]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: Remove too early plane enable on pre-PCH hardware
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include "drmP.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include "drm_dp_helper.h"
41 #include "drm_crtc_helper.h"
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51 /* given values */
52 int n;
53 int m1, m2;
54 int p1, p2;
55 /* derived values */
56 int dot;
57 int vco;
58 int m;
59 int p;
60 } intel_clock_t;
61
62 typedef struct {
63 int min, max;
64 } intel_range_t;
65
66 typedef struct {
67 int dot_limit;
68 int p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM 2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74 intel_range_t dot, vco, n, m, m1, m2, p, p1;
75 intel_p2_t p2;
76 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77 int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
82
83 static bool
84 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
85 int target, int refclk, intel_clock_t *match_clock,
86 intel_clock_t *best_clock);
87 static bool
88 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
89 int target, int refclk, intel_clock_t *match_clock,
90 intel_clock_t *best_clock);
91
92 static bool
93 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
94 int target, int refclk, intel_clock_t *match_clock,
95 intel_clock_t *best_clock);
96 static bool
97 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
98 int target, int refclk, intel_clock_t *match_clock,
99 intel_clock_t *best_clock);
100
101 static inline u32 /* units of 100MHz */
102 intel_fdi_link_freq(struct drm_device *dev)
103 {
104 if (IS_GEN5(dev)) {
105 struct drm_i915_private *dev_priv = dev->dev_private;
106 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
107 } else
108 return 27;
109 }
110
111 static const intel_limit_t intel_limits_i8xx_dvo = {
112 .dot = { .min = 25000, .max = 350000 },
113 .vco = { .min = 930000, .max = 1400000 },
114 .n = { .min = 3, .max = 16 },
115 .m = { .min = 96, .max = 140 },
116 .m1 = { .min = 18, .max = 26 },
117 .m2 = { .min = 6, .max = 16 },
118 .p = { .min = 4, .max = 128 },
119 .p1 = { .min = 2, .max = 33 },
120 .p2 = { .dot_limit = 165000,
121 .p2_slow = 4, .p2_fast = 2 },
122 .find_pll = intel_find_best_PLL,
123 };
124
125 static const intel_limit_t intel_limits_i8xx_lvds = {
126 .dot = { .min = 25000, .max = 350000 },
127 .vco = { .min = 930000, .max = 1400000 },
128 .n = { .min = 3, .max = 16 },
129 .m = { .min = 96, .max = 140 },
130 .m1 = { .min = 18, .max = 26 },
131 .m2 = { .min = 6, .max = 16 },
132 .p = { .min = 4, .max = 128 },
133 .p1 = { .min = 1, .max = 6 },
134 .p2 = { .dot_limit = 165000,
135 .p2_slow = 14, .p2_fast = 7 },
136 .find_pll = intel_find_best_PLL,
137 };
138
139 static const intel_limit_t intel_limits_i9xx_sdvo = {
140 .dot = { .min = 20000, .max = 400000 },
141 .vco = { .min = 1400000, .max = 2800000 },
142 .n = { .min = 1, .max = 6 },
143 .m = { .min = 70, .max = 120 },
144 .m1 = { .min = 10, .max = 22 },
145 .m2 = { .min = 5, .max = 9 },
146 .p = { .min = 5, .max = 80 },
147 .p1 = { .min = 1, .max = 8 },
148 .p2 = { .dot_limit = 200000,
149 .p2_slow = 10, .p2_fast = 5 },
150 .find_pll = intel_find_best_PLL,
151 };
152
153 static const intel_limit_t intel_limits_i9xx_lvds = {
154 .dot = { .min = 20000, .max = 400000 },
155 .vco = { .min = 1400000, .max = 2800000 },
156 .n = { .min = 1, .max = 6 },
157 .m = { .min = 70, .max = 120 },
158 .m1 = { .min = 10, .max = 22 },
159 .m2 = { .min = 5, .max = 9 },
160 .p = { .min = 7, .max = 98 },
161 .p1 = { .min = 1, .max = 8 },
162 .p2 = { .dot_limit = 112000,
163 .p2_slow = 14, .p2_fast = 7 },
164 .find_pll = intel_find_best_PLL,
165 };
166
167
168 static const intel_limit_t intel_limits_g4x_sdvo = {
169 .dot = { .min = 25000, .max = 270000 },
170 .vco = { .min = 1750000, .max = 3500000},
171 .n = { .min = 1, .max = 4 },
172 .m = { .min = 104, .max = 138 },
173 .m1 = { .min = 17, .max = 23 },
174 .m2 = { .min = 5, .max = 11 },
175 .p = { .min = 10, .max = 30 },
176 .p1 = { .min = 1, .max = 3},
177 .p2 = { .dot_limit = 270000,
178 .p2_slow = 10,
179 .p2_fast = 10
180 },
181 .find_pll = intel_g4x_find_best_PLL,
182 };
183
184 static const intel_limit_t intel_limits_g4x_hdmi = {
185 .dot = { .min = 22000, .max = 400000 },
186 .vco = { .min = 1750000, .max = 3500000},
187 .n = { .min = 1, .max = 4 },
188 .m = { .min = 104, .max = 138 },
189 .m1 = { .min = 16, .max = 23 },
190 .m2 = { .min = 5, .max = 11 },
191 .p = { .min = 5, .max = 80 },
192 .p1 = { .min = 1, .max = 8},
193 .p2 = { .dot_limit = 165000,
194 .p2_slow = 10, .p2_fast = 5 },
195 .find_pll = intel_g4x_find_best_PLL,
196 };
197
198 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
199 .dot = { .min = 20000, .max = 115000 },
200 .vco = { .min = 1750000, .max = 3500000 },
201 .n = { .min = 1, .max = 3 },
202 .m = { .min = 104, .max = 138 },
203 .m1 = { .min = 17, .max = 23 },
204 .m2 = { .min = 5, .max = 11 },
205 .p = { .min = 28, .max = 112 },
206 .p1 = { .min = 2, .max = 8 },
207 .p2 = { .dot_limit = 0,
208 .p2_slow = 14, .p2_fast = 14
209 },
210 .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
214 .dot = { .min = 80000, .max = 224000 },
215 .vco = { .min = 1750000, .max = 3500000 },
216 .n = { .min = 1, .max = 3 },
217 .m = { .min = 104, .max = 138 },
218 .m1 = { .min = 17, .max = 23 },
219 .m2 = { .min = 5, .max = 11 },
220 .p = { .min = 14, .max = 42 },
221 .p1 = { .min = 2, .max = 6 },
222 .p2 = { .dot_limit = 0,
223 .p2_slow = 7, .p2_fast = 7
224 },
225 .find_pll = intel_g4x_find_best_PLL,
226 };
227
228 static const intel_limit_t intel_limits_g4x_display_port = {
229 .dot = { .min = 161670, .max = 227000 },
230 .vco = { .min = 1750000, .max = 3500000},
231 .n = { .min = 1, .max = 2 },
232 .m = { .min = 97, .max = 108 },
233 .m1 = { .min = 0x10, .max = 0x12 },
234 .m2 = { .min = 0x05, .max = 0x06 },
235 .p = { .min = 10, .max = 20 },
236 .p1 = { .min = 1, .max = 2},
237 .p2 = { .dot_limit = 0,
238 .p2_slow = 10, .p2_fast = 10 },
239 .find_pll = intel_find_pll_g4x_dp,
240 };
241
242 static const intel_limit_t intel_limits_pineview_sdvo = {
243 .dot = { .min = 20000, .max = 400000},
244 .vco = { .min = 1700000, .max = 3500000 },
245 /* Pineview's Ncounter is a ring counter */
246 .n = { .min = 3, .max = 6 },
247 .m = { .min = 2, .max = 256 },
248 /* Pineview only has one combined m divider, which we treat as m2. */
249 .m1 = { .min = 0, .max = 0 },
250 .m2 = { .min = 0, .max = 254 },
251 .p = { .min = 5, .max = 80 },
252 .p1 = { .min = 1, .max = 8 },
253 .p2 = { .dot_limit = 200000,
254 .p2_slow = 10, .p2_fast = 5 },
255 .find_pll = intel_find_best_PLL,
256 };
257
258 static const intel_limit_t intel_limits_pineview_lvds = {
259 .dot = { .min = 20000, .max = 400000 },
260 .vco = { .min = 1700000, .max = 3500000 },
261 .n = { .min = 3, .max = 6 },
262 .m = { .min = 2, .max = 256 },
263 .m1 = { .min = 0, .max = 0 },
264 .m2 = { .min = 0, .max = 254 },
265 .p = { .min = 7, .max = 112 },
266 .p1 = { .min = 1, .max = 8 },
267 .p2 = { .dot_limit = 112000,
268 .p2_slow = 14, .p2_fast = 14 },
269 .find_pll = intel_find_best_PLL,
270 };
271
272 /* Ironlake / Sandybridge
273 *
274 * We calculate clock using (register_value + 2) for N/M1/M2, so here
275 * the range value for them is (actual_value - 2).
276 */
277 static const intel_limit_t intel_limits_ironlake_dac = {
278 .dot = { .min = 25000, .max = 350000 },
279 .vco = { .min = 1760000, .max = 3510000 },
280 .n = { .min = 1, .max = 5 },
281 .m = { .min = 79, .max = 127 },
282 .m1 = { .min = 12, .max = 22 },
283 .m2 = { .min = 5, .max = 9 },
284 .p = { .min = 5, .max = 80 },
285 .p1 = { .min = 1, .max = 8 },
286 .p2 = { .dot_limit = 225000,
287 .p2_slow = 10, .p2_fast = 5 },
288 .find_pll = intel_g4x_find_best_PLL,
289 };
290
291 static const intel_limit_t intel_limits_ironlake_single_lvds = {
292 .dot = { .min = 25000, .max = 350000 },
293 .vco = { .min = 1760000, .max = 3510000 },
294 .n = { .min = 1, .max = 3 },
295 .m = { .min = 79, .max = 118 },
296 .m1 = { .min = 12, .max = 22 },
297 .m2 = { .min = 5, .max = 9 },
298 .p = { .min = 28, .max = 112 },
299 .p1 = { .min = 2, .max = 8 },
300 .p2 = { .dot_limit = 225000,
301 .p2_slow = 14, .p2_fast = 14 },
302 .find_pll = intel_g4x_find_best_PLL,
303 };
304
305 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
306 .dot = { .min = 25000, .max = 350000 },
307 .vco = { .min = 1760000, .max = 3510000 },
308 .n = { .min = 1, .max = 3 },
309 .m = { .min = 79, .max = 127 },
310 .m1 = { .min = 12, .max = 22 },
311 .m2 = { .min = 5, .max = 9 },
312 .p = { .min = 14, .max = 56 },
313 .p1 = { .min = 2, .max = 8 },
314 .p2 = { .dot_limit = 225000,
315 .p2_slow = 7, .p2_fast = 7 },
316 .find_pll = intel_g4x_find_best_PLL,
317 };
318
319 /* LVDS 100mhz refclk limits. */
320 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
321 .dot = { .min = 25000, .max = 350000 },
322 .vco = { .min = 1760000, .max = 3510000 },
323 .n = { .min = 1, .max = 2 },
324 .m = { .min = 79, .max = 126 },
325 .m1 = { .min = 12, .max = 22 },
326 .m2 = { .min = 5, .max = 9 },
327 .p = { .min = 28, .max = 112 },
328 .p1 = { .min = 2, .max = 8 },
329 .p2 = { .dot_limit = 225000,
330 .p2_slow = 14, .p2_fast = 14 },
331 .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
335 .dot = { .min = 25000, .max = 350000 },
336 .vco = { .min = 1760000, .max = 3510000 },
337 .n = { .min = 1, .max = 3 },
338 .m = { .min = 79, .max = 126 },
339 .m1 = { .min = 12, .max = 22 },
340 .m2 = { .min = 5, .max = 9 },
341 .p = { .min = 14, .max = 42 },
342 .p1 = { .min = 2, .max = 6 },
343 .p2 = { .dot_limit = 225000,
344 .p2_slow = 7, .p2_fast = 7 },
345 .find_pll = intel_g4x_find_best_PLL,
346 };
347
348 static const intel_limit_t intel_limits_ironlake_display_port = {
349 .dot = { .min = 25000, .max = 350000 },
350 .vco = { .min = 1760000, .max = 3510000},
351 .n = { .min = 1, .max = 2 },
352 .m = { .min = 81, .max = 90 },
353 .m1 = { .min = 12, .max = 22 },
354 .m2 = { .min = 5, .max = 9 },
355 .p = { .min = 10, .max = 20 },
356 .p1 = { .min = 1, .max = 2},
357 .p2 = { .dot_limit = 0,
358 .p2_slow = 10, .p2_fast = 10 },
359 .find_pll = intel_find_pll_ironlake_dp,
360 };
361
362 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
363 {
364 unsigned long flags;
365 u32 val = 0;
366
367 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
368 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
369 DRM_ERROR("DPIO idle wait timed out\n");
370 goto out_unlock;
371 }
372
373 I915_WRITE(DPIO_REG, reg);
374 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
375 DPIO_BYTE);
376 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
377 DRM_ERROR("DPIO read wait timed out\n");
378 goto out_unlock;
379 }
380 val = I915_READ(DPIO_DATA);
381
382 out_unlock:
383 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
384 return val;
385 }
386
387 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
388 u32 val)
389 {
390 unsigned long flags;
391
392 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
393 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
394 DRM_ERROR("DPIO idle wait timed out\n");
395 goto out_unlock;
396 }
397
398 I915_WRITE(DPIO_DATA, val);
399 I915_WRITE(DPIO_REG, reg);
400 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
401 DPIO_BYTE);
402 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
403 DRM_ERROR("DPIO write wait timed out\n");
404
405 out_unlock:
406 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
407 }
408
409 static void vlv_init_dpio(struct drm_device *dev)
410 {
411 struct drm_i915_private *dev_priv = dev->dev_private;
412
413 /* Reset the DPIO config */
414 I915_WRITE(DPIO_CTL, 0);
415 POSTING_READ(DPIO_CTL);
416 I915_WRITE(DPIO_CTL, 1);
417 POSTING_READ(DPIO_CTL);
418 }
419
420 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
421 {
422 DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
423 return 1;
424 }
425
426 static const struct dmi_system_id intel_dual_link_lvds[] = {
427 {
428 .callback = intel_dual_link_lvds_callback,
429 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
430 .matches = {
431 DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
432 DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
433 },
434 },
435 { } /* terminating entry */
436 };
437
438 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
439 unsigned int reg)
440 {
441 unsigned int val;
442
443 /* use the module option value if specified */
444 if (i915_lvds_channel_mode > 0)
445 return i915_lvds_channel_mode == 2;
446
447 if (dmi_check_system(intel_dual_link_lvds))
448 return true;
449
450 if (dev_priv->lvds_val)
451 val = dev_priv->lvds_val;
452 else {
453 /* BIOS should set the proper LVDS register value at boot, but
454 * in reality, it doesn't set the value when the lid is closed;
455 * we need to check "the value to be set" in VBT when LVDS
456 * register is uninitialized.
457 */
458 val = I915_READ(reg);
459 if (!(val & ~LVDS_DETECTED))
460 val = dev_priv->bios_lvds_val;
461 dev_priv->lvds_val = val;
462 }
463 return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
464 }
465
466 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
467 int refclk)
468 {
469 struct drm_device *dev = crtc->dev;
470 struct drm_i915_private *dev_priv = dev->dev_private;
471 const intel_limit_t *limit;
472
473 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
474 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
475 /* LVDS dual channel */
476 if (refclk == 100000)
477 limit = &intel_limits_ironlake_dual_lvds_100m;
478 else
479 limit = &intel_limits_ironlake_dual_lvds;
480 } else {
481 if (refclk == 100000)
482 limit = &intel_limits_ironlake_single_lvds_100m;
483 else
484 limit = &intel_limits_ironlake_single_lvds;
485 }
486 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
487 HAS_eDP)
488 limit = &intel_limits_ironlake_display_port;
489 else
490 limit = &intel_limits_ironlake_dac;
491
492 return limit;
493 }
494
495 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
496 {
497 struct drm_device *dev = crtc->dev;
498 struct drm_i915_private *dev_priv = dev->dev_private;
499 const intel_limit_t *limit;
500
501 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
502 if (is_dual_link_lvds(dev_priv, LVDS))
503 /* LVDS with dual channel */
504 limit = &intel_limits_g4x_dual_channel_lvds;
505 else
506 /* LVDS with dual channel */
507 limit = &intel_limits_g4x_single_channel_lvds;
508 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
509 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
510 limit = &intel_limits_g4x_hdmi;
511 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
512 limit = &intel_limits_g4x_sdvo;
513 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
514 limit = &intel_limits_g4x_display_port;
515 } else /* The option is for other outputs */
516 limit = &intel_limits_i9xx_sdvo;
517
518 return limit;
519 }
520
521 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
522 {
523 struct drm_device *dev = crtc->dev;
524 const intel_limit_t *limit;
525
526 if (HAS_PCH_SPLIT(dev))
527 limit = intel_ironlake_limit(crtc, refclk);
528 else if (IS_G4X(dev)) {
529 limit = intel_g4x_limit(crtc);
530 } else if (IS_PINEVIEW(dev)) {
531 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
532 limit = &intel_limits_pineview_lvds;
533 else
534 limit = &intel_limits_pineview_sdvo;
535 } else if (!IS_GEN2(dev)) {
536 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
537 limit = &intel_limits_i9xx_lvds;
538 else
539 limit = &intel_limits_i9xx_sdvo;
540 } else {
541 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
542 limit = &intel_limits_i8xx_lvds;
543 else
544 limit = &intel_limits_i8xx_dvo;
545 }
546 return limit;
547 }
548
549 /* m1 is reserved as 0 in Pineview, n is a ring counter */
550 static void pineview_clock(int refclk, intel_clock_t *clock)
551 {
552 clock->m = clock->m2 + 2;
553 clock->p = clock->p1 * clock->p2;
554 clock->vco = refclk * clock->m / clock->n;
555 clock->dot = clock->vco / clock->p;
556 }
557
558 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
559 {
560 if (IS_PINEVIEW(dev)) {
561 pineview_clock(refclk, clock);
562 return;
563 }
564 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
565 clock->p = clock->p1 * clock->p2;
566 clock->vco = refclk * clock->m / (clock->n + 2);
567 clock->dot = clock->vco / clock->p;
568 }
569
570 /**
571 * Returns whether any output on the specified pipe is of the specified type
572 */
573 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
574 {
575 struct drm_device *dev = crtc->dev;
576 struct drm_mode_config *mode_config = &dev->mode_config;
577 struct intel_encoder *encoder;
578
579 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
580 if (encoder->base.crtc == crtc && encoder->type == type)
581 return true;
582
583 return false;
584 }
585
586 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
587 /**
588 * Returns whether the given set of divisors are valid for a given refclk with
589 * the given connectors.
590 */
591
592 static bool intel_PLL_is_valid(struct drm_device *dev,
593 const intel_limit_t *limit,
594 const intel_clock_t *clock)
595 {
596 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
597 INTELPllInvalid("p1 out of range\n");
598 if (clock->p < limit->p.min || limit->p.max < clock->p)
599 INTELPllInvalid("p out of range\n");
600 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
601 INTELPllInvalid("m2 out of range\n");
602 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
603 INTELPllInvalid("m1 out of range\n");
604 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
605 INTELPllInvalid("m1 <= m2\n");
606 if (clock->m < limit->m.min || limit->m.max < clock->m)
607 INTELPllInvalid("m out of range\n");
608 if (clock->n < limit->n.min || limit->n.max < clock->n)
609 INTELPllInvalid("n out of range\n");
610 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
611 INTELPllInvalid("vco out of range\n");
612 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
613 * connector, etc., rather than just a single range.
614 */
615 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
616 INTELPllInvalid("dot out of range\n");
617
618 return true;
619 }
620
621 static bool
622 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
623 int target, int refclk, intel_clock_t *match_clock,
624 intel_clock_t *best_clock)
625
626 {
627 struct drm_device *dev = crtc->dev;
628 struct drm_i915_private *dev_priv = dev->dev_private;
629 intel_clock_t clock;
630 int err = target;
631
632 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
633 (I915_READ(LVDS)) != 0) {
634 /*
635 * For LVDS, if the panel is on, just rely on its current
636 * settings for dual-channel. We haven't figured out how to
637 * reliably set up different single/dual channel state, if we
638 * even can.
639 */
640 if (is_dual_link_lvds(dev_priv, LVDS))
641 clock.p2 = limit->p2.p2_fast;
642 else
643 clock.p2 = limit->p2.p2_slow;
644 } else {
645 if (target < limit->p2.dot_limit)
646 clock.p2 = limit->p2.p2_slow;
647 else
648 clock.p2 = limit->p2.p2_fast;
649 }
650
651 memset(best_clock, 0, sizeof(*best_clock));
652
653 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
654 clock.m1++) {
655 for (clock.m2 = limit->m2.min;
656 clock.m2 <= limit->m2.max; clock.m2++) {
657 /* m1 is always 0 in Pineview */
658 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
659 break;
660 for (clock.n = limit->n.min;
661 clock.n <= limit->n.max; clock.n++) {
662 for (clock.p1 = limit->p1.min;
663 clock.p1 <= limit->p1.max; clock.p1++) {
664 int this_err;
665
666 intel_clock(dev, refclk, &clock);
667 if (!intel_PLL_is_valid(dev, limit,
668 &clock))
669 continue;
670 if (match_clock &&
671 clock.p != match_clock->p)
672 continue;
673
674 this_err = abs(clock.dot - target);
675 if (this_err < err) {
676 *best_clock = clock;
677 err = this_err;
678 }
679 }
680 }
681 }
682 }
683
684 return (err != target);
685 }
686
687 static bool
688 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
689 int target, int refclk, intel_clock_t *match_clock,
690 intel_clock_t *best_clock)
691 {
692 struct drm_device *dev = crtc->dev;
693 struct drm_i915_private *dev_priv = dev->dev_private;
694 intel_clock_t clock;
695 int max_n;
696 bool found;
697 /* approximately equals target * 0.00585 */
698 int err_most = (target >> 8) + (target >> 9);
699 found = false;
700
701 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
702 int lvds_reg;
703
704 if (HAS_PCH_SPLIT(dev))
705 lvds_reg = PCH_LVDS;
706 else
707 lvds_reg = LVDS;
708 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
709 LVDS_CLKB_POWER_UP)
710 clock.p2 = limit->p2.p2_fast;
711 else
712 clock.p2 = limit->p2.p2_slow;
713 } else {
714 if (target < limit->p2.dot_limit)
715 clock.p2 = limit->p2.p2_slow;
716 else
717 clock.p2 = limit->p2.p2_fast;
718 }
719
720 memset(best_clock, 0, sizeof(*best_clock));
721 max_n = limit->n.max;
722 /* based on hardware requirement, prefer smaller n to precision */
723 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
724 /* based on hardware requirement, prefere larger m1,m2 */
725 for (clock.m1 = limit->m1.max;
726 clock.m1 >= limit->m1.min; clock.m1--) {
727 for (clock.m2 = limit->m2.max;
728 clock.m2 >= limit->m2.min; clock.m2--) {
729 for (clock.p1 = limit->p1.max;
730 clock.p1 >= limit->p1.min; clock.p1--) {
731 int this_err;
732
733 intel_clock(dev, refclk, &clock);
734 if (!intel_PLL_is_valid(dev, limit,
735 &clock))
736 continue;
737 if (match_clock &&
738 clock.p != match_clock->p)
739 continue;
740
741 this_err = abs(clock.dot - target);
742 if (this_err < err_most) {
743 *best_clock = clock;
744 err_most = this_err;
745 max_n = clock.n;
746 found = true;
747 }
748 }
749 }
750 }
751 }
752 return found;
753 }
754
755 static bool
756 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
757 int target, int refclk, intel_clock_t *match_clock,
758 intel_clock_t *best_clock)
759 {
760 struct drm_device *dev = crtc->dev;
761 intel_clock_t clock;
762
763 if (target < 200000) {
764 clock.n = 1;
765 clock.p1 = 2;
766 clock.p2 = 10;
767 clock.m1 = 12;
768 clock.m2 = 9;
769 } else {
770 clock.n = 2;
771 clock.p1 = 1;
772 clock.p2 = 10;
773 clock.m1 = 14;
774 clock.m2 = 8;
775 }
776 intel_clock(dev, refclk, &clock);
777 memcpy(best_clock, &clock, sizeof(intel_clock_t));
778 return true;
779 }
780
781 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
782 static bool
783 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
784 int target, int refclk, intel_clock_t *match_clock,
785 intel_clock_t *best_clock)
786 {
787 intel_clock_t clock;
788 if (target < 200000) {
789 clock.p1 = 2;
790 clock.p2 = 10;
791 clock.n = 2;
792 clock.m1 = 23;
793 clock.m2 = 8;
794 } else {
795 clock.p1 = 1;
796 clock.p2 = 10;
797 clock.n = 1;
798 clock.m1 = 14;
799 clock.m2 = 2;
800 }
801 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
802 clock.p = (clock.p1 * clock.p2);
803 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
804 clock.vco = 0;
805 memcpy(best_clock, &clock, sizeof(intel_clock_t));
806 return true;
807 }
808
809 /**
810 * intel_wait_for_vblank - wait for vblank on a given pipe
811 * @dev: drm device
812 * @pipe: pipe to wait for
813 *
814 * Wait for vblank to occur on a given pipe. Needed for various bits of
815 * mode setting code.
816 */
817 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
818 {
819 struct drm_i915_private *dev_priv = dev->dev_private;
820 int pipestat_reg = PIPESTAT(pipe);
821
822 /* Clear existing vblank status. Note this will clear any other
823 * sticky status fields as well.
824 *
825 * This races with i915_driver_irq_handler() with the result
826 * that either function could miss a vblank event. Here it is not
827 * fatal, as we will either wait upon the next vblank interrupt or
828 * timeout. Generally speaking intel_wait_for_vblank() is only
829 * called during modeset at which time the GPU should be idle and
830 * should *not* be performing page flips and thus not waiting on
831 * vblanks...
832 * Currently, the result of us stealing a vblank from the irq
833 * handler is that a single frame will be skipped during swapbuffers.
834 */
835 I915_WRITE(pipestat_reg,
836 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
837
838 /* Wait for vblank interrupt bit to set */
839 if (wait_for(I915_READ(pipestat_reg) &
840 PIPE_VBLANK_INTERRUPT_STATUS,
841 50))
842 DRM_DEBUG_KMS("vblank wait timed out\n");
843 }
844
845 /*
846 * intel_wait_for_pipe_off - wait for pipe to turn off
847 * @dev: drm device
848 * @pipe: pipe to wait for
849 *
850 * After disabling a pipe, we can't wait for vblank in the usual way,
851 * spinning on the vblank interrupt status bit, since we won't actually
852 * see an interrupt when the pipe is disabled.
