]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_display.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats supported by all gen */
49 #define COMMON_PRIMARY_FORMATS \
50 DRM_FORMAT_C8, \
51 DRM_FORMAT_RGB565, \
52 DRM_FORMAT_XRGB8888, \
53 DRM_FORMAT_ARGB8888
54
55 /* Primary plane formats for gen <= 3 */
56 static const uint32_t intel_primary_formats_gen2[] = {
57 COMMON_PRIMARY_FORMATS,
58 DRM_FORMAT_XRGB1555,
59 DRM_FORMAT_ARGB1555,
60 };
61
62 /* Primary plane formats for gen >= 4 */
63 static const uint32_t intel_primary_formats_gen4[] = {
64 COMMON_PRIMARY_FORMATS, \
65 DRM_FORMAT_XBGR8888,
66 DRM_FORMAT_ABGR8888,
67 DRM_FORMAT_XRGB2101010,
68 DRM_FORMAT_ARGB2101010,
69 DRM_FORMAT_XBGR2101010,
70 DRM_FORMAT_ABGR2101010,
71 };
72
73 /* Cursor formats */
74 static const uint32_t intel_cursor_formats[] = {
75 DRM_FORMAT_ARGB8888,
76 };
77
78 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79
80 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
81 struct intel_crtc_state *pipe_config);
82 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
83 struct intel_crtc_state *pipe_config);
84
85 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
86 int x, int y, struct drm_framebuffer *old_fb,
87 struct drm_atomic_state *state);
88 static int intel_framebuffer_init(struct drm_device *dev,
89 struct intel_framebuffer *ifb,
90 struct drm_mode_fb_cmd2 *mode_cmd,
91 struct drm_i915_gem_object *obj);
92 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
93 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
94 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
95 struct intel_link_m_n *m_n,
96 struct intel_link_m_n *m2_n2);
97 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
98 static void haswell_set_pipeconf(struct drm_crtc *crtc);
99 static void intel_set_pipe_csc(struct drm_crtc *crtc);
100 static void vlv_prepare_pll(struct intel_crtc *crtc,
101 const struct intel_crtc_state *pipe_config);
102 static void chv_prepare_pll(struct intel_crtc *crtc,
103 const struct intel_crtc_state *pipe_config);
104 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
105 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
106
107 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
108 {
109 if (!connector->mst_port)
110 return connector->encoder;
111 else
112 return &connector->mst_port->mst_encoders[pipe]->base;
113 }
114
115 typedef struct {
116 int min, max;
117 } intel_range_t;
118
119 typedef struct {
120 int dot_limit;
121 int p2_slow, p2_fast;
122 } intel_p2_t;
123
124 typedef struct intel_limit intel_limit_t;
125 struct intel_limit {
126 intel_range_t dot, vco, n, m, m1, m2, p, p1;
127 intel_p2_t p2;
128 };
129
130 int
131 intel_pch_rawclk(struct drm_device *dev)
132 {
133 struct drm_i915_private *dev_priv = dev->dev_private;
134
135 WARN_ON(!HAS_PCH_SPLIT(dev));
136
137 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
138 }
139
140 static inline u32 /* units of 100MHz */
141 intel_fdi_link_freq(struct drm_device *dev)
142 {
143 if (IS_GEN5(dev)) {
144 struct drm_i915_private *dev_priv = dev->dev_private;
145 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
146 } else
147 return 27;
148 }
149
150 static const intel_limit_t intel_limits_i8xx_dac = {
151 .dot = { .min = 25000, .max = 350000 },
152 .vco = { .min = 908000, .max = 1512000 },
153 .n = { .min = 2, .max = 16 },
154 .m = { .min = 96, .max = 140 },
155 .m1 = { .min = 18, .max = 26 },
156 .m2 = { .min = 6, .max = 16 },
157 .p = { .min = 4, .max = 128 },
158 .p1 = { .min = 2, .max = 33 },
159 .p2 = { .dot_limit = 165000,
160 .p2_slow = 4, .p2_fast = 2 },
161 };
162
163 static const intel_limit_t intel_limits_i8xx_dvo = {
164 .dot = { .min = 25000, .max = 350000 },
165 .vco = { .min = 908000, .max = 1512000 },
166 .n = { .min = 2, .max = 16 },
167 .m = { .min = 96, .max = 140 },
168 .m1 = { .min = 18, .max = 26 },
169 .m2 = { .min = 6, .max = 16 },
170 .p = { .min = 4, .max = 128 },
171 .p1 = { .min = 2, .max = 33 },
172 .p2 = { .dot_limit = 165000,
173 .p2_slow = 4, .p2_fast = 4 },
174 };
175
176 static const intel_limit_t intel_limits_i8xx_lvds = {
177 .dot = { .min = 25000, .max = 350000 },
178 .vco = { .min = 908000, .max = 1512000 },
179 .n = { .min = 2, .max = 16 },
180 .m = { .min = 96, .max = 140 },
181 .m1 = { .min = 18, .max = 26 },
182 .m2 = { .min = 6, .max = 16 },
183 .p = { .min = 4, .max = 128 },
184 .p1 = { .min = 1, .max = 6 },
185 .p2 = { .dot_limit = 165000,
186 .p2_slow = 14, .p2_fast = 7 },
187 };
188
189 static const intel_limit_t intel_limits_i9xx_sdvo = {
190 .dot = { .min = 20000, .max = 400000 },
191 .vco = { .min = 1400000, .max = 2800000 },
192 .n = { .min = 1, .max = 6 },
193 .m = { .min = 70, .max = 120 },
194 .m1 = { .min = 8, .max = 18 },
195 .m2 = { .min = 3, .max = 7 },
196 .p = { .min = 5, .max = 80 },
197 .p1 = { .min = 1, .max = 8 },
198 .p2 = { .dot_limit = 200000,
199 .p2_slow = 10, .p2_fast = 5 },
200 };
201
202 static const intel_limit_t intel_limits_i9xx_lvds = {
203 .dot = { .min = 20000, .max = 400000 },
204 .vco = { .min = 1400000, .max = 2800000 },
205 .n = { .min = 1, .max = 6 },
206 .m = { .min = 70, .max = 120 },
207 .m1 = { .min = 8, .max = 18 },
208 .m2 = { .min = 3, .max = 7 },
209 .p = { .min = 7, .max = 98 },
210 .p1 = { .min = 1, .max = 8 },
211 .p2 = { .dot_limit = 112000,
212 .p2_slow = 14, .p2_fast = 7 },
213 };
214
215
216 static const intel_limit_t intel_limits_g4x_sdvo = {
217 .dot = { .min = 25000, .max = 270000 },
218 .vco = { .min = 1750000, .max = 3500000},
219 .n = { .min = 1, .max = 4 },
220 .m = { .min = 104, .max = 138 },
221 .m1 = { .min = 17, .max = 23 },
222 .m2 = { .min = 5, .max = 11 },
223 .p = { .min = 10, .max = 30 },
224 .p1 = { .min = 1, .max = 3},
225 .p2 = { .dot_limit = 270000,
226 .p2_slow = 10,
227 .p2_fast = 10
228 },
229 };
230
231 static const intel_limit_t intel_limits_g4x_hdmi = {
232 .dot = { .min = 22000, .max = 400000 },
233 .vco = { .min = 1750000, .max = 3500000},
234 .n = { .min = 1, .max = 4 },
235 .m = { .min = 104, .max = 138 },
236 .m1 = { .min = 16, .max = 23 },
237 .m2 = { .min = 5, .max = 11 },
238 .p = { .min = 5, .max = 80 },
239 .p1 = { .min = 1, .max = 8},
240 .p2 = { .dot_limit = 165000,
241 .p2_slow = 10, .p2_fast = 5 },
242 };
243
244 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
245 .dot = { .min = 20000, .max = 115000 },
246 .vco = { .min = 1750000, .max = 3500000 },
247 .n = { .min = 1, .max = 3 },
248 .m = { .min = 104, .max = 138 },
249 .m1 = { .min = 17, .max = 23 },
250 .m2 = { .min = 5, .max = 11 },
251 .p = { .min = 28, .max = 112 },
252 .p1 = { .min = 2, .max = 8 },
253 .p2 = { .dot_limit = 0,
254 .p2_slow = 14, .p2_fast = 14
255 },
256 };
257
258 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
259 .dot = { .min = 80000, .max = 224000 },
260 .vco = { .min = 1750000, .max = 3500000 },
261 .n = { .min = 1, .max = 3 },
262 .m = { .min = 104, .max = 138 },
263 .m1 = { .min = 17, .max = 23 },
264 .m2 = { .min = 5, .max = 11 },
265 .p = { .min = 14, .max = 42 },
266 .p1 = { .min = 2, .max = 6 },
267 .p2 = { .dot_limit = 0,
268 .p2_slow = 7, .p2_fast = 7
269 },
270 };
271
272 static const intel_limit_t intel_limits_pineview_sdvo = {
273 .dot = { .min = 20000, .max = 400000},
274 .vco = { .min = 1700000, .max = 3500000 },
275 /* Pineview's Ncounter is a ring counter */
276 .n = { .min = 3, .max = 6 },
277 .m = { .min = 2, .max = 256 },
278 /* Pineview only has one combined m divider, which we treat as m2. */
279 .m1 = { .min = 0, .max = 0 },
280 .m2 = { .min = 0, .max = 254 },
281 .p = { .min = 5, .max = 80 },
282 .p1 = { .min = 1, .max = 8 },
283 .p2 = { .dot_limit = 200000,
284 .p2_slow = 10, .p2_fast = 5 },
285 };
286
287 static const intel_limit_t intel_limits_pineview_lvds = {
288 .dot = { .min = 20000, .max = 400000 },
289 .vco = { .min = 1700000, .max = 3500000 },
290 .n = { .min = 3, .max = 6 },
291 .m = { .min = 2, .max = 256 },
292 .m1 = { .min = 0, .max = 0 },
293 .m2 = { .min = 0, .max = 254 },
294 .p = { .min = 7, .max = 112 },
295 .p1 = { .min = 1, .max = 8 },
296 .p2 = { .dot_limit = 112000,
297 .p2_slow = 14, .p2_fast = 14 },
298 };
299
300 /* Ironlake / Sandybridge
301 *
302 * We calculate clock using (register_value + 2) for N/M1/M2, so here
303 * the range value for them is (actual_value - 2).
304 */
305 static const intel_limit_t intel_limits_ironlake_dac = {
306 .dot = { .min = 25000, .max = 350000 },
307 .vco = { .min = 1760000, .max = 3510000 },
308 .n = { .min = 1, .max = 5 },
309 .m = { .min = 79, .max = 127 },
310 .m1 = { .min = 12, .max = 22 },
311 .m2 = { .min = 5, .max = 9 },
312 .p = { .min = 5, .max = 80 },
313 .p1 = { .min = 1, .max = 8 },
314 .p2 = { .dot_limit = 225000,
315 .p2_slow = 10, .p2_fast = 5 },
316 };
317
318 static const intel_limit_t intel_limits_ironlake_single_lvds = {
319 .dot = { .min = 25000, .max = 350000 },
320 .vco = { .min = 1760000, .max = 3510000 },
321 .n = { .min = 1, .max = 3 },
322 .m = { .min = 79, .max = 118 },
323 .m1 = { .min = 12, .max = 22 },
324 .m2 = { .min = 5, .max = 9 },
325 .p = { .min = 28, .max = 112 },
326 .p1 = { .min = 2, .max = 8 },
327 .p2 = { .dot_limit = 225000,
328 .p2_slow = 14, .p2_fast = 14 },
329 };
330
331 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
332 .dot = { .min = 25000, .max = 350000 },
333 .vco = { .min = 1760000, .max = 3510000 },
334 .n = { .min = 1, .max = 3 },
335 .m = { .min = 79, .max = 127 },
336 .m1 = { .min = 12, .max = 22 },
337 .m2 = { .min = 5, .max = 9 },
338 .p = { .min = 14, .max = 56 },
339 .p1 = { .min = 2, .max = 8 },
340 .p2 = { .dot_limit = 225000,
341 .p2_slow = 7, .p2_fast = 7 },
342 };
343
344 /* LVDS 100mhz refclk limits. */
345 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
346 .dot = { .min = 25000, .max = 350000 },
347 .vco = { .min = 1760000, .max = 3510000 },
348 .n = { .min = 1, .max = 2 },
349 .m = { .min = 79, .max = 126 },
350 .m1 = { .min = 12, .max = 22 },
351 .m2 = { .min = 5, .max = 9 },
352 .p = { .min = 28, .max = 112 },
353 .p1 = { .min = 2, .max = 8 },
354 .p2 = { .dot_limit = 225000,
355 .p2_slow = 14, .p2_fast = 14 },
356 };
357
358 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
359 .dot = { .min = 25000, .max = 350000 },
360 .vco = { .min = 1760000, .max = 3510000 },
361 .n = { .min = 1, .max = 3 },
362 .m = { .min = 79, .max = 126 },
363 .m1 = { .min = 12, .max = 22 },
364 .m2 = { .min = 5, .max = 9 },
365 .p = { .min = 14, .max = 42 },
366 .p1 = { .min = 2, .max = 6 },
367 .p2 = { .dot_limit = 225000,
368 .p2_slow = 7, .p2_fast = 7 },
369 };
370
371 static const intel_limit_t intel_limits_vlv = {
372 /*
373 * These are the data rate limits (measured in fast clocks)
374 * since those are the strictest limits we have. The fast
375 * clock and actual rate limits are more relaxed, so checking
376 * them would make no difference.
377 */
378 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
379 .vco = { .min = 4000000, .max = 6000000 },
380 .n = { .min = 1, .max = 7 },
381 .m1 = { .min = 2, .max = 3 },
382 .m2 = { .min = 11, .max = 156 },
383 .p1 = { .min = 2, .max = 3 },
384 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
385 };
386
387 static const intel_limit_t intel_limits_chv = {
388 /*
389 * These are the data rate limits (measured in fast clocks)
390 * since those are the strictest limits we have. The fast
391 * clock and actual rate limits are more relaxed, so checking
392 * them would make no difference.
393 */
394 .dot = { .min = 25000 * 5, .max = 540000 * 5},
395 .vco = { .min = 4800000, .max = 6480000 },
396 .n = { .min = 1, .max = 1 },
397 .m1 = { .min = 2, .max = 2 },
398 .m2 = { .min = 24 << 22, .max = 175 << 22 },
399 .p1 = { .min = 2, .max = 4 },
400 .p2 = { .p2_slow = 1, .p2_fast = 14 },
401 };
402
403 static void vlv_clock(int refclk, intel_clock_t *clock)
404 {
405 clock->m = clock->m1 * clock->m2;
406 clock->p = clock->p1 * clock->p2;
407 if (WARN_ON(clock->n == 0 || clock->p == 0))
408 return;
409 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
410 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
411 }
412
413 /**
414 * Returns whether any output on the specified pipe is of the specified type
415 */
416 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
417 {
418 struct drm_device *dev = crtc->base.dev;
419 struct intel_encoder *encoder;
420
421 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
422 if (encoder->type == type)
423 return true;
424
425 return false;
426 }
427
428 /**
429 * Returns whether any output on the specified pipe will have the specified
430 * type after a staged modeset is complete, i.e., the same as
431 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
432 * encoder->crtc.
433 */
434 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
435 int type)
436 {
437 struct drm_atomic_state *state = crtc_state->base.state;
438 struct drm_connector_state *connector_state;
439 struct intel_encoder *encoder;
440 int i, num_connectors = 0;
441
442 for (i = 0; i < state->num_connector; i++) {
443 if (!state->connectors[i])
444 continue;
445
446 connector_state = state->connector_states[i];
447 if (connector_state->crtc != crtc_state->base.crtc)
448 continue;
449
450 num_connectors++;
451
452 encoder = to_intel_encoder(connector_state->best_encoder);
453 if (encoder->type == type)
454 return true;
455 }
456
457 WARN_ON(num_connectors == 0);
458
459 return false;
460 }
461
462 static const intel_limit_t *
463 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
464 {
465 struct drm_device *dev = crtc_state->base.crtc->dev;
466 const intel_limit_t *limit;
467
468 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
469 if (intel_is_dual_link_lvds(dev)) {
470 if (refclk == 100000)
471 limit = &intel_limits_ironlake_dual_lvds_100m;
472 else
473 limit = &intel_limits_ironlake_dual_lvds;
474 } else {
475 if (refclk == 100000)
476 limit = &intel_limits_ironlake_single_lvds_100m;
477 else
478 limit = &intel_limits_ironlake_single_lvds;
479 }
480 } else
481 limit = &intel_limits_ironlake_dac;
482
483 return limit;
484 }
485
486 static const intel_limit_t *
487 intel_g4x_limit(struct intel_crtc_state *crtc_state)
488 {
489 struct drm_device *dev = crtc_state->base.crtc->dev;
490 const intel_limit_t *limit;
491
492 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
493 if (intel_is_dual_link_lvds(dev))
494 limit = &intel_limits_g4x_dual_channel_lvds;
495 else
496 limit = &intel_limits_g4x_single_channel_lvds;
497 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
498 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
499 limit = &intel_limits_g4x_hdmi;
500 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
501 limit = &intel_limits_g4x_sdvo;
502 } else /* The option is for other outputs */
503 limit = &intel_limits_i9xx_sdvo;
504
505 return limit;
506 }
507
508 static const intel_limit_t *
509 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
510 {
511 struct drm_device *dev = crtc_state->base.crtc->dev;
512 const intel_limit_t *limit;
513
514 if (HAS_PCH_SPLIT(dev))
515 limit = intel_ironlake_limit(crtc_state, refclk);
516 else if (IS_G4X(dev)) {
517 limit = intel_g4x_limit(crtc_state);
518 } else if (IS_PINEVIEW(dev)) {
519 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
520 limit = &intel_limits_pineview_lvds;
521 else
522 limit = &intel_limits_pineview_sdvo;
523 } else if (IS_CHERRYVIEW(dev)) {
524 limit = &intel_limits_chv;
525 } else if (IS_VALLEYVIEW(dev)) {
526 limit = &intel_limits_vlv;
527 } else if (!IS_GEN2(dev)) {
528 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
529 limit = &intel_limits_i9xx_lvds;
530 else
531 limit = &intel_limits_i9xx_sdvo;
532 } else {
533 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
534 limit = &intel_limits_i8xx_lvds;
535 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
536 limit = &intel_limits_i8xx_dvo;
537 else
538 limit = &intel_limits_i8xx_dac;
539 }
540 return limit;
541 }
542
543 /* m1 is reserved as 0 in Pineview, n is a ring counter */
544 static void pineview_clock(int refclk, intel_clock_t *clock)
545 {
546 clock->m = clock->m2 + 2;
547 clock->p = clock->p1 * clock->p2;
548 if (WARN_ON(clock->n == 0 || clock->p == 0))
549 return;
550 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
551 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
552 }
553
554 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
555 {
556 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
557 }
558
559 static void i9xx_clock(int refclk, intel_clock_t *clock)
560 {
561 clock->m = i9xx_dpll_compute_m(clock);
562 clock->p = clock->p1 * clock->p2;
563 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
564 return;
565 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
566 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
567 }
568
569 static void chv_clock(int refclk, intel_clock_t *clock)
570 {
571 clock->m = clock->m1 * clock->m2;
572 clock->p = clock->p1 * clock->p2;
573 if (WARN_ON(clock->n == 0 || clock->p == 0))
574 return;
575 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
576 clock->n << 22);
577 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
578 }
579
580 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
581 /**
582 * Returns whether the given set of divisors are valid for a given refclk with
583 * the given connectors.
584 */
585
586 static bool intel_PLL_is_valid(struct drm_device *dev,
587 const intel_limit_t *limit,
588 const intel_clock_t *clock)
589 {
590 if (clock->n < limit->n.min || limit->n.max < clock->n)
591 INTELPllInvalid("n out of range\n");
592 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
593 INTELPllInvalid("p1 out of range\n");
594 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
595 INTELPllInvalid("m2 out of range\n");
596 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
597 INTELPllInvalid("m1 out of range\n");
598
599 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
600 if (clock->m1 <= clock->m2)
601 INTELPllInvalid("m1 <= m2\n");
602
603 if (!IS_VALLEYVIEW(dev)) {
604 if (clock->p < limit->p.min || limit->p.max < clock->p)
605 INTELPllInvalid("p out of range\n");
606 if (clock->m < limit->m.min || limit->m.max < clock->m)
607 INTELPllInvalid("m out of range\n");
608 }
609
610 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
611 INTELPllInvalid("vco out of range\n");
612 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
613 * connector, etc., rather than just a single range.
614 */
615 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
616 INTELPllInvalid("dot out of range\n");
617
618 return true;
619 }
620
621 static bool
622 i9xx_find_best_dpll(const intel_limit_t *limit,
623 struct intel_crtc_state *crtc_state,
624 int target, int refclk, intel_clock_t *match_clock,
625 intel_clock_t *best_clock)
626 {
627 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
628 struct drm_device *dev = crtc->base.dev;
629 intel_clock_t clock;
630 int err = target;
631
632 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
633 /*
634 * For LVDS just rely on its current settings for dual-channel.
635 * We haven't figured out how to reliably set up different
636 * single/dual channel state, if we even can.
637 */
638 if (intel_is_dual_link_lvds(dev))
639 clock.p2 = limit->p2.p2_fast;
640 else
641 clock.p2 = limit->p2.p2_slow;
642 } else {
643 if (target < limit->p2.dot_limit)
644 clock.p2 = limit->p2.p2_slow;
645 else
646 clock.p2 = limit->p2.p2_fast;
647 }
648
649 memset(best_clock, 0, sizeof(*best_clock));
650
651 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
652 clock.m1++) {
653 for (clock.m2 = limit->m2.min;
654 clock.m2 <= limit->m2.max; clock.m2++) {
655 if (clock.m2 >= clock.m1)
656 break;
657 for (clock.n = limit->n.min;
658 clock.n <= limit->n.max; clock.n++) {
659 for (clock.p1 = limit->p1.min;
660 clock.p1 <= limit->p1.max; clock.p1++) {
661 int this_err;
662
663 i9xx_clock(refclk, &clock);
664 if (!intel_PLL_is_valid(dev, limit,
665 &clock))
666 continue;
667 if (match_clock &&
668 clock.p != match_clock->p)
669 continue;
670
671 this_err = abs(clock.dot - target);
672 if (this_err < err) {
673 *best_clock = clock;
674 err = this_err;
675 }
676 }
677 }
678 }
679 }
680
681 return (err != target);
682 }
683
684 static bool
685 pnv_find_best_dpll(const intel_limit_t *limit,
686 struct intel_crtc_state *crtc_state,
687 int target, int refclk, intel_clock_t *match_clock,
688 intel_clock_t *best_clock)
689 {
690 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
691 struct drm_device *dev = crtc->base.dev;
692 intel_clock_t clock;
693 int err = target;
694
695 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
696 /*
697 * For LVDS just rely on its current settings for dual-channel.
698 * We haven't figured out how to reliably set up different
699 * single/dual channel state, if we even can.
700 */
701 if (intel_is_dual_link_lvds(dev))
702 clock.p2 = limit->p2.p2_fast;
703 else
704 clock.p2 = limit->p2.p2_slow;
705 } else {
706 if (target < limit->p2.dot_limit)
707 clock.p2 = limit->p2.p2_slow;
708 else
709 clock.p2 = limit->p2.p2_fast;
710 }
711
712 memset(best_clock, 0, sizeof(*best_clock));
713
714 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
715 clock.m1++) {
716 for (clock.m2 = limit->m2.min;
717 clock.m2 <= limit->m2.max; clock.m2++) {
718 for (clock.n = limit->n.min;
719 clock.n <= limit->n.max; clock.n++) {
720 for (clock.p1 = limit->p1.min;
721 clock.p1 <= limit->p1.max; clock.p1++) {
722 int this_err;
723
724 pineview_clock(refclk, &clock);
725 if (!intel_PLL_is_valid(dev, limit,
726 &clock))
727 continue;
728 if (match_clock &&
729 clock.p != match_clock->p)
730 continue;
731
732 this_err = abs(clock.dot - target);
733 if (this_err < err) {
734 *best_clock = clock;
735 err = this_err;
736 }
737 }
738 }
739 }
740 }
741
742 return (err != target);
743 }
744
745 static bool
746 g4x_find_best_dpll(const intel_limit_t *limit,
747 struct intel_crtc_state *crtc_state,
748 int target, int refclk, intel_clock_t *match_clock,
749 intel_clock_t *best_clock)
750 {
751 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
752 struct drm_device *dev = crtc->base.dev;
753 intel_clock_t clock;
754 int max_n;
755 bool found;
756 /* approximately equals target * 0.00585 */
757 int err_most = (target >> 8) + (target >> 9);
758 found = false;
759
760 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
761 if (intel_is_dual_link_lvds(dev))
762 clock.p2 = limit->p2.p2_fast;
763 else
764 clock.p2 = limit->p2.p2_slow;
765 } else {
766 if (target < limit->p2.dot_limit)
767 clock.p2 = limit->p2.p2_slow;
768 else
769 clock.p2 = limit->p2.p2_fast;
770 }
771
772 memset(best_clock, 0, sizeof(*best_clock));
773 max_n = limit->n.max;
774 /* based on hardware requirement, prefer smaller n to precision */
775 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
776 /* based on hardware requirement, prefere larger m1,m2 */
777 for (clock.m1 = limit->m1.max;
778 clock.m1 >= limit->m1.min; clock.m1--) {
779 for (clock.m2 = limit->m2.max;
780 clock.m2 >= limit->m2.min; clock.m2--) {
781 for (clock.p1 = limit->p1.max;
782 clock.p1 >= limit->p1.min; clock.p1--) {
783 int this_err;
784
785 i9xx_clock(refclk, &clock);
786 if (!intel_PLL_is_valid(dev, limit,
787 &clock))
788 continue;
789
790 this_err = abs(clock.dot - target);
791 if (this_err < err_most) {
792 *best_clock = clock;
793 err_most = this_err;
794 max_n = clock.n;
795 found = true;
796 }
797 }
798 }
799 }
800 }
801 return found;
802 }
803
804 /*
805 * Check if the calculated PLL configuration is more optimal compared to the
806 * best configuration and error found so far. Return the calculated error.
807 */
808 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
809 const intel_clock_t *calculated_clock,
810 const intel_clock_t *best_clock,
811 unsigned int best_error_ppm,
812 unsigned int *error_ppm)
813 {
814 /*
815 * For CHV ignore the error and consider only the P value.
816 * Prefer a bigger P value based on HW requirements.
817 */
818 if (IS_CHERRYVIEW(dev)) {
819 *error_ppm = 0;
820
821 return calculated_clock->p > best_clock->p;
822 }
823
824 if (WARN_ON_ONCE(!target_freq))
825 return false;
826
827 *error_ppm = div_u64(1000000ULL *
828 abs(target_freq - calculated_clock->dot),
829 target_freq);
830 /*
831 * Prefer a better P value over a better (smaller) error if the error
832 * is small. Ensure this preference for future configurations too by
833 * setting the error to 0.
834 */
835 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
836 *error_ppm = 0;
837
838 return true;
839 }
840
841 return *error_ppm + 10 < best_error_ppm;
842 }
843
844 static bool
845 vlv_find_best_dpll(const intel_limit_t *limit,
846 struct intel_crtc_state *crtc_state,
847 int target, int refclk, intel_clock_t *match_clock,
848 intel_clock_t *best_clock)
849 {
850 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
851 struct drm_device *dev = crtc->base.dev;
852 intel_clock_t clock;
853 unsigned int bestppm = 1000000;
854 /* min update 19.2 MHz */
855 int max_n = min(limit->n.max, refclk / 19200);
856 bool found = false;
857
858 target *= 5; /* fast clock */
859
860 memset(best_clock, 0, sizeof(*best_clock));
861
862 /* based on hardware requirement, prefer smaller n to precision */
863 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
864 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
865 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
866 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
867 clock.p = clock.p1 * clock.p2;
868 /* based on hardware requirement, prefer bigger m1,m2 values */
869 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
870 unsigned int ppm;
871
872 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
873 refclk * clock.m1);
874
875 vlv_clock(refclk, &clock);
876
877 if (!intel_PLL_is_valid(dev, limit,
878 &clock))
879 continue;
880
881 if (!vlv_PLL_is_optimal(dev, target,
882 &clock,
883 best_clock,
884 bestppm, &ppm))
885 continue;
886
887 *best_clock = clock;
888 bestppm = ppm;
889 found = true;
890 }
891 }
892 }
893 }
894
895 return found;
896 }
897
898 static bool
899 chv_find_best_dpll(const intel_limit_t *limit,
900 struct intel_crtc_state *crtc_state,
901 int target, int refclk, intel_clock_t *match_clock,
902 intel_clock_t *best_clock)
903 {
904 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
905 struct drm_device *dev = crtc->base.dev;
906 unsigned int best_error_ppm;
907 intel_clock_t clock;
908 uint64_t m2;
909 int found = false;
910
911 memset(best_clock, 0, sizeof(*best_clock));
912 best_error_ppm = 1000000;
913
914 /*
915 * Based on hardware doc, the n always set to 1, and m1 always
916 * set to 2. If requires to support 200Mhz refclk, we need to
917 * revisit this because n may not 1 anymore.
918 */
919 clock.n = 1, clock.m1 = 2;
920 target *= 5; /* fast clock */
921
922 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
923 for (clock.p2 = limit->p2.p2_fast;
924 clock.p2 >= limit->p2.p2_slow;
925 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
926 unsigned int error_ppm;
927
928 clock.p = clock.p1 * clock.p2;
929
930 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
931 clock.n) << 22, refclk * clock.m1);
932
933 if (m2 > INT_MAX/clock.m1)
934 continue;
935
936 clock.m2 = m2;
937
938 chv_clock(refclk, &clock);
939
940 if (!intel_PLL_is_valid(dev, limit, &clock))
941 continue;
942
943 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
944 best_error_ppm, &error_ppm))
945 continue;
946
947 *best_clock = clock;
948 best_error_ppm = error_ppm;
949 found = true;
950 }
951 }
952
953 return found;
954 }
955
956 bool intel_crtc_active(struct drm_crtc *crtc)
957 {
958 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
959
960 /* Be paranoid as we can arrive here with only partial
961 * state retrieved from the hardware during setup.
962 *
963 * We can ditch the adjusted_mode.crtc_clock check as soon
964 * as Haswell has gained clock readout/fastboot support.
965 *
966 * We can ditch the crtc->primary->fb check as soon as we can
967 * properly reconstruct framebuffers.
968 *
969 * FIXME: The intel_crtc->active here should be switched to
970 * crtc->state->active once we have proper CRTC states wired up
971 * for atomic.
972 */
973 return intel_crtc->active && crtc->primary->state->fb &&
974 intel_crtc->config->base.adjusted_mode.crtc_clock;
975 }
976
977 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
978 enum pipe pipe)
979 {
980 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
981 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
982
983 return intel_crtc->config->cpu_transcoder;
984 }
985
986 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
987 {
988 struct drm_i915_private *dev_priv = dev->dev_private;
989 u32 reg = PIPEDSL(pipe);
990 u32 line1, line2;
991 u32 line_mask;
992
993 if (IS_GEN2(dev))
994 line_mask = DSL_LINEMASK_GEN2;
995 else
996 line_mask = DSL_LINEMASK_GEN3;
997
998 line1 = I915_READ(reg) & line_mask;
999 mdelay(5);
1000 line2 = I915_READ(reg) & line_mask;
1001
1002 return line1 == line2;
1003 }
1004
1005 /*
1006 * intel_wait_for_pipe_off - wait for pipe to turn off
1007 * @crtc: crtc whose pipe to wait for
1008 *
1009 * After disabling a pipe, we can't wait for vblank in the usual way,
1010 * spinning on the vblank interrupt status bit, since we won't actually
1011 * see an interrupt when the pipe is disabled.
1012 *
1013 * On Gen4 and above:
1014 * wait for the pipe register state bit to turn off
1015 *
1016 * Otherwise:
1017 * wait for the display line value to settle (it usually
1018 * ends up stopping at the start of the next frame).
1019 *
1020 */
1021 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1022 {
1023 struct drm_device *dev = crtc->base.dev;
1024 struct drm_i915_private *dev_priv = dev->dev_private;
1025 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1026 enum pipe pipe = crtc->pipe;
1027
1028 if (INTEL_INFO(dev)->gen >= 4) {
1029 int reg = PIPECONF(cpu_transcoder);
1030
1031 /* Wait for the Pipe State to go off */
1032 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1033 100))
1034 WARN(1, "pipe_off wait timed out\n");
1035 } else {
1036 /* Wait for the display line to settle */
1037 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1038 WARN(1, "pipe_off wait timed out\n");
1039 }
1040 }
1041
1042 /*
1043 * ibx_digital_port_connected - is the specified port connected?
1044 * @dev_priv: i915 private structure
1045 * @port: the port to test
1046 *
1047 * Returns true if @port is connected, false otherwise.
1048 */
1049 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1050 struct intel_digital_port *port)
1051 {
1052 u32 bit;
1053
1054 if (HAS_PCH_IBX(dev_priv->dev)) {
1055 switch (port->port) {
1056 case PORT_B:
1057 bit = SDE_PORTB_HOTPLUG;
1058 break;
1059 case PORT_C:
1060 bit = SDE_PORTC_HOTPLUG;
1061 break;
1062 case PORT_D:
1063 bit = SDE_PORTD_HOTPLUG;
1064 break;
1065 default:
1066 return true;
1067 }
1068 } else {
1069 switch (port->port) {
1070 case PORT_B:
1071 bit = SDE_PORTB_HOTPLUG_CPT;
1072 break;
1073 case PORT_C:
1074 bit = SDE_PORTC_HOTPLUG_CPT;
1075 break;
1076 case PORT_D:
1077 bit = SDE_PORTD_HOTPLUG_CPT;
1078 break;
1079 default:
1080 return true;
1081 }
1082 }
1083
1084 return I915_READ(SDEISR) & bit;
1085 }
1086
1087 static const char *state_string(bool enabled)
1088 {
1089 return enabled ? "on" : "off";
1090 }
1091
1092 /* Only for pre-ILK configs */
1093 void assert_pll(struct drm_i915_private *dev_priv,
1094 enum pipe pipe, bool state)
1095 {
1096 int reg;
1097 u32 val;
1098 bool cur_state;
1099
1100 reg = DPLL(pipe);
1101 val = I915_READ(reg);
1102 cur_state = !!(val & DPLL_VCO_ENABLE);
1103 I915_STATE_WARN(cur_state != state,
1104 "PLL state assertion failure (expected %s, current %s)\n",
1105 state_string(state), state_string(cur_state));
1106 }
1107
1108 /* XXX: the dsi pll is shared between MIPI DSI ports */
1109 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1110 {
1111 u32 val;
1112 bool cur_state;
1113
1114 mutex_lock(&dev_priv->dpio_lock);
1115 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1116 mutex_unlock(&dev_priv->dpio_lock);
1117
1118 cur_state = val & DSI_PLL_VCO_EN;
1119 I915_STATE_WARN(cur_state != state,
1120 "DSI PLL state assertion failure (expected %s, current %s)\n",
1121 state_string(state), state_string(cur_state));
1122 }
1123 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1124 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1125
1126 struct intel_shared_dpll *
1127 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1128 {
1129 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1130
1131 if (crtc->config->shared_dpll < 0)
1132 return NULL;
1133
1134 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1135 }
1136
1137 /* For ILK+ */
1138 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1139 struct intel_shared_dpll *pll,
1140 bool state)
1141 {
1142 bool cur_state;
1143 struct intel_dpll_hw_state hw_state;
1144
1145 if (WARN (!pll,
1146 "asserting DPLL %s with no DPLL\n", state_string(state)))
1147 return;
1148
1149 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1150 I915_STATE_WARN(cur_state != state,
1151 "%s assertion failure (expected %s, current %s)\n",
1152 pll->name, state_string(state), state_string(cur_state));
1153 }
1154
1155 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1156 enum pipe pipe, bool state)
1157 {
1158 int reg;
1159 u32 val;
1160 bool cur_state;
1161 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1162 pipe);
1163
1164 if (HAS_DDI(dev_priv->dev)) {
1165 /* DDI does not have a specific FDI_TX register */
1166 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1167 val = I915_READ(reg);
1168 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1169 } else {
1170 reg = FDI_TX_CTL(pipe);
1171 val = I915_READ(reg);
1172 cur_state = !!(val & FDI_TX_ENABLE);
1173 }
1174 I915_STATE_WARN(cur_state != state,
1175 "FDI TX state assertion failure (expected %s, current %s)\n",
1176 state_string(state), state_string(cur_state));
1177 }
1178 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1179 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1180
1181 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1182 enum pipe pipe, bool state)
1183 {
1184 int reg;
1185 u32 val;
1186 bool cur_state;
1187
1188 reg = FDI_RX_CTL(pipe);
1189 val = I915_READ(reg);
1190 cur_state = !!(val & FDI_RX_ENABLE);
1191 I915_STATE_WARN(cur_state != state,
1192 "FDI RX state assertion failure (expected %s, current %s)\n",
1193 state_string(state), state_string(cur_state));
1194 }
1195 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1196 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1197
1198 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1199 enum pipe pipe)
1200 {
1201 int reg;
1202 u32 val;
1203
1204 /* ILK FDI PLL is always enabled */
1205 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1206 return;
1207
1208 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1209 if (HAS_DDI(dev_priv->dev))
1210 return;
1211
1212 reg = FDI_TX_CTL(pipe);
1213 val = I915_READ(reg);
1214 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1215 }
1216
1217 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1218 enum pipe pipe, bool state)
1219 {
1220 int reg;
1221 u32 val;
1222 bool cur_state;
1223
1224 reg = FDI_RX_CTL(pipe);
1225 val = I915_READ(reg);
1226 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1227 I915_STATE_WARN(cur_state != state,
1228 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1229 state_string(state), state_string(cur_state));
1230 }
1231
1232 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1233 enum pipe pipe)
1234 {
1235 struct drm_device *dev = dev_priv->dev;
1236 int pp_reg;
1237 u32 val;
1238 enum pipe panel_pipe = PIPE_A;
1239 bool locked = true;
1240
1241 if (WARN_ON(HAS_DDI(dev)))
1242 return;
1243
1244 if (HAS_PCH_SPLIT(dev)) {
1245 u32 port_sel;
1246
1247 pp_reg = PCH_PP_CONTROL;
1248 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1249
1250 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1251 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1252 panel_pipe = PIPE_B;
1253 /* XXX: else fix for eDP */
1254 } else if (IS_VALLEYVIEW(dev)) {
1255 /* presumably write lock depends on pipe, not port select */
1256 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1257 panel_pipe = pipe;
1258 } else {
1259 pp_reg = PP_CONTROL;
1260 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1261 panel_pipe = PIPE_B;
1262 }
1263
1264 val = I915_READ(pp_reg);
1265 if (!(val & PANEL_POWER_ON) ||
1266 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1267 locked = false;
1268
1269 I915_STATE_WARN(panel_pipe == pipe && locked,
1270 "panel assertion failure, pipe %c regs locked\n",
1271 pipe_name(pipe));
1272 }
1273
1274 static void assert_cursor(struct drm_i915_private *dev_priv,
1275 enum pipe pipe, bool state)
1276 {
1277 struct drm_device *dev = dev_priv->dev;
1278 bool cur_state;
1279
1280 if (IS_845G(dev) || IS_I865G(dev))
1281 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1282 else
1283 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1284
1285 I915_STATE_WARN(cur_state != state,
1286 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1287 pipe_name(pipe), state_string(state), state_string(cur_state));
1288 }
1289 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1290 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1291
1292 void assert_pipe(struct drm_i915_private *dev_priv,
1293 enum pipe pipe, bool state)
1294 {
1295 int reg;
1296 u32 val;
1297 bool cur_state;
1298 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1299 pipe);
1300
1301 /* if we need the pipe quirk it must be always on */
1302 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1303 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1304 state = true;
1305
1306 if (!intel_display_power_is_enabled(dev_priv,
1307 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1308 cur_state = false;
1309 } else {
1310 reg = PIPECONF(cpu_transcoder);
1311 val = I915_READ(reg);
1312 cur_state = !!(val & PIPECONF_ENABLE);
1313 }
1314
1315 I915_STATE_WARN(cur_state != state,
1316 "pipe %c assertion failure (expected %s, current %s)\n",
1317 pipe_name(pipe), state_string(state), state_string(cur_state));
1318 }
1319
1320 static void assert_plane(struct drm_i915_private *dev_priv,
1321 enum plane plane, bool state)
1322 {
1323 int reg;
1324 u32 val;
1325 bool cur_state;
1326
1327 reg = DSPCNTR(plane);
1328 val = I915_READ(reg);
1329 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1330 I915_STATE_WARN(cur_state != state,
1331 "plane %c assertion failure (expected %s, current %s)\n",
1332 plane_name(plane), state_string(state), state_string(cur_state));
1333 }
1334
1335 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1336 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1337
1338 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1339 enum pipe pipe)
1340 {
1341 struct drm_device *dev = dev_priv->dev;
1342 int reg, i;
1343 u32 val;
1344 int cur_pipe;
1345
1346 /* Primary planes are fixed to pipes on gen4+ */
1347 if (INTEL_INFO(dev)->gen >= 4) {
1348 reg = DSPCNTR(pipe);
1349 val = I915_READ(reg);
1350 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1351 "plane %c assertion failure, should be disabled but not\n",
1352 plane_name(pipe));
1353 return;
1354 }
1355
1356 /* Need to check both planes against the pipe */
1357 for_each_pipe(dev_priv, i) {
1358 reg = DSPCNTR(i);
1359 val = I915_READ(reg);
1360 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1361 DISPPLANE_SEL_PIPE_SHIFT;
1362 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1363 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1364 plane_name(i), pipe_name(pipe));
1365 }
1366 }
1367
1368 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1369 enum pipe pipe)
1370 {
1371 struct drm_device *dev = dev_priv->dev;
1372 int reg, sprite;
1373 u32 val;
1374
1375 if (INTEL_INFO(dev)->gen >= 9) {
1376 for_each_sprite(dev_priv, pipe, sprite) {
1377 val = I915_READ(PLANE_CTL(pipe, sprite));
1378 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1379 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1380 sprite, pipe_name(pipe));
1381 }
1382 } else if (IS_VALLEYVIEW(dev)) {
1383 for_each_sprite(dev_priv, pipe, sprite) {
1384 reg = SPCNTR(pipe, sprite);
1385 val = I915_READ(reg);
1386 I915_STATE_WARN(val & SP_ENABLE,
1387 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1388 sprite_name(pipe, sprite), pipe_name(pipe));
1389 }
1390 } else if (INTEL_INFO(dev)->gen >= 7) {
1391 reg = SPRCTL(pipe);
1392 val = I915_READ(reg);
1393 I915_STATE_WARN(val & SPRITE_ENABLE,
1394 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1395 plane_name(pipe), pipe_name(pipe));
1396 } else if (INTEL_INFO(dev)->gen >= 5) {
1397 reg = DVSCNTR(pipe);
1398 val = I915_READ(reg);
1399 I915_STATE_WARN(val & DVS_ENABLE,
1400 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1401 plane_name(pipe), pipe_name(pipe));
1402 }
1403 }
1404
1405 static void assert_vblank_disabled(struct drm_crtc *crtc)
1406 {
1407 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1408 drm_crtc_vblank_put(crtc);
1409 }
1410
1411 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1412 {
1413 u32 val;
1414 bool enabled;
1415
1416 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1417
1418 val = I915_READ(PCH_DREF_CONTROL);
1419 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1420 DREF_SUPERSPREAD_SOURCE_MASK));
1421 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1422 }
1423
1424 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1425 enum pipe pipe)
1426 {
1427 int reg;
1428 u32 val;
1429 bool enabled;
1430
1431 reg = PCH_TRANSCONF(pipe);
1432 val = I915_READ(reg);
1433 enabled = !!(val & TRANS_ENABLE);
1434 I915_STATE_WARN(enabled,
1435 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1436 pipe_name(pipe));
1437 }
1438
1439 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1440 enum pipe pipe, u32 port_sel, u32 val)
1441 {
1442 if ((val & DP_PORT_EN) == 0)
1443 return false;
1444
1445 if (HAS_PCH_CPT(dev_priv->dev)) {
1446 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1447 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1448 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1449 return false;
1450 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1451 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1452 return false;
1453 } else {
1454 if ((val & DP_PIPE_MASK) != (pipe << 30))
1455 return false;
1456 }
1457 return true;
1458 }
1459
1460 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1461 enum pipe pipe, u32 val)
1462 {
1463 if ((val & SDVO_ENABLE) == 0)
1464 return false;
1465
1466 if (HAS_PCH_CPT(dev_priv->dev)) {
1467 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1468 return false;
1469 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1470 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1471 return false;
1472 } else {
1473 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1474 return false;
1475 }
1476 return true;
1477 }
1478
1479 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1480 enum pipe pipe, u32 val)
1481 {
1482 if ((val & LVDS_PORT_EN) == 0)
1483 return false;
1484
1485 if (HAS_PCH_CPT(dev_priv->dev)) {
1486 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1487 return false;
1488 } else {
1489 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1490 return false;
1491 }
1492 return true;
1493 }
1494
1495 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1496 enum pipe pipe, u32 val)
1497 {
1498 if ((val & ADPA_DAC_ENABLE) == 0)
1499 return false;
1500 if (HAS_PCH_CPT(dev_priv->dev)) {
1501 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1502 return false;
1503 } else {
1504 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1505 return false;
1506 }
1507 return true;
1508 }
1509
1510 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1511 enum pipe pipe, int reg, u32 port_sel)
1512 {
1513 u32 val = I915_READ(reg);
1514 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1515 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1516 reg, pipe_name(pipe));
1517
1518 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1519 && (val & DP_PIPEB_SELECT),
1520 "IBX PCH dp port still using transcoder B\n");
1521 }
1522
1523 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1524 enum pipe pipe, int reg)
1525 {
1526 u32 val = I915_READ(reg);
1527 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1528 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1529 reg, pipe_name(pipe));
1530
1531 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1532 && (val & SDVO_PIPE_B_SELECT),
1533 "IBX PCH hdmi port still using transcoder B\n");
1534 }
1535
1536 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1537 enum pipe pipe)
1538 {
1539 int reg;
1540 u32 val;
1541
1542 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1543 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1544 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1545
1546 reg = PCH_ADPA;
1547 val = I915_READ(reg);
1548 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1549 "PCH VGA enabled on transcoder %c, should be disabled\n",
1550 pipe_name(pipe));
1551
1552 reg = PCH_LVDS;
1553 val = I915_READ(reg);
1554 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1555 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1556 pipe_name(pipe));
1557
1558 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1559 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1560 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1561 }
1562
1563 static void intel_init_dpio(struct drm_device *dev)
1564 {
1565 struct drm_i915_private *dev_priv = dev->dev_private;
1566
1567 if (!IS_VALLEYVIEW(dev))
1568 return;
1569
1570 /*
1571 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1572 * CHV x1 PHY (DP/HDMI D)
1573 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1574 */
1575 if (IS_CHERRYVIEW(dev)) {
1576 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1577 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1578 } else {
1579 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1580 }
1581 }
1582
1583 static void vlv_enable_pll(struct intel_crtc *crtc,
1584 const struct intel_crtc_state *pipe_config)
1585 {
1586 struct drm_device *dev = crtc->base.dev;
1587 struct drm_i915_private *dev_priv = dev->dev_private;
1588 int reg = DPLL(crtc->pipe);
1589 u32 dpll = pipe_config->dpll_hw_state.dpll;
1590
1591 assert_pipe_disabled(dev_priv, crtc->pipe);
1592
1593 /* No really, not for ILK+ */
1594 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1595
1596 /* PLL is protected by panel, make sure we can write it */
1597 if (IS_MOBILE(dev_priv->dev))
1598 assert_panel_unlocked(dev_priv, crtc->pipe);
1599
1600 I915_WRITE(reg, dpll);
1601 POSTING_READ(reg);
1602 udelay(150);
1603
1604 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1605 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1606
1607 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1608 POSTING_READ(DPLL_MD(crtc->pipe));
1609
1610 /* We do this three times for luck */
1611 I915_WRITE(reg, dpll);
1612 POSTING_READ(reg);
1613 udelay(150); /* wait for warmup */
1614 I915_WRITE(reg, dpll);
1615 POSTING_READ(reg);
1616 udelay(150); /* wait for warmup */
1617 I915_WRITE(reg, dpll);
1618 POSTING_READ(reg);
1619 udelay(150); /* wait for warmup */
1620 }
1621
1622 static void chv_enable_pll(struct intel_crtc *crtc,
1623 const struct intel_crtc_state *pipe_config)
1624 {
1625 struct drm_device *dev = crtc->base.dev;
1626 struct drm_i915_private *dev_priv = dev->dev_private;
1627 int pipe = crtc->pipe;
1628 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1629 u32 tmp;
1630
1631 assert_pipe_disabled(dev_priv, crtc->pipe);
1632
1633 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1634
1635 mutex_lock(&dev_priv->dpio_lock);
1636
1637 /* Enable back the 10bit clock to display controller */
1638 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1639 tmp |= DPIO_DCLKP_EN;
1640 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1641
1642 /*
1643 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1644 */
1645 udelay(1);
1646
1647 /* Enable PLL */
1648 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1649
1650 /* Check PLL is locked */
1651 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1652 DRM_ERROR("PLL %d failed to lock\n", pipe);
1653
1654 /* not sure when this should be written */
1655 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1656 POSTING_READ(DPLL_MD(pipe));
1657
1658 mutex_unlock(&dev_priv->dpio_lock);
1659 }
1660
1661 static int intel_num_dvo_pipes(struct drm_device *dev)
1662 {
1663 struct intel_crtc *crtc;
1664 int count = 0;
1665
1666 for_each_intel_crtc(dev, crtc)
1667 count += crtc->active &&
1668 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1669
1670 return count;
1671 }
1672
1673 static void i9xx_enable_pll(struct intel_crtc *crtc)
1674 {
1675 struct drm_device *dev = crtc->base.dev;
1676 struct drm_i915_private *dev_priv = dev->dev_private;
1677 int reg = DPLL(crtc->pipe);
1678 u32 dpll = crtc->config->dpll_hw_state.dpll;
1679
1680 assert_pipe_disabled(dev_priv, crtc->pipe);
1681
1682 /* No really, not for ILK+ */
1683 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1684
1685 /* PLL is protected by panel, make sure we can write it */
1686 if (IS_MOBILE(dev) && !IS_I830(dev))
1687 assert_panel_unlocked(dev_priv, crtc->pipe);
1688
1689 /* Enable DVO 2x clock on both PLLs if necessary */
1690 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1691 /*
1692 * It appears to be important that we don't enable this
1693 * for the current pipe before otherwise configuring the
1694 * PLL. No idea how this should be handled if multiple
1695 * DVO outputs are enabled simultaneosly.
1696 */
1697 dpll |= DPLL_DVO_2X_MODE;
1698 I915_WRITE(DPLL(!crtc->pipe),
1699 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1700 }
1701
1702 /* Wait for the clocks to stabilize. */
1703 POSTING_READ(reg);
1704 udelay(150);
1705
1706 if (INTEL_INFO(dev)->gen >= 4) {
1707 I915_WRITE(DPLL_MD(crtc->pipe),
1708 crtc->config->dpll_hw_state.dpll_md);
1709 } else {
1710 /* The pixel multiplier can only be updated once the
1711 * DPLL is enabled and the clocks are stable.
1712 *
1713 * So write it again.
1714 */
1715 I915_WRITE(reg, dpll);
1716 }
1717
1718 /* We do this three times for luck */
1719 I915_WRITE(reg, dpll);
1720 POSTING_READ(reg);
1721 udelay(150); /* wait for warmup */
1722 I915_WRITE(reg, dpll);
1723 POSTING_READ(reg);
1724 udelay(150); /* wait for warmup */
1725 I915_WRITE(reg, dpll);
1726 POSTING_READ(reg);
1727 udelay(150); /* wait for warmup */
1728 }
1729
1730 /**
1731 * i9xx_disable_pll - disable a PLL
1732 * @dev_priv: i915 private structure
1733 * @pipe: pipe PLL to disable
1734 *
1735 * Disable the PLL for @pipe, making sure the pipe is off first.
1736 *
1737 * Note! This is for pre-ILK only.
1738 */
1739 static void i9xx_disable_pll(struct intel_crtc *crtc)
1740 {
1741 struct drm_device *dev = crtc->base.dev;
1742 struct drm_i915_private *dev_priv = dev->dev_private;
1743 enum pipe pipe = crtc->pipe;
1744
1745 /* Disable DVO 2x clock on both PLLs if necessary */
1746 if (IS_I830(dev) &&
1747 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1748 intel_num_dvo_pipes(dev) == 1) {
1749 I915_WRITE(DPLL(PIPE_B),
1750 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1751 I915_WRITE(DPLL(PIPE_A),
1752 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1753 }
1754
1755 /* Don't disable pipe or pipe PLLs if needed */
1756 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1757 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1758 return;
1759
1760 /* Make sure the pipe isn't still relying on us */
1761 assert_pipe_disabled(dev_priv, pipe);
1762
1763 I915_WRITE(DPLL(pipe), 0);
1764 POSTING_READ(DPLL(pipe));
1765 }
1766
1767 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1768 {
1769 u32 val = 0;
1770
1771 /* Make sure the pipe isn't still relying on us */
1772 assert_pipe_disabled(dev_priv, pipe);
1773
1774 /*
1775 * Leave integrated clock source and reference clock enabled for pipe B.
1776 * The latter is needed for VGA hotplug / manual detection.
1777 */
1778 if (pipe == PIPE_B)
1779 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1780 I915_WRITE(DPLL(pipe), val);
1781 POSTING_READ(DPLL(pipe));
1782
1783 }
1784
1785 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1786 {
1787 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1788 u32 val;
1789
1790 /* Make sure the pipe isn't still relying on us */
1791 assert_pipe_disabled(dev_priv, pipe);
1792
1793 /* Set PLL en = 0 */
1794 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1795 if (pipe != PIPE_A)
1796 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1797 I915_WRITE(DPLL(pipe), val);
1798 POSTING_READ(DPLL(pipe));
1799
1800 mutex_lock(&dev_priv->dpio_lock);
1801
1802 /* Disable 10bit clock to display controller */
1803 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1804 val &= ~DPIO_DCLKP_EN;
1805 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1806
1807 /* disable left/right clock distribution */
1808 if (pipe != PIPE_B) {
1809 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1810 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1811 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1812 } else {
1813 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1814 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1815 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1816 }
1817
1818 mutex_unlock(&dev_priv->dpio_lock);
1819 }
1820
1821 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1822 struct intel_digital_port *dport)
1823 {
1824 u32 port_mask;
1825 int dpll_reg;
1826
1827 switch (dport->port) {
1828 case PORT_B:
1829 port_mask = DPLL_PORTB_READY_MASK;
1830 dpll_reg = DPLL(0);
1831 break;
1832 case PORT_C:
1833 port_mask = DPLL_PORTC_READY_MASK;
1834 dpll_reg = DPLL(0);
1835 break;
1836 case PORT_D:
1837 port_mask = DPLL_PORTD_READY_MASK;
1838 dpll_reg = DPIO_PHY_STATUS;
1839 break;
1840 default:
1841 BUG();
1842 }
1843
1844 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1845 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1846 port_name(dport->port), I915_READ(dpll_reg));
1847 }
1848
1849 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1850 {
1851 struct drm_device *dev = crtc->base.dev;
1852 struct drm_i915_private *dev_priv = dev->dev_private;
1853 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1854
1855 if (WARN_ON(pll == NULL))
1856 return;
1857
1858 WARN_ON(!pll->config.crtc_mask);
1859 if (pll->active == 0) {
1860 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1861 WARN_ON(pll->on);
1862 assert_shared_dpll_disabled(dev_priv, pll);
1863
1864 pll->mode_set(dev_priv, pll);
1865 }
1866 }
1867
1868 /**
1869 * intel_enable_shared_dpll - enable PCH PLL
1870 * @dev_priv: i915 private structure
1871 * @pipe: pipe PLL to enable
1872 *
1873 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1874 * drives the transcoder clock.
