8824 * The bit 5 of 0x42020
8825 * The bit 15 of 0x45000
8826 */
8827 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8828 (I915_READ(ILK_DISPLAY_CHICKEN2) |
8829 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8830 I915_WRITE(ILK_DSPCLK_GATE,
8831 (I915_READ(ILK_DSPCLK_GATE) |
8832 ILK_DPARB_CLK_GATE));
8833 I915_WRITE(DISP_ARB_CTL,
8834 (I915_READ(DISP_ARB_CTL) |
8835 DISP_FBC_WM_DIS));
8836 I915_WRITE(WM3_LP_ILK, 0);
8837 I915_WRITE(WM2_LP_ILK, 0);
8838 I915_WRITE(WM1_LP_ILK, 0);
8839
8840 /*
8841 * Based on the document from hardware guys the following bits
8842 * should be set unconditionally in order to enable FBC.
8843 * The bit 22 of 0x42000
8844 * The bit 22 of 0x42004
8845 * The bit 7,8,9 of 0x42020.
8846 */
8847 if (IS_IRONLAKE_M(dev)) {
8848 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8849 I915_READ(ILK_DISPLAY_CHICKEN1) |
8850 ILK_FBCQ_DIS);
8851 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8852 I915_READ(ILK_DISPLAY_CHICKEN2) |
8853 ILK_DPARB_GATE);
8854 I915_WRITE(ILK_DSPCLK_GATE,
8855 I915_READ(ILK_DSPCLK_GATE) |
8856 ILK_DPFC_DIS1 |
8857 ILK_DPFC_DIS2 |
8858 ILK_CLK_FBC);
8859 }
8860
8861 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8862 I915_READ(ILK_DISPLAY_CHICKEN2) |
8863 ILK_ELPIN_409_SELECT);
8864 I915_WRITE(_3D_CHICKEN2,
8865 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8866 _3D_CHICKEN2_WM_READ_PIPELINED);
8867 }
8868
8869 static void gen6_init_clock_gating(struct drm_device *dev)
8870 {
8871 struct drm_i915_private *dev_priv = dev->dev_private;
8872 int pipe;
8873 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8874
8875 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8876
8877 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8878 I915_READ(ILK_DISPLAY_CHICKEN2) |
8879 ILK_ELPIN_409_SELECT);
8880
8881 I915_WRITE(WM3_LP_ILK, 0);
8882 I915_WRITE(WM2_LP_ILK, 0);
8883 I915_WRITE(WM1_LP_ILK, 0);
8884
8885 /* clear masked bit */
8886 I915_WRITE(CACHE_MODE_0,
8887 CM0_STC_EVICT_DISABLE_LRA_SNB << CM0_MASK_SHIFT);
8888
8889 I915_WRITE(GEN6_UCGCTL1,
8890 I915_READ(GEN6_UCGCTL1) |
8891 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
8892 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8893
8894 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8895 * gating disable must be set. Failure to set it results in
8896 * flickering pixels due to Z write ordering failures after
8897 * some amount of runtime in the Mesa "fire" demo, and Unigine
8898 * Sanctuary and Tropics, and apparently anything else with
8899 * alpha test or pixel discard.
8900 *
8901 * According to the spec, bit 11 (RCCUNIT) must also be set,
8902 * but we didn't debug actual testcases to find it out.
8903 */
8904 I915_WRITE(GEN6_UCGCTL2,
8905 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8906 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8907
8908 /* Bspec says we need to always set all mask bits. */
8909 I915_WRITE(_3D_CHICKEN, (0xFFFF << 16) |
8910 _3D_CHICKEN_SF_DISABLE_FASTCLIP_CULL);
8911
8912 /*
8913 * According to the spec the following bits should be
8914 * set in order to enable memory self-refresh and fbc:
8915 * The bit21 and bit22 of 0x42000
8916 * The bit21 and bit22 of 0x42004
8917 * The bit5 and bit7 of 0x42020
8918 * The bit14 of 0x70180
8919 * The bit14 of 0x71180
8920 */
8921 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8922 I915_READ(ILK_DISPLAY_CHICKEN1) |
8923 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8924 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8925 I915_READ(ILK_DISPLAY_CHICKEN2) |
8926 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8927 I915_WRITE(ILK_DSPCLK_GATE,
8928 I915_READ(ILK_DSPCLK_GATE) |
8929 ILK_DPARB_CLK_GATE |
8930 ILK_DPFD_CLK_GATE);
8931
8932 for_each_pipe(pipe) {
8933 I915_WRITE(DSPCNTR(pipe),
8934 I915_READ(DSPCNTR(pipe)) |
8935 DISPPLANE_TRICKLE_FEED_DISABLE);
8936 intel_flush_display_plane(dev_priv, pipe);
8937 }
8938 }
8939
8940 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
8941 {
8942 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
8943
8944 reg &= ~GEN7_FF_SCHED_MASK;
8945 reg |= GEN7_FF_TS_SCHED_HW;
8946 reg |= GEN7_FF_VS_SCHED_HW;
8947 reg |= GEN7_FF_DS_SCHED_HW;
8948
8949 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
8950 }
8951
8952 static void ivybridge_init_clock_gating(struct drm_device *dev)
8953 {
8954 struct drm_i915_private *dev_priv = dev->dev_private;
8955 int pipe;
8956 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8957
8958 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8959
8960 I915_WRITE(WM3_LP_ILK, 0);
8961 I915_WRITE(WM2_LP_ILK, 0);
8962 I915_WRITE(WM1_LP_ILK, 0);
8963
8964 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8965 * This implements the WaDisableRCZUnitClockGating workaround.
