]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/intel_display.c
DRM/i915: Remove magic to prevent blank screen on gen4 chipsets
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_rect.h>
44 #include <linux/dma_remapping.h>
45
46 /* Primary plane formats supported by all gen */
47 #define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53 /* Primary plane formats for gen <= 3 */
54 static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58 };
59
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69 };
70
71 /* Cursor formats */
72 static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74 };
75
76 #define DIV_ROUND_CLOSEST_ULL(ll, d) \
77 ({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
78
79 static void intel_increase_pllclock(struct drm_device *dev,
80 enum pipe pipe);
81 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
82
83 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84 struct intel_crtc_config *pipe_config);
85 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86 struct intel_crtc_config *pipe_config);
87
88 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89 int x, int y, struct drm_framebuffer *old_fb);
90 static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
94 static void intel_dp_set_m_n(struct intel_crtc *crtc);
95 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
96 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
97 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
98 struct intel_link_m_n *m_n);
99 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
100 static void haswell_set_pipeconf(struct drm_crtc *crtc);
101 static void intel_set_pipe_csc(struct drm_crtc *crtc);
102 static void vlv_prepare_pll(struct intel_crtc *crtc);
103
104 typedef struct {
105 int min, max;
106 } intel_range_t;
107
108 typedef struct {
109 int dot_limit;
110 int p2_slow, p2_fast;
111 } intel_p2_t;
112
113 typedef struct intel_limit intel_limit_t;
114 struct intel_limit {
115 intel_range_t dot, vco, n, m, m1, m2, p, p1;
116 intel_p2_t p2;
117 };
118
119 int
120 intel_pch_rawclk(struct drm_device *dev)
121 {
122 struct drm_i915_private *dev_priv = dev->dev_private;
123
124 WARN_ON(!HAS_PCH_SPLIT(dev));
125
126 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
127 }
128
129 static inline u32 /* units of 100MHz */
130 intel_fdi_link_freq(struct drm_device *dev)
131 {
132 if (IS_GEN5(dev)) {
133 struct drm_i915_private *dev_priv = dev->dev_private;
134 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
135 } else
136 return 27;
137 }
138
139 static const intel_limit_t intel_limits_i8xx_dac = {
140 .dot = { .min = 25000, .max = 350000 },
141 .vco = { .min = 908000, .max = 1512000 },
142 .n = { .min = 2, .max = 16 },
143 .m = { .min = 96, .max = 140 },
144 .m1 = { .min = 18, .max = 26 },
145 .m2 = { .min = 6, .max = 16 },
146 .p = { .min = 4, .max = 128 },
147 .p1 = { .min = 2, .max = 33 },
148 .p2 = { .dot_limit = 165000,
149 .p2_slow = 4, .p2_fast = 2 },
150 };
151
152 static const intel_limit_t intel_limits_i8xx_dvo = {
153 .dot = { .min = 25000, .max = 350000 },
154 .vco = { .min = 908000, .max = 1512000 },
155 .n = { .min = 2, .max = 16 },
156 .m = { .min = 96, .max = 140 },
157 .m1 = { .min = 18, .max = 26 },
158 .m2 = { .min = 6, .max = 16 },
159 .p = { .min = 4, .max = 128 },
160 .p1 = { .min = 2, .max = 33 },
161 .p2 = { .dot_limit = 165000,
162 .p2_slow = 4, .p2_fast = 4 },
163 };
164
165 static const intel_limit_t intel_limits_i8xx_lvds = {
166 .dot = { .min = 25000, .max = 350000 },
167 .vco = { .min = 908000, .max = 1512000 },
168 .n = { .min = 2, .max = 16 },
169 .m = { .min = 96, .max = 140 },
170 .m1 = { .min = 18, .max = 26 },
171 .m2 = { .min = 6, .max = 16 },
172 .p = { .min = 4, .max = 128 },
173 .p1 = { .min = 1, .max = 6 },
174 .p2 = { .dot_limit = 165000,
175 .p2_slow = 14, .p2_fast = 7 },
176 };
177
178 static const intel_limit_t intel_limits_i9xx_sdvo = {
179 .dot = { .min = 20000, .max = 400000 },
180 .vco = { .min = 1400000, .max = 2800000 },
181 .n = { .min = 1, .max = 6 },
182 .m = { .min = 70, .max = 120 },
183 .m1 = { .min = 8, .max = 18 },
184 .m2 = { .min = 3, .max = 7 },
185 .p = { .min = 5, .max = 80 },
186 .p1 = { .min = 1, .max = 8 },
187 .p2 = { .dot_limit = 200000,
188 .p2_slow = 10, .p2_fast = 5 },
189 };
190
191 static const intel_limit_t intel_limits_i9xx_lvds = {
192 .dot = { .min = 20000, .max = 400000 },
193 .vco = { .min = 1400000, .max = 2800000 },
194 .n = { .min = 1, .max = 6 },
195 .m = { .min = 70, .max = 120 },
196 .m1 = { .min = 8, .max = 18 },
197 .m2 = { .min = 3, .max = 7 },
198 .p = { .min = 7, .max = 98 },
199 .p1 = { .min = 1, .max = 8 },
200 .p2 = { .dot_limit = 112000,
201 .p2_slow = 14, .p2_fast = 7 },
202 };
203
204
205 static const intel_limit_t intel_limits_g4x_sdvo = {
206 .dot = { .min = 25000, .max = 270000 },
207 .vco = { .min = 1750000, .max = 3500000},
208 .n = { .min = 1, .max = 4 },
209 .m = { .min = 104, .max = 138 },
210 .m1 = { .min = 17, .max = 23 },
211 .m2 = { .min = 5, .max = 11 },
212 .p = { .min = 10, .max = 30 },
213 .p1 = { .min = 1, .max = 3},
214 .p2 = { .dot_limit = 270000,
215 .p2_slow = 10,
216 .p2_fast = 10
217 },
218 };
219
220 static const intel_limit_t intel_limits_g4x_hdmi = {
221 .dot = { .min = 22000, .max = 400000 },
222 .vco = { .min = 1750000, .max = 3500000},
223 .n = { .min = 1, .max = 4 },
224 .m = { .min = 104, .max = 138 },
225 .m1 = { .min = 16, .max = 23 },
226 .m2 = { .min = 5, .max = 11 },
227 .p = { .min = 5, .max = 80 },
228 .p1 = { .min = 1, .max = 8},
229 .p2 = { .dot_limit = 165000,
230 .p2_slow = 10, .p2_fast = 5 },
231 };
232
233 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
234 .dot = { .min = 20000, .max = 115000 },
235 .vco = { .min = 1750000, .max = 3500000 },
236 .n = { .min = 1, .max = 3 },
237 .m = { .min = 104, .max = 138 },
238 .m1 = { .min = 17, .max = 23 },
239 .m2 = { .min = 5, .max = 11 },
240 .p = { .min = 28, .max = 112 },
241 .p1 = { .min = 2, .max = 8 },
242 .p2 = { .dot_limit = 0,
243 .p2_slow = 14, .p2_fast = 14
244 },
245 };
246
247 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
248 .dot = { .min = 80000, .max = 224000 },
249 .vco = { .min = 1750000, .max = 3500000 },
250 .n = { .min = 1, .max = 3 },
251 .m = { .min = 104, .max = 138 },
252 .m1 = { .min = 17, .max = 23 },
253 .m2 = { .min = 5, .max = 11 },
254 .p = { .min = 14, .max = 42 },
255 .p1 = { .min = 2, .max = 6 },
256 .p2 = { .dot_limit = 0,
257 .p2_slow = 7, .p2_fast = 7
258 },
259 };
260
261 static const intel_limit_t intel_limits_pineview_sdvo = {
262 .dot = { .min = 20000, .max = 400000},
263 .vco = { .min = 1700000, .max = 3500000 },
264 /* Pineview's Ncounter is a ring counter */
265 .n = { .min = 3, .max = 6 },
266 .m = { .min = 2, .max = 256 },
267 /* Pineview only has one combined m divider, which we treat as m2. */
268 .m1 = { .min = 0, .max = 0 },
269 .m2 = { .min = 0, .max = 254 },
270 .p = { .min = 5, .max = 80 },
271 .p1 = { .min = 1, .max = 8 },
272 .p2 = { .dot_limit = 200000,
273 .p2_slow = 10, .p2_fast = 5 },
274 };
275
276 static const intel_limit_t intel_limits_pineview_lvds = {
277 .dot = { .min = 20000, .max = 400000 },
278 .vco = { .min = 1700000, .max = 3500000 },
279 .n = { .min = 3, .max = 6 },
280 .m = { .min = 2, .max = 256 },
281 .m1 = { .min = 0, .max = 0 },
282 .m2 = { .min = 0, .max = 254 },
283 .p = { .min = 7, .max = 112 },
284 .p1 = { .min = 1, .max = 8 },
285 .p2 = { .dot_limit = 112000,
286 .p2_slow = 14, .p2_fast = 14 },
287 };
288
289 /* Ironlake / Sandybridge
290 *
291 * We calculate clock using (register_value + 2) for N/M1/M2, so here
292 * the range value for them is (actual_value - 2).
293 */
294 static const intel_limit_t intel_limits_ironlake_dac = {
295 .dot = { .min = 25000, .max = 350000 },
296 .vco = { .min = 1760000, .max = 3510000 },
297 .n = { .min = 1, .max = 5 },
298 .m = { .min = 79, .max = 127 },
299 .m1 = { .min = 12, .max = 22 },
300 .m2 = { .min = 5, .max = 9 },
301 .p = { .min = 5, .max = 80 },
302 .p1 = { .min = 1, .max = 8 },
303 .p2 = { .dot_limit = 225000,
304 .p2_slow = 10, .p2_fast = 5 },
305 };
306
307 static const intel_limit_t intel_limits_ironlake_single_lvds = {
308 .dot = { .min = 25000, .max = 350000 },
309 .vco = { .min = 1760000, .max = 3510000 },
310 .n = { .min = 1, .max = 3 },
311 .m = { .min = 79, .max = 118 },
312 .m1 = { .min = 12, .max = 22 },
313 .m2 = { .min = 5, .max = 9 },
314 .p = { .min = 28, .max = 112 },
315 .p1 = { .min = 2, .max = 8 },
316 .p2 = { .dot_limit = 225000,
317 .p2_slow = 14, .p2_fast = 14 },
318 };
319
320 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
321 .dot = { .min = 25000, .max = 350000 },
322 .vco = { .min = 1760000, .max = 3510000 },
323 .n = { .min = 1, .max = 3 },
324 .m = { .min = 79, .max = 127 },
325 .m1 = { .min = 12, .max = 22 },
326 .m2 = { .min = 5, .max = 9 },
327 .p = { .min = 14, .max = 56 },
328 .p1 = { .min = 2, .max = 8 },
329 .p2 = { .dot_limit = 225000,
330 .p2_slow = 7, .p2_fast = 7 },
331 };
332
333 /* LVDS 100mhz refclk limits. */
334 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
335 .dot = { .min = 25000, .max = 350000 },
336 .vco = { .min = 1760000, .max = 3510000 },
337 .n = { .min = 1, .max = 2 },
338 .m = { .min = 79, .max = 126 },
339 .m1 = { .min = 12, .max = 22 },
340 .m2 = { .min = 5, .max = 9 },
341 .p = { .min = 28, .max = 112 },
342 .p1 = { .min = 2, .max = 8 },
343 .p2 = { .dot_limit = 225000,
344 .p2_slow = 14, .p2_fast = 14 },
345 };
346
347 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
348 .dot = { .min = 25000, .max = 350000 },
349 .vco = { .min = 1760000, .max = 3510000 },
350 .n = { .min = 1, .max = 3 },
351 .m = { .min = 79, .max = 126 },
352 .m1 = { .min = 12, .max = 22 },
353 .m2 = { .min = 5, .max = 9 },
354 .p = { .min = 14, .max = 42 },
355 .p1 = { .min = 2, .max = 6 },
356 .p2 = { .dot_limit = 225000,
357 .p2_slow = 7, .p2_fast = 7 },
358 };
359
360 static const intel_limit_t intel_limits_vlv = {
361 /*
362 * These are the data rate limits (measured in fast clocks)
363 * since those are the strictest limits we have. The fast
364 * clock and actual rate limits are more relaxed, so checking
365 * them would make no difference.
366 */
367 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
368 .vco = { .min = 4000000, .max = 6000000 },
369 .n = { .min = 1, .max = 7 },
370 .m1 = { .min = 2, .max = 3 },
371 .m2 = { .min = 11, .max = 156 },
372 .p1 = { .min = 2, .max = 3 },
373 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
374 };
375
376 static const intel_limit_t intel_limits_chv = {
377 /*
378 * These are the data rate limits (measured in fast clocks)
379 * since those are the strictest limits we have. The fast
380 * clock and actual rate limits are more relaxed, so checking
381 * them would make no difference.
382 */
383 .dot = { .min = 25000 * 5, .max = 540000 * 5},
384 .vco = { .min = 4860000, .max = 6700000 },
385 .n = { .min = 1, .max = 1 },
386 .m1 = { .min = 2, .max = 2 },
387 .m2 = { .min = 24 << 22, .max = 175 << 22 },
388 .p1 = { .min = 2, .max = 4 },
389 .p2 = { .p2_slow = 1, .p2_fast = 14 },
390 };
391
392 static void vlv_clock(int refclk, intel_clock_t *clock)
393 {
394 clock->m = clock->m1 * clock->m2;
395 clock->p = clock->p1 * clock->p2;
396 if (WARN_ON(clock->n == 0 || clock->p == 0))
397 return;
398 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
399 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
400 }
401
402 /**
403 * Returns whether any output on the specified pipe is of the specified type
404 */
405 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
406 {
407 struct drm_device *dev = crtc->dev;
408 struct intel_encoder *encoder;
409
410 for_each_encoder_on_crtc(dev, crtc, encoder)
411 if (encoder->type == type)
412 return true;
413
414 return false;
415 }
416
417 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
418 int refclk)
419 {
420 struct drm_device *dev = crtc->dev;
421 const intel_limit_t *limit;
422
423 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
424 if (intel_is_dual_link_lvds(dev)) {
425 if (refclk == 100000)
426 limit = &intel_limits_ironlake_dual_lvds_100m;
427 else
428 limit = &intel_limits_ironlake_dual_lvds;
429 } else {
430 if (refclk == 100000)
431 limit = &intel_limits_ironlake_single_lvds_100m;
432 else
433 limit = &intel_limits_ironlake_single_lvds;
434 }
435 } else
436 limit = &intel_limits_ironlake_dac;
437
438 return limit;
439 }
440
441 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
442 {
443 struct drm_device *dev = crtc->dev;
444 const intel_limit_t *limit;
445
446 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
447 if (intel_is_dual_link_lvds(dev))
448 limit = &intel_limits_g4x_dual_channel_lvds;
449 else
450 limit = &intel_limits_g4x_single_channel_lvds;
451 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
452 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
453 limit = &intel_limits_g4x_hdmi;
454 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
455 limit = &intel_limits_g4x_sdvo;
456 } else /* The option is for other outputs */
457 limit = &intel_limits_i9xx_sdvo;
458
459 return limit;
460 }
461
462 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
463 {
464 struct drm_device *dev = crtc->dev;
465 const intel_limit_t *limit;
466
467 if (HAS_PCH_SPLIT(dev))
468 limit = intel_ironlake_limit(crtc, refclk);
469 else if (IS_G4X(dev)) {
470 limit = intel_g4x_limit(crtc);
471 } else if (IS_PINEVIEW(dev)) {
472 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
473 limit = &intel_limits_pineview_lvds;
474 else
475 limit = &intel_limits_pineview_sdvo;
476 } else if (IS_CHERRYVIEW(dev)) {
477 limit = &intel_limits_chv;
478 } else if (IS_VALLEYVIEW(dev)) {
479 limit = &intel_limits_vlv;
480 } else if (!IS_GEN2(dev)) {
481 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
482 limit = &intel_limits_i9xx_lvds;
483 else
484 limit = &intel_limits_i9xx_sdvo;
485 } else {
486 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
487 limit = &intel_limits_i8xx_lvds;
488 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
489 limit = &intel_limits_i8xx_dvo;
490 else
491 limit = &intel_limits_i8xx_dac;
492 }
493 return limit;
494 }
495
496 /* m1 is reserved as 0 in Pineview, n is a ring counter */
497 static void pineview_clock(int refclk, intel_clock_t *clock)
498 {
499 clock->m = clock->m2 + 2;
500 clock->p = clock->p1 * clock->p2;
501 if (WARN_ON(clock->n == 0 || clock->p == 0))
502 return;
503 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
504 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
505 }
506
507 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
508 {
509 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
510 }
511
512 static void i9xx_clock(int refclk, intel_clock_t *clock)
513 {
514 clock->m = i9xx_dpll_compute_m(clock);
515 clock->p = clock->p1 * clock->p2;
516 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
517 return;
518 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
519 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
520 }
521
522 static void chv_clock(int refclk, intel_clock_t *clock)
523 {
524 clock->m = clock->m1 * clock->m2;
525 clock->p = clock->p1 * clock->p2;
526 if (WARN_ON(clock->n == 0 || clock->p == 0))
527 return;
528 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
529 clock->n << 22);
530 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
531 }
532
533 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
534 /**
535 * Returns whether the given set of divisors are valid for a given refclk with
536 * the given connectors.
537 */
538
539 static bool intel_PLL_is_valid(struct drm_device *dev,
540 const intel_limit_t *limit,
541 const intel_clock_t *clock)
542 {
543 if (clock->n < limit->n.min || limit->n.max < clock->n)
544 INTELPllInvalid("n out of range\n");
545 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
546 INTELPllInvalid("p1 out of range\n");
547 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
548 INTELPllInvalid("m2 out of range\n");
549 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
550 INTELPllInvalid("m1 out of range\n");
551
552 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
553 if (clock->m1 <= clock->m2)
554 INTELPllInvalid("m1 <= m2\n");
555
556 if (!IS_VALLEYVIEW(dev)) {
557 if (clock->p < limit->p.min || limit->p.max < clock->p)
558 INTELPllInvalid("p out of range\n");
559 if (clock->m < limit->m.min || limit->m.max < clock->m)
560 INTELPllInvalid("m out of range\n");
561 }
562
563 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
564 INTELPllInvalid("vco out of range\n");
565 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
566 * connector, etc., rather than just a single range.
567 */
568 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
569 INTELPllInvalid("dot out of range\n");
570
571 return true;
572 }
573
574 static bool
575 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
576 int target, int refclk, intel_clock_t *match_clock,
577 intel_clock_t *best_clock)
578 {
579 struct drm_device *dev = crtc->dev;
580 intel_clock_t clock;
581 int err = target;
582
583 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
584 /*
585 * For LVDS just rely on its current settings for dual-channel.
586 * We haven't figured out how to reliably set up different
587 * single/dual channel state, if we even can.
588 */
589 if (intel_is_dual_link_lvds(dev))
590 clock.p2 = limit->p2.p2_fast;
591 else
592 clock.p2 = limit->p2.p2_slow;
593 } else {
594 if (target < limit->p2.dot_limit)
595 clock.p2 = limit->p2.p2_slow;
596 else
597 clock.p2 = limit->p2.p2_fast;
598 }
599
600 memset(best_clock, 0, sizeof(*best_clock));
601
602 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
603 clock.m1++) {
604 for (clock.m2 = limit->m2.min;
605 clock.m2 <= limit->m2.max; clock.m2++) {
606 if (clock.m2 >= clock.m1)
607 break;
608 for (clock.n = limit->n.min;
609 clock.n <= limit->n.max; clock.n++) {
610 for (clock.p1 = limit->p1.min;
611 clock.p1 <= limit->p1.max; clock.p1++) {
612 int this_err;
613
614 i9xx_clock(refclk, &clock);
615 if (!intel_PLL_is_valid(dev, limit,
616 &clock))
617 continue;
618 if (match_clock &&
619 clock.p != match_clock->p)
620 continue;
621
622 this_err = abs(clock.dot - target);
623 if (this_err < err) {
624 *best_clock = clock;
625 err = this_err;
626 }
627 }
628 }
629 }
630 }
631
632 return (err != target);
633 }
634
635 static bool
636 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
637 int target, int refclk, intel_clock_t *match_clock,
638 intel_clock_t *best_clock)
639 {
640 struct drm_device *dev = crtc->dev;
641 intel_clock_t clock;
642 int err = target;
643
644 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
645 /*
646 * For LVDS just rely on its current settings for dual-channel.
647 * We haven't figured out how to reliably set up different
648 * single/dual channel state, if we even can.
649 */
650 if (intel_is_dual_link_lvds(dev))
651 clock.p2 = limit->p2.p2_fast;
652 else
653 clock.p2 = limit->p2.p2_slow;
654 } else {
655 if (target < limit->p2.dot_limit)
656 clock.p2 = limit->p2.p2_slow;
657 else
658 clock.p2 = limit->p2.p2_fast;
659 }
660
661 memset(best_clock, 0, sizeof(*best_clock));
662
663 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
664 clock.m1++) {
665 for (clock.m2 = limit->m2.min;
666 clock.m2 <= limit->m2.max; clock.m2++) {
667 for (clock.n = limit->n.min;
668 clock.n <= limit->n.max; clock.n++) {
669 for (clock.p1 = limit->p1.min;
670 clock.p1 <= limit->p1.max; clock.p1++) {
671 int this_err;
672
673 pineview_clock(refclk, &clock);
674 if (!intel_PLL_is_valid(dev, limit,
675 &clock))
676 continue;
677 if (match_clock &&
678 clock.p != match_clock->p)
679 continue;
680
681 this_err = abs(clock.dot - target);
682 if (this_err < err) {
683 *best_clock = clock;
684 err = this_err;
685 }
686 }
687 }
688 }
689 }
690
691 return (err != target);
692 }
693
694 static bool
695 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
696 int target, int refclk, intel_clock_t *match_clock,
697 intel_clock_t *best_clock)
698 {
699 struct drm_device *dev = crtc->dev;
700 intel_clock_t clock;
701 int max_n;
702 bool found;
703 /* approximately equals target * 0.00585 */
704 int err_most = (target >> 8) + (target >> 9);
705 found = false;
706
707 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
708 if (intel_is_dual_link_lvds(dev))
709 clock.p2 = limit->p2.p2_fast;
710 else
711 clock.p2 = limit->p2.p2_slow;
712 } else {
713 if (target < limit->p2.dot_limit)
714 clock.p2 = limit->p2.p2_slow;
715 else
716 clock.p2 = limit->p2.p2_fast;
717 }
718
719 memset(best_clock, 0, sizeof(*best_clock));
720 max_n = limit->n.max;
721 /* based on hardware requirement, prefer smaller n to precision */
722 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
723 /* based on hardware requirement, prefere larger m1,m2 */
724 for (clock.m1 = limit->m1.max;
725 clock.m1 >= limit->m1.min; clock.m1--) {
726 for (clock.m2 = limit->m2.max;
727 clock.m2 >= limit->m2.min; clock.m2--) {
728 for (clock.p1 = limit->p1.max;
729 clock.p1 >= limit->p1.min; clock.p1--) {
730 int this_err;
731
732 i9xx_clock(refclk, &clock);
733 if (!intel_PLL_is_valid(dev, limit,
734 &clock))
735 continue;
736
737 this_err = abs(clock.dot - target);
738 if (this_err < err_most) {
739 *best_clock = clock;
740 err_most = this_err;
741 max_n = clock.n;
742 found = true;
743 }
744 }
745 }
746 }
747 }
748 return found;
749 }
750
751 static bool
752 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
753 int target, int refclk, intel_clock_t *match_clock,
754 intel_clock_t *best_clock)
755 {
756 struct drm_device *dev = crtc->dev;
757 intel_clock_t clock;
758 unsigned int bestppm = 1000000;
759 /* min update 19.2 MHz */
760 int max_n = min(limit->n.max, refclk / 19200);
761 bool found = false;
762
763 target *= 5; /* fast clock */
764
765 memset(best_clock, 0, sizeof(*best_clock));
766
767 /* based on hardware requirement, prefer smaller n to precision */
768 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
769 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
770 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
771 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
772 clock.p = clock.p1 * clock.p2;
773 /* based on hardware requirement, prefer bigger m1,m2 values */
774 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
775 unsigned int ppm, diff;
776
777 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
778 refclk * clock.m1);
779
780 vlv_clock(refclk, &clock);
781
782 if (!intel_PLL_is_valid(dev, limit,
783 &clock))
784 continue;
785
786 diff = abs(clock.dot - target);
787 ppm = div_u64(1000000ULL * diff, target);
788
789 if (ppm < 100 && clock.p > best_clock->p) {
790 bestppm = 0;
791 *best_clock = clock;
792 found = true;
793 }
794
795 if (bestppm >= 10 && ppm < bestppm - 10) {
796 bestppm = ppm;
797 *best_clock = clock;
798 found = true;
799 }
800 }
801 }
802 }
803 }
804
805 return found;
806 }
807
808 static bool
809 chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
810 int target, int refclk, intel_clock_t *match_clock,
811 intel_clock_t *best_clock)
812 {
813 struct drm_device *dev = crtc->dev;
814 intel_clock_t clock;
815 uint64_t m2;
816 int found = false;
817
818 memset(best_clock, 0, sizeof(*best_clock));
819
820 /*
821 * Based on hardware doc, the n always set to 1, and m1 always
822 * set to 2. If requires to support 200Mhz refclk, we need to
823 * revisit this because n may not 1 anymore.
824 */
825 clock.n = 1, clock.m1 = 2;
826 target *= 5; /* fast clock */
827
828 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
829 for (clock.p2 = limit->p2.p2_fast;
830 clock.p2 >= limit->p2.p2_slow;
831 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
832
833 clock.p = clock.p1 * clock.p2;
834
835 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
836 clock.n) << 22, refclk * clock.m1);
837
838 if (m2 > INT_MAX/clock.m1)
839 continue;
840
841 clock.m2 = m2;
842
843 chv_clock(refclk, &clock);
844
845 if (!intel_PLL_is_valid(dev, limit, &clock))
846 continue;
847
848 /* based on hardware requirement, prefer bigger p
849 */
850 if (clock.p > best_clock->p) {
851 *best_clock = clock;
852 found = true;
853 }
854 }
855 }
856
857 return found;
858 }
859
860 bool intel_crtc_active(struct drm_crtc *crtc)
861 {
862 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
863
864 /* Be paranoid as we can arrive here with only partial
865 * state retrieved from the hardware during setup.
866 *
867 * We can ditch the adjusted_mode.crtc_clock check as soon
868 * as Haswell has gained clock readout/fastboot support.
869 *
870 * We can ditch the crtc->primary->fb check as soon as we can
871 * properly reconstruct framebuffers.
872 */
873 return intel_crtc->active && crtc->primary->fb &&
874 intel_crtc->config.adjusted_mode.crtc_clock;
875 }
876
877 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
878 enum pipe pipe)
879 {
880 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
881 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
882
883 return intel_crtc->config.cpu_transcoder;
884 }
885
886 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
887 {
888 struct drm_i915_private *dev_priv = dev->dev_private;
889 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
890
891 frame = I915_READ(frame_reg);
892
893 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
894 WARN(1, "vblank wait timed out\n");
895 }
896
897 /**
898 * intel_wait_for_vblank - wait for vblank on a given pipe
899 * @dev: drm device
900 * @pipe: pipe to wait for
901 *
902 * Wait for vblank to occur on a given pipe. Needed for various bits of
903 * mode setting code.
904 */
905 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
906 {
907 struct drm_i915_private *dev_priv = dev->dev_private;
908 int pipestat_reg = PIPESTAT(pipe);
909
910 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
911 g4x_wait_for_vblank(dev, pipe);
912 return;
913 }
914
915 /* Clear existing vblank status. Note this will clear any other
916 * sticky status fields as well.
917 *
918 * This races with i915_driver_irq_handler() with the result
919 * that either function could miss a vblank event. Here it is not
920 * fatal, as we will either wait upon the next vblank interrupt or
921 * timeout. Generally speaking intel_wait_for_vblank() is only
922 * called during modeset at which time the GPU should be idle and
923 * should *not* be performing page flips and thus not waiting on
924 * vblanks...
925 * Currently, the result of us stealing a vblank from the irq
926 * handler is that a single frame will be skipped during swapbuffers.
927 */
928 I915_WRITE(pipestat_reg,
929 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
930
931 /* Wait for vblank interrupt bit to set */
932 if (wait_for(I915_READ(pipestat_reg) &
933 PIPE_VBLANK_INTERRUPT_STATUS,
934 50))
935 DRM_DEBUG_KMS("vblank wait timed out\n");
936 }
937
938 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
939 {
940 struct drm_i915_private *dev_priv = dev->dev_private;
941 u32 reg = PIPEDSL(pipe);
942 u32 line1, line2;
943 u32 line_mask;
944
945 if (IS_GEN2(dev))
946 line_mask = DSL_LINEMASK_GEN2;
947 else
948 line_mask = DSL_LINEMASK_GEN3;
949
950 line1 = I915_READ(reg) & line_mask;
951 mdelay(5);
952 line2 = I915_READ(reg) & line_mask;
953
954 return line1 == line2;
955 }
956
957 /*
958 * intel_wait_for_pipe_off - wait for pipe to turn off
959 * @dev: drm device
960 * @pipe: pipe to wait for
961 *
962 * After disabling a pipe, we can't wait for vblank in the usual way,
963 * spinning on the vblank interrupt status bit, since we won't actually
964 * see an interrupt when the pipe is disabled.
965 *
966 * On Gen4 and above:
967 * wait for the pipe register state bit to turn off
968 *
969 * Otherwise:
970 * wait for the display line value to settle (it usually
971 * ends up stopping at the start of the next frame).
972 *
973 */
974 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
975 {
976 struct drm_i915_private *dev_priv = dev->dev_private;
977 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
978 pipe);
979
980 if (INTEL_INFO(dev)->gen >= 4) {
981 int reg = PIPECONF(cpu_transcoder);
982
983 /* Wait for the Pipe State to go off */
984 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
985 100))
986 WARN(1, "pipe_off wait timed out\n");
987 } else {
988 /* Wait for the display line to settle */
989 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
990 WARN(1, "pipe_off wait timed out\n");
991 }
992 }
993
994 /*
995 * ibx_digital_port_connected - is the specified port connected?
996 * @dev_priv: i915 private structure
997 * @port: the port to test
998 *
999 * Returns true if @port is connected, false otherwise.
1000 */
1001 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1002 struct intel_digital_port *port)
1003 {
1004 u32 bit;
1005
1006 if (HAS_PCH_IBX(dev_priv->dev)) {
1007 switch (port->port) {
1008 case PORT_B:
1009 bit = SDE_PORTB_HOTPLUG;
1010 break;
1011 case PORT_C:
1012 bit = SDE_PORTC_HOTPLUG;
1013 break;
1014 case PORT_D:
1015 bit = SDE_PORTD_HOTPLUG;
1016 break;
1017 default:
1018 return true;
1019 }
1020 } else {
1021 switch (port->port) {
1022 case PORT_B:
1023 bit = SDE_PORTB_HOTPLUG_CPT;
1024 break;
1025 case PORT_C:
1026 bit = SDE_PORTC_HOTPLUG_CPT;
1027 break;
1028 case PORT_D:
1029 bit = SDE_PORTD_HOTPLUG_CPT;
1030 break;
1031 default:
1032 return true;
1033 }
1034 }
1035
1036 return I915_READ(SDEISR) & bit;
1037 }
1038
1039 static const char *state_string(bool enabled)
1040 {
1041 return enabled ? "on" : "off";
1042 }
1043
1044 /* Only for pre-ILK configs */
1045 void assert_pll(struct drm_i915_private *dev_priv,
1046 enum pipe pipe, bool state)
1047 {
1048 int reg;
1049 u32 val;
1050 bool cur_state;
1051
1052 reg = DPLL(pipe);
1053 val = I915_READ(reg);
1054 cur_state = !!(val & DPLL_VCO_ENABLE);
1055 WARN(cur_state != state,
1056 "PLL state assertion failure (expected %s, current %s)\n",
1057 state_string(state), state_string(cur_state));
1058 }
1059
1060 /* XXX: the dsi pll is shared between MIPI DSI ports */
1061 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1062 {
1063 u32 val;
1064 bool cur_state;
1065
1066 mutex_lock(&dev_priv->dpio_lock);
1067 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1068 mutex_unlock(&dev_priv->dpio_lock);
1069
1070 cur_state = val & DSI_PLL_VCO_EN;
1071 WARN(cur_state != state,
1072 "DSI PLL state assertion failure (expected %s, current %s)\n",
1073 state_string(state), state_string(cur_state));
1074 }
1075 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1076 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1077
1078 struct intel_shared_dpll *
1079 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1080 {
1081 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1082
1083 if (crtc->config.shared_dpll < 0)
1084 return NULL;
1085
1086 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1087 }
1088
1089 /* For ILK+ */
1090 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1091 struct intel_shared_dpll *pll,
1092 bool state)
1093 {
1094 bool cur_state;
1095 struct intel_dpll_hw_state hw_state;
1096
1097 if (HAS_PCH_LPT(dev_priv->dev)) {
1098 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1099 return;
1100 }
1101
1102 if (WARN (!pll,
1103 "asserting DPLL %s with no DPLL\n", state_string(state)))
1104 return;
1105
1106 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1107 WARN(cur_state != state,
1108 "%s assertion failure (expected %s, current %s)\n",
1109 pll->name, state_string(state), state_string(cur_state));
1110 }
1111
1112 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1113 enum pipe pipe, bool state)
1114 {
1115 int reg;
1116 u32 val;
1117 bool cur_state;
1118 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1119 pipe);
1120
1121 if (HAS_DDI(dev_priv->dev)) {
1122 /* DDI does not have a specific FDI_TX register */
1123 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1124 val = I915_READ(reg);
1125 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1126 } else {
1127 reg = FDI_TX_CTL(pipe);
1128 val = I915_READ(reg);
1129 cur_state = !!(val & FDI_TX_ENABLE);
1130 }
1131 WARN(cur_state != state,
1132 "FDI TX state assertion failure (expected %s, current %s)\n",
1133 state_string(state), state_string(cur_state));
1134 }
1135 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1136 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1137
1138 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1139 enum pipe pipe, bool state)
1140 {
1141 int reg;
1142 u32 val;
1143 bool cur_state;
1144
1145 reg = FDI_RX_CTL(pipe);
1146 val = I915_READ(reg);
1147 cur_state = !!(val & FDI_RX_ENABLE);
1148 WARN(cur_state != state,
1149 "FDI RX state assertion failure (expected %s, current %s)\n",
1150 state_string(state), state_string(cur_state));
1151 }
1152 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1153 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1154
1155 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1156 enum pipe pipe)
1157 {
1158 int reg;
1159 u32 val;
1160
1161 /* ILK FDI PLL is always enabled */
1162 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1163 return;
1164
1165 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1166 if (HAS_DDI(dev_priv->dev))
1167 return;
1168
1169 reg = FDI_TX_CTL(pipe);
1170 val = I915_READ(reg);
1171 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1172 }
1173
1174 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1175 enum pipe pipe, bool state)
1176 {
1177 int reg;
1178 u32 val;
1179 bool cur_state;
1180
1181 reg = FDI_RX_CTL(pipe);
1182 val = I915_READ(reg);
1183 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1184 WARN(cur_state != state,
1185 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1186 state_string(state), state_string(cur_state));
1187 }
1188
1189 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1190 enum pipe pipe)
1191 {
1192 int pp_reg, lvds_reg;
1193 u32 val;
1194 enum pipe panel_pipe = PIPE_A;
1195 bool locked = true;
1196
1197 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1198 pp_reg = PCH_PP_CONTROL;
1199 lvds_reg = PCH_LVDS;
1200 } else {
1201 pp_reg = PP_CONTROL;
1202 lvds_reg = LVDS;
1203 }
1204
1205 val = I915_READ(pp_reg);
1206 if (!(val & PANEL_POWER_ON) ||
1207 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1208 locked = false;
1209
1210 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1211 panel_pipe = PIPE_B;
1212
1213 WARN(panel_pipe == pipe && locked,
1214 "panel assertion failure, pipe %c regs locked\n",
1215 pipe_name(pipe));
1216 }
1217
1218 static void assert_cursor(struct drm_i915_private *dev_priv,
1219 enum pipe pipe, bool state)
1220 {
1221 struct drm_device *dev = dev_priv->dev;
1222 bool cur_state;
1223
1224 if (IS_845G(dev) || IS_I865G(dev))
1225 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1226 else
1227 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1228
1229 WARN(cur_state != state,
1230 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1231 pipe_name(pipe), state_string(state), state_string(cur_state));
1232 }
1233 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1234 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1235
1236 void assert_pipe(struct drm_i915_private *dev_priv,
1237 enum pipe pipe, bool state)
1238 {
1239 int reg;
1240 u32 val;
1241 bool cur_state;
1242 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1243 pipe);
1244
1245 /* if we need the pipe A quirk it must be always on */
1246 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1247 state = true;
1248
1249 if (!intel_display_power_enabled(dev_priv,
1250 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1251 cur_state = false;
1252 } else {
1253 reg = PIPECONF(cpu_transcoder);
1254 val = I915_READ(reg);
1255 cur_state = !!(val & PIPECONF_ENABLE);
1256 }
1257
1258 WARN(cur_state != state,
1259 "pipe %c assertion failure (expected %s, current %s)\n",
1260 pipe_name(pipe), state_string(state), state_string(cur_state));
1261 }
1262
1263 static void assert_plane(struct drm_i915_private *dev_priv,
1264 enum plane plane, bool state)
1265 {
1266 int reg;
1267 u32 val;
1268 bool cur_state;
1269
1270 reg = DSPCNTR(plane);
1271 val = I915_READ(reg);
1272 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1273 WARN(cur_state != state,
1274 "plane %c assertion failure (expected %s, current %s)\n",
1275 plane_name(plane), state_string(state), state_string(cur_state));
1276 }
1277
1278 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1279 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1280
1281 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1282 enum pipe pipe)
1283 {
1284 struct drm_device *dev = dev_priv->dev;
1285 int reg, i;
1286 u32 val;
1287 int cur_pipe;
1288
1289 /* Primary planes are fixed to pipes on gen4+ */
1290 if (INTEL_INFO(dev)->gen >= 4) {
1291 reg = DSPCNTR(pipe);
1292 val = I915_READ(reg);
1293 WARN(val & DISPLAY_PLANE_ENABLE,
1294 "plane %c assertion failure, should be disabled but not\n",
1295 plane_name(pipe));
1296 return;
1297 }
1298
1299 /* Need to check both planes against the pipe */
1300 for_each_pipe(i) {
1301 reg = DSPCNTR(i);
1302 val = I915_READ(reg);
1303 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1304 DISPPLANE_SEL_PIPE_SHIFT;
1305 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1306 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1307 plane_name(i), pipe_name(pipe));
1308 }
1309 }
1310
1311 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1312 enum pipe pipe)
1313 {
1314 struct drm_device *dev = dev_priv->dev;
1315 int reg, sprite;
1316 u32 val;
1317
1318 if (IS_VALLEYVIEW(dev)) {
1319 for_each_sprite(pipe, sprite) {
1320 reg = SPCNTR(pipe, sprite);
1321 val = I915_READ(reg);
1322 WARN(val & SP_ENABLE,
1323 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1324 sprite_name(pipe, sprite), pipe_name(pipe));
1325 }
1326 } else if (INTEL_INFO(dev)->gen >= 7) {
1327 reg = SPRCTL(pipe);
1328 val = I915_READ(reg);
1329 WARN(val & SPRITE_ENABLE,
1330 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1331 plane_name(pipe), pipe_name(pipe));
1332 } else if (INTEL_INFO(dev)->gen >= 5) {
1333 reg = DVSCNTR(pipe);
1334 val = I915_READ(reg);
1335 WARN(val & DVS_ENABLE,
1336 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1337 plane_name(pipe), pipe_name(pipe));
1338 }
1339 }
1340
1341 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1342 {
1343 u32 val;
1344 bool enabled;
1345
1346 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1347
1348 val = I915_READ(PCH_DREF_CONTROL);
1349 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1350 DREF_SUPERSPREAD_SOURCE_MASK));
1351 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1352 }
1353
1354 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1355 enum pipe pipe)
1356 {
1357 int reg;
1358 u32 val;
1359 bool enabled;
1360
1361 reg = PCH_TRANSCONF(pipe);
1362 val = I915_READ(reg);
1363 enabled = !!(val & TRANS_ENABLE);
1364 WARN(enabled,
1365 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1366 pipe_name(pipe));
1367 }
1368
1369 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1370 enum pipe pipe, u32 port_sel, u32 val)
1371 {
1372 if ((val & DP_PORT_EN) == 0)
1373 return false;
1374
1375 if (HAS_PCH_CPT(dev_priv->dev)) {
1376 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1377 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1378 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1379 return false;
1380 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1381 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1382 return false;
1383 } else {
1384 if ((val & DP_PIPE_MASK) != (pipe << 30))
1385 return false;
1386 }
1387 return true;
1388 }
1389
1390 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1391 enum pipe pipe, u32 val)
1392 {
1393 if ((val & SDVO_ENABLE) == 0)
1394 return false;
1395
1396 if (HAS_PCH_CPT(dev_priv->dev)) {
1397 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1398 return false;
1399 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1400 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1401 return false;
1402 } else {
1403 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1404 return false;
1405 }
1406 return true;
1407 }
1408
1409 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1410 enum pipe pipe, u32 val)
1411 {
1412 if ((val & LVDS_PORT_EN) == 0)
1413 return false;
1414
1415 if (HAS_PCH_CPT(dev_priv->dev)) {
1416 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1417 return false;
1418 } else {
1419 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1420 return false;
1421 }
1422 return true;
1423 }
1424
1425 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1426 enum pipe pipe, u32 val)
1427 {
1428 if ((val & ADPA_DAC_ENABLE) == 0)
1429 return false;
1430 if (HAS_PCH_CPT(dev_priv->dev)) {
1431 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1432 return false;
1433 } else {
1434 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1435 return false;
1436 }
1437 return true;
1438 }
1439
1440 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1441 enum pipe pipe, int reg, u32 port_sel)
1442 {
1443 u32 val = I915_READ(reg);
1444 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1445 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1446 reg, pipe_name(pipe));
1447
1448 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1449 && (val & DP_PIPEB_SELECT),
1450 "IBX PCH dp port still using transcoder B\n");
1451 }
1452
1453 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1454 enum pipe pipe, int reg)
1455 {
1456 u32 val = I915_READ(reg);
1457 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1458 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1459 reg, pipe_name(pipe));
1460
1461 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1462 && (val & SDVO_PIPE_B_SELECT),
1463 "IBX PCH hdmi port still using transcoder B\n");
1464 }
1465
1466 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1467 enum pipe pipe)
1468 {
1469 int reg;
1470 u32 val;
1471
1472 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1473 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1474 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1475
1476 reg = PCH_ADPA;
1477 val = I915_READ(reg);
1478 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1479 "PCH VGA enabled on transcoder %c, should be disabled\n",
1480 pipe_name(pipe));
1481
1482 reg = PCH_LVDS;
1483 val = I915_READ(reg);
1484 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1485 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1486 pipe_name(pipe));
1487
1488 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1489 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1490 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1491 }
1492
1493 static void intel_init_dpio(struct drm_device *dev)
1494 {
1495 struct drm_i915_private *dev_priv = dev->dev_private;
1496
1497 if (!IS_VALLEYVIEW(dev))
1498 return;
1499
1500 /*
1501 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1502 * CHV x1 PHY (DP/HDMI D)
1503 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1504 */
1505 if (IS_CHERRYVIEW(dev)) {
1506 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1507 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1508 } else {
1509 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1510 }
1511 }
1512
1513 static void intel_reset_dpio(struct drm_device *dev)
1514 {
1515 struct drm_i915_private *dev_priv = dev->dev_private;
1516
1517 if (IS_CHERRYVIEW(dev)) {
1518 enum dpio_phy phy;
1519 u32 val;
1520
1521 for (phy = DPIO_PHY0; phy < I915_NUM_PHYS_VLV; phy++) {
1522 /* Poll for phypwrgood signal */
1523 if (wait_for(I915_READ(DISPLAY_PHY_STATUS) &
1524 PHY_POWERGOOD(phy), 1))
1525 DRM_ERROR("Display PHY %d is not power up\n", phy);
1526
1527 /*
1528 * Deassert common lane reset for PHY.
1529 *
1530 * This should only be done on init and resume from S3
1531 * with both PLLs disabled, or we risk losing DPIO and
1532 * PLL synchronization.
1533 */
1534 val = I915_READ(DISPLAY_PHY_CONTROL);
1535 I915_WRITE(DISPLAY_PHY_CONTROL,
1536 PHY_COM_LANE_RESET_DEASSERT(phy, val));
1537 }
1538 }
1539 }
1540
1541 static void vlv_enable_pll(struct intel_crtc *crtc)
1542 {
1543 struct drm_device *dev = crtc->base.dev;
1544 struct drm_i915_private *dev_priv = dev->dev_private;
1545 int reg = DPLL(crtc->pipe);
1546 u32 dpll = crtc->config.dpll_hw_state.dpll;
1547
1548 assert_pipe_disabled(dev_priv, crtc->pipe);
1549
1550 /* No really, not for ILK+ */
1551 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1552
1553 /* PLL is protected by panel, make sure we can write it */
1554 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1555 assert_panel_unlocked(dev_priv, crtc->pipe);
1556
1557 I915_WRITE(reg, dpll);
1558 POSTING_READ(reg);
1559 udelay(150);
1560
1561 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1562 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1563
1564 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1565 POSTING_READ(DPLL_MD(crtc->pipe));
1566
1567 /* We do this three times for luck */
1568 I915_WRITE(reg, dpll);
1569 POSTING_READ(reg);
1570 udelay(150); /* wait for warmup */
1571 I915_WRITE(reg, dpll);
1572 POSTING_READ(reg);
1573 udelay(150); /* wait for warmup */
1574 I915_WRITE(reg, dpll);
1575 POSTING_READ(reg);
1576 udelay(150); /* wait for warmup */
1577 }
1578
1579 static void chv_enable_pll(struct intel_crtc *crtc)
1580 {
1581 struct drm_device *dev = crtc->base.dev;
1582 struct drm_i915_private *dev_priv = dev->dev_private;
1583 int pipe = crtc->pipe;
1584 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1585 u32 tmp;
1586
1587 assert_pipe_disabled(dev_priv, crtc->pipe);
1588
1589 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1590
1591 mutex_lock(&dev_priv->dpio_lock);
1592
1593 /* Enable back the 10bit clock to display controller */
1594 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1595 tmp |= DPIO_DCLKP_EN;
1596 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1597
1598 /*
1599 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1600 */
1601 udelay(1);
1602
1603 /* Enable PLL */
1604 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
1605
1606 /* Check PLL is locked */
1607 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1608 DRM_ERROR("PLL %d failed to lock\n", pipe);
1609
1610 /* not sure when this should be written */
1611 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1612 POSTING_READ(DPLL_MD(pipe));
1613
1614 mutex_unlock(&dev_priv->dpio_lock);
1615 }
1616
1617 static void i9xx_enable_pll(struct intel_crtc *crtc)
1618 {
1619 struct drm_device *dev = crtc->base.dev;
1620 struct drm_i915_private *dev_priv = dev->dev_private;
1621 int reg = DPLL(crtc->pipe);
1622 u32 dpll = crtc->config.dpll_hw_state.dpll;
1623
1624 assert_pipe_disabled(dev_priv, crtc->pipe);
1625
1626 /* No really, not for ILK+ */
1627 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1628
1629 /* PLL is protected by panel, make sure we can write it */
1630 if (IS_MOBILE(dev) && !IS_I830(dev))
1631 assert_panel_unlocked(dev_priv, crtc->pipe);
1632
1633 I915_WRITE(reg, dpll);
1634
1635 /* Wait for the clocks to stabilize. */
1636 POSTING_READ(reg);
1637 udelay(150);
1638
1639 if (INTEL_INFO(dev)->gen >= 4) {
1640 I915_WRITE(DPLL_MD(crtc->pipe),
1641 crtc->config.dpll_hw_state.dpll_md);
1642 } else {
1643 /* The pixel multiplier can only be updated once the
1644 * DPLL is enabled and the clocks are stable.
1645 *
1646 * So write it again.
1647 */
1648 I915_WRITE(reg, dpll);
1649 }
1650
1651 /* We do this three times for luck */
1652 I915_WRITE(reg, dpll);
1653 POSTING_READ(reg);
1654 udelay(150); /* wait for warmup */
1655 I915_WRITE(reg, dpll);
1656 POSTING_READ(reg);
1657 udelay(150); /* wait for warmup */
1658 I915_WRITE(reg, dpll);
1659 POSTING_READ(reg);
1660 udelay(150); /* wait for warmup */
1661 }
1662
1663 /**
1664 * i9xx_disable_pll - disable a PLL
1665 * @dev_priv: i915 private structure
1666 * @pipe: pipe PLL to disable
1667 *
1668 * Disable the PLL for @pipe, making sure the pipe is off first.
1669 *
1670 * Note! This is for pre-ILK only.
1671 */
1672 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1673 {
1674 /* Don't disable pipe A or pipe A PLLs if needed */
1675 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1676 return;
1677
1678 /* Make sure the pipe isn't still relying on us */
1679 assert_pipe_disabled(dev_priv, pipe);
1680
1681 I915_WRITE(DPLL(pipe), 0);
1682 POSTING_READ(DPLL(pipe));
1683 }
1684
1685 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1686 {
1687 u32 val = 0;
1688
1689 /* Make sure the pipe isn't still relying on us */
1690 assert_pipe_disabled(dev_priv, pipe);
1691
1692 /*
1693 * Leave integrated clock source and reference clock enabled for pipe B.
1694 * The latter is needed for VGA hotplug / manual detection.