1875 */
1876 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1877 {
1878 struct drm_device *dev = crtc->base.dev;
1879 struct drm_i915_private *dev_priv = dev->dev_private;
1880 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1881
1882 if (WARN_ON(pll == NULL))
1883 return;
1884
1885 if (WARN_ON(pll->config.crtc_mask == 0))
1886 return;
1887
1888 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1889 pll->name, pll->active, pll->on,
1890 crtc->base.base.id);
1891
1892 if (pll->active++) {
1893 WARN_ON(!pll->on);
1894 assert_shared_dpll_enabled(dev_priv, pll);
1895 return;
1896 }
1897 WARN_ON(pll->on);
1898
1899 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1900
1901 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1902 pll->enable(dev_priv, pll);
1903 pll->on = true;
1904 }
1905
1906 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1907 {
1908 struct drm_device *dev = crtc->base.dev;
1909 struct drm_i915_private *dev_priv = dev->dev_private;
1910 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1911
1912 /* PCH only available on ILK+ */
1913 BUG_ON(INTEL_INFO(dev)->gen < 5);
1914 if (WARN_ON(pll == NULL))
1915 return;
1916
1917 if (WARN_ON(pll->config.crtc_mask == 0))
1918 return;
1919
1920 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1921 pll->name, pll->active, pll->on,
1922 crtc->base.base.id);
1923
1924 if (WARN_ON(pll->active == 0)) {
1925 assert_shared_dpll_disabled(dev_priv, pll);
1926 return;
1927 }
1928
1929 assert_shared_dpll_enabled(dev_priv, pll);
1930 WARN_ON(!pll->on);
1931 if (--pll->active)
1932 return;
1933
1934 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1935 pll->disable(dev_priv, pll);
1936 pll->on = false;
1937
1938 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1939 }
1940
1941 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1942 enum pipe pipe)
1943 {
1944 struct drm_device *dev = dev_priv->dev;
1945 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1946 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1947 uint32_t reg, val, pipeconf_val;
1948
1949 /* PCH only available on ILK+ */
1950 BUG_ON(!HAS_PCH_SPLIT(dev));
1951
1952 /* Make sure PCH DPLL is enabled */
1953 assert_shared_dpll_enabled(dev_priv,
1954 intel_crtc_to_shared_dpll(intel_crtc));
1955
1956 /* FDI must be feeding us bits for PCH ports */
1957 assert_fdi_tx_enabled(dev_priv, pipe);
1958 assert_fdi_rx_enabled(dev_priv, pipe);
1959
1960 if (HAS_PCH_CPT(dev)) {
1961 /* Workaround: Set the timing override bit before enabling the
1962 * pch transcoder. */
1963 reg = TRANS_CHICKEN2(pipe);
1964 val = I915_READ(reg);
1965 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1966 I915_WRITE(reg, val);
1967 }
1968
1969 reg = PCH_TRANSCONF(pipe);
1970 val = I915_READ(reg);
1971 pipeconf_val = I915_READ(PIPECONF(pipe));
1972
1973 if (HAS_PCH_IBX(dev_priv->dev)) {
1974 /*
1975 * make the BPC in transcoder be consistent with
1976 * that in pipeconf reg.
1977 */
1978 val &= ~PIPECONF_BPC_MASK;
1979 val |= pipeconf_val & PIPECONF_BPC_MASK;
1980 }
1981
1982 val &= ~TRANS_INTERLACE_MASK;
1983 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1984 if (HAS_PCH_IBX(dev_priv->dev) &&
1985 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1986 val |= TRANS_LEGACY_INTERLACED_ILK;
1987 else
1988 val |= TRANS_INTERLACED;
1989 else
1990 val |= TRANS_PROGRESSIVE;
1991
1992 I915_WRITE(reg, val | TRANS_ENABLE);
1993 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1994 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1995 }
1996
1997 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1998 enum transcoder cpu_transcoder)
1999 {
2000 u32 val, pipeconf_val;
2001
2002 /* PCH only available on ILK+ */
2003 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2004
2005 /* FDI must be feeding us bits for PCH ports */
2006 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2007 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2008
2009 /* Workaround: set timing override bit. */
2010 val = I915_READ(_TRANSA_CHICKEN2);
2011 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2012 I915_WRITE(_TRANSA_CHICKEN2, val);
2013
2014 val = TRANS_ENABLE;
2015 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2016
2017 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2018 PIPECONF_INTERLACED_ILK)
2019 val |= TRANS_INTERLACED;
2020 else
2021 val |= TRANS_PROGRESSIVE;
2022
2023 I915_WRITE(LPT_TRANSCONF, val);
2024 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2025 DRM_ERROR("Failed to enable PCH transcoder\n");
2026 }
2027
2028 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2029 enum pipe pipe)
2030 {
2031 struct drm_device *dev = dev_priv->dev;
2032 uint32_t reg, val;
2033
2034 /* FDI relies on the transcoder */
2035 assert_fdi_tx_disabled(dev_priv, pipe);
2036 assert_fdi_rx_disabled(dev_priv, pipe);
2037
2038 /* Ports must be off as well */
2039 assert_pch_ports_disabled(dev_priv, pipe);
2040
2041 reg = PCH_TRANSCONF(pipe);
2042 val = I915_READ(reg);
2043 val &= ~TRANS_ENABLE;
2044 I915_WRITE(reg, val);
2045 /* wait for PCH transcoder off, transcoder state */
2046 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2047 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2048
2049 if (!HAS_PCH_IBX(dev)) {
2050 /* Workaround: Clear the timing override chicken bit again. */
2051 reg = TRANS_CHICKEN2(pipe);
2052 val = I915_READ(reg);
2053 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2054 I915_WRITE(reg, val);
2055 }
2056 }
2057
2058 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2059 {
2060 u32 val;
2061
2062 val = I915_READ(LPT_TRANSCONF);
2063 val &= ~TRANS_ENABLE;
2064 I915_WRITE(LPT_TRANSCONF, val);
2065 /* wait for PCH transcoder off, transcoder state */
2066 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2067 DRM_ERROR("Failed to disable PCH transcoder\n");
2068
2069 /* Workaround: clear timing override bit. */
2070 val = I915_READ(_TRANSA_CHICKEN2);
2071 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2072 I915_WRITE(_TRANSA_CHICKEN2, val);
2073 }
2074
2075 /**
2076 * intel_enable_pipe - enable a pipe, asserting requirements
2077 * @crtc: crtc responsible for the pipe
2078 *
2079 * Enable @crtc's pipe, making sure that various hardware specific requirements
2080 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2081 */
2082 static void intel_enable_pipe(struct intel_crtc *crtc)
2083 {
2084 struct drm_device *dev = crtc->base.dev;
2085 struct drm_i915_private *dev_priv = dev->dev_private;
2086 enum pipe pipe = crtc->pipe;
2087 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2088 pipe);
2089 enum pipe pch_transcoder;
2090 int reg;
2091 u32 val;
2092
2093 assert_planes_disabled(dev_priv, pipe);
2094 assert_cursor_disabled(dev_priv, pipe);
2095 assert_sprites_disabled(dev_priv, pipe);
2096
2097 if (HAS_PCH_LPT(dev_priv->dev))
2098 pch_transcoder = TRANSCODER_A;
2099 else
2100 pch_transcoder = pipe;
2101
2102 /*
2103 * A pipe without a PLL won't actually be able to drive bits from
2104 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2105 * need the check.
2106 */
2107 if (!HAS_PCH_SPLIT(dev_priv->dev))
2108 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2109 assert_dsi_pll_enabled(dev_priv);
2110 else
2111 assert_pll_enabled(dev_priv, pipe);
2112 else {
2113 if (crtc->config->has_pch_encoder) {
2114 /* if driving the PCH, we need FDI enabled */
2115 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2116 assert_fdi_tx_pll_enabled(dev_priv,
2117 (enum pipe) cpu_transcoder);
2118 }
2119 /* FIXME: assert CPU port conditions for SNB+ */
2120 }
2121
2122 reg = PIPECONF(cpu_transcoder);
2123 val = I915_READ(reg);
2124 if (val & PIPECONF_ENABLE) {
2125 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2126 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2127 return;
2128 }
2129
2130 I915_WRITE(reg, val | PIPECONF_ENABLE);
2131 POSTING_READ(reg);
2132 }
2133
2134 /**
2135 * intel_disable_pipe - disable a pipe, asserting requirements
2136 * @crtc: crtc whose pipes is to be disabled
2137 *
2138 * Disable the pipe of @crtc, making sure that various hardware
2139 * specific requirements are met, if applicable, e.g. plane
2140 * disabled, panel fitter off, etc.
2141 *
2142 * Will wait until the pipe has shut down before returning.
2143 */
2144 static void intel_disable_pipe(struct intel_crtc *crtc)
2145 {
2146 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2147 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2148 enum pipe pipe = crtc->pipe;
2149 int reg;
2150 u32 val;
2151
2152 /*
2153 * Make sure planes won't keep trying to pump pixels to us,
2154 * or we might hang the display.
2155 */
2156 assert_planes_disabled(dev_priv, pipe);
2157 assert_cursor_disabled(dev_priv, pipe);
2158 assert_sprites_disabled(dev_priv, pipe);
2159
2160 reg = PIPECONF(cpu_transcoder);
2161 val = I915_READ(reg);
2162 if ((val & PIPECONF_ENABLE) == 0)
2163 return;
2164
2165 /*
2166 * Double wide has implications for planes
2167 * so best keep it disabled when not needed.
2168 */
2169 if (crtc->config->double_wide)
2170 val &= ~PIPECONF_DOUBLE_WIDE;
2171
2172 /* Don't disable pipe or pipe PLLs if needed */
2173 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2174 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2175 val &= ~PIPECONF_ENABLE;
2176
2177 I915_WRITE(reg, val);
2178 if ((val & PIPECONF_ENABLE) == 0)
2179 intel_wait_for_pipe_off(crtc);
2180 }
2181
2182 /*
2183 * Plane regs are double buffered, going from enabled->disabled needs a
2184 * trigger in order to latch. The display address reg provides this.
2185 */
2186 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2187 enum plane plane)
2188 {
2189 struct drm_device *dev = dev_priv->dev;
2190 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2191
2192 I915_WRITE(reg, I915_READ(reg));
2193 POSTING_READ(reg);
2194 }
2195
2196 /**
2197 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2198 * @plane: plane to be enabled
2199 * @crtc: crtc for the plane
2200 *
2201 * Enable @plane on @crtc, making sure that the pipe is running first.
2202 */
2203 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2204 struct drm_crtc *crtc)
2205 {
2206 struct drm_device *dev = plane->dev;
2207 struct drm_i915_private *dev_priv = dev->dev_private;
2208 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2209
2210 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2211 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2212
2213 if (intel_crtc->primary_enabled)
2214 return;
2215
2216 intel_crtc->primary_enabled = true;
2217
2218 dev_priv->display.update_primary_plane(crtc, plane->fb,
2219 crtc->x, crtc->y);
2220
2221 /*
2222 * BDW signals flip done immediately if the plane
2223 * is disabled, even if the plane enable is already
2224 * armed to occur at the next vblank :(
2225 */
2226 if (IS_BROADWELL(dev))
2227 intel_wait_for_vblank(dev, intel_crtc->pipe);
2228 }
2229
2230 /**
2231 * intel_disable_primary_hw_plane - disable the primary hardware plane
2232 * @plane: plane to be disabled
2233 * @crtc: crtc for the plane
2234 *
2235 * Disable @plane on @crtc, making sure that the pipe is running first.
2236 */
2237 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2238 struct drm_crtc *crtc)
2239 {
2240 struct drm_device *dev = plane->dev;
2241 struct drm_i915_private *dev_priv = dev->dev_private;
2242 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2243
2244 if (WARN_ON(!intel_crtc->active))
2245 return;
2246
2247 if (!intel_crtc->primary_enabled)
2248 return;
2249
2250 intel_crtc->primary_enabled = false;
2251
2252 dev_priv->display.update_primary_plane(crtc, plane->fb,
2253 crtc->x, crtc->y);
2254 }
2255
2256 static bool need_vtd_wa(struct drm_device *dev)
2257 {
2258 #ifdef CONFIG_INTEL_IOMMU
2259 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2260 return true;
2261 #endif
2262 return false;
2263 }
2264
2265 unsigned int
2266 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2267 uint64_t fb_format_modifier)
2268 {
2269 unsigned int tile_height;
2270 uint32_t pixel_bytes;
2271
2272 switch (fb_format_modifier) {
2273 case DRM_FORMAT_MOD_NONE:
2274 tile_height = 1;
2275 break;
2276 case I915_FORMAT_MOD_X_TILED:
2277 tile_height = IS_GEN2(dev) ? 16 : 8;
2278 break;
2279 case I915_FORMAT_MOD_Y_TILED:
2280 tile_height = 32;
2281 break;
2282 case I915_FORMAT_MOD_Yf_TILED:
2283 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2284 switch (pixel_bytes) {
2285 default:
2286 case 1:
2287 tile_height = 64;
2288 break;
2289 case 2:
2290 case 4:
2291 tile_height = 32;
2292 break;
2293 case 8:
2294 tile_height = 16;
2295 break;
2296 case 16:
2297 WARN_ONCE(1,
2298 "128-bit pixels are not supported for display!");
2299 tile_height = 16;
2300 break;
2301 }
2302 break;
2303 default:
2304 MISSING_CASE(fb_format_modifier);
2305 tile_height = 1;
2306 break;
2307 }
2308
2309 return tile_height;
2310 }
2311
2312 unsigned int
2313 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2314 uint32_t pixel_format, uint64_t fb_format_modifier)
2315 {
2316 return ALIGN(height, intel_tile_height(dev, pixel_format,
2317 fb_format_modifier));
2318 }
2319
2320 static int
2321 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2322 const struct drm_plane_state *plane_state)
2323 {
2324 struct intel_rotation_info *info = &view->rotation_info;
2325
2326 *view = i915_ggtt_view_normal;
2327
2328 if (!plane_state)
2329 return 0;
2330
2331 if (!intel_rotation_90_or_270(plane_state->rotation))
2332 return 0;
2333
2334 *view = i915_ggtt_view_rotated;
2335
2336 info->height = fb->height;
2337 info->pixel_format = fb->pixel_format;
2338 info->pitch = fb->pitches[0];
2339 info->fb_modifier = fb->modifier[0];
2340
2341 if (!(info->fb_modifier == I915_FORMAT_MOD_Y_TILED ||
2342 info->fb_modifier == I915_FORMAT_MOD_Yf_TILED)) {
2343 DRM_DEBUG_KMS(
2344 "Y or Yf tiling is needed for 90/270 rotation!\n");
2345 return -EINVAL;
2346 }
2347
2348 return 0;
2349 }
2350
2351 int
2352 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2353 struct drm_framebuffer *fb,
2354 const struct drm_plane_state *plane_state,
2355 struct intel_engine_cs *pipelined)
2356 {
2357 struct drm_device *dev = fb->dev;
2358 struct drm_i915_private *dev_priv = dev->dev_private;
2359 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2360 struct i915_ggtt_view view;
2361 u32 alignment;
2362 int ret;
2363
2364 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2365
2366 switch (fb->modifier[0]) {
2367 case DRM_FORMAT_MOD_NONE:
2368 if (INTEL_INFO(dev)->gen >= 9)
2369 alignment = 256 * 1024;
2370 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2371 alignment = 128 * 1024;
2372 else if (INTEL_INFO(dev)->gen >= 4)
2373 alignment = 4 * 1024;
2374 else
2375 alignment = 64 * 1024;
2376 break;
2377 case I915_FORMAT_MOD_X_TILED:
2378 if (INTEL_INFO(dev)->gen >= 9)
2379 alignment = 256 * 1024;
2380 else {
2381 /* pin() will align the object as required by fence */
2382 alignment = 0;
2383 }
2384 break;
2385 case I915_FORMAT_MOD_Y_TILED:
2386 case I915_FORMAT_MOD_Yf_TILED:
2387 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2388 "Y tiling bo slipped through, driver bug!\n"))
2389 return -EINVAL;
2390 alignment = 1 * 1024 * 1024;
2391 break;
2392 default:
2393 MISSING_CASE(fb->modifier[0]);
2394 return -EINVAL;
2395 }
2396
2397 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2398 if (ret)
2399 return ret;
2400
2401 /* Note that the w/a also requires 64 PTE of padding following the
2402 * bo. We currently fill all unused PTE with the shadow page and so
2403 * we should always have valid PTE following the scanout preventing
2404 * the VT-d warning.
2405 */
2406 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2407 alignment = 256 * 1024;
2408
2409 /*
2410 * Global gtt pte registers are special registers which actually forward
2411 * writes to a chunk of system memory. Which means that there is no risk
2412 * that the register values disappear as soon as we call
2413 * intel_runtime_pm_put(), so it is correct to wrap only the
2414 * pin/unpin/fence and not more.
2415 */
2416 intel_runtime_pm_get(dev_priv);
2417
2418 dev_priv->mm.interruptible = false;
2419 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2420 &view);
2421 if (ret)
2422 goto err_interruptible;
2423
2424 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2425 * fence, whereas 965+ only requires a fence if using
2426 * framebuffer compression. For simplicity, we always install
2427 * a fence as the cost is not that onerous.
2428 */
2429 ret = i915_gem_object_get_fence(obj);
2430 if (ret)
2431 goto err_unpin;
2432
2433 i915_gem_object_pin_fence(obj);
2434
2435 dev_priv->mm.interruptible = true;
2436 intel_runtime_pm_put(dev_priv);
2437 return 0;
2438
2439 err_unpin:
2440 i915_gem_object_unpin_from_display_plane(obj, &view);
2441 err_interruptible:
2442 dev_priv->mm.interruptible = true;
2443 intel_runtime_pm_put(dev_priv);
2444 return ret;
2445 }
2446
2447 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2448 const struct drm_plane_state *plane_state)
2449 {
2450 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2451 struct i915_ggtt_view view;
2452 int ret;
2453
2454 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2455
2456 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2457 WARN_ONCE(ret, "Couldn't get view from plane state!");
2458
2459 i915_gem_object_unpin_fence(obj);
2460 i915_gem_object_unpin_from_display_plane(obj, &view);
2461 }
2462
2463 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2464 * is assumed to be a power-of-two. */
2465 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2466 unsigned int tiling_mode,
2467 unsigned int cpp,
2468 unsigned int pitch)
2469 {
2470 if (tiling_mode != I915_TILING_NONE) {
2471 unsigned int tile_rows, tiles;
2472
2473 tile_rows = *y / 8;
2474 *y %= 8;
2475
2476 tiles = *x / (512/cpp);
2477 *x %= 512/cpp;
2478
2479 return tile_rows * pitch * 8 + tiles * 4096;
2480 } else {
2481 unsigned int offset;
2482
2483 offset = *y * pitch + *x * cpp;
2484 *y = 0;
2485 *x = (offset & 4095) / cpp;
2486 return offset & -4096;
2487 }
2488 }
2489
2490 static int i9xx_format_to_fourcc(int format)
2491 {
2492 switch (format) {
2493 case DISPPLANE_8BPP:
2494 return DRM_FORMAT_C8;
2495 case DISPPLANE_BGRX555:
2496 return DRM_FORMAT_XRGB1555;
2497 case DISPPLANE_BGRX565:
2498 return DRM_FORMAT_RGB565;
2499 default:
2500 case DISPPLANE_BGRX888:
2501 return DRM_FORMAT_XRGB8888;
2502 case DISPPLANE_RGBX888:
2503 return DRM_FORMAT_XBGR8888;
2504 case DISPPLANE_BGRX101010:
2505 return DRM_FORMAT_XRGB2101010;
2506 case DISPPLANE_RGBX101010:
2507 return DRM_FORMAT_XBGR2101010;
2508 }
2509 }
2510
2511 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2512 {
2513 switch (format) {
2514 case PLANE_CTL_FORMAT_RGB_565:
2515 return DRM_FORMAT_RGB565;
2516 default:
2517 case PLANE_CTL_FORMAT_XRGB_8888:
2518 if (rgb_order) {
2519 if (alpha)
2520 return DRM_FORMAT_ABGR8888;
2521 else
2522 return DRM_FORMAT_XBGR8888;
2523 } else {
2524 if (alpha)
2525 return DRM_FORMAT_ARGB8888;
2526 else
2527 return DRM_FORMAT_XRGB8888;
2528 }
2529 case PLANE_CTL_FORMAT_XRGB_2101010:
2530 if (rgb_order)
2531 return DRM_FORMAT_XBGR2101010;
2532 else
2533 return DRM_FORMAT_XRGB2101010;
2534 }
2535 }
2536
2537 static bool
2538 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2539 struct intel_initial_plane_config *plane_config)
2540 {
2541 struct drm_device *dev = crtc->base.dev;
2542 struct drm_i915_gem_object *obj = NULL;
2543 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2544 struct drm_framebuffer *fb = &plane_config->fb->base;
2545 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2546 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2547 PAGE_SIZE);
2548
2549 size_aligned -= base_aligned;
2550
2551 if (plane_config->size == 0)
2552 return false;
2553
2554 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2555 base_aligned,
2556 base_aligned,
2557 size_aligned);
2558 if (!obj)
2559 return false;
2560
2561 obj->tiling_mode = plane_config->tiling;
2562 if (obj->tiling_mode == I915_TILING_X)
2563 obj->stride = fb->pitches[0];
2564
2565 mode_cmd.pixel_format = fb->pixel_format;
2566 mode_cmd.width = fb->width;
2567 mode_cmd.height = fb->height;
2568 mode_cmd.pitches[0] = fb->pitches[0];
2569 mode_cmd.modifier[0] = fb->modifier[0];
2570 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2571
2572 mutex_lock(&dev->struct_mutex);
2573 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2574 &mode_cmd, obj)) {
2575 DRM_DEBUG_KMS("intel fb init failed\n");
2576 goto out_unref_obj;
2577 }
2578 mutex_unlock(&dev->struct_mutex);
2579
2580 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2581 return true;
2582
2583 out_unref_obj:
2584 drm_gem_object_unreference(&obj->base);
2585 mutex_unlock(&dev->struct_mutex);
2586 return false;
2587 }
2588
2589 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2590 static void
2591 update_state_fb(struct drm_plane *plane)
2592 {
2593 if (plane->fb == plane->state->fb)
2594 return;
2595
2596 if (plane->state->fb)
2597 drm_framebuffer_unreference(plane->state->fb);
2598 plane->state->fb = plane->fb;
2599 if (plane->state->fb)
2600 drm_framebuffer_reference(plane->state->fb);
2601 }
2602
2603 static void
2604 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2605 struct intel_initial_plane_config *plane_config)
2606 {
2607 struct drm_device *dev = intel_crtc->base.dev;
2608 struct drm_i915_private *dev_priv = dev->dev_private;
2609 struct drm_crtc *c;
2610 struct intel_crtc *i;
2611 struct drm_i915_gem_object *obj;
2612 struct drm_plane *primary = intel_crtc->base.primary;
2613 struct drm_framebuffer *fb;
2614
2615 if (!plane_config->fb)
2616 return;
2617
2618 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2619 fb = &plane_config->fb->base;
2620 goto valid_fb;
2621 }
2622
2623 kfree(plane_config->fb);
2624
2625 /*
2626 * Failed to alloc the obj, check to see if we should share
2627 * an fb with another CRTC instead
2628 */
2629 for_each_crtc(dev, c) {
2630 i = to_intel_crtc(c);
2631
2632 if (c == &intel_crtc->base)
2633 continue;
2634
2635 if (!i->active)
2636 continue;
2637
2638 fb = c->primary->fb;
2639 if (!fb)
2640 continue;
2641
2642 obj = intel_fb_obj(fb);
2643 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2644 drm_framebuffer_reference(fb);
2645 goto valid_fb;
2646 }
2647 }
2648
2649 return;
2650
2651 valid_fb:
2652 obj = intel_fb_obj(fb);
2653 if (obj->tiling_mode != I915_TILING_NONE)
2654 dev_priv->preserve_bios_swizzle = true;
2655
2656 primary->fb = fb;
2657 primary->state->crtc = &intel_crtc->base;
2658 primary->crtc = &intel_crtc->base;
2659 update_state_fb(primary);
2660 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2661 }
2662
2663 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2664 struct drm_framebuffer *fb,
2665 int x, int y)
2666 {
2667 struct drm_device *dev = crtc->dev;
2668 struct drm_i915_private *dev_priv = dev->dev_private;
2669 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2670 struct drm_i915_gem_object *obj;
2671 int plane = intel_crtc->plane;
2672 unsigned long linear_offset;
2673 u32 dspcntr;
2674 u32 reg = DSPCNTR(plane);
2675 int pixel_size;
2676
2677 if (!intel_crtc->primary_enabled) {
2678 I915_WRITE(reg, 0);
2679 if (INTEL_INFO(dev)->gen >= 4)
2680 I915_WRITE(DSPSURF(plane), 0);
2681 else
2682 I915_WRITE(DSPADDR(plane), 0);
2683 POSTING_READ(reg);
2684 return;
2685 }
2686
2687 obj = intel_fb_obj(fb);
2688 if (WARN_ON(obj == NULL))
2689 return;
2690
2691 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2692
2693 dspcntr = DISPPLANE_GAMMA_ENABLE;
2694
2695 dspcntr |= DISPLAY_PLANE_ENABLE;
2696
2697 if (INTEL_INFO(dev)->gen < 4) {
2698 if (intel_crtc->pipe == PIPE_B)
2699 dspcntr |= DISPPLANE_SEL_PIPE_B;
2700
2701 /* pipesrc and dspsize control the size that is scaled from,
2702 * which should always be the user's requested size.
2703 */
2704 I915_WRITE(DSPSIZE(plane),
2705 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2706 (intel_crtc->config->pipe_src_w - 1));
2707 I915_WRITE(DSPPOS(plane), 0);
2708 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2709 I915_WRITE(PRIMSIZE(plane),
2710 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2711 (intel_crtc->config->pipe_src_w - 1));
2712 I915_WRITE(PRIMPOS(plane), 0);
2713 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2714 }
2715
2716 switch (fb->pixel_format) {
2717 case DRM_FORMAT_C8:
2718 dspcntr |= DISPPLANE_8BPP;
2719 break;
2720 case DRM_FORMAT_XRGB1555:
2721 case DRM_FORMAT_ARGB1555:
2722 dspcntr |= DISPPLANE_BGRX555;
2723 break;
2724 case DRM_FORMAT_RGB565:
2725 dspcntr |= DISPPLANE_BGRX565;
2726 break;
2727 case DRM_FORMAT_XRGB8888:
2728 case DRM_FORMAT_ARGB8888:
2729 dspcntr |= DISPPLANE_BGRX888;
2730 break;
2731 case DRM_FORMAT_XBGR8888:
2732 case DRM_FORMAT_ABGR8888:
2733 dspcntr |= DISPPLANE_RGBX888;
2734 break;
2735 case DRM_FORMAT_XRGB2101010:
2736 case DRM_FORMAT_ARGB2101010:
2737 dspcntr |= DISPPLANE_BGRX101010;
2738 break;
2739 case DRM_FORMAT_XBGR2101010:
2740 case DRM_FORMAT_ABGR2101010:
2741 dspcntr |= DISPPLANE_RGBX101010;
2742 break;
2743 default:
2744 BUG();
2745 }
2746
2747 if (INTEL_INFO(dev)->gen >= 4 &&
2748 obj->tiling_mode != I915_TILING_NONE)
2749 dspcntr |= DISPPLANE_TILED;
2750
2751 if (IS_G4X(dev))
2752 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2753
2754 linear_offset = y * fb->pitches[0] + x * pixel_size;
2755
2756 if (INTEL_INFO(dev)->gen >= 4) {
2757 intel_crtc->dspaddr_offset =
2758 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2759 pixel_size,
2760 fb->pitches[0]);
2761 linear_offset -= intel_crtc->dspaddr_offset;
2762 } else {
2763 intel_crtc->dspaddr_offset = linear_offset;
2764 }
2765
2766 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2767 dspcntr |= DISPPLANE_ROTATE_180;
2768
2769 x += (intel_crtc->config->pipe_src_w - 1);
2770 y += (intel_crtc->config->pipe_src_h - 1);
2771
2772 /* Finding the last pixel of the last line of the display
2773 data and adding to linear_offset*/
2774 linear_offset +=
2775 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2776 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2777 }
2778
2779 I915_WRITE(reg, dspcntr);
2780
2781 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2782 if (INTEL_INFO(dev)->gen >= 4) {
2783 I915_WRITE(DSPSURF(plane),
2784 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2785 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2786 I915_WRITE(DSPLINOFF(plane), linear_offset);
2787 } else
2788 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2789 POSTING_READ(reg);
2790 }
2791
2792 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2793 struct drm_framebuffer *fb,
2794 int x, int y)
2795 {
2796 struct drm_device *dev = crtc->dev;
2797 struct drm_i915_private *dev_priv = dev->dev_private;
2798 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2799 struct drm_i915_gem_object *obj;
2800 int plane = intel_crtc->plane;
2801 unsigned long linear_offset;
2802 u32 dspcntr;
2803 u32 reg = DSPCNTR(plane);
2804 int pixel_size;
2805
2806 if (!intel_crtc->primary_enabled) {
2807 I915_WRITE(reg, 0);
2808 I915_WRITE(DSPSURF(plane), 0);
2809 POSTING_READ(reg);
2810 return;
2811 }
2812
2813 obj = intel_fb_obj(fb);
2814 if (WARN_ON(obj == NULL))
2815 return;
2816
2817 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2818
2819 dspcntr = DISPPLANE_GAMMA_ENABLE;
2820
2821 dspcntr |= DISPLAY_PLANE_ENABLE;
2822
2823 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2824 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2825
2826 switch (fb->pixel_format) {
2827 case DRM_FORMAT_C8:
2828 dspcntr |= DISPPLANE_8BPP;
2829 break;
2830 case DRM_FORMAT_RGB565:
2831 dspcntr |= DISPPLANE_BGRX565;
2832 break;
2833 case DRM_FORMAT_XRGB8888:
2834 case DRM_FORMAT_ARGB8888:
2835 dspcntr |= DISPPLANE_BGRX888;
2836 break;
2837 case DRM_FORMAT_XBGR8888:
2838 case DRM_FORMAT_ABGR8888:
2839 dspcntr |= DISPPLANE_RGBX888;
2840 break;
2841 case DRM_FORMAT_XRGB2101010:
2842 case DRM_FORMAT_ARGB2101010:
2843 dspcntr |= DISPPLANE_BGRX101010;
2844 break;
2845 case DRM_FORMAT_XBGR2101010:
2846 case DRM_FORMAT_ABGR2101010:
2847 dspcntr |= DISPPLANE_RGBX101010;
2848 break;
2849 default:
2850 BUG();
2851 }
2852
2853 if (obj->tiling_mode != I915_TILING_NONE)
2854 dspcntr |= DISPPLANE_TILED;
2855
2856 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2857 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2858
2859 linear_offset = y * fb->pitches[0] + x * pixel_size;
2860 intel_crtc->dspaddr_offset =
2861 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2862 pixel_size,
2863 fb->pitches[0]);
2864 linear_offset -= intel_crtc->dspaddr_offset;
2865 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2866 dspcntr |= DISPPLANE_ROTATE_180;
2867
2868 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2869 x += (intel_crtc->config->pipe_src_w - 1);
2870 y += (intel_crtc->config->pipe_src_h - 1);
2871
2872 /* Finding the last pixel of the last line of the display
2873 data and adding to linear_offset*/
2874 linear_offset +=
2875 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2876 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2877 }
2878 }
2879
2880 I915_WRITE(reg, dspcntr);
2881
2882 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2883 I915_WRITE(DSPSURF(plane),
2884 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2885 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2886 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2887 } else {
2888 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2889 I915_WRITE(DSPLINOFF(plane), linear_offset);
2890 }
2891 POSTING_READ(reg);
2892 }
2893
2894 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2895 uint32_t pixel_format)
2896 {
2897 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2898
2899 /*
2900 * The stride is either expressed as a multiple of 64 bytes
2901 * chunks for linear buffers or in number of tiles for tiled
2902 * buffers.
2903 */
2904 switch (fb_modifier) {
2905 case DRM_FORMAT_MOD_NONE:
2906 return 64;
2907 case I915_FORMAT_MOD_X_TILED:
2908 if (INTEL_INFO(dev)->gen == 2)
2909 return 128;
2910 return 512;
2911 case I915_FORMAT_MOD_Y_TILED:
2912 /* No need to check for old gens and Y tiling since this is
2913 * about the display engine and those will be blocked before
2914 * we get here.
2915 */
2916 return 128;
2917 case I915_FORMAT_MOD_Yf_TILED:
2918 if (bits_per_pixel == 8)
2919 return 64;
2920 else
2921 return 128;
2922 default:
2923 MISSING_CASE(fb_modifier);
2924 return 64;
2925 }
2926 }
2927
2928 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2929 struct drm_i915_gem_object *obj)
2930 {
2931 const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2932
2933 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2934 view = &i915_ggtt_view_rotated;
2935
2936 return i915_gem_obj_ggtt_offset_view(obj, view);
2937 }
2938
2939 static void skylake_update_primary_plane(struct drm_crtc *crtc,
2940 struct drm_framebuffer *fb,
2941 int x, int y)
2942 {
2943 struct drm_device *dev = crtc->dev;
2944 struct drm_i915_private *dev_priv = dev->dev_private;
2945 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2946 struct drm_i915_gem_object *obj;
2947 int pipe = intel_crtc->pipe;
2948 u32 plane_ctl, stride_div;
2949 unsigned long surf_addr;
2950
2951 if (!intel_crtc->primary_enabled) {
2952 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2953 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2954 POSTING_READ(PLANE_CTL(pipe, 0));
2955 return;
2956 }
2957
2958 plane_ctl = PLANE_CTL_ENABLE |
2959 PLANE_CTL_PIPE_GAMMA_ENABLE |
2960 PLANE_CTL_PIPE_CSC_ENABLE;
2961
2962 switch (fb->pixel_format) {
2963 case DRM_FORMAT_RGB565:
2964 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2965 break;
2966 case DRM_FORMAT_XRGB8888:
2967 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2968 break;
2969 case DRM_FORMAT_ARGB8888:
2970 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2971 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2972 break;
2973 case DRM_FORMAT_XBGR8888:
2974 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2975 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2976 break;
2977 case DRM_FORMAT_ABGR8888:
2978 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2979 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2980 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2981 break;
2982 case DRM_FORMAT_XRGB2101010:
2983 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2984 break;
2985 case DRM_FORMAT_XBGR2101010:
2986 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2987 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2988 break;
2989 default:
2990 BUG();
2991 }
2992
2993 switch (fb->modifier[0]) {
2994 case DRM_FORMAT_MOD_NONE:
2995 break;
2996 case I915_FORMAT_MOD_X_TILED:
2997 plane_ctl |= PLANE_CTL_TILED_X;
2998 break;
2999 case I915_FORMAT_MOD_Y_TILED:
3000 plane_ctl |= PLANE_CTL_TILED_Y;
3001 break;
3002 case I915_FORMAT_MOD_Yf_TILED:
3003 plane_ctl |= PLANE_CTL_TILED_YF;
3004 break;
3005 default:
3006 MISSING_CASE(fb->modifier[0]);
3007 }
3008
3009 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3010 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180))
3011 plane_ctl |= PLANE_CTL_ROTATE_180;
3012
3013 obj = intel_fb_obj(fb);
3014 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3015 fb->pixel_format);
3016 surf_addr = intel_plane_obj_offset(to_intel_plane(crtc->primary), obj);
3017
3018 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3019 I915_WRITE(PLANE_POS(pipe, 0), 0);
3020 I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
3021 I915_WRITE(PLANE_SIZE(pipe, 0),
3022 (intel_crtc->config->pipe_src_h - 1) << 16 |
3023 (intel_crtc->config->pipe_src_w - 1));
3024 I915_WRITE(PLANE_STRIDE(pipe, 0), fb->pitches[0] / stride_div);
3025 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3026
3027 POSTING_READ(PLANE_SURF(pipe, 0));
3028 }
3029
3030 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3031 static int
3032 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3033 int x, int y, enum mode_set_atomic state)
3034 {
3035 struct drm_device *dev = crtc->dev;
3036 struct drm_i915_private *dev_priv = dev->dev_private;
3037
3038 if (dev_priv->display.disable_fbc)
3039 dev_priv->display.disable_fbc(dev);
3040
3041 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3042
3043 return 0;
3044 }
3045
3046 static void intel_complete_page_flips(struct drm_device *dev)
3047 {
3048 struct drm_crtc *crtc;
3049
3050 for_each_crtc(dev, crtc) {
3051 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3052 enum plane plane = intel_crtc->plane;
3053
3054 intel_prepare_page_flip(dev, plane);
3055 intel_finish_page_flip_plane(dev, plane);
3056 }
3057 }
3058
3059 static void intel_update_primary_planes(struct drm_device *dev)
3060 {
3061 struct drm_i915_private *dev_priv = dev->dev_private;
3062 struct drm_crtc *crtc;
3063
3064 for_each_crtc(dev, crtc) {
3065 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3066
3067 drm_modeset_lock(&crtc->mutex, NULL);
3068 /*
3069 * FIXME: Once we have proper support for primary planes (and
3070 * disabling them without disabling the entire crtc) allow again
3071 * a NULL crtc->primary->fb.
3072 */
3073 if (intel_crtc->active && crtc->primary->fb)
3074 dev_priv->display.update_primary_plane(crtc,
3075 crtc->primary->fb,
3076 crtc->x,
3077 crtc->y);
3078 drm_modeset_unlock(&crtc->mutex);
3079 }
3080 }
3081
3082 void intel_prepare_reset(struct drm_device *dev)
3083 {
3084 struct drm_i915_private *dev_priv = to_i915(dev);
3085 struct intel_crtc *crtc;
3086
3087 /* no reset support for gen2 */
3088 if (IS_GEN2(dev))
3089 return;
3090
3091 /* reset doesn't touch the display */
3092 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3093 return;
3094
3095 drm_modeset_lock_all(dev);
3096
3097 /*
3098 * Disabling the crtcs gracefully seems nicer. Also the
3099 * g33 docs say we should at least disable all the planes.
3100 */
3101 for_each_intel_crtc(dev, crtc) {
3102 if (crtc->active)
3103 dev_priv->display.crtc_disable(&crtc->base);
3104 }
3105 }
3106
3107 void intel_finish_reset(struct drm_device *dev)
3108 {
3109 struct drm_i915_private *dev_priv = to_i915(dev);
3110
3111 /*
3112 * Flips in the rings will be nuked by the reset,
3113 * so complete all pending flips so that user space
3114 * will get its events and not get stuck.
3115 */
3116 intel_complete_page_flips(dev);
3117
3118 /* no reset support for gen2 */
3119 if (IS_GEN2(dev))
3120 return;
3121
3122 /* reset doesn't touch the display */
3123 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3124 /*
3125 * Flips in the rings have been nuked by the reset,
3126 * so update the base address of all primary
3127 * planes to the the last fb to make sure we're
3128 * showing the correct fb after a reset.
3129 */
3130 intel_update_primary_planes(dev);
3131 return;
3132 }
3133
3134 /*
3135 * The display has been reset as well,
3136 * so need a full re-initialization.
3137 */
3138 intel_runtime_pm_disable_interrupts(dev_priv);
3139 intel_runtime_pm_enable_interrupts(dev_priv);
3140
3141 intel_modeset_init_hw(dev);
3142
3143 spin_lock_irq(&dev_priv->irq_lock);
3144 if (dev_priv->display.hpd_irq_setup)
3145 dev_priv->display.hpd_irq_setup(dev);
3146 spin_unlock_irq(&dev_priv->irq_lock);
3147
3148 intel_modeset_setup_hw_state(dev, true);
3149
3150 intel_hpd_init(dev_priv);
3151
3152 drm_modeset_unlock_all(dev);
3153 }
3154
3155 static int
3156 intel_finish_fb(struct drm_framebuffer *old_fb)
3157 {
3158 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3159 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3160 bool was_interruptible = dev_priv->mm.interruptible;
3161 int ret;
3162
3163 /* Big Hammer, we also need to ensure that any pending
3164 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3165 * current scanout is retired before unpinning the old
3166 * framebuffer.
3167 *
3168 * This should only fail upon a hung GPU, in which case we
3169 * can safely continue.
3170 */
3171 dev_priv->mm.interruptible = false;
3172 ret = i915_gem_object_finish_gpu(obj);
3173 dev_priv->mm.interruptible = was_interruptible;
3174
3175 return ret;
3176 }
3177
3178 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3179 {
3180 struct drm_device *dev = crtc->dev;
3181 struct drm_i915_private *dev_priv = dev->dev_private;
3182 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3183 bool pending;
3184
3185 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3186 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3187 return false;
3188
3189 spin_lock_irq(&dev->event_lock);
3190 pending = to_intel_crtc(crtc)->unpin_work != NULL;
3191 spin_unlock_irq(&dev->event_lock);
3192
3193 return pending;
3194 }
3195
3196 static void intel_update_pipe_size(struct intel_crtc *crtc)
3197 {
3198 struct drm_device *dev = crtc->base.dev;
3199 struct drm_i915_private *dev_priv = dev->dev_private;
3200 const struct drm_display_mode *adjusted_mode;
3201
3202 if (!i915.fastboot)
3203 return;
3204
3205 /*
3206 * Update pipe size and adjust fitter if needed: the reason for this is
3207 * that in compute_mode_changes we check the native mode (not the pfit
3208 * mode) to see if we can flip rather than do a full mode set. In the
3209 * fastboot case, we'll flip, but if we don't update the pipesrc and
3210 * pfit state, we'll end up with a big fb scanned out into the wrong
3211 * sized surface.
3212 *
3213 * To fix this properly, we need to hoist the checks up into
3214 * compute_mode_changes (or above), check the actual pfit state and
3215 * whether the platform allows pfit disable with pipe active, and only
3216 * then update the pipesrc and pfit state, even on the flip path.
3217 */
3218
3219 adjusted_mode = &crtc->config->base.adjusted_mode;
3220
3221 I915_WRITE(PIPESRC(crtc->pipe),
3222 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3223 (adjusted_mode->crtc_vdisplay - 1));
3224 if (!crtc->config->pch_pfit.enabled &&
3225 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3226 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3227 I915_WRITE(PF_CTL(crtc->pipe), 0);
3228 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3229 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3230 }
3231 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3232 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3233 }
3234
3235 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3236 {
3237 struct drm_device *dev = crtc->dev;
3238 struct drm_i915_private *dev_priv = dev->dev_private;
3239 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3240 int pipe = intel_crtc->pipe;
3241 u32 reg, temp;
3242
3243 /* enable normal train */
3244 reg = FDI_TX_CTL(pipe);
3245 temp = I915_READ(reg);
3246 if (IS_IVYBRIDGE(dev)) {
3247 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3248 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3249 } else {
3250 temp &= ~FDI_LINK_TRAIN_NONE;
3251 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3252 }
3253 I915_WRITE(reg, temp);
3254
3255 reg = FDI_RX_CTL(pipe);
3256 temp = I915_READ(reg);
3257 if (HAS_PCH_CPT(dev)) {
3258 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3259 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3260 } else {
3261 temp &= ~FDI_LINK_TRAIN_NONE;
3262 temp |= FDI_LINK_TRAIN_NONE;
3263 }
3264 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3265
3266 /* wait one idle pattern time */
3267 POSTING_READ(reg);
3268 udelay(1000);
3269
3270 /* IVB wants error correction enabled */
3271 if (IS_IVYBRIDGE(dev))
3272 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3273 FDI_FE_ERRC_ENABLE);
3274 }
3275
3276 /* The FDI link training functions for ILK/Ibexpeak. */
3277 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3278 {
3279 struct drm_device *dev = crtc->dev;
3280 struct drm_i915_private *dev_priv = dev->dev_private;
3281 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3282 int pipe = intel_crtc->pipe;
3283 u32 reg, temp, tries;
3284
3285 /* FDI needs bits from pipe first */
3286 assert_pipe_enabled(dev_priv, pipe);
3287
3288 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3289 for train result */
3290 reg = FDI_RX_IMR(pipe);
3291 temp = I915_READ(reg);
3292 temp &= ~FDI_RX_SYMBOL_LOCK;
3293 temp &= ~FDI_RX_BIT_LOCK;
3294 I915_WRITE(reg, temp);
3295 I915_READ(reg);
3296 udelay(150);
3297
3298 /* enable CPU FDI TX and PCH FDI RX */
3299 reg = FDI_TX_CTL(pipe);
3300 temp = I915_READ(reg);
3301 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3302 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3303 temp &= ~FDI_LINK_TRAIN_NONE;
3304 temp |= FDI_LINK_TRAIN_PATTERN_1;
3305 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3306
3307 reg = FDI_RX_CTL(pipe);
3308 temp = I915_READ(reg);
3309 temp &= ~FDI_LINK_TRAIN_NONE;
3310 temp |= FDI_LINK_TRAIN_PATTERN_1;
3311 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3312
3313 POSTING_READ(reg);
3314 udelay(150);
3315
3316 /* Ironlake workaround, enable clock pointer after FDI enable*/
3317 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3318 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3319 FDI_RX_PHASE_SYNC_POINTER_EN);
3320
3321 reg = FDI_RX_IIR(pipe);
3322 for (tries = 0; tries < 5; tries++) {
3323 temp = I915_READ(reg);
3324 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3325
3326 if ((temp & FDI_RX_BIT_LOCK)) {
3327 DRM_DEBUG_KMS("FDI train 1 done.\n");
3328 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3329 break;
3330 }
3331 }
3332 if (tries == 5)
3333 DRM_ERROR("FDI train 1 fail!\n");
3334
3335 /* Train 2 */
3336 reg = FDI_TX_CTL(pipe);
3337 temp = I915_READ(reg);
3338 temp &= ~FDI_LINK_TRAIN_NONE;
3339 temp |= FDI_LINK_TRAIN_PATTERN_2;
3340 I915_WRITE(reg, temp);
3341
3342 reg = FDI_RX_CTL(pipe);
3343 temp = I915_READ(reg);
3344 temp &= ~FDI_LINK_TRAIN_NONE;
3345 temp |= FDI_LINK_TRAIN_PATTERN_2;
3346 I915_WRITE(reg, temp);
3347
3348 POSTING_READ(reg);
3349 udelay(150);
3350
3351 reg = FDI_RX_IIR(pipe);
3352 for (tries = 0; tries < 5; tries++) {
3353 temp = I915_READ(reg);
3354 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3355
3356 if (temp & FDI_RX_SYMBOL_LOCK) {
3357 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3358 DRM_DEBUG_KMS("FDI train 2 done.\n");
3359 break;
3360 }
3361 }
3362 if (tries == 5)
3363 DRM_ERROR("FDI train 2 fail!\n");
3364
3365 DRM_DEBUG_KMS("FDI train done\n");
3366
3367 }
3368
3369 static const int snb_b_fdi_train_param[] = {
3370 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3371 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3372 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3373 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3374 };
3375
3376 /* The FDI link training functions for SNB/Cougarpoint. */
3377 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3378 {
3379 struct drm_device *dev = crtc->dev;
3380 struct drm_i915_private *dev_priv = dev->dev_private;
3381 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3382 int pipe = intel_crtc->pipe;
3383 u32 reg, temp, i, retry;
3384
3385 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3386 for train result */
3387 reg = FDI_RX_IMR(pipe);
3388 temp = I915_READ(reg);
3389 temp &= ~FDI_RX_SYMBOL_LOCK;
3390 temp &= ~FDI_RX_BIT_LOCK;
3391 I915_WRITE(reg, temp);
3392
3393 POSTING_READ(reg);
3394 udelay(150);
3395
3396 /* enable CPU FDI TX and PCH FDI RX */
3397 reg = FDI_TX_CTL(pipe);
3398 temp = I915_READ(reg);
3399 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3400 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3401 temp &= ~FDI_LINK_TRAIN_NONE;
3402 temp |= FDI_LINK_TRAIN_PATTERN_1;
3403 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3404 /* SNB-B */
3405 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3406 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3407
3408 I915_WRITE(FDI_RX_MISC(pipe),
3409 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3410
3411 reg = FDI_RX_CTL(pipe);
3412 temp = I915_READ(reg);
3413 if (HAS_PCH_CPT(dev)) {
3414 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3415 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3416 } else {
3417 temp &= ~FDI_LINK_TRAIN_NONE;
3418 temp |= FDI_LINK_TRAIN_PATTERN_1;
3419 }
3420 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3421
3422 POSTING_READ(reg);
3423 udelay(150);
3424
3425 for (i = 0; i < 4; i++) {
3426 reg = FDI_TX_CTL(pipe);
3427 temp = I915_READ(reg);
3428 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3429 temp |= snb_b_fdi_train_param[i];
3430 I915_WRITE(reg, temp);
3431
3432 POSTING_READ(reg);
3433 udelay(500);
3434
3435 for (retry = 0; retry < 5; retry++) {
3436 reg = FDI_RX_IIR(pipe);
3437 temp = I915_READ(reg);
3438 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3439 if (temp & FDI_RX_BIT_LOCK) {
3440 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3441 DRM_DEBUG_KMS("FDI train 1 done.\n");
3442 break;
3443 }
3444 udelay(50);
3445 }
3446 if (retry < 5)
3447 break;
3448 }
3449 if (i == 4)
3450 DRM_ERROR("FDI train 1 fail!\n");
3451
3452 /* Train 2 */
3453 reg = FDI_TX_CTL(pipe);
3454 temp = I915_READ(reg);
3455 temp &= ~FDI_LINK_TRAIN_NONE;
3456 temp |= FDI_LINK_TRAIN_PATTERN_2;
3457 if (IS_GEN6(dev)) {
3458 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3459 /* SNB-B */
3460 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3461 }
3462 I915_WRITE(reg, temp);
3463
3464 reg = FDI_RX_CTL(pipe);
3465 temp = I915_READ(reg);
3466 if (HAS_PCH_CPT(dev)) {
3467 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3468 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3469 } else {
3470 temp &= ~FDI_LINK_TRAIN_NONE;
3471 temp |= FDI_LINK_TRAIN_PATTERN_2;
3472 }
3473 I915_WRITE(reg, temp);
3474
3475 POSTING_READ(reg);
3476 udelay(150);
3477
3478 for (i = 0; i < 4; i++) {
3479 reg = FDI_TX_CTL(pipe);
3480 temp = I915_READ(reg);
3481 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3482 temp |= snb_b_fdi_train_param[i];
3483 I915_WRITE(reg, temp);
3484
3485 POSTING_READ(reg);
3486 udelay(500);
3487
3488 for (retry = 0; retry < 5; retry++) {
3489 reg = FDI_RX_IIR(pipe);
3490 temp = I915_READ(reg);
3491 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3492 if (temp & FDI_RX_SYMBOL_LOCK) {
3493 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3494 DRM_DEBUG_KMS("FDI train 2 done.\n");
3495 break;
3496 }
3497 udelay(50);
3498 }
3499 if (retry < 5)
3500 break;
3501 }
3502 if (i == 4)
3503 DRM_ERROR("FDI train 2 fail!\n");
3504
3505 DRM_DEBUG_KMS("FDI train done.\n");
3506 }
3507
3508 /* Manual link training for Ivy Bridge A0 parts */
3509 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3510 {
3511 struct drm_device *dev = crtc->dev;
3512 struct drm_i915_private *dev_priv = dev->dev_private;
3513 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3514 int pipe = intel_crtc->pipe;
3515 u32 reg, temp, i, j;
3516
3517 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3518 for train result */
3519 reg = FDI_RX_IMR(pipe);
3520 temp = I915_READ(reg);
3521 temp &= ~FDI_RX_SYMBOL_LOCK;
3522 temp &= ~FDI_RX_BIT_LOCK;
3523 I915_WRITE(reg, temp);
3524
3525 POSTING_READ(reg);
3526 udelay(150);
3527
3528 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3529 I915_READ(FDI_RX_IIR(pipe)));
3530
3531 /* Try each vswing and preemphasis setting twice before moving on */
3532 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3533 /* disable first in case we need to retry */
3534 reg = FDI_TX_CTL(pipe);
3535 temp = I915_READ(reg);
3536 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3537 temp &= ~FDI_TX_ENABLE;
3538 I915_WRITE(reg, temp);
3539
3540 reg = FDI_RX_CTL(pipe);
3541 temp = I915_READ(reg);
3542 temp &= ~FDI_LINK_TRAIN_AUTO;
3543 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3544 temp &= ~FDI_RX_ENABLE;
3545 I915_WRITE(reg, temp);
3546
3547 /* enable CPU FDI TX and PCH FDI RX */
3548 reg = FDI_TX_CTL(pipe);
3549 temp = I915_READ(reg);
3550 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3551 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3552 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3553 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3554 temp |= snb_b_fdi_train_param[j/2];
3555 temp |= FDI_COMPOSITE_SYNC;
3556 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3557
3558 I915_WRITE(FDI_RX_MISC(pipe),
3559 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3560
3561 reg = FDI_RX_CTL(pipe);
3562 temp = I915_READ(reg);
3563 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3564 temp |= FDI_COMPOSITE_SYNC;
3565 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3566
3567 POSTING_READ(reg);
3568 udelay(1); /* should be 0.5us */
3569
3570 for (i = 0; i < 4; i++) {
3571 reg = FDI_RX_IIR(pipe);
3572 temp = I915_READ(reg);
3573 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3574
3575 if (temp & FDI_RX_BIT_LOCK ||
3576 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3577 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3578 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3579 i);
3580 break;
3581 }
3582 udelay(1); /* should be 0.5us */
3583 }
3584 if (i == 4) {
3585 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3586 continue;
3587 }
3588
3589 /* Train 2 */
3590 reg = FDI_TX_CTL(pipe);
3591 temp = I915_READ(reg);
3592 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3593 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3594 I915_WRITE(reg, temp);
3595
3596 reg = FDI_RX_CTL(pipe);
3597 temp = I915_READ(reg);
3598 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3599 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3600 I915_WRITE(reg, temp);
3601
3602 POSTING_READ(reg);
3603 udelay(2); /* should be 1.5us */
3604
3605 for (i = 0; i < 4; i++) {
3606 reg = FDI_RX_IIR(pipe);
3607 temp = I915_READ(reg);
3608 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3609
3610 if (temp & FDI_RX_SYMBOL_LOCK ||
3611 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3612 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3613 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3614 i);
3615 goto train_done;
3616 }
3617 udelay(2); /* should be 1.5us */
3618 }
3619 if (i == 4)
3620 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3621 }
3622
3623 train_done:
3624 DRM_DEBUG_KMS("FDI train done.\n");
3625 }
3626
3627 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3628 {
3629 struct drm_device *dev = intel_crtc->base.dev;
3630 struct drm_i915_private *dev_priv = dev->dev_private;
3631 int pipe = intel_crtc->pipe;
3632 u32 reg, temp;
3633
3634
3635 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3636 reg = FDI_RX_CTL(pipe);
3637 temp = I915_READ(reg);
3638 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3639 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3640 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3641 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3642
3643 POSTING_READ(reg);
3644 udelay(200);
3645
3646 /* Switch from Rawclk to PCDclk */
3647 temp = I915_READ(reg);
3648 I915_WRITE(reg, temp | FDI_PCDCLK);
3649
3650 POSTING_READ(reg);
3651 udelay(200);
3652
3653 /* Enable CPU FDI TX PLL, always on for Ironlake */
3654 reg = FDI_TX_CTL(pipe);
3655 temp = I915_READ(reg);
3656 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3657 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3658
3659 POSTING_READ(reg);
3660 udelay(100);
3661 }
3662 }
3663
3664 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3665 {
3666 struct drm_device *dev = intel_crtc->base.dev;
3667 struct drm_i915_private *dev_priv = dev->dev_private;
3668 int pipe = intel_crtc->pipe;
3669 u32 reg, temp;
3670
3671 /* Switch from PCDclk to Rawclk */
3672 reg = FDI_RX_CTL(pipe);
3673 temp = I915_READ(reg);
3674 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3675
3676 /* Disable CPU FDI TX PLL */
3677 reg = FDI_TX_CTL(pipe);
3678 temp = I915_READ(reg);
3679 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3680
3681 POSTING_READ(reg);
3682 udelay(100);
3683
3684 reg = FDI_RX_CTL(pipe);
3685 temp = I915_READ(reg);
3686 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3687
3688 /* Wait for the clocks to turn off. */
3689 POSTING_READ(reg);
3690 udelay(100);
3691 }
3692
3693 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3694 {
3695 struct drm_device *dev = crtc->dev;
3696 struct drm_i915_private *dev_priv = dev->dev_private;
3697 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3698 int pipe = intel_crtc->pipe;
3699 u32 reg, temp;
3700
3701 /* disable CPU FDI tx and PCH FDI rx */
3702 reg = FDI_TX_CTL(pipe);
3703 temp = I915_READ(reg);
3704 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3705 POSTING_READ(reg);
3706
3707 reg = FDI_RX_CTL(pipe);
3708 temp = I915_READ(reg);
3709 temp &= ~(0x7 << 16);
3710 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3711 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3712
3713 POSTING_READ(reg);
3714 udelay(100);
3715
3716 /* Ironlake workaround, disable clock pointer after downing FDI */
3717 if (HAS_PCH_IBX(dev))
3718 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3719
3720 /* still set train pattern 1 */
3721 reg = FDI_TX_CTL(pipe);
3722 temp = I915_READ(reg);
3723 temp &= ~FDI_LINK_TRAIN_NONE;
3724 temp |= FDI_LINK_TRAIN_PATTERN_1;
3725 I915_WRITE(reg, temp);
3726
3727 reg = FDI_RX_CTL(pipe);
3728 temp = I915_READ(reg);
3729 if (HAS_PCH_CPT(dev)) {
3730 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3731 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3732 } else {
3733 temp &= ~FDI_LINK_TRAIN_NONE;
3734 temp |= FDI_LINK_TRAIN_PATTERN_1;
3735 }
3736 /* BPC in FDI rx is consistent with that in PIPECONF */
3737 temp &= ~(0x07 << 16);
3738 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3739 I915_WRITE(reg, temp);
3740
3741 POSTING_READ(reg);
3742 udelay(100);
3743 }
3744
3745 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3746 {
3747 struct intel_crtc *crtc;
3748
3749 /* Note that we don't need to be called with mode_config.lock here
3750 * as our list of CRTC objects is static for the lifetime of the
3751 * device and so cannot disappear as we iterate. Similarly, we can
3752 * happily treat the predicates as racy, atomic checks as userspace
3753 * cannot claim and pin a new fb without at least acquring the
3754 * struct_mutex and so serialising with us.