8966 */
8967 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8968
8969 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
8970
8971 I915_WRITE(IVB_CHICKEN3,
8972 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8973 CHICKEN3_DGMG_DONE_FIX_DISABLE);
8974
8975 /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
8976 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8977 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8978
8979 /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
8980 I915_WRITE(GEN7_L3CNTLREG1,
8981 GEN7_WA_FOR_GEN7_L3_CONTROL);
8982 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8983 GEN7_WA_L3_CHICKEN_MODE);
8984
8985 /* This is required by WaCatErrorRejectionIssue */
8986 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8987 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8988 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8989
8990 for_each_pipe(pipe) {
8991 I915_WRITE(DSPCNTR(pipe),
8992 I915_READ(DSPCNTR(pipe)) |
8993 DISPPLANE_TRICKLE_FEED_DISABLE);
8994 intel_flush_display_plane(dev_priv, pipe);
8995 }
8996
8997 gen7_setup_fixed_func_scheduler(dev_priv);
8998 }
8999
9000 static void valleyview_init_clock_gating(struct drm_device *dev)
9001 {
9002 struct drm_i915_private *dev_priv = dev->dev_private;
9003 int pipe;
9004 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
9005
9006 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
9007
9008 I915_WRITE(WM3_LP_ILK, 0);
9009 I915_WRITE(WM2_LP_ILK, 0);
9010 I915_WRITE(WM1_LP_ILK, 0);
9011
9012 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9013 * This implements the WaDisableRCZUnitClockGating workaround.
9014 */
9015 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9016
9017 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
9018
9019 I915_WRITE(IVB_CHICKEN3,
9020 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
9021 CHICKEN3_DGMG_DONE_FIX_DISABLE);
9022
9023 /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
9024 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
9025 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
9026
9027 /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
9028 I915_WRITE(GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
9029 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
9030
9031 /* This is required by WaCatErrorRejectionIssue */
9032 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9033 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9034 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9035
9036 for_each_pipe(pipe) {
9037 I915_WRITE(DSPCNTR(pipe),
9038 I915_READ(DSPCNTR(pipe)) |
9039 DISPPLANE_TRICKLE_FEED_DISABLE);
9040 intel_flush_display_plane(dev_priv, pipe);
9041 }
9042
9043 I915_WRITE(CACHE_MODE_1, I915_READ(CACHE_MODE_1) |
9044 (PIXEL_SUBSPAN_COLLECT_OPT_DISABLE << 16) |
9045 PIXEL_SUBSPAN_COLLECT_OPT_DISABLE);
9046 }
9047
9048 static void g4x_init_clock_gating(struct drm_device *dev)
9049 {
9050 struct drm_i915_private *dev_priv = dev->dev_private;
9051 uint32_t dspclk_gate;
9052
9053 I915_WRITE(RENCLK_GATE_D1, 0);
9054 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
9055 GS_UNIT_CLOCK_GATE_DISABLE |
9056 CL_UNIT_CLOCK_GATE_DISABLE);
9057 I915_WRITE(RAMCLK_GATE_D, 0);
9058 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
9059 OVRUNIT_CLOCK_GATE_DISABLE |
9060 OVCUNIT_CLOCK_GATE_DISABLE;
9061 if (IS_GM45(dev))
9062 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
9063 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
9064 }
9065
9066 static void crestline_init_clock_gating(struct drm_device *dev)
9067 {
9068 struct drm_i915_private *dev_priv = dev->dev_private;
9069
9070 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
9071 I915_WRITE(RENCLK_GATE_D2, 0);
9072 I915_WRITE(DSPCLK_GATE_D, 0);
9073 I915_WRITE(RAMCLK_GATE_D, 0);
9074 I915_WRITE16(DEUC, 0);
9075 }
9076