1695 */
1696 if (pipe == PIPE_B)
1697 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1698 I915_WRITE(DPLL(pipe), val);
1699 POSTING_READ(DPLL(pipe));
1700
1701 }
1702
1703 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1704 {
1705 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1706 u32 val;
1707
1708 /* Make sure the pipe isn't still relying on us */
1709 assert_pipe_disabled(dev_priv, pipe);
1710
1711 /* Set PLL en = 0 */
1712 val = DPLL_SSC_REF_CLOCK_CHV;
1713 if (pipe != PIPE_A)
1714 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1715 I915_WRITE(DPLL(pipe), val);
1716 POSTING_READ(DPLL(pipe));
1717
1718 mutex_lock(&dev_priv->dpio_lock);
1719
1720 /* Disable 10bit clock to display controller */
1721 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1722 val &= ~DPIO_DCLKP_EN;
1723 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1724
1725 /* disable left/right clock distribution */
1726 if (pipe != PIPE_B) {
1727 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1728 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1729 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1730 } else {
1731 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1732 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1733 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1734 }
1735
1736 mutex_unlock(&dev_priv->dpio_lock);
1737 }
1738
1739 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1740 struct intel_digital_port *dport)
1741 {
1742 u32 port_mask;
1743 int dpll_reg;
1744
1745 switch (dport->port) {
1746 case PORT_B:
1747 port_mask = DPLL_PORTB_READY_MASK;
1748 dpll_reg = DPLL(0);
1749 break;
1750 case PORT_C:
1751 port_mask = DPLL_PORTC_READY_MASK;
1752 dpll_reg = DPLL(0);
1753 break;
1754 case PORT_D:
1755 port_mask = DPLL_PORTD_READY_MASK;
1756 dpll_reg = DPIO_PHY_STATUS;
1757 break;
1758 default:
1759 BUG();
1760 }
1761
1762 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1763 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1764 port_name(dport->port), I915_READ(dpll_reg));
1765 }
1766
1767 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1768 {
1769 struct drm_device *dev = crtc->base.dev;
1770 struct drm_i915_private *dev_priv = dev->dev_private;
1771 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1772
1773 if (WARN_ON(pll == NULL))
1774 return;
1775
1776 WARN_ON(!pll->refcount);
1777 if (pll->active == 0) {
1778 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1779 WARN_ON(pll->on);
1780 assert_shared_dpll_disabled(dev_priv, pll);
1781
1782 pll->mode_set(dev_priv, pll);
1783 }
1784 }
1785
1786 /**
1787 * intel_enable_shared_dpll - enable PCH PLL
1788 * @dev_priv: i915 private structure
1789 * @pipe: pipe PLL to enable
1790 *
1791 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1792 * drives the transcoder clock.
1793 */
1794 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1795 {
1796 struct drm_device *dev = crtc->base.dev;
1797 struct drm_i915_private *dev_priv = dev->dev_private;
1798 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1799
1800 if (WARN_ON(pll == NULL))
1801 return;
1802
1803 if (WARN_ON(pll->refcount == 0))
1804 return;
1805
1806 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1807 pll->name, pll->active, pll->on,
1808 crtc->base.base.id);
1809
1810 if (pll->active++) {
1811 WARN_ON(!pll->on);
1812 assert_shared_dpll_enabled(dev_priv, pll);
1813 return;
1814 }
1815 WARN_ON(pll->on);
1816
1817 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1818 pll->enable(dev_priv, pll);
1819 pll->on = true;
1820 }
1821
1822 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1823 {
1824 struct drm_device *dev = crtc->base.dev;
1825 struct drm_i915_private *dev_priv = dev->dev_private;
1826 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1827
1828 /* PCH only available on ILK+ */
1829 BUG_ON(INTEL_INFO(dev)->gen < 5);
1830 if (WARN_ON(pll == NULL))
1831 return;
1832
1833 if (WARN_ON(pll->refcount == 0))
1834 return;
1835
1836 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1837 pll->name, pll->active, pll->on,
1838 crtc->base.base.id);
1839
1840 if (WARN_ON(pll->active == 0)) {
1841 assert_shared_dpll_disabled(dev_priv, pll);
1842 return;
1843 }
1844
1845 assert_shared_dpll_enabled(dev_priv, pll);
1846 WARN_ON(!pll->on);
1847 if (--pll->active)
1848 return;
1849
1850 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1851 pll->disable(dev_priv, pll);
1852 pll->on = false;
1853 }
1854
1855 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1856 enum pipe pipe)
1857 {
1858 struct drm_device *dev = dev_priv->dev;
1859 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1860 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1861 uint32_t reg, val, pipeconf_val;
1862
1863 /* PCH only available on ILK+ */
1864 BUG_ON(INTEL_INFO(dev)->gen < 5);
1865
1866 /* Make sure PCH DPLL is enabled */
1867 assert_shared_dpll_enabled(dev_priv,
1868 intel_crtc_to_shared_dpll(intel_crtc));
1869
1870 /* FDI must be feeding us bits for PCH ports */
1871 assert_fdi_tx_enabled(dev_priv, pipe);
1872 assert_fdi_rx_enabled(dev_priv, pipe);
1873
1874 if (HAS_PCH_CPT(dev)) {
1875 /* Workaround: Set the timing override bit before enabling the
1876 * pch transcoder. */
1877 reg = TRANS_CHICKEN2(pipe);
1878 val = I915_READ(reg);
1879 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1880 I915_WRITE(reg, val);
1881 }
1882
1883 reg = PCH_TRANSCONF(pipe);
1884 val = I915_READ(reg);
1885 pipeconf_val = I915_READ(PIPECONF(pipe));
1886
1887 if (HAS_PCH_IBX(dev_priv->dev)) {
1888 /*
1889 * make the BPC in transcoder be consistent with
1890 * that in pipeconf reg.
1891 */
1892 val &= ~PIPECONF_BPC_MASK;
1893 val |= pipeconf_val & PIPECONF_BPC_MASK;
1894 }
1895
1896 val &= ~TRANS_INTERLACE_MASK;
1897 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1898 if (HAS_PCH_IBX(dev_priv->dev) &&
1899 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1900 val |= TRANS_LEGACY_INTERLACED_ILK;
1901 else
1902 val |= TRANS_INTERLACED;
1903 else
1904 val |= TRANS_PROGRESSIVE;
1905
1906 I915_WRITE(reg, val | TRANS_ENABLE);
1907 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1908 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1909 }
1910
1911 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1912 enum transcoder cpu_transcoder)
1913 {
1914 u32 val, pipeconf_val;
1915
1916 /* PCH only available on ILK+ */
1917 BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
1918
1919 /* FDI must be feeding us bits for PCH ports */
1920 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1921 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1922
1923 /* Workaround: set timing override bit. */
1924 val = I915_READ(_TRANSA_CHICKEN2);
1925 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1926 I915_WRITE(_TRANSA_CHICKEN2, val);
1927
1928 val = TRANS_ENABLE;
1929 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1930
1931 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1932 PIPECONF_INTERLACED_ILK)
1933 val |= TRANS_INTERLACED;
1934 else
1935 val |= TRANS_PROGRESSIVE;
1936
1937 I915_WRITE(LPT_TRANSCONF, val);
1938 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1939 DRM_ERROR("Failed to enable PCH transcoder\n");
1940 }
1941
1942 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1943 enum pipe pipe)
1944 {
1945 struct drm_device *dev = dev_priv->dev;
1946 uint32_t reg, val;
1947
1948 /* FDI relies on the transcoder */
1949 assert_fdi_tx_disabled(dev_priv, pipe);
1950 assert_fdi_rx_disabled(dev_priv, pipe);
1951
1952 /* Ports must be off as well */
1953 assert_pch_ports_disabled(dev_priv, pipe);
1954
1955 reg = PCH_TRANSCONF(pipe);
1956 val = I915_READ(reg);
1957 val &= ~TRANS_ENABLE;
1958 I915_WRITE(reg, val);
1959 /* wait for PCH transcoder off, transcoder state */
1960 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1961 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1962
1963 if (!HAS_PCH_IBX(dev)) {
1964 /* Workaround: Clear the timing override chicken bit again. */
1965 reg = TRANS_CHICKEN2(pipe);
1966 val = I915_READ(reg);
1967 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1968 I915_WRITE(reg, val);
1969 }
1970 }
1971
1972 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1973 {
1974 u32 val;
1975
1976 val = I915_READ(LPT_TRANSCONF);
1977 val &= ~TRANS_ENABLE;
1978 I915_WRITE(LPT_TRANSCONF, val);
1979 /* wait for PCH transcoder off, transcoder state */
1980 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1981 DRM_ERROR("Failed to disable PCH transcoder\n");
1982
1983 /* Workaround: clear timing override bit. */
1984 val = I915_READ(_TRANSA_CHICKEN2);
1985 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1986 I915_WRITE(_TRANSA_CHICKEN2, val);
1987 }
1988
1989 /**
1990 * intel_enable_pipe - enable a pipe, asserting requirements
1991 * @crtc: crtc responsible for the pipe
1992 *
1993 * Enable @crtc's pipe, making sure that various hardware specific requirements
1994 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1995 */
1996 static void intel_enable_pipe(struct intel_crtc *crtc)
1997 {
1998 struct drm_device *dev = crtc->base.dev;
1999 struct drm_i915_private *dev_priv = dev->dev_private;
2000 enum pipe pipe = crtc->pipe;
2001 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2002 pipe);
2003 enum pipe pch_transcoder;
2004 int reg;
2005 u32 val;
2006
2007 assert_planes_disabled(dev_priv, pipe);
2008 assert_cursor_disabled(dev_priv, pipe);
2009 assert_sprites_disabled(dev_priv, pipe);
2010
2011 if (HAS_PCH_LPT(dev_priv->dev))
2012 pch_transcoder = TRANSCODER_A;
2013 else
2014 pch_transcoder = pipe;
2015
2016 /*
2017 * A pipe without a PLL won't actually be able to drive bits from
2018 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2019 * need the check.
2020 */
2021 if (!HAS_PCH_SPLIT(dev_priv->dev))
2022 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
2023 assert_dsi_pll_enabled(dev_priv);
2024 else
2025 assert_pll_enabled(dev_priv, pipe);
2026 else {
2027 if (crtc->config.has_pch_encoder) {
2028 /* if driving the PCH, we need FDI enabled */
2029 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2030 assert_fdi_tx_pll_enabled(dev_priv,
2031 (enum pipe) cpu_transcoder);
2032 }
2033 /* FIXME: assert CPU port conditions for SNB+ */
2034 }
2035
2036 reg = PIPECONF(cpu_transcoder);
2037 val = I915_READ(reg);
2038 if (val & PIPECONF_ENABLE) {
2039 WARN_ON(!(pipe == PIPE_A &&
2040 dev_priv->quirks & QUIRK_PIPEA_FORCE));
2041 return;
2042 }
2043
2044 I915_WRITE(reg, val | PIPECONF_ENABLE);
2045 POSTING_READ(reg);
2046 }
2047
2048 /**
2049 * intel_disable_pipe - disable a pipe, asserting requirements
2050 * @dev_priv: i915 private structure
2051 * @pipe: pipe to disable
2052 *
2053 * Disable @pipe, making sure that various hardware specific requirements
2054 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2055 *
2056 * @pipe should be %PIPE_A or %PIPE_B.
2057 *
2058 * Will wait until the pipe has shut down before returning.
2059 */
2060 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2061 enum pipe pipe)
2062 {
2063 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2064 pipe);
2065 int reg;
2066 u32 val;
2067
2068 /*
2069 * Make sure planes won't keep trying to pump pixels to us,
2070 * or we might hang the display.
2071 */
2072 assert_planes_disabled(dev_priv, pipe);
2073 assert_cursor_disabled(dev_priv, pipe);
2074 assert_sprites_disabled(dev_priv, pipe);
2075
2076 /* Don't disable pipe A or pipe A PLLs if needed */
2077 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2078 return;
2079
2080 reg = PIPECONF(cpu_transcoder);
2081 val = I915_READ(reg);
2082 if ((val & PIPECONF_ENABLE) == 0)
2083 return;
2084
2085 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
2086 intel_wait_for_pipe_off(dev_priv->dev, pipe);
2087 }
2088
2089 /*
2090 * Plane regs are double buffered, going from enabled->disabled needs a
2091 * trigger in order to latch. The display address reg provides this.
2092 */
2093 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2094 enum plane plane)
2095 {
2096 struct drm_device *dev = dev_priv->dev;
2097 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2098
2099 I915_WRITE(reg, I915_READ(reg));
2100 POSTING_READ(reg);
2101 }
2102
2103 /**
2104 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2105 * @dev_priv: i915 private structure
2106 * @plane: plane to enable
2107 * @pipe: pipe being fed
2108 *
2109 * Enable @plane on @pipe, making sure that @pipe is running first.
2110 */
2111 static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
2112 enum plane plane, enum pipe pipe)
2113 {
2114 struct drm_device *dev = dev_priv->dev;
2115 struct intel_crtc *intel_crtc =
2116 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2117 int reg;
2118 u32 val;
2119
2120 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2121 assert_pipe_enabled(dev_priv, pipe);
2122
2123 if (intel_crtc->primary_enabled)
2124 return;
2125
2126 intel_crtc->primary_enabled = true;
2127
2128 reg = DSPCNTR(plane);
2129 val = I915_READ(reg);
2130 WARN_ON(val & DISPLAY_PLANE_ENABLE);
2131
2132 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
2133 intel_flush_primary_plane(dev_priv, plane);
2134
2135 /*
2136 * BDW signals flip done immediately if the plane
2137 * is disabled, even if the plane enable is already
2138 * armed to occur at the next vblank :(
2139 */
2140 if (IS_BROADWELL(dev))
2141 intel_wait_for_vblank(dev, intel_crtc->pipe);
2142 }
2143
2144 /**
2145 * intel_disable_primary_hw_plane - disable the primary hardware plane
2146 * @dev_priv: i915 private structure
2147 * @plane: plane to disable
2148 * @pipe: pipe consuming the data
2149 *
2150 * Disable @plane; should be an independent operation.
2151 */
2152 static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
2153 enum plane plane, enum pipe pipe)
2154 {
2155 struct intel_crtc *intel_crtc =
2156 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2157 int reg;
2158 u32 val;
2159
2160 if (!intel_crtc->primary_enabled)
2161 return;
2162
2163 intel_crtc->primary_enabled = false;
2164
2165 reg = DSPCNTR(plane);
2166 val = I915_READ(reg);
2167 WARN_ON((val & DISPLAY_PLANE_ENABLE) == 0);
2168
2169 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
2170 intel_flush_primary_plane(dev_priv, plane);
2171 }
2172
2173 static bool need_vtd_wa(struct drm_device *dev)
2174 {
2175 #ifdef CONFIG_INTEL_IOMMU
2176 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2177 return true;
2178 #endif
2179 return false;
2180 }
2181
2182 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2183 {
2184 int tile_height;
2185
2186 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2187 return ALIGN(height, tile_height);
2188 }
2189
2190 int
2191 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2192 struct drm_i915_gem_object *obj,
2193 struct intel_engine_cs *pipelined)
2194 {
2195 struct drm_i915_private *dev_priv = dev->dev_private;
2196 u32 alignment;
2197 int ret;
2198
2199 switch (obj->tiling_mode) {
2200 case I915_TILING_NONE:
2201 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2202 alignment = 128 * 1024;
2203 else if (INTEL_INFO(dev)->gen >= 4)
2204 alignment = 4 * 1024;
2205 else
2206 alignment = 64 * 1024;
2207 break;
2208 case I915_TILING_X:
2209 /* pin() will align the object as required by fence */
2210 alignment = 0;
2211 break;
2212 case I915_TILING_Y:
2213 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2214 return -EINVAL;
2215 default:
2216 BUG();
2217 }
2218
2219 /* Note that the w/a also requires 64 PTE of padding following the
2220 * bo. We currently fill all unused PTE with the shadow page and so
2221 * we should always have valid PTE following the scanout preventing
2222 * the VT-d warning.
2223 */
2224 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2225 alignment = 256 * 1024;
2226
2227 dev_priv->mm.interruptible = false;
2228 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2229 if (ret)
2230 goto err_interruptible;
2231
2232 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2233 * fence, whereas 965+ only requires a fence if using
2234 * framebuffer compression. For simplicity, we always install
2235 * a fence as the cost is not that onerous.
2236 */
2237 ret = i915_gem_object_get_fence(obj);
2238 if (ret)
2239 goto err_unpin;
2240
2241 i915_gem_object_pin_fence(obj);
2242
2243 dev_priv->mm.interruptible = true;
2244 return 0;
2245
2246 err_unpin:
2247 i915_gem_object_unpin_from_display_plane(obj);
2248 err_interruptible:
2249 dev_priv->mm.interruptible = true;
2250 return ret;
2251 }
2252
2253 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2254 {
2255 i915_gem_object_unpin_fence(obj);
2256 i915_gem_object_unpin_from_display_plane(obj);
2257 }
2258
2259 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2260 * is assumed to be a power-of-two. */
2261 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2262 unsigned int tiling_mode,
2263 unsigned int cpp,
2264 unsigned int pitch)
2265 {
2266 if (tiling_mode != I915_TILING_NONE) {
2267 unsigned int tile_rows, tiles;
2268
2269 tile_rows = *y / 8;
2270 *y %= 8;
2271
2272 tiles = *x / (512/cpp);
2273 *x %= 512/cpp;
2274
2275 return tile_rows * pitch * 8 + tiles * 4096;
2276 } else {
2277 unsigned int offset;
2278
2279 offset = *y * pitch + *x * cpp;
2280 *y = 0;
2281 *x = (offset & 4095) / cpp;
2282 return offset & -4096;
2283 }
2284 }
2285
2286 int intel_format_to_fourcc(int format)
2287 {
2288 switch (format) {
2289 case DISPPLANE_8BPP:
2290 return DRM_FORMAT_C8;
2291 case DISPPLANE_BGRX555:
2292 return DRM_FORMAT_XRGB1555;
2293 case DISPPLANE_BGRX565:
2294 return DRM_FORMAT_RGB565;
2295 default:
2296 case DISPPLANE_BGRX888:
2297 return DRM_FORMAT_XRGB8888;
2298 case DISPPLANE_RGBX888:
2299 return DRM_FORMAT_XBGR8888;
2300 case DISPPLANE_BGRX101010:
2301 return DRM_FORMAT_XRGB2101010;
2302 case DISPPLANE_RGBX101010:
2303 return DRM_FORMAT_XBGR2101010;
2304 }
2305 }
2306
2307 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2308 struct intel_plane_config *plane_config)
2309 {
2310 struct drm_device *dev = crtc->base.dev;
2311 struct drm_i915_gem_object *obj = NULL;
2312 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2313 u32 base = plane_config->base;
2314
2315 if (plane_config->size == 0)
2316 return false;
2317
2318 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2319 plane_config->size);
2320 if (!obj)
2321 return false;
2322
2323 if (plane_config->tiled) {
2324 obj->tiling_mode = I915_TILING_X;
2325 obj->stride = crtc->base.primary->fb->pitches[0];
2326 }
2327
2328 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2329 mode_cmd.width = crtc->base.primary->fb->width;
2330 mode_cmd.height = crtc->base.primary->fb->height;
2331 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2332
2333 mutex_lock(&dev->struct_mutex);
2334
2335 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2336 &mode_cmd, obj)) {
2337 DRM_DEBUG_KMS("intel fb init failed\n");
2338 goto out_unref_obj;
2339 }
2340
2341 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2342 mutex_unlock(&dev->struct_mutex);
2343
2344 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2345 return true;
2346
2347 out_unref_obj:
2348 drm_gem_object_unreference(&obj->base);
2349 mutex_unlock(&dev->struct_mutex);
2350 return false;
2351 }
2352
2353 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2354 struct intel_plane_config *plane_config)
2355 {
2356 struct drm_device *dev = intel_crtc->base.dev;
2357 struct drm_crtc *c;
2358 struct intel_crtc *i;
2359 struct intel_framebuffer *fb;
2360
2361 if (!intel_crtc->base.primary->fb)
2362 return;
2363
2364 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2365 return;
2366
2367 kfree(intel_crtc->base.primary->fb);
2368 intel_crtc->base.primary->fb = NULL;
2369
2370 /*
2371 * Failed to alloc the obj, check to see if we should share
2372 * an fb with another CRTC instead
2373 */
2374 for_each_crtc(dev, c) {
2375 i = to_intel_crtc(c);
2376
2377 if (c == &intel_crtc->base)
2378 continue;
2379
2380 if (!i->active || !c->primary->fb)
2381 continue;
2382
2383 fb = to_intel_framebuffer(c->primary->fb);
2384 if (i915_gem_obj_ggtt_offset(fb->obj) == plane_config->base) {
2385 drm_framebuffer_reference(c->primary->fb);
2386 intel_crtc->base.primary->fb = c->primary->fb;
2387 fb->obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2388 break;
2389 }
2390 }
2391 }
2392
2393 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2394 struct drm_framebuffer *fb,
2395 int x, int y)
2396 {
2397 struct drm_device *dev = crtc->dev;
2398 struct drm_i915_private *dev_priv = dev->dev_private;
2399 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2400 struct intel_framebuffer *intel_fb;
2401 struct drm_i915_gem_object *obj;
2402 int plane = intel_crtc->plane;
2403 unsigned long linear_offset;
2404 u32 dspcntr;
2405 u32 reg;
2406
2407 intel_fb = to_intel_framebuffer(fb);
2408 obj = intel_fb->obj;
2409
2410 reg = DSPCNTR(plane);
2411 dspcntr = I915_READ(reg);
2412 /* Mask out pixel format bits in case we change it */
2413 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2414 switch (fb->pixel_format) {
2415 case DRM_FORMAT_C8:
2416 dspcntr |= DISPPLANE_8BPP;
2417 break;
2418 case DRM_FORMAT_XRGB1555:
2419 case DRM_FORMAT_ARGB1555:
2420 dspcntr |= DISPPLANE_BGRX555;
2421 break;
2422 case DRM_FORMAT_RGB565:
2423 dspcntr |= DISPPLANE_BGRX565;
2424 break;
2425 case DRM_FORMAT_XRGB8888:
2426 case DRM_FORMAT_ARGB8888:
2427 dspcntr |= DISPPLANE_BGRX888;
2428 break;
2429 case DRM_FORMAT_XBGR8888:
2430 case DRM_FORMAT_ABGR8888:
2431 dspcntr |= DISPPLANE_RGBX888;
2432 break;
2433 case DRM_FORMAT_XRGB2101010:
2434 case DRM_FORMAT_ARGB2101010:
2435 dspcntr |= DISPPLANE_BGRX101010;
2436 break;
2437 case DRM_FORMAT_XBGR2101010:
2438 case DRM_FORMAT_ABGR2101010:
2439 dspcntr |= DISPPLANE_RGBX101010;
2440 break;
2441 default:
2442 BUG();
2443 }
2444
2445 if (INTEL_INFO(dev)->gen >= 4) {
2446 if (obj->tiling_mode != I915_TILING_NONE)
2447 dspcntr |= DISPPLANE_TILED;
2448 else
2449 dspcntr &= ~DISPPLANE_TILED;
2450 }
2451
2452 if (IS_G4X(dev))
2453 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2454
2455 I915_WRITE(reg, dspcntr);
2456
2457 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2458
2459 if (INTEL_INFO(dev)->gen >= 4) {
2460 intel_crtc->dspaddr_offset =
2461 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2462 fb->bits_per_pixel / 8,
2463 fb->pitches[0]);
2464 linear_offset -= intel_crtc->dspaddr_offset;
2465 } else {
2466 intel_crtc->dspaddr_offset = linear_offset;
2467 }
2468
2469 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2470 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2471 fb->pitches[0]);
2472 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2473 if (INTEL_INFO(dev)->gen >= 4) {
2474 I915_WRITE(DSPSURF(plane),
2475 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2476 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2477 I915_WRITE(DSPLINOFF(plane), linear_offset);
2478 } else
2479 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2480 POSTING_READ(reg);
2481 }
2482
2483 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2484 struct drm_framebuffer *fb,
2485 int x, int y)
2486 {
2487 struct drm_device *dev = crtc->dev;
2488 struct drm_i915_private *dev_priv = dev->dev_private;
2489 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2490 struct intel_framebuffer *intel_fb;
2491 struct drm_i915_gem_object *obj;
2492 int plane = intel_crtc->plane;
2493 unsigned long linear_offset;
2494 u32 dspcntr;
2495 u32 reg;
2496
2497 intel_fb = to_intel_framebuffer(fb);
2498 obj = intel_fb->obj;
2499
2500 reg = DSPCNTR(plane);
2501 dspcntr = I915_READ(reg);
2502 /* Mask out pixel format bits in case we change it */
2503 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2504 switch (fb->pixel_format) {
2505 case DRM_FORMAT_C8:
2506 dspcntr |= DISPPLANE_8BPP;
2507 break;
2508 case DRM_FORMAT_RGB565:
2509 dspcntr |= DISPPLANE_BGRX565;
2510 break;
2511 case DRM_FORMAT_XRGB8888:
2512 case DRM_FORMAT_ARGB8888:
2513 dspcntr |= DISPPLANE_BGRX888;
2514 break;
2515 case DRM_FORMAT_XBGR8888:
2516 case DRM_FORMAT_ABGR8888:
2517 dspcntr |= DISPPLANE_RGBX888;
2518 break;
2519 case DRM_FORMAT_XRGB2101010:
2520 case DRM_FORMAT_ARGB2101010:
2521 dspcntr |= DISPPLANE_BGRX101010;
2522 break;
2523 case DRM_FORMAT_XBGR2101010:
2524 case DRM_FORMAT_ABGR2101010:
2525 dspcntr |= DISPPLANE_RGBX101010;
2526 break;
2527 default:
2528 BUG();
2529 }
2530
2531 if (obj->tiling_mode != I915_TILING_NONE)
2532 dspcntr |= DISPPLANE_TILED;
2533 else
2534 dspcntr &= ~DISPPLANE_TILED;
2535
2536 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2537 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2538 else
2539 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2540
2541 I915_WRITE(reg, dspcntr);
2542
2543 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2544 intel_crtc->dspaddr_offset =
2545 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2546 fb->bits_per_pixel / 8,
2547 fb->pitches[0]);
2548 linear_offset -= intel_crtc->dspaddr_offset;
2549
2550 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2551 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2552 fb->pitches[0]);
2553 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2554 I915_WRITE(DSPSURF(plane),
2555 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2556 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2557 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2558 } else {
2559 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2560 I915_WRITE(DSPLINOFF(plane), linear_offset);
2561 }
2562 POSTING_READ(reg);
2563 }
2564
2565 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2566 static int
2567 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2568 int x, int y, enum mode_set_atomic state)
2569 {
2570 struct drm_device *dev = crtc->dev;
2571 struct drm_i915_private *dev_priv = dev->dev_private;
2572
2573 if (dev_priv->display.disable_fbc)
2574 dev_priv->display.disable_fbc(dev);
2575 intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
2576
2577 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2578
2579 return 0;
2580 }
2581
2582 void intel_display_handle_reset(struct drm_device *dev)
2583 {
2584 struct drm_i915_private *dev_priv = dev->dev_private;
2585 struct drm_crtc *crtc;
2586
2587 /*
2588 * Flips in the rings have been nuked by the reset,
2589 * so complete all pending flips so that user space
2590 * will get its events and not get stuck.
2591 *
2592 * Also update the base address of all primary
2593 * planes to the the last fb to make sure we're
2594 * showing the correct fb after a reset.
2595 *
2596 * Need to make two loops over the crtcs so that we
2597 * don't try to grab a crtc mutex before the
2598 * pending_flip_queue really got woken up.
2599 */
2600
2601 for_each_crtc(dev, crtc) {
2602 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2603 enum plane plane = intel_crtc->plane;
2604
2605 intel_prepare_page_flip(dev, plane);
2606 intel_finish_page_flip_plane(dev, plane);
2607 }
2608
2609 for_each_crtc(dev, crtc) {
2610 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2611
2612 drm_modeset_lock(&crtc->mutex, NULL);
2613 /*
2614 * FIXME: Once we have proper support for primary planes (and
2615 * disabling them without disabling the entire crtc) allow again
2616 * a NULL crtc->primary->fb.
2617 */
2618 if (intel_crtc->active && crtc->primary->fb)
2619 dev_priv->display.update_primary_plane(crtc,
2620 crtc->primary->fb,
2621 crtc->x,
2622 crtc->y);
2623 drm_modeset_unlock(&crtc->mutex);
2624 }
2625 }
2626
2627 static int
2628 intel_finish_fb(struct drm_framebuffer *old_fb)
2629 {
2630 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2631 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2632 bool was_interruptible = dev_priv->mm.interruptible;
2633 int ret;
2634
2635 /* Big Hammer, we also need to ensure that any pending
2636 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2637 * current scanout is retired before unpinning the old
2638 * framebuffer.
2639 *
2640 * This should only fail upon a hung GPU, in which case we
2641 * can safely continue.
2642 */
2643 dev_priv->mm.interruptible = false;
2644 ret = i915_gem_object_finish_gpu(obj);
2645 dev_priv->mm.interruptible = was_interruptible;
2646
2647 return ret;
2648 }
2649
2650 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2651 {
2652 struct drm_device *dev = crtc->dev;
2653 struct drm_i915_private *dev_priv = dev->dev_private;
2654 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2655 unsigned long flags;
2656 bool pending;
2657
2658 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2659 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2660 return false;
2661
2662 spin_lock_irqsave(&dev->event_lock, flags);
2663 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2664 spin_unlock_irqrestore(&dev->event_lock, flags);
2665
2666 return pending;
2667 }
2668
2669 static int
2670 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2671 struct drm_framebuffer *fb)
2672 {
2673 struct drm_device *dev = crtc->dev;
2674 struct drm_i915_private *dev_priv = dev->dev_private;
2675 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2676 enum pipe pipe = intel_crtc->pipe;
2677 struct drm_framebuffer *old_fb;
2678 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
2679 struct drm_i915_gem_object *old_obj;
2680 int ret;
2681
2682 if (intel_crtc_has_pending_flip(crtc)) {
2683 DRM_ERROR("pipe is still busy with an old pageflip\n");
2684 return -EBUSY;
2685 }
2686
2687 /* no fb bound */
2688 if (!fb) {
2689 DRM_ERROR("No FB bound\n");
2690 return 0;
2691 }
2692
2693 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2694 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2695 plane_name(intel_crtc->plane),
2696 INTEL_INFO(dev)->num_pipes);
2697 return -EINVAL;
2698 }
2699
2700 old_fb = crtc->primary->fb;
2701 old_obj = old_fb ? to_intel_framebuffer(old_fb)->obj : NULL;
2702
2703 mutex_lock(&dev->struct_mutex);
2704 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2705 if (ret == 0)
2706 i915_gem_track_fb(old_obj, obj,
2707 INTEL_FRONTBUFFER_PRIMARY(pipe));
2708 mutex_unlock(&dev->struct_mutex);
2709 if (ret != 0) {
2710 DRM_ERROR("pin & fence failed\n");
2711 return ret;
2712 }
2713
2714 /*
2715 * Update pipe size and adjust fitter if needed: the reason for this is
2716 * that in compute_mode_changes we check the native mode (not the pfit
2717 * mode) to see if we can flip rather than do a full mode set. In the
2718 * fastboot case, we'll flip, but if we don't update the pipesrc and
2719 * pfit state, we'll end up with a big fb scanned out into the wrong
2720 * sized surface.
2721 *
2722 * To fix this properly, we need to hoist the checks up into
2723 * compute_mode_changes (or above), check the actual pfit state and
2724 * whether the platform allows pfit disable with pipe active, and only
2725 * then update the pipesrc and pfit state, even on the flip path.
2726 */
2727 if (i915.fastboot) {
2728 const struct drm_display_mode *adjusted_mode =
2729 &intel_crtc->config.adjusted_mode;
2730
2731 I915_WRITE(PIPESRC(intel_crtc->pipe),
2732 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2733 (adjusted_mode->crtc_vdisplay - 1));
2734 if (!intel_crtc->config.pch_pfit.enabled &&
2735 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2736 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2737 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2738 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2739 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2740 }
2741 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2742 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2743 }
2744
2745 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2746
2747 if (intel_crtc->active)
2748 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2749
2750 crtc->primary->fb = fb;
2751 crtc->x = x;
2752 crtc->y = y;
2753
2754 if (old_fb) {
2755 if (intel_crtc->active && old_fb != fb)
2756 intel_wait_for_vblank(dev, intel_crtc->pipe);
2757 mutex_lock(&dev->struct_mutex);
2758 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2759 mutex_unlock(&dev->struct_mutex);
2760 }
2761
2762 mutex_lock(&dev->struct_mutex);
2763 intel_update_fbc(dev);
2764 mutex_unlock(&dev->struct_mutex);
2765
2766 return 0;
2767 }
2768
2769 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2770 {
2771 struct drm_device *dev = crtc->dev;
2772 struct drm_i915_private *dev_priv = dev->dev_private;
2773 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2774 int pipe = intel_crtc->pipe;
2775 u32 reg, temp;
2776
2777 /* enable normal train */
2778 reg = FDI_TX_CTL(pipe);
2779 temp = I915_READ(reg);
2780 if (IS_IVYBRIDGE(dev)) {
2781 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2782 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2783 } else {
2784 temp &= ~FDI_LINK_TRAIN_NONE;
2785 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2786 }
2787 I915_WRITE(reg, temp);
2788
2789 reg = FDI_RX_CTL(pipe);
2790 temp = I915_READ(reg);
2791 if (HAS_PCH_CPT(dev)) {
2792 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2793 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2794 } else {
2795 temp &= ~FDI_LINK_TRAIN_NONE;
2796 temp |= FDI_LINK_TRAIN_NONE;
2797 }
2798 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2799
2800 /* wait one idle pattern time */
2801 POSTING_READ(reg);
2802 udelay(1000);
2803
2804 /* IVB wants error correction enabled */
2805 if (IS_IVYBRIDGE(dev))
2806 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2807 FDI_FE_ERRC_ENABLE);
2808 }
2809
2810 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2811 {
2812 return crtc->base.enabled && crtc->active &&
2813 crtc->config.has_pch_encoder;
2814 }
2815
2816 static void ivb_modeset_global_resources(struct drm_device *dev)
2817 {
2818 struct drm_i915_private *dev_priv = dev->dev_private;
2819 struct intel_crtc *pipe_B_crtc =
2820 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2821 struct intel_crtc *pipe_C_crtc =
2822 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2823 uint32_t temp;
2824
2825 /*
2826 * When everything is off disable fdi C so that we could enable fdi B
2827 * with all lanes. Note that we don't care about enabled pipes without
2828 * an enabled pch encoder.
2829 */
2830 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2831 !pipe_has_enabled_pch(pipe_C_crtc)) {
2832 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2833 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2834
2835 temp = I915_READ(SOUTH_CHICKEN1);
2836 temp &= ~FDI_BC_BIFURCATION_SELECT;
2837 DRM_DEBUG_KMS("disabling fdi C rx\n");
2838 I915_WRITE(SOUTH_CHICKEN1, temp);
2839 }
2840 }
2841
2842 /* The FDI link training functions for ILK/Ibexpeak. */
2843 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2844 {
2845 struct drm_device *dev = crtc->dev;
2846 struct drm_i915_private *dev_priv = dev->dev_private;
2847 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2848 int pipe = intel_crtc->pipe;
2849 u32 reg, temp, tries;
2850
2851 /* FDI needs bits from pipe first */
2852 assert_pipe_enabled(dev_priv, pipe);
2853
2854 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2855 for train result */
2856 reg = FDI_RX_IMR(pipe);
2857 temp = I915_READ(reg);
2858 temp &= ~FDI_RX_SYMBOL_LOCK;
2859 temp &= ~FDI_RX_BIT_LOCK;
2860 I915_WRITE(reg, temp);
2861 I915_READ(reg);
2862 udelay(150);
2863
2864 /* enable CPU FDI TX and PCH FDI RX */
2865 reg = FDI_TX_CTL(pipe);
2866 temp = I915_READ(reg);
2867 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2868 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2869 temp &= ~FDI_LINK_TRAIN_NONE;
2870 temp |= FDI_LINK_TRAIN_PATTERN_1;
2871 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2872
2873 reg = FDI_RX_CTL(pipe);
2874 temp = I915_READ(reg);
2875 temp &= ~FDI_LINK_TRAIN_NONE;
2876 temp |= FDI_LINK_TRAIN_PATTERN_1;
2877 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2878
2879 POSTING_READ(reg);
2880 udelay(150);
2881
2882 /* Ironlake workaround, enable clock pointer after FDI enable*/
2883 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2884 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2885 FDI_RX_PHASE_SYNC_POINTER_EN);
2886
2887 reg = FDI_RX_IIR(pipe);
2888 for (tries = 0; tries < 5; tries++) {
2889 temp = I915_READ(reg);
2890 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2891
2892 if ((temp & FDI_RX_BIT_LOCK)) {
2893 DRM_DEBUG_KMS("FDI train 1 done.\n");
2894 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2895 break;
2896 }
2897 }
2898 if (tries == 5)
2899 DRM_ERROR("FDI train 1 fail!\n");
2900
2901 /* Train 2 */
2902 reg = FDI_TX_CTL(pipe);
2903 temp = I915_READ(reg);
2904 temp &= ~FDI_LINK_TRAIN_NONE;
2905 temp |= FDI_LINK_TRAIN_PATTERN_2;
2906 I915_WRITE(reg, temp);
2907
2908 reg = FDI_RX_CTL(pipe);
2909 temp = I915_READ(reg);
2910 temp &= ~FDI_LINK_TRAIN_NONE;
2911 temp |= FDI_LINK_TRAIN_PATTERN_2;
2912 I915_WRITE(reg, temp);
2913
2914 POSTING_READ(reg);
2915 udelay(150);
2916
2917 reg = FDI_RX_IIR(pipe);
2918 for (tries = 0; tries < 5; tries++) {
2919 temp = I915_READ(reg);
2920 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2921
2922 if (temp & FDI_RX_SYMBOL_LOCK) {
2923 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2924 DRM_DEBUG_KMS("FDI train 2 done.\n");
2925 break;
2926 }
2927 }
2928 if (tries == 5)
2929 DRM_ERROR("FDI train 2 fail!\n");
2930
2931 DRM_DEBUG_KMS("FDI train done\n");
2932
2933 }
2934
2935 static const int snb_b_fdi_train_param[] = {
2936 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2937 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2938 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2939 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2940 };
2941
2942 /* The FDI link training functions for SNB/Cougarpoint. */
2943 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2944 {
2945 struct drm_device *dev = crtc->dev;
2946 struct drm_i915_private *dev_priv = dev->dev_private;
2947 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2948 int pipe = intel_crtc->pipe;
2949 u32 reg, temp, i, retry;
2950
2951 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2952 for train result */
2953 reg = FDI_RX_IMR(pipe);
2954 temp = I915_READ(reg);
2955 temp &= ~FDI_RX_SYMBOL_LOCK;
2956 temp &= ~FDI_RX_BIT_LOCK;
2957 I915_WRITE(reg, temp);
2958
2959 POSTING_READ(reg);
2960 udelay(150);
2961
2962 /* enable CPU FDI TX and PCH FDI RX */
2963 reg = FDI_TX_CTL(pipe);
2964 temp = I915_READ(reg);
2965 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2966 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2967 temp &= ~FDI_LINK_TRAIN_NONE;
2968 temp |= FDI_LINK_TRAIN_PATTERN_1;
2969 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2970 /* SNB-B */
2971 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2972 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2973
2974 I915_WRITE(FDI_RX_MISC(pipe),
2975 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2976
2977 reg = FDI_RX_CTL(pipe);
2978 temp = I915_READ(reg);
2979 if (HAS_PCH_CPT(dev)) {
2980 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2981 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2982 } else {
2983 temp &= ~FDI_LINK_TRAIN_NONE;
2984 temp |= FDI_LINK_TRAIN_PATTERN_1;
2985 }
2986 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2987
2988 POSTING_READ(reg);
2989 udelay(150);
2990
2991 for (i = 0; i < 4; i++) {
2992 reg = FDI_TX_CTL(pipe);
2993 temp = I915_READ(reg);
2994 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2995 temp |= snb_b_fdi_train_param[i];
2996 I915_WRITE(reg, temp);
2997
2998 POSTING_READ(reg);
2999 udelay(500);
3000
3001 for (retry = 0; retry < 5; retry++) {
3002 reg = FDI_RX_IIR(pipe);
3003 temp = I915_READ(reg);
3004 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3005 if (temp & FDI_RX_BIT_LOCK) {
3006 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3007 DRM_DEBUG_KMS("FDI train 1 done.\n");
3008 break;
3009 }
3010 udelay(50);
3011 }
3012 if (retry < 5)
3013 break;
3014 }
3015 if (i == 4)
3016 DRM_ERROR("FDI train 1 fail!\n");
3017
3018 /* Train 2 */
3019 reg = FDI_TX_CTL(pipe);
3020 temp = I915_READ(reg);
3021 temp &= ~FDI_LINK_TRAIN_NONE;
3022 temp |= FDI_LINK_TRAIN_PATTERN_2;
3023 if (IS_GEN6(dev)) {
3024 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3025 /* SNB-B */
3026 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3027 }
3028 I915_WRITE(reg, temp);
3029
3030 reg = FDI_RX_CTL(pipe);
3031 temp = I915_READ(reg);
3032 if (HAS_PCH_CPT(dev)) {
3033 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3034 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3035 } else {
3036 temp &= ~FDI_LINK_TRAIN_NONE;
3037 temp |= FDI_LINK_TRAIN_PATTERN_2;
3038 }
3039 I915_WRITE(reg, temp);
3040
3041 POSTING_READ(reg);
3042 udelay(150);
3043
3044 for (i = 0; i < 4; i++) {
3045 reg = FDI_TX_CTL(pipe);
3046 temp = I915_READ(reg);
3047 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3048 temp |= snb_b_fdi_train_param[i];
3049 I915_WRITE(reg, temp);
3050
3051 POSTING_READ(reg);
3052 udelay(500);
3053
3054 for (retry = 0; retry < 5; retry++) {
3055 reg = FDI_RX_IIR(pipe);
3056 temp = I915_READ(reg);
3057 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3058 if (temp & FDI_RX_SYMBOL_LOCK) {
3059 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3060 DRM_DEBUG_KMS("FDI train 2 done.\n");
3061 break;
3062 }
3063 udelay(50);
3064 }
3065 if (retry < 5)
3066 break;
3067 }
3068 if (i == 4)
3069 DRM_ERROR("FDI train 2 fail!\n");
3070
3071 DRM_DEBUG_KMS("FDI train done.\n");
3072 }
3073
3074 /* Manual link training for Ivy Bridge A0 parts */
3075 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3076 {
3077 struct drm_device *dev = crtc->dev;
3078 struct drm_i915_private *dev_priv = dev->dev_private;
3079 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3080 int pipe = intel_crtc->pipe;
3081 u32 reg, temp, i, j;
3082
3083 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3084 for train result */
3085 reg = FDI_RX_IMR(pipe);
3086 temp = I915_READ(reg);
3087 temp &= ~FDI_RX_SYMBOL_LOCK;
3088 temp &= ~FDI_RX_BIT_LOCK;
3089 I915_WRITE(reg, temp);
3090
3091 POSTING_READ(reg);
3092 udelay(150);
3093
3094 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3095 I915_READ(FDI_RX_IIR(pipe)));
3096
3097 /* Try each vswing and preemphasis setting twice before moving on */
3098 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3099 /* disable first in case we need to retry */
3100 reg = FDI_TX_CTL(pipe);
3101 temp = I915_READ(reg);
3102 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3103 temp &= ~FDI_TX_ENABLE;
3104 I915_WRITE(reg, temp);
3105
3106 reg = FDI_RX_CTL(pipe);
3107 temp = I915_READ(reg);
3108 temp &= ~FDI_LINK_TRAIN_AUTO;
3109 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3110 temp &= ~FDI_RX_ENABLE;
3111 I915_WRITE(reg, temp);
3112
3113 /* enable CPU FDI TX and PCH FDI RX */
3114 reg = FDI_TX_CTL(pipe);
3115 temp = I915_READ(reg);
3116 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3117 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3118 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3119 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3120 temp |= snb_b_fdi_train_param[j/2];
3121 temp |= FDI_COMPOSITE_SYNC;
3122 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3123
3124 I915_WRITE(FDI_RX_MISC(pipe),
3125 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3126
3127 reg = FDI_RX_CTL(pipe);
3128 temp = I915_READ(reg);
3129 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3130 temp |= FDI_COMPOSITE_SYNC;
3131 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3132
3133 POSTING_READ(reg);
3134 udelay(1); /* should be 0.5us */
3135
3136 for (i = 0; i < 4; i++) {
3137 reg = FDI_RX_IIR(pipe);
3138 temp = I915_READ(reg);
3139 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3140
3141 if (temp & FDI_RX_BIT_LOCK ||
3142 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3143 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3144 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3145 i);
3146 break;
3147 }
3148 udelay(1); /* should be 0.5us */
3149 }
3150 if (i == 4) {
3151 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3152 continue;
3153 }
3154
3155 /* Train 2 */
3156 reg = FDI_TX_CTL(pipe);
3157 temp = I915_READ(reg);
3158 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3159 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3160 I915_WRITE(reg, temp);
3161
3162 reg = FDI_RX_CTL(pipe);
3163 temp = I915_READ(reg);
3164 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3165 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3166 I915_WRITE(reg, temp);
3167
3168 POSTING_READ(reg);
3169 udelay(2); /* should be 1.5us */
3170
3171 for (i = 0; i < 4; i++) {
3172 reg = FDI_RX_IIR(pipe);
3173 temp = I915_READ(reg);
3174 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3175
3176 if (temp & FDI_RX_SYMBOL_LOCK ||
3177 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3178 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3179 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3180 i);
3181 goto train_done;
3182 }
3183 udelay(2); /* should be 1.5us */
3184 }
3185 if (i == 4)
3186 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3187 }
3188
3189 train_done:
3190 DRM_DEBUG_KMS("FDI train done.\n");
3191 }
3192
3193 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3194 {
3195 struct drm_device *dev = intel_crtc->base.dev;
3196 struct drm_i915_private *dev_priv = dev->dev_private;
3197 int pipe = intel_crtc->pipe;
3198 u32 reg, temp;
3199
3200
3201 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3202 reg = FDI_RX_CTL(pipe);
3203 temp = I915_READ(reg);
3204 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3205 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3206 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3207 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3208
3209 POSTING_READ(reg);
3210 udelay(200);
3211
3212 /* Switch from Rawclk to PCDclk */
3213 temp = I915_READ(reg);
3214 I915_WRITE(reg, temp | FDI_PCDCLK);
3215
3216 POSTING_READ(reg);
3217 udelay(200);
3218
3219 /* Enable CPU FDI TX PLL, always on for Ironlake */
3220 reg = FDI_TX_CTL(pipe);
3221 temp = I915_READ(reg);
3222 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3223 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3224
3225 POSTING_READ(reg);
3226 udelay(100);
3227 }
3228 }
3229
3230 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3231 {
3232 struct drm_device *dev = intel_crtc->base.dev;
3233 struct drm_i915_private *dev_priv = dev->dev_private;
3234 int pipe = intel_crtc->pipe;
3235 u32 reg, temp;
3236
3237 /* Switch from PCDclk to Rawclk */
3238 reg = FDI_RX_CTL(pipe);
3239 temp = I915_READ(reg);
3240 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3241
3242 /* Disable CPU FDI TX PLL */
3243 reg = FDI_TX_CTL(pipe);
3244 temp = I915_READ(reg);
3245 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3246
3247 POSTING_READ(reg);
3248 udelay(100);
3249
3250 reg = FDI_RX_CTL(pipe);
3251 temp = I915_READ(reg);
3252 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3253
3254 /* Wait for the clocks to turn off. */
3255 POSTING_READ(reg);
3256 udelay(100);
3257 }
3258
3259 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3260 {
3261 struct drm_device *dev = crtc->dev;
3262 struct drm_i915_private *dev_priv = dev->dev_private;
3263 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3264 int pipe = intel_crtc->pipe;
3265 u32 reg, temp;
3266
3267 /* disable CPU FDI tx and PCH FDI rx */
3268 reg = FDI_TX_CTL(pipe);
3269 temp = I915_READ(reg);
3270 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3271 POSTING_READ(reg);
3272
3273 reg = FDI_RX_CTL(pipe);
3274 temp = I915_READ(reg);
3275 temp &= ~(0x7 << 16);
3276 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3277 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3278
3279 POSTING_READ(reg);
3280 udelay(100);
3281
3282 /* Ironlake workaround, disable clock pointer after downing FDI */
3283 if (HAS_PCH_IBX(dev))
3284 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3285
3286 /* still set train pattern 1 */
3287 reg = FDI_TX_CTL(pipe);
3288 temp = I915_READ(reg);
3289 temp &= ~FDI_LINK_TRAIN_NONE;
3290 temp |= FDI_LINK_TRAIN_PATTERN_1;
3291 I915_WRITE(reg, temp);
3292
3293 reg = FDI_RX_CTL(pipe);
3294 temp = I915_READ(reg);
3295 if (HAS_PCH_CPT(dev)) {
3296 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3297 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3298 } else {
3299 temp &= ~FDI_LINK_TRAIN_NONE;
3300 temp |= FDI_LINK_TRAIN_PATTERN_1;
3301 }
3302 /* BPC in FDI rx is consistent with that in PIPECONF */
3303 temp &= ~(0x07 << 16);
3304 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3305 I915_WRITE(reg, temp);
3306
3307 POSTING_READ(reg);
3308 udelay(100);
3309 }
3310
3311 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3312 {
3313 struct intel_crtc *crtc;
3314
3315 /* Note that we don't need to be called with mode_config.lock here
3316 * as our list of CRTC objects is static for the lifetime of the
3317 * device and so cannot disappear as we iterate. Similarly, we can
3318 * happily treat the predicates as racy, atomic checks as userspace
3319 * cannot claim and pin a new fb without at least acquring the
3320 * struct_mutex and so serialising with us.