3755 */
3756 for_each_intel_crtc(dev, crtc) {
3757 if (atomic_read(&crtc->unpin_work_count) == 0)
3758 continue;
3759
3760 if (crtc->unpin_work)
3761 intel_wait_for_vblank(dev, crtc->pipe);
3762
3763 return true;
3764 }
3765
3766 return false;
3767 }
3768
3769 static void page_flip_completed(struct intel_crtc *intel_crtc)
3770 {
3771 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3772 struct intel_unpin_work *work = intel_crtc->unpin_work;
3773
3774 /* ensure that the unpin work is consistent wrt ->pending. */
3775 smp_rmb();
3776 intel_crtc->unpin_work = NULL;
3777
3778 if (work->event)
3779 drm_send_vblank_event(intel_crtc->base.dev,
3780 intel_crtc->pipe,
3781 work->event);
3782
3783 drm_crtc_vblank_put(&intel_crtc->base);
3784
3785 wake_up_all(&dev_priv->pending_flip_queue);
3786 queue_work(dev_priv->wq, &work->work);
3787
3788 trace_i915_flip_complete(intel_crtc->plane,
3789 work->pending_flip_obj);
3790 }
3791
3792 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3793 {
3794 struct drm_device *dev = crtc->dev;
3795 struct drm_i915_private *dev_priv = dev->dev_private;
3796
3797 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3798 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3799 !intel_crtc_has_pending_flip(crtc),
3800 60*HZ) == 0)) {
3801 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3802
3803 spin_lock_irq(&dev->event_lock);
3804 if (intel_crtc->unpin_work) {
3805 WARN_ONCE(1, "Removing stuck page flip\n");
3806 page_flip_completed(intel_crtc);
3807 }
3808 spin_unlock_irq(&dev->event_lock);
3809 }
3810
3811 if (crtc->primary->fb) {
3812 mutex_lock(&dev->struct_mutex);
3813 intel_finish_fb(crtc->primary->fb);
3814 mutex_unlock(&dev->struct_mutex);
3815 }
3816 }
3817
3818 /* Program iCLKIP clock to the desired frequency */
3819 static void lpt_program_iclkip(struct drm_crtc *crtc)
3820 {
3821 struct drm_device *dev = crtc->dev;
3822 struct drm_i915_private *dev_priv = dev->dev_private;
3823 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3824 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3825 u32 temp;
3826
3827 mutex_lock(&dev_priv->dpio_lock);
3828
3829 /* It is necessary to ungate the pixclk gate prior to programming
3830 * the divisors, and gate it back when it is done.
3831 */
3832 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3833
3834 /* Disable SSCCTL */
3835 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3836 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3837 SBI_SSCCTL_DISABLE,
3838 SBI_ICLK);
3839
3840 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3841 if (clock == 20000) {
3842 auxdiv = 1;
3843 divsel = 0x41;
3844 phaseinc = 0x20;
3845 } else {
3846 /* The iCLK virtual clock root frequency is in MHz,
3847 * but the adjusted_mode->crtc_clock in in KHz. To get the
3848 * divisors, it is necessary to divide one by another, so we
3849 * convert the virtual clock precision to KHz here for higher
3850 * precision.
3851 */
3852 u32 iclk_virtual_root_freq = 172800 * 1000;
3853 u32 iclk_pi_range = 64;
3854 u32 desired_divisor, msb_divisor_value, pi_value;
3855
3856 desired_divisor = (iclk_virtual_root_freq / clock);
3857 msb_divisor_value = desired_divisor / iclk_pi_range;
3858 pi_value = desired_divisor % iclk_pi_range;
3859
3860 auxdiv = 0;
3861 divsel = msb_divisor_value - 2;
3862 phaseinc = pi_value;
3863 }
3864
3865 /* This should not happen with any sane values */
3866 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3867 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3868 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3869 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3870
3871 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3872 clock,
3873 auxdiv,
3874 divsel,
3875 phasedir,
3876 phaseinc);
3877
3878 /* Program SSCDIVINTPHASE6 */
3879 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3880 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3881 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3882 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3883 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3884 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3885 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3886 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3887
3888 /* Program SSCAUXDIV */
3889 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3890 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3891 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3892 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3893
3894 /* Enable modulator and associated divider */
3895 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3896 temp &= ~SBI_SSCCTL_DISABLE;
3897 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3898
3899 /* Wait for initialization time */
3900 udelay(24);
3901
3902 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3903
3904 mutex_unlock(&dev_priv->dpio_lock);
3905 }
3906
3907 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3908 enum pipe pch_transcoder)
3909 {
3910 struct drm_device *dev = crtc->base.dev;
3911 struct drm_i915_private *dev_priv = dev->dev_private;
3912 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
3913
3914 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3915 I915_READ(HTOTAL(cpu_transcoder)));
3916 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3917 I915_READ(HBLANK(cpu_transcoder)));
3918 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3919 I915_READ(HSYNC(cpu_transcoder)));
3920
3921 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3922 I915_READ(VTOTAL(cpu_transcoder)));
3923 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3924 I915_READ(VBLANK(cpu_transcoder)));
3925 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3926 I915_READ(VSYNC(cpu_transcoder)));
3927 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3928 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3929 }
3930
3931 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
3932 {
3933 struct drm_i915_private *dev_priv = dev->dev_private;
3934 uint32_t temp;
3935
3936 temp = I915_READ(SOUTH_CHICKEN1);
3937 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
3938 return;
3939
3940 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3941 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3942
3943 temp &= ~FDI_BC_BIFURCATION_SELECT;
3944 if (enable)
3945 temp |= FDI_BC_BIFURCATION_SELECT;
3946
3947 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
3948 I915_WRITE(SOUTH_CHICKEN1, temp);
3949 POSTING_READ(SOUTH_CHICKEN1);
3950 }
3951
3952 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3953 {
3954 struct drm_device *dev = intel_crtc->base.dev;
3955
3956 switch (intel_crtc->pipe) {
3957 case PIPE_A:
3958 break;
3959 case PIPE_B:
3960 if (intel_crtc->config->fdi_lanes > 2)
3961 cpt_set_fdi_bc_bifurcation(dev, false);
3962 else
3963 cpt_set_fdi_bc_bifurcation(dev, true);
3964
3965 break;
3966 case PIPE_C:
3967 cpt_set_fdi_bc_bifurcation(dev, true);
3968
3969 break;
3970 default:
3971 BUG();
3972 }
3973 }
3974
3975 /*
3976 * Enable PCH resources required for PCH ports:
3977 * - PCH PLLs
3978 * - FDI training & RX/TX
3979 * - update transcoder timings
3980 * - DP transcoding bits
3981 * - transcoder
3982 */
3983 static void ironlake_pch_enable(struct drm_crtc *crtc)
3984 {
3985 struct drm_device *dev = crtc->dev;
3986 struct drm_i915_private *dev_priv = dev->dev_private;
3987 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3988 int pipe = intel_crtc->pipe;
3989 u32 reg, temp;
3990
3991 assert_pch_transcoder_disabled(dev_priv, pipe);
3992
3993 if (IS_IVYBRIDGE(dev))
3994 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3995
3996 /* Write the TU size bits before fdi link training, so that error
3997 * detection works. */
3998 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3999 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4000
4001 /* For PCH output, training FDI link */
4002 dev_priv->display.fdi_link_train(crtc);
4003
4004 /* We need to program the right clock selection before writing the pixel
4005 * mutliplier into the DPLL. */
4006 if (HAS_PCH_CPT(dev)) {
4007 u32 sel;
4008
4009 temp = I915_READ(PCH_DPLL_SEL);
4010 temp |= TRANS_DPLL_ENABLE(pipe);
4011 sel = TRANS_DPLLB_SEL(pipe);
4012 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4013 temp |= sel;
4014 else
4015 temp &= ~sel;
4016 I915_WRITE(PCH_DPLL_SEL, temp);
4017 }
4018
4019 /* XXX: pch pll's can be enabled any time before we enable the PCH
4020 * transcoder, and we actually should do this to not upset any PCH
4021 * transcoder that already use the clock when we share it.
4022 *
4023 * Note that enable_shared_dpll tries to do the right thing, but
4024 * get_shared_dpll unconditionally resets the pll - we need that to have
4025 * the right LVDS enable sequence. */
4026 intel_enable_shared_dpll(intel_crtc);
4027
4028 /* set transcoder timing, panel must allow it */
4029 assert_panel_unlocked(dev_priv, pipe);
4030 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4031
4032 intel_fdi_normal_train(crtc);
4033
4034 /* For PCH DP, enable TRANS_DP_CTL */
4035 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4036 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4037 reg = TRANS_DP_CTL(pipe);
4038 temp = I915_READ(reg);
4039 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4040 TRANS_DP_SYNC_MASK |
4041 TRANS_DP_BPC_MASK);
4042 temp |= (TRANS_DP_OUTPUT_ENABLE |
4043 TRANS_DP_ENH_FRAMING);
4044 temp |= bpc << 9; /* same format but at 11:9 */
4045
4046 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4047 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4048 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4049 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4050
4051 switch (intel_trans_dp_port_sel(crtc)) {
4052 case PCH_DP_B:
4053 temp |= TRANS_DP_PORT_SEL_B;
4054 break;
4055 case PCH_DP_C:
4056 temp |= TRANS_DP_PORT_SEL_C;
4057 break;
4058 case PCH_DP_D:
4059 temp |= TRANS_DP_PORT_SEL_D;
4060 break;
4061 default:
4062 BUG();
4063 }
4064
4065 I915_WRITE(reg, temp);
4066 }
4067
4068 ironlake_enable_pch_transcoder(dev_priv, pipe);
4069 }
4070
4071 static void lpt_pch_enable(struct drm_crtc *crtc)
4072 {
4073 struct drm_device *dev = crtc->dev;
4074 struct drm_i915_private *dev_priv = dev->dev_private;
4075 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4076 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4077
4078 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4079
4080 lpt_program_iclkip(crtc);
4081
4082 /* Set transcoder timing. */
4083 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4084
4085 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4086 }
4087
4088 void intel_put_shared_dpll(struct intel_crtc *crtc)
4089 {
4090 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4091
4092 if (pll == NULL)
4093 return;
4094
4095 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
4096 WARN(1, "bad %s crtc mask\n", pll->name);
4097 return;
4098 }
4099
4100 pll->config.crtc_mask &= ~(1 << crtc->pipe);
4101 if (pll->config.crtc_mask == 0) {
4102 WARN_ON(pll->on);
4103 WARN_ON(pll->active);
4104 }
4105
4106 crtc->config->shared_dpll = DPLL_ID_PRIVATE;
4107 }
4108
4109 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4110 struct intel_crtc_state *crtc_state)
4111 {
4112 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4113 struct intel_shared_dpll *pll;
4114 enum intel_dpll_id i;
4115
4116 if (HAS_PCH_IBX(dev_priv->dev)) {
4117 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4118 i = (enum intel_dpll_id) crtc->pipe;
4119 pll = &dev_priv->shared_dplls[i];
4120
4121 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4122 crtc->base.base.id, pll->name);
4123
4124 WARN_ON(pll->new_config->crtc_mask);
4125
4126 goto found;
4127 }
4128
4129 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4130 pll = &dev_priv->shared_dplls[i];
4131
4132 /* Only want to check enabled timings first */
4133 if (pll->new_config->crtc_mask == 0)
4134 continue;
4135
4136 if (memcmp(&crtc_state->dpll_hw_state,
4137 &pll->new_config->hw_state,
4138 sizeof(pll->new_config->hw_state)) == 0) {
4139 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4140 crtc->base.base.id, pll->name,
4141 pll->new_config->crtc_mask,
4142 pll->active);
4143 goto found;
4144 }
4145 }
4146
4147 /* Ok no matching timings, maybe there's a free one? */
4148 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4149 pll = &dev_priv->shared_dplls[i];
4150 if (pll->new_config->crtc_mask == 0) {
4151 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4152 crtc->base.base.id, pll->name);
4153 goto found;
4154 }
4155 }
4156
4157 return NULL;
4158
4159 found:
4160 if (pll->new_config->crtc_mask == 0)
4161 pll->new_config->hw_state = crtc_state->dpll_hw_state;
4162
4163 crtc_state->shared_dpll = i;
4164 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4165 pipe_name(crtc->pipe));
4166
4167 pll->new_config->crtc_mask |= 1 << crtc->pipe;
4168
4169 return pll;
4170 }
4171
4172 /**
4173 * intel_shared_dpll_start_config - start a new PLL staged config
4174 * @dev_priv: DRM device
4175 * @clear_pipes: mask of pipes that will have their PLLs freed
4176 *
4177 * Starts a new PLL staged config, copying the current config but
4178 * releasing the references of pipes specified in clear_pipes.
4179 */
4180 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
4181 unsigned clear_pipes)
4182 {
4183 struct intel_shared_dpll *pll;
4184 enum intel_dpll_id i;
4185
4186 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4187 pll = &dev_priv->shared_dplls[i];
4188
4189 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4190 GFP_KERNEL);
4191 if (!pll->new_config)
4192 goto cleanup;
4193
4194 pll->new_config->crtc_mask &= ~clear_pipes;
4195 }
4196
4197 return 0;
4198
4199 cleanup:
4200 while (--i >= 0) {
4201 pll = &dev_priv->shared_dplls[i];
4202 kfree(pll->new_config);
4203 pll->new_config = NULL;
4204 }
4205
4206 return -ENOMEM;
4207 }
4208
4209 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4210 {
4211 struct intel_shared_dpll *pll;
4212 enum intel_dpll_id i;
4213
4214 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4215 pll = &dev_priv->shared_dplls[i];
4216
4217 WARN_ON(pll->new_config == &pll->config);
4218
4219 pll->config = *pll->new_config;
4220 kfree(pll->new_config);
4221 pll->new_config = NULL;
4222 }
4223 }
4224
4225 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4226 {
4227 struct intel_shared_dpll *pll;
4228 enum intel_dpll_id i;
4229
4230 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4231 pll = &dev_priv->shared_dplls[i];
4232
4233 WARN_ON(pll->new_config == &pll->config);
4234
4235 kfree(pll->new_config);
4236 pll->new_config = NULL;
4237 }
4238 }
4239
4240 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4241 {
4242 struct drm_i915_private *dev_priv = dev->dev_private;
4243 int dslreg = PIPEDSL(pipe);
4244 u32 temp;
4245
4246 temp = I915_READ(dslreg);
4247 udelay(500);
4248 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4249 if (wait_for(I915_READ(dslreg) != temp, 5))
4250 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4251 }
4252 }
4253
4254 static void skylake_pfit_enable(struct intel_crtc *crtc)
4255 {
4256 struct drm_device *dev = crtc->base.dev;
4257 struct drm_i915_private *dev_priv = dev->dev_private;
4258 int pipe = crtc->pipe;
4259
4260 if (crtc->config->pch_pfit.enabled) {
4261 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
4262 I915_WRITE(PS_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4263 I915_WRITE(PS_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4264 }
4265 }
4266
4267 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4268 {
4269 struct drm_device *dev = crtc->base.dev;
4270 struct drm_i915_private *dev_priv = dev->dev_private;
4271 int pipe = crtc->pipe;
4272
4273 if (crtc->config->pch_pfit.enabled) {
4274 /* Force use of hard-coded filter coefficients
4275 * as some pre-programmed values are broken,
4276 * e.g. x201.
4277 */
4278 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4279 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4280 PF_PIPE_SEL_IVB(pipe));
4281 else
4282 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4283 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4284 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4285 }
4286 }
4287
4288 static void intel_enable_sprite_planes(struct drm_crtc *crtc)
4289 {
4290 struct drm_device *dev = crtc->dev;
4291 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4292 struct drm_plane *plane;
4293 struct intel_plane *intel_plane;
4294
4295 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4296 intel_plane = to_intel_plane(plane);
4297 if (intel_plane->pipe == pipe)
4298 intel_plane_restore(&intel_plane->base);
4299 }
4300 }
4301
4302 /*
4303 * Disable a plane internally without actually modifying the plane's state.
4304 * This will allow us to easily restore the plane later by just reprogramming
4305 * its state.
4306 */
4307 static void disable_plane_internal(struct drm_plane *plane)
4308 {
4309 struct intel_plane *intel_plane = to_intel_plane(plane);
4310 struct drm_plane_state *state =
4311 plane->funcs->atomic_duplicate_state(plane);
4312 struct intel_plane_state *intel_state = to_intel_plane_state(state);
4313
4314 intel_state->visible = false;
4315 intel_plane->commit_plane(plane, intel_state);
4316
4317 intel_plane_destroy_state(plane, state);
4318 }
4319
4320 static void intel_disable_sprite_planes(struct drm_crtc *crtc)
4321 {
4322 struct drm_device *dev = crtc->dev;
4323 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4324 struct drm_plane *plane;
4325 struct intel_plane *intel_plane;
4326
4327 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4328 intel_plane = to_intel_plane(plane);
4329 if (plane->fb && intel_plane->pipe == pipe)
4330 disable_plane_internal(plane);
4331 }
4332 }
4333
4334 void hsw_enable_ips(struct intel_crtc *crtc)
4335 {
4336 struct drm_device *dev = crtc->base.dev;
4337 struct drm_i915_private *dev_priv = dev->dev_private;
4338
4339 if (!crtc->config->ips_enabled)
4340 return;
4341
4342 /* We can only enable IPS after we enable a plane and wait for a vblank */
4343 intel_wait_for_vblank(dev, crtc->pipe);
4344
4345 assert_plane_enabled(dev_priv, crtc->plane);
4346 if (IS_BROADWELL(dev)) {
4347 mutex_lock(&dev_priv->rps.hw_lock);
4348 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4349 mutex_unlock(&dev_priv->rps.hw_lock);
4350 /* Quoting Art Runyan: "its not safe to expect any particular
4351 * value in IPS_CTL bit 31 after enabling IPS through the
4352 * mailbox." Moreover, the mailbox may return a bogus state,
4353 * so we need to just enable it and continue on.
4354 */
4355 } else {
4356 I915_WRITE(IPS_CTL, IPS_ENABLE);
4357 /* The bit only becomes 1 in the next vblank, so this wait here
4358 * is essentially intel_wait_for_vblank. If we don't have this
4359 * and don't wait for vblanks until the end of crtc_enable, then
4360 * the HW state readout code will complain that the expected
4361 * IPS_CTL value is not the one we read. */
4362 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4363 DRM_ERROR("Timed out waiting for IPS enable\n");
4364 }
4365 }
4366
4367 void hsw_disable_ips(struct intel_crtc *crtc)
4368 {
4369 struct drm_device *dev = crtc->base.dev;
4370 struct drm_i915_private *dev_priv = dev->dev_private;
4371
4372 if (!crtc->config->ips_enabled)
4373 return;
4374
4375 assert_plane_enabled(dev_priv, crtc->plane);
4376 if (IS_BROADWELL(dev)) {
4377 mutex_lock(&dev_priv->rps.hw_lock);
4378 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4379 mutex_unlock(&dev_priv->rps.hw_lock);
4380 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4381 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4382 DRM_ERROR("Timed out waiting for IPS disable\n");
4383 } else {
4384 I915_WRITE(IPS_CTL, 0);
4385 POSTING_READ(IPS_CTL);
4386 }
4387
4388 /* We need to wait for a vblank before we can disable the plane. */
4389 intel_wait_for_vblank(dev, crtc->pipe);
4390 }
4391
4392 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4393 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4394 {
4395 struct drm_device *dev = crtc->dev;
4396 struct drm_i915_private *dev_priv = dev->dev_private;
4397 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4398 enum pipe pipe = intel_crtc->pipe;
4399 int palreg = PALETTE(pipe);
4400 int i;
4401 bool reenable_ips = false;
4402
4403 /* The clocks have to be on to load the palette. */
4404 if (!crtc->state->enable || !intel_crtc->active)
4405 return;
4406
4407 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4408 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4409 assert_dsi_pll_enabled(dev_priv);
4410 else
4411 assert_pll_enabled(dev_priv, pipe);
4412 }
4413
4414 /* use legacy palette for Ironlake */
4415 if (!HAS_GMCH_DISPLAY(dev))
4416 palreg = LGC_PALETTE(pipe);
4417
4418 /* Workaround : Do not read or write the pipe palette/gamma data while
4419 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4420 */
4421 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4422 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4423 GAMMA_MODE_MODE_SPLIT)) {
4424 hsw_disable_ips(intel_crtc);
4425 reenable_ips = true;
4426 }
4427
4428 for (i = 0; i < 256; i++) {
4429 I915_WRITE(palreg + 4 * i,
4430 (intel_crtc->lut_r[i] << 16) |
4431 (intel_crtc->lut_g[i] << 8) |
4432 intel_crtc->lut_b[i]);
4433 }
4434
4435 if (reenable_ips)
4436 hsw_enable_ips(intel_crtc);
4437 }
4438
4439 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4440 {
4441 if (!enable && intel_crtc->overlay) {
4442 struct drm_device *dev = intel_crtc->base.dev;
4443 struct drm_i915_private *dev_priv = dev->dev_private;
4444
4445 mutex_lock(&dev->struct_mutex);
4446 dev_priv->mm.interruptible = false;
4447 (void) intel_overlay_switch_off(intel_crtc->overlay);
4448 dev_priv->mm.interruptible = true;
4449 mutex_unlock(&dev->struct_mutex);
4450 }
4451
4452 /* Let userspace switch the overlay on again. In most cases userspace
4453 * has to recompute where to put it anyway.
4454 */
4455 }
4456
4457 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4458 {
4459 struct drm_device *dev = crtc->dev;
4460 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4461 int pipe = intel_crtc->pipe;
4462
4463 intel_enable_primary_hw_plane(crtc->primary, crtc);
4464 intel_enable_sprite_planes(crtc);
4465 intel_crtc_update_cursor(crtc, true);
4466 intel_crtc_dpms_overlay(intel_crtc, true);
4467
4468 hsw_enable_ips(intel_crtc);
4469
4470 mutex_lock(&dev->struct_mutex);
4471 intel_fbc_update(dev);
4472 mutex_unlock(&dev->struct_mutex);
4473
4474 /*
4475 * FIXME: Once we grow proper nuclear flip support out of this we need
4476 * to compute the mask of flip planes precisely. For the time being
4477 * consider this a flip from a NULL plane.
4478 */
4479 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4480 }
4481
4482 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4483 {
4484 struct drm_device *dev = crtc->dev;
4485 struct drm_i915_private *dev_priv = dev->dev_private;
4486 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4487 int pipe = intel_crtc->pipe;
4488
4489 intel_crtc_wait_for_pending_flips(crtc);
4490
4491 if (dev_priv->fbc.crtc == intel_crtc)
4492 intel_fbc_disable(dev);
4493
4494 hsw_disable_ips(intel_crtc);
4495
4496 intel_crtc_dpms_overlay(intel_crtc, false);
4497 intel_crtc_update_cursor(crtc, false);
4498 intel_disable_sprite_planes(crtc);
4499 intel_disable_primary_hw_plane(crtc->primary, crtc);
4500
4501 /*
4502 * FIXME: Once we grow proper nuclear flip support out of this we need
4503 * to compute the mask of flip planes precisely. For the time being
4504 * consider this a flip to a NULL plane.
4505 */
4506 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4507 }
4508
4509 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4510 {
4511 struct drm_device *dev = crtc->dev;
4512 struct drm_i915_private *dev_priv = dev->dev_private;
4513 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4514 struct intel_encoder *encoder;
4515 int pipe = intel_crtc->pipe;
4516
4517 WARN_ON(!crtc->state->enable);
4518
4519 if (intel_crtc->active)
4520 return;
4521
4522 if (intel_crtc->config->has_pch_encoder)
4523 intel_prepare_shared_dpll(intel_crtc);
4524
4525 if (intel_crtc->config->has_dp_encoder)
4526 intel_dp_set_m_n(intel_crtc, M1_N1);
4527
4528 intel_set_pipe_timings(intel_crtc);
4529
4530 if (intel_crtc->config->has_pch_encoder) {
4531 intel_cpu_transcoder_set_m_n(intel_crtc,
4532 &intel_crtc->config->fdi_m_n, NULL);
4533 }
4534
4535 ironlake_set_pipeconf(crtc);
4536
4537 intel_crtc->active = true;
4538
4539 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4540 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4541
4542 for_each_encoder_on_crtc(dev, crtc, encoder)
4543 if (encoder->pre_enable)
4544 encoder->pre_enable(encoder);
4545
4546 if (intel_crtc->config->has_pch_encoder) {
4547 /* Note: FDI PLL enabling _must_ be done before we enable the
4548 * cpu pipes, hence this is separate from all the other fdi/pch
4549 * enabling. */
4550 ironlake_fdi_pll_enable(intel_crtc);
4551 } else {
4552 assert_fdi_tx_disabled(dev_priv, pipe);
4553 assert_fdi_rx_disabled(dev_priv, pipe);
4554 }
4555
4556 ironlake_pfit_enable(intel_crtc);
4557
4558 /*
4559 * On ILK+ LUT must be loaded before the pipe is running but with
4560 * clocks enabled
4561 */
4562 intel_crtc_load_lut(crtc);
4563
4564 intel_update_watermarks(crtc);
4565 intel_enable_pipe(intel_crtc);
4566
4567 if (intel_crtc->config->has_pch_encoder)
4568 ironlake_pch_enable(crtc);
4569
4570 assert_vblank_disabled(crtc);
4571 drm_crtc_vblank_on(crtc);
4572
4573 for_each_encoder_on_crtc(dev, crtc, encoder)
4574 encoder->enable(encoder);
4575
4576 if (HAS_PCH_CPT(dev))
4577 cpt_verify_modeset(dev, intel_crtc->pipe);
4578
4579 intel_crtc_enable_planes(crtc);
4580 }
4581
4582 /* IPS only exists on ULT machines and is tied to pipe A. */
4583 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4584 {
4585 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4586 }
4587
4588 /*
4589 * This implements the workaround described in the "notes" section of the mode
4590 * set sequence documentation. When going from no pipes or single pipe to
4591 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4592 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4593 */
4594 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4595 {
4596 struct drm_device *dev = crtc->base.dev;
4597 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4598
4599 /* We want to get the other_active_crtc only if there's only 1 other
4600 * active crtc. */
4601 for_each_intel_crtc(dev, crtc_it) {
4602 if (!crtc_it->active || crtc_it == crtc)
4603 continue;
4604
4605 if (other_active_crtc)
4606 return;
4607
4608 other_active_crtc = crtc_it;
4609 }
4610 if (!other_active_crtc)
4611 return;
4612
4613 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4614 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4615 }
4616
4617 static void haswell_crtc_enable(struct drm_crtc *crtc)
4618 {
4619 struct drm_device *dev = crtc->dev;
4620 struct drm_i915_private *dev_priv = dev->dev_private;
4621 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4622 struct intel_encoder *encoder;
4623 int pipe = intel_crtc->pipe;
4624
4625 WARN_ON(!crtc->state->enable);
4626
4627 if (intel_crtc->active)
4628 return;
4629
4630 if (intel_crtc_to_shared_dpll(intel_crtc))
4631 intel_enable_shared_dpll(intel_crtc);
4632
4633 if (intel_crtc->config->has_dp_encoder)
4634 intel_dp_set_m_n(intel_crtc, M1_N1);
4635
4636 intel_set_pipe_timings(intel_crtc);
4637
4638 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4639 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4640 intel_crtc->config->pixel_multiplier - 1);
4641 }
4642
4643 if (intel_crtc->config->has_pch_encoder) {
4644 intel_cpu_transcoder_set_m_n(intel_crtc,
4645 &intel_crtc->config->fdi_m_n, NULL);
4646 }
4647
4648 haswell_set_pipeconf(crtc);
4649
4650 intel_set_pipe_csc(crtc);
4651
4652 intel_crtc->active = true;
4653
4654 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4655 for_each_encoder_on_crtc(dev, crtc, encoder)
4656 if (encoder->pre_enable)
4657 encoder->pre_enable(encoder);
4658
4659 if (intel_crtc->config->has_pch_encoder) {
4660 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4661 true);
4662 dev_priv->display.fdi_link_train(crtc);
4663 }
4664
4665 intel_ddi_enable_pipe_clock(intel_crtc);
4666
4667 if (IS_SKYLAKE(dev))
4668 skylake_pfit_enable(intel_crtc);
4669 else
4670 ironlake_pfit_enable(intel_crtc);
4671
4672 /*
4673 * On ILK+ LUT must be loaded before the pipe is running but with
4674 * clocks enabled
4675 */
4676 intel_crtc_load_lut(crtc);
4677
4678 intel_ddi_set_pipe_settings(crtc);
4679 intel_ddi_enable_transcoder_func(crtc);
4680
4681 intel_update_watermarks(crtc);
4682 intel_enable_pipe(intel_crtc);
4683
4684 if (intel_crtc->config->has_pch_encoder)
4685 lpt_pch_enable(crtc);
4686
4687 if (intel_crtc->config->dp_encoder_is_mst)
4688 intel_ddi_set_vc_payload_alloc(crtc, true);
4689
4690 assert_vblank_disabled(crtc);
4691 drm_crtc_vblank_on(crtc);
4692
4693 for_each_encoder_on_crtc(dev, crtc, encoder) {
4694 encoder->enable(encoder);
4695 intel_opregion_notify_encoder(encoder, true);
4696 }
4697
4698 /* If we change the relative order between pipe/planes enabling, we need
4699 * to change the workaround. */
4700 haswell_mode_set_planes_workaround(intel_crtc);
4701 intel_crtc_enable_planes(crtc);
4702 }
4703
4704 static void skylake_pfit_disable(struct intel_crtc *crtc)
4705 {
4706 struct drm_device *dev = crtc->base.dev;
4707 struct drm_i915_private *dev_priv = dev->dev_private;
4708 int pipe = crtc->pipe;
4709
4710 /* To avoid upsetting the power well on haswell only disable the pfit if
4711 * it's in use. The hw state code will make sure we get this right. */
4712 if (crtc->config->pch_pfit.enabled) {
4713 I915_WRITE(PS_CTL(pipe), 0);
4714 I915_WRITE(PS_WIN_POS(pipe), 0);
4715 I915_WRITE(PS_WIN_SZ(pipe), 0);
4716 }
4717 }
4718
4719 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4720 {
4721 struct drm_device *dev = crtc->base.dev;
4722 struct drm_i915_private *dev_priv = dev->dev_private;
4723 int pipe = crtc->pipe;
4724
4725 /* To avoid upsetting the power well on haswell only disable the pfit if
4726 * it's in use. The hw state code will make sure we get this right. */
4727 if (crtc->config->pch_pfit.enabled) {
4728 I915_WRITE(PF_CTL(pipe), 0);
4729 I915_WRITE(PF_WIN_POS(pipe), 0);
4730 I915_WRITE(PF_WIN_SZ(pipe), 0);
4731 }
4732 }
4733
4734 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4735 {
4736 struct drm_device *dev = crtc->dev;
4737 struct drm_i915_private *dev_priv = dev->dev_private;
4738 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4739 struct intel_encoder *encoder;
4740 int pipe = intel_crtc->pipe;
4741 u32 reg, temp;
4742
4743 if (!intel_crtc->active)
4744 return;
4745
4746 intel_crtc_disable_planes(crtc);
4747
4748 for_each_encoder_on_crtc(dev, crtc, encoder)
4749 encoder->disable(encoder);
4750
4751 drm_crtc_vblank_off(crtc);
4752 assert_vblank_disabled(crtc);
4753
4754 if (intel_crtc->config->has_pch_encoder)
4755 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4756
4757 intel_disable_pipe(intel_crtc);
4758
4759 ironlake_pfit_disable(intel_crtc);
4760
4761 for_each_encoder_on_crtc(dev, crtc, encoder)
4762 if (encoder->post_disable)
4763 encoder->post_disable(encoder);
4764
4765 if (intel_crtc->config->has_pch_encoder) {
4766 ironlake_fdi_disable(crtc);
4767
4768 ironlake_disable_pch_transcoder(dev_priv, pipe);
4769
4770 if (HAS_PCH_CPT(dev)) {
4771 /* disable TRANS_DP_CTL */
4772 reg = TRANS_DP_CTL(pipe);
4773 temp = I915_READ(reg);
4774 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4775 TRANS_DP_PORT_SEL_MASK);
4776 temp |= TRANS_DP_PORT_SEL_NONE;
4777 I915_WRITE(reg, temp);
4778
4779 /* disable DPLL_SEL */
4780 temp = I915_READ(PCH_DPLL_SEL);
4781 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4782 I915_WRITE(PCH_DPLL_SEL, temp);
4783 }
4784
4785 /* disable PCH DPLL */
4786 intel_disable_shared_dpll(intel_crtc);
4787
4788 ironlake_fdi_pll_disable(intel_crtc);
4789 }
4790
4791 intel_crtc->active = false;
4792 intel_update_watermarks(crtc);
4793
4794 mutex_lock(&dev->struct_mutex);
4795 intel_fbc_update(dev);
4796 mutex_unlock(&dev->struct_mutex);
4797 }
4798
4799 static void haswell_crtc_disable(struct drm_crtc *crtc)
4800 {
4801 struct drm_device *dev = crtc->dev;
4802 struct drm_i915_private *dev_priv = dev->dev_private;
4803 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4804 struct intel_encoder *encoder;
4805 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4806
4807 if (!intel_crtc->active)
4808 return;
4809
4810 intel_crtc_disable_planes(crtc);
4811
4812 for_each_encoder_on_crtc(dev, crtc, encoder) {
4813 intel_opregion_notify_encoder(encoder, false);
4814 encoder->disable(encoder);
4815 }
4816
4817 drm_crtc_vblank_off(crtc);
4818 assert_vblank_disabled(crtc);
4819
4820 if (intel_crtc->config->has_pch_encoder)
4821 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4822 false);
4823 intel_disable_pipe(intel_crtc);
4824
4825 if (intel_crtc->config->dp_encoder_is_mst)
4826 intel_ddi_set_vc_payload_alloc(crtc, false);
4827
4828 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4829
4830 if (IS_SKYLAKE(dev))
4831 skylake_pfit_disable(intel_crtc);
4832 else
4833 ironlake_pfit_disable(intel_crtc);
4834
4835 intel_ddi_disable_pipe_clock(intel_crtc);
4836
4837 if (intel_crtc->config->has_pch_encoder) {
4838 lpt_disable_pch_transcoder(dev_priv);
4839 intel_ddi_fdi_disable(crtc);
4840 }
4841
4842 for_each_encoder_on_crtc(dev, crtc, encoder)
4843 if (encoder->post_disable)
4844 encoder->post_disable(encoder);
4845
4846 intel_crtc->active = false;
4847 intel_update_watermarks(crtc);
4848
4849 mutex_lock(&dev->struct_mutex);
4850 intel_fbc_update(dev);
4851 mutex_unlock(&dev->struct_mutex);
4852
4853 if (intel_crtc_to_shared_dpll(intel_crtc))
4854 intel_disable_shared_dpll(intel_crtc);
4855 }
4856
4857 static void ironlake_crtc_off(struct drm_crtc *crtc)
4858 {
4859 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4860 intel_put_shared_dpll(intel_crtc);
4861 }
4862
4863
4864 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4865 {
4866 struct drm_device *dev = crtc->base.dev;
4867 struct drm_i915_private *dev_priv = dev->dev_private;
4868 struct intel_crtc_state *pipe_config = crtc->config;
4869
4870 if (!pipe_config->gmch_pfit.control)
4871 return;
4872
4873 /*
4874 * The panel fitter should only be adjusted whilst the pipe is disabled,
4875 * according to register description and PRM.
4876 */
4877 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4878 assert_pipe_disabled(dev_priv, crtc->pipe);
4879
4880 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4881 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4882
4883 /* Border color in case we don't scale up to the full screen. Black by
4884 * default, change to something else for debugging. */
4885 I915_WRITE(BCLRPAT(crtc->pipe), 0);
4886 }
4887
4888 static enum intel_display_power_domain port_to_power_domain(enum port port)
4889 {
4890 switch (port) {
4891 case PORT_A:
4892 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4893 case PORT_B:
4894 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4895 case PORT_C:
4896 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4897 case PORT_D:
4898 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4899 default:
4900 WARN_ON_ONCE(1);
4901 return POWER_DOMAIN_PORT_OTHER;
4902 }
4903 }
4904
4905 #define for_each_power_domain(domain, mask) \
4906 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4907 if ((1 << (domain)) & (mask))
4908
4909 enum intel_display_power_domain
4910 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4911 {
4912 struct drm_device *dev = intel_encoder->base.dev;
4913 struct intel_digital_port *intel_dig_port;
4914
4915 switch (intel_encoder->type) {
4916 case INTEL_OUTPUT_UNKNOWN:
4917 /* Only DDI platforms should ever use this output type */
4918 WARN_ON_ONCE(!HAS_DDI(dev));
4919 case INTEL_OUTPUT_DISPLAYPORT:
4920 case INTEL_OUTPUT_HDMI:
4921 case INTEL_OUTPUT_EDP:
4922 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4923 return port_to_power_domain(intel_dig_port->port);
4924 case INTEL_OUTPUT_DP_MST:
4925 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4926 return port_to_power_domain(intel_dig_port->port);
4927 case INTEL_OUTPUT_ANALOG:
4928 return POWER_DOMAIN_PORT_CRT;
4929 case INTEL_OUTPUT_DSI:
4930 return POWER_DOMAIN_PORT_DSI;
4931 default:
4932 return POWER_DOMAIN_PORT_OTHER;
4933 }
4934 }
4935
4936 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4937 {
4938 struct drm_device *dev = crtc->dev;
4939 struct intel_encoder *intel_encoder;
4940 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4941 enum pipe pipe = intel_crtc->pipe;
4942 unsigned long mask;
4943 enum transcoder transcoder;
4944
4945 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4946
4947 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4948 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4949 if (intel_crtc->config->pch_pfit.enabled ||
4950 intel_crtc->config->pch_pfit.force_thru)
4951 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4952
4953 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4954 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4955
4956 return mask;
4957 }
4958
4959 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
4960 {
4961 struct drm_device *dev = state->dev;
4962 struct drm_i915_private *dev_priv = dev->dev_private;
4963 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4964 struct intel_crtc *crtc;
4965
4966 /*
4967 * First get all needed power domains, then put all unneeded, to avoid
4968 * any unnecessary toggling of the power wells.
4969 */
4970 for_each_intel_crtc(dev, crtc) {
4971 enum intel_display_power_domain domain;
4972
4973 if (!crtc->base.state->enable)
4974 continue;
4975
4976 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4977
4978 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4979 intel_display_power_get(dev_priv, domain);
4980 }
4981
4982 if (dev_priv->display.modeset_global_resources)
4983 dev_priv->display.modeset_global_resources(state);
4984
4985 for_each_intel_crtc(dev, crtc) {
4986 enum intel_display_power_domain domain;
4987
4988 for_each_power_domain(domain, crtc->enabled_power_domains)
4989 intel_display_power_put(dev_priv, domain);
4990
4991 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4992 }
4993
4994 intel_display_set_init_power(dev_priv, false);
4995 }
4996
4997 /* returns HPLL frequency in kHz */
4998 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4999 {
5000 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
5001
5002 /* Obtain SKU information */
5003 mutex_lock(&dev_priv->dpio_lock);
5004 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5005 CCK_FUSE_HPLL_FREQ_MASK;
5006 mutex_unlock(&dev_priv->dpio_lock);
5007
5008 return vco_freq[hpll_freq] * 1000;
5009 }
5010
5011 static void vlv_update_cdclk(struct drm_device *dev)
5012 {
5013 struct drm_i915_private *dev_priv = dev->dev_private;
5014
5015 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5016 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5017 dev_priv->vlv_cdclk_freq);
5018
5019 /*
5020 * Program the gmbus_freq based on the cdclk frequency.
5021 * BSpec erroneously claims we should aim for 4MHz, but
5022 * in fact 1MHz is the correct frequency.
5023 */
5024 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
5025 }
5026
5027 /* Adjust CDclk dividers to allow high res or save power if possible */
5028 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5029 {
5030 struct drm_i915_private *dev_priv = dev->dev_private;
5031 u32 val, cmd;
5032
5033 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
5034
5035 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5036 cmd = 2;
5037 else if (cdclk == 266667)
5038 cmd = 1;
5039 else
5040 cmd = 0;
5041
5042 mutex_lock(&dev_priv->rps.hw_lock);
5043 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5044 val &= ~DSPFREQGUAR_MASK;
5045 val |= (cmd << DSPFREQGUAR_SHIFT);
5046 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5047 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5048 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5049 50)) {
5050 DRM_ERROR("timed out waiting for CDclk change\n");
5051 }
5052 mutex_unlock(&dev_priv->rps.hw_lock);
5053
5054 if (cdclk == 400000) {
5055 u32 divider;
5056
5057 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5058
5059 mutex_lock(&dev_priv->dpio_lock);
5060 /* adjust cdclk divider */
5061 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5062 val &= ~DISPLAY_FREQUENCY_VALUES;
5063 val |= divider;
5064 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5065
5066 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5067 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5068 50))
5069 DRM_ERROR("timed out waiting for CDclk change\n");
5070 mutex_unlock(&dev_priv->dpio_lock);
5071 }
5072
5073 mutex_lock(&dev_priv->dpio_lock);
5074 /* adjust self-refresh exit latency value */
5075 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5076 val &= ~0x7f;
5077
5078 /*
5079 * For high bandwidth configs, we set a higher latency in the bunit
5080 * so that the core display fetch happens in time to avoid underruns.
5081 */
5082 if (cdclk == 400000)
5083 val |= 4500 / 250; /* 4.5 usec */
5084 else
5085 val |= 3000 / 250; /* 3.0 usec */
5086 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5087 mutex_unlock(&dev_priv->dpio_lock);
5088
5089 vlv_update_cdclk(dev);
5090 }
5091
5092 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5093 {
5094 struct drm_i915_private *dev_priv = dev->dev_private;
5095 u32 val, cmd;
5096
5097 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
5098
5099 switch (cdclk) {
5100 case 333333:
5101 case 320000:
5102 case 266667:
5103 case 200000:
5104 break;
5105 default:
5106 MISSING_CASE(cdclk);
5107 return;
5108 }
5109
5110 /*
5111 * Specs are full of misinformation, but testing on actual
5112 * hardware has shown that we just need to write the desired
5113 * CCK divider into the Punit register.
5114 */
5115 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5116
5117 mutex_lock(&dev_priv->rps.hw_lock);
5118 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5119 val &= ~DSPFREQGUAR_MASK_CHV;
5120 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5121 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5122 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5123 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5124 50)) {
5125 DRM_ERROR("timed out waiting for CDclk change\n");
5126 }
5127 mutex_unlock(&dev_priv->rps.hw_lock);
5128
5129 vlv_update_cdclk(dev);
5130 }
5131
5132 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5133 int max_pixclk)
5134 {
5135 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
5136 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5137
5138 /*
5139 * Really only a few cases to deal with, as only 4 CDclks are supported:
5140 * 200MHz
5141 * 267MHz
5142 * 320/333MHz (depends on HPLL freq)
5143 * 400MHz (VLV only)
5144 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5145 * of the lower bin and adjust if needed.
5146 *
5147 * We seem to get an unstable or solid color picture at 200MHz.
5148 * Not sure what's wrong. For now use 200MHz only when all pipes
5149 * are off.
5150 */
5151 if (!IS_CHERRYVIEW(dev_priv) &&
5152 max_pixclk > freq_320*limit/100)
5153 return 400000;
5154 else if (max_pixclk > 266667*limit/100)
5155 return freq_320;
5156 else if (max_pixclk > 0)
5157 return 266667;
5158 else
5159 return 200000;
5160 }
5161
5162 /* compute the max pixel clock for new configuration */
5163 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
5164 {
5165 struct drm_device *dev = dev_priv->dev;
5166 struct intel_crtc *intel_crtc;
5167 int max_pixclk = 0;
5168
5169 for_each_intel_crtc(dev, intel_crtc) {
5170 if (intel_crtc->new_enabled)
5171 max_pixclk = max(max_pixclk,
5172 intel_crtc->new_config->base.adjusted_mode.crtc_clock);
5173 }
5174
5175 return max_pixclk;
5176 }
5177
5178 static void valleyview_modeset_global_pipes(struct drm_device *dev,
5179 unsigned *prepare_pipes)
5180 {
5181 struct drm_i915_private *dev_priv = dev->dev_private;
5182 struct intel_crtc *intel_crtc;
5183 int max_pixclk = intel_mode_max_pixclk(dev_priv);
5184
5185 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
5186 dev_priv->vlv_cdclk_freq)
5187 return;
5188
5189 /* disable/enable all currently active pipes while we change cdclk */
5190 for_each_intel_crtc(dev, intel_crtc)
5191 if (intel_crtc->base.state->enable)
5192 *prepare_pipes |= (1 << intel_crtc->pipe);
5193 }
5194
5195 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5196 {
5197 unsigned int credits, default_credits;
5198
5199 if (IS_CHERRYVIEW(dev_priv))
5200 default_credits = PFI_CREDIT(12);
5201 else
5202 default_credits = PFI_CREDIT(8);
5203
5204 if (DIV_ROUND_CLOSEST(dev_priv->vlv_cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5205 /* CHV suggested value is 31 or 63 */
5206 if (IS_CHERRYVIEW(dev_priv))
5207 credits = PFI_CREDIT_31;
5208 else
5209 credits = PFI_CREDIT(15);
5210 } else {
5211 credits = default_credits;
5212 }
5213
5214 /*
5215 * WA - write default credits before re-programming
5216 * FIXME: should we also set the resend bit here?
5217 */
5218 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5219 default_credits);
5220
5221 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5222 credits | PFI_CREDIT_RESEND);
5223
5224 /*
5225 * FIXME is this guaranteed to clear
5226 * immediately or should we poll for it?
5227 */
5228 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5229 }
5230
5231 static void valleyview_modeset_global_resources(struct drm_atomic_state *state)
5232 {
5233 struct drm_device *dev = state->dev;
5234 struct drm_i915_private *dev_priv = dev->dev_private;
5235 int max_pixclk = intel_mode_max_pixclk(dev_priv);
5236 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5237
5238 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
5239 /*
5240 * FIXME: We can end up here with all power domains off, yet
5241 * with a CDCLK frequency other than the minimum. To account
5242 * for this take the PIPE-A power domain, which covers the HW
5243 * blocks needed for the following programming. This can be
5244 * removed once it's guaranteed that we get here either with
5245 * the minimum CDCLK set, or the required power domains
5246 * enabled.
5247 */
5248 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5249
5250 if (IS_CHERRYVIEW(dev))
5251 cherryview_set_cdclk(dev, req_cdclk);
5252 else
5253 valleyview_set_cdclk(dev, req_cdclk);
5254
5255 vlv_program_pfi_credits(dev_priv);
5256
5257 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
5258 }
5259 }
5260
5261 static void valleyview_crtc_enable(struct drm_crtc *crtc)
5262 {
5263 struct drm_device *dev = crtc->dev;
5264 struct drm_i915_private *dev_priv = to_i915(dev);
5265 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5266 struct intel_encoder *encoder;
5267 int pipe = intel_crtc->pipe;
5268 bool is_dsi;
5269
5270 WARN_ON(!crtc->state->enable);
5271
5272 if (intel_crtc->active)
5273 return;
5274
5275 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5276
5277 if (!is_dsi) {
5278 if (IS_CHERRYVIEW(dev))
5279 chv_prepare_pll(intel_crtc, intel_crtc->config);
5280 else
5281 vlv_prepare_pll(intel_crtc, intel_crtc->config);
5282 }
5283
5284 if (intel_crtc->config->has_dp_encoder)
5285 intel_dp_set_m_n(intel_crtc, M1_N1);
5286
5287 intel_set_pipe_timings(intel_crtc);
5288
5289 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5290 struct drm_i915_private *dev_priv = dev->dev_private;
5291
5292 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5293 I915_WRITE(CHV_CANVAS(pipe), 0);
5294 }
5295
5296 i9xx_set_pipeconf(intel_crtc);
5297
5298 intel_crtc->active = true;
5299
5300 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5301
5302 for_each_encoder_on_crtc(dev, crtc, encoder)
5303 if (encoder->pre_pll_enable)
5304 encoder->pre_pll_enable(encoder);
5305
5306 if (!is_dsi) {
5307 if (IS_CHERRYVIEW(dev))
5308 chv_enable_pll(intel_crtc, intel_crtc->config);
5309 else
5310 vlv_enable_pll(intel_crtc, intel_crtc->config);
5311 }
5312
5313 for_each_encoder_on_crtc(dev, crtc, encoder)
5314 if (encoder->pre_enable)
5315 encoder->pre_enable(encoder);
5316
5317 i9xx_pfit_enable(intel_crtc);
5318
5319 intel_crtc_load_lut(crtc);
5320
5321 intel_update_watermarks(crtc);
5322 intel_enable_pipe(intel_crtc);
5323
5324 assert_vblank_disabled(crtc);
5325 drm_crtc_vblank_on(crtc);
5326
5327 for_each_encoder_on_crtc(dev, crtc, encoder)
5328 encoder->enable(encoder);
5329
5330 intel_crtc_enable_planes(crtc);
5331
5332 /* Underruns don't raise interrupts, so check manually. */
5333 i9xx_check_fifo_underruns(dev_priv);
5334 }
5335
5336 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5337 {
5338 struct drm_device *dev = crtc->base.dev;
5339 struct drm_i915_private *dev_priv = dev->dev_private;
5340
5341 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5342 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5343 }
5344
5345 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5346 {
5347 struct drm_device *dev = crtc->dev;
5348 struct drm_i915_private *dev_priv = to_i915(dev);
5349 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5350 struct intel_encoder *encoder;
5351 int pipe = intel_crtc->pipe;
5352
5353 WARN_ON(!crtc->state->enable);
5354
5355 if (intel_crtc->active)
5356 return;
5357
5358 i9xx_set_pll_dividers(intel_crtc);
5359
5360 if (intel_crtc->config->has_dp_encoder)
5361 intel_dp_set_m_n(intel_crtc, M1_N1);
5362
5363 intel_set_pipe_timings(intel_crtc);
5364
5365 i9xx_set_pipeconf(intel_crtc);
5366
5367 intel_crtc->active = true;
5368
5369 if (!IS_GEN2(dev))
5370 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5371
5372 for_each_encoder_on_crtc(dev, crtc, encoder)
5373 if (encoder->pre_enable)
5374 encoder->pre_enable(encoder);
5375
5376 i9xx_enable_pll(intel_crtc);
5377
5378 i9xx_pfit_enable(intel_crtc);
5379
5380 intel_crtc_load_lut(crtc);
5381
5382 intel_update_watermarks(crtc);
5383 intel_enable_pipe(intel_crtc);
5384
5385 assert_vblank_disabled(crtc);
5386 drm_crtc_vblank_on(crtc);
5387
5388 for_each_encoder_on_crtc(dev, crtc, encoder)
5389 encoder->enable(encoder);
5390
5391 intel_crtc_enable_planes(crtc);
5392
5393 /*
5394 * Gen2 reports pipe underruns whenever all planes are disabled.
5395 * So don't enable underrun reporting before at least some planes
5396 * are enabled.
5397 * FIXME: Need to fix the logic to work when we turn off all planes
5398 * but leave the pipe running.
5399 */
5400 if (IS_GEN2(dev))
5401 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5402
5403 /* Underruns don't raise interrupts, so check manually. */
5404 i9xx_check_fifo_underruns(dev_priv);
5405 }
5406
5407 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5408 {
5409 struct drm_device *dev = crtc->base.dev;
5410 struct drm_i915_private *dev_priv = dev->dev_private;
5411
5412 if (!crtc->config->gmch_pfit.control)
5413 return;
5414
5415 assert_pipe_disabled(dev_priv, crtc->pipe);
5416
5417 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5418 I915_READ(PFIT_CONTROL));
5419 I915_WRITE(PFIT_CONTROL, 0);
5420 }
5421
5422 static void i9xx_crtc_disable(struct drm_crtc *crtc)
5423 {
5424 struct drm_device *dev = crtc->dev;
5425 struct drm_i915_private *dev_priv = dev->dev_private;
5426 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5427 struct intel_encoder *encoder;
5428 int pipe = intel_crtc->pipe;
5429
5430 if (!intel_crtc->active)
5431 return;
5432
5433 /*
5434 * Gen2 reports pipe underruns whenever all planes are disabled.
5435 * So diasble underrun reporting before all the planes get disabled.
5436 * FIXME: Need to fix the logic to work when we turn off all planes
5437 * but leave the pipe running.
5438 */
5439 if (IS_GEN2(dev))
5440 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5441
5442 /*
5443 * Vblank time updates from the shadow to live plane control register
5444 * are blocked if the memory self-refresh mode is active at that
5445 * moment. So to make sure the plane gets truly disabled, disable
5446 * first the self-refresh mode. The self-refresh enable bit in turn
5447 * will be checked/applied by the HW only at the next frame start
5448 * event which is after the vblank start event, so we need to have a
5449 * wait-for-vblank between disabling the plane and the pipe.
5450 */
5451 intel_set_memory_cxsr(dev_priv, false);
5452 intel_crtc_disable_planes(crtc);
5453
5454 /*
5455 * On gen2 planes are double buffered but the pipe isn't, so we must
5456 * wait for planes to fully turn off before disabling the pipe.
5457 * We also need to wait on all gmch platforms because of the
5458 * self-refresh mode constraint explained above.