9077 static void broadwater_init_clock_gating(struct drm_device *dev)
9078 {
9079 struct drm_i915_private *dev_priv = dev->dev_private;
9080
9081 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
9082 I965_RCC_CLOCK_GATE_DISABLE |
9083 I965_RCPB_CLOCK_GATE_DISABLE |
9084 I965_ISC_CLOCK_GATE_DISABLE |
9085 I965_FBC_CLOCK_GATE_DISABLE);
9086 I915_WRITE(RENCLK_GATE_D2, 0);
9087 }
9088
9089 static void gen3_init_clock_gating(struct drm_device *dev)
9090 {
9091 struct drm_i915_private *dev_priv = dev->dev_private;
9092 u32 dstate = I915_READ(D_STATE);
9093
9094 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
9095 DSTATE_DOT_CLOCK_GATING;
9096 I915_WRITE(D_STATE, dstate);
9097 }
9098
9099 static void i85x_init_clock_gating(struct drm_device *dev)
9100 {
9101 struct drm_i915_private *dev_priv = dev->dev_private;
9102
9103 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
9104 }
9105
9106 static void i830_init_clock_gating(struct drm_device *dev)
9107 {
9108 struct drm_i915_private *dev_priv = dev->dev_private;
9109
9110 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
9111 }
9112
9113 static void ibx_init_clock_gating(struct drm_device *dev)
9114 {
9115 struct drm_i915_private *dev_priv = dev->dev_private;
9116
9117 /*
9118 * On Ibex Peak and Cougar Point, we need to disable clock
9119 * gating for the panel power sequencer or it will fail to
9120 * start up when no ports are active.
9121 */
9122 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
9123 }
9124
9125 static void cpt_init_clock_gating(struct drm_device *dev)
9126 {
9127 struct drm_i915_private *dev_priv = dev->dev_private;
9128 int pipe;
9129
9130 /*
9131 * On Ibex Peak and Cougar Point, we need to disable clock
9132 * gating for the panel power sequencer or it will fail to
9133 * start up when no ports are active.
9134 */
9135 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
9136 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
9137 DPLS_EDP_PPS_FIX_DIS);
9138 /* Without this, mode sets may fail silently on FDI */
9139 for_each_pipe(pipe)
9140 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
9141 }
9142
9143 static void ironlake_teardown_rc6(struct drm_device *dev)
9144 {
9145 struct drm_i915_private *dev_priv = dev->dev_private;
9146
9147 if (dev_priv->renderctx) {
9148 i915_gem_object_unpin(dev_priv->renderctx);
9149 drm_gem_object_unreference(&dev_priv->renderctx->base);
9150 dev_priv->renderctx = NULL;
9151 }
9152
9153 if (dev_priv->pwrctx) {
9154 i915_gem_object_unpin(dev_priv->pwrctx);
9155 drm_gem_object_unreference(&dev_priv->pwrctx->base);
9156 dev_priv->pwrctx = NULL;
9157 }
9158 }
9159
9160 static void ironlake_disable_rc6(struct drm_device *dev)
9161 {
9162 struct drm_i915_private *dev_priv = dev->dev_private;
9163
9164 if (I915_READ(PWRCTXA)) {
9165 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
9166 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
9167 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
9168 50);
9169
9170 I915_WRITE(PWRCTXA, 0);
9171 POSTING_READ(PWRCTXA);
9172
9173 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
9174 POSTING_READ(RSTDBYCTL);
9175 }
9176
9177 ironlake_teardown_rc6(dev);
9178 }
9179
9180 static int ironlake_setup_rc6(struct drm_device *dev)
9181 {
9182 struct drm_i915_private *dev_priv = dev->dev_private;
9183
9184 if (dev_priv->renderctx == NULL)
9185 dev_priv->renderctx = intel_alloc_context_page(dev);
9186 if (!dev_priv->renderctx)
9187 return -ENOMEM;
9188
9189 if (dev_priv->pwrctx == NULL)
9190 dev_priv->pwrctx = intel_alloc_context_page(dev);
9191 if (!dev_priv->pwrctx) {
9192 ironlake_teardown_rc6(dev);
9193 return -ENOMEM;
9194 }
9195
9196 return 0;
9197 }
9198
9199 void ironlake_enable_rc6(struct drm_device *dev)
9200 {
9201 struct drm_i915_private *dev_priv = dev->dev_private;
9202 int ret;
9203
9204 /* rc6 disabled by default due to repeated reports of hanging during
9205 * boot and resume.