3321 */
3322 for_each_intel_crtc(dev, crtc) {
3323 if (atomic_read(&crtc->unpin_work_count) == 0)
3324 continue;
3325
3326 if (crtc->unpin_work)
3327 intel_wait_for_vblank(dev, crtc->pipe);
3328
3329 return true;
3330 }
3331
3332 return false;
3333 }
3334
3335 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3336 {
3337 struct drm_device *dev = crtc->dev;
3338 struct drm_i915_private *dev_priv = dev->dev_private;
3339
3340 if (crtc->primary->fb == NULL)
3341 return;
3342
3343 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3344
3345 WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3346 !intel_crtc_has_pending_flip(crtc),
3347 60*HZ) == 0);
3348
3349 mutex_lock(&dev->struct_mutex);
3350 intel_finish_fb(crtc->primary->fb);
3351 mutex_unlock(&dev->struct_mutex);
3352 }
3353
3354 /* Program iCLKIP clock to the desired frequency */
3355 static void lpt_program_iclkip(struct drm_crtc *crtc)
3356 {
3357 struct drm_device *dev = crtc->dev;
3358 struct drm_i915_private *dev_priv = dev->dev_private;
3359 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3360 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3361 u32 temp;
3362
3363 mutex_lock(&dev_priv->dpio_lock);
3364
3365 /* It is necessary to ungate the pixclk gate prior to programming
3366 * the divisors, and gate it back when it is done.
3367 */
3368 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3369
3370 /* Disable SSCCTL */
3371 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3372 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3373 SBI_SSCCTL_DISABLE,
3374 SBI_ICLK);
3375
3376 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3377 if (clock == 20000) {
3378 auxdiv = 1;
3379 divsel = 0x41;
3380 phaseinc = 0x20;
3381 } else {
3382 /* The iCLK virtual clock root frequency is in MHz,
3383 * but the adjusted_mode->crtc_clock in in KHz. To get the
3384 * divisors, it is necessary to divide one by another, so we
3385 * convert the virtual clock precision to KHz here for higher
3386 * precision.
3387 */
3388 u32 iclk_virtual_root_freq = 172800 * 1000;
3389 u32 iclk_pi_range = 64;
3390 u32 desired_divisor, msb_divisor_value, pi_value;
3391
3392 desired_divisor = (iclk_virtual_root_freq / clock);
3393 msb_divisor_value = desired_divisor / iclk_pi_range;
3394 pi_value = desired_divisor % iclk_pi_range;
3395
3396 auxdiv = 0;
3397 divsel = msb_divisor_value - 2;
3398 phaseinc = pi_value;
3399 }
3400
3401 /* This should not happen with any sane values */
3402 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3403 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3404 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3405 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3406
3407 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3408 clock,
3409 auxdiv,
3410 divsel,
3411 phasedir,
3412 phaseinc);
3413
3414 /* Program SSCDIVINTPHASE6 */
3415 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3416 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3417 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3418 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3419 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3420 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3421 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3422 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3423
3424 /* Program SSCAUXDIV */
3425 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3426 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3427 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3428 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3429
3430 /* Enable modulator and associated divider */
3431 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3432 temp &= ~SBI_SSCCTL_DISABLE;
3433 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3434
3435 /* Wait for initialization time */
3436 udelay(24);
3437
3438 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3439
3440 mutex_unlock(&dev_priv->dpio_lock);
3441 }
3442
3443 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3444 enum pipe pch_transcoder)
3445 {
3446 struct drm_device *dev = crtc->base.dev;
3447 struct drm_i915_private *dev_priv = dev->dev_private;
3448 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3449
3450 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3451 I915_READ(HTOTAL(cpu_transcoder)));
3452 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3453 I915_READ(HBLANK(cpu_transcoder)));
3454 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3455 I915_READ(HSYNC(cpu_transcoder)));
3456
3457 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3458 I915_READ(VTOTAL(cpu_transcoder)));
3459 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3460 I915_READ(VBLANK(cpu_transcoder)));
3461 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3462 I915_READ(VSYNC(cpu_transcoder)));
3463 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3464 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3465 }
3466
3467 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3468 {
3469 struct drm_i915_private *dev_priv = dev->dev_private;
3470 uint32_t temp;
3471
3472 temp = I915_READ(SOUTH_CHICKEN1);
3473 if (temp & FDI_BC_BIFURCATION_SELECT)
3474 return;
3475
3476 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3477 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3478
3479 temp |= FDI_BC_BIFURCATION_SELECT;
3480 DRM_DEBUG_KMS("enabling fdi C rx\n");
3481 I915_WRITE(SOUTH_CHICKEN1, temp);
3482 POSTING_READ(SOUTH_CHICKEN1);
3483 }
3484
3485 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3486 {
3487 struct drm_device *dev = intel_crtc->base.dev;
3488 struct drm_i915_private *dev_priv = dev->dev_private;
3489
3490 switch (intel_crtc->pipe) {
3491 case PIPE_A:
3492 break;
3493 case PIPE_B:
3494 if (intel_crtc->config.fdi_lanes > 2)
3495 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3496 else
3497 cpt_enable_fdi_bc_bifurcation(dev);
3498
3499 break;
3500 case PIPE_C:
3501 cpt_enable_fdi_bc_bifurcation(dev);
3502
3503 break;
3504 default:
3505 BUG();
3506 }
3507 }
3508
3509 /*
3510 * Enable PCH resources required for PCH ports:
3511 * - PCH PLLs
3512 * - FDI training & RX/TX
3513 * - update transcoder timings
3514 * - DP transcoding bits
3515 * - transcoder
3516 */
3517 static void ironlake_pch_enable(struct drm_crtc *crtc)
3518 {
3519 struct drm_device *dev = crtc->dev;
3520 struct drm_i915_private *dev_priv = dev->dev_private;
3521 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3522 int pipe = intel_crtc->pipe;
3523 u32 reg, temp;
3524
3525 assert_pch_transcoder_disabled(dev_priv, pipe);
3526
3527 if (IS_IVYBRIDGE(dev))
3528 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3529
3530 /* Write the TU size bits before fdi link training, so that error
3531 * detection works. */
3532 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3533 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3534
3535 /* For PCH output, training FDI link */
3536 dev_priv->display.fdi_link_train(crtc);
3537
3538 /* We need to program the right clock selection before writing the pixel
3539 * mutliplier into the DPLL. */
3540 if (HAS_PCH_CPT(dev)) {
3541 u32 sel;
3542
3543 temp = I915_READ(PCH_DPLL_SEL);
3544 temp |= TRANS_DPLL_ENABLE(pipe);
3545 sel = TRANS_DPLLB_SEL(pipe);
3546 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3547 temp |= sel;
3548 else
3549 temp &= ~sel;
3550 I915_WRITE(PCH_DPLL_SEL, temp);
3551 }
3552
3553 /* XXX: pch pll's can be enabled any time before we enable the PCH
3554 * transcoder, and we actually should do this to not upset any PCH
3555 * transcoder that already use the clock when we share it.
3556 *
3557 * Note that enable_shared_dpll tries to do the right thing, but
3558 * get_shared_dpll unconditionally resets the pll - we need that to have
3559 * the right LVDS enable sequence. */
3560 intel_enable_shared_dpll(intel_crtc);
3561
3562 /* set transcoder timing, panel must allow it */
3563 assert_panel_unlocked(dev_priv, pipe);
3564 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3565
3566 intel_fdi_normal_train(crtc);
3567
3568 /* For PCH DP, enable TRANS_DP_CTL */
3569 if (HAS_PCH_CPT(dev) &&
3570 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3571 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3572 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3573 reg = TRANS_DP_CTL(pipe);
3574 temp = I915_READ(reg);
3575 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3576 TRANS_DP_SYNC_MASK |
3577 TRANS_DP_BPC_MASK);
3578 temp |= (TRANS_DP_OUTPUT_ENABLE |
3579 TRANS_DP_ENH_FRAMING);
3580 temp |= bpc << 9; /* same format but at 11:9 */
3581
3582 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3583 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3584 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3585 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3586
3587 switch (intel_trans_dp_port_sel(crtc)) {
3588 case PCH_DP_B:
3589 temp |= TRANS_DP_PORT_SEL_B;
3590 break;
3591 case PCH_DP_C:
3592 temp |= TRANS_DP_PORT_SEL_C;
3593 break;
3594 case PCH_DP_D:
3595 temp |= TRANS_DP_PORT_SEL_D;
3596 break;
3597 default:
3598 BUG();
3599 }
3600
3601 I915_WRITE(reg, temp);
3602 }
3603
3604 ironlake_enable_pch_transcoder(dev_priv, pipe);
3605 }
3606
3607 static void lpt_pch_enable(struct drm_crtc *crtc)
3608 {
3609 struct drm_device *dev = crtc->dev;
3610 struct drm_i915_private *dev_priv = dev->dev_private;
3611 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3612 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3613
3614 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3615
3616 lpt_program_iclkip(crtc);
3617
3618 /* Set transcoder timing. */
3619 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3620
3621 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3622 }
3623
3624 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3625 {
3626 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3627
3628 if (pll == NULL)
3629 return;
3630
3631 if (pll->refcount == 0) {
3632 WARN(1, "bad %s refcount\n", pll->name);
3633 return;
3634 }
3635
3636 if (--pll->refcount == 0) {
3637 WARN_ON(pll->on);
3638 WARN_ON(pll->active);
3639 }
3640
3641 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3642 }
3643
3644 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3645 {
3646 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3647 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3648 enum intel_dpll_id i;
3649
3650 if (pll) {
3651 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3652 crtc->base.base.id, pll->name);
3653 intel_put_shared_dpll(crtc);
3654 }
3655
3656 if (HAS_PCH_IBX(dev_priv->dev)) {
3657 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3658 i = (enum intel_dpll_id) crtc->pipe;
3659 pll = &dev_priv->shared_dplls[i];
3660
3661 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3662 crtc->base.base.id, pll->name);
3663
3664 WARN_ON(pll->refcount);
3665
3666 goto found;
3667 }
3668
3669 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3670 pll = &dev_priv->shared_dplls[i];
3671
3672 /* Only want to check enabled timings first */
3673 if (pll->refcount == 0)
3674 continue;
3675
3676 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3677 sizeof(pll->hw_state)) == 0) {
3678 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3679 crtc->base.base.id,
3680 pll->name, pll->refcount, pll->active);
3681
3682 goto found;
3683 }
3684 }
3685
3686 /* Ok no matching timings, maybe there's a free one? */
3687 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3688 pll = &dev_priv->shared_dplls[i];
3689 if (pll->refcount == 0) {
3690 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3691 crtc->base.base.id, pll->name);
3692 goto found;
3693 }
3694 }
3695
3696 return NULL;
3697
3698 found:
3699 if (pll->refcount == 0)
3700 pll->hw_state = crtc->config.dpll_hw_state;
3701
3702 crtc->config.shared_dpll = i;
3703 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3704 pipe_name(crtc->pipe));
3705
3706 pll->refcount++;
3707
3708 return pll;
3709 }
3710
3711 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3712 {
3713 struct drm_i915_private *dev_priv = dev->dev_private;
3714 int dslreg = PIPEDSL(pipe);
3715 u32 temp;
3716
3717 temp = I915_READ(dslreg);
3718 udelay(500);
3719 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3720 if (wait_for(I915_READ(dslreg) != temp, 5))
3721 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3722 }
3723 }
3724
3725 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3726 {
3727 struct drm_device *dev = crtc->base.dev;
3728 struct drm_i915_private *dev_priv = dev->dev_private;
3729 int pipe = crtc->pipe;
3730
3731 if (crtc->config.pch_pfit.enabled) {
3732 /* Force use of hard-coded filter coefficients
3733 * as some pre-programmed values are broken,
3734 * e.g. x201.
3735 */
3736 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3737 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3738 PF_PIPE_SEL_IVB(pipe));
3739 else
3740 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3741 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3742 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3743 }
3744 }
3745
3746 static void intel_enable_planes(struct drm_crtc *crtc)
3747 {
3748 struct drm_device *dev = crtc->dev;
3749 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3750 struct drm_plane *plane;
3751 struct intel_plane *intel_plane;
3752
3753 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3754 intel_plane = to_intel_plane(plane);
3755 if (intel_plane->pipe == pipe)
3756 intel_plane_restore(&intel_plane->base);
3757 }
3758 }
3759
3760 static void intel_disable_planes(struct drm_crtc *crtc)
3761 {
3762 struct drm_device *dev = crtc->dev;
3763 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3764 struct drm_plane *plane;
3765 struct intel_plane *intel_plane;
3766
3767 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3768 intel_plane = to_intel_plane(plane);
3769 if (intel_plane->pipe == pipe)
3770 intel_plane_disable(&intel_plane->base);
3771 }
3772 }
3773
3774 void hsw_enable_ips(struct intel_crtc *crtc)
3775 {
3776 struct drm_device *dev = crtc->base.dev;
3777 struct drm_i915_private *dev_priv = dev->dev_private;
3778
3779 if (!crtc->config.ips_enabled)
3780 return;
3781
3782 /* We can only enable IPS after we enable a plane and wait for a vblank */
3783 intel_wait_for_vblank(dev, crtc->pipe);
3784
3785 assert_plane_enabled(dev_priv, crtc->plane);
3786 if (IS_BROADWELL(dev)) {
3787 mutex_lock(&dev_priv->rps.hw_lock);
3788 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3789 mutex_unlock(&dev_priv->rps.hw_lock);
3790 /* Quoting Art Runyan: "its not safe to expect any particular
3791 * value in IPS_CTL bit 31 after enabling IPS through the
3792 * mailbox." Moreover, the mailbox may return a bogus state,
3793 * so we need to just enable it and continue on.
3794 */
3795 } else {
3796 I915_WRITE(IPS_CTL, IPS_ENABLE);
3797 /* The bit only becomes 1 in the next vblank, so this wait here
3798 * is essentially intel_wait_for_vblank. If we don't have this
3799 * and don't wait for vblanks until the end of crtc_enable, then
3800 * the HW state readout code will complain that the expected
3801 * IPS_CTL value is not the one we read. */
3802 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3803 DRM_ERROR("Timed out waiting for IPS enable\n");
3804 }
3805 }
3806
3807 void hsw_disable_ips(struct intel_crtc *crtc)
3808 {
3809 struct drm_device *dev = crtc->base.dev;
3810 struct drm_i915_private *dev_priv = dev->dev_private;
3811
3812 if (!crtc->config.ips_enabled)
3813 return;
3814
3815 assert_plane_enabled(dev_priv, crtc->plane);
3816 if (IS_BROADWELL(dev)) {
3817 mutex_lock(&dev_priv->rps.hw_lock);
3818 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3819 mutex_unlock(&dev_priv->rps.hw_lock);
3820 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3821 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3822 DRM_ERROR("Timed out waiting for IPS disable\n");
3823 } else {
3824 I915_WRITE(IPS_CTL, 0);
3825 POSTING_READ(IPS_CTL);
3826 }
3827
3828 /* We need to wait for a vblank before we can disable the plane. */
3829 intel_wait_for_vblank(dev, crtc->pipe);
3830 }
3831
3832 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3833 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3834 {
3835 struct drm_device *dev = crtc->dev;
3836 struct drm_i915_private *dev_priv = dev->dev_private;
3837 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3838 enum pipe pipe = intel_crtc->pipe;
3839 int palreg = PALETTE(pipe);
3840 int i;
3841 bool reenable_ips = false;
3842
3843 /* The clocks have to be on to load the palette. */
3844 if (!crtc->enabled || !intel_crtc->active)
3845 return;
3846
3847 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3848 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3849 assert_dsi_pll_enabled(dev_priv);
3850 else
3851 assert_pll_enabled(dev_priv, pipe);
3852 }
3853
3854 /* use legacy palette for Ironlake */
3855 if (HAS_PCH_SPLIT(dev))
3856 palreg = LGC_PALETTE(pipe);
3857
3858 /* Workaround : Do not read or write the pipe palette/gamma data while
3859 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3860 */
3861 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
3862 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3863 GAMMA_MODE_MODE_SPLIT)) {
3864 hsw_disable_ips(intel_crtc);
3865 reenable_ips = true;
3866 }
3867
3868 for (i = 0; i < 256; i++) {
3869 I915_WRITE(palreg + 4 * i,
3870 (intel_crtc->lut_r[i] << 16) |
3871 (intel_crtc->lut_g[i] << 8) |
3872 intel_crtc->lut_b[i]);
3873 }
3874
3875 if (reenable_ips)
3876 hsw_enable_ips(intel_crtc);
3877 }
3878
3879 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3880 {
3881 if (!enable && intel_crtc->overlay) {
3882 struct drm_device *dev = intel_crtc->base.dev;
3883 struct drm_i915_private *dev_priv = dev->dev_private;
3884
3885 mutex_lock(&dev->struct_mutex);
3886 dev_priv->mm.interruptible = false;
3887 (void) intel_overlay_switch_off(intel_crtc->overlay);
3888 dev_priv->mm.interruptible = true;
3889 mutex_unlock(&dev->struct_mutex);
3890 }
3891
3892 /* Let userspace switch the overlay on again. In most cases userspace
3893 * has to recompute where to put it anyway.
3894 */
3895 }
3896
3897 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
3898 {
3899 struct drm_device *dev = crtc->dev;
3900 struct drm_i915_private *dev_priv = dev->dev_private;
3901 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3902 int pipe = intel_crtc->pipe;
3903 int plane = intel_crtc->plane;
3904
3905 drm_vblank_on(dev, pipe);
3906
3907 intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3908 intel_enable_planes(crtc);
3909 intel_crtc_update_cursor(crtc, true);
3910 intel_crtc_dpms_overlay(intel_crtc, true);
3911
3912 hsw_enable_ips(intel_crtc);
3913
3914 mutex_lock(&dev->struct_mutex);
3915 intel_update_fbc(dev);
3916 mutex_unlock(&dev->struct_mutex);
3917
3918 /*
3919 * FIXME: Once we grow proper nuclear flip support out of this we need
3920 * to compute the mask of flip planes precisely. For the time being
3921 * consider this a flip from a NULL plane.
3922 */
3923 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3924 }
3925
3926 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
3927 {
3928 struct drm_device *dev = crtc->dev;
3929 struct drm_i915_private *dev_priv = dev->dev_private;
3930 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3931 int pipe = intel_crtc->pipe;
3932 int plane = intel_crtc->plane;
3933
3934 intel_crtc_wait_for_pending_flips(crtc);
3935
3936 if (dev_priv->fbc.plane == plane)
3937 intel_disable_fbc(dev);
3938
3939 hsw_disable_ips(intel_crtc);
3940
3941 intel_crtc_dpms_overlay(intel_crtc, false);
3942 intel_crtc_update_cursor(crtc, false);
3943 intel_disable_planes(crtc);
3944 intel_disable_primary_hw_plane(dev_priv, plane, pipe);
3945
3946 /*
3947 * FIXME: Once we grow proper nuclear flip support out of this we need
3948 * to compute the mask of flip planes precisely. For the time being
3949 * consider this a flip to a NULL plane.
3950 */
3951 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3952
3953 drm_vblank_off(dev, pipe);
3954 }
3955
3956 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3957 {
3958 struct drm_device *dev = crtc->dev;
3959 struct drm_i915_private *dev_priv = dev->dev_private;
3960 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3961 struct intel_encoder *encoder;
3962 int pipe = intel_crtc->pipe;
3963 enum plane plane = intel_crtc->plane;
3964
3965 WARN_ON(!crtc->enabled);
3966
3967 if (intel_crtc->active)
3968 return;
3969
3970 if (intel_crtc->config.has_pch_encoder)
3971 intel_prepare_shared_dpll(intel_crtc);
3972
3973 if (intel_crtc->config.has_dp_encoder)
3974 intel_dp_set_m_n(intel_crtc);
3975
3976 intel_set_pipe_timings(intel_crtc);
3977
3978 if (intel_crtc->config.has_pch_encoder) {
3979 intel_cpu_transcoder_set_m_n(intel_crtc,
3980 &intel_crtc->config.fdi_m_n);
3981 }
3982
3983 ironlake_set_pipeconf(crtc);
3984
3985 /* Set up the display plane register */
3986 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
3987 POSTING_READ(DSPCNTR(plane));
3988
3989 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
3990 crtc->x, crtc->y);
3991
3992 intel_crtc->active = true;
3993
3994 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3995 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3996
3997 for_each_encoder_on_crtc(dev, crtc, encoder)
3998 if (encoder->pre_enable)
3999 encoder->pre_enable(encoder);
4000
4001 if (intel_crtc->config.has_pch_encoder) {
4002 /* Note: FDI PLL enabling _must_ be done before we enable the
4003 * cpu pipes, hence this is separate from all the other fdi/pch
4004 * enabling. */
4005 ironlake_fdi_pll_enable(intel_crtc);
4006 } else {
4007 assert_fdi_tx_disabled(dev_priv, pipe);
4008 assert_fdi_rx_disabled(dev_priv, pipe);
4009 }
4010
4011 ironlake_pfit_enable(intel_crtc);
4012
4013 /*
4014 * On ILK+ LUT must be loaded before the pipe is running but with
4015 * clocks enabled
4016 */
4017 intel_crtc_load_lut(crtc);
4018
4019 intel_update_watermarks(crtc);
4020 intel_enable_pipe(intel_crtc);
4021
4022 if (intel_crtc->config.has_pch_encoder)
4023 ironlake_pch_enable(crtc);
4024
4025 for_each_encoder_on_crtc(dev, crtc, encoder)
4026 encoder->enable(encoder);
4027
4028 if (HAS_PCH_CPT(dev))
4029 cpt_verify_modeset(dev, intel_crtc->pipe);
4030
4031 intel_crtc_enable_planes(crtc);
4032 }
4033
4034 /* IPS only exists on ULT machines and is tied to pipe A. */
4035 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4036 {
4037 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4038 }
4039
4040 /*
4041 * This implements the workaround described in the "notes" section of the mode
4042 * set sequence documentation. When going from no pipes or single pipe to
4043 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4044 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4045 */
4046 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4047 {
4048 struct drm_device *dev = crtc->base.dev;
4049 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4050
4051 /* We want to get the other_active_crtc only if there's only 1 other
4052 * active crtc. */
4053 for_each_intel_crtc(dev, crtc_it) {
4054 if (!crtc_it->active || crtc_it == crtc)
4055 continue;
4056
4057 if (other_active_crtc)
4058 return;
4059
4060 other_active_crtc = crtc_it;
4061 }
4062 if (!other_active_crtc)
4063 return;
4064
4065 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4066 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4067 }
4068
4069 static void haswell_crtc_enable(struct drm_crtc *crtc)
4070 {
4071 struct drm_device *dev = crtc->dev;
4072 struct drm_i915_private *dev_priv = dev->dev_private;
4073 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4074 struct intel_encoder *encoder;
4075 int pipe = intel_crtc->pipe;
4076 enum plane plane = intel_crtc->plane;
4077
4078 WARN_ON(!crtc->enabled);
4079
4080 if (intel_crtc->active)
4081 return;
4082
4083 if (intel_crtc->config.has_dp_encoder)
4084 intel_dp_set_m_n(intel_crtc);
4085
4086 intel_set_pipe_timings(intel_crtc);
4087
4088 if (intel_crtc->config.has_pch_encoder) {
4089 intel_cpu_transcoder_set_m_n(intel_crtc,
4090 &intel_crtc->config.fdi_m_n);
4091 }
4092
4093 haswell_set_pipeconf(crtc);
4094
4095 intel_set_pipe_csc(crtc);
4096
4097 /* Set up the display plane register */
4098 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
4099 POSTING_READ(DSPCNTR(plane));
4100
4101 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4102 crtc->x, crtc->y);
4103
4104 intel_crtc->active = true;
4105
4106 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4107 if (intel_crtc->config.has_pch_encoder)
4108 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4109
4110 if (intel_crtc->config.has_pch_encoder)
4111 dev_priv->display.fdi_link_train(crtc);
4112
4113 for_each_encoder_on_crtc(dev, crtc, encoder)
4114 if (encoder->pre_enable)
4115 encoder->pre_enable(encoder);
4116
4117 intel_ddi_enable_pipe_clock(intel_crtc);
4118
4119 ironlake_pfit_enable(intel_crtc);
4120
4121 /*
4122 * On ILK+ LUT must be loaded before the pipe is running but with
4123 * clocks enabled
4124 */
4125 intel_crtc_load_lut(crtc);
4126
4127 intel_ddi_set_pipe_settings(crtc);
4128 intel_ddi_enable_transcoder_func(crtc);
4129
4130 intel_update_watermarks(crtc);
4131 intel_enable_pipe(intel_crtc);
4132
4133 if (intel_crtc->config.has_pch_encoder)
4134 lpt_pch_enable(crtc);
4135
4136 for_each_encoder_on_crtc(dev, crtc, encoder) {
4137 encoder->enable(encoder);
4138 intel_opregion_notify_encoder(encoder, true);
4139 }
4140
4141 /* If we change the relative order between pipe/planes enabling, we need
4142 * to change the workaround. */
4143 haswell_mode_set_planes_workaround(intel_crtc);
4144 intel_crtc_enable_planes(crtc);
4145 }
4146
4147 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4148 {
4149 struct drm_device *dev = crtc->base.dev;
4150 struct drm_i915_private *dev_priv = dev->dev_private;
4151 int pipe = crtc->pipe;
4152
4153 /* To avoid upsetting the power well on haswell only disable the pfit if
4154 * it's in use. The hw state code will make sure we get this right. */
4155 if (crtc->config.pch_pfit.enabled) {
4156 I915_WRITE(PF_CTL(pipe), 0);
4157 I915_WRITE(PF_WIN_POS(pipe), 0);
4158 I915_WRITE(PF_WIN_SZ(pipe), 0);
4159 }
4160 }
4161
4162 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4163 {
4164 struct drm_device *dev = crtc->dev;
4165 struct drm_i915_private *dev_priv = dev->dev_private;
4166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4167 struct intel_encoder *encoder;
4168 int pipe = intel_crtc->pipe;
4169 u32 reg, temp;
4170
4171 if (!intel_crtc->active)
4172 return;
4173
4174 intel_crtc_disable_planes(crtc);
4175
4176 for_each_encoder_on_crtc(dev, crtc, encoder)
4177 encoder->disable(encoder);
4178
4179 if (intel_crtc->config.has_pch_encoder)
4180 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4181
4182 intel_disable_pipe(dev_priv, pipe);
4183
4184 ironlake_pfit_disable(intel_crtc);
4185
4186 for_each_encoder_on_crtc(dev, crtc, encoder)
4187 if (encoder->post_disable)
4188 encoder->post_disable(encoder);
4189
4190 if (intel_crtc->config.has_pch_encoder) {
4191 ironlake_fdi_disable(crtc);
4192
4193 ironlake_disable_pch_transcoder(dev_priv, pipe);
4194 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4195
4196 if (HAS_PCH_CPT(dev)) {
4197 /* disable TRANS_DP_CTL */
4198 reg = TRANS_DP_CTL(pipe);
4199 temp = I915_READ(reg);
4200 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4201 TRANS_DP_PORT_SEL_MASK);
4202 temp |= TRANS_DP_PORT_SEL_NONE;
4203 I915_WRITE(reg, temp);
4204
4205 /* disable DPLL_SEL */
4206 temp = I915_READ(PCH_DPLL_SEL);
4207 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4208 I915_WRITE(PCH_DPLL_SEL, temp);
4209 }
4210
4211 /* disable PCH DPLL */
4212 intel_disable_shared_dpll(intel_crtc);
4213
4214 ironlake_fdi_pll_disable(intel_crtc);
4215 }
4216
4217 intel_crtc->active = false;
4218 intel_update_watermarks(crtc);
4219
4220 mutex_lock(&dev->struct_mutex);
4221 intel_update_fbc(dev);
4222 mutex_unlock(&dev->struct_mutex);
4223 }
4224
4225 static void haswell_crtc_disable(struct drm_crtc *crtc)
4226 {
4227 struct drm_device *dev = crtc->dev;
4228 struct drm_i915_private *dev_priv = dev->dev_private;
4229 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4230 struct intel_encoder *encoder;
4231 int pipe = intel_crtc->pipe;
4232 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4233
4234 if (!intel_crtc->active)
4235 return;
4236
4237 intel_crtc_disable_planes(crtc);
4238
4239 for_each_encoder_on_crtc(dev, crtc, encoder) {
4240 intel_opregion_notify_encoder(encoder, false);
4241 encoder->disable(encoder);
4242 }
4243
4244 if (intel_crtc->config.has_pch_encoder)
4245 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4246 intel_disable_pipe(dev_priv, pipe);
4247
4248 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4249
4250 ironlake_pfit_disable(intel_crtc);
4251
4252 intel_ddi_disable_pipe_clock(intel_crtc);
4253
4254 for_each_encoder_on_crtc(dev, crtc, encoder)
4255 if (encoder->post_disable)
4256 encoder->post_disable(encoder);
4257
4258 if (intel_crtc->config.has_pch_encoder) {
4259 lpt_disable_pch_transcoder(dev_priv);
4260 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4261 intel_ddi_fdi_disable(crtc);
4262 }
4263
4264 intel_crtc->active = false;
4265 intel_update_watermarks(crtc);
4266
4267 mutex_lock(&dev->struct_mutex);
4268 intel_update_fbc(dev);
4269 mutex_unlock(&dev->struct_mutex);
4270 }
4271
4272 static void ironlake_crtc_off(struct drm_crtc *crtc)
4273 {
4274 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4275 intel_put_shared_dpll(intel_crtc);
4276 }
4277
4278 static void haswell_crtc_off(struct drm_crtc *crtc)
4279 {
4280 intel_ddi_put_crtc_pll(crtc);
4281 }
4282
4283 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4284 {
4285 struct drm_device *dev = crtc->base.dev;
4286 struct drm_i915_private *dev_priv = dev->dev_private;
4287 struct intel_crtc_config *pipe_config = &crtc->config;
4288
4289 if (!crtc->config.gmch_pfit.control)
4290 return;
4291
4292 /*
4293 * The panel fitter should only be adjusted whilst the pipe is disabled,
4294 * according to register description and PRM.
4295 */
4296 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4297 assert_pipe_disabled(dev_priv, crtc->pipe);
4298
4299 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4300 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4301
4302 /* Border color in case we don't scale up to the full screen. Black by
4303 * default, change to something else for debugging. */
4304 I915_WRITE(BCLRPAT(crtc->pipe), 0);
4305 }
4306
4307 #define for_each_power_domain(domain, mask) \
4308 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4309 if ((1 << (domain)) & (mask))
4310
4311 enum intel_display_power_domain
4312 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4313 {
4314 struct drm_device *dev = intel_encoder->base.dev;
4315 struct intel_digital_port *intel_dig_port;
4316
4317 switch (intel_encoder->type) {
4318 case INTEL_OUTPUT_UNKNOWN:
4319 /* Only DDI platforms should ever use this output type */
4320 WARN_ON_ONCE(!HAS_DDI(dev));
4321 case INTEL_OUTPUT_DISPLAYPORT:
4322 case INTEL_OUTPUT_HDMI:
4323 case INTEL_OUTPUT_EDP:
4324 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4325 switch (intel_dig_port->port) {
4326 case PORT_A:
4327 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4328 case PORT_B:
4329 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4330 case PORT_C:
4331 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4332 case PORT_D:
4333 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4334 default:
4335 WARN_ON_ONCE(1);
4336 return POWER_DOMAIN_PORT_OTHER;
4337 }
4338 case INTEL_OUTPUT_ANALOG:
4339 return POWER_DOMAIN_PORT_CRT;
4340 case INTEL_OUTPUT_DSI:
4341 return POWER_DOMAIN_PORT_DSI;
4342 default:
4343 return POWER_DOMAIN_PORT_OTHER;
4344 }
4345 }
4346
4347 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4348 {
4349 struct drm_device *dev = crtc->dev;
4350 struct intel_encoder *intel_encoder;
4351 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4352 enum pipe pipe = intel_crtc->pipe;
4353 bool pfit_enabled = intel_crtc->config.pch_pfit.enabled;
4354 unsigned long mask;
4355 enum transcoder transcoder;
4356
4357 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4358
4359 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4360 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4361 if (pfit_enabled)
4362 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4363
4364 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4365 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4366
4367 return mask;
4368 }
4369
4370 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4371 bool enable)
4372 {
4373 if (dev_priv->power_domains.init_power_on == enable)
4374 return;
4375
4376 if (enable)
4377 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4378 else
4379 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4380
4381 dev_priv->power_domains.init_power_on = enable;
4382 }
4383
4384 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4385 {
4386 struct drm_i915_private *dev_priv = dev->dev_private;
4387 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4388 struct intel_crtc *crtc;
4389
4390 /*
4391 * First get all needed power domains, then put all unneeded, to avoid
4392 * any unnecessary toggling of the power wells.
4393 */
4394 for_each_intel_crtc(dev, crtc) {
4395 enum intel_display_power_domain domain;
4396
4397 if (!crtc->base.enabled)
4398 continue;
4399
4400 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4401
4402 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4403 intel_display_power_get(dev_priv, domain);
4404 }
4405
4406 for_each_intel_crtc(dev, crtc) {
4407 enum intel_display_power_domain domain;
4408
4409 for_each_power_domain(domain, crtc->enabled_power_domains)
4410 intel_display_power_put(dev_priv, domain);
4411
4412 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4413 }
4414
4415 intel_display_set_init_power(dev_priv, false);
4416 }
4417
4418 /* returns HPLL frequency in kHz */
4419 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4420 {
4421 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4422
4423 /* Obtain SKU information */
4424 mutex_lock(&dev_priv->dpio_lock);
4425 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4426 CCK_FUSE_HPLL_FREQ_MASK;
4427 mutex_unlock(&dev_priv->dpio_lock);
4428
4429 return vco_freq[hpll_freq] * 1000;
4430 }
4431
4432 static void vlv_update_cdclk(struct drm_device *dev)
4433 {
4434 struct drm_i915_private *dev_priv = dev->dev_private;
4435
4436 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4437 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4438 dev_priv->vlv_cdclk_freq);
4439
4440 /*
4441 * Program the gmbus_freq based on the cdclk frequency.
4442 * BSpec erroneously claims we should aim for 4MHz, but
4443 * in fact 1MHz is the correct frequency.
4444 */
4445 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4446 }
4447
4448 /* Adjust CDclk dividers to allow high res or save power if possible */
4449 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4450 {
4451 struct drm_i915_private *dev_priv = dev->dev_private;
4452 u32 val, cmd;
4453
4454 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4455
4456 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4457 cmd = 2;
4458 else if (cdclk == 266667)
4459 cmd = 1;
4460 else
4461 cmd = 0;
4462
4463 mutex_lock(&dev_priv->rps.hw_lock);
4464 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4465 val &= ~DSPFREQGUAR_MASK;
4466 val |= (cmd << DSPFREQGUAR_SHIFT);
4467 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4468 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4469 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4470 50)) {
4471 DRM_ERROR("timed out waiting for CDclk change\n");
4472 }
4473 mutex_unlock(&dev_priv->rps.hw_lock);
4474
4475 if (cdclk == 400000) {
4476 u32 divider, vco;
4477
4478 vco = valleyview_get_vco(dev_priv);
4479 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
4480
4481 mutex_lock(&dev_priv->dpio_lock);
4482 /* adjust cdclk divider */
4483 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4484 val &= ~DISPLAY_FREQUENCY_VALUES;
4485 val |= divider;
4486 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4487
4488 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4489 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4490 50))
4491 DRM_ERROR("timed out waiting for CDclk change\n");
4492 mutex_unlock(&dev_priv->dpio_lock);
4493 }
4494
4495 mutex_lock(&dev_priv->dpio_lock);
4496 /* adjust self-refresh exit latency value */
4497 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4498 val &= ~0x7f;
4499
4500 /*
4501 * For high bandwidth configs, we set a higher latency in the bunit
4502 * so that the core display fetch happens in time to avoid underruns.
4503 */
4504 if (cdclk == 400000)
4505 val |= 4500 / 250; /* 4.5 usec */
4506 else
4507 val |= 3000 / 250; /* 3.0 usec */
4508 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4509 mutex_unlock(&dev_priv->dpio_lock);
4510
4511 vlv_update_cdclk(dev);
4512 }
4513
4514 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4515 int max_pixclk)
4516 {
4517 int vco = valleyview_get_vco(dev_priv);
4518 int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
4519
4520 /*
4521 * Really only a few cases to deal with, as only 4 CDclks are supported:
4522 * 200MHz
4523 * 267MHz
4524 * 320/333MHz (depends on HPLL freq)
4525 * 400MHz
4526 * So we check to see whether we're above 90% of the lower bin and
4527 * adjust if needed.
4528 *
4529 * We seem to get an unstable or solid color picture at 200MHz.
4530 * Not sure what's wrong. For now use 200MHz only when all pipes
4531 * are off.
4532 */
4533 if (max_pixclk > freq_320*9/10)
4534 return 400000;
4535 else if (max_pixclk > 266667*9/10)
4536 return freq_320;
4537 else if (max_pixclk > 0)
4538 return 266667;
4539 else
4540 return 200000;
4541 }
4542
4543 /* compute the max pixel clock for new configuration */
4544 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4545 {
4546 struct drm_device *dev = dev_priv->dev;
4547 struct intel_crtc *intel_crtc;
4548 int max_pixclk = 0;
4549
4550 for_each_intel_crtc(dev, intel_crtc) {
4551 if (intel_crtc->new_enabled)
4552 max_pixclk = max(max_pixclk,
4553 intel_crtc->new_config->adjusted_mode.crtc_clock);
4554 }
4555
4556 return max_pixclk;
4557 }
4558
4559 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4560 unsigned *prepare_pipes)
4561 {
4562 struct drm_i915_private *dev_priv = dev->dev_private;
4563 struct intel_crtc *intel_crtc;
4564 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4565
4566 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4567 dev_priv->vlv_cdclk_freq)
4568 return;
4569
4570 /* disable/enable all currently active pipes while we change cdclk */
4571 for_each_intel_crtc(dev, intel_crtc)
4572 if (intel_crtc->base.enabled)
4573 *prepare_pipes |= (1 << intel_crtc->pipe);
4574 }
4575
4576 static void valleyview_modeset_global_resources(struct drm_device *dev)
4577 {
4578 struct drm_i915_private *dev_priv = dev->dev_private;
4579 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4580 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4581
4582 if (req_cdclk != dev_priv->vlv_cdclk_freq)
4583 valleyview_set_cdclk(dev, req_cdclk);
4584 modeset_update_crtc_power_domains(dev);
4585 }
4586
4587 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4588 {
4589 struct drm_device *dev = crtc->dev;
4590 struct drm_i915_private *dev_priv = dev->dev_private;
4591 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4592 struct intel_encoder *encoder;
4593 int pipe = intel_crtc->pipe;
4594 int plane = intel_crtc->plane;
4595 bool is_dsi;
4596 u32 dspcntr;
4597
4598 WARN_ON(!crtc->enabled);
4599
4600 if (intel_crtc->active)
4601 return;
4602
4603 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4604
4605 if (!is_dsi && !IS_CHERRYVIEW(dev))
4606 vlv_prepare_pll(intel_crtc);
4607
4608 /* Set up the display plane register */
4609 dspcntr = DISPPLANE_GAMMA_ENABLE;
4610
4611 if (intel_crtc->config.has_dp_encoder)
4612 intel_dp_set_m_n(intel_crtc);
4613
4614 intel_set_pipe_timings(intel_crtc);
4615
4616 /* pipesrc and dspsize control the size that is scaled from,
4617 * which should always be the user's requested size.
4618 */
4619 I915_WRITE(DSPSIZE(plane),
4620 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4621 (intel_crtc->config.pipe_src_w - 1));
4622 I915_WRITE(DSPPOS(plane), 0);
4623
4624 i9xx_set_pipeconf(intel_crtc);
4625
4626 I915_WRITE(DSPCNTR(plane), dspcntr);
4627 POSTING_READ(DSPCNTR(plane));
4628
4629 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4630 crtc->x, crtc->y);
4631
4632 intel_crtc->active = true;
4633
4634 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4635
4636 for_each_encoder_on_crtc(dev, crtc, encoder)
4637 if (encoder->pre_pll_enable)
4638 encoder->pre_pll_enable(encoder);
4639
4640 if (!is_dsi) {
4641 if (IS_CHERRYVIEW(dev))
4642 chv_enable_pll(intel_crtc);
4643 else
4644 vlv_enable_pll(intel_crtc);
4645 }
4646
4647 for_each_encoder_on_crtc(dev, crtc, encoder)
4648 if (encoder->pre_enable)
4649 encoder->pre_enable(encoder);
4650
4651 i9xx_pfit_enable(intel_crtc);
4652
4653 intel_crtc_load_lut(crtc);
4654
4655 intel_update_watermarks(crtc);
4656 intel_enable_pipe(intel_crtc);
4657
4658 for_each_encoder_on_crtc(dev, crtc, encoder)
4659 encoder->enable(encoder);
4660
4661 intel_crtc_enable_planes(crtc);
4662
4663 /* Underruns don't raise interrupts, so check manually. */
4664 i9xx_check_fifo_underruns(dev);
4665 }
4666
4667 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4668 {
4669 struct drm_device *dev = crtc->base.dev;
4670 struct drm_i915_private *dev_priv = dev->dev_private;
4671
4672 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4673 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4674 }
4675
4676 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4677 {
4678 struct drm_device *dev = crtc->dev;
4679 struct drm_i915_private *dev_priv = dev->dev_private;
4680 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4681 struct intel_encoder *encoder;
4682 int pipe = intel_crtc->pipe;
4683 int plane = intel_crtc->plane;
4684 u32 dspcntr;
4685
4686 WARN_ON(!crtc->enabled);
4687
4688 if (intel_crtc->active)
4689 return;
4690
4691 i9xx_set_pll_dividers(intel_crtc);
4692
4693 /* Set up the display plane register */
4694 dspcntr = DISPPLANE_GAMMA_ENABLE;
4695
4696 if (pipe == 0)
4697 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4698 else
4699 dspcntr |= DISPPLANE_SEL_PIPE_B;
4700
4701 if (intel_crtc->config.has_dp_encoder)
4702 intel_dp_set_m_n(intel_crtc);
4703
4704 intel_set_pipe_timings(intel_crtc);
4705
4706 /* pipesrc and dspsize control the size that is scaled from,
4707 * which should always be the user's requested size.
4708 */
4709 I915_WRITE(DSPSIZE(plane),
4710 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4711 (intel_crtc->config.pipe_src_w - 1));
4712 I915_WRITE(DSPPOS(plane), 0);
4713
4714 i9xx_set_pipeconf(intel_crtc);
4715
4716 I915_WRITE(DSPCNTR(plane), dspcntr);
4717 POSTING_READ(DSPCNTR(plane));
4718
4719 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4720 crtc->x, crtc->y);
4721
4722 intel_crtc->active = true;
4723
4724 if (!IS_GEN2(dev))
4725 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4726
4727 for_each_encoder_on_crtc(dev, crtc, encoder)
4728 if (encoder->pre_enable)
4729 encoder->pre_enable(encoder);
4730
4731 i9xx_enable_pll(intel_crtc);
4732
4733 i9xx_pfit_enable(intel_crtc);
4734
4735 intel_crtc_load_lut(crtc);
4736
4737 intel_update_watermarks(crtc);
4738 intel_enable_pipe(intel_crtc);
4739
4740 for_each_encoder_on_crtc(dev, crtc, encoder)
4741 encoder->enable(encoder);
4742
4743 intel_crtc_enable_planes(crtc);
4744
4745 /*
4746 * Gen2 reports pipe underruns whenever all planes are disabled.
4747 * So don't enable underrun reporting before at least some planes
4748 * are enabled.
4749 * FIXME: Need to fix the logic to work when we turn off all planes
4750 * but leave the pipe running.
4751 */
4752 if (IS_GEN2(dev))
4753 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4754
4755 /* Underruns don't raise interrupts, so check manually. */
4756 i9xx_check_fifo_underruns(dev);
4757 }
4758
4759 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4760 {
4761 struct drm_device *dev = crtc->base.dev;
4762 struct drm_i915_private *dev_priv = dev->dev_private;
4763
4764 if (!crtc->config.gmch_pfit.control)
4765 return;
4766
4767 assert_pipe_disabled(dev_priv, crtc->pipe);
4768
4769 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4770 I915_READ(PFIT_CONTROL));
4771 I915_WRITE(PFIT_CONTROL, 0);
4772 }
4773
4774 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4775 {
4776 struct drm_device *dev = crtc->dev;
4777 struct drm_i915_private *dev_priv = dev->dev_private;
4778 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4779 struct intel_encoder *encoder;
4780 int pipe = intel_crtc->pipe;
4781
4782 if (!intel_crtc->active)
4783 return;
4784
4785 /*
4786 * Gen2 reports pipe underruns whenever all planes are disabled.
4787 * So diasble underrun reporting before all the planes get disabled.
4788 * FIXME: Need to fix the logic to work when we turn off all planes
4789 * but leave the pipe running.
4790 */
4791 if (IS_GEN2(dev))
4792 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4793
4794 /*
4795 * Vblank time updates from the shadow to live plane control register
4796 * are blocked if the memory self-refresh mode is active at that
4797 * moment. So to make sure the plane gets truly disabled, disable
4798 * first the self-refresh mode. The self-refresh enable bit in turn
4799 * will be checked/applied by the HW only at the next frame start
4800 * event which is after the vblank start event, so we need to have a
4801 * wait-for-vblank between disabling the plane and the pipe.
4802 */
4803 intel_set_memory_cxsr(dev_priv, false);
4804 intel_crtc_disable_planes(crtc);
4805
4806 for_each_encoder_on_crtc(dev, crtc, encoder)
4807 encoder->disable(encoder);
4808
4809 /*
4810 * On gen2 planes are double buffered but the pipe isn't, so we must
4811 * wait for planes to fully turn off before disabling the pipe.
4812 * We also need to wait on all gmch platforms because of the
4813 * self-refresh mode constraint explained above.
4814 */
4815 intel_wait_for_vblank(dev, pipe);
4816
4817 intel_disable_pipe(dev_priv, pipe);
4818
4819 i9xx_pfit_disable(intel_crtc);
4820
4821 for_each_encoder_on_crtc(dev, crtc, encoder)
4822 if (encoder->post_disable)
4823 encoder->post_disable(encoder);
4824
4825 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4826 if (IS_CHERRYVIEW(dev))
4827 chv_disable_pll(dev_priv, pipe);
4828 else if (IS_VALLEYVIEW(dev))
4829 vlv_disable_pll(dev_priv, pipe);
4830 else
4831 i9xx_disable_pll(dev_priv, pipe);
4832 }
4833
4834 if (!IS_GEN2(dev))
4835 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4836
4837 intel_crtc->active = false;
4838 intel_update_watermarks(crtc);
4839
4840 mutex_lock(&dev->struct_mutex);
4841 intel_update_fbc(dev);
4842 mutex_unlock(&dev->struct_mutex);
4843 }
4844
4845 static void i9xx_crtc_off(struct drm_crtc *crtc)
4846 {
4847 }
4848
4849 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4850 bool enabled)
4851 {
4852 struct drm_device *dev = crtc->dev;
4853 struct drm_i915_master_private *master_priv;
4854 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4855 int pipe = intel_crtc->pipe;
4856
4857 if (!dev->primary->master)
4858 return;
4859
4860 master_priv = dev->primary->master->driver_priv;
4861 if (!master_priv->sarea_priv)
4862 return;
4863
4864 switch (pipe) {
4865 case 0:
4866 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4867 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4868 break;
4869 case 1:
4870 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4871 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4872 break;
4873 default:
4874 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4875 break;
4876 }
4877 }
4878
4879 /**
4880 * Sets the power management mode of the pipe and plane.
4881 */
4882 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4883 {
4884 struct drm_device *dev = crtc->dev;
4885 struct drm_i915_private *dev_priv = dev->dev_private;
4886 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4887 struct intel_encoder *intel_encoder;
4888 enum intel_display_power_domain domain;
4889 unsigned long domains;
4890 bool enable = false;
4891
4892 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4893 enable |= intel_encoder->connectors_active;
4894
4895 if (enable) {
4896 if (!intel_crtc->active) {
4897 /*
4898 * FIXME: DDI plls and relevant code isn't converted
4899 * yet, so do runtime PM for DPMS only for all other
4900 * platforms for now.