5459 */
5460 intel_wait_for_vblank(dev, pipe);
5461
5462 for_each_encoder_on_crtc(dev, crtc, encoder)
5463 encoder->disable(encoder);
5464
5465 drm_crtc_vblank_off(crtc);
5466 assert_vblank_disabled(crtc);
5467
5468 intel_disable_pipe(intel_crtc);
5469
5470 i9xx_pfit_disable(intel_crtc);
5471
5472 for_each_encoder_on_crtc(dev, crtc, encoder)
5473 if (encoder->post_disable)
5474 encoder->post_disable(encoder);
5475
5476 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5477 if (IS_CHERRYVIEW(dev))
5478 chv_disable_pll(dev_priv, pipe);
5479 else if (IS_VALLEYVIEW(dev))
5480 vlv_disable_pll(dev_priv, pipe);
5481 else
5482 i9xx_disable_pll(intel_crtc);
5483 }
5484
5485 if (!IS_GEN2(dev))
5486 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5487
5488 intel_crtc->active = false;
5489 intel_update_watermarks(crtc);
5490
5491 mutex_lock(&dev->struct_mutex);
5492 intel_fbc_update(dev);
5493 mutex_unlock(&dev->struct_mutex);
5494 }
5495
5496 static void i9xx_crtc_off(struct drm_crtc *crtc)
5497 {
5498 }
5499
5500 /* Master function to enable/disable CRTC and corresponding power wells */
5501 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5502 {
5503 struct drm_device *dev = crtc->dev;
5504 struct drm_i915_private *dev_priv = dev->dev_private;
5505 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5506 enum intel_display_power_domain domain;
5507 unsigned long domains;
5508
5509 if (enable) {
5510 if (!intel_crtc->active) {
5511 domains = get_crtc_power_domains(crtc);
5512 for_each_power_domain(domain, domains)
5513 intel_display_power_get(dev_priv, domain);
5514 intel_crtc->enabled_power_domains = domains;
5515
5516 dev_priv->display.crtc_enable(crtc);
5517 }
5518 } else {
5519 if (intel_crtc->active) {
5520 dev_priv->display.crtc_disable(crtc);
5521
5522 domains = intel_crtc->enabled_power_domains;
5523 for_each_power_domain(domain, domains)
5524 intel_display_power_put(dev_priv, domain);
5525 intel_crtc->enabled_power_domains = 0;
5526 }
5527 }
5528 }
5529
5530 /**
5531 * Sets the power management mode of the pipe and plane.
5532 */
5533 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5534 {
5535 struct drm_device *dev = crtc->dev;
5536 struct intel_encoder *intel_encoder;
5537 bool enable = false;
5538
5539 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5540 enable |= intel_encoder->connectors_active;
5541
5542 intel_crtc_control(crtc, enable);
5543 }
5544
5545 static void intel_crtc_disable(struct drm_crtc *crtc)
5546 {
5547 struct drm_device *dev = crtc->dev;
5548 struct drm_connector *connector;
5549 struct drm_i915_private *dev_priv = dev->dev_private;
5550
5551 /* crtc should still be enabled when we disable it. */
5552 WARN_ON(!crtc->state->enable);
5553
5554 dev_priv->display.crtc_disable(crtc);
5555 dev_priv->display.off(crtc);
5556
5557 crtc->primary->funcs->disable_plane(crtc->primary);
5558
5559 /* Update computed state. */
5560 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5561 if (!connector->encoder || !connector->encoder->crtc)
5562 continue;
5563
5564 if (connector->encoder->crtc != crtc)
5565 continue;
5566
5567 connector->dpms = DRM_MODE_DPMS_OFF;
5568 to_intel_encoder(connector->encoder)->connectors_active = false;
5569 }
5570 }
5571
5572 void intel_encoder_destroy(struct drm_encoder *encoder)
5573 {
5574 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5575
5576 drm_encoder_cleanup(encoder);
5577 kfree(intel_encoder);
5578 }
5579
5580 /* Simple dpms helper for encoders with just one connector, no cloning and only
5581 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5582 * state of the entire output pipe. */
5583 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5584 {
5585 if (mode == DRM_MODE_DPMS_ON) {
5586 encoder->connectors_active = true;
5587
5588 intel_crtc_update_dpms(encoder->base.crtc);
5589 } else {
5590 encoder->connectors_active = false;
5591
5592 intel_crtc_update_dpms(encoder->base.crtc);
5593 }
5594 }
5595
5596 /* Cross check the actual hw state with our own modeset state tracking (and it's
5597 * internal consistency). */
5598 static void intel_connector_check_state(struct intel_connector *connector)
5599 {
5600 if (connector->get_hw_state(connector)) {
5601 struct intel_encoder *encoder = connector->encoder;
5602 struct drm_crtc *crtc;
5603 bool encoder_enabled;
5604 enum pipe pipe;
5605
5606 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5607 connector->base.base.id,
5608 connector->base.name);
5609
5610 /* there is no real hw state for MST connectors */
5611 if (connector->mst_port)
5612 return;
5613
5614 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5615 "wrong connector dpms state\n");
5616 I915_STATE_WARN(connector->base.encoder != &encoder->base,
5617 "active connector not linked to encoder\n");
5618
5619 if (encoder) {
5620 I915_STATE_WARN(!encoder->connectors_active,
5621 "encoder->connectors_active not set\n");
5622
5623 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5624 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
5625 if (I915_STATE_WARN_ON(!encoder->base.crtc))
5626 return;
5627
5628 crtc = encoder->base.crtc;
5629
5630 I915_STATE_WARN(!crtc->state->enable,
5631 "crtc not enabled\n");
5632 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5633 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
5634 "encoder active on the wrong pipe\n");
5635 }
5636 }
5637 }
5638
5639 int intel_connector_init(struct intel_connector *connector)
5640 {
5641 struct drm_connector_state *connector_state;
5642
5643 connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
5644 if (!connector_state)
5645 return -ENOMEM;
5646
5647 connector->base.state = connector_state;
5648 return 0;
5649 }
5650
5651 struct intel_connector *intel_connector_alloc(void)
5652 {
5653 struct intel_connector *connector;
5654
5655 connector = kzalloc(sizeof *connector, GFP_KERNEL);
5656 if (!connector)
5657 return NULL;
5658
5659 if (intel_connector_init(connector) < 0) {
5660 kfree(connector);
5661 return NULL;
5662 }
5663
5664 return connector;
5665 }
5666
5667 /* Even simpler default implementation, if there's really no special case to
5668 * consider. */
5669 void intel_connector_dpms(struct drm_connector *connector, int mode)
5670 {
5671 /* All the simple cases only support two dpms states. */
5672 if (mode != DRM_MODE_DPMS_ON)
5673 mode = DRM_MODE_DPMS_OFF;
5674
5675 if (mode == connector->dpms)
5676 return;
5677
5678 connector->dpms = mode;
5679
5680 /* Only need to change hw state when actually enabled */
5681 if (connector->encoder)
5682 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5683
5684 intel_modeset_check_state(connector->dev);
5685 }
5686
5687 /* Simple connector->get_hw_state implementation for encoders that support only
5688 * one connector and no cloning and hence the encoder state determines the state
5689 * of the connector. */
5690 bool intel_connector_get_hw_state(struct intel_connector *connector)
5691 {
5692 enum pipe pipe = 0;
5693 struct intel_encoder *encoder = connector->encoder;
5694
5695 return encoder->get_hw_state(encoder, &pipe);
5696 }
5697
5698 static int pipe_required_fdi_lanes(struct drm_device *dev, enum pipe pipe)
5699 {
5700 struct intel_crtc *crtc =
5701 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
5702
5703 if (crtc->base.state->enable &&
5704 crtc->config->has_pch_encoder)
5705 return crtc->config->fdi_lanes;
5706
5707 return 0;
5708 }
5709
5710 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5711 struct intel_crtc_state *pipe_config)
5712 {
5713 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5714 pipe_name(pipe), pipe_config->fdi_lanes);
5715 if (pipe_config->fdi_lanes > 4) {
5716 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5717 pipe_name(pipe), pipe_config->fdi_lanes);
5718 return false;
5719 }
5720
5721 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5722 if (pipe_config->fdi_lanes > 2) {
5723 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5724 pipe_config->fdi_lanes);
5725 return false;
5726 } else {
5727 return true;
5728 }
5729 }
5730
5731 if (INTEL_INFO(dev)->num_pipes == 2)
5732 return true;
5733
5734 /* Ivybridge 3 pipe is really complicated */
5735 switch (pipe) {
5736 case PIPE_A:
5737 return true;
5738 case PIPE_B:
5739 if (pipe_config->fdi_lanes > 2 &&
5740 pipe_required_fdi_lanes(dev, PIPE_C) > 0) {
5741 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5742 pipe_name(pipe), pipe_config->fdi_lanes);
5743 return false;
5744 }
5745 return true;
5746 case PIPE_C:
5747 if (pipe_config->fdi_lanes > 2) {
5748 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
5749 pipe_name(pipe), pipe_config->fdi_lanes);
5750 return false;
5751 }
5752 if (pipe_required_fdi_lanes(dev, PIPE_B) > 2) {
5753 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5754 return false;
5755 }
5756 return true;
5757 default:
5758 BUG();
5759 }
5760 }
5761
5762 #define RETRY 1
5763 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5764 struct intel_crtc_state *pipe_config)
5765 {
5766 struct drm_device *dev = intel_crtc->base.dev;
5767 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5768 int lane, link_bw, fdi_dotclock;
5769 bool setup_ok, needs_recompute = false;
5770
5771 retry:
5772 /* FDI is a binary signal running at ~2.7GHz, encoding
5773 * each output octet as 10 bits. The actual frequency
5774 * is stored as a divider into a 100MHz clock, and the
5775 * mode pixel clock is stored in units of 1KHz.
5776 * Hence the bw of each lane in terms of the mode signal
5777 * is:
5778 */
5779 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5780
5781 fdi_dotclock = adjusted_mode->crtc_clock;
5782
5783 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5784 pipe_config->pipe_bpp);
5785
5786 pipe_config->fdi_lanes = lane;
5787
5788 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5789 link_bw, &pipe_config->fdi_m_n);
5790
5791 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5792 intel_crtc->pipe, pipe_config);
5793 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5794 pipe_config->pipe_bpp -= 2*3;
5795 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5796 pipe_config->pipe_bpp);
5797 needs_recompute = true;
5798 pipe_config->bw_constrained = true;
5799
5800 goto retry;
5801 }
5802
5803 if (needs_recompute)
5804 return RETRY;
5805
5806 return setup_ok ? 0 : -EINVAL;
5807 }
5808
5809 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5810 struct intel_crtc_state *pipe_config)
5811 {
5812 pipe_config->ips_enabled = i915.enable_ips &&
5813 hsw_crtc_supports_ips(crtc) &&
5814 pipe_config->pipe_bpp <= 24;
5815 }
5816
5817 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5818 struct intel_crtc_state *pipe_config)
5819 {
5820 struct drm_device *dev = crtc->base.dev;
5821 struct drm_i915_private *dev_priv = dev->dev_private;
5822 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5823
5824 /* FIXME should check pixel clock limits on all platforms */
5825 if (INTEL_INFO(dev)->gen < 4) {
5826 int clock_limit =
5827 dev_priv->display.get_display_clock_speed(dev);
5828
5829 /*
5830 * Enable pixel doubling when the dot clock
5831 * is > 90% of the (display) core speed.
5832 *
5833 * GDG double wide on either pipe,
5834 * otherwise pipe A only.
5835 */
5836 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5837 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5838 clock_limit *= 2;
5839 pipe_config->double_wide = true;
5840 }
5841
5842 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5843 return -EINVAL;
5844 }
5845
5846 /*
5847 * Pipe horizontal size must be even in:
5848 * - DVO ganged mode
5849 * - LVDS dual channel mode
5850 * - Double wide pipe
5851 */
5852 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
5853 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5854 pipe_config->pipe_src_w &= ~1;
5855
5856 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5857 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5858 */
5859 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5860 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5861 return -EINVAL;
5862
5863 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5864 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5865 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5866 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5867 * for lvds. */
5868 pipe_config->pipe_bpp = 8*3;
5869 }
5870
5871 if (HAS_IPS(dev))
5872 hsw_compute_ips_config(crtc, pipe_config);
5873
5874 if (pipe_config->has_pch_encoder)
5875 return ironlake_fdi_compute_config(crtc, pipe_config);
5876
5877 return 0;
5878 }
5879
5880 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5881 {
5882 struct drm_i915_private *dev_priv = dev->dev_private;
5883 u32 val;
5884 int divider;
5885
5886 if (dev_priv->hpll_freq == 0)
5887 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5888
5889 mutex_lock(&dev_priv->dpio_lock);
5890 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5891 mutex_unlock(&dev_priv->dpio_lock);
5892
5893 divider = val & DISPLAY_FREQUENCY_VALUES;
5894
5895 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5896 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5897 "cdclk change in progress\n");
5898
5899 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
5900 }
5901
5902 static int i945_get_display_clock_speed(struct drm_device *dev)
5903 {
5904 return 400000;
5905 }
5906
5907 static int i915_get_display_clock_speed(struct drm_device *dev)
5908 {
5909 return 333000;
5910 }
5911
5912 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5913 {
5914 return 200000;
5915 }
5916
5917 static int pnv_get_display_clock_speed(struct drm_device *dev)
5918 {
5919 u16 gcfgc = 0;
5920
5921 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5922
5923 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5924 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5925 return 267000;
5926 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5927 return 333000;
5928 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5929 return 444000;
5930 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5931 return 200000;
5932 default:
5933 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5934 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5935 return 133000;
5936 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5937 return 167000;
5938 }
5939 }
5940
5941 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5942 {
5943 u16 gcfgc = 0;
5944
5945 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5946
5947 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5948 return 133000;
5949 else {
5950 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5951 case GC_DISPLAY_CLOCK_333_MHZ:
5952 return 333000;
5953 default:
5954 case GC_DISPLAY_CLOCK_190_200_MHZ:
5955 return 190000;
5956 }
5957 }
5958 }
5959
5960 static int i865_get_display_clock_speed(struct drm_device *dev)
5961 {
5962 return 266000;
5963 }
5964
5965 static int i855_get_display_clock_speed(struct drm_device *dev)
5966 {
5967 u16 hpllcc = 0;
5968 /* Assume that the hardware is in the high speed state. This
5969 * should be the default.
5970 */
5971 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5972 case GC_CLOCK_133_200:
5973 case GC_CLOCK_100_200:
5974 return 200000;
5975 case GC_CLOCK_166_250:
5976 return 250000;
5977 case GC_CLOCK_100_133:
5978 return 133000;
5979 }
5980
5981 /* Shouldn't happen */
5982 return 0;
5983 }
5984
5985 static int i830_get_display_clock_speed(struct drm_device *dev)
5986 {
5987 return 133000;
5988 }
5989
5990 static void
5991 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5992 {
5993 while (*num > DATA_LINK_M_N_MASK ||
5994 *den > DATA_LINK_M_N_MASK) {
5995 *num >>= 1;
5996 *den >>= 1;
5997 }
5998 }
5999
6000 static void compute_m_n(unsigned int m, unsigned int n,
6001 uint32_t *ret_m, uint32_t *ret_n)
6002 {
6003 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6004 *ret_m = div_u64((uint64_t) m * *ret_n, n);
6005 intel_reduce_m_n_ratio(ret_m, ret_n);
6006 }
6007
6008 void
6009 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6010 int pixel_clock, int link_clock,
6011 struct intel_link_m_n *m_n)
6012 {
6013 m_n->tu = 64;
6014
6015 compute_m_n(bits_per_pixel * pixel_clock,
6016 link_clock * nlanes * 8,
6017 &m_n->gmch_m, &m_n->gmch_n);
6018
6019 compute_m_n(pixel_clock, link_clock,
6020 &m_n->link_m, &m_n->link_n);
6021 }
6022
6023 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
6024 {
6025 if (i915.panel_use_ssc >= 0)
6026 return i915.panel_use_ssc != 0;
6027 return dev_priv->vbt.lvds_use_ssc
6028 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
6029 }
6030
6031 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
6032 int num_connectors)
6033 {
6034 struct drm_device *dev = crtc_state->base.crtc->dev;
6035 struct drm_i915_private *dev_priv = dev->dev_private;
6036 int refclk;
6037
6038 WARN_ON(!crtc_state->base.state);
6039
6040 if (IS_VALLEYVIEW(dev)) {
6041 refclk = 100000;
6042 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6043 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6044 refclk = dev_priv->vbt.lvds_ssc_freq;
6045 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
6046 } else if (!IS_GEN2(dev)) {
6047 refclk = 96000;
6048 } else {
6049 refclk = 48000;
6050 }
6051
6052 return refclk;
6053 }
6054
6055 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
6056 {
6057 return (1 << dpll->n) << 16 | dpll->m2;
6058 }
6059
6060 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6061 {
6062 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
6063 }
6064
6065 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6066 struct intel_crtc_state *crtc_state,
6067 intel_clock_t *reduced_clock)
6068 {
6069 struct drm_device *dev = crtc->base.dev;
6070 u32 fp, fp2 = 0;
6071
6072 if (IS_PINEVIEW(dev)) {
6073 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
6074 if (reduced_clock)
6075 fp2 = pnv_dpll_compute_fp(reduced_clock);
6076 } else {
6077 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
6078 if (reduced_clock)
6079 fp2 = i9xx_dpll_compute_fp(reduced_clock);
6080 }
6081
6082 crtc_state->dpll_hw_state.fp0 = fp;
6083
6084 crtc->lowfreq_avail = false;
6085 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6086 reduced_clock) {
6087 crtc_state->dpll_hw_state.fp1 = fp2;
6088 crtc->lowfreq_avail = true;
6089 } else {
6090 crtc_state->dpll_hw_state.fp1 = fp;
6091 }
6092 }
6093
6094 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6095 pipe)
6096 {
6097 u32 reg_val;
6098
6099 /*
6100 * PLLB opamp always calibrates to max value of 0x3f, force enable it
6101 * and set it to a reasonable value instead.
6102 */
6103 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6104 reg_val &= 0xffffff00;
6105 reg_val |= 0x00000030;
6106 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6107
6108 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6109 reg_val &= 0x8cffffff;
6110 reg_val = 0x8c000000;
6111 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6112
6113 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6114 reg_val &= 0xffffff00;
6115 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6116
6117 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6118 reg_val &= 0x00ffffff;
6119 reg_val |= 0xb0000000;
6120 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6121 }
6122
6123 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6124 struct intel_link_m_n *m_n)
6125 {
6126 struct drm_device *dev = crtc->base.dev;
6127 struct drm_i915_private *dev_priv = dev->dev_private;
6128 int pipe = crtc->pipe;
6129
6130 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6131 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6132 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6133 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
6134 }
6135
6136 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
6137 struct intel_link_m_n *m_n,
6138 struct intel_link_m_n *m2_n2)
6139 {
6140 struct drm_device *dev = crtc->base.dev;
6141 struct drm_i915_private *dev_priv = dev->dev_private;
6142 int pipe = crtc->pipe;
6143 enum transcoder transcoder = crtc->config->cpu_transcoder;
6144
6145 if (INTEL_INFO(dev)->gen >= 5) {
6146 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6147 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6148 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6149 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
6150 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6151 * for gen < 8) and if DRRS is supported (to make sure the
6152 * registers are not unnecessarily accessed).
6153 */
6154 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6155 crtc->config->has_drrs) {
6156 I915_WRITE(PIPE_DATA_M2(transcoder),
6157 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6158 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6159 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6160 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6161 }
6162 } else {
6163 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6164 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6165 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6166 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
6167 }
6168 }
6169
6170 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
6171 {
6172 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6173
6174 if (m_n == M1_N1) {
6175 dp_m_n = &crtc->config->dp_m_n;
6176 dp_m2_n2 = &crtc->config->dp_m2_n2;
6177 } else if (m_n == M2_N2) {
6178
6179 /*
6180 * M2_N2 registers are not supported. Hence m2_n2 divider value
6181 * needs to be programmed into M1_N1.
6182 */
6183 dp_m_n = &crtc->config->dp_m2_n2;
6184 } else {
6185 DRM_ERROR("Unsupported divider value\n");
6186 return;
6187 }
6188
6189 if (crtc->config->has_pch_encoder)
6190 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
6191 else
6192 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
6193 }
6194
6195 static void vlv_update_pll(struct intel_crtc *crtc,
6196 struct intel_crtc_state *pipe_config)
6197 {
6198 u32 dpll, dpll_md;
6199
6200 /*
6201 * Enable DPIO clock input. We should never disable the reference
6202 * clock for pipe B, since VGA hotplug / manual detection depends
6203 * on it.
6204 */
6205 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
6206 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
6207 /* We should never disable this, set it here for state tracking */
6208 if (crtc->pipe == PIPE_B)
6209 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6210 dpll |= DPLL_VCO_ENABLE;
6211 pipe_config->dpll_hw_state.dpll = dpll;
6212
6213 dpll_md = (pipe_config->pixel_multiplier - 1)
6214 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6215 pipe_config->dpll_hw_state.dpll_md = dpll_md;
6216 }
6217
6218 static void vlv_prepare_pll(struct intel_crtc *crtc,
6219 const struct intel_crtc_state *pipe_config)
6220 {
6221 struct drm_device *dev = crtc->base.dev;
6222 struct drm_i915_private *dev_priv = dev->dev_private;
6223 int pipe = crtc->pipe;
6224 u32 mdiv;
6225 u32 bestn, bestm1, bestm2, bestp1, bestp2;
6226 u32 coreclk, reg_val;
6227
6228 mutex_lock(&dev_priv->dpio_lock);
6229
6230 bestn = pipe_config->dpll.n;
6231 bestm1 = pipe_config->dpll.m1;
6232 bestm2 = pipe_config->dpll.m2;
6233 bestp1 = pipe_config->dpll.p1;
6234 bestp2 = pipe_config->dpll.p2;
6235
6236 /* See eDP HDMI DPIO driver vbios notes doc */
6237
6238 /* PLL B needs special handling */
6239 if (pipe == PIPE_B)
6240 vlv_pllb_recal_opamp(dev_priv, pipe);
6241
6242 /* Set up Tx target for periodic Rcomp update */
6243 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
6244
6245 /* Disable target IRef on PLL */
6246 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
6247 reg_val &= 0x00ffffff;
6248 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
6249
6250 /* Disable fast lock */
6251 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
6252
6253 /* Set idtafcrecal before PLL is enabled */
6254 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6255 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6256 mdiv |= ((bestn << DPIO_N_SHIFT));
6257 mdiv |= (1 << DPIO_K_SHIFT);
6258
6259 /*
6260 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6261 * but we don't support that).
6262 * Note: don't use the DAC post divider as it seems unstable.
6263 */
6264 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
6265 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6266
6267 mdiv |= DPIO_ENABLE_CALIBRATION;
6268 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6269
6270 /* Set HBR and RBR LPF coefficients */
6271 if (pipe_config->port_clock == 162000 ||
6272 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
6273 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
6274 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6275 0x009f0003);
6276 else
6277 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6278 0x00d0000f);
6279
6280 if (pipe_config->has_dp_encoder) {
6281 /* Use SSC source */
6282 if (pipe == PIPE_A)
6283 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6284 0x0df40000);
6285 else
6286 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6287 0x0df70000);
6288 } else { /* HDMI or VGA */
6289 /* Use bend source */
6290 if (pipe == PIPE_A)
6291 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6292 0x0df70000);
6293 else
6294 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6295 0x0df40000);
6296 }
6297
6298 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6299 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6300 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
6301 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
6302 coreclk |= 0x01000000;
6303 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6304
6305 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6306 mutex_unlock(&dev_priv->dpio_lock);
6307 }
6308
6309 static void chv_update_pll(struct intel_crtc *crtc,
6310 struct intel_crtc_state *pipe_config)
6311 {
6312 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
6313 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
6314 DPLL_VCO_ENABLE;
6315 if (crtc->pipe != PIPE_A)
6316 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6317
6318 pipe_config->dpll_hw_state.dpll_md =
6319 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6320 }
6321
6322 static void chv_prepare_pll(struct intel_crtc *crtc,
6323 const struct intel_crtc_state *pipe_config)
6324 {
6325 struct drm_device *dev = crtc->base.dev;
6326 struct drm_i915_private *dev_priv = dev->dev_private;
6327 int pipe = crtc->pipe;
6328 int dpll_reg = DPLL(crtc->pipe);
6329 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6330 u32 loopfilter, tribuf_calcntr;
6331 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6332 u32 dpio_val;
6333 int vco;
6334
6335 bestn = pipe_config->dpll.n;
6336 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6337 bestm1 = pipe_config->dpll.m1;
6338 bestm2 = pipe_config->dpll.m2 >> 22;
6339 bestp1 = pipe_config->dpll.p1;
6340 bestp2 = pipe_config->dpll.p2;
6341 vco = pipe_config->dpll.vco;
6342 dpio_val = 0;
6343 loopfilter = 0;
6344
6345 /*
6346 * Enable Refclk and SSC
6347 */
6348 I915_WRITE(dpll_reg,
6349 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6350
6351 mutex_lock(&dev_priv->dpio_lock);
6352
6353 /* p1 and p2 divider */
6354 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6355 5 << DPIO_CHV_S1_DIV_SHIFT |
6356 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6357 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6358 1 << DPIO_CHV_K_DIV_SHIFT);
6359
6360 /* Feedback post-divider - m2 */
6361 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6362
6363 /* Feedback refclk divider - n and m1 */
6364 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6365 DPIO_CHV_M1_DIV_BY_2 |
6366 1 << DPIO_CHV_N_DIV_SHIFT);
6367
6368 /* M2 fraction division */
6369 if (bestm2_frac)
6370 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6371
6372 /* M2 fraction division enable */
6373 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
6374 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
6375 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
6376 if (bestm2_frac)
6377 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
6378 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
6379
6380 /* Program digital lock detect threshold */
6381 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
6382 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
6383 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
6384 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
6385 if (!bestm2_frac)
6386 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
6387 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
6388
6389 /* Loop filter */
6390 if (vco == 5400000) {
6391 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
6392 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
6393 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
6394 tribuf_calcntr = 0x9;
6395 } else if (vco <= 6200000) {
6396 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
6397 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
6398 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6399 tribuf_calcntr = 0x9;
6400 } else if (vco <= 6480000) {
6401 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6402 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6403 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6404 tribuf_calcntr = 0x8;
6405 } else {
6406 /* Not supported. Apply the same limits as in the max case */
6407 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6408 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6409 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6410 tribuf_calcntr = 0;
6411 }
6412 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6413
6414 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
6415 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
6416 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
6417 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
6418
6419 /* AFC Recal */
6420 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6421 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6422 DPIO_AFC_RECAL);
6423
6424 mutex_unlock(&dev_priv->dpio_lock);
6425 }
6426
6427 /**
6428 * vlv_force_pll_on - forcibly enable just the PLL
6429 * @dev_priv: i915 private structure
6430 * @pipe: pipe PLL to enable
6431 * @dpll: PLL configuration
6432 *
6433 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6434 * in cases where we need the PLL enabled even when @pipe is not going to
6435 * be enabled.
6436 */
6437 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6438 const struct dpll *dpll)
6439 {
6440 struct intel_crtc *crtc =
6441 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6442 struct intel_crtc_state pipe_config = {
6443 .base.crtc = &crtc->base,
6444 .pixel_multiplier = 1,
6445 .dpll = *dpll,
6446 };
6447
6448 if (IS_CHERRYVIEW(dev)) {
6449 chv_update_pll(crtc, &pipe_config);
6450 chv_prepare_pll(crtc, &pipe_config);
6451 chv_enable_pll(crtc, &pipe_config);
6452 } else {
6453 vlv_update_pll(crtc, &pipe_config);
6454 vlv_prepare_pll(crtc, &pipe_config);
6455 vlv_enable_pll(crtc, &pipe_config);
6456 }
6457 }
6458
6459 /**
6460 * vlv_force_pll_off - forcibly disable just the PLL
6461 * @dev_priv: i915 private structure
6462 * @pipe: pipe PLL to disable
6463 *
6464 * Disable the PLL for @pipe. To be used in cases where we need
6465 * the PLL enabled even when @pipe is not going to be enabled.
6466 */
6467 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6468 {
6469 if (IS_CHERRYVIEW(dev))
6470 chv_disable_pll(to_i915(dev), pipe);
6471 else
6472 vlv_disable_pll(to_i915(dev), pipe);
6473 }
6474
6475 static void i9xx_update_pll(struct intel_crtc *crtc,
6476 struct intel_crtc_state *crtc_state,
6477 intel_clock_t *reduced_clock,
6478 int num_connectors)
6479 {
6480 struct drm_device *dev = crtc->base.dev;
6481 struct drm_i915_private *dev_priv = dev->dev_private;
6482 u32 dpll;
6483 bool is_sdvo;
6484 struct dpll *clock = &crtc_state->dpll;
6485
6486 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6487
6488 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
6489 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
6490
6491 dpll = DPLL_VGA_MODE_DIS;
6492
6493 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
6494 dpll |= DPLLB_MODE_LVDS;
6495 else
6496 dpll |= DPLLB_MODE_DAC_SERIAL;
6497
6498 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6499 dpll |= (crtc_state->pixel_multiplier - 1)
6500 << SDVO_MULTIPLIER_SHIFT_HIRES;
6501 }
6502
6503 if (is_sdvo)
6504 dpll |= DPLL_SDVO_HIGH_SPEED;
6505
6506 if (crtc_state->has_dp_encoder)
6507 dpll |= DPLL_SDVO_HIGH_SPEED;
6508
6509 /* compute bitmask from p1 value */
6510 if (IS_PINEVIEW(dev))
6511 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6512 else {
6513 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6514 if (IS_G4X(dev) && reduced_clock)
6515 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6516 }
6517 switch (clock->p2) {
6518 case 5:
6519 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6520 break;
6521 case 7:
6522 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6523 break;
6524 case 10:
6525 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6526 break;
6527 case 14:
6528 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6529 break;
6530 }
6531 if (INTEL_INFO(dev)->gen >= 4)
6532 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6533
6534 if (crtc_state->sdvo_tv_clock)
6535 dpll |= PLL_REF_INPUT_TVCLKINBC;
6536 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6537 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6538 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6539 else
6540 dpll |= PLL_REF_INPUT_DREFCLK;
6541
6542 dpll |= DPLL_VCO_ENABLE;
6543 crtc_state->dpll_hw_state.dpll = dpll;
6544
6545 if (INTEL_INFO(dev)->gen >= 4) {
6546 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
6547 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6548 crtc_state->dpll_hw_state.dpll_md = dpll_md;
6549 }
6550 }
6551
6552 static void i8xx_update_pll(struct intel_crtc *crtc,
6553 struct intel_crtc_state *crtc_state,
6554 intel_clock_t *reduced_clock,
6555 int num_connectors)
6556 {
6557 struct drm_device *dev = crtc->base.dev;
6558 struct drm_i915_private *dev_priv = dev->dev_private;
6559 u32 dpll;
6560 struct dpll *clock = &crtc_state->dpll;
6561
6562 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6563
6564 dpll = DPLL_VGA_MODE_DIS;
6565
6566 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
6567 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6568 } else {
6569 if (clock->p1 == 2)
6570 dpll |= PLL_P1_DIVIDE_BY_TWO;
6571 else
6572 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6573 if (clock->p2 == 4)
6574 dpll |= PLL_P2_DIVIDE_BY_4;
6575 }
6576
6577 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
6578 dpll |= DPLL_DVO_2X_MODE;
6579
6580 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6581 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6582 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6583 else
6584 dpll |= PLL_REF_INPUT_DREFCLK;
6585
6586 dpll |= DPLL_VCO_ENABLE;
6587 crtc_state->dpll_hw_state.dpll = dpll;
6588 }
6589
6590 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6591 {
6592 struct drm_device *dev = intel_crtc->base.dev;
6593 struct drm_i915_private *dev_priv = dev->dev_private;
6594 enum pipe pipe = intel_crtc->pipe;
6595 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
6596 struct drm_display_mode *adjusted_mode =
6597 &intel_crtc->config->base.adjusted_mode;
6598 uint32_t crtc_vtotal, crtc_vblank_end;
6599 int vsyncshift = 0;
6600
6601 /* We need to be careful not to changed the adjusted mode, for otherwise
6602 * the hw state checker will get angry at the mismatch. */
6603 crtc_vtotal = adjusted_mode->crtc_vtotal;
6604 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6605
6606 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6607 /* the chip adds 2 halflines automatically */
6608 crtc_vtotal -= 1;
6609 crtc_vblank_end -= 1;
6610
6611 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6612 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6613 else
6614 vsyncshift = adjusted_mode->crtc_hsync_start -
6615 adjusted_mode->crtc_htotal / 2;
6616 if (vsyncshift < 0)
6617 vsyncshift += adjusted_mode->crtc_htotal;
6618 }
6619
6620 if (INTEL_INFO(dev)->gen > 3)
6621 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6622
6623 I915_WRITE(HTOTAL(cpu_transcoder),
6624 (adjusted_mode->crtc_hdisplay - 1) |
6625 ((adjusted_mode->crtc_htotal - 1) << 16));
6626 I915_WRITE(HBLANK(cpu_transcoder),
6627 (adjusted_mode->crtc_hblank_start - 1) |
6628 ((adjusted_mode->crtc_hblank_end - 1) << 16));
6629 I915_WRITE(HSYNC(cpu_transcoder),
6630 (adjusted_mode->crtc_hsync_start - 1) |
6631 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6632
6633 I915_WRITE(VTOTAL(cpu_transcoder),
6634 (adjusted_mode->crtc_vdisplay - 1) |
6635 ((crtc_vtotal - 1) << 16));
6636 I915_WRITE(VBLANK(cpu_transcoder),
6637 (adjusted_mode->crtc_vblank_start - 1) |
6638 ((crtc_vblank_end - 1) << 16));
6639 I915_WRITE(VSYNC(cpu_transcoder),
6640 (adjusted_mode->crtc_vsync_start - 1) |
6641 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6642
6643 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6644 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6645 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6646 * bits. */
6647 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6648 (pipe == PIPE_B || pipe == PIPE_C))
6649 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6650
6651 /* pipesrc controls the size that is scaled from, which should
6652 * always be the user's requested size.
6653 */
6654 I915_WRITE(PIPESRC(pipe),
6655 ((intel_crtc->config->pipe_src_w - 1) << 16) |
6656 (intel_crtc->config->pipe_src_h - 1));
6657 }
6658
6659 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6660 struct intel_crtc_state *pipe_config)
6661 {
6662 struct drm_device *dev = crtc->base.dev;
6663 struct drm_i915_private *dev_priv = dev->dev_private;
6664 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6665 uint32_t tmp;
6666
6667 tmp = I915_READ(HTOTAL(cpu_transcoder));
6668 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6669 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6670 tmp = I915_READ(HBLANK(cpu_transcoder));
6671 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6672 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6673 tmp = I915_READ(HSYNC(cpu_transcoder));
6674 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6675 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6676
6677 tmp = I915_READ(VTOTAL(cpu_transcoder));
6678 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6679 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6680 tmp = I915_READ(VBLANK(cpu_transcoder));
6681 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6682 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6683 tmp = I915_READ(VSYNC(cpu_transcoder));
6684 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6685 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6686
6687 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6688 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6689 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6690 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
6691 }
6692
6693 tmp = I915_READ(PIPESRC(crtc->pipe));
6694 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6695 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6696
6697 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
6698 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
6699 }
6700
6701 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6702 struct intel_crtc_state *pipe_config)
6703 {
6704 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
6705 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
6706 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
6707 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
6708
6709 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
6710 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
6711 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
6712 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
6713
6714 mode->flags = pipe_config->base.adjusted_mode.flags;
6715
6716 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
6717 mode->flags |= pipe_config->base.adjusted_mode.flags;
6718 }
6719
6720 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6721 {
6722 struct drm_device *dev = intel_crtc->base.dev;
6723 struct drm_i915_private *dev_priv = dev->dev_private;
6724 uint32_t pipeconf;
6725
6726 pipeconf = 0;
6727
6728 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6729 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6730 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6731
6732 if (intel_crtc->config->double_wide)
6733 pipeconf |= PIPECONF_DOUBLE_WIDE;
6734
6735 /* only g4x and later have fancy bpc/dither controls */
6736 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6737 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6738 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
6739 pipeconf |= PIPECONF_DITHER_EN |
6740 PIPECONF_DITHER_TYPE_SP;
6741
6742 switch (intel_crtc->config->pipe_bpp) {
6743 case 18:
6744 pipeconf |= PIPECONF_6BPC;
6745 break;
6746 case 24:
6747 pipeconf |= PIPECONF_8BPC;
6748 break;
6749 case 30:
6750 pipeconf |= PIPECONF_10BPC;
6751 break;
6752 default:
6753 /* Case prevented by intel_choose_pipe_bpp_dither. */
6754 BUG();
6755 }
6756 }
6757
6758 if (HAS_PIPE_CXSR(dev)) {
6759 if (intel_crtc->lowfreq_avail) {
6760 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6761 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6762 } else {
6763 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6764 }
6765 }
6766
6767 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6768 if (INTEL_INFO(dev)->gen < 4 ||
6769 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6770 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6771 else
6772 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6773 } else
6774 pipeconf |= PIPECONF_PROGRESSIVE;
6775
6776 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
6777 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6778
6779 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6780 POSTING_READ(PIPECONF(intel_crtc->pipe));
6781 }
6782
6783 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
6784 struct intel_crtc_state *crtc_state)
6785 {
6786 struct drm_device *dev = crtc->base.dev;
6787 struct drm_i915_private *dev_priv = dev->dev_private;
6788 int refclk, num_connectors = 0;
6789 intel_clock_t clock, reduced_clock;
6790 bool ok, has_reduced_clock = false;
6791 bool is_lvds = false, is_dsi = false;
6792 struct intel_encoder *encoder;
6793 const intel_limit_t *limit;
6794 struct drm_atomic_state *state = crtc_state->base.state;
6795 struct drm_connector_state *connector_state;
6796 int i;
6797
6798 for (i = 0; i < state->num_connector; i++) {
6799 if (!state->connectors[i])
6800 continue;
6801
6802 connector_state = state->connector_states[i];
6803 if (connector_state->crtc != &crtc->base)
6804 continue;
6805
6806 encoder = to_intel_encoder(connector_state->best_encoder);
6807
6808 switch (encoder->type) {
6809 case INTEL_OUTPUT_LVDS:
6810 is_lvds = true;
6811 break;
6812 case INTEL_OUTPUT_DSI:
6813 is_dsi = true;
6814 break;
6815 default:
6816 break;
6817 }
6818
6819 num_connectors++;
6820 }
6821
6822 if (is_dsi)
6823 return 0;
6824
6825 if (!crtc_state->clock_set) {
6826 refclk = i9xx_get_refclk(crtc_state, num_connectors);
6827
6828 /*
6829 * Returns a set of divisors for the desired target clock with
6830 * the given refclk, or FALSE. The returned values represent
6831 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6832 * 2) / p1 / p2.
6833 */
6834 limit = intel_limit(crtc_state, refclk);
6835 ok = dev_priv->display.find_dpll(limit, crtc_state,
6836 crtc_state->port_clock,
6837 refclk, NULL, &clock);
6838 if (!ok) {
6839 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6840 return -EINVAL;
6841 }
6842
6843 if (is_lvds && dev_priv->lvds_downclock_avail) {
6844 /*
6845 * Ensure we match the reduced clock's P to the target
6846 * clock. If the clocks don't match, we can't switch
6847 * the display clock by using the FP0/FP1. In such case
6848 * we will disable the LVDS downclock feature.
6849 */
6850 has_reduced_clock =
6851 dev_priv->display.find_dpll(limit, crtc_state,
6852 dev_priv->lvds_downclock,
6853 refclk, &clock,
6854 &reduced_clock);
6855 }
6856 /* Compat-code for transition, will disappear. */
6857 crtc_state->dpll.n = clock.n;
6858 crtc_state->dpll.m1 = clock.m1;
6859 crtc_state->dpll.m2 = clock.m2;
6860 crtc_state->dpll.p1 = clock.p1;
6861 crtc_state->dpll.p2 = clock.p2;
6862 }
6863
6864 if (IS_GEN2(dev)) {
6865 i8xx_update_pll(crtc, crtc_state,
6866 has_reduced_clock ? &reduced_clock : NULL,
6867 num_connectors);
6868 } else if (IS_CHERRYVIEW(dev)) {
6869 chv_update_pll(crtc, crtc_state);
6870 } else if (IS_VALLEYVIEW(dev)) {
6871 vlv_update_pll(crtc, crtc_state);
6872 } else {
6873 i9xx_update_pll(crtc, crtc_state,
6874 has_reduced_clock ? &reduced_clock : NULL,
6875 num_connectors);
6876 }
6877
6878 return 0;
6879 }
6880
6881 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6882 struct intel_crtc_state *pipe_config)
6883 {
6884 struct drm_device *dev = crtc->base.dev;
6885 struct drm_i915_private *dev_priv = dev->dev_private;
6886 uint32_t tmp;
6887
6888 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6889 return;
6890
6891 tmp = I915_READ(PFIT_CONTROL);
6892 if (!(tmp & PFIT_ENABLE))
6893 return;
6894
6895 /* Check whether the pfit is attached to our pipe. */
6896 if (INTEL_INFO(dev)->gen < 4) {
6897 if (crtc->pipe != PIPE_B)
6898 return;
6899 } else {
6900 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6901 return;
6902 }
6903
6904 pipe_config->gmch_pfit.control = tmp;
6905 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6906 if (INTEL_INFO(dev)->gen < 5)
6907 pipe_config->gmch_pfit.lvds_border_bits =
6908 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6909 }
6910
6911 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6912 struct intel_crtc_state *pipe_config)
6913 {
6914 struct drm_device *dev = crtc->base.dev;
6915 struct drm_i915_private *dev_priv = dev->dev_private;
6916 int pipe = pipe_config->cpu_transcoder;
6917 intel_clock_t clock;
6918 u32 mdiv;
6919 int refclk = 100000;
6920
6921 /* In case of MIPI DPLL will not even be used */
6922 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6923 return;
6924
6925 mutex_lock(&dev_priv->dpio_lock);
6926 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6927 mutex_unlock(&dev_priv->dpio_lock);
6928
6929 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6930 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6931 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6932 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6933 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6934
6935 vlv_clock(refclk, &clock);
6936
6937 /* clock.dot is the fast clock */
6938 pipe_config->port_clock = clock.dot / 5;
6939 }
6940
6941 static void
6942 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
6943 struct intel_initial_plane_config *plane_config)
6944 {
6945 struct drm_device *dev = crtc->base.dev;
6946 struct drm_i915_private *dev_priv = dev->dev_private;
6947 u32 val, base, offset;
6948 int pipe = crtc->pipe, plane = crtc->plane;
6949 int fourcc, pixel_format;
6950 unsigned int aligned_height;
6951 struct drm_framebuffer *fb;
6952 struct intel_framebuffer *intel_fb;
6953
6954 val = I915_READ(DSPCNTR(plane));
6955 if (!(val & DISPLAY_PLANE_ENABLE))
6956 return;
6957
6958 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6959 if (!intel_fb) {
6960 DRM_DEBUG_KMS("failed to alloc fb\n");
6961 return;
6962 }
6963
6964 fb = &intel_fb->base;
6965
6966 if (INTEL_INFO(dev)->gen >= 4) {
6967 if (val & DISPPLANE_TILED) {
6968 plane_config->tiling = I915_TILING_X;
6969 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
6970 }
6971 }
6972
6973 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6974 fourcc = i9xx_format_to_fourcc(pixel_format);
6975 fb->pixel_format = fourcc;
6976 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
6977
6978 if (INTEL_INFO(dev)->gen >= 4) {
6979 if (plane_config->tiling)
6980 offset = I915_READ(DSPTILEOFF(plane));
6981 else
6982 offset = I915_READ(DSPLINOFF(plane));
6983 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6984 } else {
6985 base = I915_READ(DSPADDR(plane));
6986 }
6987 plane_config->base = base;
6988
6989 val = I915_READ(PIPESRC(pipe));
6990 fb->width = ((val >> 16) & 0xfff) + 1;
6991 fb->height = ((val >> 0) & 0xfff) + 1;
6992
6993 val = I915_READ(DSPSTRIDE(pipe));
6994 fb->pitches[0] = val & 0xffffffc0;
6995
6996 aligned_height = intel_fb_align_height(dev, fb->height,
6997 fb->pixel_format,
6998 fb->modifier[0]);
6999
7000 plane_config->size = fb->pitches[0] * aligned_height;
7001
7002 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7003 pipe_name(pipe), plane, fb->width, fb->height,
7004 fb->bits_per_pixel, base, fb->pitches[0],
7005 plane_config->size);
7006
7007 plane_config->fb = intel_fb;
7008 }
7009
7010 static void chv_crtc_clock_get(struct intel_crtc *crtc,
7011 struct intel_crtc_state *pipe_config)
7012 {
7013 struct drm_device *dev = crtc->base.dev;
7014 struct drm_i915_private *dev_priv = dev->dev_private;
7015 int pipe = pipe_config->cpu_transcoder;
7016 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7017 intel_clock_t clock;
7018 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
7019 int refclk = 100000;
7020
7021 mutex_lock(&dev_priv->dpio_lock);
7022 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7023 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7024 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7025 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
7026 mutex_unlock(&dev_priv->dpio_lock);
7027
7028 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
7029 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
7030 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7031 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
7032 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
7033
7034 chv_clock(refclk, &clock);
7035
7036 /* clock.dot is the fast clock */
7037 pipe_config->port_clock = clock.dot / 5;
7038 }
7039
7040 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
7041 struct intel_crtc_state *pipe_config)
7042 {
7043 struct drm_device *dev = crtc->base.dev;
7044 struct drm_i915_private *dev_priv = dev->dev_private;
7045 uint32_t tmp;
7046
7047 if (!intel_display_power_is_enabled(dev_priv,
7048 POWER_DOMAIN_PIPE(crtc->pipe)))
7049 return false;
7050
7051 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7052 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7053
7054 tmp = I915_READ(PIPECONF(crtc->pipe));
7055 if (!(tmp & PIPECONF_ENABLE))
7056 return false;
7057
7058 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7059 switch (tmp & PIPECONF_BPC_MASK) {
7060 case PIPECONF_6BPC:
7061 pipe_config->pipe_bpp = 18;
7062 break;
7063 case PIPECONF_8BPC:
7064 pipe_config->pipe_bpp = 24;
7065 break;
7066 case PIPECONF_10BPC:
7067 pipe_config->pipe_bpp = 30;
7068 break;
7069 default:
7070 break;
7071 }
7072 }
7073
7074 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
7075 pipe_config->limited_color_range = true;
7076
7077 if (INTEL_INFO(dev)->gen < 4)
7078 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7079
7080 intel_get_pipe_timings(crtc, pipe_config);
7081
7082 i9xx_get_pfit_config(crtc, pipe_config);
7083
7084 if (INTEL_INFO(dev)->gen >= 4) {
7085 tmp = I915_READ(DPLL_MD(crtc->pipe));
7086 pipe_config->pixel_multiplier =
7087 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7088 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
7089 pipe_config->dpll_hw_state.dpll_md = tmp;
7090 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7091 tmp = I915_READ(DPLL(crtc->pipe));
7092 pipe_config->pixel_multiplier =
7093 ((tmp & SDVO_MULTIPLIER_MASK)
7094 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7095 } else {
7096 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7097 * port and will be fixed up in the encoder->get_config
7098 * function. */
7099 pipe_config->pixel_multiplier = 1;
7100 }
7101 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7102 if (!IS_VALLEYVIEW(dev)) {
7103 /*
7104 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7105 * on 830. Filter it out here so that we don't
7106 * report errors due to that.
7107 */
7108 if (IS_I830(dev))
7109 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7110
7111 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7112 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
7113 } else {
7114 /* Mask out read-only status bits. */
7115 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7116 DPLL_PORTC_READY_MASK |
7117 DPLL_PORTB_READY_MASK);
7118 }
7119
7120 if (IS_CHERRYVIEW(dev))
7121 chv_crtc_clock_get(crtc, pipe_config);
7122 else if (IS_VALLEYVIEW(dev))
7123 vlv_crtc_clock_get(crtc, pipe_config);
7124 else
7125 i9xx_crtc_clock_get(crtc, pipe_config);
7126
7127 return true;
7128 }
7129
7130 static void ironlake_init_pch_refclk(struct drm_device *dev)
7131 {
7132 struct drm_i915_private *dev_priv = dev->dev_private;
7133 struct intel_encoder *encoder;
7134 u32 val, final;
7135 bool has_lvds = false;
7136 bool has_cpu_edp = false;
7137 bool has_panel = false;
7138 bool has_ck505 = false;
7139 bool can_ssc = false;
7140
7141 /* We need to take the global config into account */
7142 for_each_intel_encoder(dev, encoder) {
7143 switch (encoder->type) {
7144 case INTEL_OUTPUT_LVDS:
7145 has_panel = true;
7146 has_lvds = true;
7147 break;
7148 case INTEL_OUTPUT_EDP:
7149 has_panel = true;
7150 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
7151 has_cpu_edp = true;
7152 break;
7153 default:
7154 break;
7155 }
7156 }
7157
7158 if (HAS_PCH_IBX(dev)) {
7159 has_ck505 = dev_priv->vbt.display_clock_mode;
7160 can_ssc = has_ck505;
7161 } else {
7162 has_ck505 = false;
7163 can_ssc = true;
7164 }
7165
7166 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
7167 has_panel, has_lvds, has_ck505);
7168
7169 /* Ironlake: try to setup display ref clock before DPLL
7170 * enabling. This is only under driver's control after
7171 * PCH B stepping, previous chipset stepping should be
7172 * ignoring this setting.
7173 */
7174 val = I915_READ(PCH_DREF_CONTROL);
7175
7176 /* As we must carefully and slowly disable/enable each source in turn,
7177 * compute the final state we want first and check if we need to
7178 * make any changes at all.
7179 */
7180 final = val;
7181 final &= ~DREF_NONSPREAD_SOURCE_MASK;
7182 if (has_ck505)
7183 final |= DREF_NONSPREAD_CK505_ENABLE;
7184 else
7185 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7186
7187 final &= ~DREF_SSC_SOURCE_MASK;
7188 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7189 final &= ~DREF_SSC1_ENABLE;
7190
7191 if (has_panel) {
7192 final |= DREF_SSC_SOURCE_ENABLE;
7193
7194 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7195 final |= DREF_SSC1_ENABLE;
7196
7197 if (has_cpu_edp) {
7198 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7199 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7200 else
7201 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7202 } else
7203 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7204 } else {
7205 final |= DREF_SSC_SOURCE_DISABLE;
7206 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7207 }
7208
7209 if (final == val)
7210 return;
7211
7212 /* Always enable nonspread source */
7213 val &= ~DREF_NONSPREAD_SOURCE_MASK;
7214
7215 if (has_ck505)
7216 val |= DREF_NONSPREAD_CK505_ENABLE;
7217 else
7218 val |= DREF_NONSPREAD_SOURCE_ENABLE;
7219
7220 if (has_panel) {
7221 val &= ~DREF_SSC_SOURCE_MASK;
7222 val |= DREF_SSC_SOURCE_ENABLE;
7223
7224 /* SSC must be turned on before enabling the CPU output */
7225 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7226 DRM_DEBUG_KMS("Using SSC on panel\n");
7227 val |= DREF_SSC1_ENABLE;
7228 } else
7229 val &= ~DREF_SSC1_ENABLE;
7230
7231 /* Get SSC going before enabling the outputs */
7232 I915_WRITE(PCH_DREF_CONTROL, val);
7233 POSTING_READ(PCH_DREF_CONTROL);
7234 udelay(200);
7235
7236 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7237
7238 /* Enable CPU source on CPU attached eDP */
7239 if (has_cpu_edp) {
7240 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7241 DRM_DEBUG_KMS("Using SSC on eDP\n");
7242 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7243 } else
7244 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7245 } else
7246 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7247
7248 I915_WRITE(PCH_DREF_CONTROL, val);
7249 POSTING_READ(PCH_DREF_CONTROL);
7250 udelay(200);
7251 } else {
7252 DRM_DEBUG_KMS("Disabling SSC entirely\n");
7253
7254 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7255
7256 /* Turn off CPU output */
7257 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7258
7259 I915_WRITE(PCH_DREF_CONTROL, val);
7260 POSTING_READ(PCH_DREF_CONTROL);
7261 udelay(200);
7262
7263 /* Turn off the SSC source */
7264 val &= ~DREF_SSC_SOURCE_MASK;
7265 val |= DREF_SSC_SOURCE_DISABLE;
7266
7267 /* Turn off SSC1 */
7268 val &= ~DREF_SSC1_ENABLE;
7269
7270 I915_WRITE(PCH_DREF_CONTROL, val);
7271 POSTING_READ(PCH_DREF_CONTROL);
7272 udelay(200);
7273 }
7274
7275 BUG_ON(val != final);
7276 }
7277
7278 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
7279 {
7280 uint32_t tmp;
7281
7282 tmp = I915_READ(SOUTH_CHICKEN2);
7283 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7284 I915_WRITE(SOUTH_CHICKEN2, tmp);
7285
7286 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
7287 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7288 DRM_ERROR("FDI mPHY reset assert timeout\n");
7289
7290 tmp = I915_READ(SOUTH_CHICKEN2);
7291 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7292 I915_WRITE(SOUTH_CHICKEN2, tmp);
7293
7294 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
7295 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7296 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
7297 }
7298
7299 /* WaMPhyProgramming:hsw */
7300 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7301 {
7302 uint32_t tmp;
7303
7304 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7305 tmp &= ~(0xFF << 24);
7306 tmp |= (0x12 << 24);
7307 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7308
7309 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7310 tmp |= (1 << 11);
7311 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7312
7313 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7314 tmp |= (1 << 11);
7315 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7316
7317 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7318 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7319 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7320
7321 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7322 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7323 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7324
7325 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7326 tmp &= ~(7 << 13);
7327 tmp |= (5 << 13);
7328 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
7329
7330 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7331 tmp &= ~(7 << 13);
7332 tmp |= (5 << 13);
7333 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
7334
7335 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7336 tmp &= ~0xFF;
7337 tmp |= 0x1C;
7338 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7339
7340 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7341 tmp &= ~0xFF;
7342 tmp |= 0x1C;
7343 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7344
7345 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7346 tmp &= ~(0xFF << 16);
7347 tmp |= (0x1C << 16);
7348 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7349
7350 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7351 tmp &= ~(0xFF << 16);
7352 tmp |= (0x1C << 16);
7353 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7354
7355 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7356 tmp |= (1 << 27);
7357 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7358
7359 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7360 tmp |= (1 << 27);
7361 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7362
7363 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7364 tmp &= ~(0xF << 28);
7365 tmp |= (4 << 28);
7366 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7367
7368 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7369 tmp &= ~(0xF << 28);
7370 tmp |= (4 << 28);
7371 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7372 }
7373
7374 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7375 * Programming" based on the parameters passed:
7376 * - Sequence to enable CLKOUT_DP
7377 * - Sequence to enable CLKOUT_DP without spread
7378 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7379 */
7380 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7381 bool with_fdi)
7382 {
7383 struct drm_i915_private *dev_priv = dev->dev_private;
7384 uint32_t reg, tmp;
7385
7386 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7387 with_spread = true;
7388 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7389 with_fdi, "LP PCH doesn't have FDI\n"))
7390 with_fdi = false;
7391
7392 mutex_lock(&dev_priv->dpio_lock);
7393
7394 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7395 tmp &= ~SBI_SSCCTL_DISABLE;
7396 tmp |= SBI_SSCCTL_PATHALT;
7397 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7398
7399 udelay(24);
7400
7401 if (with_spread) {
7402 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7403 tmp &= ~SBI_SSCCTL_PATHALT;
7404 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7405
7406 if (with_fdi) {
7407 lpt_reset_fdi_mphy(dev_priv);
7408 lpt_program_fdi_mphy(dev_priv);
7409 }
7410 }
7411
7412 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7413 SBI_GEN0 : SBI_DBUFF0;
7414 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7415 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7416 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7417
7418 mutex_unlock(&dev_priv->dpio_lock);
7419 }
7420
7421 /* Sequence to disable CLKOUT_DP */
7422 static void lpt_disable_clkout_dp(struct drm_device *dev)
7423 {
7424 struct drm_i915_private *dev_priv = dev->dev_private;
7425 uint32_t reg, tmp;
7426
7427 mutex_lock(&dev_priv->dpio_lock);
7428
7429 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7430 SBI_GEN0 : SBI_DBUFF0;
7431 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7432 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7433 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7434
7435 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7436 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7437 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7438 tmp |= SBI_SSCCTL_PATHALT;
7439 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7440 udelay(32);
7441 }
7442 tmp |= SBI_SSCCTL_DISABLE;
7443 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7444 }
7445
7446 mutex_unlock(&dev_priv->dpio_lock);
7447 }
7448
7449 static void lpt_init_pch_refclk(struct drm_device *dev)
7450 {
7451 struct intel_encoder *encoder;
7452 bool has_vga = false;
7453
7454 for_each_intel_encoder(dev, encoder) {
7455 switch (encoder->type) {
7456 case INTEL_OUTPUT_ANALOG:
7457 has_vga = true;
7458 break;
7459 default:
7460 break;
7461 }
7462 }
7463
7464 if (has_vga)
7465 lpt_enable_clkout_dp(dev, true, true);
7466 else
7467 lpt_disable_clkout_dp(dev);
7468 }
7469
7470 /*
7471 * Initialize reference clocks when the driver loads
7472 */
7473 void intel_init_pch_refclk(struct drm_device *dev)
7474 {
7475 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7476 ironlake_init_pch_refclk(dev);
7477 else if (HAS_PCH_LPT(dev))
7478 lpt_init_pch_refclk(dev);
7479 }
7480
7481 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
7482 {
7483 struct drm_device *dev = crtc_state->base.crtc->dev;
7484 struct drm_i915_private *dev_priv = dev->dev_private;
7485 struct drm_atomic_state *state = crtc_state->base.state;
7486 struct drm_connector_state *connector_state;
7487 struct intel_encoder *encoder;
7488 int num_connectors = 0, i;
7489 bool is_lvds = false;
7490
7491 for (i = 0; i < state->num_connector; i++) {
7492 if (!state->connectors[i])
7493 continue;
7494
7495 connector_state = state->connector_states[i];
7496 if (connector_state->crtc != crtc_state->base.crtc)
7497 continue;
7498
7499 encoder = to_intel_encoder(connector_state->best_encoder);
7500
7501 switch (encoder->type) {
7502 case INTEL_OUTPUT_LVDS:
7503 is_lvds = true;
7504 break;
7505 default:
7506 break;
7507 }
7508 num_connectors++;
7509 }
7510
7511 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7512 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
7513 dev_priv->vbt.lvds_ssc_freq);
7514 return dev_priv->vbt.lvds_ssc_freq;
7515 }
7516
7517 return 120000;
7518 }
7519
7520 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7521 {
7522 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
7523 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7524 int pipe = intel_crtc->pipe;
7525 uint32_t val;
7526
7527 val = 0;
7528
7529 switch (intel_crtc->config->pipe_bpp) {
7530 case 18:
7531 val |= PIPECONF_6BPC;
7532 break;
7533 case 24:
7534 val |= PIPECONF_8BPC;
7535 break;
7536 case 30:
7537 val |= PIPECONF_10BPC;
7538 break;
7539 case 36:
7540 val |= PIPECONF_12BPC;
7541 break;
7542 default:
7543 /* Case prevented by intel_choose_pipe_bpp_dither. */
7544 BUG();
7545 }
7546
7547 if (intel_crtc->config->dither)
7548 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7549
7550 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7551 val |= PIPECONF_INTERLACED_ILK;
7552 else
7553 val |= PIPECONF_PROGRESSIVE;
7554
7555 if (intel_crtc->config->limited_color_range)
7556 val |= PIPECONF_COLOR_RANGE_SELECT;
7557
7558 I915_WRITE(PIPECONF(pipe), val);
7559 POSTING_READ(PIPECONF(pipe));
7560 }
7561
7562 /*
7563 * Set up the pipe CSC unit.
