]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/intel_display.c
Merge tag 'drm-for-v4.11-less-shouty' of git://people.freedesktop.org/~airlied/linux
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include "intel_frontbuffer.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "intel_dsi.h"
41 #include "i915_trace.h"
42 #include <drm/drm_atomic.h>
43 #include <drm/drm_atomic_helper.h>
44 #include <drm/drm_dp_helper.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_plane_helper.h>
47 #include <drm/drm_rect.h>
48 #include <linux/dma_remapping.h>
49 #include <linux/reservation.h>
50
51 static bool is_mmio_work(struct intel_flip_work *work)
52 {
53 return work->mmio_work.func;
54 }
55
56 /* Primary plane formats for gen <= 3 */
57 static const uint32_t i8xx_primary_formats[] = {
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
60 DRM_FORMAT_XRGB1555,
61 DRM_FORMAT_XRGB8888,
62 };
63
64 /* Primary plane formats for gen >= 4 */
65 static const uint32_t i965_primary_formats[] = {
66 DRM_FORMAT_C8,
67 DRM_FORMAT_RGB565,
68 DRM_FORMAT_XRGB8888,
69 DRM_FORMAT_XBGR8888,
70 DRM_FORMAT_XRGB2101010,
71 DRM_FORMAT_XBGR2101010,
72 };
73
74 static const uint32_t skl_primary_formats[] = {
75 DRM_FORMAT_C8,
76 DRM_FORMAT_RGB565,
77 DRM_FORMAT_XRGB8888,
78 DRM_FORMAT_XBGR8888,
79 DRM_FORMAT_ARGB8888,
80 DRM_FORMAT_ABGR8888,
81 DRM_FORMAT_XRGB2101010,
82 DRM_FORMAT_XBGR2101010,
83 DRM_FORMAT_YUYV,
84 DRM_FORMAT_YVYU,
85 DRM_FORMAT_UYVY,
86 DRM_FORMAT_VYUY,
87 };
88
89 /* Cursor formats */
90 static const uint32_t intel_cursor_formats[] = {
91 DRM_FORMAT_ARGB8888,
92 };
93
94 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
95 struct intel_crtc_state *pipe_config);
96 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
97 struct intel_crtc_state *pipe_config);
98
99 static int intel_framebuffer_init(struct drm_device *dev,
100 struct intel_framebuffer *ifb,
101 struct drm_mode_fb_cmd2 *mode_cmd,
102 struct drm_i915_gem_object *obj);
103 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
104 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
106 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
107 struct intel_link_m_n *m_n,
108 struct intel_link_m_n *m2_n2);
109 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
110 static void haswell_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipemisc(struct drm_crtc *crtc);
112 static void vlv_prepare_pll(struct intel_crtc *crtc,
113 const struct intel_crtc_state *pipe_config);
114 static void chv_prepare_pll(struct intel_crtc *crtc,
115 const struct intel_crtc_state *pipe_config);
116 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
117 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
119 struct intel_crtc_state *crtc_state);
120 static void skylake_pfit_enable(struct intel_crtc *crtc);
121 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
122 static void ironlake_pfit_enable(struct intel_crtc *crtc);
123 static void intel_modeset_setup_hw_state(struct drm_device *dev);
124 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
125 static int ilk_max_pixel_rate(struct drm_atomic_state *state);
126 static int glk_calc_cdclk(int max_pixclk);
127 static int bxt_calc_cdclk(int max_pixclk);
128
129 struct intel_limit {
130 struct {
131 int min, max;
132 } dot, vco, n, m, m1, m2, p, p1;
133
134 struct {
135 int dot_limit;
136 int p2_slow, p2_fast;
137 } p2;
138 };
139
140 /* returns HPLL frequency in kHz */
141 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
142 {
143 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
144
145 /* Obtain SKU information */
146 mutex_lock(&dev_priv->sb_lock);
147 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
148 CCK_FUSE_HPLL_FREQ_MASK;
149 mutex_unlock(&dev_priv->sb_lock);
150
151 return vco_freq[hpll_freq] * 1000;
152 }
153
154 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
155 const char *name, u32 reg, int ref_freq)
156 {
157 u32 val;
158 int divider;
159
160 mutex_lock(&dev_priv->sb_lock);
161 val = vlv_cck_read(dev_priv, reg);
162 mutex_unlock(&dev_priv->sb_lock);
163
164 divider = val & CCK_FREQUENCY_VALUES;
165
166 WARN((val & CCK_FREQUENCY_STATUS) !=
167 (divider << CCK_FREQUENCY_STATUS_SHIFT),
168 "%s change in progress\n", name);
169
170 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
171 }
172
173 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
174 const char *name, u32 reg)
175 {
176 if (dev_priv->hpll_freq == 0)
177 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
178
179 return vlv_get_cck_clock(dev_priv, name, reg,
180 dev_priv->hpll_freq);
181 }
182
183 static int
184 intel_pch_rawclk(struct drm_i915_private *dev_priv)
185 {
186 return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
187 }
188
189 static int
190 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
191 {
192 /* RAWCLK_FREQ_VLV register updated from power well code */
193 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
194 CCK_DISPLAY_REF_CLOCK_CONTROL);
195 }
196
197 static int
198 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
199 {
200 uint32_t clkcfg;
201
202 /* hrawclock is 1/4 the FSB frequency */
203 clkcfg = I915_READ(CLKCFG);
204 switch (clkcfg & CLKCFG_FSB_MASK) {
205 case CLKCFG_FSB_400:
206 return 100000;
207 case CLKCFG_FSB_533:
208 return 133333;
209 case CLKCFG_FSB_667:
210 return 166667;
211 case CLKCFG_FSB_800:
212 return 200000;
213 case CLKCFG_FSB_1067:
214 return 266667;
215 case CLKCFG_FSB_1333:
216 return 333333;
217 /* these two are just a guess; one of them might be right */
218 case CLKCFG_FSB_1600:
219 case CLKCFG_FSB_1600_ALT:
220 return 400000;
221 default:
222 return 133333;
223 }
224 }
225
226 void intel_update_rawclk(struct drm_i915_private *dev_priv)
227 {
228 if (HAS_PCH_SPLIT(dev_priv))
229 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
230 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
231 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
232 else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
233 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
234 else
235 return; /* no rawclk on other platforms, or no need to know it */
236
237 DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
238 }
239
240 static void intel_update_czclk(struct drm_i915_private *dev_priv)
241 {
242 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
243 return;
244
245 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
246 CCK_CZ_CLOCK_CONTROL);
247
248 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
249 }
250
251 static inline u32 /* units of 100MHz */
252 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
253 const struct intel_crtc_state *pipe_config)
254 {
255 if (HAS_DDI(dev_priv))
256 return pipe_config->port_clock; /* SPLL */
257 else if (IS_GEN5(dev_priv))
258 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
259 else
260 return 270000;
261 }
262
263 static const struct intel_limit intel_limits_i8xx_dac = {
264 .dot = { .min = 25000, .max = 350000 },
265 .vco = { .min = 908000, .max = 1512000 },
266 .n = { .min = 2, .max = 16 },
267 .m = { .min = 96, .max = 140 },
268 .m1 = { .min = 18, .max = 26 },
269 .m2 = { .min = 6, .max = 16 },
270 .p = { .min = 4, .max = 128 },
271 .p1 = { .min = 2, .max = 33 },
272 .p2 = { .dot_limit = 165000,
273 .p2_slow = 4, .p2_fast = 2 },
274 };
275
276 static const struct intel_limit intel_limits_i8xx_dvo = {
277 .dot = { .min = 25000, .max = 350000 },
278 .vco = { .min = 908000, .max = 1512000 },
279 .n = { .min = 2, .max = 16 },
280 .m = { .min = 96, .max = 140 },
281 .m1 = { .min = 18, .max = 26 },
282 .m2 = { .min = 6, .max = 16 },
283 .p = { .min = 4, .max = 128 },
284 .p1 = { .min = 2, .max = 33 },
285 .p2 = { .dot_limit = 165000,
286 .p2_slow = 4, .p2_fast = 4 },
287 };
288
289 static const struct intel_limit intel_limits_i8xx_lvds = {
290 .dot = { .min = 25000, .max = 350000 },
291 .vco = { .min = 908000, .max = 1512000 },
292 .n = { .min = 2, .max = 16 },
293 .m = { .min = 96, .max = 140 },
294 .m1 = { .min = 18, .max = 26 },
295 .m2 = { .min = 6, .max = 16 },
296 .p = { .min = 4, .max = 128 },
297 .p1 = { .min = 1, .max = 6 },
298 .p2 = { .dot_limit = 165000,
299 .p2_slow = 14, .p2_fast = 7 },
300 };
301
302 static const struct intel_limit intel_limits_i9xx_sdvo = {
303 .dot = { .min = 20000, .max = 400000 },
304 .vco = { .min = 1400000, .max = 2800000 },
305 .n = { .min = 1, .max = 6 },
306 .m = { .min = 70, .max = 120 },
307 .m1 = { .min = 8, .max = 18 },
308 .m2 = { .min = 3, .max = 7 },
309 .p = { .min = 5, .max = 80 },
310 .p1 = { .min = 1, .max = 8 },
311 .p2 = { .dot_limit = 200000,
312 .p2_slow = 10, .p2_fast = 5 },
313 };
314
315 static const struct intel_limit intel_limits_i9xx_lvds = {
316 .dot = { .min = 20000, .max = 400000 },
317 .vco = { .min = 1400000, .max = 2800000 },
318 .n = { .min = 1, .max = 6 },
319 .m = { .min = 70, .max = 120 },
320 .m1 = { .min = 8, .max = 18 },
321 .m2 = { .min = 3, .max = 7 },
322 .p = { .min = 7, .max = 98 },
323 .p1 = { .min = 1, .max = 8 },
324 .p2 = { .dot_limit = 112000,
325 .p2_slow = 14, .p2_fast = 7 },
326 };
327
328
329 static const struct intel_limit intel_limits_g4x_sdvo = {
330 .dot = { .min = 25000, .max = 270000 },
331 .vco = { .min = 1750000, .max = 3500000},
332 .n = { .min = 1, .max = 4 },
333 .m = { .min = 104, .max = 138 },
334 .m1 = { .min = 17, .max = 23 },
335 .m2 = { .min = 5, .max = 11 },
336 .p = { .min = 10, .max = 30 },
337 .p1 = { .min = 1, .max = 3},
338 .p2 = { .dot_limit = 270000,
339 .p2_slow = 10,
340 .p2_fast = 10
341 },
342 };
343
344 static const struct intel_limit intel_limits_g4x_hdmi = {
345 .dot = { .min = 22000, .max = 400000 },
346 .vco = { .min = 1750000, .max = 3500000},
347 .n = { .min = 1, .max = 4 },
348 .m = { .min = 104, .max = 138 },
349 .m1 = { .min = 16, .max = 23 },
350 .m2 = { .min = 5, .max = 11 },
351 .p = { .min = 5, .max = 80 },
352 .p1 = { .min = 1, .max = 8},
353 .p2 = { .dot_limit = 165000,
354 .p2_slow = 10, .p2_fast = 5 },
355 };
356
357 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
358 .dot = { .min = 20000, .max = 115000 },
359 .vco = { .min = 1750000, .max = 3500000 },
360 .n = { .min = 1, .max = 3 },
361 .m = { .min = 104, .max = 138 },
362 .m1 = { .min = 17, .max = 23 },
363 .m2 = { .min = 5, .max = 11 },
364 .p = { .min = 28, .max = 112 },
365 .p1 = { .min = 2, .max = 8 },
366 .p2 = { .dot_limit = 0,
367 .p2_slow = 14, .p2_fast = 14
368 },
369 };
370
371 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
372 .dot = { .min = 80000, .max = 224000 },
373 .vco = { .min = 1750000, .max = 3500000 },
374 .n = { .min = 1, .max = 3 },
375 .m = { .min = 104, .max = 138 },
376 .m1 = { .min = 17, .max = 23 },
377 .m2 = { .min = 5, .max = 11 },
378 .p = { .min = 14, .max = 42 },
379 .p1 = { .min = 2, .max = 6 },
380 .p2 = { .dot_limit = 0,
381 .p2_slow = 7, .p2_fast = 7
382 },
383 };
384
385 static const struct intel_limit intel_limits_pineview_sdvo = {
386 .dot = { .min = 20000, .max = 400000},
387 .vco = { .min = 1700000, .max = 3500000 },
388 /* Pineview's Ncounter is a ring counter */
389 .n = { .min = 3, .max = 6 },
390 .m = { .min = 2, .max = 256 },
391 /* Pineview only has one combined m divider, which we treat as m2. */
392 .m1 = { .min = 0, .max = 0 },
393 .m2 = { .min = 0, .max = 254 },
394 .p = { .min = 5, .max = 80 },
395 .p1 = { .min = 1, .max = 8 },
396 .p2 = { .dot_limit = 200000,
397 .p2_slow = 10, .p2_fast = 5 },
398 };
399
400 static const struct intel_limit intel_limits_pineview_lvds = {
401 .dot = { .min = 20000, .max = 400000 },
402 .vco = { .min = 1700000, .max = 3500000 },
403 .n = { .min = 3, .max = 6 },
404 .m = { .min = 2, .max = 256 },
405 .m1 = { .min = 0, .max = 0 },
406 .m2 = { .min = 0, .max = 254 },
407 .p = { .min = 7, .max = 112 },
408 .p1 = { .min = 1, .max = 8 },
409 .p2 = { .dot_limit = 112000,
410 .p2_slow = 14, .p2_fast = 14 },
411 };
412
413 /* Ironlake / Sandybridge
414 *
415 * We calculate clock using (register_value + 2) for N/M1/M2, so here
416 * the range value for them is (actual_value - 2).
417 */
418 static const struct intel_limit intel_limits_ironlake_dac = {
419 .dot = { .min = 25000, .max = 350000 },
420 .vco = { .min = 1760000, .max = 3510000 },
421 .n = { .min = 1, .max = 5 },
422 .m = { .min = 79, .max = 127 },
423 .m1 = { .min = 12, .max = 22 },
424 .m2 = { .min = 5, .max = 9 },
425 .p = { .min = 5, .max = 80 },
426 .p1 = { .min = 1, .max = 8 },
427 .p2 = { .dot_limit = 225000,
428 .p2_slow = 10, .p2_fast = 5 },
429 };
430
431 static const struct intel_limit intel_limits_ironlake_single_lvds = {
432 .dot = { .min = 25000, .max = 350000 },
433 .vco = { .min = 1760000, .max = 3510000 },
434 .n = { .min = 1, .max = 3 },
435 .m = { .min = 79, .max = 118 },
436 .m1 = { .min = 12, .max = 22 },
437 .m2 = { .min = 5, .max = 9 },
438 .p = { .min = 28, .max = 112 },
439 .p1 = { .min = 2, .max = 8 },
440 .p2 = { .dot_limit = 225000,
441 .p2_slow = 14, .p2_fast = 14 },
442 };
443
444 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
445 .dot = { .min = 25000, .max = 350000 },
446 .vco = { .min = 1760000, .max = 3510000 },
447 .n = { .min = 1, .max = 3 },
448 .m = { .min = 79, .max = 127 },
449 .m1 = { .min = 12, .max = 22 },
450 .m2 = { .min = 5, .max = 9 },
451 .p = { .min = 14, .max = 56 },
452 .p1 = { .min = 2, .max = 8 },
453 .p2 = { .dot_limit = 225000,
454 .p2_slow = 7, .p2_fast = 7 },
455 };
456
457 /* LVDS 100mhz refclk limits. */
458 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
459 .dot = { .min = 25000, .max = 350000 },
460 .vco = { .min = 1760000, .max = 3510000 },
461 .n = { .min = 1, .max = 2 },
462 .m = { .min = 79, .max = 126 },
463 .m1 = { .min = 12, .max = 22 },
464 .m2 = { .min = 5, .max = 9 },
465 .p = { .min = 28, .max = 112 },
466 .p1 = { .min = 2, .max = 8 },
467 .p2 = { .dot_limit = 225000,
468 .p2_slow = 14, .p2_fast = 14 },
469 };
470
471 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
472 .dot = { .min = 25000, .max = 350000 },
473 .vco = { .min = 1760000, .max = 3510000 },
474 .n = { .min = 1, .max = 3 },
475 .m = { .min = 79, .max = 126 },
476 .m1 = { .min = 12, .max = 22 },
477 .m2 = { .min = 5, .max = 9 },
478 .p = { .min = 14, .max = 42 },
479 .p1 = { .min = 2, .max = 6 },
480 .p2 = { .dot_limit = 225000,
481 .p2_slow = 7, .p2_fast = 7 },
482 };
483
484 static const struct intel_limit intel_limits_vlv = {
485 /*
486 * These are the data rate limits (measured in fast clocks)
487 * since those are the strictest limits we have. The fast
488 * clock and actual rate limits are more relaxed, so checking
489 * them would make no difference.
490 */
491 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
492 .vco = { .min = 4000000, .max = 6000000 },
493 .n = { .min = 1, .max = 7 },
494 .m1 = { .min = 2, .max = 3 },
495 .m2 = { .min = 11, .max = 156 },
496 .p1 = { .min = 2, .max = 3 },
497 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
498 };
499
500 static const struct intel_limit intel_limits_chv = {
501 /*
502 * These are the data rate limits (measured in fast clocks)
503 * since those are the strictest limits we have. The fast
504 * clock and actual rate limits are more relaxed, so checking
505 * them would make no difference.
506 */
507 .dot = { .min = 25000 * 5, .max = 540000 * 5},
508 .vco = { .min = 4800000, .max = 6480000 },
509 .n = { .min = 1, .max = 1 },
510 .m1 = { .min = 2, .max = 2 },
511 .m2 = { .min = 24 << 22, .max = 175 << 22 },
512 .p1 = { .min = 2, .max = 4 },
513 .p2 = { .p2_slow = 1, .p2_fast = 14 },
514 };
515
516 static const struct intel_limit intel_limits_bxt = {
517 /* FIXME: find real dot limits */
518 .dot = { .min = 0, .max = INT_MAX },
519 .vco = { .min = 4800000, .max = 6700000 },
520 .n = { .min = 1, .max = 1 },
521 .m1 = { .min = 2, .max = 2 },
522 /* FIXME: find real m2 limits */
523 .m2 = { .min = 2 << 22, .max = 255 << 22 },
524 .p1 = { .min = 2, .max = 4 },
525 .p2 = { .p2_slow = 1, .p2_fast = 20 },
526 };
527
528 static bool
529 needs_modeset(struct drm_crtc_state *state)
530 {
531 return drm_atomic_crtc_needs_modeset(state);
532 }
533
534 /*
535 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
536 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
537 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
538 * The helpers' return value is the rate of the clock that is fed to the
539 * display engine's pipe which can be the above fast dot clock rate or a
540 * divided-down version of it.
541 */
542 /* m1 is reserved as 0 in Pineview, n is a ring counter */
543 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
544 {
545 clock->m = clock->m2 + 2;
546 clock->p = clock->p1 * clock->p2;
547 if (WARN_ON(clock->n == 0 || clock->p == 0))
548 return 0;
549 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
550 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
551
552 return clock->dot;
553 }
554
555 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
556 {
557 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
558 }
559
560 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
561 {
562 clock->m = i9xx_dpll_compute_m(clock);
563 clock->p = clock->p1 * clock->p2;
564 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
565 return 0;
566 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
567 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
568
569 return clock->dot;
570 }
571
572 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
573 {
574 clock->m = clock->m1 * clock->m2;
575 clock->p = clock->p1 * clock->p2;
576 if (WARN_ON(clock->n == 0 || clock->p == 0))
577 return 0;
578 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
579 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
580
581 return clock->dot / 5;
582 }
583
584 int chv_calc_dpll_params(int refclk, struct dpll *clock)
585 {
586 clock->m = clock->m1 * clock->m2;
587 clock->p = clock->p1 * clock->p2;
588 if (WARN_ON(clock->n == 0 || clock->p == 0))
589 return 0;
590 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
591 clock->n << 22);
592 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
593
594 return clock->dot / 5;
595 }
596
597 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
598 /**
599 * Returns whether the given set of divisors are valid for a given refclk with
600 * the given connectors.
601 */
602
603 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
604 const struct intel_limit *limit,
605 const struct dpll *clock)
606 {
607 if (clock->n < limit->n.min || limit->n.max < clock->n)
608 INTELPllInvalid("n out of range\n");
609 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
610 INTELPllInvalid("p1 out of range\n");
611 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
612 INTELPllInvalid("m2 out of range\n");
613 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
614 INTELPllInvalid("m1 out of range\n");
615
616 if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
617 !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
618 if (clock->m1 <= clock->m2)
619 INTELPllInvalid("m1 <= m2\n");
620
621 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
622 !IS_GEN9_LP(dev_priv)) {
623 if (clock->p < limit->p.min || limit->p.max < clock->p)
624 INTELPllInvalid("p out of range\n");
625 if (clock->m < limit->m.min || limit->m.max < clock->m)
626 INTELPllInvalid("m out of range\n");
627 }
628
629 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
630 INTELPllInvalid("vco out of range\n");
631 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
632 * connector, etc., rather than just a single range.
633 */
634 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
635 INTELPllInvalid("dot out of range\n");
636
637 return true;
638 }
639
640 static int
641 i9xx_select_p2_div(const struct intel_limit *limit,
642 const struct intel_crtc_state *crtc_state,
643 int target)
644 {
645 struct drm_device *dev = crtc_state->base.crtc->dev;
646
647 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
648 /*
649 * For LVDS just rely on its current settings for dual-channel.
650 * We haven't figured out how to reliably set up different
651 * single/dual channel state, if we even can.
652 */
653 if (intel_is_dual_link_lvds(dev))
654 return limit->p2.p2_fast;
655 else
656 return limit->p2.p2_slow;
657 } else {
658 if (target < limit->p2.dot_limit)
659 return limit->p2.p2_slow;
660 else
661 return limit->p2.p2_fast;
662 }
663 }
664
665 /*
666 * Returns a set of divisors for the desired target clock with the given
667 * refclk, or FALSE. The returned values represent the clock equation:
668 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
669 *
670 * Target and reference clocks are specified in kHz.
671 *
672 * If match_clock is provided, then best_clock P divider must match the P
673 * divider from @match_clock used for LVDS downclocking.
674 */
675 static bool
676 i9xx_find_best_dpll(const struct intel_limit *limit,
677 struct intel_crtc_state *crtc_state,
678 int target, int refclk, struct dpll *match_clock,
679 struct dpll *best_clock)
680 {
681 struct drm_device *dev = crtc_state->base.crtc->dev;
682 struct dpll clock;
683 int err = target;
684
685 memset(best_clock, 0, sizeof(*best_clock));
686
687 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
688
689 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
690 clock.m1++) {
691 for (clock.m2 = limit->m2.min;
692 clock.m2 <= limit->m2.max; clock.m2++) {
693 if (clock.m2 >= clock.m1)
694 break;
695 for (clock.n = limit->n.min;
696 clock.n <= limit->n.max; clock.n++) {
697 for (clock.p1 = limit->p1.min;
698 clock.p1 <= limit->p1.max; clock.p1++) {
699 int this_err;
700
701 i9xx_calc_dpll_params(refclk, &clock);
702 if (!intel_PLL_is_valid(to_i915(dev),
703 limit,
704 &clock))
705 continue;
706 if (match_clock &&
707 clock.p != match_clock->p)
708 continue;
709
710 this_err = abs(clock.dot - target);
711 if (this_err < err) {
712 *best_clock = clock;
713 err = this_err;
714 }
715 }
716 }
717 }
718 }
719
720 return (err != target);
721 }
722
723 /*
724 * Returns a set of divisors for the desired target clock with the given
725 * refclk, or FALSE. The returned values represent the clock equation:
726 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
727 *
728 * Target and reference clocks are specified in kHz.
729 *
730 * If match_clock is provided, then best_clock P divider must match the P
731 * divider from @match_clock used for LVDS downclocking.
732 */
733 static bool
734 pnv_find_best_dpll(const struct intel_limit *limit,
735 struct intel_crtc_state *crtc_state,
736 int target, int refclk, struct dpll *match_clock,
737 struct dpll *best_clock)
738 {
739 struct drm_device *dev = crtc_state->base.crtc->dev;
740 struct dpll clock;
741 int err = target;
742
743 memset(best_clock, 0, sizeof(*best_clock));
744
745 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
746
747 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
748 clock.m1++) {
749 for (clock.m2 = limit->m2.min;
750 clock.m2 <= limit->m2.max; clock.m2++) {
751 for (clock.n = limit->n.min;
752 clock.n <= limit->n.max; clock.n++) {
753 for (clock.p1 = limit->p1.min;
754 clock.p1 <= limit->p1.max; clock.p1++) {
755 int this_err;
756
757 pnv_calc_dpll_params(refclk, &clock);
758 if (!intel_PLL_is_valid(to_i915(dev),
759 limit,
760 &clock))
761 continue;
762 if (match_clock &&
763 clock.p != match_clock->p)
764 continue;
765
766 this_err = abs(clock.dot - target);
767 if (this_err < err) {
768 *best_clock = clock;
769 err = this_err;
770 }
771 }
772 }
773 }
774 }
775
776 return (err != target);
777 }
778
779 /*
780 * Returns a set of divisors for the desired target clock with the given
781 * refclk, or FALSE. The returned values represent the clock equation:
782 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
783 *
784 * Target and reference clocks are specified in kHz.
785 *
786 * If match_clock is provided, then best_clock P divider must match the P
787 * divider from @match_clock used for LVDS downclocking.
788 */
789 static bool
790 g4x_find_best_dpll(const struct intel_limit *limit,
791 struct intel_crtc_state *crtc_state,
792 int target, int refclk, struct dpll *match_clock,
793 struct dpll *best_clock)
794 {
795 struct drm_device *dev = crtc_state->base.crtc->dev;
796 struct dpll clock;
797 int max_n;
798 bool found = false;
799 /* approximately equals target * 0.00585 */
800 int err_most = (target >> 8) + (target >> 9);
801
802 memset(best_clock, 0, sizeof(*best_clock));
803
804 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
805
806 max_n = limit->n.max;
807 /* based on hardware requirement, prefer smaller n to precision */
808 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
809 /* based on hardware requirement, prefere larger m1,m2 */
810 for (clock.m1 = limit->m1.max;
811 clock.m1 >= limit->m1.min; clock.m1--) {
812 for (clock.m2 = limit->m2.max;
813 clock.m2 >= limit->m2.min; clock.m2--) {
814 for (clock.p1 = limit->p1.max;
815 clock.p1 >= limit->p1.min; clock.p1--) {
816 int this_err;
817
818 i9xx_calc_dpll_params(refclk, &clock);
819 if (!intel_PLL_is_valid(to_i915(dev),
820 limit,
821 &clock))
822 continue;
823
824 this_err = abs(clock.dot - target);
825 if (this_err < err_most) {
826 *best_clock = clock;
827 err_most = this_err;
828 max_n = clock.n;
829 found = true;
830 }
831 }
832 }
833 }
834 }
835 return found;
836 }
837
838 /*
839 * Check if the calculated PLL configuration is more optimal compared to the
840 * best configuration and error found so far. Return the calculated error.
841 */
842 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
843 const struct dpll *calculated_clock,
844 const struct dpll *best_clock,
845 unsigned int best_error_ppm,
846 unsigned int *error_ppm)
847 {
848 /*
849 * For CHV ignore the error and consider only the P value.
850 * Prefer a bigger P value based on HW requirements.
851 */
852 if (IS_CHERRYVIEW(to_i915(dev))) {
853 *error_ppm = 0;
854
855 return calculated_clock->p > best_clock->p;
856 }
857
858 if (WARN_ON_ONCE(!target_freq))
859 return false;
860
861 *error_ppm = div_u64(1000000ULL *
862 abs(target_freq - calculated_clock->dot),
863 target_freq);
864 /*
865 * Prefer a better P value over a better (smaller) error if the error
866 * is small. Ensure this preference for future configurations too by
867 * setting the error to 0.
868 */
869 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
870 *error_ppm = 0;
871
872 return true;
873 }
874
875 return *error_ppm + 10 < best_error_ppm;
876 }
877
878 /*
879 * Returns a set of divisors for the desired target clock with the given
880 * refclk, or FALSE. The returned values represent the clock equation:
881 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
882 */
883 static bool
884 vlv_find_best_dpll(const struct intel_limit *limit,
885 struct intel_crtc_state *crtc_state,
886 int target, int refclk, struct dpll *match_clock,
887 struct dpll *best_clock)
888 {
889 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
890 struct drm_device *dev = crtc->base.dev;
891 struct dpll clock;
892 unsigned int bestppm = 1000000;
893 /* min update 19.2 MHz */
894 int max_n = min(limit->n.max, refclk / 19200);
895 bool found = false;
896
897 target *= 5; /* fast clock */
898
899 memset(best_clock, 0, sizeof(*best_clock));
900
901 /* based on hardware requirement, prefer smaller n to precision */
902 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
903 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
904 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
905 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
906 clock.p = clock.p1 * clock.p2;
907 /* based on hardware requirement, prefer bigger m1,m2 values */
908 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
909 unsigned int ppm;
910
911 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
912 refclk * clock.m1);
913
914 vlv_calc_dpll_params(refclk, &clock);
915
916 if (!intel_PLL_is_valid(to_i915(dev),
917 limit,
918 &clock))
919 continue;
920
921 if (!vlv_PLL_is_optimal(dev, target,
922 &clock,
923 best_clock,
924 bestppm, &ppm))
925 continue;
926
927 *best_clock = clock;
928 bestppm = ppm;
929 found = true;
930 }
931 }
932 }
933 }
934
935 return found;
936 }
937
938 /*
939 * Returns a set of divisors for the desired target clock with the given
940 * refclk, or FALSE. The returned values represent the clock equation:
941 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
942 */
943 static bool
944 chv_find_best_dpll(const struct intel_limit *limit,
945 struct intel_crtc_state *crtc_state,
946 int target, int refclk, struct dpll *match_clock,
947 struct dpll *best_clock)
948 {
949 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
950 struct drm_device *dev = crtc->base.dev;
951 unsigned int best_error_ppm;
952 struct dpll clock;
953 uint64_t m2;
954 int found = false;
955
956 memset(best_clock, 0, sizeof(*best_clock));
957 best_error_ppm = 1000000;
958
959 /*
960 * Based on hardware doc, the n always set to 1, and m1 always
961 * set to 2. If requires to support 200Mhz refclk, we need to
962 * revisit this because n may not 1 anymore.
963 */
964 clock.n = 1, clock.m1 = 2;
965 target *= 5; /* fast clock */
966
967 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
968 for (clock.p2 = limit->p2.p2_fast;
969 clock.p2 >= limit->p2.p2_slow;
970 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
971 unsigned int error_ppm;
972
973 clock.p = clock.p1 * clock.p2;
974
975 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
976 clock.n) << 22, refclk * clock.m1);
977
978 if (m2 > INT_MAX/clock.m1)
979 continue;
980
981 clock.m2 = m2;
982
983 chv_calc_dpll_params(refclk, &clock);
984
985 if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
986 continue;
987
988 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
989 best_error_ppm, &error_ppm))
990 continue;
991
992 *best_clock = clock;
993 best_error_ppm = error_ppm;
994 found = true;
995 }
996 }
997
998 return found;
999 }
1000
1001 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1002 struct dpll *best_clock)
1003 {
1004 int refclk = 100000;
1005 const struct intel_limit *limit = &intel_limits_bxt;
1006
1007 return chv_find_best_dpll(limit, crtc_state,
1008 target_clock, refclk, NULL, best_clock);
1009 }
1010
1011 bool intel_crtc_active(struct intel_crtc *crtc)
1012 {
1013 /* Be paranoid as we can arrive here with only partial
1014 * state retrieved from the hardware during setup.
1015 *
1016 * We can ditch the adjusted_mode.crtc_clock check as soon
1017 * as Haswell has gained clock readout/fastboot support.
1018 *
1019 * We can ditch the crtc->primary->fb check as soon as we can
1020 * properly reconstruct framebuffers.
1021 *
1022 * FIXME: The intel_crtc->active here should be switched to
1023 * crtc->state->active once we have proper CRTC states wired up
1024 * for atomic.
1025 */
1026 return crtc->active && crtc->base.primary->state->fb &&
1027 crtc->config->base.adjusted_mode.crtc_clock;
1028 }
1029
1030 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1031 enum pipe pipe)
1032 {
1033 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1034
1035 return crtc->config->cpu_transcoder;
1036 }
1037
1038 static bool pipe_dsl_stopped(struct drm_i915_private *dev_priv, enum pipe pipe)
1039 {
1040 i915_reg_t reg = PIPEDSL(pipe);
1041 u32 line1, line2;
1042 u32 line_mask;
1043
1044 if (IS_GEN2(dev_priv))
1045 line_mask = DSL_LINEMASK_GEN2;
1046 else
1047 line_mask = DSL_LINEMASK_GEN3;
1048
1049 line1 = I915_READ(reg) & line_mask;
1050 msleep(5);
1051 line2 = I915_READ(reg) & line_mask;
1052
1053 return line1 == line2;
1054 }
1055
1056 /*
1057 * intel_wait_for_pipe_off - wait for pipe to turn off
1058 * @crtc: crtc whose pipe to wait for
1059 *
1060 * After disabling a pipe, we can't wait for vblank in the usual way,
1061 * spinning on the vblank interrupt status bit, since we won't actually
1062 * see an interrupt when the pipe is disabled.
1063 *
1064 * On Gen4 and above:
1065 * wait for the pipe register state bit to turn off
1066 *
1067 * Otherwise:
1068 * wait for the display line value to settle (it usually
1069 * ends up stopping at the start of the next frame).
1070 *
1071 */
1072 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1073 {
1074 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1075 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1076 enum pipe pipe = crtc->pipe;
1077
1078 if (INTEL_GEN(dev_priv) >= 4) {
1079 i915_reg_t reg = PIPECONF(cpu_transcoder);
1080
1081 /* Wait for the Pipe State to go off */
1082 if (intel_wait_for_register(dev_priv,
1083 reg, I965_PIPECONF_ACTIVE, 0,
1084 100))
1085 WARN(1, "pipe_off wait timed out\n");
1086 } else {
1087 /* Wait for the display line to settle */
1088 if (wait_for(pipe_dsl_stopped(dev_priv, pipe), 100))
1089 WARN(1, "pipe_off wait timed out\n");
1090 }
1091 }
1092
1093 /* Only for pre-ILK configs */
1094 void assert_pll(struct drm_i915_private *dev_priv,
1095 enum pipe pipe, bool state)
1096 {
1097 u32 val;
1098 bool cur_state;
1099
1100 val = I915_READ(DPLL(pipe));
1101 cur_state = !!(val & DPLL_VCO_ENABLE);
1102 I915_STATE_WARN(cur_state != state,
1103 "PLL state assertion failure (expected %s, current %s)\n",
1104 onoff(state), onoff(cur_state));
1105 }
1106
1107 /* XXX: the dsi pll is shared between MIPI DSI ports */
1108 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1109 {
1110 u32 val;
1111 bool cur_state;
1112
1113 mutex_lock(&dev_priv->sb_lock);
1114 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1115 mutex_unlock(&dev_priv->sb_lock);
1116
1117 cur_state = val & DSI_PLL_VCO_EN;
1118 I915_STATE_WARN(cur_state != state,
1119 "DSI PLL state assertion failure (expected %s, current %s)\n",
1120 onoff(state), onoff(cur_state));
1121 }
1122
1123 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1124 enum pipe pipe, bool state)
1125 {
1126 bool cur_state;
1127 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128 pipe);
1129
1130 if (HAS_DDI(dev_priv)) {
1131 /* DDI does not have a specific FDI_TX register */
1132 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1133 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1134 } else {
1135 u32 val = I915_READ(FDI_TX_CTL(pipe));
1136 cur_state = !!(val & FDI_TX_ENABLE);
1137 }
1138 I915_STATE_WARN(cur_state != state,
1139 "FDI TX state assertion failure (expected %s, current %s)\n",
1140 onoff(state), onoff(cur_state));
1141 }
1142 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1143 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1144
1145 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1146 enum pipe pipe, bool state)
1147 {
1148 u32 val;
1149 bool cur_state;
1150
1151 val = I915_READ(FDI_RX_CTL(pipe));
1152 cur_state = !!(val & FDI_RX_ENABLE);
1153 I915_STATE_WARN(cur_state != state,
1154 "FDI RX state assertion failure (expected %s, current %s)\n",
1155 onoff(state), onoff(cur_state));
1156 }
1157 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1158 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1159
1160 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1161 enum pipe pipe)
1162 {
1163 u32 val;
1164
1165 /* ILK FDI PLL is always enabled */
1166 if (IS_GEN5(dev_priv))
1167 return;
1168
1169 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1170 if (HAS_DDI(dev_priv))
1171 return;
1172
1173 val = I915_READ(FDI_TX_CTL(pipe));
1174 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175 }
1176
1177 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1178 enum pipe pipe, bool state)
1179 {
1180 u32 val;
1181 bool cur_state;
1182
1183 val = I915_READ(FDI_RX_CTL(pipe));
1184 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1185 I915_STATE_WARN(cur_state != state,
1186 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1187 onoff(state), onoff(cur_state));
1188 }
1189
1190 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1191 {
1192 i915_reg_t pp_reg;
1193 u32 val;
1194 enum pipe panel_pipe = PIPE_A;
1195 bool locked = true;
1196
1197 if (WARN_ON(HAS_DDI(dev_priv)))
1198 return;
1199
1200 if (HAS_PCH_SPLIT(dev_priv)) {
1201 u32 port_sel;
1202
1203 pp_reg = PP_CONTROL(0);
1204 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1205
1206 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1207 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1208 panel_pipe = PIPE_B;
1209 /* XXX: else fix for eDP */
1210 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1211 /* presumably write lock depends on pipe, not port select */
1212 pp_reg = PP_CONTROL(pipe);
1213 panel_pipe = pipe;
1214 } else {
1215 pp_reg = PP_CONTROL(0);
1216 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1217 panel_pipe = PIPE_B;
1218 }
1219
1220 val = I915_READ(pp_reg);
1221 if (!(val & PANEL_POWER_ON) ||
1222 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1223 locked = false;
1224
1225 I915_STATE_WARN(panel_pipe == pipe && locked,
1226 "panel assertion failure, pipe %c regs locked\n",
1227 pipe_name(pipe));
1228 }
1229
1230 static void assert_cursor(struct drm_i915_private *dev_priv,
1231 enum pipe pipe, bool state)
1232 {
1233 bool cur_state;
1234
1235 if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
1236 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1237 else
1238 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1239
1240 I915_STATE_WARN(cur_state != state,
1241 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1242 pipe_name(pipe), onoff(state), onoff(cur_state));
1243 }
1244 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1245 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1246
1247 void assert_pipe(struct drm_i915_private *dev_priv,
1248 enum pipe pipe, bool state)
1249 {
1250 bool cur_state;
1251 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1252 pipe);
1253 enum intel_display_power_domain power_domain;
1254
1255 /* if we need the pipe quirk it must be always on */
1256 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1257 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1258 state = true;
1259
1260 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1261 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1262 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1263 cur_state = !!(val & PIPECONF_ENABLE);
1264
1265 intel_display_power_put(dev_priv, power_domain);
1266 } else {
1267 cur_state = false;
1268 }
1269
1270 I915_STATE_WARN(cur_state != state,
1271 "pipe %c assertion failure (expected %s, current %s)\n",
1272 pipe_name(pipe), onoff(state), onoff(cur_state));
1273 }
1274
1275 static void assert_plane(struct drm_i915_private *dev_priv,
1276 enum plane plane, bool state)
1277 {
1278 u32 val;
1279 bool cur_state;
1280
1281 val = I915_READ(DSPCNTR(plane));
1282 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1283 I915_STATE_WARN(cur_state != state,
1284 "plane %c assertion failure (expected %s, current %s)\n",
1285 plane_name(plane), onoff(state), onoff(cur_state));
1286 }
1287
1288 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1289 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1290
1291 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1292 enum pipe pipe)
1293 {
1294 int i;
1295
1296 /* Primary planes are fixed to pipes on gen4+ */
1297 if (INTEL_GEN(dev_priv) >= 4) {
1298 u32 val = I915_READ(DSPCNTR(pipe));
1299 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1300 "plane %c assertion failure, should be disabled but not\n",
1301 plane_name(pipe));
1302 return;
1303 }
1304
1305 /* Need to check both planes against the pipe */
1306 for_each_pipe(dev_priv, i) {
1307 u32 val = I915_READ(DSPCNTR(i));
1308 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1309 DISPPLANE_SEL_PIPE_SHIFT;
1310 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1311 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1312 plane_name(i), pipe_name(pipe));
1313 }
1314 }
1315
1316 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1317 enum pipe pipe)
1318 {
1319 int sprite;
1320
1321 if (INTEL_GEN(dev_priv) >= 9) {
1322 for_each_sprite(dev_priv, pipe, sprite) {
1323 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1324 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1325 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1326 sprite, pipe_name(pipe));
1327 }
1328 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1329 for_each_sprite(dev_priv, pipe, sprite) {
1330 u32 val = I915_READ(SPCNTR(pipe, PLANE_SPRITE0 + sprite));
1331 I915_STATE_WARN(val & SP_ENABLE,
1332 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1333 sprite_name(pipe, sprite), pipe_name(pipe));
1334 }
1335 } else if (INTEL_GEN(dev_priv) >= 7) {
1336 u32 val = I915_READ(SPRCTL(pipe));
1337 I915_STATE_WARN(val & SPRITE_ENABLE,
1338 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1339 plane_name(pipe), pipe_name(pipe));
1340 } else if (INTEL_GEN(dev_priv) >= 5) {
1341 u32 val = I915_READ(DVSCNTR(pipe));
1342 I915_STATE_WARN(val & DVS_ENABLE,
1343 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1344 plane_name(pipe), pipe_name(pipe));
1345 }
1346 }
1347
1348 static void assert_vblank_disabled(struct drm_crtc *crtc)
1349 {
1350 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1351 drm_crtc_vblank_put(crtc);
1352 }
1353
1354 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1355 enum pipe pipe)
1356 {
1357 u32 val;
1358 bool enabled;
1359
1360 val = I915_READ(PCH_TRANSCONF(pipe));
1361 enabled = !!(val & TRANS_ENABLE);
1362 I915_STATE_WARN(enabled,
1363 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1364 pipe_name(pipe));
1365 }
1366
1367 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1368 enum pipe pipe, u32 port_sel, u32 val)
1369 {
1370 if ((val & DP_PORT_EN) == 0)
1371 return false;
1372
1373 if (HAS_PCH_CPT(dev_priv)) {
1374 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1375 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1376 return false;
1377 } else if (IS_CHERRYVIEW(dev_priv)) {
1378 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1379 return false;
1380 } else {
1381 if ((val & DP_PIPE_MASK) != (pipe << 30))
1382 return false;
1383 }
1384 return true;
1385 }
1386
1387 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1388 enum pipe pipe, u32 val)
1389 {
1390 if ((val & SDVO_ENABLE) == 0)
1391 return false;
1392
1393 if (HAS_PCH_CPT(dev_priv)) {
1394 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1395 return false;
1396 } else if (IS_CHERRYVIEW(dev_priv)) {
1397 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1398 return false;
1399 } else {
1400 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1401 return false;
1402 }
1403 return true;
1404 }
1405
1406 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1407 enum pipe pipe, u32 val)
1408 {
1409 if ((val & LVDS_PORT_EN) == 0)
1410 return false;
1411
1412 if (HAS_PCH_CPT(dev_priv)) {
1413 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1414 return false;
1415 } else {
1416 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1417 return false;
1418 }
1419 return true;
1420 }
1421
1422 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1423 enum pipe pipe, u32 val)
1424 {
1425 if ((val & ADPA_DAC_ENABLE) == 0)
1426 return false;
1427 if (HAS_PCH_CPT(dev_priv)) {
1428 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1429 return false;
1430 } else {
1431 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1432 return false;
1433 }
1434 return true;
1435 }
1436
1437 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1438 enum pipe pipe, i915_reg_t reg,
1439 u32 port_sel)
1440 {
1441 u32 val = I915_READ(reg);
1442 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1443 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1444 i915_mmio_reg_offset(reg), pipe_name(pipe));
1445
1446 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1447 && (val & DP_PIPEB_SELECT),
1448 "IBX PCH dp port still using transcoder B\n");
1449 }
1450
1451 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1452 enum pipe pipe, i915_reg_t reg)
1453 {
1454 u32 val = I915_READ(reg);
1455 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1456 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1457 i915_mmio_reg_offset(reg), pipe_name(pipe));
1458
1459 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1460 && (val & SDVO_PIPE_B_SELECT),
1461 "IBX PCH hdmi port still using transcoder B\n");
1462 }
1463
1464 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1465 enum pipe pipe)
1466 {
1467 u32 val;
1468
1469 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1470 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1471 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1472
1473 val = I915_READ(PCH_ADPA);
1474 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1475 "PCH VGA enabled on transcoder %c, should be disabled\n",
1476 pipe_name(pipe));
1477
1478 val = I915_READ(PCH_LVDS);
1479 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1480 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1481 pipe_name(pipe));
1482
1483 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1484 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1485 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1486 }
1487
1488 static void _vlv_enable_pll(struct intel_crtc *crtc,
1489 const struct intel_crtc_state *pipe_config)
1490 {
1491 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1492 enum pipe pipe = crtc->pipe;
1493
1494 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1495 POSTING_READ(DPLL(pipe));
1496 udelay(150);
1497
1498 if (intel_wait_for_register(dev_priv,
1499 DPLL(pipe),
1500 DPLL_LOCK_VLV,
1501 DPLL_LOCK_VLV,
1502 1))
1503 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1504 }
1505
1506 static void vlv_enable_pll(struct intel_crtc *crtc,
1507 const struct intel_crtc_state *pipe_config)
1508 {
1509 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1510 enum pipe pipe = crtc->pipe;
1511
1512 assert_pipe_disabled(dev_priv, pipe);
1513
1514 /* PLL is protected by panel, make sure we can write it */
1515 assert_panel_unlocked(dev_priv, pipe);
1516
1517 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1518 _vlv_enable_pll(crtc, pipe_config);
1519
1520 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1521 POSTING_READ(DPLL_MD(pipe));
1522 }
1523
1524
1525 static void _chv_enable_pll(struct intel_crtc *crtc,
1526 const struct intel_crtc_state *pipe_config)
1527 {
1528 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1529 enum pipe pipe = crtc->pipe;
1530 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1531 u32 tmp;
1532
1533 mutex_lock(&dev_priv->sb_lock);
1534
1535 /* Enable back the 10bit clock to display controller */
1536 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1537 tmp |= DPIO_DCLKP_EN;
1538 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1539
1540 mutex_unlock(&dev_priv->sb_lock);
1541
1542 /*
1543 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1544 */
1545 udelay(1);
1546
1547 /* Enable PLL */
1548 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1549
1550 /* Check PLL is locked */
1551 if (intel_wait_for_register(dev_priv,
1552 DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1553 1))
1554 DRM_ERROR("PLL %d failed to lock\n", pipe);
1555 }
1556
1557 static void chv_enable_pll(struct intel_crtc *crtc,
1558 const struct intel_crtc_state *pipe_config)
1559 {
1560 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1561 enum pipe pipe = crtc->pipe;
1562
1563 assert_pipe_disabled(dev_priv, pipe);
1564
1565 /* PLL is protected by panel, make sure we can write it */
1566 assert_panel_unlocked(dev_priv, pipe);
1567
1568 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1569 _chv_enable_pll(crtc, pipe_config);
1570
1571 if (pipe != PIPE_A) {
1572 /*
1573 * WaPixelRepeatModeFixForC0:chv
1574 *
1575 * DPLLCMD is AWOL. Use chicken bits to propagate
1576 * the value from DPLLBMD to either pipe B or C.
1577 */
1578 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1579 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1580 I915_WRITE(CBR4_VLV, 0);
1581 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1582
1583 /*
1584 * DPLLB VGA mode also seems to cause problems.
1585 * We should always have it disabled.
1586 */
1587 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1588 } else {
1589 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1590 POSTING_READ(DPLL_MD(pipe));
1591 }
1592 }
1593
1594 static int intel_num_dvo_pipes(struct drm_i915_private *dev_priv)
1595 {
1596 struct intel_crtc *crtc;
1597 int count = 0;
1598
1599 for_each_intel_crtc(&dev_priv->drm, crtc) {
1600 count += crtc->base.state->active &&
1601 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1602 }
1603
1604 return count;
1605 }
1606
1607 static void i9xx_enable_pll(struct intel_crtc *crtc)
1608 {
1609 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1610 i915_reg_t reg = DPLL(crtc->pipe);
1611 u32 dpll = crtc->config->dpll_hw_state.dpll;
1612
1613 assert_pipe_disabled(dev_priv, crtc->pipe);
1614
1615 /* PLL is protected by panel, make sure we can write it */
1616 if (IS_MOBILE(dev_priv) && !IS_I830(dev_priv))
1617 assert_panel_unlocked(dev_priv, crtc->pipe);
1618
1619 /* Enable DVO 2x clock on both PLLs if necessary */
1620 if (IS_I830(dev_priv) && intel_num_dvo_pipes(dev_priv) > 0) {
1621 /*
1622 * It appears to be important that we don't enable this
1623 * for the current pipe before otherwise configuring the
1624 * PLL. No idea how this should be handled if multiple
1625 * DVO outputs are enabled simultaneosly.
1626 */
1627 dpll |= DPLL_DVO_2X_MODE;
1628 I915_WRITE(DPLL(!crtc->pipe),
1629 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1630 }
1631
1632 /*
1633 * Apparently we need to have VGA mode enabled prior to changing
1634 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1635 * dividers, even though the register value does change.
1636 */
1637 I915_WRITE(reg, 0);
1638
1639 I915_WRITE(reg, dpll);
1640
1641 /* Wait for the clocks to stabilize. */
1642 POSTING_READ(reg);
1643 udelay(150);
1644
1645 if (INTEL_GEN(dev_priv) >= 4) {
1646 I915_WRITE(DPLL_MD(crtc->pipe),
1647 crtc->config->dpll_hw_state.dpll_md);
1648 } else {
1649 /* The pixel multiplier can only be updated once the
1650 * DPLL is enabled and the clocks are stable.
1651 *
1652 * So write it again.
1653 */
1654 I915_WRITE(reg, dpll);
1655 }
1656
1657 /* We do this three times for luck */
1658 I915_WRITE(reg, dpll);
1659 POSTING_READ(reg);
1660 udelay(150); /* wait for warmup */
1661 I915_WRITE(reg, dpll);
1662 POSTING_READ(reg);
1663 udelay(150); /* wait for warmup */
1664 I915_WRITE(reg, dpll);
1665 POSTING_READ(reg);
1666 udelay(150); /* wait for warmup */
1667 }
1668
1669 /**
1670 * i9xx_disable_pll - disable a PLL
1671 * @dev_priv: i915 private structure
1672 * @pipe: pipe PLL to disable
1673 *
1674 * Disable the PLL for @pipe, making sure the pipe is off first.
1675 *
1676 * Note! This is for pre-ILK only.
1677 */
1678 static void i9xx_disable_pll(struct intel_crtc *crtc)
1679 {
1680 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1681 enum pipe pipe = crtc->pipe;
1682
1683 /* Disable DVO 2x clock on both PLLs if necessary */
1684 if (IS_I830(dev_priv) &&
1685 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1686 !intel_num_dvo_pipes(dev_priv)) {
1687 I915_WRITE(DPLL(PIPE_B),
1688 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1689 I915_WRITE(DPLL(PIPE_A),
1690 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1691 }
1692
1693 /* Don't disable pipe or pipe PLLs if needed */
1694 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1695 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1696 return;
1697
1698 /* Make sure the pipe isn't still relying on us */
1699 assert_pipe_disabled(dev_priv, pipe);
1700
1701 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1702 POSTING_READ(DPLL(pipe));
1703 }
1704
1705 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1706 {
1707 u32 val;
1708
1709 /* Make sure the pipe isn't still relying on us */
1710 assert_pipe_disabled(dev_priv, pipe);
1711
1712 val = DPLL_INTEGRATED_REF_CLK_VLV |
1713 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1714 if (pipe != PIPE_A)
1715 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1716
1717 I915_WRITE(DPLL(pipe), val);
1718 POSTING_READ(DPLL(pipe));
1719 }
1720
1721 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1722 {
1723 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1724 u32 val;
1725
1726 /* Make sure the pipe isn't still relying on us */
1727 assert_pipe_disabled(dev_priv, pipe);
1728
1729 val = DPLL_SSC_REF_CLK_CHV |
1730 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1731 if (pipe != PIPE_A)
1732 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1733
1734 I915_WRITE(DPLL(pipe), val);
1735 POSTING_READ(DPLL(pipe));
1736
1737 mutex_lock(&dev_priv->sb_lock);
1738
1739 /* Disable 10bit clock to display controller */
1740 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1741 val &= ~DPIO_DCLKP_EN;
1742 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1743
1744 mutex_unlock(&dev_priv->sb_lock);
1745 }
1746
1747 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1748 struct intel_digital_port *dport,
1749 unsigned int expected_mask)
1750 {
1751 u32 port_mask;
1752 i915_reg_t dpll_reg;
1753
1754 switch (dport->port) {
1755 case PORT_B:
1756 port_mask = DPLL_PORTB_READY_MASK;
1757 dpll_reg = DPLL(0);
1758 break;
1759 case PORT_C:
1760 port_mask = DPLL_PORTC_READY_MASK;
1761 dpll_reg = DPLL(0);
1762 expected_mask <<= 4;
1763 break;
1764 case PORT_D:
1765 port_mask = DPLL_PORTD_READY_MASK;
1766 dpll_reg = DPIO_PHY_STATUS;
1767 break;
1768 default:
1769 BUG();
1770 }
1771
1772 if (intel_wait_for_register(dev_priv,
1773 dpll_reg, port_mask, expected_mask,
1774 1000))
1775 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1776 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1777 }
1778
1779 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1780 enum pipe pipe)
1781 {
1782 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
1783 pipe);
1784 i915_reg_t reg;
1785 uint32_t val, pipeconf_val;
1786
1787 /* Make sure PCH DPLL is enabled */
1788 assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1789
1790 /* FDI must be feeding us bits for PCH ports */
1791 assert_fdi_tx_enabled(dev_priv, pipe);
1792 assert_fdi_rx_enabled(dev_priv, pipe);
1793
1794 if (HAS_PCH_CPT(dev_priv)) {
1795 /* Workaround: Set the timing override bit before enabling the
1796 * pch transcoder. */
1797 reg = TRANS_CHICKEN2(pipe);
1798 val = I915_READ(reg);
1799 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1800 I915_WRITE(reg, val);
1801 }
1802
1803 reg = PCH_TRANSCONF(pipe);
1804 val = I915_READ(reg);
1805 pipeconf_val = I915_READ(PIPECONF(pipe));
1806
1807 if (HAS_PCH_IBX(dev_priv)) {
1808 /*
1809 * Make the BPC in transcoder be consistent with
1810 * that in pipeconf reg. For HDMI we must use 8bpc
1811 * here for both 8bpc and 12bpc.
1812 */
1813 val &= ~PIPECONF_BPC_MASK;
1814 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1815 val |= PIPECONF_8BPC;
1816 else
1817 val |= pipeconf_val & PIPECONF_BPC_MASK;
1818 }
1819
1820 val &= ~TRANS_INTERLACE_MASK;
1821 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1822 if (HAS_PCH_IBX(dev_priv) &&
1823 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1824 val |= TRANS_LEGACY_INTERLACED_ILK;
1825 else
1826 val |= TRANS_INTERLACED;
1827 else
1828 val |= TRANS_PROGRESSIVE;
1829
1830 I915_WRITE(reg, val | TRANS_ENABLE);
1831 if (intel_wait_for_register(dev_priv,
1832 reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1833 100))
1834 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1835 }
1836
1837 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1838 enum transcoder cpu_transcoder)
1839 {
1840 u32 val, pipeconf_val;
1841
1842 /* FDI must be feeding us bits for PCH ports */
1843 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1844 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1845
1846 /* Workaround: set timing override bit. */
1847 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1848 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1849 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1850
1851 val = TRANS_ENABLE;
1852 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1853
1854 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1855 PIPECONF_INTERLACED_ILK)
1856 val |= TRANS_INTERLACED;
1857 else
1858 val |= TRANS_PROGRESSIVE;
1859
1860 I915_WRITE(LPT_TRANSCONF, val);
1861 if (intel_wait_for_register(dev_priv,
1862 LPT_TRANSCONF,
1863 TRANS_STATE_ENABLE,
1864 TRANS_STATE_ENABLE,
1865 100))
1866 DRM_ERROR("Failed to enable PCH transcoder\n");
1867 }
1868
1869 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1870 enum pipe pipe)
1871 {
1872 i915_reg_t reg;
1873 uint32_t val;
1874
1875 /* FDI relies on the transcoder */
1876 assert_fdi_tx_disabled(dev_priv, pipe);
1877 assert_fdi_rx_disabled(dev_priv, pipe);
1878
1879 /* Ports must be off as well */
1880 assert_pch_ports_disabled(dev_priv, pipe);
1881
1882 reg = PCH_TRANSCONF(pipe);
1883 val = I915_READ(reg);
1884 val &= ~TRANS_ENABLE;
1885 I915_WRITE(reg, val);
1886 /* wait for PCH transcoder off, transcoder state */
1887 if (intel_wait_for_register(dev_priv,
1888 reg, TRANS_STATE_ENABLE, 0,
1889 50))
1890 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1891
1892 if (HAS_PCH_CPT(dev_priv)) {
1893 /* Workaround: Clear the timing override chicken bit again. */
1894 reg = TRANS_CHICKEN2(pipe);
1895 val = I915_READ(reg);
1896 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1897 I915_WRITE(reg, val);
1898 }
1899 }
1900
1901 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1902 {
1903 u32 val;
1904
1905 val = I915_READ(LPT_TRANSCONF);
1906 val &= ~TRANS_ENABLE;
1907 I915_WRITE(LPT_TRANSCONF, val);
1908 /* wait for PCH transcoder off, transcoder state */
1909 if (intel_wait_for_register(dev_priv,
1910 LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1911 50))
1912 DRM_ERROR("Failed to disable PCH transcoder\n");
1913
1914 /* Workaround: clear timing override bit. */
1915 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1916 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1917 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1918 }
1919
1920 enum transcoder intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1921 {
1922 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1923
1924 WARN_ON(!crtc->config->has_pch_encoder);
1925
1926 if (HAS_PCH_LPT(dev_priv))
1927 return TRANSCODER_A;
1928 else
1929 return (enum transcoder) crtc->pipe;
1930 }
1931
1932 /**
1933 * intel_enable_pipe - enable a pipe, asserting requirements
1934 * @crtc: crtc responsible for the pipe
1935 *
1936 * Enable @crtc's pipe, making sure that various hardware specific requirements
1937 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1938 */
1939 static void intel_enable_pipe(struct intel_crtc *crtc)
1940 {
1941 struct drm_device *dev = crtc->base.dev;
1942 struct drm_i915_private *dev_priv = to_i915(dev);
1943 enum pipe pipe = crtc->pipe;
1944 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1945 i915_reg_t reg;
1946 u32 val;
1947
1948 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1949
1950 assert_planes_disabled(dev_priv, pipe);
1951 assert_cursor_disabled(dev_priv, pipe);
1952 assert_sprites_disabled(dev_priv, pipe);
1953
1954 /*
1955 * A pipe without a PLL won't actually be able to drive bits from
1956 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1957 * need the check.
1958 */
1959 if (HAS_GMCH_DISPLAY(dev_priv)) {
1960 if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1961 assert_dsi_pll_enabled(dev_priv);
1962 else
1963 assert_pll_enabled(dev_priv, pipe);
1964 } else {
1965 if (crtc->config->has_pch_encoder) {
1966 /* if driving the PCH, we need FDI enabled */
1967 assert_fdi_rx_pll_enabled(dev_priv,
1968 (enum pipe) intel_crtc_pch_transcoder(crtc));
1969 assert_fdi_tx_pll_enabled(dev_priv,
1970 (enum pipe) cpu_transcoder);
1971 }
1972 /* FIXME: assert CPU port conditions for SNB+ */
1973 }
1974
1975 reg = PIPECONF(cpu_transcoder);
1976 val = I915_READ(reg);
1977 if (val & PIPECONF_ENABLE) {
1978 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1979 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
1980 return;
1981 }
1982
1983 I915_WRITE(reg, val | PIPECONF_ENABLE);
1984 POSTING_READ(reg);
1985
1986 /*
1987 * Until the pipe starts DSL will read as 0, which would cause
1988 * an apparent vblank timestamp jump, which messes up also the
1989 * frame count when it's derived from the timestamps. So let's
1990 * wait for the pipe to start properly before we call
1991 * drm_crtc_vblank_on()
1992 */
1993 if (dev->max_vblank_count == 0 &&
1994 wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
1995 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
1996 }
1997
1998 /**
1999 * intel_disable_pipe - disable a pipe, asserting requirements
2000 * @crtc: crtc whose pipes is to be disabled
2001 *
2002 * Disable the pipe of @crtc, making sure that various hardware
2003 * specific requirements are met, if applicable, e.g. plane
2004 * disabled, panel fitter off, etc.
2005 *
2006 * Will wait until the pipe has shut down before returning.
2007 */
2008 static void intel_disable_pipe(struct intel_crtc *crtc)
2009 {
2010 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2011 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2012 enum pipe pipe = crtc->pipe;
2013 i915_reg_t reg;
2014 u32 val;
2015
2016 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2017
2018 /*
2019 * Make sure planes won't keep trying to pump pixels to us,
2020 * or we might hang the display.
2021 */
2022 assert_planes_disabled(dev_priv, pipe);
2023 assert_cursor_disabled(dev_priv, pipe);
2024 assert_sprites_disabled(dev_priv, pipe);
2025
2026 reg = PIPECONF(cpu_transcoder);
2027 val = I915_READ(reg);
2028 if ((val & PIPECONF_ENABLE) == 0)
2029 return;
2030
2031 /*
2032 * Double wide has implications for planes
2033 * so best keep it disabled when not needed.