853 *
854 * On Gen4 and above:
855 * wait for the pipe register state bit to turn off
856 *
857 * Otherwise:
858 * wait for the display line value to settle (it usually
859 * ends up stopping at the start of the next frame).
860 *
861 */
862 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
863 {
864 struct drm_i915_private *dev_priv = dev->dev_private;
865
866 if (INTEL_INFO(dev)->gen >= 4) {
867 int reg = PIPECONF(pipe);
868
869 /* Wait for the Pipe State to go off */
870 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
871 100))
872 DRM_DEBUG_KMS("pipe_off wait timed out\n");
873 } else {
874 u32 last_line;
875 int reg = PIPEDSL(pipe);
876 unsigned long timeout = jiffies + msecs_to_jiffies(100);
877
878 /* Wait for the display line to settle */
879 do {
880 last_line = I915_READ(reg) & DSL_LINEMASK;
881 mdelay(5);
882 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
883 time_after(timeout, jiffies));
884 if (time_after(jiffies, timeout))
885 DRM_DEBUG_KMS("pipe_off wait timed out\n");
886 }
887 }
888
889 static const char *state_string(bool enabled)
890 {
891 return enabled ? "on" : "off";
892 }
893
894 /* Only for pre-ILK configs */
895 static void assert_pll(struct drm_i915_private *dev_priv,
896 enum pipe pipe, bool state)
897 {
898 int reg;
899 u32 val;
900 bool cur_state;
901
902 reg = DPLL(pipe);
903 val = I915_READ(reg);
904 cur_state = !!(val & DPLL_VCO_ENABLE);
905 WARN(cur_state != state,
906 "PLL state assertion failure (expected %s, current %s)\n",
907 state_string(state), state_string(cur_state));
908 }
909 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
910 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
911
912 /* For ILK+ */
913 static void assert_pch_pll(struct drm_i915_private *dev_priv,
914 struct intel_crtc *intel_crtc, bool state)
915 {
916 int reg;
917 u32 val;
918 bool cur_state;
919
920 if (!intel_crtc->pch_pll) {
921 WARN(1, "asserting PCH PLL enabled with no PLL\n");
922 return;
923 }
924
925 if (HAS_PCH_CPT(dev_priv->dev)) {
926 u32 pch_dpll;
927
928 pch_dpll = I915_READ(PCH_DPLL_SEL);
929
930 /* Make sure the selected PLL is enabled to the transcoder */
931 WARN(!((pch_dpll >> (4 * intel_crtc->pipe)) & 8),
932 "transcoder %d PLL not enabled\n", intel_crtc->pipe);
933 }
934
935 reg = intel_crtc->pch_pll->pll_reg;
936 val = I915_READ(reg);
937 cur_state = !!(val & DPLL_VCO_ENABLE);
938 WARN(cur_state != state,
939 "PCH PLL state assertion failure (expected %s, current %s)\n",
940 state_string(state), state_string(cur_state));
941 }
942 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
943 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
944
945 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
946 enum pipe pipe, bool state)
947 {
948 int reg;
949 u32 val;
950 bool cur_state;
951
952 reg = FDI_TX_CTL(pipe);
953 val = I915_READ(reg);
954 cur_state = !!(val & FDI_TX_ENABLE);
955 WARN(cur_state != state,
956 "FDI TX state assertion failure (expected %s, current %s)\n",
957 state_string(state), state_string(cur_state));
958 }
959 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
960 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
961
962 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
963 enum pipe pipe, bool state)
964 {
965 int reg;
966 u32 val;
967 bool cur_state;
968
969 reg = FDI_RX_CTL(pipe);
970 val = I915_READ(reg);
971 cur_state = !!(val & FDI_RX_ENABLE);
972 WARN(cur_state != state,
973 "FDI RX state assertion failure (expected %s, current %s)\n",
974 state_string(state), state_string(cur_state));
975 }
976 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
977 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
978
979 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
980 enum pipe pipe)
981 {
982 int reg;
983 u32 val;
984
985 /* ILK FDI PLL is always enabled */
986 if (dev_priv->info->gen == 5)
987 return;
988
989 reg = FDI_TX_CTL(pipe);
990 val = I915_READ(reg);
991 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
992 }
993
994 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
995 enum pipe pipe)
996 {
997 int reg;
998 u32 val;
999
1000 reg = FDI_RX_CTL(pipe);
1001 val = I915_READ(reg);
1002 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1003 }
1004
1005 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1006 enum pipe pipe)
1007 {
1008 int pp_reg, lvds_reg;
1009 u32 val;
1010 enum pipe panel_pipe = PIPE_A;
1011 bool locked = true;
1012
1013 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1014 pp_reg = PCH_PP_CONTROL;
1015 lvds_reg = PCH_LVDS;
1016 } else {
1017 pp_reg = PP_CONTROL;
1018 lvds_reg = LVDS;
1019 }
1020
1021 val = I915_READ(pp_reg);
1022 if (!(val & PANEL_POWER_ON) ||
1023 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1024 locked = false;
1025
1026 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1027 panel_pipe = PIPE_B;
1028
1029 WARN(panel_pipe == pipe && locked,
1030 "panel assertion failure, pipe %c regs locked\n",
1031 pipe_name(pipe));
1032 }
1033
1034 void assert_pipe(struct drm_i915_private *dev_priv,
1035 enum pipe pipe, bool state)
1036 {
1037 int reg;
1038 u32 val;
1039 bool cur_state;
1040
1041 /* if we need the pipe A quirk it must be always on */
1042 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1043 state = true;
1044
1045 reg = PIPECONF(pipe);
1046 val = I915_READ(reg);
1047 cur_state = !!(val & PIPECONF_ENABLE);
1048 WARN(cur_state != state,
1049 "pipe %c assertion failure (expected %s, current %s)\n",
1050 pipe_name(pipe), state_string(state), state_string(cur_state));
1051 }
1052
1053 static void assert_plane(struct drm_i915_private *dev_priv,
1054 enum plane plane, bool state)
1055 {
1056 int reg;
1057 u32 val;
1058 bool cur_state;
1059
1060 reg = DSPCNTR(plane);
1061 val = I915_READ(reg);
1062 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1063 WARN(cur_state != state,
1064 "plane %c assertion failure (expected %s, current %s)\n",
1065 plane_name(plane), state_string(state), state_string(cur_state));
1066 }
1067
1068 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1069 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1070
1071 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1072 enum pipe pipe)
1073 {
1074 int reg, i;
1075 u32 val;
1076 int cur_pipe;
1077
1078 /* Planes are fixed to pipes on ILK+ */
1079 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1080 reg = DSPCNTR(pipe);
1081 val = I915_READ(reg);
1082 WARN((val & DISPLAY_PLANE_ENABLE),
1083 "plane %c assertion failure, should be disabled but not\n",
1084 plane_name(pipe));
1085 return;
1086 }
1087
1088 /* Need to check both planes against the pipe */
1089 for (i = 0; i < 2; i++) {
1090 reg = DSPCNTR(i);
1091 val = I915_READ(reg);
1092 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1093 DISPPLANE_SEL_PIPE_SHIFT;
1094 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1095 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1096 plane_name(i), pipe_name(pipe));
1097 }
1098 }
1099
1100 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1101 {
1102 u32 val;
1103 bool enabled;
1104
1105 val = I915_READ(PCH_DREF_CONTROL);
1106 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1107 DREF_SUPERSPREAD_SOURCE_MASK));
1108 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1109 }
1110
1111 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1112 enum pipe pipe)
1113 {
1114 int reg;
1115 u32 val;
1116 bool enabled;
1117
1118 reg = TRANSCONF(pipe);
1119 val = I915_READ(reg);
1120 enabled = !!(val & TRANS_ENABLE);
1121 WARN(enabled,
1122 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1123 pipe_name(pipe));
1124 }
1125
1126 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1127 enum pipe pipe, u32 port_sel, u32 val)
1128 {
1129 if ((val & DP_PORT_EN) == 0)
1130 return false;
1131
1132 if (HAS_PCH_CPT(dev_priv->dev)) {
1133 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1134 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1135 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1136 return false;
1137 } else {
1138 if ((val & DP_PIPE_MASK) != (pipe << 30))
1139 return false;
1140 }
1141 return true;
1142 }
1143
1144 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1145 enum pipe pipe, u32 val)
1146 {
1147 if ((val & PORT_ENABLE) == 0)
1148 return false;
1149
1150 if (HAS_PCH_CPT(dev_priv->dev)) {
1151 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1152 return false;
1153 } else {
1154 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1155 return false;
1156 }
1157 return true;
1158 }
1159
1160 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1161 enum pipe pipe, u32 val)
1162 {
1163 if ((val & LVDS_PORT_EN) == 0)
1164 return false;
1165
1166 if (HAS_PCH_CPT(dev_priv->dev)) {
1167 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1168 return false;
1169 } else {
1170 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1171 return false;
1172 }
1173 return true;
1174 }
1175
1176 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1177 enum pipe pipe, u32 val)
1178 {
1179 if ((val & ADPA_DAC_ENABLE) == 0)
1180 return false;
1181 if (HAS_PCH_CPT(dev_priv->dev)) {
1182 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1183 return false;
1184 } else {
1185 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1186 return false;
1187 }
1188 return true;
1189 }
1190
1191 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1192 enum pipe pipe, int reg, u32 port_sel)
1193 {
1194 u32 val = I915_READ(reg);
1195 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1196 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1197 reg, pipe_name(pipe));
1198 }
1199
1200 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1201 enum pipe pipe, int reg)
1202 {
1203 u32 val = I915_READ(reg);
1204 WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
1205 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1206 reg, pipe_name(pipe));
1207 }
1208
1209 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1210 enum pipe pipe)
1211 {
1212 int reg;
1213 u32 val;
1214
1215 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1216 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1217 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1218
1219 reg = PCH_ADPA;
1220 val = I915_READ(reg);
1221 WARN(adpa_pipe_enabled(dev_priv, val, pipe),
1222 "PCH VGA enabled on transcoder %c, should be disabled\n",
1223 pipe_name(pipe));
1224
1225 reg = PCH_LVDS;
1226 val = I915_READ(reg);
1227 WARN(lvds_pipe_enabled(dev_priv, val, pipe),
1228 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1229 pipe_name(pipe));
1230
1231 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1232 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1233 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1234 }
1235
1236 /**
1237 * intel_enable_pll - enable a PLL
1238 * @dev_priv: i915 private structure
1239 * @pipe: pipe PLL to enable
1240 *
1241 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1242 * make sure the PLL reg is writable first though, since the panel write
1243 * protect mechanism may be enabled.
1244 *
1245 * Note! This is for pre-ILK only.
1246 */
1247 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1248 {
1249 int reg;
1250 u32 val;
1251
1252 /* No really, not for ILK+ */
1253 BUG_ON(dev_priv->info->gen >= 5);
1254
1255 /* PLL is protected by panel, make sure we can write it */
1256 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1257 assert_panel_unlocked(dev_priv, pipe);
1258
1259 reg = DPLL(pipe);
1260 val = I915_READ(reg);
1261 val |= DPLL_VCO_ENABLE;
1262
1263 /* We do this three times for luck */
1264 I915_WRITE(reg, val);
1265 POSTING_READ(reg);
1266 udelay(150); /* wait for warmup */
1267 I915_WRITE(reg, val);
1268 POSTING_READ(reg);
1269 udelay(150); /* wait for warmup */
1270 I915_WRITE(reg, val);
1271 POSTING_READ(reg);
1272 udelay(150); /* wait for warmup */
1273 }
1274
1275 /**
1276 * intel_disable_pll - disable a PLL
1277 * @dev_priv: i915 private structure
1278 * @pipe: pipe PLL to disable
1279 *
1280 * Disable the PLL for @pipe, making sure the pipe is off first.
1281 *
1282 * Note! This is for pre-ILK only.
1283 */
1284 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1285 {
1286 int reg;
1287 u32 val;
1288
1289 /* Don't disable pipe A or pipe A PLLs if needed */
1290 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1291 return;
1292
1293 /* Make sure the pipe isn't still relying on us */
1294 assert_pipe_disabled(dev_priv, pipe);
1295
1296 reg = DPLL(pipe);
1297 val = I915_READ(reg);
1298 val &= ~DPLL_VCO_ENABLE;
1299 I915_WRITE(reg, val);
1300 POSTING_READ(reg);
1301 }
1302
1303 /**
1304 * intel_enable_pch_pll - enable PCH PLL
1305 * @dev_priv: i915 private structure
1306 * @pipe: pipe PLL to enable
1307 *
1308 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1309 * drives the transcoder clock.
1310 */
1311 static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
1312 {
1313 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1314 struct intel_pch_pll *pll = intel_crtc->pch_pll;
1315 int reg;
1316 u32 val;
1317
1318 /* PCH only available on ILK+ */
1319 BUG_ON(dev_priv->info->gen < 5);
1320 BUG_ON(pll == NULL);
1321 BUG_ON(pll->refcount == 0);
1322
1323 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1324 pll->pll_reg, pll->active, pll->on,
1325 intel_crtc->base.base.id);
1326
1327 /* PCH refclock must be enabled first */
1328 assert_pch_refclk_enabled(dev_priv);
1329
1330 if (pll->active++ && pll->on) {
1331 assert_pch_pll_enabled(dev_priv, intel_crtc);
1332 return;
1333 }
1334
1335 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1336
1337 reg = pll->pll_reg;
1338 val = I915_READ(reg);
1339 val |= DPLL_VCO_ENABLE;
1340 I915_WRITE(reg, val);
1341 POSTING_READ(reg);
1342 udelay(200);
1343
1344 pll->on = true;
1345 }
1346
1347 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1348 {
1349 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1350 struct intel_pch_pll *pll = intel_crtc->pch_pll;
1351 int reg;
1352 u32 val;
1353
1354 /* PCH only available on ILK+ */
1355 BUG_ON(dev_priv->info->gen < 5);
1356 if (pll == NULL)
1357 return;
1358
1359 BUG_ON(pll->refcount == 0);
1360
1361 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1362 pll->pll_reg, pll->active, pll->on,
1363 intel_crtc->base.base.id);
1364
1365 BUG_ON(pll->active == 0);
1366 if (--pll->active) {
1367 assert_pch_pll_enabled(dev_priv, intel_crtc);
1368 return;
1369 }
1370
1371 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1372
1373 /* Make sure transcoder isn't still depending on us */
1374 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1375
1376 reg = pll->pll_reg;
1377 val = I915_READ(reg);
1378 val &= ~DPLL_VCO_ENABLE;
1379 I915_WRITE(reg, val);
1380 POSTING_READ(reg);
1381 udelay(200);
1382
1383 pll->on = false;
1384 }
1385
1386 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1387 enum pipe pipe)
1388 {
1389 int reg;
1390 u32 val, pipeconf_val;
1391 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1392
1393 /* PCH only available on ILK+ */
1394 BUG_ON(dev_priv->info->gen < 5);
1395
1396 /* Make sure PCH DPLL is enabled */
1397 assert_pch_pll_enabled(dev_priv, to_intel_crtc(crtc));
1398
1399 /* FDI must be feeding us bits for PCH ports */
1400 assert_fdi_tx_enabled(dev_priv, pipe);
1401 assert_fdi_rx_enabled(dev_priv, pipe);
1402
1403 reg = TRANSCONF(pipe);
1404 val = I915_READ(reg);
1405 pipeconf_val = I915_READ(PIPECONF(pipe));
1406
1407 if (HAS_PCH_IBX(dev_priv->dev)) {
1408 /*
1409 * make the BPC in transcoder be consistent with
1410 * that in pipeconf reg.
1411 */
1412 val &= ~PIPE_BPC_MASK;
1413 val |= pipeconf_val & PIPE_BPC_MASK;
1414 }
1415
1416 val &= ~TRANS_INTERLACE_MASK;
1417 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1418 if (HAS_PCH_IBX(dev_priv->dev) &&
1419 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1420 val |= TRANS_LEGACY_INTERLACED_ILK;
1421 else
1422 val |= TRANS_INTERLACED;
1423 else
1424 val |= TRANS_PROGRESSIVE;
1425
1426 I915_WRITE(reg, val | TRANS_ENABLE);
1427 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1428 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1429 }
1430
1431 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1432 enum pipe pipe)
1433 {
1434 int reg;
1435 u32 val;
1436
1437 /* FDI relies on the transcoder */
1438 assert_fdi_tx_disabled(dev_priv, pipe);
1439 assert_fdi_rx_disabled(dev_priv, pipe);
1440
1441 /* Ports must be off as well */
1442 assert_pch_ports_disabled(dev_priv, pipe);
1443
1444 reg = TRANSCONF(pipe);
1445 val = I915_READ(reg);
1446 val &= ~TRANS_ENABLE;
1447 I915_WRITE(reg, val);
1448 /* wait for PCH transcoder off, transcoder state */
1449 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1450 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1451 }
1452
1453 /**
1454 * intel_enable_pipe - enable a pipe, asserting requirements
1455 * @dev_priv: i915 private structure
1456 * @pipe: pipe to enable
1457 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1458 *
1459 * Enable @pipe, making sure that various hardware specific requirements
1460 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1461 *
1462 * @pipe should be %PIPE_A or %PIPE_B.
1463 *
1464 * Will wait until the pipe is actually running (i.e. first vblank) before
1465 * returning.
1466 */
1467 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1468 bool pch_port)
1469 {
1470 int reg;
1471 u32 val;
1472
1473 /*
1474 * A pipe without a PLL won't actually be able to drive bits from
1475 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1476 * need the check.
1477 */
1478 if (!HAS_PCH_SPLIT(dev_priv->dev))
1479 assert_pll_enabled(dev_priv, pipe);
1480 else {
1481 if (pch_port) {
1482 /* if driving the PCH, we need FDI enabled */
1483 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1484 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1485 }
1486 /* FIXME: assert CPU port conditions for SNB+ */
1487 }
1488
1489 reg = PIPECONF(pipe);
1490 val = I915_READ(reg);
1491 if (val & PIPECONF_ENABLE)
1492 return;
1493
1494 I915_WRITE(reg, val | PIPECONF_ENABLE);
1495 intel_wait_for_vblank(dev_priv->dev, pipe);
1496 }
1497
1498 /**
1499 * intel_disable_pipe - disable a pipe, asserting requirements
1500 * @dev_priv: i915 private structure
1501 * @pipe: pipe to disable
1502 *
1503 * Disable @pipe, making sure that various hardware specific requirements
1504 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1505 *
1506 * @pipe should be %PIPE_A or %PIPE_B.
1507 *
1508 * Will wait until the pipe has shut down before returning.
1509 */
1510 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1511 enum pipe pipe)
1512 {
1513 int reg;
1514 u32 val;
1515
1516 /*
1517 * Make sure planes won't keep trying to pump pixels to us,
1518 * or we might hang the display.
1519 */
1520 assert_planes_disabled(dev_priv, pipe);
1521
1522 /* Don't disable pipe A or pipe A PLLs if needed */
1523 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1524 return;
1525
1526 reg = PIPECONF(pipe);
1527 val = I915_READ(reg);
1528 if ((val & PIPECONF_ENABLE) == 0)
1529 return;
1530
1531 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1532 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1533 }
1534
1535 /*
1536 * Plane regs are double buffered, going from enabled->disabled needs a
1537 * trigger in order to latch. The display address reg provides this.
1538 */
1539 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1540 enum plane plane)
1541 {
1542 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1543 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1544 }
1545
1546 /**
1547 * intel_enable_plane - enable a display plane on a given pipe
1548 * @dev_priv: i915 private structure
1549 * @plane: plane to enable
1550 * @pipe: pipe being fed
1551 *
1552 * Enable @plane on @pipe, making sure that @pipe is running first.
1553 */
1554 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1555 enum plane plane, enum pipe pipe)
1556 {
1557 int reg;
1558 u32 val;
1559
1560 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1561 assert_pipe_enabled(dev_priv, pipe);
1562
1563 reg = DSPCNTR(plane);
1564 val = I915_READ(reg);
1565 if (val & DISPLAY_PLANE_ENABLE)
1566 return;
1567
1568 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1569 intel_flush_display_plane(dev_priv, plane);
1570 intel_wait_for_vblank(dev_priv->dev, pipe);
1571 }
1572
1573 /**
1574 * intel_disable_plane - disable a display plane
1575 * @dev_priv: i915 private structure
1576 * @plane: plane to disable
1577 * @pipe: pipe consuming the data
1578 *
1579 * Disable @plane; should be an independent operation.
1580 */
1581 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1582 enum plane plane, enum pipe pipe)
1583 {
1584 int reg;
1585 u32 val;
1586
1587 reg = DSPCNTR(plane);
1588 val = I915_READ(reg);
1589 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1590 return;
1591
1592 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1593 intel_flush_display_plane(dev_priv, plane);
1594 intel_wait_for_vblank(dev_priv->dev, pipe);
1595 }
1596
1597 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1598 enum pipe pipe, int reg, u32 port_sel)
1599 {
1600 u32 val = I915_READ(reg);
1601 if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1602 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1603 I915_WRITE(reg, val & ~DP_PORT_EN);
1604 }
1605 }
1606
1607 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1608 enum pipe pipe, int reg)
1609 {
1610 u32 val = I915_READ(reg);
1611 if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1612 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1613 reg, pipe);
1614 I915_WRITE(reg, val & ~PORT_ENABLE);
1615 }
1616 }
1617
1618 /* Disable any ports connected to this transcoder */
1619 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1620 enum pipe pipe)
1621 {
1622 u32 reg, val;
1623
1624 val = I915_READ(PCH_PP_CONTROL);
1625 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1626
1627 disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1628 disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1629 disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1630
1631 reg = PCH_ADPA;
1632 val = I915_READ(reg);
1633 if (adpa_pipe_enabled(dev_priv, val, pipe))
1634 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1635
1636 reg = PCH_LVDS;
1637 val = I915_READ(reg);
1638 if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1639 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1640 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1641 POSTING_READ(reg);
1642 udelay(100);
1643 }
1644
1645 disable_pch_hdmi(dev_priv, pipe, HDMIB);
1646 disable_pch_hdmi(dev_priv, pipe, HDMIC);
1647 disable_pch_hdmi(dev_priv, pipe, HDMID);
1648 }
1649
1650 int
1651 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1652 struct drm_i915_gem_object *obj,
1653 struct intel_ring_buffer *pipelined)
1654 {
1655 struct drm_i915_private *dev_priv = dev->dev_private;
1656 u32 alignment;
1657 int ret;
1658
1659 switch (obj->tiling_mode) {
1660 case I915_TILING_NONE:
1661 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1662 alignment = 128 * 1024;
1663 else if (INTEL_INFO(dev)->gen >= 4)
1664 alignment = 4 * 1024;
1665 else
1666 alignment = 64 * 1024;
1667 break;
1668 case I915_TILING_X:
1669 /* pin() will align the object as required by fence */
1670 alignment = 0;
1671 break;
1672 case I915_TILING_Y:
1673 /* FIXME: Is this true? */
1674 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1675 return -EINVAL;
1676 default:
1677 BUG();
1678 }
1679
1680 dev_priv->mm.interruptible = false;
1681 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1682 if (ret)
1683 goto err_interruptible;
1684
1685 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1686 * fence, whereas 965+ only requires a fence if using
1687 * framebuffer compression. For simplicity, we always install
1688 * a fence as the cost is not that onerous.
1689 */
1690 ret = i915_gem_object_get_fence(obj);
1691 if (ret)
1692 goto err_unpin;
1693
1694 i915_gem_object_pin_fence(obj);
1695
1696 dev_priv->mm.interruptible = true;
1697 return 0;
1698
1699 err_unpin:
1700 i915_gem_object_unpin(obj);
1701 err_interruptible:
1702 dev_priv->mm.interruptible = true;
1703 return ret;
1704 }
1705
1706 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1707 {
1708 i915_gem_object_unpin_fence(obj);
1709 i915_gem_object_unpin(obj);
1710 }
1711
1712 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1713 int x, int y)
1714 {
1715 struct drm_device *dev = crtc->dev;
1716 struct drm_i915_private *dev_priv = dev->dev_private;
1717 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1718 struct intel_framebuffer *intel_fb;
1719 struct drm_i915_gem_object *obj;
1720 int plane = intel_crtc->plane;
1721 unsigned long Start, Offset;
1722 u32 dspcntr;
1723 u32 reg;
1724
1725 switch (plane) {
1726 case 0:
1727 case 1:
1728 break;
1729 default:
1730 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1731 return -EINVAL;
1732 }
1733
1734 intel_fb = to_intel_framebuffer(fb);
1735 obj = intel_fb->obj;
1736
1737 reg = DSPCNTR(plane);
1738 dspcntr = I915_READ(reg);
1739 /* Mask out pixel format bits in case we change it */
1740 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1741 switch (fb->bits_per_pixel) {
1742 case 8:
1743 dspcntr |= DISPPLANE_8BPP;
1744 break;
1745 case 16:
1746 if (fb->depth == 15)
1747 dspcntr |= DISPPLANE_15_16BPP;
1748 else
1749 dspcntr |= DISPPLANE_16BPP;
1750 break;
1751 case 24:
1752 case 32:
1753 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1754 break;
1755 default:
1756 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
1757 return -EINVAL;
1758 }
1759 if (INTEL_INFO(dev)->gen >= 4) {
1760 if (obj->tiling_mode != I915_TILING_NONE)
1761 dspcntr |= DISPPLANE_TILED;
1762 else
1763 dspcntr &= ~DISPPLANE_TILED;
1764 }
1765
1766 I915_WRITE(reg, dspcntr);
1767
1768 Start = obj->gtt_offset;
1769 Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1770
1771 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1772 Start, Offset, x, y, fb->pitches[0]);
1773 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
1774 if (INTEL_INFO(dev)->gen >= 4) {
1775 I915_MODIFY_DISPBASE(DSPSURF(plane), Start);
1776 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1777 I915_WRITE(DSPADDR(plane), Offset);
1778 } else
1779 I915_WRITE(DSPADDR(plane), Start + Offset);
1780 POSTING_READ(reg);
1781
1782 return 0;
1783 }
1784
1785 static int ironlake_update_plane(struct drm_crtc *crtc,
1786 struct drm_framebuffer *fb, int x, int y)
1787 {
1788 struct drm_device *dev = crtc->dev;
1789 struct drm_i915_private *dev_priv = dev->dev_private;
1790 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1791 struct intel_framebuffer *intel_fb;
1792 struct drm_i915_gem_object *obj;
1793 int plane = intel_crtc->plane;
1794 unsigned long Start, Offset;
1795 u32 dspcntr;
1796 u32 reg;
1797
1798 switch (plane) {
1799 case 0:
1800 case 1:
1801 case 2:
1802 break;
1803 default:
1804 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1805 return -EINVAL;
1806 }
1807
1808 intel_fb = to_intel_framebuffer(fb);
1809 obj = intel_fb->obj;
1810
1811 reg = DSPCNTR(plane);
1812 dspcntr = I915_READ(reg);
1813 /* Mask out pixel format bits in case we change it */
1814 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1815 switch (fb->bits_per_pixel) {
1816 case 8:
1817 dspcntr |= DISPPLANE_8BPP;
1818 break;
1819 case 16:
1820 if (fb->depth != 16)
1821 return -EINVAL;
1822
1823 dspcntr |= DISPPLANE_16BPP;
1824 break;
1825 case 24:
1826 case 32:
1827 if (fb->depth == 24)
1828 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1829 else if (fb->depth == 30)
1830 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
1831 else
1832 return -EINVAL;
1833 break;
1834 default:
1835 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
1836 return -EINVAL;
1837 }
1838
1839 if (obj->tiling_mode != I915_TILING_NONE)
1840 dspcntr |= DISPPLANE_TILED;
1841 else
1842 dspcntr &= ~DISPPLANE_TILED;
1843
1844 /* must disable */
1845 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1846
1847 I915_WRITE(reg, dspcntr);
1848
1849 Start = obj->gtt_offset;
1850 Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1851
1852 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1853 Start, Offset, x, y, fb->pitches[0]);
1854 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
1855 I915_MODIFY_DISPBASE(DSPSURF(plane), Start);
1856 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1857 I915_WRITE(DSPADDR(plane), Offset);
1858 POSTING_READ(reg);
1859
1860 return 0;
1861 }
1862
1863 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1864 static int
1865 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1866 int x, int y, enum mode_set_atomic state)
1867 {
1868 struct drm_device *dev = crtc->dev;
1869 struct drm_i915_private *dev_priv = dev->dev_private;
1870
1871 if (dev_priv->display.disable_fbc)
1872 dev_priv->display.disable_fbc(dev);
1873 intel_increase_pllclock(crtc);
1874
1875 return dev_priv->display.update_plane(crtc, fb, x, y);
1876 }
1877
1878 static int
1879 intel_finish_fb(struct drm_framebuffer *old_fb)
1880 {
1881 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1882 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1883 bool was_interruptible = dev_priv->mm.interruptible;
1884 int ret;
1885
1886 wait_event(dev_priv->pending_flip_queue,
1887 atomic_read(&dev_priv->mm.wedged) ||
1888 atomic_read(&obj->pending_flip) == 0);
1889
1890 /* Big Hammer, we also need to ensure that any pending
1891 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
1892 * current scanout is retired before unpinning the old
1893 * framebuffer.