7564 *
7565 * Currently only full range RGB to limited range RGB conversion
7566 * is supported, but eventually this should handle various
7567 * RGB<->YCbCr scenarios as well.
7568 */
7569 static void intel_set_pipe_csc(struct drm_crtc *crtc)
7570 {
7571 struct drm_device *dev = crtc->dev;
7572 struct drm_i915_private *dev_priv = dev->dev_private;
7573 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7574 int pipe = intel_crtc->pipe;
7575 uint16_t coeff = 0x7800; /* 1.0 */
7576
7577 /*
7578 * TODO: Check what kind of values actually come out of the pipe
7579 * with these coeff/postoff values and adjust to get the best
7580 * accuracy. Perhaps we even need to take the bpc value into
7581 * consideration.
7582 */
7583
7584 if (intel_crtc->config->limited_color_range)
7585 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7586
7587 /*
7588 * GY/GU and RY/RU should be the other way around according
7589 * to BSpec, but reality doesn't agree. Just set them up in
7590 * a way that results in the correct picture.
7591 */
7592 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7593 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7594
7595 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7596 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7597
7598 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7599 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7600
7601 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7602 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7603 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7604
7605 if (INTEL_INFO(dev)->gen > 6) {
7606 uint16_t postoff = 0;
7607
7608 if (intel_crtc->config->limited_color_range)
7609 postoff = (16 * (1 << 12) / 255) & 0x1fff;
7610
7611 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7612 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7613 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7614
7615 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7616 } else {
7617 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7618
7619 if (intel_crtc->config->limited_color_range)
7620 mode |= CSC_BLACK_SCREEN_OFFSET;
7621
7622 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7623 }
7624 }
7625
7626 static void haswell_set_pipeconf(struct drm_crtc *crtc)
7627 {
7628 struct drm_device *dev = crtc->dev;
7629 struct drm_i915_private *dev_priv = dev->dev_private;
7630 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7631 enum pipe pipe = intel_crtc->pipe;
7632 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7633 uint32_t val;
7634
7635 val = 0;
7636
7637 if (IS_HASWELL(dev) && intel_crtc->config->dither)
7638 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7639
7640 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7641 val |= PIPECONF_INTERLACED_ILK;
7642 else
7643 val |= PIPECONF_PROGRESSIVE;
7644
7645 I915_WRITE(PIPECONF(cpu_transcoder), val);
7646 POSTING_READ(PIPECONF(cpu_transcoder));
7647
7648 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7649 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7650
7651 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
7652 val = 0;
7653
7654 switch (intel_crtc->config->pipe_bpp) {
7655 case 18:
7656 val |= PIPEMISC_DITHER_6_BPC;
7657 break;
7658 case 24:
7659 val |= PIPEMISC_DITHER_8_BPC;
7660 break;
7661 case 30:
7662 val |= PIPEMISC_DITHER_10_BPC;
7663 break;
7664 case 36:
7665 val |= PIPEMISC_DITHER_12_BPC;
7666 break;
7667 default:
7668 /* Case prevented by pipe_config_set_bpp. */
7669 BUG();
7670 }
7671
7672 if (intel_crtc->config->dither)
7673 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7674
7675 I915_WRITE(PIPEMISC(pipe), val);
7676 }
7677 }
7678
7679 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7680 struct intel_crtc_state *crtc_state,
7681 intel_clock_t *clock,
7682 bool *has_reduced_clock,
7683 intel_clock_t *reduced_clock)
7684 {
7685 struct drm_device *dev = crtc->dev;
7686 struct drm_i915_private *dev_priv = dev->dev_private;
7687 int refclk;
7688 const intel_limit_t *limit;
7689 bool ret, is_lvds = false;
7690
7691 is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
7692
7693 refclk = ironlake_get_refclk(crtc_state);
7694
7695 /*
7696 * Returns a set of divisors for the desired target clock with the given
7697 * refclk, or FALSE. The returned values represent the clock equation:
7698 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7699 */
7700 limit = intel_limit(crtc_state, refclk);
7701 ret = dev_priv->display.find_dpll(limit, crtc_state,
7702 crtc_state->port_clock,
7703 refclk, NULL, clock);
7704 if (!ret)
7705 return false;
7706
7707 if (is_lvds && dev_priv->lvds_downclock_avail) {
7708 /*
7709 * Ensure we match the reduced clock's P to the target clock.
7710 * If the clocks don't match, we can't switch the display clock
7711 * by using the FP0/FP1. In such case we will disable the LVDS
7712 * downclock feature.
7713 */
7714 *has_reduced_clock =
7715 dev_priv->display.find_dpll(limit, crtc_state,
7716 dev_priv->lvds_downclock,
7717 refclk, clock,
7718 reduced_clock);
7719 }
7720
7721 return true;
7722 }
7723
7724 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7725 {
7726 /*
7727 * Account for spread spectrum to avoid
7728 * oversubscribing the link. Max center spread
7729 * is 2.5%; use 5% for safety's sake.
7730 */
7731 u32 bps = target_clock * bpp * 21 / 20;
7732 return DIV_ROUND_UP(bps, link_bw * 8);
7733 }
7734
7735 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7736 {
7737 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7738 }
7739
7740 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7741 struct intel_crtc_state *crtc_state,
7742 u32 *fp,
7743 intel_clock_t *reduced_clock, u32 *fp2)
7744 {
7745 struct drm_crtc *crtc = &intel_crtc->base;
7746 struct drm_device *dev = crtc->dev;
7747 struct drm_i915_private *dev_priv = dev->dev_private;
7748 struct drm_atomic_state *state = crtc_state->base.state;
7749 struct drm_connector_state *connector_state;
7750 struct intel_encoder *encoder;
7751 uint32_t dpll;
7752 int factor, num_connectors = 0, i;
7753 bool is_lvds = false, is_sdvo = false;
7754
7755 for (i = 0; i < state->num_connector; i++) {
7756 if (!state->connectors[i])
7757 continue;
7758
7759 connector_state = state->connector_states[i];
7760 if (connector_state->crtc != crtc_state->base.crtc)
7761 continue;
7762
7763 encoder = to_intel_encoder(connector_state->best_encoder);
7764
7765 switch (encoder->type) {
7766 case INTEL_OUTPUT_LVDS:
7767 is_lvds = true;
7768 break;
7769 case INTEL_OUTPUT_SDVO:
7770 case INTEL_OUTPUT_HDMI:
7771 is_sdvo = true;
7772 break;
7773 default:
7774 break;
7775 }
7776
7777 num_connectors++;
7778 }
7779
7780 /* Enable autotuning of the PLL clock (if permissible) */
7781 factor = 21;
7782 if (is_lvds) {
7783 if ((intel_panel_use_ssc(dev_priv) &&
7784 dev_priv->vbt.lvds_ssc_freq == 100000) ||
7785 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7786 factor = 25;
7787 } else if (crtc_state->sdvo_tv_clock)
7788 factor = 20;
7789
7790 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7791 *fp |= FP_CB_TUNE;
7792
7793 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7794 *fp2 |= FP_CB_TUNE;
7795
7796 dpll = 0;
7797
7798 if (is_lvds)
7799 dpll |= DPLLB_MODE_LVDS;
7800 else
7801 dpll |= DPLLB_MODE_DAC_SERIAL;
7802
7803 dpll |= (crtc_state->pixel_multiplier - 1)
7804 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7805
7806 if (is_sdvo)
7807 dpll |= DPLL_SDVO_HIGH_SPEED;
7808 if (crtc_state->has_dp_encoder)
7809 dpll |= DPLL_SDVO_HIGH_SPEED;
7810
7811 /* compute bitmask from p1 value */
7812 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7813 /* also FPA1 */
7814 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7815
7816 switch (crtc_state->dpll.p2) {
7817 case 5:
7818 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7819 break;
7820 case 7:
7821 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7822 break;
7823 case 10:
7824 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7825 break;
7826 case 14:
7827 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7828 break;
7829 }
7830
7831 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7832 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7833 else
7834 dpll |= PLL_REF_INPUT_DREFCLK;
7835
7836 return dpll | DPLL_VCO_ENABLE;
7837 }
7838
7839 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
7840 struct intel_crtc_state *crtc_state)
7841 {
7842 struct drm_device *dev = crtc->base.dev;
7843 intel_clock_t clock, reduced_clock;
7844 u32 dpll = 0, fp = 0, fp2 = 0;
7845 bool ok, has_reduced_clock = false;
7846 bool is_lvds = false;
7847 struct intel_shared_dpll *pll;
7848
7849 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
7850
7851 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7852 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7853
7854 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
7855 &has_reduced_clock, &reduced_clock);
7856 if (!ok && !crtc_state->clock_set) {
7857 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7858 return -EINVAL;
7859 }
7860 /* Compat-code for transition, will disappear. */
7861 if (!crtc_state->clock_set) {
7862 crtc_state->dpll.n = clock.n;
7863 crtc_state->dpll.m1 = clock.m1;
7864 crtc_state->dpll.m2 = clock.m2;
7865 crtc_state->dpll.p1 = clock.p1;
7866 crtc_state->dpll.p2 = clock.p2;
7867 }
7868
7869 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7870 if (crtc_state->has_pch_encoder) {
7871 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7872 if (has_reduced_clock)
7873 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7874
7875 dpll = ironlake_compute_dpll(crtc, crtc_state,
7876 &fp, &reduced_clock,
7877 has_reduced_clock ? &fp2 : NULL);
7878
7879 crtc_state->dpll_hw_state.dpll = dpll;
7880 crtc_state->dpll_hw_state.fp0 = fp;
7881 if (has_reduced_clock)
7882 crtc_state->dpll_hw_state.fp1 = fp2;
7883 else
7884 crtc_state->dpll_hw_state.fp1 = fp;
7885
7886 pll = intel_get_shared_dpll(crtc, crtc_state);
7887 if (pll == NULL) {
7888 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7889 pipe_name(crtc->pipe));
7890 return -EINVAL;
7891 }
7892 }
7893
7894 if (is_lvds && has_reduced_clock)
7895 crtc->lowfreq_avail = true;
7896 else
7897 crtc->lowfreq_avail = false;
7898
7899 return 0;
7900 }
7901
7902 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7903 struct intel_link_m_n *m_n)
7904 {
7905 struct drm_device *dev = crtc->base.dev;
7906 struct drm_i915_private *dev_priv = dev->dev_private;
7907 enum pipe pipe = crtc->pipe;
7908
7909 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7910 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7911 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7912 & ~TU_SIZE_MASK;
7913 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7914 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7915 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7916 }
7917
7918 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7919 enum transcoder transcoder,
7920 struct intel_link_m_n *m_n,
7921 struct intel_link_m_n *m2_n2)
7922 {
7923 struct drm_device *dev = crtc->base.dev;
7924 struct drm_i915_private *dev_priv = dev->dev_private;
7925 enum pipe pipe = crtc->pipe;
7926
7927 if (INTEL_INFO(dev)->gen >= 5) {
7928 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7929 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7930 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7931 & ~TU_SIZE_MASK;
7932 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7933 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7934 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7935 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7936 * gen < 8) and if DRRS is supported (to make sure the
7937 * registers are not unnecessarily read).
7938 */
7939 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7940 crtc->config->has_drrs) {
7941 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7942 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7943 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7944 & ~TU_SIZE_MASK;
7945 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7946 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7947 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7948 }
7949 } else {
7950 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7951 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7952 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7953 & ~TU_SIZE_MASK;
7954 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7955 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7956 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7957 }
7958 }
7959
7960 void intel_dp_get_m_n(struct intel_crtc *crtc,
7961 struct intel_crtc_state *pipe_config)
7962 {
7963 if (pipe_config->has_pch_encoder)
7964 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7965 else
7966 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7967 &pipe_config->dp_m_n,
7968 &pipe_config->dp_m2_n2);
7969 }
7970
7971 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7972 struct intel_crtc_state *pipe_config)
7973 {
7974 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7975 &pipe_config->fdi_m_n, NULL);
7976 }
7977
7978 static void skylake_get_pfit_config(struct intel_crtc *crtc,
7979 struct intel_crtc_state *pipe_config)
7980 {
7981 struct drm_device *dev = crtc->base.dev;
7982 struct drm_i915_private *dev_priv = dev->dev_private;
7983 uint32_t tmp;
7984
7985 tmp = I915_READ(PS_CTL(crtc->pipe));
7986
7987 if (tmp & PS_ENABLE) {
7988 pipe_config->pch_pfit.enabled = true;
7989 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7990 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7991 }
7992 }
7993
7994 static void
7995 skylake_get_initial_plane_config(struct intel_crtc *crtc,
7996 struct intel_initial_plane_config *plane_config)
7997 {
7998 struct drm_device *dev = crtc->base.dev;
7999 struct drm_i915_private *dev_priv = dev->dev_private;
8000 u32 val, base, offset, stride_mult, tiling;
8001 int pipe = crtc->pipe;
8002 int fourcc, pixel_format;
8003 unsigned int aligned_height;
8004 struct drm_framebuffer *fb;
8005 struct intel_framebuffer *intel_fb;
8006
8007 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8008 if (!intel_fb) {
8009 DRM_DEBUG_KMS("failed to alloc fb\n");
8010 return;
8011 }
8012
8013 fb = &intel_fb->base;
8014
8015 val = I915_READ(PLANE_CTL(pipe, 0));
8016 if (!(val & PLANE_CTL_ENABLE))
8017 goto error;
8018
8019 pixel_format = val & PLANE_CTL_FORMAT_MASK;
8020 fourcc = skl_format_to_fourcc(pixel_format,
8021 val & PLANE_CTL_ORDER_RGBX,
8022 val & PLANE_CTL_ALPHA_MASK);
8023 fb->pixel_format = fourcc;
8024 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8025
8026 tiling = val & PLANE_CTL_TILED_MASK;
8027 switch (tiling) {
8028 case PLANE_CTL_TILED_LINEAR:
8029 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
8030 break;
8031 case PLANE_CTL_TILED_X:
8032 plane_config->tiling = I915_TILING_X;
8033 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8034 break;
8035 case PLANE_CTL_TILED_Y:
8036 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
8037 break;
8038 case PLANE_CTL_TILED_YF:
8039 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
8040 break;
8041 default:
8042 MISSING_CASE(tiling);
8043 goto error;
8044 }
8045
8046 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
8047 plane_config->base = base;
8048
8049 offset = I915_READ(PLANE_OFFSET(pipe, 0));
8050
8051 val = I915_READ(PLANE_SIZE(pipe, 0));
8052 fb->height = ((val >> 16) & 0xfff) + 1;
8053 fb->width = ((val >> 0) & 0x1fff) + 1;
8054
8055 val = I915_READ(PLANE_STRIDE(pipe, 0));
8056 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
8057 fb->pixel_format);
8058 fb->pitches[0] = (val & 0x3ff) * stride_mult;
8059
8060 aligned_height = intel_fb_align_height(dev, fb->height,
8061 fb->pixel_format,
8062 fb->modifier[0]);
8063
8064 plane_config->size = fb->pitches[0] * aligned_height;
8065
8066 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8067 pipe_name(pipe), fb->width, fb->height,
8068 fb->bits_per_pixel, base, fb->pitches[0],
8069 plane_config->size);
8070
8071 plane_config->fb = intel_fb;
8072 return;
8073
8074 error:
8075 kfree(fb);
8076 }
8077
8078 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
8079 struct intel_crtc_state *pipe_config)
8080 {
8081 struct drm_device *dev = crtc->base.dev;
8082 struct drm_i915_private *dev_priv = dev->dev_private;
8083 uint32_t tmp;
8084
8085 tmp = I915_READ(PF_CTL(crtc->pipe));
8086
8087 if (tmp & PF_ENABLE) {
8088 pipe_config->pch_pfit.enabled = true;
8089 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8090 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
8091
8092 /* We currently do not free assignements of panel fitters on
8093 * ivb/hsw (since we don't use the higher upscaling modes which
8094 * differentiates them) so just WARN about this case for now. */
8095 if (IS_GEN7(dev)) {
8096 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8097 PF_PIPE_SEL_IVB(crtc->pipe));
8098 }
8099 }
8100 }
8101
8102 static void
8103 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8104 struct intel_initial_plane_config *plane_config)
8105 {
8106 struct drm_device *dev = crtc->base.dev;
8107 struct drm_i915_private *dev_priv = dev->dev_private;
8108 u32 val, base, offset;
8109 int pipe = crtc->pipe;
8110 int fourcc, pixel_format;
8111 unsigned int aligned_height;
8112 struct drm_framebuffer *fb;
8113 struct intel_framebuffer *intel_fb;
8114
8115 val = I915_READ(DSPCNTR(pipe));
8116 if (!(val & DISPLAY_PLANE_ENABLE))
8117 return;
8118
8119 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8120 if (!intel_fb) {
8121 DRM_DEBUG_KMS("failed to alloc fb\n");
8122 return;
8123 }
8124
8125 fb = &intel_fb->base;
8126
8127 if (INTEL_INFO(dev)->gen >= 4) {
8128 if (val & DISPPLANE_TILED) {
8129 plane_config->tiling = I915_TILING_X;
8130 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8131 }
8132 }
8133
8134 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8135 fourcc = i9xx_format_to_fourcc(pixel_format);
8136 fb->pixel_format = fourcc;
8137 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8138
8139 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
8140 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
8141 offset = I915_READ(DSPOFFSET(pipe));
8142 } else {
8143 if (plane_config->tiling)
8144 offset = I915_READ(DSPTILEOFF(pipe));
8145 else
8146 offset = I915_READ(DSPLINOFF(pipe));
8147 }
8148 plane_config->base = base;
8149
8150 val = I915_READ(PIPESRC(pipe));
8151 fb->width = ((val >> 16) & 0xfff) + 1;
8152 fb->height = ((val >> 0) & 0xfff) + 1;
8153
8154 val = I915_READ(DSPSTRIDE(pipe));
8155 fb->pitches[0] = val & 0xffffffc0;
8156
8157 aligned_height = intel_fb_align_height(dev, fb->height,
8158 fb->pixel_format,
8159 fb->modifier[0]);
8160
8161 plane_config->size = fb->pitches[0] * aligned_height;
8162
8163 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8164 pipe_name(pipe), fb->width, fb->height,
8165 fb->bits_per_pixel, base, fb->pitches[0],
8166 plane_config->size);
8167
8168 plane_config->fb = intel_fb;
8169 }
8170
8171 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
8172 struct intel_crtc_state *pipe_config)
8173 {
8174 struct drm_device *dev = crtc->base.dev;
8175 struct drm_i915_private *dev_priv = dev->dev_private;
8176 uint32_t tmp;
8177
8178 if (!intel_display_power_is_enabled(dev_priv,
8179 POWER_DOMAIN_PIPE(crtc->pipe)))
8180 return false;
8181
8182 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8183 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8184
8185 tmp = I915_READ(PIPECONF(crtc->pipe));
8186 if (!(tmp & PIPECONF_ENABLE))
8187 return false;
8188
8189 switch (tmp & PIPECONF_BPC_MASK) {
8190 case PIPECONF_6BPC:
8191 pipe_config->pipe_bpp = 18;
8192 break;
8193 case PIPECONF_8BPC:
8194 pipe_config->pipe_bpp = 24;
8195 break;
8196 case PIPECONF_10BPC:
8197 pipe_config->pipe_bpp = 30;
8198 break;
8199 case PIPECONF_12BPC:
8200 pipe_config->pipe_bpp = 36;
8201 break;
8202 default:
8203 break;
8204 }
8205
8206 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8207 pipe_config->limited_color_range = true;
8208
8209 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
8210 struct intel_shared_dpll *pll;
8211
8212 pipe_config->has_pch_encoder = true;
8213
8214 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8215 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8216 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8217
8218 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8219
8220 if (HAS_PCH_IBX(dev_priv->dev)) {
8221 pipe_config->shared_dpll =
8222 (enum intel_dpll_id) crtc->pipe;
8223 } else {
8224 tmp = I915_READ(PCH_DPLL_SEL);
8225 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8226 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
8227 else
8228 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
8229 }
8230
8231 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8232
8233 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8234 &pipe_config->dpll_hw_state));
8235
8236 tmp = pipe_config->dpll_hw_state.dpll;
8237 pipe_config->pixel_multiplier =
8238 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8239 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
8240
8241 ironlake_pch_clock_get(crtc, pipe_config);
8242 } else {
8243 pipe_config->pixel_multiplier = 1;
8244 }
8245
8246 intel_get_pipe_timings(crtc, pipe_config);
8247
8248 ironlake_get_pfit_config(crtc, pipe_config);
8249
8250 return true;
8251 }
8252
8253 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8254 {
8255 struct drm_device *dev = dev_priv->dev;
8256 struct intel_crtc *crtc;
8257
8258 for_each_intel_crtc(dev, crtc)
8259 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
8260 pipe_name(crtc->pipe));
8261
8262 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8263 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8264 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8265 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8266 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
8267 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
8268 "CPU PWM1 enabled\n");
8269 if (IS_HASWELL(dev))
8270 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
8271 "CPU PWM2 enabled\n");
8272 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
8273 "PCH PWM1 enabled\n");
8274 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
8275 "Utility pin enabled\n");
8276 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
8277
8278 /*
8279 * In theory we can still leave IRQs enabled, as long as only the HPD
8280 * interrupts remain enabled. We used to check for that, but since it's
8281 * gen-specific and since we only disable LCPLL after we fully disable
8282 * the interrupts, the check below should be enough.
8283 */
8284 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
8285 }
8286
8287 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8288 {
8289 struct drm_device *dev = dev_priv->dev;
8290
8291 if (IS_HASWELL(dev))
8292 return I915_READ(D_COMP_HSW);
8293 else
8294 return I915_READ(D_COMP_BDW);
8295 }
8296
8297 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8298 {
8299 struct drm_device *dev = dev_priv->dev;
8300
8301 if (IS_HASWELL(dev)) {
8302 mutex_lock(&dev_priv->rps.hw_lock);
8303 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8304 val))
8305 DRM_ERROR("Failed to write to D_COMP\n");
8306 mutex_unlock(&dev_priv->rps.hw_lock);
8307 } else {
8308 I915_WRITE(D_COMP_BDW, val);
8309 POSTING_READ(D_COMP_BDW);
8310 }
8311 }
8312
8313 /*
8314 * This function implements pieces of two sequences from BSpec:
8315 * - Sequence for display software to disable LCPLL
8316 * - Sequence for display software to allow package C8+
8317 * The steps implemented here are just the steps that actually touch the LCPLL
8318 * register. Callers should take care of disabling all the display engine
8319 * functions, doing the mode unset, fixing interrupts, etc.
8320 */
8321 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
8322 bool switch_to_fclk, bool allow_power_down)
8323 {
8324 uint32_t val;
8325
8326 assert_can_disable_lcpll(dev_priv);
8327
8328 val = I915_READ(LCPLL_CTL);
8329
8330 if (switch_to_fclk) {
8331 val |= LCPLL_CD_SOURCE_FCLK;
8332 I915_WRITE(LCPLL_CTL, val);
8333
8334 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
8335 LCPLL_CD_SOURCE_FCLK_DONE, 1))
8336 DRM_ERROR("Switching to FCLK failed\n");
8337
8338 val = I915_READ(LCPLL_CTL);
8339 }
8340
8341 val |= LCPLL_PLL_DISABLE;
8342 I915_WRITE(LCPLL_CTL, val);
8343 POSTING_READ(LCPLL_CTL);
8344
8345 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
8346 DRM_ERROR("LCPLL still locked\n");
8347
8348 val = hsw_read_dcomp(dev_priv);
8349 val |= D_COMP_COMP_DISABLE;
8350 hsw_write_dcomp(dev_priv, val);
8351 ndelay(100);
8352
8353 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8354 1))
8355 DRM_ERROR("D_COMP RCOMP still in progress\n");
8356
8357 if (allow_power_down) {
8358 val = I915_READ(LCPLL_CTL);
8359 val |= LCPLL_POWER_DOWN_ALLOW;
8360 I915_WRITE(LCPLL_CTL, val);
8361 POSTING_READ(LCPLL_CTL);
8362 }
8363 }
8364
8365 /*
8366 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8367 * source.
8368 */
8369 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
8370 {
8371 uint32_t val;
8372
8373 val = I915_READ(LCPLL_CTL);
8374
8375 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8376 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8377 return;
8378
8379 /*
8380 * Make sure we're not on PC8 state before disabling PC8, otherwise
8381 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
8382 */
8383 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
8384
8385 if (val & LCPLL_POWER_DOWN_ALLOW) {
8386 val &= ~LCPLL_POWER_DOWN_ALLOW;
8387 I915_WRITE(LCPLL_CTL, val);
8388 POSTING_READ(LCPLL_CTL);
8389 }
8390
8391 val = hsw_read_dcomp(dev_priv);
8392 val |= D_COMP_COMP_FORCE;
8393 val &= ~D_COMP_COMP_DISABLE;
8394 hsw_write_dcomp(dev_priv, val);
8395
8396 val = I915_READ(LCPLL_CTL);
8397 val &= ~LCPLL_PLL_DISABLE;
8398 I915_WRITE(LCPLL_CTL, val);
8399
8400 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
8401 DRM_ERROR("LCPLL not locked yet\n");
8402
8403 if (val & LCPLL_CD_SOURCE_FCLK) {
8404 val = I915_READ(LCPLL_CTL);
8405 val &= ~LCPLL_CD_SOURCE_FCLK;
8406 I915_WRITE(LCPLL_CTL, val);
8407
8408 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
8409 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8410 DRM_ERROR("Switching back to LCPLL failed\n");
8411 }
8412
8413 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
8414 }
8415
8416 /*
8417 * Package states C8 and deeper are really deep PC states that can only be
8418 * reached when all the devices on the system allow it, so even if the graphics
8419 * device allows PC8+, it doesn't mean the system will actually get to these
8420 * states. Our driver only allows PC8+ when going into runtime PM.
8421 *
8422 * The requirements for PC8+ are that all the outputs are disabled, the power
8423 * well is disabled and most interrupts are disabled, and these are also
8424 * requirements for runtime PM. When these conditions are met, we manually do
8425 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8426 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8427 * hang the machine.
8428 *
8429 * When we really reach PC8 or deeper states (not just when we allow it) we lose
8430 * the state of some registers, so when we come back from PC8+ we need to
8431 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8432 * need to take care of the registers kept by RC6. Notice that this happens even
8433 * if we don't put the device in PCI D3 state (which is what currently happens
8434 * because of the runtime PM support).
8435 *
8436 * For more, read "Display Sequences for Package C8" on the hardware
8437 * documentation.
8438 */
8439 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8440 {
8441 struct drm_device *dev = dev_priv->dev;
8442 uint32_t val;
8443
8444 DRM_DEBUG_KMS("Enabling package C8+\n");
8445
8446 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8447 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8448 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8449 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8450 }
8451
8452 lpt_disable_clkout_dp(dev);
8453 hsw_disable_lcpll(dev_priv, true, true);
8454 }
8455
8456 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8457 {
8458 struct drm_device *dev = dev_priv->dev;
8459 uint32_t val;
8460
8461 DRM_DEBUG_KMS("Disabling package C8+\n");
8462
8463 hsw_restore_lcpll(dev_priv);
8464 lpt_init_pch_refclk(dev);
8465
8466 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8467 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8468 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8469 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8470 }
8471
8472 intel_prepare_ddi(dev);
8473 }
8474
8475 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8476 struct intel_crtc_state *crtc_state)
8477 {
8478 if (!intel_ddi_pll_select(crtc, crtc_state))
8479 return -EINVAL;
8480
8481 crtc->lowfreq_avail = false;
8482
8483 return 0;
8484 }
8485
8486 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8487 enum port port,
8488 struct intel_crtc_state *pipe_config)
8489 {
8490 u32 temp, dpll_ctl1;
8491
8492 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8493 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
8494
8495 switch (pipe_config->ddi_pll_sel) {
8496 case SKL_DPLL0:
8497 /*
8498 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
8499 * of the shared DPLL framework and thus needs to be read out
8500 * separately
8501 */
8502 dpll_ctl1 = I915_READ(DPLL_CTRL1);
8503 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
8504 break;
8505 case SKL_DPLL1:
8506 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8507 break;
8508 case SKL_DPLL2:
8509 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8510 break;
8511 case SKL_DPLL3:
8512 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8513 break;
8514 }
8515 }
8516
8517 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8518 enum port port,
8519 struct intel_crtc_state *pipe_config)
8520 {
8521 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8522
8523 switch (pipe_config->ddi_pll_sel) {
8524 case PORT_CLK_SEL_WRPLL1:
8525 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8526 break;
8527 case PORT_CLK_SEL_WRPLL2:
8528 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8529 break;
8530 }
8531 }
8532
8533 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
8534 struct intel_crtc_state *pipe_config)
8535 {
8536 struct drm_device *dev = crtc->base.dev;
8537 struct drm_i915_private *dev_priv = dev->dev_private;
8538 struct intel_shared_dpll *pll;
8539 enum port port;
8540 uint32_t tmp;
8541
8542 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8543
8544 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8545
8546 if (IS_SKYLAKE(dev))
8547 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8548 else
8549 haswell_get_ddi_pll(dev_priv, port, pipe_config);
8550
8551 if (pipe_config->shared_dpll >= 0) {
8552 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8553
8554 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8555 &pipe_config->dpll_hw_state));
8556 }
8557
8558 /*
8559 * Haswell has only FDI/PCH transcoder A. It is which is connected to
8560 * DDI E. So just check whether this pipe is wired to DDI E and whether
8561 * the PCH transcoder is on.
8562 */
8563 if (INTEL_INFO(dev)->gen < 9 &&
8564 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
8565 pipe_config->has_pch_encoder = true;
8566
8567 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8568 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8569 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8570
8571 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8572 }
8573 }
8574
8575 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8576 struct intel_crtc_state *pipe_config)
8577 {
8578 struct drm_device *dev = crtc->base.dev;
8579 struct drm_i915_private *dev_priv = dev->dev_private;
8580 enum intel_display_power_domain pfit_domain;
8581 uint32_t tmp;
8582
8583 if (!intel_display_power_is_enabled(dev_priv,
8584 POWER_DOMAIN_PIPE(crtc->pipe)))
8585 return false;
8586
8587 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8588 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8589
8590 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8591 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8592 enum pipe trans_edp_pipe;
8593 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8594 default:
8595 WARN(1, "unknown pipe linked to edp transcoder\n");
8596 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8597 case TRANS_DDI_EDP_INPUT_A_ON:
8598 trans_edp_pipe = PIPE_A;
8599 break;
8600 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8601 trans_edp_pipe = PIPE_B;
8602 break;
8603 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8604 trans_edp_pipe = PIPE_C;
8605 break;
8606 }
8607
8608 if (trans_edp_pipe == crtc->pipe)
8609 pipe_config->cpu_transcoder = TRANSCODER_EDP;
8610 }
8611
8612 if (!intel_display_power_is_enabled(dev_priv,
8613 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
8614 return false;
8615
8616 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8617 if (!(tmp & PIPECONF_ENABLE))
8618 return false;
8619
8620 haswell_get_ddi_port_state(crtc, pipe_config);
8621
8622 intel_get_pipe_timings(crtc, pipe_config);
8623
8624 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
8625 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8626 if (IS_SKYLAKE(dev))
8627 skylake_get_pfit_config(crtc, pipe_config);
8628 else
8629 ironlake_get_pfit_config(crtc, pipe_config);
8630 }
8631
8632 if (IS_HASWELL(dev))
8633 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8634 (I915_READ(IPS_CTL) & IPS_ENABLE);
8635
8636 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8637 pipe_config->pixel_multiplier =
8638 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8639 } else {
8640 pipe_config->pixel_multiplier = 1;
8641 }
8642
8643 return true;
8644 }
8645
8646 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8647 {
8648 struct drm_device *dev = crtc->dev;
8649 struct drm_i915_private *dev_priv = dev->dev_private;
8650 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8651 uint32_t cntl = 0, size = 0;
8652
8653 if (base) {
8654 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
8655 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
8656 unsigned int stride = roundup_pow_of_two(width) * 4;
8657
8658 switch (stride) {
8659 default:
8660 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8661 width, stride);
8662 stride = 256;
8663 /* fallthrough */
8664 case 256:
8665 case 512:
8666 case 1024:
8667 case 2048:
8668 break;
8669 }
8670
8671 cntl |= CURSOR_ENABLE |
8672 CURSOR_GAMMA_ENABLE |
8673 CURSOR_FORMAT_ARGB |
8674 CURSOR_STRIDE(stride);
8675
8676 size = (height << 12) | width;
8677 }
8678
8679 if (intel_crtc->cursor_cntl != 0 &&
8680 (intel_crtc->cursor_base != base ||
8681 intel_crtc->cursor_size != size ||
8682 intel_crtc->cursor_cntl != cntl)) {
8683 /* On these chipsets we can only modify the base/size/stride
8684 * whilst the cursor is disabled.
8685 */
8686 I915_WRITE(_CURACNTR, 0);
8687 POSTING_READ(_CURACNTR);
8688 intel_crtc->cursor_cntl = 0;
8689 }
8690
8691 if (intel_crtc->cursor_base != base) {
8692 I915_WRITE(_CURABASE, base);
8693 intel_crtc->cursor_base = base;
8694 }
8695
8696 if (intel_crtc->cursor_size != size) {
8697 I915_WRITE(CURSIZE, size);
8698 intel_crtc->cursor_size = size;
8699 }
8700
8701 if (intel_crtc->cursor_cntl != cntl) {
8702 I915_WRITE(_CURACNTR, cntl);
8703 POSTING_READ(_CURACNTR);
8704 intel_crtc->cursor_cntl = cntl;
8705 }
8706 }
8707
8708 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8709 {
8710 struct drm_device *dev = crtc->dev;
8711 struct drm_i915_private *dev_priv = dev->dev_private;
8712 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8713 int pipe = intel_crtc->pipe;
8714 uint32_t cntl;
8715
8716 cntl = 0;
8717 if (base) {
8718 cntl = MCURSOR_GAMMA_ENABLE;
8719 switch (intel_crtc->base.cursor->state->crtc_w) {
8720 case 64:
8721 cntl |= CURSOR_MODE_64_ARGB_AX;
8722 break;
8723 case 128:
8724 cntl |= CURSOR_MODE_128_ARGB_AX;
8725 break;
8726 case 256:
8727 cntl |= CURSOR_MODE_256_ARGB_AX;
8728 break;
8729 default:
8730 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
8731 return;
8732 }
8733 cntl |= pipe << 28; /* Connect to correct pipe */
8734
8735 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8736 cntl |= CURSOR_PIPE_CSC_ENABLE;
8737 }
8738
8739 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
8740 cntl |= CURSOR_ROTATE_180;
8741
8742 if (intel_crtc->cursor_cntl != cntl) {
8743 I915_WRITE(CURCNTR(pipe), cntl);
8744 POSTING_READ(CURCNTR(pipe));
8745 intel_crtc->cursor_cntl = cntl;
8746 }
8747
8748 /* and commit changes on next vblank */
8749 I915_WRITE(CURBASE(pipe), base);
8750 POSTING_READ(CURBASE(pipe));
8751
8752 intel_crtc->cursor_base = base;
8753 }
8754
8755 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8756 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8757 bool on)
8758 {
8759 struct drm_device *dev = crtc->dev;
8760 struct drm_i915_private *dev_priv = dev->dev_private;
8761 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8762 int pipe = intel_crtc->pipe;
8763 int x = crtc->cursor_x;
8764 int y = crtc->cursor_y;
8765 u32 base = 0, pos = 0;
8766
8767 if (on)
8768 base = intel_crtc->cursor_addr;
8769
8770 if (x >= intel_crtc->config->pipe_src_w)
8771 base = 0;
8772
8773 if (y >= intel_crtc->config->pipe_src_h)
8774 base = 0;
8775
8776 if (x < 0) {
8777 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
8778 base = 0;
8779
8780 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8781 x = -x;
8782 }
8783 pos |= x << CURSOR_X_SHIFT;
8784
8785 if (y < 0) {
8786 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
8787 base = 0;
8788
8789 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8790 y = -y;
8791 }
8792 pos |= y << CURSOR_Y_SHIFT;
8793
8794 if (base == 0 && intel_crtc->cursor_base == 0)
8795 return;
8796
8797 I915_WRITE(CURPOS(pipe), pos);
8798
8799 /* ILK+ do this automagically */
8800 if (HAS_GMCH_DISPLAY(dev) &&
8801 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
8802 base += (intel_crtc->base.cursor->state->crtc_h *
8803 intel_crtc->base.cursor->state->crtc_w - 1) * 4;
8804 }
8805
8806 if (IS_845G(dev) || IS_I865G(dev))
8807 i845_update_cursor(crtc, base);
8808 else
8809 i9xx_update_cursor(crtc, base);
8810 }
8811
8812 static bool cursor_size_ok(struct drm_device *dev,
8813 uint32_t width, uint32_t height)
8814 {
8815 if (width == 0 || height == 0)
8816 return false;
8817
8818 /*
8819 * 845g/865g are special in that they are only limited by
8820 * the width of their cursors, the height is arbitrary up to
8821 * the precision of the register. Everything else requires
8822 * square cursors, limited to a few power-of-two sizes.
8823 */
8824 if (IS_845G(dev) || IS_I865G(dev)) {
8825 if ((width & 63) != 0)
8826 return false;
8827
8828 if (width > (IS_845G(dev) ? 64 : 512))
8829 return false;
8830
8831 if (height > 1023)
8832 return false;
8833 } else {
8834 switch (width | height) {
8835 case 256:
8836 case 128:
8837 if (IS_GEN2(dev))
8838 return false;
8839 case 64:
8840 break;
8841 default:
8842 return false;
8843 }
8844 }
8845
8846 return true;
8847 }
8848
8849 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8850 u16 *blue, uint32_t start, uint32_t size)
8851 {
8852 int end = (start + size > 256) ? 256 : start + size, i;
8853 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8854
8855 for (i = start; i < end; i++) {
8856 intel_crtc->lut_r[i] = red[i] >> 8;
8857 intel_crtc->lut_g[i] = green[i] >> 8;
8858 intel_crtc->lut_b[i] = blue[i] >> 8;
8859 }
8860
8861 intel_crtc_load_lut(crtc);
8862 }
8863
8864 /* VESA 640x480x72Hz mode to set on the pipe */
8865 static struct drm_display_mode load_detect_mode = {
8866 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8867 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8868 };
8869
8870 struct drm_framebuffer *
8871 __intel_framebuffer_create(struct drm_device *dev,
8872 struct drm_mode_fb_cmd2 *mode_cmd,
8873 struct drm_i915_gem_object *obj)
8874 {
8875 struct intel_framebuffer *intel_fb;
8876 int ret;
8877
8878 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8879 if (!intel_fb) {
8880 drm_gem_object_unreference(&obj->base);
8881 return ERR_PTR(-ENOMEM);
8882 }
8883
8884 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8885 if (ret)
8886 goto err;
8887
8888 return &intel_fb->base;
8889 err:
8890 drm_gem_object_unreference(&obj->base);
8891 kfree(intel_fb);
8892
8893 return ERR_PTR(ret);
8894 }
8895
8896 static struct drm_framebuffer *
8897 intel_framebuffer_create(struct drm_device *dev,
8898 struct drm_mode_fb_cmd2 *mode_cmd,
8899 struct drm_i915_gem_object *obj)
8900 {
8901 struct drm_framebuffer *fb;
8902 int ret;
8903
8904 ret = i915_mutex_lock_interruptible(dev);
8905 if (ret)
8906 return ERR_PTR(ret);
8907 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8908 mutex_unlock(&dev->struct_mutex);
8909
8910 return fb;
8911 }
8912
8913 static u32
8914 intel_framebuffer_pitch_for_width(int width, int bpp)
8915 {
8916 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8917 return ALIGN(pitch, 64);
8918 }
8919
8920 static u32
8921 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8922 {
8923 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8924 return PAGE_ALIGN(pitch * mode->vdisplay);
8925 }
8926
8927 static struct drm_framebuffer *
8928 intel_framebuffer_create_for_mode(struct drm_device *dev,
8929 struct drm_display_mode *mode,
8930 int depth, int bpp)
8931 {
8932 struct drm_i915_gem_object *obj;
8933 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8934
8935 obj = i915_gem_alloc_object(dev,
8936 intel_framebuffer_size_for_mode(mode, bpp));
8937 if (obj == NULL)
8938 return ERR_PTR(-ENOMEM);
8939
8940 mode_cmd.width = mode->hdisplay;
8941 mode_cmd.height = mode->vdisplay;
8942 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8943 bpp);
8944 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8945
8946 return intel_framebuffer_create(dev, &mode_cmd, obj);
8947 }
8948
8949 static struct drm_framebuffer *
8950 mode_fits_in_fbdev(struct drm_device *dev,
8951 struct drm_display_mode *mode)
8952 {
8953 #ifdef CONFIG_DRM_I915_FBDEV
8954 struct drm_i915_private *dev_priv = dev->dev_private;
8955 struct drm_i915_gem_object *obj;
8956 struct drm_framebuffer *fb;
8957
8958 if (!dev_priv->fbdev)
8959 return NULL;
8960
8961 if (!dev_priv->fbdev->fb)
8962 return NULL;
8963
8964 obj = dev_priv->fbdev->fb->obj;
8965 BUG_ON(!obj);
8966
8967 fb = &dev_priv->fbdev->fb->base;
8968 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8969 fb->bits_per_pixel))
8970 return NULL;
8971
8972 if (obj->base.size < mode->vdisplay * fb->pitches[0])
8973 return NULL;
8974
8975 return fb;
8976 #else
8977 return NULL;
8978 #endif
8979 }
8980
8981 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8982 struct drm_display_mode *mode,
8983 struct intel_load_detect_pipe *old,
8984 struct drm_modeset_acquire_ctx *ctx)
8985 {
8986 struct intel_crtc *intel_crtc;
8987 struct intel_encoder *intel_encoder =
8988 intel_attached_encoder(connector);
8989 struct drm_crtc *possible_crtc;
8990 struct drm_encoder *encoder = &intel_encoder->base;
8991 struct drm_crtc *crtc = NULL;
8992 struct drm_device *dev = encoder->dev;
8993 struct drm_framebuffer *fb;
8994 struct drm_mode_config *config = &dev->mode_config;
8995 struct drm_atomic_state *state = NULL;
8996 struct drm_connector_state *connector_state;
8997 int ret, i = -1;
8998
8999 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9000 connector->base.id, connector->name,
9001 encoder->base.id, encoder->name);
9002
9003 retry:
9004 ret = drm_modeset_lock(&config->connection_mutex, ctx);
9005 if (ret)
9006 goto fail_unlock;
9007
9008 /*
9009 * Algorithm gets a little messy:
9010 *
9011 * - if the connector already has an assigned crtc, use it (but make
9012 * sure it's on first)
9013 *
9014 * - try to find the first unused crtc that can drive this connector,
9015 * and use that if we find one
9016 */
9017
9018 /* See if we already have a CRTC for this connector */
9019 if (encoder->crtc) {
9020 crtc = encoder->crtc;
9021
9022 ret = drm_modeset_lock(&crtc->mutex, ctx);
9023 if (ret)
9024 goto fail_unlock;
9025 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9026 if (ret)
9027 goto fail_unlock;
9028
9029 old->dpms_mode = connector->dpms;
9030 old->load_detect_temp = false;
9031
9032 /* Make sure the crtc and connector are running */
9033 if (connector->dpms != DRM_MODE_DPMS_ON)
9034 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
9035
9036 return true;
9037 }
9038
9039 /* Find an unused one (if possible) */
9040 for_each_crtc(dev, possible_crtc) {
9041 i++;
9042 if (!(encoder->possible_crtcs & (1 << i)))
9043 continue;
9044 if (possible_crtc->state->enable)
9045 continue;
9046 /* This can occur when applying the pipe A quirk on resume. */
9047 if (to_intel_crtc(possible_crtc)->new_enabled)
9048 continue;
9049
9050 crtc = possible_crtc;
9051 break;
9052 }
9053
9054 /*
9055 * If we didn't find an unused CRTC, don't use any.
9056 */
9057 if (!crtc) {
9058 DRM_DEBUG_KMS("no pipe available for load-detect\n");
9059 goto fail_unlock;
9060 }
9061
9062 ret = drm_modeset_lock(&crtc->mutex, ctx);
9063 if (ret)
9064 goto fail_unlock;
9065 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9066 if (ret)
9067 goto fail_unlock;
9068 intel_encoder->new_crtc = to_intel_crtc(crtc);
9069 to_intel_connector(connector)->new_encoder = intel_encoder;
9070
9071 intel_crtc = to_intel_crtc(crtc);
9072 intel_crtc->new_enabled = true;
9073 intel_crtc->new_config = intel_crtc->config;
9074 old->dpms_mode = connector->dpms;
9075 old->load_detect_temp = true;
9076 old->release_fb = NULL;
9077
9078 state = drm_atomic_state_alloc(dev);
9079 if (!state)
9080 return false;
9081
9082 state->acquire_ctx = ctx;
9083
9084 connector_state = drm_atomic_get_connector_state(state, connector);
9085 if (IS_ERR(connector_state)) {
9086 ret = PTR_ERR(connector_state);
9087 goto fail;
9088 }
9089
9090 connector_state->crtc = crtc;
9091 connector_state->best_encoder = &intel_encoder->base;
9092
9093 if (!mode)
9094 mode = &load_detect_mode;
9095
9096 /* We need a framebuffer large enough to accommodate all accesses
9097 * that the plane may generate whilst we perform load detection.
9098 * We can not rely on the fbcon either being present (we get called
9099 * during its initialisation to detect all boot displays, or it may
9100 * not even exist) or that it is large enough to satisfy the
9101 * requested mode.
9102 */
9103 fb = mode_fits_in_fbdev(dev, mode);
9104 if (fb == NULL) {
9105 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
9106 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
9107 old->release_fb = fb;
9108 } else
9109 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
9110 if (IS_ERR(fb)) {
9111 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
9112 goto fail;
9113 }
9114
9115 if (intel_set_mode(crtc, mode, 0, 0, fb, state)) {
9116 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
9117 if (old->release_fb)
9118 old->release_fb->funcs->destroy(old->release_fb);
9119 goto fail;
9120 }
9121 crtc->primary->crtc = crtc;
9122
9123 /* let the connector get through one full cycle before testing */
9124 intel_wait_for_vblank(dev, intel_crtc->pipe);
9125 return true;
9126
9127 fail:
9128 intel_crtc->new_enabled = crtc->state->enable;
9129 if (intel_crtc->new_enabled)
9130 intel_crtc->new_config = intel_crtc->config;
9131 else
9132 intel_crtc->new_config = NULL;
9133 fail_unlock:
9134 if (state) {
9135 drm_atomic_state_free(state);
9136 state = NULL;
9137 }
9138
9139 if (ret == -EDEADLK) {
9140 drm_modeset_backoff(ctx);
9141 goto retry;
9142 }
9143
9144 return false;
9145 }
9146
9147 void intel_release_load_detect_pipe(struct drm_connector *connector,
9148 struct intel_load_detect_pipe *old,
9149 struct drm_modeset_acquire_ctx *ctx)
9150 {
9151 struct drm_device *dev = connector->dev;
9152 struct intel_encoder *intel_encoder =
9153 intel_attached_encoder(connector);
9154 struct drm_encoder *encoder = &intel_encoder->base;
9155 struct drm_crtc *crtc = encoder->crtc;
9156 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9157 struct drm_atomic_state *state;
9158 struct drm_connector_state *connector_state;
9159
9160 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9161 connector->base.id, connector->name,
9162 encoder->base.id, encoder->name);
9163
9164 if (old->load_detect_temp) {
9165 state = drm_atomic_state_alloc(dev);
9166 if (!state)
9167 goto fail;
9168
9169 state->acquire_ctx = ctx;
9170
9171 connector_state = drm_atomic_get_connector_state(state, connector);
9172 if (IS_ERR(connector_state))
9173 goto fail;
9174
9175 to_intel_connector(connector)->new_encoder = NULL;
9176 intel_encoder->new_crtc = NULL;
9177 intel_crtc->new_enabled = false;
9178 intel_crtc->new_config = NULL;
9179
9180 connector_state->best_encoder = NULL;
9181 connector_state->crtc = NULL;
9182
9183 intel_set_mode(crtc, NULL, 0, 0, NULL, state);
9184
9185 drm_atomic_state_free(state);
9186
9187 if (old->release_fb) {
9188 drm_framebuffer_unregister_private(old->release_fb);
9189 drm_framebuffer_unreference(old->release_fb);
9190 }
9191
9192 return;
9193 }
9194
9195 /* Switch crtc and encoder back off if necessary */
9196 if (old->dpms_mode != DRM_MODE_DPMS_ON)
9197 connector->funcs->dpms(connector, old->dpms_mode);
9198
9199 return;
9200 fail:
9201 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
9202 drm_atomic_state_free(state);
9203 }
9204
9205 static int i9xx_pll_refclk(struct drm_device *dev,
9206 const struct intel_crtc_state *pipe_config)
9207 {
9208 struct drm_i915_private *dev_priv = dev->dev_private;
9209 u32 dpll = pipe_config->dpll_hw_state.dpll;
9210
9211 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
9212 return dev_priv->vbt.lvds_ssc_freq;
9213 else if (HAS_PCH_SPLIT(dev))
9214 return 120000;
9215 else if (!IS_GEN2(dev))
9216 return 96000;
9217 else
9218 return 48000;
9219 }
9220
9221 /* Returns the clock of the currently programmed mode of the given pipe. */
9222 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
9223 struct intel_crtc_state *pipe_config)
9224 {
9225 struct drm_device *dev = crtc->base.dev;
9226 struct drm_i915_private *dev_priv = dev->dev_private;
9227 int pipe = pipe_config->cpu_transcoder;
9228 u32 dpll = pipe_config->dpll_hw_state.dpll;
9229 u32 fp;
9230 intel_clock_t clock;
9231 int refclk = i9xx_pll_refclk(dev, pipe_config);
9232
9233 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
9234 fp = pipe_config->dpll_hw_state.fp0;
9235 else
9236 fp = pipe_config->dpll_hw_state.fp1;
9237
9238 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
9239 if (IS_PINEVIEW(dev)) {
9240 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
9241 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
9242 } else {
9243 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
9244 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
9245 }
9246
9247 if (!IS_GEN2(dev)) {
9248 if (IS_PINEVIEW(dev))
9249 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
9250 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
9251 else
9252 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
9253 DPLL_FPA01_P1_POST_DIV_SHIFT);
9254
9255 switch (dpll & DPLL_MODE_MASK) {
9256 case DPLLB_MODE_DAC_SERIAL:
9257 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
9258 5 : 10;
9259 break;
9260 case DPLLB_MODE_LVDS:
9261 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
9262 7 : 14;
9263 break;
9264 default:
9265 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
9266 "mode\n", (int)(dpll & DPLL_MODE_MASK));
9267 return;
9268 }
9269
9270 if (IS_PINEVIEW(dev))
9271 pineview_clock(refclk, &clock);
9272 else
9273 i9xx_clock(refclk, &clock);
9274 } else {
9275 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
9276 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
9277
9278 if (is_lvds) {
9279 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
9280 DPLL_FPA01_P1_POST_DIV_SHIFT);
9281
9282 if (lvds & LVDS_CLKB_POWER_UP)
9283 clock.p2 = 7;
9284 else
9285 clock.p2 = 14;
9286 } else {
9287 if (dpll & PLL_P1_DIVIDE_BY_TWO)
9288 clock.p1 = 2;
9289 else {
9290 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
9291 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
9292 }
9293 if (dpll & PLL_P2_DIVIDE_BY_4)
9294 clock.p2 = 4;
9295 else
9296 clock.p2 = 2;
9297 }
9298
9299 i9xx_clock(refclk, &clock);
9300 }
9301
9302 /*
9303 * This value includes pixel_multiplier. We will use
9304 * port_clock to compute adjusted_mode.crtc_clock in the
9305 * encoder's get_config() function.
9306 */
9307 pipe_config->port_clock = clock.dot;
9308 }
9309
9310 int intel_dotclock_calculate(int link_freq,
9311 const struct intel_link_m_n *m_n)
9312 {
9313 /*
9314 * The calculation for the data clock is:
9315 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
9316 * But we want to avoid losing precison if possible, so:
9317 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
9318 *
9319 * and the link clock is simpler:
9320 * link_clock = (m * link_clock) / n
9321 */
9322
9323 if (!m_n->link_n)
9324 return 0;
9325
9326 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
9327 }
9328
9329 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
9330 struct intel_crtc_state *pipe_config)
9331 {
9332 struct drm_device *dev = crtc->base.dev;
9333
9334 /* read out port_clock from the DPLL */
9335 i9xx_crtc_clock_get(crtc, pipe_config);
9336
9337 /*
9338 * This value does not include pixel_multiplier.