2034 */
2035 if (crtc->config->double_wide)
2036 val &= ~PIPECONF_DOUBLE_WIDE;
2037
2038 /* Don't disable pipe or pipe PLLs if needed */
2039 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2040 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2041 val &= ~PIPECONF_ENABLE;
2042
2043 I915_WRITE(reg, val);
2044 if ((val & PIPECONF_ENABLE) == 0)
2045 intel_wait_for_pipe_off(crtc);
2046 }
2047
2048 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2049 {
2050 return IS_GEN2(dev_priv) ? 2048 : 4096;
2051 }
2052
2053 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2054 uint64_t fb_modifier, unsigned int cpp)
2055 {
2056 switch (fb_modifier) {
2057 case DRM_FORMAT_MOD_NONE:
2058 return cpp;
2059 case I915_FORMAT_MOD_X_TILED:
2060 if (IS_GEN2(dev_priv))
2061 return 128;
2062 else
2063 return 512;
2064 case I915_FORMAT_MOD_Y_TILED:
2065 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2066 return 128;
2067 else
2068 return 512;
2069 case I915_FORMAT_MOD_Yf_TILED:
2070 switch (cpp) {
2071 case 1:
2072 return 64;
2073 case 2:
2074 case 4:
2075 return 128;
2076 case 8:
2077 case 16:
2078 return 256;
2079 default:
2080 MISSING_CASE(cpp);
2081 return cpp;
2082 }
2083 break;
2084 default:
2085 MISSING_CASE(fb_modifier);
2086 return cpp;
2087 }
2088 }
2089
2090 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2091 uint64_t fb_modifier, unsigned int cpp)
2092 {
2093 if (fb_modifier == DRM_FORMAT_MOD_NONE)
2094 return 1;
2095 else
2096 return intel_tile_size(dev_priv) /
2097 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2098 }
2099
2100 /* Return the tile dimensions in pixel units */
2101 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2102 unsigned int *tile_width,
2103 unsigned int *tile_height,
2104 uint64_t fb_modifier,
2105 unsigned int cpp)
2106 {
2107 unsigned int tile_width_bytes =
2108 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2109
2110 *tile_width = tile_width_bytes / cpp;
2111 *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2112 }
2113
2114 unsigned int
2115 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2116 uint32_t pixel_format, uint64_t fb_modifier)
2117 {
2118 unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2119 unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2120
2121 return ALIGN(height, tile_height);
2122 }
2123
2124 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2125 {
2126 unsigned int size = 0;
2127 int i;
2128
2129 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2130 size += rot_info->plane[i].width * rot_info->plane[i].height;
2131
2132 return size;
2133 }
2134
2135 static void
2136 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2137 const struct drm_framebuffer *fb,
2138 unsigned int rotation)
2139 {
2140 view->type = I915_GGTT_VIEW_NORMAL;
2141 if (drm_rotation_90_or_270(rotation)) {
2142 view->type = I915_GGTT_VIEW_ROTATED;
2143 view->rotated = to_intel_framebuffer(fb)->rot_info;
2144 }
2145 }
2146
2147 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2148 {
2149 if (INTEL_INFO(dev_priv)->gen >= 9)
2150 return 256 * 1024;
2151 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2152 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2153 return 128 * 1024;
2154 else if (INTEL_INFO(dev_priv)->gen >= 4)
2155 return 4 * 1024;
2156 else
2157 return 0;
2158 }
2159
2160 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2161 uint64_t fb_modifier)
2162 {
2163 switch (fb_modifier) {
2164 case DRM_FORMAT_MOD_NONE:
2165 return intel_linear_alignment(dev_priv);
2166 case I915_FORMAT_MOD_X_TILED:
2167 if (INTEL_INFO(dev_priv)->gen >= 9)
2168 return 256 * 1024;
2169 return 0;
2170 case I915_FORMAT_MOD_Y_TILED:
2171 case I915_FORMAT_MOD_Yf_TILED:
2172 return 1 * 1024 * 1024;
2173 default:
2174 MISSING_CASE(fb_modifier);
2175 return 0;
2176 }
2177 }
2178
2179 struct i915_vma *
2180 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2181 {
2182 struct drm_device *dev = fb->dev;
2183 struct drm_i915_private *dev_priv = to_i915(dev);
2184 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2185 struct i915_ggtt_view view;
2186 struct i915_vma *vma;
2187 u32 alignment;
2188
2189 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2190
2191 alignment = intel_surf_alignment(dev_priv, fb->modifier);
2192
2193 intel_fill_fb_ggtt_view(&view, fb, rotation);
2194
2195 /* Note that the w/a also requires 64 PTE of padding following the
2196 * bo. We currently fill all unused PTE with the shadow page and so
2197 * we should always have valid PTE following the scanout preventing
2198 * the VT-d warning.
2199 */
2200 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2201 alignment = 256 * 1024;
2202
2203 /*
2204 * Global gtt pte registers are special registers which actually forward
2205 * writes to a chunk of system memory. Which means that there is no risk
2206 * that the register values disappear as soon as we call
2207 * intel_runtime_pm_put(), so it is correct to wrap only the
2208 * pin/unpin/fence and not more.
2209 */
2210 intel_runtime_pm_get(dev_priv);
2211
2212 vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
2213 if (IS_ERR(vma))
2214 goto err;
2215
2216 if (i915_vma_is_map_and_fenceable(vma)) {
2217 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2218 * fence, whereas 965+ only requires a fence if using
2219 * framebuffer compression. For simplicity, we always, when
2220 * possible, install a fence as the cost is not that onerous.
2221 *
2222 * If we fail to fence the tiled scanout, then either the
2223 * modeset will reject the change (which is highly unlikely as
2224 * the affected systems, all but one, do not have unmappable
2225 * space) or we will not be able to enable full powersaving
2226 * techniques (also likely not to apply due to various limits
2227 * FBC and the like impose on the size of the buffer, which
2228 * presumably we violated anyway with this unmappable buffer).
2229 * Anyway, it is presumably better to stumble onwards with
2230 * something and try to run the system in a "less than optimal"
2231 * mode that matches the user configuration.
2232 */
2233 if (i915_vma_get_fence(vma) == 0)
2234 i915_vma_pin_fence(vma);
2235 }
2236
2237 i915_vma_get(vma);
2238 err:
2239 intel_runtime_pm_put(dev_priv);
2240 return vma;
2241 }
2242
2243 void intel_unpin_fb_vma(struct i915_vma *vma)
2244 {
2245 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
2246
2247 i915_vma_unpin_fence(vma);
2248 i915_gem_object_unpin_from_display_plane(vma);
2249 i915_vma_put(vma);
2250 }
2251
2252 static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
2253 unsigned int rotation)
2254 {
2255 if (drm_rotation_90_or_270(rotation))
2256 return to_intel_framebuffer(fb)->rotated[plane].pitch;
2257 else
2258 return fb->pitches[plane];
2259 }
2260
2261 /*
2262 * Convert the x/y offsets into a linear offset.
2263 * Only valid with 0/180 degree rotation, which is fine since linear
2264 * offset is only used with linear buffers on pre-hsw and tiled buffers
2265 * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2266 */
2267 u32 intel_fb_xy_to_linear(int x, int y,
2268 const struct intel_plane_state *state,
2269 int plane)
2270 {
2271 const struct drm_framebuffer *fb = state->base.fb;
2272 unsigned int cpp = fb->format->cpp[plane];
2273 unsigned int pitch = fb->pitches[plane];
2274
2275 return y * pitch + x * cpp;
2276 }
2277
2278 /*
2279 * Add the x/y offsets derived from fb->offsets[] to the user
2280 * specified plane src x/y offsets. The resulting x/y offsets
2281 * specify the start of scanout from the beginning of the gtt mapping.
2282 */
2283 void intel_add_fb_offsets(int *x, int *y,
2284 const struct intel_plane_state *state,
2285 int plane)
2286
2287 {
2288 const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2289 unsigned int rotation = state->base.rotation;
2290
2291 if (drm_rotation_90_or_270(rotation)) {
2292 *x += intel_fb->rotated[plane].x;
2293 *y += intel_fb->rotated[plane].y;
2294 } else {
2295 *x += intel_fb->normal[plane].x;
2296 *y += intel_fb->normal[plane].y;
2297 }
2298 }
2299
2300 /*
2301 * Input tile dimensions and pitch must already be
2302 * rotated to match x and y, and in pixel units.
2303 */
2304 static u32 _intel_adjust_tile_offset(int *x, int *y,
2305 unsigned int tile_width,
2306 unsigned int tile_height,
2307 unsigned int tile_size,
2308 unsigned int pitch_tiles,
2309 u32 old_offset,
2310 u32 new_offset)
2311 {
2312 unsigned int pitch_pixels = pitch_tiles * tile_width;
2313 unsigned int tiles;
2314
2315 WARN_ON(old_offset & (tile_size - 1));
2316 WARN_ON(new_offset & (tile_size - 1));
2317 WARN_ON(new_offset > old_offset);
2318
2319 tiles = (old_offset - new_offset) / tile_size;
2320
2321 *y += tiles / pitch_tiles * tile_height;
2322 *x += tiles % pitch_tiles * tile_width;
2323
2324 /* minimize x in case it got needlessly big */
2325 *y += *x / pitch_pixels * tile_height;
2326 *x %= pitch_pixels;
2327
2328 return new_offset;
2329 }
2330
2331 /*
2332 * Adjust the tile offset by moving the difference into
2333 * the x/y offsets.
2334 */
2335 static u32 intel_adjust_tile_offset(int *x, int *y,
2336 const struct intel_plane_state *state, int plane,
2337 u32 old_offset, u32 new_offset)
2338 {
2339 const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2340 const struct drm_framebuffer *fb = state->base.fb;
2341 unsigned int cpp = fb->format->cpp[plane];
2342 unsigned int rotation = state->base.rotation;
2343 unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2344
2345 WARN_ON(new_offset > old_offset);
2346
2347 if (fb->modifier != DRM_FORMAT_MOD_NONE) {
2348 unsigned int tile_size, tile_width, tile_height;
2349 unsigned int pitch_tiles;
2350
2351 tile_size = intel_tile_size(dev_priv);
2352 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2353 fb->modifier, cpp);
2354
2355 if (drm_rotation_90_or_270(rotation)) {
2356 pitch_tiles = pitch / tile_height;
2357 swap(tile_width, tile_height);
2358 } else {
2359 pitch_tiles = pitch / (tile_width * cpp);
2360 }
2361
2362 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2363 tile_size, pitch_tiles,
2364 old_offset, new_offset);
2365 } else {
2366 old_offset += *y * pitch + *x * cpp;
2367
2368 *y = (old_offset - new_offset) / pitch;
2369 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2370 }
2371
2372 return new_offset;
2373 }
2374
2375 /*
2376 * Computes the linear offset to the base tile and adjusts
2377 * x, y. bytes per pixel is assumed to be a power-of-two.
2378 *
2379 * In the 90/270 rotated case, x and y are assumed
2380 * to be already rotated to match the rotated GTT view, and
2381 * pitch is the tile_height aligned framebuffer height.
2382 *
2383 * This function is used when computing the derived information
2384 * under intel_framebuffer, so using any of that information
2385 * here is not allowed. Anything under drm_framebuffer can be
2386 * used. This is why the user has to pass in the pitch since it
2387 * is specified in the rotated orientation.
2388 */
2389 static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2390 int *x, int *y,
2391 const struct drm_framebuffer *fb, int plane,
2392 unsigned int pitch,
2393 unsigned int rotation,
2394 u32 alignment)
2395 {
2396 uint64_t fb_modifier = fb->modifier;
2397 unsigned int cpp = fb->format->cpp[plane];
2398 u32 offset, offset_aligned;
2399
2400 if (alignment)
2401 alignment--;
2402
2403 if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2404 unsigned int tile_size, tile_width, tile_height;
2405 unsigned int tile_rows, tiles, pitch_tiles;
2406
2407 tile_size = intel_tile_size(dev_priv);
2408 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2409 fb_modifier, cpp);
2410
2411 if (drm_rotation_90_or_270(rotation)) {
2412 pitch_tiles = pitch / tile_height;
2413 swap(tile_width, tile_height);
2414 } else {
2415 pitch_tiles = pitch / (tile_width * cpp);
2416 }
2417
2418 tile_rows = *y / tile_height;
2419 *y %= tile_height;
2420
2421 tiles = *x / tile_width;
2422 *x %= tile_width;
2423
2424 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2425 offset_aligned = offset & ~alignment;
2426
2427 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2428 tile_size, pitch_tiles,
2429 offset, offset_aligned);
2430 } else {
2431 offset = *y * pitch + *x * cpp;
2432 offset_aligned = offset & ~alignment;
2433
2434 *y = (offset & alignment) / pitch;
2435 *x = ((offset & alignment) - *y * pitch) / cpp;
2436 }
2437
2438 return offset_aligned;
2439 }
2440
2441 u32 intel_compute_tile_offset(int *x, int *y,
2442 const struct intel_plane_state *state,
2443 int plane)
2444 {
2445 const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2446 const struct drm_framebuffer *fb = state->base.fb;
2447 unsigned int rotation = state->base.rotation;
2448 int pitch = intel_fb_pitch(fb, plane, rotation);
2449 u32 alignment;
2450
2451 /* AUX_DIST needs only 4K alignment */
2452 if (fb->format->format == DRM_FORMAT_NV12 && plane == 1)
2453 alignment = 4096;
2454 else
2455 alignment = intel_surf_alignment(dev_priv, fb->modifier);
2456
2457 return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2458 rotation, alignment);
2459 }
2460
2461 /* Convert the fb->offset[] linear offset into x/y offsets */
2462 static void intel_fb_offset_to_xy(int *x, int *y,
2463 const struct drm_framebuffer *fb, int plane)
2464 {
2465 unsigned int cpp = fb->format->cpp[plane];
2466 unsigned int pitch = fb->pitches[plane];
2467 u32 linear_offset = fb->offsets[plane];
2468
2469 *y = linear_offset / pitch;
2470 *x = linear_offset % pitch / cpp;
2471 }
2472
2473 static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2474 {
2475 switch (fb_modifier) {
2476 case I915_FORMAT_MOD_X_TILED:
2477 return I915_TILING_X;
2478 case I915_FORMAT_MOD_Y_TILED:
2479 return I915_TILING_Y;
2480 default:
2481 return I915_TILING_NONE;
2482 }
2483 }
2484
2485 static int
2486 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2487 struct drm_framebuffer *fb)
2488 {
2489 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2490 struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2491 u32 gtt_offset_rotated = 0;
2492 unsigned int max_size = 0;
2493 int i, num_planes = fb->format->num_planes;
2494 unsigned int tile_size = intel_tile_size(dev_priv);
2495
2496 for (i = 0; i < num_planes; i++) {
2497 unsigned int width, height;
2498 unsigned int cpp, size;
2499 u32 offset;
2500 int x, y;
2501
2502 cpp = fb->format->cpp[i];
2503 width = drm_framebuffer_plane_width(fb->width, fb, i);
2504 height = drm_framebuffer_plane_height(fb->height, fb, i);
2505
2506 intel_fb_offset_to_xy(&x, &y, fb, i);
2507
2508 /*
2509 * The fence (if used) is aligned to the start of the object
2510 * so having the framebuffer wrap around across the edge of the
2511 * fenced region doesn't really work. We have no API to configure
2512 * the fence start offset within the object (nor could we probably
2513 * on gen2/3). So it's just easier if we just require that the
2514 * fb layout agrees with the fence layout. We already check that the
2515 * fb stride matches the fence stride elsewhere.
2516 */
2517 if (i915_gem_object_is_tiled(intel_fb->obj) &&
2518 (x + width) * cpp > fb->pitches[i]) {
2519 DRM_DEBUG("bad fb plane %d offset: 0x%x\n",
2520 i, fb->offsets[i]);
2521 return -EINVAL;
2522 }
2523
2524 /*
2525 * First pixel of the framebuffer from
2526 * the start of the normal gtt mapping.
2527 */
2528 intel_fb->normal[i].x = x;
2529 intel_fb->normal[i].y = y;
2530
2531 offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2532 fb, 0, fb->pitches[i],
2533 DRM_ROTATE_0, tile_size);
2534 offset /= tile_size;
2535
2536 if (fb->modifier != DRM_FORMAT_MOD_NONE) {
2537 unsigned int tile_width, tile_height;
2538 unsigned int pitch_tiles;
2539 struct drm_rect r;
2540
2541 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2542 fb->modifier, cpp);
2543
2544 rot_info->plane[i].offset = offset;
2545 rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2546 rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2547 rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2548
2549 intel_fb->rotated[i].pitch =
2550 rot_info->plane[i].height * tile_height;
2551
2552 /* how many tiles does this plane need */
2553 size = rot_info->plane[i].stride * rot_info->plane[i].height;
2554 /*
2555 * If the plane isn't horizontally tile aligned,
2556 * we need one more tile.
2557 */
2558 if (x != 0)
2559 size++;
2560
2561 /* rotate the x/y offsets to match the GTT view */
2562 r.x1 = x;
2563 r.y1 = y;
2564 r.x2 = x + width;
2565 r.y2 = y + height;
2566 drm_rect_rotate(&r,
2567 rot_info->plane[i].width * tile_width,
2568 rot_info->plane[i].height * tile_height,
2569 DRM_ROTATE_270);
2570 x = r.x1;
2571 y = r.y1;
2572
2573 /* rotate the tile dimensions to match the GTT view */
2574 pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2575 swap(tile_width, tile_height);
2576
2577 /*
2578 * We only keep the x/y offsets, so push all of the
2579 * gtt offset into the x/y offsets.
2580 */
2581 _intel_adjust_tile_offset(&x, &y,
2582 tile_width, tile_height,
2583 tile_size, pitch_tiles,
2584 gtt_offset_rotated * tile_size, 0);
2585
2586 gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2587
2588 /*
2589 * First pixel of the framebuffer from
2590 * the start of the rotated gtt mapping.
2591 */
2592 intel_fb->rotated[i].x = x;
2593 intel_fb->rotated[i].y = y;
2594 } else {
2595 size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2596 x * cpp, tile_size);
2597 }
2598
2599 /* how many tiles in total needed in the bo */
2600 max_size = max(max_size, offset + size);
2601 }
2602
2603 if (max_size * tile_size > to_intel_framebuffer(fb)->obj->base.size) {
2604 DRM_DEBUG("fb too big for bo (need %u bytes, have %zu bytes)\n",
2605 max_size * tile_size, to_intel_framebuffer(fb)->obj->base.size);
2606 return -EINVAL;
2607 }
2608
2609 return 0;
2610 }
2611
2612 static int i9xx_format_to_fourcc(int format)
2613 {
2614 switch (format) {
2615 case DISPPLANE_8BPP:
2616 return DRM_FORMAT_C8;
2617 case DISPPLANE_BGRX555:
2618 return DRM_FORMAT_XRGB1555;
2619 case DISPPLANE_BGRX565:
2620 return DRM_FORMAT_RGB565;
2621 default:
2622 case DISPPLANE_BGRX888:
2623 return DRM_FORMAT_XRGB8888;
2624 case DISPPLANE_RGBX888:
2625 return DRM_FORMAT_XBGR8888;
2626 case DISPPLANE_BGRX101010:
2627 return DRM_FORMAT_XRGB2101010;
2628 case DISPPLANE_RGBX101010:
2629 return DRM_FORMAT_XBGR2101010;
2630 }
2631 }
2632
2633 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2634 {
2635 switch (format) {
2636 case PLANE_CTL_FORMAT_RGB_565:
2637 return DRM_FORMAT_RGB565;
2638 default:
2639 case PLANE_CTL_FORMAT_XRGB_8888:
2640 if (rgb_order) {
2641 if (alpha)
2642 return DRM_FORMAT_ABGR8888;
2643 else
2644 return DRM_FORMAT_XBGR8888;
2645 } else {
2646 if (alpha)
2647 return DRM_FORMAT_ARGB8888;
2648 else
2649 return DRM_FORMAT_XRGB8888;
2650 }
2651 case PLANE_CTL_FORMAT_XRGB_2101010:
2652 if (rgb_order)
2653 return DRM_FORMAT_XBGR2101010;
2654 else
2655 return DRM_FORMAT_XRGB2101010;
2656 }
2657 }
2658
2659 static bool
2660 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2661 struct intel_initial_plane_config *plane_config)
2662 {
2663 struct drm_device *dev = crtc->base.dev;
2664 struct drm_i915_private *dev_priv = to_i915(dev);
2665 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2666 struct drm_i915_gem_object *obj = NULL;
2667 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2668 struct drm_framebuffer *fb = &plane_config->fb->base;
2669 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2670 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2671 PAGE_SIZE);
2672
2673 size_aligned -= base_aligned;
2674
2675 if (plane_config->size == 0)
2676 return false;
2677
2678 /* If the FB is too big, just don't use it since fbdev is not very
2679 * important and we should probably use that space with FBC or other
2680 * features. */
2681 if (size_aligned * 2 > ggtt->stolen_usable_size)
2682 return false;
2683
2684 mutex_lock(&dev->struct_mutex);
2685
2686 obj = i915_gem_object_create_stolen_for_preallocated(dev_priv,
2687 base_aligned,
2688 base_aligned,
2689 size_aligned);
2690 if (!obj) {
2691 mutex_unlock(&dev->struct_mutex);
2692 return false;
2693 }
2694
2695 if (plane_config->tiling == I915_TILING_X)
2696 obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
2697
2698 mode_cmd.pixel_format = fb->format->format;
2699 mode_cmd.width = fb->width;
2700 mode_cmd.height = fb->height;
2701 mode_cmd.pitches[0] = fb->pitches[0];
2702 mode_cmd.modifier[0] = fb->modifier;
2703 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2704
2705 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2706 &mode_cmd, obj)) {
2707 DRM_DEBUG_KMS("intel fb init failed\n");
2708 goto out_unref_obj;
2709 }
2710
2711 mutex_unlock(&dev->struct_mutex);
2712
2713 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2714 return true;
2715
2716 out_unref_obj:
2717 i915_gem_object_put(obj);
2718 mutex_unlock(&dev->struct_mutex);
2719 return false;
2720 }
2721
2722 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2723 static void
2724 update_state_fb(struct drm_plane *plane)
2725 {
2726 if (plane->fb == plane->state->fb)
2727 return;
2728
2729 if (plane->state->fb)
2730 drm_framebuffer_unreference(plane->state->fb);
2731 plane->state->fb = plane->fb;
2732 if (plane->state->fb)
2733 drm_framebuffer_reference(plane->state->fb);
2734 }
2735
2736 static void
2737 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2738 struct intel_initial_plane_config *plane_config)
2739 {
2740 struct drm_device *dev = intel_crtc->base.dev;
2741 struct drm_i915_private *dev_priv = to_i915(dev);
2742 struct drm_crtc *c;
2743 struct drm_i915_gem_object *obj;
2744 struct drm_plane *primary = intel_crtc->base.primary;
2745 struct drm_plane_state *plane_state = primary->state;
2746 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2747 struct intel_plane *intel_plane = to_intel_plane(primary);
2748 struct intel_plane_state *intel_state =
2749 to_intel_plane_state(plane_state);
2750 struct drm_framebuffer *fb;
2751
2752 if (!plane_config->fb)
2753 return;
2754
2755 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2756 fb = &plane_config->fb->base;
2757 goto valid_fb;
2758 }
2759
2760 kfree(plane_config->fb);
2761
2762 /*
2763 * Failed to alloc the obj, check to see if we should share
2764 * an fb with another CRTC instead
2765 */
2766 for_each_crtc(dev, c) {
2767 struct intel_plane_state *state;
2768
2769 if (c == &intel_crtc->base)
2770 continue;
2771
2772 if (!to_intel_crtc(c)->active)
2773 continue;
2774
2775 state = to_intel_plane_state(c->primary->state);
2776 if (!state->vma)
2777 continue;
2778
2779 if (intel_plane_ggtt_offset(state) == plane_config->base) {
2780 fb = c->primary->fb;
2781 drm_framebuffer_reference(fb);
2782 goto valid_fb;
2783 }
2784 }
2785
2786 /*
2787 * We've failed to reconstruct the BIOS FB. Current display state
2788 * indicates that the primary plane is visible, but has a NULL FB,
2789 * which will lead to problems later if we don't fix it up. The
2790 * simplest solution is to just disable the primary plane now and
2791 * pretend the BIOS never had it enabled.
2792 */
2793 plane_state->visible = false;
2794 crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2795 intel_pre_disable_primary_noatomic(&intel_crtc->base);
2796 intel_plane->disable_plane(primary, &intel_crtc->base);
2797
2798 return;
2799
2800 valid_fb:
2801 mutex_lock(&dev->struct_mutex);
2802 intel_state->vma =
2803 intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
2804 mutex_unlock(&dev->struct_mutex);
2805 if (IS_ERR(intel_state->vma)) {
2806 DRM_ERROR("failed to pin boot fb on pipe %d: %li\n",
2807 intel_crtc->pipe, PTR_ERR(intel_state->vma));
2808
2809 intel_state->vma = NULL;
2810 drm_framebuffer_unreference(fb);
2811 return;
2812 }
2813
2814 plane_state->src_x = 0;
2815 plane_state->src_y = 0;
2816 plane_state->src_w = fb->width << 16;
2817 plane_state->src_h = fb->height << 16;
2818
2819 plane_state->crtc_x = 0;
2820 plane_state->crtc_y = 0;
2821 plane_state->crtc_w = fb->width;
2822 plane_state->crtc_h = fb->height;
2823
2824 intel_state->base.src = drm_plane_state_src(plane_state);
2825 intel_state->base.dst = drm_plane_state_dest(plane_state);
2826
2827 obj = intel_fb_obj(fb);
2828 if (i915_gem_object_is_tiled(obj))
2829 dev_priv->preserve_bios_swizzle = true;
2830
2831 drm_framebuffer_reference(fb);
2832 primary->fb = primary->state->fb = fb;
2833 primary->crtc = primary->state->crtc = &intel_crtc->base;
2834 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2835 atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2836 &obj->frontbuffer_bits);
2837 }
2838
2839 static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2840 unsigned int rotation)
2841 {
2842 int cpp = fb->format->cpp[plane];
2843
2844 switch (fb->modifier) {
2845 case DRM_FORMAT_MOD_NONE:
2846 case I915_FORMAT_MOD_X_TILED:
2847 switch (cpp) {
2848 case 8:
2849 return 4096;
2850 case 4:
2851 case 2:
2852 case 1:
2853 return 8192;
2854 default:
2855 MISSING_CASE(cpp);
2856 break;
2857 }
2858 break;
2859 case I915_FORMAT_MOD_Y_TILED:
2860 case I915_FORMAT_MOD_Yf_TILED:
2861 switch (cpp) {
2862 case 8:
2863 return 2048;
2864 case 4:
2865 return 4096;
2866 case 2:
2867 case 1:
2868 return 8192;
2869 default:
2870 MISSING_CASE(cpp);
2871 break;
2872 }
2873 break;
2874 default:
2875 MISSING_CASE(fb->modifier);
2876 }
2877
2878 return 2048;
2879 }
2880
2881 static int skl_check_main_surface(struct intel_plane_state *plane_state)
2882 {
2883 const struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev);
2884 const struct drm_framebuffer *fb = plane_state->base.fb;
2885 unsigned int rotation = plane_state->base.rotation;
2886 int x = plane_state->base.src.x1 >> 16;
2887 int y = plane_state->base.src.y1 >> 16;
2888 int w = drm_rect_width(&plane_state->base.src) >> 16;
2889 int h = drm_rect_height(&plane_state->base.src) >> 16;
2890 int max_width = skl_max_plane_width(fb, 0, rotation);
2891 int max_height = 4096;
2892 u32 alignment, offset, aux_offset = plane_state->aux.offset;
2893
2894 if (w > max_width || h > max_height) {
2895 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2896 w, h, max_width, max_height);
2897 return -EINVAL;
2898 }
2899
2900 intel_add_fb_offsets(&x, &y, plane_state, 0);
2901 offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2902
2903 alignment = intel_surf_alignment(dev_priv, fb->modifier);
2904
2905 /*
2906 * AUX surface offset is specified as the distance from the
2907 * main surface offset, and it must be non-negative. Make
2908 * sure that is what we will get.
2909 */
2910 if (offset > aux_offset)
2911 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2912 offset, aux_offset & ~(alignment - 1));
2913
2914 /*
2915 * When using an X-tiled surface, the plane blows up
2916 * if the x offset + width exceed the stride.
2917 *
2918 * TODO: linear and Y-tiled seem fine, Yf untested,
2919 */
2920 if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
2921 int cpp = fb->format->cpp[0];
2922
2923 while ((x + w) * cpp > fb->pitches[0]) {
2924 if (offset == 0) {
2925 DRM_DEBUG_KMS("Unable to find suitable display surface offset\n");
2926 return -EINVAL;
2927 }
2928
2929 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2930 offset, offset - alignment);
2931 }
2932 }
2933
2934 plane_state->main.offset = offset;
2935 plane_state->main.x = x;
2936 plane_state->main.y = y;
2937
2938 return 0;
2939 }
2940
2941 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
2942 {
2943 const struct drm_framebuffer *fb = plane_state->base.fb;
2944 unsigned int rotation = plane_state->base.rotation;
2945 int max_width = skl_max_plane_width(fb, 1, rotation);
2946 int max_height = 4096;
2947 int x = plane_state->base.src.x1 >> 17;
2948 int y = plane_state->base.src.y1 >> 17;
2949 int w = drm_rect_width(&plane_state->base.src) >> 17;
2950 int h = drm_rect_height(&plane_state->base.src) >> 17;
2951 u32 offset;
2952
2953 intel_add_fb_offsets(&x, &y, plane_state, 1);
2954 offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
2955
2956 /* FIXME not quite sure how/if these apply to the chroma plane */
2957 if (w > max_width || h > max_height) {
2958 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
2959 w, h, max_width, max_height);
2960 return -EINVAL;
2961 }
2962
2963 plane_state->aux.offset = offset;
2964 plane_state->aux.x = x;
2965 plane_state->aux.y = y;
2966
2967 return 0;
2968 }
2969
2970 int skl_check_plane_surface(struct intel_plane_state *plane_state)
2971 {
2972 const struct drm_framebuffer *fb = plane_state->base.fb;
2973 unsigned int rotation = plane_state->base.rotation;
2974 int ret;
2975
2976 if (!plane_state->base.visible)
2977 return 0;
2978
2979 /* Rotate src coordinates to match rotated GTT view */
2980 if (drm_rotation_90_or_270(rotation))
2981 drm_rect_rotate(&plane_state->base.src,
2982 fb->width << 16, fb->height << 16,
2983 DRM_ROTATE_270);
2984
2985 /*
2986 * Handle the AUX surface first since
2987 * the main surface setup depends on it.
2988 */
2989 if (fb->format->format == DRM_FORMAT_NV12) {
2990 ret = skl_check_nv12_aux_surface(plane_state);
2991 if (ret)
2992 return ret;
2993 } else {
2994 plane_state->aux.offset = ~0xfff;
2995 plane_state->aux.x = 0;
2996 plane_state->aux.y = 0;
2997 }
2998
2999 ret = skl_check_main_surface(plane_state);
3000 if (ret)
3001 return ret;
3002
3003 return 0;
3004 }
3005
3006 static void i9xx_update_primary_plane(struct drm_plane *primary,
3007 const struct intel_crtc_state *crtc_state,
3008 const struct intel_plane_state *plane_state)
3009 {
3010 struct drm_i915_private *dev_priv = to_i915(primary->dev);
3011 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3012 struct drm_framebuffer *fb = plane_state->base.fb;
3013 int plane = intel_crtc->plane;
3014 u32 linear_offset;
3015 u32 dspcntr;
3016 i915_reg_t reg = DSPCNTR(plane);
3017 unsigned int rotation = plane_state->base.rotation;
3018 int x = plane_state->base.src.x1 >> 16;
3019 int y = plane_state->base.src.y1 >> 16;
3020
3021 dspcntr = DISPPLANE_GAMMA_ENABLE;
3022
3023 dspcntr |= DISPLAY_PLANE_ENABLE;
3024
3025 if (INTEL_GEN(dev_priv) < 4) {
3026 if (intel_crtc->pipe == PIPE_B)
3027 dspcntr |= DISPPLANE_SEL_PIPE_B;
3028
3029 /* pipesrc and dspsize control the size that is scaled from,
3030 * which should always be the user's requested size.
3031 */
3032 I915_WRITE(DSPSIZE(plane),
3033 ((crtc_state->pipe_src_h - 1) << 16) |
3034 (crtc_state->pipe_src_w - 1));
3035 I915_WRITE(DSPPOS(plane), 0);
3036 } else if (IS_CHERRYVIEW(dev_priv) && plane == PLANE_B) {
3037 I915_WRITE(PRIMSIZE(plane),
3038 ((crtc_state->pipe_src_h - 1) << 16) |
3039 (crtc_state->pipe_src_w - 1));
3040 I915_WRITE(PRIMPOS(plane), 0);
3041 I915_WRITE(PRIMCNSTALPHA(plane), 0);
3042 }
3043
3044 switch (fb->format->format) {
3045 case DRM_FORMAT_C8:
3046 dspcntr |= DISPPLANE_8BPP;
3047 break;
3048 case DRM_FORMAT_XRGB1555:
3049 dspcntr |= DISPPLANE_BGRX555;
3050 break;
3051 case DRM_FORMAT_RGB565:
3052 dspcntr |= DISPPLANE_BGRX565;
3053 break;
3054 case DRM_FORMAT_XRGB8888:
3055 dspcntr |= DISPPLANE_BGRX888;
3056 break;
3057 case DRM_FORMAT_XBGR8888:
3058 dspcntr |= DISPPLANE_RGBX888;
3059 break;
3060 case DRM_FORMAT_XRGB2101010:
3061 dspcntr |= DISPPLANE_BGRX101010;
3062 break;
3063 case DRM_FORMAT_XBGR2101010:
3064 dspcntr |= DISPPLANE_RGBX101010;
3065 break;
3066 default:
3067 BUG();
3068 }
3069
3070 if (INTEL_GEN(dev_priv) >= 4 &&
3071 fb->modifier == I915_FORMAT_MOD_X_TILED)
3072 dspcntr |= DISPPLANE_TILED;
3073
3074 if (rotation & DRM_ROTATE_180)
3075 dspcntr |= DISPPLANE_ROTATE_180;
3076
3077 if (rotation & DRM_REFLECT_X)
3078 dspcntr |= DISPPLANE_MIRROR;
3079
3080 if (IS_G4X(dev_priv))
3081 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3082
3083 intel_add_fb_offsets(&x, &y, plane_state, 0);
3084
3085 if (INTEL_GEN(dev_priv) >= 4)
3086 intel_crtc->dspaddr_offset =
3087 intel_compute_tile_offset(&x, &y, plane_state, 0);
3088
3089 if (rotation & DRM_ROTATE_180) {
3090 x += crtc_state->pipe_src_w - 1;
3091 y += crtc_state->pipe_src_h - 1;
3092 } else if (rotation & DRM_REFLECT_X) {
3093 x += crtc_state->pipe_src_w - 1;
3094 }
3095
3096 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3097
3098 if (INTEL_GEN(dev_priv) < 4)
3099 intel_crtc->dspaddr_offset = linear_offset;
3100
3101 intel_crtc->adjusted_x = x;
3102 intel_crtc->adjusted_y = y;
3103
3104 I915_WRITE(reg, dspcntr);
3105
3106 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3107 if (INTEL_GEN(dev_priv) >= 4) {
3108 I915_WRITE(DSPSURF(plane),
3109 intel_plane_ggtt_offset(plane_state) +
3110 intel_crtc->dspaddr_offset);
3111 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3112 I915_WRITE(DSPLINOFF(plane), linear_offset);
3113 } else {
3114 I915_WRITE(DSPADDR(plane),
3115 intel_plane_ggtt_offset(plane_state) +
3116 intel_crtc->dspaddr_offset);
3117 }
3118 POSTING_READ(reg);
3119 }
3120
3121 static void i9xx_disable_primary_plane(struct drm_plane *primary,
3122 struct drm_crtc *crtc)
3123 {
3124 struct drm_device *dev = crtc->dev;
3125 struct drm_i915_private *dev_priv = to_i915(dev);
3126 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3127 int plane = intel_crtc->plane;
3128
3129 I915_WRITE(DSPCNTR(plane), 0);
3130 if (INTEL_INFO(dev_priv)->gen >= 4)
3131 I915_WRITE(DSPSURF(plane), 0);
3132 else
3133 I915_WRITE(DSPADDR(plane), 0);
3134 POSTING_READ(DSPCNTR(plane));
3135 }
3136
3137 static void ironlake_update_primary_plane(struct drm_plane *primary,
3138 const struct intel_crtc_state *crtc_state,
3139 const struct intel_plane_state *plane_state)
3140 {
3141 struct drm_device *dev = primary->dev;
3142 struct drm_i915_private *dev_priv = to_i915(dev);
3143 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3144 struct drm_framebuffer *fb = plane_state->base.fb;
3145 int plane = intel_crtc->plane;
3146 u32 linear_offset;
3147 u32 dspcntr;
3148 i915_reg_t reg = DSPCNTR(plane);
3149 unsigned int rotation = plane_state->base.rotation;
3150 int x = plane_state->base.src.x1 >> 16;
3151 int y = plane_state->base.src.y1 >> 16;
3152
3153 dspcntr = DISPPLANE_GAMMA_ENABLE;
3154 dspcntr |= DISPLAY_PLANE_ENABLE;
3155
3156 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3157 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
3158
3159 switch (fb->format->format) {
3160 case DRM_FORMAT_C8:
3161 dspcntr |= DISPPLANE_8BPP;
3162 break;
3163 case DRM_FORMAT_RGB565:
3164 dspcntr |= DISPPLANE_BGRX565;
3165 break;
3166 case DRM_FORMAT_XRGB8888:
3167 dspcntr |= DISPPLANE_BGRX888;
3168 break;
3169 case DRM_FORMAT_XBGR8888:
3170 dspcntr |= DISPPLANE_RGBX888;
3171 break;
3172 case DRM_FORMAT_XRGB2101010:
3173 dspcntr |= DISPPLANE_BGRX101010;
3174 break;
3175 case DRM_FORMAT_XBGR2101010:
3176 dspcntr |= DISPPLANE_RGBX101010;
3177 break;
3178 default:
3179 BUG();
3180 }
3181
3182 if (fb->modifier == I915_FORMAT_MOD_X_TILED)
3183 dspcntr |= DISPPLANE_TILED;
3184
3185 if (rotation & DRM_ROTATE_180)
3186 dspcntr |= DISPPLANE_ROTATE_180;
3187
3188 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv))
3189 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3190
3191 intel_add_fb_offsets(&x, &y, plane_state, 0);
3192
3193 intel_crtc->dspaddr_offset =
3194 intel_compute_tile_offset(&x, &y, plane_state, 0);
3195
3196 /* HSW+ does this automagically in hardware */
3197 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv) &&
3198 rotation & DRM_ROTATE_180) {
3199 x += crtc_state->pipe_src_w - 1;
3200 y += crtc_state->pipe_src_h - 1;
3201 }
3202
3203 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3204
3205 intel_crtc->adjusted_x = x;
3206 intel_crtc->adjusted_y = y;
3207
3208 I915_WRITE(reg, dspcntr);
3209
3210 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3211 I915_WRITE(DSPSURF(plane),
3212 intel_plane_ggtt_offset(plane_state) +
3213 intel_crtc->dspaddr_offset);
3214 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3215 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
3216 } else {
3217 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3218 I915_WRITE(DSPLINOFF(plane), linear_offset);
3219 }
3220 POSTING_READ(reg);
3221 }
3222
3223 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
3224 uint64_t fb_modifier, uint32_t pixel_format)
3225 {
3226 if (fb_modifier == DRM_FORMAT_MOD_NONE) {
3227 return 64;
3228 } else {
3229 int cpp = drm_format_plane_cpp(pixel_format, 0);
3230
3231 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
3232 }
3233 }
3234
3235 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3236 {
3237 struct drm_device *dev = intel_crtc->base.dev;
3238 struct drm_i915_private *dev_priv = to_i915(dev);
3239
3240 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3241 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3242 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3243 }
3244
3245 /*
3246 * This function detaches (aka. unbinds) unused scalers in hardware
3247 */
3248 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
3249 {
3250 struct intel_crtc_scaler_state *scaler_state;
3251 int i;
3252
3253 scaler_state = &intel_crtc->config->scaler_state;
3254
3255 /* loop through and disable scalers that aren't in use */
3256 for (i = 0; i < intel_crtc->num_scalers; i++) {
3257 if (!scaler_state->scalers[i].in_use)
3258 skl_detach_scaler(intel_crtc, i);
3259 }
3260 }
3261
3262 u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
3263 unsigned int rotation)
3264 {
3265 const struct drm_i915_private *dev_priv = to_i915(fb->dev);
3266 u32 stride = intel_fb_pitch(fb, plane, rotation);
3267
3268 /*
3269 * The stride is either expressed as a multiple of 64 bytes chunks for
3270 * linear buffers or in number of tiles for tiled buffers.
3271 */
3272 if (drm_rotation_90_or_270(rotation)) {
3273 int cpp = fb->format->cpp[plane];
3274
3275 stride /= intel_tile_height(dev_priv, fb->modifier, cpp);
3276 } else {
3277 stride /= intel_fb_stride_alignment(dev_priv, fb->modifier,
3278 fb->format->format);
3279 }
3280
3281 return stride;
3282 }
3283
3284 u32 skl_plane_ctl_format(uint32_t pixel_format)
3285 {
3286 switch (pixel_format) {
3287 case DRM_FORMAT_C8:
3288 return PLANE_CTL_FORMAT_INDEXED;
3289 case DRM_FORMAT_RGB565:
3290 return PLANE_CTL_FORMAT_RGB_565;
3291 case DRM_FORMAT_XBGR8888:
3292 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3293 case DRM_FORMAT_XRGB8888:
3294 return PLANE_CTL_FORMAT_XRGB_8888;
3295 /*
3296 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3297 * to be already pre-multiplied. We need to add a knob (or a different
3298 * DRM_FORMAT) for user-space to configure that.
3299 */
3300 case DRM_FORMAT_ABGR8888:
3301 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3302 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3303 case DRM_FORMAT_ARGB8888:
3304 return PLANE_CTL_FORMAT_XRGB_8888 |
3305 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3306 case DRM_FORMAT_XRGB2101010:
3307 return PLANE_CTL_FORMAT_XRGB_2101010;
3308 case DRM_FORMAT_XBGR2101010:
3309 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3310 case DRM_FORMAT_YUYV:
3311 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3312 case DRM_FORMAT_YVYU:
3313 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3314 case DRM_FORMAT_UYVY:
3315 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3316 case DRM_FORMAT_VYUY:
3317 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3318 default:
3319 MISSING_CASE(pixel_format);
3320 }
3321
3322 return 0;
3323 }
3324
3325 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3326 {
3327 switch (fb_modifier) {
3328 case DRM_FORMAT_MOD_NONE:
3329 break;
3330 case I915_FORMAT_MOD_X_TILED:
3331 return PLANE_CTL_TILED_X;
3332 case I915_FORMAT_MOD_Y_TILED:
3333 return PLANE_CTL_TILED_Y;
3334 case I915_FORMAT_MOD_Yf_TILED:
3335 return PLANE_CTL_TILED_YF;
3336 default:
3337 MISSING_CASE(fb_modifier);
3338 }
3339
3340 return 0;
3341 }
3342
3343 u32 skl_plane_ctl_rotation(unsigned int rotation)
3344 {
3345 switch (rotation) {
3346 case DRM_ROTATE_0:
3347 break;
3348 /*
3349 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3350 * while i915 HW rotation is clockwise, thats why this swapping.
3351 */
3352 case DRM_ROTATE_90:
3353 return PLANE_CTL_ROTATE_270;
3354 case DRM_ROTATE_180:
3355 return PLANE_CTL_ROTATE_180;
3356 case DRM_ROTATE_270:
3357 return PLANE_CTL_ROTATE_90;
3358 default:
3359 MISSING_CASE(rotation);
3360 }
3361
3362 return 0;
3363 }
3364
3365 static void skylake_update_primary_plane(struct drm_plane *plane,
3366 const struct intel_crtc_state *crtc_state,
3367 const struct intel_plane_state *plane_state)
3368 {
3369 struct drm_device *dev = plane->dev;
3370 struct drm_i915_private *dev_priv = to_i915(dev);
3371 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3372 struct drm_framebuffer *fb = plane_state->base.fb;
3373 enum plane_id plane_id = to_intel_plane(plane)->id;
3374 enum pipe pipe = to_intel_plane(plane)->pipe;
3375 u32 plane_ctl;
3376 unsigned int rotation = plane_state->base.rotation;
3377 u32 stride = skl_plane_stride(fb, 0, rotation);
3378 u32 surf_addr = plane_state->main.offset;
3379 int scaler_id = plane_state->scaler_id;
3380 int src_x = plane_state->main.x;
3381 int src_y = plane_state->main.y;
3382 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3383 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3384 int dst_x = plane_state->base.dst.x1;
3385 int dst_y = plane_state->base.dst.y1;
3386 int dst_w = drm_rect_width(&plane_state->base.dst);
3387 int dst_h = drm_rect_height(&plane_state->base.dst);
3388
3389 plane_ctl = PLANE_CTL_ENABLE |
3390 PLANE_CTL_PIPE_GAMMA_ENABLE |
3391 PLANE_CTL_PIPE_CSC_ENABLE;
3392
3393 plane_ctl |= skl_plane_ctl_format(fb->format->format);
3394 plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
3395 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3396 plane_ctl |= skl_plane_ctl_rotation(rotation);
3397
3398 /* Sizes are 0 based */
3399 src_w--;
3400 src_h--;
3401 dst_w--;
3402 dst_h--;
3403
3404 intel_crtc->dspaddr_offset = surf_addr;
3405
3406 intel_crtc->adjusted_x = src_x;
3407 intel_crtc->adjusted_y = src_y;
3408
3409 I915_WRITE(PLANE_CTL(pipe, plane_id), plane_ctl);
3410 I915_WRITE(PLANE_OFFSET(pipe, plane_id), (src_y << 16) | src_x);
3411 I915_WRITE(PLANE_STRIDE(pipe, plane_id), stride);
3412 I915_WRITE(PLANE_SIZE(pipe, plane_id), (src_h << 16) | src_w);
3413
3414 if (scaler_id >= 0) {
3415 uint32_t ps_ctrl = 0;
3416
3417 WARN_ON(!dst_w || !dst_h);
3418 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(plane_id) |
3419 crtc_state->scaler_state.scalers[scaler_id].mode;
3420 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3421 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3422 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3423 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3424 I915_WRITE(PLANE_POS(pipe, plane_id), 0);
3425 } else {
3426 I915_WRITE(PLANE_POS(pipe, plane_id), (dst_y << 16) | dst_x);
3427 }
3428
3429 I915_WRITE(PLANE_SURF(pipe, plane_id),
3430 intel_plane_ggtt_offset(plane_state) + surf_addr);
3431
3432 POSTING_READ(PLANE_SURF(pipe, plane_id));
3433 }
3434
3435 static void skylake_disable_primary_plane(struct drm_plane *primary,
3436 struct drm_crtc *crtc)
3437 {
3438 struct drm_device *dev = crtc->dev;
3439 struct drm_i915_private *dev_priv = to_i915(dev);
3440 enum plane_id plane_id = to_intel_plane(primary)->id;
3441 enum pipe pipe = to_intel_plane(primary)->pipe;
3442
3443 I915_WRITE(PLANE_CTL(pipe, plane_id), 0);
3444 I915_WRITE(PLANE_SURF(pipe, plane_id), 0);
3445 POSTING_READ(PLANE_SURF(pipe, plane_id));
3446 }
3447
3448 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3449 static int
3450 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3451 int x, int y, enum mode_set_atomic state)
3452 {
3453 /* Support for kgdboc is disabled, this needs a major rework. */
3454 DRM_ERROR("legacy panic handler not supported any more.\n");
3455
3456 return -ENODEV;
3457 }
3458
3459 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3460 {
3461 struct intel_crtc *crtc;
3462
3463 for_each_intel_crtc(&dev_priv->drm, crtc)
3464 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3465 }
3466
3467 static void intel_update_primary_planes(struct drm_device *dev)
3468 {
3469 struct drm_crtc *crtc;
3470
3471 for_each_crtc(dev, crtc) {
3472 struct intel_plane *plane = to_intel_plane(crtc->primary);
3473 struct intel_plane_state *plane_state =
3474 to_intel_plane_state(plane->base.state);
3475
3476 if (plane_state->base.visible)
3477 plane->update_plane(&plane->base,
3478 to_intel_crtc_state(crtc->state),
3479 plane_state);
3480 }
3481 }
3482
3483 static int
3484 __intel_display_resume(struct drm_device *dev,
3485 struct drm_atomic_state *state)
3486 {
3487 struct drm_crtc_state *crtc_state;
3488 struct drm_crtc *crtc;
3489 int i, ret;
3490
3491 intel_modeset_setup_hw_state(dev);
3492 i915_redisable_vga(to_i915(dev));
3493
3494 if (!state)
3495 return 0;
3496
3497 for_each_crtc_in_state(state, crtc, crtc_state, i) {
3498 /*
3499 * Force recalculation even if we restore
3500 * current state. With fast modeset this may not result
3501 * in a modeset when the state is compatible.
3502 */
3503 crtc_state->mode_changed = true;
3504 }
3505
3506 /* ignore any reset values/BIOS leftovers in the WM registers */
3507 to_intel_atomic_state(state)->skip_intermediate_wm = true;
3508
3509 ret = drm_atomic_commit(state);
3510
3511 WARN_ON(ret == -EDEADLK);
3512 return ret;
3513 }
3514
3515 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3516 {
3517 return intel_has_gpu_reset(dev_priv) &&
3518 INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
3519 }
3520
3521 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3522 {
3523 struct drm_device *dev = &dev_priv->drm;
3524 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3525 struct drm_atomic_state *state;
3526 int ret;
3527
3528 /*
3529 * Need mode_config.mutex so that we don't
3530 * trample ongoing ->detect() and whatnot.
3531 */
3532 mutex_lock(&dev->mode_config.mutex);
3533 drm_modeset_acquire_init(ctx, 0);
3534 while (1) {
3535 ret = drm_modeset_lock_all_ctx(dev, ctx);
3536 if (ret != -EDEADLK)
3537 break;
3538
3539 drm_modeset_backoff(ctx);
3540 }
3541
3542 /* reset doesn't touch the display, but flips might get nuked anyway, */
3543 if (!i915.force_reset_modeset_test &&
3544 !gpu_reset_clobbers_display(dev_priv))
3545 return;
3546
3547 /*
3548 * Disabling the crtcs gracefully seems nicer. Also the
3549 * g33 docs say we should at least disable all the planes.
3550 */
3551 state = drm_atomic_helper_duplicate_state(dev, ctx);
3552 if (IS_ERR(state)) {
3553 ret = PTR_ERR(state);
3554 DRM_ERROR("Duplicating state failed with %i\n", ret);
3555 return;
3556 }
3557
3558 ret = drm_atomic_helper_disable_all(dev, ctx);
3559 if (ret) {
3560 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3561 drm_atomic_state_put(state);
3562 return;
3563 }
3564
3565 dev_priv->modeset_restore_state = state;
3566 state->acquire_ctx = ctx;
3567 }
3568
3569 void intel_finish_reset(struct drm_i915_private *dev_priv)
3570 {
3571 struct drm_device *dev = &dev_priv->drm;
3572 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3573 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3574 int ret;
3575
3576 /*
3577 * Flips in the rings will be nuked by the reset,
3578 * so complete all pending flips so that user space
3579 * will get its events and not get stuck.
3580 */
3581 intel_complete_page_flips(dev_priv);
3582
3583 dev_priv->modeset_restore_state = NULL;
3584
3585 /* reset doesn't touch the display */
3586 if (!gpu_reset_clobbers_display(dev_priv)) {
3587 if (!state) {
3588 /*
3589 * Flips in the rings have been nuked by the reset,
3590 * so update the base address of all primary
3591 * planes to the the last fb to make sure we're
3592 * showing the correct fb after a reset.
3593 *
3594 * FIXME: Atomic will make this obsolete since we won't schedule
3595 * CS-based flips (which might get lost in gpu resets) any more.
3596 */
3597 intel_update_primary_planes(dev);
3598 } else {
3599 ret = __intel_display_resume(dev, state);
3600 if (ret)
3601 DRM_ERROR("Restoring old state failed with %i\n", ret);
3602 }
3603 } else {
3604 /*
3605 * The display has been reset as well,
3606 * so need a full re-initialization.
3607 */
3608 intel_runtime_pm_disable_interrupts(dev_priv);
3609 intel_runtime_pm_enable_interrupts(dev_priv);
3610
3611 intel_pps_unlock_regs_wa(dev_priv);
3612 intel_modeset_init_hw(dev);
3613
3614 spin_lock_irq(&dev_priv->irq_lock);
3615 if (dev_priv->display.hpd_irq_setup)
3616 dev_priv->display.hpd_irq_setup(dev_priv);
3617 spin_unlock_irq(&dev_priv->irq_lock);
3618
3619 ret = __intel_display_resume(dev, state);
3620 if (ret)
3621 DRM_ERROR("Restoring old state failed with %i\n", ret);
3622
3623 intel_hpd_init(dev_priv);
3624 }
3625
3626 if (state)
3627 drm_atomic_state_put(state);
3628 drm_modeset_drop_locks(ctx);
3629 drm_modeset_acquire_fini(ctx);
3630 mutex_unlock(&dev->mode_config.mutex);
3631 }
3632
3633 static bool abort_flip_on_reset(struct intel_crtc *crtc)
3634 {
3635 struct i915_gpu_error *error = &to_i915(crtc->base.dev)->gpu_error;
3636
3637 if (i915_reset_in_progress(error))
3638 return true;
3639
3640 if (crtc->reset_count != i915_reset_count(error))
3641 return true;
3642
3643 return false;
3644 }
3645
3646 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3647 {
3648 struct drm_device *dev = crtc->dev;
3649 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3650 bool pending;
3651
3652 if (abort_flip_on_reset(intel_crtc))
3653 return false;
3654
3655 spin_lock_irq(&dev->event_lock);
3656 pending = to_intel_crtc(crtc)->flip_work != NULL;
3657 spin_unlock_irq(&dev->event_lock);
3658
3659 return pending;
3660 }
3661
3662 static void intel_update_pipe_config(struct intel_crtc *crtc,
3663 struct intel_crtc_state *old_crtc_state)
3664 {
3665 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3666 struct intel_crtc_state *pipe_config =
3667 to_intel_crtc_state(crtc->base.state);
3668
3669 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3670 crtc->base.mode = crtc->base.state->mode;
3671
3672 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3673 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3674 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3675
3676 /*
3677 * Update pipe size and adjust fitter if needed: the reason for this is
3678 * that in compute_mode_changes we check the native mode (not the pfit
3679 * mode) to see if we can flip rather than do a full mode set. In the
3680 * fastboot case, we'll flip, but if we don't update the pipesrc and
3681 * pfit state, we'll end up with a big fb scanned out into the wrong
3682 * sized surface.
3683 */
3684
3685 I915_WRITE(PIPESRC(crtc->pipe),
3686 ((pipe_config->pipe_src_w - 1) << 16) |
3687 (pipe_config->pipe_src_h - 1));
3688
3689 /* on skylake this is done by detaching scalers */
3690 if (INTEL_GEN(dev_priv) >= 9) {
3691 skl_detach_scalers(crtc);
3692
3693 if (pipe_config->pch_pfit.enabled)
3694 skylake_pfit_enable(crtc);
3695 } else if (HAS_PCH_SPLIT(dev_priv)) {
3696 if (pipe_config->pch_pfit.enabled)
3697 ironlake_pfit_enable(crtc);
3698 else if (old_crtc_state->pch_pfit.enabled)
3699 ironlake_pfit_disable(crtc, true);
3700 }
3701 }
3702
3703 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3704 {
3705 struct drm_device *dev = crtc->dev;
3706 struct drm_i915_private *dev_priv = to_i915(dev);
3707 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3708 int pipe = intel_crtc->pipe;
3709 i915_reg_t reg;
3710 u32 temp;
3711
3712 /* enable normal train */
3713 reg = FDI_TX_CTL(pipe);
3714 temp = I915_READ(reg);
3715 if (IS_IVYBRIDGE(dev_priv)) {
3716 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3717 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3718 } else {
3719 temp &= ~FDI_LINK_TRAIN_NONE;
3720 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3721 }
3722 I915_WRITE(reg, temp);
3723
3724 reg = FDI_RX_CTL(pipe);
3725 temp = I915_READ(reg);
3726 if (HAS_PCH_CPT(dev_priv)) {
3727 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3728 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3729 } else {
3730 temp &= ~FDI_LINK_TRAIN_NONE;
3731 temp |= FDI_LINK_TRAIN_NONE;
3732 }
3733 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3734
3735 /* wait one idle pattern time */
3736 POSTING_READ(reg);
3737 udelay(1000);
3738
3739 /* IVB wants error correction enabled */
3740 if (IS_IVYBRIDGE(dev_priv))
3741 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3742 FDI_FE_ERRC_ENABLE);
3743 }
3744
3745 /* The FDI link training functions for ILK/Ibexpeak. */
3746 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3747 {
3748 struct drm_device *dev = crtc->dev;
3749 struct drm_i915_private *dev_priv = to_i915(dev);
3750 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3751 int pipe = intel_crtc->pipe;
3752 i915_reg_t reg;
3753 u32 temp, tries;
3754
3755 /* FDI needs bits from pipe first */
3756 assert_pipe_enabled(dev_priv, pipe);
3757
3758 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3759 for train result */
3760 reg = FDI_RX_IMR(pipe);
3761 temp = I915_READ(reg);
3762 temp &= ~FDI_RX_SYMBOL_LOCK;
3763 temp &= ~FDI_RX_BIT_LOCK;
3764 I915_WRITE(reg, temp);
3765 I915_READ(reg);
3766 udelay(150);
3767
3768 /* enable CPU FDI TX and PCH FDI RX */
3769 reg = FDI_TX_CTL(pipe);
3770 temp = I915_READ(reg);
3771 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3772 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3773 temp &= ~FDI_LINK_TRAIN_NONE;
3774 temp |= FDI_LINK_TRAIN_PATTERN_1;
3775 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3776
3777 reg = FDI_RX_CTL(pipe);
3778 temp = I915_READ(reg);
3779 temp &= ~FDI_LINK_TRAIN_NONE;
3780 temp |= FDI_LINK_TRAIN_PATTERN_1;
3781 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3782
3783 POSTING_READ(reg);
3784 udelay(150);
3785
3786 /* Ironlake workaround, enable clock pointer after FDI enable*/
3787 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3788 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3789 FDI_RX_PHASE_SYNC_POINTER_EN);
3790
3791 reg = FDI_RX_IIR(pipe);
3792 for (tries = 0; tries < 5; tries++) {
3793 temp = I915_READ(reg);
3794 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3795
3796 if ((temp & FDI_RX_BIT_LOCK)) {
3797 DRM_DEBUG_KMS("FDI train 1 done.\n");
3798 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3799 break;
3800 }
3801 }
3802 if (tries == 5)
3803 DRM_ERROR("FDI train 1 fail!\n");
3804
3805 /* Train 2 */
3806 reg = FDI_TX_CTL(pipe);
3807 temp = I915_READ(reg);
3808 temp &= ~FDI_LINK_TRAIN_NONE;
3809 temp |= FDI_LINK_TRAIN_PATTERN_2;
3810 I915_WRITE(reg, temp);
3811
3812 reg = FDI_RX_CTL(pipe);
3813 temp = I915_READ(reg);
3814 temp &= ~FDI_LINK_TRAIN_NONE;
3815 temp |= FDI_LINK_TRAIN_PATTERN_2;
3816 I915_WRITE(reg, temp);
3817
3818 POSTING_READ(reg);
3819 udelay(150);
3820
3821 reg = FDI_RX_IIR(pipe);
3822 for (tries = 0; tries < 5; tries++) {
3823 temp = I915_READ(reg);
3824 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3825
3826 if (temp & FDI_RX_SYMBOL_LOCK) {
3827 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3828 DRM_DEBUG_KMS("FDI train 2 done.\n");
3829 break;
3830 }
3831 }
3832 if (tries == 5)
3833 DRM_ERROR("FDI train 2 fail!\n");
3834
3835 DRM_DEBUG_KMS("FDI train done\n");
3836
3837 }
3838
3839 static const int snb_b_fdi_train_param[] = {
3840 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3841 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3842 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3843 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3844 };
3845
3846 /* The FDI link training functions for SNB/Cougarpoint. */
3847 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3848 {
3849 struct drm_device *dev = crtc->dev;
3850 struct drm_i915_private *dev_priv = to_i915(dev);
3851 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3852 int pipe = intel_crtc->pipe;
3853 i915_reg_t reg;
3854 u32 temp, i, retry;
3855
3856 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3857 for train result */
3858 reg = FDI_RX_IMR(pipe);
3859 temp = I915_READ(reg);
3860 temp &= ~FDI_RX_SYMBOL_LOCK;
3861 temp &= ~FDI_RX_BIT_LOCK;
3862 I915_WRITE(reg, temp);
3863
3864 POSTING_READ(reg);
3865 udelay(150);
3866
3867 /* enable CPU FDI TX and PCH FDI RX */
3868 reg = FDI_TX_CTL(pipe);
3869 temp = I915_READ(reg);
3870 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3871 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3872 temp &= ~FDI_LINK_TRAIN_NONE;
3873 temp |= FDI_LINK_TRAIN_PATTERN_1;
3874 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3875 /* SNB-B */
3876 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3877 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3878
3879 I915_WRITE(FDI_RX_MISC(pipe),
3880 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3881
3882 reg = FDI_RX_CTL(pipe);
3883 temp = I915_READ(reg);
3884 if (HAS_PCH_CPT(dev_priv)) {
3885 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3886 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3887 } else {
3888 temp &= ~FDI_LINK_TRAIN_NONE;
3889 temp |= FDI_LINK_TRAIN_PATTERN_1;
3890 }
3891 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3892
3893 POSTING_READ(reg);
3894 udelay(150);
3895
3896 for (i = 0; i < 4; i++) {
3897 reg = FDI_TX_CTL(pipe);
3898 temp = I915_READ(reg);
3899 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3900 temp |= snb_b_fdi_train_param[i];
3901 I915_WRITE(reg, temp);
3902
3903 POSTING_READ(reg);
3904 udelay(500);
3905
3906 for (retry = 0; retry < 5; retry++) {
3907 reg = FDI_RX_IIR(pipe);
3908 temp = I915_READ(reg);
3909 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3910 if (temp & FDI_RX_BIT_LOCK) {
3911 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3912 DRM_DEBUG_KMS("FDI train 1 done.\n");
3913 break;
3914 }
3915 udelay(50);
3916 }
3917 if (retry < 5)
3918 break;
3919 }
3920 if (i == 4)
3921 DRM_ERROR("FDI train 1 fail!\n");
3922
3923 /* Train 2 */
3924 reg = FDI_TX_CTL(pipe);
3925 temp = I915_READ(reg);
3926 temp &= ~FDI_LINK_TRAIN_NONE;
3927 temp |= FDI_LINK_TRAIN_PATTERN_2;
3928 if (IS_GEN6(dev_priv)) {
3929 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3930 /* SNB-B */
3931 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3932 }
3933 I915_WRITE(reg, temp);
3934
3935 reg = FDI_RX_CTL(pipe);
3936 temp = I915_READ(reg);
3937 if (HAS_PCH_CPT(dev_priv)) {
3938 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3939 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3940 } else {
3941 temp &= ~FDI_LINK_TRAIN_NONE;
3942 temp |= FDI_LINK_TRAIN_PATTERN_2;
3943 }
3944 I915_WRITE(reg, temp);
3945
3946 POSTING_READ(reg);
3947 udelay(150);
3948
3949 for (i = 0; i < 4; i++) {
3950 reg = FDI_TX_CTL(pipe);
3951 temp = I915_READ(reg);
3952 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3953 temp |= snb_b_fdi_train_param[i];
3954 I915_WRITE(reg, temp);
3955
3956 POSTING_READ(reg);
3957 udelay(500);
3958
3959 for (retry = 0; retry < 5; retry++) {
3960 reg = FDI_RX_IIR(pipe);
3961 temp = I915_READ(reg);
3962 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3963 if (temp & FDI_RX_SYMBOL_LOCK) {
3964 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3965 DRM_DEBUG_KMS("FDI train 2 done.\n");
3966 break;
3967 }
3968 udelay(50);
3969 }
3970 if (retry < 5)
3971 break;
3972 }
3973 if (i == 4)
3974 DRM_ERROR("FDI train 2 fail!\n");
3975
3976 DRM_DEBUG_KMS("FDI train done.\n");
3977 }
3978
3979 /* Manual link training for Ivy Bridge A0 parts */
3980 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3981 {
3982 struct drm_device *dev = crtc->dev;
3983 struct drm_i915_private *dev_priv = to_i915(dev);
3984 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3985 int pipe = intel_crtc->pipe;
3986 i915_reg_t reg;
3987 u32 temp, i, j;
3988
3989 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3990 for train result */
3991 reg = FDI_RX_IMR(pipe);
3992 temp = I915_READ(reg);
3993 temp &= ~FDI_RX_SYMBOL_LOCK;
3994 temp &= ~FDI_RX_BIT_LOCK;
3995 I915_WRITE(reg, temp);
3996
3997 POSTING_READ(reg);
3998 udelay(150);
3999
4000 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
4001 I915_READ(FDI_RX_IIR(pipe)));
4002
4003 /* Try each vswing and preemphasis setting twice before moving on */
4004 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
4005 /* disable first in case we need to retry */
4006 reg = FDI_TX_CTL(pipe);
4007 temp = I915_READ(reg);
4008 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
4009 temp &= ~FDI_TX_ENABLE;
4010 I915_WRITE(reg, temp);
4011
4012 reg = FDI_RX_CTL(pipe);
4013 temp = I915_READ(reg);
4014 temp &= ~FDI_LINK_TRAIN_AUTO;
4015 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4016 temp &= ~FDI_RX_ENABLE;
4017 I915_WRITE(reg, temp);
4018
4019 /* enable CPU FDI TX and PCH FDI RX */
4020 reg = FDI_TX_CTL(pipe);
4021 temp = I915_READ(reg);
4022 temp &= ~FDI_DP_PORT_WIDTH_MASK;
4023 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4024 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
4025 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4026 temp |= snb_b_fdi_train_param[j/2];
4027 temp |= FDI_COMPOSITE_SYNC;
4028 I915_WRITE(reg, temp | FDI_TX_ENABLE);
4029
4030 I915_WRITE(FDI_RX_MISC(pipe),
4031 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4032
4033 reg = FDI_RX_CTL(pipe);
4034 temp = I915_READ(reg);
4035 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4036 temp |= FDI_COMPOSITE_SYNC;
4037 I915_WRITE(reg, temp | FDI_RX_ENABLE);
4038
4039 POSTING_READ(reg);
4040 udelay(1); /* should be 0.5us */
4041
4042 for (i = 0; i < 4; i++) {
4043 reg = FDI_RX_IIR(pipe);
4044 temp = I915_READ(reg);
4045 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4046
4047 if (temp & FDI_RX_BIT_LOCK ||
4048 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4049 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4050 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4051 i);
4052 break;
4053 }
4054 udelay(1); /* should be 0.5us */
4055 }
4056 if (i == 4) {
4057 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4058 continue;
4059 }
4060
4061 /* Train 2 */
4062 reg = FDI_TX_CTL(pipe);
4063 temp = I915_READ(reg);
4064 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4065 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4066 I915_WRITE(reg, temp);
4067
4068 reg = FDI_RX_CTL(pipe);
4069 temp = I915_READ(reg);
4070 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4071 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4072 I915_WRITE(reg, temp);
4073
4074 POSTING_READ(reg);
4075 udelay(2); /* should be 1.5us */
4076
4077 for (i = 0; i < 4; i++) {
4078 reg = FDI_RX_IIR(pipe);
4079 temp = I915_READ(reg);
4080 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4081
4082 if (temp & FDI_RX_SYMBOL_LOCK ||
4083 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4084 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4085 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4086 i);
4087 goto train_done;
4088 }
4089 udelay(2); /* should be 1.5us */
4090 }
4091 if (i == 4)
4092 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4093 }
4094
4095 train_done:
4096 DRM_DEBUG_KMS("FDI train done.\n");
4097 }
4098
4099 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
4100 {
4101 struct drm_device *dev = intel_crtc->base.dev;
4102 struct drm_i915_private *dev_priv = to_i915(dev);
4103 int pipe = intel_crtc->pipe;
4104 i915_reg_t reg;
4105 u32 temp;
4106
4107 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4108 reg = FDI_RX_CTL(pipe);
4109 temp = I915_READ(reg);
4110 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4111 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4112 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4113 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4114
4115 POSTING_READ(reg);
4116 udelay(200);
4117
4118 /* Switch from Rawclk to PCDclk */
4119 temp = I915_READ(reg);
4120 I915_WRITE(reg, temp | FDI_PCDCLK);
4121
4122 POSTING_READ(reg);
4123 udelay(200);
4124
4125 /* Enable CPU FDI TX PLL, always on for Ironlake */
4126 reg = FDI_TX_CTL(pipe);
4127 temp = I915_READ(reg);
4128 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4129 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4130
4131 POSTING_READ(reg);
4132 udelay(100);
4133 }
4134 }
4135
4136 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4137 {
4138 struct drm_device *dev = intel_crtc->base.dev;
4139 struct drm_i915_private *dev_priv = to_i915(dev);
4140 int pipe = intel_crtc->pipe;
4141 i915_reg_t reg;
4142 u32 temp;
4143
4144 /* Switch from PCDclk to Rawclk */
4145 reg = FDI_RX_CTL(pipe);
4146 temp = I915_READ(reg);
4147 I915_WRITE(reg, temp & ~FDI_PCDCLK);
4148
4149 /* Disable CPU FDI TX PLL */
4150 reg = FDI_TX_CTL(pipe);
4151 temp = I915_READ(reg);
4152 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4153
4154 POSTING_READ(reg);
4155 udelay(100);
4156
4157 reg = FDI_RX_CTL(pipe);
4158 temp = I915_READ(reg);
4159 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4160
4161 /* Wait for the clocks to turn off. */
4162 POSTING_READ(reg);
4163 udelay(100);
4164 }
4165
4166 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4167 {
4168 struct drm_device *dev = crtc->dev;
4169 struct drm_i915_private *dev_priv = to_i915(dev);
4170 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4171 int pipe = intel_crtc->pipe;
4172 i915_reg_t reg;
4173 u32 temp;
4174
4175 /* disable CPU FDI tx and PCH FDI rx */
4176 reg = FDI_TX_CTL(pipe);
4177 temp = I915_READ(reg);
4178 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4179 POSTING_READ(reg);
4180
4181 reg = FDI_RX_CTL(pipe);
4182 temp = I915_READ(reg);
4183 temp &= ~(0x7 << 16);
4184 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4185 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4186
4187 POSTING_READ(reg);
4188 udelay(100);
4189
4190 /* Ironlake workaround, disable clock pointer after downing FDI */
4191 if (HAS_PCH_IBX(dev_priv))
4192 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4193
4194 /* still set train pattern 1 */
4195 reg = FDI_TX_CTL(pipe);
4196 temp = I915_READ(reg);
4197 temp &= ~FDI_LINK_TRAIN_NONE;
4198 temp |= FDI_LINK_TRAIN_PATTERN_1;
4199 I915_WRITE(reg, temp);
4200
4201 reg = FDI_RX_CTL(pipe);
4202 temp = I915_READ(reg);
4203 if (HAS_PCH_CPT(dev_priv)) {
4204 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4205 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4206 } else {
4207 temp &= ~FDI_LINK_TRAIN_NONE;
4208 temp |= FDI_LINK_TRAIN_PATTERN_1;
4209 }
4210 /* BPC in FDI rx is consistent with that in PIPECONF */
4211 temp &= ~(0x07 << 16);
4212 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4213 I915_WRITE(reg, temp);
4214
4215 POSTING_READ(reg);
4216 udelay(100);
4217 }
4218
4219 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
4220 {
4221 struct intel_crtc *crtc;
4222
4223 /* Note that we don't need to be called with mode_config.lock here
4224 * as our list of CRTC objects is static for the lifetime of the
4225 * device and so cannot disappear as we iterate. Similarly, we can
4226 * happily treat the predicates as racy, atomic checks as userspace
4227 * cannot claim and pin a new fb without at least acquring the
4228 * struct_mutex and so serialising with us.