4901 */
4902 if (!HAS_DDI(dev)) {
4903 domains = get_crtc_power_domains(crtc);
4904 for_each_power_domain(domain, domains)
4905 intel_display_power_get(dev_priv, domain);
4906 intel_crtc->enabled_power_domains = domains;
4907 }
4908
4909 dev_priv->display.crtc_enable(crtc);
4910 }
4911 } else {
4912 if (intel_crtc->active) {
4913 dev_priv->display.crtc_disable(crtc);
4914
4915 if (!HAS_DDI(dev)) {
4916 domains = intel_crtc->enabled_power_domains;
4917 for_each_power_domain(domain, domains)
4918 intel_display_power_put(dev_priv, domain);
4919 intel_crtc->enabled_power_domains = 0;
4920 }
4921 }
4922 }
4923
4924 intel_crtc_update_sarea(crtc, enable);
4925 }
4926
4927 static void intel_crtc_disable(struct drm_crtc *crtc)
4928 {
4929 struct drm_device *dev = crtc->dev;
4930 struct drm_connector *connector;
4931 struct drm_i915_private *dev_priv = dev->dev_private;
4932 struct drm_i915_gem_object *old_obj;
4933 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4934
4935 /* crtc should still be enabled when we disable it. */
4936 WARN_ON(!crtc->enabled);
4937
4938 dev_priv->display.crtc_disable(crtc);
4939 intel_crtc_update_sarea(crtc, false);
4940 dev_priv->display.off(crtc);
4941
4942 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
4943 assert_cursor_disabled(dev_priv, pipe);
4944 assert_pipe_disabled(dev->dev_private, pipe);
4945
4946 if (crtc->primary->fb) {
4947 old_obj = to_intel_framebuffer(crtc->primary->fb)->obj;
4948 mutex_lock(&dev->struct_mutex);
4949 intel_unpin_fb_obj(old_obj);
4950 i915_gem_track_fb(old_obj, NULL,
4951 INTEL_FRONTBUFFER_PRIMARY(pipe));
4952 mutex_unlock(&dev->struct_mutex);
4953 crtc->primary->fb = NULL;
4954 }
4955
4956 /* Update computed state. */
4957 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4958 if (!connector->encoder || !connector->encoder->crtc)
4959 continue;
4960
4961 if (connector->encoder->crtc != crtc)
4962 continue;
4963
4964 connector->dpms = DRM_MODE_DPMS_OFF;
4965 to_intel_encoder(connector->encoder)->connectors_active = false;
4966 }
4967 }
4968
4969 void intel_encoder_destroy(struct drm_encoder *encoder)
4970 {
4971 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4972
4973 drm_encoder_cleanup(encoder);
4974 kfree(intel_encoder);
4975 }
4976
4977 /* Simple dpms helper for encoders with just one connector, no cloning and only
4978 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4979 * state of the entire output pipe. */
4980 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4981 {
4982 if (mode == DRM_MODE_DPMS_ON) {
4983 encoder->connectors_active = true;
4984
4985 intel_crtc_update_dpms(encoder->base.crtc);
4986 } else {
4987 encoder->connectors_active = false;
4988
4989 intel_crtc_update_dpms(encoder->base.crtc);
4990 }
4991 }
4992
4993 /* Cross check the actual hw state with our own modeset state tracking (and it's
4994 * internal consistency). */
4995 static void intel_connector_check_state(struct intel_connector *connector)
4996 {
4997 if (connector->get_hw_state(connector)) {
4998 struct intel_encoder *encoder = connector->encoder;
4999 struct drm_crtc *crtc;
5000 bool encoder_enabled;
5001 enum pipe pipe;
5002
5003 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5004 connector->base.base.id,
5005 connector->base.name);
5006
5007 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5008 "wrong connector dpms state\n");
5009 WARN(connector->base.encoder != &encoder->base,
5010 "active connector not linked to encoder\n");
5011 WARN(!encoder->connectors_active,
5012 "encoder->connectors_active not set\n");
5013
5014 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5015 WARN(!encoder_enabled, "encoder not enabled\n");
5016 if (WARN_ON(!encoder->base.crtc))
5017 return;
5018
5019 crtc = encoder->base.crtc;
5020
5021 WARN(!crtc->enabled, "crtc not enabled\n");
5022 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5023 WARN(pipe != to_intel_crtc(crtc)->pipe,
5024 "encoder active on the wrong pipe\n");
5025 }
5026 }
5027
5028 /* Even simpler default implementation, if there's really no special case to
5029 * consider. */
5030 void intel_connector_dpms(struct drm_connector *connector, int mode)
5031 {
5032 /* All the simple cases only support two dpms states. */
5033 if (mode != DRM_MODE_DPMS_ON)
5034 mode = DRM_MODE_DPMS_OFF;
5035
5036 if (mode == connector->dpms)
5037 return;
5038
5039 connector->dpms = mode;
5040
5041 /* Only need to change hw state when actually enabled */
5042 if (connector->encoder)
5043 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5044
5045 intel_modeset_check_state(connector->dev);
5046 }
5047
5048 /* Simple connector->get_hw_state implementation for encoders that support only
5049 * one connector and no cloning and hence the encoder state determines the state
5050 * of the connector. */
5051 bool intel_connector_get_hw_state(struct intel_connector *connector)
5052 {
5053 enum pipe pipe = 0;
5054 struct intel_encoder *encoder = connector->encoder;
5055
5056 return encoder->get_hw_state(encoder, &pipe);
5057 }
5058
5059 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5060 struct intel_crtc_config *pipe_config)
5061 {
5062 struct drm_i915_private *dev_priv = dev->dev_private;
5063 struct intel_crtc *pipe_B_crtc =
5064 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5065
5066 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5067 pipe_name(pipe), pipe_config->fdi_lanes);
5068 if (pipe_config->fdi_lanes > 4) {
5069 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5070 pipe_name(pipe), pipe_config->fdi_lanes);
5071 return false;
5072 }
5073
5074 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5075 if (pipe_config->fdi_lanes > 2) {
5076 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5077 pipe_config->fdi_lanes);
5078 return false;
5079 } else {
5080 return true;
5081 }
5082 }
5083
5084 if (INTEL_INFO(dev)->num_pipes == 2)
5085 return true;
5086
5087 /* Ivybridge 3 pipe is really complicated */
5088 switch (pipe) {
5089 case PIPE_A:
5090 return true;
5091 case PIPE_B:
5092 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5093 pipe_config->fdi_lanes > 2) {
5094 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5095 pipe_name(pipe), pipe_config->fdi_lanes);
5096 return false;
5097 }
5098 return true;
5099 case PIPE_C:
5100 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5101 pipe_B_crtc->config.fdi_lanes <= 2) {
5102 if (pipe_config->fdi_lanes > 2) {
5103 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5104 pipe_name(pipe), pipe_config->fdi_lanes);
5105 return false;
5106 }
5107 } else {
5108 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5109 return false;
5110 }
5111 return true;
5112 default:
5113 BUG();
5114 }
5115 }
5116
5117 #define RETRY 1
5118 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5119 struct intel_crtc_config *pipe_config)
5120 {
5121 struct drm_device *dev = intel_crtc->base.dev;
5122 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5123 int lane, link_bw, fdi_dotclock;
5124 bool setup_ok, needs_recompute = false;
5125
5126 retry:
5127 /* FDI is a binary signal running at ~2.7GHz, encoding
5128 * each output octet as 10 bits. The actual frequency
5129 * is stored as a divider into a 100MHz clock, and the
5130 * mode pixel clock is stored in units of 1KHz.
5131 * Hence the bw of each lane in terms of the mode signal
5132 * is:
5133 */
5134 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5135
5136 fdi_dotclock = adjusted_mode->crtc_clock;
5137
5138 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5139 pipe_config->pipe_bpp);
5140
5141 pipe_config->fdi_lanes = lane;
5142
5143 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5144 link_bw, &pipe_config->fdi_m_n);
5145
5146 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5147 intel_crtc->pipe, pipe_config);
5148 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5149 pipe_config->pipe_bpp -= 2*3;
5150 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5151 pipe_config->pipe_bpp);
5152 needs_recompute = true;
5153 pipe_config->bw_constrained = true;
5154
5155 goto retry;
5156 }
5157
5158 if (needs_recompute)
5159 return RETRY;
5160
5161 return setup_ok ? 0 : -EINVAL;
5162 }
5163
5164 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5165 struct intel_crtc_config *pipe_config)
5166 {
5167 pipe_config->ips_enabled = i915.enable_ips &&
5168 hsw_crtc_supports_ips(crtc) &&
5169 pipe_config->pipe_bpp <= 24;
5170 }
5171
5172 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5173 struct intel_crtc_config *pipe_config)
5174 {
5175 struct drm_device *dev = crtc->base.dev;
5176 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5177
5178 /* FIXME should check pixel clock limits on all platforms */
5179 if (INTEL_INFO(dev)->gen < 4) {
5180 struct drm_i915_private *dev_priv = dev->dev_private;
5181 int clock_limit =
5182 dev_priv->display.get_display_clock_speed(dev);
5183
5184 /*
5185 * Enable pixel doubling when the dot clock
5186 * is > 90% of the (display) core speed.
5187 *
5188 * GDG double wide on either pipe,
5189 * otherwise pipe A only.
5190 */
5191 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5192 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5193 clock_limit *= 2;
5194 pipe_config->double_wide = true;
5195 }
5196
5197 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5198 return -EINVAL;
5199 }
5200
5201 /*
5202 * Pipe horizontal size must be even in:
5203 * - DVO ganged mode
5204 * - LVDS dual channel mode
5205 * - Double wide pipe
5206 */
5207 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5208 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5209 pipe_config->pipe_src_w &= ~1;
5210
5211 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5212 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5213 */
5214 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5215 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5216 return -EINVAL;
5217
5218 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5219 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5220 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5221 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5222 * for lvds. */
5223 pipe_config->pipe_bpp = 8*3;
5224 }
5225
5226 if (HAS_IPS(dev))
5227 hsw_compute_ips_config(crtc, pipe_config);
5228
5229 /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
5230 * clock survives for now. */
5231 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5232 pipe_config->shared_dpll = crtc->config.shared_dpll;
5233
5234 if (pipe_config->has_pch_encoder)
5235 return ironlake_fdi_compute_config(crtc, pipe_config);
5236
5237 return 0;
5238 }
5239
5240 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5241 {
5242 struct drm_i915_private *dev_priv = dev->dev_private;
5243 int vco = valleyview_get_vco(dev_priv);
5244 u32 val;
5245 int divider;
5246
5247 mutex_lock(&dev_priv->dpio_lock);
5248 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5249 mutex_unlock(&dev_priv->dpio_lock);
5250
5251 divider = val & DISPLAY_FREQUENCY_VALUES;
5252
5253 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5254 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5255 "cdclk change in progress\n");
5256
5257 return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
5258 }
5259
5260 static int i945_get_display_clock_speed(struct drm_device *dev)
5261 {
5262 return 400000;
5263 }
5264
5265 static int i915_get_display_clock_speed(struct drm_device *dev)
5266 {
5267 return 333000;
5268 }
5269
5270 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5271 {
5272 return 200000;
5273 }
5274
5275 static int pnv_get_display_clock_speed(struct drm_device *dev)
5276 {
5277 u16 gcfgc = 0;
5278
5279 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5280
5281 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5282 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5283 return 267000;
5284 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5285 return 333000;
5286 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5287 return 444000;
5288 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5289 return 200000;
5290 default:
5291 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5292 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5293 return 133000;
5294 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5295 return 167000;
5296 }
5297 }
5298
5299 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5300 {
5301 u16 gcfgc = 0;
5302
5303 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5304
5305 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5306 return 133000;
5307 else {
5308 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5309 case GC_DISPLAY_CLOCK_333_MHZ:
5310 return 333000;
5311 default:
5312 case GC_DISPLAY_CLOCK_190_200_MHZ:
5313 return 190000;
5314 }
5315 }
5316 }
5317
5318 static int i865_get_display_clock_speed(struct drm_device *dev)
5319 {
5320 return 266000;
5321 }
5322
5323 static int i855_get_display_clock_speed(struct drm_device *dev)
5324 {
5325 u16 hpllcc = 0;
5326 /* Assume that the hardware is in the high speed state. This
5327 * should be the default.
5328 */
5329 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5330 case GC_CLOCK_133_200:
5331 case GC_CLOCK_100_200:
5332 return 200000;
5333 case GC_CLOCK_166_250:
5334 return 250000;
5335 case GC_CLOCK_100_133:
5336 return 133000;
5337 }
5338
5339 /* Shouldn't happen */
5340 return 0;
5341 }
5342
5343 static int i830_get_display_clock_speed(struct drm_device *dev)
5344 {
5345 return 133000;
5346 }
5347
5348 static void
5349 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5350 {
5351 while (*num > DATA_LINK_M_N_MASK ||
5352 *den > DATA_LINK_M_N_MASK) {
5353 *num >>= 1;
5354 *den >>= 1;
5355 }
5356 }
5357
5358 static void compute_m_n(unsigned int m, unsigned int n,
5359 uint32_t *ret_m, uint32_t *ret_n)
5360 {
5361 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5362 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5363 intel_reduce_m_n_ratio(ret_m, ret_n);
5364 }
5365
5366 void
5367 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5368 int pixel_clock, int link_clock,
5369 struct intel_link_m_n *m_n)
5370 {
5371 m_n->tu = 64;
5372
5373 compute_m_n(bits_per_pixel * pixel_clock,
5374 link_clock * nlanes * 8,
5375 &m_n->gmch_m, &m_n->gmch_n);
5376
5377 compute_m_n(pixel_clock, link_clock,
5378 &m_n->link_m, &m_n->link_n);
5379 }
5380
5381 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5382 {
5383 if (i915.panel_use_ssc >= 0)
5384 return i915.panel_use_ssc != 0;
5385 return dev_priv->vbt.lvds_use_ssc
5386 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5387 }
5388
5389 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5390 {
5391 struct drm_device *dev = crtc->dev;
5392 struct drm_i915_private *dev_priv = dev->dev_private;
5393 int refclk;
5394
5395 if (IS_VALLEYVIEW(dev)) {
5396 refclk = 100000;
5397 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5398 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5399 refclk = dev_priv->vbt.lvds_ssc_freq;
5400 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5401 } else if (!IS_GEN2(dev)) {
5402 refclk = 96000;
5403 } else {
5404 refclk = 48000;
5405 }
5406
5407 return refclk;
5408 }
5409
5410 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5411 {
5412 return (1 << dpll->n) << 16 | dpll->m2;
5413 }
5414
5415 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5416 {
5417 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5418 }
5419
5420 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5421 intel_clock_t *reduced_clock)
5422 {
5423 struct drm_device *dev = crtc->base.dev;
5424 u32 fp, fp2 = 0;
5425
5426 if (IS_PINEVIEW(dev)) {
5427 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5428 if (reduced_clock)
5429 fp2 = pnv_dpll_compute_fp(reduced_clock);
5430 } else {
5431 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5432 if (reduced_clock)
5433 fp2 = i9xx_dpll_compute_fp(reduced_clock);
5434 }
5435
5436 crtc->config.dpll_hw_state.fp0 = fp;
5437
5438 crtc->lowfreq_avail = false;
5439 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5440 reduced_clock && i915.powersave) {
5441 crtc->config.dpll_hw_state.fp1 = fp2;
5442 crtc->lowfreq_avail = true;
5443 } else {
5444 crtc->config.dpll_hw_state.fp1 = fp;
5445 }
5446 }
5447
5448 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5449 pipe)
5450 {
5451 u32 reg_val;
5452
5453 /*
5454 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5455 * and set it to a reasonable value instead.
5456 */
5457 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5458 reg_val &= 0xffffff00;
5459 reg_val |= 0x00000030;
5460 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5461
5462 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5463 reg_val &= 0x8cffffff;
5464 reg_val = 0x8c000000;
5465 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5466
5467 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5468 reg_val &= 0xffffff00;
5469 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5470
5471 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5472 reg_val &= 0x00ffffff;
5473 reg_val |= 0xb0000000;
5474 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5475 }
5476
5477 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5478 struct intel_link_m_n *m_n)
5479 {
5480 struct drm_device *dev = crtc->base.dev;
5481 struct drm_i915_private *dev_priv = dev->dev_private;
5482 int pipe = crtc->pipe;
5483
5484 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5485 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5486 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5487 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5488 }
5489
5490 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5491 struct intel_link_m_n *m_n)
5492 {
5493 struct drm_device *dev = crtc->base.dev;
5494 struct drm_i915_private *dev_priv = dev->dev_private;
5495 int pipe = crtc->pipe;
5496 enum transcoder transcoder = crtc->config.cpu_transcoder;
5497
5498 if (INTEL_INFO(dev)->gen >= 5) {
5499 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5500 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5501 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5502 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5503 } else {
5504 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5505 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5506 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5507 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5508 }
5509 }
5510
5511 static void intel_dp_set_m_n(struct intel_crtc *crtc)
5512 {
5513 if (crtc->config.has_pch_encoder)
5514 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5515 else
5516 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5517 }
5518
5519 static void vlv_update_pll(struct intel_crtc *crtc)
5520 {
5521 u32 dpll, dpll_md;
5522
5523 /*
5524 * Enable DPIO clock input. We should never disable the reference
5525 * clock for pipe B, since VGA hotplug / manual detection depends
5526 * on it.
5527 */
5528 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5529 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5530 /* We should never disable this, set it here for state tracking */
5531 if (crtc->pipe == PIPE_B)
5532 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5533 dpll |= DPLL_VCO_ENABLE;
5534 crtc->config.dpll_hw_state.dpll = dpll;
5535
5536 dpll_md = (crtc->config.pixel_multiplier - 1)
5537 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5538 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5539 }
5540
5541 static void vlv_prepare_pll(struct intel_crtc *crtc)
5542 {
5543 struct drm_device *dev = crtc->base.dev;
5544 struct drm_i915_private *dev_priv = dev->dev_private;
5545 int pipe = crtc->pipe;
5546 u32 mdiv;
5547 u32 bestn, bestm1, bestm2, bestp1, bestp2;
5548 u32 coreclk, reg_val;
5549
5550 mutex_lock(&dev_priv->dpio_lock);
5551
5552 bestn = crtc->config.dpll.n;
5553 bestm1 = crtc->config.dpll.m1;
5554 bestm2 = crtc->config.dpll.m2;
5555 bestp1 = crtc->config.dpll.p1;
5556 bestp2 = crtc->config.dpll.p2;
5557
5558 /* See eDP HDMI DPIO driver vbios notes doc */
5559
5560 /* PLL B needs special handling */
5561 if (pipe == PIPE_B)
5562 vlv_pllb_recal_opamp(dev_priv, pipe);
5563
5564 /* Set up Tx target for periodic Rcomp update */
5565 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5566
5567 /* Disable target IRef on PLL */
5568 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5569 reg_val &= 0x00ffffff;
5570 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5571
5572 /* Disable fast lock */
5573 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5574
5575 /* Set idtafcrecal before PLL is enabled */
5576 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5577 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5578 mdiv |= ((bestn << DPIO_N_SHIFT));
5579 mdiv |= (1 << DPIO_K_SHIFT);
5580
5581 /*
5582 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5583 * but we don't support that).
5584 * Note: don't use the DAC post divider as it seems unstable.
5585 */
5586 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5587 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5588
5589 mdiv |= DPIO_ENABLE_CALIBRATION;
5590 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5591
5592 /* Set HBR and RBR LPF coefficients */
5593 if (crtc->config.port_clock == 162000 ||
5594 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5595 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
5596 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5597 0x009f0003);
5598 else
5599 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5600 0x00d0000f);
5601
5602 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5603 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5604 /* Use SSC source */
5605 if (pipe == PIPE_A)
5606 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5607 0x0df40000);
5608 else
5609 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5610 0x0df70000);
5611 } else { /* HDMI or VGA */
5612 /* Use bend source */
5613 if (pipe == PIPE_A)
5614 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5615 0x0df70000);
5616 else
5617 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5618 0x0df40000);
5619 }
5620
5621 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5622 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5623 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5624 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5625 coreclk |= 0x01000000;
5626 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5627
5628 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5629 mutex_unlock(&dev_priv->dpio_lock);
5630 }
5631
5632 static void chv_update_pll(struct intel_crtc *crtc)
5633 {
5634 struct drm_device *dev = crtc->base.dev;
5635 struct drm_i915_private *dev_priv = dev->dev_private;
5636 int pipe = crtc->pipe;
5637 int dpll_reg = DPLL(crtc->pipe);
5638 enum dpio_channel port = vlv_pipe_to_channel(pipe);
5639 u32 loopfilter, intcoeff;
5640 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5641 int refclk;
5642
5643 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5644 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5645 DPLL_VCO_ENABLE;
5646 if (pipe != PIPE_A)
5647 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5648
5649 crtc->config.dpll_hw_state.dpll_md =
5650 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5651
5652 bestn = crtc->config.dpll.n;
5653 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5654 bestm1 = crtc->config.dpll.m1;
5655 bestm2 = crtc->config.dpll.m2 >> 22;
5656 bestp1 = crtc->config.dpll.p1;
5657 bestp2 = crtc->config.dpll.p2;
5658
5659 /*
5660 * Enable Refclk and SSC
5661 */
5662 I915_WRITE(dpll_reg,
5663 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5664
5665 mutex_lock(&dev_priv->dpio_lock);
5666
5667 /* p1 and p2 divider */
5668 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5669 5 << DPIO_CHV_S1_DIV_SHIFT |
5670 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5671 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5672 1 << DPIO_CHV_K_DIV_SHIFT);
5673
5674 /* Feedback post-divider - m2 */
5675 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5676
5677 /* Feedback refclk divider - n and m1 */
5678 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5679 DPIO_CHV_M1_DIV_BY_2 |
5680 1 << DPIO_CHV_N_DIV_SHIFT);
5681
5682 /* M2 fraction division */
5683 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5684
5685 /* M2 fraction division enable */
5686 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5687 DPIO_CHV_FRAC_DIV_EN |
5688 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5689
5690 /* Loop filter */
5691 refclk = i9xx_get_refclk(&crtc->base, 0);
5692 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5693 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5694 if (refclk == 100000)
5695 intcoeff = 11;
5696 else if (refclk == 38400)
5697 intcoeff = 10;
5698 else
5699 intcoeff = 9;
5700 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5701 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5702
5703 /* AFC Recal */
5704 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5705 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5706 DPIO_AFC_RECAL);
5707
5708 mutex_unlock(&dev_priv->dpio_lock);
5709 }
5710
5711 static void i9xx_update_pll(struct intel_crtc *crtc,
5712 intel_clock_t *reduced_clock,
5713 int num_connectors)
5714 {
5715 struct drm_device *dev = crtc->base.dev;
5716 struct drm_i915_private *dev_priv = dev->dev_private;
5717 u32 dpll;
5718 bool is_sdvo;
5719 struct dpll *clock = &crtc->config.dpll;
5720
5721 i9xx_update_pll_dividers(crtc, reduced_clock);
5722
5723 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5724 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5725
5726 dpll = DPLL_VGA_MODE_DIS;
5727
5728 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5729 dpll |= DPLLB_MODE_LVDS;
5730 else
5731 dpll |= DPLLB_MODE_DAC_SERIAL;
5732
5733 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5734 dpll |= (crtc->config.pixel_multiplier - 1)
5735 << SDVO_MULTIPLIER_SHIFT_HIRES;
5736 }
5737
5738 if (is_sdvo)
5739 dpll |= DPLL_SDVO_HIGH_SPEED;
5740
5741 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5742 dpll |= DPLL_SDVO_HIGH_SPEED;
5743
5744 /* compute bitmask from p1 value */
5745 if (IS_PINEVIEW(dev))
5746 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5747 else {
5748 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5749 if (IS_G4X(dev) && reduced_clock)
5750 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5751 }
5752 switch (clock->p2) {
5753 case 5:
5754 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5755 break;
5756 case 7:
5757 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5758 break;
5759 case 10:
5760 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5761 break;
5762 case 14:
5763 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5764 break;
5765 }
5766 if (INTEL_INFO(dev)->gen >= 4)
5767 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5768
5769 if (crtc->config.sdvo_tv_clock)
5770 dpll |= PLL_REF_INPUT_TVCLKINBC;
5771 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5772 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5773 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5774 else
5775 dpll |= PLL_REF_INPUT_DREFCLK;
5776
5777 dpll |= DPLL_VCO_ENABLE;
5778 crtc->config.dpll_hw_state.dpll = dpll;
5779
5780 if (INTEL_INFO(dev)->gen >= 4) {
5781 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5782 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5783 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5784 }
5785 }
5786
5787 static void i8xx_update_pll(struct intel_crtc *crtc,
5788 intel_clock_t *reduced_clock,
5789 int num_connectors)
5790 {
5791 struct drm_device *dev = crtc->base.dev;
5792 struct drm_i915_private *dev_priv = dev->dev_private;
5793 u32 dpll;
5794 struct dpll *clock = &crtc->config.dpll;
5795
5796 i9xx_update_pll_dividers(crtc, reduced_clock);
5797
5798 dpll = DPLL_VGA_MODE_DIS;
5799
5800 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5801 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5802 } else {
5803 if (clock->p1 == 2)
5804 dpll |= PLL_P1_DIVIDE_BY_TWO;
5805 else
5806 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5807 if (clock->p2 == 4)
5808 dpll |= PLL_P2_DIVIDE_BY_4;
5809 }
5810
5811 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5812 dpll |= DPLL_DVO_2X_MODE;
5813
5814 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5815 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5816 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5817 else
5818 dpll |= PLL_REF_INPUT_DREFCLK;
5819
5820 dpll |= DPLL_VCO_ENABLE;
5821 crtc->config.dpll_hw_state.dpll = dpll;
5822 }
5823
5824 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5825 {
5826 struct drm_device *dev = intel_crtc->base.dev;
5827 struct drm_i915_private *dev_priv = dev->dev_private;
5828 enum pipe pipe = intel_crtc->pipe;
5829 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5830 struct drm_display_mode *adjusted_mode =
5831 &intel_crtc->config.adjusted_mode;
5832 uint32_t crtc_vtotal, crtc_vblank_end;
5833 int vsyncshift = 0;
5834
5835 /* We need to be careful not to changed the adjusted mode, for otherwise
5836 * the hw state checker will get angry at the mismatch. */
5837 crtc_vtotal = adjusted_mode->crtc_vtotal;
5838 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5839
5840 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5841 /* the chip adds 2 halflines automatically */
5842 crtc_vtotal -= 1;
5843 crtc_vblank_end -= 1;
5844
5845 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5846 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5847 else
5848 vsyncshift = adjusted_mode->crtc_hsync_start -
5849 adjusted_mode->crtc_htotal / 2;
5850 if (vsyncshift < 0)
5851 vsyncshift += adjusted_mode->crtc_htotal;
5852 }
5853
5854 if (INTEL_INFO(dev)->gen > 3)
5855 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5856
5857 I915_WRITE(HTOTAL(cpu_transcoder),
5858 (adjusted_mode->crtc_hdisplay - 1) |
5859 ((adjusted_mode->crtc_htotal - 1) << 16));
5860 I915_WRITE(HBLANK(cpu_transcoder),
5861 (adjusted_mode->crtc_hblank_start - 1) |
5862 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5863 I915_WRITE(HSYNC(cpu_transcoder),
5864 (adjusted_mode->crtc_hsync_start - 1) |
5865 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5866
5867 I915_WRITE(VTOTAL(cpu_transcoder),
5868 (adjusted_mode->crtc_vdisplay - 1) |
5869 ((crtc_vtotal - 1) << 16));
5870 I915_WRITE(VBLANK(cpu_transcoder),
5871 (adjusted_mode->crtc_vblank_start - 1) |
5872 ((crtc_vblank_end - 1) << 16));
5873 I915_WRITE(VSYNC(cpu_transcoder),
5874 (adjusted_mode->crtc_vsync_start - 1) |
5875 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5876
5877 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5878 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5879 * documented on the DDI_FUNC_CTL register description, EDP Input Select
5880 * bits. */
5881 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5882 (pipe == PIPE_B || pipe == PIPE_C))
5883 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5884
5885 /* pipesrc controls the size that is scaled from, which should
5886 * always be the user's requested size.
5887 */
5888 I915_WRITE(PIPESRC(pipe),
5889 ((intel_crtc->config.pipe_src_w - 1) << 16) |
5890 (intel_crtc->config.pipe_src_h - 1));
5891 }
5892
5893 static void intel_get_pipe_timings(struct intel_crtc *crtc,
5894 struct intel_crtc_config *pipe_config)
5895 {
5896 struct drm_device *dev = crtc->base.dev;
5897 struct drm_i915_private *dev_priv = dev->dev_private;
5898 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5899 uint32_t tmp;
5900
5901 tmp = I915_READ(HTOTAL(cpu_transcoder));
5902 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5903 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5904 tmp = I915_READ(HBLANK(cpu_transcoder));
5905 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5906 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5907 tmp = I915_READ(HSYNC(cpu_transcoder));
5908 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5909 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5910
5911 tmp = I915_READ(VTOTAL(cpu_transcoder));
5912 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5913 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5914 tmp = I915_READ(VBLANK(cpu_transcoder));
5915 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5916 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5917 tmp = I915_READ(VSYNC(cpu_transcoder));
5918 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5919 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5920
5921 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5922 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5923 pipe_config->adjusted_mode.crtc_vtotal += 1;
5924 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5925 }
5926
5927 tmp = I915_READ(PIPESRC(crtc->pipe));
5928 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5929 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5930
5931 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5932 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5933 }
5934
5935 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5936 struct intel_crtc_config *pipe_config)
5937 {
5938 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5939 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5940 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5941 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5942
5943 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5944 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5945 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5946 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5947
5948 mode->flags = pipe_config->adjusted_mode.flags;
5949
5950 mode->clock = pipe_config->adjusted_mode.crtc_clock;
5951 mode->flags |= pipe_config->adjusted_mode.flags;
5952 }
5953
5954 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5955 {
5956 struct drm_device *dev = intel_crtc->base.dev;
5957 struct drm_i915_private *dev_priv = dev->dev_private;
5958 uint32_t pipeconf;
5959
5960 pipeconf = 0;
5961
5962 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5963 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5964 pipeconf |= PIPECONF_ENABLE;
5965
5966 if (intel_crtc->config.double_wide)
5967 pipeconf |= PIPECONF_DOUBLE_WIDE;
5968
5969 /* only g4x and later have fancy bpc/dither controls */
5970 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5971 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5972 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5973 pipeconf |= PIPECONF_DITHER_EN |
5974 PIPECONF_DITHER_TYPE_SP;
5975
5976 switch (intel_crtc->config.pipe_bpp) {
5977 case 18:
5978 pipeconf |= PIPECONF_6BPC;
5979 break;
5980 case 24:
5981 pipeconf |= PIPECONF_8BPC;
5982 break;
5983 case 30:
5984 pipeconf |= PIPECONF_10BPC;
5985 break;
5986 default:
5987 /* Case prevented by intel_choose_pipe_bpp_dither. */
5988 BUG();
5989 }
5990 }
5991
5992 if (HAS_PIPE_CXSR(dev)) {
5993 if (intel_crtc->lowfreq_avail) {
5994 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5995 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5996 } else {
5997 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5998 }
5999 }
6000
6001 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6002 if (INTEL_INFO(dev)->gen < 4 ||
6003 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6004 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6005 else
6006 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6007 } else
6008 pipeconf |= PIPECONF_PROGRESSIVE;
6009
6010 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6011 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6012
6013 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6014 POSTING_READ(PIPECONF(intel_crtc->pipe));
6015 }
6016
6017 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
6018 int x, int y,
6019 struct drm_framebuffer *fb)
6020 {
6021 struct drm_device *dev = crtc->dev;
6022 struct drm_i915_private *dev_priv = dev->dev_private;
6023 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6024 int refclk, num_connectors = 0;
6025 intel_clock_t clock, reduced_clock;
6026 bool ok, has_reduced_clock = false;
6027 bool is_lvds = false, is_dsi = false;
6028 struct intel_encoder *encoder;
6029 const intel_limit_t *limit;
6030
6031 for_each_encoder_on_crtc(dev, crtc, encoder) {
6032 switch (encoder->type) {
6033 case INTEL_OUTPUT_LVDS:
6034 is_lvds = true;
6035 break;
6036 case INTEL_OUTPUT_DSI:
6037 is_dsi = true;
6038 break;
6039 }
6040
6041 num_connectors++;
6042 }
6043
6044 if (is_dsi)
6045 return 0;
6046
6047 if (!intel_crtc->config.clock_set) {
6048 refclk = i9xx_get_refclk(crtc, num_connectors);
6049
6050 /*
6051 * Returns a set of divisors for the desired target clock with
6052 * the given refclk, or FALSE. The returned values represent
6053 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6054 * 2) / p1 / p2.
6055 */
6056 limit = intel_limit(crtc, refclk);
6057 ok = dev_priv->display.find_dpll(limit, crtc,
6058 intel_crtc->config.port_clock,
6059 refclk, NULL, &clock);
6060 if (!ok) {
6061 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6062 return -EINVAL;
6063 }
6064
6065 if (is_lvds && dev_priv->lvds_downclock_avail) {
6066 /*
6067 * Ensure we match the reduced clock's P to the target
6068 * clock. If the clocks don't match, we can't switch
6069 * the display clock by using the FP0/FP1. In such case
6070 * we will disable the LVDS downclock feature.
6071 */
6072 has_reduced_clock =
6073 dev_priv->display.find_dpll(limit, crtc,
6074 dev_priv->lvds_downclock,
6075 refclk, &clock,
6076 &reduced_clock);
6077 }
6078 /* Compat-code for transition, will disappear. */
6079 intel_crtc->config.dpll.n = clock.n;
6080 intel_crtc->config.dpll.m1 = clock.m1;
6081 intel_crtc->config.dpll.m2 = clock.m2;
6082 intel_crtc->config.dpll.p1 = clock.p1;
6083 intel_crtc->config.dpll.p2 = clock.p2;
6084 }
6085
6086 if (IS_GEN2(dev)) {
6087 i8xx_update_pll(intel_crtc,
6088 has_reduced_clock ? &reduced_clock : NULL,
6089 num_connectors);
6090 } else if (IS_CHERRYVIEW(dev)) {
6091 chv_update_pll(intel_crtc);
6092 } else if (IS_VALLEYVIEW(dev)) {
6093 vlv_update_pll(intel_crtc);
6094 } else {
6095 i9xx_update_pll(intel_crtc,
6096 has_reduced_clock ? &reduced_clock : NULL,
6097 num_connectors);
6098 }
6099
6100 return 0;
6101 }
6102
6103 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6104 struct intel_crtc_config *pipe_config)
6105 {
6106 struct drm_device *dev = crtc->base.dev;
6107 struct drm_i915_private *dev_priv = dev->dev_private;
6108 uint32_t tmp;
6109
6110 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6111 return;
6112
6113 tmp = I915_READ(PFIT_CONTROL);
6114 if (!(tmp & PFIT_ENABLE))
6115 return;
6116
6117 /* Check whether the pfit is attached to our pipe. */
6118 if (INTEL_INFO(dev)->gen < 4) {
6119 if (crtc->pipe != PIPE_B)
6120 return;
6121 } else {
6122 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6123 return;
6124 }
6125
6126 pipe_config->gmch_pfit.control = tmp;
6127 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6128 if (INTEL_INFO(dev)->gen < 5)
6129 pipe_config->gmch_pfit.lvds_border_bits =
6130 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6131 }
6132
6133 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6134 struct intel_crtc_config *pipe_config)
6135 {
6136 struct drm_device *dev = crtc->base.dev;
6137 struct drm_i915_private *dev_priv = dev->dev_private;
6138 int pipe = pipe_config->cpu_transcoder;
6139 intel_clock_t clock;
6140 u32 mdiv;
6141 int refclk = 100000;
6142
6143 mutex_lock(&dev_priv->dpio_lock);
6144 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6145 mutex_unlock(&dev_priv->dpio_lock);
6146
6147 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6148 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6149 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6150 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6151 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6152
6153 vlv_clock(refclk, &clock);
6154
6155 /* clock.dot is the fast clock */
6156 pipe_config->port_clock = clock.dot / 5;
6157 }
6158
6159 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6160 struct intel_plane_config *plane_config)
6161 {
6162 struct drm_device *dev = crtc->base.dev;
6163 struct drm_i915_private *dev_priv = dev->dev_private;
6164 u32 val, base, offset;
6165 int pipe = crtc->pipe, plane = crtc->plane;
6166 int fourcc, pixel_format;
6167 int aligned_height;
6168
6169 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6170 if (!crtc->base.primary->fb) {
6171 DRM_DEBUG_KMS("failed to alloc fb\n");
6172 return;
6173 }
6174
6175 val = I915_READ(DSPCNTR(plane));
6176
6177 if (INTEL_INFO(dev)->gen >= 4)
6178 if (val & DISPPLANE_TILED)
6179 plane_config->tiled = true;
6180
6181 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6182 fourcc = intel_format_to_fourcc(pixel_format);
6183 crtc->base.primary->fb->pixel_format = fourcc;
6184 crtc->base.primary->fb->bits_per_pixel =
6185 drm_format_plane_cpp(fourcc, 0) * 8;
6186
6187 if (INTEL_INFO(dev)->gen >= 4) {
6188 if (plane_config->tiled)
6189 offset = I915_READ(DSPTILEOFF(plane));
6190 else
6191 offset = I915_READ(DSPLINOFF(plane));
6192 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6193 } else {
6194 base = I915_READ(DSPADDR(plane));
6195 }
6196 plane_config->base = base;
6197
6198 val = I915_READ(PIPESRC(pipe));
6199 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6200 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6201
6202 val = I915_READ(DSPSTRIDE(pipe));
6203 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
6204
6205 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6206 plane_config->tiled);
6207
6208 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6209 aligned_height);
6210
6211 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6212 pipe, plane, crtc->base.primary->fb->width,
6213 crtc->base.primary->fb->height,
6214 crtc->base.primary->fb->bits_per_pixel, base,
6215 crtc->base.primary->fb->pitches[0],
6216 plane_config->size);
6217
6218 }
6219
6220 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6221 struct intel_crtc_config *pipe_config)
6222 {
6223 struct drm_device *dev = crtc->base.dev;
6224 struct drm_i915_private *dev_priv = dev->dev_private;
6225 int pipe = pipe_config->cpu_transcoder;
6226 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6227 intel_clock_t clock;
6228 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6229 int refclk = 100000;
6230
6231 mutex_lock(&dev_priv->dpio_lock);
6232 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6233 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6234 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6235 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6236 mutex_unlock(&dev_priv->dpio_lock);
6237
6238 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6239 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6240 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6241 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6242 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6243
6244 chv_clock(refclk, &clock);
6245
6246 /* clock.dot is the fast clock */
6247 pipe_config->port_clock = clock.dot / 5;
6248 }
6249
6250 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6251 struct intel_crtc_config *pipe_config)
6252 {
6253 struct drm_device *dev = crtc->base.dev;
6254 struct drm_i915_private *dev_priv = dev->dev_private;
6255 uint32_t tmp;
6256
6257 if (!intel_display_power_enabled(dev_priv,
6258 POWER_DOMAIN_PIPE(crtc->pipe)))
6259 return false;
6260
6261 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6262 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6263
6264 tmp = I915_READ(PIPECONF(crtc->pipe));
6265 if (!(tmp & PIPECONF_ENABLE))
6266 return false;
6267
6268 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6269 switch (tmp & PIPECONF_BPC_MASK) {
6270 case PIPECONF_6BPC:
6271 pipe_config->pipe_bpp = 18;
6272 break;
6273 case PIPECONF_8BPC:
6274 pipe_config->pipe_bpp = 24;
6275 break;
6276 case PIPECONF_10BPC:
6277 pipe_config->pipe_bpp = 30;
6278 break;
6279 default:
6280 break;
6281 }
6282 }
6283
6284 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6285 pipe_config->limited_color_range = true;
6286
6287 if (INTEL_INFO(dev)->gen < 4)
6288 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6289
6290 intel_get_pipe_timings(crtc, pipe_config);
6291
6292 i9xx_get_pfit_config(crtc, pipe_config);
6293
6294 if (INTEL_INFO(dev)->gen >= 4) {
6295 tmp = I915_READ(DPLL_MD(crtc->pipe));
6296 pipe_config->pixel_multiplier =
6297 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6298 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6299 pipe_config->dpll_hw_state.dpll_md = tmp;
6300 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6301 tmp = I915_READ(DPLL(crtc->pipe));
6302 pipe_config->pixel_multiplier =
6303 ((tmp & SDVO_MULTIPLIER_MASK)
6304 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6305 } else {
6306 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6307 * port and will be fixed up in the encoder->get_config
6308 * function. */
6309 pipe_config->pixel_multiplier = 1;
6310 }
6311 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6312 if (!IS_VALLEYVIEW(dev)) {
6313 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6314 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6315 } else {
6316 /* Mask out read-only status bits. */
6317 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6318 DPLL_PORTC_READY_MASK |
6319 DPLL_PORTB_READY_MASK);
6320 }
6321
6322 if (IS_CHERRYVIEW(dev))
6323 chv_crtc_clock_get(crtc, pipe_config);
6324 else if (IS_VALLEYVIEW(dev))
6325 vlv_crtc_clock_get(crtc, pipe_config);
6326 else
6327 i9xx_crtc_clock_get(crtc, pipe_config);
6328
6329 return true;
6330 }
6331
6332 static void ironlake_init_pch_refclk(struct drm_device *dev)
6333 {
6334 struct drm_i915_private *dev_priv = dev->dev_private;
6335 struct drm_mode_config *mode_config = &dev->mode_config;
6336 struct intel_encoder *encoder;
6337 u32 val, final;
6338 bool has_lvds = false;
6339 bool has_cpu_edp = false;
6340 bool has_panel = false;
6341 bool has_ck505 = false;
6342 bool can_ssc = false;
6343
6344 /* We need to take the global config into account */
6345 list_for_each_entry(encoder, &mode_config->encoder_list,
6346 base.head) {
6347 switch (encoder->type) {
6348 case INTEL_OUTPUT_LVDS:
6349 has_panel = true;
6350 has_lvds = true;
6351 break;
6352 case INTEL_OUTPUT_EDP:
6353 has_panel = true;
6354 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6355 has_cpu_edp = true;
6356 break;
6357 }
6358 }
6359
6360 if (HAS_PCH_IBX(dev)) {
6361 has_ck505 = dev_priv->vbt.display_clock_mode;
6362 can_ssc = has_ck505;
6363 } else {
6364 has_ck505 = false;
6365 can_ssc = true;
6366 }
6367
6368 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6369 has_panel, has_lvds, has_ck505);
6370
6371 /* Ironlake: try to setup display ref clock before DPLL
6372 * enabling. This is only under driver's control after
6373 * PCH B stepping, previous chipset stepping should be
6374 * ignoring this setting.
6375 */
6376 val = I915_READ(PCH_DREF_CONTROL);
6377
6378 /* As we must carefully and slowly disable/enable each source in turn,
6379 * compute the final state we want first and check if we need to
6380 * make any changes at all.
6381 */
6382 final = val;
6383 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6384 if (has_ck505)
6385 final |= DREF_NONSPREAD_CK505_ENABLE;
6386 else
6387 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6388
6389 final &= ~DREF_SSC_SOURCE_MASK;
6390 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6391 final &= ~DREF_SSC1_ENABLE;
6392
6393 if (has_panel) {
6394 final |= DREF_SSC_SOURCE_ENABLE;
6395
6396 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6397 final |= DREF_SSC1_ENABLE;
6398
6399 if (has_cpu_edp) {
6400 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6401 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6402 else
6403 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6404 } else
6405 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6406 } else {
6407 final |= DREF_SSC_SOURCE_DISABLE;
6408 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6409 }
6410
6411 if (final == val)
6412 return;
6413
6414 /* Always enable nonspread source */
6415 val &= ~DREF_NONSPREAD_SOURCE_MASK;
6416
6417 if (has_ck505)
6418 val |= DREF_NONSPREAD_CK505_ENABLE;
6419 else
6420 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6421
6422 if (has_panel) {
6423 val &= ~DREF_SSC_SOURCE_MASK;
6424 val |= DREF_SSC_SOURCE_ENABLE;
6425
6426 /* SSC must be turned on before enabling the CPU output */
6427 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6428 DRM_DEBUG_KMS("Using SSC on panel\n");
6429 val |= DREF_SSC1_ENABLE;
6430 } else
6431 val &= ~DREF_SSC1_ENABLE;
6432
6433 /* Get SSC going before enabling the outputs */
6434 I915_WRITE(PCH_DREF_CONTROL, val);
6435 POSTING_READ(PCH_DREF_CONTROL);
6436 udelay(200);
6437
6438 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6439
6440 /* Enable CPU source on CPU attached eDP */
6441 if (has_cpu_edp) {
6442 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6443 DRM_DEBUG_KMS("Using SSC on eDP\n");
6444 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6445 } else
6446 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6447 } else
6448 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6449
6450 I915_WRITE(PCH_DREF_CONTROL, val);
6451 POSTING_READ(PCH_DREF_CONTROL);
6452 udelay(200);
6453 } else {
6454 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6455
6456 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6457
6458 /* Turn off CPU output */
6459 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6460
6461 I915_WRITE(PCH_DREF_CONTROL, val);
6462 POSTING_READ(PCH_DREF_CONTROL);
6463 udelay(200);
6464
6465 /* Turn off the SSC source */
6466 val &= ~DREF_SSC_SOURCE_MASK;
6467 val |= DREF_SSC_SOURCE_DISABLE;
6468
6469 /* Turn off SSC1 */
6470 val &= ~DREF_SSC1_ENABLE;
6471
6472 I915_WRITE(PCH_DREF_CONTROL, val);
6473 POSTING_READ(PCH_DREF_CONTROL);
6474 udelay(200);
6475 }
6476
6477 BUG_ON(val != final);
6478 }
6479
6480 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6481 {
6482 uint32_t tmp;
6483
6484 tmp = I915_READ(SOUTH_CHICKEN2);
6485 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6486 I915_WRITE(SOUTH_CHICKEN2, tmp);
6487
6488 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6489 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6490 DRM_ERROR("FDI mPHY reset assert timeout\n");
6491
6492 tmp = I915_READ(SOUTH_CHICKEN2);
6493 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6494 I915_WRITE(SOUTH_CHICKEN2, tmp);
6495
6496 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6497 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6498 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6499 }
6500
6501 /* WaMPhyProgramming:hsw */
6502 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6503 {
6504 uint32_t tmp;
6505
6506 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6507 tmp &= ~(0xFF << 24);
6508 tmp |= (0x12 << 24);
6509 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6510
6511 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6512 tmp |= (1 << 11);
6513 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6514
6515 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6516 tmp |= (1 << 11);
6517 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6518
6519 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6520 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6521 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6522
6523 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6524 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6525 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6526
6527 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6528 tmp &= ~(7 << 13);
6529 tmp |= (5 << 13);
6530 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6531
6532 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6533 tmp &= ~(7 << 13);
6534 tmp |= (5 << 13);
6535 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6536
6537 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6538 tmp &= ~0xFF;
6539 tmp |= 0x1C;
6540 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6541
6542 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6543 tmp &= ~0xFF;
6544 tmp |= 0x1C;
6545 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6546
6547 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6548 tmp &= ~(0xFF << 16);
6549 tmp |= (0x1C << 16);
6550 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6551
6552 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6553 tmp &= ~(0xFF << 16);
6554 tmp |= (0x1C << 16);
6555 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6556
6557 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6558 tmp |= (1 << 27);
6559 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6560
6561 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6562 tmp |= (1 << 27);
6563 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6564
6565 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6566 tmp &= ~(0xF << 28);
6567 tmp |= (4 << 28);
6568 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6569
6570 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6571 tmp &= ~(0xF << 28);
6572 tmp |= (4 << 28);
6573 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6574 }
6575
6576 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6577 * Programming" based on the parameters passed:
6578 * - Sequence to enable CLKOUT_DP
6579 * - Sequence to enable CLKOUT_DP without spread
6580 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6581 */
6582 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6583 bool with_fdi)
6584 {
6585 struct drm_i915_private *dev_priv = dev->dev_private;
6586 uint32_t reg, tmp;
6587
6588 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6589 with_spread = true;
6590 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6591 with_fdi, "LP PCH doesn't have FDI\n"))
6592 with_fdi = false;
6593
6594 mutex_lock(&dev_priv->dpio_lock);
6595
6596 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6597 tmp &= ~SBI_SSCCTL_DISABLE;
6598 tmp |= SBI_SSCCTL_PATHALT;
6599 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6600
6601 udelay(24);
6602
6603 if (with_spread) {
6604 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6605 tmp &= ~SBI_SSCCTL_PATHALT;
6606 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6607
6608 if (with_fdi) {
6609 lpt_reset_fdi_mphy(dev_priv);
6610 lpt_program_fdi_mphy(dev_priv);
6611 }
6612 }
6613
6614 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6615 SBI_GEN0 : SBI_DBUFF0;
6616 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6617 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6618 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6619
6620 mutex_unlock(&dev_priv->dpio_lock);
6621 }
6622
6623 /* Sequence to disable CLKOUT_DP */
6624 static void lpt_disable_clkout_dp(struct drm_device *dev)
6625 {
6626 struct drm_i915_private *dev_priv = dev->dev_private;
6627 uint32_t reg, tmp;
6628
6629 mutex_lock(&dev_priv->dpio_lock);
6630
6631 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6632 SBI_GEN0 : SBI_DBUFF0;
6633 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6634 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6635 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6636
6637 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6638 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6639 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6640 tmp |= SBI_SSCCTL_PATHALT;
6641 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6642 udelay(32);
6643 }
6644 tmp |= SBI_SSCCTL_DISABLE;
6645 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6646 }
6647
6648 mutex_unlock(&dev_priv->dpio_lock);
6649 }
6650
6651 static void lpt_init_pch_refclk(struct drm_device *dev)
6652 {
6653 struct drm_mode_config *mode_config = &dev->mode_config;
6654 struct intel_encoder *encoder;
6655 bool has_vga = false;
6656
6657 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6658 switch (encoder->type) {
6659 case INTEL_OUTPUT_ANALOG:
6660 has_vga = true;
6661 break;
6662 }
6663 }
6664
6665 if (has_vga)
6666 lpt_enable_clkout_dp(dev, true, true);
6667 else
6668 lpt_disable_clkout_dp(dev);
6669 }
6670
6671 /*
6672 * Initialize reference clocks when the driver loads
6673 */
6674 void intel_init_pch_refclk(struct drm_device *dev)
6675 {
6676 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6677 ironlake_init_pch_refclk(dev);
6678 else if (HAS_PCH_LPT(dev))
6679 lpt_init_pch_refclk(dev);
6680 }
6681
6682 static int ironlake_get_refclk(struct drm_crtc *crtc)
6683 {
6684 struct drm_device *dev = crtc->dev;
6685 struct drm_i915_private *dev_priv = dev->dev_private;
6686 struct intel_encoder *encoder;
6687 int num_connectors = 0;
6688 bool is_lvds = false;
6689
6690 for_each_encoder_on_crtc(dev, crtc, encoder) {
6691 switch (encoder->type) {
6692 case INTEL_OUTPUT_LVDS:
6693 is_lvds = true;
6694 break;
6695 }
6696 num_connectors++;
6697 }
6698
6699 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6700 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
6701 dev_priv->vbt.lvds_ssc_freq);
6702 return dev_priv->vbt.lvds_ssc_freq;
6703 }
6704
6705 return 120000;
6706 }
6707
6708 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
6709 {
6710 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6711 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6712 int pipe = intel_crtc->pipe;
6713 uint32_t val;
6714
6715 val = 0;
6716
6717 switch (intel_crtc->config.pipe_bpp) {
6718 case 18:
6719 val |= PIPECONF_6BPC;
6720 break;
6721 case 24:
6722 val |= PIPECONF_8BPC;
6723 break;
6724 case 30:
6725 val |= PIPECONF_10BPC;
6726 break;
6727 case 36:
6728 val |= PIPECONF_12BPC;
6729 break;
6730 default:
6731 /* Case prevented by intel_choose_pipe_bpp_dither. */
6732 BUG();
6733 }
6734
6735 if (intel_crtc->config.dither)
6736 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6737
6738 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6739 val |= PIPECONF_INTERLACED_ILK;
6740 else
6741 val |= PIPECONF_PROGRESSIVE;
6742
6743 if (intel_crtc->config.limited_color_range)
6744 val |= PIPECONF_COLOR_RANGE_SELECT;
6745
6746 I915_WRITE(PIPECONF(pipe), val);
6747 POSTING_READ(PIPECONF(pipe));
6748 }
6749
6750 /*
6751 * Set up the pipe CSC unit.