1894 *
1895 * This should only fail upon a hung GPU, in which case we
1896 * can safely continue.
1897 */
1898 dev_priv->mm.interruptible = false;
1899 ret = i915_gem_object_finish_gpu(obj);
1900 dev_priv->mm.interruptible = was_interruptible;
1901
1902 return ret;
1903 }
1904
1905 static int
1906 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1907 struct drm_framebuffer *old_fb)
1908 {
1909 struct drm_device *dev = crtc->dev;
1910 struct drm_i915_private *dev_priv = dev->dev_private;
1911 struct drm_i915_master_private *master_priv;
1912 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1913 int ret;
1914
1915 /* no fb bound */
1916 if (!crtc->fb) {
1917 DRM_ERROR("No FB bound\n");
1918 return 0;
1919 }
1920
1921 switch (intel_crtc->plane) {
1922 case 0:
1923 case 1:
1924 break;
1925 case 2:
1926 if (IS_IVYBRIDGE(dev))
1927 break;
1928 /* fall through otherwise */
1929 default:
1930 DRM_ERROR("no plane for crtc\n");
1931 return -EINVAL;
1932 }
1933
1934 mutex_lock(&dev->struct_mutex);
1935 ret = intel_pin_and_fence_fb_obj(dev,
1936 to_intel_framebuffer(crtc->fb)->obj,
1937 NULL);
1938 if (ret != 0) {
1939 mutex_unlock(&dev->struct_mutex);
1940 DRM_ERROR("pin & fence failed\n");
1941 return ret;
1942 }
1943
1944 if (old_fb)
1945 intel_finish_fb(old_fb);
1946
1947 ret = dev_priv->display.update_plane(crtc, crtc->fb, x, y);
1948 if (ret) {
1949 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
1950 mutex_unlock(&dev->struct_mutex);
1951 DRM_ERROR("failed to update base address\n");
1952 return ret;
1953 }
1954
1955 if (old_fb) {
1956 intel_wait_for_vblank(dev, intel_crtc->pipe);
1957 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
1958 }
1959
1960 intel_update_fbc(dev);
1961 mutex_unlock(&dev->struct_mutex);
1962
1963 if (!dev->primary->master)
1964 return 0;
1965
1966 master_priv = dev->primary->master->driver_priv;
1967 if (!master_priv->sarea_priv)
1968 return 0;
1969
1970 if (intel_crtc->pipe) {
1971 master_priv->sarea_priv->pipeB_x = x;
1972 master_priv->sarea_priv->pipeB_y = y;
1973 } else {
1974 master_priv->sarea_priv->pipeA_x = x;
1975 master_priv->sarea_priv->pipeA_y = y;
1976 }
1977
1978 return 0;
1979 }
1980
1981 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
1982 {
1983 struct drm_device *dev = crtc->dev;
1984 struct drm_i915_private *dev_priv = dev->dev_private;
1985 u32 dpa_ctl;
1986
1987 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1988 dpa_ctl = I915_READ(DP_A);
1989 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1990
1991 if (clock < 200000) {
1992 u32 temp;
1993 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1994 /* workaround for 160Mhz:
1995 1) program 0x4600c bits 15:0 = 0x8124
1996 2) program 0x46010 bit 0 = 1
1997 3) program 0x46034 bit 24 = 1
1998 4) program 0x64000 bit 14 = 1
1999 */
2000 temp = I915_READ(0x4600c);
2001 temp &= 0xffff0000;
2002 I915_WRITE(0x4600c, temp | 0x8124);
2003
2004 temp = I915_READ(0x46010);
2005 I915_WRITE(0x46010, temp | 1);
2006
2007 temp = I915_READ(0x46034);
2008 I915_WRITE(0x46034, temp | (1 << 24));
2009 } else {
2010 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2011 }
2012 I915_WRITE(DP_A, dpa_ctl);
2013
2014 POSTING_READ(DP_A);
2015 udelay(500);
2016 }
2017
2018 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2019 {
2020 struct drm_device *dev = crtc->dev;
2021 struct drm_i915_private *dev_priv = dev->dev_private;
2022 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2023 int pipe = intel_crtc->pipe;
2024 u32 reg, temp;
2025
2026 /* enable normal train */
2027 reg = FDI_TX_CTL(pipe);
2028 temp = I915_READ(reg);
2029 if (IS_IVYBRIDGE(dev)) {
2030 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2031 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2032 } else {
2033 temp &= ~FDI_LINK_TRAIN_NONE;
2034 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2035 }
2036 I915_WRITE(reg, temp);
2037
2038 reg = FDI_RX_CTL(pipe);
2039 temp = I915_READ(reg);
2040 if (HAS_PCH_CPT(dev)) {
2041 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2042 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2043 } else {
2044 temp &= ~FDI_LINK_TRAIN_NONE;
2045 temp |= FDI_LINK_TRAIN_NONE;
2046 }
2047 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2048
2049 /* wait one idle pattern time */
2050 POSTING_READ(reg);
2051 udelay(1000);
2052
2053 /* IVB wants error correction enabled */
2054 if (IS_IVYBRIDGE(dev))
2055 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2056 FDI_FE_ERRC_ENABLE);
2057 }
2058
2059 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2060 {
2061 struct drm_i915_private *dev_priv = dev->dev_private;
2062 u32 flags = I915_READ(SOUTH_CHICKEN1);
2063
2064 flags |= FDI_PHASE_SYNC_OVR(pipe);
2065 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2066 flags |= FDI_PHASE_SYNC_EN(pipe);
2067 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2068 POSTING_READ(SOUTH_CHICKEN1);
2069 }
2070
2071 /* The FDI link training functions for ILK/Ibexpeak. */
2072 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2073 {
2074 struct drm_device *dev = crtc->dev;
2075 struct drm_i915_private *dev_priv = dev->dev_private;
2076 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2077 int pipe = intel_crtc->pipe;
2078 int plane = intel_crtc->plane;
2079 u32 reg, temp, tries;
2080
2081 /* FDI needs bits from pipe & plane first */
2082 assert_pipe_enabled(dev_priv, pipe);
2083 assert_plane_enabled(dev_priv, plane);
2084
2085 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2086 for train result */
2087 reg = FDI_RX_IMR(pipe);
2088 temp = I915_READ(reg);
2089 temp &= ~FDI_RX_SYMBOL_LOCK;
2090 temp &= ~FDI_RX_BIT_LOCK;
2091 I915_WRITE(reg, temp);
2092 I915_READ(reg);
2093 udelay(150);
2094
2095 /* enable CPU FDI TX and PCH FDI RX */
2096 reg = FDI_TX_CTL(pipe);
2097 temp = I915_READ(reg);
2098 temp &= ~(7 << 19);
2099 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2100 temp &= ~FDI_LINK_TRAIN_NONE;
2101 temp |= FDI_LINK_TRAIN_PATTERN_1;
2102 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2103
2104 reg = FDI_RX_CTL(pipe);
2105 temp = I915_READ(reg);
2106 temp &= ~FDI_LINK_TRAIN_NONE;
2107 temp |= FDI_LINK_TRAIN_PATTERN_1;
2108 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2109
2110 POSTING_READ(reg);
2111 udelay(150);
2112
2113 /* Ironlake workaround, enable clock pointer after FDI enable*/
2114 if (HAS_PCH_IBX(dev)) {
2115 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2116 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2117 FDI_RX_PHASE_SYNC_POINTER_EN);
2118 }
2119
2120 reg = FDI_RX_IIR(pipe);
2121 for (tries = 0; tries < 5; tries++) {
2122 temp = I915_READ(reg);
2123 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2124
2125 if ((temp & FDI_RX_BIT_LOCK)) {
2126 DRM_DEBUG_KMS("FDI train 1 done.\n");
2127 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2128 break;
2129 }
2130 }
2131 if (tries == 5)
2132 DRM_ERROR("FDI train 1 fail!\n");
2133
2134 /* Train 2 */
2135 reg = FDI_TX_CTL(pipe);
2136 temp = I915_READ(reg);
2137 temp &= ~FDI_LINK_TRAIN_NONE;
2138 temp |= FDI_LINK_TRAIN_PATTERN_2;
2139 I915_WRITE(reg, temp);
2140
2141 reg = FDI_RX_CTL(pipe);
2142 temp = I915_READ(reg);
2143 temp &= ~FDI_LINK_TRAIN_NONE;
2144 temp |= FDI_LINK_TRAIN_PATTERN_2;
2145 I915_WRITE(reg, temp);
2146
2147 POSTING_READ(reg);
2148 udelay(150);
2149
2150 reg = FDI_RX_IIR(pipe);
2151 for (tries = 0; tries < 5; tries++) {
2152 temp = I915_READ(reg);
2153 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2154
2155 if (temp & FDI_RX_SYMBOL_LOCK) {
2156 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2157 DRM_DEBUG_KMS("FDI train 2 done.\n");
2158 break;
2159 }
2160 }
2161 if (tries == 5)
2162 DRM_ERROR("FDI train 2 fail!\n");
2163
2164 DRM_DEBUG_KMS("FDI train done\n");
2165
2166 }
2167
2168 static const int snb_b_fdi_train_param[] = {
2169 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2170 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2171 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2172 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2173 };
2174
2175 /* The FDI link training functions for SNB/Cougarpoint. */
2176 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2177 {
2178 struct drm_device *dev = crtc->dev;
2179 struct drm_i915_private *dev_priv = dev->dev_private;
2180 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2181 int pipe = intel_crtc->pipe;
2182 u32 reg, temp, i, retry;
2183
2184 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2185 for train result */
2186 reg = FDI_RX_IMR(pipe);
2187 temp = I915_READ(reg);
2188 temp &= ~FDI_RX_SYMBOL_LOCK;
2189 temp &= ~FDI_RX_BIT_LOCK;
2190 I915_WRITE(reg, temp);
2191
2192 POSTING_READ(reg);
2193 udelay(150);
2194
2195 /* enable CPU FDI TX and PCH FDI RX */
2196 reg = FDI_TX_CTL(pipe);
2197 temp = I915_READ(reg);
2198 temp &= ~(7 << 19);
2199 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2200 temp &= ~FDI_LINK_TRAIN_NONE;
2201 temp |= FDI_LINK_TRAIN_PATTERN_1;
2202 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2203 /* SNB-B */
2204 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2205 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2206
2207 reg = FDI_RX_CTL(pipe);
2208 temp = I915_READ(reg);
2209 if (HAS_PCH_CPT(dev)) {
2210 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2211 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2212 } else {
2213 temp &= ~FDI_LINK_TRAIN_NONE;
2214 temp |= FDI_LINK_TRAIN_PATTERN_1;
2215 }
2216 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2217
2218 POSTING_READ(reg);
2219 udelay(150);
2220
2221 if (HAS_PCH_CPT(dev))
2222 cpt_phase_pointer_enable(dev, pipe);
2223
2224 for (i = 0; i < 4; i++) {
2225 reg = FDI_TX_CTL(pipe);
2226 temp = I915_READ(reg);
2227 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2228 temp |= snb_b_fdi_train_param[i];
2229 I915_WRITE(reg, temp);
2230
2231 POSTING_READ(reg);
2232 udelay(500);
2233
2234 for (retry = 0; retry < 5; retry++) {
2235 reg = FDI_RX_IIR(pipe);
2236 temp = I915_READ(reg);
2237 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2238 if (temp & FDI_RX_BIT_LOCK) {
2239 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2240 DRM_DEBUG_KMS("FDI train 1 done.\n");
2241 break;
2242 }
2243 udelay(50);
2244 }
2245 if (retry < 5)
2246 break;
2247 }
2248 if (i == 4)
2249 DRM_ERROR("FDI train 1 fail!\n");
2250
2251 /* Train 2 */
2252 reg = FDI_TX_CTL(pipe);
2253 temp = I915_READ(reg);
2254 temp &= ~FDI_LINK_TRAIN_NONE;
2255 temp |= FDI_LINK_TRAIN_PATTERN_2;
2256 if (IS_GEN6(dev)) {
2257 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2258 /* SNB-B */
2259 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2260 }
2261 I915_WRITE(reg, temp);
2262
2263 reg = FDI_RX_CTL(pipe);
2264 temp = I915_READ(reg);
2265 if (HAS_PCH_CPT(dev)) {
2266 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2267 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2268 } else {
2269 temp &= ~FDI_LINK_TRAIN_NONE;
2270 temp |= FDI_LINK_TRAIN_PATTERN_2;
2271 }
2272 I915_WRITE(reg, temp);
2273
2274 POSTING_READ(reg);
2275 udelay(150);
2276
2277 for (i = 0; i < 4; i++) {
2278 reg = FDI_TX_CTL(pipe);
2279 temp = I915_READ(reg);
2280 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2281 temp |= snb_b_fdi_train_param[i];
2282 I915_WRITE(reg, temp);
2283
2284 POSTING_READ(reg);
2285 udelay(500);
2286
2287 for (retry = 0; retry < 5; retry++) {
2288 reg = FDI_RX_IIR(pipe);
2289 temp = I915_READ(reg);
2290 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2291 if (temp & FDI_RX_SYMBOL_LOCK) {
2292 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2293 DRM_DEBUG_KMS("FDI train 2 done.\n");
2294 break;
2295 }
2296 udelay(50);
2297 }
2298 if (retry < 5)
2299 break;
2300 }
2301 if (i == 4)
2302 DRM_ERROR("FDI train 2 fail!\n");
2303
2304 DRM_DEBUG_KMS("FDI train done.\n");
2305 }
2306
2307 /* Manual link training for Ivy Bridge A0 parts */
2308 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2309 {
2310 struct drm_device *dev = crtc->dev;
2311 struct drm_i915_private *dev_priv = dev->dev_private;
2312 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2313 int pipe = intel_crtc->pipe;
2314 u32 reg, temp, i;
2315
2316 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2317 for train result */
2318 reg = FDI_RX_IMR(pipe);
2319 temp = I915_READ(reg);
2320 temp &= ~FDI_RX_SYMBOL_LOCK;
2321 temp &= ~FDI_RX_BIT_LOCK;
2322 I915_WRITE(reg, temp);
2323
2324 POSTING_READ(reg);
2325 udelay(150);
2326
2327 /* enable CPU FDI TX and PCH FDI RX */
2328 reg = FDI_TX_CTL(pipe);
2329 temp = I915_READ(reg);
2330 temp &= ~(7 << 19);
2331 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2332 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2333 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2334 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2335 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2336 temp |= FDI_COMPOSITE_SYNC;
2337 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2338
2339 reg = FDI_RX_CTL(pipe);
2340 temp = I915_READ(reg);
2341 temp &= ~FDI_LINK_TRAIN_AUTO;
2342 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2343 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2344 temp |= FDI_COMPOSITE_SYNC;
2345 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2346
2347 POSTING_READ(reg);
2348 udelay(150);
2349
2350 if (HAS_PCH_CPT(dev))
2351 cpt_phase_pointer_enable(dev, pipe);
2352
2353 for (i = 0; i < 4; i++) {
2354 reg = FDI_TX_CTL(pipe);
2355 temp = I915_READ(reg);
2356 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2357 temp |= snb_b_fdi_train_param[i];
2358 I915_WRITE(reg, temp);
2359
2360 POSTING_READ(reg);
2361 udelay(500);
2362
2363 reg = FDI_RX_IIR(pipe);
2364 temp = I915_READ(reg);
2365 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2366
2367 if (temp & FDI_RX_BIT_LOCK ||
2368 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2369 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2370 DRM_DEBUG_KMS("FDI train 1 done.\n");
2371 break;
2372 }
2373 }
2374 if (i == 4)
2375 DRM_ERROR("FDI train 1 fail!\n");
2376
2377 /* Train 2 */
2378 reg = FDI_TX_CTL(pipe);
2379 temp = I915_READ(reg);
2380 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2381 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2382 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2383 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2384 I915_WRITE(reg, temp);
2385
2386 reg = FDI_RX_CTL(pipe);
2387 temp = I915_READ(reg);
2388 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2389 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2390 I915_WRITE(reg, temp);
2391
2392 POSTING_READ(reg);
2393 udelay(150);
2394
2395 for (i = 0; i < 4; i++) {
2396 reg = FDI_TX_CTL(pipe);
2397 temp = I915_READ(reg);
2398 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2399 temp |= snb_b_fdi_train_param[i];
2400 I915_WRITE(reg, temp);
2401
2402 POSTING_READ(reg);
2403 udelay(500);
2404
2405 reg = FDI_RX_IIR(pipe);
2406 temp = I915_READ(reg);
2407 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2408
2409 if (temp & FDI_RX_SYMBOL_LOCK) {
2410 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2411 DRM_DEBUG_KMS("FDI train 2 done.\n");
2412 break;
2413 }
2414 }
2415 if (i == 4)
2416 DRM_ERROR("FDI train 2 fail!\n");
2417
2418 DRM_DEBUG_KMS("FDI train done.\n");
2419 }
2420
2421 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2422 {
2423 struct drm_device *dev = crtc->dev;
2424 struct drm_i915_private *dev_priv = dev->dev_private;
2425 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2426 int pipe = intel_crtc->pipe;
2427 u32 reg, temp;
2428
2429 /* Write the TU size bits so error detection works */
2430 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2431 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2432
2433 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2434 reg = FDI_RX_CTL(pipe);
2435 temp = I915_READ(reg);
2436 temp &= ~((0x7 << 19) | (0x7 << 16));
2437 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2438 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2439 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2440
2441 POSTING_READ(reg);
2442 udelay(200);
2443
2444 /* Switch from Rawclk to PCDclk */
2445 temp = I915_READ(reg);
2446 I915_WRITE(reg, temp | FDI_PCDCLK);
2447
2448 POSTING_READ(reg);
2449 udelay(200);
2450
2451 /* Enable CPU FDI TX PLL, always on for Ironlake */
2452 reg = FDI_TX_CTL(pipe);
2453 temp = I915_READ(reg);
2454 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2455 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2456
2457 POSTING_READ(reg);
2458 udelay(100);
2459 }
2460 }
2461
2462 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2463 {
2464 struct drm_i915_private *dev_priv = dev->dev_private;
2465 u32 flags = I915_READ(SOUTH_CHICKEN1);
2466
2467 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2468 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2469 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2470 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2471 POSTING_READ(SOUTH_CHICKEN1);
2472 }
2473 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2474 {
2475 struct drm_device *dev = crtc->dev;
2476 struct drm_i915_private *dev_priv = dev->dev_private;
2477 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2478 int pipe = intel_crtc->pipe;
2479 u32 reg, temp;
2480
2481 /* disable CPU FDI tx and PCH FDI rx */
2482 reg = FDI_TX_CTL(pipe);
2483 temp = I915_READ(reg);
2484 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2485 POSTING_READ(reg);
2486
2487 reg = FDI_RX_CTL(pipe);
2488 temp = I915_READ(reg);
2489 temp &= ~(0x7 << 16);
2490 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2491 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2492
2493 POSTING_READ(reg);
2494 udelay(100);
2495
2496 /* Ironlake workaround, disable clock pointer after downing FDI */
2497 if (HAS_PCH_IBX(dev)) {
2498 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2499 I915_WRITE(FDI_RX_CHICKEN(pipe),
2500 I915_READ(FDI_RX_CHICKEN(pipe) &
2501 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2502 } else if (HAS_PCH_CPT(dev)) {
2503 cpt_phase_pointer_disable(dev, pipe);
2504 }
2505
2506 /* still set train pattern 1 */
2507 reg = FDI_TX_CTL(pipe);
2508 temp = I915_READ(reg);
2509 temp &= ~FDI_LINK_TRAIN_NONE;
2510 temp |= FDI_LINK_TRAIN_PATTERN_1;
2511 I915_WRITE(reg, temp);
2512
2513 reg = FDI_RX_CTL(pipe);
2514 temp = I915_READ(reg);
2515 if (HAS_PCH_CPT(dev)) {
2516 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2517 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2518 } else {
2519 temp &= ~FDI_LINK_TRAIN_NONE;
2520 temp |= FDI_LINK_TRAIN_PATTERN_1;
2521 }
2522 /* BPC in FDI rx is consistent with that in PIPECONF */
2523 temp &= ~(0x07 << 16);
2524 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2525 I915_WRITE(reg, temp);
2526
2527 POSTING_READ(reg);
2528 udelay(100);
2529 }
2530
2531 /*
2532 * When we disable a pipe, we need to clear any pending scanline wait events
2533 * to avoid hanging the ring, which we assume we are waiting on.
2534 */
2535 static void intel_clear_scanline_wait(struct drm_device *dev)
2536 {
2537 struct drm_i915_private *dev_priv = dev->dev_private;
2538 struct intel_ring_buffer *ring;
2539 u32 tmp;
2540
2541 if (IS_GEN2(dev))
2542 /* Can't break the hang on i8xx */
2543 return;
2544
2545 ring = LP_RING(dev_priv);
2546 tmp = I915_READ_CTL(ring);
2547 if (tmp & RING_WAIT)
2548 I915_WRITE_CTL(ring, tmp);
2549 }
2550
2551 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2552 {
2553 struct drm_device *dev = crtc->dev;
2554
2555 if (crtc->fb == NULL)
2556 return;
2557
2558 mutex_lock(&dev->struct_mutex);
2559 intel_finish_fb(crtc->fb);
2560 mutex_unlock(&dev->struct_mutex);
2561 }
2562
2563 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2564 {
2565 struct drm_device *dev = crtc->dev;
2566 struct drm_mode_config *mode_config = &dev->mode_config;
2567 struct intel_encoder *encoder;
2568
2569 /*
2570 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2571 * must be driven by its own crtc; no sharing is possible.