4229 */
4230 for_each_intel_crtc(&dev_priv->drm, crtc) {
4231 if (atomic_read(&crtc->unpin_work_count) == 0)
4232 continue;
4233
4234 if (crtc->flip_work)
4235 intel_wait_for_vblank(dev_priv, crtc->pipe);
4236
4237 return true;
4238 }
4239
4240 return false;
4241 }
4242
4243 static void page_flip_completed(struct intel_crtc *intel_crtc)
4244 {
4245 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4246 struct intel_flip_work *work = intel_crtc->flip_work;
4247
4248 intel_crtc->flip_work = NULL;
4249
4250 if (work->event)
4251 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
4252
4253 drm_crtc_vblank_put(&intel_crtc->base);
4254
4255 wake_up_all(&dev_priv->pending_flip_queue);
4256 trace_i915_flip_complete(intel_crtc->plane,
4257 work->pending_flip_obj);
4258
4259 queue_work(dev_priv->wq, &work->unpin_work);
4260 }
4261
4262 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
4263 {
4264 struct drm_device *dev = crtc->dev;
4265 struct drm_i915_private *dev_priv = to_i915(dev);
4266 long ret;
4267
4268 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
4269
4270 ret = wait_event_interruptible_timeout(
4271 dev_priv->pending_flip_queue,
4272 !intel_crtc_has_pending_flip(crtc),
4273 60*HZ);
4274
4275 if (ret < 0)
4276 return ret;
4277
4278 if (ret == 0) {
4279 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4280 struct intel_flip_work *work;
4281
4282 spin_lock_irq(&dev->event_lock);
4283 work = intel_crtc->flip_work;
4284 if (work && !is_mmio_work(work)) {
4285 WARN_ONCE(1, "Removing stuck page flip\n");
4286 page_flip_completed(intel_crtc);
4287 }
4288 spin_unlock_irq(&dev->event_lock);
4289 }
4290
4291 return 0;
4292 }
4293
4294 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4295 {
4296 u32 temp;
4297
4298 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4299
4300 mutex_lock(&dev_priv->sb_lock);
4301
4302 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4303 temp |= SBI_SSCCTL_DISABLE;
4304 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4305
4306 mutex_unlock(&dev_priv->sb_lock);
4307 }
4308
4309 /* Program iCLKIP clock to the desired frequency */
4310 static void lpt_program_iclkip(struct drm_crtc *crtc)
4311 {
4312 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4313 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
4314 u32 divsel, phaseinc, auxdiv, phasedir = 0;
4315 u32 temp;
4316
4317 lpt_disable_iclkip(dev_priv);
4318
4319 /* The iCLK virtual clock root frequency is in MHz,
4320 * but the adjusted_mode->crtc_clock in in KHz. To get the
4321 * divisors, it is necessary to divide one by another, so we
4322 * convert the virtual clock precision to KHz here for higher
4323 * precision.
4324 */
4325 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
4326 u32 iclk_virtual_root_freq = 172800 * 1000;
4327 u32 iclk_pi_range = 64;
4328 u32 desired_divisor;
4329
4330 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4331 clock << auxdiv);
4332 divsel = (desired_divisor / iclk_pi_range) - 2;
4333 phaseinc = desired_divisor % iclk_pi_range;
4334
4335 /*
4336 * Near 20MHz is a corner case which is
4337 * out of range for the 7-bit divisor
4338 */
4339 if (divsel <= 0x7f)
4340 break;
4341 }
4342
4343 /* This should not happen with any sane values */
4344 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4345 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4346 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4347 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4348
4349 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4350 clock,
4351 auxdiv,
4352 divsel,
4353 phasedir,
4354 phaseinc);
4355
4356 mutex_lock(&dev_priv->sb_lock);
4357
4358 /* Program SSCDIVINTPHASE6 */
4359 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4360 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4361 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4362 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4363 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4364 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4365 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4366 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4367
4368 /* Program SSCAUXDIV */
4369 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4370 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4371 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4372 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4373
4374 /* Enable modulator and associated divider */
4375 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4376 temp &= ~SBI_SSCCTL_DISABLE;
4377 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4378
4379 mutex_unlock(&dev_priv->sb_lock);
4380
4381 /* Wait for initialization time */
4382 udelay(24);
4383
4384 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4385 }
4386
4387 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4388 {
4389 u32 divsel, phaseinc, auxdiv;
4390 u32 iclk_virtual_root_freq = 172800 * 1000;
4391 u32 iclk_pi_range = 64;
4392 u32 desired_divisor;
4393 u32 temp;
4394
4395 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4396 return 0;
4397
4398 mutex_lock(&dev_priv->sb_lock);
4399
4400 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4401 if (temp & SBI_SSCCTL_DISABLE) {
4402 mutex_unlock(&dev_priv->sb_lock);
4403 return 0;
4404 }
4405
4406 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4407 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4408 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4409 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4410 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4411
4412 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4413 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4414 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4415
4416 mutex_unlock(&dev_priv->sb_lock);
4417
4418 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4419
4420 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4421 desired_divisor << auxdiv);
4422 }
4423
4424 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4425 enum pipe pch_transcoder)
4426 {
4427 struct drm_device *dev = crtc->base.dev;
4428 struct drm_i915_private *dev_priv = to_i915(dev);
4429 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4430
4431 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4432 I915_READ(HTOTAL(cpu_transcoder)));
4433 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4434 I915_READ(HBLANK(cpu_transcoder)));
4435 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4436 I915_READ(HSYNC(cpu_transcoder)));
4437
4438 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4439 I915_READ(VTOTAL(cpu_transcoder)));
4440 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4441 I915_READ(VBLANK(cpu_transcoder)));
4442 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4443 I915_READ(VSYNC(cpu_transcoder)));
4444 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4445 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4446 }
4447
4448 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4449 {
4450 struct drm_i915_private *dev_priv = to_i915(dev);
4451 uint32_t temp;
4452
4453 temp = I915_READ(SOUTH_CHICKEN1);
4454 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4455 return;
4456
4457 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4458 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4459
4460 temp &= ~FDI_BC_BIFURCATION_SELECT;
4461 if (enable)
4462 temp |= FDI_BC_BIFURCATION_SELECT;
4463
4464 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4465 I915_WRITE(SOUTH_CHICKEN1, temp);
4466 POSTING_READ(SOUTH_CHICKEN1);
4467 }
4468
4469 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4470 {
4471 struct drm_device *dev = intel_crtc->base.dev;
4472
4473 switch (intel_crtc->pipe) {
4474 case PIPE_A:
4475 break;
4476 case PIPE_B:
4477 if (intel_crtc->config->fdi_lanes > 2)
4478 cpt_set_fdi_bc_bifurcation(dev, false);
4479 else
4480 cpt_set_fdi_bc_bifurcation(dev, true);
4481
4482 break;
4483 case PIPE_C:
4484 cpt_set_fdi_bc_bifurcation(dev, true);
4485
4486 break;
4487 default:
4488 BUG();
4489 }
4490 }
4491
4492 /* Return which DP Port should be selected for Transcoder DP control */
4493 static enum port
4494 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4495 {
4496 struct drm_device *dev = crtc->dev;
4497 struct intel_encoder *encoder;
4498
4499 for_each_encoder_on_crtc(dev, crtc, encoder) {
4500 if (encoder->type == INTEL_OUTPUT_DP ||
4501 encoder->type == INTEL_OUTPUT_EDP)
4502 return enc_to_dig_port(&encoder->base)->port;
4503 }
4504
4505 return -1;
4506 }
4507
4508 /*
4509 * Enable PCH resources required for PCH ports:
4510 * - PCH PLLs
4511 * - FDI training & RX/TX
4512 * - update transcoder timings
4513 * - DP transcoding bits
4514 * - transcoder
4515 */
4516 static void ironlake_pch_enable(struct drm_crtc *crtc)
4517 {
4518 struct drm_device *dev = crtc->dev;
4519 struct drm_i915_private *dev_priv = to_i915(dev);
4520 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4521 int pipe = intel_crtc->pipe;
4522 u32 temp;
4523
4524 assert_pch_transcoder_disabled(dev_priv, pipe);
4525
4526 if (IS_IVYBRIDGE(dev_priv))
4527 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4528
4529 /* Write the TU size bits before fdi link training, so that error
4530 * detection works. */
4531 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4532 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4533
4534 /* For PCH output, training FDI link */
4535 dev_priv->display.fdi_link_train(crtc);
4536
4537 /* We need to program the right clock selection before writing the pixel
4538 * mutliplier into the DPLL. */
4539 if (HAS_PCH_CPT(dev_priv)) {
4540 u32 sel;
4541
4542 temp = I915_READ(PCH_DPLL_SEL);
4543 temp |= TRANS_DPLL_ENABLE(pipe);
4544 sel = TRANS_DPLLB_SEL(pipe);
4545 if (intel_crtc->config->shared_dpll ==
4546 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4547 temp |= sel;
4548 else
4549 temp &= ~sel;
4550 I915_WRITE(PCH_DPLL_SEL, temp);
4551 }
4552
4553 /* XXX: pch pll's can be enabled any time before we enable the PCH
4554 * transcoder, and we actually should do this to not upset any PCH
4555 * transcoder that already use the clock when we share it.
4556 *
4557 * Note that enable_shared_dpll tries to do the right thing, but
4558 * get_shared_dpll unconditionally resets the pll - we need that to have
4559 * the right LVDS enable sequence. */
4560 intel_enable_shared_dpll(intel_crtc);
4561
4562 /* set transcoder timing, panel must allow it */
4563 assert_panel_unlocked(dev_priv, pipe);
4564 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4565
4566 intel_fdi_normal_train(crtc);
4567
4568 /* For PCH DP, enable TRANS_DP_CTL */
4569 if (HAS_PCH_CPT(dev_priv) &&
4570 intel_crtc_has_dp_encoder(intel_crtc->config)) {
4571 const struct drm_display_mode *adjusted_mode =
4572 &intel_crtc->config->base.adjusted_mode;
4573 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4574 i915_reg_t reg = TRANS_DP_CTL(pipe);
4575 temp = I915_READ(reg);
4576 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4577 TRANS_DP_SYNC_MASK |
4578 TRANS_DP_BPC_MASK);
4579 temp |= TRANS_DP_OUTPUT_ENABLE;
4580 temp |= bpc << 9; /* same format but at 11:9 */
4581
4582 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4583 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4584 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4585 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4586
4587 switch (intel_trans_dp_port_sel(crtc)) {
4588 case PORT_B:
4589 temp |= TRANS_DP_PORT_SEL_B;
4590 break;
4591 case PORT_C:
4592 temp |= TRANS_DP_PORT_SEL_C;
4593 break;
4594 case PORT_D:
4595 temp |= TRANS_DP_PORT_SEL_D;
4596 break;
4597 default:
4598 BUG();
4599 }
4600
4601 I915_WRITE(reg, temp);
4602 }
4603
4604 ironlake_enable_pch_transcoder(dev_priv, pipe);
4605 }
4606
4607 static void lpt_pch_enable(struct drm_crtc *crtc)
4608 {
4609 struct drm_device *dev = crtc->dev;
4610 struct drm_i915_private *dev_priv = to_i915(dev);
4611 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4612 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4613
4614 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4615
4616 lpt_program_iclkip(crtc);
4617
4618 /* Set transcoder timing. */
4619 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4620
4621 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4622 }
4623
4624 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4625 {
4626 struct drm_i915_private *dev_priv = to_i915(dev);
4627 i915_reg_t dslreg = PIPEDSL(pipe);
4628 u32 temp;
4629
4630 temp = I915_READ(dslreg);
4631 udelay(500);
4632 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4633 if (wait_for(I915_READ(dslreg) != temp, 5))
4634 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4635 }
4636 }
4637
4638 static int
4639 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4640 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4641 int src_w, int src_h, int dst_w, int dst_h)
4642 {
4643 struct intel_crtc_scaler_state *scaler_state =
4644 &crtc_state->scaler_state;
4645 struct intel_crtc *intel_crtc =
4646 to_intel_crtc(crtc_state->base.crtc);
4647 int need_scaling;
4648
4649 need_scaling = drm_rotation_90_or_270(rotation) ?
4650 (src_h != dst_w || src_w != dst_h):
4651 (src_w != dst_w || src_h != dst_h);
4652
4653 /*
4654 * if plane is being disabled or scaler is no more required or force detach
4655 * - free scaler binded to this plane/crtc
4656 * - in order to do this, update crtc->scaler_usage
4657 *
4658 * Here scaler state in crtc_state is set free so that
4659 * scaler can be assigned to other user. Actual register
4660 * update to free the scaler is done in plane/panel-fit programming.
4661 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4662 */
4663 if (force_detach || !need_scaling) {
4664 if (*scaler_id >= 0) {
4665 scaler_state->scaler_users &= ~(1 << scaler_user);
4666 scaler_state->scalers[*scaler_id].in_use = 0;
4667
4668 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4669 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4670 intel_crtc->pipe, scaler_user, *scaler_id,
4671 scaler_state->scaler_users);
4672 *scaler_id = -1;
4673 }
4674 return 0;
4675 }
4676
4677 /* range checks */
4678 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4679 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4680
4681 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4682 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4683 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4684 "size is out of scaler range\n",
4685 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4686 return -EINVAL;
4687 }
4688
4689 /* mark this plane as a scaler user in crtc_state */
4690 scaler_state->scaler_users |= (1 << scaler_user);
4691 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4692 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4693 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4694 scaler_state->scaler_users);
4695
4696 return 0;
4697 }
4698
4699 /**
4700 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4701 *
4702 * @state: crtc's scaler state
4703 *
4704 * Return
4705 * 0 - scaler_usage updated successfully
4706 * error - requested scaling cannot be supported or other error condition
4707 */
4708 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4709 {
4710 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4711
4712 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4713 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4714 state->pipe_src_w, state->pipe_src_h,
4715 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4716 }
4717
4718 /**
4719 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4720 *
4721 * @state: crtc's scaler state
4722 * @plane_state: atomic plane state to update
4723 *
4724 * Return
4725 * 0 - scaler_usage updated successfully
4726 * error - requested scaling cannot be supported or other error condition
4727 */
4728 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4729 struct intel_plane_state *plane_state)
4730 {
4731
4732 struct intel_plane *intel_plane =
4733 to_intel_plane(plane_state->base.plane);
4734 struct drm_framebuffer *fb = plane_state->base.fb;
4735 int ret;
4736
4737 bool force_detach = !fb || !plane_state->base.visible;
4738
4739 ret = skl_update_scaler(crtc_state, force_detach,
4740 drm_plane_index(&intel_plane->base),
4741 &plane_state->scaler_id,
4742 plane_state->base.rotation,
4743 drm_rect_width(&plane_state->base.src) >> 16,
4744 drm_rect_height(&plane_state->base.src) >> 16,
4745 drm_rect_width(&plane_state->base.dst),
4746 drm_rect_height(&plane_state->base.dst));
4747
4748 if (ret || plane_state->scaler_id < 0)
4749 return ret;
4750
4751 /* check colorkey */
4752 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4753 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4754 intel_plane->base.base.id,
4755 intel_plane->base.name);
4756 return -EINVAL;
4757 }
4758
4759 /* Check src format */
4760 switch (fb->format->format) {
4761 case DRM_FORMAT_RGB565:
4762 case DRM_FORMAT_XBGR8888:
4763 case DRM_FORMAT_XRGB8888:
4764 case DRM_FORMAT_ABGR8888:
4765 case DRM_FORMAT_ARGB8888:
4766 case DRM_FORMAT_XRGB2101010:
4767 case DRM_FORMAT_XBGR2101010:
4768 case DRM_FORMAT_YUYV:
4769 case DRM_FORMAT_YVYU:
4770 case DRM_FORMAT_UYVY:
4771 case DRM_FORMAT_VYUY:
4772 break;
4773 default:
4774 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4775 intel_plane->base.base.id, intel_plane->base.name,
4776 fb->base.id, fb->format->format);
4777 return -EINVAL;
4778 }
4779
4780 return 0;
4781 }
4782
4783 static void skylake_scaler_disable(struct intel_crtc *crtc)
4784 {
4785 int i;
4786
4787 for (i = 0; i < crtc->num_scalers; i++)
4788 skl_detach_scaler(crtc, i);
4789 }
4790
4791 static void skylake_pfit_enable(struct intel_crtc *crtc)
4792 {
4793 struct drm_device *dev = crtc->base.dev;
4794 struct drm_i915_private *dev_priv = to_i915(dev);
4795 int pipe = crtc->pipe;
4796 struct intel_crtc_scaler_state *scaler_state =
4797 &crtc->config->scaler_state;
4798
4799 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4800
4801 if (crtc->config->pch_pfit.enabled) {
4802 int id;
4803
4804 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4805 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4806 return;
4807 }
4808
4809 id = scaler_state->scaler_id;
4810 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4811 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4812 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4813 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4814
4815 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4816 }
4817 }
4818
4819 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4820 {
4821 struct drm_device *dev = crtc->base.dev;
4822 struct drm_i915_private *dev_priv = to_i915(dev);
4823 int pipe = crtc->pipe;
4824
4825 if (crtc->config->pch_pfit.enabled) {
4826 /* Force use of hard-coded filter coefficients
4827 * as some pre-programmed values are broken,
4828 * e.g. x201.
4829 */
4830 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
4831 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4832 PF_PIPE_SEL_IVB(pipe));
4833 else
4834 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4835 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4836 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4837 }
4838 }
4839
4840 void hsw_enable_ips(struct intel_crtc *crtc)
4841 {
4842 struct drm_device *dev = crtc->base.dev;
4843 struct drm_i915_private *dev_priv = to_i915(dev);
4844
4845 if (!crtc->config->ips_enabled)
4846 return;
4847
4848 /*
4849 * We can only enable IPS after we enable a plane and wait for a vblank
4850 * This function is called from post_plane_update, which is run after
4851 * a vblank wait.
4852 */
4853
4854 assert_plane_enabled(dev_priv, crtc->plane);
4855 if (IS_BROADWELL(dev_priv)) {
4856 mutex_lock(&dev_priv->rps.hw_lock);
4857 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4858 mutex_unlock(&dev_priv->rps.hw_lock);
4859 /* Quoting Art Runyan: "its not safe to expect any particular
4860 * value in IPS_CTL bit 31 after enabling IPS through the
4861 * mailbox." Moreover, the mailbox may return a bogus state,
4862 * so we need to just enable it and continue on.
4863 */
4864 } else {
4865 I915_WRITE(IPS_CTL, IPS_ENABLE);
4866 /* The bit only becomes 1 in the next vblank, so this wait here
4867 * is essentially intel_wait_for_vblank. If we don't have this
4868 * and don't wait for vblanks until the end of crtc_enable, then
4869 * the HW state readout code will complain that the expected
4870 * IPS_CTL value is not the one we read. */
4871 if (intel_wait_for_register(dev_priv,
4872 IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4873 50))
4874 DRM_ERROR("Timed out waiting for IPS enable\n");
4875 }
4876 }
4877
4878 void hsw_disable_ips(struct intel_crtc *crtc)
4879 {
4880 struct drm_device *dev = crtc->base.dev;
4881 struct drm_i915_private *dev_priv = to_i915(dev);
4882
4883 if (!crtc->config->ips_enabled)
4884 return;
4885
4886 assert_plane_enabled(dev_priv, crtc->plane);
4887 if (IS_BROADWELL(dev_priv)) {
4888 mutex_lock(&dev_priv->rps.hw_lock);
4889 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4890 mutex_unlock(&dev_priv->rps.hw_lock);
4891 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4892 if (intel_wait_for_register(dev_priv,
4893 IPS_CTL, IPS_ENABLE, 0,
4894 42))
4895 DRM_ERROR("Timed out waiting for IPS disable\n");
4896 } else {
4897 I915_WRITE(IPS_CTL, 0);
4898 POSTING_READ(IPS_CTL);
4899 }
4900
4901 /* We need to wait for a vblank before we can disable the plane. */
4902 intel_wait_for_vblank(dev_priv, crtc->pipe);
4903 }
4904
4905 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4906 {
4907 if (intel_crtc->overlay) {
4908 struct drm_device *dev = intel_crtc->base.dev;
4909 struct drm_i915_private *dev_priv = to_i915(dev);
4910
4911 mutex_lock(&dev->struct_mutex);
4912 dev_priv->mm.interruptible = false;
4913 (void) intel_overlay_switch_off(intel_crtc->overlay);
4914 dev_priv->mm.interruptible = true;
4915 mutex_unlock(&dev->struct_mutex);
4916 }
4917
4918 /* Let userspace switch the overlay on again. In most cases userspace
4919 * has to recompute where to put it anyway.
4920 */
4921 }
4922
4923 /**
4924 * intel_post_enable_primary - Perform operations after enabling primary plane
4925 * @crtc: the CRTC whose primary plane was just enabled
4926 *
4927 * Performs potentially sleeping operations that must be done after the primary
4928 * plane is enabled, such as updating FBC and IPS. Note that this may be
4929 * called due to an explicit primary plane update, or due to an implicit
4930 * re-enable that is caused when a sprite plane is updated to no longer
4931 * completely hide the primary plane.
4932 */
4933 static void
4934 intel_post_enable_primary(struct drm_crtc *crtc)
4935 {
4936 struct drm_device *dev = crtc->dev;
4937 struct drm_i915_private *dev_priv = to_i915(dev);
4938 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4939 int pipe = intel_crtc->pipe;
4940
4941 /*
4942 * FIXME IPS should be fine as long as one plane is
4943 * enabled, but in practice it seems to have problems
4944 * when going from primary only to sprite only and vice
4945 * versa.
4946 */
4947 hsw_enable_ips(intel_crtc);
4948
4949 /*
4950 * Gen2 reports pipe underruns whenever all planes are disabled.
4951 * So don't enable underrun reporting before at least some planes
4952 * are enabled.
4953 * FIXME: Need to fix the logic to work when we turn off all planes
4954 * but leave the pipe running.
4955 */
4956 if (IS_GEN2(dev_priv))
4957 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4958
4959 /* Underruns don't always raise interrupts, so check manually. */
4960 intel_check_cpu_fifo_underruns(dev_priv);
4961 intel_check_pch_fifo_underruns(dev_priv);
4962 }
4963
4964 /* FIXME move all this to pre_plane_update() with proper state tracking */
4965 static void
4966 intel_pre_disable_primary(struct drm_crtc *crtc)
4967 {
4968 struct drm_device *dev = crtc->dev;
4969 struct drm_i915_private *dev_priv = to_i915(dev);
4970 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4971 int pipe = intel_crtc->pipe;
4972
4973 /*
4974 * Gen2 reports pipe underruns whenever all planes are disabled.
4975 * So diasble underrun reporting before all the planes get disabled.
4976 * FIXME: Need to fix the logic to work when we turn off all planes
4977 * but leave the pipe running.
4978 */
4979 if (IS_GEN2(dev_priv))
4980 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4981
4982 /*
4983 * FIXME IPS should be fine as long as one plane is
4984 * enabled, but in practice it seems to have problems
4985 * when going from primary only to sprite only and vice
4986 * versa.
4987 */
4988 hsw_disable_ips(intel_crtc);
4989 }
4990
4991 /* FIXME get rid of this and use pre_plane_update */
4992 static void
4993 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4994 {
4995 struct drm_device *dev = crtc->dev;
4996 struct drm_i915_private *dev_priv = to_i915(dev);
4997 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4998 int pipe = intel_crtc->pipe;
4999
5000 intel_pre_disable_primary(crtc);
5001
5002 /*
5003 * Vblank time updates from the shadow to live plane control register
5004 * are blocked if the memory self-refresh mode is active at that
5005 * moment. So to make sure the plane gets truly disabled, disable
5006 * first the self-refresh mode. The self-refresh enable bit in turn
5007 * will be checked/applied by the HW only at the next frame start
5008 * event which is after the vblank start event, so we need to have a
5009 * wait-for-vblank between disabling the plane and the pipe.
5010 */
5011 if (HAS_GMCH_DISPLAY(dev_priv) &&
5012 intel_set_memory_cxsr(dev_priv, false))
5013 intel_wait_for_vblank(dev_priv, pipe);
5014 }
5015
5016 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
5017 {
5018 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5019 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5020 struct intel_crtc_state *pipe_config =
5021 to_intel_crtc_state(crtc->base.state);
5022 struct drm_plane *primary = crtc->base.primary;
5023 struct drm_plane_state *old_pri_state =
5024 drm_atomic_get_existing_plane_state(old_state, primary);
5025
5026 intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
5027
5028 crtc->wm.cxsr_allowed = true;
5029
5030 if (pipe_config->update_wm_post && pipe_config->base.active)
5031 intel_update_watermarks(crtc);
5032
5033 if (old_pri_state) {
5034 struct intel_plane_state *primary_state =
5035 to_intel_plane_state(primary->state);
5036 struct intel_plane_state *old_primary_state =
5037 to_intel_plane_state(old_pri_state);
5038
5039 intel_fbc_post_update(crtc);
5040
5041 if (primary_state->base.visible &&
5042 (needs_modeset(&pipe_config->base) ||
5043 !old_primary_state->base.visible))
5044 intel_post_enable_primary(&crtc->base);
5045 }
5046 }
5047
5048 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
5049 {
5050 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5051 struct drm_device *dev = crtc->base.dev;
5052 struct drm_i915_private *dev_priv = to_i915(dev);
5053 struct intel_crtc_state *pipe_config =
5054 to_intel_crtc_state(crtc->base.state);
5055 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5056 struct drm_plane *primary = crtc->base.primary;
5057 struct drm_plane_state *old_pri_state =
5058 drm_atomic_get_existing_plane_state(old_state, primary);
5059 bool modeset = needs_modeset(&pipe_config->base);
5060 struct intel_atomic_state *old_intel_state =
5061 to_intel_atomic_state(old_state);
5062
5063 if (old_pri_state) {
5064 struct intel_plane_state *primary_state =
5065 to_intel_plane_state(primary->state);
5066 struct intel_plane_state *old_primary_state =
5067 to_intel_plane_state(old_pri_state);
5068
5069 intel_fbc_pre_update(crtc, pipe_config, primary_state);
5070
5071 if (old_primary_state->base.visible &&
5072 (modeset || !primary_state->base.visible))
5073 intel_pre_disable_primary(&crtc->base);
5074 }
5075
5076 if (pipe_config->disable_cxsr && HAS_GMCH_DISPLAY(dev_priv)) {
5077 crtc->wm.cxsr_allowed = false;
5078
5079 /*
5080 * Vblank time updates from the shadow to live plane control register
5081 * are blocked if the memory self-refresh mode is active at that
5082 * moment. So to make sure the plane gets truly disabled, disable
5083 * first the self-refresh mode. The self-refresh enable bit in turn
5084 * will be checked/applied by the HW only at the next frame start
5085 * event which is after the vblank start event, so we need to have a
5086 * wait-for-vblank between disabling the plane and the pipe.
5087 */
5088 if (old_crtc_state->base.active &&
5089 intel_set_memory_cxsr(dev_priv, false))
5090 intel_wait_for_vblank(dev_priv, crtc->pipe);
5091 }
5092
5093 /*
5094 * IVB workaround: must disable low power watermarks for at least
5095 * one frame before enabling scaling. LP watermarks can be re-enabled
5096 * when scaling is disabled.
5097 *
5098 * WaCxSRDisabledForSpriteScaling:ivb
5099 */
5100 if (pipe_config->disable_lp_wm && ilk_disable_lp_wm(dev))
5101 intel_wait_for_vblank(dev_priv, crtc->pipe);
5102
5103 /*
5104 * If we're doing a modeset, we're done. No need to do any pre-vblank
5105 * watermark programming here.
5106 */
5107 if (needs_modeset(&pipe_config->base))
5108 return;
5109
5110 /*
5111 * For platforms that support atomic watermarks, program the
5112 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
5113 * will be the intermediate values that are safe for both pre- and
5114 * post- vblank; when vblank happens, the 'active' values will be set
5115 * to the final 'target' values and we'll do this again to get the
5116 * optimal watermarks. For gen9+ platforms, the values we program here
5117 * will be the final target values which will get automatically latched
5118 * at vblank time; no further programming will be necessary.
5119 *
5120 * If a platform hasn't been transitioned to atomic watermarks yet,
5121 * we'll continue to update watermarks the old way, if flags tell
5122 * us to.
5123 */
5124 if (dev_priv->display.initial_watermarks != NULL)
5125 dev_priv->display.initial_watermarks(old_intel_state,
5126 pipe_config);
5127 else if (pipe_config->update_wm_pre)
5128 intel_update_watermarks(crtc);
5129 }
5130
5131 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
5132 {
5133 struct drm_device *dev = crtc->dev;
5134 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5135 struct drm_plane *p;
5136 int pipe = intel_crtc->pipe;
5137
5138 intel_crtc_dpms_overlay_disable(intel_crtc);
5139
5140 drm_for_each_plane_mask(p, dev, plane_mask)
5141 to_intel_plane(p)->disable_plane(p, crtc);
5142
5143 /*
5144 * FIXME: Once we grow proper nuclear flip support out of this we need
5145 * to compute the mask of flip planes precisely. For the time being
5146 * consider this a flip to a NULL plane.
5147 */
5148 intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
5149 }
5150
5151 static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
5152 struct intel_crtc_state *crtc_state,
5153 struct drm_atomic_state *old_state)
5154 {
5155 struct drm_connector_state *old_conn_state;
5156 struct drm_connector *conn;
5157 int i;
5158
5159 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5160 struct drm_connector_state *conn_state = conn->state;
5161 struct intel_encoder *encoder =
5162 to_intel_encoder(conn_state->best_encoder);
5163
5164 if (conn_state->crtc != crtc)
5165 continue;
5166
5167 if (encoder->pre_pll_enable)
5168 encoder->pre_pll_enable(encoder, crtc_state, conn_state);
5169 }
5170 }
5171
5172 static void intel_encoders_pre_enable(struct drm_crtc *crtc,
5173 struct intel_crtc_state *crtc_state,
5174 struct drm_atomic_state *old_state)
5175 {
5176 struct drm_connector_state *old_conn_state;
5177 struct drm_connector *conn;
5178 int i;
5179
5180 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5181 struct drm_connector_state *conn_state = conn->state;
5182 struct intel_encoder *encoder =
5183 to_intel_encoder(conn_state->best_encoder);
5184
5185 if (conn_state->crtc != crtc)
5186 continue;
5187
5188 if (encoder->pre_enable)
5189 encoder->pre_enable(encoder, crtc_state, conn_state);
5190 }
5191 }
5192
5193 static void intel_encoders_enable(struct drm_crtc *crtc,
5194 struct intel_crtc_state *crtc_state,
5195 struct drm_atomic_state *old_state)
5196 {
5197 struct drm_connector_state *old_conn_state;
5198 struct drm_connector *conn;
5199 int i;
5200
5201 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5202 struct drm_connector_state *conn_state = conn->state;
5203 struct intel_encoder *encoder =
5204 to_intel_encoder(conn_state->best_encoder);
5205
5206 if (conn_state->crtc != crtc)
5207 continue;
5208
5209 encoder->enable(encoder, crtc_state, conn_state);
5210 intel_opregion_notify_encoder(encoder, true);
5211 }
5212 }
5213
5214 static void intel_encoders_disable(struct drm_crtc *crtc,
5215 struct intel_crtc_state *old_crtc_state,
5216 struct drm_atomic_state *old_state)
5217 {
5218 struct drm_connector_state *old_conn_state;
5219 struct drm_connector *conn;
5220 int i;
5221
5222 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5223 struct intel_encoder *encoder =
5224 to_intel_encoder(old_conn_state->best_encoder);
5225
5226 if (old_conn_state->crtc != crtc)
5227 continue;
5228
5229 intel_opregion_notify_encoder(encoder, false);
5230 encoder->disable(encoder, old_crtc_state, old_conn_state);
5231 }
5232 }
5233
5234 static void intel_encoders_post_disable(struct drm_crtc *crtc,
5235 struct intel_crtc_state *old_crtc_state,
5236 struct drm_atomic_state *old_state)
5237 {
5238 struct drm_connector_state *old_conn_state;
5239 struct drm_connector *conn;
5240 int i;
5241
5242 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5243 struct intel_encoder *encoder =
5244 to_intel_encoder(old_conn_state->best_encoder);
5245
5246 if (old_conn_state->crtc != crtc)
5247 continue;
5248
5249 if (encoder->post_disable)
5250 encoder->post_disable(encoder, old_crtc_state, old_conn_state);
5251 }
5252 }
5253
5254 static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
5255 struct intel_crtc_state *old_crtc_state,
5256 struct drm_atomic_state *old_state)
5257 {
5258 struct drm_connector_state *old_conn_state;
5259 struct drm_connector *conn;
5260 int i;
5261
5262 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5263 struct intel_encoder *encoder =
5264 to_intel_encoder(old_conn_state->best_encoder);
5265
5266 if (old_conn_state->crtc != crtc)
5267 continue;
5268
5269 if (encoder->post_pll_disable)
5270 encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
5271 }
5272 }
5273
5274 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
5275 struct drm_atomic_state *old_state)
5276 {
5277 struct drm_crtc *crtc = pipe_config->base.crtc;
5278 struct drm_device *dev = crtc->dev;
5279 struct drm_i915_private *dev_priv = to_i915(dev);
5280 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5281 int pipe = intel_crtc->pipe;
5282 struct intel_atomic_state *old_intel_state =
5283 to_intel_atomic_state(old_state);
5284
5285 if (WARN_ON(intel_crtc->active))
5286 return;
5287
5288 /*
5289 * Sometimes spurious CPU pipe underruns happen during FDI
5290 * training, at least with VGA+HDMI cloning. Suppress them.
5291 *
5292 * On ILK we get an occasional spurious CPU pipe underruns
5293 * between eDP port A enable and vdd enable. Also PCH port
5294 * enable seems to result in the occasional CPU pipe underrun.
5295 *
5296 * Spurious PCH underruns also occur during PCH enabling.
5297 */
5298 if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5299 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5300 if (intel_crtc->config->has_pch_encoder)
5301 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5302
5303 if (intel_crtc->config->has_pch_encoder)
5304 intel_prepare_shared_dpll(intel_crtc);
5305
5306 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5307 intel_dp_set_m_n(intel_crtc, M1_N1);
5308
5309 intel_set_pipe_timings(intel_crtc);
5310 intel_set_pipe_src_size(intel_crtc);
5311
5312 if (intel_crtc->config->has_pch_encoder) {
5313 intel_cpu_transcoder_set_m_n(intel_crtc,
5314 &intel_crtc->config->fdi_m_n, NULL);
5315 }
5316
5317 ironlake_set_pipeconf(crtc);
5318
5319 intel_crtc->active = true;
5320
5321 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5322
5323 if (intel_crtc->config->has_pch_encoder) {
5324 /* Note: FDI PLL enabling _must_ be done before we enable the
5325 * cpu pipes, hence this is separate from all the other fdi/pch
5326 * enabling. */
5327 ironlake_fdi_pll_enable(intel_crtc);
5328 } else {
5329 assert_fdi_tx_disabled(dev_priv, pipe);
5330 assert_fdi_rx_disabled(dev_priv, pipe);
5331 }
5332
5333 ironlake_pfit_enable(intel_crtc);
5334
5335 /*
5336 * On ILK+ LUT must be loaded before the pipe is running but with
5337 * clocks enabled
5338 */
5339 intel_color_load_luts(&pipe_config->base);
5340
5341 if (dev_priv->display.initial_watermarks != NULL)
5342 dev_priv->display.initial_watermarks(old_intel_state, intel_crtc->config);
5343 intel_enable_pipe(intel_crtc);
5344
5345 if (intel_crtc->config->has_pch_encoder)
5346 ironlake_pch_enable(crtc);
5347
5348 assert_vblank_disabled(crtc);
5349 drm_crtc_vblank_on(crtc);
5350
5351 intel_encoders_enable(crtc, pipe_config, old_state);
5352
5353 if (HAS_PCH_CPT(dev_priv))
5354 cpt_verify_modeset(dev, intel_crtc->pipe);
5355
5356 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
5357 if (intel_crtc->config->has_pch_encoder)
5358 intel_wait_for_vblank(dev_priv, pipe);
5359 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5360 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5361 }
5362
5363 /* IPS only exists on ULT machines and is tied to pipe A. */
5364 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5365 {
5366 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
5367 }
5368
5369 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
5370 struct drm_atomic_state *old_state)
5371 {
5372 struct drm_crtc *crtc = pipe_config->base.crtc;
5373 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5374 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5375 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
5376 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5377 struct intel_atomic_state *old_intel_state =
5378 to_intel_atomic_state(old_state);
5379
5380 if (WARN_ON(intel_crtc->active))
5381 return;
5382
5383 if (intel_crtc->config->has_pch_encoder)
5384 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5385 false);
5386
5387 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5388
5389 if (intel_crtc->config->shared_dpll)
5390 intel_enable_shared_dpll(intel_crtc);
5391
5392 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5393 intel_dp_set_m_n(intel_crtc, M1_N1);
5394
5395 if (!transcoder_is_dsi(cpu_transcoder))
5396 intel_set_pipe_timings(intel_crtc);
5397
5398 intel_set_pipe_src_size(intel_crtc);
5399
5400 if (cpu_transcoder != TRANSCODER_EDP &&
5401 !transcoder_is_dsi(cpu_transcoder)) {
5402 I915_WRITE(PIPE_MULT(cpu_transcoder),
5403 intel_crtc->config->pixel_multiplier - 1);
5404 }
5405
5406 if (intel_crtc->config->has_pch_encoder) {
5407 intel_cpu_transcoder_set_m_n(intel_crtc,
5408 &intel_crtc->config->fdi_m_n, NULL);
5409 }
5410
5411 if (!transcoder_is_dsi(cpu_transcoder))
5412 haswell_set_pipeconf(crtc);
5413
5414 haswell_set_pipemisc(crtc);
5415
5416 intel_color_set_csc(&pipe_config->base);
5417
5418 intel_crtc->active = true;
5419
5420 if (intel_crtc->config->has_pch_encoder)
5421 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5422 else
5423 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5424
5425 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5426
5427 if (intel_crtc->config->has_pch_encoder)
5428 dev_priv->display.fdi_link_train(crtc);
5429
5430 if (!transcoder_is_dsi(cpu_transcoder))
5431 intel_ddi_enable_pipe_clock(intel_crtc);
5432
5433 if (INTEL_GEN(dev_priv) >= 9)
5434 skylake_pfit_enable(intel_crtc);
5435 else
5436 ironlake_pfit_enable(intel_crtc);
5437
5438 /*
5439 * On ILK+ LUT must be loaded before the pipe is running but with
5440 * clocks enabled
5441 */
5442 intel_color_load_luts(&pipe_config->base);
5443
5444 intel_ddi_set_pipe_settings(crtc);
5445 if (!transcoder_is_dsi(cpu_transcoder))
5446 intel_ddi_enable_transcoder_func(crtc);
5447
5448 if (dev_priv->display.initial_watermarks != NULL)
5449 dev_priv->display.initial_watermarks(old_intel_state, pipe_config);
5450
5451 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5452 if (!transcoder_is_dsi(cpu_transcoder))
5453 intel_enable_pipe(intel_crtc);
5454
5455 if (intel_crtc->config->has_pch_encoder)
5456 lpt_pch_enable(crtc);
5457
5458 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5459 intel_ddi_set_vc_payload_alloc(crtc, true);
5460
5461 assert_vblank_disabled(crtc);
5462 drm_crtc_vblank_on(crtc);
5463
5464 intel_encoders_enable(crtc, pipe_config, old_state);
5465
5466 if (intel_crtc->config->has_pch_encoder) {
5467 intel_wait_for_vblank(dev_priv, pipe);
5468 intel_wait_for_vblank(dev_priv, pipe);
5469 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5470 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5471 true);
5472 }
5473
5474 /* If we change the relative order between pipe/planes enabling, we need
5475 * to change the workaround. */
5476 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5477 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
5478 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5479 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5480 }
5481 }
5482
5483 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5484 {
5485 struct drm_device *dev = crtc->base.dev;
5486 struct drm_i915_private *dev_priv = to_i915(dev);
5487 int pipe = crtc->pipe;
5488
5489 /* To avoid upsetting the power well on haswell only disable the pfit if
5490 * it's in use. The hw state code will make sure we get this right. */
5491 if (force || crtc->config->pch_pfit.enabled) {
5492 I915_WRITE(PF_CTL(pipe), 0);
5493 I915_WRITE(PF_WIN_POS(pipe), 0);
5494 I915_WRITE(PF_WIN_SZ(pipe), 0);
5495 }
5496 }
5497
5498 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
5499 struct drm_atomic_state *old_state)
5500 {
5501 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5502 struct drm_device *dev = crtc->dev;
5503 struct drm_i915_private *dev_priv = to_i915(dev);
5504 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5505 int pipe = intel_crtc->pipe;
5506
5507 /*
5508 * Sometimes spurious CPU pipe underruns happen when the
5509 * pipe is already disabled, but FDI RX/TX is still enabled.
5510 * Happens at least with VGA+HDMI cloning. Suppress them.
5511 */
5512 if (intel_crtc->config->has_pch_encoder) {
5513 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5514 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5515 }
5516
5517 intel_encoders_disable(crtc, old_crtc_state, old_state);
5518
5519 drm_crtc_vblank_off(crtc);
5520 assert_vblank_disabled(crtc);
5521
5522 intel_disable_pipe(intel_crtc);
5523
5524 ironlake_pfit_disable(intel_crtc, false);
5525
5526 if (intel_crtc->config->has_pch_encoder)
5527 ironlake_fdi_disable(crtc);
5528
5529 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5530
5531 if (intel_crtc->config->has_pch_encoder) {
5532 ironlake_disable_pch_transcoder(dev_priv, pipe);
5533
5534 if (HAS_PCH_CPT(dev_priv)) {
5535 i915_reg_t reg;
5536 u32 temp;
5537
5538 /* disable TRANS_DP_CTL */
5539 reg = TRANS_DP_CTL(pipe);
5540 temp = I915_READ(reg);
5541 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5542 TRANS_DP_PORT_SEL_MASK);
5543 temp |= TRANS_DP_PORT_SEL_NONE;
5544 I915_WRITE(reg, temp);
5545
5546 /* disable DPLL_SEL */
5547 temp = I915_READ(PCH_DPLL_SEL);
5548 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5549 I915_WRITE(PCH_DPLL_SEL, temp);
5550 }
5551
5552 ironlake_fdi_pll_disable(intel_crtc);
5553 }
5554
5555 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5556 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5557 }
5558
5559 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
5560 struct drm_atomic_state *old_state)
5561 {
5562 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5563 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5564 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5565 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5566
5567 if (intel_crtc->config->has_pch_encoder)
5568 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5569 false);
5570
5571 intel_encoders_disable(crtc, old_crtc_state, old_state);
5572
5573 drm_crtc_vblank_off(crtc);
5574 assert_vblank_disabled(crtc);
5575
5576 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5577 if (!transcoder_is_dsi(cpu_transcoder))
5578 intel_disable_pipe(intel_crtc);
5579
5580 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5581 intel_ddi_set_vc_payload_alloc(crtc, false);
5582
5583 if (!transcoder_is_dsi(cpu_transcoder))
5584 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5585
5586 if (INTEL_GEN(dev_priv) >= 9)
5587 skylake_scaler_disable(intel_crtc);
5588 else
5589 ironlake_pfit_disable(intel_crtc, false);
5590
5591 if (!transcoder_is_dsi(cpu_transcoder))
5592 intel_ddi_disable_pipe_clock(intel_crtc);
5593
5594 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5595
5596 if (old_crtc_state->has_pch_encoder)
5597 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5598 true);
5599 }
5600
5601 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5602 {
5603 struct drm_device *dev = crtc->base.dev;
5604 struct drm_i915_private *dev_priv = to_i915(dev);
5605 struct intel_crtc_state *pipe_config = crtc->config;
5606
5607 if (!pipe_config->gmch_pfit.control)
5608 return;
5609
5610 /*
5611 * The panel fitter should only be adjusted whilst the pipe is disabled,
5612 * according to register description and PRM.
5613 */
5614 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5615 assert_pipe_disabled(dev_priv, crtc->pipe);
5616
5617 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5618 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5619
5620 /* Border color in case we don't scale up to the full screen. Black by
5621 * default, change to something else for debugging. */
5622 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5623 }
5624
5625 static enum intel_display_power_domain port_to_power_domain(enum port port)
5626 {
5627 switch (port) {
5628 case PORT_A:
5629 return POWER_DOMAIN_PORT_DDI_A_LANES;
5630 case PORT_B:
5631 return POWER_DOMAIN_PORT_DDI_B_LANES;
5632 case PORT_C:
5633 return POWER_DOMAIN_PORT_DDI_C_LANES;
5634 case PORT_D:
5635 return POWER_DOMAIN_PORT_DDI_D_LANES;
5636 case PORT_E:
5637 return POWER_DOMAIN_PORT_DDI_E_LANES;
5638 default:
5639 MISSING_CASE(port);
5640 return POWER_DOMAIN_PORT_OTHER;
5641 }
5642 }
5643
5644 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5645 {
5646 switch (port) {
5647 case PORT_A:
5648 return POWER_DOMAIN_AUX_A;
5649 case PORT_B:
5650 return POWER_DOMAIN_AUX_B;
5651 case PORT_C:
5652 return POWER_DOMAIN_AUX_C;
5653 case PORT_D:
5654 return POWER_DOMAIN_AUX_D;
5655 case PORT_E:
5656 /* FIXME: Check VBT for actual wiring of PORT E */
5657 return POWER_DOMAIN_AUX_D;
5658 default:
5659 MISSING_CASE(port);
5660 return POWER_DOMAIN_AUX_A;
5661 }
5662 }
5663
5664 enum intel_display_power_domain
5665 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5666 {
5667 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5668 struct intel_digital_port *intel_dig_port;
5669
5670 switch (intel_encoder->type) {
5671 case INTEL_OUTPUT_UNKNOWN:
5672 /* Only DDI platforms should ever use this output type */
5673 WARN_ON_ONCE(!HAS_DDI(dev_priv));
5674 case INTEL_OUTPUT_DP:
5675 case INTEL_OUTPUT_HDMI:
5676 case INTEL_OUTPUT_EDP:
5677 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5678 return port_to_power_domain(intel_dig_port->port);
5679 case INTEL_OUTPUT_DP_MST:
5680 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5681 return port_to_power_domain(intel_dig_port->port);
5682 case INTEL_OUTPUT_ANALOG:
5683 return POWER_DOMAIN_PORT_CRT;
5684 case INTEL_OUTPUT_DSI:
5685 return POWER_DOMAIN_PORT_DSI;
5686 default:
5687 return POWER_DOMAIN_PORT_OTHER;
5688 }
5689 }
5690
5691 enum intel_display_power_domain
5692 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5693 {
5694 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5695 struct intel_digital_port *intel_dig_port;
5696
5697 switch (intel_encoder->type) {
5698 case INTEL_OUTPUT_UNKNOWN:
5699 case INTEL_OUTPUT_HDMI:
5700 /*
5701 * Only DDI platforms should ever use these output types.
5702 * We can get here after the HDMI detect code has already set
5703 * the type of the shared encoder. Since we can't be sure
5704 * what's the status of the given connectors, play safe and
5705 * run the DP detection too.
5706 */
5707 WARN_ON_ONCE(!HAS_DDI(dev_priv));
5708 case INTEL_OUTPUT_DP:
5709 case INTEL_OUTPUT_EDP:
5710 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5711 return port_to_aux_power_domain(intel_dig_port->port);
5712 case INTEL_OUTPUT_DP_MST:
5713 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5714 return port_to_aux_power_domain(intel_dig_port->port);
5715 default:
5716 MISSING_CASE(intel_encoder->type);
5717 return POWER_DOMAIN_AUX_A;
5718 }
5719 }
5720
5721 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5722 struct intel_crtc_state *crtc_state)
5723 {
5724 struct drm_device *dev = crtc->dev;
5725 struct drm_encoder *encoder;
5726 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5727 enum pipe pipe = intel_crtc->pipe;
5728 unsigned long mask;
5729 enum transcoder transcoder = crtc_state->cpu_transcoder;
5730
5731 if (!crtc_state->base.active)
5732 return 0;
5733
5734 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5735 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5736 if (crtc_state->pch_pfit.enabled ||
5737 crtc_state->pch_pfit.force_thru)
5738 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5739
5740 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5741 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5742
5743 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5744 }
5745
5746 if (crtc_state->shared_dpll)
5747 mask |= BIT(POWER_DOMAIN_PLLS);
5748
5749 return mask;
5750 }
5751
5752 static unsigned long
5753 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5754 struct intel_crtc_state *crtc_state)
5755 {
5756 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5757 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5758 enum intel_display_power_domain domain;
5759 unsigned long domains, new_domains, old_domains;
5760
5761 old_domains = intel_crtc->enabled_power_domains;
5762 intel_crtc->enabled_power_domains = new_domains =
5763 get_crtc_power_domains(crtc, crtc_state);
5764
5765 domains = new_domains & ~old_domains;
5766
5767 for_each_power_domain(domain, domains)
5768 intel_display_power_get(dev_priv, domain);
5769
5770 return old_domains & ~new_domains;
5771 }
5772
5773 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5774 unsigned long domains)
5775 {
5776 enum intel_display_power_domain domain;
5777
5778 for_each_power_domain(domain, domains)
5779 intel_display_power_put(dev_priv, domain);
5780 }
5781
5782 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5783 {
5784 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5785
5786 if (IS_GEMINILAKE(dev_priv))
5787 return 2 * max_cdclk_freq;
5788 else if (INTEL_INFO(dev_priv)->gen >= 9 ||
5789 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5790 return max_cdclk_freq;
5791 else if (IS_CHERRYVIEW(dev_priv))
5792 return max_cdclk_freq*95/100;
5793 else if (INTEL_INFO(dev_priv)->gen < 4)
5794 return 2*max_cdclk_freq*90/100;
5795 else
5796 return max_cdclk_freq*90/100;
5797 }
5798
5799 static int skl_calc_cdclk(int max_pixclk, int vco);
5800
5801 static void intel_update_max_cdclk(struct drm_i915_private *dev_priv)
5802 {
5803 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5804 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5805 int max_cdclk, vco;
5806
5807 vco = dev_priv->skl_preferred_vco_freq;
5808 WARN_ON(vco != 8100000 && vco != 8640000);
5809
5810 /*
5811 * Use the lower (vco 8640) cdclk values as a
5812 * first guess. skl_calc_cdclk() will correct it
5813 * if the preferred vco is 8100 instead.
5814 */
5815 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5816 max_cdclk = 617143;
5817 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5818 max_cdclk = 540000;
5819 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5820 max_cdclk = 432000;
5821 else
5822 max_cdclk = 308571;
5823
5824 dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
5825 } else if (IS_GEMINILAKE(dev_priv)) {
5826 dev_priv->max_cdclk_freq = 316800;
5827 } else if (IS_BROXTON(dev_priv)) {
5828 dev_priv->max_cdclk_freq = 624000;
5829 } else if (IS_BROADWELL(dev_priv)) {
5830 /*
5831 * FIXME with extra cooling we can allow
5832 * 540 MHz for ULX and 675 Mhz for ULT.
5833 * How can we know if extra cooling is
5834 * available? PCI ID, VTB, something else?
5835 */
5836 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5837 dev_priv->max_cdclk_freq = 450000;
5838 else if (IS_BDW_ULX(dev_priv))
5839 dev_priv->max_cdclk_freq = 450000;
5840 else if (IS_BDW_ULT(dev_priv))
5841 dev_priv->max_cdclk_freq = 540000;
5842 else
5843 dev_priv->max_cdclk_freq = 675000;
5844 } else if (IS_CHERRYVIEW(dev_priv)) {
5845 dev_priv->max_cdclk_freq = 320000;
5846 } else if (IS_VALLEYVIEW(dev_priv)) {
5847 dev_priv->max_cdclk_freq = 400000;
5848 } else {
5849 /* otherwise assume cdclk is fixed */
5850 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5851 }
5852
5853 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5854
5855 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5856 dev_priv->max_cdclk_freq);
5857
5858 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5859 dev_priv->max_dotclk_freq);
5860 }
5861
5862 static void intel_update_cdclk(struct drm_i915_private *dev_priv)
5863 {
5864 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev_priv);
5865
5866 if (INTEL_GEN(dev_priv) >= 9)
5867 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n",
5868 dev_priv->cdclk_freq, dev_priv->cdclk_pll.vco,
5869 dev_priv->cdclk_pll.ref);
5870 else
5871 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5872 dev_priv->cdclk_freq);
5873
5874 /*
5875 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5876 * Programmng [sic] note: bit[9:2] should be programmed to the number
5877 * of cdclk that generates 4MHz reference clock freq which is used to
5878 * generate GMBus clock. This will vary with the cdclk freq.
5879 */
5880 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5881 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5882 }
5883
5884 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5885 static int skl_cdclk_decimal(int cdclk)
5886 {
5887 return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
5888 }
5889
5890 static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
5891 {
5892 int ratio;
5893
5894 if (cdclk == dev_priv->cdclk_pll.ref)
5895 return 0;
5896
5897 switch (cdclk) {
5898 default:
5899 MISSING_CASE(cdclk);
5900 case 144000:
5901 case 288000:
5902 case 384000:
5903 case 576000:
5904 ratio = 60;
5905 break;
5906 case 624000:
5907 ratio = 65;
5908 break;
5909 }
5910
5911 return dev_priv->cdclk_pll.ref * ratio;
5912 }
5913
5914 static int glk_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
5915 {
5916 int ratio;
5917
5918 if (cdclk == dev_priv->cdclk_pll.ref)
5919 return 0;
5920
5921 switch (cdclk) {
5922 default:
5923 MISSING_CASE(cdclk);
5924 case 79200:
5925 case 158400:
5926 case 316800:
5927 ratio = 33;
5928 break;
5929 }
5930
5931 return dev_priv->cdclk_pll.ref * ratio;
5932 }
5933
5934 static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
5935 {
5936 I915_WRITE(BXT_DE_PLL_ENABLE, 0);
5937
5938 /* Timeout 200us */
5939 if (intel_wait_for_register(dev_priv,
5940 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 0,
5941 1))
5942 DRM_ERROR("timeout waiting for DE PLL unlock\n");
5943
5944 dev_priv->cdclk_pll.vco = 0;
5945 }
5946
5947 static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
5948 {
5949 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk_pll.ref);
5950 u32 val;
5951
5952 val = I915_READ(BXT_DE_PLL_CTL);
5953 val &= ~BXT_DE_PLL_RATIO_MASK;
5954 val |= BXT_DE_PLL_RATIO(ratio);
5955 I915_WRITE(BXT_DE_PLL_CTL, val);
5956
5957 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5958
5959 /* Timeout 200us */
5960 if (intel_wait_for_register(dev_priv,
5961 BXT_DE_PLL_ENABLE,
5962 BXT_DE_PLL_LOCK,
5963 BXT_DE_PLL_LOCK,
5964 1))
5965 DRM_ERROR("timeout waiting for DE PLL lock\n");
5966
5967 dev_priv->cdclk_pll.vco = vco;
5968 }
5969
5970 static void bxt_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
5971 {
5972 u32 val, divider;
5973 int vco, ret;
5974
5975 if (IS_GEMINILAKE(dev_priv))
5976 vco = glk_de_pll_vco(dev_priv, cdclk);
5977 else
5978 vco = bxt_de_pll_vco(dev_priv, cdclk);
5979
5980 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5981
5982 /* cdclk = vco / 2 / div{1,1.5,2,4} */
5983 switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
5984 case 8:
5985 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5986 break;
5987 case 4:
5988 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5989 break;
5990 case 3:
5991 WARN(IS_GEMINILAKE(dev_priv), "Unsupported divider\n");
5992 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5993 break;
5994 case 2:
5995 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5996 break;
5997 default:
5998 WARN_ON(cdclk != dev_priv->cdclk_pll.ref);
5999 WARN_ON(vco != 0);
6000
6001 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
6002 break;
6003 }
6004
6005 /* Inform power controller of upcoming frequency change */
6006 mutex_lock(&dev_priv->rps.hw_lock);
6007 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
6008 0x80000000);
6009 mutex_unlock(&dev_priv->rps.hw_lock);
6010
6011 if (ret) {
6012 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
6013 ret, cdclk);
6014 return;
6015 }
6016
6017 if (dev_priv->cdclk_pll.vco != 0 &&
6018 dev_priv->cdclk_pll.vco != vco)
6019 bxt_de_pll_disable(dev_priv);
6020
6021 if (dev_priv->cdclk_pll.vco != vco)
6022 bxt_de_pll_enable(dev_priv, vco);
6023
6024 val = divider | skl_cdclk_decimal(cdclk);
6025 /*
6026 * FIXME if only the cd2x divider needs changing, it could be done
6027 * without shutting off the pipe (if only one pipe is active).
6028 */
6029 val |= BXT_CDCLK_CD2X_PIPE_NONE;
6030 /*
6031 * Disable SSA Precharge when CD clock frequency < 500 MHz,
6032 * enable otherwise.
6033 */
6034 if (cdclk >= 500000)
6035 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6036 I915_WRITE(CDCLK_CTL, val);
6037
6038 mutex_lock(&dev_priv->rps.hw_lock);
6039 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
6040 DIV_ROUND_UP(cdclk, 25000));
6041 mutex_unlock(&dev_priv->rps.hw_lock);
6042
6043 if (ret) {
6044 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
6045 ret, cdclk);
6046 return;
6047 }
6048
6049 intel_update_cdclk(dev_priv);
6050 }
6051
6052 static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
6053 {
6054 u32 cdctl, expected;
6055
6056 intel_update_cdclk(dev_priv);
6057
6058 if (dev_priv->cdclk_pll.vco == 0 ||
6059 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6060 goto sanitize;
6061
6062 /* DPLL okay; verify the cdclock
6063 *
6064 * Some BIOS versions leave an incorrect decimal frequency value and
6065 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
6066 * so sanitize this register.