9206 */
9207 if (!intel_enable_rc6(dev))
9208 return;
9209
9210 mutex_lock(&dev->struct_mutex);
9211 ret = ironlake_setup_rc6(dev);
9212 if (ret) {
9213 mutex_unlock(&dev->struct_mutex);
9214 return;
9215 }
9216
9217 /*
9218 * GPU can automatically power down the render unit if given a page
9219 * to save state.
9220 */
9221 ret = BEGIN_LP_RING(6);
9222 if (ret) {
9223 ironlake_teardown_rc6(dev);
9224 mutex_unlock(&dev->struct_mutex);
9225 return;
9226 }
9227
9228 OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
9229 OUT_RING(MI_SET_CONTEXT);
9230 OUT_RING(dev_priv->renderctx->gtt_offset |
9231 MI_MM_SPACE_GTT |
9232 MI_SAVE_EXT_STATE_EN |
9233 MI_RESTORE_EXT_STATE_EN |
9234 MI_RESTORE_INHIBIT);
9235 OUT_RING(MI_SUSPEND_FLUSH);
9236 OUT_RING(MI_NOOP);
9237 OUT_RING(MI_FLUSH);
9238 ADVANCE_LP_RING();
9239
9240 /*
9241 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
9242 * does an implicit flush, combined with MI_FLUSH above, it should be
9243 * safe to assume that renderctx is valid
9244 */
9245 ret = intel_wait_ring_idle(LP_RING(dev_priv));
9246 if (ret) {
9247 DRM_ERROR("failed to enable ironlake power power savings\n");
9248 ironlake_teardown_rc6(dev);
9249 mutex_unlock(&dev->struct_mutex);
9250 return;
9251 }
9252
9253 I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
9254 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
9255 mutex_unlock(&dev->struct_mutex);
9256 }
9257
9258 void intel_init_clock_gating(struct drm_device *dev)
9259 {
9260 struct drm_i915_private *dev_priv = dev->dev_private;
9261
9262 dev_priv->display.init_clock_gating(dev);
9263
9264 if (dev_priv->display.init_pch_clock_gating)
9265 dev_priv->display.init_pch_clock_gating(dev);
9266 }
9267
9268 /* Set up chip specific display functions */
9269 static void intel_init_display(struct drm_device *dev)
9270 {
9271 struct drm_i915_private *dev_priv = dev->dev_private;
9272
9273 /* We always want a DPMS function */
9274 if (HAS_PCH_SPLIT(dev)) {
9275 dev_priv->display.dpms = ironlake_crtc_dpms;
9276 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9277 dev_priv->display.update_plane = ironlake_update_plane;
9278 } else {
9279 dev_priv->display.dpms = i9xx_crtc_dpms;
9280 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9281 dev_priv->display.update_plane = i9xx_update_plane;
9282 }
9283
9284 if (I915_HAS_FBC(dev)) {
9285 if (HAS_PCH_SPLIT(dev)) {
9286 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
9287 dev_priv->display.enable_fbc = ironlake_enable_fbc;
9288 dev_priv->display.disable_fbc = ironlake_disable_fbc;
9289 } else if (IS_GM45(dev)) {
9290 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
9291 dev_priv->display.enable_fbc = g4x_enable_fbc;
9292 dev_priv->display.disable_fbc = g4x_disable_fbc;
9293 } else if (IS_CRESTLINE(dev)) {
9294 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
9295 dev_priv->display.enable_fbc = i8xx_enable_fbc;
9296 dev_priv->display.disable_fbc = i8xx_disable_fbc;
9297 }
9298 /* 855GM needs testing */
9299 }
9300
9301 /* Returns the core display clock speed */
9302 if (IS_VALLEYVIEW(dev))
9303 dev_priv->display.get_display_clock_speed =
9304 valleyview_get_display_clock_speed;
9305 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
9306 dev_priv->display.get_display_clock_speed =
9307 i945_get_display_clock_speed;
9308 else if (IS_I915G(dev))
9309 dev_priv->display.get_display_clock_speed =
9310 i915_get_display_clock_speed;
9311 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
9312 dev_priv->display.get_display_clock_speed =
9313 i9xx_misc_get_display_clock_speed;
9314 else if (IS_I915GM(dev))
9315 dev_priv->display.get_display_clock_speed =
9316 i915gm_get_display_clock_speed;
9317 else if (IS_I865G(dev))
9318 dev_priv->display.get_display_clock_speed =
9319 i865_get_display_clock_speed;
9320 else if (IS_I85X(dev))
9321 dev_priv->display.get_display_clock_speed =
9322 i855_get_display_clock_speed;
9323 else /* 852, 830 */
9324 dev_priv->display.get_display_clock_speed =
9325 i830_get_display_clock_speed;
9326
9327 /* For FIFO watermark updates */
9328 if (HAS_PCH_SPLIT(dev)) {
9329 dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
9330 dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
9331
9332 /* IVB configs may use multi-threaded forcewake */
9333 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
9334 u32 ecobus;
9335
9336 /* A small trick here - if the bios hasn't configured MT forcewake,
9337 * and if the device is in RC6, then force_wake_mt_get will not wake
9338 * the device and the ECOBUS read will return zero. Which will be
9339 * (correctly) interpreted by the test below as MT forcewake being
9340 * disabled.