2572 */
2573 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2574 if (encoder->base.crtc != crtc)
2575 continue;
2576
2577 switch (encoder->type) {
2578 case INTEL_OUTPUT_EDP:
2579 if (!intel_encoder_is_pch_edp(&encoder->base))
2580 return false;
2581 continue;
2582 }
2583 }
2584
2585 return true;
2586 }
2587
2588 /*
2589 * Enable PCH resources required for PCH ports:
2590 * - PCH PLLs
2591 * - FDI training & RX/TX
2592 * - update transcoder timings
2593 * - DP transcoding bits
2594 * - transcoder
2595 */
2596 static void ironlake_pch_enable(struct drm_crtc *crtc)
2597 {
2598 struct drm_device *dev = crtc->dev;
2599 struct drm_i915_private *dev_priv = dev->dev_private;
2600 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2601 int pipe = intel_crtc->pipe;
2602 u32 reg, temp;
2603
2604 /* For PCH output, training FDI link */
2605 dev_priv->display.fdi_link_train(crtc);
2606
2607 intel_enable_pch_pll(intel_crtc);
2608
2609 if (HAS_PCH_CPT(dev)) {
2610 u32 sel;
2611
2612 temp = I915_READ(PCH_DPLL_SEL);
2613 switch (pipe) {
2614 default:
2615 case 0:
2616 temp |= TRANSA_DPLL_ENABLE;
2617 sel = TRANSA_DPLLB_SEL;
2618 break;
2619 case 1:
2620 temp |= TRANSB_DPLL_ENABLE;
2621 sel = TRANSB_DPLLB_SEL;
2622 break;
2623 case 2:
2624 temp |= TRANSC_DPLL_ENABLE;
2625 sel = TRANSC_DPLLB_SEL;
2626 break;
2627 }
2628 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
2629 temp |= sel;
2630 else
2631 temp &= ~sel;
2632 I915_WRITE(PCH_DPLL_SEL, temp);
2633 }
2634
2635 /* set transcoder timing, panel must allow it */
2636 assert_panel_unlocked(dev_priv, pipe);
2637 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2638 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2639 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
2640
2641 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2642 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2643 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
2644 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
2645
2646 intel_fdi_normal_train(crtc);
2647
2648 /* For PCH DP, enable TRANS_DP_CTL */
2649 if (HAS_PCH_CPT(dev) &&
2650 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
2651 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2652 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
2653 reg = TRANS_DP_CTL(pipe);
2654 temp = I915_READ(reg);
2655 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2656 TRANS_DP_SYNC_MASK |
2657 TRANS_DP_BPC_MASK);
2658 temp |= (TRANS_DP_OUTPUT_ENABLE |
2659 TRANS_DP_ENH_FRAMING);
2660 temp |= bpc << 9; /* same format but at 11:9 */
2661
2662 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2663 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2664 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2665 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2666
2667 switch (intel_trans_dp_port_sel(crtc)) {
2668 case PCH_DP_B:
2669 temp |= TRANS_DP_PORT_SEL_B;
2670 break;
2671 case PCH_DP_C:
2672 temp |= TRANS_DP_PORT_SEL_C;
2673 break;
2674 case PCH_DP_D:
2675 temp |= TRANS_DP_PORT_SEL_D;
2676 break;
2677 default:
2678 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2679 temp |= TRANS_DP_PORT_SEL_B;
2680 break;
2681 }
2682
2683 I915_WRITE(reg, temp);
2684 }
2685
2686 intel_enable_transcoder(dev_priv, pipe);
2687 }
2688
2689 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
2690 {
2691 struct intel_pch_pll *pll = intel_crtc->pch_pll;
2692
2693 if (pll == NULL)
2694 return;
2695
2696 if (pll->refcount == 0) {
2697 WARN(1, "bad PCH PLL refcount\n");
2698 return;
2699 }
2700
2701 --pll->refcount;
2702 intel_crtc->pch_pll = NULL;
2703 }
2704
2705 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
2706 {
2707 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
2708 struct intel_pch_pll *pll;
2709 int i;
2710
2711 pll = intel_crtc->pch_pll;
2712 if (pll) {
2713 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
2714 intel_crtc->base.base.id, pll->pll_reg);
2715 goto prepare;
2716 }
2717
2718 for (i = 0; i < dev_priv->num_pch_pll; i++) {
2719 pll = &dev_priv->pch_plls[i];
2720
2721 /* Only want to check enabled timings first */
2722 if (pll->refcount == 0)
2723 continue;
2724
2725 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
2726 fp == I915_READ(pll->fp0_reg)) {
2727 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
2728 intel_crtc->base.base.id,
2729 pll->pll_reg, pll->refcount, pll->active);
2730
2731 goto found;
2732 }
2733 }
2734
2735 /* Ok no matching timings, maybe there's a free one? */
2736 for (i = 0; i < dev_priv->num_pch_pll; i++) {
2737 pll = &dev_priv->pch_plls[i];
2738 if (pll->refcount == 0) {
2739 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
2740 intel_crtc->base.base.id, pll->pll_reg);
2741 goto found;
2742 }
2743 }
2744
2745 return NULL;
2746
2747 found:
2748 intel_crtc->pch_pll = pll;
2749 pll->refcount++;
2750 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
2751 prepare: /* separate function? */
2752 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
2753 I915_WRITE(pll->fp0_reg, fp);
2754 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
2755
2756 POSTING_READ(pll->pll_reg);
2757 udelay(150);
2758 pll->on = false;
2759 return pll;
2760 }
2761
2762 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
2763 {
2764 struct drm_i915_private *dev_priv = dev->dev_private;
2765 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
2766 u32 temp;
2767
2768 temp = I915_READ(dslreg);
2769 udelay(500);
2770 if (wait_for(I915_READ(dslreg) != temp, 5)) {
2771 /* Without this, mode sets may fail silently on FDI */
2772 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
2773 udelay(250);
2774 I915_WRITE(tc2reg, 0);
2775 if (wait_for(I915_READ(dslreg) != temp, 5))
2776 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
2777 }
2778 }
2779
2780 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2781 {
2782 struct drm_device *dev = crtc->dev;
2783 struct drm_i915_private *dev_priv = dev->dev_private;
2784 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2785 int pipe = intel_crtc->pipe;
2786 int plane = intel_crtc->plane;
2787 u32 temp;
2788 bool is_pch_port;
2789
2790 if (intel_crtc->active)
2791 return;
2792
2793 intel_crtc->active = true;
2794 intel_update_watermarks(dev);
2795
2796 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2797 temp = I915_READ(PCH_LVDS);
2798 if ((temp & LVDS_PORT_EN) == 0)
2799 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2800 }
2801
2802 is_pch_port = intel_crtc_driving_pch(crtc);
2803
2804 if (is_pch_port)
2805 ironlake_fdi_pll_enable(crtc);
2806 else
2807 ironlake_fdi_disable(crtc);
2808
2809 /* Enable panel fitting for LVDS */
2810 if (dev_priv->pch_pf_size &&
2811 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2812 /* Force use of hard-coded filter coefficients
2813 * as some pre-programmed values are broken,
2814 * e.g. x201.
2815 */
2816 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
2817 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
2818 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
2819 }
2820
2821 /*
2822 * On ILK+ LUT must be loaded before the pipe is running but with
2823 * clocks enabled
2824 */
2825 intel_crtc_load_lut(crtc);
2826
2827 intel_enable_pipe(dev_priv, pipe, is_pch_port);
2828 intel_enable_plane(dev_priv, plane, pipe);
2829
2830 if (is_pch_port)
2831 ironlake_pch_enable(crtc);
2832
2833 mutex_lock(&dev->struct_mutex);
2834 intel_update_fbc(dev);
2835 mutex_unlock(&dev->struct_mutex);
2836
2837 intel_crtc_update_cursor(crtc, true);
2838 }
2839
2840 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2841 {
2842 struct drm_device *dev = crtc->dev;
2843 struct drm_i915_private *dev_priv = dev->dev_private;
2844 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2845 int pipe = intel_crtc->pipe;
2846 int plane = intel_crtc->plane;
2847 u32 reg, temp;
2848
2849 if (!intel_crtc->active)
2850 return;
2851
2852 intel_crtc_wait_for_pending_flips(crtc);
2853 drm_vblank_off(dev, pipe);
2854 intel_crtc_update_cursor(crtc, false);
2855
2856 intel_disable_plane(dev_priv, plane, pipe);
2857
2858 if (dev_priv->cfb_plane == plane)
2859 intel_disable_fbc(dev);
2860
2861 intel_disable_pipe(dev_priv, pipe);
2862
2863 /* Disable PF */
2864 I915_WRITE(PF_CTL(pipe), 0);
2865 I915_WRITE(PF_WIN_SZ(pipe), 0);
2866
2867 ironlake_fdi_disable(crtc);
2868
2869 /* This is a horrible layering violation; we should be doing this in
2870 * the connector/encoder ->prepare instead, but we don't always have
2871 * enough information there about the config to know whether it will
2872 * actually be necessary or just cause undesired flicker.
2873 */
2874 intel_disable_pch_ports(dev_priv, pipe);
2875
2876 intel_disable_transcoder(dev_priv, pipe);
2877
2878 if (HAS_PCH_CPT(dev)) {
2879 /* disable TRANS_DP_CTL */
2880 reg = TRANS_DP_CTL(pipe);
2881 temp = I915_READ(reg);
2882 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2883 temp |= TRANS_DP_PORT_SEL_NONE;
2884 I915_WRITE(reg, temp);
2885
2886 /* disable DPLL_SEL */
2887 temp = I915_READ(PCH_DPLL_SEL);
2888 switch (pipe) {
2889 case 0:
2890 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2891 break;
2892 case 1:
2893 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2894 break;
2895 case 2:
2896 /* C shares PLL A or B */
2897 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
2898 break;
2899 default:
2900 BUG(); /* wtf */
2901 }
2902 I915_WRITE(PCH_DPLL_SEL, temp);
2903 }
2904
2905 /* disable PCH DPLL */
2906 intel_disable_pch_pll(intel_crtc);
2907
2908 /* Switch from PCDclk to Rawclk */
2909 reg = FDI_RX_CTL(pipe);
2910 temp = I915_READ(reg);
2911 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2912
2913 /* Disable CPU FDI TX PLL */
2914 reg = FDI_TX_CTL(pipe);
2915 temp = I915_READ(reg);
2916 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2917
2918 POSTING_READ(reg);
2919 udelay(100);
2920
2921 reg = FDI_RX_CTL(pipe);
2922 temp = I915_READ(reg);
2923 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2924
2925 /* Wait for the clocks to turn off. */
2926 POSTING_READ(reg);
2927 udelay(100);
2928
2929 intel_crtc->active = false;
2930 intel_update_watermarks(dev);
2931
2932 mutex_lock(&dev->struct_mutex);
2933 intel_update_fbc(dev);
2934 intel_clear_scanline_wait(dev);
2935 mutex_unlock(&dev->struct_mutex);
2936 }
2937
2938 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2939 {
2940 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2941 int pipe = intel_crtc->pipe;
2942 int plane = intel_crtc->plane;
2943
2944 /* XXX: When our outputs are all unaware of DPMS modes other than off
2945 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2946 */
2947 switch (mode) {
2948 case DRM_MODE_DPMS_ON:
2949 case DRM_MODE_DPMS_STANDBY:
2950 case DRM_MODE_DPMS_SUSPEND:
2951 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2952 ironlake_crtc_enable(crtc);
2953 break;
2954
2955 case DRM_MODE_DPMS_OFF:
2956 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2957 ironlake_crtc_disable(crtc);
2958 break;
2959 }
2960 }
2961
2962 static void ironlake_crtc_off(struct drm_crtc *crtc)
2963 {
2964 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2965 intel_put_pch_pll(intel_crtc);
2966 }
2967
2968 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2969 {
2970 if (!enable && intel_crtc->overlay) {
2971 struct drm_device *dev = intel_crtc->base.dev;
2972 struct drm_i915_private *dev_priv = dev->dev_private;
2973
2974 mutex_lock(&dev->struct_mutex);
2975 dev_priv->mm.interruptible = false;
2976 (void) intel_overlay_switch_off(intel_crtc->overlay);
2977 dev_priv->mm.interruptible = true;
2978 mutex_unlock(&dev->struct_mutex);
2979 }
2980
2981 /* Let userspace switch the overlay on again. In most cases userspace
2982 * has to recompute where to put it anyway.
2983 */
2984 }
2985
2986 static void i9xx_crtc_enable(struct drm_crtc *crtc)
2987 {
2988 struct drm_device *dev = crtc->dev;
2989 struct drm_i915_private *dev_priv = dev->dev_private;
2990 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2991 int pipe = intel_crtc->pipe;
2992 int plane = intel_crtc->plane;
2993
2994 if (intel_crtc->active)
2995 return;
2996
2997 intel_crtc->active = true;
2998 intel_update_watermarks(dev);
2999
3000 intel_enable_pll(dev_priv, pipe);
3001 intel_enable_pipe(dev_priv, pipe, false);
3002 intel_enable_plane(dev_priv, plane, pipe);
3003
3004 intel_crtc_load_lut(crtc);
3005 intel_update_fbc(dev);
3006
3007 /* Give the overlay scaler a chance to enable if it's on this pipe */
3008 intel_crtc_dpms_overlay(intel_crtc, true);
3009 intel_crtc_update_cursor(crtc, true);
3010 }
3011
3012 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3013 {
3014 struct drm_device *dev = crtc->dev;
3015 struct drm_i915_private *dev_priv = dev->dev_private;
3016 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3017 int pipe = intel_crtc->pipe;
3018 int plane = intel_crtc->plane;
3019
3020 if (!intel_crtc->active)
3021 return;
3022
3023 /* Give the overlay scaler a chance to disable if it's on this pipe */
3024 intel_crtc_wait_for_pending_flips(crtc);
3025 drm_vblank_off(dev, pipe);
3026 intel_crtc_dpms_overlay(intel_crtc, false);
3027 intel_crtc_update_cursor(crtc, false);
3028
3029 if (dev_priv->cfb_plane == plane)
3030 intel_disable_fbc(dev);
3031
3032 intel_disable_plane(dev_priv, plane, pipe);
3033 intel_disable_pipe(dev_priv, pipe);
3034 intel_disable_pll(dev_priv, pipe);
3035
3036 intel_crtc->active = false;
3037 intel_update_fbc(dev);
3038 intel_update_watermarks(dev);
3039 intel_clear_scanline_wait(dev);
3040 }
3041
3042 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3043 {
3044 /* XXX: When our outputs are all unaware of DPMS modes other than off
3045 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3046 */
3047 switch (mode) {
3048 case DRM_MODE_DPMS_ON:
3049 case DRM_MODE_DPMS_STANDBY:
3050 case DRM_MODE_DPMS_SUSPEND:
3051 i9xx_crtc_enable(crtc);
3052 break;
3053 case DRM_MODE_DPMS_OFF:
3054 i9xx_crtc_disable(crtc);
3055 break;
3056 }
3057 }
3058
3059 static void i9xx_crtc_off(struct drm_crtc *crtc)
3060 {
3061 }
3062
3063 /**
3064 * Sets the power management mode of the pipe and plane.
3065 */
3066 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3067 {
3068 struct drm_device *dev = crtc->dev;
3069 struct drm_i915_private *dev_priv = dev->dev_private;
3070 struct drm_i915_master_private *master_priv;
3071 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3072 int pipe = intel_crtc->pipe;
3073 bool enabled;
3074
3075 if (intel_crtc->dpms_mode == mode)
3076 return;
3077
3078 intel_crtc->dpms_mode = mode;
3079
3080 dev_priv->display.dpms(crtc, mode);
3081
3082 if (!dev->primary->master)
3083 return;
3084
3085 master_priv = dev->primary->master->driver_priv;
3086 if (!master_priv->sarea_priv)
3087 return;
3088
3089 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3090
3091 switch (pipe) {
3092 case 0:
3093 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3094 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3095 break;
3096 case 1:
3097 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3098 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3099 break;
3100 default:
3101 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3102 break;
3103 }
3104 }
3105
3106 static void intel_crtc_disable(struct drm_crtc *crtc)
3107 {
3108 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3109 struct drm_device *dev = crtc->dev;
3110 struct drm_i915_private *dev_priv = dev->dev_private;
3111
3112 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3113 dev_priv->display.off(crtc);
3114
3115 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3116 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3117
3118 if (crtc->fb) {
3119 mutex_lock(&dev->struct_mutex);
3120 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3121 mutex_unlock(&dev->struct_mutex);
3122 }
3123 }
3124
3125 /* Prepare for a mode set.
3126 *
3127 * Note we could be a lot smarter here. We need to figure out which outputs
3128 * will be enabled, which disabled (in short, how the config will changes)
3129 * and perform the minimum necessary steps to accomplish that, e.g. updating
3130 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3131 * panel fitting is in the proper state, etc.
3132 */
3133 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3134 {
3135 i9xx_crtc_disable(crtc);
3136 }
3137
3138 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3139 {
3140 i9xx_crtc_enable(crtc);
3141 }
3142
3143 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3144 {
3145 ironlake_crtc_disable(crtc);
3146 }
3147
3148 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3149 {
3150 ironlake_crtc_enable(crtc);
3151 }
3152
3153 void intel_encoder_prepare(struct drm_encoder *encoder)
3154 {
3155 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3156 /* lvds has its own version of prepare see intel_lvds_prepare */
3157 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3158 }
3159
3160 void intel_encoder_commit(struct drm_encoder *encoder)
3161 {
3162 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3163 struct drm_device *dev = encoder->dev;
3164 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3165 struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
3166
3167 /* lvds has its own version of commit see intel_lvds_commit */
3168 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3169
3170 if (HAS_PCH_CPT(dev))
3171 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3172 }
3173
3174 void intel_encoder_destroy(struct drm_encoder *encoder)
3175 {
3176 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3177
3178 drm_encoder_cleanup(encoder);
3179 kfree(intel_encoder);
3180 }
3181
3182 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3183 struct drm_display_mode *mode,
3184 struct drm_display_mode *adjusted_mode)
3185 {
3186 struct drm_device *dev = crtc->dev;
3187
3188 if (HAS_PCH_SPLIT(dev)) {
3189 /* FDI link clock is fixed at 2.7G */
3190 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3191 return false;
3192 }
3193
3194 /* All interlaced capable intel hw wants timings in frames. */
3195 drm_mode_set_crtcinfo(adjusted_mode, 0);
3196
3197 return true;
3198 }
3199
3200 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3201 {
3202 return 400000; /* FIXME */
3203 }
3204
3205 static int i945_get_display_clock_speed(struct drm_device *dev)
3206 {
3207 return 400000;
3208 }
3209
3210 static int i915_get_display_clock_speed(struct drm_device *dev)
3211 {
3212 return 333000;
3213 }
3214
3215 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3216 {
3217 return 200000;
3218 }
3219
3220 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3221 {
3222 u16 gcfgc = 0;
3223
3224 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3225
3226 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3227 return 133000;
3228 else {
3229 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3230 case GC_DISPLAY_CLOCK_333_MHZ:
3231 return 333000;
3232 default:
3233 case GC_DISPLAY_CLOCK_190_200_MHZ:
3234 return 190000;
3235 }
3236 }
3237 }
3238
3239 static int i865_get_display_clock_speed(struct drm_device *dev)
3240 {
3241 return 266000;
3242 }
3243
3244 static int i855_get_display_clock_speed(struct drm_device *dev)
3245 {
3246 u16 hpllcc = 0;
3247 /* Assume that the hardware is in the high speed state. This
3248 * should be the default.
3249 */
3250 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3251 case GC_CLOCK_133_200:
3252 case GC_CLOCK_100_200:
3253 return 200000;
3254 case GC_CLOCK_166_250:
3255 return 250000;
3256 case GC_CLOCK_100_133:
3257 return 133000;
3258 }
3259
3260 /* Shouldn't happen */
3261 return 0;
3262 }
3263
3264 static int i830_get_display_clock_speed(struct drm_device *dev)
3265 {
3266 return 133000;
3267 }
3268
3269 struct fdi_m_n {
3270 u32 tu;
3271 u32 gmch_m;
3272 u32 gmch_n;
3273 u32 link_m;
3274 u32 link_n;
3275 };
3276
3277 static void
3278 fdi_reduce_ratio(u32 *num, u32 *den)
3279 {
3280 while (*num > 0xffffff || *den > 0xffffff) {
3281 *num >>= 1;
3282 *den >>= 1;
3283 }
3284 }
3285
3286 static void
3287 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3288 int link_clock, struct fdi_m_n *m_n)
3289 {
3290 m_n->tu = 64; /* default size */
3291
3292 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3293 m_n->gmch_m = bits_per_pixel * pixel_clock;
3294 m_n->gmch_n = link_clock * nlanes * 8;
3295 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3296
3297 m_n->link_m = pixel_clock;
3298 m_n->link_n = link_clock;
3299 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3300 }
3301
3302 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3303 {
3304 if (i915_panel_use_ssc >= 0)
3305 return i915_panel_use_ssc != 0;
3306 return dev_priv->lvds_use_ssc
3307 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
3308 }
3309
3310 /**
3311 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3312 * @crtc: CRTC structure
3313 * @mode: requested mode
3314 *
3315 * A pipe may be connected to one or more outputs. Based on the depth of the
3316 * attached framebuffer, choose a good color depth to use on the pipe.
3317 *
3318 * If possible, match the pipe depth to the fb depth. In some cases, this
3319 * isn't ideal, because the connected output supports a lesser or restricted
3320 * set of depths. Resolve that here:
3321 * LVDS typically supports only 6bpc, so clamp down in that case
3322 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3323 * Displays may support a restricted set as well, check EDID and clamp as
3324 * appropriate.
3325 * DP may want to dither down to 6bpc to fit larger modes
3326 *
3327 * RETURNS:
3328 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3329 * true if they don't match).
3330 */
3331 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
3332 unsigned int *pipe_bpp,
3333 struct drm_display_mode *mode)
3334 {
3335 struct drm_device *dev = crtc->dev;
3336 struct drm_i915_private *dev_priv = dev->dev_private;
3337 struct drm_encoder *encoder;
3338 struct drm_connector *connector;
3339 unsigned int display_bpc = UINT_MAX, bpc;
3340
3341 /* Walk the encoders & connectors on this crtc, get min bpc */
3342 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3343 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3344
3345 if (encoder->crtc != crtc)
3346 continue;
3347
3348 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3349 unsigned int lvds_bpc;
3350
3351 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3352 LVDS_A3_POWER_UP)
3353 lvds_bpc = 8;
3354 else
3355 lvds_bpc = 6;
3356
3357 if (lvds_bpc < display_bpc) {
3358 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
3359 display_bpc = lvds_bpc;
3360 }
3361 continue;
3362 }
3363
3364 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
3365 /* Use VBT settings if we have an eDP panel */
3366 unsigned int edp_bpc = dev_priv->edp.bpp / 3;
3367
3368 if (edp_bpc < display_bpc) {
3369 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
3370 display_bpc = edp_bpc;
3371 }
3372 continue;
3373 }
3374
3375 /* Not one of the known troublemakers, check the EDID */
3376 list_for_each_entry(connector, &dev->mode_config.connector_list,
3377 head) {
3378 if (connector->encoder != encoder)
3379 continue;
3380
3381 /* Don't use an invalid EDID bpc value */
3382 if (connector->display_info.bpc &&
3383 connector->display_info.bpc < display_bpc) {
3384 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
3385 display_bpc = connector->display_info.bpc;
3386 }
3387 }
3388
3389 /*
3390 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
3391 * through, clamp it down. (Note: >12bpc will be caught below.)
3392 */
3393 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
3394 if (display_bpc > 8 && display_bpc < 12) {
3395 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
3396 display_bpc = 12;
3397 } else {
3398 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
3399 display_bpc = 8;
3400 }
3401 }
3402 }
3403
3404 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3405 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
3406 display_bpc = 6;
3407 }
3408
3409 /*
3410 * We could just drive the pipe at the highest bpc all the time and
3411 * enable dithering as needed, but that costs bandwidth. So choose
3412 * the minimum value that expresses the full color range of the fb but
3413 * also stays within the max display bpc discovered above.
3414 */
3415
3416 switch (crtc->fb->depth) {
3417 case 8:
3418 bpc = 8; /* since we go through a colormap */
3419 break;
3420 case 15:
3421 case 16:
3422 bpc = 6; /* min is 18bpp */
3423 break;
3424 case 24:
3425 bpc = 8;
3426 break;
3427 case 30:
3428 bpc = 10;
3429 break;
3430 case 48:
3431 bpc = 12;
3432 break;
3433 default:
3434 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
3435 bpc = min((unsigned int)8, display_bpc);
3436 break;
3437 }
3438
3439 display_bpc = min(display_bpc, bpc);
3440
3441 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
3442 bpc, display_bpc);
3443
3444 *pipe_bpp = display_bpc * 3;
3445
3446 return display_bpc != bpc;
3447 }
3448
3449 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
3450 {
3451 struct drm_device *dev = crtc->dev;
3452 struct drm_i915_private *dev_priv = dev->dev_private;
3453 int refclk;
3454
3455 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3456 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
3457 refclk = dev_priv->lvds_ssc_freq * 1000;
3458 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3459 refclk / 1000);
3460 } else if (!IS_GEN2(dev)) {
3461 refclk = 96000;
3462 } else {
3463 refclk = 48000;
3464 }
3465
3466 return refclk;
3467 }
3468
3469 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
3470 intel_clock_t *clock)
3471 {
3472 /* SDVO TV has fixed PLL values depend on its clock range,
3473 this mirrors vbios setting. */
3474 if (adjusted_mode->clock >= 100000
3475 && adjusted_mode->clock < 140500) {
3476 clock->p1 = 2;
3477 clock->p2 = 10;
3478 clock->n = 3;
3479 clock->m1 = 16;
3480 clock->m2 = 8;
3481 } else if (adjusted_mode->clock >= 140500
3482 && adjusted_mode->clock <= 200000) {
3483 clock->p1 = 1;
3484 clock->p2 = 10;
3485 clock->n = 6;
3486 clock->m1 = 12;
3487 clock->m2 = 8;
3488 }
3489 }
3490
3491 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
3492 intel_clock_t *clock,
3493 intel_clock_t *reduced_clock)
3494 {
3495 struct drm_device *dev = crtc->dev;
3496 struct drm_i915_private *dev_priv = dev->dev_private;
3497 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3498 int pipe = intel_crtc->pipe;
3499 u32 fp, fp2 = 0;
3500
3501 if (IS_PINEVIEW(dev)) {
3502 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
3503 if (reduced_clock)
3504 fp2 = (1 << reduced_clock->n) << 16 |
3505 reduced_clock->m1 << 8 | reduced_clock->m2;
3506 } else {
3507 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
3508 if (reduced_clock)
3509 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
3510 reduced_clock->m2;
3511 }
3512
3513 I915_WRITE(FP0(pipe), fp);
3514
3515 intel_crtc->lowfreq_avail = false;
3516 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3517 reduced_clock && i915_powersave) {
3518 I915_WRITE(FP1(pipe), fp2);
3519 intel_crtc->lowfreq_avail = true;
3520 } else {
3521 I915_WRITE(FP1(pipe), fp);
3522 }
3523 }
3524
3525 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
3526 struct drm_display_mode *adjusted_mode)
3527 {
3528 struct drm_device *dev = crtc->dev;
3529 struct drm_i915_private *dev_priv = dev->dev_private;
3530 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3531 int pipe = intel_crtc->pipe;
3532 u32 temp;
3533
3534 temp = I915_READ(LVDS);
3535 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3536 if (pipe == 1) {
3537 temp |= LVDS_PIPEB_SELECT;
3538 } else {
3539 temp &= ~LVDS_PIPEB_SELECT;
3540 }
3541 /* set the corresponsding LVDS_BORDER bit */
3542 temp |= dev_priv->lvds_border_bits;
3543 /* Set the B0-B3 data pairs corresponding to whether we're going to
3544 * set the DPLLs for dual-channel mode or not.
3545 */
3546 if (clock->p2 == 7)
3547 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3548 else
3549 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3550
3551 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3552 * appropriately here, but we need to look more thoroughly into how
3553 * panels behave in the two modes.