6752 *
6753 * Currently only full range RGB to limited range RGB conversion
6754 * is supported, but eventually this should handle various
6755 * RGB<->YCbCr scenarios as well.
6756 */
6757 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6758 {
6759 struct drm_device *dev = crtc->dev;
6760 struct drm_i915_private *dev_priv = dev->dev_private;
6761 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6762 int pipe = intel_crtc->pipe;
6763 uint16_t coeff = 0x7800; /* 1.0 */
6764
6765 /*
6766 * TODO: Check what kind of values actually come out of the pipe
6767 * with these coeff/postoff values and adjust to get the best
6768 * accuracy. Perhaps we even need to take the bpc value into
6769 * consideration.
6770 */
6771
6772 if (intel_crtc->config.limited_color_range)
6773 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6774
6775 /*
6776 * GY/GU and RY/RU should be the other way around according
6777 * to BSpec, but reality doesn't agree. Just set them up in
6778 * a way that results in the correct picture.
6779 */
6780 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6781 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6782
6783 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6784 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6785
6786 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6787 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6788
6789 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6790 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6791 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6792
6793 if (INTEL_INFO(dev)->gen > 6) {
6794 uint16_t postoff = 0;
6795
6796 if (intel_crtc->config.limited_color_range)
6797 postoff = (16 * (1 << 12) / 255) & 0x1fff;
6798
6799 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6800 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6801 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6802
6803 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6804 } else {
6805 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6806
6807 if (intel_crtc->config.limited_color_range)
6808 mode |= CSC_BLACK_SCREEN_OFFSET;
6809
6810 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6811 }
6812 }
6813
6814 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6815 {
6816 struct drm_device *dev = crtc->dev;
6817 struct drm_i915_private *dev_priv = dev->dev_private;
6818 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6819 enum pipe pipe = intel_crtc->pipe;
6820 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6821 uint32_t val;
6822
6823 val = 0;
6824
6825 if (IS_HASWELL(dev) && intel_crtc->config.dither)
6826 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6827
6828 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6829 val |= PIPECONF_INTERLACED_ILK;
6830 else
6831 val |= PIPECONF_PROGRESSIVE;
6832
6833 I915_WRITE(PIPECONF(cpu_transcoder), val);
6834 POSTING_READ(PIPECONF(cpu_transcoder));
6835
6836 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6837 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6838
6839 if (IS_BROADWELL(dev)) {
6840 val = 0;
6841
6842 switch (intel_crtc->config.pipe_bpp) {
6843 case 18:
6844 val |= PIPEMISC_DITHER_6_BPC;
6845 break;
6846 case 24:
6847 val |= PIPEMISC_DITHER_8_BPC;
6848 break;
6849 case 30:
6850 val |= PIPEMISC_DITHER_10_BPC;
6851 break;
6852 case 36:
6853 val |= PIPEMISC_DITHER_12_BPC;
6854 break;
6855 default:
6856 /* Case prevented by pipe_config_set_bpp. */
6857 BUG();
6858 }
6859
6860 if (intel_crtc->config.dither)
6861 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6862
6863 I915_WRITE(PIPEMISC(pipe), val);
6864 }
6865 }
6866
6867 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6868 intel_clock_t *clock,
6869 bool *has_reduced_clock,
6870 intel_clock_t *reduced_clock)
6871 {
6872 struct drm_device *dev = crtc->dev;
6873 struct drm_i915_private *dev_priv = dev->dev_private;
6874 struct intel_encoder *intel_encoder;
6875 int refclk;
6876 const intel_limit_t *limit;
6877 bool ret, is_lvds = false;
6878
6879 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6880 switch (intel_encoder->type) {
6881 case INTEL_OUTPUT_LVDS:
6882 is_lvds = true;
6883 break;
6884 }
6885 }
6886
6887 refclk = ironlake_get_refclk(crtc);
6888
6889 /*
6890 * Returns a set of divisors for the desired target clock with the given
6891 * refclk, or FALSE. The returned values represent the clock equation:
6892 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6893 */
6894 limit = intel_limit(crtc, refclk);
6895 ret = dev_priv->display.find_dpll(limit, crtc,
6896 to_intel_crtc(crtc)->config.port_clock,
6897 refclk, NULL, clock);
6898 if (!ret)
6899 return false;
6900
6901 if (is_lvds && dev_priv->lvds_downclock_avail) {
6902 /*
6903 * Ensure we match the reduced clock's P to the target clock.
6904 * If the clocks don't match, we can't switch the display clock
6905 * by using the FP0/FP1. In such case we will disable the LVDS
6906 * downclock feature.
6907 */
6908 *has_reduced_clock =
6909 dev_priv->display.find_dpll(limit, crtc,
6910 dev_priv->lvds_downclock,
6911 refclk, clock,
6912 reduced_clock);
6913 }
6914
6915 return true;
6916 }
6917
6918 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6919 {
6920 /*
6921 * Account for spread spectrum to avoid
6922 * oversubscribing the link. Max center spread
6923 * is 2.5%; use 5% for safety's sake.
6924 */
6925 u32 bps = target_clock * bpp * 21 / 20;
6926 return DIV_ROUND_UP(bps, link_bw * 8);
6927 }
6928
6929 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6930 {
6931 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
6932 }
6933
6934 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6935 u32 *fp,
6936 intel_clock_t *reduced_clock, u32 *fp2)
6937 {
6938 struct drm_crtc *crtc = &intel_crtc->base;
6939 struct drm_device *dev = crtc->dev;
6940 struct drm_i915_private *dev_priv = dev->dev_private;
6941 struct intel_encoder *intel_encoder;
6942 uint32_t dpll;
6943 int factor, num_connectors = 0;
6944 bool is_lvds = false, is_sdvo = false;
6945
6946 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6947 switch (intel_encoder->type) {
6948 case INTEL_OUTPUT_LVDS:
6949 is_lvds = true;
6950 break;
6951 case INTEL_OUTPUT_SDVO:
6952 case INTEL_OUTPUT_HDMI:
6953 is_sdvo = true;
6954 break;
6955 }
6956
6957 num_connectors++;
6958 }
6959
6960 /* Enable autotuning of the PLL clock (if permissible) */
6961 factor = 21;
6962 if (is_lvds) {
6963 if ((intel_panel_use_ssc(dev_priv) &&
6964 dev_priv->vbt.lvds_ssc_freq == 100000) ||
6965 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
6966 factor = 25;
6967 } else if (intel_crtc->config.sdvo_tv_clock)
6968 factor = 20;
6969
6970 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
6971 *fp |= FP_CB_TUNE;
6972
6973 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6974 *fp2 |= FP_CB_TUNE;
6975
6976 dpll = 0;
6977
6978 if (is_lvds)
6979 dpll |= DPLLB_MODE_LVDS;
6980 else
6981 dpll |= DPLLB_MODE_DAC_SERIAL;
6982
6983 dpll |= (intel_crtc->config.pixel_multiplier - 1)
6984 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
6985
6986 if (is_sdvo)
6987 dpll |= DPLL_SDVO_HIGH_SPEED;
6988 if (intel_crtc->config.has_dp_encoder)
6989 dpll |= DPLL_SDVO_HIGH_SPEED;
6990
6991 /* compute bitmask from p1 value */
6992 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6993 /* also FPA1 */
6994 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6995
6996 switch (intel_crtc->config.dpll.p2) {
6997 case 5:
6998 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6999 break;
7000 case 7:
7001 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7002 break;
7003 case 10:
7004 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7005 break;
7006 case 14:
7007 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7008 break;
7009 }
7010
7011 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7012 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7013 else
7014 dpll |= PLL_REF_INPUT_DREFCLK;
7015
7016 return dpll | DPLL_VCO_ENABLE;
7017 }
7018
7019 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
7020 int x, int y,
7021 struct drm_framebuffer *fb)
7022 {
7023 struct drm_device *dev = crtc->dev;
7024 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7025 int num_connectors = 0;
7026 intel_clock_t clock, reduced_clock;
7027 u32 dpll = 0, fp = 0, fp2 = 0;
7028 bool ok, has_reduced_clock = false;
7029 bool is_lvds = false;
7030 struct intel_encoder *encoder;
7031 struct intel_shared_dpll *pll;
7032
7033 for_each_encoder_on_crtc(dev, crtc, encoder) {
7034 switch (encoder->type) {
7035 case INTEL_OUTPUT_LVDS:
7036 is_lvds = true;
7037 break;
7038 }
7039
7040 num_connectors++;
7041 }
7042
7043 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7044 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7045
7046 ok = ironlake_compute_clocks(crtc, &clock,
7047 &has_reduced_clock, &reduced_clock);
7048 if (!ok && !intel_crtc->config.clock_set) {
7049 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7050 return -EINVAL;
7051 }
7052 /* Compat-code for transition, will disappear. */
7053 if (!intel_crtc->config.clock_set) {
7054 intel_crtc->config.dpll.n = clock.n;
7055 intel_crtc->config.dpll.m1 = clock.m1;
7056 intel_crtc->config.dpll.m2 = clock.m2;
7057 intel_crtc->config.dpll.p1 = clock.p1;
7058 intel_crtc->config.dpll.p2 = clock.p2;
7059 }
7060
7061 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7062 if (intel_crtc->config.has_pch_encoder) {
7063 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
7064 if (has_reduced_clock)
7065 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7066
7067 dpll = ironlake_compute_dpll(intel_crtc,
7068 &fp, &reduced_clock,
7069 has_reduced_clock ? &fp2 : NULL);
7070
7071 intel_crtc->config.dpll_hw_state.dpll = dpll;
7072 intel_crtc->config.dpll_hw_state.fp0 = fp;
7073 if (has_reduced_clock)
7074 intel_crtc->config.dpll_hw_state.fp1 = fp2;
7075 else
7076 intel_crtc->config.dpll_hw_state.fp1 = fp;
7077
7078 pll = intel_get_shared_dpll(intel_crtc);
7079 if (pll == NULL) {
7080 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7081 pipe_name(intel_crtc->pipe));
7082 return -EINVAL;
7083 }
7084 } else
7085 intel_put_shared_dpll(intel_crtc);
7086
7087 if (is_lvds && has_reduced_clock && i915.powersave)
7088 intel_crtc->lowfreq_avail = true;
7089 else
7090 intel_crtc->lowfreq_avail = false;
7091
7092 return 0;
7093 }
7094
7095 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7096 struct intel_link_m_n *m_n)
7097 {
7098 struct drm_device *dev = crtc->base.dev;
7099 struct drm_i915_private *dev_priv = dev->dev_private;
7100 enum pipe pipe = crtc->pipe;
7101
7102 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7103 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7104 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7105 & ~TU_SIZE_MASK;
7106 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7107 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7108 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7109 }
7110
7111 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7112 enum transcoder transcoder,
7113 struct intel_link_m_n *m_n)
7114 {
7115 struct drm_device *dev = crtc->base.dev;
7116 struct drm_i915_private *dev_priv = dev->dev_private;
7117 enum pipe pipe = crtc->pipe;
7118
7119 if (INTEL_INFO(dev)->gen >= 5) {
7120 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7121 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7122 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7123 & ~TU_SIZE_MASK;
7124 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7125 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7126 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7127 } else {
7128 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7129 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7130 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7131 & ~TU_SIZE_MASK;
7132 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7133 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7134 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7135 }
7136 }
7137
7138 void intel_dp_get_m_n(struct intel_crtc *crtc,
7139 struct intel_crtc_config *pipe_config)
7140 {
7141 if (crtc->config.has_pch_encoder)
7142 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7143 else
7144 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7145 &pipe_config->dp_m_n);
7146 }
7147
7148 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7149 struct intel_crtc_config *pipe_config)
7150 {
7151 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7152 &pipe_config->fdi_m_n);
7153 }
7154
7155 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7156 struct intel_crtc_config *pipe_config)
7157 {
7158 struct drm_device *dev = crtc->base.dev;
7159 struct drm_i915_private *dev_priv = dev->dev_private;
7160 uint32_t tmp;
7161
7162 tmp = I915_READ(PF_CTL(crtc->pipe));
7163
7164 if (tmp & PF_ENABLE) {
7165 pipe_config->pch_pfit.enabled = true;
7166 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7167 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7168
7169 /* We currently do not free assignements of panel fitters on
7170 * ivb/hsw (since we don't use the higher upscaling modes which
7171 * differentiates them) so just WARN about this case for now. */
7172 if (IS_GEN7(dev)) {
7173 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7174 PF_PIPE_SEL_IVB(crtc->pipe));
7175 }
7176 }
7177 }
7178
7179 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7180 struct intel_plane_config *plane_config)
7181 {
7182 struct drm_device *dev = crtc->base.dev;
7183 struct drm_i915_private *dev_priv = dev->dev_private;
7184 u32 val, base, offset;
7185 int pipe = crtc->pipe, plane = crtc->plane;
7186 int fourcc, pixel_format;
7187 int aligned_height;
7188
7189 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7190 if (!crtc->base.primary->fb) {
7191 DRM_DEBUG_KMS("failed to alloc fb\n");
7192 return;
7193 }
7194
7195 val = I915_READ(DSPCNTR(plane));
7196
7197 if (INTEL_INFO(dev)->gen >= 4)
7198 if (val & DISPPLANE_TILED)
7199 plane_config->tiled = true;
7200
7201 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7202 fourcc = intel_format_to_fourcc(pixel_format);
7203 crtc->base.primary->fb->pixel_format = fourcc;
7204 crtc->base.primary->fb->bits_per_pixel =
7205 drm_format_plane_cpp(fourcc, 0) * 8;
7206
7207 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7208 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7209 offset = I915_READ(DSPOFFSET(plane));
7210 } else {
7211 if (plane_config->tiled)
7212 offset = I915_READ(DSPTILEOFF(plane));
7213 else
7214 offset = I915_READ(DSPLINOFF(plane));
7215 }
7216 plane_config->base = base;
7217
7218 val = I915_READ(PIPESRC(pipe));
7219 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7220 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7221
7222 val = I915_READ(DSPSTRIDE(pipe));
7223 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
7224
7225 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7226 plane_config->tiled);
7227
7228 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7229 aligned_height);
7230
7231 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7232 pipe, plane, crtc->base.primary->fb->width,
7233 crtc->base.primary->fb->height,
7234 crtc->base.primary->fb->bits_per_pixel, base,
7235 crtc->base.primary->fb->pitches[0],
7236 plane_config->size);
7237 }
7238
7239 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7240 struct intel_crtc_config *pipe_config)
7241 {
7242 struct drm_device *dev = crtc->base.dev;
7243 struct drm_i915_private *dev_priv = dev->dev_private;
7244 uint32_t tmp;
7245
7246 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7247 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7248
7249 tmp = I915_READ(PIPECONF(crtc->pipe));
7250 if (!(tmp & PIPECONF_ENABLE))
7251 return false;
7252
7253 switch (tmp & PIPECONF_BPC_MASK) {
7254 case PIPECONF_6BPC:
7255 pipe_config->pipe_bpp = 18;
7256 break;
7257 case PIPECONF_8BPC:
7258 pipe_config->pipe_bpp = 24;
7259 break;
7260 case PIPECONF_10BPC:
7261 pipe_config->pipe_bpp = 30;
7262 break;
7263 case PIPECONF_12BPC:
7264 pipe_config->pipe_bpp = 36;
7265 break;
7266 default:
7267 break;
7268 }
7269
7270 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7271 pipe_config->limited_color_range = true;
7272
7273 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7274 struct intel_shared_dpll *pll;
7275
7276 pipe_config->has_pch_encoder = true;
7277
7278 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7279 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7280 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7281
7282 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7283
7284 if (HAS_PCH_IBX(dev_priv->dev)) {
7285 pipe_config->shared_dpll =
7286 (enum intel_dpll_id) crtc->pipe;
7287 } else {
7288 tmp = I915_READ(PCH_DPLL_SEL);
7289 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7290 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7291 else
7292 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7293 }
7294
7295 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7296
7297 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7298 &pipe_config->dpll_hw_state));
7299
7300 tmp = pipe_config->dpll_hw_state.dpll;
7301 pipe_config->pixel_multiplier =
7302 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7303 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7304
7305 ironlake_pch_clock_get(crtc, pipe_config);
7306 } else {
7307 pipe_config->pixel_multiplier = 1;
7308 }
7309
7310 intel_get_pipe_timings(crtc, pipe_config);
7311
7312 ironlake_get_pfit_config(crtc, pipe_config);
7313
7314 return true;
7315 }
7316
7317 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7318 {
7319 struct drm_device *dev = dev_priv->dev;
7320 struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
7321 struct intel_crtc *crtc;
7322
7323 for_each_intel_crtc(dev, crtc)
7324 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7325 pipe_name(crtc->pipe));
7326
7327 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7328 WARN(plls->spll_refcount, "SPLL enabled\n");
7329 WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
7330 WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
7331 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7332 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7333 "CPU PWM1 enabled\n");
7334 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7335 "CPU PWM2 enabled\n");
7336 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7337 "PCH PWM1 enabled\n");
7338 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7339 "Utility pin enabled\n");
7340 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7341
7342 /*
7343 * In theory we can still leave IRQs enabled, as long as only the HPD
7344 * interrupts remain enabled. We used to check for that, but since it's
7345 * gen-specific and since we only disable LCPLL after we fully disable
7346 * the interrupts, the check below should be enough.
7347 */
7348 WARN(!dev_priv->pm.irqs_disabled, "IRQs enabled\n");
7349 }
7350
7351 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7352 {
7353 struct drm_device *dev = dev_priv->dev;
7354
7355 if (IS_HASWELL(dev)) {
7356 mutex_lock(&dev_priv->rps.hw_lock);
7357 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7358 val))
7359 DRM_ERROR("Failed to disable D_COMP\n");
7360 mutex_unlock(&dev_priv->rps.hw_lock);
7361 } else {
7362 I915_WRITE(D_COMP, val);
7363 }
7364 POSTING_READ(D_COMP);
7365 }
7366
7367 /*
7368 * This function implements pieces of two sequences from BSpec:
7369 * - Sequence for display software to disable LCPLL
7370 * - Sequence for display software to allow package C8+
7371 * The steps implemented here are just the steps that actually touch the LCPLL
7372 * register. Callers should take care of disabling all the display engine
7373 * functions, doing the mode unset, fixing interrupts, etc.
7374 */
7375 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7376 bool switch_to_fclk, bool allow_power_down)
7377 {
7378 uint32_t val;
7379
7380 assert_can_disable_lcpll(dev_priv);
7381
7382 val = I915_READ(LCPLL_CTL);
7383
7384 if (switch_to_fclk) {
7385 val |= LCPLL_CD_SOURCE_FCLK;
7386 I915_WRITE(LCPLL_CTL, val);
7387
7388 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7389 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7390 DRM_ERROR("Switching to FCLK failed\n");
7391
7392 val = I915_READ(LCPLL_CTL);
7393 }
7394
7395 val |= LCPLL_PLL_DISABLE;
7396 I915_WRITE(LCPLL_CTL, val);
7397 POSTING_READ(LCPLL_CTL);
7398
7399 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7400 DRM_ERROR("LCPLL still locked\n");
7401
7402 val = I915_READ(D_COMP);
7403 val |= D_COMP_COMP_DISABLE;
7404 hsw_write_dcomp(dev_priv, val);
7405 ndelay(100);
7406
7407 if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
7408 DRM_ERROR("D_COMP RCOMP still in progress\n");
7409
7410 if (allow_power_down) {
7411 val = I915_READ(LCPLL_CTL);
7412 val |= LCPLL_POWER_DOWN_ALLOW;
7413 I915_WRITE(LCPLL_CTL, val);
7414 POSTING_READ(LCPLL_CTL);
7415 }
7416 }
7417
7418 /*
7419 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7420 * source.
7421 */
7422 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7423 {
7424 uint32_t val;
7425 unsigned long irqflags;
7426
7427 val = I915_READ(LCPLL_CTL);
7428
7429 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7430 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7431 return;
7432
7433 /*
7434 * Make sure we're not on PC8 state before disabling PC8, otherwise
7435 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7436 *
7437 * The other problem is that hsw_restore_lcpll() is called as part of
7438 * the runtime PM resume sequence, so we can't just call
7439 * gen6_gt_force_wake_get() because that function calls
7440 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7441 * while we are on the resume sequence. So to solve this problem we have
7442 * to call special forcewake code that doesn't touch runtime PM and
7443 * doesn't enable the forcewake delayed work.
7444 */
7445 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7446 if (dev_priv->uncore.forcewake_count++ == 0)
7447 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7448 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7449
7450 if (val & LCPLL_POWER_DOWN_ALLOW) {
7451 val &= ~LCPLL_POWER_DOWN_ALLOW;
7452 I915_WRITE(LCPLL_CTL, val);
7453 POSTING_READ(LCPLL_CTL);
7454 }
7455
7456 val = I915_READ(D_COMP);
7457 val |= D_COMP_COMP_FORCE;
7458 val &= ~D_COMP_COMP_DISABLE;
7459 hsw_write_dcomp(dev_priv, val);
7460
7461 val = I915_READ(LCPLL_CTL);
7462 val &= ~LCPLL_PLL_DISABLE;
7463 I915_WRITE(LCPLL_CTL, val);
7464
7465 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7466 DRM_ERROR("LCPLL not locked yet\n");
7467
7468 if (val & LCPLL_CD_SOURCE_FCLK) {
7469 val = I915_READ(LCPLL_CTL);
7470 val &= ~LCPLL_CD_SOURCE_FCLK;
7471 I915_WRITE(LCPLL_CTL, val);
7472
7473 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7474 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7475 DRM_ERROR("Switching back to LCPLL failed\n");
7476 }
7477
7478 /* See the big comment above. */
7479 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7480 if (--dev_priv->uncore.forcewake_count == 0)
7481 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7482 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7483 }
7484
7485 /*
7486 * Package states C8 and deeper are really deep PC states that can only be
7487 * reached when all the devices on the system allow it, so even if the graphics
7488 * device allows PC8+, it doesn't mean the system will actually get to these
7489 * states. Our driver only allows PC8+ when going into runtime PM.
7490 *
7491 * The requirements for PC8+ are that all the outputs are disabled, the power
7492 * well is disabled and most interrupts are disabled, and these are also
7493 * requirements for runtime PM. When these conditions are met, we manually do
7494 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7495 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7496 * hang the machine.
7497 *
7498 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7499 * the state of some registers, so when we come back from PC8+ we need to
7500 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7501 * need to take care of the registers kept by RC6. Notice that this happens even
7502 * if we don't put the device in PCI D3 state (which is what currently happens
7503 * because of the runtime PM support).
7504 *
7505 * For more, read "Display Sequences for Package C8" on the hardware
7506 * documentation.
7507 */
7508 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7509 {
7510 struct drm_device *dev = dev_priv->dev;
7511 uint32_t val;
7512
7513 DRM_DEBUG_KMS("Enabling package C8+\n");
7514
7515 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7516 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7517 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7518 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7519 }
7520
7521 lpt_disable_clkout_dp(dev);
7522 hsw_disable_lcpll(dev_priv, true, true);
7523 }
7524
7525 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7526 {
7527 struct drm_device *dev = dev_priv->dev;
7528 uint32_t val;
7529
7530 DRM_DEBUG_KMS("Disabling package C8+\n");
7531
7532 hsw_restore_lcpll(dev_priv);
7533 lpt_init_pch_refclk(dev);
7534
7535 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7536 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7537 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7538 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7539 }
7540
7541 intel_prepare_ddi(dev);
7542 }
7543
7544 static void snb_modeset_global_resources(struct drm_device *dev)
7545 {
7546 modeset_update_crtc_power_domains(dev);
7547 }
7548
7549 static void haswell_modeset_global_resources(struct drm_device *dev)
7550 {
7551 modeset_update_crtc_power_domains(dev);
7552 }
7553
7554 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7555 int x, int y,
7556 struct drm_framebuffer *fb)
7557 {
7558 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7559
7560 if (!intel_ddi_pll_select(intel_crtc))
7561 return -EINVAL;
7562 intel_ddi_pll_enable(intel_crtc);
7563
7564 intel_crtc->lowfreq_avail = false;
7565
7566 return 0;
7567 }
7568
7569 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7570 struct intel_crtc_config *pipe_config)
7571 {
7572 struct drm_device *dev = crtc->base.dev;
7573 struct drm_i915_private *dev_priv = dev->dev_private;
7574 enum intel_display_power_domain pfit_domain;
7575 uint32_t tmp;
7576
7577 if (!intel_display_power_enabled(dev_priv,
7578 POWER_DOMAIN_PIPE(crtc->pipe)))
7579 return false;
7580
7581 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7582 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7583
7584 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7585 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7586 enum pipe trans_edp_pipe;
7587 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7588 default:
7589 WARN(1, "unknown pipe linked to edp transcoder\n");
7590 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7591 case TRANS_DDI_EDP_INPUT_A_ON:
7592 trans_edp_pipe = PIPE_A;
7593 break;
7594 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7595 trans_edp_pipe = PIPE_B;
7596 break;
7597 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7598 trans_edp_pipe = PIPE_C;
7599 break;
7600 }
7601
7602 if (trans_edp_pipe == crtc->pipe)
7603 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7604 }
7605
7606 if (!intel_display_power_enabled(dev_priv,
7607 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7608 return false;
7609
7610 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7611 if (!(tmp & PIPECONF_ENABLE))
7612 return false;
7613
7614 /*
7615 * Haswell has only FDI/PCH transcoder A. It is which is connected to
7616 * DDI E. So just check whether this pipe is wired to DDI E and whether
7617 * the PCH transcoder is on.
7618 */
7619 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7620 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
7621 I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7622 pipe_config->has_pch_encoder = true;
7623
7624 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7625 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7626 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7627
7628 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7629 }
7630
7631 intel_get_pipe_timings(crtc, pipe_config);
7632
7633 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7634 if (intel_display_power_enabled(dev_priv, pfit_domain))
7635 ironlake_get_pfit_config(crtc, pipe_config);
7636
7637 if (IS_HASWELL(dev))
7638 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7639 (I915_READ(IPS_CTL) & IPS_ENABLE);
7640
7641 pipe_config->pixel_multiplier = 1;
7642
7643 return true;
7644 }
7645
7646 static struct {
7647 int clock;
7648 u32 config;
7649 } hdmi_audio_clock[] = {
7650 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7651 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7652 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7653 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7654 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7655 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7656 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7657 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7658 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7659 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7660 };
7661
7662 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7663 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7664 {
7665 int i;
7666
7667 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7668 if (mode->clock == hdmi_audio_clock[i].clock)
7669 break;
7670 }
7671
7672 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7673 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7674 i = 1;
7675 }
7676
7677 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7678 hdmi_audio_clock[i].clock,
7679 hdmi_audio_clock[i].config);
7680
7681 return hdmi_audio_clock[i].config;
7682 }
7683
7684 static bool intel_eld_uptodate(struct drm_connector *connector,
7685 int reg_eldv, uint32_t bits_eldv,
7686 int reg_elda, uint32_t bits_elda,
7687 int reg_edid)
7688 {
7689 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7690 uint8_t *eld = connector->eld;
7691 uint32_t i;
7692
7693 i = I915_READ(reg_eldv);
7694 i &= bits_eldv;
7695
7696 if (!eld[0])
7697 return !i;
7698
7699 if (!i)
7700 return false;
7701
7702 i = I915_READ(reg_elda);
7703 i &= ~bits_elda;
7704 I915_WRITE(reg_elda, i);
7705
7706 for (i = 0; i < eld[2]; i++)
7707 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7708 return false;
7709
7710 return true;
7711 }
7712
7713 static void g4x_write_eld(struct drm_connector *connector,
7714 struct drm_crtc *crtc,
7715 struct drm_display_mode *mode)
7716 {
7717 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7718 uint8_t *eld = connector->eld;
7719 uint32_t eldv;
7720 uint32_t len;
7721 uint32_t i;
7722
7723 i = I915_READ(G4X_AUD_VID_DID);
7724
7725 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7726 eldv = G4X_ELDV_DEVCL_DEVBLC;
7727 else
7728 eldv = G4X_ELDV_DEVCTG;
7729
7730 if (intel_eld_uptodate(connector,
7731 G4X_AUD_CNTL_ST, eldv,
7732 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7733 G4X_HDMIW_HDMIEDID))
7734 return;
7735
7736 i = I915_READ(G4X_AUD_CNTL_ST);
7737 i &= ~(eldv | G4X_ELD_ADDR);
7738 len = (i >> 9) & 0x1f; /* ELD buffer size */
7739 I915_WRITE(G4X_AUD_CNTL_ST, i);
7740
7741 if (!eld[0])
7742 return;
7743
7744 len = min_t(uint8_t, eld[2], len);
7745 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7746 for (i = 0; i < len; i++)
7747 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7748
7749 i = I915_READ(G4X_AUD_CNTL_ST);
7750 i |= eldv;
7751 I915_WRITE(G4X_AUD_CNTL_ST, i);
7752 }
7753
7754 static void haswell_write_eld(struct drm_connector *connector,
7755 struct drm_crtc *crtc,
7756 struct drm_display_mode *mode)
7757 {
7758 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7759 uint8_t *eld = connector->eld;
7760 uint32_t eldv;
7761 uint32_t i;
7762 int len;
7763 int pipe = to_intel_crtc(crtc)->pipe;
7764 int tmp;
7765
7766 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7767 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7768 int aud_config = HSW_AUD_CFG(pipe);
7769 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7770
7771 /* Audio output enable */
7772 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7773 tmp = I915_READ(aud_cntrl_st2);
7774 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7775 I915_WRITE(aud_cntrl_st2, tmp);
7776 POSTING_READ(aud_cntrl_st2);
7777
7778 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
7779
7780 /* Set ELD valid state */
7781 tmp = I915_READ(aud_cntrl_st2);
7782 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7783 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7784 I915_WRITE(aud_cntrl_st2, tmp);
7785 tmp = I915_READ(aud_cntrl_st2);
7786 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7787
7788 /* Enable HDMI mode */
7789 tmp = I915_READ(aud_config);
7790 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7791 /* clear N_programing_enable and N_value_index */
7792 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7793 I915_WRITE(aud_config, tmp);
7794
7795 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7796
7797 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7798
7799 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7800 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7801 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7802 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7803 } else {
7804 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7805 }
7806
7807 if (intel_eld_uptodate(connector,
7808 aud_cntrl_st2, eldv,
7809 aud_cntl_st, IBX_ELD_ADDRESS,
7810 hdmiw_hdmiedid))
7811 return;
7812
7813 i = I915_READ(aud_cntrl_st2);
7814 i &= ~eldv;
7815 I915_WRITE(aud_cntrl_st2, i);
7816
7817 if (!eld[0])
7818 return;
7819
7820 i = I915_READ(aud_cntl_st);
7821 i &= ~IBX_ELD_ADDRESS;
7822 I915_WRITE(aud_cntl_st, i);
7823 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
7824 DRM_DEBUG_DRIVER("port num:%d\n", i);
7825
7826 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7827 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7828 for (i = 0; i < len; i++)
7829 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7830
7831 i = I915_READ(aud_cntrl_st2);
7832 i |= eldv;
7833 I915_WRITE(aud_cntrl_st2, i);
7834
7835 }
7836
7837 static void ironlake_write_eld(struct drm_connector *connector,
7838 struct drm_crtc *crtc,
7839 struct drm_display_mode *mode)
7840 {
7841 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7842 uint8_t *eld = connector->eld;
7843 uint32_t eldv;
7844 uint32_t i;
7845 int len;
7846 int hdmiw_hdmiedid;
7847 int aud_config;
7848 int aud_cntl_st;
7849 int aud_cntrl_st2;
7850 int pipe = to_intel_crtc(crtc)->pipe;
7851
7852 if (HAS_PCH_IBX(connector->dev)) {
7853 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7854 aud_config = IBX_AUD_CFG(pipe);
7855 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7856 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7857 } else if (IS_VALLEYVIEW(connector->dev)) {
7858 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7859 aud_config = VLV_AUD_CFG(pipe);
7860 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7861 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
7862 } else {
7863 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7864 aud_config = CPT_AUD_CFG(pipe);
7865 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7866 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7867 }
7868
7869 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7870
7871 if (IS_VALLEYVIEW(connector->dev)) {
7872 struct intel_encoder *intel_encoder;
7873 struct intel_digital_port *intel_dig_port;
7874
7875 intel_encoder = intel_attached_encoder(connector);
7876 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7877 i = intel_dig_port->port;
7878 } else {
7879 i = I915_READ(aud_cntl_st);
7880 i = (i >> 29) & DIP_PORT_SEL_MASK;
7881 /* DIP_Port_Select, 0x1 = PortB */
7882 }
7883
7884 if (!i) {
7885 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7886 /* operate blindly on all ports */
7887 eldv = IBX_ELD_VALIDB;
7888 eldv |= IBX_ELD_VALIDB << 4;
7889 eldv |= IBX_ELD_VALIDB << 8;
7890 } else {
7891 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7892 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7893 }
7894
7895 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7896 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7897 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7898 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7899 } else {
7900 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7901 }
7902
7903 if (intel_eld_uptodate(connector,
7904 aud_cntrl_st2, eldv,
7905 aud_cntl_st, IBX_ELD_ADDRESS,
7906 hdmiw_hdmiedid))
7907 return;
7908
7909 i = I915_READ(aud_cntrl_st2);
7910 i &= ~eldv;
7911 I915_WRITE(aud_cntrl_st2, i);
7912
7913 if (!eld[0])
7914 return;
7915
7916 i = I915_READ(aud_cntl_st);
7917 i &= ~IBX_ELD_ADDRESS;
7918 I915_WRITE(aud_cntl_st, i);
7919
7920 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7921 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7922 for (i = 0; i < len; i++)
7923 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7924
7925 i = I915_READ(aud_cntrl_st2);
7926 i |= eldv;
7927 I915_WRITE(aud_cntrl_st2, i);
7928 }
7929
7930 void intel_write_eld(struct drm_encoder *encoder,
7931 struct drm_display_mode *mode)
7932 {
7933 struct drm_crtc *crtc = encoder->crtc;
7934 struct drm_connector *connector;
7935 struct drm_device *dev = encoder->dev;
7936 struct drm_i915_private *dev_priv = dev->dev_private;
7937
7938 connector = drm_select_eld(encoder, mode);
7939 if (!connector)
7940 return;
7941
7942 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7943 connector->base.id,
7944 connector->name,
7945 connector->encoder->base.id,
7946 connector->encoder->name);
7947
7948 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7949
7950 if (dev_priv->display.write_eld)
7951 dev_priv->display.write_eld(connector, crtc, mode);
7952 }
7953
7954 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7955 {
7956 struct drm_device *dev = crtc->dev;
7957 struct drm_i915_private *dev_priv = dev->dev_private;
7958 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7959 uint32_t cntl;
7960
7961 if (base != intel_crtc->cursor_base) {
7962 /* On these chipsets we can only modify the base whilst
7963 * the cursor is disabled.
7964 */
7965 if (intel_crtc->cursor_cntl) {
7966 I915_WRITE(_CURACNTR, 0);
7967 POSTING_READ(_CURACNTR);
7968 intel_crtc->cursor_cntl = 0;
7969 }
7970
7971 I915_WRITE(_CURABASE, base);
7972 POSTING_READ(_CURABASE);
7973 }
7974
7975 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7976 cntl = 0;
7977 if (base)
7978 cntl = (CURSOR_ENABLE |
7979 CURSOR_GAMMA_ENABLE |
7980 CURSOR_FORMAT_ARGB);
7981 if (intel_crtc->cursor_cntl != cntl) {
7982 I915_WRITE(_CURACNTR, cntl);
7983 POSTING_READ(_CURACNTR);
7984 intel_crtc->cursor_cntl = cntl;
7985 }
7986 }
7987
7988 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
7989 {
7990 struct drm_device *dev = crtc->dev;
7991 struct drm_i915_private *dev_priv = dev->dev_private;
7992 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7993 int pipe = intel_crtc->pipe;
7994 uint32_t cntl;
7995
7996 cntl = 0;
7997 if (base) {
7998 cntl = MCURSOR_GAMMA_ENABLE;
7999 switch (intel_crtc->cursor_width) {
8000 case 64:
8001 cntl |= CURSOR_MODE_64_ARGB_AX;
8002 break;
8003 case 128:
8004 cntl |= CURSOR_MODE_128_ARGB_AX;
8005 break;
8006 case 256:
8007 cntl |= CURSOR_MODE_256_ARGB_AX;
8008 break;
8009 default:
8010 WARN_ON(1);
8011 return;
8012 }
8013 cntl |= pipe << 28; /* Connect to correct pipe */
8014 }
8015 if (intel_crtc->cursor_cntl != cntl) {
8016 I915_WRITE(CURCNTR(pipe), cntl);
8017 POSTING_READ(CURCNTR(pipe));
8018 intel_crtc->cursor_cntl = cntl;
8019 }
8020
8021 /* and commit changes on next vblank */
8022 I915_WRITE(CURBASE(pipe), base);
8023 POSTING_READ(CURBASE(pipe));
8024 }
8025
8026 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
8027 {
8028 struct drm_device *dev = crtc->dev;
8029 struct drm_i915_private *dev_priv = dev->dev_private;
8030 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8031 int pipe = intel_crtc->pipe;
8032 uint32_t cntl;
8033
8034 cntl = 0;
8035 if (base) {
8036 cntl = MCURSOR_GAMMA_ENABLE;
8037 switch (intel_crtc->cursor_width) {
8038 case 64:
8039 cntl |= CURSOR_MODE_64_ARGB_AX;
8040 break;
8041 case 128:
8042 cntl |= CURSOR_MODE_128_ARGB_AX;
8043 break;
8044 case 256:
8045 cntl |= CURSOR_MODE_256_ARGB_AX;
8046 break;
8047 default:
8048 WARN_ON(1);
8049 return;
8050 }
8051 }
8052 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8053 cntl |= CURSOR_PIPE_CSC_ENABLE;
8054
8055 if (intel_crtc->cursor_cntl != cntl) {
8056 I915_WRITE(CURCNTR(pipe), cntl);
8057 POSTING_READ(CURCNTR(pipe));
8058 intel_crtc->cursor_cntl = cntl;
8059 }
8060
8061 /* and commit changes on next vblank */
8062 I915_WRITE(CURBASE(pipe), base);
8063 POSTING_READ(CURBASE(pipe));
8064 }
8065
8066 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8067 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8068 bool on)
8069 {
8070 struct drm_device *dev = crtc->dev;
8071 struct drm_i915_private *dev_priv = dev->dev_private;
8072 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8073 int pipe = intel_crtc->pipe;
8074 int x = crtc->cursor_x;
8075 int y = crtc->cursor_y;
8076 u32 base = 0, pos = 0;
8077
8078 if (on)
8079 base = intel_crtc->cursor_addr;
8080
8081 if (x >= intel_crtc->config.pipe_src_w)
8082 base = 0;
8083
8084 if (y >= intel_crtc->config.pipe_src_h)
8085 base = 0;
8086
8087 if (x < 0) {
8088 if (x + intel_crtc->cursor_width <= 0)
8089 base = 0;
8090
8091 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8092 x = -x;
8093 }
8094 pos |= x << CURSOR_X_SHIFT;
8095
8096 if (y < 0) {
8097 if (y + intel_crtc->cursor_height <= 0)
8098 base = 0;
8099
8100 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8101 y = -y;
8102 }
8103 pos |= y << CURSOR_Y_SHIFT;
8104
8105 if (base == 0 && intel_crtc->cursor_base == 0)
8106 return;
8107
8108 I915_WRITE(CURPOS(pipe), pos);
8109
8110 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev))
8111 ivb_update_cursor(crtc, base);
8112 else if (IS_845G(dev) || IS_I865G(dev))
8113 i845_update_cursor(crtc, base);
8114 else
8115 i9xx_update_cursor(crtc, base);
8116 intel_crtc->cursor_base = base;
8117 }
8118
8119 /*
8120 * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8121 *
8122 * Note that the object's reference will be consumed if the update fails. If
8123 * the update succeeds, the reference of the old object (if any) will be
8124 * consumed.
8125 */
8126 static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8127 struct drm_i915_gem_object *obj,
8128 uint32_t width, uint32_t height)
8129 {
8130 struct drm_device *dev = crtc->dev;
8131 struct drm_i915_private *dev_priv = dev->dev_private;
8132 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8133 enum pipe pipe = intel_crtc->pipe;
8134 unsigned old_width;
8135 uint32_t addr;
8136 int ret;
8137
8138 /* if we want to turn off the cursor ignore width and height */
8139 if (!obj) {
8140 DRM_DEBUG_KMS("cursor off\n");
8141 addr = 0;
8142 obj = NULL;
8143 mutex_lock(&dev->struct_mutex);
8144 goto finish;
8145 }
8146
8147 /* Check for which cursor types we support */
8148 if (!((width == 64 && height == 64) ||
8149 (width == 128 && height == 128 && !IS_GEN2(dev)) ||
8150 (width == 256 && height == 256 && !IS_GEN2(dev)))) {
8151 DRM_DEBUG("Cursor dimension not supported\n");
8152 return -EINVAL;
8153 }
8154
8155 if (obj->base.size < width * height * 4) {
8156 DRM_DEBUG_KMS("buffer is too small\n");
8157 ret = -ENOMEM;
8158 goto fail;
8159 }
8160
8161 /* we only need to pin inside GTT if cursor is non-phy */
8162 mutex_lock(&dev->struct_mutex);
8163 if (!INTEL_INFO(dev)->cursor_needs_physical) {
8164 unsigned alignment;
8165
8166 if (obj->tiling_mode) {
8167 DRM_DEBUG_KMS("cursor cannot be tiled\n");
8168 ret = -EINVAL;
8169 goto fail_locked;
8170 }
8171
8172 /* Note that the w/a also requires 2 PTE of padding following
8173 * the bo. We currently fill all unused PTE with the shadow
8174 * page and so we should always have valid PTE following the
8175 * cursor preventing the VT-d warning.
8176 */
8177 alignment = 0;
8178 if (need_vtd_wa(dev))
8179 alignment = 64*1024;
8180
8181 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8182 if (ret) {
8183 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8184 goto fail_locked;
8185 }
8186
8187 ret = i915_gem_object_put_fence(obj);
8188 if (ret) {
8189 DRM_DEBUG_KMS("failed to release fence for cursor");
8190 goto fail_unpin;
8191 }
8192
8193 addr = i915_gem_obj_ggtt_offset(obj);
8194 } else {
8195 int align = IS_I830(dev) ? 16 * 1024 : 256;
8196 ret = i915_gem_object_attach_phys(obj, align);
8197 if (ret) {
8198 DRM_DEBUG_KMS("failed to attach phys object\n");
8199 goto fail_locked;
8200 }
8201 addr = obj->phys_handle->busaddr;
8202 }
8203
8204 if (IS_GEN2(dev))
8205 I915_WRITE(CURSIZE, (height << 12) | width);
8206
8207 finish:
8208 if (intel_crtc->cursor_bo) {
8209 if (!INTEL_INFO(dev)->cursor_needs_physical)
8210 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8211 }
8212
8213 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8214 INTEL_FRONTBUFFER_CURSOR(pipe));
8215 mutex_unlock(&dev->struct_mutex);
8216
8217 old_width = intel_crtc->cursor_width;
8218
8219 intel_crtc->cursor_addr = addr;
8220 intel_crtc->cursor_bo = obj;
8221 intel_crtc->cursor_width = width;
8222 intel_crtc->cursor_height = height;
8223
8224 if (intel_crtc->active) {
8225 if (old_width != width)
8226 intel_update_watermarks(crtc);
8227 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8228 }
8229
8230 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8231
8232 return 0;
8233 fail_unpin:
8234 i915_gem_object_unpin_from_display_plane(obj);
8235 fail_locked:
8236 mutex_unlock(&dev->struct_mutex);
8237 fail:
8238 drm_gem_object_unreference_unlocked(&obj->base);
8239 return ret;
8240 }
8241
8242 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8243 u16 *blue, uint32_t start, uint32_t size)
8244 {
8245 int end = (start + size > 256) ? 256 : start + size, i;
8246 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8247
8248 for (i = start; i < end; i++) {
8249 intel_crtc->lut_r[i] = red[i] >> 8;
8250 intel_crtc->lut_g[i] = green[i] >> 8;
8251 intel_crtc->lut_b[i] = blue[i] >> 8;
8252 }
8253
8254 intel_crtc_load_lut(crtc);
8255 }
8256
8257 /* VESA 640x480x72Hz mode to set on the pipe */
8258 static struct drm_display_mode load_detect_mode = {
8259 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8260 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8261 };
8262
8263 struct drm_framebuffer *
8264 __intel_framebuffer_create(struct drm_device *dev,
8265 struct drm_mode_fb_cmd2 *mode_cmd,
8266 struct drm_i915_gem_object *obj)
8267 {
8268 struct intel_framebuffer *intel_fb;
8269 int ret;
8270
8271 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8272 if (!intel_fb) {
8273 drm_gem_object_unreference_unlocked(&obj->base);
8274 return ERR_PTR(-ENOMEM);
8275 }
8276
8277 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8278 if (ret)
8279 goto err;
8280
8281 return &intel_fb->base;
8282 err:
8283 drm_gem_object_unreference_unlocked(&obj->base);
8284 kfree(intel_fb);
8285
8286 return ERR_PTR(ret);
8287 }
8288
8289 static struct drm_framebuffer *
8290 intel_framebuffer_create(struct drm_device *dev,
8291 struct drm_mode_fb_cmd2 *mode_cmd,
8292 struct drm_i915_gem_object *obj)
8293 {
8294 struct drm_framebuffer *fb;
8295 int ret;
8296
8297 ret = i915_mutex_lock_interruptible(dev);
8298 if (ret)
8299 return ERR_PTR(ret);
8300 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8301 mutex_unlock(&dev->struct_mutex);
8302
8303 return fb;
8304 }
8305
8306 static u32
8307 intel_framebuffer_pitch_for_width(int width, int bpp)
8308 {
8309 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8310 return ALIGN(pitch, 64);
8311 }
8312
8313 static u32
8314 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8315 {
8316 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8317 return PAGE_ALIGN(pitch * mode->vdisplay);
8318 }
8319
8320 static struct drm_framebuffer *
8321 intel_framebuffer_create_for_mode(struct drm_device *dev,
8322 struct drm_display_mode *mode,
8323 int depth, int bpp)
8324 {
8325 struct drm_i915_gem_object *obj;
8326 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8327
8328 obj = i915_gem_alloc_object(dev,
8329 intel_framebuffer_size_for_mode(mode, bpp));
8330 if (obj == NULL)
8331 return ERR_PTR(-ENOMEM);
8332
8333 mode_cmd.width = mode->hdisplay;
8334 mode_cmd.height = mode->vdisplay;
8335 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8336 bpp);
8337 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8338
8339 return intel_framebuffer_create(dev, &mode_cmd, obj);
8340 }
8341
8342 static struct drm_framebuffer *
8343 mode_fits_in_fbdev(struct drm_device *dev,
8344 struct drm_display_mode *mode)
8345 {
8346 #ifdef CONFIG_DRM_I915_FBDEV
8347 struct drm_i915_private *dev_priv = dev->dev_private;
8348 struct drm_i915_gem_object *obj;
8349 struct drm_framebuffer *fb;
8350
8351 if (!dev_priv->fbdev)
8352 return NULL;
8353
8354 if (!dev_priv->fbdev->fb)
8355 return NULL;
8356
8357 obj = dev_priv->fbdev->fb->obj;
8358 BUG_ON(!obj);
8359
8360 fb = &dev_priv->fbdev->fb->base;
8361 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8362 fb->bits_per_pixel))
8363 return NULL;
8364
8365 if (obj->base.size < mode->vdisplay * fb->pitches[0])
8366 return NULL;
8367
8368 return fb;
8369 #else
8370 return NULL;
8371 #endif
8372 }
8373
8374 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8375 struct drm_display_mode *mode,
8376 struct intel_load_detect_pipe *old,
8377 struct drm_modeset_acquire_ctx *ctx)
8378 {
8379 struct intel_crtc *intel_crtc;
8380 struct intel_encoder *intel_encoder =
8381 intel_attached_encoder(connector);
8382 struct drm_crtc *possible_crtc;
8383 struct drm_encoder *encoder = &intel_encoder->base;
8384 struct drm_crtc *crtc = NULL;
8385 struct drm_device *dev = encoder->dev;
8386 struct drm_framebuffer *fb;
8387 struct drm_mode_config *config = &dev->mode_config;
8388 int ret, i = -1;
8389
8390 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8391 connector->base.id, connector->name,
8392 encoder->base.id, encoder->name);
8393
8394 drm_modeset_acquire_init(ctx, 0);
8395
8396 retry:
8397 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8398 if (ret)
8399 goto fail_unlock;
8400
8401 /*
8402 * Algorithm gets a little messy:
8403 *
8404 * - if the connector already has an assigned crtc, use it (but make
8405 * sure it's on first)
8406 *
8407 * - try to find the first unused crtc that can drive this connector,
8408 * and use that if we find one
8409 */
8410
8411 /* See if we already have a CRTC for this connector */
8412 if (encoder->crtc) {
8413 crtc = encoder->crtc;
8414
8415 ret = drm_modeset_lock(&crtc->mutex, ctx);
8416 if (ret)
8417 goto fail_unlock;
8418
8419 old->dpms_mode = connector->dpms;
8420 old->load_detect_temp = false;
8421
8422 /* Make sure the crtc and connector are running */
8423 if (connector->dpms != DRM_MODE_DPMS_ON)
8424 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8425
8426 return true;
8427 }
8428
8429 /* Find an unused one (if possible) */
8430 for_each_crtc(dev, possible_crtc) {
8431 i++;
8432 if (!(encoder->possible_crtcs & (1 << i)))
8433 continue;
8434 if (!possible_crtc->enabled) {
8435 crtc = possible_crtc;
8436 break;
8437 }
8438 }
8439
8440 /*
8441 * If we didn't find an unused CRTC, don't use any.