6067 */
6068 cdctl = I915_READ(CDCLK_CTL);
6069 /*
6070 * Let's ignore the pipe field, since BIOS could have configured the
6071 * dividers both synching to an active pipe, or asynchronously
6072 * (PIPE_NONE).
6073 */
6074 cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE;
6075
6076 expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) |
6077 skl_cdclk_decimal(dev_priv->cdclk_freq);
6078 /*
6079 * Disable SSA Precharge when CD clock frequency < 500 MHz,
6080 * enable otherwise.
6081 */
6082 if (dev_priv->cdclk_freq >= 500000)
6083 expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6084
6085 if (cdctl == expected)
6086 /* All well; nothing to sanitize */
6087 return;
6088
6089 sanitize:
6090 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6091
6092 /* force cdclk programming */
6093 dev_priv->cdclk_freq = 0;
6094
6095 /* force full PLL disable + enable */
6096 dev_priv->cdclk_pll.vco = -1;
6097 }
6098
6099 void bxt_init_cdclk(struct drm_i915_private *dev_priv)
6100 {
6101 int cdclk;
6102
6103 bxt_sanitize_cdclk(dev_priv);
6104
6105 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0)
6106 return;
6107
6108 /*
6109 * FIXME:
6110 * - The initial CDCLK needs to be read from VBT.
6111 * Need to make this change after VBT has changes for BXT.
6112 */
6113 if (IS_GEMINILAKE(dev_priv))
6114 cdclk = glk_calc_cdclk(0);
6115 else
6116 cdclk = bxt_calc_cdclk(0);
6117
6118 bxt_set_cdclk(dev_priv, cdclk);
6119 }
6120
6121 void bxt_uninit_cdclk(struct drm_i915_private *dev_priv)
6122 {
6123 bxt_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref);
6124 }
6125
6126 static int skl_calc_cdclk(int max_pixclk, int vco)
6127 {
6128 if (vco == 8640000) {
6129 if (max_pixclk > 540000)
6130 return 617143;
6131 else if (max_pixclk > 432000)
6132 return 540000;
6133 else if (max_pixclk > 308571)
6134 return 432000;
6135 else
6136 return 308571;
6137 } else {
6138 if (max_pixclk > 540000)
6139 return 675000;
6140 else if (max_pixclk > 450000)
6141 return 540000;
6142 else if (max_pixclk > 337500)
6143 return 450000;
6144 else
6145 return 337500;
6146 }
6147 }
6148
6149 static void
6150 skl_dpll0_update(struct drm_i915_private *dev_priv)
6151 {
6152 u32 val;
6153
6154 dev_priv->cdclk_pll.ref = 24000;
6155 dev_priv->cdclk_pll.vco = 0;
6156
6157 val = I915_READ(LCPLL1_CTL);
6158 if ((val & LCPLL_PLL_ENABLE) == 0)
6159 return;
6160
6161 if (WARN_ON((val & LCPLL_PLL_LOCK) == 0))
6162 return;
6163
6164 val = I915_READ(DPLL_CTRL1);
6165
6166 if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
6167 DPLL_CTRL1_SSC(SKL_DPLL0) |
6168 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
6169 DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
6170 return;
6171
6172 switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
6173 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
6174 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
6175 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
6176 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
6177 dev_priv->cdclk_pll.vco = 8100000;
6178 break;
6179 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
6180 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
6181 dev_priv->cdclk_pll.vco = 8640000;
6182 break;
6183 default:
6184 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6185 break;
6186 }
6187 }
6188
6189 void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco)
6190 {
6191 bool changed = dev_priv->skl_preferred_vco_freq != vco;
6192
6193 dev_priv->skl_preferred_vco_freq = vco;
6194
6195 if (changed)
6196 intel_update_max_cdclk(dev_priv);
6197 }
6198
6199 static void
6200 skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
6201 {
6202 int min_cdclk = skl_calc_cdclk(0, vco);
6203 u32 val;
6204
6205 WARN_ON(vco != 8100000 && vco != 8640000);
6206
6207 /* select the minimum CDCLK before enabling DPLL 0 */
6208 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
6209 I915_WRITE(CDCLK_CTL, val);
6210 POSTING_READ(CDCLK_CTL);
6211
6212 /*
6213 * We always enable DPLL0 with the lowest link rate possible, but still
6214 * taking into account the VCO required to operate the eDP panel at the
6215 * desired frequency. The usual DP link rates operate with a VCO of
6216 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
6217 * The modeset code is responsible for the selection of the exact link
6218 * rate later on, with the constraint of choosing a frequency that
6219 * works with vco.
6220 */
6221 val = I915_READ(DPLL_CTRL1);
6222
6223 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
6224 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6225 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
6226 if (vco == 8640000)
6227 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
6228 SKL_DPLL0);
6229 else
6230 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
6231 SKL_DPLL0);
6232
6233 I915_WRITE(DPLL_CTRL1, val);
6234 POSTING_READ(DPLL_CTRL1);
6235
6236 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
6237
6238 if (intel_wait_for_register(dev_priv,
6239 LCPLL1_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
6240 5))
6241 DRM_ERROR("DPLL0 not locked\n");
6242
6243 dev_priv->cdclk_pll.vco = vco;
6244
6245 /* We'll want to keep using the current vco from now on. */
6246 skl_set_preferred_cdclk_vco(dev_priv, vco);
6247 }
6248
6249 static void
6250 skl_dpll0_disable(struct drm_i915_private *dev_priv)
6251 {
6252 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
6253 if (intel_wait_for_register(dev_priv,
6254 LCPLL1_CTL, LCPLL_PLL_LOCK, 0,
6255 1))
6256 DRM_ERROR("Couldn't disable DPLL0\n");
6257
6258 dev_priv->cdclk_pll.vco = 0;
6259 }
6260
6261 static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco)
6262 {
6263 u32 freq_select, pcu_ack;
6264 int ret;
6265
6266 WARN_ON((cdclk == 24000) != (vco == 0));
6267
6268 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
6269
6270 mutex_lock(&dev_priv->rps.hw_lock);
6271 ret = skl_pcode_request(dev_priv, SKL_PCODE_CDCLK_CONTROL,
6272 SKL_CDCLK_PREPARE_FOR_CHANGE,
6273 SKL_CDCLK_READY_FOR_CHANGE,
6274 SKL_CDCLK_READY_FOR_CHANGE, 3);
6275 mutex_unlock(&dev_priv->rps.hw_lock);
6276 if (ret) {
6277 DRM_ERROR("Failed to inform PCU about cdclk change (%d)\n",
6278 ret);
6279 return;
6280 }
6281
6282 /* set CDCLK_CTL */
6283 switch (cdclk) {
6284 case 450000:
6285 case 432000:
6286 freq_select = CDCLK_FREQ_450_432;
6287 pcu_ack = 1;
6288 break;
6289 case 540000:
6290 freq_select = CDCLK_FREQ_540;
6291 pcu_ack = 2;
6292 break;
6293 case 308571:
6294 case 337500:
6295 default:
6296 freq_select = CDCLK_FREQ_337_308;
6297 pcu_ack = 0;
6298 break;
6299 case 617143:
6300 case 675000:
6301 freq_select = CDCLK_FREQ_675_617;
6302 pcu_ack = 3;
6303 break;
6304 }
6305
6306 if (dev_priv->cdclk_pll.vco != 0 &&
6307 dev_priv->cdclk_pll.vco != vco)
6308 skl_dpll0_disable(dev_priv);
6309
6310 if (dev_priv->cdclk_pll.vco != vco)
6311 skl_dpll0_enable(dev_priv, vco);
6312
6313 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
6314 POSTING_READ(CDCLK_CTL);
6315
6316 /* inform PCU of the change */
6317 mutex_lock(&dev_priv->rps.hw_lock);
6318 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
6319 mutex_unlock(&dev_priv->rps.hw_lock);
6320
6321 intel_update_cdclk(dev_priv);
6322 }
6323
6324 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv);
6325
6326 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
6327 {
6328 skl_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref, 0);
6329 }
6330
6331 void skl_init_cdclk(struct drm_i915_private *dev_priv)
6332 {
6333 int cdclk, vco;
6334
6335 skl_sanitize_cdclk(dev_priv);
6336
6337 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) {
6338 /*
6339 * Use the current vco as our initial
6340 * guess as to what the preferred vco is.
6341 */
6342 if (dev_priv->skl_preferred_vco_freq == 0)
6343 skl_set_preferred_cdclk_vco(dev_priv,
6344 dev_priv->cdclk_pll.vco);
6345 return;
6346 }
6347
6348 vco = dev_priv->skl_preferred_vco_freq;
6349 if (vco == 0)
6350 vco = 8100000;
6351 cdclk = skl_calc_cdclk(0, vco);
6352
6353 skl_set_cdclk(dev_priv, cdclk, vco);
6354 }
6355
6356 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
6357 {
6358 uint32_t cdctl, expected;
6359
6360 /*
6361 * check if the pre-os intialized the display
6362 * There is SWF18 scratchpad register defined which is set by the
6363 * pre-os which can be used by the OS drivers to check the status
6364 */
6365 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
6366 goto sanitize;
6367
6368 intel_update_cdclk(dev_priv);
6369 /* Is PLL enabled and locked ? */
6370 if (dev_priv->cdclk_pll.vco == 0 ||
6371 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6372 goto sanitize;
6373
6374 /* DPLL okay; verify the cdclock
6375 *
6376 * Noticed in some instances that the freq selection is correct but
6377 * decimal part is programmed wrong from BIOS where pre-os does not
6378 * enable display. Verify the same as well.
6379 */
6380 cdctl = I915_READ(CDCLK_CTL);
6381 expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
6382 skl_cdclk_decimal(dev_priv->cdclk_freq);
6383 if (cdctl == expected)
6384 /* All well; nothing to sanitize */
6385 return;
6386
6387 sanitize:
6388 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6389
6390 /* force cdclk programming */
6391 dev_priv->cdclk_freq = 0;
6392 /* force full PLL disable + enable */
6393 dev_priv->cdclk_pll.vco = -1;
6394 }
6395
6396 /* Adjust CDclk dividers to allow high res or save power if possible */
6397 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
6398 {
6399 struct drm_i915_private *dev_priv = to_i915(dev);
6400 u32 val, cmd;
6401
6402 WARN_ON(dev_priv->display.get_display_clock_speed(dev_priv)
6403 != dev_priv->cdclk_freq);
6404
6405 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
6406 cmd = 2;
6407 else if (cdclk == 266667)
6408 cmd = 1;
6409 else
6410 cmd = 0;
6411
6412 mutex_lock(&dev_priv->rps.hw_lock);
6413 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6414 val &= ~DSPFREQGUAR_MASK;
6415 val |= (cmd << DSPFREQGUAR_SHIFT);
6416 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6417 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6418 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
6419 50)) {
6420 DRM_ERROR("timed out waiting for CDclk change\n");
6421 }
6422 mutex_unlock(&dev_priv->rps.hw_lock);
6423
6424 mutex_lock(&dev_priv->sb_lock);
6425
6426 if (cdclk == 400000) {
6427 u32 divider;
6428
6429 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6430
6431 /* adjust cdclk divider */
6432 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6433 val &= ~CCK_FREQUENCY_VALUES;
6434 val |= divider;
6435 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
6436
6437 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
6438 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
6439 50))
6440 DRM_ERROR("timed out waiting for CDclk change\n");
6441 }
6442
6443 /* adjust self-refresh exit latency value */
6444 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
6445 val &= ~0x7f;
6446
6447 /*
6448 * For high bandwidth configs, we set a higher latency in the bunit
6449 * so that the core display fetch happens in time to avoid underruns.
6450 */
6451 if (cdclk == 400000)
6452 val |= 4500 / 250; /* 4.5 usec */
6453 else
6454 val |= 3000 / 250; /* 3.0 usec */
6455 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
6456
6457 mutex_unlock(&dev_priv->sb_lock);
6458
6459 intel_update_cdclk(dev_priv);
6460 }
6461
6462 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
6463 {
6464 struct drm_i915_private *dev_priv = to_i915(dev);
6465 u32 val, cmd;
6466
6467 WARN_ON(dev_priv->display.get_display_clock_speed(dev_priv)
6468 != dev_priv->cdclk_freq);
6469
6470 switch (cdclk) {
6471 case 333333:
6472 case 320000:
6473 case 266667:
6474 case 200000:
6475 break;
6476 default:
6477 MISSING_CASE(cdclk);
6478 return;
6479 }
6480
6481 /*
6482 * Specs are full of misinformation, but testing on actual
6483 * hardware has shown that we just need to write the desired
6484 * CCK divider into the Punit register.
6485 */
6486 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6487
6488 mutex_lock(&dev_priv->rps.hw_lock);
6489 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6490 val &= ~DSPFREQGUAR_MASK_CHV;
6491 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
6492 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6493 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6494 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
6495 50)) {
6496 DRM_ERROR("timed out waiting for CDclk change\n");
6497 }
6498 mutex_unlock(&dev_priv->rps.hw_lock);
6499
6500 intel_update_cdclk(dev_priv);
6501 }
6502
6503 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
6504 int max_pixclk)
6505 {
6506 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6507 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
6508
6509 /*
6510 * Really only a few cases to deal with, as only 4 CDclks are supported:
6511 * 200MHz
6512 * 267MHz
6513 * 320/333MHz (depends on HPLL freq)
6514 * 400MHz (VLV only)
6515 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
6516 * of the lower bin and adjust if needed.
6517 *
6518 * We seem to get an unstable or solid color picture at 200MHz.
6519 * Not sure what's wrong. For now use 200MHz only when all pipes
6520 * are off.
6521 */
6522 if (!IS_CHERRYVIEW(dev_priv) &&
6523 max_pixclk > freq_320*limit/100)
6524 return 400000;
6525 else if (max_pixclk > 266667*limit/100)
6526 return freq_320;
6527 else if (max_pixclk > 0)
6528 return 266667;
6529 else
6530 return 200000;
6531 }
6532
6533 static int glk_calc_cdclk(int max_pixclk)
6534 {
6535 if (max_pixclk > 2 * 158400)
6536 return 316800;
6537 else if (max_pixclk > 2 * 79200)
6538 return 158400;
6539 else
6540 return 79200;
6541 }
6542
6543 static int bxt_calc_cdclk(int max_pixclk)
6544 {
6545 if (max_pixclk > 576000)
6546 return 624000;
6547 else if (max_pixclk > 384000)
6548 return 576000;
6549 else if (max_pixclk > 288000)
6550 return 384000;
6551 else if (max_pixclk > 144000)
6552 return 288000;
6553 else
6554 return 144000;
6555 }
6556
6557 /* Compute the max pixel clock for new configuration. */
6558 static int intel_mode_max_pixclk(struct drm_device *dev,
6559 struct drm_atomic_state *state)
6560 {
6561 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
6562 struct drm_i915_private *dev_priv = to_i915(dev);
6563 struct drm_crtc *crtc;
6564 struct drm_crtc_state *crtc_state;
6565 unsigned max_pixclk = 0, i;
6566 enum pipe pipe;
6567
6568 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
6569 sizeof(intel_state->min_pixclk));
6570
6571 for_each_crtc_in_state(state, crtc, crtc_state, i) {
6572 int pixclk = 0;
6573
6574 if (crtc_state->enable)
6575 pixclk = crtc_state->adjusted_mode.crtc_clock;
6576
6577 intel_state->min_pixclk[i] = pixclk;
6578 }
6579
6580 for_each_pipe(dev_priv, pipe)
6581 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6582
6583 return max_pixclk;
6584 }
6585
6586 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6587 {
6588 struct drm_device *dev = state->dev;
6589 struct drm_i915_private *dev_priv = to_i915(dev);
6590 int max_pixclk = intel_mode_max_pixclk(dev, state);
6591 struct intel_atomic_state *intel_state =
6592 to_intel_atomic_state(state);
6593
6594 intel_state->cdclk = intel_state->dev_cdclk =
6595 valleyview_calc_cdclk(dev_priv, max_pixclk);
6596
6597 if (!intel_state->active_crtcs)
6598 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6599
6600 return 0;
6601 }
6602
6603 static int bxt_modeset_calc_cdclk(struct drm_atomic_state *state)
6604 {
6605 struct drm_i915_private *dev_priv = to_i915(state->dev);
6606 int max_pixclk = ilk_max_pixel_rate(state);
6607 struct intel_atomic_state *intel_state =
6608 to_intel_atomic_state(state);
6609 int cdclk;
6610
6611 if (IS_GEMINILAKE(dev_priv))
6612 cdclk = glk_calc_cdclk(max_pixclk);
6613 else
6614 cdclk = bxt_calc_cdclk(max_pixclk);
6615
6616 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
6617
6618 if (!intel_state->active_crtcs) {
6619 if (IS_GEMINILAKE(dev_priv))
6620 cdclk = glk_calc_cdclk(0);
6621 else
6622 cdclk = bxt_calc_cdclk(0);
6623
6624 intel_state->dev_cdclk = cdclk;
6625 }
6626
6627 return 0;
6628 }
6629
6630 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6631 {
6632 unsigned int credits, default_credits;
6633
6634 if (IS_CHERRYVIEW(dev_priv))
6635 default_credits = PFI_CREDIT(12);
6636 else
6637 default_credits = PFI_CREDIT(8);
6638
6639 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6640 /* CHV suggested value is 31 or 63 */
6641 if (IS_CHERRYVIEW(dev_priv))
6642 credits = PFI_CREDIT_63;
6643 else
6644 credits = PFI_CREDIT(15);
6645 } else {
6646 credits = default_credits;
6647 }
6648
6649 /*
6650 * WA - write default credits before re-programming
6651 * FIXME: should we also set the resend bit here?
6652 */
6653 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6654 default_credits);
6655
6656 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6657 credits | PFI_CREDIT_RESEND);
6658
6659 /*
6660 * FIXME is this guaranteed to clear
6661 * immediately or should we poll for it?
6662 */
6663 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6664 }
6665
6666 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6667 {
6668 struct drm_device *dev = old_state->dev;
6669 struct drm_i915_private *dev_priv = to_i915(dev);
6670 struct intel_atomic_state *old_intel_state =
6671 to_intel_atomic_state(old_state);
6672 unsigned req_cdclk = old_intel_state->dev_cdclk;
6673
6674 /*
6675 * FIXME: We can end up here with all power domains off, yet
6676 * with a CDCLK frequency other than the minimum. To account
6677 * for this take the PIPE-A power domain, which covers the HW
6678 * blocks needed for the following programming. This can be
6679 * removed once it's guaranteed that we get here either with
6680 * the minimum CDCLK set, or the required power domains
6681 * enabled.
6682 */
6683 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6684
6685 if (IS_CHERRYVIEW(dev_priv))
6686 cherryview_set_cdclk(dev, req_cdclk);
6687 else
6688 valleyview_set_cdclk(dev, req_cdclk);
6689
6690 vlv_program_pfi_credits(dev_priv);
6691
6692 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6693 }
6694
6695 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
6696 struct drm_atomic_state *old_state)
6697 {
6698 struct drm_crtc *crtc = pipe_config->base.crtc;
6699 struct drm_device *dev = crtc->dev;
6700 struct drm_i915_private *dev_priv = to_i915(dev);
6701 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6702 int pipe = intel_crtc->pipe;
6703
6704 if (WARN_ON(intel_crtc->active))
6705 return;
6706
6707 if (intel_crtc_has_dp_encoder(intel_crtc->config))
6708 intel_dp_set_m_n(intel_crtc, M1_N1);
6709
6710 intel_set_pipe_timings(intel_crtc);
6711 intel_set_pipe_src_size(intel_crtc);
6712
6713 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
6714 struct drm_i915_private *dev_priv = to_i915(dev);
6715
6716 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6717 I915_WRITE(CHV_CANVAS(pipe), 0);
6718 }
6719
6720 i9xx_set_pipeconf(intel_crtc);
6721
6722 intel_crtc->active = true;
6723
6724 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6725
6726 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
6727
6728 if (IS_CHERRYVIEW(dev_priv)) {
6729 chv_prepare_pll(intel_crtc, intel_crtc->config);
6730 chv_enable_pll(intel_crtc, intel_crtc->config);
6731 } else {
6732 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6733 vlv_enable_pll(intel_crtc, intel_crtc->config);
6734 }
6735
6736 intel_encoders_pre_enable(crtc, pipe_config, old_state);
6737
6738 i9xx_pfit_enable(intel_crtc);
6739
6740 intel_color_load_luts(&pipe_config->base);
6741
6742 intel_update_watermarks(intel_crtc);
6743 intel_enable_pipe(intel_crtc);
6744
6745 assert_vblank_disabled(crtc);
6746 drm_crtc_vblank_on(crtc);
6747
6748 intel_encoders_enable(crtc, pipe_config, old_state);
6749 }
6750
6751 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6752 {
6753 struct drm_device *dev = crtc->base.dev;
6754 struct drm_i915_private *dev_priv = to_i915(dev);
6755
6756 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6757 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6758 }
6759
6760 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
6761 struct drm_atomic_state *old_state)
6762 {
6763 struct drm_crtc *crtc = pipe_config->base.crtc;
6764 struct drm_device *dev = crtc->dev;
6765 struct drm_i915_private *dev_priv = to_i915(dev);
6766 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6767 enum pipe pipe = intel_crtc->pipe;
6768
6769 if (WARN_ON(intel_crtc->active))
6770 return;
6771
6772 i9xx_set_pll_dividers(intel_crtc);
6773
6774 if (intel_crtc_has_dp_encoder(intel_crtc->config))
6775 intel_dp_set_m_n(intel_crtc, M1_N1);
6776
6777 intel_set_pipe_timings(intel_crtc);
6778 intel_set_pipe_src_size(intel_crtc);
6779
6780 i9xx_set_pipeconf(intel_crtc);
6781
6782 intel_crtc->active = true;
6783
6784 if (!IS_GEN2(dev_priv))
6785 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6786
6787 intel_encoders_pre_enable(crtc, pipe_config, old_state);
6788
6789 i9xx_enable_pll(intel_crtc);
6790
6791 i9xx_pfit_enable(intel_crtc);
6792
6793 intel_color_load_luts(&pipe_config->base);
6794
6795 intel_update_watermarks(intel_crtc);
6796 intel_enable_pipe(intel_crtc);
6797
6798 assert_vblank_disabled(crtc);
6799 drm_crtc_vblank_on(crtc);
6800
6801 intel_encoders_enable(crtc, pipe_config, old_state);
6802 }
6803
6804 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6805 {
6806 struct drm_device *dev = crtc->base.dev;
6807 struct drm_i915_private *dev_priv = to_i915(dev);
6808
6809 if (!crtc->config->gmch_pfit.control)
6810 return;
6811
6812 assert_pipe_disabled(dev_priv, crtc->pipe);
6813
6814 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6815 I915_READ(PFIT_CONTROL));
6816 I915_WRITE(PFIT_CONTROL, 0);
6817 }
6818
6819 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
6820 struct drm_atomic_state *old_state)
6821 {
6822 struct drm_crtc *crtc = old_crtc_state->base.crtc;
6823 struct drm_device *dev = crtc->dev;
6824 struct drm_i915_private *dev_priv = to_i915(dev);
6825 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6826 int pipe = intel_crtc->pipe;
6827
6828 /*
6829 * On gen2 planes are double buffered but the pipe isn't, so we must
6830 * wait for planes to fully turn off before disabling the pipe.
6831 */
6832 if (IS_GEN2(dev_priv))
6833 intel_wait_for_vblank(dev_priv, pipe);
6834
6835 intel_encoders_disable(crtc, old_crtc_state, old_state);
6836
6837 drm_crtc_vblank_off(crtc);
6838 assert_vblank_disabled(crtc);
6839
6840 intel_disable_pipe(intel_crtc);
6841
6842 i9xx_pfit_disable(intel_crtc);
6843
6844 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
6845
6846 if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
6847 if (IS_CHERRYVIEW(dev_priv))
6848 chv_disable_pll(dev_priv, pipe);
6849 else if (IS_VALLEYVIEW(dev_priv))
6850 vlv_disable_pll(dev_priv, pipe);
6851 else
6852 i9xx_disable_pll(intel_crtc);
6853 }
6854
6855 intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
6856
6857 if (!IS_GEN2(dev_priv))
6858 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6859 }
6860
6861 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6862 {
6863 struct intel_encoder *encoder;
6864 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6865 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6866 enum intel_display_power_domain domain;
6867 unsigned long domains;
6868 struct drm_atomic_state *state;
6869 struct intel_crtc_state *crtc_state;
6870 int ret;
6871
6872 if (!intel_crtc->active)
6873 return;
6874
6875 if (crtc->primary->state->visible) {
6876 WARN_ON(intel_crtc->flip_work);
6877
6878 intel_pre_disable_primary_noatomic(crtc);
6879
6880 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6881 crtc->primary->state->visible = false;
6882 }
6883
6884 state = drm_atomic_state_alloc(crtc->dev);
6885 if (!state) {
6886 DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory",
6887 crtc->base.id, crtc->name);
6888 return;
6889 }
6890
6891 state->acquire_ctx = crtc->dev->mode_config.acquire_ctx;
6892
6893 /* Everything's already locked, -EDEADLK can't happen. */
6894 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
6895 ret = drm_atomic_add_affected_connectors(state, crtc);
6896
6897 WARN_ON(IS_ERR(crtc_state) || ret);
6898
6899 dev_priv->display.crtc_disable(crtc_state, state);
6900
6901 drm_atomic_state_put(state);
6902
6903 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6904 crtc->base.id, crtc->name);
6905
6906 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6907 crtc->state->active = false;
6908 intel_crtc->active = false;
6909 crtc->enabled = false;
6910 crtc->state->connector_mask = 0;
6911 crtc->state->encoder_mask = 0;
6912
6913 for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6914 encoder->base.crtc = NULL;
6915
6916 intel_fbc_disable(intel_crtc);
6917 intel_update_watermarks(intel_crtc);
6918 intel_disable_shared_dpll(intel_crtc);
6919
6920 domains = intel_crtc->enabled_power_domains;
6921 for_each_power_domain(domain, domains)
6922 intel_display_power_put(dev_priv, domain);
6923 intel_crtc->enabled_power_domains = 0;
6924
6925 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6926 dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6927 }
6928
6929 /*
6930 * turn all crtc's off, but do not adjust state
6931 * This has to be paired with a call to intel_modeset_setup_hw_state.
6932 */
6933 int intel_display_suspend(struct drm_device *dev)
6934 {
6935 struct drm_i915_private *dev_priv = to_i915(dev);
6936 struct drm_atomic_state *state;
6937 int ret;
6938
6939 state = drm_atomic_helper_suspend(dev);
6940 ret = PTR_ERR_OR_ZERO(state);
6941 if (ret)
6942 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6943 else
6944 dev_priv->modeset_restore_state = state;
6945 return ret;
6946 }
6947
6948 void intel_encoder_destroy(struct drm_encoder *encoder)
6949 {
6950 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6951
6952 drm_encoder_cleanup(encoder);
6953 kfree(intel_encoder);
6954 }
6955
6956 /* Cross check the actual hw state with our own modeset state tracking (and it's
6957 * internal consistency). */
6958 static void intel_connector_verify_state(struct intel_connector *connector)
6959 {
6960 struct drm_crtc *crtc = connector->base.state->crtc;
6961
6962 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6963 connector->base.base.id,
6964 connector->base.name);
6965
6966 if (connector->get_hw_state(connector)) {
6967 struct intel_encoder *encoder = connector->encoder;
6968 struct drm_connector_state *conn_state = connector->base.state;
6969
6970 I915_STATE_WARN(!crtc,
6971 "connector enabled without attached crtc\n");
6972
6973 if (!crtc)
6974 return;
6975
6976 I915_STATE_WARN(!crtc->state->active,
6977 "connector is active, but attached crtc isn't\n");
6978
6979 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6980 return;
6981
6982 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6983 "atomic encoder doesn't match attached encoder\n");
6984
6985 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6986 "attached encoder crtc differs from connector crtc\n");
6987 } else {
6988 I915_STATE_WARN(crtc && crtc->state->active,
6989 "attached crtc is active, but connector isn't\n");
6990 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6991 "best encoder set without crtc!\n");
6992 }
6993 }
6994
6995 int intel_connector_init(struct intel_connector *connector)
6996 {
6997 drm_atomic_helper_connector_reset(&connector->base);
6998
6999 if (!connector->base.state)
7000 return -ENOMEM;
7001
7002 return 0;
7003 }
7004
7005 struct intel_connector *intel_connector_alloc(void)
7006 {
7007 struct intel_connector *connector;
7008
7009 connector = kzalloc(sizeof *connector, GFP_KERNEL);
7010 if (!connector)
7011 return NULL;
7012
7013 if (intel_connector_init(connector) < 0) {
7014 kfree(connector);
7015 return NULL;
7016 }
7017
7018 return connector;
7019 }
7020
7021 /* Simple connector->get_hw_state implementation for encoders that support only
7022 * one connector and no cloning and hence the encoder state determines the state
7023 * of the connector. */
7024 bool intel_connector_get_hw_state(struct intel_connector *connector)
7025 {
7026 enum pipe pipe = 0;
7027 struct intel_encoder *encoder = connector->encoder;
7028
7029 return encoder->get_hw_state(encoder, &pipe);
7030 }
7031
7032 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
7033 {
7034 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
7035 return crtc_state->fdi_lanes;
7036
7037 return 0;
7038 }
7039
7040 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
7041 struct intel_crtc_state *pipe_config)
7042 {
7043 struct drm_i915_private *dev_priv = to_i915(dev);
7044 struct drm_atomic_state *state = pipe_config->base.state;
7045 struct intel_crtc *other_crtc;
7046 struct intel_crtc_state *other_crtc_state;
7047
7048 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
7049 pipe_name(pipe), pipe_config->fdi_lanes);
7050 if (pipe_config->fdi_lanes > 4) {
7051 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
7052 pipe_name(pipe), pipe_config->fdi_lanes);
7053 return -EINVAL;
7054 }
7055
7056 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
7057 if (pipe_config->fdi_lanes > 2) {
7058 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
7059 pipe_config->fdi_lanes);
7060 return -EINVAL;
7061 } else {
7062 return 0;
7063 }
7064 }
7065
7066 if (INTEL_INFO(dev_priv)->num_pipes == 2)
7067 return 0;
7068
7069 /* Ivybridge 3 pipe is really complicated */
7070 switch (pipe) {
7071 case PIPE_A:
7072 return 0;
7073 case PIPE_B:
7074 if (pipe_config->fdi_lanes <= 2)
7075 return 0;
7076
7077 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
7078 other_crtc_state =
7079 intel_atomic_get_crtc_state(state, other_crtc);
7080 if (IS_ERR(other_crtc_state))
7081 return PTR_ERR(other_crtc_state);
7082
7083 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
7084 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
7085 pipe_name(pipe), pipe_config->fdi_lanes);
7086 return -EINVAL;
7087 }
7088 return 0;
7089 case PIPE_C:
7090 if (pipe_config->fdi_lanes > 2) {
7091 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
7092 pipe_name(pipe), pipe_config->fdi_lanes);
7093 return -EINVAL;
7094 }
7095
7096 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
7097 other_crtc_state =
7098 intel_atomic_get_crtc_state(state, other_crtc);
7099 if (IS_ERR(other_crtc_state))
7100 return PTR_ERR(other_crtc_state);
7101
7102 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
7103 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
7104 return -EINVAL;
7105 }
7106 return 0;
7107 default:
7108 BUG();
7109 }
7110 }
7111
7112 #define RETRY 1
7113 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
7114 struct intel_crtc_state *pipe_config)
7115 {
7116 struct drm_device *dev = intel_crtc->base.dev;
7117 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7118 int lane, link_bw, fdi_dotclock, ret;
7119 bool needs_recompute = false;
7120
7121 retry:
7122 /* FDI is a binary signal running at ~2.7GHz, encoding
7123 * each output octet as 10 bits. The actual frequency
7124 * is stored as a divider into a 100MHz clock, and the
7125 * mode pixel clock is stored in units of 1KHz.
7126 * Hence the bw of each lane in terms of the mode signal
7127 * is:
7128 */
7129 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
7130
7131 fdi_dotclock = adjusted_mode->crtc_clock;
7132
7133 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
7134 pipe_config->pipe_bpp);
7135
7136 pipe_config->fdi_lanes = lane;
7137
7138 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
7139 link_bw, &pipe_config->fdi_m_n);
7140
7141 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
7142 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
7143 pipe_config->pipe_bpp -= 2*3;
7144 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
7145 pipe_config->pipe_bpp);
7146 needs_recompute = true;
7147 pipe_config->bw_constrained = true;
7148
7149 goto retry;
7150 }
7151
7152 if (needs_recompute)
7153 return RETRY;
7154
7155 return ret;
7156 }
7157
7158 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
7159 struct intel_crtc_state *pipe_config)
7160 {
7161 if (pipe_config->pipe_bpp > 24)
7162 return false;
7163
7164 /* HSW can handle pixel rate up to cdclk? */
7165 if (IS_HASWELL(dev_priv))
7166 return true;
7167
7168 /*
7169 * We compare against max which means we must take
7170 * the increased cdclk requirement into account when
7171 * calculating the new cdclk.
7172 *
7173 * Should measure whether using a lower cdclk w/o IPS
7174 */
7175 return ilk_pipe_pixel_rate(pipe_config) <=
7176 dev_priv->max_cdclk_freq * 95 / 100;
7177 }
7178
7179 static void hsw_compute_ips_config(struct intel_crtc *crtc,
7180 struct intel_crtc_state *pipe_config)
7181 {
7182 struct drm_device *dev = crtc->base.dev;
7183 struct drm_i915_private *dev_priv = to_i915(dev);
7184
7185 pipe_config->ips_enabled = i915.enable_ips &&
7186 hsw_crtc_supports_ips(crtc) &&
7187 pipe_config_supports_ips(dev_priv, pipe_config);
7188 }
7189
7190 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
7191 {
7192 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7193
7194 /* GDG double wide on either pipe, otherwise pipe A only */
7195 return INTEL_INFO(dev_priv)->gen < 4 &&
7196 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
7197 }
7198
7199 static int intel_crtc_compute_config(struct intel_crtc *crtc,
7200 struct intel_crtc_state *pipe_config)
7201 {
7202 struct drm_device *dev = crtc->base.dev;
7203 struct drm_i915_private *dev_priv = to_i915(dev);
7204 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7205 int clock_limit = dev_priv->max_dotclk_freq;
7206
7207 if (INTEL_GEN(dev_priv) < 4) {
7208 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
7209
7210 /*
7211 * Enable double wide mode when the dot clock
7212 * is > 90% of the (display) core speed.
7213 */
7214 if (intel_crtc_supports_double_wide(crtc) &&
7215 adjusted_mode->crtc_clock > clock_limit) {
7216 clock_limit = dev_priv->max_dotclk_freq;
7217 pipe_config->double_wide = true;
7218 }
7219 }
7220
7221 if (adjusted_mode->crtc_clock > clock_limit) {
7222 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
7223 adjusted_mode->crtc_clock, clock_limit,
7224 yesno(pipe_config->double_wide));
7225 return -EINVAL;
7226 }
7227
7228 /*
7229 * Pipe horizontal size must be even in:
7230 * - DVO ganged mode
7231 * - LVDS dual channel mode
7232 * - Double wide pipe
7233 */
7234 if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
7235 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
7236 pipe_config->pipe_src_w &= ~1;
7237
7238 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
7239 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
7240 */
7241 if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
7242 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
7243 return -EINVAL;
7244
7245 if (HAS_IPS(dev_priv))
7246 hsw_compute_ips_config(crtc, pipe_config);
7247
7248 if (pipe_config->has_pch_encoder)
7249 return ironlake_fdi_compute_config(crtc, pipe_config);
7250
7251 return 0;
7252 }
7253
7254 static int skylake_get_display_clock_speed(struct drm_i915_private *dev_priv)
7255 {
7256 u32 cdctl;
7257
7258 skl_dpll0_update(dev_priv);
7259
7260 if (dev_priv->cdclk_pll.vco == 0)
7261 return dev_priv->cdclk_pll.ref;
7262
7263 cdctl = I915_READ(CDCLK_CTL);
7264
7265 if (dev_priv->cdclk_pll.vco == 8640000) {
7266 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7267 case CDCLK_FREQ_450_432:
7268 return 432000;
7269 case CDCLK_FREQ_337_308:
7270 return 308571;
7271 case CDCLK_FREQ_540:
7272 return 540000;
7273 case CDCLK_FREQ_675_617:
7274 return 617143;
7275 default:
7276 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7277 }
7278 } else {
7279 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7280 case CDCLK_FREQ_450_432:
7281 return 450000;
7282 case CDCLK_FREQ_337_308:
7283 return 337500;
7284 case CDCLK_FREQ_540:
7285 return 540000;
7286 case CDCLK_FREQ_675_617:
7287 return 675000;
7288 default:
7289 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7290 }
7291 }
7292
7293 return dev_priv->cdclk_pll.ref;
7294 }
7295
7296 static void bxt_de_pll_update(struct drm_i915_private *dev_priv)
7297 {
7298 u32 val;
7299
7300 dev_priv->cdclk_pll.ref = 19200;
7301 dev_priv->cdclk_pll.vco = 0;
7302
7303 val = I915_READ(BXT_DE_PLL_ENABLE);
7304 if ((val & BXT_DE_PLL_PLL_ENABLE) == 0)
7305 return;
7306
7307 if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0))
7308 return;
7309
7310 val = I915_READ(BXT_DE_PLL_CTL);
7311 dev_priv->cdclk_pll.vco = (val & BXT_DE_PLL_RATIO_MASK) *
7312 dev_priv->cdclk_pll.ref;
7313 }
7314
7315 static int broxton_get_display_clock_speed(struct drm_i915_private *dev_priv)
7316 {
7317 u32 divider;
7318 int div, vco;
7319
7320 bxt_de_pll_update(dev_priv);
7321
7322 vco = dev_priv->cdclk_pll.vco;
7323 if (vco == 0)
7324 return dev_priv->cdclk_pll.ref;
7325
7326 divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
7327
7328 switch (divider) {
7329 case BXT_CDCLK_CD2X_DIV_SEL_1:
7330 div = 2;
7331 break;
7332 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
7333 WARN(IS_GEMINILAKE(dev_priv), "Unsupported divider\n");
7334 div = 3;
7335 break;
7336 case BXT_CDCLK_CD2X_DIV_SEL_2:
7337 div = 4;
7338 break;
7339 case BXT_CDCLK_CD2X_DIV_SEL_4:
7340 div = 8;
7341 break;
7342 default:
7343 MISSING_CASE(divider);
7344 return dev_priv->cdclk_pll.ref;
7345 }
7346
7347 return DIV_ROUND_CLOSEST(vco, div);
7348 }
7349
7350 static int broadwell_get_display_clock_speed(struct drm_i915_private *dev_priv)
7351 {
7352 uint32_t lcpll = I915_READ(LCPLL_CTL);
7353 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7354
7355 if (lcpll & LCPLL_CD_SOURCE_FCLK)
7356 return 800000;
7357 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7358 return 450000;
7359 else if (freq == LCPLL_CLK_FREQ_450)
7360 return 450000;
7361 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
7362 return 540000;
7363 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
7364 return 337500;
7365 else
7366 return 675000;
7367 }
7368
7369 static int haswell_get_display_clock_speed(struct drm_i915_private *dev_priv)
7370 {
7371 uint32_t lcpll = I915_READ(LCPLL_CTL);
7372 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7373
7374 if (lcpll & LCPLL_CD_SOURCE_FCLK)
7375 return 800000;
7376 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7377 return 450000;
7378 else if (freq == LCPLL_CLK_FREQ_450)
7379 return 450000;
7380 else if (IS_HSW_ULT(dev_priv))
7381 return 337500;
7382 else
7383 return 540000;
7384 }
7385
7386 static int valleyview_get_display_clock_speed(struct drm_i915_private *dev_priv)
7387 {
7388 return vlv_get_cck_clock_hpll(dev_priv, "cdclk",
7389 CCK_DISPLAY_CLOCK_CONTROL);
7390 }
7391
7392 static int ilk_get_display_clock_speed(struct drm_i915_private *dev_priv)
7393 {
7394 return 450000;
7395 }
7396
7397 static int i945_get_display_clock_speed(struct drm_i915_private *dev_priv)
7398 {
7399 return 400000;
7400 }
7401
7402 static int i915_get_display_clock_speed(struct drm_i915_private *dev_priv)
7403 {
7404 return 333333;
7405 }
7406
7407 static int i9xx_misc_get_display_clock_speed(struct drm_i915_private *dev_priv)
7408 {
7409 return 200000;
7410 }
7411
7412 static int pnv_get_display_clock_speed(struct drm_i915_private *dev_priv)
7413 {
7414 struct pci_dev *pdev = dev_priv->drm.pdev;
7415 u16 gcfgc = 0;
7416
7417 pci_read_config_word(pdev, GCFGC, &gcfgc);
7418
7419 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7420 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
7421 return 266667;
7422 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
7423 return 333333;
7424 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
7425 return 444444;
7426 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
7427 return 200000;
7428 default:
7429 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
7430 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
7431 return 133333;
7432 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
7433 return 166667;
7434 }
7435 }
7436
7437 static int i915gm_get_display_clock_speed(struct drm_i915_private *dev_priv)
7438 {
7439 struct pci_dev *pdev = dev_priv->drm.pdev;
7440 u16 gcfgc = 0;
7441
7442 pci_read_config_word(pdev, GCFGC, &gcfgc);
7443
7444 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
7445 return 133333;
7446 else {
7447 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7448 case GC_DISPLAY_CLOCK_333_MHZ:
7449 return 333333;
7450 default:
7451 case GC_DISPLAY_CLOCK_190_200_MHZ:
7452 return 190000;
7453 }
7454 }
7455 }
7456
7457 static int i865_get_display_clock_speed(struct drm_i915_private *dev_priv)
7458 {
7459 return 266667;
7460 }
7461
7462 static int i85x_get_display_clock_speed(struct drm_i915_private *dev_priv)
7463 {
7464 struct pci_dev *pdev = dev_priv->drm.pdev;
7465 u16 hpllcc = 0;
7466
7467 /*
7468 * 852GM/852GMV only supports 133 MHz and the HPLLCC
7469 * encoding is different :(
7470 * FIXME is this the right way to detect 852GM/852GMV?
7471 */
7472 if (pdev->revision == 0x1)
7473 return 133333;
7474
7475 pci_bus_read_config_word(pdev->bus,
7476 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
7477
7478 /* Assume that the hardware is in the high speed state. This
7479 * should be the default.
7480 */
7481 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
7482 case GC_CLOCK_133_200:
7483 case GC_CLOCK_133_200_2:
7484 case GC_CLOCK_100_200:
7485 return 200000;
7486 case GC_CLOCK_166_250:
7487 return 250000;
7488 case GC_CLOCK_100_133:
7489 return 133333;
7490 case GC_CLOCK_133_266:
7491 case GC_CLOCK_133_266_2:
7492 case GC_CLOCK_166_266:
7493 return 266667;
7494 }
7495
7496 /* Shouldn't happen */
7497 return 0;
7498 }
7499
7500 static int i830_get_display_clock_speed(struct drm_i915_private *dev_priv)
7501 {
7502 return 133333;
7503 }
7504
7505 static unsigned int intel_hpll_vco(struct drm_i915_private *dev_priv)
7506 {
7507 static const unsigned int blb_vco[8] = {
7508 [0] = 3200000,
7509 [1] = 4000000,
7510 [2] = 5333333,
7511 [3] = 4800000,
7512 [4] = 6400000,
7513 };
7514 static const unsigned int pnv_vco[8] = {
7515 [0] = 3200000,
7516 [1] = 4000000,
7517 [2] = 5333333,
7518 [3] = 4800000,
7519 [4] = 2666667,
7520 };
7521 static const unsigned int cl_vco[8] = {
7522 [0] = 3200000,
7523 [1] = 4000000,
7524 [2] = 5333333,
7525 [3] = 6400000,
7526 [4] = 3333333,
7527 [5] = 3566667,
7528 [6] = 4266667,
7529 };
7530 static const unsigned int elk_vco[8] = {
7531 [0] = 3200000,
7532 [1] = 4000000,
7533 [2] = 5333333,
7534 [3] = 4800000,
7535 };
7536 static const unsigned int ctg_vco[8] = {
7537 [0] = 3200000,
7538 [1] = 4000000,
7539 [2] = 5333333,
7540 [3] = 6400000,
7541 [4] = 2666667,
7542 [5] = 4266667,
7543 };
7544 const unsigned int *vco_table;
7545 unsigned int vco;
7546 uint8_t tmp = 0;
7547
7548 /* FIXME other chipsets? */
7549 if (IS_GM45(dev_priv))
7550 vco_table = ctg_vco;
7551 else if (IS_G4X(dev_priv))
7552 vco_table = elk_vco;
7553 else if (IS_I965GM(dev_priv))
7554 vco_table = cl_vco;
7555 else if (IS_PINEVIEW(dev_priv))
7556 vco_table = pnv_vco;
7557 else if (IS_G33(dev_priv))
7558 vco_table = blb_vco;
7559 else
7560 return 0;
7561
7562 tmp = I915_READ(IS_MOBILE(dev_priv) ? HPLLVCO_MOBILE : HPLLVCO);
7563
7564 vco = vco_table[tmp & 0x7];
7565 if (vco == 0)
7566 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7567 else
7568 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7569
7570 return vco;
7571 }
7572
7573 static int gm45_get_display_clock_speed(struct drm_i915_private *dev_priv)
7574 {
7575 struct pci_dev *pdev = dev_priv->drm.pdev;
7576 unsigned int cdclk_sel, vco = intel_hpll_vco(dev_priv);
7577 uint16_t tmp = 0;
7578
7579 pci_read_config_word(pdev, GCFGC, &tmp);
7580
7581 cdclk_sel = (tmp >> 12) & 0x1;
7582
7583 switch (vco) {
7584 case 2666667:
7585 case 4000000:
7586 case 5333333:
7587 return cdclk_sel ? 333333 : 222222;
7588 case 3200000:
7589 return cdclk_sel ? 320000 : 228571;
7590 default:
7591 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7592 return 222222;
7593 }
7594 }
7595
7596 static int i965gm_get_display_clock_speed(struct drm_i915_private *dev_priv)
7597 {
7598 struct pci_dev *pdev = dev_priv->drm.pdev;
7599 static const uint8_t div_3200[] = { 16, 10, 8 };
7600 static const uint8_t div_4000[] = { 20, 12, 10 };
7601 static const uint8_t div_5333[] = { 24, 16, 14 };
7602 const uint8_t *div_table;
7603 unsigned int cdclk_sel, vco = intel_hpll_vco(dev_priv);
7604 uint16_t tmp = 0;
7605
7606 pci_read_config_word(pdev, GCFGC, &tmp);
7607
7608 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7609
7610 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7611 goto fail;
7612
7613 switch (vco) {
7614 case 3200000:
7615 div_table = div_3200;
7616 break;
7617 case 4000000:
7618 div_table = div_4000;
7619 break;
7620 case 5333333:
7621 div_table = div_5333;
7622 break;
7623 default:
7624 goto fail;
7625 }
7626
7627 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7628
7629 fail:
7630 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7631 return 200000;
7632 }
7633
7634 static int g33_get_display_clock_speed(struct drm_i915_private *dev_priv)
7635 {
7636 struct pci_dev *pdev = dev_priv->drm.pdev;
7637 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7638 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7639 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7640 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7641 const uint8_t *div_table;
7642 unsigned int cdclk_sel, vco = intel_hpll_vco(dev_priv);
7643 uint16_t tmp = 0;
7644
7645 pci_read_config_word(pdev, GCFGC, &tmp);
7646
7647 cdclk_sel = (tmp >> 4) & 0x7;
7648
7649 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7650 goto fail;
7651
7652 switch (vco) {
7653 case 3200000:
7654 div_table = div_3200;
7655 break;
7656 case 4000000:
7657 div_table = div_4000;
7658 break;
7659 case 4800000:
7660 div_table = div_4800;
7661 break;
7662 case 5333333:
7663 div_table = div_5333;
7664 break;
7665 default:
7666 goto fail;
7667 }
7668
7669 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7670
7671 fail:
7672 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7673 return 190476;
7674 }
7675
7676 static void
7677 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7678 {
7679 while (*num > DATA_LINK_M_N_MASK ||
7680 *den > DATA_LINK_M_N_MASK) {
7681 *num >>= 1;
7682 *den >>= 1;
7683 }
7684 }
7685
7686 static void compute_m_n(unsigned int m, unsigned int n,
7687 uint32_t *ret_m, uint32_t *ret_n)
7688 {
7689 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7690 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7691 intel_reduce_m_n_ratio(ret_m, ret_n);
7692 }
7693
7694 void
7695 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7696 int pixel_clock, int link_clock,
7697 struct intel_link_m_n *m_n)
7698 {
7699 m_n->tu = 64;
7700
7701 compute_m_n(bits_per_pixel * pixel_clock,
7702 link_clock * nlanes * 8,
7703 &m_n->gmch_m, &m_n->gmch_n);
7704
7705 compute_m_n(pixel_clock, link_clock,
7706 &m_n->link_m, &m_n->link_n);
7707 }
7708
7709 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7710 {
7711 if (i915.panel_use_ssc >= 0)
7712 return i915.panel_use_ssc != 0;
7713 return dev_priv->vbt.lvds_use_ssc
7714 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7715 }
7716
7717 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7718 {
7719 return (1 << dpll->n) << 16 | dpll->m2;
7720 }
7721
7722 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7723 {
7724 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7725 }
7726
7727 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7728 struct intel_crtc_state *crtc_state,
7729 struct dpll *reduced_clock)
7730 {
7731 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7732 u32 fp, fp2 = 0;
7733
7734 if (IS_PINEVIEW(dev_priv)) {
7735 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7736 if (reduced_clock)
7737 fp2 = pnv_dpll_compute_fp(reduced_clock);
7738 } else {
7739 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7740 if (reduced_clock)
7741 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7742 }
7743
7744 crtc_state->dpll_hw_state.fp0 = fp;
7745
7746 crtc->lowfreq_avail = false;
7747 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7748 reduced_clock) {
7749 crtc_state->dpll_hw_state.fp1 = fp2;
7750 crtc->lowfreq_avail = true;
7751 } else {
7752 crtc_state->dpll_hw_state.fp1 = fp;
7753 }
7754 }
7755
7756 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7757 pipe)
7758 {
7759 u32 reg_val;
7760
7761 /*
7762 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7763 * and set it to a reasonable value instead.
7764 */
7765 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7766 reg_val &= 0xffffff00;
7767 reg_val |= 0x00000030;
7768 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7769
7770 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7771 reg_val &= 0x8cffffff;
7772 reg_val = 0x8c000000;
7773 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7774
7775 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7776 reg_val &= 0xffffff00;
7777 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7778
7779 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7780 reg_val &= 0x00ffffff;
7781 reg_val |= 0xb0000000;
7782 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7783 }
7784
7785 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7786 struct intel_link_m_n *m_n)
7787 {
7788 struct drm_device *dev = crtc->base.dev;
7789 struct drm_i915_private *dev_priv = to_i915(dev);
7790 int pipe = crtc->pipe;
7791
7792 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7793 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7794 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7795 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7796 }
7797
7798 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7799 struct intel_link_m_n *m_n,
7800 struct intel_link_m_n *m2_n2)
7801 {
7802 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7803 int pipe = crtc->pipe;
7804 enum transcoder transcoder = crtc->config->cpu_transcoder;
7805
7806 if (INTEL_GEN(dev_priv) >= 5) {
7807 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7808 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7809 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7810 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7811 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7812 * for gen < 8) and if DRRS is supported (to make sure the
7813 * registers are not unnecessarily accessed).
7814 */
7815 if (m2_n2 && (IS_CHERRYVIEW(dev_priv) ||
7816 INTEL_GEN(dev_priv) < 8) && crtc->config->has_drrs) {
7817 I915_WRITE(PIPE_DATA_M2(transcoder),
7818 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7819 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7820 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7821 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7822 }
7823 } else {
7824 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7825 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7826 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7827 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7828 }
7829 }
7830
7831 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7832 {
7833 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7834
7835 if (m_n == M1_N1) {
7836 dp_m_n = &crtc->config->dp_m_n;
7837 dp_m2_n2 = &crtc->config->dp_m2_n2;
7838 } else if (m_n == M2_N2) {
7839
7840 /*
7841 * M2_N2 registers are not supported. Hence m2_n2 divider value
7842 * needs to be programmed into M1_N1.
7843 */
7844 dp_m_n = &crtc->config->dp_m2_n2;
7845 } else {
7846 DRM_ERROR("Unsupported divider value\n");
7847 return;
7848 }
7849
7850 if (crtc->config->has_pch_encoder)
7851 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7852 else
7853 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7854 }
7855
7856 static void vlv_compute_dpll(struct intel_crtc *crtc,
7857 struct intel_crtc_state *pipe_config)
7858 {
7859 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7860 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7861 if (crtc->pipe != PIPE_A)
7862 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7863
7864 /* DPLL not used with DSI, but still need the rest set up */
7865 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7866 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7867 DPLL_EXT_BUFFER_ENABLE_VLV;
7868
7869 pipe_config->dpll_hw_state.dpll_md =
7870 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7871 }
7872
7873 static void chv_compute_dpll(struct intel_crtc *crtc,
7874 struct intel_crtc_state *pipe_config)
7875 {
7876 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7877 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7878 if (crtc->pipe != PIPE_A)
7879 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7880
7881 /* DPLL not used with DSI, but still need the rest set up */
7882 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7883 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7884
7885 pipe_config->dpll_hw_state.dpll_md =
7886 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7887 }
7888
7889 static void vlv_prepare_pll(struct intel_crtc *crtc,
7890 const struct intel_crtc_state *pipe_config)
7891 {
7892 struct drm_device *dev = crtc->base.dev;
7893 struct drm_i915_private *dev_priv = to_i915(dev);
7894 enum pipe pipe = crtc->pipe;
7895 u32 mdiv;
7896 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7897 u32 coreclk, reg_val;
7898
7899 /* Enable Refclk */
7900 I915_WRITE(DPLL(pipe),
7901 pipe_config->dpll_hw_state.dpll &
7902 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7903
7904 /* No need to actually set up the DPLL with DSI */
7905 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7906 return;
7907
7908 mutex_lock(&dev_priv->sb_lock);
7909
7910 bestn = pipe_config->dpll.n;
7911 bestm1 = pipe_config->dpll.m1;
7912 bestm2 = pipe_config->dpll.m2;
7913 bestp1 = pipe_config->dpll.p1;
7914 bestp2 = pipe_config->dpll.p2;
7915
7916 /* See eDP HDMI DPIO driver vbios notes doc */
7917
7918 /* PLL B needs special handling */
7919 if (pipe == PIPE_B)
7920 vlv_pllb_recal_opamp(dev_priv, pipe);
7921
7922 /* Set up Tx target for periodic Rcomp update */
7923 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7924
7925 /* Disable target IRef on PLL */
7926 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7927 reg_val &= 0x00ffffff;
7928 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7929
7930 /* Disable fast lock */
7931 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7932
7933 /* Set idtafcrecal before PLL is enabled */
7934 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7935 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7936 mdiv |= ((bestn << DPIO_N_SHIFT));
7937 mdiv |= (1 << DPIO_K_SHIFT);
7938
7939 /*
7940 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7941 * but we don't support that).
7942 * Note: don't use the DAC post divider as it seems unstable.
7943 */
7944 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7945 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7946
7947 mdiv |= DPIO_ENABLE_CALIBRATION;
7948 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7949
7950 /* Set HBR and RBR LPF coefficients */
7951 if (pipe_config->port_clock == 162000 ||
7952 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
7953 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
7954 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7955 0x009f0003);
7956 else
7957 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7958 0x00d0000f);
7959
7960 if (intel_crtc_has_dp_encoder(pipe_config)) {
7961 /* Use SSC source */
7962 if (pipe == PIPE_A)
7963 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7964 0x0df40000);
7965 else
7966 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7967 0x0df70000);
7968 } else { /* HDMI or VGA */
7969 /* Use bend source */
7970 if (pipe == PIPE_A)
7971 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7972 0x0df70000);
7973 else
7974 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7975 0x0df40000);
7976 }
7977
7978 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7979 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7980 if (intel_crtc_has_dp_encoder(crtc->config))
7981 coreclk |= 0x01000000;
7982 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7983
7984 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7985 mutex_unlock(&dev_priv->sb_lock);
7986 }
7987
7988 static void chv_prepare_pll(struct intel_crtc *crtc,
7989 const struct intel_crtc_state *pipe_config)
7990 {
7991 struct drm_device *dev = crtc->base.dev;
7992 struct drm_i915_private *dev_priv = to_i915(dev);
7993 enum pipe pipe = crtc->pipe;
7994 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7995 u32 loopfilter, tribuf_calcntr;
7996 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7997 u32 dpio_val;
7998 int vco;
7999
8000 /* Enable Refclk and SSC */
8001 I915_WRITE(DPLL(pipe),
8002 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
8003
8004 /* No need to actually set up the DPLL with DSI */
8005 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8006 return;
8007
8008 bestn = pipe_config->dpll.n;
8009 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
8010 bestm1 = pipe_config->dpll.m1;
8011 bestm2 = pipe_config->dpll.m2 >> 22;
8012 bestp1 = pipe_config->dpll.p1;
8013 bestp2 = pipe_config->dpll.p2;
8014 vco = pipe_config->dpll.vco;
8015 dpio_val = 0;
8016 loopfilter = 0;
8017
8018 mutex_lock(&dev_priv->sb_lock);
8019
8020 /* p1 and p2 divider */
8021 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
8022 5 << DPIO_CHV_S1_DIV_SHIFT |
8023 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
8024 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
8025 1 << DPIO_CHV_K_DIV_SHIFT);
8026
8027 /* Feedback post-divider - m2 */
8028 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
8029
8030 /* Feedback refclk divider - n and m1 */
8031 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
8032 DPIO_CHV_M1_DIV_BY_2 |
8033 1 << DPIO_CHV_N_DIV_SHIFT);
8034
8035 /* M2 fraction division */
8036 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
8037
8038 /* M2 fraction division enable */
8039 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8040 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
8041 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
8042 if (bestm2_frac)
8043 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
8044 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
8045
8046 /* Program digital lock detect threshold */
8047 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
8048 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
8049 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
8050 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
8051 if (!bestm2_frac)
8052 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
8053 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
8054
8055 /* Loop filter */
8056 if (vco == 5400000) {
8057 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
8058 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
8059 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
8060 tribuf_calcntr = 0x9;
8061 } else if (vco <= 6200000) {
8062 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
8063 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
8064 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8065 tribuf_calcntr = 0x9;
8066 } else if (vco <= 6480000) {
8067 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8068 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8069 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8070 tribuf_calcntr = 0x8;
8071 } else {
8072 /* Not supported. Apply the same limits as in the max case */
8073 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8074 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8075 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8076 tribuf_calcntr = 0;
8077 }
8078 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
8079
8080 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
8081 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
8082 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
8083 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
8084
8085 /* AFC Recal */
8086 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
8087 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
8088 DPIO_AFC_RECAL);
8089
8090 mutex_unlock(&dev_priv->sb_lock);
8091 }
8092
8093 /**
8094 * vlv_force_pll_on - forcibly enable just the PLL
8095 * @dev_priv: i915 private structure
8096 * @pipe: pipe PLL to enable
8097 * @dpll: PLL configuration
8098 *
8099 * Enable the PLL for @pipe using the supplied @dpll config. To be used
8100 * in cases where we need the PLL enabled even when @pipe is not going to
8101 * be enabled.
8102 */
8103 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
8104 const struct dpll *dpll)
8105 {
8106 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
8107 struct intel_crtc_state *pipe_config;
8108
8109 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8110 if (!pipe_config)
8111 return -ENOMEM;
8112
8113 pipe_config->base.crtc = &crtc->base;
8114 pipe_config->pixel_multiplier = 1;
8115 pipe_config->dpll = *dpll;
8116
8117 if (IS_CHERRYVIEW(dev_priv)) {
8118 chv_compute_dpll(crtc, pipe_config);
8119 chv_prepare_pll(crtc, pipe_config);
8120 chv_enable_pll(crtc, pipe_config);
8121 } else {
8122 vlv_compute_dpll(crtc, pipe_config);
8123 vlv_prepare_pll(crtc, pipe_config);
8124 vlv_enable_pll(crtc, pipe_config);
8125 }
8126
8127 kfree(pipe_config);
8128
8129 return 0;
8130 }
8131
8132 /**
8133 * vlv_force_pll_off - forcibly disable just the PLL
8134 * @dev_priv: i915 private structure
8135 * @pipe: pipe PLL to disable
8136 *
8137 * Disable the PLL for @pipe. To be used in cases where we need
8138 * the PLL enabled even when @pipe is not going to be enabled.