3554 */
3555 /* set the dithering flag on LVDS as needed */
3556 if (INTEL_INFO(dev)->gen >= 4) {
3557 if (dev_priv->lvds_dither)
3558 temp |= LVDS_ENABLE_DITHER;
3559 else
3560 temp &= ~LVDS_ENABLE_DITHER;
3561 }
3562 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
3563 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
3564 temp |= LVDS_HSYNC_POLARITY;
3565 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
3566 temp |= LVDS_VSYNC_POLARITY;
3567 I915_WRITE(LVDS, temp);
3568 }
3569
3570 static void i9xx_update_pll(struct drm_crtc *crtc,
3571 struct drm_display_mode *mode,
3572 struct drm_display_mode *adjusted_mode,
3573 intel_clock_t *clock, intel_clock_t *reduced_clock,
3574 int num_connectors)
3575 {
3576 struct drm_device *dev = crtc->dev;
3577 struct drm_i915_private *dev_priv = dev->dev_private;
3578 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3579 int pipe = intel_crtc->pipe;
3580 u32 dpll;
3581 bool is_sdvo;
3582
3583 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
3584 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
3585
3586 dpll = DPLL_VGA_MODE_DIS;
3587
3588 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
3589 dpll |= DPLLB_MODE_LVDS;
3590 else
3591 dpll |= DPLLB_MODE_DAC_SERIAL;
3592 if (is_sdvo) {
3593 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
3594 if (pixel_multiplier > 1) {
3595 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3596 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3597 }
3598 dpll |= DPLL_DVO_HIGH_SPEED;
3599 }
3600 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
3601 dpll |= DPLL_DVO_HIGH_SPEED;
3602
3603 /* compute bitmask from p1 value */
3604 if (IS_PINEVIEW(dev))
3605 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3606 else {
3607 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3608 if (IS_G4X(dev) && reduced_clock)
3609 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3610 }
3611 switch (clock->p2) {
3612 case 5:
3613 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3614 break;
3615 case 7:
3616 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3617 break;
3618 case 10:
3619 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3620 break;
3621 case 14:
3622 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3623 break;
3624 }
3625 if (INTEL_INFO(dev)->gen >= 4)
3626 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3627
3628 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
3629 dpll |= PLL_REF_INPUT_TVCLKINBC;
3630 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
3631 /* XXX: just matching BIOS for now */
3632 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
3633 dpll |= 3;
3634 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3635 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
3636 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3637 else
3638 dpll |= PLL_REF_INPUT_DREFCLK;
3639
3640 dpll |= DPLL_VCO_ENABLE;
3641 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
3642 POSTING_READ(DPLL(pipe));
3643 udelay(150);
3644
3645 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3646 * This is an exception to the general rule that mode_set doesn't turn
3647 * things on.
3648 */
3649 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
3650 intel_update_lvds(crtc, clock, adjusted_mode);
3651
3652 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
3653 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3654
3655 I915_WRITE(DPLL(pipe), dpll);
3656
3657 /* Wait for the clocks to stabilize. */
3658 POSTING_READ(DPLL(pipe));
3659 udelay(150);
3660
3661 if (INTEL_INFO(dev)->gen >= 4) {
3662 u32 temp = 0;
3663 if (is_sdvo) {
3664 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
3665 if (temp > 1)
3666 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
3667 else
3668 temp = 0;
3669 }
3670 I915_WRITE(DPLL_MD(pipe), temp);
3671 } else {
3672 /* The pixel multiplier can only be updated once the
3673 * DPLL is enabled and the clocks are stable.
3674 *
3675 * So write it again.
3676 */
3677 I915_WRITE(DPLL(pipe), dpll);
3678 }
3679 }
3680
3681 static void i8xx_update_pll(struct drm_crtc *crtc,
3682 struct drm_display_mode *adjusted_mode,
3683 intel_clock_t *clock,
3684 int num_connectors)
3685 {
3686 struct drm_device *dev = crtc->dev;
3687 struct drm_i915_private *dev_priv = dev->dev_private;
3688 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3689 int pipe = intel_crtc->pipe;
3690 u32 dpll;
3691
3692 dpll = DPLL_VGA_MODE_DIS;
3693
3694 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3695 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3696 } else {
3697 if (clock->p1 == 2)
3698 dpll |= PLL_P1_DIVIDE_BY_TWO;
3699 else
3700 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3701 if (clock->p2 == 4)
3702 dpll |= PLL_P2_DIVIDE_BY_4;
3703 }
3704
3705 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
3706 /* XXX: just matching BIOS for now */
3707 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
3708 dpll |= 3;
3709 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3710 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
3711 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3712 else
3713 dpll |= PLL_REF_INPUT_DREFCLK;
3714
3715 dpll |= DPLL_VCO_ENABLE;
3716 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
3717 POSTING_READ(DPLL(pipe));
3718 udelay(150);
3719
3720 I915_WRITE(DPLL(pipe), dpll);
3721
3722 /* Wait for the clocks to stabilize. */
3723 POSTING_READ(DPLL(pipe));
3724 udelay(150);
3725
3726 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3727 * This is an exception to the general rule that mode_set doesn't turn
3728 * things on.
3729 */
3730 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
3731 intel_update_lvds(crtc, clock, adjusted_mode);
3732
3733 /* The pixel multiplier can only be updated once the
3734 * DPLL is enabled and the clocks are stable.
3735 *
3736 * So write it again.
3737 */
3738 I915_WRITE(DPLL(pipe), dpll);
3739 }
3740
3741 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
3742 struct drm_display_mode *mode,
3743 struct drm_display_mode *adjusted_mode,
3744 int x, int y,
3745 struct drm_framebuffer *old_fb)
3746 {
3747 struct drm_device *dev = crtc->dev;
3748 struct drm_i915_private *dev_priv = dev->dev_private;
3749 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3750 int pipe = intel_crtc->pipe;
3751 int plane = intel_crtc->plane;
3752 int refclk, num_connectors = 0;
3753 intel_clock_t clock, reduced_clock;
3754 u32 dspcntr, pipeconf, vsyncshift;
3755 bool ok, has_reduced_clock = false, is_sdvo = false;
3756 bool is_lvds = false, is_tv = false, is_dp = false;
3757 struct drm_mode_config *mode_config = &dev->mode_config;
3758 struct intel_encoder *encoder;
3759 const intel_limit_t *limit;
3760 int ret;
3761
3762 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3763 if (encoder->base.crtc != crtc)
3764 continue;
3765
3766 switch (encoder->type) {
3767 case INTEL_OUTPUT_LVDS:
3768 is_lvds = true;
3769 break;
3770 case INTEL_OUTPUT_SDVO:
3771 case INTEL_OUTPUT_HDMI:
3772 is_sdvo = true;
3773 if (encoder->needs_tv_clock)
3774 is_tv = true;
3775 break;
3776 case INTEL_OUTPUT_TVOUT:
3777 is_tv = true;
3778 break;
3779 case INTEL_OUTPUT_DISPLAYPORT:
3780 is_dp = true;
3781 break;
3782 }
3783
3784 num_connectors++;
3785 }
3786
3787 refclk = i9xx_get_refclk(crtc, num_connectors);
3788
3789 /*
3790 * Returns a set of divisors for the desired target clock with the given
3791 * refclk, or FALSE. The returned values represent the clock equation:
3792 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3793 */
3794 limit = intel_limit(crtc, refclk);
3795 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
3796 &clock);
3797 if (!ok) {
3798 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3799 return -EINVAL;
3800 }
3801
3802 /* Ensure that the cursor is valid for the new mode before changing... */
3803 intel_crtc_update_cursor(crtc, true);
3804
3805 if (is_lvds && dev_priv->lvds_downclock_avail) {
3806 /*
3807 * Ensure we match the reduced clock's P to the target clock.
3808 * If the clocks don't match, we can't switch the display clock
3809 * by using the FP0/FP1. In such case we will disable the LVDS
3810 * downclock feature.
3811 */
3812 has_reduced_clock = limit->find_pll(limit, crtc,
3813 dev_priv->lvds_downclock,
3814 refclk,
3815 &clock,
3816 &reduced_clock);
3817 }
3818
3819 if (is_sdvo && is_tv)
3820 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
3821
3822 i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
3823 &reduced_clock : NULL);
3824
3825 if (IS_GEN2(dev))
3826 i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
3827 else
3828 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
3829 has_reduced_clock ? &reduced_clock : NULL,
3830 num_connectors);
3831
3832 /* setup pipeconf */
3833 pipeconf = I915_READ(PIPECONF(pipe));
3834
3835 /* Set up the display plane register */
3836 dspcntr = DISPPLANE_GAMMA_ENABLE;
3837
3838 if (pipe == 0)
3839 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3840 else
3841 dspcntr |= DISPPLANE_SEL_PIPE_B;
3842
3843 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
3844 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3845 * core speed.
3846 *
3847 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3848 * pipe == 0 check?
3849 */
3850 if (mode->clock >
3851 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3852 pipeconf |= PIPECONF_DOUBLE_WIDE;
3853 else
3854 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
3855 }
3856
3857 /* default to 8bpc */
3858 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
3859 if (is_dp) {
3860 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3861 pipeconf |= PIPECONF_BPP_6 |
3862 PIPECONF_DITHER_EN |
3863 PIPECONF_DITHER_TYPE_SP;
3864 }
3865 }
3866
3867 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3868 drm_mode_debug_printmodeline(mode);
3869
3870 if (HAS_PIPE_CXSR(dev)) {
3871 if (intel_crtc->lowfreq_avail) {
3872 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
3873 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
3874 } else {
3875 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
3876 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
3877 }
3878 }
3879
3880 pipeconf &= ~PIPECONF_INTERLACE_MASK;
3881 if (!IS_GEN2(dev) &&
3882 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
3883 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
3884 /* the chip adds 2 halflines automatically */
3885 adjusted_mode->crtc_vtotal -= 1;
3886 adjusted_mode->crtc_vblank_end -= 1;
3887 vsyncshift = adjusted_mode->crtc_hsync_start
3888 - adjusted_mode->crtc_htotal/2;
3889 } else {
3890 pipeconf |= PIPECONF_PROGRESSIVE;
3891 vsyncshift = 0;
3892 }
3893
3894 if (!IS_GEN3(dev))
3895 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
3896
3897 I915_WRITE(HTOTAL(pipe),
3898 (adjusted_mode->crtc_hdisplay - 1) |
3899 ((adjusted_mode->crtc_htotal - 1) << 16));
3900 I915_WRITE(HBLANK(pipe),
3901 (adjusted_mode->crtc_hblank_start - 1) |
3902 ((adjusted_mode->crtc_hblank_end - 1) << 16));
3903 I915_WRITE(HSYNC(pipe),
3904 (adjusted_mode->crtc_hsync_start - 1) |
3905 ((adjusted_mode->crtc_hsync_end - 1) << 16));
3906
3907 I915_WRITE(VTOTAL(pipe),
3908 (adjusted_mode->crtc_vdisplay - 1) |
3909 ((adjusted_mode->crtc_vtotal - 1) << 16));
3910 I915_WRITE(VBLANK(pipe),
3911 (adjusted_mode->crtc_vblank_start - 1) |
3912 ((adjusted_mode->crtc_vblank_end - 1) << 16));
3913 I915_WRITE(VSYNC(pipe),
3914 (adjusted_mode->crtc_vsync_start - 1) |
3915 ((adjusted_mode->crtc_vsync_end - 1) << 16));
3916
3917 /* pipesrc and dspsize control the size that is scaled from,
3918 * which should always be the user's requested size.
3919 */
3920 I915_WRITE(DSPSIZE(plane),
3921 ((mode->vdisplay - 1) << 16) |
3922 (mode->hdisplay - 1));
3923 I915_WRITE(DSPPOS(plane), 0);
3924 I915_WRITE(PIPESRC(pipe),
3925 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
3926
3927 I915_WRITE(PIPECONF(pipe), pipeconf);
3928 POSTING_READ(PIPECONF(pipe));
3929 intel_enable_pipe(dev_priv, pipe, false);
3930
3931 intel_wait_for_vblank(dev, pipe);
3932
3933 I915_WRITE(DSPCNTR(plane), dspcntr);
3934 POSTING_READ(DSPCNTR(plane));
3935
3936 ret = intel_pipe_set_base(crtc, x, y, old_fb);
3937
3938 intel_update_watermarks(dev);
3939
3940 return ret;
3941 }
3942
3943 /*
3944 * Initialize reference clocks when the driver loads
3945 */
3946 void ironlake_init_pch_refclk(struct drm_device *dev)
3947 {
3948 struct drm_i915_private *dev_priv = dev->dev_private;
3949 struct drm_mode_config *mode_config = &dev->mode_config;
3950 struct intel_encoder *encoder;
3951 u32 temp;
3952 bool has_lvds = false;
3953 bool has_cpu_edp = false;
3954 bool has_pch_edp = false;
3955 bool has_panel = false;
3956 bool has_ck505 = false;
3957 bool can_ssc = false;
3958
3959 /* We need to take the global config into account */
3960 list_for_each_entry(encoder, &mode_config->encoder_list,
3961 base.head) {
3962 switch (encoder->type) {
3963 case INTEL_OUTPUT_LVDS:
3964 has_panel = true;
3965 has_lvds = true;
3966 break;
3967 case INTEL_OUTPUT_EDP:
3968 has_panel = true;
3969 if (intel_encoder_is_pch_edp(&encoder->base))
3970 has_pch_edp = true;
3971 else
3972 has_cpu_edp = true;
3973 break;
3974 }
3975 }
3976
3977 if (HAS_PCH_IBX(dev)) {
3978 has_ck505 = dev_priv->display_clock_mode;
3979 can_ssc = has_ck505;
3980 } else {
3981 has_ck505 = false;
3982 can_ssc = true;
3983 }
3984
3985 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
3986 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
3987 has_ck505);
3988
3989 /* Ironlake: try to setup display ref clock before DPLL
3990 * enabling. This is only under driver's control after
3991 * PCH B stepping, previous chipset stepping should be
3992 * ignoring this setting.
3993 */
3994 temp = I915_READ(PCH_DREF_CONTROL);
3995 /* Always enable nonspread source */
3996 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3997
3998 if (has_ck505)
3999 temp |= DREF_NONSPREAD_CK505_ENABLE;
4000 else
4001 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4002
4003 if (has_panel) {
4004 temp &= ~DREF_SSC_SOURCE_MASK;
4005 temp |= DREF_SSC_SOURCE_ENABLE;
4006
4007 /* SSC must be turned on before enabling the CPU output */
4008 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4009 DRM_DEBUG_KMS("Using SSC on panel\n");
4010 temp |= DREF_SSC1_ENABLE;
4011 } else
4012 temp &= ~DREF_SSC1_ENABLE;
4013
4014 /* Get SSC going before enabling the outputs */
4015 I915_WRITE(PCH_DREF_CONTROL, temp);
4016 POSTING_READ(PCH_DREF_CONTROL);
4017 udelay(200);
4018
4019 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4020
4021 /* Enable CPU source on CPU attached eDP */
4022 if (has_cpu_edp) {
4023 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4024 DRM_DEBUG_KMS("Using SSC on eDP\n");
4025 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4026 }
4027 else
4028 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4029 } else
4030 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4031
4032 I915_WRITE(PCH_DREF_CONTROL, temp);
4033 POSTING_READ(PCH_DREF_CONTROL);
4034 udelay(200);
4035 } else {
4036 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4037
4038 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4039
4040 /* Turn off CPU output */
4041 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4042
4043 I915_WRITE(PCH_DREF_CONTROL, temp);
4044 POSTING_READ(PCH_DREF_CONTROL);
4045 udelay(200);
4046
4047 /* Turn off the SSC source */
4048 temp &= ~DREF_SSC_SOURCE_MASK;
4049 temp |= DREF_SSC_SOURCE_DISABLE;
4050
4051 /* Turn off SSC1 */
4052 temp &= ~ DREF_SSC1_ENABLE;
4053
4054 I915_WRITE(PCH_DREF_CONTROL, temp);
4055 POSTING_READ(PCH_DREF_CONTROL);
4056 udelay(200);
4057 }
4058 }
4059
4060 static int ironlake_get_refclk(struct drm_crtc *crtc)
4061 {
4062 struct drm_device *dev = crtc->dev;
4063 struct drm_i915_private *dev_priv = dev->dev_private;
4064 struct intel_encoder *encoder;
4065 struct drm_mode_config *mode_config = &dev->mode_config;
4066 struct intel_encoder *edp_encoder = NULL;
4067 int num_connectors = 0;
4068 bool is_lvds = false;
4069
4070 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4071 if (encoder->base.crtc != crtc)
4072 continue;
4073
4074 switch (encoder->type) {
4075 case INTEL_OUTPUT_LVDS:
4076 is_lvds = true;
4077 break;
4078 case INTEL_OUTPUT_EDP:
4079 edp_encoder = encoder;
4080 break;
4081 }
4082 num_connectors++;
4083 }
4084
4085 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4086 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4087 dev_priv->lvds_ssc_freq);
4088 return dev_priv->lvds_ssc_freq * 1000;
4089 }
4090
4091 return 120000;
4092 }
4093
4094 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4095 struct drm_display_mode *mode,
4096 struct drm_display_mode *adjusted_mode,
4097 int x, int y,
4098 struct drm_framebuffer *old_fb)
4099 {
4100 struct drm_device *dev = crtc->dev;
4101 struct drm_i915_private *dev_priv = dev->dev_private;
4102 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4103 int pipe = intel_crtc->pipe;
4104 int plane = intel_crtc->plane;
4105 int refclk, num_connectors = 0;
4106 intel_clock_t clock, reduced_clock;
4107 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4108 bool ok, has_reduced_clock = false, is_sdvo = false;
4109 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4110 struct drm_mode_config *mode_config = &dev->mode_config;
4111 struct intel_encoder *encoder, *edp_encoder = NULL;
4112 const intel_limit_t *limit;
4113 int ret;
4114 struct fdi_m_n m_n = {0};
4115 u32 temp;
4116 int target_clock, pixel_multiplier, lane, link_bw, factor;
4117 unsigned int pipe_bpp;
4118 bool dither;
4119 bool is_cpu_edp = false, is_pch_edp = false;
4120
4121 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4122 if (encoder->base.crtc != crtc)
4123 continue;
4124
4125 switch (encoder->type) {
4126 case INTEL_OUTPUT_LVDS:
4127 is_lvds = true;
4128 break;
4129 case INTEL_OUTPUT_SDVO:
4130 case INTEL_OUTPUT_HDMI:
4131 is_sdvo = true;
4132 if (encoder->needs_tv_clock)
4133 is_tv = true;
4134 break;
4135 case INTEL_OUTPUT_TVOUT:
4136 is_tv = true;
4137 break;
4138 case INTEL_OUTPUT_ANALOG:
4139 is_crt = true;
4140 break;
4141 case INTEL_OUTPUT_DISPLAYPORT:
4142 is_dp = true;
4143 break;
4144 case INTEL_OUTPUT_EDP:
4145 is_dp = true;
4146 if (intel_encoder_is_pch_edp(&encoder->base))
4147 is_pch_edp = true;
4148 else
4149 is_cpu_edp = true;
4150 edp_encoder = encoder;
4151 break;
4152 }
4153
4154 num_connectors++;
4155 }
4156
4157 refclk = ironlake_get_refclk(crtc);
4158
4159 /*
4160 * Returns a set of divisors for the desired target clock with the given
4161 * refclk, or FALSE. The returned values represent the clock equation:
4162 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4163 */
4164 limit = intel_limit(crtc, refclk);
4165 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4166 &clock);
4167 if (!ok) {
4168 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4169 return -EINVAL;
4170 }
4171
4172 /* Ensure that the cursor is valid for the new mode before changing... */
4173 intel_crtc_update_cursor(crtc, true);
4174
4175 if (is_lvds && dev_priv->lvds_downclock_avail) {
4176 /*
4177 * Ensure we match the reduced clock's P to the target clock.
4178 * If the clocks don't match, we can't switch the display clock
4179 * by using the FP0/FP1. In such case we will disable the LVDS
4180 * downclock feature.
4181 */
4182 has_reduced_clock = limit->find_pll(limit, crtc,
4183 dev_priv->lvds_downclock,
4184 refclk,
4185 &clock,
4186 &reduced_clock);
4187 }
4188 /* SDVO TV has fixed PLL values depend on its clock range,
4189 this mirrors vbios setting. */
4190 if (is_sdvo && is_tv) {
4191 if (adjusted_mode->clock >= 100000
4192 && adjusted_mode->clock < 140500) {
4193 clock.p1 = 2;
4194 clock.p2 = 10;
4195 clock.n = 3;
4196 clock.m1 = 16;
4197 clock.m2 = 8;
4198 } else if (adjusted_mode->clock >= 140500
4199 && adjusted_mode->clock <= 200000) {
4200 clock.p1 = 1;
4201 clock.p2 = 10;
4202 clock.n = 6;
4203 clock.m1 = 12;
4204 clock.m2 = 8;
4205 }
4206 }
4207
4208 /* FDI link */
4209 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4210 lane = 0;
4211 /* CPU eDP doesn't require FDI link, so just set DP M/N
4212 according to current link config */
4213 if (is_cpu_edp) {
4214 target_clock = mode->clock;
4215 intel_edp_link_config(edp_encoder, &lane, &link_bw);
4216 } else {
4217 /* [e]DP over FDI requires target mode clock
4218 instead of link clock */
4219 if (is_dp)
4220 target_clock = mode->clock;
4221 else
4222 target_clock = adjusted_mode->clock;
4223
4224 /* FDI is a binary signal running at ~2.7GHz, encoding
4225 * each output octet as 10 bits. The actual frequency
4226 * is stored as a divider into a 100MHz clock, and the
4227 * mode pixel clock is stored in units of 1KHz.
4228 * Hence the bw of each lane in terms of the mode signal
4229 * is:
4230 */
4231 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4232 }
4233
4234 /* determine panel color depth */
4235 temp = I915_READ(PIPECONF(pipe));
4236 temp &= ~PIPE_BPC_MASK;
4237 dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
4238 switch (pipe_bpp) {
4239 case 18:
4240 temp |= PIPE_6BPC;
4241 break;
4242 case 24:
4243 temp |= PIPE_8BPC;
4244 break;
4245 case 30:
4246 temp |= PIPE_10BPC;
4247 break;
4248 case 36:
4249 temp |= PIPE_12BPC;
4250 break;
4251 default:
4252 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
4253 pipe_bpp);
4254 temp |= PIPE_8BPC;
4255 pipe_bpp = 24;
4256 break;
4257 }
4258
4259 intel_crtc->bpp = pipe_bpp;
4260 I915_WRITE(PIPECONF(pipe), temp);
4261
4262 if (!lane) {
4263 /*
4264 * Account for spread spectrum to avoid
4265 * oversubscribing the link. Max center spread
4266 * is 2.5%; use 5% for safety's sake.
4267 */
4268 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
4269 lane = bps / (link_bw * 8) + 1;
4270 }
4271
4272 intel_crtc->fdi_lanes = lane;
4273
4274 if (pixel_multiplier > 1)
4275 link_bw *= pixel_multiplier;
4276 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
4277 &m_n);
4278
4279 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4280 if (has_reduced_clock)
4281 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4282 reduced_clock.m2;
4283
4284 /* Enable autotuning of the PLL clock (if permissible) */
4285 factor = 21;
4286 if (is_lvds) {
4287 if ((intel_panel_use_ssc(dev_priv) &&
4288 dev_priv->lvds_ssc_freq == 100) ||
4289 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4290 factor = 25;
4291 } else if (is_sdvo && is_tv)
4292 factor = 20;
4293
4294 if (clock.m < factor * clock.n)
4295 fp |= FP_CB_TUNE;
4296
4297 dpll = 0;
4298
4299 if (is_lvds)
4300 dpll |= DPLLB_MODE_LVDS;
4301 else
4302 dpll |= DPLLB_MODE_DAC_SERIAL;
4303 if (is_sdvo) {
4304 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4305 if (pixel_multiplier > 1) {
4306 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
4307 }
4308 dpll |= DPLL_DVO_HIGH_SPEED;
4309 }
4310 if (is_dp && !is_cpu_edp)
4311 dpll |= DPLL_DVO_HIGH_SPEED;
4312
4313 /* compute bitmask from p1 value */
4314 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4315 /* also FPA1 */
4316 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4317
4318 switch (clock.p2) {
4319 case 5:
4320 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4321 break;
4322 case 7:
4323 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4324 break;
4325 case 10:
4326 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4327 break;
4328 case 14:
4329 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4330 break;
4331 }
4332
4333 if (is_sdvo && is_tv)
4334 dpll |= PLL_REF_INPUT_TVCLKINBC;
4335 else if (is_tv)
4336 /* XXX: just matching BIOS for now */
4337 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4338 dpll |= 3;
4339 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4340 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4341 else
4342 dpll |= PLL_REF_INPUT_DREFCLK;
4343
4344 /* setup pipeconf */
4345 pipeconf = I915_READ(PIPECONF(pipe));
4346
4347 /* Set up the display plane register */
4348 dspcntr = DISPPLANE_GAMMA_ENABLE;
4349
4350 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
4351 drm_mode_debug_printmodeline(mode);
4352
4353 /* CPU eDP is the only output that doesn't need a PCH PLL of its own */
4354 if (!is_cpu_edp) {
4355 struct intel_pch_pll *pll;
4356
4357 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
4358 if (pll == NULL) {
4359 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
4360 pipe);
4361 return -EINVAL;
4362 }
4363 } else
4364 intel_put_pch_pll(intel_crtc);
4365
4366 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4367 * This is an exception to the general rule that mode_set doesn't turn
4368 * things on.
4369 */
4370 if (is_lvds) {
4371 temp = I915_READ(PCH_LVDS);
4372 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4373 if (HAS_PCH_CPT(dev)) {
4374 temp &= ~PORT_TRANS_SEL_MASK;
4375 temp |= PORT_TRANS_SEL_CPT(pipe);
4376 } else {
4377 if (pipe == 1)
4378 temp |= LVDS_PIPEB_SELECT;
4379 else
4380 temp &= ~LVDS_PIPEB_SELECT;
4381 }
4382
4383 /* set the corresponsding LVDS_BORDER bit */
4384 temp |= dev_priv->lvds_border_bits;
4385 /* Set the B0-B3 data pairs corresponding to whether we're going to
4386 * set the DPLLs for dual-channel mode or not.
4387 */
4388 if (clock.p2 == 7)
4389 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4390 else
4391 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4392
4393 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4394 * appropriately here, but we need to look more thoroughly into how
4395 * panels behave in the two modes.
4396 */
4397 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4398 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4399 temp |= LVDS_HSYNC_POLARITY;
4400 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4401 temp |= LVDS_VSYNC_POLARITY;
4402 I915_WRITE(PCH_LVDS, temp);
4403 }
4404
4405 pipeconf &= ~PIPECONF_DITHER_EN;
4406 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
4407 if ((is_lvds && dev_priv->lvds_dither) || dither) {
4408 pipeconf |= PIPECONF_DITHER_EN;
4409 pipeconf |= PIPECONF_DITHER_TYPE_SP;
4410 }
4411 if (is_dp && !is_cpu_edp) {
4412 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4413 } else {
4414 /* For non-DP output, clear any trans DP clock recovery setting.*/
4415 I915_WRITE(TRANSDATA_M1(pipe), 0);
4416 I915_WRITE(TRANSDATA_N1(pipe), 0);
4417 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
4418 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
4419 }
4420
4421 if (intel_crtc->pch_pll) {
4422 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
4423
4424 /* Wait for the clocks to stabilize. */
4425 POSTING_READ(intel_crtc->pch_pll->pll_reg);
4426 udelay(150);
4427
4428 /* The pixel multiplier can only be updated once the
4429 * DPLL is enabled and the clocks are stable.