9341 */
9342 mutex_lock(&dev->struct_mutex);
9343 __gen6_gt_force_wake_mt_get(dev_priv);
9344 ecobus = I915_READ_NOTRACE(ECOBUS);
9345 __gen6_gt_force_wake_mt_put(dev_priv);
9346 mutex_unlock(&dev->struct_mutex);
9347
9348 if (ecobus & FORCEWAKE_MT_ENABLE) {
9349 DRM_DEBUG_KMS("Using MT version of forcewake\n");
9350 dev_priv->display.force_wake_get =
9351 __gen6_gt_force_wake_mt_get;
9352 dev_priv->display.force_wake_put =
9353 __gen6_gt_force_wake_mt_put;
9354 }
9355 }
9356
9357 if (HAS_PCH_IBX(dev))
9358 dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
9359 else if (HAS_PCH_CPT(dev))
9360 dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
9361
9362 if (IS_GEN5(dev)) {
9363 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
9364 dev_priv->display.update_wm = ironlake_update_wm;
9365 else {
9366 DRM_DEBUG_KMS("Failed to get proper latency. "
9367 "Disable CxSR\n");
9368 dev_priv->display.update_wm = NULL;
9369 }
9370 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
9371 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
9372 dev_priv->display.write_eld = ironlake_write_eld;
9373 } else if (IS_GEN6(dev)) {
9374 if (SNB_READ_WM0_LATENCY()) {
9375 dev_priv->display.update_wm = sandybridge_update_wm;
9376 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
9377 } else {
9378 DRM_DEBUG_KMS("Failed to read display plane latency. "
9379 "Disable CxSR\n");
9380 dev_priv->display.update_wm = NULL;
9381 }
9382 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
9383 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9384 dev_priv->display.write_eld = ironlake_write_eld;
9385 } else if (IS_IVYBRIDGE(dev)) {
9386 /* FIXME: detect B0+ stepping and use auto training */
9387 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9388 if (SNB_READ_WM0_LATENCY()) {
9389 dev_priv->display.update_wm = sandybridge_update_wm;
9390 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
9391 } else {
9392 DRM_DEBUG_KMS("Failed to read display plane latency. "
9393 "Disable CxSR\n");
9394 dev_priv->display.update_wm = NULL;
9395 }
9396 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
9397 dev_priv->display.write_eld = ironlake_write_eld;
9398 } else
9399 dev_priv->display.update_wm = NULL;
9400 } else if (IS_VALLEYVIEW(dev)) {
9401 dev_priv->display.update_wm = valleyview_update_wm;
9402 dev_priv->display.init_clock_gating =
9403 valleyview_init_clock_gating;
9404 dev_priv->display.force_wake_get = vlv_force_wake_get;
9405 dev_priv->display.force_wake_put = vlv_force_wake_put;
9406 } else if (IS_PINEVIEW(dev)) {
9407 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
9408 dev_priv->is_ddr3,
9409 dev_priv->fsb_freq,
9410 dev_priv->mem_freq)) {
9411 DRM_INFO("failed to find known CxSR latency "
9412 "(found ddr%s fsb freq %d, mem freq %d), "
9413 "disabling CxSR\n",
9414 (dev_priv->is_ddr3 == 1) ? "3" : "2",
9415 dev_priv->fsb_freq, dev_priv->mem_freq);
9416 /* Disable CxSR and never update its watermark again */
9417 pineview_disable_cxsr(dev);
9418 dev_priv->display.update_wm = NULL;
9419 } else
9420 dev_priv->display.update_wm = pineview_update_wm;
9421 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9422 } else if (IS_G4X(dev)) {
9423 dev_priv->display.write_eld = g4x_write_eld;
9424 dev_priv->display.update_wm = g4x_update_wm;
9425 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9426 } else if (IS_GEN4(dev)) {
9427 dev_priv->display.update_wm = i965_update_wm;
9428 if (IS_CRESTLINE(dev))
9429 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
9430 else if (IS_BROADWATER(dev))
9431 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
9432 } else if (IS_GEN3(dev)) {
9433 dev_priv->display.update_wm = i9xx_update_wm;
9434 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9435 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9436 } else if (IS_I865G(dev)) {
9437 dev_priv->display.update_wm = i830_update_wm;
9438 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9439 dev_priv->display.get_fifo_size = i830_get_fifo_size;
9440 } else if (IS_I85X(dev)) {
9441 dev_priv->display.update_wm = i9xx_update_wm;
9442 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
9443 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9444 } else {
9445 dev_priv->display.update_wm = i830_update_wm;
9446 dev_priv->display.init_clock_gating = i830_init_clock_gating;
9447 if (IS_845G(dev))
9448 dev_priv->display.get_fifo_size = i845_get_fifo_size;
9449 else
9450 dev_priv->display.get_fifo_size = i830_get_fifo_size;
9451 }
9452
9453 /* Default just returns -ENODEV to indicate unsupported */
9454 dev_priv->display.queue_flip = intel_default_queue_flip;
9455
9456 switch (INTEL_INFO(dev)->gen) {
9457 case 2:
9458 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9459 break;
9460
9461 case 3:
9462 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9463 break;
9464
9465 case 4:
9466 case 5:
9467 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9468 break;
9469
9470 case 6:
9471 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9472 break;
9473 case 7:
9474 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9475 break;
9476 }
9477 }
9478
9479 /*
9480 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9481 * resume, or other times. This quirk makes sure that's the case for
9482 * affected systems.