8442 */
8443 if (!crtc) {
8444 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8445 goto fail_unlock;
8446 }
8447
8448 ret = drm_modeset_lock(&crtc->mutex, ctx);
8449 if (ret)
8450 goto fail_unlock;
8451 intel_encoder->new_crtc = to_intel_crtc(crtc);
8452 to_intel_connector(connector)->new_encoder = intel_encoder;
8453
8454 intel_crtc = to_intel_crtc(crtc);
8455 intel_crtc->new_enabled = true;
8456 intel_crtc->new_config = &intel_crtc->config;
8457 old->dpms_mode = connector->dpms;
8458 old->load_detect_temp = true;
8459 old->release_fb = NULL;
8460
8461 if (!mode)
8462 mode = &load_detect_mode;
8463
8464 /* We need a framebuffer large enough to accommodate all accesses
8465 * that the plane may generate whilst we perform load detection.
8466 * We can not rely on the fbcon either being present (we get called
8467 * during its initialisation to detect all boot displays, or it may
8468 * not even exist) or that it is large enough to satisfy the
8469 * requested mode.
8470 */
8471 fb = mode_fits_in_fbdev(dev, mode);
8472 if (fb == NULL) {
8473 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8474 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8475 old->release_fb = fb;
8476 } else
8477 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8478 if (IS_ERR(fb)) {
8479 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8480 goto fail;
8481 }
8482
8483 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8484 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8485 if (old->release_fb)
8486 old->release_fb->funcs->destroy(old->release_fb);
8487 goto fail;
8488 }
8489
8490 /* let the connector get through one full cycle before testing */
8491 intel_wait_for_vblank(dev, intel_crtc->pipe);
8492 return true;
8493
8494 fail:
8495 intel_crtc->new_enabled = crtc->enabled;
8496 if (intel_crtc->new_enabled)
8497 intel_crtc->new_config = &intel_crtc->config;
8498 else
8499 intel_crtc->new_config = NULL;
8500 fail_unlock:
8501 if (ret == -EDEADLK) {
8502 drm_modeset_backoff(ctx);
8503 goto retry;
8504 }
8505
8506 drm_modeset_drop_locks(ctx);
8507 drm_modeset_acquire_fini(ctx);
8508
8509 return false;
8510 }
8511
8512 void intel_release_load_detect_pipe(struct drm_connector *connector,
8513 struct intel_load_detect_pipe *old,
8514 struct drm_modeset_acquire_ctx *ctx)
8515 {
8516 struct intel_encoder *intel_encoder =
8517 intel_attached_encoder(connector);
8518 struct drm_encoder *encoder = &intel_encoder->base;
8519 struct drm_crtc *crtc = encoder->crtc;
8520 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8521
8522 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8523 connector->base.id, connector->name,
8524 encoder->base.id, encoder->name);
8525
8526 if (old->load_detect_temp) {
8527 to_intel_connector(connector)->new_encoder = NULL;
8528 intel_encoder->new_crtc = NULL;
8529 intel_crtc->new_enabled = false;
8530 intel_crtc->new_config = NULL;
8531 intel_set_mode(crtc, NULL, 0, 0, NULL);
8532
8533 if (old->release_fb) {
8534 drm_framebuffer_unregister_private(old->release_fb);
8535 drm_framebuffer_unreference(old->release_fb);
8536 }
8537
8538 goto unlock;
8539 return;
8540 }
8541
8542 /* Switch crtc and encoder back off if necessary */
8543 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8544 connector->funcs->dpms(connector, old->dpms_mode);
8545
8546 unlock:
8547 drm_modeset_drop_locks(ctx);
8548 drm_modeset_acquire_fini(ctx);
8549 }
8550
8551 static int i9xx_pll_refclk(struct drm_device *dev,
8552 const struct intel_crtc_config *pipe_config)
8553 {
8554 struct drm_i915_private *dev_priv = dev->dev_private;
8555 u32 dpll = pipe_config->dpll_hw_state.dpll;
8556
8557 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8558 return dev_priv->vbt.lvds_ssc_freq;
8559 else if (HAS_PCH_SPLIT(dev))
8560 return 120000;
8561 else if (!IS_GEN2(dev))
8562 return 96000;
8563 else
8564 return 48000;
8565 }
8566
8567 /* Returns the clock of the currently programmed mode of the given pipe. */
8568 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8569 struct intel_crtc_config *pipe_config)
8570 {
8571 struct drm_device *dev = crtc->base.dev;
8572 struct drm_i915_private *dev_priv = dev->dev_private;
8573 int pipe = pipe_config->cpu_transcoder;
8574 u32 dpll = pipe_config->dpll_hw_state.dpll;
8575 u32 fp;
8576 intel_clock_t clock;
8577 int refclk = i9xx_pll_refclk(dev, pipe_config);
8578
8579 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8580 fp = pipe_config->dpll_hw_state.fp0;
8581 else
8582 fp = pipe_config->dpll_hw_state.fp1;
8583
8584 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8585 if (IS_PINEVIEW(dev)) {
8586 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8587 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8588 } else {
8589 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8590 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8591 }
8592
8593 if (!IS_GEN2(dev)) {
8594 if (IS_PINEVIEW(dev))
8595 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8596 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8597 else
8598 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8599 DPLL_FPA01_P1_POST_DIV_SHIFT);
8600
8601 switch (dpll & DPLL_MODE_MASK) {
8602 case DPLLB_MODE_DAC_SERIAL:
8603 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8604 5 : 10;
8605 break;
8606 case DPLLB_MODE_LVDS:
8607 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8608 7 : 14;
8609 break;
8610 default:
8611 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8612 "mode\n", (int)(dpll & DPLL_MODE_MASK));
8613 return;
8614 }
8615
8616 if (IS_PINEVIEW(dev))
8617 pineview_clock(refclk, &clock);
8618 else
8619 i9xx_clock(refclk, &clock);
8620 } else {
8621 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8622 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8623
8624 if (is_lvds) {
8625 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8626 DPLL_FPA01_P1_POST_DIV_SHIFT);
8627
8628 if (lvds & LVDS_CLKB_POWER_UP)
8629 clock.p2 = 7;
8630 else
8631 clock.p2 = 14;
8632 } else {
8633 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8634 clock.p1 = 2;
8635 else {
8636 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8637 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8638 }
8639 if (dpll & PLL_P2_DIVIDE_BY_4)
8640 clock.p2 = 4;
8641 else
8642 clock.p2 = 2;
8643 }
8644
8645 i9xx_clock(refclk, &clock);
8646 }
8647
8648 /*
8649 * This value includes pixel_multiplier. We will use
8650 * port_clock to compute adjusted_mode.crtc_clock in the
8651 * encoder's get_config() function.
8652 */
8653 pipe_config->port_clock = clock.dot;
8654 }
8655
8656 int intel_dotclock_calculate(int link_freq,
8657 const struct intel_link_m_n *m_n)
8658 {
8659 /*
8660 * The calculation for the data clock is:
8661 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8662 * But we want to avoid losing precison if possible, so:
8663 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8664 *
8665 * and the link clock is simpler:
8666 * link_clock = (m * link_clock) / n
8667 */
8668
8669 if (!m_n->link_n)
8670 return 0;
8671
8672 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8673 }
8674
8675 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8676 struct intel_crtc_config *pipe_config)
8677 {
8678 struct drm_device *dev = crtc->base.dev;
8679
8680 /* read out port_clock from the DPLL */
8681 i9xx_crtc_clock_get(crtc, pipe_config);
8682
8683 /*
8684 * This value does not include pixel_multiplier.
8685 * We will check that port_clock and adjusted_mode.crtc_clock
8686 * agree once we know their relationship in the encoder's
8687 * get_config() function.
8688 */
8689 pipe_config->adjusted_mode.crtc_clock =
8690 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8691 &pipe_config->fdi_m_n);
8692 }
8693
8694 /** Returns the currently programmed mode of the given pipe. */
8695 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8696 struct drm_crtc *crtc)
8697 {
8698 struct drm_i915_private *dev_priv = dev->dev_private;
8699 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8700 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8701 struct drm_display_mode *mode;
8702 struct intel_crtc_config pipe_config;
8703 int htot = I915_READ(HTOTAL(cpu_transcoder));
8704 int hsync = I915_READ(HSYNC(cpu_transcoder));
8705 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8706 int vsync = I915_READ(VSYNC(cpu_transcoder));
8707 enum pipe pipe = intel_crtc->pipe;
8708
8709 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8710 if (!mode)
8711 return NULL;
8712
8713 /*
8714 * Construct a pipe_config sufficient for getting the clock info
8715 * back out of crtc_clock_get.
8716 *
8717 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8718 * to use a real value here instead.
8719 */
8720 pipe_config.cpu_transcoder = (enum transcoder) pipe;
8721 pipe_config.pixel_multiplier = 1;
8722 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8723 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8724 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8725 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8726
8727 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8728 mode->hdisplay = (htot & 0xffff) + 1;
8729 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8730 mode->hsync_start = (hsync & 0xffff) + 1;
8731 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8732 mode->vdisplay = (vtot & 0xffff) + 1;
8733 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8734 mode->vsync_start = (vsync & 0xffff) + 1;
8735 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8736
8737 drm_mode_set_name(mode);
8738
8739 return mode;
8740 }
8741
8742 static void intel_increase_pllclock(struct drm_device *dev,
8743 enum pipe pipe)
8744 {
8745 struct drm_i915_private *dev_priv = dev->dev_private;
8746 int dpll_reg = DPLL(pipe);
8747 int dpll;
8748
8749 if (HAS_PCH_SPLIT(dev))
8750 return;
8751
8752 if (!dev_priv->lvds_downclock_avail)
8753 return;
8754
8755 dpll = I915_READ(dpll_reg);
8756 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8757 DRM_DEBUG_DRIVER("upclocking LVDS\n");
8758
8759 assert_panel_unlocked(dev_priv, pipe);
8760
8761 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8762 I915_WRITE(dpll_reg, dpll);
8763 intel_wait_for_vblank(dev, pipe);
8764
8765 dpll = I915_READ(dpll_reg);
8766 if (dpll & DISPLAY_RATE_SELECT_FPA1)
8767 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
8768 }
8769 }
8770
8771 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8772 {
8773 struct drm_device *dev = crtc->dev;
8774 struct drm_i915_private *dev_priv = dev->dev_private;
8775 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8776
8777 if (HAS_PCH_SPLIT(dev))
8778 return;
8779
8780 if (!dev_priv->lvds_downclock_avail)
8781 return;
8782
8783 /*
8784 * Since this is called by a timer, we should never get here in
8785 * the manual case.
8786 */
8787 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8788 int pipe = intel_crtc->pipe;
8789 int dpll_reg = DPLL(pipe);
8790 int dpll;
8791
8792 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8793
8794 assert_panel_unlocked(dev_priv, pipe);
8795
8796 dpll = I915_READ(dpll_reg);
8797 dpll |= DISPLAY_RATE_SELECT_FPA1;
8798 I915_WRITE(dpll_reg, dpll);
8799 intel_wait_for_vblank(dev, pipe);
8800 dpll = I915_READ(dpll_reg);
8801 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8802 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8803 }
8804
8805 }
8806
8807 void intel_mark_busy(struct drm_device *dev)
8808 {
8809 struct drm_i915_private *dev_priv = dev->dev_private;
8810
8811 if (dev_priv->mm.busy)
8812 return;
8813
8814 intel_runtime_pm_get(dev_priv);
8815 i915_update_gfx_val(dev_priv);
8816 dev_priv->mm.busy = true;
8817 }
8818
8819 void intel_mark_idle(struct drm_device *dev)
8820 {
8821 struct drm_i915_private *dev_priv = dev->dev_private;
8822 struct drm_crtc *crtc;
8823
8824 if (!dev_priv->mm.busy)
8825 return;
8826
8827 dev_priv->mm.busy = false;
8828
8829 if (!i915.powersave)
8830 goto out;
8831
8832 for_each_crtc(dev, crtc) {
8833 if (!crtc->primary->fb)
8834 continue;
8835
8836 intel_decrease_pllclock(crtc);
8837 }
8838
8839 if (INTEL_INFO(dev)->gen >= 6)
8840 gen6_rps_idle(dev->dev_private);
8841
8842 out:
8843 intel_runtime_pm_put(dev_priv);
8844 }
8845
8846
8847 /**
8848 * intel_mark_fb_busy - mark given planes as busy
8849 * @dev: DRM device
8850 * @frontbuffer_bits: bits for the affected planes
8851 * @ring: optional ring for asynchronous commands
8852 *
8853 * This function gets called every time the screen contents change. It can be
8854 * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
8855 */
8856 static void intel_mark_fb_busy(struct drm_device *dev,
8857 unsigned frontbuffer_bits,
8858 struct intel_engine_cs *ring)
8859 {
8860 enum pipe pipe;
8861
8862 if (!i915.powersave)
8863 return;
8864
8865 for_each_pipe(pipe) {
8866 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
8867 continue;
8868
8869 intel_increase_pllclock(dev, pipe);
8870 if (ring && intel_fbc_enabled(dev))
8871 ring->fbc_dirty = true;
8872 }
8873 }
8874
8875 /**
8876 * intel_fb_obj_invalidate - invalidate frontbuffer object
8877 * @obj: GEM object to invalidate
8878 * @ring: set for asynchronous rendering
8879 *
8880 * This function gets called every time rendering on the given object starts and
8881 * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
8882 * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
8883 * until the rendering completes or a flip on this frontbuffer plane is
8884 * scheduled.
8885 */
8886 void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
8887 struct intel_engine_cs *ring)
8888 {
8889 struct drm_device *dev = obj->base.dev;
8890 struct drm_i915_private *dev_priv = dev->dev_private;
8891
8892 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8893
8894 if (!obj->frontbuffer_bits)
8895 return;
8896
8897 if (ring) {
8898 mutex_lock(&dev_priv->fb_tracking.lock);
8899 dev_priv->fb_tracking.busy_bits
8900 |= obj->frontbuffer_bits;
8901 dev_priv->fb_tracking.flip_bits
8902 &= ~obj->frontbuffer_bits;
8903 mutex_unlock(&dev_priv->fb_tracking.lock);
8904 }
8905
8906 intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
8907
8908 intel_edp_psr_exit(dev);
8909 }
8910
8911 /**
8912 * intel_frontbuffer_flush - flush frontbuffer
8913 * @dev: DRM device
8914 * @frontbuffer_bits: frontbuffer plane tracking bits
8915 *
8916 * This function gets called every time rendering on the given planes has
8917 * completed and frontbuffer caching can be started again. Flushes will get
8918 * delayed if they're blocked by some oustanding asynchronous rendering.
8919 *
8920 * Can be called without any locks held.
8921 */
8922 void intel_frontbuffer_flush(struct drm_device *dev,
8923 unsigned frontbuffer_bits)
8924 {
8925 struct drm_i915_private *dev_priv = dev->dev_private;
8926
8927 /* Delay flushing when rings are still busy.*/
8928 mutex_lock(&dev_priv->fb_tracking.lock);
8929 frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
8930 mutex_unlock(&dev_priv->fb_tracking.lock);
8931
8932 intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
8933
8934 intel_edp_psr_exit(dev);
8935 }
8936
8937 /**
8938 * intel_fb_obj_flush - flush frontbuffer object
8939 * @obj: GEM object to flush
8940 * @retire: set when retiring asynchronous rendering
8941 *
8942 * This function gets called every time rendering on the given object has
8943 * completed and frontbuffer caching can be started again. If @retire is true
8944 * then any delayed flushes will be unblocked.
8945 */
8946 void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
8947 bool retire)
8948 {
8949 struct drm_device *dev = obj->base.dev;
8950 struct drm_i915_private *dev_priv = dev->dev_private;
8951 unsigned frontbuffer_bits;
8952
8953 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8954
8955 if (!obj->frontbuffer_bits)
8956 return;
8957
8958 frontbuffer_bits = obj->frontbuffer_bits;
8959
8960 if (retire) {
8961 mutex_lock(&dev_priv->fb_tracking.lock);
8962 /* Filter out new bits since rendering started. */
8963 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
8964
8965 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
8966 mutex_unlock(&dev_priv->fb_tracking.lock);
8967 }
8968
8969 intel_frontbuffer_flush(dev, frontbuffer_bits);
8970 }
8971
8972 /**
8973 * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
8974 * @dev: DRM device
8975 * @frontbuffer_bits: frontbuffer plane tracking bits
8976 *
8977 * This function gets called after scheduling a flip on @obj. The actual
8978 * frontbuffer flushing will be delayed until completion is signalled with
8979 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
8980 * flush will be cancelled.
8981 *
8982 * Can be called without any locks held.
8983 */
8984 void intel_frontbuffer_flip_prepare(struct drm_device *dev,
8985 unsigned frontbuffer_bits)
8986 {
8987 struct drm_i915_private *dev_priv = dev->dev_private;
8988
8989 mutex_lock(&dev_priv->fb_tracking.lock);
8990 dev_priv->fb_tracking.flip_bits
8991 |= frontbuffer_bits;
8992 mutex_unlock(&dev_priv->fb_tracking.lock);
8993 }
8994
8995 /**
8996 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
8997 * @dev: DRM device
8998 * @frontbuffer_bits: frontbuffer plane tracking bits
8999 *
9000 * This function gets called after the flip has been latched and will complete
9001 * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9002 *
9003 * Can be called without any locks held.
9004 */
9005 void intel_frontbuffer_flip_complete(struct drm_device *dev,
9006 unsigned frontbuffer_bits)
9007 {
9008 struct drm_i915_private *dev_priv = dev->dev_private;
9009
9010 mutex_lock(&dev_priv->fb_tracking.lock);
9011 /* Mask any cancelled flips. */
9012 frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9013 dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9014 mutex_unlock(&dev_priv->fb_tracking.lock);
9015
9016 intel_frontbuffer_flush(dev, frontbuffer_bits);
9017 }
9018
9019 static void intel_crtc_destroy(struct drm_crtc *crtc)
9020 {
9021 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9022 struct drm_device *dev = crtc->dev;
9023 struct intel_unpin_work *work;
9024 unsigned long flags;
9025
9026 spin_lock_irqsave(&dev->event_lock, flags);
9027 work = intel_crtc->unpin_work;
9028 intel_crtc->unpin_work = NULL;
9029 spin_unlock_irqrestore(&dev->event_lock, flags);
9030
9031 if (work) {
9032 cancel_work_sync(&work->work);
9033 kfree(work);
9034 }
9035
9036 drm_crtc_cleanup(crtc);
9037
9038 kfree(intel_crtc);
9039 }
9040
9041 static void intel_unpin_work_fn(struct work_struct *__work)
9042 {
9043 struct intel_unpin_work *work =
9044 container_of(__work, struct intel_unpin_work, work);
9045 struct drm_device *dev = work->crtc->dev;
9046 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9047
9048 mutex_lock(&dev->struct_mutex);
9049 intel_unpin_fb_obj(work->old_fb_obj);
9050 drm_gem_object_unreference(&work->pending_flip_obj->base);
9051 drm_gem_object_unreference(&work->old_fb_obj->base);
9052
9053 intel_update_fbc(dev);
9054 mutex_unlock(&dev->struct_mutex);
9055
9056 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9057
9058 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9059 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9060
9061 kfree(work);
9062 }
9063
9064 static void do_intel_finish_page_flip(struct drm_device *dev,
9065 struct drm_crtc *crtc)
9066 {
9067 struct drm_i915_private *dev_priv = dev->dev_private;
9068 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9069 struct intel_unpin_work *work;
9070 unsigned long flags;
9071
9072 /* Ignore early vblank irqs */
9073 if (intel_crtc == NULL)
9074 return;
9075
9076 spin_lock_irqsave(&dev->event_lock, flags);
9077 work = intel_crtc->unpin_work;
9078
9079 /* Ensure we don't miss a work->pending update ... */
9080 smp_rmb();
9081
9082 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9083 spin_unlock_irqrestore(&dev->event_lock, flags);
9084 return;
9085 }
9086
9087 /* and that the unpin work is consistent wrt ->pending. */
9088 smp_rmb();
9089
9090 intel_crtc->unpin_work = NULL;
9091
9092 if (work->event)
9093 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
9094
9095 drm_crtc_vblank_put(crtc);
9096
9097 spin_unlock_irqrestore(&dev->event_lock, flags);
9098
9099 wake_up_all(&dev_priv->pending_flip_queue);
9100
9101 queue_work(dev_priv->wq, &work->work);
9102
9103 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
9104 }
9105
9106 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9107 {
9108 struct drm_i915_private *dev_priv = dev->dev_private;
9109 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9110
9111 do_intel_finish_page_flip(dev, crtc);
9112 }
9113
9114 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9115 {
9116 struct drm_i915_private *dev_priv = dev->dev_private;
9117 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9118
9119 do_intel_finish_page_flip(dev, crtc);
9120 }
9121
9122 /* Is 'a' after or equal to 'b'? */
9123 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9124 {
9125 return !((a - b) & 0x80000000);
9126 }
9127
9128 static bool page_flip_finished(struct intel_crtc *crtc)
9129 {
9130 struct drm_device *dev = crtc->base.dev;
9131 struct drm_i915_private *dev_priv = dev->dev_private;
9132
9133 /*
9134 * The relevant registers doen't exist on pre-ctg.
9135 * As the flip done interrupt doesn't trigger for mmio
9136 * flips on gmch platforms, a flip count check isn't
9137 * really needed there. But since ctg has the registers,
9138 * include it in the check anyway.
9139 */
9140 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9141 return true;
9142
9143 /*
9144 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9145 * used the same base address. In that case the mmio flip might
9146 * have completed, but the CS hasn't even executed the flip yet.
9147 *
9148 * A flip count check isn't enough as the CS might have updated
9149 * the base address just after start of vblank, but before we
9150 * managed to process the interrupt. This means we'd complete the
9151 * CS flip too soon.
9152 *
9153 * Combining both checks should get us a good enough result. It may
9154 * still happen that the CS flip has been executed, but has not
9155 * yet actually completed. But in case the base address is the same
9156 * anyway, we don't really care.
9157 */
9158 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9159 crtc->unpin_work->gtt_offset &&
9160 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9161 crtc->unpin_work->flip_count);
9162 }
9163
9164 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9165 {
9166 struct drm_i915_private *dev_priv = dev->dev_private;
9167 struct intel_crtc *intel_crtc =
9168 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9169 unsigned long flags;
9170
9171 /* NB: An MMIO update of the plane base pointer will also
9172 * generate a page-flip completion irq, i.e. every modeset
9173 * is also accompanied by a spurious intel_prepare_page_flip().
9174 */
9175 spin_lock_irqsave(&dev->event_lock, flags);
9176 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9177 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9178 spin_unlock_irqrestore(&dev->event_lock, flags);
9179 }
9180
9181 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9182 {
9183 /* Ensure that the work item is consistent when activating it ... */
9184 smp_wmb();
9185 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9186 /* and that it is marked active as soon as the irq could fire. */
9187 smp_wmb();
9188 }
9189
9190 static int intel_gen2_queue_flip(struct drm_device *dev,
9191 struct drm_crtc *crtc,
9192 struct drm_framebuffer *fb,
9193 struct drm_i915_gem_object *obj,
9194 struct intel_engine_cs *ring,
9195 uint32_t flags)
9196 {
9197 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9198 u32 flip_mask;
9199 int ret;
9200
9201 ret = intel_ring_begin(ring, 6);
9202 if (ret)
9203 return ret;
9204
9205 /* Can't queue multiple flips, so wait for the previous
9206 * one to finish before executing the next.
9207 */
9208 if (intel_crtc->plane)
9209 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9210 else
9211 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9212 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9213 intel_ring_emit(ring, MI_NOOP);
9214 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9215 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9216 intel_ring_emit(ring, fb->pitches[0]);
9217 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9218 intel_ring_emit(ring, 0); /* aux display base address, unused */
9219
9220 intel_mark_page_flip_active(intel_crtc);
9221 __intel_ring_advance(ring);
9222 return 0;
9223 }
9224
9225 static int intel_gen3_queue_flip(struct drm_device *dev,
9226 struct drm_crtc *crtc,
9227 struct drm_framebuffer *fb,
9228 struct drm_i915_gem_object *obj,
9229 struct intel_engine_cs *ring,
9230 uint32_t flags)
9231 {
9232 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9233 u32 flip_mask;
9234 int ret;
9235
9236 ret = intel_ring_begin(ring, 6);
9237 if (ret)
9238 return ret;
9239
9240 if (intel_crtc->plane)
9241 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9242 else
9243 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9244 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9245 intel_ring_emit(ring, MI_NOOP);
9246 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9247 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9248 intel_ring_emit(ring, fb->pitches[0]);
9249 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9250 intel_ring_emit(ring, MI_NOOP);
9251
9252 intel_mark_page_flip_active(intel_crtc);
9253 __intel_ring_advance(ring);
9254 return 0;
9255 }
9256
9257 static int intel_gen4_queue_flip(struct drm_device *dev,
9258 struct drm_crtc *crtc,
9259 struct drm_framebuffer *fb,
9260 struct drm_i915_gem_object *obj,
9261 struct intel_engine_cs *ring,
9262 uint32_t flags)
9263 {
9264 struct drm_i915_private *dev_priv = dev->dev_private;
9265 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9266 uint32_t pf, pipesrc;
9267 int ret;
9268
9269 ret = intel_ring_begin(ring, 4);
9270 if (ret)
9271 return ret;
9272
9273 /* i965+ uses the linear or tiled offsets from the
9274 * Display Registers (which do not change across a page-flip)
9275 * so we need only reprogram the base address.
9276 */
9277 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9278 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9279 intel_ring_emit(ring, fb->pitches[0]);
9280 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9281 obj->tiling_mode);
9282
9283 /* XXX Enabling the panel-fitter across page-flip is so far
9284 * untested on non-native modes, so ignore it for now.
9285 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9286 */
9287 pf = 0;
9288 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9289 intel_ring_emit(ring, pf | pipesrc);
9290
9291 intel_mark_page_flip_active(intel_crtc);
9292 __intel_ring_advance(ring);
9293 return 0;
9294 }
9295
9296 static int intel_gen6_queue_flip(struct drm_device *dev,
9297 struct drm_crtc *crtc,
9298 struct drm_framebuffer *fb,
9299 struct drm_i915_gem_object *obj,
9300 struct intel_engine_cs *ring,
9301 uint32_t flags)
9302 {
9303 struct drm_i915_private *dev_priv = dev->dev_private;
9304 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9305 uint32_t pf, pipesrc;
9306 int ret;
9307
9308 ret = intel_ring_begin(ring, 4);
9309 if (ret)
9310 return ret;
9311
9312 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9313 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9314 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9315 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9316
9317 /* Contrary to the suggestions in the documentation,
9318 * "Enable Panel Fitter" does not seem to be required when page
9319 * flipping with a non-native mode, and worse causes a normal
9320 * modeset to fail.
9321 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9322 */
9323 pf = 0;
9324 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9325 intel_ring_emit(ring, pf | pipesrc);
9326
9327 intel_mark_page_flip_active(intel_crtc);
9328 __intel_ring_advance(ring);
9329 return 0;
9330 }
9331
9332 static int intel_gen7_queue_flip(struct drm_device *dev,
9333 struct drm_crtc *crtc,
9334 struct drm_framebuffer *fb,
9335 struct drm_i915_gem_object *obj,
9336 struct intel_engine_cs *ring,
9337 uint32_t flags)
9338 {
9339 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9340 uint32_t plane_bit = 0;
9341 int len, ret;
9342
9343 switch (intel_crtc->plane) {
9344 case PLANE_A:
9345 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9346 break;
9347 case PLANE_B:
9348 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9349 break;
9350 case PLANE_C:
9351 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9352 break;
9353 default:
9354 WARN_ONCE(1, "unknown plane in flip command\n");
9355 return -ENODEV;
9356 }
9357
9358 len = 4;
9359 if (ring->id == RCS) {
9360 len += 6;
9361 /*
9362 * On Gen 8, SRM is now taking an extra dword to accommodate
9363 * 48bits addresses, and we need a NOOP for the batch size to
9364 * stay even.
9365 */
9366 if (IS_GEN8(dev))
9367 len += 2;
9368 }
9369
9370 /*
9371 * BSpec MI_DISPLAY_FLIP for IVB:
9372 * "The full packet must be contained within the same cache line."
9373 *
9374 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9375 * cacheline, if we ever start emitting more commands before
9376 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9377 * then do the cacheline alignment, and finally emit the
9378 * MI_DISPLAY_FLIP.
9379 */
9380 ret = intel_ring_cacheline_align(ring);
9381 if (ret)
9382 return ret;
9383
9384 ret = intel_ring_begin(ring, len);
9385 if (ret)
9386 return ret;
9387
9388 /* Unmask the flip-done completion message. Note that the bspec says that
9389 * we should do this for both the BCS and RCS, and that we must not unmask
9390 * more than one flip event at any time (or ensure that one flip message
9391 * can be sent by waiting for flip-done prior to queueing new flips).
9392 * Experimentation says that BCS works despite DERRMR masking all
9393 * flip-done completion events and that unmasking all planes at once
9394 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9395 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9396 */
9397 if (ring->id == RCS) {
9398 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9399 intel_ring_emit(ring, DERRMR);
9400 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9401 DERRMR_PIPEB_PRI_FLIP_DONE |
9402 DERRMR_PIPEC_PRI_FLIP_DONE));
9403 if (IS_GEN8(dev))
9404 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9405 MI_SRM_LRM_GLOBAL_GTT);
9406 else
9407 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9408 MI_SRM_LRM_GLOBAL_GTT);
9409 intel_ring_emit(ring, DERRMR);
9410 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9411 if (IS_GEN8(dev)) {
9412 intel_ring_emit(ring, 0);
9413 intel_ring_emit(ring, MI_NOOP);
9414 }
9415 }
9416
9417 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9418 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9419 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9420 intel_ring_emit(ring, (MI_NOOP));
9421
9422 intel_mark_page_flip_active(intel_crtc);
9423 __intel_ring_advance(ring);
9424 return 0;
9425 }
9426
9427 static bool use_mmio_flip(struct intel_engine_cs *ring,
9428 struct drm_i915_gem_object *obj)
9429 {
9430 /*
9431 * This is not being used for older platforms, because
9432 * non-availability of flip done interrupt forces us to use
9433 * CS flips. Older platforms derive flip done using some clever
9434 * tricks involving the flip_pending status bits and vblank irqs.
9435 * So using MMIO flips there would disrupt this mechanism.
9436 */
9437
9438 if (INTEL_INFO(ring->dev)->gen < 5)
9439 return false;
9440
9441 if (i915.use_mmio_flip < 0)
9442 return false;
9443 else if (i915.use_mmio_flip > 0)
9444 return true;
9445 else
9446 return ring != obj->ring;
9447 }
9448
9449 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9450 {
9451 struct drm_device *dev = intel_crtc->base.dev;
9452 struct drm_i915_private *dev_priv = dev->dev_private;
9453 struct intel_framebuffer *intel_fb =
9454 to_intel_framebuffer(intel_crtc->base.primary->fb);
9455 struct drm_i915_gem_object *obj = intel_fb->obj;
9456 u32 dspcntr;
9457 u32 reg;
9458
9459 intel_mark_page_flip_active(intel_crtc);
9460
9461 reg = DSPCNTR(intel_crtc->plane);
9462 dspcntr = I915_READ(reg);
9463
9464 if (INTEL_INFO(dev)->gen >= 4) {
9465 if (obj->tiling_mode != I915_TILING_NONE)
9466 dspcntr |= DISPPLANE_TILED;
9467 else
9468 dspcntr &= ~DISPPLANE_TILED;
9469 }
9470 I915_WRITE(reg, dspcntr);
9471
9472 I915_WRITE(DSPSURF(intel_crtc->plane),
9473 intel_crtc->unpin_work->gtt_offset);
9474 POSTING_READ(DSPSURF(intel_crtc->plane));
9475 }
9476
9477 static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9478 {
9479 struct intel_engine_cs *ring;
9480 int ret;
9481
9482 lockdep_assert_held(&obj->base.dev->struct_mutex);
9483
9484 if (!obj->last_write_seqno)
9485 return 0;
9486
9487 ring = obj->ring;
9488
9489 if (i915_seqno_passed(ring->get_seqno(ring, true),
9490 obj->last_write_seqno))
9491 return 0;
9492
9493 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9494 if (ret)
9495 return ret;
9496
9497 if (WARN_ON(!ring->irq_get(ring)))
9498 return 0;
9499
9500 return 1;
9501 }
9502
9503 void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9504 {
9505 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9506 struct intel_crtc *intel_crtc;
9507 unsigned long irq_flags;
9508 u32 seqno;
9509
9510 seqno = ring->get_seqno(ring, false);
9511
9512 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9513 for_each_intel_crtc(ring->dev, intel_crtc) {
9514 struct intel_mmio_flip *mmio_flip;
9515
9516 mmio_flip = &intel_crtc->mmio_flip;
9517 if (mmio_flip->seqno == 0)
9518 continue;
9519
9520 if (ring->id != mmio_flip->ring_id)
9521 continue;
9522
9523 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9524 intel_do_mmio_flip(intel_crtc);
9525 mmio_flip->seqno = 0;
9526 ring->irq_put(ring);
9527 }
9528 }
9529 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9530 }
9531
9532 static int intel_queue_mmio_flip(struct drm_device *dev,
9533 struct drm_crtc *crtc,
9534 struct drm_framebuffer *fb,
9535 struct drm_i915_gem_object *obj,
9536 struct intel_engine_cs *ring,
9537 uint32_t flags)
9538 {
9539 struct drm_i915_private *dev_priv = dev->dev_private;
9540 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9541 unsigned long irq_flags;
9542 int ret;
9543
9544 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9545 return -EBUSY;
9546
9547 ret = intel_postpone_flip(obj);
9548 if (ret < 0)
9549 return ret;
9550 if (ret == 0) {
9551 intel_do_mmio_flip(intel_crtc);
9552 return 0;
9553 }
9554
9555 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9556 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9557 intel_crtc->mmio_flip.ring_id = obj->ring->id;
9558 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9559
9560 /*
9561 * Double check to catch cases where irq fired before
9562 * mmio flip data was ready
9563 */
9564 intel_notify_mmio_flip(obj->ring);
9565 return 0;
9566 }
9567
9568 static int intel_default_queue_flip(struct drm_device *dev,
9569 struct drm_crtc *crtc,
9570 struct drm_framebuffer *fb,
9571 struct drm_i915_gem_object *obj,
9572 struct intel_engine_cs *ring,
9573 uint32_t flags)
9574 {
9575 return -ENODEV;
9576 }
9577
9578 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9579 struct drm_framebuffer *fb,
9580 struct drm_pending_vblank_event *event,
9581 uint32_t page_flip_flags)
9582 {
9583 struct drm_device *dev = crtc->dev;
9584 struct drm_i915_private *dev_priv = dev->dev_private;
9585 struct drm_framebuffer *old_fb = crtc->primary->fb;
9586 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
9587 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9588 enum pipe pipe = intel_crtc->pipe;
9589 struct intel_unpin_work *work;
9590 struct intel_engine_cs *ring;
9591 unsigned long flags;
9592 int ret;
9593
9594 /* Can't change pixel format via MI display flips. */
9595 if (fb->pixel_format != crtc->primary->fb->pixel_format)
9596 return -EINVAL;
9597
9598 /*
9599 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9600 * Note that pitch changes could also affect these register.
9601 */
9602 if (INTEL_INFO(dev)->gen > 3 &&
9603 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9604 fb->pitches[0] != crtc->primary->fb->pitches[0]))
9605 return -EINVAL;
9606
9607 if (i915_terminally_wedged(&dev_priv->gpu_error))
9608 goto out_hang;
9609
9610 work = kzalloc(sizeof(*work), GFP_KERNEL);
9611 if (work == NULL)
9612 return -ENOMEM;
9613
9614 work->event = event;
9615 work->crtc = crtc;
9616 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
9617 INIT_WORK(&work->work, intel_unpin_work_fn);
9618
9619 ret = drm_crtc_vblank_get(crtc);
9620 if (ret)
9621 goto free_work;
9622
9623 /* We borrow the event spin lock for protecting unpin_work */
9624 spin_lock_irqsave(&dev->event_lock, flags);
9625 if (intel_crtc->unpin_work) {
9626 spin_unlock_irqrestore(&dev->event_lock, flags);
9627 kfree(work);
9628 drm_crtc_vblank_put(crtc);
9629
9630 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9631 return -EBUSY;
9632 }
9633 intel_crtc->unpin_work = work;
9634 spin_unlock_irqrestore(&dev->event_lock, flags);
9635
9636 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9637 flush_workqueue(dev_priv->wq);
9638
9639 ret = i915_mutex_lock_interruptible(dev);
9640 if (ret)
9641 goto cleanup;
9642
9643 /* Reference the objects for the scheduled work. */
9644 drm_gem_object_reference(&work->old_fb_obj->base);
9645 drm_gem_object_reference(&obj->base);
9646
9647 crtc->primary->fb = fb;
9648
9649 work->pending_flip_obj = obj;
9650
9651 work->enable_stall_check = true;
9652
9653 atomic_inc(&intel_crtc->unpin_work_count);
9654 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9655
9656 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9657 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9658
9659 if (IS_VALLEYVIEW(dev)) {
9660 ring = &dev_priv->ring[BCS];
9661 } else if (INTEL_INFO(dev)->gen >= 7) {
9662 ring = obj->ring;
9663 if (ring == NULL || ring->id != RCS)
9664 ring = &dev_priv->ring[BCS];
9665 } else {
9666 ring = &dev_priv->ring[RCS];
9667 }
9668
9669 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
9670 if (ret)
9671 goto cleanup_pending;
9672
9673 work->gtt_offset =
9674 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9675
9676 if (use_mmio_flip(ring, obj))
9677 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9678 page_flip_flags);
9679 else
9680 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9681 page_flip_flags);
9682 if (ret)
9683 goto cleanup_unpin;
9684
9685 i915_gem_track_fb(work->old_fb_obj, obj,
9686 INTEL_FRONTBUFFER_PRIMARY(pipe));
9687
9688 intel_disable_fbc(dev);
9689 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9690 mutex_unlock(&dev->struct_mutex);
9691
9692 trace_i915_flip_request(intel_crtc->plane, obj);
9693
9694 return 0;
9695
9696 cleanup_unpin:
9697 intel_unpin_fb_obj(obj);
9698 cleanup_pending:
9699 atomic_dec(&intel_crtc->unpin_work_count);
9700 crtc->primary->fb = old_fb;
9701 drm_gem_object_unreference(&work->old_fb_obj->base);
9702 drm_gem_object_unreference(&obj->base);
9703 mutex_unlock(&dev->struct_mutex);
9704
9705 cleanup:
9706 spin_lock_irqsave(&dev->event_lock, flags);
9707 intel_crtc->unpin_work = NULL;
9708 spin_unlock_irqrestore(&dev->event_lock, flags);
9709
9710 drm_crtc_vblank_put(crtc);
9711 free_work:
9712 kfree(work);
9713
9714 if (ret == -EIO) {
9715 out_hang:
9716 intel_crtc_wait_for_pending_flips(crtc);
9717 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9718 if (ret == 0 && event)
9719 drm_send_vblank_event(dev, pipe, event);
9720 }
9721 return ret;
9722 }
9723
9724 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9725 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9726 .load_lut = intel_crtc_load_lut,
9727 };
9728
9729 /**
9730 * intel_modeset_update_staged_output_state
9731 *
9732 * Updates the staged output configuration state, e.g. after we've read out the
9733 * current hw state.
9734 */
9735 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9736 {
9737 struct intel_crtc *crtc;
9738 struct intel_encoder *encoder;
9739 struct intel_connector *connector;
9740
9741 list_for_each_entry(connector, &dev->mode_config.connector_list,
9742 base.head) {
9743 connector->new_encoder =
9744 to_intel_encoder(connector->base.encoder);
9745 }
9746
9747 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9748 base.head) {
9749 encoder->new_crtc =
9750 to_intel_crtc(encoder->base.crtc);
9751 }
9752
9753 for_each_intel_crtc(dev, crtc) {
9754 crtc->new_enabled = crtc->base.enabled;
9755
9756 if (crtc->new_enabled)
9757 crtc->new_config = &crtc->config;
9758 else
9759 crtc->new_config = NULL;
9760 }
9761 }
9762
9763 /**
9764 * intel_modeset_commit_output_state
9765 *
9766 * This function copies the stage display pipe configuration to the real one.
9767 */
9768 static void intel_modeset_commit_output_state(struct drm_device *dev)
9769 {
9770 struct intel_crtc *crtc;
9771 struct intel_encoder *encoder;
9772 struct intel_connector *connector;
9773
9774 list_for_each_entry(connector, &dev->mode_config.connector_list,
9775 base.head) {
9776 connector->base.encoder = &connector->new_encoder->base;
9777 }
9778
9779 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9780 base.head) {
9781 encoder->base.crtc = &encoder->new_crtc->base;
9782 }
9783
9784 for_each_intel_crtc(dev, crtc) {
9785 crtc->base.enabled = crtc->new_enabled;
9786 }
9787 }
9788
9789 static void
9790 connected_sink_compute_bpp(struct intel_connector *connector,
9791 struct intel_crtc_config *pipe_config)
9792 {
9793 int bpp = pipe_config->pipe_bpp;
9794
9795 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9796 connector->base.base.id,
9797 connector->base.name);
9798
9799 /* Don't use an invalid EDID bpc value */
9800 if (connector->base.display_info.bpc &&
9801 connector->base.display_info.bpc * 3 < bpp) {
9802 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9803 bpp, connector->base.display_info.bpc*3);
9804 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9805 }
9806
9807 /* Clamp bpp to 8 on screens without EDID 1.4 */
9808 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9809 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9810 bpp);
9811 pipe_config->pipe_bpp = 24;
9812 }
9813 }
9814
9815 static int
9816 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9817 struct drm_framebuffer *fb,
9818 struct intel_crtc_config *pipe_config)
9819 {
9820 struct drm_device *dev = crtc->base.dev;
9821 struct intel_connector *connector;
9822 int bpp;
9823
9824 switch (fb->pixel_format) {
9825 case DRM_FORMAT_C8:
9826 bpp = 8*3; /* since we go through a colormap */
9827 break;
9828 case DRM_FORMAT_XRGB1555:
9829 case DRM_FORMAT_ARGB1555:
9830 /* checked in intel_framebuffer_init already */
9831 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9832 return -EINVAL;
9833 case DRM_FORMAT_RGB565:
9834 bpp = 6*3; /* min is 18bpp */
9835 break;
9836 case DRM_FORMAT_XBGR8888:
9837 case DRM_FORMAT_ABGR8888:
9838 /* checked in intel_framebuffer_init already */
9839 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9840 return -EINVAL;
9841 case DRM_FORMAT_XRGB8888:
9842 case DRM_FORMAT_ARGB8888:
9843 bpp = 8*3;
9844 break;
9845 case DRM_FORMAT_XRGB2101010:
9846 case DRM_FORMAT_ARGB2101010:
9847 case DRM_FORMAT_XBGR2101010:
9848 case DRM_FORMAT_ABGR2101010:
9849 /* checked in intel_framebuffer_init already */
9850 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9851 return -EINVAL;
9852 bpp = 10*3;
9853 break;
9854 /* TODO: gen4+ supports 16 bpc floating point, too. */
9855 default:
9856 DRM_DEBUG_KMS("unsupported depth\n");
9857 return -EINVAL;
9858 }
9859
9860 pipe_config->pipe_bpp = bpp;
9861
9862 /* Clamp display bpp to EDID value */
9863 list_for_each_entry(connector, &dev->mode_config.connector_list,
9864 base.head) {
9865 if (!connector->new_encoder ||
9866 connector->new_encoder->new_crtc != crtc)
9867 continue;
9868
9869 connected_sink_compute_bpp(connector, pipe_config);
9870 }
9871
9872 return bpp;
9873 }
9874
9875 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9876 {
9877 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9878 "type: 0x%x flags: 0x%x\n",
9879 mode->crtc_clock,
9880 mode->crtc_hdisplay, mode->crtc_hsync_start,
9881 mode->crtc_hsync_end, mode->crtc_htotal,
9882 mode->crtc_vdisplay, mode->crtc_vsync_start,
9883 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9884 }
9885
9886 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9887 struct intel_crtc_config *pipe_config,
9888 const char *context)
9889 {
9890 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9891 context, pipe_name(crtc->pipe));
9892
9893 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9894 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9895 pipe_config->pipe_bpp, pipe_config->dither);
9896 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9897 pipe_config->has_pch_encoder,
9898 pipe_config->fdi_lanes,
9899 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9900 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9901 pipe_config->fdi_m_n.tu);
9902 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9903 pipe_config->has_dp_encoder,
9904 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9905 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9906 pipe_config->dp_m_n.tu);
9907 DRM_DEBUG_KMS("requested mode:\n");
9908 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9909 DRM_DEBUG_KMS("adjusted mode:\n");
9910 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
9911 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
9912 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
9913 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9914 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
9915 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9916 pipe_config->gmch_pfit.control,
9917 pipe_config->gmch_pfit.pgm_ratios,
9918 pipe_config->gmch_pfit.lvds_border_bits);
9919 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
9920 pipe_config->pch_pfit.pos,
9921 pipe_config->pch_pfit.size,
9922 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
9923 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
9924 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
9925 }
9926
9927 static bool encoders_cloneable(const struct intel_encoder *a,
9928 const struct intel_encoder *b)
9929 {
9930 /* masks could be asymmetric, so check both ways */
9931 return a == b || (a->cloneable & (1 << b->type) &&
9932 b->cloneable & (1 << a->type));
9933 }
9934
9935 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9936 struct intel_encoder *encoder)
9937 {
9938 struct drm_device *dev = crtc->base.dev;
9939 struct intel_encoder *source_encoder;
9940
9941 list_for_each_entry(source_encoder,
9942 &dev->mode_config.encoder_list, base.head) {
9943 if (source_encoder->new_crtc != crtc)
9944 continue;
9945
9946 if (!encoders_cloneable(encoder, source_encoder))
9947 return false;
9948 }
9949
9950 return true;
9951 }
9952
9953 static bool check_encoder_cloning(struct intel_crtc *crtc)
9954 {
9955 struct drm_device *dev = crtc->base.dev;
9956 struct intel_encoder *encoder;
9957
9958 list_for_each_entry(encoder,
9959 &dev->mode_config.encoder_list, base.head) {
9960 if (encoder->new_crtc != crtc)
9961 continue;
9962
9963 if (!check_single_encoder_cloning(crtc, encoder))
9964 return false;
9965 }
9966
9967 return true;
9968 }
9969
9970 static struct intel_crtc_config *
9971 intel_modeset_pipe_config(struct drm_crtc *crtc,
9972 struct drm_framebuffer *fb,
9973 struct drm_display_mode *mode)
9974 {
9975 struct drm_device *dev = crtc->dev;
9976 struct intel_encoder *encoder;
9977 struct intel_crtc_config *pipe_config;
9978 int plane_bpp, ret = -EINVAL;
9979 bool retry = true;
9980
9981 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
9982 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
9983 return ERR_PTR(-EINVAL);
9984 }
9985
9986 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
9987 if (!pipe_config)
9988 return ERR_PTR(-ENOMEM);
9989
9990 drm_mode_copy(&pipe_config->adjusted_mode, mode);
9991 drm_mode_copy(&pipe_config->requested_mode, mode);
9992
9993 pipe_config->cpu_transcoder =
9994 (enum transcoder) to_intel_crtc(crtc)->pipe;
9995 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9996
9997 /*
9998 * Sanitize sync polarity flags based on requested ones. If neither
9999 * positive or negative polarity is requested, treat this as meaning
10000 * negative polarity.
10001 */
10002 if (!(pipe_config->adjusted_mode.flags &
10003 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10004 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10005
10006 if (!(pipe_config->adjusted_mode.flags &
10007 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10008 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10009
10010 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10011 * plane pixel format and any sink constraints into account. Returns the
10012 * source plane bpp so that dithering can be selected on mismatches
10013 * after encoders and crtc also have had their say. */
10014 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10015 fb, pipe_config);
10016 if (plane_bpp < 0)
10017 goto fail;
10018
10019 /*
10020 * Determine the real pipe dimensions. Note that stereo modes can
10021 * increase the actual pipe size due to the frame doubling and
10022 * insertion of additional space for blanks between the frame. This
10023 * is stored in the crtc timings. We use the requested mode to do this
10024 * computation to clearly distinguish it from the adjusted mode, which
10025 * can be changed by the connectors in the below retry loop.