8139 */
8140 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
8141 {
8142 if (IS_CHERRYVIEW(dev_priv))
8143 chv_disable_pll(dev_priv, pipe);
8144 else
8145 vlv_disable_pll(dev_priv, pipe);
8146 }
8147
8148 static void i9xx_compute_dpll(struct intel_crtc *crtc,
8149 struct intel_crtc_state *crtc_state,
8150 struct dpll *reduced_clock)
8151 {
8152 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8153 u32 dpll;
8154 struct dpll *clock = &crtc_state->dpll;
8155
8156 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8157
8158 dpll = DPLL_VGA_MODE_DIS;
8159
8160 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8161 dpll |= DPLLB_MODE_LVDS;
8162 else
8163 dpll |= DPLLB_MODE_DAC_SERIAL;
8164
8165 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8166 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
8167 dpll |= (crtc_state->pixel_multiplier - 1)
8168 << SDVO_MULTIPLIER_SHIFT_HIRES;
8169 }
8170
8171 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8172 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8173 dpll |= DPLL_SDVO_HIGH_SPEED;
8174
8175 if (intel_crtc_has_dp_encoder(crtc_state))
8176 dpll |= DPLL_SDVO_HIGH_SPEED;
8177
8178 /* compute bitmask from p1 value */
8179 if (IS_PINEVIEW(dev_priv))
8180 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8181 else {
8182 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8183 if (IS_G4X(dev_priv) && reduced_clock)
8184 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8185 }
8186 switch (clock->p2) {
8187 case 5:
8188 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8189 break;
8190 case 7:
8191 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8192 break;
8193 case 10:
8194 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8195 break;
8196 case 14:
8197 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8198 break;
8199 }
8200 if (INTEL_GEN(dev_priv) >= 4)
8201 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8202
8203 if (crtc_state->sdvo_tv_clock)
8204 dpll |= PLL_REF_INPUT_TVCLKINBC;
8205 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8206 intel_panel_use_ssc(dev_priv))
8207 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8208 else
8209 dpll |= PLL_REF_INPUT_DREFCLK;
8210
8211 dpll |= DPLL_VCO_ENABLE;
8212 crtc_state->dpll_hw_state.dpll = dpll;
8213
8214 if (INTEL_GEN(dev_priv) >= 4) {
8215 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
8216 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8217 crtc_state->dpll_hw_state.dpll_md = dpll_md;
8218 }
8219 }
8220
8221 static void i8xx_compute_dpll(struct intel_crtc *crtc,
8222 struct intel_crtc_state *crtc_state,
8223 struct dpll *reduced_clock)
8224 {
8225 struct drm_device *dev = crtc->base.dev;
8226 struct drm_i915_private *dev_priv = to_i915(dev);
8227 u32 dpll;
8228 struct dpll *clock = &crtc_state->dpll;
8229
8230 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8231
8232 dpll = DPLL_VGA_MODE_DIS;
8233
8234 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8235 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8236 } else {
8237 if (clock->p1 == 2)
8238 dpll |= PLL_P1_DIVIDE_BY_TWO;
8239 else
8240 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8241 if (clock->p2 == 4)
8242 dpll |= PLL_P2_DIVIDE_BY_4;
8243 }
8244
8245 if (!IS_I830(dev_priv) &&
8246 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
8247 dpll |= DPLL_DVO_2X_MODE;
8248
8249 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8250 intel_panel_use_ssc(dev_priv))
8251 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8252 else
8253 dpll |= PLL_REF_INPUT_DREFCLK;
8254
8255 dpll |= DPLL_VCO_ENABLE;
8256 crtc_state->dpll_hw_state.dpll = dpll;
8257 }
8258
8259 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
8260 {
8261 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
8262 enum pipe pipe = intel_crtc->pipe;
8263 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8264 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
8265 uint32_t crtc_vtotal, crtc_vblank_end;
8266 int vsyncshift = 0;
8267
8268 /* We need to be careful not to changed the adjusted mode, for otherwise
8269 * the hw state checker will get angry at the mismatch. */
8270 crtc_vtotal = adjusted_mode->crtc_vtotal;
8271 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
8272
8273 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
8274 /* the chip adds 2 halflines automatically */
8275 crtc_vtotal -= 1;
8276 crtc_vblank_end -= 1;
8277
8278 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8279 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
8280 else
8281 vsyncshift = adjusted_mode->crtc_hsync_start -
8282 adjusted_mode->crtc_htotal / 2;
8283 if (vsyncshift < 0)
8284 vsyncshift += adjusted_mode->crtc_htotal;
8285 }
8286
8287 if (INTEL_GEN(dev_priv) > 3)
8288 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
8289
8290 I915_WRITE(HTOTAL(cpu_transcoder),
8291 (adjusted_mode->crtc_hdisplay - 1) |
8292 ((adjusted_mode->crtc_htotal - 1) << 16));
8293 I915_WRITE(HBLANK(cpu_transcoder),
8294 (adjusted_mode->crtc_hblank_start - 1) |
8295 ((adjusted_mode->crtc_hblank_end - 1) << 16));
8296 I915_WRITE(HSYNC(cpu_transcoder),
8297 (adjusted_mode->crtc_hsync_start - 1) |
8298 ((adjusted_mode->crtc_hsync_end - 1) << 16));
8299
8300 I915_WRITE(VTOTAL(cpu_transcoder),
8301 (adjusted_mode->crtc_vdisplay - 1) |
8302 ((crtc_vtotal - 1) << 16));
8303 I915_WRITE(VBLANK(cpu_transcoder),
8304 (adjusted_mode->crtc_vblank_start - 1) |
8305 ((crtc_vblank_end - 1) << 16));
8306 I915_WRITE(VSYNC(cpu_transcoder),
8307 (adjusted_mode->crtc_vsync_start - 1) |
8308 ((adjusted_mode->crtc_vsync_end - 1) << 16));
8309
8310 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8311 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8312 * documented on the DDI_FUNC_CTL register description, EDP Input Select
8313 * bits. */
8314 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
8315 (pipe == PIPE_B || pipe == PIPE_C))
8316 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
8317
8318 }
8319
8320 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
8321 {
8322 struct drm_device *dev = intel_crtc->base.dev;
8323 struct drm_i915_private *dev_priv = to_i915(dev);
8324 enum pipe pipe = intel_crtc->pipe;
8325
8326 /* pipesrc controls the size that is scaled from, which should
8327 * always be the user's requested size.
8328 */
8329 I915_WRITE(PIPESRC(pipe),
8330 ((intel_crtc->config->pipe_src_w - 1) << 16) |
8331 (intel_crtc->config->pipe_src_h - 1));
8332 }
8333
8334 static void intel_get_pipe_timings(struct intel_crtc *crtc,
8335 struct intel_crtc_state *pipe_config)
8336 {
8337 struct drm_device *dev = crtc->base.dev;
8338 struct drm_i915_private *dev_priv = to_i915(dev);
8339 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8340 uint32_t tmp;
8341
8342 tmp = I915_READ(HTOTAL(cpu_transcoder));
8343 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8344 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
8345 tmp = I915_READ(HBLANK(cpu_transcoder));
8346 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
8347 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
8348 tmp = I915_READ(HSYNC(cpu_transcoder));
8349 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8350 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
8351
8352 tmp = I915_READ(VTOTAL(cpu_transcoder));
8353 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8354 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
8355 tmp = I915_READ(VBLANK(cpu_transcoder));
8356 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
8357 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
8358 tmp = I915_READ(VSYNC(cpu_transcoder));
8359 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8360 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
8361
8362 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
8363 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8364 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
8365 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
8366 }
8367 }
8368
8369 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8370 struct intel_crtc_state *pipe_config)
8371 {
8372 struct drm_device *dev = crtc->base.dev;
8373 struct drm_i915_private *dev_priv = to_i915(dev);
8374 u32 tmp;
8375
8376 tmp = I915_READ(PIPESRC(crtc->pipe));
8377 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8378 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8379
8380 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
8381 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
8382 }
8383
8384 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
8385 struct intel_crtc_state *pipe_config)
8386 {
8387 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
8388 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
8389 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
8390 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
8391
8392 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
8393 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
8394 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
8395 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
8396
8397 mode->flags = pipe_config->base.adjusted_mode.flags;
8398 mode->type = DRM_MODE_TYPE_DRIVER;
8399
8400 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
8401
8402 mode->hsync = drm_mode_hsync(mode);
8403 mode->vrefresh = drm_mode_vrefresh(mode);
8404 drm_mode_set_name(mode);
8405 }
8406
8407 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
8408 {
8409 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
8410 uint32_t pipeconf;
8411
8412 pipeconf = 0;
8413
8414 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
8415 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8416 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
8417
8418 if (intel_crtc->config->double_wide)
8419 pipeconf |= PIPECONF_DOUBLE_WIDE;
8420
8421 /* only g4x and later have fancy bpc/dither controls */
8422 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8423 IS_CHERRYVIEW(dev_priv)) {
8424 /* Bspec claims that we can't use dithering for 30bpp pipes. */
8425 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
8426 pipeconf |= PIPECONF_DITHER_EN |
8427 PIPECONF_DITHER_TYPE_SP;
8428
8429 switch (intel_crtc->config->pipe_bpp) {
8430 case 18:
8431 pipeconf |= PIPECONF_6BPC;
8432 break;
8433 case 24:
8434 pipeconf |= PIPECONF_8BPC;
8435 break;
8436 case 30:
8437 pipeconf |= PIPECONF_10BPC;
8438 break;
8439 default:
8440 /* Case prevented by intel_choose_pipe_bpp_dither. */
8441 BUG();
8442 }
8443 }
8444
8445 if (HAS_PIPE_CXSR(dev_priv)) {
8446 if (intel_crtc->lowfreq_avail) {
8447 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
8448 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
8449 } else {
8450 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
8451 }
8452 }
8453
8454 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
8455 if (INTEL_GEN(dev_priv) < 4 ||
8456 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8457 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
8458 else
8459 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
8460 } else
8461 pipeconf |= PIPECONF_PROGRESSIVE;
8462
8463 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8464 intel_crtc->config->limited_color_range)
8465 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
8466
8467 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
8468 POSTING_READ(PIPECONF(intel_crtc->pipe));
8469 }
8470
8471 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
8472 struct intel_crtc_state *crtc_state)
8473 {
8474 struct drm_device *dev = crtc->base.dev;
8475 struct drm_i915_private *dev_priv = to_i915(dev);
8476 const struct intel_limit *limit;
8477 int refclk = 48000;
8478
8479 memset(&crtc_state->dpll_hw_state, 0,
8480 sizeof(crtc_state->dpll_hw_state));
8481
8482 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8483 if (intel_panel_use_ssc(dev_priv)) {
8484 refclk = dev_priv->vbt.lvds_ssc_freq;
8485 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8486 }
8487
8488 limit = &intel_limits_i8xx_lvds;
8489 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
8490 limit = &intel_limits_i8xx_dvo;
8491 } else {
8492 limit = &intel_limits_i8xx_dac;
8493 }
8494
8495 if (!crtc_state->clock_set &&
8496 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8497 refclk, NULL, &crtc_state->dpll)) {
8498 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8499 return -EINVAL;
8500 }
8501
8502 i8xx_compute_dpll(crtc, crtc_state, NULL);
8503
8504 return 0;
8505 }
8506
8507 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
8508 struct intel_crtc_state *crtc_state)
8509 {
8510 struct drm_device *dev = crtc->base.dev;
8511 struct drm_i915_private *dev_priv = to_i915(dev);
8512 const struct intel_limit *limit;
8513 int refclk = 96000;
8514
8515 memset(&crtc_state->dpll_hw_state, 0,
8516 sizeof(crtc_state->dpll_hw_state));
8517
8518 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8519 if (intel_panel_use_ssc(dev_priv)) {
8520 refclk = dev_priv->vbt.lvds_ssc_freq;
8521 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8522 }
8523
8524 if (intel_is_dual_link_lvds(dev))
8525 limit = &intel_limits_g4x_dual_channel_lvds;
8526 else
8527 limit = &intel_limits_g4x_single_channel_lvds;
8528 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
8529 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
8530 limit = &intel_limits_g4x_hdmi;
8531 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
8532 limit = &intel_limits_g4x_sdvo;
8533 } else {
8534 /* The option is for other outputs */
8535 limit = &intel_limits_i9xx_sdvo;
8536 }
8537
8538 if (!crtc_state->clock_set &&
8539 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8540 refclk, NULL, &crtc_state->dpll)) {
8541 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8542 return -EINVAL;
8543 }
8544
8545 i9xx_compute_dpll(crtc, crtc_state, NULL);
8546
8547 return 0;
8548 }
8549
8550 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
8551 struct intel_crtc_state *crtc_state)
8552 {
8553 struct drm_device *dev = crtc->base.dev;
8554 struct drm_i915_private *dev_priv = to_i915(dev);
8555 const struct intel_limit *limit;
8556 int refclk = 96000;
8557
8558 memset(&crtc_state->dpll_hw_state, 0,
8559 sizeof(crtc_state->dpll_hw_state));
8560
8561 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8562 if (intel_panel_use_ssc(dev_priv)) {
8563 refclk = dev_priv->vbt.lvds_ssc_freq;
8564 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8565 }
8566
8567 limit = &intel_limits_pineview_lvds;
8568 } else {
8569 limit = &intel_limits_pineview_sdvo;
8570 }
8571
8572 if (!crtc_state->clock_set &&
8573 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8574 refclk, NULL, &crtc_state->dpll)) {
8575 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8576 return -EINVAL;
8577 }
8578
8579 i9xx_compute_dpll(crtc, crtc_state, NULL);
8580
8581 return 0;
8582 }
8583
8584 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
8585 struct intel_crtc_state *crtc_state)
8586 {
8587 struct drm_device *dev = crtc->base.dev;
8588 struct drm_i915_private *dev_priv = to_i915(dev);
8589 const struct intel_limit *limit;
8590 int refclk = 96000;
8591
8592 memset(&crtc_state->dpll_hw_state, 0,
8593 sizeof(crtc_state->dpll_hw_state));
8594
8595 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8596 if (intel_panel_use_ssc(dev_priv)) {
8597 refclk = dev_priv->vbt.lvds_ssc_freq;
8598 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8599 }
8600
8601 limit = &intel_limits_i9xx_lvds;
8602 } else {
8603 limit = &intel_limits_i9xx_sdvo;
8604 }
8605
8606 if (!crtc_state->clock_set &&
8607 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8608 refclk, NULL, &crtc_state->dpll)) {
8609 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8610 return -EINVAL;
8611 }
8612
8613 i9xx_compute_dpll(crtc, crtc_state, NULL);
8614
8615 return 0;
8616 }
8617
8618 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8619 struct intel_crtc_state *crtc_state)
8620 {
8621 int refclk = 100000;
8622 const struct intel_limit *limit = &intel_limits_chv;
8623
8624 memset(&crtc_state->dpll_hw_state, 0,
8625 sizeof(crtc_state->dpll_hw_state));
8626
8627 if (!crtc_state->clock_set &&
8628 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8629 refclk, NULL, &crtc_state->dpll)) {
8630 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8631 return -EINVAL;
8632 }
8633
8634 chv_compute_dpll(crtc, crtc_state);
8635
8636 return 0;
8637 }
8638
8639 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8640 struct intel_crtc_state *crtc_state)
8641 {
8642 int refclk = 100000;
8643 const struct intel_limit *limit = &intel_limits_vlv;
8644
8645 memset(&crtc_state->dpll_hw_state, 0,
8646 sizeof(crtc_state->dpll_hw_state));
8647
8648 if (!crtc_state->clock_set &&
8649 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8650 refclk, NULL, &crtc_state->dpll)) {
8651 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8652 return -EINVAL;
8653 }
8654
8655 vlv_compute_dpll(crtc, crtc_state);
8656
8657 return 0;
8658 }
8659
8660 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8661 struct intel_crtc_state *pipe_config)
8662 {
8663 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8664 uint32_t tmp;
8665
8666 if (INTEL_GEN(dev_priv) <= 3 &&
8667 (IS_I830(dev_priv) || !IS_MOBILE(dev_priv)))
8668 return;
8669
8670 tmp = I915_READ(PFIT_CONTROL);
8671 if (!(tmp & PFIT_ENABLE))
8672 return;
8673
8674 /* Check whether the pfit is attached to our pipe. */
8675 if (INTEL_GEN(dev_priv) < 4) {
8676 if (crtc->pipe != PIPE_B)
8677 return;
8678 } else {
8679 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8680 return;
8681 }
8682
8683 pipe_config->gmch_pfit.control = tmp;
8684 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8685 }
8686
8687 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8688 struct intel_crtc_state *pipe_config)
8689 {
8690 struct drm_device *dev = crtc->base.dev;
8691 struct drm_i915_private *dev_priv = to_i915(dev);
8692 int pipe = pipe_config->cpu_transcoder;
8693 struct dpll clock;
8694 u32 mdiv;
8695 int refclk = 100000;
8696
8697 /* In case of DSI, DPLL will not be used */
8698 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8699 return;
8700
8701 mutex_lock(&dev_priv->sb_lock);
8702 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8703 mutex_unlock(&dev_priv->sb_lock);
8704
8705 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8706 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8707 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8708 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8709 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8710
8711 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8712 }
8713
8714 static void
8715 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8716 struct intel_initial_plane_config *plane_config)
8717 {
8718 struct drm_device *dev = crtc->base.dev;
8719 struct drm_i915_private *dev_priv = to_i915(dev);
8720 u32 val, base, offset;
8721 int pipe = crtc->pipe, plane = crtc->plane;
8722 int fourcc, pixel_format;
8723 unsigned int aligned_height;
8724 struct drm_framebuffer *fb;
8725 struct intel_framebuffer *intel_fb;
8726
8727 val = I915_READ(DSPCNTR(plane));
8728 if (!(val & DISPLAY_PLANE_ENABLE))
8729 return;
8730
8731 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8732 if (!intel_fb) {
8733 DRM_DEBUG_KMS("failed to alloc fb\n");
8734 return;
8735 }
8736
8737 fb = &intel_fb->base;
8738
8739 fb->dev = dev;
8740
8741 if (INTEL_GEN(dev_priv) >= 4) {
8742 if (val & DISPPLANE_TILED) {
8743 plane_config->tiling = I915_TILING_X;
8744 fb->modifier = I915_FORMAT_MOD_X_TILED;
8745 }
8746 }
8747
8748 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8749 fourcc = i9xx_format_to_fourcc(pixel_format);
8750 fb->format = drm_format_info(fourcc);
8751
8752 if (INTEL_GEN(dev_priv) >= 4) {
8753 if (plane_config->tiling)
8754 offset = I915_READ(DSPTILEOFF(plane));
8755 else
8756 offset = I915_READ(DSPLINOFF(plane));
8757 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8758 } else {
8759 base = I915_READ(DSPADDR(plane));
8760 }
8761 plane_config->base = base;
8762
8763 val = I915_READ(PIPESRC(pipe));
8764 fb->width = ((val >> 16) & 0xfff) + 1;
8765 fb->height = ((val >> 0) & 0xfff) + 1;
8766
8767 val = I915_READ(DSPSTRIDE(pipe));
8768 fb->pitches[0] = val & 0xffffffc0;
8769
8770 aligned_height = intel_fb_align_height(dev, fb->height,
8771 fb->format->format,
8772 fb->modifier);
8773
8774 plane_config->size = fb->pitches[0] * aligned_height;
8775
8776 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8777 pipe_name(pipe), plane, fb->width, fb->height,
8778 fb->format->cpp[0] * 8, base, fb->pitches[0],
8779 plane_config->size);
8780
8781 plane_config->fb = intel_fb;
8782 }
8783
8784 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8785 struct intel_crtc_state *pipe_config)
8786 {
8787 struct drm_device *dev = crtc->base.dev;
8788 struct drm_i915_private *dev_priv = to_i915(dev);
8789 int pipe = pipe_config->cpu_transcoder;
8790 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8791 struct dpll clock;
8792 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8793 int refclk = 100000;
8794
8795 /* In case of DSI, DPLL will not be used */
8796 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8797 return;
8798
8799 mutex_lock(&dev_priv->sb_lock);
8800 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8801 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8802 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8803 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8804 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8805 mutex_unlock(&dev_priv->sb_lock);
8806
8807 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8808 clock.m2 = (pll_dw0 & 0xff) << 22;
8809 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8810 clock.m2 |= pll_dw2 & 0x3fffff;
8811 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8812 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8813 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8814
8815 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8816 }
8817
8818 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8819 struct intel_crtc_state *pipe_config)
8820 {
8821 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8822 enum intel_display_power_domain power_domain;
8823 uint32_t tmp;
8824 bool ret;
8825
8826 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8827 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8828 return false;
8829
8830 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8831 pipe_config->shared_dpll = NULL;
8832
8833 ret = false;
8834
8835 tmp = I915_READ(PIPECONF(crtc->pipe));
8836 if (!(tmp & PIPECONF_ENABLE))
8837 goto out;
8838
8839 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8840 IS_CHERRYVIEW(dev_priv)) {
8841 switch (tmp & PIPECONF_BPC_MASK) {
8842 case PIPECONF_6BPC:
8843 pipe_config->pipe_bpp = 18;
8844 break;
8845 case PIPECONF_8BPC:
8846 pipe_config->pipe_bpp = 24;
8847 break;
8848 case PIPECONF_10BPC:
8849 pipe_config->pipe_bpp = 30;
8850 break;
8851 default:
8852 break;
8853 }
8854 }
8855
8856 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8857 (tmp & PIPECONF_COLOR_RANGE_SELECT))
8858 pipe_config->limited_color_range = true;
8859
8860 if (INTEL_GEN(dev_priv) < 4)
8861 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8862
8863 intel_get_pipe_timings(crtc, pipe_config);
8864 intel_get_pipe_src_size(crtc, pipe_config);
8865
8866 i9xx_get_pfit_config(crtc, pipe_config);
8867
8868 if (INTEL_GEN(dev_priv) >= 4) {
8869 /* No way to read it out on pipes B and C */
8870 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
8871 tmp = dev_priv->chv_dpll_md[crtc->pipe];
8872 else
8873 tmp = I915_READ(DPLL_MD(crtc->pipe));
8874 pipe_config->pixel_multiplier =
8875 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8876 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8877 pipe_config->dpll_hw_state.dpll_md = tmp;
8878 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8879 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
8880 tmp = I915_READ(DPLL(crtc->pipe));
8881 pipe_config->pixel_multiplier =
8882 ((tmp & SDVO_MULTIPLIER_MASK)
8883 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8884 } else {
8885 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8886 * port and will be fixed up in the encoder->get_config
8887 * function. */
8888 pipe_config->pixel_multiplier = 1;
8889 }
8890 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8891 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
8892 /*
8893 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8894 * on 830. Filter it out here so that we don't
8895 * report errors due to that.
8896 */
8897 if (IS_I830(dev_priv))
8898 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8899
8900 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8901 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8902 } else {
8903 /* Mask out read-only status bits. */
8904 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8905 DPLL_PORTC_READY_MASK |
8906 DPLL_PORTB_READY_MASK);
8907 }
8908
8909 if (IS_CHERRYVIEW(dev_priv))
8910 chv_crtc_clock_get(crtc, pipe_config);
8911 else if (IS_VALLEYVIEW(dev_priv))
8912 vlv_crtc_clock_get(crtc, pipe_config);
8913 else
8914 i9xx_crtc_clock_get(crtc, pipe_config);
8915
8916 /*
8917 * Normally the dotclock is filled in by the encoder .get_config()
8918 * but in case the pipe is enabled w/o any ports we need a sane
8919 * default.
8920 */
8921 pipe_config->base.adjusted_mode.crtc_clock =
8922 pipe_config->port_clock / pipe_config->pixel_multiplier;
8923
8924 ret = true;
8925
8926 out:
8927 intel_display_power_put(dev_priv, power_domain);
8928
8929 return ret;
8930 }
8931
8932 static void ironlake_init_pch_refclk(struct drm_i915_private *dev_priv)
8933 {
8934 struct intel_encoder *encoder;
8935 int i;
8936 u32 val, final;
8937 bool has_lvds = false;
8938 bool has_cpu_edp = false;
8939 bool has_panel = false;
8940 bool has_ck505 = false;
8941 bool can_ssc = false;
8942 bool using_ssc_source = false;
8943
8944 /* We need to take the global config into account */
8945 for_each_intel_encoder(&dev_priv->drm, encoder) {
8946 switch (encoder->type) {
8947 case INTEL_OUTPUT_LVDS:
8948 has_panel = true;
8949 has_lvds = true;
8950 break;
8951 case INTEL_OUTPUT_EDP:
8952 has_panel = true;
8953 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8954 has_cpu_edp = true;
8955 break;
8956 default:
8957 break;
8958 }
8959 }
8960
8961 if (HAS_PCH_IBX(dev_priv)) {
8962 has_ck505 = dev_priv->vbt.display_clock_mode;
8963 can_ssc = has_ck505;
8964 } else {
8965 has_ck505 = false;
8966 can_ssc = true;
8967 }
8968
8969 /* Check if any DPLLs are using the SSC source */
8970 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8971 u32 temp = I915_READ(PCH_DPLL(i));
8972
8973 if (!(temp & DPLL_VCO_ENABLE))
8974 continue;
8975
8976 if ((temp & PLL_REF_INPUT_MASK) ==
8977 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8978 using_ssc_source = true;
8979 break;
8980 }
8981 }
8982
8983 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8984 has_panel, has_lvds, has_ck505, using_ssc_source);
8985
8986 /* Ironlake: try to setup display ref clock before DPLL
8987 * enabling. This is only under driver's control after
8988 * PCH B stepping, previous chipset stepping should be
8989 * ignoring this setting.
8990 */
8991 val = I915_READ(PCH_DREF_CONTROL);
8992
8993 /* As we must carefully and slowly disable/enable each source in turn,
8994 * compute the final state we want first and check if we need to
8995 * make any changes at all.
8996 */
8997 final = val;
8998 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8999 if (has_ck505)
9000 final |= DREF_NONSPREAD_CK505_ENABLE;
9001 else
9002 final |= DREF_NONSPREAD_SOURCE_ENABLE;
9003
9004 final &= ~DREF_SSC_SOURCE_MASK;
9005 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9006 final &= ~DREF_SSC1_ENABLE;
9007
9008 if (has_panel) {
9009 final |= DREF_SSC_SOURCE_ENABLE;
9010
9011 if (intel_panel_use_ssc(dev_priv) && can_ssc)
9012 final |= DREF_SSC1_ENABLE;
9013
9014 if (has_cpu_edp) {
9015 if (intel_panel_use_ssc(dev_priv) && can_ssc)
9016 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9017 else
9018 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9019 } else
9020 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9021 } else if (using_ssc_source) {
9022 final |= DREF_SSC_SOURCE_ENABLE;
9023 final |= DREF_SSC1_ENABLE;
9024 }
9025
9026 if (final == val)
9027 return;
9028
9029 /* Always enable nonspread source */
9030 val &= ~DREF_NONSPREAD_SOURCE_MASK;
9031
9032 if (has_ck505)
9033 val |= DREF_NONSPREAD_CK505_ENABLE;
9034 else
9035 val |= DREF_NONSPREAD_SOURCE_ENABLE;
9036
9037 if (has_panel) {
9038 val &= ~DREF_SSC_SOURCE_MASK;
9039 val |= DREF_SSC_SOURCE_ENABLE;
9040
9041 /* SSC must be turned on before enabling the CPU output */
9042 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9043 DRM_DEBUG_KMS("Using SSC on panel\n");
9044 val |= DREF_SSC1_ENABLE;
9045 } else
9046 val &= ~DREF_SSC1_ENABLE;
9047
9048 /* Get SSC going before enabling the outputs */
9049 I915_WRITE(PCH_DREF_CONTROL, val);
9050 POSTING_READ(PCH_DREF_CONTROL);
9051 udelay(200);
9052
9053 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9054
9055 /* Enable CPU source on CPU attached eDP */
9056 if (has_cpu_edp) {
9057 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9058 DRM_DEBUG_KMS("Using SSC on eDP\n");
9059 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9060 } else
9061 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9062 } else
9063 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9064
9065 I915_WRITE(PCH_DREF_CONTROL, val);
9066 POSTING_READ(PCH_DREF_CONTROL);
9067 udelay(200);
9068 } else {
9069 DRM_DEBUG_KMS("Disabling CPU source output\n");
9070
9071 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9072
9073 /* Turn off CPU output */
9074 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9075
9076 I915_WRITE(PCH_DREF_CONTROL, val);
9077 POSTING_READ(PCH_DREF_CONTROL);
9078 udelay(200);
9079
9080 if (!using_ssc_source) {
9081 DRM_DEBUG_KMS("Disabling SSC source\n");
9082
9083 /* Turn off the SSC source */
9084 val &= ~DREF_SSC_SOURCE_MASK;
9085 val |= DREF_SSC_SOURCE_DISABLE;
9086
9087 /* Turn off SSC1 */
9088 val &= ~DREF_SSC1_ENABLE;
9089
9090 I915_WRITE(PCH_DREF_CONTROL, val);
9091 POSTING_READ(PCH_DREF_CONTROL);
9092 udelay(200);
9093 }
9094 }
9095
9096 BUG_ON(val != final);
9097 }
9098
9099 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
9100 {
9101 uint32_t tmp;
9102
9103 tmp = I915_READ(SOUTH_CHICKEN2);
9104 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
9105 I915_WRITE(SOUTH_CHICKEN2, tmp);
9106
9107 if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
9108 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
9109 DRM_ERROR("FDI mPHY reset assert timeout\n");
9110
9111 tmp = I915_READ(SOUTH_CHICKEN2);
9112 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
9113 I915_WRITE(SOUTH_CHICKEN2, tmp);
9114
9115 if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
9116 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
9117 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
9118 }
9119
9120 /* WaMPhyProgramming:hsw */
9121 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
9122 {
9123 uint32_t tmp;
9124
9125 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
9126 tmp &= ~(0xFF << 24);
9127 tmp |= (0x12 << 24);
9128 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
9129
9130 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
9131 tmp |= (1 << 11);
9132 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
9133
9134 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
9135 tmp |= (1 << 11);
9136 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
9137
9138 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
9139 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9140 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9141
9142 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9143 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9144 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9145
9146 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9147 tmp &= ~(7 << 13);
9148 tmp |= (5 << 13);
9149 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
9150
9151 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9152 tmp &= ~(7 << 13);
9153 tmp |= (5 << 13);
9154 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
9155
9156 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9157 tmp &= ~0xFF;
9158 tmp |= 0x1C;
9159 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9160
9161 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9162 tmp &= ~0xFF;
9163 tmp |= 0x1C;
9164 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9165
9166 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9167 tmp &= ~(0xFF << 16);
9168 tmp |= (0x1C << 16);
9169 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
9170
9171 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
9172 tmp &= ~(0xFF << 16);
9173 tmp |= (0x1C << 16);
9174 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
9175
9176 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
9177 tmp |= (1 << 27);
9178 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
9179
9180 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
9181 tmp |= (1 << 27);
9182 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
9183
9184 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
9185 tmp &= ~(0xF << 28);
9186 tmp |= (4 << 28);
9187 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
9188
9189 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
9190 tmp &= ~(0xF << 28);
9191 tmp |= (4 << 28);
9192 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
9193 }
9194
9195 /* Implements 3 different sequences from BSpec chapter "Display iCLK
9196 * Programming" based on the parameters passed:
9197 * - Sequence to enable CLKOUT_DP
9198 * - Sequence to enable CLKOUT_DP without spread
9199 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9200 */
9201 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
9202 bool with_spread, bool with_fdi)
9203 {
9204 uint32_t reg, tmp;
9205
9206 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
9207 with_spread = true;
9208 if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
9209 with_fdi, "LP PCH doesn't have FDI\n"))
9210 with_fdi = false;
9211
9212 mutex_lock(&dev_priv->sb_lock);
9213
9214 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9215 tmp &= ~SBI_SSCCTL_DISABLE;
9216 tmp |= SBI_SSCCTL_PATHALT;
9217 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9218
9219 udelay(24);
9220
9221 if (with_spread) {
9222 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9223 tmp &= ~SBI_SSCCTL_PATHALT;
9224 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9225
9226 if (with_fdi) {
9227 lpt_reset_fdi_mphy(dev_priv);
9228 lpt_program_fdi_mphy(dev_priv);
9229 }
9230 }
9231
9232 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9233 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9234 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9235 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9236
9237 mutex_unlock(&dev_priv->sb_lock);
9238 }
9239
9240 /* Sequence to disable CLKOUT_DP */
9241 static void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
9242 {
9243 uint32_t reg, tmp;
9244
9245 mutex_lock(&dev_priv->sb_lock);
9246
9247 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9248 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9249 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9250 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9251
9252 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9253 if (!(tmp & SBI_SSCCTL_DISABLE)) {
9254 if (!(tmp & SBI_SSCCTL_PATHALT)) {
9255 tmp |= SBI_SSCCTL_PATHALT;
9256 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9257 udelay(32);
9258 }
9259 tmp |= SBI_SSCCTL_DISABLE;
9260 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9261 }
9262
9263 mutex_unlock(&dev_priv->sb_lock);
9264 }
9265
9266 #define BEND_IDX(steps) ((50 + (steps)) / 5)
9267
9268 static const uint16_t sscdivintphase[] = {
9269 [BEND_IDX( 50)] = 0x3B23,
9270 [BEND_IDX( 45)] = 0x3B23,
9271 [BEND_IDX( 40)] = 0x3C23,
9272 [BEND_IDX( 35)] = 0x3C23,
9273 [BEND_IDX( 30)] = 0x3D23,
9274 [BEND_IDX( 25)] = 0x3D23,
9275 [BEND_IDX( 20)] = 0x3E23,
9276 [BEND_IDX( 15)] = 0x3E23,
9277 [BEND_IDX( 10)] = 0x3F23,
9278 [BEND_IDX( 5)] = 0x3F23,
9279 [BEND_IDX( 0)] = 0x0025,
9280 [BEND_IDX( -5)] = 0x0025,
9281 [BEND_IDX(-10)] = 0x0125,
9282 [BEND_IDX(-15)] = 0x0125,
9283 [BEND_IDX(-20)] = 0x0225,
9284 [BEND_IDX(-25)] = 0x0225,
9285 [BEND_IDX(-30)] = 0x0325,
9286 [BEND_IDX(-35)] = 0x0325,
9287 [BEND_IDX(-40)] = 0x0425,
9288 [BEND_IDX(-45)] = 0x0425,
9289 [BEND_IDX(-50)] = 0x0525,
9290 };
9291
9292 /*
9293 * Bend CLKOUT_DP
9294 * steps -50 to 50 inclusive, in steps of 5
9295 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9296 * change in clock period = -(steps / 10) * 5.787 ps
9297 */
9298 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9299 {
9300 uint32_t tmp;
9301 int idx = BEND_IDX(steps);
9302
9303 if (WARN_ON(steps % 5 != 0))
9304 return;
9305
9306 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
9307 return;
9308
9309 mutex_lock(&dev_priv->sb_lock);
9310
9311 if (steps % 10 != 0)
9312 tmp = 0xAAAAAAAB;
9313 else
9314 tmp = 0x00000000;
9315 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9316
9317 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9318 tmp &= 0xffff0000;
9319 tmp |= sscdivintphase[idx];
9320 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9321
9322 mutex_unlock(&dev_priv->sb_lock);
9323 }
9324
9325 #undef BEND_IDX
9326
9327 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
9328 {
9329 struct intel_encoder *encoder;
9330 bool has_vga = false;
9331
9332 for_each_intel_encoder(&dev_priv->drm, encoder) {
9333 switch (encoder->type) {
9334 case INTEL_OUTPUT_ANALOG:
9335 has_vga = true;
9336 break;
9337 default:
9338 break;
9339 }
9340 }
9341
9342 if (has_vga) {
9343 lpt_bend_clkout_dp(dev_priv, 0);
9344 lpt_enable_clkout_dp(dev_priv, true, true);
9345 } else {
9346 lpt_disable_clkout_dp(dev_priv);
9347 }
9348 }
9349
9350 /*
9351 * Initialize reference clocks when the driver loads
9352 */
9353 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
9354 {
9355 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
9356 ironlake_init_pch_refclk(dev_priv);
9357 else if (HAS_PCH_LPT(dev_priv))
9358 lpt_init_pch_refclk(dev_priv);
9359 }
9360
9361 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
9362 {
9363 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9364 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9365 int pipe = intel_crtc->pipe;
9366 uint32_t val;
9367
9368 val = 0;
9369
9370 switch (intel_crtc->config->pipe_bpp) {
9371 case 18:
9372 val |= PIPECONF_6BPC;
9373 break;
9374 case 24:
9375 val |= PIPECONF_8BPC;
9376 break;
9377 case 30:
9378 val |= PIPECONF_10BPC;
9379 break;
9380 case 36:
9381 val |= PIPECONF_12BPC;
9382 break;
9383 default:
9384 /* Case prevented by intel_choose_pipe_bpp_dither. */
9385 BUG();
9386 }
9387
9388 if (intel_crtc->config->dither)
9389 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9390
9391 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9392 val |= PIPECONF_INTERLACED_ILK;
9393 else
9394 val |= PIPECONF_PROGRESSIVE;
9395
9396 if (intel_crtc->config->limited_color_range)
9397 val |= PIPECONF_COLOR_RANGE_SELECT;
9398
9399 I915_WRITE(PIPECONF(pipe), val);
9400 POSTING_READ(PIPECONF(pipe));
9401 }
9402
9403 static void haswell_set_pipeconf(struct drm_crtc *crtc)
9404 {
9405 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9406 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9407 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
9408 u32 val = 0;
9409
9410 if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
9411 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9412
9413 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9414 val |= PIPECONF_INTERLACED_ILK;
9415 else
9416 val |= PIPECONF_PROGRESSIVE;
9417
9418 I915_WRITE(PIPECONF(cpu_transcoder), val);
9419 POSTING_READ(PIPECONF(cpu_transcoder));
9420 }
9421
9422 static void haswell_set_pipemisc(struct drm_crtc *crtc)
9423 {
9424 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9425 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9426
9427 if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
9428 u32 val = 0;
9429
9430 switch (intel_crtc->config->pipe_bpp) {
9431 case 18:
9432 val |= PIPEMISC_DITHER_6_BPC;
9433 break;
9434 case 24:
9435 val |= PIPEMISC_DITHER_8_BPC;
9436 break;
9437 case 30:
9438 val |= PIPEMISC_DITHER_10_BPC;
9439 break;
9440 case 36:
9441 val |= PIPEMISC_DITHER_12_BPC;
9442 break;
9443 default:
9444 /* Case prevented by pipe_config_set_bpp. */
9445 BUG();
9446 }
9447
9448 if (intel_crtc->config->dither)
9449 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
9450
9451 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
9452 }
9453 }
9454
9455 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
9456 {
9457 /*
9458 * Account for spread spectrum to avoid
9459 * oversubscribing the link. Max center spread
9460 * is 2.5%; use 5% for safety's sake.
9461 */
9462 u32 bps = target_clock * bpp * 21 / 20;
9463 return DIV_ROUND_UP(bps, link_bw * 8);
9464 }
9465
9466 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
9467 {
9468 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
9469 }
9470
9471 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
9472 struct intel_crtc_state *crtc_state,
9473 struct dpll *reduced_clock)
9474 {
9475 struct drm_crtc *crtc = &intel_crtc->base;
9476 struct drm_device *dev = crtc->dev;
9477 struct drm_i915_private *dev_priv = to_i915(dev);
9478 u32 dpll, fp, fp2;
9479 int factor;
9480
9481 /* Enable autotuning of the PLL clock (if permissible) */
9482 factor = 21;
9483 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9484 if ((intel_panel_use_ssc(dev_priv) &&
9485 dev_priv->vbt.lvds_ssc_freq == 100000) ||
9486 (HAS_PCH_IBX(dev_priv) && intel_is_dual_link_lvds(dev)))
9487 factor = 25;
9488 } else if (crtc_state->sdvo_tv_clock)
9489 factor = 20;
9490
9491 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9492
9493 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
9494 fp |= FP_CB_TUNE;
9495
9496 if (reduced_clock) {
9497 fp2 = i9xx_dpll_compute_fp(reduced_clock);
9498
9499 if (reduced_clock->m < factor * reduced_clock->n)
9500 fp2 |= FP_CB_TUNE;
9501 } else {
9502 fp2 = fp;
9503 }
9504
9505 dpll = 0;
9506
9507 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
9508 dpll |= DPLLB_MODE_LVDS;
9509 else
9510 dpll |= DPLLB_MODE_DAC_SERIAL;
9511
9512 dpll |= (crtc_state->pixel_multiplier - 1)
9513 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
9514
9515 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
9516 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
9517 dpll |= DPLL_SDVO_HIGH_SPEED;
9518
9519 if (intel_crtc_has_dp_encoder(crtc_state))
9520 dpll |= DPLL_SDVO_HIGH_SPEED;
9521
9522 /*
9523 * The high speed IO clock is only really required for
9524 * SDVO/HDMI/DP, but we also enable it for CRT to make it
9525 * possible to share the DPLL between CRT and HDMI. Enabling
9526 * the clock needlessly does no real harm, except use up a
9527 * bit of power potentially.
9528 *
9529 * We'll limit this to IVB with 3 pipes, since it has only two
9530 * DPLLs and so DPLL sharing is the only way to get three pipes
9531 * driving PCH ports at the same time. On SNB we could do this,
9532 * and potentially avoid enabling the second DPLL, but it's not
9533 * clear if it''s a win or loss power wise. No point in doing
9534 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
9535 */
9536 if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
9537 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
9538 dpll |= DPLL_SDVO_HIGH_SPEED;
9539
9540 /* compute bitmask from p1 value */
9541 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
9542 /* also FPA1 */
9543 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
9544
9545 switch (crtc_state->dpll.p2) {
9546 case 5:
9547 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
9548 break;
9549 case 7:
9550 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
9551 break;
9552 case 10:
9553 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9554 break;
9555 case 14:
9556 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9557 break;
9558 }
9559
9560 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9561 intel_panel_use_ssc(dev_priv))
9562 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
9563 else
9564 dpll |= PLL_REF_INPUT_DREFCLK;
9565
9566 dpll |= DPLL_VCO_ENABLE;
9567
9568 crtc_state->dpll_hw_state.dpll = dpll;
9569 crtc_state->dpll_hw_state.fp0 = fp;
9570 crtc_state->dpll_hw_state.fp1 = fp2;
9571 }
9572
9573 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9574 struct intel_crtc_state *crtc_state)
9575 {
9576 struct drm_device *dev = crtc->base.dev;
9577 struct drm_i915_private *dev_priv = to_i915(dev);
9578 struct dpll reduced_clock;
9579 bool has_reduced_clock = false;
9580 struct intel_shared_dpll *pll;
9581 const struct intel_limit *limit;
9582 int refclk = 120000;
9583
9584 memset(&crtc_state->dpll_hw_state, 0,
9585 sizeof(crtc_state->dpll_hw_state));
9586
9587 crtc->lowfreq_avail = false;
9588
9589 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9590 if (!crtc_state->has_pch_encoder)
9591 return 0;
9592
9593 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9594 if (intel_panel_use_ssc(dev_priv)) {
9595 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
9596 dev_priv->vbt.lvds_ssc_freq);
9597 refclk = dev_priv->vbt.lvds_ssc_freq;
9598 }
9599
9600 if (intel_is_dual_link_lvds(dev)) {
9601 if (refclk == 100000)
9602 limit = &intel_limits_ironlake_dual_lvds_100m;
9603 else
9604 limit = &intel_limits_ironlake_dual_lvds;
9605 } else {
9606 if (refclk == 100000)
9607 limit = &intel_limits_ironlake_single_lvds_100m;
9608 else
9609 limit = &intel_limits_ironlake_single_lvds;
9610 }
9611 } else {
9612 limit = &intel_limits_ironlake_dac;
9613 }
9614
9615 if (!crtc_state->clock_set &&
9616 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9617 refclk, NULL, &crtc_state->dpll)) {
9618 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9619 return -EINVAL;
9620 }
9621
9622 ironlake_compute_dpll(crtc, crtc_state,
9623 has_reduced_clock ? &reduced_clock : NULL);
9624
9625 pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
9626 if (pll == NULL) {
9627 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9628 pipe_name(crtc->pipe));
9629 return -EINVAL;
9630 }
9631
9632 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9633 has_reduced_clock)
9634 crtc->lowfreq_avail = true;
9635
9636 return 0;
9637 }
9638
9639 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9640 struct intel_link_m_n *m_n)
9641 {
9642 struct drm_device *dev = crtc->base.dev;
9643 struct drm_i915_private *dev_priv = to_i915(dev);
9644 enum pipe pipe = crtc->pipe;
9645
9646 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9647 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9648 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9649 & ~TU_SIZE_MASK;
9650 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9651 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9652 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9653 }
9654
9655 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9656 enum transcoder transcoder,
9657 struct intel_link_m_n *m_n,
9658 struct intel_link_m_n *m2_n2)
9659 {
9660 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9661 enum pipe pipe = crtc->pipe;
9662
9663 if (INTEL_GEN(dev_priv) >= 5) {
9664 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9665 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9666 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9667 & ~TU_SIZE_MASK;
9668 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9669 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9670 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9671 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9672 * gen < 8) and if DRRS is supported (to make sure the
9673 * registers are not unnecessarily read).
9674 */
9675 if (m2_n2 && INTEL_GEN(dev_priv) < 8 &&
9676 crtc->config->has_drrs) {
9677 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9678 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9679 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9680 & ~TU_SIZE_MASK;
9681 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9682 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9683 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9684 }
9685 } else {
9686 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9687 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9688 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9689 & ~TU_SIZE_MASK;
9690 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9691 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9692 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9693 }
9694 }
9695
9696 void intel_dp_get_m_n(struct intel_crtc *crtc,
9697 struct intel_crtc_state *pipe_config)
9698 {
9699 if (pipe_config->has_pch_encoder)
9700 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9701 else
9702 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9703 &pipe_config->dp_m_n,
9704 &pipe_config->dp_m2_n2);
9705 }
9706
9707 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9708 struct intel_crtc_state *pipe_config)
9709 {
9710 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9711 &pipe_config->fdi_m_n, NULL);
9712 }
9713
9714 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9715 struct intel_crtc_state *pipe_config)
9716 {
9717 struct drm_device *dev = crtc->base.dev;
9718 struct drm_i915_private *dev_priv = to_i915(dev);
9719 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9720 uint32_t ps_ctrl = 0;
9721 int id = -1;
9722 int i;
9723
9724 /* find scaler attached to this pipe */
9725 for (i = 0; i < crtc->num_scalers; i++) {
9726 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9727 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9728 id = i;
9729 pipe_config->pch_pfit.enabled = true;
9730 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9731 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9732 break;
9733 }
9734 }
9735
9736 scaler_state->scaler_id = id;
9737 if (id >= 0) {
9738 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9739 } else {
9740 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9741 }
9742 }
9743
9744 static void
9745 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9746 struct intel_initial_plane_config *plane_config)
9747 {
9748 struct drm_device *dev = crtc->base.dev;
9749 struct drm_i915_private *dev_priv = to_i915(dev);
9750 u32 val, base, offset, stride_mult, tiling;
9751 int pipe = crtc->pipe;
9752 int fourcc, pixel_format;
9753 unsigned int aligned_height;
9754 struct drm_framebuffer *fb;
9755 struct intel_framebuffer *intel_fb;
9756
9757 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9758 if (!intel_fb) {
9759 DRM_DEBUG_KMS("failed to alloc fb\n");
9760 return;
9761 }
9762
9763 fb = &intel_fb->base;
9764
9765 fb->dev = dev;
9766
9767 val = I915_READ(PLANE_CTL(pipe, 0));
9768 if (!(val & PLANE_CTL_ENABLE))
9769 goto error;
9770
9771 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9772 fourcc = skl_format_to_fourcc(pixel_format,
9773 val & PLANE_CTL_ORDER_RGBX,
9774 val & PLANE_CTL_ALPHA_MASK);
9775 fb->format = drm_format_info(fourcc);
9776
9777 tiling = val & PLANE_CTL_TILED_MASK;
9778 switch (tiling) {
9779 case PLANE_CTL_TILED_LINEAR:
9780 fb->modifier = DRM_FORMAT_MOD_NONE;
9781 break;
9782 case PLANE_CTL_TILED_X:
9783 plane_config->tiling = I915_TILING_X;
9784 fb->modifier = I915_FORMAT_MOD_X_TILED;
9785 break;
9786 case PLANE_CTL_TILED_Y:
9787 fb->modifier = I915_FORMAT_MOD_Y_TILED;
9788 break;
9789 case PLANE_CTL_TILED_YF:
9790 fb->modifier = I915_FORMAT_MOD_Yf_TILED;
9791 break;
9792 default:
9793 MISSING_CASE(tiling);
9794 goto error;
9795 }
9796
9797 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9798 plane_config->base = base;
9799
9800 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9801
9802 val = I915_READ(PLANE_SIZE(pipe, 0));
9803 fb->height = ((val >> 16) & 0xfff) + 1;
9804 fb->width = ((val >> 0) & 0x1fff) + 1;
9805
9806 val = I915_READ(PLANE_STRIDE(pipe, 0));
9807 stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier,
9808 fb->format->format);
9809 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9810
9811 aligned_height = intel_fb_align_height(dev, fb->height,
9812 fb->format->format,
9813 fb->modifier);
9814
9815 plane_config->size = fb->pitches[0] * aligned_height;
9816
9817 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9818 pipe_name(pipe), fb->width, fb->height,
9819 fb->format->cpp[0] * 8, base, fb->pitches[0],
9820 plane_config->size);
9821
9822 plane_config->fb = intel_fb;
9823 return;
9824
9825 error:
9826 kfree(intel_fb);
9827 }
9828
9829 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9830 struct intel_crtc_state *pipe_config)
9831 {
9832 struct drm_device *dev = crtc->base.dev;
9833 struct drm_i915_private *dev_priv = to_i915(dev);
9834 uint32_t tmp;
9835
9836 tmp = I915_READ(PF_CTL(crtc->pipe));
9837
9838 if (tmp & PF_ENABLE) {
9839 pipe_config->pch_pfit.enabled = true;
9840 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9841 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9842
9843 /* We currently do not free assignements of panel fitters on
9844 * ivb/hsw (since we don't use the higher upscaling modes which
9845 * differentiates them) so just WARN about this case for now. */
9846 if (IS_GEN7(dev_priv)) {
9847 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9848 PF_PIPE_SEL_IVB(crtc->pipe));
9849 }
9850 }
9851 }
9852
9853 static void
9854 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9855 struct intel_initial_plane_config *plane_config)
9856 {
9857 struct drm_device *dev = crtc->base.dev;
9858 struct drm_i915_private *dev_priv = to_i915(dev);
9859 u32 val, base, offset;
9860 int pipe = crtc->pipe;
9861 int fourcc, pixel_format;
9862 unsigned int aligned_height;
9863 struct drm_framebuffer *fb;
9864 struct intel_framebuffer *intel_fb;
9865
9866 val = I915_READ(DSPCNTR(pipe));
9867 if (!(val & DISPLAY_PLANE_ENABLE))
9868 return;
9869
9870 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9871 if (!intel_fb) {
9872 DRM_DEBUG_KMS("failed to alloc fb\n");
9873 return;
9874 }
9875
9876 fb = &intel_fb->base;
9877
9878 fb->dev = dev;
9879
9880 if (INTEL_GEN(dev_priv) >= 4) {
9881 if (val & DISPPLANE_TILED) {
9882 plane_config->tiling = I915_TILING_X;
9883 fb->modifier = I915_FORMAT_MOD_X_TILED;
9884 }
9885 }
9886
9887 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9888 fourcc = i9xx_format_to_fourcc(pixel_format);
9889 fb->format = drm_format_info(fourcc);
9890
9891 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9892 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
9893 offset = I915_READ(DSPOFFSET(pipe));
9894 } else {
9895 if (plane_config->tiling)
9896 offset = I915_READ(DSPTILEOFF(pipe));
9897 else
9898 offset = I915_READ(DSPLINOFF(pipe));
9899 }
9900 plane_config->base = base;
9901
9902 val = I915_READ(PIPESRC(pipe));
9903 fb->width = ((val >> 16) & 0xfff) + 1;
9904 fb->height = ((val >> 0) & 0xfff) + 1;
9905
9906 val = I915_READ(DSPSTRIDE(pipe));
9907 fb->pitches[0] = val & 0xffffffc0;
9908
9909 aligned_height = intel_fb_align_height(dev, fb->height,
9910 fb->format->format,
9911 fb->modifier);
9912
9913 plane_config->size = fb->pitches[0] * aligned_height;
9914
9915 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9916 pipe_name(pipe), fb->width, fb->height,
9917 fb->format->cpp[0] * 8, base, fb->pitches[0],
9918 plane_config->size);
9919
9920 plane_config->fb = intel_fb;
9921 }
9922
9923 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9924 struct intel_crtc_state *pipe_config)
9925 {
9926 struct drm_device *dev = crtc->base.dev;
9927 struct drm_i915_private *dev_priv = to_i915(dev);
9928 enum intel_display_power_domain power_domain;
9929 uint32_t tmp;
9930 bool ret;
9931
9932 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9933 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9934 return false;
9935
9936 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9937 pipe_config->shared_dpll = NULL;
9938
9939 ret = false;
9940 tmp = I915_READ(PIPECONF(crtc->pipe));
9941 if (!(tmp & PIPECONF_ENABLE))
9942 goto out;
9943
9944 switch (tmp & PIPECONF_BPC_MASK) {
9945 case PIPECONF_6BPC:
9946 pipe_config->pipe_bpp = 18;
9947 break;
9948 case PIPECONF_8BPC:
9949 pipe_config->pipe_bpp = 24;
9950 break;
9951 case PIPECONF_10BPC:
9952 pipe_config->pipe_bpp = 30;
9953 break;
9954 case PIPECONF_12BPC:
9955 pipe_config->pipe_bpp = 36;
9956 break;
9957 default:
9958 break;
9959 }
9960
9961 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9962 pipe_config->limited_color_range = true;
9963
9964 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9965 struct intel_shared_dpll *pll;
9966 enum intel_dpll_id pll_id;
9967
9968 pipe_config->has_pch_encoder = true;
9969
9970 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9971 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9972 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9973
9974 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9975
9976 if (HAS_PCH_IBX(dev_priv)) {
9977 /*
9978 * The pipe->pch transcoder and pch transcoder->pll
9979 * mapping is fixed.
9980 */
9981 pll_id = (enum intel_dpll_id) crtc->pipe;
9982 } else {
9983 tmp = I915_READ(PCH_DPLL_SEL);
9984 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9985 pll_id = DPLL_ID_PCH_PLL_B;
9986 else
9987 pll_id= DPLL_ID_PCH_PLL_A;
9988 }
9989
9990 pipe_config->shared_dpll =
9991 intel_get_shared_dpll_by_id(dev_priv, pll_id);
9992 pll = pipe_config->shared_dpll;
9993
9994 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9995 &pipe_config->dpll_hw_state));
9996
9997 tmp = pipe_config->dpll_hw_state.dpll;
9998 pipe_config->pixel_multiplier =
9999 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
10000 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
10001
10002 ironlake_pch_clock_get(crtc, pipe_config);
10003 } else {
10004 pipe_config->pixel_multiplier = 1;
10005 }
10006
10007 intel_get_pipe_timings(crtc, pipe_config);
10008 intel_get_pipe_src_size(crtc, pipe_config);
10009
10010 ironlake_get_pfit_config(crtc, pipe_config);
10011
10012 ret = true;
10013
10014 out:
10015 intel_display_power_put(dev_priv, power_domain);
10016
10017 return ret;
10018 }
10019
10020 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
10021 {
10022 struct drm_device *dev = &dev_priv->drm;
10023 struct intel_crtc *crtc;
10024
10025 for_each_intel_crtc(dev, crtc)
10026 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
10027 pipe_name(crtc->pipe));
10028
10029 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
10030 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
10031 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
10032 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
10033 I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
10034 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
10035 "CPU PWM1 enabled\n");
10036 if (IS_HASWELL(dev_priv))
10037 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
10038 "CPU PWM2 enabled\n");
10039 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
10040 "PCH PWM1 enabled\n");
10041 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
10042 "Utility pin enabled\n");
10043 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
10044
10045 /*
10046 * In theory we can still leave IRQs enabled, as long as only the HPD
10047 * interrupts remain enabled. We used to check for that, but since it's
10048 * gen-specific and since we only disable LCPLL after we fully disable
10049 * the interrupts, the check below should be enough.
10050 */
10051 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
10052 }
10053
10054 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
10055 {
10056 if (IS_HASWELL(dev_priv))
10057 return I915_READ(D_COMP_HSW);
10058 else
10059 return I915_READ(D_COMP_BDW);
10060 }
10061
10062 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
10063 {
10064 if (IS_HASWELL(dev_priv)) {
10065 mutex_lock(&dev_priv->rps.hw_lock);
10066 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
10067 val))
10068 DRM_DEBUG_KMS("Failed to write to D_COMP\n");
10069 mutex_unlock(&dev_priv->rps.hw_lock);
10070 } else {
10071 I915_WRITE(D_COMP_BDW, val);
10072 POSTING_READ(D_COMP_BDW);
10073 }
10074 }
10075
10076 /*
10077 * This function implements pieces of two sequences from BSpec:
10078 * - Sequence for display software to disable LCPLL
10079 * - Sequence for display software to allow package C8+
10080 * The steps implemented here are just the steps that actually touch the LCPLL
10081 * register. Callers should take care of disabling all the display engine
10082 * functions, doing the mode unset, fixing interrupts, etc.
10083 */
10084 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
10085 bool switch_to_fclk, bool allow_power_down)
10086 {
10087 uint32_t val;
10088
10089 assert_can_disable_lcpll(dev_priv);
10090
10091 val = I915_READ(LCPLL_CTL);
10092
10093 if (switch_to_fclk) {
10094 val |= LCPLL_CD_SOURCE_FCLK;
10095 I915_WRITE(LCPLL_CTL, val);
10096
10097 if (wait_for_us(I915_READ(LCPLL_CTL) &
10098 LCPLL_CD_SOURCE_FCLK_DONE, 1))
10099 DRM_ERROR("Switching to FCLK failed\n");
10100
10101 val = I915_READ(LCPLL_CTL);
10102 }
10103
10104 val |= LCPLL_PLL_DISABLE;
10105 I915_WRITE(LCPLL_CTL, val);
10106 POSTING_READ(LCPLL_CTL);
10107
10108 if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
10109 DRM_ERROR("LCPLL still locked\n");
10110
10111 val = hsw_read_dcomp(dev_priv);
10112 val |= D_COMP_COMP_DISABLE;
10113 hsw_write_dcomp(dev_priv, val);
10114 ndelay(100);
10115
10116 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
10117 1))
10118 DRM_ERROR("D_COMP RCOMP still in progress\n");
10119
10120 if (allow_power_down) {
10121 val = I915_READ(LCPLL_CTL);
10122 val |= LCPLL_POWER_DOWN_ALLOW;
10123 I915_WRITE(LCPLL_CTL, val);
10124 POSTING_READ(LCPLL_CTL);
10125 }
10126 }
10127
10128 /*
10129 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
10130 * source.
10131 */
10132 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
10133 {
10134 uint32_t val;
10135
10136 val = I915_READ(LCPLL_CTL);
10137
10138 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
10139 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
10140 return;
10141
10142 /*
10143 * Make sure we're not on PC8 state before disabling PC8, otherwise
10144 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
10145 */
10146 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
10147
10148 if (val & LCPLL_POWER_DOWN_ALLOW) {
10149 val &= ~LCPLL_POWER_DOWN_ALLOW;
10150 I915_WRITE(LCPLL_CTL, val);
10151 POSTING_READ(LCPLL_CTL);
10152 }
10153
10154 val = hsw_read_dcomp(dev_priv);
10155 val |= D_COMP_COMP_FORCE;
10156 val &= ~D_COMP_COMP_DISABLE;
10157 hsw_write_dcomp(dev_priv, val);
10158
10159 val = I915_READ(LCPLL_CTL);
10160 val &= ~LCPLL_PLL_DISABLE;
10161 I915_WRITE(LCPLL_CTL, val);
10162
10163 if (intel_wait_for_register(dev_priv,
10164 LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
10165 5))
10166 DRM_ERROR("LCPLL not locked yet\n");
10167
10168 if (val & LCPLL_CD_SOURCE_FCLK) {
10169 val = I915_READ(LCPLL_CTL);
10170 val &= ~LCPLL_CD_SOURCE_FCLK;
10171 I915_WRITE(LCPLL_CTL, val);
10172
10173 if (wait_for_us((I915_READ(LCPLL_CTL) &
10174 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10175 DRM_ERROR("Switching back to LCPLL failed\n");
10176 }
10177
10178 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
10179 intel_update_cdclk(dev_priv);
10180 }
10181
10182 /*
10183 * Package states C8 and deeper are really deep PC states that can only be
10184 * reached when all the devices on the system allow it, so even if the graphics
10185 * device allows PC8+, it doesn't mean the system will actually get to these
10186 * states. Our driver only allows PC8+ when going into runtime PM.
10187 *
10188 * The requirements for PC8+ are that all the outputs are disabled, the power
10189 * well is disabled and most interrupts are disabled, and these are also
10190 * requirements for runtime PM. When these conditions are met, we manually do
10191 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
10192 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
10193 * hang the machine.
10194 *
10195 * When we really reach PC8 or deeper states (not just when we allow it) we lose
10196 * the state of some registers, so when we come back from PC8+ we need to
10197 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
10198 * need to take care of the registers kept by RC6. Notice that this happens even
10199 * if we don't put the device in PCI D3 state (which is what currently happens
10200 * because of the runtime PM support).
10201 *
10202 * For more, read "Display Sequences for Package C8" on the hardware
10203 * documentation.
10204 */
10205 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
10206 {
10207 uint32_t val;
10208
10209 DRM_DEBUG_KMS("Enabling package C8+\n");
10210
10211 if (HAS_PCH_LPT_LP(dev_priv)) {
10212 val = I915_READ(SOUTH_DSPCLK_GATE_D);
10213 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
10214 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10215 }
10216
10217 lpt_disable_clkout_dp(dev_priv);
10218 hsw_disable_lcpll(dev_priv, true, true);
10219 }
10220
10221 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
10222 {
10223 uint32_t val;
10224
10225 DRM_DEBUG_KMS("Disabling package C8+\n");
10226
10227 hsw_restore_lcpll(dev_priv);
10228 lpt_init_pch_refclk(dev_priv);
10229
10230 if (HAS_PCH_LPT_LP(dev_priv)) {
10231 val = I915_READ(SOUTH_DSPCLK_GATE_D);
10232 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
10233 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10234 }
10235 }
10236
10237 static void bxt_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10238 {
10239 struct drm_device *dev = old_state->dev;
10240 struct intel_atomic_state *old_intel_state =
10241 to_intel_atomic_state(old_state);
10242 unsigned int req_cdclk = old_intel_state->dev_cdclk;
10243
10244 bxt_set_cdclk(to_i915(dev), req_cdclk);
10245 }
10246
10247 static int bdw_adjust_min_pipe_pixel_rate(struct intel_crtc_state *crtc_state,
10248 int pixel_rate)
10249 {
10250 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
10251
10252 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
10253 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
10254 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
10255
10256 /* BSpec says "Do not use DisplayPort with CDCLK less than
10257 * 432 MHz, audio enabled, port width x4, and link rate
10258 * HBR2 (5.4 GHz), or else there may be audio corruption or
10259 * screen corruption."
10260 */
10261 if (intel_crtc_has_dp_encoder(crtc_state) &&
10262 crtc_state->has_audio &&
10263 crtc_state->port_clock >= 540000 &&
10264 crtc_state->lane_count == 4)
10265 pixel_rate = max(432000, pixel_rate);
10266
10267 return pixel_rate;
10268 }
10269
10270 /* compute the max rate for new configuration */
10271 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
10272 {
10273 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10274 struct drm_i915_private *dev_priv = to_i915(state->dev);
10275 struct drm_crtc *crtc;
10276 struct drm_crtc_state *cstate;
10277 struct intel_crtc_state *crtc_state;
10278 unsigned max_pixel_rate = 0, i;
10279 enum pipe pipe;
10280
10281 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
10282 sizeof(intel_state->min_pixclk));
10283
10284 for_each_crtc_in_state(state, crtc, cstate, i) {
10285 int pixel_rate;
10286
10287 crtc_state = to_intel_crtc_state(cstate);
10288 if (!crtc_state->base.enable) {
10289 intel_state->min_pixclk[i] = 0;
10290 continue;
10291 }
10292
10293 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
10294
10295 if (IS_BROADWELL(dev_priv) || IS_GEN9(dev_priv))
10296 pixel_rate = bdw_adjust_min_pipe_pixel_rate(crtc_state,
10297 pixel_rate);
10298
10299 intel_state->min_pixclk[i] = pixel_rate;
10300 }
10301
10302 for_each_pipe(dev_priv, pipe)
10303 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
10304
10305 return max_pixel_rate;
10306 }
10307
10308 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
10309 {
10310 struct drm_i915_private *dev_priv = to_i915(dev);
10311 uint32_t val, data;
10312 int ret;
10313
10314 if (WARN((I915_READ(LCPLL_CTL) &
10315 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
10316 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
10317 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
10318 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
10319 "trying to change cdclk frequency with cdclk not enabled\n"))
10320 return;
10321
10322 mutex_lock(&dev_priv->rps.hw_lock);
10323 ret = sandybridge_pcode_write(dev_priv,
10324 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
10325 mutex_unlock(&dev_priv->rps.hw_lock);
10326 if (ret) {
10327 DRM_ERROR("failed to inform pcode about cdclk change\n");
10328 return;
10329 }
10330
10331 val = I915_READ(LCPLL_CTL);
10332 val |= LCPLL_CD_SOURCE_FCLK;
10333 I915_WRITE(LCPLL_CTL, val);
10334
10335 if (wait_for_us(I915_READ(LCPLL_CTL) &
10336 LCPLL_CD_SOURCE_FCLK_DONE, 1))
10337 DRM_ERROR("Switching to FCLK failed\n");
10338
10339 val = I915_READ(LCPLL_CTL);
10340 val &= ~LCPLL_CLK_FREQ_MASK;
10341
10342 switch (cdclk) {
10343 case 450000:
10344 val |= LCPLL_CLK_FREQ_450;
10345 data = 0;
10346 break;
10347 case 540000:
10348 val |= LCPLL_CLK_FREQ_54O_BDW;
10349 data = 1;
10350 break;
10351 case 337500:
10352 val |= LCPLL_CLK_FREQ_337_5_BDW;
10353 data = 2;
10354 break;
10355 case 675000:
10356 val |= LCPLL_CLK_FREQ_675_BDW;
10357 data = 3;
10358 break;
10359 default:
10360 WARN(1, "invalid cdclk frequency\n");
10361 return;
10362 }
10363
10364 I915_WRITE(LCPLL_CTL, val);
10365
10366 val = I915_READ(LCPLL_CTL);
10367 val &= ~LCPLL_CD_SOURCE_FCLK;
10368 I915_WRITE(LCPLL_CTL, val);
10369
10370 if (wait_for_us((I915_READ(LCPLL_CTL) &
10371 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10372 DRM_ERROR("Switching back to LCPLL failed\n");
10373
10374 mutex_lock(&dev_priv->rps.hw_lock);
10375 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
10376 mutex_unlock(&dev_priv->rps.hw_lock);
10377
10378 I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
10379
10380 intel_update_cdclk(dev_priv);
10381
10382 WARN(cdclk != dev_priv->cdclk_freq,
10383 "cdclk requested %d kHz but got %d kHz\n",
10384 cdclk, dev_priv->cdclk_freq);
10385 }
10386
10387 static int broadwell_calc_cdclk(int max_pixclk)
10388 {
10389 if (max_pixclk > 540000)
10390 return 675000;
10391 else if (max_pixclk > 450000)
10392 return 540000;
10393 else if (max_pixclk > 337500)
10394 return 450000;
10395 else
10396 return 337500;
10397 }
10398
10399 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
10400 {
10401 struct drm_i915_private *dev_priv = to_i915(state->dev);
10402 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10403 int max_pixclk = ilk_max_pixel_rate(state);
10404 int cdclk;
10405
10406 /*
10407 * FIXME should also account for plane ratio
10408 * once 64bpp pixel formats are supported.