4430 *
4431 * So write it again.
4432 */
4433 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
4434 }
4435
4436 intel_crtc->lowfreq_avail = false;
4437 if (intel_crtc->pch_pll) {
4438 if (is_lvds && has_reduced_clock && i915_powersave) {
4439 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
4440 intel_crtc->lowfreq_avail = true;
4441 if (HAS_PIPE_CXSR(dev)) {
4442 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4443 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4444 }
4445 } else {
4446 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
4447 if (HAS_PIPE_CXSR(dev)) {
4448 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4449 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4450 }
4451 }
4452 }
4453
4454 pipeconf &= ~PIPECONF_INTERLACE_MASK;
4455 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4456 pipeconf |= PIPECONF_INTERLACED_ILK;
4457 /* the chip adds 2 halflines automatically */
4458 adjusted_mode->crtc_vtotal -= 1;
4459 adjusted_mode->crtc_vblank_end -= 1;
4460 I915_WRITE(VSYNCSHIFT(pipe),
4461 adjusted_mode->crtc_hsync_start
4462 - adjusted_mode->crtc_htotal/2);
4463 } else {
4464 pipeconf |= PIPECONF_PROGRESSIVE;
4465 I915_WRITE(VSYNCSHIFT(pipe), 0);
4466 }
4467
4468 I915_WRITE(HTOTAL(pipe),
4469 (adjusted_mode->crtc_hdisplay - 1) |
4470 ((adjusted_mode->crtc_htotal - 1) << 16));
4471 I915_WRITE(HBLANK(pipe),
4472 (adjusted_mode->crtc_hblank_start - 1) |
4473 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4474 I915_WRITE(HSYNC(pipe),
4475 (adjusted_mode->crtc_hsync_start - 1) |
4476 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4477
4478 I915_WRITE(VTOTAL(pipe),
4479 (adjusted_mode->crtc_vdisplay - 1) |
4480 ((adjusted_mode->crtc_vtotal - 1) << 16));
4481 I915_WRITE(VBLANK(pipe),
4482 (adjusted_mode->crtc_vblank_start - 1) |
4483 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4484 I915_WRITE(VSYNC(pipe),
4485 (adjusted_mode->crtc_vsync_start - 1) |
4486 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4487
4488 /* pipesrc controls the size that is scaled from, which should
4489 * always be the user's requested size.
4490 */
4491 I915_WRITE(PIPESRC(pipe),
4492 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4493
4494 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4495 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4496 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4497 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4498
4499 if (is_cpu_edp)
4500 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4501
4502 I915_WRITE(PIPECONF(pipe), pipeconf);
4503 POSTING_READ(PIPECONF(pipe));
4504
4505 intel_wait_for_vblank(dev, pipe);
4506
4507 I915_WRITE(DSPCNTR(plane), dspcntr);
4508 POSTING_READ(DSPCNTR(plane));
4509
4510 ret = intel_pipe_set_base(crtc, x, y, old_fb);
4511
4512 intel_update_watermarks(dev);
4513
4514 return ret;
4515 }
4516
4517 static int intel_crtc_mode_set(struct drm_crtc *crtc,
4518 struct drm_display_mode *mode,
4519 struct drm_display_mode *adjusted_mode,
4520 int x, int y,
4521 struct drm_framebuffer *old_fb)
4522 {
4523 struct drm_device *dev = crtc->dev;
4524 struct drm_i915_private *dev_priv = dev->dev_private;
4525 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4526 int pipe = intel_crtc->pipe;
4527 int ret;
4528
4529 drm_vblank_pre_modeset(dev, pipe);
4530
4531 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
4532 x, y, old_fb);
4533 drm_vblank_post_modeset(dev, pipe);
4534
4535 if (ret)
4536 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4537 else
4538 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
4539
4540 return ret;
4541 }
4542
4543 static bool intel_eld_uptodate(struct drm_connector *connector,
4544 int reg_eldv, uint32_t bits_eldv,
4545 int reg_elda, uint32_t bits_elda,
4546 int reg_edid)
4547 {
4548 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4549 uint8_t *eld = connector->eld;
4550 uint32_t i;
4551
4552 i = I915_READ(reg_eldv);
4553 i &= bits_eldv;
4554
4555 if (!eld[0])
4556 return !i;
4557
4558 if (!i)
4559 return false;
4560
4561 i = I915_READ(reg_elda);
4562 i &= ~bits_elda;
4563 I915_WRITE(reg_elda, i);
4564
4565 for (i = 0; i < eld[2]; i++)
4566 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
4567 return false;
4568
4569 return true;
4570 }
4571
4572 static void g4x_write_eld(struct drm_connector *connector,
4573 struct drm_crtc *crtc)
4574 {
4575 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4576 uint8_t *eld = connector->eld;
4577 uint32_t eldv;
4578 uint32_t len;
4579 uint32_t i;
4580
4581 i = I915_READ(G4X_AUD_VID_DID);
4582
4583 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
4584 eldv = G4X_ELDV_DEVCL_DEVBLC;
4585 else
4586 eldv = G4X_ELDV_DEVCTG;
4587
4588 if (intel_eld_uptodate(connector,
4589 G4X_AUD_CNTL_ST, eldv,
4590 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
4591 G4X_HDMIW_HDMIEDID))
4592 return;
4593
4594 i = I915_READ(G4X_AUD_CNTL_ST);
4595 i &= ~(eldv | G4X_ELD_ADDR);
4596 len = (i >> 9) & 0x1f; /* ELD buffer size */
4597 I915_WRITE(G4X_AUD_CNTL_ST, i);
4598
4599 if (!eld[0])
4600 return;
4601
4602 len = min_t(uint8_t, eld[2], len);
4603 DRM_DEBUG_DRIVER("ELD size %d\n", len);
4604 for (i = 0; i < len; i++)
4605 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
4606
4607 i = I915_READ(G4X_AUD_CNTL_ST);
4608 i |= eldv;
4609 I915_WRITE(G4X_AUD_CNTL_ST, i);
4610 }
4611
4612 static void ironlake_write_eld(struct drm_connector *connector,
4613 struct drm_crtc *crtc)
4614 {
4615 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4616 uint8_t *eld = connector->eld;
4617 uint32_t eldv;
4618 uint32_t i;
4619 int len;
4620 int hdmiw_hdmiedid;
4621 int aud_config;
4622 int aud_cntl_st;
4623 int aud_cntrl_st2;
4624
4625 if (HAS_PCH_IBX(connector->dev)) {
4626 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
4627 aud_config = IBX_AUD_CONFIG_A;
4628 aud_cntl_st = IBX_AUD_CNTL_ST_A;
4629 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
4630 } else {
4631 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
4632 aud_config = CPT_AUD_CONFIG_A;
4633 aud_cntl_st = CPT_AUD_CNTL_ST_A;
4634 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
4635 }
4636
4637 i = to_intel_crtc(crtc)->pipe;
4638 hdmiw_hdmiedid += i * 0x100;
4639 aud_cntl_st += i * 0x100;
4640 aud_config += i * 0x100;
4641
4642 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
4643
4644 i = I915_READ(aud_cntl_st);
4645 i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
4646 if (!i) {
4647 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
4648 /* operate blindly on all ports */
4649 eldv = IBX_ELD_VALIDB;
4650 eldv |= IBX_ELD_VALIDB << 4;
4651 eldv |= IBX_ELD_VALIDB << 8;
4652 } else {
4653 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
4654 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
4655 }
4656
4657 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
4658 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
4659 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
4660 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
4661 } else
4662 I915_WRITE(aud_config, 0);
4663
4664 if (intel_eld_uptodate(connector,
4665 aud_cntrl_st2, eldv,
4666 aud_cntl_st, IBX_ELD_ADDRESS,
4667 hdmiw_hdmiedid))
4668 return;
4669
4670 i = I915_READ(aud_cntrl_st2);
4671 i &= ~eldv;
4672 I915_WRITE(aud_cntrl_st2, i);
4673
4674 if (!eld[0])
4675 return;
4676
4677 i = I915_READ(aud_cntl_st);
4678 i &= ~IBX_ELD_ADDRESS;
4679 I915_WRITE(aud_cntl_st, i);
4680
4681 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
4682 DRM_DEBUG_DRIVER("ELD size %d\n", len);
4683 for (i = 0; i < len; i++)
4684 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
4685
4686 i = I915_READ(aud_cntrl_st2);
4687 i |= eldv;
4688 I915_WRITE(aud_cntrl_st2, i);
4689 }
4690
4691 void intel_write_eld(struct drm_encoder *encoder,
4692 struct drm_display_mode *mode)
4693 {
4694 struct drm_crtc *crtc = encoder->crtc;
4695 struct drm_connector *connector;
4696 struct drm_device *dev = encoder->dev;
4697 struct drm_i915_private *dev_priv = dev->dev_private;
4698
4699 connector = drm_select_eld(encoder, mode);
4700 if (!connector)
4701 return;
4702
4703 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
4704 connector->base.id,
4705 drm_get_connector_name(connector),
4706 connector->encoder->base.id,
4707 drm_get_encoder_name(connector->encoder));
4708
4709 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
4710
4711 if (dev_priv->display.write_eld)
4712 dev_priv->display.write_eld(connector, crtc);
4713 }
4714
4715 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4716 void intel_crtc_load_lut(struct drm_crtc *crtc)
4717 {
4718 struct drm_device *dev = crtc->dev;
4719 struct drm_i915_private *dev_priv = dev->dev_private;
4720 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4721 int palreg = PALETTE(intel_crtc->pipe);
4722 int i;
4723
4724 /* The clocks have to be on to load the palette. */
4725 if (!crtc->enabled || !intel_crtc->active)
4726 return;
4727
4728 /* use legacy palette for Ironlake */
4729 if (HAS_PCH_SPLIT(dev))
4730 palreg = LGC_PALETTE(intel_crtc->pipe);
4731
4732 for (i = 0; i < 256; i++) {
4733 I915_WRITE(palreg + 4 * i,
4734 (intel_crtc->lut_r[i] << 16) |
4735 (intel_crtc->lut_g[i] << 8) |
4736 intel_crtc->lut_b[i]);
4737 }
4738 }
4739
4740 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
4741 {
4742 struct drm_device *dev = crtc->dev;
4743 struct drm_i915_private *dev_priv = dev->dev_private;
4744 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4745 bool visible = base != 0;
4746 u32 cntl;
4747
4748 if (intel_crtc->cursor_visible == visible)
4749 return;
4750
4751 cntl = I915_READ(_CURACNTR);
4752 if (visible) {
4753 /* On these chipsets we can only modify the base whilst
4754 * the cursor is disabled.
4755 */
4756 I915_WRITE(_CURABASE, base);
4757
4758 cntl &= ~(CURSOR_FORMAT_MASK);
4759 /* XXX width must be 64, stride 256 => 0x00 << 28 */
4760 cntl |= CURSOR_ENABLE |
4761 CURSOR_GAMMA_ENABLE |
4762 CURSOR_FORMAT_ARGB;
4763 } else
4764 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4765 I915_WRITE(_CURACNTR, cntl);
4766
4767 intel_crtc->cursor_visible = visible;
4768 }
4769
4770 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
4771 {
4772 struct drm_device *dev = crtc->dev;
4773 struct drm_i915_private *dev_priv = dev->dev_private;
4774 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4775 int pipe = intel_crtc->pipe;
4776 bool visible = base != 0;
4777
4778 if (intel_crtc->cursor_visible != visible) {
4779 uint32_t cntl = I915_READ(CURCNTR(pipe));
4780 if (base) {
4781 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4782 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4783 cntl |= pipe << 28; /* Connect to correct pipe */
4784 } else {
4785 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4786 cntl |= CURSOR_MODE_DISABLE;
4787 }
4788 I915_WRITE(CURCNTR(pipe), cntl);
4789
4790 intel_crtc->cursor_visible = visible;
4791 }
4792 /* and commit changes on next vblank */
4793 I915_WRITE(CURBASE(pipe), base);
4794 }
4795
4796 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
4797 {
4798 struct drm_device *dev = crtc->dev;
4799 struct drm_i915_private *dev_priv = dev->dev_private;
4800 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4801 int pipe = intel_crtc->pipe;
4802 bool visible = base != 0;
4803
4804 if (intel_crtc->cursor_visible != visible) {
4805 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
4806 if (base) {
4807 cntl &= ~CURSOR_MODE;
4808 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4809 } else {
4810 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4811 cntl |= CURSOR_MODE_DISABLE;
4812 }
4813 I915_WRITE(CURCNTR_IVB(pipe), cntl);
4814
4815 intel_crtc->cursor_visible = visible;
4816 }
4817 /* and commit changes on next vblank */
4818 I915_WRITE(CURBASE_IVB(pipe), base);
4819 }
4820
4821 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
4822 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
4823 bool on)
4824 {
4825 struct drm_device *dev = crtc->dev;
4826 struct drm_i915_private *dev_priv = dev->dev_private;
4827 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4828 int pipe = intel_crtc->pipe;
4829 int x = intel_crtc->cursor_x;
4830 int y = intel_crtc->cursor_y;
4831 u32 base, pos;
4832 bool visible;
4833
4834 pos = 0;
4835
4836 if (on && crtc->enabled && crtc->fb) {
4837 base = intel_crtc->cursor_addr;
4838 if (x > (int) crtc->fb->width)
4839 base = 0;
4840
4841 if (y > (int) crtc->fb->height)
4842 base = 0;
4843 } else
4844 base = 0;
4845
4846 if (x < 0) {
4847 if (x + intel_crtc->cursor_width < 0)
4848 base = 0;
4849
4850 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4851 x = -x;
4852 }
4853 pos |= x << CURSOR_X_SHIFT;
4854
4855 if (y < 0) {
4856 if (y + intel_crtc->cursor_height < 0)
4857 base = 0;
4858
4859 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4860 y = -y;
4861 }
4862 pos |= y << CURSOR_Y_SHIFT;
4863
4864 visible = base != 0;
4865 if (!visible && !intel_crtc->cursor_visible)
4866 return;
4867
4868 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4869 I915_WRITE(CURPOS_IVB(pipe), pos);
4870 ivb_update_cursor(crtc, base);
4871 } else {
4872 I915_WRITE(CURPOS(pipe), pos);
4873 if (IS_845G(dev) || IS_I865G(dev))
4874 i845_update_cursor(crtc, base);
4875 else
4876 i9xx_update_cursor(crtc, base);
4877 }
4878
4879 if (visible)
4880 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
4881 }
4882
4883 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
4884 struct drm_file *file,
4885 uint32_t handle,
4886 uint32_t width, uint32_t height)
4887 {
4888 struct drm_device *dev = crtc->dev;
4889 struct drm_i915_private *dev_priv = dev->dev_private;
4890 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4891 struct drm_i915_gem_object *obj;
4892 uint32_t addr;
4893 int ret;
4894
4895 DRM_DEBUG_KMS("\n");
4896
4897 /* if we want to turn off the cursor ignore width and height */
4898 if (!handle) {
4899 DRM_DEBUG_KMS("cursor off\n");
4900 addr = 0;
4901 obj = NULL;
4902 mutex_lock(&dev->struct_mutex);
4903 goto finish;
4904 }
4905
4906 /* Currently we only support 64x64 cursors */
4907 if (width != 64 || height != 64) {
4908 DRM_ERROR("we currently only support 64x64 cursors\n");
4909 return -EINVAL;
4910 }
4911
4912 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
4913 if (&obj->base == NULL)
4914 return -ENOENT;
4915
4916 if (obj->base.size < width * height * 4) {
4917 DRM_ERROR("buffer is to small\n");
4918 ret = -ENOMEM;
4919 goto fail;
4920 }
4921
4922 /* we only need to pin inside GTT if cursor is non-phy */
4923 mutex_lock(&dev->struct_mutex);
4924 if (!dev_priv->info->cursor_needs_physical) {
4925 if (obj->tiling_mode) {
4926 DRM_ERROR("cursor cannot be tiled\n");
4927 ret = -EINVAL;
4928 goto fail_locked;
4929 }
4930
4931 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
4932 if (ret) {
4933 DRM_ERROR("failed to move cursor bo into the GTT\n");
4934 goto fail_locked;
4935 }
4936
4937 ret = i915_gem_object_put_fence(obj);
4938 if (ret) {
4939 DRM_ERROR("failed to release fence for cursor");
4940 goto fail_unpin;
4941 }
4942
4943 addr = obj->gtt_offset;
4944 } else {
4945 int align = IS_I830(dev) ? 16 * 1024 : 256;
4946 ret = i915_gem_attach_phys_object(dev, obj,
4947 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
4948 align);
4949 if (ret) {
4950 DRM_ERROR("failed to attach phys object\n");
4951 goto fail_locked;
4952 }
4953 addr = obj->phys_obj->handle->busaddr;
4954 }
4955
4956 if (IS_GEN2(dev))
4957 I915_WRITE(CURSIZE, (height << 12) | width);
4958
4959 finish:
4960 if (intel_crtc->cursor_bo) {
4961 if (dev_priv->info->cursor_needs_physical) {
4962 if (intel_crtc->cursor_bo != obj)
4963 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4964 } else
4965 i915_gem_object_unpin(intel_crtc->cursor_bo);
4966 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
4967 }
4968
4969 mutex_unlock(&dev->struct_mutex);
4970
4971 intel_crtc->cursor_addr = addr;
4972 intel_crtc->cursor_bo = obj;
4973 intel_crtc->cursor_width = width;
4974 intel_crtc->cursor_height = height;
4975
4976 intel_crtc_update_cursor(crtc, true);
4977
4978 return 0;
4979 fail_unpin:
4980 i915_gem_object_unpin(obj);
4981 fail_locked:
4982 mutex_unlock(&dev->struct_mutex);
4983 fail:
4984 drm_gem_object_unreference_unlocked(&obj->base);
4985 return ret;
4986 }
4987
4988 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4989 {
4990 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4991
4992 intel_crtc->cursor_x = x;
4993 intel_crtc->cursor_y = y;
4994
4995 intel_crtc_update_cursor(crtc, true);
4996
4997 return 0;
4998 }
4999
5000 /** Sets the color ramps on behalf of RandR */
5001 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5002 u16 blue, int regno)
5003 {
5004 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5005
5006 intel_crtc->lut_r[regno] = red >> 8;
5007 intel_crtc->lut_g[regno] = green >> 8;
5008 intel_crtc->lut_b[regno] = blue >> 8;
5009 }
5010
5011 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5012 u16 *blue, int regno)
5013 {
5014 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5015
5016 *red = intel_crtc->lut_r[regno] << 8;
5017 *green = intel_crtc->lut_g[regno] << 8;
5018 *blue = intel_crtc->lut_b[regno] << 8;
5019 }
5020
5021 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5022 u16 *blue, uint32_t start, uint32_t size)
5023 {
5024 int end = (start + size > 256) ? 256 : start + size, i;
5025 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5026
5027 for (i = start; i < end; i++) {
5028 intel_crtc->lut_r[i] = red[i] >> 8;
5029 intel_crtc->lut_g[i] = green[i] >> 8;
5030 intel_crtc->lut_b[i] = blue[i] >> 8;
5031 }
5032
5033 intel_crtc_load_lut(crtc);
5034 }
5035
5036 /**
5037 * Get a pipe with a simple mode set on it for doing load-based monitor
5038 * detection.
5039 *
5040 * It will be up to the load-detect code to adjust the pipe as appropriate for
5041 * its requirements. The pipe will be connected to no other encoders.
5042 *
5043 * Currently this code will only succeed if there is a pipe with no encoders
5044 * configured for it. In the future, it could choose to temporarily disable
5045 * some outputs to free up a pipe for its use.
5046 *
5047 * \return crtc, or NULL if no pipes are available.
5048 */
5049
5050 /* VESA 640x480x72Hz mode to set on the pipe */
5051 static struct drm_display_mode load_detect_mode = {
5052 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5053 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5054 };
5055
5056 static struct drm_framebuffer *
5057 intel_framebuffer_create(struct drm_device *dev,
5058 struct drm_mode_fb_cmd2 *mode_cmd,
5059 struct drm_i915_gem_object *obj)
5060 {
5061 struct intel_framebuffer *intel_fb;
5062 int ret;
5063
5064 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5065 if (!intel_fb) {
5066 drm_gem_object_unreference_unlocked(&obj->base);
5067 return ERR_PTR(-ENOMEM);
5068 }
5069
5070 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5071 if (ret) {
5072 drm_gem_object_unreference_unlocked(&obj->base);
5073 kfree(intel_fb);
5074 return ERR_PTR(ret);
5075 }
5076
5077 return &intel_fb->base;
5078 }
5079
5080 static u32
5081 intel_framebuffer_pitch_for_width(int width, int bpp)
5082 {
5083 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5084 return ALIGN(pitch, 64);
5085 }
5086
5087 static u32
5088 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5089 {
5090 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5091 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5092 }
5093
5094 static struct drm_framebuffer *
5095 intel_framebuffer_create_for_mode(struct drm_device *dev,
5096 struct drm_display_mode *mode,
5097 int depth, int bpp)
5098 {
5099 struct drm_i915_gem_object *obj;
5100 struct drm_mode_fb_cmd2 mode_cmd;
5101
5102 obj = i915_gem_alloc_object(dev,
5103 intel_framebuffer_size_for_mode(mode, bpp));
5104 if (obj == NULL)
5105 return ERR_PTR(-ENOMEM);
5106
5107 mode_cmd.width = mode->hdisplay;
5108 mode_cmd.height = mode->vdisplay;
5109 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
5110 bpp);
5111 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
5112
5113 return intel_framebuffer_create(dev, &mode_cmd, obj);
5114 }
5115
5116 static struct drm_framebuffer *
5117 mode_fits_in_fbdev(struct drm_device *dev,
5118 struct drm_display_mode *mode)
5119 {
5120 struct drm_i915_private *dev_priv = dev->dev_private;
5121 struct drm_i915_gem_object *obj;
5122 struct drm_framebuffer *fb;
5123
5124 if (dev_priv->fbdev == NULL)
5125 return NULL;
5126
5127 obj = dev_priv->fbdev->ifb.obj;
5128 if (obj == NULL)
5129 return NULL;
5130
5131 fb = &dev_priv->fbdev->ifb.base;
5132 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
5133 fb->bits_per_pixel))
5134 return NULL;
5135
5136 if (obj->base.size < mode->vdisplay * fb->pitches[0])
5137 return NULL;
5138
5139 return fb;
5140 }
5141
5142 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
5143 struct drm_connector *connector,
5144 struct drm_display_mode *mode,
5145 struct intel_load_detect_pipe *old)
5146 {
5147 struct intel_crtc *intel_crtc;
5148 struct drm_crtc *possible_crtc;
5149 struct drm_encoder *encoder = &intel_encoder->base;
5150 struct drm_crtc *crtc = NULL;
5151 struct drm_device *dev = encoder->dev;
5152 struct drm_framebuffer *old_fb;
5153 int i = -1;
5154
5155 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5156 connector->base.id, drm_get_connector_name(connector),
5157 encoder->base.id, drm_get_encoder_name(encoder));
5158
5159 /*
5160 * Algorithm gets a little messy:
5161 *
5162 * - if the connector already has an assigned crtc, use it (but make
5163 * sure it's on first)
5164 *
5165 * - try to find the first unused crtc that can drive this connector,
5166 * and use that if we find one
5167 */
5168
5169 /* See if we already have a CRTC for this connector */
5170 if (encoder->crtc) {
5171 crtc = encoder->crtc;
5172
5173 intel_crtc = to_intel_crtc(crtc);
5174 old->dpms_mode = intel_crtc->dpms_mode;
5175 old->load_detect_temp = false;
5176
5177 /* Make sure the crtc and connector are running */
5178 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
5179 struct drm_encoder_helper_funcs *encoder_funcs;
5180 struct drm_crtc_helper_funcs *crtc_funcs;
5181
5182 crtc_funcs = crtc->helper_private;
5183 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
5184
5185 encoder_funcs = encoder->helper_private;
5186 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
5187 }
5188
5189 return true;
5190 }
5191
5192 /* Find an unused one (if possible) */
5193 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5194 i++;
5195 if (!(encoder->possible_crtcs & (1 << i)))
5196 continue;
5197 if (!possible_crtc->enabled) {
5198 crtc = possible_crtc;
5199 break;
5200 }
5201 }
5202
5203 /*
5204 * If we didn't find an unused CRTC, don't use any.
5205 */
5206 if (!crtc) {
5207 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5208 return false;
5209 }
5210
5211 encoder->crtc = crtc;
5212 connector->encoder = encoder;
5213
5214 intel_crtc = to_intel_crtc(crtc);
5215 old->dpms_mode = intel_crtc->dpms_mode;
5216 old->load_detect_temp = true;
5217 old->release_fb = NULL;
5218
5219 if (!mode)
5220 mode = &load_detect_mode;
5221
5222 old_fb = crtc->fb;
5223
5224 /* We need a framebuffer large enough to accommodate all accesses
5225 * that the plane may generate whilst we perform load detection.
5226 * We can not rely on the fbcon either being present (we get called
5227 * during its initialisation to detect all boot displays, or it may
5228 * not even exist) or that it is large enough to satisfy the
5229 * requested mode.