10026 */
10027 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10028 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10029 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10030
10031 encoder_retry:
10032 /* Ensure the port clock defaults are reset when retrying. */
10033 pipe_config->port_clock = 0;
10034 pipe_config->pixel_multiplier = 1;
10035
10036 /* Fill in default crtc timings, allow encoders to overwrite them. */
10037 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
10038
10039 /* Pass our mode to the connectors and the CRTC to give them a chance to
10040 * adjust it according to limitations or connector properties, and also
10041 * a chance to reject the mode entirely.
10042 */
10043 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10044 base.head) {
10045
10046 if (&encoder->new_crtc->base != crtc)
10047 continue;
10048
10049 if (!(encoder->compute_config(encoder, pipe_config))) {
10050 DRM_DEBUG_KMS("Encoder config failure\n");
10051 goto fail;
10052 }
10053 }
10054
10055 /* Set default port clock if not overwritten by the encoder. Needs to be
10056 * done afterwards in case the encoder adjusts the mode. */
10057 if (!pipe_config->port_clock)
10058 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10059 * pipe_config->pixel_multiplier;
10060
10061 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10062 if (ret < 0) {
10063 DRM_DEBUG_KMS("CRTC fixup failed\n");
10064 goto fail;
10065 }
10066
10067 if (ret == RETRY) {
10068 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10069 ret = -EINVAL;
10070 goto fail;
10071 }
10072
10073 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10074 retry = false;
10075 goto encoder_retry;
10076 }
10077
10078 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10079 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10080 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10081
10082 return pipe_config;
10083 fail:
10084 kfree(pipe_config);
10085 return ERR_PTR(ret);
10086 }
10087
10088 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10089 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10090 static void
10091 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10092 unsigned *prepare_pipes, unsigned *disable_pipes)
10093 {
10094 struct intel_crtc *intel_crtc;
10095 struct drm_device *dev = crtc->dev;
10096 struct intel_encoder *encoder;
10097 struct intel_connector *connector;
10098 struct drm_crtc *tmp_crtc;
10099
10100 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10101
10102 /* Check which crtcs have changed outputs connected to them, these need
10103 * to be part of the prepare_pipes mask. We don't (yet) support global
10104 * modeset across multiple crtcs, so modeset_pipes will only have one
10105 * bit set at most. */
10106 list_for_each_entry(connector, &dev->mode_config.connector_list,
10107 base.head) {
10108 if (connector->base.encoder == &connector->new_encoder->base)
10109 continue;
10110
10111 if (connector->base.encoder) {
10112 tmp_crtc = connector->base.encoder->crtc;
10113
10114 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10115 }
10116
10117 if (connector->new_encoder)
10118 *prepare_pipes |=
10119 1 << connector->new_encoder->new_crtc->pipe;
10120 }
10121
10122 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10123 base.head) {
10124 if (encoder->base.crtc == &encoder->new_crtc->base)
10125 continue;
10126
10127 if (encoder->base.crtc) {
10128 tmp_crtc = encoder->base.crtc;
10129
10130 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10131 }
10132
10133 if (encoder->new_crtc)
10134 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10135 }
10136
10137 /* Check for pipes that will be enabled/disabled ... */
10138 for_each_intel_crtc(dev, intel_crtc) {
10139 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10140 continue;
10141
10142 if (!intel_crtc->new_enabled)
10143 *disable_pipes |= 1 << intel_crtc->pipe;
10144 else
10145 *prepare_pipes |= 1 << intel_crtc->pipe;
10146 }
10147
10148
10149 /* set_mode is also used to update properties on life display pipes. */
10150 intel_crtc = to_intel_crtc(crtc);
10151 if (intel_crtc->new_enabled)
10152 *prepare_pipes |= 1 << intel_crtc->pipe;
10153
10154 /*
10155 * For simplicity do a full modeset on any pipe where the output routing
10156 * changed. We could be more clever, but that would require us to be
10157 * more careful with calling the relevant encoder->mode_set functions.
10158 */
10159 if (*prepare_pipes)
10160 *modeset_pipes = *prepare_pipes;
10161
10162 /* ... and mask these out. */
10163 *modeset_pipes &= ~(*disable_pipes);
10164 *prepare_pipes &= ~(*disable_pipes);
10165
10166 /*
10167 * HACK: We don't (yet) fully support global modesets. intel_set_config
10168 * obies this rule, but the modeset restore mode of
10169 * intel_modeset_setup_hw_state does not.
10170 */
10171 *modeset_pipes &= 1 << intel_crtc->pipe;
10172 *prepare_pipes &= 1 << intel_crtc->pipe;
10173
10174 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10175 *modeset_pipes, *prepare_pipes, *disable_pipes);
10176 }
10177
10178 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10179 {
10180 struct drm_encoder *encoder;
10181 struct drm_device *dev = crtc->dev;
10182
10183 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10184 if (encoder->crtc == crtc)
10185 return true;
10186
10187 return false;
10188 }
10189
10190 static void
10191 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10192 {
10193 struct intel_encoder *intel_encoder;
10194 struct intel_crtc *intel_crtc;
10195 struct drm_connector *connector;
10196
10197 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
10198 base.head) {
10199 if (!intel_encoder->base.crtc)
10200 continue;
10201
10202 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10203
10204 if (prepare_pipes & (1 << intel_crtc->pipe))
10205 intel_encoder->connectors_active = false;
10206 }
10207
10208 intel_modeset_commit_output_state(dev);
10209
10210 /* Double check state. */
10211 for_each_intel_crtc(dev, intel_crtc) {
10212 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10213 WARN_ON(intel_crtc->new_config &&
10214 intel_crtc->new_config != &intel_crtc->config);
10215 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10216 }
10217
10218 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10219 if (!connector->encoder || !connector->encoder->crtc)
10220 continue;
10221
10222 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10223
10224 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10225 struct drm_property *dpms_property =
10226 dev->mode_config.dpms_property;
10227
10228 connector->dpms = DRM_MODE_DPMS_ON;
10229 drm_object_property_set_value(&connector->base,
10230 dpms_property,
10231 DRM_MODE_DPMS_ON);
10232
10233 intel_encoder = to_intel_encoder(connector->encoder);
10234 intel_encoder->connectors_active = true;
10235 }
10236 }
10237
10238 }
10239
10240 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10241 {
10242 int diff;
10243
10244 if (clock1 == clock2)
10245 return true;
10246
10247 if (!clock1 || !clock2)
10248 return false;
10249
10250 diff = abs(clock1 - clock2);
10251
10252 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10253 return true;
10254
10255 return false;
10256 }
10257
10258 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10259 list_for_each_entry((intel_crtc), \
10260 &(dev)->mode_config.crtc_list, \
10261 base.head) \
10262 if (mask & (1 <<(intel_crtc)->pipe))
10263
10264 static bool
10265 intel_pipe_config_compare(struct drm_device *dev,
10266 struct intel_crtc_config *current_config,
10267 struct intel_crtc_config *pipe_config)
10268 {
10269 #define PIPE_CONF_CHECK_X(name) \
10270 if (current_config->name != pipe_config->name) { \
10271 DRM_ERROR("mismatch in " #name " " \
10272 "(expected 0x%08x, found 0x%08x)\n", \
10273 current_config->name, \
10274 pipe_config->name); \
10275 return false; \
10276 }
10277
10278 #define PIPE_CONF_CHECK_I(name) \
10279 if (current_config->name != pipe_config->name) { \
10280 DRM_ERROR("mismatch in " #name " " \
10281 "(expected %i, found %i)\n", \
10282 current_config->name, \
10283 pipe_config->name); \
10284 return false; \
10285 }
10286
10287 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
10288 if ((current_config->name ^ pipe_config->name) & (mask)) { \
10289 DRM_ERROR("mismatch in " #name "(" #mask ") " \
10290 "(expected %i, found %i)\n", \
10291 current_config->name & (mask), \
10292 pipe_config->name & (mask)); \
10293 return false; \
10294 }
10295
10296 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10297 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10298 DRM_ERROR("mismatch in " #name " " \
10299 "(expected %i, found %i)\n", \
10300 current_config->name, \
10301 pipe_config->name); \
10302 return false; \
10303 }
10304
10305 #define PIPE_CONF_QUIRK(quirk) \
10306 ((current_config->quirks | pipe_config->quirks) & (quirk))
10307
10308 PIPE_CONF_CHECK_I(cpu_transcoder);
10309
10310 PIPE_CONF_CHECK_I(has_pch_encoder);
10311 PIPE_CONF_CHECK_I(fdi_lanes);
10312 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10313 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10314 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10315 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10316 PIPE_CONF_CHECK_I(fdi_m_n.tu);
10317
10318 PIPE_CONF_CHECK_I(has_dp_encoder);
10319 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10320 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10321 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10322 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10323 PIPE_CONF_CHECK_I(dp_m_n.tu);
10324
10325 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10326 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10327 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10328 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10329 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10330 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10331
10332 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10333 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10334 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10335 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10336 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10337 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10338
10339 PIPE_CONF_CHECK_I(pixel_multiplier);
10340 PIPE_CONF_CHECK_I(has_hdmi_sink);
10341 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10342 IS_VALLEYVIEW(dev))
10343 PIPE_CONF_CHECK_I(limited_color_range);
10344
10345 PIPE_CONF_CHECK_I(has_audio);
10346
10347 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10348 DRM_MODE_FLAG_INTERLACE);
10349
10350 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10351 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10352 DRM_MODE_FLAG_PHSYNC);
10353 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10354 DRM_MODE_FLAG_NHSYNC);
10355 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10356 DRM_MODE_FLAG_PVSYNC);
10357 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10358 DRM_MODE_FLAG_NVSYNC);
10359 }
10360
10361 PIPE_CONF_CHECK_I(pipe_src_w);
10362 PIPE_CONF_CHECK_I(pipe_src_h);
10363
10364 /*
10365 * FIXME: BIOS likes to set up a cloned config with lvds+external
10366 * screen. Since we don't yet re-compute the pipe config when moving
10367 * just the lvds port away to another pipe the sw tracking won't match.
10368 *
10369 * Proper atomic modesets with recomputed global state will fix this.
10370 * Until then just don't check gmch state for inherited modes.
10371 */
10372 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10373 PIPE_CONF_CHECK_I(gmch_pfit.control);
10374 /* pfit ratios are autocomputed by the hw on gen4+ */
10375 if (INTEL_INFO(dev)->gen < 4)
10376 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10377 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10378 }
10379
10380 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10381 if (current_config->pch_pfit.enabled) {
10382 PIPE_CONF_CHECK_I(pch_pfit.pos);
10383 PIPE_CONF_CHECK_I(pch_pfit.size);
10384 }
10385
10386 /* BDW+ don't expose a synchronous way to read the state */
10387 if (IS_HASWELL(dev))
10388 PIPE_CONF_CHECK_I(ips_enabled);
10389
10390 PIPE_CONF_CHECK_I(double_wide);
10391
10392 PIPE_CONF_CHECK_I(shared_dpll);
10393 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10394 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10395 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10396 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10397
10398 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10399 PIPE_CONF_CHECK_I(pipe_bpp);
10400
10401 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10402 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10403
10404 #undef PIPE_CONF_CHECK_X
10405 #undef PIPE_CONF_CHECK_I
10406 #undef PIPE_CONF_CHECK_FLAGS
10407 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10408 #undef PIPE_CONF_QUIRK
10409
10410 return true;
10411 }
10412
10413 static void
10414 check_connector_state(struct drm_device *dev)
10415 {
10416 struct intel_connector *connector;
10417
10418 list_for_each_entry(connector, &dev->mode_config.connector_list,
10419 base.head) {
10420 /* This also checks the encoder/connector hw state with the
10421 * ->get_hw_state callbacks. */
10422 intel_connector_check_state(connector);
10423
10424 WARN(&connector->new_encoder->base != connector->base.encoder,
10425 "connector's staged encoder doesn't match current encoder\n");
10426 }
10427 }
10428
10429 static void
10430 check_encoder_state(struct drm_device *dev)
10431 {
10432 struct intel_encoder *encoder;
10433 struct intel_connector *connector;
10434
10435 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10436 base.head) {
10437 bool enabled = false;
10438 bool active = false;
10439 enum pipe pipe, tracked_pipe;
10440
10441 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10442 encoder->base.base.id,
10443 encoder->base.name);
10444
10445 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10446 "encoder's stage crtc doesn't match current crtc\n");
10447 WARN(encoder->connectors_active && !encoder->base.crtc,
10448 "encoder's active_connectors set, but no crtc\n");
10449
10450 list_for_each_entry(connector, &dev->mode_config.connector_list,
10451 base.head) {
10452 if (connector->base.encoder != &encoder->base)
10453 continue;
10454 enabled = true;
10455 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10456 active = true;
10457 }
10458 WARN(!!encoder->base.crtc != enabled,
10459 "encoder's enabled state mismatch "
10460 "(expected %i, found %i)\n",
10461 !!encoder->base.crtc, enabled);
10462 WARN(active && !encoder->base.crtc,
10463 "active encoder with no crtc\n");
10464
10465 WARN(encoder->connectors_active != active,
10466 "encoder's computed active state doesn't match tracked active state "
10467 "(expected %i, found %i)\n", active, encoder->connectors_active);
10468
10469 active = encoder->get_hw_state(encoder, &pipe);
10470 WARN(active != encoder->connectors_active,
10471 "encoder's hw state doesn't match sw tracking "
10472 "(expected %i, found %i)\n",
10473 encoder->connectors_active, active);
10474
10475 if (!encoder->base.crtc)
10476 continue;
10477
10478 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10479 WARN(active && pipe != tracked_pipe,
10480 "active encoder's pipe doesn't match"
10481 "(expected %i, found %i)\n",
10482 tracked_pipe, pipe);
10483
10484 }
10485 }
10486
10487 static void
10488 check_crtc_state(struct drm_device *dev)
10489 {
10490 struct drm_i915_private *dev_priv = dev->dev_private;
10491 struct intel_crtc *crtc;
10492 struct intel_encoder *encoder;
10493 struct intel_crtc_config pipe_config;
10494
10495 for_each_intel_crtc(dev, crtc) {
10496 bool enabled = false;
10497 bool active = false;
10498
10499 memset(&pipe_config, 0, sizeof(pipe_config));
10500
10501 DRM_DEBUG_KMS("[CRTC:%d]\n",
10502 crtc->base.base.id);
10503
10504 WARN(crtc->active && !crtc->base.enabled,
10505 "active crtc, but not enabled in sw tracking\n");
10506
10507 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10508 base.head) {
10509 if (encoder->base.crtc != &crtc->base)
10510 continue;
10511 enabled = true;
10512 if (encoder->connectors_active)
10513 active = true;
10514 }
10515
10516 WARN(active != crtc->active,
10517 "crtc's computed active state doesn't match tracked active state "
10518 "(expected %i, found %i)\n", active, crtc->active);
10519 WARN(enabled != crtc->base.enabled,
10520 "crtc's computed enabled state doesn't match tracked enabled state "
10521 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10522
10523 active = dev_priv->display.get_pipe_config(crtc,
10524 &pipe_config);
10525
10526 /* hw state is inconsistent with the pipe A quirk */
10527 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10528 active = crtc->active;
10529
10530 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10531 base.head) {
10532 enum pipe pipe;
10533 if (encoder->base.crtc != &crtc->base)
10534 continue;
10535 if (encoder->get_hw_state(encoder, &pipe))
10536 encoder->get_config(encoder, &pipe_config);
10537 }
10538
10539 WARN(crtc->active != active,
10540 "crtc active state doesn't match with hw state "
10541 "(expected %i, found %i)\n", crtc->active, active);
10542
10543 if (active &&
10544 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10545 WARN(1, "pipe state doesn't match!\n");
10546 intel_dump_pipe_config(crtc, &pipe_config,
10547 "[hw state]");
10548 intel_dump_pipe_config(crtc, &crtc->config,
10549 "[sw state]");
10550 }
10551 }
10552 }
10553
10554 static void
10555 check_shared_dpll_state(struct drm_device *dev)
10556 {
10557 struct drm_i915_private *dev_priv = dev->dev_private;
10558 struct intel_crtc *crtc;
10559 struct intel_dpll_hw_state dpll_hw_state;
10560 int i;
10561
10562 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10563 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10564 int enabled_crtcs = 0, active_crtcs = 0;
10565 bool active;
10566
10567 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10568
10569 DRM_DEBUG_KMS("%s\n", pll->name);
10570
10571 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10572
10573 WARN(pll->active > pll->refcount,
10574 "more active pll users than references: %i vs %i\n",
10575 pll->active, pll->refcount);
10576 WARN(pll->active && !pll->on,
10577 "pll in active use but not on in sw tracking\n");
10578 WARN(pll->on && !pll->active,
10579 "pll in on but not on in use in sw tracking\n");
10580 WARN(pll->on != active,
10581 "pll on state mismatch (expected %i, found %i)\n",
10582 pll->on, active);
10583
10584 for_each_intel_crtc(dev, crtc) {
10585 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10586 enabled_crtcs++;
10587 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10588 active_crtcs++;
10589 }
10590 WARN(pll->active != active_crtcs,
10591 "pll active crtcs mismatch (expected %i, found %i)\n",
10592 pll->active, active_crtcs);
10593 WARN(pll->refcount != enabled_crtcs,
10594 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10595 pll->refcount, enabled_crtcs);
10596
10597 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10598 sizeof(dpll_hw_state)),
10599 "pll hw state mismatch\n");
10600 }
10601 }
10602
10603 void
10604 intel_modeset_check_state(struct drm_device *dev)
10605 {
10606 check_connector_state(dev);
10607 check_encoder_state(dev);
10608 check_crtc_state(dev);
10609 check_shared_dpll_state(dev);
10610 }
10611
10612 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10613 int dotclock)
10614 {
10615 /*
10616 * FDI already provided one idea for the dotclock.
10617 * Yell if the encoder disagrees.
10618 */
10619 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10620 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10621 pipe_config->adjusted_mode.crtc_clock, dotclock);
10622 }
10623
10624 static void update_scanline_offset(struct intel_crtc *crtc)
10625 {
10626 struct drm_device *dev = crtc->base.dev;
10627
10628 /*
10629 * The scanline counter increments at the leading edge of hsync.
10630 *
10631 * On most platforms it starts counting from vtotal-1 on the
10632 * first active line. That means the scanline counter value is
10633 * always one less than what we would expect. Ie. just after
10634 * start of vblank, which also occurs at start of hsync (on the
10635 * last active line), the scanline counter will read vblank_start-1.
10636 *
10637 * On gen2 the scanline counter starts counting from 1 instead
10638 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10639 * to keep the value positive), instead of adding one.
10640 *
10641 * On HSW+ the behaviour of the scanline counter depends on the output
10642 * type. For DP ports it behaves like most other platforms, but on HDMI
10643 * there's an extra 1 line difference. So we need to add two instead of
10644 * one to the value.
10645 */
10646 if (IS_GEN2(dev)) {
10647 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10648 int vtotal;
10649
10650 vtotal = mode->crtc_vtotal;
10651 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10652 vtotal /= 2;
10653
10654 crtc->scanline_offset = vtotal - 1;
10655 } else if (HAS_DDI(dev) &&
10656 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10657 crtc->scanline_offset = 2;
10658 } else
10659 crtc->scanline_offset = 1;
10660 }
10661
10662 static int __intel_set_mode(struct drm_crtc *crtc,
10663 struct drm_display_mode *mode,
10664 int x, int y, struct drm_framebuffer *fb)
10665 {
10666 struct drm_device *dev = crtc->dev;
10667 struct drm_i915_private *dev_priv = dev->dev_private;
10668 struct drm_display_mode *saved_mode;
10669 struct intel_crtc_config *pipe_config = NULL;
10670 struct intel_crtc *intel_crtc;
10671 unsigned disable_pipes, prepare_pipes, modeset_pipes;
10672 int ret = 0;
10673
10674 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
10675 if (!saved_mode)
10676 return -ENOMEM;
10677
10678 intel_modeset_affected_pipes(crtc, &modeset_pipes,
10679 &prepare_pipes, &disable_pipes);
10680
10681 *saved_mode = crtc->mode;
10682
10683 /* Hack: Because we don't (yet) support global modeset on multiple
10684 * crtcs, we don't keep track of the new mode for more than one crtc.
10685 * Hence simply check whether any bit is set in modeset_pipes in all the
10686 * pieces of code that are not yet converted to deal with mutliple crtcs
10687 * changing their mode at the same time. */
10688 if (modeset_pipes) {
10689 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
10690 if (IS_ERR(pipe_config)) {
10691 ret = PTR_ERR(pipe_config);
10692 pipe_config = NULL;
10693
10694 goto out;
10695 }
10696 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10697 "[modeset]");
10698 to_intel_crtc(crtc)->new_config = pipe_config;
10699 }
10700
10701 /*
10702 * See if the config requires any additional preparation, e.g.
10703 * to adjust global state with pipes off. We need to do this
10704 * here so we can get the modeset_pipe updated config for the new
10705 * mode set on this crtc. For other crtcs we need to use the
10706 * adjusted_mode bits in the crtc directly.
10707 */
10708 if (IS_VALLEYVIEW(dev)) {
10709 valleyview_modeset_global_pipes(dev, &prepare_pipes);
10710
10711 /* may have added more to prepare_pipes than we should */
10712 prepare_pipes &= ~disable_pipes;
10713 }
10714
10715 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10716 intel_crtc_disable(&intel_crtc->base);
10717
10718 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10719 if (intel_crtc->base.enabled)
10720 dev_priv->display.crtc_disable(&intel_crtc->base);
10721 }
10722
10723 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10724 * to set it here already despite that we pass it down the callchain.
10725 */
10726 if (modeset_pipes) {
10727 crtc->mode = *mode;
10728 /* mode_set/enable/disable functions rely on a correct pipe
10729 * config. */
10730 to_intel_crtc(crtc)->config = *pipe_config;
10731 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
10732
10733 /*
10734 * Calculate and store various constants which
10735 * are later needed by vblank and swap-completion
10736 * timestamping. They are derived from true hwmode.
10737 */
10738 drm_calc_timestamping_constants(crtc,
10739 &pipe_config->adjusted_mode);
10740 }
10741
10742 /* Only after disabling all output pipelines that will be changed can we
10743 * update the the output configuration. */
10744 intel_modeset_update_state(dev, prepare_pipes);
10745
10746 if (dev_priv->display.modeset_global_resources)
10747 dev_priv->display.modeset_global_resources(dev);
10748
10749 /* Set up the DPLL and any encoders state that needs to adjust or depend
10750 * on the DPLL.
10751 */
10752 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10753 struct drm_framebuffer *old_fb;
10754 struct drm_i915_gem_object *old_obj = NULL;
10755 struct drm_i915_gem_object *obj =
10756 to_intel_framebuffer(fb)->obj;
10757
10758 mutex_lock(&dev->struct_mutex);
10759 ret = intel_pin_and_fence_fb_obj(dev,
10760 obj,
10761 NULL);
10762 if (ret != 0) {
10763 DRM_ERROR("pin & fence failed\n");
10764 mutex_unlock(&dev->struct_mutex);
10765 goto done;
10766 }
10767 old_fb = crtc->primary->fb;
10768 if (old_fb) {
10769 old_obj = to_intel_framebuffer(old_fb)->obj;
10770 intel_unpin_fb_obj(old_obj);
10771 }
10772 i915_gem_track_fb(old_obj, obj,
10773 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
10774 mutex_unlock(&dev->struct_mutex);
10775
10776 crtc->primary->fb = fb;
10777 crtc->x = x;
10778 crtc->y = y;
10779
10780 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10781 x, y, fb);
10782 if (ret)
10783 goto done;
10784 }
10785
10786 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
10787 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10788 update_scanline_offset(intel_crtc);
10789
10790 dev_priv->display.crtc_enable(&intel_crtc->base);
10791 }
10792
10793 /* FIXME: add subpixel order */
10794 done:
10795 if (ret && crtc->enabled)
10796 crtc->mode = *saved_mode;
10797
10798 out:
10799 kfree(pipe_config);
10800 kfree(saved_mode);
10801 return ret;
10802 }
10803
10804 static int intel_set_mode(struct drm_crtc *crtc,
10805 struct drm_display_mode *mode,
10806 int x, int y, struct drm_framebuffer *fb)
10807 {
10808 int ret;
10809
10810 ret = __intel_set_mode(crtc, mode, x, y, fb);
10811
10812 if (ret == 0)
10813 intel_modeset_check_state(crtc->dev);
10814
10815 return ret;
10816 }
10817
10818 void intel_crtc_restore_mode(struct drm_crtc *crtc)
10819 {
10820 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
10821 }
10822
10823 #undef for_each_intel_crtc_masked
10824
10825 static void intel_set_config_free(struct intel_set_config *config)
10826 {
10827 if (!config)
10828 return;
10829
10830 kfree(config->save_connector_encoders);
10831 kfree(config->save_encoder_crtcs);
10832 kfree(config->save_crtc_enabled);
10833 kfree(config);
10834 }
10835
10836 static int intel_set_config_save_state(struct drm_device *dev,
10837 struct intel_set_config *config)
10838 {
10839 struct drm_crtc *crtc;
10840 struct drm_encoder *encoder;
10841 struct drm_connector *connector;
10842 int count;
10843
10844 config->save_crtc_enabled =
10845 kcalloc(dev->mode_config.num_crtc,
10846 sizeof(bool), GFP_KERNEL);
10847 if (!config->save_crtc_enabled)
10848 return -ENOMEM;
10849
10850 config->save_encoder_crtcs =
10851 kcalloc(dev->mode_config.num_encoder,
10852 sizeof(struct drm_crtc *), GFP_KERNEL);
10853 if (!config->save_encoder_crtcs)
10854 return -ENOMEM;
10855
10856 config->save_connector_encoders =
10857 kcalloc(dev->mode_config.num_connector,
10858 sizeof(struct drm_encoder *), GFP_KERNEL);
10859 if (!config->save_connector_encoders)
10860 return -ENOMEM;
10861
10862 /* Copy data. Note that driver private data is not affected.
10863 * Should anything bad happen only the expected state is
10864 * restored, not the drivers personal bookkeeping.
10865 */
10866 count = 0;
10867 for_each_crtc(dev, crtc) {
10868 config->save_crtc_enabled[count++] = crtc->enabled;
10869 }
10870
10871 count = 0;
10872 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
10873 config->save_encoder_crtcs[count++] = encoder->crtc;
10874 }
10875
10876 count = 0;
10877 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10878 config->save_connector_encoders[count++] = connector->encoder;
10879 }
10880
10881 return 0;
10882 }
10883
10884 static void intel_set_config_restore_state(struct drm_device *dev,
10885 struct intel_set_config *config)
10886 {
10887 struct intel_crtc *crtc;
10888 struct intel_encoder *encoder;
10889 struct intel_connector *connector;
10890 int count;
10891
10892 count = 0;
10893 for_each_intel_crtc(dev, crtc) {
10894 crtc->new_enabled = config->save_crtc_enabled[count++];
10895
10896 if (crtc->new_enabled)
10897 crtc->new_config = &crtc->config;
10898 else
10899 crtc->new_config = NULL;
10900 }
10901
10902 count = 0;
10903 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10904 encoder->new_crtc =
10905 to_intel_crtc(config->save_encoder_crtcs[count++]);
10906 }
10907
10908 count = 0;
10909 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10910 connector->new_encoder =
10911 to_intel_encoder(config->save_connector_encoders[count++]);
10912 }
10913 }
10914
10915 static bool
10916 is_crtc_connector_off(struct drm_mode_set *set)
10917 {
10918 int i;
10919
10920 if (set->num_connectors == 0)
10921 return false;
10922
10923 if (WARN_ON(set->connectors == NULL))
10924 return false;
10925
10926 for (i = 0; i < set->num_connectors; i++)
10927 if (set->connectors[i]->encoder &&
10928 set->connectors[i]->encoder->crtc == set->crtc &&
10929 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
10930 return true;
10931
10932 return false;
10933 }
10934
10935 static void
10936 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
10937 struct intel_set_config *config)
10938 {
10939
10940 /* We should be able to check here if the fb has the same properties
10941 * and then just flip_or_move it */
10942 if (is_crtc_connector_off(set)) {
10943 config->mode_changed = true;
10944 } else if (set->crtc->primary->fb != set->fb) {
10945 /*
10946 * If we have no fb, we can only flip as long as the crtc is
10947 * active, otherwise we need a full mode set. The crtc may
10948 * be active if we've only disabled the primary plane, or
10949 * in fastboot situations.
10950 */
10951 if (set->crtc->primary->fb == NULL) {
10952 struct intel_crtc *intel_crtc =
10953 to_intel_crtc(set->crtc);
10954
10955 if (intel_crtc->active) {
10956 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
10957 config->fb_changed = true;
10958 } else {
10959 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
10960 config->mode_changed = true;
10961 }
10962 } else if (set->fb == NULL) {
10963 config->mode_changed = true;
10964 } else if (set->fb->pixel_format !=
10965 set->crtc->primary->fb->pixel_format) {
10966 config->mode_changed = true;
10967 } else {
10968 config->fb_changed = true;
10969 }
10970 }
10971
10972 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
10973 config->fb_changed = true;
10974
10975 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
10976 DRM_DEBUG_KMS("modes are different, full mode set\n");
10977 drm_mode_debug_printmodeline(&set->crtc->mode);
10978 drm_mode_debug_printmodeline(set->mode);
10979 config->mode_changed = true;
10980 }
10981
10982 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
10983 set->crtc->base.id, config->mode_changed, config->fb_changed);
10984 }
10985
10986 static int
10987 intel_modeset_stage_output_state(struct drm_device *dev,
10988 struct drm_mode_set *set,
10989 struct intel_set_config *config)
10990 {
10991 struct intel_connector *connector;
10992 struct intel_encoder *encoder;
10993 struct intel_crtc *crtc;
10994 int ro;
10995
10996 /* The upper layers ensure that we either disable a crtc or have a list
10997 * of connectors. For paranoia, double-check this. */
10998 WARN_ON(!set->fb && (set->num_connectors != 0));
10999 WARN_ON(set->fb && (set->num_connectors == 0));
11000
11001 list_for_each_entry(connector, &dev->mode_config.connector_list,
11002 base.head) {
11003 /* Otherwise traverse passed in connector list and get encoders
11004 * for them. */
11005 for (ro = 0; ro < set->num_connectors; ro++) {
11006 if (set->connectors[ro] == &connector->base) {
11007 connector->new_encoder = connector->encoder;
11008 break;
11009 }
11010 }
11011
11012 /* If we disable the crtc, disable all its connectors. Also, if
11013 * the connector is on the changing crtc but not on the new
11014 * connector list, disable it. */
11015 if ((!set->fb || ro == set->num_connectors) &&
11016 connector->base.encoder &&
11017 connector->base.encoder->crtc == set->crtc) {
11018 connector->new_encoder = NULL;
11019
11020 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11021 connector->base.base.id,
11022 connector->base.name);
11023 }
11024
11025
11026 if (&connector->new_encoder->base != connector->base.encoder) {
11027 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11028 config->mode_changed = true;
11029 }
11030 }
11031 /* connector->new_encoder is now updated for all connectors. */
11032
11033 /* Update crtc of enabled connectors. */
11034 list_for_each_entry(connector, &dev->mode_config.connector_list,
11035 base.head) {
11036 struct drm_crtc *new_crtc;
11037
11038 if (!connector->new_encoder)
11039 continue;
11040
11041 new_crtc = connector->new_encoder->base.crtc;
11042
11043 for (ro = 0; ro < set->num_connectors; ro++) {
11044 if (set->connectors[ro] == &connector->base)
11045 new_crtc = set->crtc;
11046 }
11047
11048 /* Make sure the new CRTC will work with the encoder */
11049 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11050 new_crtc)) {
11051 return -EINVAL;
11052 }
11053 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
11054
11055 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11056 connector->base.base.id,
11057 connector->base.name,
11058 new_crtc->base.id);
11059 }
11060
11061 /* Check for any encoders that needs to be disabled. */
11062 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11063 base.head) {
11064 int num_connectors = 0;
11065 list_for_each_entry(connector,
11066 &dev->mode_config.connector_list,
11067 base.head) {
11068 if (connector->new_encoder == encoder) {
11069 WARN_ON(!connector->new_encoder->new_crtc);
11070 num_connectors++;
11071 }
11072 }
11073
11074 if (num_connectors == 0)
11075 encoder->new_crtc = NULL;
11076 else if (num_connectors > 1)
11077 return -EINVAL;
11078
11079 /* Only now check for crtc changes so we don't miss encoders
11080 * that will be disabled. */
11081 if (&encoder->new_crtc->base != encoder->base.crtc) {
11082 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11083 config->mode_changed = true;
11084 }
11085 }
11086 /* Now we've also updated encoder->new_crtc for all encoders. */
11087
11088 for_each_intel_crtc(dev, crtc) {
11089 crtc->new_enabled = false;
11090
11091 list_for_each_entry(encoder,
11092 &dev->mode_config.encoder_list,
11093 base.head) {
11094 if (encoder->new_crtc == crtc) {
11095 crtc->new_enabled = true;
11096 break;
11097 }
11098 }
11099
11100 if (crtc->new_enabled != crtc->base.enabled) {
11101 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11102 crtc->new_enabled ? "en" : "dis");
11103 config->mode_changed = true;
11104 }
11105
11106 if (crtc->new_enabled)
11107 crtc->new_config = &crtc->config;
11108 else
11109 crtc->new_config = NULL;
11110 }
11111
11112 return 0;
11113 }
11114
11115 static void disable_crtc_nofb(struct intel_crtc *crtc)
11116 {
11117 struct drm_device *dev = crtc->base.dev;
11118 struct intel_encoder *encoder;
11119 struct intel_connector *connector;
11120
11121 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11122 pipe_name(crtc->pipe));
11123
11124 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11125 if (connector->new_encoder &&
11126 connector->new_encoder->new_crtc == crtc)
11127 connector->new_encoder = NULL;
11128 }
11129
11130 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11131 if (encoder->new_crtc == crtc)
11132 encoder->new_crtc = NULL;
11133 }
11134
11135 crtc->new_enabled = false;
11136 crtc->new_config = NULL;
11137 }
11138
11139 static int intel_crtc_set_config(struct drm_mode_set *set)
11140 {
11141 struct drm_device *dev;
11142 struct drm_mode_set save_set;
11143 struct intel_set_config *config;
11144 int ret;
11145
11146 BUG_ON(!set);
11147 BUG_ON(!set->crtc);
11148 BUG_ON(!set->crtc->helper_private);
11149
11150 /* Enforce sane interface api - has been abused by the fb helper. */
11151 BUG_ON(!set->mode && set->fb);
11152 BUG_ON(set->fb && set->num_connectors == 0);
11153
11154 if (set->fb) {
11155 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11156 set->crtc->base.id, set->fb->base.id,
11157 (int)set->num_connectors, set->x, set->y);
11158 } else {
11159 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11160 }
11161
11162 dev = set->crtc->dev;
11163
11164 ret = -ENOMEM;
11165 config = kzalloc(sizeof(*config), GFP_KERNEL);
11166 if (!config)
11167 goto out_config;
11168
11169 ret = intel_set_config_save_state(dev, config);
11170 if (ret)
11171 goto out_config;
11172
11173 save_set.crtc = set->crtc;
11174 save_set.mode = &set->crtc->mode;
11175 save_set.x = set->crtc->x;
11176 save_set.y = set->crtc->y;
11177 save_set.fb = set->crtc->primary->fb;
11178
11179 /* Compute whether we need a full modeset, only an fb base update or no
11180 * change at all. In the future we might also check whether only the
11181 * mode changed, e.g. for LVDS where we only change the panel fitter in
11182 * such cases. */
11183 intel_set_config_compute_mode_changes(set, config);
11184
11185 ret = intel_modeset_stage_output_state(dev, set, config);
11186 if (ret)
11187 goto fail;
11188
11189 if (config->mode_changed) {
11190 ret = intel_set_mode(set->crtc, set->mode,
11191 set->x, set->y, set->fb);
11192 } else if (config->fb_changed) {
11193 struct drm_i915_private *dev_priv = dev->dev_private;
11194 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11195
11196 intel_crtc_wait_for_pending_flips(set->crtc);
11197
11198 ret = intel_pipe_set_base(set->crtc,
11199 set->x, set->y, set->fb);
11200
11201 /*
11202 * We need to make sure the primary plane is re-enabled if it
11203 * has previously been turned off.
11204 */
11205 if (!intel_crtc->primary_enabled && ret == 0) {
11206 WARN_ON(!intel_crtc->active);
11207 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11208 intel_crtc->pipe);
11209 }
11210
11211 /*
11212 * In the fastboot case this may be our only check of the
11213 * state after boot. It would be better to only do it on
11214 * the first update, but we don't have a nice way of doing that
11215 * (and really, set_config isn't used much for high freq page
11216 * flipping, so increasing its cost here shouldn't be a big
11217 * deal).
11218 */
11219 if (i915.fastboot && ret == 0)
11220 intel_modeset_check_state(set->crtc->dev);
11221 }
11222
11223 if (ret) {
11224 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11225 set->crtc->base.id, ret);
11226 fail:
11227 intel_set_config_restore_state(dev, config);
11228
11229 /*
11230 * HACK: if the pipe was on, but we didn't have a framebuffer,
11231 * force the pipe off to avoid oopsing in the modeset code
11232 * due to fb==NULL. This should only happen during boot since
11233 * we don't yet reconstruct the FB from the hardware state.
11234 */
11235 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11236 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11237
11238 /* Try to restore the config */
11239 if (config->mode_changed &&
11240 intel_set_mode(save_set.crtc, save_set.mode,
11241 save_set.x, save_set.y, save_set.fb))
11242 DRM_ERROR("failed to restore config after modeset failure\n");
11243 }
11244
11245 out_config:
11246 intel_set_config_free(config);
11247 return ret;
11248 }
11249
11250 static const struct drm_crtc_funcs intel_crtc_funcs = {
11251 .gamma_set = intel_crtc_gamma_set,
11252 .set_config = intel_crtc_set_config,
11253 .destroy = intel_crtc_destroy,
11254 .page_flip = intel_crtc_page_flip,
11255 };
11256
11257 static void intel_cpu_pll_init(struct drm_device *dev)
11258 {
11259 if (HAS_DDI(dev))
11260 intel_ddi_pll_init(dev);
11261 }
11262
11263 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11264 struct intel_shared_dpll *pll,
11265 struct intel_dpll_hw_state *hw_state)
11266 {
11267 uint32_t val;
11268
11269 val = I915_READ(PCH_DPLL(pll->id));
11270 hw_state->dpll = val;
11271 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11272 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11273
11274 return val & DPLL_VCO_ENABLE;
11275 }
11276
11277 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11278 struct intel_shared_dpll *pll)
11279 {
11280 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11281 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11282 }
11283
11284 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11285 struct intel_shared_dpll *pll)
11286 {
11287 /* PCH refclock must be enabled first */
11288 ibx_assert_pch_refclk_enabled(dev_priv);
11289
11290 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11291
11292 /* Wait for the clocks to stabilize. */
11293 POSTING_READ(PCH_DPLL(pll->id));
11294 udelay(150);
11295
11296 /* The pixel multiplier can only be updated once the
11297 * DPLL is enabled and the clocks are stable.
11298 *
11299 * So write it again.
11300 */
11301 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11302 POSTING_READ(PCH_DPLL(pll->id));
11303 udelay(200);
11304 }
11305
11306 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11307 struct intel_shared_dpll *pll)
11308 {
11309 struct drm_device *dev = dev_priv->dev;
11310 struct intel_crtc *crtc;
11311
11312 /* Make sure no transcoder isn't still depending on us. */
11313 for_each_intel_crtc(dev, crtc) {
11314 if (intel_crtc_to_shared_dpll(crtc) == pll)
11315 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11316 }
11317
11318 I915_WRITE(PCH_DPLL(pll->id), 0);
11319 POSTING_READ(PCH_DPLL(pll->id));
11320 udelay(200);
11321 }
11322
11323 static char *ibx_pch_dpll_names[] = {
11324 "PCH DPLL A",
11325 "PCH DPLL B",
11326 };
11327
11328 static void ibx_pch_dpll_init(struct drm_device *dev)
11329 {
11330 struct drm_i915_private *dev_priv = dev->dev_private;
11331 int i;
11332
11333 dev_priv->num_shared_dpll = 2;
11334
11335 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11336 dev_priv->shared_dplls[i].id = i;
11337 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11338 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11339 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11340 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11341 dev_priv->shared_dplls[i].get_hw_state =
11342 ibx_pch_dpll_get_hw_state;
11343 }
11344 }
11345
11346 static void intel_shared_dpll_init(struct drm_device *dev)
11347 {
11348 struct drm_i915_private *dev_priv = dev->dev_private;
11349
11350 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11351 ibx_pch_dpll_init(dev);
11352 else
11353 dev_priv->num_shared_dpll = 0;
11354
11355 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11356 }
11357
11358 static int
11359 intel_primary_plane_disable(struct drm_plane *plane)
11360 {
11361 struct drm_device *dev = plane->dev;
11362 struct drm_i915_private *dev_priv = dev->dev_private;
11363 struct intel_plane *intel_plane = to_intel_plane(plane);
11364 struct intel_crtc *intel_crtc;
11365
11366 if (!plane->fb)
11367 return 0;
11368
11369 BUG_ON(!plane->crtc);
11370
11371 intel_crtc = to_intel_crtc(plane->crtc);
11372
11373 /*
11374 * Even though we checked plane->fb above, it's still possible that
11375 * the primary plane has been implicitly disabled because the crtc
11376 * coordinates given weren't visible, or because we detected
11377 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11378 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11379 * In either case, we need to unpin the FB and let the fb pointer get
11380 * updated, but otherwise we don't need to touch the hardware.
11381 */
11382 if (!intel_crtc->primary_enabled)
11383 goto disable_unpin;
11384
11385 intel_crtc_wait_for_pending_flips(plane->crtc);
11386 intel_disable_primary_hw_plane(dev_priv, intel_plane->plane,
11387 intel_plane->pipe);
11388 disable_unpin:
11389 i915_gem_track_fb(to_intel_framebuffer(plane->fb)->obj, NULL,
11390 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11391 intel_unpin_fb_obj(to_intel_framebuffer(plane->fb)->obj);
11392 plane->fb = NULL;
11393
11394 return 0;
11395 }
11396
11397 static int
11398 intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11399 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11400 unsigned int crtc_w, unsigned int crtc_h,
11401 uint32_t src_x, uint32_t src_y,
11402 uint32_t src_w, uint32_t src_h)
11403 {
11404 struct drm_device *dev = crtc->dev;
11405 struct drm_i915_private *dev_priv = dev->dev_private;
11406 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11407 struct intel_plane *intel_plane = to_intel_plane(plane);
11408 struct drm_i915_gem_object *obj, *old_obj = NULL;
11409 struct drm_rect dest = {
11410 /* integer pixels */
11411 .x1 = crtc_x,
11412 .y1 = crtc_y,
11413 .x2 = crtc_x + crtc_w,
11414 .y2 = crtc_y + crtc_h,
11415 };
11416 struct drm_rect src = {
11417 /* 16.16 fixed point */
11418 .x1 = src_x,
11419 .y1 = src_y,
11420 .x2 = src_x + src_w,
11421 .y2 = src_y + src_h,
11422 };
11423 const struct drm_rect clip = {
11424 /* integer pixels */
11425 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11426 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11427 };
11428 bool visible;
11429 int ret;
11430
11431 ret = drm_plane_helper_check_update(plane, crtc, fb,
11432 &src, &dest, &clip,
11433 DRM_PLANE_HELPER_NO_SCALING,
11434 DRM_PLANE_HELPER_NO_SCALING,
11435 false, true, &visible);
11436
11437 if (ret)
11438 return ret;
11439
11440 if (plane->fb)
11441 old_obj = to_intel_framebuffer(plane->fb)->obj;
11442 obj = to_intel_framebuffer(fb)->obj;
11443
11444 /*
11445 * If the CRTC isn't enabled, we're just pinning the framebuffer,
11446 * updating the fb pointer, and returning without touching the
11447 * hardware. This allows us to later do a drmModeSetCrtc with fb=-1 to
11448 * turn on the display with all planes setup as desired.
11449 */
11450 if (!crtc->enabled) {
11451 /*
11452 * If we already called setplane while the crtc was disabled,
11453 * we may have an fb pinned; unpin it.
11454 */
11455 if (plane->fb)
11456 intel_unpin_fb_obj(old_obj);
11457
11458 i915_gem_track_fb(old_obj, obj,
11459 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11460
11461 /* Pin and return without programming hardware */
11462 return intel_pin_and_fence_fb_obj(dev, obj, NULL);
11463 }
11464
11465 intel_crtc_wait_for_pending_flips(crtc);
11466
11467 /*
11468 * If clipping results in a non-visible primary plane, we'll disable
11469 * the primary plane. Note that this is a bit different than what
11470 * happens if userspace explicitly disables the plane by passing fb=0
11471 * because plane->fb still gets set and pinned.
11472 */
11473 if (!visible) {
11474 /*
11475 * Try to pin the new fb first so that we can bail out if we
11476 * fail.
11477 */
11478 if (plane->fb != fb) {
11479 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11480 if (ret)
11481 return ret;
11482 }
11483
11484 i915_gem_track_fb(old_obj, obj,
11485 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11486
11487 if (intel_crtc->primary_enabled)
11488 intel_disable_primary_hw_plane(dev_priv,
11489 intel_plane->plane,
11490 intel_plane->pipe);
11491
11492
11493 if (plane->fb != fb)
11494 if (plane->fb)
11495 intel_unpin_fb_obj(old_obj);
11496
11497 return 0;
11498 }
11499
11500 ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11501 if (ret)
11502 return ret;
11503
11504 if (!intel_crtc->primary_enabled)
11505 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11506 intel_crtc->pipe);
11507
11508 return 0;
11509 }
11510
11511 /* Common destruction function for both primary and cursor planes */
11512 static void intel_plane_destroy(struct drm_plane *plane)
11513 {
11514 struct intel_plane *intel_plane = to_intel_plane(plane);
11515 drm_plane_cleanup(plane);
11516 kfree(intel_plane);
11517 }
11518
11519 static const struct drm_plane_funcs intel_primary_plane_funcs = {
11520 .update_plane = intel_primary_plane_setplane,
11521 .disable_plane = intel_primary_plane_disable,
11522 .destroy = intel_plane_destroy,
11523 };
11524
11525 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11526 int pipe)
11527 {
11528 struct intel_plane *primary;
11529 const uint32_t *intel_primary_formats;
11530 int num_formats;
11531
11532 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11533 if (primary == NULL)
11534 return NULL;
11535
11536 primary->can_scale = false;
11537 primary->max_downscale = 1;
11538 primary->pipe = pipe;
11539 primary->plane = pipe;
11540 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11541 primary->plane = !pipe;
11542
11543 if (INTEL_INFO(dev)->gen <= 3) {
11544 intel_primary_formats = intel_primary_formats_gen2;
11545 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11546 } else {
11547 intel_primary_formats = intel_primary_formats_gen4;
11548 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11549 }
11550
11551 drm_universal_plane_init(dev, &primary->base, 0,
11552 &intel_primary_plane_funcs,
11553 intel_primary_formats, num_formats,
11554 DRM_PLANE_TYPE_PRIMARY);
11555 return &primary->base;
11556 }
11557
11558 static int
11559 intel_cursor_plane_disable(struct drm_plane *plane)
11560 {
11561 if (!plane->fb)
11562 return 0;
11563
11564 BUG_ON(!plane->crtc);
11565
11566 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11567 }
11568
11569 static int
11570 intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11571 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11572 unsigned int crtc_w, unsigned int crtc_h,
11573 uint32_t src_x, uint32_t src_y,
11574 uint32_t src_w, uint32_t src_h)
11575 {
11576 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11577 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11578 struct drm_i915_gem_object *obj = intel_fb->obj;
11579 struct drm_rect dest = {
11580 /* integer pixels */
11581 .x1 = crtc_x,
11582 .y1 = crtc_y,
11583 .x2 = crtc_x + crtc_w,
11584 .y2 = crtc_y + crtc_h,
11585 };
11586 struct drm_rect src = {
11587 /* 16.16 fixed point */
11588 .x1 = src_x,
11589 .y1 = src_y,
11590 .x2 = src_x + src_w,
11591 .y2 = src_y + src_h,
11592 };
11593 const struct drm_rect clip = {
11594 /* integer pixels */
11595 .x2 = intel_crtc->config.pipe_src_w,
11596 .y2 = intel_crtc->config.pipe_src_h,
11597 };
11598 bool visible;
11599 int ret;
11600
11601 ret = drm_plane_helper_check_update(plane, crtc, fb,
11602 &src, &dest, &clip,
11603 DRM_PLANE_HELPER_NO_SCALING,
11604 DRM_PLANE_HELPER_NO_SCALING,
11605 true, true, &visible);
11606 if (ret)
11607 return ret;
11608
11609 crtc->cursor_x = crtc_x;
11610 crtc->cursor_y = crtc_y;
11611 if (fb != crtc->cursor->fb) {
11612 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11613 } else {
11614 intel_crtc_update_cursor(crtc, visible);
11615 return 0;
11616 }
11617 }
11618 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11619 .update_plane = intel_cursor_plane_update,
11620 .disable_plane = intel_cursor_plane_disable,
11621 .destroy = intel_plane_destroy,
11622 };
11623
11624 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11625 int pipe)
11626 {
11627 struct intel_plane *cursor;
11628
11629 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11630 if (cursor == NULL)
11631 return NULL;
11632
11633 cursor->can_scale = false;
11634 cursor->max_downscale = 1;
11635 cursor->pipe = pipe;
11636 cursor->plane = pipe;
11637
11638 drm_universal_plane_init(dev, &cursor->base, 0,
11639 &intel_cursor_plane_funcs,
11640 intel_cursor_formats,
11641 ARRAY_SIZE(intel_cursor_formats),
11642 DRM_PLANE_TYPE_CURSOR);
11643 return &cursor->base;
11644 }
11645
11646 static void intel_crtc_init(struct drm_device *dev, int pipe)
11647 {
11648 struct drm_i915_private *dev_priv = dev->dev_private;
11649 struct intel_crtc *intel_crtc;
11650 struct drm_plane *primary = NULL;
11651 struct drm_plane *cursor = NULL;
11652 int i, ret;
11653
11654 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
11655 if (intel_crtc == NULL)
11656 return;
11657
11658 primary = intel_primary_plane_create(dev, pipe);
11659 if (!primary)
11660 goto fail;
11661
11662 cursor = intel_cursor_plane_create(dev, pipe);
11663 if (!cursor)
11664 goto fail;
11665
11666 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
11667 cursor, &intel_crtc_funcs);
11668 if (ret)
11669 goto fail;
11670
11671 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
11672 for (i = 0; i < 256; i++) {
11673 intel_crtc->lut_r[i] = i;
11674 intel_crtc->lut_g[i] = i;
11675 intel_crtc->lut_b[i] = i;
11676 }
11677
11678 /*
11679 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
11680 * is hooked to pipe B. Hence we want plane A feeding pipe B.