10409 */
10410 cdclk = broadwell_calc_cdclk(max_pixclk);
10411
10412 if (cdclk > dev_priv->max_cdclk_freq) {
10413 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10414 cdclk, dev_priv->max_cdclk_freq);
10415 return -EINVAL;
10416 }
10417
10418 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10419 if (!intel_state->active_crtcs)
10420 intel_state->dev_cdclk = broadwell_calc_cdclk(0);
10421
10422 return 0;
10423 }
10424
10425 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10426 {
10427 struct drm_device *dev = old_state->dev;
10428 struct intel_atomic_state *old_intel_state =
10429 to_intel_atomic_state(old_state);
10430 unsigned req_cdclk = old_intel_state->dev_cdclk;
10431
10432 broadwell_set_cdclk(dev, req_cdclk);
10433 }
10434
10435 static int skl_modeset_calc_cdclk(struct drm_atomic_state *state)
10436 {
10437 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10438 struct drm_i915_private *dev_priv = to_i915(state->dev);
10439 const int max_pixclk = ilk_max_pixel_rate(state);
10440 int vco = intel_state->cdclk_pll_vco;
10441 int cdclk;
10442
10443 /*
10444 * FIXME should also account for plane ratio
10445 * once 64bpp pixel formats are supported.
10446 */
10447 cdclk = skl_calc_cdclk(max_pixclk, vco);
10448
10449 /*
10450 * FIXME move the cdclk caclulation to
10451 * compute_config() so we can fail gracegully.
10452 */
10453 if (cdclk > dev_priv->max_cdclk_freq) {
10454 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10455 cdclk, dev_priv->max_cdclk_freq);
10456 cdclk = dev_priv->max_cdclk_freq;
10457 }
10458
10459 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10460 if (!intel_state->active_crtcs)
10461 intel_state->dev_cdclk = skl_calc_cdclk(0, vco);
10462
10463 return 0;
10464 }
10465
10466 static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10467 {
10468 struct drm_i915_private *dev_priv = to_i915(old_state->dev);
10469 struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state);
10470 unsigned int req_cdclk = intel_state->dev_cdclk;
10471 unsigned int req_vco = intel_state->cdclk_pll_vco;
10472
10473 skl_set_cdclk(dev_priv, req_cdclk, req_vco);
10474 }
10475
10476 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
10477 struct intel_crtc_state *crtc_state)
10478 {
10479 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
10480 if (!intel_ddi_pll_select(crtc, crtc_state))
10481 return -EINVAL;
10482 }
10483
10484 crtc->lowfreq_avail = false;
10485
10486 return 0;
10487 }
10488
10489 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10490 enum port port,
10491 struct intel_crtc_state *pipe_config)
10492 {
10493 enum intel_dpll_id id;
10494
10495 switch (port) {
10496 case PORT_A:
10497 id = DPLL_ID_SKL_DPLL0;
10498 break;
10499 case PORT_B:
10500 id = DPLL_ID_SKL_DPLL1;
10501 break;
10502 case PORT_C:
10503 id = DPLL_ID_SKL_DPLL2;
10504 break;
10505 default:
10506 DRM_ERROR("Incorrect port type\n");
10507 return;
10508 }
10509
10510 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10511 }
10512
10513 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
10514 enum port port,
10515 struct intel_crtc_state *pipe_config)
10516 {
10517 enum intel_dpll_id id;
10518 u32 temp;
10519
10520 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
10521 id = temp >> (port * 3 + 1);
10522
10523 if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
10524 return;
10525
10526 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10527 }
10528
10529 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
10530 enum port port,
10531 struct intel_crtc_state *pipe_config)
10532 {
10533 enum intel_dpll_id id;
10534 uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
10535
10536 switch (ddi_pll_sel) {
10537 case PORT_CLK_SEL_WRPLL1:
10538 id = DPLL_ID_WRPLL1;
10539 break;
10540 case PORT_CLK_SEL_WRPLL2:
10541 id = DPLL_ID_WRPLL2;
10542 break;
10543 case PORT_CLK_SEL_SPLL:
10544 id = DPLL_ID_SPLL;
10545 break;
10546 case PORT_CLK_SEL_LCPLL_810:
10547 id = DPLL_ID_LCPLL_810;
10548 break;
10549 case PORT_CLK_SEL_LCPLL_1350:
10550 id = DPLL_ID_LCPLL_1350;
10551 break;
10552 case PORT_CLK_SEL_LCPLL_2700:
10553 id = DPLL_ID_LCPLL_2700;
10554 break;
10555 default:
10556 MISSING_CASE(ddi_pll_sel);
10557 /* fall through */
10558 case PORT_CLK_SEL_NONE:
10559 return;
10560 }
10561
10562 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10563 }
10564
10565 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10566 struct intel_crtc_state *pipe_config,
10567 unsigned long *power_domain_mask)
10568 {
10569 struct drm_device *dev = crtc->base.dev;
10570 struct drm_i915_private *dev_priv = to_i915(dev);
10571 enum intel_display_power_domain power_domain;
10572 u32 tmp;
10573
10574 /*
10575 * The pipe->transcoder mapping is fixed with the exception of the eDP
10576 * transcoder handled below.
10577 */
10578 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10579
10580 /*
10581 * XXX: Do intel_display_power_get_if_enabled before reading this (for
10582 * consistency and less surprising code; it's in always on power).
10583 */
10584 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
10585 if (tmp & TRANS_DDI_FUNC_ENABLE) {
10586 enum pipe trans_edp_pipe;
10587 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10588 default:
10589 WARN(1, "unknown pipe linked to edp transcoder\n");
10590 case TRANS_DDI_EDP_INPUT_A_ONOFF:
10591 case TRANS_DDI_EDP_INPUT_A_ON:
10592 trans_edp_pipe = PIPE_A;
10593 break;
10594 case TRANS_DDI_EDP_INPUT_B_ONOFF:
10595 trans_edp_pipe = PIPE_B;
10596 break;
10597 case TRANS_DDI_EDP_INPUT_C_ONOFF:
10598 trans_edp_pipe = PIPE_C;
10599 break;
10600 }
10601
10602 if (trans_edp_pipe == crtc->pipe)
10603 pipe_config->cpu_transcoder = TRANSCODER_EDP;
10604 }
10605
10606 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10607 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10608 return false;
10609 *power_domain_mask |= BIT(power_domain);
10610
10611 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10612
10613 return tmp & PIPECONF_ENABLE;
10614 }
10615
10616 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10617 struct intel_crtc_state *pipe_config,
10618 unsigned long *power_domain_mask)
10619 {
10620 struct drm_device *dev = crtc->base.dev;
10621 struct drm_i915_private *dev_priv = to_i915(dev);
10622 enum intel_display_power_domain power_domain;
10623 enum port port;
10624 enum transcoder cpu_transcoder;
10625 u32 tmp;
10626
10627 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10628 if (port == PORT_A)
10629 cpu_transcoder = TRANSCODER_DSI_A;
10630 else
10631 cpu_transcoder = TRANSCODER_DSI_C;
10632
10633 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10634 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10635 continue;
10636 *power_domain_mask |= BIT(power_domain);
10637
10638 /*
10639 * The PLL needs to be enabled with a valid divider
10640 * configuration, otherwise accessing DSI registers will hang
10641 * the machine. See BSpec North Display Engine
10642 * registers/MIPI[BXT]. We can break out here early, since we
10643 * need the same DSI PLL to be enabled for both DSI ports.
10644 */
10645 if (!intel_dsi_pll_is_enabled(dev_priv))
10646 break;
10647
10648 /* XXX: this works for video mode only */
10649 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10650 if (!(tmp & DPI_ENABLE))
10651 continue;
10652
10653 tmp = I915_READ(MIPI_CTRL(port));
10654 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10655 continue;
10656
10657 pipe_config->cpu_transcoder = cpu_transcoder;
10658 break;
10659 }
10660
10661 return transcoder_is_dsi(pipe_config->cpu_transcoder);
10662 }
10663
10664 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
10665 struct intel_crtc_state *pipe_config)
10666 {
10667 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10668 struct intel_shared_dpll *pll;
10669 enum port port;
10670 uint32_t tmp;
10671
10672 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10673
10674 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
10675
10676 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
10677 skylake_get_ddi_pll(dev_priv, port, pipe_config);
10678 else if (IS_GEN9_LP(dev_priv))
10679 bxt_get_ddi_pll(dev_priv, port, pipe_config);
10680 else
10681 haswell_get_ddi_pll(dev_priv, port, pipe_config);
10682
10683 pll = pipe_config->shared_dpll;
10684 if (pll) {
10685 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
10686 &pipe_config->dpll_hw_state));
10687 }
10688
10689 /*
10690 * Haswell has only FDI/PCH transcoder A. It is which is connected to
10691 * DDI E. So just check whether this pipe is wired to DDI E and whether
10692 * the PCH transcoder is on.
10693 */
10694 if (INTEL_GEN(dev_priv) < 9 &&
10695 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10696 pipe_config->has_pch_encoder = true;
10697
10698 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10699 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10700 FDI_DP_PORT_WIDTH_SHIFT) + 1;
10701
10702 ironlake_get_fdi_m_n_config(crtc, pipe_config);
10703 }
10704 }
10705
10706 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10707 struct intel_crtc_state *pipe_config)
10708 {
10709 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10710 enum intel_display_power_domain power_domain;
10711 unsigned long power_domain_mask;
10712 bool active;
10713
10714 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10715 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10716 return false;
10717 power_domain_mask = BIT(power_domain);
10718
10719 pipe_config->shared_dpll = NULL;
10720
10721 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
10722
10723 if (IS_GEN9_LP(dev_priv) &&
10724 bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
10725 WARN_ON(active);
10726 active = true;
10727 }
10728
10729 if (!active)
10730 goto out;
10731
10732 if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10733 haswell_get_ddi_port_state(crtc, pipe_config);
10734 intel_get_pipe_timings(crtc, pipe_config);
10735 }
10736
10737 intel_get_pipe_src_size(crtc, pipe_config);
10738
10739 pipe_config->gamma_mode =
10740 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10741
10742 if (INTEL_GEN(dev_priv) >= 9) {
10743 intel_crtc_init_scalers(crtc, pipe_config);
10744
10745 pipe_config->scaler_state.scaler_id = -1;
10746 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10747 }
10748
10749 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10750 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10751 power_domain_mask |= BIT(power_domain);
10752 if (INTEL_GEN(dev_priv) >= 9)
10753 skylake_get_pfit_config(crtc, pipe_config);
10754 else
10755 ironlake_get_pfit_config(crtc, pipe_config);
10756 }
10757
10758 if (IS_HASWELL(dev_priv))
10759 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10760 (I915_READ(IPS_CTL) & IPS_ENABLE);
10761
10762 if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10763 !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10764 pipe_config->pixel_multiplier =
10765 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10766 } else {
10767 pipe_config->pixel_multiplier = 1;
10768 }
10769
10770 out:
10771 for_each_power_domain(power_domain, power_domain_mask)
10772 intel_display_power_put(dev_priv, power_domain);
10773
10774 return active;
10775 }
10776
10777 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10778 const struct intel_plane_state *plane_state)
10779 {
10780 struct drm_device *dev = crtc->dev;
10781 struct drm_i915_private *dev_priv = to_i915(dev);
10782 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10783 uint32_t cntl = 0, size = 0;
10784
10785 if (plane_state && plane_state->base.visible) {
10786 unsigned int width = plane_state->base.crtc_w;
10787 unsigned int height = plane_state->base.crtc_h;
10788 unsigned int stride = roundup_pow_of_two(width) * 4;
10789
10790 switch (stride) {
10791 default:
10792 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10793 width, stride);
10794 stride = 256;
10795 /* fallthrough */
10796 case 256:
10797 case 512:
10798 case 1024:
10799 case 2048:
10800 break;
10801 }
10802
10803 cntl |= CURSOR_ENABLE |
10804 CURSOR_GAMMA_ENABLE |
10805 CURSOR_FORMAT_ARGB |
10806 CURSOR_STRIDE(stride);
10807
10808 size = (height << 12) | width;
10809 }
10810
10811 if (intel_crtc->cursor_cntl != 0 &&
10812 (intel_crtc->cursor_base != base ||
10813 intel_crtc->cursor_size != size ||
10814 intel_crtc->cursor_cntl != cntl)) {
10815 /* On these chipsets we can only modify the base/size/stride
10816 * whilst the cursor is disabled.
10817 */
10818 I915_WRITE(CURCNTR(PIPE_A), 0);
10819 POSTING_READ(CURCNTR(PIPE_A));
10820 intel_crtc->cursor_cntl = 0;
10821 }
10822
10823 if (intel_crtc->cursor_base != base) {
10824 I915_WRITE(CURBASE(PIPE_A), base);
10825 intel_crtc->cursor_base = base;
10826 }
10827
10828 if (intel_crtc->cursor_size != size) {
10829 I915_WRITE(CURSIZE, size);
10830 intel_crtc->cursor_size = size;
10831 }
10832
10833 if (intel_crtc->cursor_cntl != cntl) {
10834 I915_WRITE(CURCNTR(PIPE_A), cntl);
10835 POSTING_READ(CURCNTR(PIPE_A));
10836 intel_crtc->cursor_cntl = cntl;
10837 }
10838 }
10839
10840 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10841 const struct intel_plane_state *plane_state)
10842 {
10843 struct drm_device *dev = crtc->dev;
10844 struct drm_i915_private *dev_priv = to_i915(dev);
10845 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10846 int pipe = intel_crtc->pipe;
10847 uint32_t cntl = 0;
10848
10849 if (plane_state && plane_state->base.visible) {
10850 cntl = MCURSOR_GAMMA_ENABLE;
10851 switch (plane_state->base.crtc_w) {
10852 case 64:
10853 cntl |= CURSOR_MODE_64_ARGB_AX;
10854 break;
10855 case 128:
10856 cntl |= CURSOR_MODE_128_ARGB_AX;
10857 break;
10858 case 256:
10859 cntl |= CURSOR_MODE_256_ARGB_AX;
10860 break;
10861 default:
10862 MISSING_CASE(plane_state->base.crtc_w);
10863 return;
10864 }
10865 cntl |= pipe << 28; /* Connect to correct pipe */
10866
10867 if (HAS_DDI(dev_priv))
10868 cntl |= CURSOR_PIPE_CSC_ENABLE;
10869
10870 if (plane_state->base.rotation & DRM_ROTATE_180)
10871 cntl |= CURSOR_ROTATE_180;
10872 }
10873
10874 if (intel_crtc->cursor_cntl != cntl) {
10875 I915_WRITE(CURCNTR(pipe), cntl);
10876 POSTING_READ(CURCNTR(pipe));
10877 intel_crtc->cursor_cntl = cntl;
10878 }
10879
10880 /* and commit changes on next vblank */
10881 I915_WRITE(CURBASE(pipe), base);
10882 POSTING_READ(CURBASE(pipe));
10883
10884 intel_crtc->cursor_base = base;
10885 }
10886
10887 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10888 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10889 const struct intel_plane_state *plane_state)
10890 {
10891 struct drm_device *dev = crtc->dev;
10892 struct drm_i915_private *dev_priv = to_i915(dev);
10893 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10894 int pipe = intel_crtc->pipe;
10895 u32 base = intel_crtc->cursor_addr;
10896 u32 pos = 0;
10897
10898 if (plane_state) {
10899 int x = plane_state->base.crtc_x;
10900 int y = plane_state->base.crtc_y;
10901
10902 if (x < 0) {
10903 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10904 x = -x;
10905 }
10906 pos |= x << CURSOR_X_SHIFT;
10907
10908 if (y < 0) {
10909 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10910 y = -y;
10911 }
10912 pos |= y << CURSOR_Y_SHIFT;
10913
10914 /* ILK+ do this automagically */
10915 if (HAS_GMCH_DISPLAY(dev_priv) &&
10916 plane_state->base.rotation & DRM_ROTATE_180) {
10917 base += (plane_state->base.crtc_h *
10918 plane_state->base.crtc_w - 1) * 4;
10919 }
10920 }
10921
10922 I915_WRITE(CURPOS(pipe), pos);
10923
10924 if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
10925 i845_update_cursor(crtc, base, plane_state);
10926 else
10927 i9xx_update_cursor(crtc, base, plane_state);
10928 }
10929
10930 static bool cursor_size_ok(struct drm_i915_private *dev_priv,
10931 uint32_t width, uint32_t height)
10932 {
10933 if (width == 0 || height == 0)
10934 return false;
10935
10936 /*
10937 * 845g/865g are special in that they are only limited by
10938 * the width of their cursors, the height is arbitrary up to
10939 * the precision of the register. Everything else requires
10940 * square cursors, limited to a few power-of-two sizes.
10941 */
10942 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
10943 if ((width & 63) != 0)
10944 return false;
10945
10946 if (width > (IS_I845G(dev_priv) ? 64 : 512))
10947 return false;
10948
10949 if (height > 1023)
10950 return false;
10951 } else {
10952 switch (width | height) {
10953 case 256:
10954 case 128:
10955 if (IS_GEN2(dev_priv))
10956 return false;
10957 case 64:
10958 break;
10959 default:
10960 return false;
10961 }
10962 }
10963
10964 return true;
10965 }
10966
10967 /* VESA 640x480x72Hz mode to set on the pipe */
10968 static struct drm_display_mode load_detect_mode = {
10969 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10970 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10971 };
10972
10973 struct drm_framebuffer *
10974 __intel_framebuffer_create(struct drm_device *dev,
10975 struct drm_mode_fb_cmd2 *mode_cmd,
10976 struct drm_i915_gem_object *obj)
10977 {
10978 struct intel_framebuffer *intel_fb;
10979 int ret;
10980
10981 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10982 if (!intel_fb)
10983 return ERR_PTR(-ENOMEM);
10984
10985 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10986 if (ret)
10987 goto err;
10988
10989 return &intel_fb->base;
10990
10991 err:
10992 kfree(intel_fb);
10993 return ERR_PTR(ret);
10994 }
10995
10996 static struct drm_framebuffer *
10997 intel_framebuffer_create(struct drm_device *dev,
10998 struct drm_mode_fb_cmd2 *mode_cmd,
10999 struct drm_i915_gem_object *obj)
11000 {
11001 struct drm_framebuffer *fb;
11002 int ret;
11003
11004 ret = i915_mutex_lock_interruptible(dev);
11005 if (ret)
11006 return ERR_PTR(ret);
11007 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
11008 mutex_unlock(&dev->struct_mutex);
11009
11010 return fb;
11011 }
11012
11013 static u32
11014 intel_framebuffer_pitch_for_width(int width, int bpp)
11015 {
11016 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
11017 return ALIGN(pitch, 64);
11018 }
11019
11020 static u32
11021 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
11022 {
11023 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
11024 return PAGE_ALIGN(pitch * mode->vdisplay);
11025 }
11026
11027 static struct drm_framebuffer *
11028 intel_framebuffer_create_for_mode(struct drm_device *dev,
11029 struct drm_display_mode *mode,
11030 int depth, int bpp)
11031 {
11032 struct drm_framebuffer *fb;
11033 struct drm_i915_gem_object *obj;
11034 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
11035
11036 obj = i915_gem_object_create(to_i915(dev),
11037 intel_framebuffer_size_for_mode(mode, bpp));
11038 if (IS_ERR(obj))
11039 return ERR_CAST(obj);
11040
11041 mode_cmd.width = mode->hdisplay;
11042 mode_cmd.height = mode->vdisplay;
11043 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
11044 bpp);
11045 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
11046
11047 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
11048 if (IS_ERR(fb))
11049 i915_gem_object_put(obj);
11050
11051 return fb;
11052 }
11053
11054 static struct drm_framebuffer *
11055 mode_fits_in_fbdev(struct drm_device *dev,
11056 struct drm_display_mode *mode)
11057 {
11058 #ifdef CONFIG_DRM_FBDEV_EMULATION
11059 struct drm_i915_private *dev_priv = to_i915(dev);
11060 struct drm_i915_gem_object *obj;
11061 struct drm_framebuffer *fb;
11062
11063 if (!dev_priv->fbdev)
11064 return NULL;
11065
11066 if (!dev_priv->fbdev->fb)
11067 return NULL;
11068
11069 obj = dev_priv->fbdev->fb->obj;
11070 BUG_ON(!obj);
11071
11072 fb = &dev_priv->fbdev->fb->base;
11073 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
11074 fb->format->cpp[0] * 8))
11075 return NULL;
11076
11077 if (obj->base.size < mode->vdisplay * fb->pitches[0])
11078 return NULL;
11079
11080 drm_framebuffer_reference(fb);
11081 return fb;
11082 #else
11083 return NULL;
11084 #endif
11085 }
11086
11087 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
11088 struct drm_crtc *crtc,
11089 struct drm_display_mode *mode,
11090 struct drm_framebuffer *fb,
11091 int x, int y)
11092 {
11093 struct drm_plane_state *plane_state;
11094 int hdisplay, vdisplay;
11095 int ret;
11096
11097 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
11098 if (IS_ERR(plane_state))
11099 return PTR_ERR(plane_state);
11100
11101 if (mode)
11102 drm_mode_get_hv_timing(mode, &hdisplay, &vdisplay);
11103 else
11104 hdisplay = vdisplay = 0;
11105
11106 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
11107 if (ret)
11108 return ret;
11109 drm_atomic_set_fb_for_plane(plane_state, fb);
11110 plane_state->crtc_x = 0;
11111 plane_state->crtc_y = 0;
11112 plane_state->crtc_w = hdisplay;
11113 plane_state->crtc_h = vdisplay;
11114 plane_state->src_x = x << 16;
11115 plane_state->src_y = y << 16;
11116 plane_state->src_w = hdisplay << 16;
11117 plane_state->src_h = vdisplay << 16;
11118
11119 return 0;
11120 }
11121
11122 bool intel_get_load_detect_pipe(struct drm_connector *connector,
11123 struct drm_display_mode *mode,
11124 struct intel_load_detect_pipe *old,
11125 struct drm_modeset_acquire_ctx *ctx)
11126 {
11127 struct intel_crtc *intel_crtc;
11128 struct intel_encoder *intel_encoder =
11129 intel_attached_encoder(connector);
11130 struct drm_crtc *possible_crtc;
11131 struct drm_encoder *encoder = &intel_encoder->base;
11132 struct drm_crtc *crtc = NULL;
11133 struct drm_device *dev = encoder->dev;
11134 struct drm_i915_private *dev_priv = to_i915(dev);
11135 struct drm_framebuffer *fb;
11136 struct drm_mode_config *config = &dev->mode_config;
11137 struct drm_atomic_state *state = NULL, *restore_state = NULL;
11138 struct drm_connector_state *connector_state;
11139 struct intel_crtc_state *crtc_state;
11140 int ret, i = -1;
11141
11142 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11143 connector->base.id, connector->name,
11144 encoder->base.id, encoder->name);
11145
11146 old->restore_state = NULL;
11147
11148 retry:
11149 ret = drm_modeset_lock(&config->connection_mutex, ctx);
11150 if (ret)
11151 goto fail;
11152
11153 /*
11154 * Algorithm gets a little messy:
11155 *
11156 * - if the connector already has an assigned crtc, use it (but make
11157 * sure it's on first)
11158 *
11159 * - try to find the first unused crtc that can drive this connector,
11160 * and use that if we find one
11161 */
11162
11163 /* See if we already have a CRTC for this connector */
11164 if (connector->state->crtc) {
11165 crtc = connector->state->crtc;
11166
11167 ret = drm_modeset_lock(&crtc->mutex, ctx);
11168 if (ret)
11169 goto fail;
11170
11171 /* Make sure the crtc and connector are running */
11172 goto found;
11173 }
11174
11175 /* Find an unused one (if possible) */
11176 for_each_crtc(dev, possible_crtc) {
11177 i++;
11178 if (!(encoder->possible_crtcs & (1 << i)))
11179 continue;
11180
11181 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11182 if (ret)
11183 goto fail;
11184
11185 if (possible_crtc->state->enable) {
11186 drm_modeset_unlock(&possible_crtc->mutex);
11187 continue;
11188 }
11189
11190 crtc = possible_crtc;
11191 break;
11192 }
11193
11194 /*
11195 * If we didn't find an unused CRTC, don't use any.
11196 */
11197 if (!crtc) {
11198 DRM_DEBUG_KMS("no pipe available for load-detect\n");
11199 goto fail;
11200 }
11201
11202 found:
11203 intel_crtc = to_intel_crtc(crtc);
11204
11205 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
11206 if (ret)
11207 goto fail;
11208
11209 state = drm_atomic_state_alloc(dev);
11210 restore_state = drm_atomic_state_alloc(dev);
11211 if (!state || !restore_state) {
11212 ret = -ENOMEM;
11213 goto fail;
11214 }
11215
11216 state->acquire_ctx = ctx;
11217 restore_state->acquire_ctx = ctx;
11218
11219 connector_state = drm_atomic_get_connector_state(state, connector);
11220 if (IS_ERR(connector_state)) {
11221 ret = PTR_ERR(connector_state);
11222 goto fail;
11223 }
11224
11225 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
11226 if (ret)
11227 goto fail;
11228
11229 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
11230 if (IS_ERR(crtc_state)) {
11231 ret = PTR_ERR(crtc_state);
11232 goto fail;
11233 }
11234
11235 crtc_state->base.active = crtc_state->base.enable = true;
11236
11237 if (!mode)
11238 mode = &load_detect_mode;
11239
11240 /* We need a framebuffer large enough to accommodate all accesses
11241 * that the plane may generate whilst we perform load detection.
11242 * We can not rely on the fbcon either being present (we get called
11243 * during its initialisation to detect all boot displays, or it may
11244 * not even exist) or that it is large enough to satisfy the
11245 * requested mode.
11246 */
11247 fb = mode_fits_in_fbdev(dev, mode);
11248 if (fb == NULL) {
11249 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
11250 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
11251 } else
11252 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
11253 if (IS_ERR(fb)) {
11254 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
11255 goto fail;
11256 }
11257
11258 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
11259 if (ret)
11260 goto fail;
11261
11262 drm_framebuffer_unreference(fb);
11263
11264 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
11265 if (ret)
11266 goto fail;
11267
11268 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
11269 if (!ret)
11270 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
11271 if (!ret)
11272 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
11273 if (ret) {
11274 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
11275 goto fail;
11276 }
11277
11278 ret = drm_atomic_commit(state);
11279 if (ret) {
11280 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
11281 goto fail;
11282 }
11283
11284 old->restore_state = restore_state;
11285 drm_atomic_state_put(state);
11286
11287 /* let the connector get through one full cycle before testing */
11288 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
11289 return true;
11290
11291 fail:
11292 if (state) {
11293 drm_atomic_state_put(state);
11294 state = NULL;
11295 }
11296 if (restore_state) {
11297 drm_atomic_state_put(restore_state);
11298 restore_state = NULL;
11299 }
11300
11301 if (ret == -EDEADLK) {
11302 drm_modeset_backoff(ctx);
11303 goto retry;
11304 }
11305
11306 return false;
11307 }
11308
11309 void intel_release_load_detect_pipe(struct drm_connector *connector,
11310 struct intel_load_detect_pipe *old,
11311 struct drm_modeset_acquire_ctx *ctx)
11312 {
11313 struct intel_encoder *intel_encoder =
11314 intel_attached_encoder(connector);
11315 struct drm_encoder *encoder = &intel_encoder->base;
11316 struct drm_atomic_state *state = old->restore_state;
11317 int ret;
11318
11319 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11320 connector->base.id, connector->name,
11321 encoder->base.id, encoder->name);
11322
11323 if (!state)
11324 return;
11325
11326 ret = drm_atomic_commit(state);
11327 if (ret)
11328 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
11329 drm_atomic_state_put(state);
11330 }
11331
11332 static int i9xx_pll_refclk(struct drm_device *dev,
11333 const struct intel_crtc_state *pipe_config)
11334 {
11335 struct drm_i915_private *dev_priv = to_i915(dev);
11336 u32 dpll = pipe_config->dpll_hw_state.dpll;
11337
11338 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
11339 return dev_priv->vbt.lvds_ssc_freq;
11340 else if (HAS_PCH_SPLIT(dev_priv))
11341 return 120000;
11342 else if (!IS_GEN2(dev_priv))
11343 return 96000;
11344 else
11345 return 48000;
11346 }
11347
11348 /* Returns the clock of the currently programmed mode of the given pipe. */
11349 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
11350 struct intel_crtc_state *pipe_config)
11351 {
11352 struct drm_device *dev = crtc->base.dev;
11353 struct drm_i915_private *dev_priv = to_i915(dev);
11354 int pipe = pipe_config->cpu_transcoder;
11355 u32 dpll = pipe_config->dpll_hw_state.dpll;
11356 u32 fp;
11357 struct dpll clock;
11358 int port_clock;
11359 int refclk = i9xx_pll_refclk(dev, pipe_config);
11360
11361 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
11362 fp = pipe_config->dpll_hw_state.fp0;
11363 else
11364 fp = pipe_config->dpll_hw_state.fp1;
11365
11366 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
11367 if (IS_PINEVIEW(dev_priv)) {
11368 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
11369 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
11370 } else {
11371 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
11372 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
11373 }
11374
11375 if (!IS_GEN2(dev_priv)) {
11376 if (IS_PINEVIEW(dev_priv))
11377 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
11378 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
11379 else
11380 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
11381 DPLL_FPA01_P1_POST_DIV_SHIFT);
11382
11383 switch (dpll & DPLL_MODE_MASK) {
11384 case DPLLB_MODE_DAC_SERIAL:
11385 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
11386 5 : 10;
11387 break;
11388 case DPLLB_MODE_LVDS:
11389 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
11390 7 : 14;
11391 break;
11392 default:
11393 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
11394 "mode\n", (int)(dpll & DPLL_MODE_MASK));
11395 return;
11396 }
11397
11398 if (IS_PINEVIEW(dev_priv))
11399 port_clock = pnv_calc_dpll_params(refclk, &clock);
11400 else
11401 port_clock = i9xx_calc_dpll_params(refclk, &clock);
11402 } else {
11403 u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
11404 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
11405
11406 if (is_lvds) {
11407 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
11408 DPLL_FPA01_P1_POST_DIV_SHIFT);
11409
11410 if (lvds & LVDS_CLKB_POWER_UP)
11411 clock.p2 = 7;
11412 else
11413 clock.p2 = 14;
11414 } else {
11415 if (dpll & PLL_P1_DIVIDE_BY_TWO)
11416 clock.p1 = 2;
11417 else {
11418 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
11419 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
11420 }
11421 if (dpll & PLL_P2_DIVIDE_BY_4)
11422 clock.p2 = 4;
11423 else
11424 clock.p2 = 2;
11425 }
11426
11427 port_clock = i9xx_calc_dpll_params(refclk, &clock);
11428 }
11429
11430 /*
11431 * This value includes pixel_multiplier. We will use
11432 * port_clock to compute adjusted_mode.crtc_clock in the
11433 * encoder's get_config() function.
11434 */
11435 pipe_config->port_clock = port_clock;
11436 }
11437
11438 int intel_dotclock_calculate(int link_freq,
11439 const struct intel_link_m_n *m_n)
11440 {
11441 /*
11442 * The calculation for the data clock is:
11443 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
11444 * But we want to avoid losing precison if possible, so:
11445 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
11446 *
11447 * and the link clock is simpler:
11448 * link_clock = (m * link_clock) / n
11449 */
11450
11451 if (!m_n->link_n)
11452 return 0;
11453
11454 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
11455 }
11456
11457 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
11458 struct intel_crtc_state *pipe_config)
11459 {
11460 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11461
11462 /* read out port_clock from the DPLL */
11463 i9xx_crtc_clock_get(crtc, pipe_config);
11464
11465 /*
11466 * In case there is an active pipe without active ports,
11467 * we may need some idea for the dotclock anyway.
11468 * Calculate one based on the FDI configuration.
11469 */
11470 pipe_config->base.adjusted_mode.crtc_clock =
11471 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11472 &pipe_config->fdi_m_n);
11473 }
11474
11475 /** Returns the currently programmed mode of the given pipe. */
11476 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
11477 struct drm_crtc *crtc)
11478 {
11479 struct drm_i915_private *dev_priv = to_i915(dev);
11480 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11481 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
11482 struct drm_display_mode *mode;
11483 struct intel_crtc_state *pipe_config;
11484 int htot = I915_READ(HTOTAL(cpu_transcoder));
11485 int hsync = I915_READ(HSYNC(cpu_transcoder));
11486 int vtot = I915_READ(VTOTAL(cpu_transcoder));
11487 int vsync = I915_READ(VSYNC(cpu_transcoder));
11488 enum pipe pipe = intel_crtc->pipe;
11489
11490 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
11491 if (!mode)
11492 return NULL;
11493
11494 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
11495 if (!pipe_config) {
11496 kfree(mode);
11497 return NULL;
11498 }
11499
11500 /*
11501 * Construct a pipe_config sufficient for getting the clock info
11502 * back out of crtc_clock_get.
11503 *
11504 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
11505 * to use a real value here instead.
11506 */
11507 pipe_config->cpu_transcoder = (enum transcoder) pipe;
11508 pipe_config->pixel_multiplier = 1;
11509 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
11510 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
11511 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
11512 i9xx_crtc_clock_get(intel_crtc, pipe_config);
11513
11514 mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
11515 mode->hdisplay = (htot & 0xffff) + 1;
11516 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
11517 mode->hsync_start = (hsync & 0xffff) + 1;
11518 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
11519 mode->vdisplay = (vtot & 0xffff) + 1;
11520 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
11521 mode->vsync_start = (vsync & 0xffff) + 1;
11522 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
11523
11524 drm_mode_set_name(mode);
11525
11526 kfree(pipe_config);
11527
11528 return mode;
11529 }
11530
11531 static void intel_crtc_destroy(struct drm_crtc *crtc)
11532 {
11533 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11534 struct drm_device *dev = crtc->dev;
11535 struct intel_flip_work *work;
11536
11537 spin_lock_irq(&dev->event_lock);
11538 work = intel_crtc->flip_work;
11539 intel_crtc->flip_work = NULL;
11540 spin_unlock_irq(&dev->event_lock);
11541
11542 if (work) {
11543 cancel_work_sync(&work->mmio_work);
11544 cancel_work_sync(&work->unpin_work);
11545 kfree(work);
11546 }
11547
11548 drm_crtc_cleanup(crtc);
11549
11550 kfree(intel_crtc);
11551 }
11552
11553 static void intel_unpin_work_fn(struct work_struct *__work)
11554 {
11555 struct intel_flip_work *work =
11556 container_of(__work, struct intel_flip_work, unpin_work);
11557 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11558 struct drm_device *dev = crtc->base.dev;
11559 struct drm_plane *primary = crtc->base.primary;
11560
11561 if (is_mmio_work(work))
11562 flush_work(&work->mmio_work);
11563
11564 mutex_lock(&dev->struct_mutex);
11565 intel_unpin_fb_vma(work->old_vma);
11566 i915_gem_object_put(work->pending_flip_obj);
11567 mutex_unlock(&dev->struct_mutex);
11568
11569 i915_gem_request_put(work->flip_queued_req);
11570
11571 intel_frontbuffer_flip_complete(to_i915(dev),
11572 to_intel_plane(primary)->frontbuffer_bit);
11573 intel_fbc_post_update(crtc);
11574 drm_framebuffer_unreference(work->old_fb);
11575
11576 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
11577 atomic_dec(&crtc->unpin_work_count);
11578
11579 kfree(work);
11580 }
11581
11582 /* Is 'a' after or equal to 'b'? */
11583 static bool g4x_flip_count_after_eq(u32 a, u32 b)
11584 {
11585 return !((a - b) & 0x80000000);
11586 }
11587
11588 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
11589 struct intel_flip_work *work)
11590 {
11591 struct drm_device *dev = crtc->base.dev;
11592 struct drm_i915_private *dev_priv = to_i915(dev);
11593
11594 if (abort_flip_on_reset(crtc))
11595 return true;
11596
11597 /*
11598 * The relevant registers doen't exist on pre-ctg.
11599 * As the flip done interrupt doesn't trigger for mmio
11600 * flips on gmch platforms, a flip count check isn't
11601 * really needed there. But since ctg has the registers,
11602 * include it in the check anyway.
11603 */
11604 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11605 return true;
11606
11607 /*
11608 * BDW signals flip done immediately if the plane
11609 * is disabled, even if the plane enable is already
11610 * armed to occur at the next vblank :(
11611 */
11612
11613 /*
11614 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11615 * used the same base address. In that case the mmio flip might
11616 * have completed, but the CS hasn't even executed the flip yet.
11617 *
11618 * A flip count check isn't enough as the CS might have updated
11619 * the base address just after start of vblank, but before we
11620 * managed to process the interrupt. This means we'd complete the
11621 * CS flip too soon.
11622 *
11623 * Combining both checks should get us a good enough result. It may
11624 * still happen that the CS flip has been executed, but has not
11625 * yet actually completed. But in case the base address is the same
11626 * anyway, we don't really care.
11627 */
11628 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11629 crtc->flip_work->gtt_offset &&
11630 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11631 crtc->flip_work->flip_count);
11632 }
11633
11634 static bool
11635 __pageflip_finished_mmio(struct intel_crtc *crtc,
11636 struct intel_flip_work *work)
11637 {
11638 /*
11639 * MMIO work completes when vblank is different from
11640 * flip_queued_vblank.
11641 *
11642 * Reset counter value doesn't matter, this is handled by
11643 * i915_wait_request finishing early, so no need to handle
11644 * reset here.
11645 */
11646 return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
11647 }
11648
11649
11650 static bool pageflip_finished(struct intel_crtc *crtc,
11651 struct intel_flip_work *work)
11652 {
11653 if (!atomic_read(&work->pending))
11654 return false;
11655
11656 smp_rmb();
11657
11658 if (is_mmio_work(work))
11659 return __pageflip_finished_mmio(crtc, work);
11660 else
11661 return __pageflip_finished_cs(crtc, work);
11662 }
11663
11664 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
11665 {
11666 struct drm_device *dev = &dev_priv->drm;
11667 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
11668 struct intel_flip_work *work;
11669 unsigned long flags;
11670
11671 /* Ignore early vblank irqs */
11672 if (!crtc)
11673 return;
11674
11675 /*
11676 * This is called both by irq handlers and the reset code (to complete
11677 * lost pageflips) so needs the full irqsave spinlocks.
11678 */
11679 spin_lock_irqsave(&dev->event_lock, flags);
11680 work = crtc->flip_work;
11681
11682 if (work != NULL &&
11683 !is_mmio_work(work) &&
11684 pageflip_finished(crtc, work))
11685 page_flip_completed(crtc);
11686
11687 spin_unlock_irqrestore(&dev->event_lock, flags);
11688 }
11689
11690 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
11691 {
11692 struct drm_device *dev = &dev_priv->drm;
11693 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
11694 struct intel_flip_work *work;
11695 unsigned long flags;
11696
11697 /* Ignore early vblank irqs */
11698 if (!crtc)
11699 return;
11700
11701 /*
11702 * This is called both by irq handlers and the reset code (to complete
11703 * lost pageflips) so needs the full irqsave spinlocks.
11704 */
11705 spin_lock_irqsave(&dev->event_lock, flags);
11706 work = crtc->flip_work;
11707
11708 if (work != NULL &&
11709 is_mmio_work(work) &&
11710 pageflip_finished(crtc, work))
11711 page_flip_completed(crtc);
11712
11713 spin_unlock_irqrestore(&dev->event_lock, flags);
11714 }
11715
11716 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
11717 struct intel_flip_work *work)
11718 {
11719 work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
11720
11721 /* Ensure that the work item is consistent when activating it ... */
11722 smp_mb__before_atomic();
11723 atomic_set(&work->pending, 1);
11724 }
11725
11726 static int intel_gen2_queue_flip(struct drm_device *dev,
11727 struct drm_crtc *crtc,
11728 struct drm_framebuffer *fb,
11729 struct drm_i915_gem_object *obj,
11730 struct drm_i915_gem_request *req,
11731 uint32_t flags)
11732 {
11733 struct intel_ring *ring = req->ring;
11734 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11735 u32 flip_mask;
11736 int ret;
11737
11738 ret = intel_ring_begin(req, 6);
11739 if (ret)
11740 return ret;
11741
11742 /* Can't queue multiple flips, so wait for the previous
11743 * one to finish before executing the next.
11744 */
11745 if (intel_crtc->plane)
11746 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11747 else
11748 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11749 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11750 intel_ring_emit(ring, MI_NOOP);
11751 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11752 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11753 intel_ring_emit(ring, fb->pitches[0]);
11754 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11755 intel_ring_emit(ring, 0); /* aux display base address, unused */
11756
11757 return 0;
11758 }
11759
11760 static int intel_gen3_queue_flip(struct drm_device *dev,
11761 struct drm_crtc *crtc,
11762 struct drm_framebuffer *fb,
11763 struct drm_i915_gem_object *obj,
11764 struct drm_i915_gem_request *req,
11765 uint32_t flags)
11766 {
11767 struct intel_ring *ring = req->ring;
11768 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11769 u32 flip_mask;
11770 int ret;
11771
11772 ret = intel_ring_begin(req, 6);
11773 if (ret)
11774 return ret;
11775
11776 if (intel_crtc->plane)
11777 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11778 else
11779 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11780 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11781 intel_ring_emit(ring, MI_NOOP);
11782 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11783 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11784 intel_ring_emit(ring, fb->pitches[0]);
11785 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11786 intel_ring_emit(ring, MI_NOOP);
11787
11788 return 0;
11789 }
11790
11791 static int intel_gen4_queue_flip(struct drm_device *dev,
11792 struct drm_crtc *crtc,
11793 struct drm_framebuffer *fb,
11794 struct drm_i915_gem_object *obj,
11795 struct drm_i915_gem_request *req,
11796 uint32_t flags)
11797 {
11798 struct intel_ring *ring = req->ring;
11799 struct drm_i915_private *dev_priv = to_i915(dev);
11800 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11801 uint32_t pf, pipesrc;
11802 int ret;
11803
11804 ret = intel_ring_begin(req, 4);
11805 if (ret)
11806 return ret;
11807
11808 /* i965+ uses the linear or tiled offsets from the
11809 * Display Registers (which do not change across a page-flip)
11810 * so we need only reprogram the base address.
11811 */
11812 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11813 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11814 intel_ring_emit(ring, fb->pitches[0]);
11815 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset |
11816 intel_fb_modifier_to_tiling(fb->modifier));
11817
11818 /* XXX Enabling the panel-fitter across page-flip is so far
11819 * untested on non-native modes, so ignore it for now.
11820 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11821 */
11822 pf = 0;
11823 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11824 intel_ring_emit(ring, pf | pipesrc);
11825
11826 return 0;
11827 }
11828
11829 static int intel_gen6_queue_flip(struct drm_device *dev,
11830 struct drm_crtc *crtc,
11831 struct drm_framebuffer *fb,
11832 struct drm_i915_gem_object *obj,
11833 struct drm_i915_gem_request *req,
11834 uint32_t flags)
11835 {
11836 struct intel_ring *ring = req->ring;
11837 struct drm_i915_private *dev_priv = to_i915(dev);
11838 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11839 uint32_t pf, pipesrc;
11840 int ret;
11841
11842 ret = intel_ring_begin(req, 4);
11843 if (ret)
11844 return ret;
11845
11846 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11847 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11848 intel_ring_emit(ring, fb->pitches[0] |
11849 intel_fb_modifier_to_tiling(fb->modifier));
11850 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11851
11852 /* Contrary to the suggestions in the documentation,
11853 * "Enable Panel Fitter" does not seem to be required when page
11854 * flipping with a non-native mode, and worse causes a normal
11855 * modeset to fail.
11856 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11857 */
11858 pf = 0;
11859 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11860 intel_ring_emit(ring, pf | pipesrc);
11861
11862 return 0;
11863 }
11864
11865 static int intel_gen7_queue_flip(struct drm_device *dev,
11866 struct drm_crtc *crtc,
11867 struct drm_framebuffer *fb,
11868 struct drm_i915_gem_object *obj,
11869 struct drm_i915_gem_request *req,
11870 uint32_t flags)
11871 {
11872 struct drm_i915_private *dev_priv = to_i915(dev);
11873 struct intel_ring *ring = req->ring;
11874 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11875 uint32_t plane_bit = 0;
11876 int len, ret;
11877
11878 switch (intel_crtc->plane) {
11879 case PLANE_A:
11880 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11881 break;
11882 case PLANE_B:
11883 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11884 break;
11885 case PLANE_C:
11886 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11887 break;
11888 default:
11889 WARN_ONCE(1, "unknown plane in flip command\n");
11890 return -ENODEV;
11891 }
11892
11893 len = 4;
11894 if (req->engine->id == RCS) {
11895 len += 6;
11896 /*
11897 * On Gen 8, SRM is now taking an extra dword to accommodate
11898 * 48bits addresses, and we need a NOOP for the batch size to
11899 * stay even.
11900 */
11901 if (IS_GEN8(dev_priv))
11902 len += 2;
11903 }
11904
11905 /*
11906 * BSpec MI_DISPLAY_FLIP for IVB:
11907 * "The full packet must be contained within the same cache line."
11908 *
11909 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11910 * cacheline, if we ever start emitting more commands before
11911 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11912 * then do the cacheline alignment, and finally emit the
11913 * MI_DISPLAY_FLIP.
11914 */
11915 ret = intel_ring_cacheline_align(req);
11916 if (ret)
11917 return ret;
11918
11919 ret = intel_ring_begin(req, len);
11920 if (ret)
11921 return ret;
11922
11923 /* Unmask the flip-done completion message. Note that the bspec says that
11924 * we should do this for both the BCS and RCS, and that we must not unmask
11925 * more than one flip event at any time (or ensure that one flip message
11926 * can be sent by waiting for flip-done prior to queueing new flips).
11927 * Experimentation says that BCS works despite DERRMR masking all
11928 * flip-done completion events and that unmasking all planes at once
11929 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11930 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11931 */
11932 if (req->engine->id == RCS) {
11933 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11934 intel_ring_emit_reg(ring, DERRMR);
11935 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11936 DERRMR_PIPEB_PRI_FLIP_DONE |
11937 DERRMR_PIPEC_PRI_FLIP_DONE));
11938 if (IS_GEN8(dev_priv))
11939 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11940 MI_SRM_LRM_GLOBAL_GTT);
11941 else
11942 intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11943 MI_SRM_LRM_GLOBAL_GTT);
11944 intel_ring_emit_reg(ring, DERRMR);
11945 intel_ring_emit(ring,
11946 i915_ggtt_offset(req->engine->scratch) + 256);
11947 if (IS_GEN8(dev_priv)) {
11948 intel_ring_emit(ring, 0);
11949 intel_ring_emit(ring, MI_NOOP);
11950 }
11951 }
11952
11953 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11954 intel_ring_emit(ring, fb->pitches[0] |
11955 intel_fb_modifier_to_tiling(fb->modifier));
11956 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11957 intel_ring_emit(ring, (MI_NOOP));
11958
11959 return 0;
11960 }
11961
11962 static bool use_mmio_flip(struct intel_engine_cs *engine,
11963 struct drm_i915_gem_object *obj)
11964 {
11965 /*
11966 * This is not being used for older platforms, because
11967 * non-availability of flip done interrupt forces us to use
11968 * CS flips. Older platforms derive flip done using some clever
11969 * tricks involving the flip_pending status bits and vblank irqs.
11970 * So using MMIO flips there would disrupt this mechanism.
11971 */
11972
11973 if (engine == NULL)
11974 return true;
11975
11976 if (INTEL_GEN(engine->i915) < 5)
11977 return false;
11978
11979 if (i915.use_mmio_flip < 0)
11980 return false;
11981 else if (i915.use_mmio_flip > 0)
11982 return true;
11983 else if (i915.enable_execlists)
11984 return true;
11985
11986 return engine != i915_gem_object_last_write_engine(obj);
11987 }
11988
11989 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11990 unsigned int rotation,
11991 struct intel_flip_work *work)
11992 {
11993 struct drm_device *dev = intel_crtc->base.dev;
11994 struct drm_i915_private *dev_priv = to_i915(dev);
11995 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11996 const enum pipe pipe = intel_crtc->pipe;
11997 u32 ctl, stride = skl_plane_stride(fb, 0, rotation);
11998
11999 ctl = I915_READ(PLANE_CTL(pipe, 0));
12000 ctl &= ~PLANE_CTL_TILED_MASK;
12001 switch (fb->modifier) {
12002 case DRM_FORMAT_MOD_NONE:
12003 break;
12004 case I915_FORMAT_MOD_X_TILED:
12005 ctl |= PLANE_CTL_TILED_X;
12006 break;
12007 case I915_FORMAT_MOD_Y_TILED:
12008 ctl |= PLANE_CTL_TILED_Y;
12009 break;
12010 case I915_FORMAT_MOD_Yf_TILED:
12011 ctl |= PLANE_CTL_TILED_YF;
12012 break;
12013 default:
12014 MISSING_CASE(fb->modifier);
12015 }
12016
12017 /*
12018 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
12019 * PLANE_SURF updates, the update is then guaranteed to be atomic.
12020 */
12021 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
12022 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
12023
12024 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
12025 POSTING_READ(PLANE_SURF(pipe, 0));
12026 }
12027
12028 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
12029 struct intel_flip_work *work)
12030 {
12031 struct drm_device *dev = intel_crtc->base.dev;
12032 struct drm_i915_private *dev_priv = to_i915(dev);
12033 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
12034 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
12035 u32 dspcntr;
12036
12037 dspcntr = I915_READ(reg);
12038
12039 if (fb->modifier == I915_FORMAT_MOD_X_TILED)
12040 dspcntr |= DISPPLANE_TILED;
12041 else
12042 dspcntr &= ~DISPPLANE_TILED;
12043
12044 I915_WRITE(reg, dspcntr);
12045
12046 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
12047 POSTING_READ(DSPSURF(intel_crtc->plane));
12048 }
12049
12050 static void intel_mmio_flip_work_func(struct work_struct *w)
12051 {
12052 struct intel_flip_work *work =
12053 container_of(w, struct intel_flip_work, mmio_work);
12054 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
12055 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12056 struct intel_framebuffer *intel_fb =
12057 to_intel_framebuffer(crtc->base.primary->fb);
12058 struct drm_i915_gem_object *obj = intel_fb->obj;
12059
12060 WARN_ON(i915_gem_object_wait(obj, 0, MAX_SCHEDULE_TIMEOUT, NULL) < 0);
12061
12062 intel_pipe_update_start(crtc);
12063
12064 if (INTEL_GEN(dev_priv) >= 9)
12065 skl_do_mmio_flip(crtc, work->rotation, work);
12066 else
12067 /* use_mmio_flip() retricts MMIO flips to ilk+ */
12068 ilk_do_mmio_flip(crtc, work);
12069
12070 intel_pipe_update_end(crtc, work);
12071 }
12072
12073 static int intel_default_queue_flip(struct drm_device *dev,
12074 struct drm_crtc *crtc,
12075 struct drm_framebuffer *fb,
12076 struct drm_i915_gem_object *obj,
12077 struct drm_i915_gem_request *req,
12078 uint32_t flags)
12079 {
12080 return -ENODEV;
12081 }
12082
12083 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
12084 struct intel_crtc *intel_crtc,
12085 struct intel_flip_work *work)
12086 {
12087 u32 addr, vblank;
12088
12089 if (!atomic_read(&work->pending))
12090 return false;
12091
12092 smp_rmb();
12093
12094 vblank = intel_crtc_get_vblank_counter(intel_crtc);
12095 if (work->flip_ready_vblank == 0) {
12096 if (work->flip_queued_req &&
12097 !i915_gem_request_completed(work->flip_queued_req))
12098 return false;
12099
12100 work->flip_ready_vblank = vblank;
12101 }
12102
12103 if (vblank - work->flip_ready_vblank < 3)
12104 return false;
12105
12106 /* Potential stall - if we see that the flip has happened,
12107 * assume a missed interrupt. */
12108 if (INTEL_GEN(dev_priv) >= 4)
12109 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
12110 else
12111 addr = I915_READ(DSPADDR(intel_crtc->plane));
12112
12113 /* There is a potential issue here with a false positive after a flip
12114 * to the same address. We could address this by checking for a
12115 * non-incrementing frame counter.
12116 */
12117 return addr == work->gtt_offset;
12118 }
12119
12120 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
12121 {
12122 struct drm_device *dev = &dev_priv->drm;
12123 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
12124 struct intel_flip_work *work;
12125
12126 WARN_ON(!in_interrupt());
12127
12128 if (crtc == NULL)
12129 return;
12130
12131 spin_lock(&dev->event_lock);
12132 work = crtc->flip_work;
12133
12134 if (work != NULL && !is_mmio_work(work) &&
12135 __pageflip_stall_check_cs(dev_priv, crtc, work)) {
12136 WARN_ONCE(1,
12137 "Kicking stuck page flip: queued at %d, now %d\n",
12138 work->flip_queued_vblank, intel_crtc_get_vblank_counter(crtc));
12139 page_flip_completed(crtc);
12140 work = NULL;
12141 }
12142
12143 if (work != NULL && !is_mmio_work(work) &&
12144 intel_crtc_get_vblank_counter(crtc) - work->flip_queued_vblank > 1)
12145 intel_queue_rps_boost_for_request(work->flip_queued_req);
12146 spin_unlock(&dev->event_lock);
12147 }
12148
12149 static int intel_crtc_page_flip(struct drm_crtc *crtc,
12150 struct drm_framebuffer *fb,
12151 struct drm_pending_vblank_event *event,
12152 uint32_t page_flip_flags)
12153 {
12154 struct drm_device *dev = crtc->dev;
12155 struct drm_i915_private *dev_priv = to_i915(dev);
12156 struct drm_framebuffer *old_fb = crtc->primary->fb;
12157 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12158 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12159 struct drm_plane *primary = crtc->primary;
12160 enum pipe pipe = intel_crtc->pipe;
12161 struct intel_flip_work *work;
12162 struct intel_engine_cs *engine;
12163 bool mmio_flip;
12164 struct drm_i915_gem_request *request;
12165 struct i915_vma *vma;
12166 int ret;
12167
12168 /*
12169 * drm_mode_page_flip_ioctl() should already catch this, but double
12170 * check to be safe. In the future we may enable pageflipping from
12171 * a disabled primary plane.
12172 */
12173 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
12174 return -EBUSY;
12175
12176 /* Can't change pixel format via MI display flips. */
12177 if (fb->format != crtc->primary->fb->format)
12178 return -EINVAL;
12179
12180 /*
12181 * TILEOFF/LINOFF registers can't be changed via MI display flips.
12182 * Note that pitch changes could also affect these register.
12183 */
12184 if (INTEL_GEN(dev_priv) > 3 &&
12185 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
12186 fb->pitches[0] != crtc->primary->fb->pitches[0]))
12187 return -EINVAL;
12188
12189 if (i915_terminally_wedged(&dev_priv->gpu_error))
12190 goto out_hang;
12191
12192 work = kzalloc(sizeof(*work), GFP_KERNEL);
12193 if (work == NULL)
12194 return -ENOMEM;
12195
12196 work->event = event;
12197 work->crtc = crtc;
12198 work->old_fb = old_fb;
12199 INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
12200
12201 ret = drm_crtc_vblank_get(crtc);
12202 if (ret)
12203 goto free_work;
12204
12205 /* We borrow the event spin lock for protecting flip_work */
12206 spin_lock_irq(&dev->event_lock);
12207 if (intel_crtc->flip_work) {
12208 /* Before declaring the flip queue wedged, check if
12209 * the hardware completed the operation behind our backs.
12210 */
12211 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
12212 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
12213 page_flip_completed(intel_crtc);
12214 } else {
12215 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
12216 spin_unlock_irq(&dev->event_lock);
12217
12218 drm_crtc_vblank_put(crtc);
12219 kfree(work);
12220 return -EBUSY;
12221 }
12222 }
12223 intel_crtc->flip_work = work;
12224 spin_unlock_irq(&dev->event_lock);
12225
12226 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
12227 flush_workqueue(dev_priv->wq);
12228
12229 /* Reference the objects for the scheduled work. */
12230 drm_framebuffer_reference(work->old_fb);
12231
12232 crtc->primary->fb = fb;
12233 update_state_fb(crtc->primary);
12234
12235 work->pending_flip_obj = i915_gem_object_get(obj);
12236
12237 ret = i915_mutex_lock_interruptible(dev);
12238 if (ret)
12239 goto cleanup;
12240
12241 intel_crtc->reset_count = i915_reset_count(&dev_priv->gpu_error);
12242 if (i915_reset_in_progress_or_wedged(&dev_priv->gpu_error)) {
12243 ret = -EIO;
12244 goto unlock;
12245 }
12246
12247 atomic_inc(&intel_crtc->unpin_work_count);
12248
12249 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
12250 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
12251
12252 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
12253 engine = dev_priv->engine[BCS];
12254 if (fb->modifier != old_fb->modifier)
12255 /* vlv: DISPLAY_FLIP fails to change tiling */
12256 engine = NULL;
12257 } else if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
12258 engine = dev_priv->engine[BCS];
12259 } else if (INTEL_GEN(dev_priv) >= 7) {
12260 engine = i915_gem_object_last_write_engine(obj);
12261 if (engine == NULL || engine->id != RCS)
12262 engine = dev_priv->engine[BCS];
12263 } else {
12264 engine = dev_priv->engine[RCS];
12265 }
12266
12267 mmio_flip = use_mmio_flip(engine, obj);
12268
12269 vma = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
12270 if (IS_ERR(vma)) {
12271 ret = PTR_ERR(vma);
12272 goto cleanup_pending;
12273 }
12274
12275 work->old_vma = to_intel_plane_state(primary->state)->vma;
12276 to_intel_plane_state(primary->state)->vma = vma;
12277
12278 work->gtt_offset = i915_ggtt_offset(vma) + intel_crtc->dspaddr_offset;
12279 work->rotation = crtc->primary->state->rotation;
12280
12281 /*
12282 * There's the potential that the next frame will not be compatible with
12283 * FBC, so we want to call pre_update() before the actual page flip.
12284 * The problem is that pre_update() caches some information about the fb
12285 * object, so we want to do this only after the object is pinned. Let's
12286 * be on the safe side and do this immediately before scheduling the
12287 * flip.
12288 */
12289 intel_fbc_pre_update(intel_crtc, intel_crtc->config,
12290 to_intel_plane_state(primary->state));
12291
12292 if (mmio_flip) {
12293 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
12294 queue_work(system_unbound_wq, &work->mmio_work);
12295 } else {
12296 request = i915_gem_request_alloc(engine,
12297 dev_priv->kernel_context);
12298 if (IS_ERR(request)) {
12299 ret = PTR_ERR(request);
12300 goto cleanup_unpin;
12301 }
12302
12303 ret = i915_gem_request_await_object(request, obj, false);
12304 if (ret)
12305 goto cleanup_request;
12306
12307 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
12308 page_flip_flags);
12309 if (ret)
12310 goto cleanup_request;
12311
12312 intel_mark_page_flip_active(intel_crtc, work);
12313
12314 work->flip_queued_req = i915_gem_request_get(request);
12315 i915_add_request_no_flush(request);
12316 }
12317
12318 i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
12319 i915_gem_track_fb(intel_fb_obj(old_fb), obj,
12320 to_intel_plane(primary)->frontbuffer_bit);
12321 mutex_unlock(&dev->struct_mutex);
12322
12323 intel_frontbuffer_flip_prepare(to_i915(dev),
12324 to_intel_plane(primary)->frontbuffer_bit);
12325
12326 trace_i915_flip_request(intel_crtc->plane, obj);
12327
12328 return 0;
12329
12330 cleanup_request:
12331 i915_add_request_no_flush(request);
12332 cleanup_unpin:
12333 to_intel_plane_state(primary->state)->vma = work->old_vma;
12334 intel_unpin_fb_vma(vma);
12335 cleanup_pending:
12336 atomic_dec(&intel_crtc->unpin_work_count);
12337 unlock:
12338 mutex_unlock(&dev->struct_mutex);
12339 cleanup:
12340 crtc->primary->fb = old_fb;
12341 update_state_fb(crtc->primary);
12342
12343 i915_gem_object_put(obj);
12344 drm_framebuffer_unreference(work->old_fb);
12345
12346 spin_lock_irq(&dev->event_lock);
12347 intel_crtc->flip_work = NULL;
12348 spin_unlock_irq(&dev->event_lock);
12349
12350 drm_crtc_vblank_put(crtc);
12351 free_work:
12352 kfree(work);
12353
12354 if (ret == -EIO) {
12355 struct drm_atomic_state *state;
12356 struct drm_plane_state *plane_state;
12357
12358 out_hang:
12359 state = drm_atomic_state_alloc(dev);
12360 if (!state)
12361 return -ENOMEM;
12362 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
12363
12364 retry:
12365 plane_state = drm_atomic_get_plane_state(state, primary);
12366 ret = PTR_ERR_OR_ZERO(plane_state);
12367 if (!ret) {
12368 drm_atomic_set_fb_for_plane(plane_state, fb);
12369
12370 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
12371 if (!ret)
12372 ret = drm_atomic_commit(state);
12373 }
12374
12375 if (ret == -EDEADLK) {
12376 drm_modeset_backoff(state->acquire_ctx);
12377 drm_atomic_state_clear(state);
12378 goto retry;
12379 }
12380
12381 drm_atomic_state_put(state);
12382
12383 if (ret == 0 && event) {
12384 spin_lock_irq(&dev->event_lock);
12385 drm_crtc_send_vblank_event(crtc, event);
12386 spin_unlock_irq(&dev->event_lock);
12387 }
12388 }
12389 return ret;
12390 }
12391
12392
12393 /**
12394 * intel_wm_need_update - Check whether watermarks need updating
12395 * @plane: drm plane
12396 * @state: new plane state
12397 *
12398 * Check current plane state versus the new one to determine whether
12399 * watermarks need to be recalculated.
12400 *
12401 * Returns true or false.