9339 * We will check that port_clock and adjusted_mode.crtc_clock
9340 * agree once we know their relationship in the encoder's
9341 * get_config() function.
9342 */
9343 pipe_config->base.adjusted_mode.crtc_clock =
9344 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
9345 &pipe_config->fdi_m_n);
9346 }
9347
9348 /** Returns the currently programmed mode of the given pipe. */
9349 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
9350 struct drm_crtc *crtc)
9351 {
9352 struct drm_i915_private *dev_priv = dev->dev_private;
9353 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9354 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
9355 struct drm_display_mode *mode;
9356 struct intel_crtc_state pipe_config;
9357 int htot = I915_READ(HTOTAL(cpu_transcoder));
9358 int hsync = I915_READ(HSYNC(cpu_transcoder));
9359 int vtot = I915_READ(VTOTAL(cpu_transcoder));
9360 int vsync = I915_READ(VSYNC(cpu_transcoder));
9361 enum pipe pipe = intel_crtc->pipe;
9362
9363 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
9364 if (!mode)
9365 return NULL;
9366
9367 /*
9368 * Construct a pipe_config sufficient for getting the clock info
9369 * back out of crtc_clock_get.
9370 *
9371 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
9372 * to use a real value here instead.
9373 */
9374 pipe_config.cpu_transcoder = (enum transcoder) pipe;
9375 pipe_config.pixel_multiplier = 1;
9376 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
9377 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
9378 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
9379 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
9380
9381 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
9382 mode->hdisplay = (htot & 0xffff) + 1;
9383 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
9384 mode->hsync_start = (hsync & 0xffff) + 1;
9385 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9386 mode->vdisplay = (vtot & 0xffff) + 1;
9387 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9388 mode->vsync_start = (vsync & 0xffff) + 1;
9389 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9390
9391 drm_mode_set_name(mode);
9392
9393 return mode;
9394 }
9395
9396 static void intel_decrease_pllclock(struct drm_crtc *crtc)
9397 {
9398 struct drm_device *dev = crtc->dev;
9399 struct drm_i915_private *dev_priv = dev->dev_private;
9400 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9401
9402 if (!HAS_GMCH_DISPLAY(dev))
9403 return;
9404
9405 if (!dev_priv->lvds_downclock_avail)
9406 return;
9407
9408 /*
9409 * Since this is called by a timer, we should never get here in
9410 * the manual case.
9411 */
9412 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
9413 int pipe = intel_crtc->pipe;
9414 int dpll_reg = DPLL(pipe);
9415 int dpll;
9416
9417 DRM_DEBUG_DRIVER("downclocking LVDS\n");
9418
9419 assert_panel_unlocked(dev_priv, pipe);
9420
9421 dpll = I915_READ(dpll_reg);
9422 dpll |= DISPLAY_RATE_SELECT_FPA1;
9423 I915_WRITE(dpll_reg, dpll);
9424 intel_wait_for_vblank(dev, pipe);
9425 dpll = I915_READ(dpll_reg);
9426 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
9427 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
9428 }
9429
9430 }
9431
9432 void intel_mark_busy(struct drm_device *dev)
9433 {
9434 struct drm_i915_private *dev_priv = dev->dev_private;
9435
9436 if (dev_priv->mm.busy)
9437 return;
9438
9439 intel_runtime_pm_get(dev_priv);
9440 i915_update_gfx_val(dev_priv);
9441 if (INTEL_INFO(dev)->gen >= 6)
9442 gen6_rps_busy(dev_priv);
9443 dev_priv->mm.busy = true;
9444 }
9445
9446 void intel_mark_idle(struct drm_device *dev)
9447 {
9448 struct drm_i915_private *dev_priv = dev->dev_private;
9449 struct drm_crtc *crtc;
9450
9451 if (!dev_priv->mm.busy)
9452 return;
9453
9454 dev_priv->mm.busy = false;
9455
9456 for_each_crtc(dev, crtc) {
9457 if (!crtc->primary->fb)
9458 continue;
9459
9460 intel_decrease_pllclock(crtc);
9461 }
9462
9463 if (INTEL_INFO(dev)->gen >= 6)
9464 gen6_rps_idle(dev->dev_private);
9465
9466 intel_runtime_pm_put(dev_priv);
9467 }
9468
9469 static void intel_crtc_set_state(struct intel_crtc *crtc,
9470 struct intel_crtc_state *crtc_state)
9471 {
9472 kfree(crtc->config);
9473 crtc->config = crtc_state;
9474 crtc->base.state = &crtc_state->base;
9475 }
9476
9477 static void intel_crtc_destroy(struct drm_crtc *crtc)
9478 {
9479 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9480 struct drm_device *dev = crtc->dev;
9481 struct intel_unpin_work *work;
9482
9483 spin_lock_irq(&dev->event_lock);
9484 work = intel_crtc->unpin_work;
9485 intel_crtc->unpin_work = NULL;
9486 spin_unlock_irq(&dev->event_lock);
9487
9488 if (work) {
9489 cancel_work_sync(&work->work);
9490 kfree(work);
9491 }
9492
9493 intel_crtc_set_state(intel_crtc, NULL);
9494 drm_crtc_cleanup(crtc);
9495
9496 kfree(intel_crtc);
9497 }
9498
9499 static void intel_unpin_work_fn(struct work_struct *__work)
9500 {
9501 struct intel_unpin_work *work =
9502 container_of(__work, struct intel_unpin_work, work);
9503 struct drm_device *dev = work->crtc->dev;
9504 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9505
9506 mutex_lock(&dev->struct_mutex);
9507 intel_unpin_fb_obj(work->old_fb, work->crtc->primary->state);
9508 drm_gem_object_unreference(&work->pending_flip_obj->base);
9509
9510 intel_fbc_update(dev);
9511
9512 if (work->flip_queued_req)
9513 i915_gem_request_assign(&work->flip_queued_req, NULL);
9514 mutex_unlock(&dev->struct_mutex);
9515
9516 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9517 drm_framebuffer_unreference(work->old_fb);
9518
9519 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9520 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9521
9522 kfree(work);
9523 }
9524
9525 static void do_intel_finish_page_flip(struct drm_device *dev,
9526 struct drm_crtc *crtc)
9527 {
9528 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9529 struct intel_unpin_work *work;
9530 unsigned long flags;
9531
9532 /* Ignore early vblank irqs */
9533 if (intel_crtc == NULL)
9534 return;
9535
9536 /*
9537 * This is called both by irq handlers and the reset code (to complete
9538 * lost pageflips) so needs the full irqsave spinlocks.
9539 */
9540 spin_lock_irqsave(&dev->event_lock, flags);
9541 work = intel_crtc->unpin_work;
9542
9543 /* Ensure we don't miss a work->pending update ... */
9544 smp_rmb();
9545
9546 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9547 spin_unlock_irqrestore(&dev->event_lock, flags);
9548 return;
9549 }
9550
9551 page_flip_completed(intel_crtc);
9552
9553 spin_unlock_irqrestore(&dev->event_lock, flags);
9554 }
9555
9556 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9557 {
9558 struct drm_i915_private *dev_priv = dev->dev_private;
9559 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9560
9561 do_intel_finish_page_flip(dev, crtc);
9562 }
9563
9564 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9565 {
9566 struct drm_i915_private *dev_priv = dev->dev_private;
9567 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9568
9569 do_intel_finish_page_flip(dev, crtc);
9570 }
9571
9572 /* Is 'a' after or equal to 'b'? */
9573 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9574 {
9575 return !((a - b) & 0x80000000);
9576 }
9577
9578 static bool page_flip_finished(struct intel_crtc *crtc)
9579 {
9580 struct drm_device *dev = crtc->base.dev;
9581 struct drm_i915_private *dev_priv = dev->dev_private;
9582
9583 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9584 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9585 return true;
9586
9587 /*
9588 * The relevant registers doen't exist on pre-ctg.
9589 * As the flip done interrupt doesn't trigger for mmio
9590 * flips on gmch platforms, a flip count check isn't
9591 * really needed there. But since ctg has the registers,
9592 * include it in the check anyway.
9593 */
9594 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9595 return true;
9596
9597 /*
9598 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9599 * used the same base address. In that case the mmio flip might
9600 * have completed, but the CS hasn't even executed the flip yet.
9601 *
9602 * A flip count check isn't enough as the CS might have updated
9603 * the base address just after start of vblank, but before we
9604 * managed to process the interrupt. This means we'd complete the
9605 * CS flip too soon.
9606 *
9607 * Combining both checks should get us a good enough result. It may
9608 * still happen that the CS flip has been executed, but has not
9609 * yet actually completed. But in case the base address is the same
9610 * anyway, we don't really care.
9611 */
9612 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9613 crtc->unpin_work->gtt_offset &&
9614 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9615 crtc->unpin_work->flip_count);
9616 }
9617
9618 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9619 {
9620 struct drm_i915_private *dev_priv = dev->dev_private;
9621 struct intel_crtc *intel_crtc =
9622 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9623 unsigned long flags;
9624
9625
9626 /*
9627 * This is called both by irq handlers and the reset code (to complete
9628 * lost pageflips) so needs the full irqsave spinlocks.
9629 *
9630 * NB: An MMIO update of the plane base pointer will also
9631 * generate a page-flip completion irq, i.e. every modeset
9632 * is also accompanied by a spurious intel_prepare_page_flip().
9633 */
9634 spin_lock_irqsave(&dev->event_lock, flags);
9635 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9636 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9637 spin_unlock_irqrestore(&dev->event_lock, flags);
9638 }
9639
9640 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9641 {
9642 /* Ensure that the work item is consistent when activating it ... */
9643 smp_wmb();
9644 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9645 /* and that it is marked active as soon as the irq could fire. */
9646 smp_wmb();
9647 }
9648
9649 static int intel_gen2_queue_flip(struct drm_device *dev,
9650 struct drm_crtc *crtc,
9651 struct drm_framebuffer *fb,
9652 struct drm_i915_gem_object *obj,
9653 struct intel_engine_cs *ring,
9654 uint32_t flags)
9655 {
9656 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9657 u32 flip_mask;
9658 int ret;
9659
9660 ret = intel_ring_begin(ring, 6);
9661 if (ret)
9662 return ret;
9663
9664 /* Can't queue multiple flips, so wait for the previous
9665 * one to finish before executing the next.
9666 */
9667 if (intel_crtc->plane)
9668 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9669 else
9670 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9671 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9672 intel_ring_emit(ring, MI_NOOP);
9673 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9674 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9675 intel_ring_emit(ring, fb->pitches[0]);
9676 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9677 intel_ring_emit(ring, 0); /* aux display base address, unused */
9678
9679 intel_mark_page_flip_active(intel_crtc);
9680 __intel_ring_advance(ring);
9681 return 0;
9682 }
9683
9684 static int intel_gen3_queue_flip(struct drm_device *dev,
9685 struct drm_crtc *crtc,
9686 struct drm_framebuffer *fb,
9687 struct drm_i915_gem_object *obj,
9688 struct intel_engine_cs *ring,
9689 uint32_t flags)
9690 {
9691 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9692 u32 flip_mask;
9693 int ret;
9694
9695 ret = intel_ring_begin(ring, 6);
9696 if (ret)
9697 return ret;
9698
9699 if (intel_crtc->plane)
9700 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9701 else
9702 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9703 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9704 intel_ring_emit(ring, MI_NOOP);
9705 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9706 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9707 intel_ring_emit(ring, fb->pitches[0]);
9708 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9709 intel_ring_emit(ring, MI_NOOP);
9710
9711 intel_mark_page_flip_active(intel_crtc);
9712 __intel_ring_advance(ring);
9713 return 0;
9714 }
9715
9716 static int intel_gen4_queue_flip(struct drm_device *dev,
9717 struct drm_crtc *crtc,
9718 struct drm_framebuffer *fb,
9719 struct drm_i915_gem_object *obj,
9720 struct intel_engine_cs *ring,
9721 uint32_t flags)
9722 {
9723 struct drm_i915_private *dev_priv = dev->dev_private;
9724 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9725 uint32_t pf, pipesrc;
9726 int ret;
9727
9728 ret = intel_ring_begin(ring, 4);
9729 if (ret)
9730 return ret;
9731
9732 /* i965+ uses the linear or tiled offsets from the
9733 * Display Registers (which do not change across a page-flip)
9734 * so we need only reprogram the base address.
9735 */
9736 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9737 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9738 intel_ring_emit(ring, fb->pitches[0]);
9739 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9740 obj->tiling_mode);
9741
9742 /* XXX Enabling the panel-fitter across page-flip is so far
9743 * untested on non-native modes, so ignore it for now.
9744 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9745 */
9746 pf = 0;
9747 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9748 intel_ring_emit(ring, pf | pipesrc);
9749
9750 intel_mark_page_flip_active(intel_crtc);
9751 __intel_ring_advance(ring);
9752 return 0;
9753 }
9754
9755 static int intel_gen6_queue_flip(struct drm_device *dev,
9756 struct drm_crtc *crtc,
9757 struct drm_framebuffer *fb,
9758 struct drm_i915_gem_object *obj,
9759 struct intel_engine_cs *ring,
9760 uint32_t flags)
9761 {
9762 struct drm_i915_private *dev_priv = dev->dev_private;
9763 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9764 uint32_t pf, pipesrc;
9765 int ret;
9766
9767 ret = intel_ring_begin(ring, 4);
9768 if (ret)
9769 return ret;
9770
9771 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9772 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9773 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9774 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9775
9776 /* Contrary to the suggestions in the documentation,
9777 * "Enable Panel Fitter" does not seem to be required when page
9778 * flipping with a non-native mode, and worse causes a normal
9779 * modeset to fail.
9780 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9781 */
9782 pf = 0;
9783 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9784 intel_ring_emit(ring, pf | pipesrc);
9785
9786 intel_mark_page_flip_active(intel_crtc);
9787 __intel_ring_advance(ring);
9788 return 0;
9789 }
9790
9791 static int intel_gen7_queue_flip(struct drm_device *dev,
9792 struct drm_crtc *crtc,
9793 struct drm_framebuffer *fb,
9794 struct drm_i915_gem_object *obj,
9795 struct intel_engine_cs *ring,
9796 uint32_t flags)
9797 {
9798 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9799 uint32_t plane_bit = 0;
9800 int len, ret;
9801
9802 switch (intel_crtc->plane) {
9803 case PLANE_A:
9804 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9805 break;
9806 case PLANE_B:
9807 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9808 break;
9809 case PLANE_C:
9810 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9811 break;
9812 default:
9813 WARN_ONCE(1, "unknown plane in flip command\n");
9814 return -ENODEV;
9815 }
9816
9817 len = 4;
9818 if (ring->id == RCS) {
9819 len += 6;
9820 /*
9821 * On Gen 8, SRM is now taking an extra dword to accommodate
9822 * 48bits addresses, and we need a NOOP for the batch size to
9823 * stay even.
9824 */
9825 if (IS_GEN8(dev))
9826 len += 2;
9827 }
9828
9829 /*
9830 * BSpec MI_DISPLAY_FLIP for IVB:
9831 * "The full packet must be contained within the same cache line."
9832 *
9833 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9834 * cacheline, if we ever start emitting more commands before
9835 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9836 * then do the cacheline alignment, and finally emit the
9837 * MI_DISPLAY_FLIP.
9838 */
9839 ret = intel_ring_cacheline_align(ring);
9840 if (ret)
9841 return ret;
9842
9843 ret = intel_ring_begin(ring, len);
9844 if (ret)
9845 return ret;
9846
9847 /* Unmask the flip-done completion message. Note that the bspec says that
9848 * we should do this for both the BCS and RCS, and that we must not unmask
9849 * more than one flip event at any time (or ensure that one flip message
9850 * can be sent by waiting for flip-done prior to queueing new flips).
9851 * Experimentation says that BCS works despite DERRMR masking all
9852 * flip-done completion events and that unmasking all planes at once
9853 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9854 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9855 */
9856 if (ring->id == RCS) {
9857 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9858 intel_ring_emit(ring, DERRMR);
9859 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9860 DERRMR_PIPEB_PRI_FLIP_DONE |
9861 DERRMR_PIPEC_PRI_FLIP_DONE));
9862 if (IS_GEN8(dev))
9863 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9864 MI_SRM_LRM_GLOBAL_GTT);
9865 else
9866 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9867 MI_SRM_LRM_GLOBAL_GTT);
9868 intel_ring_emit(ring, DERRMR);
9869 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9870 if (IS_GEN8(dev)) {
9871 intel_ring_emit(ring, 0);
9872 intel_ring_emit(ring, MI_NOOP);
9873 }
9874 }
9875
9876 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9877 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9878 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9879 intel_ring_emit(ring, (MI_NOOP));
9880
9881 intel_mark_page_flip_active(intel_crtc);
9882 __intel_ring_advance(ring);
9883 return 0;
9884 }
9885
9886 static bool use_mmio_flip(struct intel_engine_cs *ring,
9887 struct drm_i915_gem_object *obj)
9888 {
9889 /*
9890 * This is not being used for older platforms, because
9891 * non-availability of flip done interrupt forces us to use
9892 * CS flips. Older platforms derive flip done using some clever
9893 * tricks involving the flip_pending status bits and vblank irqs.
9894 * So using MMIO flips there would disrupt this mechanism.
9895 */
9896
9897 if (ring == NULL)
9898 return true;
9899
9900 if (INTEL_INFO(ring->dev)->gen < 5)
9901 return false;
9902
9903 if (i915.use_mmio_flip < 0)
9904 return false;
9905 else if (i915.use_mmio_flip > 0)
9906 return true;
9907 else if (i915.enable_execlists)
9908 return true;
9909 else
9910 return ring != i915_gem_request_get_ring(obj->last_read_req);
9911 }
9912
9913 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9914 {
9915 struct drm_device *dev = intel_crtc->base.dev;
9916 struct drm_i915_private *dev_priv = dev->dev_private;
9917 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9918 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9919 struct drm_i915_gem_object *obj = intel_fb->obj;
9920 const enum pipe pipe = intel_crtc->pipe;
9921 u32 ctl, stride;
9922
9923 ctl = I915_READ(PLANE_CTL(pipe, 0));
9924 ctl &= ~PLANE_CTL_TILED_MASK;
9925 if (obj->tiling_mode == I915_TILING_X)
9926 ctl |= PLANE_CTL_TILED_X;
9927
9928 /*
9929 * The stride is either expressed as a multiple of 64 bytes chunks for
9930 * linear buffers or in number of tiles for tiled buffers.
9931 */
9932 stride = fb->pitches[0] >> 6;
9933 if (obj->tiling_mode == I915_TILING_X)
9934 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9935
9936 /*
9937 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9938 * PLANE_SURF updates, the update is then guaranteed to be atomic.
9939 */
9940 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9941 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9942
9943 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9944 POSTING_READ(PLANE_SURF(pipe, 0));
9945 }
9946
9947 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
9948 {
9949 struct drm_device *dev = intel_crtc->base.dev;
9950 struct drm_i915_private *dev_priv = dev->dev_private;
9951 struct intel_framebuffer *intel_fb =
9952 to_intel_framebuffer(intel_crtc->base.primary->fb);
9953 struct drm_i915_gem_object *obj = intel_fb->obj;
9954 u32 dspcntr;
9955 u32 reg;
9956
9957 reg = DSPCNTR(intel_crtc->plane);
9958 dspcntr = I915_READ(reg);
9959
9960 if (obj->tiling_mode != I915_TILING_NONE)
9961 dspcntr |= DISPPLANE_TILED;
9962 else
9963 dspcntr &= ~DISPPLANE_TILED;
9964
9965 I915_WRITE(reg, dspcntr);
9966
9967 I915_WRITE(DSPSURF(intel_crtc->plane),
9968 intel_crtc->unpin_work->gtt_offset);
9969 POSTING_READ(DSPSURF(intel_crtc->plane));
9970
9971 }
9972
9973 /*
9974 * XXX: This is the temporary way to update the plane registers until we get
9975 * around to using the usual plane update functions for MMIO flips
9976 */
9977 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9978 {
9979 struct drm_device *dev = intel_crtc->base.dev;
9980 bool atomic_update;
9981 u32 start_vbl_count;
9982
9983 intel_mark_page_flip_active(intel_crtc);
9984
9985 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9986
9987 if (INTEL_INFO(dev)->gen >= 9)
9988 skl_do_mmio_flip(intel_crtc);
9989 else
9990 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9991 ilk_do_mmio_flip(intel_crtc);
9992
9993 if (atomic_update)
9994 intel_pipe_update_end(intel_crtc, start_vbl_count);
9995 }
9996
9997 static void intel_mmio_flip_work_func(struct work_struct *work)
9998 {
9999 struct intel_crtc *crtc =
10000 container_of(work, struct intel_crtc, mmio_flip.work);
10001 struct intel_mmio_flip *mmio_flip;
10002
10003 mmio_flip = &crtc->mmio_flip;
10004 if (mmio_flip->req)
10005 WARN_ON(__i915_wait_request(mmio_flip->req,
10006 crtc->reset_counter,
10007 false, NULL, NULL) != 0);
10008
10009 intel_do_mmio_flip(crtc);
10010 if (mmio_flip->req) {
10011 mutex_lock(&crtc->base.dev->struct_mutex);
10012 i915_gem_request_assign(&mmio_flip->req, NULL);
10013 mutex_unlock(&crtc->base.dev->struct_mutex);
10014 }
10015 }
10016
10017 static int intel_queue_mmio_flip(struct drm_device *dev,
10018 struct drm_crtc *crtc,
10019 struct drm_framebuffer *fb,
10020 struct drm_i915_gem_object *obj,
10021 struct intel_engine_cs *ring,
10022 uint32_t flags)
10023 {
10024 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10025
10026 i915_gem_request_assign(&intel_crtc->mmio_flip.req,
10027 obj->last_write_req);
10028
10029 schedule_work(&intel_crtc->mmio_flip.work);
10030
10031 return 0;
10032 }
10033
10034 static int intel_default_queue_flip(struct drm_device *dev,
10035 struct drm_crtc *crtc,
10036 struct drm_framebuffer *fb,
10037 struct drm_i915_gem_object *obj,
10038 struct intel_engine_cs *ring,
10039 uint32_t flags)
10040 {
10041 return -ENODEV;
10042 }
10043
10044 static bool __intel_pageflip_stall_check(struct drm_device *dev,
10045 struct drm_crtc *crtc)
10046 {
10047 struct drm_i915_private *dev_priv = dev->dev_private;
10048 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10049 struct intel_unpin_work *work = intel_crtc->unpin_work;
10050 u32 addr;
10051
10052 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
10053 return true;
10054
10055 if (!work->enable_stall_check)
10056 return false;
10057
10058 if (work->flip_ready_vblank == 0) {
10059 if (work->flip_queued_req &&
10060 !i915_gem_request_completed(work->flip_queued_req, true))
10061 return false;
10062
10063 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
10064 }
10065
10066 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
10067 return false;
10068
10069 /* Potential stall - if we see that the flip has happened,
10070 * assume a missed interrupt. */
10071 if (INTEL_INFO(dev)->gen >= 4)
10072 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
10073 else
10074 addr = I915_READ(DSPADDR(intel_crtc->plane));
10075
10076 /* There is a potential issue here with a false positive after a flip
10077 * to the same address. We could address this by checking for a
10078 * non-incrementing frame counter.
10079 */
10080 return addr == work->gtt_offset;
10081 }
10082
10083 void intel_check_page_flip(struct drm_device *dev, int pipe)
10084 {
10085 struct drm_i915_private *dev_priv = dev->dev_private;
10086 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10087 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10088
10089 WARN_ON(!in_interrupt());
10090
10091 if (crtc == NULL)
10092 return;
10093
10094 spin_lock(&dev->event_lock);
10095 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
10096 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
10097 intel_crtc->unpin_work->flip_queued_vblank,
10098 drm_vblank_count(dev, pipe));
10099 page_flip_completed(intel_crtc);
10100 }
10101 spin_unlock(&dev->event_lock);
10102 }
10103
10104 static int intel_crtc_page_flip(struct drm_crtc *crtc,
10105 struct drm_framebuffer *fb,
10106 struct drm_pending_vblank_event *event,
10107 uint32_t page_flip_flags)
10108 {
10109 struct drm_device *dev = crtc->dev;
10110 struct drm_i915_private *dev_priv = dev->dev_private;
10111 struct drm_framebuffer *old_fb = crtc->primary->fb;
10112 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10113 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10114 struct drm_plane *primary = crtc->primary;
10115 enum pipe pipe = intel_crtc->pipe;
10116 struct intel_unpin_work *work;
10117 struct intel_engine_cs *ring;
10118 int ret;
10119
10120 /*
10121 * drm_mode_page_flip_ioctl() should already catch this, but double
10122 * check to be safe. In the future we may enable pageflipping from
10123 * a disabled primary plane.
10124 */
10125 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
10126 return -EBUSY;
10127
10128 /* Can't change pixel format via MI display flips. */
10129 if (fb->pixel_format != crtc->primary->fb->pixel_format)
10130 return -EINVAL;
10131
10132 /*
10133 * TILEOFF/LINOFF registers can't be changed via MI display flips.
10134 * Note that pitch changes could also affect these register.
10135 */
10136 if (INTEL_INFO(dev)->gen > 3 &&
10137 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
10138 fb->pitches[0] != crtc->primary->fb->pitches[0]))
10139 return -EINVAL;
10140
10141 if (i915_terminally_wedged(&dev_priv->gpu_error))
10142 goto out_hang;
10143
10144 work = kzalloc(sizeof(*work), GFP_KERNEL);
10145 if (work == NULL)
10146 return -ENOMEM;
10147
10148 work->event = event;
10149 work->crtc = crtc;
10150 work->old_fb = old_fb;
10151 INIT_WORK(&work->work, intel_unpin_work_fn);
10152
10153 ret = drm_crtc_vblank_get(crtc);
10154 if (ret)
10155 goto free_work;
10156
10157 /* We borrow the event spin lock for protecting unpin_work */
10158 spin_lock_irq(&dev->event_lock);
10159 if (intel_crtc->unpin_work) {
10160 /* Before declaring the flip queue wedged, check if
10161 * the hardware completed the operation behind our backs.
10162 */
10163 if (__intel_pageflip_stall_check(dev, crtc)) {
10164 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
10165 page_flip_completed(intel_crtc);
10166 } else {
10167 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
10168 spin_unlock_irq(&dev->event_lock);
10169
10170 drm_crtc_vblank_put(crtc);
10171 kfree(work);
10172 return -EBUSY;
10173 }
10174 }
10175 intel_crtc->unpin_work = work;
10176 spin_unlock_irq(&dev->event_lock);
10177
10178 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
10179 flush_workqueue(dev_priv->wq);
10180
10181 /* Reference the objects for the scheduled work. */
10182 drm_framebuffer_reference(work->old_fb);
10183 drm_gem_object_reference(&obj->base);
10184
10185 crtc->primary->fb = fb;
10186 update_state_fb(crtc->primary);
10187
10188 work->pending_flip_obj = obj;
10189
10190 ret = i915_mutex_lock_interruptible(dev);
10191 if (ret)
10192 goto cleanup;
10193
10194 atomic_inc(&intel_crtc->unpin_work_count);
10195 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
10196
10197 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
10198 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
10199
10200 if (IS_VALLEYVIEW(dev)) {
10201 ring = &dev_priv->ring[BCS];
10202 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
10203 /* vlv: DISPLAY_FLIP fails to change tiling */
10204 ring = NULL;
10205 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
10206 ring = &dev_priv->ring[BCS];
10207 } else if (INTEL_INFO(dev)->gen >= 7) {
10208 ring = i915_gem_request_get_ring(obj->last_read_req);
10209 if (ring == NULL || ring->id != RCS)
10210 ring = &dev_priv->ring[BCS];
10211 } else {
10212 ring = &dev_priv->ring[RCS];
10213 }
10214
10215 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
10216 crtc->primary->state, ring);
10217 if (ret)
10218 goto cleanup_pending;
10219
10220 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
10221 + intel_crtc->dspaddr_offset;
10222
10223 if (use_mmio_flip(ring, obj)) {
10224 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
10225 page_flip_flags);
10226 if (ret)
10227 goto cleanup_unpin;
10228
10229 i915_gem_request_assign(&work->flip_queued_req,
10230 obj->last_write_req);
10231 } else {
10232 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
10233 page_flip_flags);
10234 if (ret)
10235 goto cleanup_unpin;
10236
10237 i915_gem_request_assign(&work->flip_queued_req,
10238 intel_ring_get_request(ring));
10239 }
10240
10241 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
10242 work->enable_stall_check = true;
10243
10244 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
10245 INTEL_FRONTBUFFER_PRIMARY(pipe));
10246
10247 intel_fbc_disable(dev);
10248 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
10249 mutex_unlock(&dev->struct_mutex);
10250
10251 trace_i915_flip_request(intel_crtc->plane, obj);
10252
10253 return 0;
10254
10255 cleanup_unpin:
10256 intel_unpin_fb_obj(fb, crtc->primary->state);
10257 cleanup_pending:
10258 atomic_dec(&intel_crtc->unpin_work_count);
10259 mutex_unlock(&dev->struct_mutex);
10260 cleanup:
10261 crtc->primary->fb = old_fb;
10262 update_state_fb(crtc->primary);
10263
10264 drm_gem_object_unreference_unlocked(&obj->base);
10265 drm_framebuffer_unreference(work->old_fb);
10266
10267 spin_lock_irq(&dev->event_lock);
10268 intel_crtc->unpin_work = NULL;
10269 spin_unlock_irq(&dev->event_lock);
10270
10271 drm_crtc_vblank_put(crtc);
10272 free_work:
10273 kfree(work);
10274
10275 if (ret == -EIO) {
10276 out_hang:
10277 ret = intel_plane_restore(primary);
10278 if (ret == 0 && event) {
10279 spin_lock_irq(&dev->event_lock);
10280 drm_send_vblank_event(dev, pipe, event);
10281 spin_unlock_irq(&dev->event_lock);
10282 }
10283 }
10284 return ret;
10285 }
10286
10287 static struct drm_crtc_helper_funcs intel_helper_funcs = {
10288 .mode_set_base_atomic = intel_pipe_set_base_atomic,
10289 .load_lut = intel_crtc_load_lut,
10290 .atomic_begin = intel_begin_crtc_commit,
10291 .atomic_flush = intel_finish_crtc_commit,
10292 };
10293
10294 /**
10295 * intel_modeset_update_staged_output_state
10296 *
10297 * Updates the staged output configuration state, e.g. after we've read out the
10298 * current hw state.
10299 */
10300 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
10301 {
10302 struct intel_crtc *crtc;
10303 struct intel_encoder *encoder;
10304 struct intel_connector *connector;
10305
10306 for_each_intel_connector(dev, connector) {
10307 connector->new_encoder =
10308 to_intel_encoder(connector->base.encoder);
10309 }
10310
10311 for_each_intel_encoder(dev, encoder) {
10312 encoder->new_crtc =
10313 to_intel_crtc(encoder->base.crtc);
10314 }
10315
10316 for_each_intel_crtc(dev, crtc) {
10317 crtc->new_enabled = crtc->base.state->enable;
10318
10319 if (crtc->new_enabled)
10320 crtc->new_config = crtc->config;
10321 else
10322 crtc->new_config = NULL;
10323 }
10324 }
10325
10326 /* Transitional helper to copy current connector/encoder state to
10327 * connector->state. This is needed so that code that is partially
10328 * converted to atomic does the right thing.
10329 */
10330 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
10331 {
10332 struct intel_connector *connector;
10333
10334 for_each_intel_connector(dev, connector) {
10335 if (connector->base.encoder) {
10336 connector->base.state->best_encoder =
10337 connector->base.encoder;
10338 connector->base.state->crtc =
10339 connector->base.encoder->crtc;
10340 } else {
10341 connector->base.state->best_encoder = NULL;
10342 connector->base.state->crtc = NULL;
10343 }
10344 }
10345 }
10346
10347 /**
10348 * intel_modeset_commit_output_state
10349 *
10350 * This function copies the stage display pipe configuration to the real one.
10351 */
10352 static void intel_modeset_commit_output_state(struct drm_device *dev)
10353 {
10354 struct intel_crtc *crtc;
10355 struct intel_encoder *encoder;
10356 struct intel_connector *connector;
10357
10358 for_each_intel_connector(dev, connector) {
10359 connector->base.encoder = &connector->new_encoder->base;
10360 }
10361
10362 for_each_intel_encoder(dev, encoder) {
10363 encoder->base.crtc = &encoder->new_crtc->base;
10364 }
10365
10366 for_each_intel_crtc(dev, crtc) {
10367 crtc->base.state->enable = crtc->new_enabled;
10368 crtc->base.enabled = crtc->new_enabled;
10369 }
10370
10371 intel_modeset_update_connector_atomic_state(dev);
10372 }
10373
10374 static void
10375 connected_sink_compute_bpp(struct intel_connector *connector,
10376 struct intel_crtc_state *pipe_config)
10377 {
10378 int bpp = pipe_config->pipe_bpp;
10379
10380 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10381 connector->base.base.id,
10382 connector->base.name);
10383
10384 /* Don't use an invalid EDID bpc value */
10385 if (connector->base.display_info.bpc &&
10386 connector->base.display_info.bpc * 3 < bpp) {
10387 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10388 bpp, connector->base.display_info.bpc*3);
10389 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
10390 }
10391
10392 /* Clamp bpp to 8 on screens without EDID 1.4 */
10393 if (connector->base.display_info.bpc == 0 && bpp > 24) {
10394 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10395 bpp);
10396 pipe_config->pipe_bpp = 24;
10397 }
10398 }
10399
10400 static int
10401 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10402 struct drm_framebuffer *fb,
10403 struct intel_crtc_state *pipe_config)
10404 {
10405 struct drm_device *dev = crtc->base.dev;
10406 struct drm_atomic_state *state;
10407 struct intel_connector *connector;
10408 int bpp, i;
10409
10410 switch (fb->pixel_format) {
10411 case DRM_FORMAT_C8:
10412 bpp = 8*3; /* since we go through a colormap */
10413 break;
10414 case DRM_FORMAT_XRGB1555:
10415 case DRM_FORMAT_ARGB1555:
10416 /* checked in intel_framebuffer_init already */
10417 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10418 return -EINVAL;
10419 case DRM_FORMAT_RGB565:
10420 bpp = 6*3; /* min is 18bpp */
10421 break;
10422 case DRM_FORMAT_XBGR8888:
10423 case DRM_FORMAT_ABGR8888:
10424 /* checked in intel_framebuffer_init already */
10425 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10426 return -EINVAL;
10427 case DRM_FORMAT_XRGB8888:
10428 case DRM_FORMAT_ARGB8888:
10429 bpp = 8*3;
10430 break;
10431 case DRM_FORMAT_XRGB2101010:
10432 case DRM_FORMAT_ARGB2101010:
10433 case DRM_FORMAT_XBGR2101010:
10434 case DRM_FORMAT_ABGR2101010:
10435 /* checked in intel_framebuffer_init already */
10436 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10437 return -EINVAL;
10438 bpp = 10*3;
10439 break;
10440 /* TODO: gen4+ supports 16 bpc floating point, too. */
10441 default:
10442 DRM_DEBUG_KMS("unsupported depth\n");
10443 return -EINVAL;
10444 }
10445
10446 pipe_config->pipe_bpp = bpp;
10447
10448 state = pipe_config->base.state;
10449
10450 /* Clamp display bpp to EDID value */
10451 for (i = 0; i < state->num_connector; i++) {
10452 if (!state->connectors[i])
10453 continue;
10454
10455 connector = to_intel_connector(state->connectors[i]);
10456 if (state->connector_states[i]->crtc != &crtc->base)
10457 continue;
10458
10459 connected_sink_compute_bpp(connector, pipe_config);
10460 }
10461
10462 return bpp;
10463 }
10464
10465 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10466 {
10467 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10468 "type: 0x%x flags: 0x%x\n",
10469 mode->crtc_clock,
10470 mode->crtc_hdisplay, mode->crtc_hsync_start,
10471 mode->crtc_hsync_end, mode->crtc_htotal,
10472 mode->crtc_vdisplay, mode->crtc_vsync_start,
10473 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10474 }
10475
10476 static void intel_dump_pipe_config(struct intel_crtc *crtc,
10477 struct intel_crtc_state *pipe_config,
10478 const char *context)
10479 {
10480 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10481 context, pipe_name(crtc->pipe));
10482
10483 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10484 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10485 pipe_config->pipe_bpp, pipe_config->dither);
10486 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10487 pipe_config->has_pch_encoder,
10488 pipe_config->fdi_lanes,
10489 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10490 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10491 pipe_config->fdi_m_n.tu);
10492 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10493 pipe_config->has_dp_encoder,
10494 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10495 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10496 pipe_config->dp_m_n.tu);
10497
10498 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10499 pipe_config->has_dp_encoder,
10500 pipe_config->dp_m2_n2.gmch_m,
10501 pipe_config->dp_m2_n2.gmch_n,
10502 pipe_config->dp_m2_n2.link_m,
10503 pipe_config->dp_m2_n2.link_n,
10504 pipe_config->dp_m2_n2.tu);
10505
10506 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10507 pipe_config->has_audio,
10508 pipe_config->has_infoframe);
10509
10510 DRM_DEBUG_KMS("requested mode:\n");
10511 drm_mode_debug_printmodeline(&pipe_config->base.mode);
10512 DRM_DEBUG_KMS("adjusted mode:\n");
10513 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
10514 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
10515 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10516 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10517 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10518 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10519 pipe_config->gmch_pfit.control,
10520 pipe_config->gmch_pfit.pgm_ratios,
10521 pipe_config->gmch_pfit.lvds_border_bits);
10522 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10523 pipe_config->pch_pfit.pos,
10524 pipe_config->pch_pfit.size,
10525 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10526 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10527 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10528 }
10529
10530 static bool encoders_cloneable(const struct intel_encoder *a,
10531 const struct intel_encoder *b)
10532 {
10533 /* masks could be asymmetric, so check both ways */
10534 return a == b || (a->cloneable & (1 << b->type) &&
10535 b->cloneable & (1 << a->type));
10536 }
10537
10538 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10539 struct intel_encoder *encoder)
10540 {
10541 struct drm_device *dev = crtc->base.dev;
10542 struct intel_encoder *source_encoder;
10543
10544 for_each_intel_encoder(dev, source_encoder) {
10545 if (source_encoder->new_crtc != crtc)
10546 continue;
10547
10548 if (!encoders_cloneable(encoder, source_encoder))
10549 return false;
10550 }
10551
10552 return true;
10553 }
10554
10555 static bool check_encoder_cloning(struct intel_crtc *crtc)
10556 {
10557 struct drm_device *dev = crtc->base.dev;
10558 struct intel_encoder *encoder;
10559
10560 for_each_intel_encoder(dev, encoder) {
10561 if (encoder->new_crtc != crtc)
10562 continue;
10563
10564 if (!check_single_encoder_cloning(crtc, encoder))
10565 return false;
10566 }
10567
10568 return true;
10569 }
10570
10571 static bool check_digital_port_conflicts(struct drm_device *dev)
10572 {
10573 struct intel_connector *connector;
10574 unsigned int used_ports = 0;
10575
10576 /*
10577 * Walk the connector list instead of the encoder
10578 * list to detect the problem on ddi platforms
10579 * where there's just one encoder per digital port.
10580 */
10581 for_each_intel_connector(dev, connector) {
10582 struct intel_encoder *encoder = connector->new_encoder;
10583
10584 if (!encoder)
10585 continue;
10586
10587 WARN_ON(!encoder->new_crtc);
10588
10589 switch (encoder->type) {
10590 unsigned int port_mask;
10591 case INTEL_OUTPUT_UNKNOWN:
10592 if (WARN_ON(!HAS_DDI(dev)))
10593 break;
10594 case INTEL_OUTPUT_DISPLAYPORT:
10595 case INTEL_OUTPUT_HDMI:
10596 case INTEL_OUTPUT_EDP:
10597 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10598
10599 /* the same port mustn't appear more than once */
10600 if (used_ports & port_mask)
10601 return false;
10602
10603 used_ports |= port_mask;
10604 default:
10605 break;
10606 }
10607 }
10608
10609 return true;
10610 }
10611
10612 static void
10613 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
10614 {
10615 struct drm_crtc_state tmp_state;
10616
10617 /* Clear only the intel specific part of the crtc state */
10618 tmp_state = crtc_state->base;
10619 memset(crtc_state, 0, sizeof *crtc_state);
10620 crtc_state->base = tmp_state;
10621 }
10622
10623 static struct intel_crtc_state *
10624 intel_modeset_pipe_config(struct drm_crtc *crtc,
10625 struct drm_framebuffer *fb,
10626 struct drm_display_mode *mode,
10627 struct drm_atomic_state *state)
10628 {
10629 struct drm_device *dev = crtc->dev;
10630 struct intel_encoder *encoder;
10631 struct intel_connector *connector;
10632 struct drm_connector_state *connector_state;
10633 struct intel_crtc_state *pipe_config;
10634 int plane_bpp, ret = -EINVAL;
10635 int i;
10636 bool retry = true;
10637
10638 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10639 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10640 return ERR_PTR(-EINVAL);
10641 }
10642
10643 if (!check_digital_port_conflicts(dev)) {
10644 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10645 return ERR_PTR(-EINVAL);
10646 }
10647
10648 pipe_config = intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));
10649 if (IS_ERR(pipe_config))
10650 return pipe_config;
10651
10652 clear_intel_crtc_state(pipe_config);
10653
10654 pipe_config->base.crtc = crtc;
10655 drm_mode_copy(&pipe_config->base.adjusted_mode, mode);
10656 drm_mode_copy(&pipe_config->base.mode, mode);
10657
10658 pipe_config->cpu_transcoder =
10659 (enum transcoder) to_intel_crtc(crtc)->pipe;
10660 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10661
10662 /*
10663 * Sanitize sync polarity flags based on requested ones. If neither
10664 * positive or negative polarity is requested, treat this as meaning
10665 * negative polarity.
10666 */
10667 if (!(pipe_config->base.adjusted_mode.flags &
10668 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10669 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10670
10671 if (!(pipe_config->base.adjusted_mode.flags &
10672 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10673 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10674
10675 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10676 * plane pixel format and any sink constraints into account. Returns the
10677 * source plane bpp so that dithering can be selected on mismatches
10678 * after encoders and crtc also have had their say. */
10679 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10680 fb, pipe_config);
10681 if (plane_bpp < 0)
10682 goto fail;
10683
10684 /*
10685 * Determine the real pipe dimensions. Note that stereo modes can
10686 * increase the actual pipe size due to the frame doubling and
10687 * insertion of additional space for blanks between the frame. This
10688 * is stored in the crtc timings. We use the requested mode to do this
10689 * computation to clearly distinguish it from the adjusted mode, which
10690 * can be changed by the connectors in the below retry loop.
10691 */
10692 drm_crtc_get_hv_timing(&pipe_config->base.mode,
10693 &pipe_config->pipe_src_w,
10694 &pipe_config->pipe_src_h);
10695
10696 encoder_retry:
10697 /* Ensure the port clock defaults are reset when retrying. */
10698 pipe_config->port_clock = 0;
10699 pipe_config->pixel_multiplier = 1;
10700
10701 /* Fill in default crtc timings, allow encoders to overwrite them. */
10702 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
10703 CRTC_STEREO_DOUBLE);
10704
10705 /* Pass our mode to the connectors and the CRTC to give them a chance to
10706 * adjust it according to limitations or connector properties, and also
10707 * a chance to reject the mode entirely.
10708 */
10709 for (i = 0; i < state->num_connector; i++) {
10710 connector = to_intel_connector(state->connectors[i]);
10711 if (!connector)
10712 continue;
10713
10714 connector_state = state->connector_states[i];
10715 if (connector_state->crtc != crtc)
10716 continue;
10717
10718 encoder = to_intel_encoder(connector_state->best_encoder);
10719
10720 if (!(encoder->compute_config(encoder, pipe_config))) {
10721 DRM_DEBUG_KMS("Encoder config failure\n");
10722 goto fail;
10723 }
10724 }
10725
10726 /* Set default port clock if not overwritten by the encoder. Needs to be
10727 * done afterwards in case the encoder adjusts the mode. */
10728 if (!pipe_config->port_clock)
10729 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
10730 * pipe_config->pixel_multiplier;
10731
10732 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10733 if (ret < 0) {
10734 DRM_DEBUG_KMS("CRTC fixup failed\n");
10735 goto fail;
10736 }
10737
10738 if (ret == RETRY) {
10739 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10740 ret = -EINVAL;
10741 goto fail;
10742 }
10743
10744 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10745 retry = false;
10746 goto encoder_retry;
10747 }
10748
10749 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10750 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10751 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10752
10753 return pipe_config;
10754 fail:
10755 return ERR_PTR(ret);
10756 }
10757
10758 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10759 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10760 static void
10761 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10762 unsigned *prepare_pipes, unsigned *disable_pipes)
10763 {
10764 struct intel_crtc *intel_crtc;
10765 struct drm_device *dev = crtc->dev;
10766 struct intel_encoder *encoder;
10767 struct intel_connector *connector;
10768 struct drm_crtc *tmp_crtc;
10769
10770 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10771
10772 /* Check which crtcs have changed outputs connected to them, these need
10773 * to be part of the prepare_pipes mask. We don't (yet) support global
10774 * modeset across multiple crtcs, so modeset_pipes will only have one
10775 * bit set at most. */
10776 for_each_intel_connector(dev, connector) {
10777 if (connector->base.encoder == &connector->new_encoder->base)
10778 continue;
10779
10780 if (connector->base.encoder) {
10781 tmp_crtc = connector->base.encoder->crtc;
10782
10783 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10784 }
10785
10786 if (connector->new_encoder)
10787 *prepare_pipes |=
10788 1 << connector->new_encoder->new_crtc->pipe;
10789 }
10790
10791 for_each_intel_encoder(dev, encoder) {
10792 if (encoder->base.crtc == &encoder->new_crtc->base)
10793 continue;
10794
10795 if (encoder->base.crtc) {
10796 tmp_crtc = encoder->base.crtc;
10797
10798 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10799 }
10800
10801 if (encoder->new_crtc)
10802 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10803 }
10804
10805 /* Check for pipes that will be enabled/disabled ... */
10806 for_each_intel_crtc(dev, intel_crtc) {
10807 if (intel_crtc->base.state->enable == intel_crtc->new_enabled)
10808 continue;
10809
10810 if (!intel_crtc->new_enabled)
10811 *disable_pipes |= 1 << intel_crtc->pipe;
10812 else
10813 *prepare_pipes |= 1 << intel_crtc->pipe;
10814 }
10815
10816
10817 /* set_mode is also used to update properties on life display pipes. */
10818 intel_crtc = to_intel_crtc(crtc);
10819 if (intel_crtc->new_enabled)
10820 *prepare_pipes |= 1 << intel_crtc->pipe;
10821
10822 /*
10823 * For simplicity do a full modeset on any pipe where the output routing
10824 * changed. We could be more clever, but that would require us to be
10825 * more careful with calling the relevant encoder->mode_set functions.
10826 */
10827 if (*prepare_pipes)
10828 *modeset_pipes = *prepare_pipes;
10829
10830 /* ... and mask these out. */
10831 *modeset_pipes &= ~(*disable_pipes);
10832 *prepare_pipes &= ~(*disable_pipes);
10833
10834 /*
10835 * HACK: We don't (yet) fully support global modesets. intel_set_config
10836 * obies this rule, but the modeset restore mode of
10837 * intel_modeset_setup_hw_state does not.
10838 */
10839 *modeset_pipes &= 1 << intel_crtc->pipe;
10840 *prepare_pipes &= 1 << intel_crtc->pipe;
10841
10842 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10843 *modeset_pipes, *prepare_pipes, *disable_pipes);
10844 }
10845
10846 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10847 {
10848 struct drm_encoder *encoder;
10849 struct drm_device *dev = crtc->dev;
10850
10851 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10852 if (encoder->crtc == crtc)
10853 return true;
10854
10855 return false;
10856 }
10857
10858 static void
10859 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10860 {
10861 struct drm_i915_private *dev_priv = dev->dev_private;
10862 struct intel_encoder *intel_encoder;
10863 struct intel_crtc *intel_crtc;
10864 struct drm_connector *connector;
10865
10866 intel_shared_dpll_commit(dev_priv);
10867
10868 for_each_intel_encoder(dev, intel_encoder) {
10869 if (!intel_encoder->base.crtc)
10870 continue;
10871
10872 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10873
10874 if (prepare_pipes & (1 << intel_crtc->pipe))
10875 intel_encoder->connectors_active = false;
10876 }
10877
10878 intel_modeset_commit_output_state(dev);
10879
10880 /* Double check state. */
10881 for_each_intel_crtc(dev, intel_crtc) {
10882 WARN_ON(intel_crtc->base.state->enable != intel_crtc_in_use(&intel_crtc->base));
10883 WARN_ON(intel_crtc->new_config &&
10884 intel_crtc->new_config != intel_crtc->config);
10885 WARN_ON(intel_crtc->base.state->enable != !!intel_crtc->new_config);
10886 }
10887
10888 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10889 if (!connector->encoder || !connector->encoder->crtc)
10890 continue;
10891
10892 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10893
10894 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10895 struct drm_property *dpms_property =
10896 dev->mode_config.dpms_property;
10897
10898 connector->dpms = DRM_MODE_DPMS_ON;
10899 drm_object_property_set_value(&connector->base,
10900 dpms_property,
10901 DRM_MODE_DPMS_ON);
10902
10903 intel_encoder = to_intel_encoder(connector->encoder);
10904 intel_encoder->connectors_active = true;
10905 }
10906 }
10907
10908 }
10909
10910 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10911 {
10912 int diff;
10913
10914 if (clock1 == clock2)
10915 return true;
10916
10917 if (!clock1 || !clock2)
10918 return false;
10919
10920 diff = abs(clock1 - clock2);
10921
10922 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10923 return true;
10924
10925 return false;
10926 }
10927
10928 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10929 list_for_each_entry((intel_crtc), \
10930 &(dev)->mode_config.crtc_list, \
10931 base.head) \
10932 if (mask & (1 <<(intel_crtc)->pipe))
10933
10934 static bool
10935 intel_pipe_config_compare(struct drm_device *dev,
10936 struct intel_crtc_state *current_config,
10937 struct intel_crtc_state *pipe_config)
10938 {
10939 #define PIPE_CONF_CHECK_X(name) \
10940 if (current_config->name != pipe_config->name) { \
10941 DRM_ERROR("mismatch in " #name " " \
10942 "(expected 0x%08x, found 0x%08x)\n", \
10943 current_config->name, \
10944 pipe_config->name); \
10945 return false; \
10946 }
10947
10948 #define PIPE_CONF_CHECK_I(name) \
10949 if (current_config->name != pipe_config->name) { \
10950 DRM_ERROR("mismatch in " #name " " \
10951 "(expected %i, found %i)\n", \
10952 current_config->name, \
10953 pipe_config->name); \
10954 return false; \
10955 }
10956
10957 /* This is required for BDW+ where there is only one set of registers for
10958 * switching between high and low RR.
10959 * This macro can be used whenever a comparison has to be made between one
10960 * hw state and multiple sw state variables.
10961 */
10962 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10963 if ((current_config->name != pipe_config->name) && \
10964 (current_config->alt_name != pipe_config->name)) { \
10965 DRM_ERROR("mismatch in " #name " " \
10966 "(expected %i or %i, found %i)\n", \
10967 current_config->name, \
10968 current_config->alt_name, \
10969 pipe_config->name); \
10970 return false; \
10971 }
10972
10973 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
10974 if ((current_config->name ^ pipe_config->name) & (mask)) { \
10975 DRM_ERROR("mismatch in " #name "(" #mask ") " \
10976 "(expected %i, found %i)\n", \
10977 current_config->name & (mask), \
10978 pipe_config->name & (mask)); \
10979 return false; \
10980 }
10981
10982 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10983 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10984 DRM_ERROR("mismatch in " #name " " \
10985 "(expected %i, found %i)\n", \
10986 current_config->name, \
10987 pipe_config->name); \
10988 return false; \
10989 }
10990
10991 #define PIPE_CONF_QUIRK(quirk) \
10992 ((current_config->quirks | pipe_config->quirks) & (quirk))
10993
10994 PIPE_CONF_CHECK_I(cpu_transcoder);
10995
10996 PIPE_CONF_CHECK_I(has_pch_encoder);
10997 PIPE_CONF_CHECK_I(fdi_lanes);
10998 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10999 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
11000 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
11001 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
11002 PIPE_CONF_CHECK_I(fdi_m_n.tu);
11003
11004 PIPE_CONF_CHECK_I(has_dp_encoder);
11005
11006 if (INTEL_INFO(dev)->gen < 8) {
11007 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
11008 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
11009 PIPE_CONF_CHECK_I(dp_m_n.link_m);
11010 PIPE_CONF_CHECK_I(dp_m_n.link_n);
11011 PIPE_CONF_CHECK_I(dp_m_n.tu);
11012
11013 if (current_config->has_drrs) {
11014 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
11015 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
11016 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
11017 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
11018 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
11019 }
11020 } else {
11021 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
11022 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
11023 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
11024 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
11025 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
11026 }
11027
11028 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
11029 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
11030 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
11031 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
11032 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
11033 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
11034
11035 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
11036 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
11037 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
11038 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
11039 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
11040 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
11041
11042 PIPE_CONF_CHECK_I(pixel_multiplier);
11043 PIPE_CONF_CHECK_I(has_hdmi_sink);
11044 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
11045 IS_VALLEYVIEW(dev))
11046 PIPE_CONF_CHECK_I(limited_color_range);
11047 PIPE_CONF_CHECK_I(has_infoframe);
11048
11049 PIPE_CONF_CHECK_I(has_audio);
11050
11051 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11052 DRM_MODE_FLAG_INTERLACE);
11053
11054 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
11055 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11056 DRM_MODE_FLAG_PHSYNC);
11057 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11058 DRM_MODE_FLAG_NHSYNC);
11059 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11060 DRM_MODE_FLAG_PVSYNC);
11061 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11062 DRM_MODE_FLAG_NVSYNC);
11063 }
11064
11065 PIPE_CONF_CHECK_I(pipe_src_w);
11066 PIPE_CONF_CHECK_I(pipe_src_h);
11067
11068 /*
11069 * FIXME: BIOS likes to set up a cloned config with lvds+external
11070 * screen. Since we don't yet re-compute the pipe config when moving
11071 * just the lvds port away to another pipe the sw tracking won't match.
11072 *
11073 * Proper atomic modesets with recomputed global state will fix this.
11074 * Until then just don't check gmch state for inherited modes.