9483 */
9484 static void quirk_pipea_force(struct drm_device *dev)
9485 {
9486 struct drm_i915_private *dev_priv = dev->dev_private;
9487
9488 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9489 DRM_INFO("applying pipe a force quirk\n");
9490 }
9491
9492 /*
9493 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9494 */
9495 static void quirk_ssc_force_disable(struct drm_device *dev)
9496 {
9497 struct drm_i915_private *dev_priv = dev->dev_private;
9498 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9499 DRM_INFO("applying lvds SSC disable quirk\n");
9500 }
9501
9502 /*
9503 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
9504 * brightness value
9505 */
9506 static void quirk_invert_brightness(struct drm_device *dev)
9507 {
9508 struct drm_i915_private *dev_priv = dev->dev_private;
9509 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
9510 DRM_INFO("applying inverted panel brightness quirk\n");
9511 }
9512
9513 struct intel_quirk {
9514 int device;
9515 int subsystem_vendor;
9516 int subsystem_device;
9517 void (*hook)(struct drm_device *dev);
9518 };
9519
9520 static struct intel_quirk intel_quirks[] = {
9521 /* HP Mini needs pipe A force quirk (LP: #322104) */
9522 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9523
9524 /* Thinkpad R31 needs pipe A force quirk */
9525 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
9526 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9527 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9528
9529 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
9530 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
9531 /* ThinkPad X40 needs pipe A force quirk */
9532
9533 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9534 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9535
9536 /* 855 & before need to leave pipe A & dpll A up */
9537 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9538 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9539
9540 /* Lenovo U160 cannot use SSC on LVDS */
9541 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9542
9543 /* Sony Vaio Y cannot use SSC on LVDS */
9544 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9545
9546 /* Acer Aspire 5734Z must invert backlight brightness */
9547 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
9548 };
9549
9550 static void intel_init_quirks(struct drm_device *dev)
9551 {
9552 struct pci_dev *d = dev->pdev;
9553 int i;
9554
9555 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9556 struct intel_quirk *q = &intel_quirks[i];
9557
9558 if (d->device == q->device &&
9559 (d->subsystem_vendor == q->subsystem_vendor ||
9560 q->subsystem_vendor == PCI_ANY_ID) &&
9561 (d->subsystem_device == q->subsystem_device ||
9562 q->subsystem_device == PCI_ANY_ID))
9563 q->hook(dev);
9564 }
9565 }
9566
9567 /* Disable the VGA plane that we never use */
9568 static void i915_disable_vga(struct drm_device *dev)
9569 {
9570 struct drm_i915_private *dev_priv = dev->dev_private;
9571 u8 sr1;
9572 u32 vga_reg;
9573
9574 if (HAS_PCH_SPLIT(dev))
9575 vga_reg = CPU_VGACNTRL;
9576 else
9577 vga_reg = VGACNTRL;
9578
9579 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9580 outb(SR01, VGA_SR_INDEX);
9581 sr1 = inb(VGA_SR_DATA);
9582 outb(sr1 | 1<<5, VGA_SR_DATA);
9583 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9584 udelay(300);
9585
9586 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9587 POSTING_READ(vga_reg);
9588 }
9589
9590 static void ivb_pch_pwm_override(struct drm_device *dev)
9591 {
9592 struct drm_i915_private *dev_priv = dev->dev_private;
9593
9594 /*
9595 * IVB has CPU eDP backlight regs too, set things up to let the
9596 * PCH regs control the backlight
9597 */
9598 I915_WRITE(BLC_PWM_CPU_CTL2, PWM_ENABLE);
9599 I915_WRITE(BLC_PWM_CPU_CTL, 0);