11681 */
11682 intel_crtc->pipe = pipe;
11683 intel_crtc->plane = pipe;
11684 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
11685 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
11686 intel_crtc->plane = !pipe;
11687 }
11688
11689 intel_crtc->cursor_base = ~0;
11690 intel_crtc->cursor_cntl = ~0;
11691
11692 init_waitqueue_head(&intel_crtc->vbl_wait);
11693
11694 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
11695 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
11696 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
11697 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
11698
11699 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
11700
11701 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
11702 return;
11703
11704 fail:
11705 if (primary)
11706 drm_plane_cleanup(primary);
11707 if (cursor)
11708 drm_plane_cleanup(cursor);
11709 kfree(intel_crtc);
11710 }
11711
11712 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
11713 {
11714 struct drm_encoder *encoder = connector->base.encoder;
11715 struct drm_device *dev = connector->base.dev;
11716
11717 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
11718
11719 if (!encoder)
11720 return INVALID_PIPE;
11721
11722 return to_intel_crtc(encoder->crtc)->pipe;
11723 }
11724
11725 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
11726 struct drm_file *file)
11727 {
11728 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
11729 struct drm_mode_object *drmmode_obj;
11730 struct intel_crtc *crtc;
11731
11732 if (!drm_core_check_feature(dev, DRIVER_MODESET))
11733 return -ENODEV;
11734
11735 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
11736 DRM_MODE_OBJECT_CRTC);
11737
11738 if (!drmmode_obj) {
11739 DRM_ERROR("no such CRTC id\n");
11740 return -ENOENT;
11741 }
11742
11743 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
11744 pipe_from_crtc_id->pipe = crtc->pipe;
11745
11746 return 0;
11747 }
11748
11749 static int intel_encoder_clones(struct intel_encoder *encoder)
11750 {
11751 struct drm_device *dev = encoder->base.dev;
11752 struct intel_encoder *source_encoder;
11753 int index_mask = 0;
11754 int entry = 0;
11755
11756 list_for_each_entry(source_encoder,
11757 &dev->mode_config.encoder_list, base.head) {
11758 if (encoders_cloneable(encoder, source_encoder))
11759 index_mask |= (1 << entry);
11760
11761 entry++;
11762 }
11763
11764 return index_mask;
11765 }
11766
11767 static bool has_edp_a(struct drm_device *dev)
11768 {
11769 struct drm_i915_private *dev_priv = dev->dev_private;
11770
11771 if (!IS_MOBILE(dev))
11772 return false;
11773
11774 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
11775 return false;
11776
11777 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
11778 return false;
11779
11780 return true;
11781 }
11782
11783 const char *intel_output_name(int output)
11784 {
11785 static const char *names[] = {
11786 [INTEL_OUTPUT_UNUSED] = "Unused",
11787 [INTEL_OUTPUT_ANALOG] = "Analog",
11788 [INTEL_OUTPUT_DVO] = "DVO",
11789 [INTEL_OUTPUT_SDVO] = "SDVO",
11790 [INTEL_OUTPUT_LVDS] = "LVDS",
11791 [INTEL_OUTPUT_TVOUT] = "TV",
11792 [INTEL_OUTPUT_HDMI] = "HDMI",
11793 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
11794 [INTEL_OUTPUT_EDP] = "eDP",
11795 [INTEL_OUTPUT_DSI] = "DSI",
11796 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
11797 };
11798
11799 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
11800 return "Invalid";
11801
11802 return names[output];
11803 }
11804
11805 static bool intel_crt_present(struct drm_device *dev)
11806 {
11807 struct drm_i915_private *dev_priv = dev->dev_private;
11808
11809 if (IS_ULT(dev))
11810 return false;
11811
11812 if (IS_CHERRYVIEW(dev))
11813 return false;
11814
11815 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
11816 return false;
11817
11818 return true;
11819 }
11820
11821 static void intel_setup_outputs(struct drm_device *dev)
11822 {
11823 struct drm_i915_private *dev_priv = dev->dev_private;
11824 struct intel_encoder *encoder;
11825 bool dpd_is_edp = false;
11826
11827 intel_lvds_init(dev);
11828
11829 if (intel_crt_present(dev))
11830 intel_crt_init(dev);
11831
11832 if (HAS_DDI(dev)) {
11833 int found;
11834
11835 /* Haswell uses DDI functions to detect digital outputs */
11836 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
11837 /* DDI A only supports eDP */
11838 if (found)
11839 intel_ddi_init(dev, PORT_A);
11840
11841 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
11842 * register */
11843 found = I915_READ(SFUSE_STRAP);
11844
11845 if (found & SFUSE_STRAP_DDIB_DETECTED)
11846 intel_ddi_init(dev, PORT_B);
11847 if (found & SFUSE_STRAP_DDIC_DETECTED)
11848 intel_ddi_init(dev, PORT_C);
11849 if (found & SFUSE_STRAP_DDID_DETECTED)
11850 intel_ddi_init(dev, PORT_D);
11851 } else if (HAS_PCH_SPLIT(dev)) {
11852 int found;
11853 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
11854
11855 if (has_edp_a(dev))
11856 intel_dp_init(dev, DP_A, PORT_A);
11857
11858 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
11859 /* PCH SDVOB multiplex with HDMIB */
11860 found = intel_sdvo_init(dev, PCH_SDVOB, true);
11861 if (!found)
11862 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
11863 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
11864 intel_dp_init(dev, PCH_DP_B, PORT_B);
11865 }
11866
11867 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
11868 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
11869
11870 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
11871 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
11872
11873 if (I915_READ(PCH_DP_C) & DP_DETECTED)
11874 intel_dp_init(dev, PCH_DP_C, PORT_C);
11875
11876 if (I915_READ(PCH_DP_D) & DP_DETECTED)
11877 intel_dp_init(dev, PCH_DP_D, PORT_D);
11878 } else if (IS_VALLEYVIEW(dev)) {
11879 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
11880 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
11881 PORT_B);
11882 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
11883 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
11884 }
11885
11886 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
11887 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
11888 PORT_C);
11889 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
11890 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
11891 }
11892
11893 if (IS_CHERRYVIEW(dev)) {
11894 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
11895 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
11896 PORT_D);
11897 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
11898 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
11899 }
11900 }
11901
11902 intel_dsi_init(dev);
11903 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
11904 bool found = false;
11905
11906 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
11907 DRM_DEBUG_KMS("probing SDVOB\n");
11908 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
11909 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
11910 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
11911 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
11912 }
11913
11914 if (!found && SUPPORTS_INTEGRATED_DP(dev))
11915 intel_dp_init(dev, DP_B, PORT_B);
11916 }
11917
11918 /* Before G4X SDVOC doesn't have its own detect register */
11919
11920 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
11921 DRM_DEBUG_KMS("probing SDVOC\n");
11922 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
11923 }
11924
11925 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
11926
11927 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
11928 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
11929 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
11930 }
11931 if (SUPPORTS_INTEGRATED_DP(dev))
11932 intel_dp_init(dev, DP_C, PORT_C);
11933 }
11934
11935 if (SUPPORTS_INTEGRATED_DP(dev) &&
11936 (I915_READ(DP_D) & DP_DETECTED))
11937 intel_dp_init(dev, DP_D, PORT_D);
11938 } else if (IS_GEN2(dev))
11939 intel_dvo_init(dev);
11940
11941 if (SUPPORTS_TV(dev))
11942 intel_tv_init(dev);
11943
11944 intel_edp_psr_init(dev);
11945
11946 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11947 encoder->base.possible_crtcs = encoder->crtc_mask;
11948 encoder->base.possible_clones =
11949 intel_encoder_clones(encoder);
11950 }
11951
11952 intel_init_pch_refclk(dev);
11953
11954 drm_helper_move_panel_connectors_to_head(dev);
11955 }
11956
11957 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
11958 {
11959 struct drm_device *dev = fb->dev;
11960 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11961
11962 drm_framebuffer_cleanup(fb);
11963 mutex_lock(&dev->struct_mutex);
11964 WARN_ON(!intel_fb->obj->framebuffer_references--);
11965 drm_gem_object_unreference(&intel_fb->obj->base);
11966 mutex_unlock(&dev->struct_mutex);
11967 kfree(intel_fb);
11968 }
11969
11970 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
11971 struct drm_file *file,
11972 unsigned int *handle)
11973 {
11974 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11975 struct drm_i915_gem_object *obj = intel_fb->obj;
11976
11977 return drm_gem_handle_create(file, &obj->base, handle);
11978 }
11979
11980 static const struct drm_framebuffer_funcs intel_fb_funcs = {
11981 .destroy = intel_user_framebuffer_destroy,
11982 .create_handle = intel_user_framebuffer_create_handle,
11983 };
11984
11985 static int intel_framebuffer_init(struct drm_device *dev,
11986 struct intel_framebuffer *intel_fb,
11987 struct drm_mode_fb_cmd2 *mode_cmd,
11988 struct drm_i915_gem_object *obj)
11989 {
11990 int aligned_height;
11991 int pitch_limit;
11992 int ret;
11993
11994 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
11995
11996 if (obj->tiling_mode == I915_TILING_Y) {
11997 DRM_DEBUG("hardware does not support tiling Y\n");
11998 return -EINVAL;
11999 }
12000
12001 if (mode_cmd->pitches[0] & 63) {
12002 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12003 mode_cmd->pitches[0]);
12004 return -EINVAL;
12005 }
12006
12007 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12008 pitch_limit = 32*1024;
12009 } else if (INTEL_INFO(dev)->gen >= 4) {
12010 if (obj->tiling_mode)
12011 pitch_limit = 16*1024;
12012 else
12013 pitch_limit = 32*1024;
12014 } else if (INTEL_INFO(dev)->gen >= 3) {
12015 if (obj->tiling_mode)
12016 pitch_limit = 8*1024;
12017 else
12018 pitch_limit = 16*1024;
12019 } else
12020 /* XXX DSPC is limited to 4k tiled */
12021 pitch_limit = 8*1024;
12022
12023 if (mode_cmd->pitches[0] > pitch_limit) {
12024 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12025 obj->tiling_mode ? "tiled" : "linear",
12026 mode_cmd->pitches[0], pitch_limit);
12027 return -EINVAL;
12028 }
12029
12030 if (obj->tiling_mode != I915_TILING_NONE &&
12031 mode_cmd->pitches[0] != obj->stride) {
12032 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12033 mode_cmd->pitches[0], obj->stride);
12034 return -EINVAL;
12035 }
12036
12037 /* Reject formats not supported by any plane early. */
12038 switch (mode_cmd->pixel_format) {
12039 case DRM_FORMAT_C8:
12040 case DRM_FORMAT_RGB565:
12041 case DRM_FORMAT_XRGB8888:
12042 case DRM_FORMAT_ARGB8888:
12043 break;
12044 case DRM_FORMAT_XRGB1555:
12045 case DRM_FORMAT_ARGB1555:
12046 if (INTEL_INFO(dev)->gen > 3) {
12047 DRM_DEBUG("unsupported pixel format: %s\n",
12048 drm_get_format_name(mode_cmd->pixel_format));
12049 return -EINVAL;
12050 }
12051 break;
12052 case DRM_FORMAT_XBGR8888:
12053 case DRM_FORMAT_ABGR8888:
12054 case DRM_FORMAT_XRGB2101010:
12055 case DRM_FORMAT_ARGB2101010:
12056 case DRM_FORMAT_XBGR2101010:
12057 case DRM_FORMAT_ABGR2101010:
12058 if (INTEL_INFO(dev)->gen < 4) {
12059 DRM_DEBUG("unsupported pixel format: %s\n",
12060 drm_get_format_name(mode_cmd->pixel_format));
12061 return -EINVAL;
12062 }
12063 break;
12064 case DRM_FORMAT_YUYV:
12065 case DRM_FORMAT_UYVY:
12066 case DRM_FORMAT_YVYU:
12067 case DRM_FORMAT_VYUY:
12068 if (INTEL_INFO(dev)->gen < 5) {
12069 DRM_DEBUG("unsupported pixel format: %s\n",
12070 drm_get_format_name(mode_cmd->pixel_format));
12071 return -EINVAL;
12072 }
12073 break;
12074 default:
12075 DRM_DEBUG("unsupported pixel format: %s\n",
12076 drm_get_format_name(mode_cmd->pixel_format));
12077 return -EINVAL;
12078 }
12079
12080 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12081 if (mode_cmd->offsets[0] != 0)
12082 return -EINVAL;
12083
12084 aligned_height = intel_align_height(dev, mode_cmd->height,
12085 obj->tiling_mode);
12086 /* FIXME drm helper for size checks (especially planar formats)? */
12087 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12088 return -EINVAL;
12089
12090 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12091 intel_fb->obj = obj;
12092 intel_fb->obj->framebuffer_references++;
12093
12094 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12095 if (ret) {
12096 DRM_ERROR("framebuffer init failed %d\n", ret);
12097 return ret;
12098 }
12099
12100 return 0;
12101 }
12102
12103 static struct drm_framebuffer *
12104 intel_user_framebuffer_create(struct drm_device *dev,
12105 struct drm_file *filp,
12106 struct drm_mode_fb_cmd2 *mode_cmd)
12107 {
12108 struct drm_i915_gem_object *obj;
12109
12110 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12111 mode_cmd->handles[0]));
12112 if (&obj->base == NULL)
12113 return ERR_PTR(-ENOENT);
12114
12115 return intel_framebuffer_create(dev, mode_cmd, obj);
12116 }
12117
12118 #ifndef CONFIG_DRM_I915_FBDEV
12119 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12120 {
12121 }
12122 #endif
12123
12124 static const struct drm_mode_config_funcs intel_mode_funcs = {
12125 .fb_create = intel_user_framebuffer_create,
12126 .output_poll_changed = intel_fbdev_output_poll_changed,
12127 };
12128
12129 /* Set up chip specific display functions */
12130 static void intel_init_display(struct drm_device *dev)
12131 {
12132 struct drm_i915_private *dev_priv = dev->dev_private;
12133
12134 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12135 dev_priv->display.find_dpll = g4x_find_best_dpll;
12136 else if (IS_CHERRYVIEW(dev))
12137 dev_priv->display.find_dpll = chv_find_best_dpll;
12138 else if (IS_VALLEYVIEW(dev))
12139 dev_priv->display.find_dpll = vlv_find_best_dpll;
12140 else if (IS_PINEVIEW(dev))
12141 dev_priv->display.find_dpll = pnv_find_best_dpll;
12142 else
12143 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12144
12145 if (HAS_DDI(dev)) {
12146 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12147 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12148 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
12149 dev_priv->display.crtc_enable = haswell_crtc_enable;
12150 dev_priv->display.crtc_disable = haswell_crtc_disable;
12151 dev_priv->display.off = haswell_crtc_off;
12152 dev_priv->display.update_primary_plane =
12153 ironlake_update_primary_plane;
12154 } else if (HAS_PCH_SPLIT(dev)) {
12155 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12156 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12157 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
12158 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12159 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12160 dev_priv->display.off = ironlake_crtc_off;
12161 dev_priv->display.update_primary_plane =
12162 ironlake_update_primary_plane;
12163 } else if (IS_VALLEYVIEW(dev)) {
12164 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12165 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12166 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12167 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12168 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12169 dev_priv->display.off = i9xx_crtc_off;
12170 dev_priv->display.update_primary_plane =
12171 i9xx_update_primary_plane;
12172 } else {
12173 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12174 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12175 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12176 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12177 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12178 dev_priv->display.off = i9xx_crtc_off;
12179 dev_priv->display.update_primary_plane =
12180 i9xx_update_primary_plane;
12181 }
12182
12183 /* Returns the core display clock speed */
12184 if (IS_VALLEYVIEW(dev))
12185 dev_priv->display.get_display_clock_speed =
12186 valleyview_get_display_clock_speed;
12187 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12188 dev_priv->display.get_display_clock_speed =
12189 i945_get_display_clock_speed;
12190 else if (IS_I915G(dev))
12191 dev_priv->display.get_display_clock_speed =
12192 i915_get_display_clock_speed;
12193 else if (IS_I945GM(dev) || IS_845G(dev))
12194 dev_priv->display.get_display_clock_speed =
12195 i9xx_misc_get_display_clock_speed;
12196 else if (IS_PINEVIEW(dev))
12197 dev_priv->display.get_display_clock_speed =
12198 pnv_get_display_clock_speed;
12199 else if (IS_I915GM(dev))
12200 dev_priv->display.get_display_clock_speed =
12201 i915gm_get_display_clock_speed;
12202 else if (IS_I865G(dev))
12203 dev_priv->display.get_display_clock_speed =
12204 i865_get_display_clock_speed;
12205 else if (IS_I85X(dev))
12206 dev_priv->display.get_display_clock_speed =
12207 i855_get_display_clock_speed;
12208 else /* 852, 830 */
12209 dev_priv->display.get_display_clock_speed =
12210 i830_get_display_clock_speed;
12211
12212 if (HAS_PCH_SPLIT(dev)) {
12213 if (IS_GEN5(dev)) {
12214 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12215 dev_priv->display.write_eld = ironlake_write_eld;
12216 } else if (IS_GEN6(dev)) {
12217 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12218 dev_priv->display.write_eld = ironlake_write_eld;
12219 dev_priv->display.modeset_global_resources =
12220 snb_modeset_global_resources;
12221 } else if (IS_IVYBRIDGE(dev)) {
12222 /* FIXME: detect B0+ stepping and use auto training */
12223 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12224 dev_priv->display.write_eld = ironlake_write_eld;
12225 dev_priv->display.modeset_global_resources =
12226 ivb_modeset_global_resources;
12227 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
12228 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12229 dev_priv->display.write_eld = haswell_write_eld;
12230 dev_priv->display.modeset_global_resources =
12231 haswell_modeset_global_resources;
12232 }
12233 } else if (IS_G4X(dev)) {
12234 dev_priv->display.write_eld = g4x_write_eld;
12235 } else if (IS_VALLEYVIEW(dev)) {
12236 dev_priv->display.modeset_global_resources =
12237 valleyview_modeset_global_resources;
12238 dev_priv->display.write_eld = ironlake_write_eld;
12239 }
12240
12241 /* Default just returns -ENODEV to indicate unsupported */
12242 dev_priv->display.queue_flip = intel_default_queue_flip;
12243
12244 switch (INTEL_INFO(dev)->gen) {
12245 case 2:
12246 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12247 break;
12248
12249 case 3:
12250 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12251 break;
12252
12253 case 4:
12254 case 5:
12255 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12256 break;
12257
12258 case 6:
12259 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12260 break;
12261 case 7:
12262 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12263 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12264 break;
12265 }
12266
12267 intel_panel_init_backlight_funcs(dev);
12268 }
12269
12270 /*
12271 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12272 * resume, or other times. This quirk makes sure that's the case for
12273 * affected systems.
12274 */
12275 static void quirk_pipea_force(struct drm_device *dev)
12276 {
12277 struct drm_i915_private *dev_priv = dev->dev_private;
12278
12279 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12280 DRM_INFO("applying pipe a force quirk\n");
12281 }
12282
12283 /*
12284 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12285 */
12286 static void quirk_ssc_force_disable(struct drm_device *dev)
12287 {
12288 struct drm_i915_private *dev_priv = dev->dev_private;
12289 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12290 DRM_INFO("applying lvds SSC disable quirk\n");
12291 }
12292
12293 /*
12294 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12295 * brightness value
12296 */
12297 static void quirk_invert_brightness(struct drm_device *dev)
12298 {
12299 struct drm_i915_private *dev_priv = dev->dev_private;
12300 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12301 DRM_INFO("applying inverted panel brightness quirk\n");
12302 }
12303
12304 struct intel_quirk {
12305 int device;
12306 int subsystem_vendor;
12307 int subsystem_device;
12308 void (*hook)(struct drm_device *dev);
12309 };
12310
12311 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12312 struct intel_dmi_quirk {
12313 void (*hook)(struct drm_device *dev);
12314 const struct dmi_system_id (*dmi_id_list)[];
12315 };
12316
12317 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12318 {
12319 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12320 return 1;
12321 }
12322
12323 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12324 {
12325 .dmi_id_list = &(const struct dmi_system_id[]) {
12326 {
12327 .callback = intel_dmi_reverse_brightness,
12328 .ident = "NCR Corporation",
12329 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12330 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12331 },
12332 },
12333 { } /* terminating entry */
12334 },
12335 .hook = quirk_invert_brightness,
12336 },
12337 };
12338
12339 static struct intel_quirk intel_quirks[] = {
12340 /* HP Mini needs pipe A force quirk (LP: #322104) */
12341 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
12342
12343 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12344 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12345
12346 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12347 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12348
12349 /* Lenovo U160 cannot use SSC on LVDS */
12350 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
12351
12352 /* Sony Vaio Y cannot use SSC on LVDS */
12353 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
12354
12355 /* Acer Aspire 5734Z must invert backlight brightness */
12356 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12357
12358 /* Acer/eMachines G725 */
12359 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12360
12361 /* Acer/eMachines e725 */
12362 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12363
12364 /* Acer/Packard Bell NCL20 */
12365 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12366
12367 /* Acer Aspire 4736Z */
12368 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
12369
12370 /* Acer Aspire 5336 */
12371 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
12372 };
12373
12374 static void intel_init_quirks(struct drm_device *dev)
12375 {
12376 struct pci_dev *d = dev->pdev;
12377 int i;
12378
12379 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12380 struct intel_quirk *q = &intel_quirks[i];
12381
12382 if (d->device == q->device &&
12383 (d->subsystem_vendor == q->subsystem_vendor ||
12384 q->subsystem_vendor == PCI_ANY_ID) &&
12385 (d->subsystem_device == q->subsystem_device ||
12386 q->subsystem_device == PCI_ANY_ID))
12387 q->hook(dev);
12388 }
12389 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12390 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12391 intel_dmi_quirks[i].hook(dev);
12392 }
12393 }
12394
12395 /* Disable the VGA plane that we never use */
12396 static void i915_disable_vga(struct drm_device *dev)
12397 {
12398 struct drm_i915_private *dev_priv = dev->dev_private;
12399 u8 sr1;
12400 u32 vga_reg = i915_vgacntrl_reg(dev);
12401
12402 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
12403 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
12404 outb(SR01, VGA_SR_INDEX);
12405 sr1 = inb(VGA_SR_DATA);
12406 outb(sr1 | 1<<5, VGA_SR_DATA);
12407 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12408 udelay(300);
12409
12410 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
12411 POSTING_READ(vga_reg);
12412 }
12413
12414 void intel_modeset_init_hw(struct drm_device *dev)
12415 {
12416 intel_prepare_ddi(dev);
12417
12418 if (IS_VALLEYVIEW(dev))
12419 vlv_update_cdclk(dev);
12420
12421 intel_init_clock_gating(dev);
12422
12423 intel_reset_dpio(dev);
12424
12425 intel_enable_gt_powersave(dev);
12426 }
12427
12428 void intel_modeset_suspend_hw(struct drm_device *dev)
12429 {
12430 intel_suspend_hw(dev);
12431 }
12432
12433 void intel_modeset_init(struct drm_device *dev)
12434 {
12435 struct drm_i915_private *dev_priv = dev->dev_private;
12436 int sprite, ret;
12437 enum pipe pipe;
12438 struct intel_crtc *crtc;
12439
12440 drm_mode_config_init(dev);
12441
12442 dev->mode_config.min_width = 0;
12443 dev->mode_config.min_height = 0;
12444
12445 dev->mode_config.preferred_depth = 24;
12446 dev->mode_config.prefer_shadow = 1;
12447
12448 dev->mode_config.funcs = &intel_mode_funcs;
12449
12450 intel_init_quirks(dev);
12451
12452 intel_init_pm(dev);
12453
12454 if (INTEL_INFO(dev)->num_pipes == 0)
12455 return;
12456
12457 intel_init_display(dev);
12458
12459 if (IS_GEN2(dev)) {
12460 dev->mode_config.max_width = 2048;
12461 dev->mode_config.max_height = 2048;
12462 } else if (IS_GEN3(dev)) {
12463 dev->mode_config.max_width = 4096;
12464 dev->mode_config.max_height = 4096;
12465 } else {
12466 dev->mode_config.max_width = 8192;
12467 dev->mode_config.max_height = 8192;
12468 }
12469
12470 if (IS_GEN2(dev)) {
12471 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12472 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12473 } else {
12474 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12475 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12476 }
12477
12478 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
12479
12480 DRM_DEBUG_KMS("%d display pipe%s available.\n",
12481 INTEL_INFO(dev)->num_pipes,
12482 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
12483
12484 for_each_pipe(pipe) {
12485 intel_crtc_init(dev, pipe);
12486 for_each_sprite(pipe, sprite) {
12487 ret = intel_plane_init(dev, pipe, sprite);
12488 if (ret)
12489 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
12490 pipe_name(pipe), sprite_name(pipe, sprite), ret);
12491 }
12492 }
12493
12494 intel_init_dpio(dev);
12495 intel_reset_dpio(dev);
12496
12497 intel_cpu_pll_init(dev);
12498 intel_shared_dpll_init(dev);
12499
12500 /* Just disable it once at startup */
12501 i915_disable_vga(dev);
12502 intel_setup_outputs(dev);
12503
12504 /* Just in case the BIOS is doing something questionable. */
12505 intel_disable_fbc(dev);
12506
12507 drm_modeset_lock_all(dev);
12508 intel_modeset_setup_hw_state(dev, false);
12509 drm_modeset_unlock_all(dev);
12510
12511 for_each_intel_crtc(dev, crtc) {
12512 if (!crtc->active)
12513 continue;
12514
12515 /*
12516 * Note that reserving the BIOS fb up front prevents us
12517 * from stuffing other stolen allocations like the ring
12518 * on top. This prevents some ugliness at boot time, and
12519 * can even allow for smooth boot transitions if the BIOS
12520 * fb is large enough for the active pipe configuration.
12521 */
12522 if (dev_priv->display.get_plane_config) {
12523 dev_priv->display.get_plane_config(crtc,
12524 &crtc->plane_config);
12525 /*
12526 * If the fb is shared between multiple heads, we'll
12527 * just get the first one.
12528 */
12529 intel_find_plane_obj(crtc, &crtc->plane_config);
12530 }
12531 }
12532 }
12533
12534 static void intel_enable_pipe_a(struct drm_device *dev)
12535 {
12536 struct intel_connector *connector;
12537 struct drm_connector *crt = NULL;
12538 struct intel_load_detect_pipe load_detect_temp;
12539 struct drm_modeset_acquire_ctx ctx;
12540
12541 /* We can't just switch on the pipe A, we need to set things up with a
12542 * proper mode and output configuration. As a gross hack, enable pipe A
12543 * by enabling the load detect pipe once. */
12544 list_for_each_entry(connector,
12545 &dev->mode_config.connector_list,
12546 base.head) {
12547 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12548 crt = &connector->base;
12549 break;
12550 }
12551 }
12552
12553 if (!crt)
12554 return;
12555
12556 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, &ctx))
12557 intel_release_load_detect_pipe(crt, &load_detect_temp, &ctx);
12558
12559
12560 }
12561
12562 static bool
12563 intel_check_plane_mapping(struct intel_crtc *crtc)
12564 {
12565 struct drm_device *dev = crtc->base.dev;
12566 struct drm_i915_private *dev_priv = dev->dev_private;
12567 u32 reg, val;
12568
12569 if (INTEL_INFO(dev)->num_pipes == 1)
12570 return true;
12571
12572 reg = DSPCNTR(!crtc->plane);
12573 val = I915_READ(reg);
12574
12575 if ((val & DISPLAY_PLANE_ENABLE) &&
12576 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12577 return false;
12578
12579 return true;
12580 }
12581
12582 static void intel_sanitize_crtc(struct intel_crtc *crtc)
12583 {
12584 struct drm_device *dev = crtc->base.dev;
12585 struct drm_i915_private *dev_priv = dev->dev_private;
12586 u32 reg;
12587
12588 /* Clear any frame start delays used for debugging left by the BIOS */
12589 reg = PIPECONF(crtc->config.cpu_transcoder);
12590 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12591
12592 /* restore vblank interrupts to correct state */
12593 if (crtc->active)
12594 drm_vblank_on(dev, crtc->pipe);
12595 else
12596 drm_vblank_off(dev, crtc->pipe);
12597
12598 /* We need to sanitize the plane -> pipe mapping first because this will
12599 * disable the crtc (and hence change the state) if it is wrong. Note
12600 * that gen4+ has a fixed plane -> pipe mapping. */
12601 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
12602 struct intel_connector *connector;
12603 bool plane;
12604
12605 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12606 crtc->base.base.id);
12607
12608 /* Pipe has the wrong plane attached and the plane is active.
12609 * Temporarily change the plane mapping and disable everything
12610 * ... */
12611 plane = crtc->plane;
12612 crtc->plane = !plane;
12613 dev_priv->display.crtc_disable(&crtc->base);
12614 crtc->plane = plane;
12615
12616 /* ... and break all links. */
12617 list_for_each_entry(connector, &dev->mode_config.connector_list,
12618 base.head) {
12619 if (connector->encoder->base.crtc != &crtc->base)
12620 continue;
12621
12622 connector->base.dpms = DRM_MODE_DPMS_OFF;
12623 connector->base.encoder = NULL;
12624 }
12625 /* multiple connectors may have the same encoder:
12626 * handle them and break crtc link separately */
12627 list_for_each_entry(connector, &dev->mode_config.connector_list,
12628 base.head)
12629 if (connector->encoder->base.crtc == &crtc->base) {
12630 connector->encoder->base.crtc = NULL;
12631 connector->encoder->connectors_active = false;
12632 }
12633
12634 WARN_ON(crtc->active);
12635 crtc->base.enabled = false;
12636 }
12637
12638 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12639 crtc->pipe == PIPE_A && !crtc->active) {
12640 /* BIOS forgot to enable pipe A, this mostly happens after
12641 * resume. Force-enable the pipe to fix this, the update_dpms
12642 * call below we restore the pipe to the right state, but leave
12643 * the required bits on. */
12644 intel_enable_pipe_a(dev);
12645 }
12646
12647 /* Adjust the state of the output pipe according to whether we
12648 * have active connectors/encoders. */
12649 intel_crtc_update_dpms(&crtc->base);
12650
12651 if (crtc->active != crtc->base.enabled) {
12652 struct intel_encoder *encoder;
12653
12654 /* This can happen either due to bugs in the get_hw_state
12655 * functions or because the pipe is force-enabled due to the
12656 * pipe A quirk. */
12657 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
12658 crtc->base.base.id,
12659 crtc->base.enabled ? "enabled" : "disabled",
12660 crtc->active ? "enabled" : "disabled");
12661
12662 crtc->base.enabled = crtc->active;
12663
12664 /* Because we only establish the connector -> encoder ->
12665 * crtc links if something is active, this means the
12666 * crtc is now deactivated. Break the links. connector
12667 * -> encoder links are only establish when things are
12668 * actually up, hence no need to break them. */
12669 WARN_ON(crtc->active);
12670
12671 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
12672 WARN_ON(encoder->connectors_active);
12673 encoder->base.crtc = NULL;
12674 }
12675 }
12676
12677 if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
12678 /*
12679 * We start out with underrun reporting disabled to avoid races.
12680 * For correct bookkeeping mark this on active crtcs.
12681 *
12682 * Also on gmch platforms we dont have any hardware bits to
12683 * disable the underrun reporting. Which means we need to start
12684 * out with underrun reporting disabled also on inactive pipes,
12685 * since otherwise we'll complain about the garbage we read when
12686 * e.g. coming up after runtime pm.
12687 *
12688 * No protection against concurrent access is required - at
12689 * worst a fifo underrun happens which also sets this to false.
12690 */
12691 crtc->cpu_fifo_underrun_disabled = true;
12692 crtc->pch_fifo_underrun_disabled = true;
12693
12694 update_scanline_offset(crtc);
12695 }
12696 }
12697
12698 static void intel_sanitize_encoder(struct intel_encoder *encoder)
12699 {
12700 struct intel_connector *connector;
12701 struct drm_device *dev = encoder->base.dev;
12702
12703 /* We need to check both for a crtc link (meaning that the
12704 * encoder is active and trying to read from a pipe) and the
12705 * pipe itself being active. */
12706 bool has_active_crtc = encoder->base.crtc &&
12707 to_intel_crtc(encoder->base.crtc)->active;
12708
12709 if (encoder->connectors_active && !has_active_crtc) {
12710 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
12711 encoder->base.base.id,
12712 encoder->base.name);
12713
12714 /* Connector is active, but has no active pipe. This is
12715 * fallout from our resume register restoring. Disable
12716 * the encoder manually again. */
12717 if (encoder->base.crtc) {
12718 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
12719 encoder->base.base.id,
12720 encoder->base.name);
12721 encoder->disable(encoder);
12722 }
12723 encoder->base.crtc = NULL;
12724 encoder->connectors_active = false;
12725
12726 /* Inconsistent output/port/pipe state happens presumably due to
12727 * a bug in one of the get_hw_state functions. Or someplace else
12728 * in our code, like the register restore mess on resume. Clamp
12729 * things to off as a safer default. */
12730 list_for_each_entry(connector,
12731 &dev->mode_config.connector_list,
12732 base.head) {
12733 if (connector->encoder != encoder)
12734 continue;
12735 connector->base.dpms = DRM_MODE_DPMS_OFF;
12736 connector->base.encoder = NULL;
12737 }
12738 }
12739 /* Enabled encoders without active connectors will be fixed in
12740 * the crtc fixup. */
12741 }
12742
12743 void i915_redisable_vga_power_on(struct drm_device *dev)
12744 {
12745 struct drm_i915_private *dev_priv = dev->dev_private;
12746 u32 vga_reg = i915_vgacntrl_reg(dev);
12747
12748 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
12749 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
12750 i915_disable_vga(dev);
12751 }
12752 }
12753
12754 void i915_redisable_vga(struct drm_device *dev)
12755 {
12756 struct drm_i915_private *dev_priv = dev->dev_private;
12757
12758 /* This function can be called both from intel_modeset_setup_hw_state or
12759 * at a very early point in our resume sequence, where the power well
12760 * structures are not yet restored. Since this function is at a very
12761 * paranoid "someone might have enabled VGA while we were not looking"
12762 * level, just check if the power well is enabled instead of trying to
12763 * follow the "don't touch the power well if we don't need it" policy
12764 * the rest of the driver uses. */
12765 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
12766 return;
12767
12768 i915_redisable_vga_power_on(dev);
12769 }
12770
12771 static bool primary_get_hw_state(struct intel_crtc *crtc)
12772 {
12773 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
12774
12775 if (!crtc->active)
12776 return false;
12777
12778 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
12779 }
12780
12781 static void intel_modeset_readout_hw_state(struct drm_device *dev)
12782 {
12783 struct drm_i915_private *dev_priv = dev->dev_private;
12784 enum pipe pipe;
12785 struct intel_crtc *crtc;
12786 struct intel_encoder *encoder;
12787 struct intel_connector *connector;
12788 int i;
12789
12790 for_each_intel_crtc(dev, crtc) {
12791 memset(&crtc->config, 0, sizeof(crtc->config));
12792
12793 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
12794
12795 crtc->active = dev_priv->display.get_pipe_config(crtc,
12796 &crtc->config);
12797
12798 crtc->base.enabled = crtc->active;
12799 crtc->primary_enabled = primary_get_hw_state(crtc);
12800
12801 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
12802 crtc->base.base.id,
12803 crtc->active ? "enabled" : "disabled");
12804 }
12805
12806 /* FIXME: Smash this into the new shared dpll infrastructure. */
12807 if (HAS_DDI(dev))
12808 intel_ddi_setup_hw_pll_state(dev);
12809
12810 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12811 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12812
12813 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
12814 pll->active = 0;
12815 for_each_intel_crtc(dev, crtc) {
12816 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12817 pll->active++;
12818 }
12819 pll->refcount = pll->active;
12820
12821 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
12822 pll->name, pll->refcount, pll->on);
12823 }
12824
12825 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12826 base.head) {
12827 pipe = 0;
12828
12829 if (encoder->get_hw_state(encoder, &pipe)) {
12830 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12831 encoder->base.crtc = &crtc->base;
12832 encoder->get_config(encoder, &crtc->config);
12833 } else {
12834 encoder->base.crtc = NULL;
12835 }
12836
12837 encoder->connectors_active = false;
12838 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
12839 encoder->base.base.id,
12840 encoder->base.name,
12841 encoder->base.crtc ? "enabled" : "disabled",
12842 pipe_name(pipe));
12843 }
12844
12845 list_for_each_entry(connector, &dev->mode_config.connector_list,
12846 base.head) {
12847 if (connector->get_hw_state(connector)) {
12848 connector->base.dpms = DRM_MODE_DPMS_ON;
12849 connector->encoder->connectors_active = true;
12850 connector->base.encoder = &connector->encoder->base;
12851 } else {
12852 connector->base.dpms = DRM_MODE_DPMS_OFF;
12853 connector->base.encoder = NULL;
12854 }
12855 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
12856 connector->base.base.id,
12857 connector->base.name,
12858 connector->base.encoder ? "enabled" : "disabled");
12859 }
12860 }
12861
12862 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
12863 * and i915 state tracking structures. */
12864 void intel_modeset_setup_hw_state(struct drm_device *dev,
12865 bool force_restore)
12866 {
12867 struct drm_i915_private *dev_priv = dev->dev_private;
12868 enum pipe pipe;
12869 struct intel_crtc *crtc;
12870 struct intel_encoder *encoder;
12871 int i;
12872
12873 intel_modeset_readout_hw_state(dev);
12874
12875 /*
12876 * Now that we have the config, copy it to each CRTC struct
12877 * Note that this could go away if we move to using crtc_config
12878 * checking everywhere.
12879 */
12880 for_each_intel_crtc(dev, crtc) {
12881 if (crtc->active && i915.fastboot) {
12882 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
12883 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
12884 crtc->base.base.id);
12885 drm_mode_debug_printmodeline(&crtc->base.mode);
12886 }
12887 }
12888
12889 /* HW state is read out, now we need to sanitize this mess. */
12890 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12891 base.head) {
12892 intel_sanitize_encoder(encoder);
12893 }
12894
12895 for_each_pipe(pipe) {
12896 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12897 intel_sanitize_crtc(crtc);
12898 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
12899 }
12900
12901 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12902 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12903
12904 if (!pll->on || pll->active)
12905 continue;
12906
12907 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
12908
12909 pll->disable(dev_priv, pll);
12910 pll->on = false;
12911 }
12912
12913 if (HAS_PCH_SPLIT(dev))
12914 ilk_wm_get_hw_state(dev);
12915
12916 if (force_restore) {
12917 i915_redisable_vga(dev);
12918
12919 /*
12920 * We need to use raw interfaces for restoring state to avoid
12921 * checking (bogus) intermediate states.
12922 */
12923 for_each_pipe(pipe) {
12924 struct drm_crtc *crtc =
12925 dev_priv->pipe_to_crtc_mapping[pipe];
12926
12927 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
12928 crtc->primary->fb);
12929 }
12930 } else {
12931 intel_modeset_update_staged_output_state(dev);
12932 }
12933
12934 intel_modeset_check_state(dev);
12935 }
12936
12937 void intel_modeset_gem_init(struct drm_device *dev)
12938 {
12939 struct drm_crtc *c;
12940 struct intel_framebuffer *fb;
12941
12942 mutex_lock(&dev->struct_mutex);
12943 intel_init_gt_powersave(dev);
12944 mutex_unlock(&dev->struct_mutex);
12945
12946 intel_modeset_init_hw(dev);
12947
12948 intel_setup_overlay(dev);
12949
12950 /*
12951 * Make sure any fbs we allocated at startup are properly
12952 * pinned & fenced. When we do the allocation it's too early
12953 * for this.
12954 */
12955 mutex_lock(&dev->struct_mutex);
12956 for_each_crtc(dev, c) {
12957 if (!c->primary->fb)
12958 continue;
12959
12960 fb = to_intel_framebuffer(c->primary->fb);
12961 if (intel_pin_and_fence_fb_obj(dev, fb->obj, NULL)) {
12962 DRM_ERROR("failed to pin boot fb on pipe %d\n",
12963 to_intel_crtc(c)->pipe);
12964 drm_framebuffer_unreference(c->primary->fb);
12965 c->primary->fb = NULL;
12966 }
12967 }
12968 mutex_unlock(&dev->struct_mutex);
12969 }
12970
12971 void intel_connector_unregister(struct intel_connector *intel_connector)
12972 {
12973 struct drm_connector *connector = &intel_connector->base;
12974
12975 intel_panel_destroy_backlight(connector);
12976 drm_sysfs_connector_remove(connector);
12977 }
12978
12979 void intel_modeset_cleanup(struct drm_device *dev)
12980 {
12981 struct drm_i915_private *dev_priv = dev->dev_private;
12982 struct drm_connector *connector;
12983
12984 /*
12985 * Interrupts and polling as the first thing to avoid creating havoc.
12986 * Too much stuff here (turning of rps, connectors, ...) would
12987 * experience fancy races otherwise.
12988 */
12989 drm_irq_uninstall(dev);
12990 cancel_work_sync(&dev_priv->hotplug_work);
12991 /*
12992 * Due to the hpd irq storm handling the hotplug work can re-arm the
12993 * poll handlers. Hence disable polling after hpd handling is shut down.
12994 */
12995 drm_kms_helper_poll_fini(dev);
12996
12997 mutex_lock(&dev->struct_mutex);
12998
12999 intel_unregister_dsm_handler();
13000
13001 intel_disable_fbc(dev);
13002
13003 intel_disable_gt_powersave(dev);
13004
13005 ironlake_teardown_rc6(dev);
13006
13007 mutex_unlock(&dev->struct_mutex);
13008
13009 /* flush any delayed tasks or pending work */
13010 flush_scheduled_work();
13011
13012 /* destroy the backlight and sysfs files before encoders/connectors */
13013 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13014 struct intel_connector *intel_connector;
13015
13016 intel_connector = to_intel_connector(connector);
13017 intel_connector->unregister(intel_connector);
13018 }
13019
13020 drm_mode_config_cleanup(dev);
13021
13022 intel_cleanup_overlay(dev);
13023
13024 mutex_lock(&dev->struct_mutex);
13025 intel_cleanup_gt_powersave(dev);
13026 mutex_unlock(&dev->struct_mutex);
13027 }
13028
13029 /*
13030 * Return which encoder is currently attached for connector.
13031 */
13032 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13033 {
13034 return &intel_attached_encoder(connector)->base;
13035 }
13036
13037 void intel_connector_attach_encoder(struct intel_connector *connector,
13038 struct intel_encoder *encoder)
13039 {
13040 connector->encoder = encoder;
13041 drm_mode_connector_attach_encoder(&connector->base,
13042 &encoder->base);
13043 }
13044
13045 /*
13046 * set vga decode state - true == enable VGA decode
13047 */
13048 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13049 {
13050 struct drm_i915_private *dev_priv = dev->dev_private;
13051 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13052 u16 gmch_ctrl;
13053
13054 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13055 DRM_ERROR("failed to read control word\n");
13056 return -EIO;
13057 }
13058
13059 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13060 return 0;
13061
13062 if (state)
13063 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13064 else
13065 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13066
13067 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13068 DRM_ERROR("failed to write control word\n");
13069 return -EIO;
13070 }
13071
13072 return 0;
13073 }
13074
13075 struct intel_display_error_state {
13076
13077 u32 power_well_driver;
13078
13079 int num_transcoders;
13080
13081 struct intel_cursor_error_state {
13082 u32 control;
13083 u32 position;
13084 u32 base;
13085 u32 size;
13086 } cursor[I915_MAX_PIPES];
13087
13088 struct intel_pipe_error_state {
13089 bool power_domain_on;
13090 u32 source;
13091 u32 stat;
13092 } pipe[I915_MAX_PIPES];
13093
13094 struct intel_plane_error_state {
13095 u32 control;
13096 u32 stride;
13097 u32 size;
13098 u32 pos;
13099 u32 addr;
13100 u32 surface;
13101 u32 tile_offset;
13102 } plane[I915_MAX_PIPES];
13103
13104 struct intel_transcoder_error_state {
13105 bool power_domain_on;
13106 enum transcoder cpu_transcoder;
13107
13108 u32 conf;
13109
13110 u32 htotal;
13111 u32 hblank;
13112 u32 hsync;
13113 u32 vtotal;
13114 u32 vblank;
13115 u32 vsync;
13116 } transcoder[4];
13117 };
13118
13119 struct intel_display_error_state *
13120 intel_display_capture_error_state(struct drm_device *dev)
13121 {
13122 struct drm_i915_private *dev_priv = dev->dev_private;
13123 struct intel_display_error_state *error;
13124 int transcoders[] = {
13125 TRANSCODER_A,
13126 TRANSCODER_B,
13127 TRANSCODER_C,
13128 TRANSCODER_EDP,
13129 };
13130 int i;
13131
13132 if (INTEL_INFO(dev)->num_pipes == 0)
13133 return NULL;
13134
13135 error = kzalloc(sizeof(*error), GFP_ATOMIC);
13136 if (error == NULL)
13137 return NULL;
13138
13139 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13140 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13141
13142 for_each_pipe(i) {
13143 error->pipe[i].power_domain_on =
13144 intel_display_power_enabled_unlocked(dev_priv,
13145 POWER_DOMAIN_PIPE(i));
13146 if (!error->pipe[i].power_domain_on)
13147 continue;
13148
13149 error->cursor[i].control = I915_READ(CURCNTR(i));
13150 error->cursor[i].position = I915_READ(CURPOS(i));
13151 error->cursor[i].base = I915_READ(CURBASE(i));
13152
13153 error->plane[i].control = I915_READ(DSPCNTR(i));
13154 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13155 if (INTEL_INFO(dev)->gen <= 3) {
13156 error->plane[i].size = I915_READ(DSPSIZE(i));
13157 error->plane[i].pos = I915_READ(DSPPOS(i));
13158 }
13159 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13160 error->plane[i].addr = I915_READ(DSPADDR(i));
13161 if (INTEL_INFO(dev)->gen >= 4) {
13162 error->plane[i].surface = I915_READ(DSPSURF(i));
13163 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13164 }
13165
13166 error->pipe[i].source = I915_READ(PIPESRC(i));
13167
13168 if (!HAS_PCH_SPLIT(dev))
13169 error->pipe[i].stat = I915_READ(PIPESTAT(i));
13170 }
13171
13172 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13173 if (HAS_DDI(dev_priv->dev))
13174 error->num_transcoders++; /* Account for eDP. */
13175
13176 for (i = 0; i < error->num_transcoders; i++) {
13177 enum transcoder cpu_transcoder = transcoders[i];
13178
13179 error->transcoder[i].power_domain_on =
13180 intel_display_power_enabled_unlocked(dev_priv,
13181 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13182 if (!error->transcoder[i].power_domain_on)
13183 continue;
13184
13185 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13186
13187 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13188 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13189 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13190 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13191 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13192 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13193 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13194 }
13195
13196 return error;
13197 }
13198
13199 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13200
13201 void
13202 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13203 struct drm_device *dev,
13204 struct intel_display_error_state *error)
13205 {
13206 int i;
13207
13208 if (!error)
13209 return;
13210
13211 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13212 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13213 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13214 error->power_well_driver);
13215 for_each_pipe(i) {
13216 err_printf(m, "Pipe [%d]:\n", i);
13217 err_printf(m, " Power: %s\n",
13218 error->pipe[i].power_domain_on ? "on" : "off");
13219 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
13220 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
13221
13222 err_printf(m, "Plane [%d]:\n", i);
13223 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13224 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
13225 if (INTEL_INFO(dev)->gen <= 3) {
13226 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13227 err_printf(m, " POS: %08x\n", error->plane[i].pos);
13228 }
13229 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13230 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
13231 if (INTEL_INFO(dev)->gen >= 4) {
13232 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13233 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
13234 }
13235
13236 err_printf(m, "Cursor [%d]:\n", i);
13237 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13238 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13239 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
13240 }
13241
13242 for (i = 0; i < error->num_transcoders; i++) {
13243 err_printf(m, "CPU transcoder: %c\n",
13244 transcoder_name(error->transcoder[i].cpu_transcoder));
13245 err_printf(m, " Power: %s\n",
13246 error->transcoder[i].power_domain_on ? "on" : "off");
13247 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13248 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13249 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13250 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13251 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13252 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13253 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13254 }
13255 }