12402 */
12403 static bool intel_wm_need_update(struct drm_plane *plane,
12404 struct drm_plane_state *state)
12405 {
12406 struct intel_plane_state *new = to_intel_plane_state(state);
12407 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
12408
12409 /* Update watermarks on tiling or size changes. */
12410 if (new->base.visible != cur->base.visible)
12411 return true;
12412
12413 if (!cur->base.fb || !new->base.fb)
12414 return false;
12415
12416 if (cur->base.fb->modifier != new->base.fb->modifier ||
12417 cur->base.rotation != new->base.rotation ||
12418 drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
12419 drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
12420 drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
12421 drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
12422 return true;
12423
12424 return false;
12425 }
12426
12427 static bool needs_scaling(struct intel_plane_state *state)
12428 {
12429 int src_w = drm_rect_width(&state->base.src) >> 16;
12430 int src_h = drm_rect_height(&state->base.src) >> 16;
12431 int dst_w = drm_rect_width(&state->base.dst);
12432 int dst_h = drm_rect_height(&state->base.dst);
12433
12434 return (src_w != dst_w || src_h != dst_h);
12435 }
12436
12437 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
12438 struct drm_plane_state *plane_state)
12439 {
12440 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
12441 struct drm_crtc *crtc = crtc_state->crtc;
12442 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12443 struct drm_plane *plane = plane_state->plane;
12444 struct drm_device *dev = crtc->dev;
12445 struct drm_i915_private *dev_priv = to_i915(dev);
12446 struct intel_plane_state *old_plane_state =
12447 to_intel_plane_state(plane->state);
12448 bool mode_changed = needs_modeset(crtc_state);
12449 bool was_crtc_enabled = crtc->state->active;
12450 bool is_crtc_enabled = crtc_state->active;
12451 bool turn_off, turn_on, visible, was_visible;
12452 struct drm_framebuffer *fb = plane_state->fb;
12453 int ret;
12454
12455 if (INTEL_GEN(dev_priv) >= 9 && plane->type != DRM_PLANE_TYPE_CURSOR) {
12456 ret = skl_update_scaler_plane(
12457 to_intel_crtc_state(crtc_state),
12458 to_intel_plane_state(plane_state));
12459 if (ret)
12460 return ret;
12461 }
12462
12463 was_visible = old_plane_state->base.visible;
12464 visible = plane_state->visible;
12465
12466 if (!was_crtc_enabled && WARN_ON(was_visible))
12467 was_visible = false;
12468
12469 /*
12470 * Visibility is calculated as if the crtc was on, but
12471 * after scaler setup everything depends on it being off
12472 * when the crtc isn't active.
12473 *
12474 * FIXME this is wrong for watermarks. Watermarks should also
12475 * be computed as if the pipe would be active. Perhaps move
12476 * per-plane wm computation to the .check_plane() hook, and
12477 * only combine the results from all planes in the current place?
12478 */
12479 if (!is_crtc_enabled)
12480 plane_state->visible = visible = false;
12481
12482 if (!was_visible && !visible)
12483 return 0;
12484
12485 if (fb != old_plane_state->base.fb)
12486 pipe_config->fb_changed = true;
12487
12488 turn_off = was_visible && (!visible || mode_changed);
12489 turn_on = visible && (!was_visible || mode_changed);
12490
12491 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
12492 intel_crtc->base.base.id,
12493 intel_crtc->base.name,
12494 plane->base.id, plane->name,
12495 fb ? fb->base.id : -1);
12496
12497 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12498 plane->base.id, plane->name,
12499 was_visible, visible,
12500 turn_off, turn_on, mode_changed);
12501
12502 if (turn_on) {
12503 pipe_config->update_wm_pre = true;
12504
12505 /* must disable cxsr around plane enable/disable */
12506 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12507 pipe_config->disable_cxsr = true;
12508 } else if (turn_off) {
12509 pipe_config->update_wm_post = true;
12510
12511 /* must disable cxsr around plane enable/disable */
12512 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12513 pipe_config->disable_cxsr = true;
12514 } else if (intel_wm_need_update(plane, plane_state)) {
12515 /* FIXME bollocks */
12516 pipe_config->update_wm_pre = true;
12517 pipe_config->update_wm_post = true;
12518 }
12519
12520 /* Pre-gen9 platforms need two-step watermark updates */
12521 if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
12522 INTEL_GEN(dev_priv) < 9 && dev_priv->display.optimize_watermarks)
12523 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
12524
12525 if (visible || was_visible)
12526 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
12527
12528 /*
12529 * WaCxSRDisabledForSpriteScaling:ivb
12530 *
12531 * cstate->update_wm was already set above, so this flag will
12532 * take effect when we commit and program watermarks.
12533 */
12534 if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev_priv) &&
12535 needs_scaling(to_intel_plane_state(plane_state)) &&
12536 !needs_scaling(old_plane_state))
12537 pipe_config->disable_lp_wm = true;
12538
12539 return 0;
12540 }
12541
12542 static bool encoders_cloneable(const struct intel_encoder *a,
12543 const struct intel_encoder *b)
12544 {
12545 /* masks could be asymmetric, so check both ways */
12546 return a == b || (a->cloneable & (1 << b->type) &&
12547 b->cloneable & (1 << a->type));
12548 }
12549
12550 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12551 struct intel_crtc *crtc,
12552 struct intel_encoder *encoder)
12553 {
12554 struct intel_encoder *source_encoder;
12555 struct drm_connector *connector;
12556 struct drm_connector_state *connector_state;
12557 int i;
12558
12559 for_each_connector_in_state(state, connector, connector_state, i) {
12560 if (connector_state->crtc != &crtc->base)
12561 continue;
12562
12563 source_encoder =
12564 to_intel_encoder(connector_state->best_encoder);
12565 if (!encoders_cloneable(encoder, source_encoder))
12566 return false;
12567 }
12568
12569 return true;
12570 }
12571
12572 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
12573 struct drm_crtc_state *crtc_state)
12574 {
12575 struct drm_device *dev = crtc->dev;
12576 struct drm_i915_private *dev_priv = to_i915(dev);
12577 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12578 struct intel_crtc_state *pipe_config =
12579 to_intel_crtc_state(crtc_state);
12580 struct drm_atomic_state *state = crtc_state->state;
12581 int ret;
12582 bool mode_changed = needs_modeset(crtc_state);
12583
12584 if (mode_changed && !crtc_state->active)
12585 pipe_config->update_wm_post = true;
12586
12587 if (mode_changed && crtc_state->enable &&
12588 dev_priv->display.crtc_compute_clock &&
12589 !WARN_ON(pipe_config->shared_dpll)) {
12590 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12591 pipe_config);
12592 if (ret)
12593 return ret;
12594 }
12595
12596 if (crtc_state->color_mgmt_changed) {
12597 ret = intel_color_check(crtc, crtc_state);
12598 if (ret)
12599 return ret;
12600
12601 /*
12602 * Changing color management on Intel hardware is
12603 * handled as part of planes update.
12604 */
12605 crtc_state->planes_changed = true;
12606 }
12607
12608 ret = 0;
12609 if (dev_priv->display.compute_pipe_wm) {
12610 ret = dev_priv->display.compute_pipe_wm(pipe_config);
12611 if (ret) {
12612 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12613 return ret;
12614 }
12615 }
12616
12617 if (dev_priv->display.compute_intermediate_wm &&
12618 !to_intel_atomic_state(state)->skip_intermediate_wm) {
12619 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12620 return 0;
12621
12622 /*
12623 * Calculate 'intermediate' watermarks that satisfy both the
12624 * old state and the new state. We can program these
12625 * immediately.
12626 */
12627 ret = dev_priv->display.compute_intermediate_wm(dev,
12628 intel_crtc,
12629 pipe_config);
12630 if (ret) {
12631 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12632 return ret;
12633 }
12634 } else if (dev_priv->display.compute_intermediate_wm) {
12635 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12636 pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
12637 }
12638
12639 if (INTEL_GEN(dev_priv) >= 9) {
12640 if (mode_changed)
12641 ret = skl_update_scaler_crtc(pipe_config);
12642
12643 if (!ret)
12644 ret = intel_atomic_setup_scalers(dev, intel_crtc,
12645 pipe_config);
12646 }
12647
12648 return ret;
12649 }
12650
12651 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12652 .mode_set_base_atomic = intel_pipe_set_base_atomic,
12653 .atomic_begin = intel_begin_crtc_commit,
12654 .atomic_flush = intel_finish_crtc_commit,
12655 .atomic_check = intel_crtc_atomic_check,
12656 };
12657
12658 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12659 {
12660 struct intel_connector *connector;
12661
12662 for_each_intel_connector(dev, connector) {
12663 if (connector->base.state->crtc)
12664 drm_connector_unreference(&connector->base);
12665
12666 if (connector->base.encoder) {
12667 connector->base.state->best_encoder =
12668 connector->base.encoder;
12669 connector->base.state->crtc =
12670 connector->base.encoder->crtc;
12671
12672 drm_connector_reference(&connector->base);
12673 } else {
12674 connector->base.state->best_encoder = NULL;
12675 connector->base.state->crtc = NULL;
12676 }
12677 }
12678 }
12679
12680 static void
12681 connected_sink_compute_bpp(struct intel_connector *connector,
12682 struct intel_crtc_state *pipe_config)
12683 {
12684 const struct drm_display_info *info = &connector->base.display_info;
12685 int bpp = pipe_config->pipe_bpp;
12686
12687 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12688 connector->base.base.id,
12689 connector->base.name);
12690
12691 /* Don't use an invalid EDID bpc value */
12692 if (info->bpc != 0 && info->bpc * 3 < bpp) {
12693 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12694 bpp, info->bpc * 3);
12695 pipe_config->pipe_bpp = info->bpc * 3;
12696 }
12697
12698 /* Clamp bpp to 8 on screens without EDID 1.4 */
12699 if (info->bpc == 0 && bpp > 24) {
12700 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
12701 bpp);
12702 pipe_config->pipe_bpp = 24;
12703 }
12704 }
12705
12706 static int
12707 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12708 struct intel_crtc_state *pipe_config)
12709 {
12710 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12711 struct drm_atomic_state *state;
12712 struct drm_connector *connector;
12713 struct drm_connector_state *connector_state;
12714 int bpp, i;
12715
12716 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
12717 IS_CHERRYVIEW(dev_priv)))
12718 bpp = 10*3;
12719 else if (INTEL_GEN(dev_priv) >= 5)
12720 bpp = 12*3;
12721 else
12722 bpp = 8*3;
12723
12724
12725 pipe_config->pipe_bpp = bpp;
12726
12727 state = pipe_config->base.state;
12728
12729 /* Clamp display bpp to EDID value */
12730 for_each_connector_in_state(state, connector, connector_state, i) {
12731 if (connector_state->crtc != &crtc->base)
12732 continue;
12733
12734 connected_sink_compute_bpp(to_intel_connector(connector),
12735 pipe_config);
12736 }
12737
12738 return bpp;
12739 }
12740
12741 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12742 {
12743 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12744 "type: 0x%x flags: 0x%x\n",
12745 mode->crtc_clock,
12746 mode->crtc_hdisplay, mode->crtc_hsync_start,
12747 mode->crtc_hsync_end, mode->crtc_htotal,
12748 mode->crtc_vdisplay, mode->crtc_vsync_start,
12749 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12750 }
12751
12752 static inline void
12753 intel_dump_m_n_config(struct intel_crtc_state *pipe_config, char *id,
12754 unsigned int lane_count, struct intel_link_m_n *m_n)
12755 {
12756 DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12757 id, lane_count,
12758 m_n->gmch_m, m_n->gmch_n,
12759 m_n->link_m, m_n->link_n, m_n->tu);
12760 }
12761
12762 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12763 struct intel_crtc_state *pipe_config,
12764 const char *context)
12765 {
12766 struct drm_device *dev = crtc->base.dev;
12767 struct drm_i915_private *dev_priv = to_i915(dev);
12768 struct drm_plane *plane;
12769 struct intel_plane *intel_plane;
12770 struct intel_plane_state *state;
12771 struct drm_framebuffer *fb;
12772
12773 DRM_DEBUG_KMS("[CRTC:%d:%s]%s\n",
12774 crtc->base.base.id, crtc->base.name, context);
12775
12776 DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
12777 transcoder_name(pipe_config->cpu_transcoder),
12778 pipe_config->pipe_bpp, pipe_config->dither);
12779
12780 if (pipe_config->has_pch_encoder)
12781 intel_dump_m_n_config(pipe_config, "fdi",
12782 pipe_config->fdi_lanes,
12783 &pipe_config->fdi_m_n);
12784
12785 if (intel_crtc_has_dp_encoder(pipe_config)) {
12786 intel_dump_m_n_config(pipe_config, "dp m_n",
12787 pipe_config->lane_count, &pipe_config->dp_m_n);
12788 if (pipe_config->has_drrs)
12789 intel_dump_m_n_config(pipe_config, "dp m2_n2",
12790 pipe_config->lane_count,
12791 &pipe_config->dp_m2_n2);
12792 }
12793
12794 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12795 pipe_config->has_audio, pipe_config->has_infoframe);
12796
12797 DRM_DEBUG_KMS("requested mode:\n");
12798 drm_mode_debug_printmodeline(&pipe_config->base.mode);
12799 DRM_DEBUG_KMS("adjusted mode:\n");
12800 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12801 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12802 DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d\n",
12803 pipe_config->port_clock,
12804 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12805
12806 if (INTEL_GEN(dev_priv) >= 9)
12807 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12808 crtc->num_scalers,
12809 pipe_config->scaler_state.scaler_users,
12810 pipe_config->scaler_state.scaler_id);
12811
12812 if (HAS_GMCH_DISPLAY(dev_priv))
12813 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12814 pipe_config->gmch_pfit.control,
12815 pipe_config->gmch_pfit.pgm_ratios,
12816 pipe_config->gmch_pfit.lvds_border_bits);
12817 else
12818 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12819 pipe_config->pch_pfit.pos,
12820 pipe_config->pch_pfit.size,
12821 enableddisabled(pipe_config->pch_pfit.enabled));
12822
12823 DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
12824 pipe_config->ips_enabled, pipe_config->double_wide);
12825
12826 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
12827
12828 DRM_DEBUG_KMS("planes on this crtc\n");
12829 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12830 struct drm_format_name_buf format_name;
12831 intel_plane = to_intel_plane(plane);
12832 if (intel_plane->pipe != crtc->pipe)
12833 continue;
12834
12835 state = to_intel_plane_state(plane->state);
12836 fb = state->base.fb;
12837 if (!fb) {
12838 DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
12839 plane->base.id, plane->name, state->scaler_id);
12840 continue;
12841 }
12842
12843 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d, fb = %ux%u format = %s\n",
12844 plane->base.id, plane->name,
12845 fb->base.id, fb->width, fb->height,
12846 drm_get_format_name(fb->format->format, &format_name));
12847 if (INTEL_GEN(dev_priv) >= 9)
12848 DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
12849 state->scaler_id,
12850 state->base.src.x1 >> 16,
12851 state->base.src.y1 >> 16,
12852 drm_rect_width(&state->base.src) >> 16,
12853 drm_rect_height(&state->base.src) >> 16,
12854 state->base.dst.x1, state->base.dst.y1,
12855 drm_rect_width(&state->base.dst),
12856 drm_rect_height(&state->base.dst));
12857 }
12858 }
12859
12860 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12861 {
12862 struct drm_device *dev = state->dev;
12863 struct drm_connector *connector;
12864 unsigned int used_ports = 0;
12865 unsigned int used_mst_ports = 0;
12866
12867 /*
12868 * Walk the connector list instead of the encoder
12869 * list to detect the problem on ddi platforms
12870 * where there's just one encoder per digital port.
12871 */
12872 drm_for_each_connector(connector, dev) {
12873 struct drm_connector_state *connector_state;
12874 struct intel_encoder *encoder;
12875
12876 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12877 if (!connector_state)
12878 connector_state = connector->state;
12879
12880 if (!connector_state->best_encoder)
12881 continue;
12882
12883 encoder = to_intel_encoder(connector_state->best_encoder);
12884
12885 WARN_ON(!connector_state->crtc);
12886
12887 switch (encoder->type) {
12888 unsigned int port_mask;
12889 case INTEL_OUTPUT_UNKNOWN:
12890 if (WARN_ON(!HAS_DDI(to_i915(dev))))
12891 break;
12892 case INTEL_OUTPUT_DP:
12893 case INTEL_OUTPUT_HDMI:
12894 case INTEL_OUTPUT_EDP:
12895 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12896
12897 /* the same port mustn't appear more than once */
12898 if (used_ports & port_mask)
12899 return false;
12900
12901 used_ports |= port_mask;
12902 break;
12903 case INTEL_OUTPUT_DP_MST:
12904 used_mst_ports |=
12905 1 << enc_to_mst(&encoder->base)->primary->port;
12906 break;
12907 default:
12908 break;
12909 }
12910 }
12911
12912 /* can't mix MST and SST/HDMI on the same port */
12913 if (used_ports & used_mst_ports)
12914 return false;
12915
12916 return true;
12917 }
12918
12919 static void
12920 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12921 {
12922 struct drm_crtc_state tmp_state;
12923 struct intel_crtc_scaler_state scaler_state;
12924 struct intel_dpll_hw_state dpll_hw_state;
12925 struct intel_shared_dpll *shared_dpll;
12926 bool force_thru;
12927
12928 /* FIXME: before the switch to atomic started, a new pipe_config was
12929 * kzalloc'd. Code that depends on any field being zero should be
12930 * fixed, so that the crtc_state can be safely duplicated. For now,
12931 * only fields that are know to not cause problems are preserved. */
12932
12933 tmp_state = crtc_state->base;
12934 scaler_state = crtc_state->scaler_state;
12935 shared_dpll = crtc_state->shared_dpll;
12936 dpll_hw_state = crtc_state->dpll_hw_state;
12937 force_thru = crtc_state->pch_pfit.force_thru;
12938
12939 memset(crtc_state, 0, sizeof *crtc_state);
12940
12941 crtc_state->base = tmp_state;
12942 crtc_state->scaler_state = scaler_state;
12943 crtc_state->shared_dpll = shared_dpll;
12944 crtc_state->dpll_hw_state = dpll_hw_state;
12945 crtc_state->pch_pfit.force_thru = force_thru;
12946 }
12947
12948 static int
12949 intel_modeset_pipe_config(struct drm_crtc *crtc,
12950 struct intel_crtc_state *pipe_config)
12951 {
12952 struct drm_atomic_state *state = pipe_config->base.state;
12953 struct intel_encoder *encoder;
12954 struct drm_connector *connector;
12955 struct drm_connector_state *connector_state;
12956 int base_bpp, ret = -EINVAL;
12957 int i;
12958 bool retry = true;
12959
12960 clear_intel_crtc_state(pipe_config);
12961
12962 pipe_config->cpu_transcoder =
12963 (enum transcoder) to_intel_crtc(crtc)->pipe;
12964
12965 /*
12966 * Sanitize sync polarity flags based on requested ones. If neither
12967 * positive or negative polarity is requested, treat this as meaning
12968 * negative polarity.
12969 */
12970 if (!(pipe_config->base.adjusted_mode.flags &
12971 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12972 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12973
12974 if (!(pipe_config->base.adjusted_mode.flags &
12975 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12976 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12977
12978 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12979 pipe_config);
12980 if (base_bpp < 0)
12981 goto fail;
12982
12983 /*
12984 * Determine the real pipe dimensions. Note that stereo modes can
12985 * increase the actual pipe size due to the frame doubling and
12986 * insertion of additional space for blanks between the frame. This
12987 * is stored in the crtc timings. We use the requested mode to do this
12988 * computation to clearly distinguish it from the adjusted mode, which
12989 * can be changed by the connectors in the below retry loop.
12990 */
12991 drm_mode_get_hv_timing(&pipe_config->base.mode,
12992 &pipe_config->pipe_src_w,
12993 &pipe_config->pipe_src_h);
12994
12995 for_each_connector_in_state(state, connector, connector_state, i) {
12996 if (connector_state->crtc != crtc)
12997 continue;
12998
12999 encoder = to_intel_encoder(connector_state->best_encoder);
13000
13001 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
13002 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
13003 goto fail;
13004 }
13005
13006 /*
13007 * Determine output_types before calling the .compute_config()
13008 * hooks so that the hooks can use this information safely.
13009 */
13010 pipe_config->output_types |= 1 << encoder->type;
13011 }
13012
13013 encoder_retry:
13014 /* Ensure the port clock defaults are reset when retrying. */
13015 pipe_config->port_clock = 0;
13016 pipe_config->pixel_multiplier = 1;
13017
13018 /* Fill in default crtc timings, allow encoders to overwrite them. */
13019 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
13020 CRTC_STEREO_DOUBLE);
13021
13022 /* Pass our mode to the connectors and the CRTC to give them a chance to
13023 * adjust it according to limitations or connector properties, and also
13024 * a chance to reject the mode entirely.
13025 */
13026 for_each_connector_in_state(state, connector, connector_state, i) {
13027 if (connector_state->crtc != crtc)
13028 continue;
13029
13030 encoder = to_intel_encoder(connector_state->best_encoder);
13031
13032 if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
13033 DRM_DEBUG_KMS("Encoder config failure\n");
13034 goto fail;
13035 }
13036 }
13037
13038 /* Set default port clock if not overwritten by the encoder. Needs to be
13039 * done afterwards in case the encoder adjusts the mode. */
13040 if (!pipe_config->port_clock)
13041 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
13042 * pipe_config->pixel_multiplier;
13043
13044 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
13045 if (ret < 0) {
13046 DRM_DEBUG_KMS("CRTC fixup failed\n");
13047 goto fail;
13048 }
13049
13050 if (ret == RETRY) {
13051 if (WARN(!retry, "loop in pipe configuration computation\n")) {
13052 ret = -EINVAL;
13053 goto fail;
13054 }
13055
13056 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
13057 retry = false;
13058 goto encoder_retry;
13059 }
13060
13061 /* Dithering seems to not pass-through bits correctly when it should, so
13062 * only enable it on 6bpc panels. */
13063 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
13064 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
13065 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
13066
13067 fail:
13068 return ret;
13069 }
13070
13071 static void
13072 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
13073 {
13074 struct drm_crtc *crtc;
13075 struct drm_crtc_state *crtc_state;
13076 int i;
13077
13078 /* Double check state. */
13079 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13080 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
13081
13082 /* Update hwmode for vblank functions */
13083 if (crtc->state->active)
13084 crtc->hwmode = crtc->state->adjusted_mode;
13085 else
13086 crtc->hwmode.crtc_clock = 0;
13087
13088 /*
13089 * Update legacy state to satisfy fbc code. This can
13090 * be removed when fbc uses the atomic state.
13091 */
13092 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
13093 struct drm_plane_state *plane_state = crtc->primary->state;
13094
13095 crtc->primary->fb = plane_state->fb;
13096 crtc->x = plane_state->src_x >> 16;
13097 crtc->y = plane_state->src_y >> 16;
13098 }
13099 }
13100 }
13101
13102 static bool intel_fuzzy_clock_check(int clock1, int clock2)
13103 {
13104 int diff;
13105
13106 if (clock1 == clock2)
13107 return true;
13108
13109 if (!clock1 || !clock2)
13110 return false;
13111
13112 diff = abs(clock1 - clock2);
13113
13114 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
13115 return true;
13116
13117 return false;
13118 }
13119
13120 static bool
13121 intel_compare_m_n(unsigned int m, unsigned int n,
13122 unsigned int m2, unsigned int n2,
13123 bool exact)
13124 {
13125 if (m == m2 && n == n2)
13126 return true;
13127
13128 if (exact || !m || !n || !m2 || !n2)
13129 return false;
13130
13131 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
13132
13133 if (n > n2) {
13134 while (n > n2) {
13135 m2 <<= 1;
13136 n2 <<= 1;
13137 }
13138 } else if (n < n2) {
13139 while (n < n2) {
13140 m <<= 1;
13141 n <<= 1;
13142 }
13143 }
13144
13145 if (n != n2)
13146 return false;
13147
13148 return intel_fuzzy_clock_check(m, m2);
13149 }
13150
13151 static bool
13152 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
13153 struct intel_link_m_n *m2_n2,
13154 bool adjust)
13155 {
13156 if (m_n->tu == m2_n2->tu &&
13157 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
13158 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
13159 intel_compare_m_n(m_n->link_m, m_n->link_n,
13160 m2_n2->link_m, m2_n2->link_n, !adjust)) {
13161 if (adjust)
13162 *m2_n2 = *m_n;
13163
13164 return true;
13165 }
13166
13167 return false;
13168 }
13169
13170 static void __printf(3, 4)
13171 pipe_config_err(bool adjust, const char *name, const char *format, ...)
13172 {
13173 char *level;
13174 unsigned int category;
13175 struct va_format vaf;
13176 va_list args;
13177
13178 if (adjust) {
13179 level = KERN_DEBUG;
13180 category = DRM_UT_KMS;
13181 } else {
13182 level = KERN_ERR;
13183 category = DRM_UT_NONE;
13184 }
13185
13186 va_start(args, format);
13187 vaf.fmt = format;
13188 vaf.va = &args;
13189
13190 drm_printk(level, category, "mismatch in %s %pV", name, &vaf);
13191
13192 va_end(args);
13193 }
13194
13195 static bool
13196 intel_pipe_config_compare(struct drm_i915_private *dev_priv,
13197 struct intel_crtc_state *current_config,
13198 struct intel_crtc_state *pipe_config,
13199 bool adjust)
13200 {
13201 bool ret = true;
13202
13203 #define PIPE_CONF_CHECK_X(name) \
13204 if (current_config->name != pipe_config->name) { \
13205 pipe_config_err(adjust, __stringify(name), \
13206 "(expected 0x%08x, found 0x%08x)\n", \
13207 current_config->name, \
13208 pipe_config->name); \
13209 ret = false; \
13210 }
13211
13212 #define PIPE_CONF_CHECK_I(name) \
13213 if (current_config->name != pipe_config->name) { \
13214 pipe_config_err(adjust, __stringify(name), \
13215 "(expected %i, found %i)\n", \
13216 current_config->name, \
13217 pipe_config->name); \
13218 ret = false; \
13219 }
13220
13221 #define PIPE_CONF_CHECK_P(name) \
13222 if (current_config->name != pipe_config->name) { \
13223 pipe_config_err(adjust, __stringify(name), \
13224 "(expected %p, found %p)\n", \
13225 current_config->name, \
13226 pipe_config->name); \
13227 ret = false; \
13228 }
13229
13230 #define PIPE_CONF_CHECK_M_N(name) \
13231 if (!intel_compare_link_m_n(&current_config->name, \
13232 &pipe_config->name,\
13233 adjust)) { \
13234 pipe_config_err(adjust, __stringify(name), \
13235 "(expected tu %i gmch %i/%i link %i/%i, " \
13236 "found tu %i, gmch %i/%i link %i/%i)\n", \
13237 current_config->name.tu, \
13238 current_config->name.gmch_m, \
13239 current_config->name.gmch_n, \
13240 current_config->name.link_m, \
13241 current_config->name.link_n, \
13242 pipe_config->name.tu, \
13243 pipe_config->name.gmch_m, \
13244 pipe_config->name.gmch_n, \
13245 pipe_config->name.link_m, \
13246 pipe_config->name.link_n); \
13247 ret = false; \
13248 }
13249
13250 /* This is required for BDW+ where there is only one set of registers for
13251 * switching between high and low RR.
13252 * This macro can be used whenever a comparison has to be made between one
13253 * hw state and multiple sw state variables.
13254 */
13255 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
13256 if (!intel_compare_link_m_n(&current_config->name, \
13257 &pipe_config->name, adjust) && \
13258 !intel_compare_link_m_n(&current_config->alt_name, \
13259 &pipe_config->name, adjust)) { \
13260 pipe_config_err(adjust, __stringify(name), \
13261 "(expected tu %i gmch %i/%i link %i/%i, " \
13262 "or tu %i gmch %i/%i link %i/%i, " \
13263 "found tu %i, gmch %i/%i link %i/%i)\n", \
13264 current_config->name.tu, \
13265 current_config->name.gmch_m, \
13266 current_config->name.gmch_n, \
13267 current_config->name.link_m, \
13268 current_config->name.link_n, \
13269 current_config->alt_name.tu, \
13270 current_config->alt_name.gmch_m, \
13271 current_config->alt_name.gmch_n, \
13272 current_config->alt_name.link_m, \
13273 current_config->alt_name.link_n, \
13274 pipe_config->name.tu, \
13275 pipe_config->name.gmch_m, \
13276 pipe_config->name.gmch_n, \
13277 pipe_config->name.link_m, \
13278 pipe_config->name.link_n); \
13279 ret = false; \
13280 }
13281
13282 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
13283 if ((current_config->name ^ pipe_config->name) & (mask)) { \
13284 pipe_config_err(adjust, __stringify(name), \
13285 "(%x) (expected %i, found %i)\n", \
13286 (mask), \
13287 current_config->name & (mask), \
13288 pipe_config->name & (mask)); \
13289 ret = false; \
13290 }
13291
13292 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
13293 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
13294 pipe_config_err(adjust, __stringify(name), \
13295 "(expected %i, found %i)\n", \
13296 current_config->name, \
13297 pipe_config->name); \
13298 ret = false; \
13299 }
13300
13301 #define PIPE_CONF_QUIRK(quirk) \
13302 ((current_config->quirks | pipe_config->quirks) & (quirk))
13303
13304 PIPE_CONF_CHECK_I(cpu_transcoder);
13305
13306 PIPE_CONF_CHECK_I(has_pch_encoder);
13307 PIPE_CONF_CHECK_I(fdi_lanes);
13308 PIPE_CONF_CHECK_M_N(fdi_m_n);
13309
13310 PIPE_CONF_CHECK_I(lane_count);
13311 PIPE_CONF_CHECK_X(lane_lat_optim_mask);
13312
13313 if (INTEL_GEN(dev_priv) < 8) {
13314 PIPE_CONF_CHECK_M_N(dp_m_n);
13315
13316 if (current_config->has_drrs)
13317 PIPE_CONF_CHECK_M_N(dp_m2_n2);
13318 } else
13319 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
13320
13321 PIPE_CONF_CHECK_X(output_types);
13322
13323 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
13324 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
13325 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
13326 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
13327 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
13328 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
13329
13330 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
13331 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
13332 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
13333 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
13334 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
13335 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
13336
13337 PIPE_CONF_CHECK_I(pixel_multiplier);
13338 PIPE_CONF_CHECK_I(has_hdmi_sink);
13339 if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
13340 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13341 PIPE_CONF_CHECK_I(limited_color_range);
13342 PIPE_CONF_CHECK_I(has_infoframe);
13343
13344 PIPE_CONF_CHECK_I(has_audio);
13345
13346 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13347 DRM_MODE_FLAG_INTERLACE);
13348
13349 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
13350 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13351 DRM_MODE_FLAG_PHSYNC);
13352 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13353 DRM_MODE_FLAG_NHSYNC);
13354 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13355 DRM_MODE_FLAG_PVSYNC);
13356 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13357 DRM_MODE_FLAG_NVSYNC);
13358 }
13359
13360 PIPE_CONF_CHECK_X(gmch_pfit.control);
13361 /* pfit ratios are autocomputed by the hw on gen4+ */
13362 if (INTEL_GEN(dev_priv) < 4)
13363 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
13364 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
13365
13366 if (!adjust) {
13367 PIPE_CONF_CHECK_I(pipe_src_w);
13368 PIPE_CONF_CHECK_I(pipe_src_h);
13369
13370 PIPE_CONF_CHECK_I(pch_pfit.enabled);
13371 if (current_config->pch_pfit.enabled) {
13372 PIPE_CONF_CHECK_X(pch_pfit.pos);
13373 PIPE_CONF_CHECK_X(pch_pfit.size);
13374 }
13375
13376 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
13377 }
13378
13379 /* BDW+ don't expose a synchronous way to read the state */
13380 if (IS_HASWELL(dev_priv))
13381 PIPE_CONF_CHECK_I(ips_enabled);
13382
13383 PIPE_CONF_CHECK_I(double_wide);
13384
13385 PIPE_CONF_CHECK_P(shared_dpll);
13386 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
13387 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
13388 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
13389 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
13390 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
13391 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
13392 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
13393 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
13394 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
13395
13396 PIPE_CONF_CHECK_X(dsi_pll.ctrl);
13397 PIPE_CONF_CHECK_X(dsi_pll.div);
13398
13399 if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
13400 PIPE_CONF_CHECK_I(pipe_bpp);
13401
13402 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
13403 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
13404
13405 #undef PIPE_CONF_CHECK_X
13406 #undef PIPE_CONF_CHECK_I
13407 #undef PIPE_CONF_CHECK_P
13408 #undef PIPE_CONF_CHECK_FLAGS
13409 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
13410 #undef PIPE_CONF_QUIRK
13411
13412 return ret;
13413 }
13414
13415 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
13416 const struct intel_crtc_state *pipe_config)
13417 {
13418 if (pipe_config->has_pch_encoder) {
13419 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
13420 &pipe_config->fdi_m_n);
13421 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
13422
13423 /*
13424 * FDI already provided one idea for the dotclock.
13425 * Yell if the encoder disagrees.
13426 */
13427 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
13428 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
13429 fdi_dotclock, dotclock);
13430 }
13431 }
13432
13433 static void verify_wm_state(struct drm_crtc *crtc,
13434 struct drm_crtc_state *new_state)
13435 {
13436 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
13437 struct skl_ddb_allocation hw_ddb, *sw_ddb;
13438 struct skl_pipe_wm hw_wm, *sw_wm;
13439 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
13440 struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
13441 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13442 const enum pipe pipe = intel_crtc->pipe;
13443 int plane, level, max_level = ilk_wm_max_level(dev_priv);
13444
13445 if (INTEL_GEN(dev_priv) < 9 || !new_state->active)
13446 return;
13447
13448 skl_pipe_wm_get_hw_state(crtc, &hw_wm);
13449 sw_wm = &to_intel_crtc_state(new_state)->wm.skl.optimal;
13450
13451 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
13452 sw_ddb = &dev_priv->wm.skl_hw.ddb;
13453
13454 /* planes */
13455 for_each_universal_plane(dev_priv, pipe, plane) {
13456 hw_plane_wm = &hw_wm.planes[plane];
13457 sw_plane_wm = &sw_wm->planes[plane];
13458
13459 /* Watermarks */
13460 for (level = 0; level <= max_level; level++) {
13461 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13462 &sw_plane_wm->wm[level]))
13463 continue;
13464
13465 DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13466 pipe_name(pipe), plane + 1, level,
13467 sw_plane_wm->wm[level].plane_en,
13468 sw_plane_wm->wm[level].plane_res_b,
13469 sw_plane_wm->wm[level].plane_res_l,
13470 hw_plane_wm->wm[level].plane_en,
13471 hw_plane_wm->wm[level].plane_res_b,
13472 hw_plane_wm->wm[level].plane_res_l);
13473 }
13474
13475 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13476 &sw_plane_wm->trans_wm)) {
13477 DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13478 pipe_name(pipe), plane + 1,
13479 sw_plane_wm->trans_wm.plane_en,
13480 sw_plane_wm->trans_wm.plane_res_b,
13481 sw_plane_wm->trans_wm.plane_res_l,
13482 hw_plane_wm->trans_wm.plane_en,
13483 hw_plane_wm->trans_wm.plane_res_b,
13484 hw_plane_wm->trans_wm.plane_res_l);
13485 }
13486
13487 /* DDB */
13488 hw_ddb_entry = &hw_ddb.plane[pipe][plane];
13489 sw_ddb_entry = &sw_ddb->plane[pipe][plane];
13490
13491 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13492 DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
13493 pipe_name(pipe), plane + 1,
13494 sw_ddb_entry->start, sw_ddb_entry->end,
13495 hw_ddb_entry->start, hw_ddb_entry->end);
13496 }
13497 }
13498
13499 /*
13500 * cursor
13501 * If the cursor plane isn't active, we may not have updated it's ddb
13502 * allocation. In that case since the ddb allocation will be updated
13503 * once the plane becomes visible, we can skip this check
13504 */
13505 if (intel_crtc->cursor_addr) {
13506 hw_plane_wm = &hw_wm.planes[PLANE_CURSOR];
13507 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
13508
13509 /* Watermarks */
13510 for (level = 0; level <= max_level; level++) {
13511 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13512 &sw_plane_wm->wm[level]))
13513 continue;
13514
13515 DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13516 pipe_name(pipe), level,
13517 sw_plane_wm->wm[level].plane_en,
13518 sw_plane_wm->wm[level].plane_res_b,
13519 sw_plane_wm->wm[level].plane_res_l,
13520 hw_plane_wm->wm[level].plane_en,
13521 hw_plane_wm->wm[level].plane_res_b,
13522 hw_plane_wm->wm[level].plane_res_l);
13523 }
13524
13525 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13526 &sw_plane_wm->trans_wm)) {
13527 DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13528 pipe_name(pipe),
13529 sw_plane_wm->trans_wm.plane_en,
13530 sw_plane_wm->trans_wm.plane_res_b,
13531 sw_plane_wm->trans_wm.plane_res_l,
13532 hw_plane_wm->trans_wm.plane_en,
13533 hw_plane_wm->trans_wm.plane_res_b,
13534 hw_plane_wm->trans_wm.plane_res_l);
13535 }
13536
13537 /* DDB */
13538 hw_ddb_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
13539 sw_ddb_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
13540
13541 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13542 DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
13543 pipe_name(pipe),
13544 sw_ddb_entry->start, sw_ddb_entry->end,
13545 hw_ddb_entry->start, hw_ddb_entry->end);
13546 }
13547 }
13548 }
13549
13550 static void
13551 verify_connector_state(struct drm_device *dev,
13552 struct drm_atomic_state *state,
13553 struct drm_crtc *crtc)
13554 {
13555 struct drm_connector *connector;
13556 struct drm_connector_state *old_conn_state;
13557 int i;
13558
13559 for_each_connector_in_state(state, connector, old_conn_state, i) {
13560 struct drm_encoder *encoder = connector->encoder;
13561 struct drm_connector_state *state = connector->state;
13562
13563 if (state->crtc != crtc)
13564 continue;
13565
13566 intel_connector_verify_state(to_intel_connector(connector));
13567
13568 I915_STATE_WARN(state->best_encoder != encoder,
13569 "connector's atomic encoder doesn't match legacy encoder\n");
13570 }
13571 }
13572
13573 static void
13574 verify_encoder_state(struct drm_device *dev)
13575 {
13576 struct intel_encoder *encoder;
13577 struct intel_connector *connector;
13578
13579 for_each_intel_encoder(dev, encoder) {
13580 bool enabled = false;
13581 enum pipe pipe;
13582
13583 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13584 encoder->base.base.id,
13585 encoder->base.name);
13586
13587 for_each_intel_connector(dev, connector) {
13588 if (connector->base.state->best_encoder != &encoder->base)
13589 continue;
13590 enabled = true;
13591
13592 I915_STATE_WARN(connector->base.state->crtc !=
13593 encoder->base.crtc,
13594 "connector's crtc doesn't match encoder crtc\n");
13595 }
13596
13597 I915_STATE_WARN(!!encoder->base.crtc != enabled,
13598 "encoder's enabled state mismatch "
13599 "(expected %i, found %i)\n",
13600 !!encoder->base.crtc, enabled);
13601
13602 if (!encoder->base.crtc) {
13603 bool active;
13604
13605 active = encoder->get_hw_state(encoder, &pipe);
13606 I915_STATE_WARN(active,
13607 "encoder detached but still enabled on pipe %c.\n",
13608 pipe_name(pipe));
13609 }
13610 }
13611 }
13612
13613 static void
13614 verify_crtc_state(struct drm_crtc *crtc,
13615 struct drm_crtc_state *old_crtc_state,
13616 struct drm_crtc_state *new_crtc_state)
13617 {
13618 struct drm_device *dev = crtc->dev;
13619 struct drm_i915_private *dev_priv = to_i915(dev);
13620 struct intel_encoder *encoder;
13621 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13622 struct intel_crtc_state *pipe_config, *sw_config;
13623 struct drm_atomic_state *old_state;
13624 bool active;
13625
13626 old_state = old_crtc_state->state;
13627 __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
13628 pipe_config = to_intel_crtc_state(old_crtc_state);
13629 memset(pipe_config, 0, sizeof(*pipe_config));
13630 pipe_config->base.crtc = crtc;
13631 pipe_config->base.state = old_state;
13632
13633 DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
13634
13635 active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
13636
13637 /* hw state is inconsistent with the pipe quirk */
13638 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
13639 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
13640 active = new_crtc_state->active;
13641
13642 I915_STATE_WARN(new_crtc_state->active != active,
13643 "crtc active state doesn't match with hw state "
13644 "(expected %i, found %i)\n", new_crtc_state->active, active);
13645
13646 I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
13647 "transitional active state does not match atomic hw state "
13648 "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
13649
13650 for_each_encoder_on_crtc(dev, crtc, encoder) {
13651 enum pipe pipe;
13652
13653 active = encoder->get_hw_state(encoder, &pipe);
13654 I915_STATE_WARN(active != new_crtc_state->active,
13655 "[ENCODER:%i] active %i with crtc active %i\n",
13656 encoder->base.base.id, active, new_crtc_state->active);
13657
13658 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
13659 "Encoder connected to wrong pipe %c\n",
13660 pipe_name(pipe));
13661
13662 if (active) {
13663 pipe_config->output_types |= 1 << encoder->type;
13664 encoder->get_config(encoder, pipe_config);
13665 }
13666 }
13667
13668 if (!new_crtc_state->active)
13669 return;
13670
13671 intel_pipe_config_sanity_check(dev_priv, pipe_config);
13672
13673 sw_config = to_intel_crtc_state(crtc->state);
13674 if (!intel_pipe_config_compare(dev_priv, sw_config,
13675 pipe_config, false)) {
13676 I915_STATE_WARN(1, "pipe state doesn't match!\n");
13677 intel_dump_pipe_config(intel_crtc, pipe_config,
13678 "[hw state]");
13679 intel_dump_pipe_config(intel_crtc, sw_config,
13680 "[sw state]");
13681 }
13682 }
13683
13684 static void
13685 verify_single_dpll_state(struct drm_i915_private *dev_priv,
13686 struct intel_shared_dpll *pll,
13687 struct drm_crtc *crtc,
13688 struct drm_crtc_state *new_state)
13689 {
13690 struct intel_dpll_hw_state dpll_hw_state;
13691 unsigned crtc_mask;
13692 bool active;
13693
13694 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13695
13696 DRM_DEBUG_KMS("%s\n", pll->name);
13697
13698 active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
13699
13700 if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13701 I915_STATE_WARN(!pll->on && pll->active_mask,
13702 "pll in active use but not on in sw tracking\n");
13703 I915_STATE_WARN(pll->on && !pll->active_mask,
13704 "pll is on but not used by any active crtc\n");
13705 I915_STATE_WARN(pll->on != active,
13706 "pll on state mismatch (expected %i, found %i)\n",
13707 pll->on, active);
13708 }
13709
13710 if (!crtc) {
13711 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
13712 "more active pll users than references: %x vs %x\n",
13713 pll->active_mask, pll->state.crtc_mask);
13714
13715 return;
13716 }
13717
13718 crtc_mask = 1 << drm_crtc_index(crtc);
13719
13720 if (new_state->active)
13721 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13722 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13723 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13724 else
13725 I915_STATE_WARN(pll->active_mask & crtc_mask,
13726 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13727 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13728
13729 I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
13730 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13731 crtc_mask, pll->state.crtc_mask);
13732
13733 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
13734 &dpll_hw_state,
13735 sizeof(dpll_hw_state)),
13736 "pll hw state mismatch\n");
13737 }
13738
13739 static void
13740 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13741 struct drm_crtc_state *old_crtc_state,
13742 struct drm_crtc_state *new_crtc_state)
13743 {
13744 struct drm_i915_private *dev_priv = to_i915(dev);
13745 struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13746 struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13747
13748 if (new_state->shared_dpll)
13749 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13750
13751 if (old_state->shared_dpll &&
13752 old_state->shared_dpll != new_state->shared_dpll) {
13753 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13754 struct intel_shared_dpll *pll = old_state->shared_dpll;
13755
13756 I915_STATE_WARN(pll->active_mask & crtc_mask,
13757 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13758 pipe_name(drm_crtc_index(crtc)));
13759 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
13760 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13761 pipe_name(drm_crtc_index(crtc)));
13762 }
13763 }
13764
13765 static void
13766 intel_modeset_verify_crtc(struct drm_crtc *crtc,
13767 struct drm_atomic_state *state,
13768 struct drm_crtc_state *old_state,
13769 struct drm_crtc_state *new_state)
13770 {
13771 if (!needs_modeset(new_state) &&
13772 !to_intel_crtc_state(new_state)->update_pipe)
13773 return;
13774
13775 verify_wm_state(crtc, new_state);
13776 verify_connector_state(crtc->dev, state, crtc);
13777 verify_crtc_state(crtc, old_state, new_state);
13778 verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13779 }
13780
13781 static void
13782 verify_disabled_dpll_state(struct drm_device *dev)
13783 {
13784 struct drm_i915_private *dev_priv = to_i915(dev);
13785 int i;
13786
13787 for (i = 0; i < dev_priv->num_shared_dpll; i++)
13788 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13789 }
13790
13791 static void
13792 intel_modeset_verify_disabled(struct drm_device *dev,
13793 struct drm_atomic_state *state)
13794 {
13795 verify_encoder_state(dev);
13796 verify_connector_state(dev, state, NULL);
13797 verify_disabled_dpll_state(dev);
13798 }
13799
13800 static void update_scanline_offset(struct intel_crtc *crtc)
13801 {
13802 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13803
13804 /*
13805 * The scanline counter increments at the leading edge of hsync.
13806 *
13807 * On most platforms it starts counting from vtotal-1 on the
13808 * first active line. That means the scanline counter value is
13809 * always one less than what we would expect. Ie. just after
13810 * start of vblank, which also occurs at start of hsync (on the
13811 * last active line), the scanline counter will read vblank_start-1.
13812 *
13813 * On gen2 the scanline counter starts counting from 1 instead
13814 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13815 * to keep the value positive), instead of adding one.
13816 *
13817 * On HSW+ the behaviour of the scanline counter depends on the output
13818 * type. For DP ports it behaves like most other platforms, but on HDMI
13819 * there's an extra 1 line difference. So we need to add two instead of
13820 * one to the value.
13821 */
13822 if (IS_GEN2(dev_priv)) {
13823 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13824 int vtotal;
13825
13826 vtotal = adjusted_mode->crtc_vtotal;
13827 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13828 vtotal /= 2;
13829
13830 crtc->scanline_offset = vtotal - 1;
13831 } else if (HAS_DDI(dev_priv) &&
13832 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
13833 crtc->scanline_offset = 2;
13834 } else
13835 crtc->scanline_offset = 1;
13836 }
13837
13838 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13839 {
13840 struct drm_device *dev = state->dev;
13841 struct drm_i915_private *dev_priv = to_i915(dev);
13842 struct drm_crtc *crtc;
13843 struct drm_crtc_state *crtc_state;
13844 int i;
13845
13846 if (!dev_priv->display.crtc_compute_clock)
13847 return;
13848
13849 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13850 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13851 struct intel_shared_dpll *old_dpll =
13852 to_intel_crtc_state(crtc->state)->shared_dpll;
13853
13854 if (!needs_modeset(crtc_state))
13855 continue;
13856
13857 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13858
13859 if (!old_dpll)
13860 continue;
13861
13862 intel_release_shared_dpll(old_dpll, intel_crtc, state);
13863 }
13864 }
13865
13866 /*
13867 * This implements the workaround described in the "notes" section of the mode
13868 * set sequence documentation. When going from no pipes or single pipe to
13869 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13870 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13871 */
13872 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13873 {
13874 struct drm_crtc_state *crtc_state;
13875 struct intel_crtc *intel_crtc;
13876 struct drm_crtc *crtc;
13877 struct intel_crtc_state *first_crtc_state = NULL;
13878 struct intel_crtc_state *other_crtc_state = NULL;
13879 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13880 int i;
13881
13882 /* look at all crtc's that are going to be enabled in during modeset */
13883 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13884 intel_crtc = to_intel_crtc(crtc);
13885
13886 if (!crtc_state->active || !needs_modeset(crtc_state))
13887 continue;
13888
13889 if (first_crtc_state) {
13890 other_crtc_state = to_intel_crtc_state(crtc_state);
13891 break;
13892 } else {
13893 first_crtc_state = to_intel_crtc_state(crtc_state);
13894 first_pipe = intel_crtc->pipe;
13895 }
13896 }
13897
13898 /* No workaround needed? */
13899 if (!first_crtc_state)
13900 return 0;
13901
13902 /* w/a possibly needed, check how many crtc's are already enabled. */
13903 for_each_intel_crtc(state->dev, intel_crtc) {
13904 struct intel_crtc_state *pipe_config;
13905
13906 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13907 if (IS_ERR(pipe_config))
13908 return PTR_ERR(pipe_config);
13909
13910 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13911
13912 if (!pipe_config->base.active ||
13913 needs_modeset(&pipe_config->base))
13914 continue;
13915
13916 /* 2 or more enabled crtcs means no need for w/a */
13917 if (enabled_pipe != INVALID_PIPE)
13918 return 0;
13919
13920 enabled_pipe = intel_crtc->pipe;
13921 }
13922
13923 if (enabled_pipe != INVALID_PIPE)
13924 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13925 else if (other_crtc_state)
13926 other_crtc_state->hsw_workaround_pipe = first_pipe;
13927
13928 return 0;
13929 }
13930
13931 static int intel_lock_all_pipes(struct drm_atomic_state *state)
13932 {
13933 struct drm_crtc *crtc;
13934
13935 /* Add all pipes to the state */
13936 for_each_crtc(state->dev, crtc) {
13937 struct drm_crtc_state *crtc_state;
13938
13939 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13940 if (IS_ERR(crtc_state))
13941 return PTR_ERR(crtc_state);
13942 }
13943
13944 return 0;
13945 }
13946
13947 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13948 {
13949 struct drm_crtc *crtc;
13950
13951 /*
13952 * Add all pipes to the state, and force
13953 * a modeset on all the active ones.
13954 */
13955 for_each_crtc(state->dev, crtc) {
13956 struct drm_crtc_state *crtc_state;
13957 int ret;
13958
13959 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13960 if (IS_ERR(crtc_state))
13961 return PTR_ERR(crtc_state);
13962
13963 if (!crtc_state->active || needs_modeset(crtc_state))
13964 continue;
13965
13966 crtc_state->mode_changed = true;
13967
13968 ret = drm_atomic_add_affected_connectors(state, crtc);
13969 if (ret)
13970 return ret;
13971
13972 ret = drm_atomic_add_affected_planes(state, crtc);
13973 if (ret)
13974 return ret;
13975 }
13976
13977 return 0;
13978 }
13979
13980 static int intel_modeset_checks(struct drm_atomic_state *state)
13981 {
13982 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13983 struct drm_i915_private *dev_priv = to_i915(state->dev);
13984 struct drm_crtc *crtc;
13985 struct drm_crtc_state *crtc_state;
13986 int ret = 0, i;
13987
13988 if (!check_digital_port_conflicts(state)) {
13989 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13990 return -EINVAL;
13991 }
13992
13993 intel_state->modeset = true;
13994 intel_state->active_crtcs = dev_priv->active_crtcs;
13995
13996 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13997 if (crtc_state->active)
13998 intel_state->active_crtcs |= 1 << i;
13999 else
14000 intel_state->active_crtcs &= ~(1 << i);
14001
14002 if (crtc_state->active != crtc->state->active)
14003 intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
14004 }
14005
14006 /*
14007 * See if the config requires any additional preparation, e.g.
14008 * to adjust global state with pipes off. We need to do this
14009 * here so we can get the modeset_pipe updated config for the new
14010 * mode set on this crtc. For other crtcs we need to use the
14011 * adjusted_mode bits in the crtc directly.
14012 */
14013 if (dev_priv->display.modeset_calc_cdclk) {
14014 if (!intel_state->cdclk_pll_vco)
14015 intel_state->cdclk_pll_vco = dev_priv->cdclk_pll.vco;
14016 if (!intel_state->cdclk_pll_vco)
14017 intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq;
14018
14019 ret = dev_priv->display.modeset_calc_cdclk(state);
14020 if (ret < 0)
14021 return ret;
14022
14023 /*
14024 * Writes to dev_priv->atomic_cdclk_freq must protected by
14025 * holding all the crtc locks, even if we don't end up
14026 * touching the hardware
14027 */
14028 if (intel_state->cdclk != dev_priv->atomic_cdclk_freq) {
14029 ret = intel_lock_all_pipes(state);
14030 if (ret < 0)
14031 return ret;
14032 }
14033
14034 /* All pipes must be switched off while we change the cdclk. */
14035 if (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
14036 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco) {
14037 ret = intel_modeset_all_pipes(state);
14038 if (ret < 0)
14039 return ret;
14040 }
14041
14042 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
14043 intel_state->cdclk, intel_state->dev_cdclk);
14044 } else {
14045 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
14046 }
14047
14048 intel_modeset_clear_plls(state);
14049
14050 if (IS_HASWELL(dev_priv))
14051 return haswell_mode_set_planes_workaround(state);
14052
14053 return 0;
14054 }
14055
14056 /*
14057 * Handle calculation of various watermark data at the end of the atomic check
14058 * phase. The code here should be run after the per-crtc and per-plane 'check'
14059 * handlers to ensure that all derived state has been updated.
14060 */
14061 static int calc_watermark_data(struct drm_atomic_state *state)
14062 {
14063 struct drm_device *dev = state->dev;
14064 struct drm_i915_private *dev_priv = to_i915(dev);
14065
14066 /* Is there platform-specific watermark information to calculate? */
14067 if (dev_priv->display.compute_global_watermarks)
14068 return dev_priv->display.compute_global_watermarks(state);
14069
14070 return 0;
14071 }
14072
14073 /**
14074 * intel_atomic_check - validate state object
14075 * @dev: drm device
14076 * @state: state to validate
14077 */
14078 static int intel_atomic_check(struct drm_device *dev,
14079 struct drm_atomic_state *state)
14080 {
14081 struct drm_i915_private *dev_priv = to_i915(dev);
14082 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14083 struct drm_crtc *crtc;
14084 struct drm_crtc_state *crtc_state;
14085 int ret, i;
14086 bool any_ms = false;
14087
14088 ret = drm_atomic_helper_check_modeset(dev, state);
14089 if (ret)
14090 return ret;
14091
14092 for_each_crtc_in_state(state, crtc, crtc_state, i) {
14093 struct intel_crtc_state *pipe_config =
14094 to_intel_crtc_state(crtc_state);
14095
14096 /* Catch I915_MODE_FLAG_INHERITED */
14097 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
14098 crtc_state->mode_changed = true;
14099
14100 if (!needs_modeset(crtc_state))
14101 continue;
14102
14103 if (!crtc_state->enable) {
14104 any_ms = true;
14105 continue;
14106 }
14107
14108 /* FIXME: For only active_changed we shouldn't need to do any
14109 * state recomputation at all. */
14110
14111 ret = drm_atomic_add_affected_connectors(state, crtc);
14112 if (ret)
14113 return ret;
14114
14115 ret = intel_modeset_pipe_config(crtc, pipe_config);
14116 if (ret) {
14117 intel_dump_pipe_config(to_intel_crtc(crtc),
14118 pipe_config, "[failed]");
14119 return ret;
14120 }
14121
14122 if (i915.fastboot &&
14123 intel_pipe_config_compare(dev_priv,
14124 to_intel_crtc_state(crtc->state),
14125 pipe_config, true)) {
14126 crtc_state->mode_changed = false;
14127 to_intel_crtc_state(crtc_state)->update_pipe = true;
14128 }
14129
14130 if (needs_modeset(crtc_state))
14131 any_ms = true;
14132
14133 ret = drm_atomic_add_affected_planes(state, crtc);
14134 if (ret)
14135 return ret;
14136
14137 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
14138 needs_modeset(crtc_state) ?
14139 "[modeset]" : "[fastset]");
14140 }
14141
14142 if (any_ms) {
14143 ret = intel_modeset_checks(state);
14144
14145 if (ret)
14146 return ret;
14147 } else {
14148 intel_state->cdclk = dev_priv->atomic_cdclk_freq;
14149 }
14150
14151 ret = drm_atomic_helper_check_planes(dev, state);
14152 if (ret)
14153 return ret;
14154
14155 intel_fbc_choose_crtc(dev_priv, state);
14156 return calc_watermark_data(state);
14157 }
14158
14159 static int intel_atomic_prepare_commit(struct drm_device *dev,
14160 struct drm_atomic_state *state)
14161 {
14162 struct drm_i915_private *dev_priv = to_i915(dev);
14163 struct drm_crtc_state *crtc_state;
14164 struct drm_crtc *crtc;
14165 int i, ret;
14166
14167 for_each_crtc_in_state(state, crtc, crtc_state, i) {
14168 if (state->legacy_cursor_update)
14169 continue;
14170
14171 ret = intel_crtc_wait_for_pending_flips(crtc);
14172 if (ret)
14173 return ret;
14174
14175 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
14176 flush_workqueue(dev_priv->wq);
14177 }
14178
14179 ret = mutex_lock_interruptible(&dev->struct_mutex);
14180 if (ret)
14181 return ret;
14182
14183 ret = drm_atomic_helper_prepare_planes(dev, state);
14184 mutex_unlock(&dev->struct_mutex);
14185
14186 return ret;
14187 }
14188
14189 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
14190 {
14191 struct drm_device *dev = crtc->base.dev;
14192
14193 if (!dev->max_vblank_count)
14194 return drm_accurate_vblank_count(&crtc->base);
14195
14196 return dev->driver->get_vblank_counter(dev, crtc->pipe);
14197 }
14198
14199 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
14200 struct drm_i915_private *dev_priv,
14201 unsigned crtc_mask)
14202 {
14203 unsigned last_vblank_count[I915_MAX_PIPES];
14204 enum pipe pipe;
14205 int ret;
14206
14207 if (!crtc_mask)
14208 return;
14209
14210 for_each_pipe(dev_priv, pipe) {
14211 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
14212 pipe);
14213
14214 if (!((1 << pipe) & crtc_mask))
14215 continue;
14216
14217 ret = drm_crtc_vblank_get(&crtc->base);
14218 if (WARN_ON(ret != 0)) {
14219 crtc_mask &= ~(1 << pipe);
14220 continue;
14221 }
14222
14223 last_vblank_count[pipe] = drm_crtc_vblank_count(&crtc->base);
14224 }
14225
14226 for_each_pipe(dev_priv, pipe) {
14227 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
14228 pipe);
14229 long lret;
14230
14231 if (!((1 << pipe) & crtc_mask))
14232 continue;
14233
14234 lret = wait_event_timeout(dev->vblank[pipe].queue,
14235 last_vblank_count[pipe] !=
14236 drm_crtc_vblank_count(&crtc->base),
14237 msecs_to_jiffies(50));
14238
14239 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
14240
14241 drm_crtc_vblank_put(&crtc->base);
14242 }
14243 }
14244
14245 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
14246 {
14247 /* fb updated, need to unpin old fb */
14248 if (crtc_state->fb_changed)
14249 return true;
14250
14251 /* wm changes, need vblank before final wm's */
14252 if (crtc_state->update_wm_post)
14253 return true;
14254
14255 /*
14256 * cxsr is re-enabled after vblank.
14257 * This is already handled by crtc_state->update_wm_post,
14258 * but added for clarity.
14259 */
14260 if (crtc_state->disable_cxsr)
14261 return true;
14262
14263 return false;
14264 }
14265
14266 static void intel_update_crtc(struct drm_crtc *crtc,
14267 struct drm_atomic_state *state,
14268 struct drm_crtc_state *old_crtc_state,
14269 unsigned int *crtc_vblank_mask)
14270 {
14271 struct drm_device *dev = crtc->dev;
14272 struct drm_i915_private *dev_priv = to_i915(dev);
14273 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14274 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc->state);
14275 bool modeset = needs_modeset(crtc->state);
14276
14277 if (modeset) {
14278 update_scanline_offset(intel_crtc);
14279 dev_priv->display.crtc_enable(pipe_config, state);
14280 } else {
14281 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14282 }
14283
14284 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
14285 intel_fbc_enable(
14286 intel_crtc, pipe_config,
14287 to_intel_plane_state(crtc->primary->state));
14288 }
14289
14290 drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
14291
14292 if (needs_vblank_wait(pipe_config))
14293 *crtc_vblank_mask |= drm_crtc_mask(crtc);
14294 }
14295
14296 static void intel_update_crtcs(struct drm_atomic_state *state,
14297 unsigned int *crtc_vblank_mask)
14298 {
14299 struct drm_crtc *crtc;
14300 struct drm_crtc_state *old_crtc_state;
14301 int i;
14302
14303 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14304 if (!crtc->state->active)
14305 continue;
14306
14307 intel_update_crtc(crtc, state, old_crtc_state,
14308 crtc_vblank_mask);
14309 }
14310 }
14311
14312 static void skl_update_crtcs(struct drm_atomic_state *state,
14313 unsigned int *crtc_vblank_mask)
14314 {
14315 struct drm_i915_private *dev_priv = to_i915(state->dev);
14316 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14317 struct drm_crtc *crtc;
14318 struct intel_crtc *intel_crtc;
14319 struct drm_crtc_state *old_crtc_state;
14320 struct intel_crtc_state *cstate;
14321 unsigned int updated = 0;
14322 bool progress;
14323 enum pipe pipe;
14324 int i;
14325
14326 const struct skl_ddb_entry *entries[I915_MAX_PIPES] = {};
14327
14328 for_each_crtc_in_state(state, crtc, old_crtc_state, i)
14329 /* ignore allocations for crtc's that have been turned off. */
14330 if (crtc->state->active)
14331 entries[i] = &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb;
14332
14333 /*
14334 * Whenever the number of active pipes changes, we need to make sure we
14335 * update the pipes in the right order so that their ddb allocations
14336 * never overlap with eachother inbetween CRTC updates. Otherwise we'll
14337 * cause pipe underruns and other bad stuff.
14338 */
14339 do {
14340 progress = false;
14341
14342 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14343 bool vbl_wait = false;
14344 unsigned int cmask = drm_crtc_mask(crtc);
14345
14346 intel_crtc = to_intel_crtc(crtc);
14347 cstate = to_intel_crtc_state(crtc->state);
14348 pipe = intel_crtc->pipe;
14349
14350 if (updated & cmask || !cstate->base.active)
14351 continue;
14352
14353 if (skl_ddb_allocation_overlaps(entries, &cstate->wm.skl.ddb, i))
14354 continue;
14355
14356 updated |= cmask;
14357 entries[i] = &cstate->wm.skl.ddb;
14358
14359 /*
14360 * If this is an already active pipe, it's DDB changed,
14361 * and this isn't the last pipe that needs updating
14362 * then we need to wait for a vblank to pass for the
14363 * new ddb allocation to take effect.
14364 */
14365 if (!skl_ddb_entry_equal(&cstate->wm.skl.ddb,
14366 &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb) &&
14367 !crtc->state->active_changed &&
14368 intel_state->wm_results.dirty_pipes != updated)
14369 vbl_wait = true;
14370
14371 intel_update_crtc(crtc, state, old_crtc_state,
14372 crtc_vblank_mask);
14373
14374 if (vbl_wait)
14375 intel_wait_for_vblank(dev_priv, pipe);
14376
14377 progress = true;
14378 }
14379 } while (progress);
14380 }
14381
14382 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
14383 {
14384 struct drm_device *dev = state->dev;
14385 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14386 struct drm_i915_private *dev_priv = to_i915(dev);
14387 struct drm_crtc_state *old_crtc_state;
14388 struct drm_crtc *crtc;
14389 struct intel_crtc_state *intel_cstate;
14390 bool hw_check = intel_state->modeset;
14391 unsigned long put_domains[I915_MAX_PIPES] = {};
14392 unsigned crtc_vblank_mask = 0;
14393 int i;
14394
14395 drm_atomic_helper_wait_for_dependencies(state);
14396
14397 if (intel_state->modeset)
14398 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
14399
14400 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14401 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14402
14403 if (needs_modeset(crtc->state) ||
14404 to_intel_crtc_state(crtc->state)->update_pipe) {
14405 hw_check = true;
14406
14407 put_domains[to_intel_crtc(crtc)->pipe] =
14408 modeset_get_crtc_power_domains(crtc,
14409 to_intel_crtc_state(crtc->state));
14410 }
14411
14412 if (!needs_modeset(crtc->state))
14413 continue;
14414
14415 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14416
14417 if (old_crtc_state->active) {
14418 intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
14419 dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
14420 intel_crtc->active = false;
14421 intel_fbc_disable(intel_crtc);
14422 intel_disable_shared_dpll(intel_crtc);
14423
14424 /*
14425 * Underruns don't always raise
14426 * interrupts, so check manually.