9600 I915_WRITE(BLC_PWM_PCH_CTL1, PWM_ENABLE | (1<<30));
9601 }
9602
9603 void intel_modeset_init_hw(struct drm_device *dev)
9604 {
9605 struct drm_i915_private *dev_priv = dev->dev_private;
9606
9607 intel_init_clock_gating(dev);
9608
9609 if (IS_IRONLAKE_M(dev)) {
9610 ironlake_enable_drps(dev);
9611 intel_init_emon(dev);
9612 }
9613
9614 if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
9615 gen6_enable_rps(dev_priv);
9616 gen6_update_ring_freq(dev_priv);
9617 }
9618
9619 if (IS_IVYBRIDGE(dev))
9620 ivb_pch_pwm_override(dev);
9621 }
9622
9623 void intel_modeset_init(struct drm_device *dev)
9624 {
9625 struct drm_i915_private *dev_priv = dev->dev_private;
9626 int i, ret;
9627
9628 drm_mode_config_init(dev);
9629
9630 dev->mode_config.min_width = 0;
9631 dev->mode_config.min_height = 0;
9632
9633 dev->mode_config.preferred_depth = 24;
9634 dev->mode_config.prefer_shadow = 1;
9635
9636 dev->mode_config.funcs = (void *)&intel_mode_funcs;
9637
9638 intel_init_quirks(dev);
9639
9640 intel_init_display(dev);
9641
9642 if (IS_GEN2(dev)) {
9643 dev->mode_config.max_width = 2048;
9644 dev->mode_config.max_height = 2048;
9645 } else if (IS_GEN3(dev)) {
9646 dev->mode_config.max_width = 4096;
9647 dev->mode_config.max_height = 4096;
9648 } else {
9649 dev->mode_config.max_width = 8192;
9650 dev->mode_config.max_height = 8192;
9651 }
9652 dev->mode_config.fb_base = dev->agp->base;
9653
9654 DRM_DEBUG_KMS("%d display pipe%s available.\n",
9655 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
9656
9657 for (i = 0; i < dev_priv->num_pipe; i++) {
9658 intel_crtc_init(dev, i);
9659 ret = intel_plane_init(dev, i);
9660 if (ret)
9661 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
9662 }
9663
9664 /* Just disable it once at startup */
9665 i915_disable_vga(dev);
9666 intel_setup_outputs(dev);
9667
9668 intel_modeset_init_hw(dev);
9669
9670 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
9671 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
9672 (unsigned long)dev);
9673 }
9674
9675 void intel_modeset_gem_init(struct drm_device *dev)
9676 {
9677 if (IS_IRONLAKE_M(dev))
9678 ironlake_enable_rc6(dev);
9679
9680 intel_setup_overlay(dev);
9681 }
9682
9683 void intel_modeset_cleanup(struct drm_device *dev)
9684 {
9685 struct drm_i915_private *dev_priv = dev->dev_private;
9686 struct drm_crtc *crtc;
9687 struct intel_crtc *intel_crtc;
9688
9689 drm_kms_helper_poll_fini(dev);
9690 mutex_lock(&dev->struct_mutex);
9691
9692 intel_unregister_dsm_handler();
9693
9694
9695 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9696 /* Skip inactive CRTCs */
9697 if (!crtc->fb)
9698 continue;
9699
9700 intel_crtc = to_intel_crtc(crtc);
9701 intel_increase_pllclock(crtc);
9702 }
9703
9704 intel_disable_fbc(dev);
9705
9706 if (IS_IRONLAKE_M(dev))
9707 ironlake_disable_drps(dev);
9708 if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev))
9709 gen6_disable_rps(dev);
9710
9711 if (IS_IRONLAKE_M(dev))
9712 ironlake_disable_rc6(dev);
9713
9714 if (IS_VALLEYVIEW(dev))
9715 vlv_init_dpio(dev);
9716
9717 mutex_unlock(&dev->struct_mutex);
9718
9719 /* Disable the irq before mode object teardown, for the irq might
9720 * enqueue unpin/hotplug work. */
9721 drm_irq_uninstall(dev);
9722 cancel_work_sync(&dev_priv->hotplug_work);
9723 cancel_work_sync(&dev_priv->rps_work);
9724
9725 /* flush any delayed tasks or pending work */
9726 flush_scheduled_work();
9727
9728 /* Shut off idle work before the crtcs get freed. */
9729 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9730 intel_crtc = to_intel_crtc(crtc);
9731 del_timer_sync(&intel_crtc->idle_timer);
9732 }
9733 del_timer_sync(&dev_priv->idle_timer);
9734 cancel_work_sync(&dev_priv->idle_work);
9735
9736 drm_mode_config_cleanup(dev);
9737 }
9738
9739 /*
9740 * Return which encoder is currently attached for connector.