11075 */
11076 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
11077 PIPE_CONF_CHECK_I(gmch_pfit.control);
11078 /* pfit ratios are autocomputed by the hw on gen4+ */
11079 if (INTEL_INFO(dev)->gen < 4)
11080 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
11081 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
11082 }
11083
11084 PIPE_CONF_CHECK_I(pch_pfit.enabled);
11085 if (current_config->pch_pfit.enabled) {
11086 PIPE_CONF_CHECK_I(pch_pfit.pos);
11087 PIPE_CONF_CHECK_I(pch_pfit.size);
11088 }
11089
11090 /* BDW+ don't expose a synchronous way to read the state */
11091 if (IS_HASWELL(dev))
11092 PIPE_CONF_CHECK_I(ips_enabled);
11093
11094 PIPE_CONF_CHECK_I(double_wide);
11095
11096 PIPE_CONF_CHECK_X(ddi_pll_sel);
11097
11098 PIPE_CONF_CHECK_I(shared_dpll);
11099 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
11100 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
11101 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
11102 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
11103 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
11104 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
11105 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
11106 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
11107
11108 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
11109 PIPE_CONF_CHECK_I(pipe_bpp);
11110
11111 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
11112 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
11113
11114 #undef PIPE_CONF_CHECK_X
11115 #undef PIPE_CONF_CHECK_I
11116 #undef PIPE_CONF_CHECK_I_ALT
11117 #undef PIPE_CONF_CHECK_FLAGS
11118 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
11119 #undef PIPE_CONF_QUIRK
11120
11121 return true;
11122 }
11123
11124 static void check_wm_state(struct drm_device *dev)
11125 {
11126 struct drm_i915_private *dev_priv = dev->dev_private;
11127 struct skl_ddb_allocation hw_ddb, *sw_ddb;
11128 struct intel_crtc *intel_crtc;
11129 int plane;
11130
11131 if (INTEL_INFO(dev)->gen < 9)
11132 return;
11133
11134 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
11135 sw_ddb = &dev_priv->wm.skl_hw.ddb;
11136
11137 for_each_intel_crtc(dev, intel_crtc) {
11138 struct skl_ddb_entry *hw_entry, *sw_entry;
11139 const enum pipe pipe = intel_crtc->pipe;
11140
11141 if (!intel_crtc->active)
11142 continue;
11143
11144 /* planes */
11145 for_each_plane(dev_priv, pipe, plane) {
11146 hw_entry = &hw_ddb.plane[pipe][plane];
11147 sw_entry = &sw_ddb->plane[pipe][plane];
11148
11149 if (skl_ddb_entry_equal(hw_entry, sw_entry))
11150 continue;
11151
11152 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
11153 "(expected (%u,%u), found (%u,%u))\n",
11154 pipe_name(pipe), plane + 1,
11155 sw_entry->start, sw_entry->end,
11156 hw_entry->start, hw_entry->end);
11157 }
11158
11159 /* cursor */
11160 hw_entry = &hw_ddb.cursor[pipe];
11161 sw_entry = &sw_ddb->cursor[pipe];
11162
11163 if (skl_ddb_entry_equal(hw_entry, sw_entry))
11164 continue;
11165
11166 DRM_ERROR("mismatch in DDB state pipe %c cursor "
11167 "(expected (%u,%u), found (%u,%u))\n",
11168 pipe_name(pipe),
11169 sw_entry->start, sw_entry->end,
11170 hw_entry->start, hw_entry->end);
11171 }
11172 }
11173
11174 static void
11175 check_connector_state(struct drm_device *dev)
11176 {
11177 struct intel_connector *connector;
11178
11179 for_each_intel_connector(dev, connector) {
11180 /* This also checks the encoder/connector hw state with the
11181 * ->get_hw_state callbacks. */
11182 intel_connector_check_state(connector);
11183
11184 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
11185 "connector's staged encoder doesn't match current encoder\n");
11186 }
11187 }
11188
11189 static void
11190 check_encoder_state(struct drm_device *dev)
11191 {
11192 struct intel_encoder *encoder;
11193 struct intel_connector *connector;
11194
11195 for_each_intel_encoder(dev, encoder) {
11196 bool enabled = false;
11197 bool active = false;
11198 enum pipe pipe, tracked_pipe;
11199
11200 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
11201 encoder->base.base.id,
11202 encoder->base.name);
11203
11204 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
11205 "encoder's stage crtc doesn't match current crtc\n");
11206 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
11207 "encoder's active_connectors set, but no crtc\n");
11208
11209 for_each_intel_connector(dev, connector) {
11210 if (connector->base.encoder != &encoder->base)
11211 continue;
11212 enabled = true;
11213 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
11214 active = true;
11215 }
11216 /*
11217 * for MST connectors if we unplug the connector is gone
11218 * away but the encoder is still connected to a crtc
11219 * until a modeset happens in response to the hotplug.
11220 */
11221 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
11222 continue;
11223
11224 I915_STATE_WARN(!!encoder->base.crtc != enabled,
11225 "encoder's enabled state mismatch "
11226 "(expected %i, found %i)\n",
11227 !!encoder->base.crtc, enabled);
11228 I915_STATE_WARN(active && !encoder->base.crtc,
11229 "active encoder with no crtc\n");
11230
11231 I915_STATE_WARN(encoder->connectors_active != active,
11232 "encoder's computed active state doesn't match tracked active state "
11233 "(expected %i, found %i)\n", active, encoder->connectors_active);
11234
11235 active = encoder->get_hw_state(encoder, &pipe);
11236 I915_STATE_WARN(active != encoder->connectors_active,
11237 "encoder's hw state doesn't match sw tracking "
11238 "(expected %i, found %i)\n",
11239 encoder->connectors_active, active);
11240
11241 if (!encoder->base.crtc)
11242 continue;
11243
11244 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
11245 I915_STATE_WARN(active && pipe != tracked_pipe,
11246 "active encoder's pipe doesn't match"
11247 "(expected %i, found %i)\n",
11248 tracked_pipe, pipe);
11249
11250 }
11251 }
11252
11253 static void
11254 check_crtc_state(struct drm_device *dev)
11255 {
11256 struct drm_i915_private *dev_priv = dev->dev_private;
11257 struct intel_crtc *crtc;
11258 struct intel_encoder *encoder;
11259 struct intel_crtc_state pipe_config;
11260
11261 for_each_intel_crtc(dev, crtc) {
11262 bool enabled = false;
11263 bool active = false;
11264
11265 memset(&pipe_config, 0, sizeof(pipe_config));
11266
11267 DRM_DEBUG_KMS("[CRTC:%d]\n",
11268 crtc->base.base.id);
11269
11270 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
11271 "active crtc, but not enabled in sw tracking\n");
11272
11273 for_each_intel_encoder(dev, encoder) {
11274 if (encoder->base.crtc != &crtc->base)
11275 continue;
11276 enabled = true;
11277 if (encoder->connectors_active)
11278 active = true;
11279 }
11280
11281 I915_STATE_WARN(active != crtc->active,
11282 "crtc's computed active state doesn't match tracked active state "
11283 "(expected %i, found %i)\n", active, crtc->active);
11284 I915_STATE_WARN(enabled != crtc->base.state->enable,
11285 "crtc's computed enabled state doesn't match tracked enabled state "
11286 "(expected %i, found %i)\n", enabled,
11287 crtc->base.state->enable);
11288
11289 active = dev_priv->display.get_pipe_config(crtc,
11290 &pipe_config);
11291
11292 /* hw state is inconsistent with the pipe quirk */
11293 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
11294 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
11295 active = crtc->active;
11296
11297 for_each_intel_encoder(dev, encoder) {
11298 enum pipe pipe;
11299 if (encoder->base.crtc != &crtc->base)
11300 continue;
11301 if (encoder->get_hw_state(encoder, &pipe))
11302 encoder->get_config(encoder, &pipe_config);
11303 }
11304
11305 I915_STATE_WARN(crtc->active != active,
11306 "crtc active state doesn't match with hw state "
11307 "(expected %i, found %i)\n", crtc->active, active);
11308
11309 if (active &&
11310 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
11311 I915_STATE_WARN(1, "pipe state doesn't match!\n");
11312 intel_dump_pipe_config(crtc, &pipe_config,
11313 "[hw state]");
11314 intel_dump_pipe_config(crtc, crtc->config,
11315 "[sw state]");
11316 }
11317 }
11318 }
11319
11320 static void
11321 check_shared_dpll_state(struct drm_device *dev)
11322 {
11323 struct drm_i915_private *dev_priv = dev->dev_private;
11324 struct intel_crtc *crtc;
11325 struct intel_dpll_hw_state dpll_hw_state;
11326 int i;
11327
11328 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11329 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11330 int enabled_crtcs = 0, active_crtcs = 0;
11331 bool active;
11332
11333 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
11334
11335 DRM_DEBUG_KMS("%s\n", pll->name);
11336
11337 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
11338
11339 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
11340 "more active pll users than references: %i vs %i\n",
11341 pll->active, hweight32(pll->config.crtc_mask));
11342 I915_STATE_WARN(pll->active && !pll->on,
11343 "pll in active use but not on in sw tracking\n");
11344 I915_STATE_WARN(pll->on && !pll->active,
11345 "pll in on but not on in use in sw tracking\n");
11346 I915_STATE_WARN(pll->on != active,
11347 "pll on state mismatch (expected %i, found %i)\n",
11348 pll->on, active);
11349
11350 for_each_intel_crtc(dev, crtc) {
11351 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
11352 enabled_crtcs++;
11353 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11354 active_crtcs++;
11355 }
11356 I915_STATE_WARN(pll->active != active_crtcs,
11357 "pll active crtcs mismatch (expected %i, found %i)\n",
11358 pll->active, active_crtcs);
11359 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
11360 "pll enabled crtcs mismatch (expected %i, found %i)\n",
11361 hweight32(pll->config.crtc_mask), enabled_crtcs);
11362
11363 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
11364 sizeof(dpll_hw_state)),
11365 "pll hw state mismatch\n");
11366 }
11367 }
11368
11369 void
11370 intel_modeset_check_state(struct drm_device *dev)
11371 {
11372 check_wm_state(dev);
11373 check_connector_state(dev);
11374 check_encoder_state(dev);
11375 check_crtc_state(dev);
11376 check_shared_dpll_state(dev);
11377 }
11378
11379 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
11380 int dotclock)
11381 {
11382 /*
11383 * FDI already provided one idea for the dotclock.
11384 * Yell if the encoder disagrees.
11385 */
11386 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
11387 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
11388 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
11389 }
11390
11391 static void update_scanline_offset(struct intel_crtc *crtc)
11392 {
11393 struct drm_device *dev = crtc->base.dev;
11394
11395 /*
11396 * The scanline counter increments at the leading edge of hsync.
11397 *
11398 * On most platforms it starts counting from vtotal-1 on the
11399 * first active line. That means the scanline counter value is
11400 * always one less than what we would expect. Ie. just after
11401 * start of vblank, which also occurs at start of hsync (on the
11402 * last active line), the scanline counter will read vblank_start-1.
11403 *
11404 * On gen2 the scanline counter starts counting from 1 instead
11405 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11406 * to keep the value positive), instead of adding one.
11407 *
11408 * On HSW+ the behaviour of the scanline counter depends on the output
11409 * type. For DP ports it behaves like most other platforms, but on HDMI
11410 * there's an extra 1 line difference. So we need to add two instead of
11411 * one to the value.
11412 */
11413 if (IS_GEN2(dev)) {
11414 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
11415 int vtotal;
11416
11417 vtotal = mode->crtc_vtotal;
11418 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
11419 vtotal /= 2;
11420
11421 crtc->scanline_offset = vtotal - 1;
11422 } else if (HAS_DDI(dev) &&
11423 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
11424 crtc->scanline_offset = 2;
11425 } else
11426 crtc->scanline_offset = 1;
11427 }
11428
11429 static struct intel_crtc_state *
11430 intel_modeset_compute_config(struct drm_crtc *crtc,
11431 struct drm_display_mode *mode,
11432 struct drm_framebuffer *fb,
11433 struct drm_atomic_state *state,
11434 unsigned *modeset_pipes,
11435 unsigned *prepare_pipes,
11436 unsigned *disable_pipes)
11437 {
11438 struct drm_device *dev = crtc->dev;
11439 struct intel_crtc_state *pipe_config = NULL;
11440 struct intel_crtc *intel_crtc;
11441 int ret = 0;
11442
11443 ret = drm_atomic_add_affected_connectors(state, crtc);
11444 if (ret)
11445 return ERR_PTR(ret);
11446
11447 intel_modeset_affected_pipes(crtc, modeset_pipes,
11448 prepare_pipes, disable_pipes);
11449
11450 for_each_intel_crtc_masked(dev, *disable_pipes, intel_crtc) {
11451 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
11452 if (IS_ERR(pipe_config))
11453 return pipe_config;
11454
11455 pipe_config->base.enable = false;
11456 }
11457
11458 /*
11459 * Note this needs changes when we start tracking multiple modes
11460 * and crtcs. At that point we'll need to compute the whole config
11461 * (i.e. one pipe_config for each crtc) rather than just the one
11462 * for this crtc.
11463 */
11464 for_each_intel_crtc_masked(dev, *modeset_pipes, intel_crtc) {
11465 /* FIXME: For now we still expect modeset_pipes has at most
11466 * one bit set. */
11467 if (WARN_ON(&intel_crtc->base != crtc))
11468 continue;
11469
11470 pipe_config = intel_modeset_pipe_config(crtc, fb, mode, state);
11471 if (IS_ERR(pipe_config))
11472 return pipe_config;
11473
11474 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11475 "[modeset]");
11476 }
11477
11478 return intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));;
11479 }
11480
11481 static int __intel_set_mode_setup_plls(struct drm_device *dev,
11482 unsigned modeset_pipes,
11483 unsigned disable_pipes)
11484 {
11485 struct drm_i915_private *dev_priv = to_i915(dev);
11486 unsigned clear_pipes = modeset_pipes | disable_pipes;
11487 struct intel_crtc *intel_crtc;
11488 int ret = 0;
11489
11490 if (!dev_priv->display.crtc_compute_clock)
11491 return 0;
11492
11493 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
11494 if (ret)
11495 goto done;
11496
11497 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11498 struct intel_crtc_state *state = intel_crtc->new_config;
11499 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11500 state);
11501 if (ret) {
11502 intel_shared_dpll_abort_config(dev_priv);
11503 goto done;
11504 }
11505 }
11506
11507 done:
11508 return ret;
11509 }
11510
11511 static int __intel_set_mode(struct drm_crtc *crtc,
11512 struct drm_display_mode *mode,
11513 int x, int y, struct drm_framebuffer *fb,
11514 struct intel_crtc_state *pipe_config,
11515 unsigned modeset_pipes,
11516 unsigned prepare_pipes,
11517 unsigned disable_pipes)
11518 {
11519 struct drm_device *dev = crtc->dev;
11520 struct drm_i915_private *dev_priv = dev->dev_private;
11521 struct drm_display_mode *saved_mode;
11522 struct intel_crtc_state *crtc_state_copy = NULL;
11523 struct intel_crtc *intel_crtc;
11524 int ret = 0;
11525
11526 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
11527 if (!saved_mode)
11528 return -ENOMEM;
11529
11530 crtc_state_copy = kmalloc(sizeof(*crtc_state_copy), GFP_KERNEL);
11531 if (!crtc_state_copy) {
11532 ret = -ENOMEM;
11533 goto done;
11534 }
11535
11536 *saved_mode = crtc->mode;
11537
11538 if (modeset_pipes)
11539 to_intel_crtc(crtc)->new_config = pipe_config;
11540
11541 /*
11542 * See if the config requires any additional preparation, e.g.
11543 * to adjust global state with pipes off. We need to do this
11544 * here so we can get the modeset_pipe updated config for the new
11545 * mode set on this crtc. For other crtcs we need to use the
11546 * adjusted_mode bits in the crtc directly.
11547 */
11548 if (IS_VALLEYVIEW(dev)) {
11549 valleyview_modeset_global_pipes(dev, &prepare_pipes);
11550
11551 /* may have added more to prepare_pipes than we should */
11552 prepare_pipes &= ~disable_pipes;
11553 }
11554
11555 ret = __intel_set_mode_setup_plls(dev, modeset_pipes, disable_pipes);
11556 if (ret)
11557 goto done;
11558
11559 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11560 intel_crtc_disable(&intel_crtc->base);
11561
11562 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11563 if (intel_crtc->base.state->enable)
11564 dev_priv->display.crtc_disable(&intel_crtc->base);
11565 }
11566
11567 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11568 * to set it here already despite that we pass it down the callchain.
11569 *
11570 * Note we'll need to fix this up when we start tracking multiple
11571 * pipes; here we assume a single modeset_pipe and only track the
11572 * single crtc and mode.
11573 */
11574 if (modeset_pipes) {
11575 crtc->mode = *mode;
11576 /* mode_set/enable/disable functions rely on a correct pipe
11577 * config. */
11578 intel_crtc_set_state(to_intel_crtc(crtc), pipe_config);
11579
11580 /*
11581 * Calculate and store various constants which
11582 * are later needed by vblank and swap-completion
11583 * timestamping. They are derived from true hwmode.
11584 */
11585 drm_calc_timestamping_constants(crtc,
11586 &pipe_config->base.adjusted_mode);
11587 }
11588
11589 /* Only after disabling all output pipelines that will be changed can we
11590 * update the the output configuration. */
11591 intel_modeset_update_state(dev, prepare_pipes);
11592
11593 modeset_update_crtc_power_domains(pipe_config->base.state);
11594
11595 /* Set up the DPLL and any encoders state that needs to adjust or depend
11596 * on the DPLL.
11597 */
11598 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11599 struct drm_plane *primary = intel_crtc->base.primary;
11600 int vdisplay, hdisplay;
11601
11602 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11603 ret = primary->funcs->update_plane(primary, &intel_crtc->base,
11604 fb, 0, 0,
11605 hdisplay, vdisplay,
11606 x << 16, y << 16,
11607 hdisplay << 16, vdisplay << 16);
11608 }
11609
11610 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11611 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11612 update_scanline_offset(intel_crtc);
11613
11614 dev_priv->display.crtc_enable(&intel_crtc->base);
11615 }
11616
11617 /* FIXME: add subpixel order */
11618 done:
11619 if (ret && crtc->state->enable)
11620 crtc->mode = *saved_mode;
11621
11622 if (ret == 0 && pipe_config) {
11623 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11624
11625 /* The pipe_config will be freed with the atomic state, so
11626 * make a copy. */
11627 memcpy(crtc_state_copy, intel_crtc->config,
11628 sizeof *crtc_state_copy);
11629 intel_crtc->config = crtc_state_copy;
11630 intel_crtc->base.state = &crtc_state_copy->base;
11631
11632 if (modeset_pipes)
11633 intel_crtc->new_config = intel_crtc->config;
11634 } else {
11635 kfree(crtc_state_copy);
11636 }
11637
11638 kfree(saved_mode);
11639 return ret;
11640 }
11641
11642 static int intel_set_mode_pipes(struct drm_crtc *crtc,
11643 struct drm_display_mode *mode,
11644 int x, int y, struct drm_framebuffer *fb,
11645 struct intel_crtc_state *pipe_config,
11646 unsigned modeset_pipes,
11647 unsigned prepare_pipes,
11648 unsigned disable_pipes)
11649 {
11650 int ret;
11651
11652 ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11653 prepare_pipes, disable_pipes);
11654
11655 if (ret == 0)
11656 intel_modeset_check_state(crtc->dev);
11657
11658 return ret;
11659 }
11660
11661 static int intel_set_mode(struct drm_crtc *crtc,
11662 struct drm_display_mode *mode,
11663 int x, int y, struct drm_framebuffer *fb,
11664 struct drm_atomic_state *state)
11665 {
11666 struct intel_crtc_state *pipe_config;
11667 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11668 int ret = 0;
11669
11670 pipe_config = intel_modeset_compute_config(crtc, mode, fb, state,
11671 &modeset_pipes,
11672 &prepare_pipes,
11673 &disable_pipes);
11674
11675 if (IS_ERR(pipe_config)) {
11676 ret = PTR_ERR(pipe_config);
11677 goto out;
11678 }
11679
11680 ret = intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11681 modeset_pipes, prepare_pipes,
11682 disable_pipes);
11683 if (ret)
11684 goto out;
11685
11686 out:
11687 return ret;
11688 }
11689
11690 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11691 {
11692 struct drm_device *dev = crtc->dev;
11693 struct drm_atomic_state *state;
11694 struct intel_encoder *encoder;
11695 struct intel_connector *connector;
11696 struct drm_connector_state *connector_state;
11697
11698 state = drm_atomic_state_alloc(dev);
11699 if (!state) {
11700 DRM_DEBUG_KMS("[CRTC:%d] mode restore failed, out of memory",
11701 crtc->base.id);
11702 return;
11703 }
11704
11705 state->acquire_ctx = dev->mode_config.acquire_ctx;
11706
11707 /* The force restore path in the HW readout code relies on the staged
11708 * config still keeping the user requested config while the actual
11709 * state has been overwritten by the configuration read from HW. We
11710 * need to copy the staged config to the atomic state, otherwise the
11711 * mode set will just reapply the state the HW is already in. */
11712 for_each_intel_encoder(dev, encoder) {
11713 if (&encoder->new_crtc->base != crtc)
11714 continue;
11715
11716 for_each_intel_connector(dev, connector) {
11717 if (connector->new_encoder != encoder)
11718 continue;
11719
11720 connector_state = drm_atomic_get_connector_state(state, &connector->base);
11721 if (IS_ERR(connector_state)) {
11722 DRM_DEBUG_KMS("Failed to add [CONNECTOR:%d:%s] to state: %ld\n",
11723 connector->base.base.id,
11724 connector->base.name,
11725 PTR_ERR(connector_state));
11726 continue;
11727 }
11728
11729 connector_state->crtc = crtc;
11730 connector_state->best_encoder = &encoder->base;
11731 }
11732 }
11733
11734 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb,
11735 state);
11736
11737 drm_atomic_state_free(state);
11738 }
11739
11740 #undef for_each_intel_crtc_masked
11741
11742 static void intel_set_config_free(struct intel_set_config *config)
11743 {
11744 if (!config)
11745 return;
11746
11747 kfree(config->save_connector_encoders);
11748 kfree(config->save_encoder_crtcs);
11749 kfree(config->save_crtc_enabled);
11750 kfree(config);
11751 }
11752
11753 static int intel_set_config_save_state(struct drm_device *dev,
11754 struct intel_set_config *config)
11755 {
11756 struct drm_crtc *crtc;
11757 struct drm_encoder *encoder;
11758 struct drm_connector *connector;
11759 int count;
11760
11761 config->save_crtc_enabled =
11762 kcalloc(dev->mode_config.num_crtc,
11763 sizeof(bool), GFP_KERNEL);
11764 if (!config->save_crtc_enabled)
11765 return -ENOMEM;
11766
11767 config->save_encoder_crtcs =
11768 kcalloc(dev->mode_config.num_encoder,
11769 sizeof(struct drm_crtc *), GFP_KERNEL);
11770 if (!config->save_encoder_crtcs)
11771 return -ENOMEM;
11772
11773 config->save_connector_encoders =
11774 kcalloc(dev->mode_config.num_connector,
11775 sizeof(struct drm_encoder *), GFP_KERNEL);
11776 if (!config->save_connector_encoders)
11777 return -ENOMEM;
11778
11779 /* Copy data. Note that driver private data is not affected.
11780 * Should anything bad happen only the expected state is
11781 * restored, not the drivers personal bookkeeping.
11782 */
11783 count = 0;
11784 for_each_crtc(dev, crtc) {
11785 config->save_crtc_enabled[count++] = crtc->state->enable;
11786 }
11787
11788 count = 0;
11789 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11790 config->save_encoder_crtcs[count++] = encoder->crtc;
11791 }
11792
11793 count = 0;
11794 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11795 config->save_connector_encoders[count++] = connector->encoder;
11796 }
11797
11798 return 0;
11799 }
11800
11801 static void intel_set_config_restore_state(struct drm_device *dev,
11802 struct intel_set_config *config)
11803 {
11804 struct intel_crtc *crtc;
11805 struct intel_encoder *encoder;
11806 struct intel_connector *connector;
11807 int count;
11808
11809 count = 0;
11810 for_each_intel_crtc(dev, crtc) {
11811 crtc->new_enabled = config->save_crtc_enabled[count++];
11812
11813 if (crtc->new_enabled)
11814 crtc->new_config = crtc->config;
11815 else
11816 crtc->new_config = NULL;
11817 }
11818
11819 count = 0;
11820 for_each_intel_encoder(dev, encoder) {
11821 encoder->new_crtc =
11822 to_intel_crtc(config->save_encoder_crtcs[count++]);
11823 }
11824
11825 count = 0;
11826 for_each_intel_connector(dev, connector) {
11827 connector->new_encoder =
11828 to_intel_encoder(config->save_connector_encoders[count++]);
11829 }
11830 }
11831
11832 static bool
11833 is_crtc_connector_off(struct drm_mode_set *set)
11834 {
11835 int i;
11836
11837 if (set->num_connectors == 0)
11838 return false;
11839
11840 if (WARN_ON(set->connectors == NULL))
11841 return false;
11842
11843 for (i = 0; i < set->num_connectors; i++)
11844 if (set->connectors[i]->encoder &&
11845 set->connectors[i]->encoder->crtc == set->crtc &&
11846 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11847 return true;
11848
11849 return false;
11850 }
11851
11852 static void
11853 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11854 struct intel_set_config *config)
11855 {
11856
11857 /* We should be able to check here if the fb has the same properties
11858 * and then just flip_or_move it */
11859 if (is_crtc_connector_off(set)) {
11860 config->mode_changed = true;
11861 } else if (set->crtc->primary->fb != set->fb) {
11862 /*
11863 * If we have no fb, we can only flip as long as the crtc is
11864 * active, otherwise we need a full mode set. The crtc may
11865 * be active if we've only disabled the primary plane, or
11866 * in fastboot situations.
11867 */
11868 if (set->crtc->primary->fb == NULL) {
11869 struct intel_crtc *intel_crtc =
11870 to_intel_crtc(set->crtc);
11871
11872 if (intel_crtc->active) {
11873 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11874 config->fb_changed = true;
11875 } else {
11876 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11877 config->mode_changed = true;
11878 }
11879 } else if (set->fb == NULL) {
11880 config->mode_changed = true;
11881 } else if (set->fb->pixel_format !=
11882 set->crtc->primary->fb->pixel_format) {
11883 config->mode_changed = true;
11884 } else {
11885 config->fb_changed = true;
11886 }
11887 }
11888
11889 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11890 config->fb_changed = true;
11891
11892 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11893 DRM_DEBUG_KMS("modes are different, full mode set\n");
11894 drm_mode_debug_printmodeline(&set->crtc->mode);
11895 drm_mode_debug_printmodeline(set->mode);
11896 config->mode_changed = true;
11897 }
11898
11899 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11900 set->crtc->base.id, config->mode_changed, config->fb_changed);
11901 }
11902
11903 static int
11904 intel_modeset_stage_output_state(struct drm_device *dev,
11905 struct drm_mode_set *set,
11906 struct intel_set_config *config,
11907 struct drm_atomic_state *state)
11908 {
11909 struct intel_connector *connector;
11910 struct drm_connector_state *connector_state;
11911 struct intel_encoder *encoder;
11912 struct intel_crtc *crtc;
11913 int ro;
11914
11915 /* The upper layers ensure that we either disable a crtc or have a list
11916 * of connectors. For paranoia, double-check this. */
11917 WARN_ON(!set->fb && (set->num_connectors != 0));
11918 WARN_ON(set->fb && (set->num_connectors == 0));
11919
11920 for_each_intel_connector(dev, connector) {
11921 /* Otherwise traverse passed in connector list and get encoders
11922 * for them. */
11923 for (ro = 0; ro < set->num_connectors; ro++) {
11924 if (set->connectors[ro] == &connector->base) {
11925 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11926 break;
11927 }
11928 }
11929
11930 /* If we disable the crtc, disable all its connectors. Also, if
11931 * the connector is on the changing crtc but not on the new
11932 * connector list, disable it. */
11933 if ((!set->fb || ro == set->num_connectors) &&
11934 connector->base.encoder &&
11935 connector->base.encoder->crtc == set->crtc) {
11936 connector->new_encoder = NULL;
11937
11938 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11939 connector->base.base.id,
11940 connector->base.name);
11941 }
11942
11943
11944 if (&connector->new_encoder->base != connector->base.encoder) {
11945 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] encoder changed, full mode switch\n",
11946 connector->base.base.id,
11947 connector->base.name);
11948 config->mode_changed = true;
11949 }
11950 }
11951 /* connector->new_encoder is now updated for all connectors. */
11952
11953 /* Update crtc of enabled connectors. */
11954 for_each_intel_connector(dev, connector) {
11955 struct drm_crtc *new_crtc;
11956
11957 if (!connector->new_encoder)
11958 continue;
11959
11960 new_crtc = connector->new_encoder->base.crtc;
11961
11962 for (ro = 0; ro < set->num_connectors; ro++) {
11963 if (set->connectors[ro] == &connector->base)
11964 new_crtc = set->crtc;
11965 }
11966
11967 /* Make sure the new CRTC will work with the encoder */
11968 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11969 new_crtc)) {
11970 return -EINVAL;
11971 }
11972 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11973
11974 connector_state =
11975 drm_atomic_get_connector_state(state, &connector->base);
11976 if (IS_ERR(connector_state))
11977 return PTR_ERR(connector_state);
11978
11979 connector_state->crtc = new_crtc;
11980 connector_state->best_encoder = &connector->new_encoder->base;
11981
11982 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11983 connector->base.base.id,
11984 connector->base.name,
11985 new_crtc->base.id);
11986 }
11987
11988 /* Check for any encoders that needs to be disabled. */
11989 for_each_intel_encoder(dev, encoder) {
11990 int num_connectors = 0;
11991 for_each_intel_connector(dev, connector) {
11992 if (connector->new_encoder == encoder) {
11993 WARN_ON(!connector->new_encoder->new_crtc);
11994 num_connectors++;
11995 }
11996 }
11997
11998 if (num_connectors == 0)
11999 encoder->new_crtc = NULL;
12000 else if (num_connectors > 1)
12001 return -EINVAL;
12002
12003 /* Only now check for crtc changes so we don't miss encoders
12004 * that will be disabled. */
12005 if (&encoder->new_crtc->base != encoder->base.crtc) {
12006 DRM_DEBUG_KMS("[ENCODER:%d:%s] crtc changed, full mode switch\n",
12007 encoder->base.base.id,
12008 encoder->base.name);
12009 config->mode_changed = true;
12010 }
12011 }
12012 /* Now we've also updated encoder->new_crtc for all encoders. */
12013 for_each_intel_connector(dev, connector) {
12014 connector_state =
12015 drm_atomic_get_connector_state(state, &connector->base);
12016 if (IS_ERR(connector_state))
12017 return PTR_ERR(connector_state);
12018
12019 if (connector->new_encoder) {
12020 if (connector->new_encoder != connector->encoder)
12021 connector->encoder = connector->new_encoder;
12022 } else {
12023 connector_state->crtc = NULL;
12024 }
12025 }
12026 for_each_intel_crtc(dev, crtc) {
12027 crtc->new_enabled = false;
12028
12029 for_each_intel_encoder(dev, encoder) {
12030 if (encoder->new_crtc == crtc) {
12031 crtc->new_enabled = true;
12032 break;
12033 }
12034 }
12035
12036 if (crtc->new_enabled != crtc->base.state->enable) {
12037 DRM_DEBUG_KMS("[CRTC:%d] %sabled, full mode switch\n",
12038 crtc->base.base.id,
12039 crtc->new_enabled ? "en" : "dis");
12040 config->mode_changed = true;
12041 }
12042
12043 if (crtc->new_enabled)
12044 crtc->new_config = crtc->config;
12045 else
12046 crtc->new_config = NULL;
12047 }
12048
12049 return 0;
12050 }
12051
12052 static void disable_crtc_nofb(struct intel_crtc *crtc)
12053 {
12054 struct drm_device *dev = crtc->base.dev;
12055 struct intel_encoder *encoder;
12056 struct intel_connector *connector;
12057
12058 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
12059 pipe_name(crtc->pipe));
12060
12061 for_each_intel_connector(dev, connector) {
12062 if (connector->new_encoder &&
12063 connector->new_encoder->new_crtc == crtc)
12064 connector->new_encoder = NULL;
12065 }
12066
12067 for_each_intel_encoder(dev, encoder) {
12068 if (encoder->new_crtc == crtc)
12069 encoder->new_crtc = NULL;
12070 }
12071
12072 crtc->new_enabled = false;
12073 crtc->new_config = NULL;
12074 }
12075
12076 static int intel_crtc_set_config(struct drm_mode_set *set)
12077 {
12078 struct drm_device *dev;
12079 struct drm_mode_set save_set;
12080 struct drm_atomic_state *state = NULL;
12081 struct intel_set_config *config;
12082 struct intel_crtc_state *pipe_config;
12083 unsigned modeset_pipes, prepare_pipes, disable_pipes;
12084 int ret;
12085
12086 BUG_ON(!set);
12087 BUG_ON(!set->crtc);
12088 BUG_ON(!set->crtc->helper_private);
12089
12090 /* Enforce sane interface api - has been abused by the fb helper. */
12091 BUG_ON(!set->mode && set->fb);
12092 BUG_ON(set->fb && set->num_connectors == 0);
12093
12094 if (set->fb) {
12095 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
12096 set->crtc->base.id, set->fb->base.id,
12097 (int)set->num_connectors, set->x, set->y);
12098 } else {
12099 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
12100 }
12101
12102 dev = set->crtc->dev;
12103
12104 ret = -ENOMEM;
12105 config = kzalloc(sizeof(*config), GFP_KERNEL);
12106 if (!config)
12107 goto out_config;
12108
12109 ret = intel_set_config_save_state(dev, config);
12110 if (ret)
12111 goto out_config;
12112
12113 save_set.crtc = set->crtc;
12114 save_set.mode = &set->crtc->mode;
12115 save_set.x = set->crtc->x;
12116 save_set.y = set->crtc->y;
12117 save_set.fb = set->crtc->primary->fb;
12118
12119 /* Compute whether we need a full modeset, only an fb base update or no
12120 * change at all. In the future we might also check whether only the
12121 * mode changed, e.g. for LVDS where we only change the panel fitter in
12122 * such cases. */
12123 intel_set_config_compute_mode_changes(set, config);
12124
12125 state = drm_atomic_state_alloc(dev);
12126 if (!state) {
12127 ret = -ENOMEM;
12128 goto out_config;
12129 }
12130
12131 state->acquire_ctx = dev->mode_config.acquire_ctx;
12132
12133 ret = intel_modeset_stage_output_state(dev, set, config, state);
12134 if (ret)
12135 goto fail;
12136
12137 pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
12138 set->fb, state,
12139 &modeset_pipes,
12140 &prepare_pipes,
12141 &disable_pipes);
12142 if (IS_ERR(pipe_config)) {
12143 ret = PTR_ERR(pipe_config);
12144 goto fail;
12145 } else if (pipe_config) {
12146 if (pipe_config->has_audio !=
12147 to_intel_crtc(set->crtc)->config->has_audio)
12148 config->mode_changed = true;
12149
12150 /*
12151 * Note we have an issue here with infoframes: current code
12152 * only updates them on the full mode set path per hw
12153 * requirements. So here we should be checking for any
12154 * required changes and forcing a mode set.
12155 */
12156 }
12157
12158 intel_update_pipe_size(to_intel_crtc(set->crtc));
12159
12160 if (config->mode_changed) {
12161 ret = intel_set_mode_pipes(set->crtc, set->mode,
12162 set->x, set->y, set->fb, pipe_config,
12163 modeset_pipes, prepare_pipes,
12164 disable_pipes);
12165 } else if (config->fb_changed) {
12166 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
12167 struct drm_plane *primary = set->crtc->primary;
12168 int vdisplay, hdisplay;
12169
12170 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
12171 ret = primary->funcs->update_plane(primary, set->crtc, set->fb,
12172 0, 0, hdisplay, vdisplay,
12173 set->x << 16, set->y << 16,
12174 hdisplay << 16, vdisplay << 16);
12175
12176 /*
12177 * We need to make sure the primary plane is re-enabled if it
12178 * has previously been turned off.
12179 */
12180 if (!intel_crtc->primary_enabled && ret == 0) {
12181 WARN_ON(!intel_crtc->active);
12182 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
12183 }
12184
12185 /*
12186 * In the fastboot case this may be our only check of the
12187 * state after boot. It would be better to only do it on
12188 * the first update, but we don't have a nice way of doing that
12189 * (and really, set_config isn't used much for high freq page
12190 * flipping, so increasing its cost here shouldn't be a big
12191 * deal).
12192 */
12193 if (i915.fastboot && ret == 0)
12194 intel_modeset_check_state(set->crtc->dev);
12195 }
12196
12197 if (ret) {
12198 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
12199 set->crtc->base.id, ret);
12200 fail:
12201 intel_set_config_restore_state(dev, config);
12202
12203 drm_atomic_state_clear(state);
12204
12205 /*
12206 * HACK: if the pipe was on, but we didn't have a framebuffer,
12207 * force the pipe off to avoid oopsing in the modeset code
12208 * due to fb==NULL. This should only happen during boot since
12209 * we don't yet reconstruct the FB from the hardware state.
12210 */
12211 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
12212 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
12213
12214 /* Try to restore the config */
12215 if (config->mode_changed &&
12216 intel_set_mode(save_set.crtc, save_set.mode,
12217 save_set.x, save_set.y, save_set.fb,
12218 state))
12219 DRM_ERROR("failed to restore config after modeset failure\n");
12220 }
12221
12222 out_config:
12223 if (state)
12224 drm_atomic_state_free(state);
12225
12226 intel_set_config_free(config);
12227 return ret;
12228 }
12229
12230 static const struct drm_crtc_funcs intel_crtc_funcs = {
12231 .gamma_set = intel_crtc_gamma_set,
12232 .set_config = intel_crtc_set_config,
12233 .destroy = intel_crtc_destroy,
12234 .page_flip = intel_crtc_page_flip,
12235 .atomic_duplicate_state = intel_crtc_duplicate_state,
12236 .atomic_destroy_state = intel_crtc_destroy_state,
12237 };
12238
12239 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
12240 struct intel_shared_dpll *pll,
12241 struct intel_dpll_hw_state *hw_state)
12242 {
12243 uint32_t val;
12244
12245 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
12246 return false;
12247
12248 val = I915_READ(PCH_DPLL(pll->id));
12249 hw_state->dpll = val;
12250 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
12251 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
12252
12253 return val & DPLL_VCO_ENABLE;
12254 }
12255
12256 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
12257 struct intel_shared_dpll *pll)
12258 {
12259 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
12260 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
12261 }
12262
12263 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
12264 struct intel_shared_dpll *pll)
12265 {
12266 /* PCH refclock must be enabled first */
12267 ibx_assert_pch_refclk_enabled(dev_priv);
12268
12269 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
12270
12271 /* Wait for the clocks to stabilize. */
12272 POSTING_READ(PCH_DPLL(pll->id));
12273 udelay(150);
12274
12275 /* The pixel multiplier can only be updated once the
12276 * DPLL is enabled and the clocks are stable.
12277 *
12278 * So write it again.
12279 */
12280 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
12281 POSTING_READ(PCH_DPLL(pll->id));
12282 udelay(200);
12283 }
12284
12285 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
12286 struct intel_shared_dpll *pll)
12287 {
12288 struct drm_device *dev = dev_priv->dev;
12289 struct intel_crtc *crtc;
12290
12291 /* Make sure no transcoder isn't still depending on us. */
12292 for_each_intel_crtc(dev, crtc) {
12293 if (intel_crtc_to_shared_dpll(crtc) == pll)
12294 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
12295 }
12296
12297 I915_WRITE(PCH_DPLL(pll->id), 0);
12298 POSTING_READ(PCH_DPLL(pll->id));
12299 udelay(200);
12300 }
12301
12302 static char *ibx_pch_dpll_names[] = {
12303 "PCH DPLL A",
12304 "PCH DPLL B",
12305 };
12306
12307 static void ibx_pch_dpll_init(struct drm_device *dev)
12308 {
12309 struct drm_i915_private *dev_priv = dev->dev_private;
12310 int i;
12311
12312 dev_priv->num_shared_dpll = 2;
12313
12314 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12315 dev_priv->shared_dplls[i].id = i;
12316 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
12317 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
12318 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
12319 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
12320 dev_priv->shared_dplls[i].get_hw_state =
12321 ibx_pch_dpll_get_hw_state;
12322 }
12323 }
12324
12325 static void intel_shared_dpll_init(struct drm_device *dev)
12326 {
12327 struct drm_i915_private *dev_priv = dev->dev_private;
12328
12329 if (HAS_DDI(dev))
12330 intel_ddi_pll_init(dev);
12331 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
12332 ibx_pch_dpll_init(dev);
12333 else
12334 dev_priv->num_shared_dpll = 0;
12335
12336 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
12337 }
12338
12339 /**
12340 * intel_wm_need_update - Check whether watermarks need updating
12341 * @plane: drm plane
12342 * @state: new plane state
12343 *
12344 * Check current plane state versus the new one to determine whether
12345 * watermarks need to be recalculated.
12346 *
12347 * Returns true or false.
12348 */
12349 bool intel_wm_need_update(struct drm_plane *plane,
12350 struct drm_plane_state *state)
12351 {
12352 /* Update watermarks on tiling changes. */
12353 if (!plane->state->fb || !state->fb ||
12354 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
12355 plane->state->rotation != state->rotation)
12356 return true;
12357
12358 return false;
12359 }
12360
12361 /**
12362 * intel_prepare_plane_fb - Prepare fb for usage on plane
12363 * @plane: drm plane to prepare for
12364 * @fb: framebuffer to prepare for presentation
12365 *
12366 * Prepares a framebuffer for usage on a display plane. Generally this
12367 * involves pinning the underlying object and updating the frontbuffer tracking
12368 * bits. Some older platforms need special physical address handling for
12369 * cursor planes.
12370 *
12371 * Returns 0 on success, negative error code on failure.
12372 */
12373 int
12374 intel_prepare_plane_fb(struct drm_plane *plane,
12375 struct drm_framebuffer *fb,
12376 const struct drm_plane_state *new_state)
12377 {
12378 struct drm_device *dev = plane->dev;
12379 struct intel_plane *intel_plane = to_intel_plane(plane);
12380 enum pipe pipe = intel_plane->pipe;
12381 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12382 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
12383 unsigned frontbuffer_bits = 0;
12384 int ret = 0;
12385
12386 if (!obj)
12387 return 0;
12388
12389 switch (plane->type) {
12390 case DRM_PLANE_TYPE_PRIMARY:
12391 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
12392 break;
12393 case DRM_PLANE_TYPE_CURSOR:
12394 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
12395 break;
12396 case DRM_PLANE_TYPE_OVERLAY:
12397 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
12398 break;
12399 }
12400
12401 mutex_lock(&dev->struct_mutex);
12402
12403 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
12404 INTEL_INFO(dev)->cursor_needs_physical) {
12405 int align = IS_I830(dev) ? 16 * 1024 : 256;
12406 ret = i915_gem_object_attach_phys(obj, align);
12407 if (ret)
12408 DRM_DEBUG_KMS("failed to attach phys object\n");
12409 } else {
12410 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL);
12411 }
12412
12413 if (ret == 0)
12414 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
12415
12416 mutex_unlock(&dev->struct_mutex);
12417
12418 return ret;
12419 }
12420
12421 /**
12422 * intel_cleanup_plane_fb - Cleans up an fb after plane use
12423 * @plane: drm plane to clean up for
12424 * @fb: old framebuffer that was on plane
12425 *
12426 * Cleans up a framebuffer that has just been removed from a plane.
12427 */
12428 void
12429 intel_cleanup_plane_fb(struct drm_plane *plane,
12430 struct drm_framebuffer *fb,
12431 const struct drm_plane_state *old_state)
12432 {
12433 struct drm_device *dev = plane->dev;
12434 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12435
12436 if (WARN_ON(!obj))
12437 return;
12438
12439 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
12440 !INTEL_INFO(dev)->cursor_needs_physical) {
12441 mutex_lock(&dev->struct_mutex);
12442 intel_unpin_fb_obj(fb, old_state);
12443 mutex_unlock(&dev->struct_mutex);
12444 }
12445 }
12446
12447 static int
12448 intel_check_primary_plane(struct drm_plane *plane,
12449 struct intel_plane_state *state)
12450 {
12451 struct drm_device *dev = plane->dev;
12452 struct drm_i915_private *dev_priv = dev->dev_private;
12453 struct drm_crtc *crtc = state->base.crtc;
12454 struct intel_crtc *intel_crtc;
12455 struct drm_framebuffer *fb = state->base.fb;
12456 struct drm_rect *dest = &state->dst;
12457 struct drm_rect *src = &state->src;
12458 const struct drm_rect *clip = &state->clip;
12459 int ret;
12460
12461 crtc = crtc ? crtc : plane->crtc;
12462 intel_crtc = to_intel_crtc(crtc);
12463
12464 ret = drm_plane_helper_check_update(plane, crtc, fb,
12465 src, dest, clip,
12466 DRM_PLANE_HELPER_NO_SCALING,
12467 DRM_PLANE_HELPER_NO_SCALING,
12468 false, true, &state->visible);
12469 if (ret)
12470 return ret;
12471
12472 if (intel_crtc->active) {
12473 intel_crtc->atomic.wait_for_flips = true;
12474
12475 /*
12476 * FBC does not work on some platforms for rotated
12477 * planes, so disable it when rotation is not 0 and
12478 * update it when rotation is set back to 0.
12479 *
12480 * FIXME: This is redundant with the fbc update done in
12481 * the primary plane enable function except that that
12482 * one is done too late. We eventually need to unify
12483 * this.
12484 */
12485 if (intel_crtc->primary_enabled &&
12486 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
12487 dev_priv->fbc.crtc == intel_crtc &&
12488 state->base.rotation != BIT(DRM_ROTATE_0)) {
12489 intel_crtc->atomic.disable_fbc = true;
12490 }
12491
12492 if (state->visible) {
12493 /*
12494 * BDW signals flip done immediately if the plane
12495 * is disabled, even if the plane enable is already
12496 * armed to occur at the next vblank :(
12497 */
12498 if (IS_BROADWELL(dev) && !intel_crtc->primary_enabled)
12499 intel_crtc->atomic.wait_vblank = true;
12500 }
12501
12502 intel_crtc->atomic.fb_bits |=
12503 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
12504
12505 intel_crtc->atomic.update_fbc = true;
12506
12507 if (intel_wm_need_update(plane, &state->base))
12508 intel_crtc->atomic.update_wm = true;
12509 }
12510
12511 return 0;
12512 }
12513
12514 static void
12515 intel_commit_primary_plane(struct drm_plane *plane,
12516 struct intel_plane_state *state)
12517 {
12518 struct drm_crtc *crtc = state->base.crtc;
12519 struct drm_framebuffer *fb = state->base.fb;
12520 struct drm_device *dev = plane->dev;
12521 struct drm_i915_private *dev_priv = dev->dev_private;
12522 struct intel_crtc *intel_crtc;
12523 struct drm_rect *src = &state->src;
12524
12525 crtc = crtc ? crtc : plane->crtc;
12526 intel_crtc = to_intel_crtc(crtc);
12527
12528 plane->fb = fb;
12529 crtc->x = src->x1 >> 16;
12530 crtc->y = src->y1 >> 16;
12531
12532 if (intel_crtc->active) {
12533 if (state->visible) {
12534 /* FIXME: kill this fastboot hack */
12535 intel_update_pipe_size(intel_crtc);
12536
12537 intel_crtc->primary_enabled = true;
12538
12539 dev_priv->display.update_primary_plane(crtc, plane->fb,
12540 crtc->x, crtc->y);
12541 } else {
12542 /*
12543 * If clipping results in a non-visible primary plane,
12544 * we'll disable the primary plane. Note that this is
12545 * a bit different than what happens if userspace
12546 * explicitly disables the plane by passing fb=0
12547 * because plane->fb still gets set and pinned.
12548 */
12549 intel_disable_primary_hw_plane(plane, crtc);
12550 }
12551 }
12552 }
12553
12554 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
12555 {
12556 struct drm_device *dev = crtc->dev;
12557 struct drm_i915_private *dev_priv = dev->dev_private;
12558 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12559 struct intel_plane *intel_plane;
12560 struct drm_plane *p;
12561 unsigned fb_bits = 0;
12562
12563 /* Track fb's for any planes being disabled */
12564 list_for_each_entry(p, &dev->mode_config.plane_list, head) {
12565 intel_plane = to_intel_plane(p);
12566
12567 if (intel_crtc->atomic.disabled_planes &
12568 (1 << drm_plane_index(p))) {
12569 switch (p->type) {
12570 case DRM_PLANE_TYPE_PRIMARY:
12571 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
12572 break;
12573 case DRM_PLANE_TYPE_CURSOR:
12574 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
12575 break;
12576 case DRM_PLANE_TYPE_OVERLAY:
12577 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
12578 break;
12579 }
12580
12581 mutex_lock(&dev->struct_mutex);
12582 i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
12583 mutex_unlock(&dev->struct_mutex);
12584 }
12585 }
12586
12587 if (intel_crtc->atomic.wait_for_flips)
12588 intel_crtc_wait_for_pending_flips(crtc);
12589
12590 if (intel_crtc->atomic.disable_fbc)
12591 intel_fbc_disable(dev);
12592
12593 if (intel_crtc->atomic.pre_disable_primary)
12594 intel_pre_disable_primary(crtc);
12595
12596 if (intel_crtc->atomic.update_wm)
12597 intel_update_watermarks(crtc);
12598
12599 intel_runtime_pm_get(dev_priv);
12600
12601 /* Perform vblank evasion around commit operation */
12602 if (intel_crtc->active)
12603 intel_crtc->atomic.evade =
12604 intel_pipe_update_start(intel_crtc,
12605 &intel_crtc->atomic.start_vbl_count);
12606 }
12607
12608 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
12609 {
12610 struct drm_device *dev = crtc->dev;
12611 struct drm_i915_private *dev_priv = dev->dev_private;
12612 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12613 struct drm_plane *p;
12614
12615 if (intel_crtc->atomic.evade)
12616 intel_pipe_update_end(intel_crtc,
12617 intel_crtc->atomic.start_vbl_count);
12618
12619 intel_runtime_pm_put(dev_priv);
12620
12621 if (intel_crtc->atomic.wait_vblank)
12622 intel_wait_for_vblank(dev, intel_crtc->pipe);
12623
12624 intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
12625
12626 if (intel_crtc->atomic.update_fbc) {
12627 mutex_lock(&dev->struct_mutex);
12628 intel_fbc_update(dev);
12629 mutex_unlock(&dev->struct_mutex);
12630 }
12631
12632 if (intel_crtc->atomic.post_enable_primary)
12633 intel_post_enable_primary(crtc);
12634
12635 drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
12636 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
12637 intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
12638 false, false);
12639
12640 memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
12641 }
12642
12643 /**
12644 * intel_plane_destroy - destroy a plane
12645 * @plane: plane to destroy
12646 *
12647 * Common destruction function for all types of planes (primary, cursor,
12648 * sprite).
12649 */
12650 void intel_plane_destroy(struct drm_plane *plane)
12651 {
12652 struct intel_plane *intel_plane = to_intel_plane(plane);
12653 drm_plane_cleanup(plane);
12654 kfree(intel_plane);
12655 }
12656
12657 const struct drm_plane_funcs intel_plane_funcs = {
12658 .update_plane = drm_plane_helper_update,
12659 .disable_plane = drm_plane_helper_disable,
12660 .destroy = intel_plane_destroy,
12661 .set_property = drm_atomic_helper_plane_set_property,
12662 .atomic_get_property = intel_plane_atomic_get_property,
12663 .atomic_set_property = intel_plane_atomic_set_property,
12664 .atomic_duplicate_state = intel_plane_duplicate_state,
12665 .atomic_destroy_state = intel_plane_destroy_state,
12666
12667 };
12668
12669 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
12670 int pipe)
12671 {
12672 struct intel_plane *primary;
12673 struct intel_plane_state *state;
12674 const uint32_t *intel_primary_formats;
12675 int num_formats;
12676
12677 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
12678 if (primary == NULL)
12679 return NULL;
12680
12681 state = intel_create_plane_state(&primary->base);
12682 if (!state) {
12683 kfree(primary);
12684 return NULL;
12685 }
12686 primary->base.state = &state->base;
12687
12688 primary->can_scale = false;
12689 primary->max_downscale = 1;
12690 primary->pipe = pipe;
12691 primary->plane = pipe;
12692 primary->check_plane = intel_check_primary_plane;
12693 primary->commit_plane = intel_commit_primary_plane;
12694 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12695 primary->plane = !pipe;
12696
12697 if (INTEL_INFO(dev)->gen <= 3) {
12698 intel_primary_formats = intel_primary_formats_gen2;
12699 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12700 } else {
12701 intel_primary_formats = intel_primary_formats_gen4;
12702 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12703 }
12704
12705 drm_universal_plane_init(dev, &primary->base, 0,
12706 &intel_plane_funcs,
12707 intel_primary_formats, num_formats,
12708 DRM_PLANE_TYPE_PRIMARY);
12709
12710 if (INTEL_INFO(dev)->gen >= 4) {
12711 if (!dev->mode_config.rotation_property)
12712 dev->mode_config.rotation_property =
12713 drm_mode_create_rotation_property(dev,
12714 BIT(DRM_ROTATE_0) |
12715 BIT(DRM_ROTATE_180));
12716 if (dev->mode_config.rotation_property)
12717 drm_object_attach_property(&primary->base.base,
12718 dev->mode_config.rotation_property,
12719 state->base.rotation);
12720 }
12721
12722 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
12723
12724 return &primary->base;
12725 }
12726
12727 static int
12728 intel_check_cursor_plane(struct drm_plane *plane,
12729 struct intel_plane_state *state)
12730 {
12731 struct drm_crtc *crtc = state->base.crtc;
12732 struct drm_device *dev = plane->dev;
12733 struct drm_framebuffer *fb = state->base.fb;
12734 struct drm_rect *dest = &state->dst;
12735 struct drm_rect *src = &state->src;
12736 const struct drm_rect *clip = &state->clip;
12737 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12738 struct intel_crtc *intel_crtc;
12739 unsigned stride;
12740 int ret;
12741
12742 crtc = crtc ? crtc : plane->crtc;
12743 intel_crtc = to_intel_crtc(crtc);
12744
12745 ret = drm_plane_helper_check_update(plane, crtc, fb,
12746 src, dest, clip,
12747 DRM_PLANE_HELPER_NO_SCALING,
12748 DRM_PLANE_HELPER_NO_SCALING,
12749 true, true, &state->visible);
12750 if (ret)
12751 return ret;
12752
12753
12754 /* if we want to turn off the cursor ignore width and height */
12755 if (!obj)
12756 goto finish;
12757
12758 /* Check for which cursor types we support */
12759 if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
12760 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
12761 state->base.crtc_w, state->base.crtc_h);
12762 return -EINVAL;
12763 }
12764
12765 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
12766 if (obj->base.size < stride * state->base.crtc_h) {
12767 DRM_DEBUG_KMS("buffer is too small\n");
12768 return -ENOMEM;
12769 }
12770
12771 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
12772 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12773 ret = -EINVAL;
12774 }
12775
12776 finish:
12777 if (intel_crtc->active) {
12778 if (plane->state->crtc_w != state->base.crtc_w)
12779 intel_crtc->atomic.update_wm = true;
12780
12781 intel_crtc->atomic.fb_bits |=
12782 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
12783 }
12784
12785 return ret;
12786 }
12787
12788 static void
12789 intel_commit_cursor_plane(struct drm_plane *plane,
12790 struct intel_plane_state *state)
12791 {
12792 struct drm_crtc *crtc = state->base.crtc;
12793 struct drm_device *dev = plane->dev;
12794 struct intel_crtc *intel_crtc;
12795 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
12796 uint32_t addr;
12797
12798 crtc = crtc ? crtc : plane->crtc;
12799 intel_crtc = to_intel_crtc(crtc);
12800
12801 plane->fb = state->base.fb;
12802 crtc->cursor_x = state->base.crtc_x;
12803 crtc->cursor_y = state->base.crtc_y;
12804
12805 if (intel_crtc->cursor_bo == obj)
12806 goto update;
12807
12808 if (!obj)
12809 addr = 0;
12810 else if (!INTEL_INFO(dev)->cursor_needs_physical)
12811 addr = i915_gem_obj_ggtt_offset(obj);
12812 else
12813 addr = obj->phys_handle->busaddr;
12814
12815 intel_crtc->cursor_addr = addr;
12816 intel_crtc->cursor_bo = obj;
12817 update:
12818
12819 if (intel_crtc->active)
12820 intel_crtc_update_cursor(crtc, state->visible);
12821 }
12822
12823 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12824 int pipe)
12825 {
12826 struct intel_plane *cursor;
12827 struct intel_plane_state *state;
12828
12829 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12830 if (cursor == NULL)
12831 return NULL;
12832
12833 state = intel_create_plane_state(&cursor->base);
12834 if (!state) {
12835 kfree(cursor);
12836 return NULL;
12837 }
12838 cursor->base.state = &state->base;
12839
12840 cursor->can_scale = false;
12841 cursor->max_downscale = 1;
12842 cursor->pipe = pipe;
12843 cursor->plane = pipe;
12844 cursor->check_plane = intel_check_cursor_plane;
12845 cursor->commit_plane = intel_commit_cursor_plane;
12846
12847 drm_universal_plane_init(dev, &cursor->base, 0,
12848 &intel_plane_funcs,
12849 intel_cursor_formats,
12850 ARRAY_SIZE(intel_cursor_formats),
12851 DRM_PLANE_TYPE_CURSOR);
12852
12853 if (INTEL_INFO(dev)->gen >= 4) {
12854 if (!dev->mode_config.rotation_property)
12855 dev->mode_config.rotation_property =
12856 drm_mode_create_rotation_property(dev,
12857 BIT(DRM_ROTATE_0) |
12858 BIT(DRM_ROTATE_180));
12859 if (dev->mode_config.rotation_property)
12860 drm_object_attach_property(&cursor->base.base,
12861 dev->mode_config.rotation_property,
12862 state->base.rotation);
12863 }
12864
12865 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
12866
12867 return &cursor->base;
12868 }
12869
12870 static void intel_crtc_init(struct drm_device *dev, int pipe)
12871 {
12872 struct drm_i915_private *dev_priv = dev->dev_private;
12873 struct intel_crtc *intel_crtc;
12874 struct intel_crtc_state *crtc_state = NULL;
12875 struct drm_plane *primary = NULL;
12876 struct drm_plane *cursor = NULL;
12877 int i, ret;
12878
12879 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12880 if (intel_crtc == NULL)
12881 return;
12882
12883 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
12884 if (!crtc_state)
12885 goto fail;
12886 intel_crtc_set_state(intel_crtc, crtc_state);
12887 crtc_state->base.crtc = &intel_crtc->base;
12888
12889 primary = intel_primary_plane_create(dev, pipe);
12890 if (!primary)
12891 goto fail;
12892
12893 cursor = intel_cursor_plane_create(dev, pipe);
12894 if (!cursor)
12895 goto fail;
12896
12897 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12898 cursor, &intel_crtc_funcs);
12899 if (ret)
12900 goto fail;
12901
12902 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12903 for (i = 0; i < 256; i++) {
12904 intel_crtc->lut_r[i] = i;
12905 intel_crtc->lut_g[i] = i;
12906 intel_crtc->lut_b[i] = i;
12907 }
12908
12909 /*
12910 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12911 * is hooked to pipe B. Hence we want plane A feeding pipe B.