5230 */
5231 crtc->fb = mode_fits_in_fbdev(dev, mode);
5232 if (crtc->fb == NULL) {
5233 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
5234 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5235 old->release_fb = crtc->fb;
5236 } else
5237 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
5238 if (IS_ERR(crtc->fb)) {
5239 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5240 crtc->fb = old_fb;
5241 return false;
5242 }
5243
5244 if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
5245 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
5246 if (old->release_fb)
5247 old->release_fb->funcs->destroy(old->release_fb);
5248 crtc->fb = old_fb;
5249 return false;
5250 }
5251
5252 /* let the connector get through one full cycle before testing */
5253 intel_wait_for_vblank(dev, intel_crtc->pipe);
5254
5255 return true;
5256 }
5257
5258 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
5259 struct drm_connector *connector,
5260 struct intel_load_detect_pipe *old)
5261 {
5262 struct drm_encoder *encoder = &intel_encoder->base;
5263 struct drm_device *dev = encoder->dev;
5264 struct drm_crtc *crtc = encoder->crtc;
5265 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
5266 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
5267
5268 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5269 connector->base.id, drm_get_connector_name(connector),
5270 encoder->base.id, drm_get_encoder_name(encoder));
5271
5272 if (old->load_detect_temp) {
5273 connector->encoder = NULL;
5274 drm_helper_disable_unused_functions(dev);
5275
5276 if (old->release_fb)
5277 old->release_fb->funcs->destroy(old->release_fb);
5278
5279 return;
5280 }
5281
5282 /* Switch crtc and encoder back off if necessary */
5283 if (old->dpms_mode != DRM_MODE_DPMS_ON) {
5284 encoder_funcs->dpms(encoder, old->dpms_mode);
5285 crtc_funcs->dpms(crtc, old->dpms_mode);
5286 }
5287 }
5288
5289 /* Returns the clock of the currently programmed mode of the given pipe. */
5290 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5291 {
5292 struct drm_i915_private *dev_priv = dev->dev_private;
5293 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5294 int pipe = intel_crtc->pipe;
5295 u32 dpll = I915_READ(DPLL(pipe));
5296 u32 fp;
5297 intel_clock_t clock;
5298
5299 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5300 fp = I915_READ(FP0(pipe));
5301 else
5302 fp = I915_READ(FP1(pipe));
5303
5304 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5305 if (IS_PINEVIEW(dev)) {
5306 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5307 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
5308 } else {
5309 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5310 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5311 }
5312
5313 if (!IS_GEN2(dev)) {
5314 if (IS_PINEVIEW(dev))
5315 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5316 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
5317 else
5318 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
5319 DPLL_FPA01_P1_POST_DIV_SHIFT);
5320
5321 switch (dpll & DPLL_MODE_MASK) {
5322 case DPLLB_MODE_DAC_SERIAL:
5323 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5324 5 : 10;
5325 break;
5326 case DPLLB_MODE_LVDS:
5327 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
5328 7 : 14;
5329 break;
5330 default:
5331 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
5332 "mode\n", (int)(dpll & DPLL_MODE_MASK));
5333 return 0;
5334 }
5335
5336 /* XXX: Handle the 100Mhz refclk */
5337 intel_clock(dev, 96000, &clock);
5338 } else {
5339 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
5340
5341 if (is_lvds) {
5342 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
5343 DPLL_FPA01_P1_POST_DIV_SHIFT);
5344 clock.p2 = 14;
5345
5346 if ((dpll & PLL_REF_INPUT_MASK) ==
5347 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
5348 /* XXX: might not be 66MHz */
5349 intel_clock(dev, 66000, &clock);
5350 } else
5351 intel_clock(dev, 48000, &clock);
5352 } else {
5353 if (dpll & PLL_P1_DIVIDE_BY_TWO)
5354 clock.p1 = 2;
5355 else {
5356 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
5357 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
5358 }
5359 if (dpll & PLL_P2_DIVIDE_BY_4)
5360 clock.p2 = 4;
5361 else
5362 clock.p2 = 2;
5363
5364 intel_clock(dev, 48000, &clock);
5365 }
5366 }
5367
5368 /* XXX: It would be nice to validate the clocks, but we can't reuse
5369 * i830PllIsValid() because it relies on the xf86_config connector
5370 * configuration being accurate, which it isn't necessarily.
5371 */
5372
5373 return clock.dot;
5374 }
5375
5376 /** Returns the currently programmed mode of the given pipe. */
5377 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
5378 struct drm_crtc *crtc)
5379 {
5380 struct drm_i915_private *dev_priv = dev->dev_private;
5381 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5382 int pipe = intel_crtc->pipe;
5383 struct drm_display_mode *mode;
5384 int htot = I915_READ(HTOTAL(pipe));
5385 int hsync = I915_READ(HSYNC(pipe));
5386 int vtot = I915_READ(VTOTAL(pipe));
5387 int vsync = I915_READ(VSYNC(pipe));
5388
5389 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
5390 if (!mode)
5391 return NULL;
5392
5393 mode->clock = intel_crtc_clock_get(dev, crtc);
5394 mode->hdisplay = (htot & 0xffff) + 1;
5395 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
5396 mode->hsync_start = (hsync & 0xffff) + 1;
5397 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
5398 mode->vdisplay = (vtot & 0xffff) + 1;
5399 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
5400 mode->vsync_start = (vsync & 0xffff) + 1;
5401 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
5402
5403 drm_mode_set_name(mode);
5404 drm_mode_set_crtcinfo(mode, 0);
5405
5406 return mode;
5407 }
5408
5409 #define GPU_IDLE_TIMEOUT 500 /* ms */
5410
5411 /* When this timer fires, we've been idle for awhile */
5412 static void intel_gpu_idle_timer(unsigned long arg)
5413 {
5414 struct drm_device *dev = (struct drm_device *)arg;
5415 drm_i915_private_t *dev_priv = dev->dev_private;
5416
5417 if (!list_empty(&dev_priv->mm.active_list)) {
5418 /* Still processing requests, so just re-arm the timer. */
5419 mod_timer(&dev_priv->idle_timer, jiffies +
5420 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5421 return;
5422 }
5423
5424 dev_priv->busy = false;
5425 queue_work(dev_priv->wq, &dev_priv->idle_work);
5426 }
5427
5428 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
5429
5430 static void intel_crtc_idle_timer(unsigned long arg)
5431 {
5432 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
5433 struct drm_crtc *crtc = &intel_crtc->base;
5434 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
5435 struct intel_framebuffer *intel_fb;
5436
5437 intel_fb = to_intel_framebuffer(crtc->fb);
5438 if (intel_fb && intel_fb->obj->active) {
5439 /* The framebuffer is still being accessed by the GPU. */
5440 mod_timer(&intel_crtc->idle_timer, jiffies +
5441 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5442 return;
5443 }
5444
5445 intel_crtc->busy = false;
5446 queue_work(dev_priv->wq, &dev_priv->idle_work);
5447 }
5448
5449 static void intel_increase_pllclock(struct drm_crtc *crtc)
5450 {
5451 struct drm_device *dev = crtc->dev;
5452 drm_i915_private_t *dev_priv = dev->dev_private;
5453 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5454 int pipe = intel_crtc->pipe;
5455 int dpll_reg = DPLL(pipe);
5456 int dpll;
5457
5458 if (HAS_PCH_SPLIT(dev))
5459 return;
5460
5461 if (!dev_priv->lvds_downclock_avail)
5462 return;
5463
5464 dpll = I915_READ(dpll_reg);
5465 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
5466 DRM_DEBUG_DRIVER("upclocking LVDS\n");
5467
5468 assert_panel_unlocked(dev_priv, pipe);
5469
5470 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
5471 I915_WRITE(dpll_reg, dpll);
5472 intel_wait_for_vblank(dev, pipe);
5473
5474 dpll = I915_READ(dpll_reg);
5475 if (dpll & DISPLAY_RATE_SELECT_FPA1)
5476 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
5477 }
5478
5479 /* Schedule downclock */
5480 mod_timer(&intel_crtc->idle_timer, jiffies +
5481 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5482 }
5483
5484 static void intel_decrease_pllclock(struct drm_crtc *crtc)
5485 {
5486 struct drm_device *dev = crtc->dev;
5487 drm_i915_private_t *dev_priv = dev->dev_private;
5488 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5489 int pipe = intel_crtc->pipe;
5490 int dpll_reg = DPLL(pipe);
5491 int dpll = I915_READ(dpll_reg);
5492
5493 if (HAS_PCH_SPLIT(dev))
5494 return;
5495
5496 if (!dev_priv->lvds_downclock_avail)
5497 return;
5498
5499 /*
5500 * Since this is called by a timer, we should never get here in
5501 * the manual case.
5502 */
5503 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
5504 DRM_DEBUG_DRIVER("downclocking LVDS\n");
5505
5506 assert_panel_unlocked(dev_priv, pipe);
5507
5508 dpll |= DISPLAY_RATE_SELECT_FPA1;
5509 I915_WRITE(dpll_reg, dpll);
5510 intel_wait_for_vblank(dev, pipe);
5511 dpll = I915_READ(dpll_reg);
5512 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
5513 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
5514 }
5515
5516 }
5517
5518 /**
5519 * intel_idle_update - adjust clocks for idleness
5520 * @work: work struct
5521 *
5522 * Either the GPU or display (or both) went idle. Check the busy status
5523 * here and adjust the CRTC and GPU clocks as necessary.
5524 */
5525 static void intel_idle_update(struct work_struct *work)
5526 {
5527 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
5528 idle_work);
5529 struct drm_device *dev = dev_priv->dev;
5530 struct drm_crtc *crtc;
5531 struct intel_crtc *intel_crtc;
5532
5533 if (!i915_powersave)
5534 return;
5535
5536 mutex_lock(&dev->struct_mutex);
5537
5538 i915_update_gfx_val(dev_priv);
5539
5540 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5541 /* Skip inactive CRTCs */
5542 if (!crtc->fb)
5543 continue;
5544
5545 intel_crtc = to_intel_crtc(crtc);
5546 if (!intel_crtc->busy)
5547 intel_decrease_pllclock(crtc);
5548 }
5549
5550
5551 mutex_unlock(&dev->struct_mutex);
5552 }
5553
5554 /**
5555 * intel_mark_busy - mark the GPU and possibly the display busy
5556 * @dev: drm device
5557 * @obj: object we're operating on
5558 *
5559 * Callers can use this function to indicate that the GPU is busy processing
5560 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
5561 * buffer), we'll also mark the display as busy, so we know to increase its
5562 * clock frequency.
5563 */
5564 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
5565 {
5566 drm_i915_private_t *dev_priv = dev->dev_private;
5567 struct drm_crtc *crtc = NULL;
5568 struct intel_framebuffer *intel_fb;
5569 struct intel_crtc *intel_crtc;
5570
5571 if (!drm_core_check_feature(dev, DRIVER_MODESET))
5572 return;
5573
5574 if (!dev_priv->busy)
5575 dev_priv->busy = true;
5576 else
5577 mod_timer(&dev_priv->idle_timer, jiffies +
5578 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5579
5580 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5581 if (!crtc->fb)
5582 continue;
5583
5584 intel_crtc = to_intel_crtc(crtc);
5585 intel_fb = to_intel_framebuffer(crtc->fb);
5586 if (intel_fb->obj == obj) {
5587 if (!intel_crtc->busy) {
5588 /* Non-busy -> busy, upclock */
5589 intel_increase_pllclock(crtc);
5590 intel_crtc->busy = true;
5591 } else {
5592 /* Busy -> busy, put off timer */
5593 mod_timer(&intel_crtc->idle_timer, jiffies +
5594 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5595 }
5596 }
5597 }
5598 }
5599
5600 static void intel_crtc_destroy(struct drm_crtc *crtc)
5601 {
5602 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5603 struct drm_device *dev = crtc->dev;
5604 struct intel_unpin_work *work;
5605 unsigned long flags;
5606
5607 spin_lock_irqsave(&dev->event_lock, flags);
5608 work = intel_crtc->unpin_work;
5609 intel_crtc->unpin_work = NULL;
5610 spin_unlock_irqrestore(&dev->event_lock, flags);
5611
5612 if (work) {
5613 cancel_work_sync(&work->work);
5614 kfree(work);
5615 }
5616
5617 drm_crtc_cleanup(crtc);
5618
5619 kfree(intel_crtc);
5620 }
5621
5622 static void intel_unpin_work_fn(struct work_struct *__work)
5623 {
5624 struct intel_unpin_work *work =
5625 container_of(__work, struct intel_unpin_work, work);
5626
5627 mutex_lock(&work->dev->struct_mutex);
5628 intel_unpin_fb_obj(work->old_fb_obj);
5629 drm_gem_object_unreference(&work->pending_flip_obj->base);
5630 drm_gem_object_unreference(&work->old_fb_obj->base);
5631
5632 intel_update_fbc(work->dev);
5633 mutex_unlock(&work->dev->struct_mutex);
5634 kfree(work);
5635 }
5636
5637 static void do_intel_finish_page_flip(struct drm_device *dev,
5638 struct drm_crtc *crtc)
5639 {
5640 drm_i915_private_t *dev_priv = dev->dev_private;
5641 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5642 struct intel_unpin_work *work;
5643 struct drm_i915_gem_object *obj;
5644 struct drm_pending_vblank_event *e;
5645 struct timeval tnow, tvbl;
5646 unsigned long flags;
5647
5648 /* Ignore early vblank irqs */
5649 if (intel_crtc == NULL)
5650 return;
5651
5652 do_gettimeofday(&tnow);
5653
5654 spin_lock_irqsave(&dev->event_lock, flags);
5655 work = intel_crtc->unpin_work;
5656 if (work == NULL || !work->pending) {
5657 spin_unlock_irqrestore(&dev->event_lock, flags);
5658 return;
5659 }
5660
5661 intel_crtc->unpin_work = NULL;
5662
5663 if (work->event) {
5664 e = work->event;
5665 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
5666
5667 /* Called before vblank count and timestamps have
5668 * been updated for the vblank interval of flip
5669 * completion? Need to increment vblank count and
5670 * add one videorefresh duration to returned timestamp
5671 * to account for this. We assume this happened if we
5672 * get called over 0.9 frame durations after the last
5673 * timestamped vblank.
5674 *
5675 * This calculation can not be used with vrefresh rates
5676 * below 5Hz (10Hz to be on the safe side) without
5677 * promoting to 64 integers.
5678 */
5679 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
5680 9 * crtc->framedur_ns) {
5681 e->event.sequence++;
5682 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
5683 crtc->framedur_ns);
5684 }
5685
5686 e->event.tv_sec = tvbl.tv_sec;
5687 e->event.tv_usec = tvbl.tv_usec;
5688
5689 list_add_tail(&e->base.link,
5690 &e->base.file_priv->event_list);
5691 wake_up_interruptible(&e->base.file_priv->event_wait);
5692 }
5693
5694 drm_vblank_put(dev, intel_crtc->pipe);
5695
5696 spin_unlock_irqrestore(&dev->event_lock, flags);
5697
5698 obj = work->old_fb_obj;
5699
5700 atomic_clear_mask(1 << intel_crtc->plane,
5701 &obj->pending_flip.counter);
5702 if (atomic_read(&obj->pending_flip) == 0)
5703 wake_up(&dev_priv->pending_flip_queue);
5704
5705 schedule_work(&work->work);
5706
5707 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
5708 }
5709
5710 void intel_finish_page_flip(struct drm_device *dev, int pipe)
5711 {
5712 drm_i915_private_t *dev_priv = dev->dev_private;
5713 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
5714
5715 do_intel_finish_page_flip(dev, crtc);
5716 }
5717
5718 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
5719 {
5720 drm_i915_private_t *dev_priv = dev->dev_private;
5721 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
5722
5723 do_intel_finish_page_flip(dev, crtc);
5724 }
5725
5726 void intel_prepare_page_flip(struct drm_device *dev, int plane)
5727 {
5728 drm_i915_private_t *dev_priv = dev->dev_private;
5729 struct intel_crtc *intel_crtc =
5730 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
5731 unsigned long flags;
5732
5733 spin_lock_irqsave(&dev->event_lock, flags);
5734 if (intel_crtc->unpin_work) {
5735 if ((++intel_crtc->unpin_work->pending) > 1)
5736 DRM_ERROR("Prepared flip multiple times\n");
5737 } else {
5738 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
5739 }
5740 spin_unlock_irqrestore(&dev->event_lock, flags);
5741 }
5742
5743 static int intel_gen2_queue_flip(struct drm_device *dev,
5744 struct drm_crtc *crtc,
5745 struct drm_framebuffer *fb,
5746 struct drm_i915_gem_object *obj)
5747 {
5748 struct drm_i915_private *dev_priv = dev->dev_private;
5749 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5750 unsigned long offset;
5751 u32 flip_mask;
5752 int ret;
5753
5754 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
5755 if (ret)
5756 goto err;
5757
5758 /* Offset into the new buffer for cases of shared fbs between CRTCs */
5759 offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
5760
5761 ret = BEGIN_LP_RING(6);
5762 if (ret)
5763 goto err_unpin;
5764
5765 /* Can't queue multiple flips, so wait for the previous
5766 * one to finish before executing the next.
5767 */
5768 if (intel_crtc->plane)
5769 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5770 else
5771 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5772 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
5773 OUT_RING(MI_NOOP);
5774 OUT_RING(MI_DISPLAY_FLIP |
5775 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5776 OUT_RING(fb->pitches[0]);
5777 OUT_RING(obj->gtt_offset + offset);
5778 OUT_RING(0); /* aux display base address, unused */
5779 ADVANCE_LP_RING();
5780 return 0;
5781
5782 err_unpin:
5783 intel_unpin_fb_obj(obj);
5784 err:
5785 return ret;
5786 }
5787
5788 static int intel_gen3_queue_flip(struct drm_device *dev,
5789 struct drm_crtc *crtc,
5790 struct drm_framebuffer *fb,
5791 struct drm_i915_gem_object *obj)
5792 {
5793 struct drm_i915_private *dev_priv = dev->dev_private;
5794 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5795 unsigned long offset;
5796 u32 flip_mask;
5797 int ret;
5798
5799 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
5800 if (ret)
5801 goto err;
5802
5803 /* Offset into the new buffer for cases of shared fbs between CRTCs */
5804 offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
5805
5806 ret = BEGIN_LP_RING(6);
5807 if (ret)
5808 goto err_unpin;
5809
5810 if (intel_crtc->plane)
5811 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5812 else
5813 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5814 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
5815 OUT_RING(MI_NOOP);
5816 OUT_RING(MI_DISPLAY_FLIP_I915 |
5817 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5818 OUT_RING(fb->pitches[0]);
5819 OUT_RING(obj->gtt_offset + offset);
5820 OUT_RING(MI_NOOP);
5821
5822 ADVANCE_LP_RING();
5823 return 0;
5824
5825 err_unpin:
5826 intel_unpin_fb_obj(obj);
5827 err:
5828 return ret;
5829 }
5830
5831 static int intel_gen4_queue_flip(struct drm_device *dev,
5832 struct drm_crtc *crtc,
5833 struct drm_framebuffer *fb,
5834 struct drm_i915_gem_object *obj)
5835 {
5836 struct drm_i915_private *dev_priv = dev->dev_private;
5837 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5838 uint32_t pf, pipesrc;
5839 int ret;
5840
5841 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
5842 if (ret)
5843 goto err;
5844
5845 ret = BEGIN_LP_RING(4);
5846 if (ret)
5847 goto err_unpin;
5848
5849 /* i965+ uses the linear or tiled offsets from the
5850 * Display Registers (which do not change across a page-flip)
5851 * so we need only reprogram the base address.
5852 */
5853 OUT_RING(MI_DISPLAY_FLIP |
5854 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5855 OUT_RING(fb->pitches[0]);
5856 OUT_RING(obj->gtt_offset | obj->tiling_mode);
5857
5858 /* XXX Enabling the panel-fitter across page-flip is so far
5859 * untested on non-native modes, so ignore it for now.
5860 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5861 */
5862 pf = 0;
5863 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
5864 OUT_RING(pf | pipesrc);
5865 ADVANCE_LP_RING();
5866 return 0;
5867
5868 err_unpin:
5869 intel_unpin_fb_obj(obj);
5870 err:
5871 return ret;
5872 }
5873
5874 static int intel_gen6_queue_flip(struct drm_device *dev,
5875 struct drm_crtc *crtc,
5876 struct drm_framebuffer *fb,
5877 struct drm_i915_gem_object *obj)
5878 {
5879 struct drm_i915_private *dev_priv = dev->dev_private;
5880 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5881 uint32_t pf, pipesrc;
5882 int ret;
5883
5884 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
5885 if (ret)
5886 goto err;
5887
5888 ret = BEGIN_LP_RING(4);
5889 if (ret)
5890 goto err_unpin;
5891
5892 OUT_RING(MI_DISPLAY_FLIP |
5893 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5894 OUT_RING(fb->pitches[0] | obj->tiling_mode);
5895 OUT_RING(obj->gtt_offset);
5896
5897 pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
5898 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
5899 OUT_RING(pf | pipesrc);
5900 ADVANCE_LP_RING();
5901 return 0;
5902
5903 err_unpin:
5904 intel_unpin_fb_obj(obj);
5905 err:
5906 return ret;
5907 }
5908
5909 /*
5910 * On gen7 we currently use the blit ring because (in early silicon at least)
5911 * the render ring doesn't give us interrpts for page flip completion, which
5912 * means clients will hang after the first flip is queued. Fortunately the
5913 * blit ring generates interrupts properly, so use it instead.
5914 */
5915 static int intel_gen7_queue_flip(struct drm_device *dev,
5916 struct drm_crtc *crtc,
5917 struct drm_framebuffer *fb,
5918 struct drm_i915_gem_object *obj)
5919 {
5920 struct drm_i915_private *dev_priv = dev->dev_private;
5921 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5922 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
5923 int ret;
5924
5925 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
5926 if (ret)
5927 goto err;
5928
5929 ret = intel_ring_begin(ring, 4);
5930 if (ret)
5931 goto err_unpin;
5932
5933 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
5934 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
5935 intel_ring_emit(ring, (obj->gtt_offset));
5936 intel_ring_emit(ring, (MI_NOOP));
5937 intel_ring_advance(ring);
5938 return 0;
5939
5940 err_unpin:
5941 intel_unpin_fb_obj(obj);
5942 err:
5943 return ret;
5944 }
5945
5946 static int intel_default_queue_flip(struct drm_device *dev,
5947 struct drm_crtc *crtc,
5948 struct drm_framebuffer *fb,
5949 struct drm_i915_gem_object *obj)
5950 {
5951 return -ENODEV;
5952 }
5953
5954 static int intel_crtc_page_flip(struct drm_crtc *crtc,
5955 struct drm_framebuffer *fb,
5956 struct drm_pending_vblank_event *event)
5957 {
5958 struct drm_device *dev = crtc->dev;
5959 struct drm_i915_private *dev_priv = dev->dev_private;
5960 struct intel_framebuffer *intel_fb;
5961 struct drm_i915_gem_object *obj;
5962 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5963 struct intel_unpin_work *work;
5964 unsigned long flags;
5965 int ret;
5966
5967 work = kzalloc(sizeof *work, GFP_KERNEL);
5968 if (work == NULL)
5969 return -ENOMEM;
5970
5971 work->event = event;
5972 work->dev = crtc->dev;
5973 intel_fb = to_intel_framebuffer(crtc->fb);
5974 work->old_fb_obj = intel_fb->obj;
5975 INIT_WORK(&work->work, intel_unpin_work_fn);
5976
5977 ret = drm_vblank_get(dev, intel_crtc->pipe);
5978 if (ret)
5979 goto free_work;
5980
5981 /* We borrow the event spin lock for protecting unpin_work */
5982 spin_lock_irqsave(&dev->event_lock, flags);
5983 if (intel_crtc->unpin_work) {
5984 spin_unlock_irqrestore(&dev->event_lock, flags);
5985 kfree(work);
5986 drm_vblank_put(dev, intel_crtc->pipe);
5987
5988 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5989 return -EBUSY;
5990 }
5991 intel_crtc->unpin_work = work;
5992 spin_unlock_irqrestore(&dev->event_lock, flags);
5993
5994 intel_fb = to_intel_framebuffer(fb);
5995 obj = intel_fb->obj;
5996
5997 mutex_lock(&dev->struct_mutex);
5998
5999 /* Reference the objects for the scheduled work. */
6000 drm_gem_object_reference(&work->old_fb_obj->base);
6001 drm_gem_object_reference(&obj->base);
6002
6003 crtc->fb = fb;
6004
6005 work->pending_flip_obj = obj;
6006
6007 work->enable_stall_check = true;
6008
6009 /* Block clients from rendering to the new back buffer until
6010 * the flip occurs and the object is no longer visible.
6011 */
6012 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6013
6014 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6015 if (ret)
6016 goto cleanup_pending;
6017
6018 intel_disable_fbc(dev);
6019 mutex_unlock(&dev->struct_mutex);
6020
6021 trace_i915_flip_request(intel_crtc->plane, obj);
6022
6023 return 0;
6024
6025 cleanup_pending:
6026 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6027 drm_gem_object_unreference(&work->old_fb_obj->base);
6028 drm_gem_object_unreference(&obj->base);
6029 mutex_unlock(&dev->struct_mutex);
6030
6031 spin_lock_irqsave(&dev->event_lock, flags);
6032 intel_crtc->unpin_work = NULL;
6033 spin_unlock_irqrestore(&dev->event_lock, flags);
6034
6035 drm_vblank_put(dev, intel_crtc->pipe);
6036 free_work:
6037 kfree(work);
6038
6039 return ret;
6040 }
6041
6042 static void intel_sanitize_modesetting(struct drm_device *dev,
6043 int pipe, int plane)
6044 {
6045 struct drm_i915_private *dev_priv = dev->dev_private;
6046 u32 reg, val;
6047
6048 /* Clear any frame start delays used for debugging left by the BIOS */
6049 for_each_pipe(pipe) {
6050 reg = PIPECONF(pipe);
6051 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
6052 }
6053
6054 if (HAS_PCH_SPLIT(dev))
6055 return;
6056
6057 /* Who knows what state these registers were left in by the BIOS or
6058 * grub?
6059 *
6060 * If we leave the registers in a conflicting state (e.g. with the
6061 * display plane reading from the other pipe than the one we intend
6062 * to use) then when we attempt to teardown the active mode, we will
6063 * not disable the pipes and planes in the correct order -- leaving
6064 * a plane reading from a disabled pipe and possibly leading to
6065 * undefined behaviour.
6066 */
6067
6068 reg = DSPCNTR(plane);
6069 val = I915_READ(reg);
6070
6071 if ((val & DISPLAY_PLANE_ENABLE) == 0)
6072 return;
6073 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
6074 return;
6075
6076 /* This display plane is active and attached to the other CPU pipe. */
6077 pipe = !pipe;
6078
6079 /* Disable the plane and wait for it to stop reading from the pipe. */
6080 intel_disable_plane(dev_priv, plane, pipe);
6081 intel_disable_pipe(dev_priv, pipe);
6082 }
6083
6084 static void intel_crtc_reset(struct drm_crtc *crtc)
6085 {
6086 struct drm_device *dev = crtc->dev;
6087 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6088
6089 /* Reset flags back to the 'unknown' status so that they
6090 * will be correctly set on the initial modeset.
6091 */
6092 intel_crtc->dpms_mode = -1;
6093
6094 /* We need to fix up any BIOS configuration that conflicts with
6095 * our expectations.