9741 */
9742 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9743 {
9744 return &intel_attached_encoder(connector)->base;
9745 }
9746
9747 void intel_connector_attach_encoder(struct intel_connector *connector,
9748 struct intel_encoder *encoder)
9749 {
9750 connector->encoder = encoder;
9751 drm_mode_connector_attach_encoder(&connector->base,
9752 &encoder->base);
9753 }
9754
9755 /*
9756 * set vga decode state - true == enable VGA decode
9757 */
9758 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9759 {
9760 struct drm_i915_private *dev_priv = dev->dev_private;
9761 u16 gmch_ctrl;
9762
9763 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9764 if (state)
9765 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9766 else
9767 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9768 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9769 return 0;
9770 }
9771
9772 #ifdef CONFIG_DEBUG_FS
9773 #include <linux/seq_file.h>
9774
9775 struct intel_display_error_state {
9776 struct intel_cursor_error_state {
9777 u32 control;
9778 u32 position;
9779 u32 base;
9780 u32 size;
9781 } cursor[2];
9782
9783 struct intel_pipe_error_state {
9784 u32 conf;
9785 u32 source;
9786
9787 u32 htotal;
9788 u32 hblank;
9789 u32 hsync;
9790 u32 vtotal;
9791 u32 vblank;
9792 u32 vsync;
9793 } pipe[2];
9794
9795 struct intel_plane_error_state {
9796 u32 control;
9797 u32 stride;
9798 u32 size;
9799 u32 pos;
9800 u32 addr;
9801 u32 surface;
9802 u32 tile_offset;
9803 } plane[2];
9804 };
9805
9806 struct intel_display_error_state *
9807 intel_display_capture_error_state(struct drm_device *dev)
9808 {
9809 drm_i915_private_t *dev_priv = dev->dev_private;
9810 struct intel_display_error_state *error;
9811 int i;
9812
9813 error = kmalloc(sizeof(*error), GFP_ATOMIC);
9814 if (error == NULL)
9815 return NULL;
9816
9817 for (i = 0; i < 2; i++) {
9818 error->cursor[i].control = I915_READ(CURCNTR(i));
9819 error->cursor[i].position = I915_READ(CURPOS(i));
9820 error->cursor[i].base = I915_READ(CURBASE(i));
9821
9822 error->plane[i].control = I915_READ(DSPCNTR(i));
9823 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9824 error->plane[i].size = I915_READ(DSPSIZE(i));
9825 error->plane[i].pos = I915_READ(DSPPOS(i));
9826 error->plane[i].addr = I915_READ(DSPADDR(i));
9827 if (INTEL_INFO(dev)->gen >= 4) {
9828 error->plane[i].surface = I915_READ(DSPSURF(i));
9829 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9830 }
9831
9832 error->pipe[i].conf = I915_READ(PIPECONF(i));
9833 error->pipe[i].source = I915_READ(PIPESRC(i));
9834 error->pipe[i].htotal = I915_READ(HTOTAL(i));
9835 error->pipe[i].hblank = I915_READ(HBLANK(i));
9836 error->pipe[i].hsync = I915_READ(HSYNC(i));
9837 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
9838 error->pipe[i].vblank = I915_READ(VBLANK(i));
9839 error->pipe[i].vsync = I915_READ(VSYNC(i));
9840 }
9841
9842 return error;
9843 }
9844
9845 void
9846 intel_display_print_error_state(struct seq_file *m,
9847 struct drm_device *dev,
9848 struct intel_display_error_state *error)
9849 {
9850 int i;
9851
9852 for (i = 0; i < 2; i++) {
9853 seq_printf(m, "Pipe [%d]:\n", i);
9854 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
9855 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
9856 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
9857 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
9858 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
9859 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
9860 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
9861 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
9862
9863 seq_printf(m, "Plane [%d]:\n", i);
9864 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
9865 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
9866 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
9867 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
9868 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
9869 if (INTEL_INFO(dev)->gen >= 4) {
9870 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
9871 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
9872 }
9873
9874 seq_printf(m, "Cursor [%d]:\n", i);
9875 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
9876 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
9877 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
9878 }
9879 }
9880 #endif