12912 */
12913 intel_crtc->pipe = pipe;
12914 intel_crtc->plane = pipe;
12915 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12916 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12917 intel_crtc->plane = !pipe;
12918 }
12919
12920 intel_crtc->cursor_base = ~0;
12921 intel_crtc->cursor_cntl = ~0;
12922 intel_crtc->cursor_size = ~0;
12923
12924 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12925 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12926 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12927 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12928
12929 INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12930
12931 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12932
12933 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12934 return;
12935
12936 fail:
12937 if (primary)
12938 drm_plane_cleanup(primary);
12939 if (cursor)
12940 drm_plane_cleanup(cursor);
12941 kfree(crtc_state);
12942 kfree(intel_crtc);
12943 }
12944
12945 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12946 {
12947 struct drm_encoder *encoder = connector->base.encoder;
12948 struct drm_device *dev = connector->base.dev;
12949
12950 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12951
12952 if (!encoder || WARN_ON(!encoder->crtc))
12953 return INVALID_PIPE;
12954
12955 return to_intel_crtc(encoder->crtc)->pipe;
12956 }
12957
12958 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12959 struct drm_file *file)
12960 {
12961 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12962 struct drm_crtc *drmmode_crtc;
12963 struct intel_crtc *crtc;
12964
12965 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12966
12967 if (!drmmode_crtc) {
12968 DRM_ERROR("no such CRTC id\n");
12969 return -ENOENT;
12970 }
12971
12972 crtc = to_intel_crtc(drmmode_crtc);
12973 pipe_from_crtc_id->pipe = crtc->pipe;
12974
12975 return 0;
12976 }
12977
12978 static int intel_encoder_clones(struct intel_encoder *encoder)
12979 {
12980 struct drm_device *dev = encoder->base.dev;
12981 struct intel_encoder *source_encoder;
12982 int index_mask = 0;
12983 int entry = 0;
12984
12985 for_each_intel_encoder(dev, source_encoder) {
12986 if (encoders_cloneable(encoder, source_encoder))
12987 index_mask |= (1 << entry);
12988
12989 entry++;
12990 }
12991
12992 return index_mask;
12993 }
12994
12995 static bool has_edp_a(struct drm_device *dev)
12996 {
12997 struct drm_i915_private *dev_priv = dev->dev_private;
12998
12999 if (!IS_MOBILE(dev))
13000 return false;
13001
13002 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13003 return false;
13004
13005 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13006 return false;
13007
13008 return true;
13009 }
13010
13011 static bool intel_crt_present(struct drm_device *dev)
13012 {
13013 struct drm_i915_private *dev_priv = dev->dev_private;
13014
13015 if (INTEL_INFO(dev)->gen >= 9)
13016 return false;
13017
13018 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
13019 return false;
13020
13021 if (IS_CHERRYVIEW(dev))
13022 return false;
13023
13024 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
13025 return false;
13026
13027 return true;
13028 }
13029
13030 static void intel_setup_outputs(struct drm_device *dev)
13031 {
13032 struct drm_i915_private *dev_priv = dev->dev_private;
13033 struct intel_encoder *encoder;
13034 bool dpd_is_edp = false;
13035
13036 intel_lvds_init(dev);
13037
13038 if (intel_crt_present(dev))
13039 intel_crt_init(dev);
13040
13041 if (HAS_DDI(dev)) {
13042 int found;
13043
13044 /*
13045 * Haswell uses DDI functions to detect digital outputs.
13046 * On SKL pre-D0 the strap isn't connected, so we assume
13047 * it's there.
13048 */
13049 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
13050 /* WaIgnoreDDIAStrap: skl */
13051 if (found ||
13052 (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
13053 intel_ddi_init(dev, PORT_A);
13054
13055 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
13056 * register */
13057 found = I915_READ(SFUSE_STRAP);
13058
13059 if (found & SFUSE_STRAP_DDIB_DETECTED)
13060 intel_ddi_init(dev, PORT_B);
13061 if (found & SFUSE_STRAP_DDIC_DETECTED)
13062 intel_ddi_init(dev, PORT_C);
13063 if (found & SFUSE_STRAP_DDID_DETECTED)
13064 intel_ddi_init(dev, PORT_D);
13065 } else if (HAS_PCH_SPLIT(dev)) {
13066 int found;
13067 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
13068
13069 if (has_edp_a(dev))
13070 intel_dp_init(dev, DP_A, PORT_A);
13071
13072 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
13073 /* PCH SDVOB multiplex with HDMIB */
13074 found = intel_sdvo_init(dev, PCH_SDVOB, true);
13075 if (!found)
13076 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
13077 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
13078 intel_dp_init(dev, PCH_DP_B, PORT_B);
13079 }
13080
13081 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
13082 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
13083
13084 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
13085 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
13086
13087 if (I915_READ(PCH_DP_C) & DP_DETECTED)
13088 intel_dp_init(dev, PCH_DP_C, PORT_C);
13089
13090 if (I915_READ(PCH_DP_D) & DP_DETECTED)
13091 intel_dp_init(dev, PCH_DP_D, PORT_D);
13092 } else if (IS_VALLEYVIEW(dev)) {
13093 /*
13094 * The DP_DETECTED bit is the latched state of the DDC
13095 * SDA pin at boot. However since eDP doesn't require DDC
13096 * (no way to plug in a DP->HDMI dongle) the DDC pins for
13097 * eDP ports may have been muxed to an alternate function.
13098 * Thus we can't rely on the DP_DETECTED bit alone to detect
13099 * eDP ports. Consult the VBT as well as DP_DETECTED to
13100 * detect eDP ports.
13101 */
13102 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
13103 !intel_dp_is_edp(dev, PORT_B))
13104 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
13105 PORT_B);
13106 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
13107 intel_dp_is_edp(dev, PORT_B))
13108 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
13109
13110 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
13111 !intel_dp_is_edp(dev, PORT_C))
13112 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
13113 PORT_C);
13114 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
13115 intel_dp_is_edp(dev, PORT_C))
13116 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
13117
13118 if (IS_CHERRYVIEW(dev)) {
13119 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
13120 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
13121 PORT_D);
13122 /* eDP not supported on port D, so don't check VBT */
13123 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
13124 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
13125 }
13126
13127 intel_dsi_init(dev);
13128 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
13129 bool found = false;
13130
13131 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
13132 DRM_DEBUG_KMS("probing SDVOB\n");
13133 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
13134 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
13135 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
13136 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
13137 }
13138
13139 if (!found && SUPPORTS_INTEGRATED_DP(dev))
13140 intel_dp_init(dev, DP_B, PORT_B);
13141 }
13142
13143 /* Before G4X SDVOC doesn't have its own detect register */
13144
13145 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
13146 DRM_DEBUG_KMS("probing SDVOC\n");
13147 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
13148 }
13149
13150 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
13151
13152 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
13153 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
13154 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
13155 }
13156 if (SUPPORTS_INTEGRATED_DP(dev))
13157 intel_dp_init(dev, DP_C, PORT_C);
13158 }
13159
13160 if (SUPPORTS_INTEGRATED_DP(dev) &&
13161 (I915_READ(DP_D) & DP_DETECTED))
13162 intel_dp_init(dev, DP_D, PORT_D);
13163 } else if (IS_GEN2(dev))
13164 intel_dvo_init(dev);
13165
13166 if (SUPPORTS_TV(dev))
13167 intel_tv_init(dev);
13168
13169 intel_psr_init(dev);
13170
13171 for_each_intel_encoder(dev, encoder) {
13172 encoder->base.possible_crtcs = encoder->crtc_mask;
13173 encoder->base.possible_clones =
13174 intel_encoder_clones(encoder);
13175 }
13176
13177 intel_init_pch_refclk(dev);
13178
13179 drm_helper_move_panel_connectors_to_head(dev);
13180 }
13181
13182 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
13183 {
13184 struct drm_device *dev = fb->dev;
13185 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
13186
13187 drm_framebuffer_cleanup(fb);
13188 mutex_lock(&dev->struct_mutex);
13189 WARN_ON(!intel_fb->obj->framebuffer_references--);
13190 drm_gem_object_unreference(&intel_fb->obj->base);
13191 mutex_unlock(&dev->struct_mutex);
13192 kfree(intel_fb);
13193 }
13194
13195 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
13196 struct drm_file *file,
13197 unsigned int *handle)
13198 {
13199 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
13200 struct drm_i915_gem_object *obj = intel_fb->obj;
13201
13202 return drm_gem_handle_create(file, &obj->base, handle);
13203 }
13204
13205 static const struct drm_framebuffer_funcs intel_fb_funcs = {
13206 .destroy = intel_user_framebuffer_destroy,
13207 .create_handle = intel_user_framebuffer_create_handle,
13208 };
13209
13210 static
13211 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
13212 uint32_t pixel_format)
13213 {
13214 u32 gen = INTEL_INFO(dev)->gen;
13215
13216 if (gen >= 9) {
13217 /* "The stride in bytes must not exceed the of the size of 8K
13218 * pixels and 32K bytes."
13219 */
13220 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
13221 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
13222 return 32*1024;
13223 } else if (gen >= 4) {
13224 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13225 return 16*1024;
13226 else
13227 return 32*1024;
13228 } else if (gen >= 3) {
13229 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13230 return 8*1024;
13231 else
13232 return 16*1024;
13233 } else {
13234 /* XXX DSPC is limited to 4k tiled */
13235 return 8*1024;
13236 }
13237 }
13238
13239 static int intel_framebuffer_init(struct drm_device *dev,
13240 struct intel_framebuffer *intel_fb,
13241 struct drm_mode_fb_cmd2 *mode_cmd,
13242 struct drm_i915_gem_object *obj)
13243 {
13244 unsigned int aligned_height;
13245 int ret;
13246 u32 pitch_limit, stride_alignment;
13247
13248 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
13249
13250 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
13251 /* Enforce that fb modifier and tiling mode match, but only for
13252 * X-tiled. This is needed for FBC. */
13253 if (!!(obj->tiling_mode == I915_TILING_X) !=
13254 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
13255 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
13256 return -EINVAL;
13257 }
13258 } else {
13259 if (obj->tiling_mode == I915_TILING_X)
13260 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
13261 else if (obj->tiling_mode == I915_TILING_Y) {
13262 DRM_DEBUG("No Y tiling for legacy addfb\n");
13263 return -EINVAL;
13264 }
13265 }
13266
13267 /* Passed in modifier sanity checking. */
13268 switch (mode_cmd->modifier[0]) {
13269 case I915_FORMAT_MOD_Y_TILED:
13270 case I915_FORMAT_MOD_Yf_TILED:
13271 if (INTEL_INFO(dev)->gen < 9) {
13272 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
13273 mode_cmd->modifier[0]);
13274 return -EINVAL;
13275 }
13276 case DRM_FORMAT_MOD_NONE:
13277 case I915_FORMAT_MOD_X_TILED:
13278 break;
13279 default:
13280 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
13281 mode_cmd->modifier[0]);
13282 return -EINVAL;
13283 }
13284
13285 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
13286 mode_cmd->pixel_format);
13287 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
13288 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
13289 mode_cmd->pitches[0], stride_alignment);
13290 return -EINVAL;
13291 }
13292
13293 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
13294 mode_cmd->pixel_format);
13295 if (mode_cmd->pitches[0] > pitch_limit) {
13296 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
13297 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
13298 "tiled" : "linear",
13299 mode_cmd->pitches[0], pitch_limit);
13300 return -EINVAL;
13301 }
13302
13303 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
13304 mode_cmd->pitches[0] != obj->stride) {
13305 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
13306 mode_cmd->pitches[0], obj->stride);
13307 return -EINVAL;
13308 }
13309
13310 /* Reject formats not supported by any plane early. */
13311 switch (mode_cmd->pixel_format) {
13312 case DRM_FORMAT_C8:
13313 case DRM_FORMAT_RGB565:
13314 case DRM_FORMAT_XRGB8888:
13315 case DRM_FORMAT_ARGB8888:
13316 break;
13317 case DRM_FORMAT_XRGB1555:
13318 case DRM_FORMAT_ARGB1555:
13319 if (INTEL_INFO(dev)->gen > 3) {
13320 DRM_DEBUG("unsupported pixel format: %s\n",
13321 drm_get_format_name(mode_cmd->pixel_format));
13322 return -EINVAL;
13323 }
13324 break;
13325 case DRM_FORMAT_XBGR8888:
13326 case DRM_FORMAT_ABGR8888:
13327 case DRM_FORMAT_XRGB2101010:
13328 case DRM_FORMAT_ARGB2101010:
13329 case DRM_FORMAT_XBGR2101010:
13330 case DRM_FORMAT_ABGR2101010:
13331 if (INTEL_INFO(dev)->gen < 4) {
13332 DRM_DEBUG("unsupported pixel format: %s\n",
13333 drm_get_format_name(mode_cmd->pixel_format));
13334 return -EINVAL;
13335 }
13336 break;
13337 case DRM_FORMAT_YUYV:
13338 case DRM_FORMAT_UYVY:
13339 case DRM_FORMAT_YVYU:
13340 case DRM_FORMAT_VYUY:
13341 if (INTEL_INFO(dev)->gen < 5) {
13342 DRM_DEBUG("unsupported pixel format: %s\n",
13343 drm_get_format_name(mode_cmd->pixel_format));
13344 return -EINVAL;
13345 }
13346 break;
13347 default:
13348 DRM_DEBUG("unsupported pixel format: %s\n",
13349 drm_get_format_name(mode_cmd->pixel_format));
13350 return -EINVAL;
13351 }
13352
13353 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
13354 if (mode_cmd->offsets[0] != 0)
13355 return -EINVAL;
13356
13357 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
13358 mode_cmd->pixel_format,
13359 mode_cmd->modifier[0]);
13360 /* FIXME drm helper for size checks (especially planar formats)? */
13361 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
13362 return -EINVAL;
13363
13364 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
13365 intel_fb->obj = obj;
13366 intel_fb->obj->framebuffer_references++;
13367
13368 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
13369 if (ret) {
13370 DRM_ERROR("framebuffer init failed %d\n", ret);
13371 return ret;
13372 }
13373
13374 return 0;
13375 }
13376
13377 static struct drm_framebuffer *
13378 intel_user_framebuffer_create(struct drm_device *dev,
13379 struct drm_file *filp,
13380 struct drm_mode_fb_cmd2 *mode_cmd)
13381 {
13382 struct drm_i915_gem_object *obj;
13383
13384 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
13385 mode_cmd->handles[0]));
13386 if (&obj->base == NULL)
13387 return ERR_PTR(-ENOENT);
13388
13389 return intel_framebuffer_create(dev, mode_cmd, obj);
13390 }
13391
13392 #ifndef CONFIG_DRM_I915_FBDEV
13393 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
13394 {
13395 }
13396 #endif
13397
13398 static const struct drm_mode_config_funcs intel_mode_funcs = {
13399 .fb_create = intel_user_framebuffer_create,
13400 .output_poll_changed = intel_fbdev_output_poll_changed,
13401 .atomic_check = intel_atomic_check,
13402 .atomic_commit = intel_atomic_commit,
13403 };
13404
13405 /* Set up chip specific display functions */
13406 static void intel_init_display(struct drm_device *dev)
13407 {
13408 struct drm_i915_private *dev_priv = dev->dev_private;
13409
13410 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
13411 dev_priv->display.find_dpll = g4x_find_best_dpll;
13412 else if (IS_CHERRYVIEW(dev))
13413 dev_priv->display.find_dpll = chv_find_best_dpll;
13414 else if (IS_VALLEYVIEW(dev))
13415 dev_priv->display.find_dpll = vlv_find_best_dpll;
13416 else if (IS_PINEVIEW(dev))
13417 dev_priv->display.find_dpll = pnv_find_best_dpll;
13418 else
13419 dev_priv->display.find_dpll = i9xx_find_best_dpll;
13420
13421 if (INTEL_INFO(dev)->gen >= 9) {
13422 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
13423 dev_priv->display.get_initial_plane_config =
13424 skylake_get_initial_plane_config;
13425 dev_priv->display.crtc_compute_clock =
13426 haswell_crtc_compute_clock;
13427 dev_priv->display.crtc_enable = haswell_crtc_enable;
13428 dev_priv->display.crtc_disable = haswell_crtc_disable;
13429 dev_priv->display.off = ironlake_crtc_off;
13430 dev_priv->display.update_primary_plane =
13431 skylake_update_primary_plane;
13432 } else if (HAS_DDI(dev)) {
13433 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
13434 dev_priv->display.get_initial_plane_config =
13435 ironlake_get_initial_plane_config;
13436 dev_priv->display.crtc_compute_clock =
13437 haswell_crtc_compute_clock;
13438 dev_priv->display.crtc_enable = haswell_crtc_enable;
13439 dev_priv->display.crtc_disable = haswell_crtc_disable;
13440 dev_priv->display.off = ironlake_crtc_off;
13441 dev_priv->display.update_primary_plane =
13442 ironlake_update_primary_plane;
13443 } else if (HAS_PCH_SPLIT(dev)) {
13444 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
13445 dev_priv->display.get_initial_plane_config =
13446 ironlake_get_initial_plane_config;
13447 dev_priv->display.crtc_compute_clock =
13448 ironlake_crtc_compute_clock;
13449 dev_priv->display.crtc_enable = ironlake_crtc_enable;
13450 dev_priv->display.crtc_disable = ironlake_crtc_disable;
13451 dev_priv->display.off = ironlake_crtc_off;
13452 dev_priv->display.update_primary_plane =
13453 ironlake_update_primary_plane;
13454 } else if (IS_VALLEYVIEW(dev)) {
13455 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
13456 dev_priv->display.get_initial_plane_config =
13457 i9xx_get_initial_plane_config;
13458 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
13459 dev_priv->display.crtc_enable = valleyview_crtc_enable;
13460 dev_priv->display.crtc_disable = i9xx_crtc_disable;
13461 dev_priv->display.off = i9xx_crtc_off;
13462 dev_priv->display.update_primary_plane =
13463 i9xx_update_primary_plane;
13464 } else {
13465 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
13466 dev_priv->display.get_initial_plane_config =
13467 i9xx_get_initial_plane_config;
13468 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
13469 dev_priv->display.crtc_enable = i9xx_crtc_enable;
13470 dev_priv->display.crtc_disable = i9xx_crtc_disable;
13471 dev_priv->display.off = i9xx_crtc_off;
13472 dev_priv->display.update_primary_plane =
13473 i9xx_update_primary_plane;
13474 }
13475
13476 /* Returns the core display clock speed */
13477 if (IS_VALLEYVIEW(dev))
13478 dev_priv->display.get_display_clock_speed =
13479 valleyview_get_display_clock_speed;
13480 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
13481 dev_priv->display.get_display_clock_speed =
13482 i945_get_display_clock_speed;
13483 else if (IS_I915G(dev))
13484 dev_priv->display.get_display_clock_speed =
13485 i915_get_display_clock_speed;
13486 else if (IS_I945GM(dev) || IS_845G(dev))
13487 dev_priv->display.get_display_clock_speed =
13488 i9xx_misc_get_display_clock_speed;
13489 else if (IS_PINEVIEW(dev))
13490 dev_priv->display.get_display_clock_speed =
13491 pnv_get_display_clock_speed;
13492 else if (IS_I915GM(dev))
13493 dev_priv->display.get_display_clock_speed =
13494 i915gm_get_display_clock_speed;
13495 else if (IS_I865G(dev))
13496 dev_priv->display.get_display_clock_speed =
13497 i865_get_display_clock_speed;
13498 else if (IS_I85X(dev))
13499 dev_priv->display.get_display_clock_speed =
13500 i855_get_display_clock_speed;
13501 else /* 852, 830 */
13502 dev_priv->display.get_display_clock_speed =
13503 i830_get_display_clock_speed;
13504
13505 if (IS_GEN5(dev)) {
13506 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
13507 } else if (IS_GEN6(dev)) {
13508 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
13509 } else if (IS_IVYBRIDGE(dev)) {
13510 /* FIXME: detect B0+ stepping and use auto training */
13511 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
13512 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
13513 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
13514 } else if (IS_VALLEYVIEW(dev)) {
13515 dev_priv->display.modeset_global_resources =
13516 valleyview_modeset_global_resources;
13517 }
13518
13519 switch (INTEL_INFO(dev)->gen) {
13520 case 2:
13521 dev_priv->display.queue_flip = intel_gen2_queue_flip;
13522 break;
13523
13524 case 3:
13525 dev_priv->display.queue_flip = intel_gen3_queue_flip;
13526 break;
13527
13528 case 4:
13529 case 5:
13530 dev_priv->display.queue_flip = intel_gen4_queue_flip;
13531 break;
13532
13533 case 6:
13534 dev_priv->display.queue_flip = intel_gen6_queue_flip;
13535 break;
13536 case 7:
13537 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
13538 dev_priv->display.queue_flip = intel_gen7_queue_flip;
13539 break;
13540 case 9:
13541 /* Drop through - unsupported since execlist only. */
13542 default:
13543 /* Default just returns -ENODEV to indicate unsupported */
13544 dev_priv->display.queue_flip = intel_default_queue_flip;
13545 }
13546
13547 intel_panel_init_backlight_funcs(dev);
13548
13549 mutex_init(&dev_priv->pps_mutex);
13550 }
13551
13552 /*
13553 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
13554 * resume, or other times. This quirk makes sure that's the case for
13555 * affected systems.
13556 */
13557 static void quirk_pipea_force(struct drm_device *dev)
13558 {
13559 struct drm_i915_private *dev_priv = dev->dev_private;
13560
13561 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
13562 DRM_INFO("applying pipe a force quirk\n");
13563 }
13564
13565 static void quirk_pipeb_force(struct drm_device *dev)
13566 {
13567 struct drm_i915_private *dev_priv = dev->dev_private;
13568
13569 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
13570 DRM_INFO("applying pipe b force quirk\n");
13571 }
13572
13573 /*
13574 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
13575 */
13576 static void quirk_ssc_force_disable(struct drm_device *dev)
13577 {
13578 struct drm_i915_private *dev_priv = dev->dev_private;
13579 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
13580 DRM_INFO("applying lvds SSC disable quirk\n");
13581 }
13582
13583 /*
13584 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
13585 * brightness value
13586 */
13587 static void quirk_invert_brightness(struct drm_device *dev)
13588 {
13589 struct drm_i915_private *dev_priv = dev->dev_private;
13590 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
13591 DRM_INFO("applying inverted panel brightness quirk\n");
13592 }
13593
13594 /* Some VBT's incorrectly indicate no backlight is present */
13595 static void quirk_backlight_present(struct drm_device *dev)
13596 {
13597 struct drm_i915_private *dev_priv = dev->dev_private;
13598 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
13599 DRM_INFO("applying backlight present quirk\n");
13600 }
13601
13602 struct intel_quirk {
13603 int device;
13604 int subsystem_vendor;
13605 int subsystem_device;
13606 void (*hook)(struct drm_device *dev);
13607 };
13608
13609 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
13610 struct intel_dmi_quirk {
13611 void (*hook)(struct drm_device *dev);
13612 const struct dmi_system_id (*dmi_id_list)[];
13613 };
13614
13615 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
13616 {
13617 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
13618 return 1;
13619 }
13620
13621 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
13622 {
13623 .dmi_id_list = &(const struct dmi_system_id[]) {
13624 {
13625 .callback = intel_dmi_reverse_brightness,
13626 .ident = "NCR Corporation",
13627 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
13628 DMI_MATCH(DMI_PRODUCT_NAME, ""),
13629 },
13630 },
13631 { } /* terminating entry */
13632 },
13633 .hook = quirk_invert_brightness,
13634 },
13635 };
13636
13637 static struct intel_quirk intel_quirks[] = {
13638 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
13639 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
13640
13641 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
13642 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
13643
13644 /* 830 needs to leave pipe A & dpll A up */
13645 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
13646
13647 /* 830 needs to leave pipe B & dpll B up */
13648 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
13649
13650 /* Lenovo U160 cannot use SSC on LVDS */
13651 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
13652
13653 /* Sony Vaio Y cannot use SSC on LVDS */
13654 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
13655
13656 /* Acer Aspire 5734Z must invert backlight brightness */
13657 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
13658
13659 /* Acer/eMachines G725 */
13660 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
13661
13662 /* Acer/eMachines e725 */
13663 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
13664
13665 /* Acer/Packard Bell NCL20 */
13666 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
13667
13668 /* Acer Aspire 4736Z */
13669 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
13670
13671 /* Acer Aspire 5336 */
13672 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
13673
13674 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
13675 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
13676
13677 /* Acer C720 Chromebook (Core i3 4005U) */
13678 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
13679
13680 /* Apple Macbook 2,1 (Core 2 T7400) */
13681 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
13682
13683 /* Toshiba CB35 Chromebook (Celeron 2955U) */
13684 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
13685
13686 /* HP Chromebook 14 (Celeron 2955U) */
13687 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
13688
13689 /* Dell Chromebook 11 */
13690 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
13691 };
13692
13693 static void intel_init_quirks(struct drm_device *dev)
13694 {
13695 struct pci_dev *d = dev->pdev;
13696 int i;
13697
13698 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
13699 struct intel_quirk *q = &intel_quirks[i];
13700
13701 if (d->device == q->device &&
13702 (d->subsystem_vendor == q->subsystem_vendor ||
13703 q->subsystem_vendor == PCI_ANY_ID) &&
13704 (d->subsystem_device == q->subsystem_device ||
13705 q->subsystem_device == PCI_ANY_ID))
13706 q->hook(dev);
13707 }
13708 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
13709 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
13710 intel_dmi_quirks[i].hook(dev);
13711 }
13712 }
13713
13714 /* Disable the VGA plane that we never use */
13715 static void i915_disable_vga(struct drm_device *dev)
13716 {
13717 struct drm_i915_private *dev_priv = dev->dev_private;
13718 u8 sr1;
13719 u32 vga_reg = i915_vgacntrl_reg(dev);
13720
13721 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
13722 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
13723 outb(SR01, VGA_SR_INDEX);
13724 sr1 = inb(VGA_SR_DATA);
13725 outb(sr1 | 1<<5, VGA_SR_DATA);
13726 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
13727 udelay(300);
13728
13729 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
13730 POSTING_READ(vga_reg);
13731 }
13732
13733 void intel_modeset_init_hw(struct drm_device *dev)
13734 {
13735 intel_prepare_ddi(dev);
13736
13737 if (IS_VALLEYVIEW(dev))
13738 vlv_update_cdclk(dev);
13739
13740 intel_init_clock_gating(dev);
13741
13742 intel_enable_gt_powersave(dev);
13743 }
13744
13745 void intel_modeset_init(struct drm_device *dev)
13746 {
13747 struct drm_i915_private *dev_priv = dev->dev_private;
13748 int sprite, ret;
13749 enum pipe pipe;
13750 struct intel_crtc *crtc;
13751
13752 drm_mode_config_init(dev);
13753
13754 dev->mode_config.min_width = 0;
13755 dev->mode_config.min_height = 0;
13756
13757 dev->mode_config.preferred_depth = 24;
13758 dev->mode_config.prefer_shadow = 1;
13759
13760 dev->mode_config.allow_fb_modifiers = true;
13761
13762 dev->mode_config.funcs = &intel_mode_funcs;
13763
13764 intel_init_quirks(dev);
13765
13766 intel_init_pm(dev);
13767
13768 if (INTEL_INFO(dev)->num_pipes == 0)
13769 return;
13770
13771 intel_init_display(dev);
13772 intel_init_audio(dev);
13773
13774 if (IS_GEN2(dev)) {
13775 dev->mode_config.max_width = 2048;
13776 dev->mode_config.max_height = 2048;
13777 } else if (IS_GEN3(dev)) {
13778 dev->mode_config.max_width = 4096;
13779 dev->mode_config.max_height = 4096;
13780 } else {
13781 dev->mode_config.max_width = 8192;
13782 dev->mode_config.max_height = 8192;
13783 }
13784
13785 if (IS_845G(dev) || IS_I865G(dev)) {
13786 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13787 dev->mode_config.cursor_height = 1023;
13788 } else if (IS_GEN2(dev)) {
13789 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13790 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13791 } else {
13792 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13793 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13794 }
13795
13796 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
13797
13798 DRM_DEBUG_KMS("%d display pipe%s available.\n",
13799 INTEL_INFO(dev)->num_pipes,
13800 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
13801
13802 for_each_pipe(dev_priv, pipe) {
13803 intel_crtc_init(dev, pipe);
13804 for_each_sprite(dev_priv, pipe, sprite) {
13805 ret = intel_plane_init(dev, pipe, sprite);
13806 if (ret)
13807 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
13808 pipe_name(pipe), sprite_name(pipe, sprite), ret);
13809 }
13810 }
13811
13812 intel_init_dpio(dev);
13813
13814 intel_shared_dpll_init(dev);
13815
13816 /* Just disable it once at startup */
13817 i915_disable_vga(dev);
13818 intel_setup_outputs(dev);
13819
13820 /* Just in case the BIOS is doing something questionable. */
13821 intel_fbc_disable(dev);
13822
13823 drm_modeset_lock_all(dev);
13824 intel_modeset_setup_hw_state(dev, false);
13825 drm_modeset_unlock_all(dev);
13826
13827 for_each_intel_crtc(dev, crtc) {
13828 if (!crtc->active)
13829 continue;
13830
13831 /*
13832 * Note that reserving the BIOS fb up front prevents us
13833 * from stuffing other stolen allocations like the ring
13834 * on top. This prevents some ugliness at boot time, and
13835 * can even allow for smooth boot transitions if the BIOS
13836 * fb is large enough for the active pipe configuration.
13837 */
13838 if (dev_priv->display.get_initial_plane_config) {
13839 dev_priv->display.get_initial_plane_config(crtc,
13840 &crtc->plane_config);
13841 /*
13842 * If the fb is shared between multiple heads, we'll
13843 * just get the first one.
13844 */
13845 intel_find_initial_plane_obj(crtc, &crtc->plane_config);
13846 }
13847 }
13848 }
13849
13850 static void intel_enable_pipe_a(struct drm_device *dev)
13851 {
13852 struct intel_connector *connector;
13853 struct drm_connector *crt = NULL;
13854 struct intel_load_detect_pipe load_detect_temp;
13855 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13856
13857 /* We can't just switch on the pipe A, we need to set things up with a
13858 * proper mode and output configuration. As a gross hack, enable pipe A
13859 * by enabling the load detect pipe once. */
13860 for_each_intel_connector(dev, connector) {
13861 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13862 crt = &connector->base;
13863 break;
13864 }
13865 }
13866
13867 if (!crt)
13868 return;
13869
13870 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13871 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
13872 }
13873
13874 static bool
13875 intel_check_plane_mapping(struct intel_crtc *crtc)
13876 {
13877 struct drm_device *dev = crtc->base.dev;
13878 struct drm_i915_private *dev_priv = dev->dev_private;
13879 u32 reg, val;
13880
13881 if (INTEL_INFO(dev)->num_pipes == 1)
13882 return true;
13883
13884 reg = DSPCNTR(!crtc->plane);
13885 val = I915_READ(reg);
13886
13887 if ((val & DISPLAY_PLANE_ENABLE) &&
13888 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13889 return false;
13890
13891 return true;
13892 }
13893
13894 static void intel_sanitize_crtc(struct intel_crtc *crtc)
13895 {
13896 struct drm_device *dev = crtc->base.dev;
13897 struct drm_i915_private *dev_priv = dev->dev_private;
13898 u32 reg;
13899
13900 /* Clear any frame start delays used for debugging left by the BIOS */
13901 reg = PIPECONF(crtc->config->cpu_transcoder);
13902 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13903
13904 /* restore vblank interrupts to correct state */
13905 drm_crtc_vblank_reset(&crtc->base);
13906 if (crtc->active) {
13907 update_scanline_offset(crtc);
13908 drm_crtc_vblank_on(&crtc->base);
13909 }
13910
13911 /* We need to sanitize the plane -> pipe mapping first because this will
13912 * disable the crtc (and hence change the state) if it is wrong. Note
13913 * that gen4+ has a fixed plane -> pipe mapping. */
13914 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13915 struct intel_connector *connector;
13916 bool plane;
13917
13918 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13919 crtc->base.base.id);
13920
13921 /* Pipe has the wrong plane attached and the plane is active.
13922 * Temporarily change the plane mapping and disable everything
13923 * ... */
13924 plane = crtc->plane;
13925 crtc->plane = !plane;
13926 crtc->primary_enabled = true;
13927 dev_priv->display.crtc_disable(&crtc->base);
13928 crtc->plane = plane;
13929
13930 /* ... and break all links. */
13931 for_each_intel_connector(dev, connector) {
13932 if (connector->encoder->base.crtc != &crtc->base)
13933 continue;
13934
13935 connector->base.dpms = DRM_MODE_DPMS_OFF;
13936 connector->base.encoder = NULL;
13937 }
13938 /* multiple connectors may have the same encoder:
13939 * handle them and break crtc link separately */
13940 for_each_intel_connector(dev, connector)
13941 if (connector->encoder->base.crtc == &crtc->base) {
13942 connector->encoder->base.crtc = NULL;
13943 connector->encoder->connectors_active = false;
13944 }
13945
13946 WARN_ON(crtc->active);
13947 crtc->base.state->enable = false;
13948 crtc->base.enabled = false;
13949 }
13950
13951 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13952 crtc->pipe == PIPE_A && !crtc->active) {
13953 /* BIOS forgot to enable pipe A, this mostly happens after
13954 * resume. Force-enable the pipe to fix this, the update_dpms
13955 * call below we restore the pipe to the right state, but leave
13956 * the required bits on. */
13957 intel_enable_pipe_a(dev);
13958 }
13959
13960 /* Adjust the state of the output pipe according to whether we
13961 * have active connectors/encoders. */
13962 intel_crtc_update_dpms(&crtc->base);
13963
13964 if (crtc->active != crtc->base.state->enable) {
13965 struct intel_encoder *encoder;
13966
13967 /* This can happen either due to bugs in the get_hw_state
13968 * functions or because the pipe is force-enabled due to the
13969 * pipe A quirk. */
13970 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13971 crtc->base.base.id,
13972 crtc->base.state->enable ? "enabled" : "disabled",
13973 crtc->active ? "enabled" : "disabled");
13974
13975 crtc->base.state->enable = crtc->active;
13976 crtc->base.enabled = crtc->active;
13977
13978 /* Because we only establish the connector -> encoder ->
13979 * crtc links if something is active, this means the
13980 * crtc is now deactivated. Break the links. connector
13981 * -> encoder links are only establish when things are
13982 * actually up, hence no need to break them. */
13983 WARN_ON(crtc->active);
13984
13985 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13986 WARN_ON(encoder->connectors_active);
13987 encoder->base.crtc = NULL;
13988 }
13989 }
13990
13991 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13992 /*
13993 * We start out with underrun reporting disabled to avoid races.
13994 * For correct bookkeeping mark this on active crtcs.
13995 *
13996 * Also on gmch platforms we dont have any hardware bits to
13997 * disable the underrun reporting. Which means we need to start
13998 * out with underrun reporting disabled also on inactive pipes,
13999 * since otherwise we'll complain about the garbage we read when
14000 * e.g. coming up after runtime pm.
14001 *
14002 * No protection against concurrent access is required - at
14003 * worst a fifo underrun happens which also sets this to false.
14004 */
14005 crtc->cpu_fifo_underrun_disabled = true;
14006 crtc->pch_fifo_underrun_disabled = true;
14007 }
14008 }
14009
14010 static void intel_sanitize_encoder(struct intel_encoder *encoder)
14011 {
14012 struct intel_connector *connector;
14013 struct drm_device *dev = encoder->base.dev;
14014
14015 /* We need to check both for a crtc link (meaning that the
14016 * encoder is active and trying to read from a pipe) and the
14017 * pipe itself being active. */
14018 bool has_active_crtc = encoder->base.crtc &&
14019 to_intel_crtc(encoder->base.crtc)->active;
14020
14021 if (encoder->connectors_active && !has_active_crtc) {
14022 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
14023 encoder->base.base.id,
14024 encoder->base.name);
14025
14026 /* Connector is active, but has no active pipe. This is
14027 * fallout from our resume register restoring. Disable
14028 * the encoder manually again. */
14029 if (encoder->base.crtc) {
14030 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
14031 encoder->base.base.id,
14032 encoder->base.name);
14033 encoder->disable(encoder);
14034 if (encoder->post_disable)
14035 encoder->post_disable(encoder);
14036 }
14037 encoder->base.crtc = NULL;
14038 encoder->connectors_active = false;
14039
14040 /* Inconsistent output/port/pipe state happens presumably due to
14041 * a bug in one of the get_hw_state functions. Or someplace else
14042 * in our code, like the register restore mess on resume. Clamp
14043 * things to off as a safer default. */
14044 for_each_intel_connector(dev, connector) {
14045 if (connector->encoder != encoder)
14046 continue;
14047 connector->base.dpms = DRM_MODE_DPMS_OFF;
14048 connector->base.encoder = NULL;
14049 }
14050 }
14051 /* Enabled encoders without active connectors will be fixed in
14052 * the crtc fixup. */
14053 }
14054
14055 void i915_redisable_vga_power_on(struct drm_device *dev)
14056 {
14057 struct drm_i915_private *dev_priv = dev->dev_private;
14058 u32 vga_reg = i915_vgacntrl_reg(dev);
14059
14060 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
14061 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
14062 i915_disable_vga(dev);
14063 }
14064 }
14065
14066 void i915_redisable_vga(struct drm_device *dev)
14067 {
14068 struct drm_i915_private *dev_priv = dev->dev_private;
14069
14070 /* This function can be called both from intel_modeset_setup_hw_state or
14071 * at a very early point in our resume sequence, where the power well
14072 * structures are not yet restored. Since this function is at a very
14073 * paranoid "someone might have enabled VGA while we were not looking"
14074 * level, just check if the power well is enabled instead of trying to
14075 * follow the "don't touch the power well if we don't need it" policy
14076 * the rest of the driver uses. */
14077 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
14078 return;
14079
14080 i915_redisable_vga_power_on(dev);
14081 }
14082
14083 static bool primary_get_hw_state(struct intel_crtc *crtc)
14084 {
14085 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
14086
14087 if (!crtc->active)
14088 return false;
14089
14090 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
14091 }
14092
14093 static void intel_modeset_readout_hw_state(struct drm_device *dev)
14094 {
14095 struct drm_i915_private *dev_priv = dev->dev_private;
14096 enum pipe pipe;
14097 struct intel_crtc *crtc;
14098 struct intel_encoder *encoder;
14099 struct intel_connector *connector;
14100 int i;
14101
14102 for_each_intel_crtc(dev, crtc) {
14103 memset(crtc->config, 0, sizeof(*crtc->config));
14104
14105 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
14106
14107 crtc->active = dev_priv->display.get_pipe_config(crtc,
14108 crtc->config);
14109
14110 crtc->base.state->enable = crtc->active;
14111 crtc->base.enabled = crtc->active;
14112 crtc->primary_enabled = primary_get_hw_state(crtc);
14113
14114 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
14115 crtc->base.base.id,
14116 crtc->active ? "enabled" : "disabled");
14117 }
14118
14119 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14120 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14121
14122 pll->on = pll->get_hw_state(dev_priv, pll,
14123 &pll->config.hw_state);
14124 pll->active = 0;
14125 pll->config.crtc_mask = 0;
14126 for_each_intel_crtc(dev, crtc) {
14127 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
14128 pll->active++;
14129 pll->config.crtc_mask |= 1 << crtc->pipe;
14130 }
14131 }
14132
14133 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
14134 pll->name, pll->config.crtc_mask, pll->on);
14135
14136 if (pll->config.crtc_mask)
14137 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
14138 }
14139
14140 for_each_intel_encoder(dev, encoder) {
14141 pipe = 0;
14142
14143 if (encoder->get_hw_state(encoder, &pipe)) {
14144 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
14145 encoder->base.crtc = &crtc->base;
14146 encoder->get_config(encoder, crtc->config);
14147 } else {
14148 encoder->base.crtc = NULL;
14149 }
14150
14151 encoder->connectors_active = false;
14152 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
14153 encoder->base.base.id,
14154 encoder->base.name,
14155 encoder->base.crtc ? "enabled" : "disabled",
14156 pipe_name(pipe));
14157 }
14158
14159 for_each_intel_connector(dev, connector) {
14160 if (connector->get_hw_state(connector)) {
14161 connector->base.dpms = DRM_MODE_DPMS_ON;
14162 connector->encoder->connectors_active = true;
14163 connector->base.encoder = &connector->encoder->base;
14164 } else {
14165 connector->base.dpms = DRM_MODE_DPMS_OFF;
14166 connector->base.encoder = NULL;
14167 }
14168 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
14169 connector->base.base.id,
14170 connector->base.name,
14171 connector->base.encoder ? "enabled" : "disabled");
14172 }
14173 }
14174
14175 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
14176 * and i915 state tracking structures. */
14177 void intel_modeset_setup_hw_state(struct drm_device *dev,
14178 bool force_restore)
14179 {
14180 struct drm_i915_private *dev_priv = dev->dev_private;
14181 enum pipe pipe;
14182 struct intel_crtc *crtc;
14183 struct intel_encoder *encoder;
14184 int i;
14185
14186 intel_modeset_readout_hw_state(dev);
14187
14188 /*
14189 * Now that we have the config, copy it to each CRTC struct
14190 * Note that this could go away if we move to using crtc_config
14191 * checking everywhere.
14192 */
14193 for_each_intel_crtc(dev, crtc) {
14194 if (crtc->active && i915.fastboot) {
14195 intel_mode_from_pipe_config(&crtc->base.mode,
14196 crtc->config);
14197 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
14198 crtc->base.base.id);
14199 drm_mode_debug_printmodeline(&crtc->base.mode);
14200 }
14201 }
14202
14203 /* HW state is read out, now we need to sanitize this mess. */
14204 for_each_intel_encoder(dev, encoder) {
14205 intel_sanitize_encoder(encoder);
14206 }
14207
14208 for_each_pipe(dev_priv, pipe) {
14209 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
14210 intel_sanitize_crtc(crtc);
14211 intel_dump_pipe_config(crtc, crtc->config,
14212 "[setup_hw_state]");
14213 }
14214
14215 intel_modeset_update_connector_atomic_state(dev);
14216
14217 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14218 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14219
14220 if (!pll->on || pll->active)
14221 continue;
14222
14223 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
14224
14225 pll->disable(dev_priv, pll);
14226 pll->on = false;
14227 }
14228
14229 if (IS_GEN9(dev))
14230 skl_wm_get_hw_state(dev);
14231 else if (HAS_PCH_SPLIT(dev))
14232 ilk_wm_get_hw_state(dev);
14233
14234 if (force_restore) {
14235 i915_redisable_vga(dev);
14236
14237 /*
14238 * We need to use raw interfaces for restoring state to avoid
14239 * checking (bogus) intermediate states.
14240 */
14241 for_each_pipe(dev_priv, pipe) {
14242 struct drm_crtc *crtc =
14243 dev_priv->pipe_to_crtc_mapping[pipe];
14244
14245 intel_crtc_restore_mode(crtc);
14246 }
14247 } else {
14248 intel_modeset_update_staged_output_state(dev);
14249 }
14250
14251 intel_modeset_check_state(dev);
14252 }
14253
14254 void intel_modeset_gem_init(struct drm_device *dev)
14255 {
14256 struct drm_i915_private *dev_priv = dev->dev_private;
14257 struct drm_crtc *c;
14258 struct drm_i915_gem_object *obj;
14259 int ret;
14260
14261 mutex_lock(&dev->struct_mutex);
14262 intel_init_gt_powersave(dev);
14263 mutex_unlock(&dev->struct_mutex);
14264
14265 /*
14266 * There may be no VBT; and if the BIOS enabled SSC we can
14267 * just keep using it to avoid unnecessary flicker. Whereas if the
14268 * BIOS isn't using it, don't assume it will work even if the VBT
14269 * indicates as much.
14270 */
14271 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
14272 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14273 DREF_SSC1_ENABLE);
14274
14275 intel_modeset_init_hw(dev);
14276
14277 intel_setup_overlay(dev);
14278
14279 /*
14280 * Make sure any fbs we allocated at startup are properly
14281 * pinned & fenced. When we do the allocation it's too early
14282 * for this.
14283 */
14284 for_each_crtc(dev, c) {
14285 obj = intel_fb_obj(c->primary->fb);
14286 if (obj == NULL)
14287 continue;
14288
14289 mutex_lock(&dev->struct_mutex);
14290 ret = intel_pin_and_fence_fb_obj(c->primary,
14291 c->primary->fb,
14292 c->primary->state,
14293 NULL);
14294 mutex_unlock(&dev->struct_mutex);
14295 if (ret) {
14296 DRM_ERROR("failed to pin boot fb on pipe %d\n",
14297 to_intel_crtc(c)->pipe);
14298 drm_framebuffer_unreference(c->primary->fb);
14299 c->primary->fb = NULL;
14300 update_state_fb(c->primary);
14301 }
14302 }
14303
14304 intel_backlight_register(dev);
14305 }
14306
14307 void intel_connector_unregister(struct intel_connector *intel_connector)
14308 {
14309 struct drm_connector *connector = &intel_connector->base;
14310
14311 intel_panel_destroy_backlight(connector);
14312 drm_connector_unregister(connector);
14313 }
14314
14315 void intel_modeset_cleanup(struct drm_device *dev)
14316 {
14317 struct drm_i915_private *dev_priv = dev->dev_private;
14318 struct drm_connector *connector;
14319
14320 intel_disable_gt_powersave(dev);
14321
14322 intel_backlight_unregister(dev);
14323
14324 /*
14325 * Interrupts and polling as the first thing to avoid creating havoc.
14326 * Too much stuff here (turning of connectors, ...) would
14327 * experience fancy races otherwise.
14328 */
14329 intel_irq_uninstall(dev_priv);
14330
14331 /*
14332 * Due to the hpd irq storm handling the hotplug work can re-arm the
14333 * poll handlers. Hence disable polling after hpd handling is shut down.
14334 */
14335 drm_kms_helper_poll_fini(dev);
14336
14337 mutex_lock(&dev->struct_mutex);
14338
14339 intel_unregister_dsm_handler();
14340
14341 intel_fbc_disable(dev);
14342
14343 mutex_unlock(&dev->struct_mutex);
14344
14345 /* flush any delayed tasks or pending work */
14346 flush_scheduled_work();
14347
14348 /* destroy the backlight and sysfs files before encoders/connectors */
14349 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
14350 struct intel_connector *intel_connector;
14351
14352 intel_connector = to_intel_connector(connector);
14353 intel_connector->unregister(intel_connector);
14354 }
14355
14356 drm_mode_config_cleanup(dev);
14357
14358 intel_cleanup_overlay(dev);
14359
14360 mutex_lock(&dev->struct_mutex);
14361 intel_cleanup_gt_powersave(dev);
14362 mutex_unlock(&dev->struct_mutex);
14363 }
14364
14365 /*
14366 * Return which encoder is currently attached for connector.
14367 */
14368 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
14369 {
14370 return &intel_attached_encoder(connector)->base;
14371 }
14372
14373 void intel_connector_attach_encoder(struct intel_connector *connector,
14374 struct intel_encoder *encoder)
14375 {
14376 connector->encoder = encoder;
14377 drm_mode_connector_attach_encoder(&connector->base,
14378 &encoder->base);
14379 }
14380
14381 /*
14382 * set vga decode state - true == enable VGA decode
14383 */
14384 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
14385 {
14386 struct drm_i915_private *dev_priv = dev->dev_private;
14387 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
14388 u16 gmch_ctrl;
14389
14390 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
14391 DRM_ERROR("failed to read control word\n");
14392 return -EIO;
14393 }
14394
14395 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
14396 return 0;
14397
14398 if (state)
14399 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
14400 else
14401 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
14402
14403 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
14404 DRM_ERROR("failed to write control word\n");
14405 return -EIO;
14406 }
14407
14408 return 0;
14409 }
14410
14411 struct intel_display_error_state {
14412
14413 u32 power_well_driver;
14414
14415 int num_transcoders;
14416
14417 struct intel_cursor_error_state {
14418 u32 control;
14419 u32 position;
14420 u32 base;
14421 u32 size;
14422 } cursor[I915_MAX_PIPES];
14423
14424 struct intel_pipe_error_state {
14425 bool power_domain_on;
14426 u32 source;
14427 u32 stat;
14428 } pipe[I915_MAX_PIPES];
14429
14430 struct intel_plane_error_state {
14431 u32 control;
14432 u32 stride;
14433 u32 size;
14434 u32 pos;
14435 u32 addr;
14436 u32 surface;
14437 u32 tile_offset;
14438 } plane[I915_MAX_PIPES];
14439
14440 struct intel_transcoder_error_state {
14441 bool power_domain_on;
14442 enum transcoder cpu_transcoder;
14443
14444 u32 conf;
14445
14446 u32 htotal;
14447 u32 hblank;
14448 u32 hsync;
14449 u32 vtotal;
14450 u32 vblank;
14451 u32 vsync;
14452 } transcoder[4];
14453 };
14454
14455 struct intel_display_error_state *
14456 intel_display_capture_error_state(struct drm_device *dev)
14457 {
14458 struct drm_i915_private *dev_priv = dev->dev_private;
14459 struct intel_display_error_state *error;
14460 int transcoders[] = {
14461 TRANSCODER_A,
14462 TRANSCODER_B,
14463 TRANSCODER_C,
14464 TRANSCODER_EDP,
14465 };
14466 int i;
14467
14468 if (INTEL_INFO(dev)->num_pipes == 0)
14469 return NULL;
14470
14471 error = kzalloc(sizeof(*error), GFP_ATOMIC);
14472 if (error == NULL)
14473 return NULL;
14474
14475 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
14476 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
14477
14478 for_each_pipe(dev_priv, i) {
14479 error->pipe[i].power_domain_on =
14480 __intel_display_power_is_enabled(dev_priv,
14481 POWER_DOMAIN_PIPE(i));
14482 if (!error->pipe[i].power_domain_on)
14483 continue;
14484
14485 error->cursor[i].control = I915_READ(CURCNTR(i));
14486 error->cursor[i].position = I915_READ(CURPOS(i));
14487 error->cursor[i].base = I915_READ(CURBASE(i));
14488
14489 error->plane[i].control = I915_READ(DSPCNTR(i));
14490 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
14491 if (INTEL_INFO(dev)->gen <= 3) {
14492 error->plane[i].size = I915_READ(DSPSIZE(i));
14493 error->plane[i].pos = I915_READ(DSPPOS(i));
14494 }
14495 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
14496 error->plane[i].addr = I915_READ(DSPADDR(i));
14497 if (INTEL_INFO(dev)->gen >= 4) {
14498 error->plane[i].surface = I915_READ(DSPSURF(i));
14499 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
14500 }
14501
14502 error->pipe[i].source = I915_READ(PIPESRC(i));
14503
14504 if (HAS_GMCH_DISPLAY(dev))
14505 error->pipe[i].stat = I915_READ(PIPESTAT(i));
14506 }
14507
14508 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
14509 if (HAS_DDI(dev_priv->dev))
14510 error->num_transcoders++; /* Account for eDP. */
14511
14512 for (i = 0; i < error->num_transcoders; i++) {
14513 enum transcoder cpu_transcoder = transcoders[i];
14514
14515 error->transcoder[i].power_domain_on =
14516 __intel_display_power_is_enabled(dev_priv,
14517 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
14518 if (!error->transcoder[i].power_domain_on)
14519 continue;
14520
14521 error->transcoder[i].cpu_transcoder = cpu_transcoder;
14522
14523 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
14524 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
14525 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
14526 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
14527 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
14528 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
14529 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
14530 }
14531
14532 return error;
14533 }
14534
14535 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
14536
14537 void
14538 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
14539 struct drm_device *dev,
14540 struct intel_display_error_state *error)
14541 {
14542 struct drm_i915_private *dev_priv = dev->dev_private;
14543 int i;
14544
14545 if (!error)
14546 return;
14547
14548 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
14549 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
14550 err_printf(m, "PWR_WELL_CTL2: %08x\n",
14551 error->power_well_driver);
14552 for_each_pipe(dev_priv, i) {
14553 err_printf(m, "Pipe [%d]:\n", i);
14554 err_printf(m, " Power: %s\n",
14555 error->pipe[i].power_domain_on ? "on" : "off");
14556 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
14557 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
14558
14559 err_printf(m, "Plane [%d]:\n", i);
14560 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
14561 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
14562 if (INTEL_INFO(dev)->gen <= 3) {
14563 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
14564 err_printf(m, " POS: %08x\n", error->plane[i].pos);
14565 }
14566 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
14567 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
14568 if (INTEL_INFO(dev)->gen >= 4) {
14569 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
14570 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
14571 }
14572
14573 err_printf(m, "Cursor [%d]:\n", i);
14574 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
14575 err_printf(m, " POS: %08x\n", error->cursor[i].position);
14576 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
14577 }
14578
14579 for (i = 0; i < error->num_transcoders; i++) {
14580 err_printf(m, "CPU transcoder: %c\n",
14581 transcoder_name(error->transcoder[i].cpu_transcoder));
14582 err_printf(m, " Power: %s\n",
14583 error->transcoder[i].power_domain_on ? "on" : "off");
14584 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
14585 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
14586 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
14587 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
14588 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
14589 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
14590 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
14591 }
14592 }
14593
14594 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
14595 {
14596 struct intel_crtc *crtc;
14597
14598 for_each_intel_crtc(dev, crtc) {
14599 struct intel_unpin_work *work;
14600
14601 spin_lock_irq(&dev->event_lock);
14602
14603 work = crtc->unpin_work;
14604
14605 if (work && work->event &&
14606 work->event->base.file_priv == file) {
14607 kfree(work->event);
14608 work->event = NULL;
14609 }
14610
14611 spin_unlock_irq(&dev->event_lock);
14612 }
14613 }