6096 */
6097 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
6098 }
6099
6100 static struct drm_crtc_helper_funcs intel_helper_funcs = {
6101 .dpms = intel_crtc_dpms,
6102 .mode_fixup = intel_crtc_mode_fixup,
6103 .mode_set = intel_crtc_mode_set,
6104 .mode_set_base = intel_pipe_set_base,
6105 .mode_set_base_atomic = intel_pipe_set_base_atomic,
6106 .load_lut = intel_crtc_load_lut,
6107 .disable = intel_crtc_disable,
6108 };
6109
6110 static const struct drm_crtc_funcs intel_crtc_funcs = {
6111 .reset = intel_crtc_reset,
6112 .cursor_set = intel_crtc_cursor_set,
6113 .cursor_move = intel_crtc_cursor_move,
6114 .gamma_set = intel_crtc_gamma_set,
6115 .set_config = drm_crtc_helper_set_config,
6116 .destroy = intel_crtc_destroy,
6117 .page_flip = intel_crtc_page_flip,
6118 };
6119
6120 static void intel_pch_pll_init(struct drm_device *dev)
6121 {
6122 drm_i915_private_t *dev_priv = dev->dev_private;
6123 int i;
6124
6125 if (dev_priv->num_pch_pll == 0) {
6126 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
6127 return;
6128 }
6129
6130 for (i = 0; i < dev_priv->num_pch_pll; i++) {
6131 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
6132 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
6133 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
6134 }
6135 }
6136
6137 static void intel_crtc_init(struct drm_device *dev, int pipe)
6138 {
6139 drm_i915_private_t *dev_priv = dev->dev_private;
6140 struct intel_crtc *intel_crtc;
6141 int i;
6142
6143 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
6144 if (intel_crtc == NULL)
6145 return;
6146
6147 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
6148
6149 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
6150 for (i = 0; i < 256; i++) {
6151 intel_crtc->lut_r[i] = i;
6152 intel_crtc->lut_g[i] = i;
6153 intel_crtc->lut_b[i] = i;
6154 }
6155
6156 /* Swap pipes & planes for FBC on pre-965 */
6157 intel_crtc->pipe = pipe;
6158 intel_crtc->plane = pipe;
6159 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
6160 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
6161 intel_crtc->plane = !pipe;
6162 }
6163
6164 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
6165 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
6166 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
6167 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
6168
6169 intel_crtc_reset(&intel_crtc->base);
6170 intel_crtc->active = true; /* force the pipe off on setup_init_config */
6171 intel_crtc->bpp = 24; /* default for pre-Ironlake */
6172
6173 if (HAS_PCH_SPLIT(dev)) {
6174 intel_helper_funcs.prepare = ironlake_crtc_prepare;
6175 intel_helper_funcs.commit = ironlake_crtc_commit;
6176 } else {
6177 intel_helper_funcs.prepare = i9xx_crtc_prepare;
6178 intel_helper_funcs.commit = i9xx_crtc_commit;
6179 }
6180
6181 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
6182
6183 intel_crtc->busy = false;
6184
6185 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
6186 (unsigned long)intel_crtc);
6187 }
6188
6189 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
6190 struct drm_file *file)
6191 {
6192 drm_i915_private_t *dev_priv = dev->dev_private;
6193 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
6194 struct drm_mode_object *drmmode_obj;
6195 struct intel_crtc *crtc;
6196
6197 if (!dev_priv) {
6198 DRM_ERROR("called with no initialization\n");
6199 return -EINVAL;
6200 }
6201
6202 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
6203 DRM_MODE_OBJECT_CRTC);
6204
6205 if (!drmmode_obj) {
6206 DRM_ERROR("no such CRTC id\n");
6207 return -EINVAL;
6208 }
6209
6210 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
6211 pipe_from_crtc_id->pipe = crtc->pipe;
6212
6213 return 0;
6214 }
6215
6216 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
6217 {
6218 struct intel_encoder *encoder;
6219 int index_mask = 0;
6220 int entry = 0;
6221
6222 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6223 if (type_mask & encoder->clone_mask)
6224 index_mask |= (1 << entry);
6225 entry++;
6226 }
6227
6228 return index_mask;
6229 }
6230
6231 static bool has_edp_a(struct drm_device *dev)
6232 {
6233 struct drm_i915_private *dev_priv = dev->dev_private;
6234
6235 if (!IS_MOBILE(dev))
6236 return false;
6237
6238 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
6239 return false;
6240
6241 if (IS_GEN5(dev) &&
6242 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
6243 return false;
6244
6245 return true;
6246 }
6247
6248 static void intel_setup_outputs(struct drm_device *dev)
6249 {
6250 struct drm_i915_private *dev_priv = dev->dev_private;
6251 struct intel_encoder *encoder;
6252 bool dpd_is_edp = false;
6253 bool has_lvds;
6254
6255 has_lvds = intel_lvds_init(dev);
6256 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
6257 /* disable the panel fitter on everything but LVDS */
6258 I915_WRITE(PFIT_CONTROL, 0);
6259 }
6260
6261 if (HAS_PCH_SPLIT(dev)) {
6262 dpd_is_edp = intel_dpd_is_edp(dev);
6263
6264 if (has_edp_a(dev))
6265 intel_dp_init(dev, DP_A);
6266
6267 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6268 intel_dp_init(dev, PCH_DP_D);
6269 }
6270
6271 intel_crt_init(dev);
6272
6273 if (HAS_PCH_SPLIT(dev)) {
6274 int found;
6275
6276 if (I915_READ(HDMIB) & PORT_DETECTED) {
6277 /* PCH SDVOB multiplex with HDMIB */
6278 found = intel_sdvo_init(dev, PCH_SDVOB, true);
6279 if (!found)
6280 intel_hdmi_init(dev, HDMIB);
6281 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
6282 intel_dp_init(dev, PCH_DP_B);
6283 }
6284
6285 if (I915_READ(HDMIC) & PORT_DETECTED)
6286 intel_hdmi_init(dev, HDMIC);
6287
6288 if (I915_READ(HDMID) & PORT_DETECTED)
6289 intel_hdmi_init(dev, HDMID);
6290
6291 if (I915_READ(PCH_DP_C) & DP_DETECTED)
6292 intel_dp_init(dev, PCH_DP_C);
6293
6294 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6295 intel_dp_init(dev, PCH_DP_D);
6296
6297 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
6298 bool found = false;
6299
6300 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6301 DRM_DEBUG_KMS("probing SDVOB\n");
6302 found = intel_sdvo_init(dev, SDVOB, true);
6303 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
6304 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
6305 intel_hdmi_init(dev, SDVOB);
6306 }
6307
6308 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
6309 DRM_DEBUG_KMS("probing DP_B\n");
6310 intel_dp_init(dev, DP_B);
6311 }
6312 }
6313
6314 /* Before G4X SDVOC doesn't have its own detect register */
6315
6316 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6317 DRM_DEBUG_KMS("probing SDVOC\n");
6318 found = intel_sdvo_init(dev, SDVOC, false);
6319 }
6320
6321 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
6322
6323 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
6324 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
6325 intel_hdmi_init(dev, SDVOC);
6326 }
6327 if (SUPPORTS_INTEGRATED_DP(dev)) {
6328 DRM_DEBUG_KMS("probing DP_C\n");
6329 intel_dp_init(dev, DP_C);
6330 }
6331 }
6332
6333 if (SUPPORTS_INTEGRATED_DP(dev) &&
6334 (I915_READ(DP_D) & DP_DETECTED)) {
6335 DRM_DEBUG_KMS("probing DP_D\n");
6336 intel_dp_init(dev, DP_D);
6337 }
6338 } else if (IS_GEN2(dev))
6339 intel_dvo_init(dev);
6340
6341 if (SUPPORTS_TV(dev))
6342 intel_tv_init(dev);
6343
6344 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6345 encoder->base.possible_crtcs = encoder->crtc_mask;
6346 encoder->base.possible_clones =
6347 intel_encoder_clones(dev, encoder->clone_mask);
6348 }
6349
6350 /* disable all the possible outputs/crtcs before entering KMS mode */
6351 drm_helper_disable_unused_functions(dev);
6352
6353 if (HAS_PCH_SPLIT(dev))
6354 ironlake_init_pch_refclk(dev);
6355 }
6356
6357 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
6358 {
6359 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6360
6361 drm_framebuffer_cleanup(fb);
6362 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
6363
6364 kfree(intel_fb);
6365 }
6366
6367 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
6368 struct drm_file *file,
6369 unsigned int *handle)
6370 {
6371 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6372 struct drm_i915_gem_object *obj = intel_fb->obj;
6373
6374 return drm_gem_handle_create(file, &obj->base, handle);
6375 }
6376
6377 static const struct drm_framebuffer_funcs intel_fb_funcs = {
6378 .destroy = intel_user_framebuffer_destroy,
6379 .create_handle = intel_user_framebuffer_create_handle,
6380 };
6381
6382 int intel_framebuffer_init(struct drm_device *dev,
6383 struct intel_framebuffer *intel_fb,
6384 struct drm_mode_fb_cmd2 *mode_cmd,
6385 struct drm_i915_gem_object *obj)
6386 {
6387 int ret;
6388
6389 if (obj->tiling_mode == I915_TILING_Y)
6390 return -EINVAL;
6391
6392 if (mode_cmd->pitches[0] & 63)
6393 return -EINVAL;
6394
6395 switch (mode_cmd->pixel_format) {
6396 case DRM_FORMAT_RGB332:
6397 case DRM_FORMAT_RGB565:
6398 case DRM_FORMAT_XRGB8888:
6399 case DRM_FORMAT_XBGR8888:
6400 case DRM_FORMAT_ARGB8888:
6401 case DRM_FORMAT_XRGB2101010:
6402 case DRM_FORMAT_ARGB2101010:
6403 /* RGB formats are common across chipsets */
6404 break;
6405 case DRM_FORMAT_YUYV:
6406 case DRM_FORMAT_UYVY:
6407 case DRM_FORMAT_YVYU:
6408 case DRM_FORMAT_VYUY:
6409 break;
6410 default:
6411 DRM_DEBUG_KMS("unsupported pixel format %u\n",
6412 mode_cmd->pixel_format);
6413 return -EINVAL;
6414 }
6415
6416 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
6417 if (ret) {
6418 DRM_ERROR("framebuffer init failed %d\n", ret);
6419 return ret;
6420 }
6421
6422 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
6423 intel_fb->obj = obj;
6424 return 0;
6425 }
6426
6427 static struct drm_framebuffer *
6428 intel_user_framebuffer_create(struct drm_device *dev,
6429 struct drm_file *filp,
6430 struct drm_mode_fb_cmd2 *mode_cmd)
6431 {
6432 struct drm_i915_gem_object *obj;
6433
6434 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
6435 mode_cmd->handles[0]));
6436 if (&obj->base == NULL)
6437 return ERR_PTR(-ENOENT);
6438
6439 return intel_framebuffer_create(dev, mode_cmd, obj);
6440 }
6441
6442 static const struct drm_mode_config_funcs intel_mode_funcs = {
6443 .fb_create = intel_user_framebuffer_create,
6444 .output_poll_changed = intel_fb_output_poll_changed,
6445 };
6446
6447 /* Set up chip specific display functions */
6448 static void intel_init_display(struct drm_device *dev)
6449 {
6450 struct drm_i915_private *dev_priv = dev->dev_private;
6451
6452 /* We always want a DPMS function */
6453 if (HAS_PCH_SPLIT(dev)) {
6454 dev_priv->display.dpms = ironlake_crtc_dpms;
6455 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
6456 dev_priv->display.off = ironlake_crtc_off;
6457 dev_priv->display.update_plane = ironlake_update_plane;
6458 } else {
6459 dev_priv->display.dpms = i9xx_crtc_dpms;
6460 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
6461 dev_priv->display.off = i9xx_crtc_off;
6462 dev_priv->display.update_plane = i9xx_update_plane;
6463 }
6464
6465 /* Returns the core display clock speed */
6466 if (IS_VALLEYVIEW(dev))
6467 dev_priv->display.get_display_clock_speed =
6468 valleyview_get_display_clock_speed;
6469 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
6470 dev_priv->display.get_display_clock_speed =
6471 i945_get_display_clock_speed;
6472 else if (IS_I915G(dev))
6473 dev_priv->display.get_display_clock_speed =
6474 i915_get_display_clock_speed;
6475 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
6476 dev_priv->display.get_display_clock_speed =
6477 i9xx_misc_get_display_clock_speed;
6478 else if (IS_I915GM(dev))
6479 dev_priv->display.get_display_clock_speed =
6480 i915gm_get_display_clock_speed;
6481 else if (IS_I865G(dev))
6482 dev_priv->display.get_display_clock_speed =
6483 i865_get_display_clock_speed;
6484 else if (IS_I85X(dev))
6485 dev_priv->display.get_display_clock_speed =
6486 i855_get_display_clock_speed;
6487 else /* 852, 830 */
6488 dev_priv->display.get_display_clock_speed =
6489 i830_get_display_clock_speed;
6490
6491 if (HAS_PCH_SPLIT(dev)) {
6492 if (IS_GEN5(dev)) {
6493 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
6494 dev_priv->display.write_eld = ironlake_write_eld;
6495 } else if (IS_GEN6(dev)) {
6496 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
6497 dev_priv->display.write_eld = ironlake_write_eld;
6498 } else if (IS_IVYBRIDGE(dev)) {
6499 /* FIXME: detect B0+ stepping and use auto training */
6500 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
6501 dev_priv->display.write_eld = ironlake_write_eld;
6502 } else
6503 dev_priv->display.update_wm = NULL;
6504 } else if (IS_VALLEYVIEW(dev)) {
6505 dev_priv->display.force_wake_get = vlv_force_wake_get;
6506 dev_priv->display.force_wake_put = vlv_force_wake_put;
6507 } else if (IS_G4X(dev)) {
6508 dev_priv->display.write_eld = g4x_write_eld;
6509 }
6510
6511 /* Default just returns -ENODEV to indicate unsupported */
6512 dev_priv->display.queue_flip = intel_default_queue_flip;
6513
6514 switch (INTEL_INFO(dev)->gen) {
6515 case 2:
6516 dev_priv->display.queue_flip = intel_gen2_queue_flip;
6517 break;
6518
6519 case 3:
6520 dev_priv->display.queue_flip = intel_gen3_queue_flip;
6521 break;
6522
6523 case 4:
6524 case 5:
6525 dev_priv->display.queue_flip = intel_gen4_queue_flip;
6526 break;
6527
6528 case 6:
6529 dev_priv->display.queue_flip = intel_gen6_queue_flip;
6530 break;
6531 case 7:
6532 dev_priv->display.queue_flip = intel_gen7_queue_flip;
6533 break;
6534 }
6535 }
6536
6537 /*
6538 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
6539 * resume, or other times. This quirk makes sure that's the case for
6540 * affected systems.
6541 */
6542 static void quirk_pipea_force(struct drm_device *dev)
6543 {
6544 struct drm_i915_private *dev_priv = dev->dev_private;
6545
6546 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
6547 DRM_INFO("applying pipe a force quirk\n");
6548 }
6549
6550 /*
6551 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
6552 */
6553 static void quirk_ssc_force_disable(struct drm_device *dev)
6554 {
6555 struct drm_i915_private *dev_priv = dev->dev_private;
6556 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
6557 DRM_INFO("applying lvds SSC disable quirk\n");
6558 }
6559
6560 /*
6561 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
6562 * brightness value
6563 */
6564 static void quirk_invert_brightness(struct drm_device *dev)
6565 {
6566 struct drm_i915_private *dev_priv = dev->dev_private;
6567 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
6568 DRM_INFO("applying inverted panel brightness quirk\n");
6569 }
6570
6571 struct intel_quirk {
6572 int device;
6573 int subsystem_vendor;
6574 int subsystem_device;
6575 void (*hook)(struct drm_device *dev);
6576 };
6577
6578 static struct intel_quirk intel_quirks[] = {
6579 /* HP Mini needs pipe A force quirk (LP: #322104) */
6580 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
6581
6582 /* Thinkpad R31 needs pipe A force quirk */
6583 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
6584 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
6585 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
6586
6587 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
6588 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
6589 /* ThinkPad X40 needs pipe A force quirk */
6590
6591 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
6592 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
6593
6594 /* 855 & before need to leave pipe A & dpll A up */
6595 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6596 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6597
6598 /* Lenovo U160 cannot use SSC on LVDS */
6599 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
6600
6601 /* Sony Vaio Y cannot use SSC on LVDS */
6602 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
6603
6604 /* Acer Aspire 5734Z must invert backlight brightness */
6605 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
6606 };
6607
6608 static void intel_init_quirks(struct drm_device *dev)
6609 {
6610 struct pci_dev *d = dev->pdev;
6611 int i;
6612
6613 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
6614 struct intel_quirk *q = &intel_quirks[i];
6615
6616 if (d->device == q->device &&
6617 (d->subsystem_vendor == q->subsystem_vendor ||
6618 q->subsystem_vendor == PCI_ANY_ID) &&
6619 (d->subsystem_device == q->subsystem_device ||
6620 q->subsystem_device == PCI_ANY_ID))
6621 q->hook(dev);
6622 }
6623 }
6624
6625 /* Disable the VGA plane that we never use */
6626 static void i915_disable_vga(struct drm_device *dev)
6627 {
6628 struct drm_i915_private *dev_priv = dev->dev_private;
6629 u8 sr1;
6630 u32 vga_reg;
6631
6632 if (HAS_PCH_SPLIT(dev))
6633 vga_reg = CPU_VGACNTRL;
6634 else
6635 vga_reg = VGACNTRL;
6636
6637 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6638 outb(SR01, VGA_SR_INDEX);
6639 sr1 = inb(VGA_SR_DATA);
6640 outb(sr1 | 1<<5, VGA_SR_DATA);
6641 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6642 udelay(300);
6643
6644 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
6645 POSTING_READ(vga_reg);
6646 }
6647
6648 static void ivb_pch_pwm_override(struct drm_device *dev)
6649 {
6650 struct drm_i915_private *dev_priv = dev->dev_private;
6651
6652 /*
6653 * IVB has CPU eDP backlight regs too, set things up to let the
6654 * PCH regs control the backlight
6655 */
6656 I915_WRITE(BLC_PWM_CPU_CTL2, PWM_ENABLE);
6657 I915_WRITE(BLC_PWM_CPU_CTL, 0);
6658 I915_WRITE(BLC_PWM_PCH_CTL1, PWM_ENABLE | (1<<30));
6659 }
6660
6661 void intel_modeset_init_hw(struct drm_device *dev)
6662 {
6663 struct drm_i915_private *dev_priv = dev->dev_private;
6664
6665 intel_init_clock_gating(dev);
6666
6667 if (IS_IRONLAKE_M(dev)) {
6668 ironlake_enable_drps(dev);
6669 intel_init_emon(dev);
6670 }
6671
6672 if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
6673 gen6_enable_rps(dev_priv);
6674 gen6_update_ring_freq(dev_priv);
6675 }
6676
6677 if (IS_IVYBRIDGE(dev))
6678 ivb_pch_pwm_override(dev);
6679 }
6680
6681 void intel_modeset_init(struct drm_device *dev)
6682 {
6683 struct drm_i915_private *dev_priv = dev->dev_private;
6684 int i, ret;
6685
6686 drm_mode_config_init(dev);
6687
6688 dev->mode_config.min_width = 0;
6689 dev->mode_config.min_height = 0;
6690
6691 dev->mode_config.preferred_depth = 24;
6692 dev->mode_config.prefer_shadow = 1;
6693
6694 dev->mode_config.funcs = (void *)&intel_mode_funcs;
6695
6696 intel_init_quirks(dev);
6697
6698 intel_init_pm(dev);
6699
6700 intel_init_display(dev);
6701
6702 if (IS_GEN2(dev)) {
6703 dev->mode_config.max_width = 2048;
6704 dev->mode_config.max_height = 2048;
6705 } else if (IS_GEN3(dev)) {
6706 dev->mode_config.max_width = 4096;
6707 dev->mode_config.max_height = 4096;
6708 } else {
6709 dev->mode_config.max_width = 8192;
6710 dev->mode_config.max_height = 8192;
6711 }
6712 dev->mode_config.fb_base = dev->agp->base;
6713
6714 DRM_DEBUG_KMS("%d display pipe%s available.\n",
6715 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
6716
6717 for (i = 0; i < dev_priv->num_pipe; i++) {
6718 intel_crtc_init(dev, i);
6719 ret = intel_plane_init(dev, i);
6720 if (ret)
6721 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
6722 }
6723
6724 intel_pch_pll_init(dev);
6725
6726 /* Just disable it once at startup */
6727 i915_disable_vga(dev);
6728 intel_setup_outputs(dev);
6729
6730 intel_modeset_init_hw(dev);
6731
6732 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
6733 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
6734 (unsigned long)dev);
6735 }
6736
6737 void intel_modeset_gem_init(struct drm_device *dev)
6738 {
6739 if (IS_IRONLAKE_M(dev))
6740 ironlake_enable_rc6(dev);
6741
6742 intel_setup_overlay(dev);
6743 }
6744
6745 void intel_modeset_cleanup(struct drm_device *dev)
6746 {
6747 struct drm_i915_private *dev_priv = dev->dev_private;
6748 struct drm_crtc *crtc;
6749 struct intel_crtc *intel_crtc;
6750
6751 drm_kms_helper_poll_fini(dev);
6752 mutex_lock(&dev->struct_mutex);
6753
6754 intel_unregister_dsm_handler();
6755
6756
6757 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6758 /* Skip inactive CRTCs */
6759 if (!crtc->fb)
6760 continue;
6761
6762 intel_crtc = to_intel_crtc(crtc);
6763 intel_increase_pllclock(crtc);
6764 }
6765
6766 intel_disable_fbc(dev);
6767
6768 if (IS_IRONLAKE_M(dev))
6769 ironlake_disable_drps(dev);
6770 if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev))
6771 gen6_disable_rps(dev);
6772
6773 if (IS_IRONLAKE_M(dev))
6774 ironlake_disable_rc6(dev);
6775
6776 if (IS_VALLEYVIEW(dev))
6777 vlv_init_dpio(dev);
6778
6779 mutex_unlock(&dev->struct_mutex);
6780
6781 /* Disable the irq before mode object teardown, for the irq might
6782 * enqueue unpin/hotplug work. */
6783 drm_irq_uninstall(dev);
6784 cancel_work_sync(&dev_priv->hotplug_work);
6785 cancel_work_sync(&dev_priv->rps_work);
6786
6787 /* flush any delayed tasks or pending work */
6788 flush_scheduled_work();
6789
6790 /* Shut off idle work before the crtcs get freed. */
6791 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6792 intel_crtc = to_intel_crtc(crtc);
6793 del_timer_sync(&intel_crtc->idle_timer);
6794 }
6795 del_timer_sync(&dev_priv->idle_timer);
6796 cancel_work_sync(&dev_priv->idle_work);
6797
6798 drm_mode_config_cleanup(dev);
6799 }
6800
6801 /*
6802 * Return which encoder is currently attached for connector.
6803 */
6804 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
6805 {
6806 return &intel_attached_encoder(connector)->base;
6807 }
6808
6809 void intel_connector_attach_encoder(struct intel_connector *connector,
6810 struct intel_encoder *encoder)
6811 {
6812 connector->encoder = encoder;
6813 drm_mode_connector_attach_encoder(&connector->base,
6814 &encoder->base);
6815 }
6816
6817 /*
6818 * set vga decode state - true == enable VGA decode
6819 */
6820 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
6821 {
6822 struct drm_i915_private *dev_priv = dev->dev_private;
6823 u16 gmch_ctrl;
6824
6825 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
6826 if (state)
6827 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
6828 else
6829 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
6830 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
6831 return 0;
6832 }
6833
6834 #ifdef CONFIG_DEBUG_FS
6835 #include <linux/seq_file.h>
6836
6837 struct intel_display_error_state {
6838 struct intel_cursor_error_state {
6839 u32 control;
6840 u32 position;
6841 u32 base;
6842 u32 size;
6843 } cursor[2];
6844
6845 struct intel_pipe_error_state {
6846 u32 conf;
6847 u32 source;
6848
6849 u32 htotal;
6850 u32 hblank;
6851 u32 hsync;
6852 u32 vtotal;
6853 u32 vblank;
6854 u32 vsync;
6855 } pipe[2];
6856
6857 struct intel_plane_error_state {
6858 u32 control;
6859 u32 stride;
6860 u32 size;
6861 u32 pos;
6862 u32 addr;
6863 u32 surface;
6864 u32 tile_offset;
6865 } plane[2];
6866 };
6867
6868 struct intel_display_error_state *
6869 intel_display_capture_error_state(struct drm_device *dev)
6870 {
6871 drm_i915_private_t *dev_priv = dev->dev_private;
6872 struct intel_display_error_state *error;
6873 int i;
6874
6875 error = kmalloc(sizeof(*error), GFP_ATOMIC);
6876 if (error == NULL)
6877 return NULL;
6878
6879 for (i = 0; i < 2; i++) {
6880 error->cursor[i].control = I915_READ(CURCNTR(i));
6881 error->cursor[i].position = I915_READ(CURPOS(i));
6882 error->cursor[i].base = I915_READ(CURBASE(i));
6883
6884 error->plane[i].control = I915_READ(DSPCNTR(i));
6885 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
6886 error->plane[i].size = I915_READ(DSPSIZE(i));
6887 error->plane[i].pos = I915_READ(DSPPOS(i));
6888 error->plane[i].addr = I915_READ(DSPADDR(i));
6889 if (INTEL_INFO(dev)->gen >= 4) {
6890 error->plane[i].surface = I915_READ(DSPSURF(i));
6891 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
6892 }
6893
6894 error->pipe[i].conf = I915_READ(PIPECONF(i));
6895 error->pipe[i].source = I915_READ(PIPESRC(i));
6896 error->pipe[i].htotal = I915_READ(HTOTAL(i));
6897 error->pipe[i].hblank = I915_READ(HBLANK(i));
6898 error->pipe[i].hsync = I915_READ(HSYNC(i));
6899 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
6900 error->pipe[i].vblank = I915_READ(VBLANK(i));
6901 error->pipe[i].vsync = I915_READ(VSYNC(i));
6902 }
6903
6904 return error;
6905 }
6906
6907 void
6908 intel_display_print_error_state(struct seq_file *m,
6909 struct drm_device *dev,
6910 struct intel_display_error_state *error)
6911 {
6912 int i;
6913
6914 for (i = 0; i < 2; i++) {
6915 seq_printf(m, "Pipe [%d]:\n", i);
6916 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
6917 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
6918 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
6919 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
6920 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
6921 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
6922 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
6923 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
6924
6925 seq_printf(m, "Plane [%d]:\n", i);
6926 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
6927 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
6928 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
6929 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
6930 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
6931 if (INTEL_INFO(dev)->gen >= 4) {
6932 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
6933 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
6934 }
6935
6936 seq_printf(m, "Cursor [%d]:\n", i);
6937 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
6938 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
6939 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
6940 }
6941 }
6942 #endif