14427 */
14428 intel_check_cpu_fifo_underruns(dev_priv);
14429 intel_check_pch_fifo_underruns(dev_priv);
14430
14431 if (!crtc->state->active) {
14432 /*
14433 * Make sure we don't call initial_watermarks
14434 * for ILK-style watermark updates.
14435 */
14436 if (dev_priv->display.atomic_update_watermarks)
14437 dev_priv->display.initial_watermarks(intel_state,
14438 to_intel_crtc_state(crtc->state));
14439 else
14440 intel_update_watermarks(intel_crtc);
14441 }
14442 }
14443 }
14444
14445 /* Only after disabling all output pipelines that will be changed can we
14446 * update the the output configuration. */
14447 intel_modeset_update_crtc_state(state);
14448
14449 if (intel_state->modeset) {
14450 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
14451
14452 if (dev_priv->display.modeset_commit_cdclk &&
14453 (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
14454 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco))
14455 dev_priv->display.modeset_commit_cdclk(state);
14456
14457 /*
14458 * SKL workaround: bspec recommends we disable the SAGV when we
14459 * have more then one pipe enabled
14460 */
14461 if (!intel_can_enable_sagv(state))
14462 intel_disable_sagv(dev_priv);
14463
14464 intel_modeset_verify_disabled(dev, state);
14465 }
14466
14467 /* Complete the events for pipes that have now been disabled */
14468 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14469 bool modeset = needs_modeset(crtc->state);
14470
14471 /* Complete events for now disable pipes here. */
14472 if (modeset && !crtc->state->active && crtc->state->event) {
14473 spin_lock_irq(&dev->event_lock);
14474 drm_crtc_send_vblank_event(crtc, crtc->state->event);
14475 spin_unlock_irq(&dev->event_lock);
14476
14477 crtc->state->event = NULL;
14478 }
14479 }
14480
14481 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
14482 dev_priv->display.update_crtcs(state, &crtc_vblank_mask);
14483
14484 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
14485 * already, but still need the state for the delayed optimization. To
14486 * fix this:
14487 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
14488 * - schedule that vblank worker _before_ calling hw_done
14489 * - at the start of commit_tail, cancel it _synchrously
14490 * - switch over to the vblank wait helper in the core after that since
14491 * we don't need out special handling any more.
14492 */
14493 if (!state->legacy_cursor_update)
14494 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
14495
14496 /*
14497 * Now that the vblank has passed, we can go ahead and program the
14498 * optimal watermarks on platforms that need two-step watermark
14499 * programming.
14500 *
14501 * TODO: Move this (and other cleanup) to an async worker eventually.
14502 */
14503 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14504 intel_cstate = to_intel_crtc_state(crtc->state);
14505
14506 if (dev_priv->display.optimize_watermarks)
14507 dev_priv->display.optimize_watermarks(intel_state,
14508 intel_cstate);
14509 }
14510
14511 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14512 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
14513
14514 if (put_domains[i])
14515 modeset_put_power_domains(dev_priv, put_domains[i]);
14516
14517 intel_modeset_verify_crtc(crtc, state, old_crtc_state, crtc->state);
14518 }
14519
14520 if (intel_state->modeset && intel_can_enable_sagv(state))
14521 intel_enable_sagv(dev_priv);
14522
14523 drm_atomic_helper_commit_hw_done(state);
14524
14525 if (intel_state->modeset)
14526 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
14527
14528 mutex_lock(&dev->struct_mutex);
14529 drm_atomic_helper_cleanup_planes(dev, state);
14530 mutex_unlock(&dev->struct_mutex);
14531
14532 drm_atomic_helper_commit_cleanup_done(state);
14533
14534 drm_atomic_state_put(state);
14535
14536 /* As one of the primary mmio accessors, KMS has a high likelihood
14537 * of triggering bugs in unclaimed access. After we finish
14538 * modesetting, see if an error has been flagged, and if so
14539 * enable debugging for the next modeset - and hope we catch
14540 * the culprit.
14541 *
14542 * XXX note that we assume display power is on at this point.
14543 * This might hold true now but we need to add pm helper to check
14544 * unclaimed only when the hardware is on, as atomic commits
14545 * can happen also when the device is completely off.
14546 */
14547 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
14548 }
14549
14550 static void intel_atomic_commit_work(struct work_struct *work)
14551 {
14552 struct drm_atomic_state *state =
14553 container_of(work, struct drm_atomic_state, commit_work);
14554
14555 intel_atomic_commit_tail(state);
14556 }
14557
14558 static int __i915_sw_fence_call
14559 intel_atomic_commit_ready(struct i915_sw_fence *fence,
14560 enum i915_sw_fence_notify notify)
14561 {
14562 struct intel_atomic_state *state =
14563 container_of(fence, struct intel_atomic_state, commit_ready);
14564
14565 switch (notify) {
14566 case FENCE_COMPLETE:
14567 if (state->base.commit_work.func)
14568 queue_work(system_unbound_wq, &state->base.commit_work);
14569 break;
14570
14571 case FENCE_FREE:
14572 {
14573 struct intel_atomic_helper *helper =
14574 &to_i915(state->base.dev)->atomic_helper;
14575
14576 if (llist_add(&state->freed, &helper->free_list))
14577 schedule_work(&helper->free_work);
14578 break;
14579 }
14580 }
14581
14582 return NOTIFY_DONE;
14583 }
14584
14585 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
14586 {
14587 struct drm_plane_state *old_plane_state;
14588 struct drm_plane *plane;
14589 int i;
14590
14591 for_each_plane_in_state(state, plane, old_plane_state, i)
14592 i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
14593 intel_fb_obj(plane->state->fb),
14594 to_intel_plane(plane)->frontbuffer_bit);
14595 }
14596
14597 /**
14598 * intel_atomic_commit - commit validated state object
14599 * @dev: DRM device
14600 * @state: the top-level driver state object
14601 * @nonblock: nonblocking commit
14602 *
14603 * This function commits a top-level state object that has been validated
14604 * with drm_atomic_helper_check().
14605 *
14606 * RETURNS
14607 * Zero for success or -errno.
14608 */
14609 static int intel_atomic_commit(struct drm_device *dev,
14610 struct drm_atomic_state *state,
14611 bool nonblock)
14612 {
14613 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14614 struct drm_i915_private *dev_priv = to_i915(dev);
14615 int ret = 0;
14616
14617 ret = drm_atomic_helper_setup_commit(state, nonblock);
14618 if (ret)
14619 return ret;
14620
14621 drm_atomic_state_get(state);
14622 i915_sw_fence_init(&intel_state->commit_ready,
14623 intel_atomic_commit_ready);
14624
14625 ret = intel_atomic_prepare_commit(dev, state);
14626 if (ret) {
14627 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
14628 i915_sw_fence_commit(&intel_state->commit_ready);
14629 return ret;
14630 }
14631
14632 drm_atomic_helper_swap_state(state, true);
14633 dev_priv->wm.distrust_bios_wm = false;
14634 intel_shared_dpll_swap_state(state);
14635 intel_atomic_track_fbs(state);
14636
14637 if (intel_state->modeset) {
14638 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
14639 sizeof(intel_state->min_pixclk));
14640 dev_priv->active_crtcs = intel_state->active_crtcs;
14641 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
14642 }
14643
14644 drm_atomic_state_get(state);
14645 INIT_WORK(&state->commit_work,
14646 nonblock ? intel_atomic_commit_work : NULL);
14647
14648 i915_sw_fence_commit(&intel_state->commit_ready);
14649 if (!nonblock) {
14650 i915_sw_fence_wait(&intel_state->commit_ready);
14651 intel_atomic_commit_tail(state);
14652 }
14653
14654 return 0;
14655 }
14656
14657 void intel_crtc_restore_mode(struct drm_crtc *crtc)
14658 {
14659 struct drm_device *dev = crtc->dev;
14660 struct drm_atomic_state *state;
14661 struct drm_crtc_state *crtc_state;
14662 int ret;
14663
14664 state = drm_atomic_state_alloc(dev);
14665 if (!state) {
14666 DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
14667 crtc->base.id, crtc->name);
14668 return;
14669 }
14670
14671 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
14672
14673 retry:
14674 crtc_state = drm_atomic_get_crtc_state(state, crtc);
14675 ret = PTR_ERR_OR_ZERO(crtc_state);
14676 if (!ret) {
14677 if (!crtc_state->active)
14678 goto out;
14679
14680 crtc_state->mode_changed = true;
14681 ret = drm_atomic_commit(state);
14682 }
14683
14684 if (ret == -EDEADLK) {
14685 drm_atomic_state_clear(state);
14686 drm_modeset_backoff(state->acquire_ctx);
14687 goto retry;
14688 }
14689
14690 out:
14691 drm_atomic_state_put(state);
14692 }
14693
14694 /*
14695 * FIXME: Remove this once i915 is fully DRIVER_ATOMIC by calling
14696 * drm_atomic_helper_legacy_gamma_set() directly.
14697 */
14698 static int intel_atomic_legacy_gamma_set(struct drm_crtc *crtc,
14699 u16 *red, u16 *green, u16 *blue,
14700 uint32_t size)
14701 {
14702 struct drm_device *dev = crtc->dev;
14703 struct drm_mode_config *config = &dev->mode_config;
14704 struct drm_crtc_state *state;
14705 int ret;
14706
14707 ret = drm_atomic_helper_legacy_gamma_set(crtc, red, green, blue, size);
14708 if (ret)
14709 return ret;
14710
14711 /*
14712 * Make sure we update the legacy properties so this works when
14713 * atomic is not enabled.
14714 */
14715
14716 state = crtc->state;
14717
14718 drm_object_property_set_value(&crtc->base,
14719 config->degamma_lut_property,
14720 (state->degamma_lut) ?
14721 state->degamma_lut->base.id : 0);
14722
14723 drm_object_property_set_value(&crtc->base,
14724 config->ctm_property,
14725 (state->ctm) ?
14726 state->ctm->base.id : 0);
14727
14728 drm_object_property_set_value(&crtc->base,
14729 config->gamma_lut_property,
14730 (state->gamma_lut) ?
14731 state->gamma_lut->base.id : 0);
14732
14733 return 0;
14734 }
14735
14736 static const struct drm_crtc_funcs intel_crtc_funcs = {
14737 .gamma_set = intel_atomic_legacy_gamma_set,
14738 .set_config = drm_atomic_helper_set_config,
14739 .set_property = drm_atomic_helper_crtc_set_property,
14740 .destroy = intel_crtc_destroy,
14741 .page_flip = intel_crtc_page_flip,
14742 .atomic_duplicate_state = intel_crtc_duplicate_state,
14743 .atomic_destroy_state = intel_crtc_destroy_state,
14744 .set_crc_source = intel_crtc_set_crc_source,
14745 };
14746
14747 /**
14748 * intel_prepare_plane_fb - Prepare fb for usage on plane
14749 * @plane: drm plane to prepare for
14750 * @fb: framebuffer to prepare for presentation
14751 *
14752 * Prepares a framebuffer for usage on a display plane. Generally this
14753 * involves pinning the underlying object and updating the frontbuffer tracking
14754 * bits. Some older platforms need special physical address handling for
14755 * cursor planes.
14756 *
14757 * Must be called with struct_mutex held.
14758 *
14759 * Returns 0 on success, negative error code on failure.
14760 */
14761 int
14762 intel_prepare_plane_fb(struct drm_plane *plane,
14763 struct drm_plane_state *new_state)
14764 {
14765 struct intel_atomic_state *intel_state =
14766 to_intel_atomic_state(new_state->state);
14767 struct drm_i915_private *dev_priv = to_i915(plane->dev);
14768 struct drm_framebuffer *fb = new_state->fb;
14769 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14770 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
14771 int ret;
14772
14773 if (!obj && !old_obj)
14774 return 0;
14775
14776 if (old_obj) {
14777 struct drm_crtc_state *crtc_state =
14778 drm_atomic_get_existing_crtc_state(new_state->state,
14779 plane->state->crtc);
14780
14781 /* Big Hammer, we also need to ensure that any pending
14782 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
14783 * current scanout is retired before unpinning the old
14784 * framebuffer. Note that we rely on userspace rendering
14785 * into the buffer attached to the pipe they are waiting
14786 * on. If not, userspace generates a GPU hang with IPEHR
14787 * point to the MI_WAIT_FOR_EVENT.
14788 *
14789 * This should only fail upon a hung GPU, in which case we
14790 * can safely continue.
14791 */
14792 if (needs_modeset(crtc_state)) {
14793 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
14794 old_obj->resv, NULL,
14795 false, 0,
14796 GFP_KERNEL);
14797 if (ret < 0)
14798 return ret;
14799 }
14800 }
14801
14802 if (new_state->fence) { /* explicit fencing */
14803 ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
14804 new_state->fence,
14805 I915_FENCE_TIMEOUT,
14806 GFP_KERNEL);
14807 if (ret < 0)
14808 return ret;
14809 }
14810
14811 if (!obj)
14812 return 0;
14813
14814 if (!new_state->fence) { /* implicit fencing */
14815 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
14816 obj->resv, NULL,
14817 false, I915_FENCE_TIMEOUT,
14818 GFP_KERNEL);
14819 if (ret < 0)
14820 return ret;
14821
14822 i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
14823 }
14824
14825 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
14826 INTEL_INFO(dev_priv)->cursor_needs_physical) {
14827 int align = IS_I830(dev_priv) ? 16 * 1024 : 256;
14828 ret = i915_gem_object_attach_phys(obj, align);
14829 if (ret) {
14830 DRM_DEBUG_KMS("failed to attach phys object\n");
14831 return ret;
14832 }
14833 } else {
14834 struct i915_vma *vma;
14835
14836 vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
14837 if (IS_ERR(vma)) {
14838 DRM_DEBUG_KMS("failed to pin object\n");
14839 return PTR_ERR(vma);
14840 }
14841
14842 to_intel_plane_state(new_state)->vma = vma;
14843 }
14844
14845 return 0;
14846 }
14847
14848 /**
14849 * intel_cleanup_plane_fb - Cleans up an fb after plane use
14850 * @plane: drm plane to clean up for
14851 * @fb: old framebuffer that was on plane
14852 *
14853 * Cleans up a framebuffer that has just been removed from a plane.
14854 *
14855 * Must be called with struct_mutex held.
14856 */
14857 void
14858 intel_cleanup_plane_fb(struct drm_plane *plane,
14859 struct drm_plane_state *old_state)
14860 {
14861 struct i915_vma *vma;
14862
14863 /* Should only be called after a successful intel_prepare_plane_fb()! */
14864 vma = fetch_and_zero(&to_intel_plane_state(old_state)->vma);
14865 if (vma)
14866 intel_unpin_fb_vma(vma);
14867 }
14868
14869 int
14870 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
14871 {
14872 int max_scale;
14873 int crtc_clock, cdclk;
14874
14875 if (!intel_crtc || !crtc_state->base.enable)
14876 return DRM_PLANE_HELPER_NO_SCALING;
14877
14878 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
14879 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
14880
14881 if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
14882 return DRM_PLANE_HELPER_NO_SCALING;
14883
14884 /*
14885 * skl max scale is lower of:
14886 * close to 3 but not 3, -1 is for that purpose
14887 * or
14888 * cdclk/crtc_clock
14889 */
14890 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
14891
14892 return max_scale;
14893 }
14894
14895 static int
14896 intel_check_primary_plane(struct drm_plane *plane,
14897 struct intel_crtc_state *crtc_state,
14898 struct intel_plane_state *state)
14899 {
14900 struct drm_i915_private *dev_priv = to_i915(plane->dev);
14901 struct drm_crtc *crtc = state->base.crtc;
14902 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
14903 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
14904 bool can_position = false;
14905 int ret;
14906
14907 if (INTEL_GEN(dev_priv) >= 9) {
14908 /* use scaler when colorkey is not required */
14909 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
14910 min_scale = 1;
14911 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
14912 }
14913 can_position = true;
14914 }
14915
14916 ret = drm_plane_helper_check_state(&state->base,
14917 &state->clip,
14918 min_scale, max_scale,
14919 can_position, true);
14920 if (ret)
14921 return ret;
14922
14923 if (!state->base.fb)
14924 return 0;
14925
14926 if (INTEL_GEN(dev_priv) >= 9) {
14927 ret = skl_check_plane_surface(state);
14928 if (ret)
14929 return ret;
14930 }
14931
14932 return 0;
14933 }
14934
14935 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14936 struct drm_crtc_state *old_crtc_state)
14937 {
14938 struct drm_device *dev = crtc->dev;
14939 struct drm_i915_private *dev_priv = to_i915(dev);
14940 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14941 struct intel_crtc_state *intel_cstate =
14942 to_intel_crtc_state(crtc->state);
14943 struct intel_crtc_state *old_intel_cstate =
14944 to_intel_crtc_state(old_crtc_state);
14945 struct intel_atomic_state *old_intel_state =
14946 to_intel_atomic_state(old_crtc_state->state);
14947 bool modeset = needs_modeset(crtc->state);
14948
14949 /* Perform vblank evasion around commit operation */
14950 intel_pipe_update_start(intel_crtc);
14951
14952 if (modeset)
14953 goto out;
14954
14955 if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
14956 intel_color_set_csc(crtc->state);
14957 intel_color_load_luts(crtc->state);
14958 }
14959
14960 if (intel_cstate->update_pipe)
14961 intel_update_pipe_config(intel_crtc, old_intel_cstate);
14962 else if (INTEL_GEN(dev_priv) >= 9)
14963 skl_detach_scalers(intel_crtc);
14964
14965 out:
14966 if (dev_priv->display.atomic_update_watermarks)
14967 dev_priv->display.atomic_update_watermarks(old_intel_state,
14968 intel_cstate);
14969 }
14970
14971 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14972 struct drm_crtc_state *old_crtc_state)
14973 {
14974 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14975
14976 intel_pipe_update_end(intel_crtc, NULL);
14977 }
14978
14979 /**
14980 * intel_plane_destroy - destroy a plane
14981 * @plane: plane to destroy
14982 *
14983 * Common destruction function for all types of planes (primary, cursor,
14984 * sprite).
14985 */
14986 void intel_plane_destroy(struct drm_plane *plane)
14987 {
14988 drm_plane_cleanup(plane);
14989 kfree(to_intel_plane(plane));
14990 }
14991
14992 const struct drm_plane_funcs intel_plane_funcs = {
14993 .update_plane = drm_atomic_helper_update_plane,
14994 .disable_plane = drm_atomic_helper_disable_plane,
14995 .destroy = intel_plane_destroy,
14996 .set_property = drm_atomic_helper_plane_set_property,
14997 .atomic_get_property = intel_plane_atomic_get_property,
14998 .atomic_set_property = intel_plane_atomic_set_property,
14999 .atomic_duplicate_state = intel_plane_duplicate_state,
15000 .atomic_destroy_state = intel_plane_destroy_state,
15001 };
15002
15003 static int
15004 intel_legacy_cursor_update(struct drm_plane *plane,
15005 struct drm_crtc *crtc,
15006 struct drm_framebuffer *fb,
15007 int crtc_x, int crtc_y,
15008 unsigned int crtc_w, unsigned int crtc_h,
15009 uint32_t src_x, uint32_t src_y,
15010 uint32_t src_w, uint32_t src_h)
15011 {
15012 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
15013 int ret;
15014 struct drm_plane_state *old_plane_state, *new_plane_state;
15015 struct intel_plane *intel_plane = to_intel_plane(plane);
15016 struct drm_framebuffer *old_fb;
15017 struct drm_crtc_state *crtc_state = crtc->state;
15018 struct i915_vma *old_vma;
15019
15020 /*
15021 * When crtc is inactive or there is a modeset pending,
15022 * wait for it to complete in the slowpath
15023 */
15024 if (!crtc_state->active || needs_modeset(crtc_state) ||
15025 to_intel_crtc_state(crtc_state)->update_pipe)
15026 goto slow;
15027
15028 old_plane_state = plane->state;
15029
15030 /*
15031 * If any parameters change that may affect watermarks,
15032 * take the slowpath. Only changing fb or position should be
15033 * in the fastpath.
15034 */
15035 if (old_plane_state->crtc != crtc ||
15036 old_plane_state->src_w != src_w ||
15037 old_plane_state->src_h != src_h ||
15038 old_plane_state->crtc_w != crtc_w ||
15039 old_plane_state->crtc_h != crtc_h ||
15040 !old_plane_state->visible ||
15041 old_plane_state->fb->modifier != fb->modifier)
15042 goto slow;
15043
15044 new_plane_state = intel_plane_duplicate_state(plane);
15045 if (!new_plane_state)
15046 return -ENOMEM;
15047
15048 drm_atomic_set_fb_for_plane(new_plane_state, fb);
15049
15050 new_plane_state->src_x = src_x;
15051 new_plane_state->src_y = src_y;
15052 new_plane_state->src_w = src_w;
15053 new_plane_state->src_h = src_h;
15054 new_plane_state->crtc_x = crtc_x;
15055 new_plane_state->crtc_y = crtc_y;
15056 new_plane_state->crtc_w = crtc_w;
15057 new_plane_state->crtc_h = crtc_h;
15058
15059 ret = intel_plane_atomic_check_with_state(to_intel_crtc_state(crtc->state),
15060 to_intel_plane_state(new_plane_state));
15061 if (ret)
15062 goto out_free;
15063
15064 /* Visibility changed, must take slowpath. */
15065 if (!new_plane_state->visible)
15066 goto slow_free;
15067
15068 ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
15069 if (ret)
15070 goto out_free;
15071
15072 if (INTEL_INFO(dev_priv)->cursor_needs_physical) {
15073 int align = IS_I830(dev_priv) ? 16 * 1024 : 256;
15074
15075 ret = i915_gem_object_attach_phys(intel_fb_obj(fb), align);
15076 if (ret) {
15077 DRM_DEBUG_KMS("failed to attach phys object\n");
15078 goto out_unlock;
15079 }
15080 } else {
15081 struct i915_vma *vma;
15082
15083 vma = intel_pin_and_fence_fb_obj(fb, new_plane_state->rotation);
15084 if (IS_ERR(vma)) {
15085 DRM_DEBUG_KMS("failed to pin object\n");
15086
15087 ret = PTR_ERR(vma);
15088 goto out_unlock;
15089 }
15090
15091 to_intel_plane_state(new_plane_state)->vma = vma;
15092 }
15093
15094 old_fb = old_plane_state->fb;
15095 old_vma = to_intel_plane_state(old_plane_state)->vma;
15096
15097 i915_gem_track_fb(intel_fb_obj(old_fb), intel_fb_obj(fb),
15098 intel_plane->frontbuffer_bit);
15099
15100 /* Swap plane state */
15101 new_plane_state->fence = old_plane_state->fence;
15102 *to_intel_plane_state(old_plane_state) = *to_intel_plane_state(new_plane_state);
15103 new_plane_state->fence = NULL;
15104 new_plane_state->fb = old_fb;
15105 to_intel_plane_state(new_plane_state)->vma = old_vma;
15106
15107 intel_plane->update_plane(plane,
15108 to_intel_crtc_state(crtc->state),
15109 to_intel_plane_state(plane->state));
15110
15111 intel_cleanup_plane_fb(plane, new_plane_state);
15112
15113 out_unlock:
15114 mutex_unlock(&dev_priv->drm.struct_mutex);
15115 out_free:
15116 intel_plane_destroy_state(plane, new_plane_state);
15117 return ret;
15118
15119 slow_free:
15120 intel_plane_destroy_state(plane, new_plane_state);
15121 slow:
15122 return drm_atomic_helper_update_plane(plane, crtc, fb,
15123 crtc_x, crtc_y, crtc_w, crtc_h,
15124 src_x, src_y, src_w, src_h);
15125 }
15126
15127 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
15128 .update_plane = intel_legacy_cursor_update,
15129 .disable_plane = drm_atomic_helper_disable_plane,
15130 .destroy = intel_plane_destroy,
15131 .set_property = drm_atomic_helper_plane_set_property,
15132 .atomic_get_property = intel_plane_atomic_get_property,
15133 .atomic_set_property = intel_plane_atomic_set_property,
15134 .atomic_duplicate_state = intel_plane_duplicate_state,
15135 .atomic_destroy_state = intel_plane_destroy_state,
15136 };
15137
15138 static struct intel_plane *
15139 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
15140 {
15141 struct intel_plane *primary = NULL;
15142 struct intel_plane_state *state = NULL;
15143 const uint32_t *intel_primary_formats;
15144 unsigned int supported_rotations;
15145 unsigned int num_formats;
15146 int ret;
15147
15148 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
15149 if (!primary) {
15150 ret = -ENOMEM;
15151 goto fail;
15152 }
15153
15154 state = intel_create_plane_state(&primary->base);
15155 if (!state) {
15156 ret = -ENOMEM;
15157 goto fail;
15158 }
15159
15160 primary->base.state = &state->base;
15161
15162 primary->can_scale = false;
15163 primary->max_downscale = 1;
15164 if (INTEL_GEN(dev_priv) >= 9) {
15165 primary->can_scale = true;
15166 state->scaler_id = -1;
15167 }
15168 primary->pipe = pipe;
15169 /*
15170 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
15171 * port is hooked to pipe B. Hence we want plane A feeding pipe B.
15172 */
15173 if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
15174 primary->plane = (enum plane) !pipe;
15175 else
15176 primary->plane = (enum plane) pipe;
15177 primary->id = PLANE_PRIMARY;
15178 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
15179 primary->check_plane = intel_check_primary_plane;
15180
15181 if (INTEL_GEN(dev_priv) >= 9) {
15182 intel_primary_formats = skl_primary_formats;
15183 num_formats = ARRAY_SIZE(skl_primary_formats);
15184
15185 primary->update_plane = skylake_update_primary_plane;
15186 primary->disable_plane = skylake_disable_primary_plane;
15187 } else if (HAS_PCH_SPLIT(dev_priv)) {
15188 intel_primary_formats = i965_primary_formats;
15189 num_formats = ARRAY_SIZE(i965_primary_formats);
15190
15191 primary->update_plane = ironlake_update_primary_plane;
15192 primary->disable_plane = i9xx_disable_primary_plane;
15193 } else if (INTEL_GEN(dev_priv) >= 4) {
15194 intel_primary_formats = i965_primary_formats;
15195 num_formats = ARRAY_SIZE(i965_primary_formats);
15196
15197 primary->update_plane = i9xx_update_primary_plane;
15198 primary->disable_plane = i9xx_disable_primary_plane;
15199 } else {
15200 intel_primary_formats = i8xx_primary_formats;
15201 num_formats = ARRAY_SIZE(i8xx_primary_formats);
15202
15203 primary->update_plane = i9xx_update_primary_plane;
15204 primary->disable_plane = i9xx_disable_primary_plane;
15205 }
15206
15207 if (INTEL_GEN(dev_priv) >= 9)
15208 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
15209 0, &intel_plane_funcs,
15210 intel_primary_formats, num_formats,
15211 DRM_PLANE_TYPE_PRIMARY,
15212 "plane 1%c", pipe_name(pipe));
15213 else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
15214 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
15215 0, &intel_plane_funcs,
15216 intel_primary_formats, num_formats,
15217 DRM_PLANE_TYPE_PRIMARY,
15218 "primary %c", pipe_name(pipe));
15219 else
15220 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
15221 0, &intel_plane_funcs,
15222 intel_primary_formats, num_formats,
15223 DRM_PLANE_TYPE_PRIMARY,
15224 "plane %c", plane_name(primary->plane));
15225 if (ret)
15226 goto fail;
15227
15228 if (INTEL_GEN(dev_priv) >= 9) {
15229 supported_rotations =
15230 DRM_ROTATE_0 | DRM_ROTATE_90 |
15231 DRM_ROTATE_180 | DRM_ROTATE_270;
15232 } else if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
15233 supported_rotations =
15234 DRM_ROTATE_0 | DRM_ROTATE_180 |
15235 DRM_REFLECT_X;
15236 } else if (INTEL_GEN(dev_priv) >= 4) {
15237 supported_rotations =
15238 DRM_ROTATE_0 | DRM_ROTATE_180;
15239 } else {
15240 supported_rotations = DRM_ROTATE_0;
15241 }
15242
15243 if (INTEL_GEN(dev_priv) >= 4)
15244 drm_plane_create_rotation_property(&primary->base,
15245 DRM_ROTATE_0,
15246 supported_rotations);
15247
15248 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
15249
15250 return primary;
15251
15252 fail:
15253 kfree(state);
15254 kfree(primary);
15255
15256 return ERR_PTR(ret);
15257 }
15258
15259 static int
15260 intel_check_cursor_plane(struct drm_plane *plane,
15261 struct intel_crtc_state *crtc_state,
15262 struct intel_plane_state *state)
15263 {
15264 struct drm_framebuffer *fb = state->base.fb;
15265 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15266 enum pipe pipe = to_intel_plane(plane)->pipe;
15267 unsigned stride;
15268 int ret;
15269
15270 ret = drm_plane_helper_check_state(&state->base,
15271 &state->clip,
15272 DRM_PLANE_HELPER_NO_SCALING,
15273 DRM_PLANE_HELPER_NO_SCALING,
15274 true, true);
15275 if (ret)
15276 return ret;
15277
15278 /* if we want to turn off the cursor ignore width and height */
15279 if (!obj)
15280 return 0;
15281
15282 /* Check for which cursor types we support */
15283 if (!cursor_size_ok(to_i915(plane->dev), state->base.crtc_w,
15284 state->base.crtc_h)) {
15285 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
15286 state->base.crtc_w, state->base.crtc_h);
15287 return -EINVAL;
15288 }
15289
15290 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
15291 if (obj->base.size < stride * state->base.crtc_h) {
15292 DRM_DEBUG_KMS("buffer is too small\n");
15293 return -ENOMEM;
15294 }
15295
15296 if (fb->modifier != DRM_FORMAT_MOD_NONE) {
15297 DRM_DEBUG_KMS("cursor cannot be tiled\n");
15298 return -EINVAL;
15299 }
15300
15301 /*
15302 * There's something wrong with the cursor on CHV pipe C.
15303 * If it straddles the left edge of the screen then
15304 * moving it away from the edge or disabling it often
15305 * results in a pipe underrun, and often that can lead to
15306 * dead pipe (constant underrun reported, and it scans
15307 * out just a solid color). To recover from that, the
15308 * display power well must be turned off and on again.
15309 * Refuse the put the cursor into that compromised position.
15310 */
15311 if (IS_CHERRYVIEW(to_i915(plane->dev)) && pipe == PIPE_C &&
15312 state->base.visible && state->base.crtc_x < 0) {
15313 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
15314 return -EINVAL;
15315 }
15316
15317 return 0;
15318 }
15319
15320 static void
15321 intel_disable_cursor_plane(struct drm_plane *plane,
15322 struct drm_crtc *crtc)
15323 {
15324 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15325
15326 intel_crtc->cursor_addr = 0;
15327 intel_crtc_update_cursor(crtc, NULL);
15328 }
15329
15330 static void
15331 intel_update_cursor_plane(struct drm_plane *plane,
15332 const struct intel_crtc_state *crtc_state,
15333 const struct intel_plane_state *state)
15334 {
15335 struct drm_crtc *crtc = crtc_state->base.crtc;
15336 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15337 struct drm_i915_private *dev_priv = to_i915(plane->dev);
15338 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
15339 uint32_t addr;
15340
15341 if (!obj)
15342 addr = 0;
15343 else if (!INTEL_INFO(dev_priv)->cursor_needs_physical)
15344 addr = intel_plane_ggtt_offset(state);
15345 else
15346 addr = obj->phys_handle->busaddr;
15347
15348 intel_crtc->cursor_addr = addr;
15349 intel_crtc_update_cursor(crtc, state);
15350 }
15351
15352 static struct intel_plane *
15353 intel_cursor_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
15354 {
15355 struct intel_plane *cursor = NULL;
15356 struct intel_plane_state *state = NULL;
15357 int ret;
15358
15359 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
15360 if (!cursor) {
15361 ret = -ENOMEM;
15362 goto fail;
15363 }
15364
15365 state = intel_create_plane_state(&cursor->base);
15366 if (!state) {
15367 ret = -ENOMEM;
15368 goto fail;
15369 }
15370
15371 cursor->base.state = &state->base;
15372
15373 cursor->can_scale = false;
15374 cursor->max_downscale = 1;
15375 cursor->pipe = pipe;
15376 cursor->plane = pipe;
15377 cursor->id = PLANE_CURSOR;
15378 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
15379 cursor->check_plane = intel_check_cursor_plane;
15380 cursor->update_plane = intel_update_cursor_plane;
15381 cursor->disable_plane = intel_disable_cursor_plane;
15382
15383 ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
15384 0, &intel_cursor_plane_funcs,
15385 intel_cursor_formats,
15386 ARRAY_SIZE(intel_cursor_formats),
15387 DRM_PLANE_TYPE_CURSOR,
15388 "cursor %c", pipe_name(pipe));
15389 if (ret)
15390 goto fail;
15391
15392 if (INTEL_GEN(dev_priv) >= 4)
15393 drm_plane_create_rotation_property(&cursor->base,
15394 DRM_ROTATE_0,
15395 DRM_ROTATE_0 |
15396 DRM_ROTATE_180);
15397
15398 if (INTEL_GEN(dev_priv) >= 9)
15399 state->scaler_id = -1;
15400
15401 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
15402
15403 return cursor;
15404
15405 fail:
15406 kfree(state);
15407 kfree(cursor);
15408
15409 return ERR_PTR(ret);
15410 }
15411
15412 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
15413 struct intel_crtc_state *crtc_state)
15414 {
15415 struct intel_crtc_scaler_state *scaler_state =
15416 &crtc_state->scaler_state;
15417 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
15418 int i;
15419
15420 crtc->num_scalers = dev_priv->info.num_scalers[crtc->pipe];
15421 if (!crtc->num_scalers)
15422 return;
15423
15424 for (i = 0; i < crtc->num_scalers; i++) {
15425 struct intel_scaler *scaler = &scaler_state->scalers[i];
15426
15427 scaler->in_use = 0;
15428 scaler->mode = PS_SCALER_MODE_DYN;
15429 }
15430
15431 scaler_state->scaler_id = -1;
15432 }
15433
15434 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
15435 {
15436 struct intel_crtc *intel_crtc;
15437 struct intel_crtc_state *crtc_state = NULL;
15438 struct intel_plane *primary = NULL;
15439 struct intel_plane *cursor = NULL;
15440 int sprite, ret;
15441
15442 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
15443 if (!intel_crtc)
15444 return -ENOMEM;
15445
15446 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
15447 if (!crtc_state) {
15448 ret = -ENOMEM;
15449 goto fail;
15450 }
15451 intel_crtc->config = crtc_state;
15452 intel_crtc->base.state = &crtc_state->base;
15453 crtc_state->base.crtc = &intel_crtc->base;
15454
15455 primary = intel_primary_plane_create(dev_priv, pipe);
15456 if (IS_ERR(primary)) {
15457 ret = PTR_ERR(primary);
15458 goto fail;
15459 }
15460 intel_crtc->plane_ids_mask |= BIT(primary->id);
15461
15462 for_each_sprite(dev_priv, pipe, sprite) {
15463 struct intel_plane *plane;
15464
15465 plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
15466 if (IS_ERR(plane)) {
15467 ret = PTR_ERR(plane);
15468 goto fail;
15469 }
15470 intel_crtc->plane_ids_mask |= BIT(plane->id);
15471 }
15472
15473 cursor = intel_cursor_plane_create(dev_priv, pipe);
15474 if (IS_ERR(cursor)) {
15475 ret = PTR_ERR(cursor);
15476 goto fail;
15477 }
15478 intel_crtc->plane_ids_mask |= BIT(cursor->id);
15479
15480 ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base,
15481 &primary->base, &cursor->base,
15482 &intel_crtc_funcs,
15483 "pipe %c", pipe_name(pipe));
15484 if (ret)
15485 goto fail;
15486
15487 intel_crtc->pipe = pipe;
15488 intel_crtc->plane = primary->plane;
15489
15490 intel_crtc->cursor_base = ~0;
15491 intel_crtc->cursor_cntl = ~0;
15492 intel_crtc->cursor_size = ~0;
15493
15494 intel_crtc->wm.cxsr_allowed = true;
15495
15496 /* initialize shared scalers */
15497 intel_crtc_init_scalers(intel_crtc, crtc_state);
15498
15499 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
15500 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
15501 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = intel_crtc;
15502 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = intel_crtc;
15503
15504 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
15505
15506 intel_color_init(&intel_crtc->base);
15507
15508 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
15509
15510 return 0;
15511
15512 fail:
15513 /*
15514 * drm_mode_config_cleanup() will free up any
15515 * crtcs/planes already initialized.
15516 */
15517 kfree(crtc_state);
15518 kfree(intel_crtc);
15519
15520 return ret;
15521 }
15522
15523 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
15524 {
15525 struct drm_encoder *encoder = connector->base.encoder;
15526 struct drm_device *dev = connector->base.dev;
15527
15528 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
15529
15530 if (!encoder || WARN_ON(!encoder->crtc))
15531 return INVALID_PIPE;
15532
15533 return to_intel_crtc(encoder->crtc)->pipe;
15534 }
15535
15536 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
15537 struct drm_file *file)
15538 {
15539 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
15540 struct drm_crtc *drmmode_crtc;
15541 struct intel_crtc *crtc;
15542
15543 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
15544 if (!drmmode_crtc)
15545 return -ENOENT;
15546
15547 crtc = to_intel_crtc(drmmode_crtc);
15548 pipe_from_crtc_id->pipe = crtc->pipe;
15549
15550 return 0;
15551 }
15552
15553 static int intel_encoder_clones(struct intel_encoder *encoder)
15554 {
15555 struct drm_device *dev = encoder->base.dev;
15556 struct intel_encoder *source_encoder;
15557 int index_mask = 0;
15558 int entry = 0;
15559
15560 for_each_intel_encoder(dev, source_encoder) {
15561 if (encoders_cloneable(encoder, source_encoder))
15562 index_mask |= (1 << entry);
15563
15564 entry++;
15565 }
15566
15567 return index_mask;
15568 }
15569
15570 static bool has_edp_a(struct drm_i915_private *dev_priv)
15571 {
15572 if (!IS_MOBILE(dev_priv))
15573 return false;
15574
15575 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
15576 return false;
15577
15578 if (IS_GEN5(dev_priv) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
15579 return false;
15580
15581 return true;
15582 }
15583
15584 static bool intel_crt_present(struct drm_i915_private *dev_priv)
15585 {
15586 if (INTEL_GEN(dev_priv) >= 9)
15587 return false;
15588
15589 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
15590 return false;
15591
15592 if (IS_CHERRYVIEW(dev_priv))
15593 return false;
15594
15595 if (HAS_PCH_LPT_H(dev_priv) &&
15596 I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
15597 return false;
15598
15599 /* DDI E can't be used if DDI A requires 4 lanes */
15600 if (HAS_DDI(dev_priv) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
15601 return false;
15602
15603 if (!dev_priv->vbt.int_crt_support)
15604 return false;
15605
15606 return true;
15607 }
15608
15609 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
15610 {
15611 int pps_num;
15612 int pps_idx;
15613
15614 if (HAS_DDI(dev_priv))
15615 return;
15616 /*
15617 * This w/a is needed at least on CPT/PPT, but to be sure apply it
15618 * everywhere where registers can be write protected.
15619 */
15620 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15621 pps_num = 2;
15622 else
15623 pps_num = 1;
15624
15625 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
15626 u32 val = I915_READ(PP_CONTROL(pps_idx));
15627
15628 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
15629 I915_WRITE(PP_CONTROL(pps_idx), val);
15630 }
15631 }
15632
15633 static void intel_pps_init(struct drm_i915_private *dev_priv)
15634 {
15635 if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
15636 dev_priv->pps_mmio_base = PCH_PPS_BASE;
15637 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15638 dev_priv->pps_mmio_base = VLV_PPS_BASE;
15639 else
15640 dev_priv->pps_mmio_base = PPS_BASE;
15641
15642 intel_pps_unlock_regs_wa(dev_priv);
15643 }
15644
15645 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
15646 {
15647 struct intel_encoder *encoder;
15648 bool dpd_is_edp = false;
15649
15650 intel_pps_init(dev_priv);
15651
15652 /*
15653 * intel_edp_init_connector() depends on this completing first, to
15654 * prevent the registeration of both eDP and LVDS and the incorrect
15655 * sharing of the PPS.
15656 */
15657 intel_lvds_init(dev_priv);
15658
15659 if (intel_crt_present(dev_priv))
15660 intel_crt_init(dev_priv);
15661
15662 if (IS_GEN9_LP(dev_priv)) {
15663 /*
15664 * FIXME: Broxton doesn't support port detection via the
15665 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
15666 * detect the ports.
15667 */
15668 intel_ddi_init(dev_priv, PORT_A);
15669 intel_ddi_init(dev_priv, PORT_B);
15670 intel_ddi_init(dev_priv, PORT_C);
15671
15672 intel_dsi_init(dev_priv);
15673 } else if (HAS_DDI(dev_priv)) {
15674 int found;
15675
15676 /*
15677 * Haswell uses DDI functions to detect digital outputs.
15678 * On SKL pre-D0 the strap isn't connected, so we assume
15679 * it's there.
15680 */
15681 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
15682 /* WaIgnoreDDIAStrap: skl */
15683 if (found || IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
15684 intel_ddi_init(dev_priv, PORT_A);
15685
15686 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
15687 * register */
15688 found = I915_READ(SFUSE_STRAP);
15689
15690 if (found & SFUSE_STRAP_DDIB_DETECTED)
15691 intel_ddi_init(dev_priv, PORT_B);
15692 if (found & SFUSE_STRAP_DDIC_DETECTED)
15693 intel_ddi_init(dev_priv, PORT_C);
15694 if (found & SFUSE_STRAP_DDID_DETECTED)
15695 intel_ddi_init(dev_priv, PORT_D);
15696 /*
15697 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
15698 */
15699 if ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
15700 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
15701 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
15702 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
15703 intel_ddi_init(dev_priv, PORT_E);
15704
15705 } else if (HAS_PCH_SPLIT(dev_priv)) {
15706 int found;
15707 dpd_is_edp = intel_dp_is_edp(dev_priv, PORT_D);
15708
15709 if (has_edp_a(dev_priv))
15710 intel_dp_init(dev_priv, DP_A, PORT_A);
15711
15712 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
15713 /* PCH SDVOB multiplex with HDMIB */
15714 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
15715 if (!found)
15716 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
15717 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
15718 intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
15719 }
15720
15721 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
15722 intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
15723
15724 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
15725 intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
15726
15727 if (I915_READ(PCH_DP_C) & DP_DETECTED)
15728 intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
15729
15730 if (I915_READ(PCH_DP_D) & DP_DETECTED)
15731 intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
15732 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15733 bool has_edp, has_port;
15734
15735 /*
15736 * The DP_DETECTED bit is the latched state of the DDC
15737 * SDA pin at boot. However since eDP doesn't require DDC
15738 * (no way to plug in a DP->HDMI dongle) the DDC pins for
15739 * eDP ports may have been muxed to an alternate function.
15740 * Thus we can't rely on the DP_DETECTED bit alone to detect
15741 * eDP ports. Consult the VBT as well as DP_DETECTED to
15742 * detect eDP ports.
15743 *
15744 * Sadly the straps seem to be missing sometimes even for HDMI
15745 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
15746 * and VBT for the presence of the port. Additionally we can't
15747 * trust the port type the VBT declares as we've seen at least
15748 * HDMI ports that the VBT claim are DP or eDP.
15749 */
15750 has_edp = intel_dp_is_edp(dev_priv, PORT_B);
15751 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
15752 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
15753 has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
15754 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
15755 intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
15756
15757 has_edp = intel_dp_is_edp(dev_priv, PORT_C);
15758 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
15759 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
15760 has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
15761 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
15762 intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
15763
15764 if (IS_CHERRYVIEW(dev_priv)) {
15765 /*
15766 * eDP not supported on port D,
15767 * so no need to worry about it
15768 */
15769 has_port = intel_bios_is_port_present(dev_priv, PORT_D);
15770 if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
15771 intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
15772 if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
15773 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
15774 }
15775
15776 intel_dsi_init(dev_priv);
15777 } else if (!IS_GEN2(dev_priv) && !IS_PINEVIEW(dev_priv)) {
15778 bool found = false;
15779
15780 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15781 DRM_DEBUG_KMS("probing SDVOB\n");
15782 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
15783 if (!found && IS_G4X(dev_priv)) {
15784 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
15785 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
15786 }
15787
15788 if (!found && IS_G4X(dev_priv))
15789 intel_dp_init(dev_priv, DP_B, PORT_B);
15790 }
15791
15792 /* Before G4X SDVOC doesn't have its own detect register */
15793
15794 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15795 DRM_DEBUG_KMS("probing SDVOC\n");
15796 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
15797 }
15798
15799 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
15800
15801 if (IS_G4X(dev_priv)) {
15802 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
15803 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
15804 }
15805 if (IS_G4X(dev_priv))
15806 intel_dp_init(dev_priv, DP_C, PORT_C);
15807 }
15808
15809 if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
15810 intel_dp_init(dev_priv, DP_D, PORT_D);
15811 } else if (IS_GEN2(dev_priv))
15812 intel_dvo_init(dev_priv);
15813
15814 if (SUPPORTS_TV(dev_priv))
15815 intel_tv_init(dev_priv);
15816
15817 intel_psr_init(dev_priv);
15818
15819 for_each_intel_encoder(&dev_priv->drm, encoder) {
15820 encoder->base.possible_crtcs = encoder->crtc_mask;
15821 encoder->base.possible_clones =
15822 intel_encoder_clones(encoder);
15823 }
15824
15825 intel_init_pch_refclk(dev_priv);
15826
15827 drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
15828 }
15829
15830 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
15831 {
15832 struct drm_device *dev = fb->dev;
15833 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15834
15835 drm_framebuffer_cleanup(fb);
15836 mutex_lock(&dev->struct_mutex);
15837 WARN_ON(!intel_fb->obj->framebuffer_references--);
15838 i915_gem_object_put(intel_fb->obj);
15839 mutex_unlock(&dev->struct_mutex);
15840 kfree(intel_fb);
15841 }
15842
15843 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
15844 struct drm_file *file,
15845 unsigned int *handle)
15846 {
15847 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15848 struct drm_i915_gem_object *obj = intel_fb->obj;
15849
15850 if (obj->userptr.mm) {
15851 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
15852 return -EINVAL;
15853 }
15854
15855 return drm_gem_handle_create(file, &obj->base, handle);
15856 }
15857
15858 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
15859 struct drm_file *file,
15860 unsigned flags, unsigned color,
15861 struct drm_clip_rect *clips,
15862 unsigned num_clips)
15863 {
15864 struct drm_device *dev = fb->dev;
15865 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15866 struct drm_i915_gem_object *obj = intel_fb->obj;
15867
15868 mutex_lock(&dev->struct_mutex);
15869 if (obj->pin_display && obj->cache_dirty)
15870 i915_gem_clflush_object(obj, true);
15871 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
15872 mutex_unlock(&dev->struct_mutex);
15873
15874 return 0;
15875 }
15876
15877 static const struct drm_framebuffer_funcs intel_fb_funcs = {
15878 .destroy = intel_user_framebuffer_destroy,
15879 .create_handle = intel_user_framebuffer_create_handle,
15880 .dirty = intel_user_framebuffer_dirty,
15881 };
15882
15883 static
15884 u32 intel_fb_pitch_limit(struct drm_i915_private *dev_priv,
15885 uint64_t fb_modifier, uint32_t pixel_format)
15886 {
15887 u32 gen = INTEL_INFO(dev_priv)->gen;
15888
15889 if (gen >= 9) {
15890 int cpp = drm_format_plane_cpp(pixel_format, 0);
15891
15892 /* "The stride in bytes must not exceed the of the size of 8K
15893 * pixels and 32K bytes."
15894 */
15895 return min(8192 * cpp, 32768);
15896 } else if (gen >= 5 && !IS_VALLEYVIEW(dev_priv) &&
15897 !IS_CHERRYVIEW(dev_priv)) {
15898 return 32*1024;
15899 } else if (gen >= 4) {
15900 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15901 return 16*1024;
15902 else
15903 return 32*1024;
15904 } else if (gen >= 3) {
15905 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15906 return 8*1024;
15907 else
15908 return 16*1024;
15909 } else {
15910 /* XXX DSPC is limited to 4k tiled */
15911 return 8*1024;
15912 }
15913 }
15914
15915 static int intel_framebuffer_init(struct drm_device *dev,
15916 struct intel_framebuffer *intel_fb,
15917 struct drm_mode_fb_cmd2 *mode_cmd,
15918 struct drm_i915_gem_object *obj)
15919 {
15920 struct drm_i915_private *dev_priv = to_i915(dev);
15921 unsigned int tiling = i915_gem_object_get_tiling(obj);
15922 int ret;
15923 u32 pitch_limit, stride_alignment;
15924 struct drm_format_name_buf format_name;
15925
15926 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
15927
15928 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
15929 /*
15930 * If there's a fence, enforce that
15931 * the fb modifier and tiling mode match.
15932 */
15933 if (tiling != I915_TILING_NONE &&
15934 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15935 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
15936 return -EINVAL;
15937 }
15938 } else {
15939 if (tiling == I915_TILING_X) {
15940 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
15941 } else if (tiling == I915_TILING_Y) {
15942 DRM_DEBUG("No Y tiling for legacy addfb\n");
15943 return -EINVAL;
15944 }
15945 }
15946
15947 /* Passed in modifier sanity checking. */
15948 switch (mode_cmd->modifier[0]) {
15949 case I915_FORMAT_MOD_Y_TILED:
15950 case I915_FORMAT_MOD_Yf_TILED:
15951 if (INTEL_GEN(dev_priv) < 9) {
15952 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
15953 mode_cmd->modifier[0]);
15954 return -EINVAL;
15955 }
15956 case DRM_FORMAT_MOD_NONE:
15957 case I915_FORMAT_MOD_X_TILED:
15958 break;
15959 default:
15960 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
15961 mode_cmd->modifier[0]);
15962 return -EINVAL;
15963 }
15964
15965 /*
15966 * gen2/3 display engine uses the fence if present,
15967 * so the tiling mode must match the fb modifier exactly.
15968 */
15969 if (INTEL_INFO(dev_priv)->gen < 4 &&
15970 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15971 DRM_DEBUG("tiling_mode must match fb modifier exactly on gen2/3\n");
15972 return -EINVAL;
15973 }
15974
15975 stride_alignment = intel_fb_stride_alignment(dev_priv,
15976 mode_cmd->modifier[0],
15977 mode_cmd->pixel_format);
15978 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
15979 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
15980 mode_cmd->pitches[0], stride_alignment);
15981 return -EINVAL;
15982 }
15983
15984 pitch_limit = intel_fb_pitch_limit(dev_priv, mode_cmd->modifier[0],
15985 mode_cmd->pixel_format);
15986 if (mode_cmd->pitches[0] > pitch_limit) {
15987 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
15988 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
15989 "tiled" : "linear",
15990 mode_cmd->pitches[0], pitch_limit);
15991 return -EINVAL;
15992 }
15993
15994 /*
15995 * If there's a fence, enforce that
15996 * the fb pitch and fence stride match.
15997 */
15998 if (tiling != I915_TILING_NONE &&
15999 mode_cmd->pitches[0] != i915_gem_object_get_stride(obj)) {
16000 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
16001 mode_cmd->pitches[0],
16002 i915_gem_object_get_stride(obj));
16003 return -EINVAL;
16004 }
16005
16006 /* Reject formats not supported by any plane early. */
16007 switch (mode_cmd->pixel_format) {
16008 case DRM_FORMAT_C8:
16009 case DRM_FORMAT_RGB565:
16010 case DRM_FORMAT_XRGB8888:
16011 case DRM_FORMAT_ARGB8888:
16012 break;
16013 case DRM_FORMAT_XRGB1555:
16014 if (INTEL_GEN(dev_priv) > 3) {
16015 DRM_DEBUG("unsupported pixel format: %s\n",
16016 drm_get_format_name(mode_cmd->pixel_format, &format_name));
16017 return -EINVAL;
16018 }
16019 break;
16020 case DRM_FORMAT_ABGR8888:
16021 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
16022 INTEL_GEN(dev_priv) < 9) {
16023 DRM_DEBUG("unsupported pixel format: %s\n",
16024 drm_get_format_name(mode_cmd->pixel_format, &format_name));
16025 return -EINVAL;
16026 }
16027 break;
16028 case DRM_FORMAT_XBGR8888:
16029 case DRM_FORMAT_XRGB2101010:
16030 case DRM_FORMAT_XBGR2101010:
16031 if (INTEL_GEN(dev_priv) < 4) {
16032 DRM_DEBUG("unsupported pixel format: %s\n",
16033 drm_get_format_name(mode_cmd->pixel_format, &format_name));
16034 return -EINVAL;
16035 }
16036 break;
16037 case DRM_FORMAT_ABGR2101010:
16038 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
16039 DRM_DEBUG("unsupported pixel format: %s\n",
16040 drm_get_format_name(mode_cmd->pixel_format, &format_name));
16041 return -EINVAL;
16042 }
16043 break;
16044 case DRM_FORMAT_YUYV:
16045 case DRM_FORMAT_UYVY:
16046 case DRM_FORMAT_YVYU:
16047 case DRM_FORMAT_VYUY:
16048 if (INTEL_GEN(dev_priv) < 5) {
16049 DRM_DEBUG("unsupported pixel format: %s\n",
16050 drm_get_format_name(mode_cmd->pixel_format, &format_name));
16051 return -EINVAL;
16052 }
16053 break;
16054 default:
16055 DRM_DEBUG("unsupported pixel format: %s\n",
16056 drm_get_format_name(mode_cmd->pixel_format, &format_name));
16057 return -EINVAL;
16058 }
16059
16060 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
16061 if (mode_cmd->offsets[0] != 0)
16062 return -EINVAL;
16063
16064 drm_helper_mode_fill_fb_struct(dev, &intel_fb->base, mode_cmd);
16065 intel_fb->obj = obj;
16066
16067 ret = intel_fill_fb_info(dev_priv, &intel_fb->base);
16068 if (ret)
16069 return ret;
16070
16071 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
16072 if (ret) {
16073 DRM_ERROR("framebuffer init failed %d\n", ret);
16074 return ret;
16075 }
16076
16077 intel_fb->obj->framebuffer_references++;
16078
16079 return 0;
16080 }
16081
16082 static struct drm_framebuffer *
16083 intel_user_framebuffer_create(struct drm_device *dev,
16084 struct drm_file *filp,
16085 const struct drm_mode_fb_cmd2 *user_mode_cmd)
16086 {
16087 struct drm_framebuffer *fb;
16088 struct drm_i915_gem_object *obj;
16089 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
16090
16091 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
16092 if (!obj)
16093 return ERR_PTR(-ENOENT);
16094
16095 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
16096 if (IS_ERR(fb))
16097 i915_gem_object_put(obj);
16098
16099 return fb;
16100 }
16101
16102 static void intel_atomic_state_free(struct drm_atomic_state *state)
16103 {
16104 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
16105
16106 drm_atomic_state_default_release(state);
16107
16108 i915_sw_fence_fini(&intel_state->commit_ready);
16109
16110 kfree(state);
16111 }
16112
16113 static const struct drm_mode_config_funcs intel_mode_funcs = {
16114 .fb_create = intel_user_framebuffer_create,
16115 .output_poll_changed = intel_fbdev_output_poll_changed,
16116 .atomic_check = intel_atomic_check,
16117 .atomic_commit = intel_atomic_commit,
16118 .atomic_state_alloc = intel_atomic_state_alloc,
16119 .atomic_state_clear = intel_atomic_state_clear,
16120 .atomic_state_free = intel_atomic_state_free,
16121 };
16122
16123 /**
16124 * intel_init_display_hooks - initialize the display modesetting hooks
16125 * @dev_priv: device private
16126 */
16127 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
16128 {
16129 if (INTEL_INFO(dev_priv)->gen >= 9) {
16130 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
16131 dev_priv->display.get_initial_plane_config =
16132 skylake_get_initial_plane_config;
16133 dev_priv->display.crtc_compute_clock =
16134 haswell_crtc_compute_clock;
16135 dev_priv->display.crtc_enable = haswell_crtc_enable;
16136 dev_priv->display.crtc_disable = haswell_crtc_disable;
16137 } else if (HAS_DDI(dev_priv)) {
16138 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
16139 dev_priv->display.get_initial_plane_config =
16140 ironlake_get_initial_plane_config;
16141 dev_priv->display.crtc_compute_clock =
16142 haswell_crtc_compute_clock;
16143 dev_priv->display.crtc_enable = haswell_crtc_enable;
16144 dev_priv->display.crtc_disable = haswell_crtc_disable;
16145 } else if (HAS_PCH_SPLIT(dev_priv)) {
16146 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
16147 dev_priv->display.get_initial_plane_config =
16148 ironlake_get_initial_plane_config;
16149 dev_priv->display.crtc_compute_clock =
16150 ironlake_crtc_compute_clock;
16151 dev_priv->display.crtc_enable = ironlake_crtc_enable;
16152 dev_priv->display.crtc_disable = ironlake_crtc_disable;
16153 } else if (IS_CHERRYVIEW(dev_priv)) {
16154 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16155 dev_priv->display.get_initial_plane_config =
16156 i9xx_get_initial_plane_config;
16157 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
16158 dev_priv->display.crtc_enable = valleyview_crtc_enable;
16159 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16160 } else if (IS_VALLEYVIEW(dev_priv)) {
16161 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16162 dev_priv->display.get_initial_plane_config =
16163 i9xx_get_initial_plane_config;
16164 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
16165 dev_priv->display.crtc_enable = valleyview_crtc_enable;
16166 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16167 } else if (IS_G4X(dev_priv)) {
16168 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16169 dev_priv->display.get_initial_plane_config =
16170 i9xx_get_initial_plane_config;
16171 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
16172 dev_priv->display.crtc_enable = i9xx_crtc_enable;
16173 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16174 } else if (IS_PINEVIEW(dev_priv)) {
16175 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16176 dev_priv->display.get_initial_plane_config =
16177 i9xx_get_initial_plane_config;
16178 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
16179 dev_priv->display.crtc_enable = i9xx_crtc_enable;
16180 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16181 } else if (!IS_GEN2(dev_priv)) {
16182 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16183 dev_priv->display.get_initial_plane_config =
16184 i9xx_get_initial_plane_config;
16185 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
16186 dev_priv->display.crtc_enable = i9xx_crtc_enable;
16187 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16188 } else {
16189 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16190 dev_priv->display.get_initial_plane_config =
16191 i9xx_get_initial_plane_config;
16192 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
16193 dev_priv->display.crtc_enable = i9xx_crtc_enable;
16194 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16195 }
16196
16197 /* Returns the core display clock speed */
16198 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
16199 dev_priv->display.get_display_clock_speed =
16200 skylake_get_display_clock_speed;
16201 else if (IS_GEN9_LP(dev_priv))
16202 dev_priv->display.get_display_clock_speed =
16203 broxton_get_display_clock_speed;
16204 else if (IS_BROADWELL(dev_priv))
16205 dev_priv->display.get_display_clock_speed =
16206 broadwell_get_display_clock_speed;
16207 else if (IS_HASWELL(dev_priv))
16208 dev_priv->display.get_display_clock_speed =
16209 haswell_get_display_clock_speed;
16210 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16211 dev_priv->display.get_display_clock_speed =
16212 valleyview_get_display_clock_speed;
16213 else if (IS_GEN5(dev_priv))
16214 dev_priv->display.get_display_clock_speed =
16215 ilk_get_display_clock_speed;
16216 else if (IS_I945G(dev_priv) || IS_I965G(dev_priv) ||
16217 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
16218 dev_priv->display.get_display_clock_speed =
16219 i945_get_display_clock_speed;
16220 else if (IS_GM45(dev_priv))
16221 dev_priv->display.get_display_clock_speed =
16222 gm45_get_display_clock_speed;
16223 else if (IS_I965GM(dev_priv))
16224 dev_priv->display.get_display_clock_speed =
16225 i965gm_get_display_clock_speed;
16226 else if (IS_PINEVIEW(dev_priv))
16227 dev_priv->display.get_display_clock_speed =
16228 pnv_get_display_clock_speed;
16229 else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
16230 dev_priv->display.get_display_clock_speed =
16231 g33_get_display_clock_speed;
16232 else if (IS_I915G(dev_priv))
16233 dev_priv->display.get_display_clock_speed =
16234 i915_get_display_clock_speed;
16235 else if (IS_I945GM(dev_priv) || IS_I845G(dev_priv))
16236 dev_priv->display.get_display_clock_speed =
16237 i9xx_misc_get_display_clock_speed;
16238 else if (IS_I915GM(dev_priv))
16239 dev_priv->display.get_display_clock_speed =
16240 i915gm_get_display_clock_speed;
16241 else if (IS_I865G(dev_priv))
16242 dev_priv->display.get_display_clock_speed =
16243 i865_get_display_clock_speed;
16244 else if (IS_I85X(dev_priv))
16245 dev_priv->display.get_display_clock_speed =
16246 i85x_get_display_clock_speed;
16247 else { /* 830 */
16248 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
16249 dev_priv->display.get_display_clock_speed =
16250 i830_get_display_clock_speed;
16251 }
16252
16253 if (IS_GEN5(dev_priv)) {
16254 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
16255 } else if (IS_GEN6(dev_priv)) {
16256 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
16257 } else if (IS_IVYBRIDGE(dev_priv)) {
16258 /* FIXME: detect B0+ stepping and use auto training */
16259 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
16260 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
16261 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
16262 }
16263
16264 if (IS_BROADWELL(dev_priv)) {
16265 dev_priv->display.modeset_commit_cdclk =
16266 broadwell_modeset_commit_cdclk;
16267 dev_priv->display.modeset_calc_cdclk =
16268 broadwell_modeset_calc_cdclk;
16269 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
16270 dev_priv->display.modeset_commit_cdclk =
16271 valleyview_modeset_commit_cdclk;
16272 dev_priv->display.modeset_calc_cdclk =
16273 valleyview_modeset_calc_cdclk;
16274 } else if (IS_GEN9_LP(dev_priv)) {
16275 dev_priv->display.modeset_commit_cdclk =
16276 bxt_modeset_commit_cdclk;
16277 dev_priv->display.modeset_calc_cdclk =
16278 bxt_modeset_calc_cdclk;
16279 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
16280 dev_priv->display.modeset_commit_cdclk =
16281 skl_modeset_commit_cdclk;
16282 dev_priv->display.modeset_calc_cdclk =
16283 skl_modeset_calc_cdclk;
16284 }
16285
16286 if (dev_priv->info.gen >= 9)
16287 dev_priv->display.update_crtcs = skl_update_crtcs;
16288 else
16289 dev_priv->display.update_crtcs = intel_update_crtcs;
16290
16291 switch (INTEL_INFO(dev_priv)->gen) {
16292 case 2:
16293 dev_priv->display.queue_flip = intel_gen2_queue_flip;
16294 break;
16295
16296 case 3:
16297 dev_priv->display.queue_flip = intel_gen3_queue_flip;
16298 break;
16299
16300 case 4:
16301 case 5:
16302 dev_priv->display.queue_flip = intel_gen4_queue_flip;
16303 break;
16304
16305 case 6:
16306 dev_priv->display.queue_flip = intel_gen6_queue_flip;
16307 break;
16308 case 7:
16309 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
16310 dev_priv->display.queue_flip = intel_gen7_queue_flip;
16311 break;
16312 case 9:
16313 /* Drop through - unsupported since execlist only. */
16314 default:
16315 /* Default just returns -ENODEV to indicate unsupported */
16316 dev_priv->display.queue_flip = intel_default_queue_flip;
16317 }
16318 }
16319
16320 /*
16321 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
16322 * resume, or other times. This quirk makes sure that's the case for
16323 * affected systems.
16324 */
16325 static void quirk_pipea_force(struct drm_device *dev)
16326 {
16327 struct drm_i915_private *dev_priv = to_i915(dev);
16328
16329 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
16330 DRM_INFO("applying pipe a force quirk\n");
16331 }
16332
16333 static void quirk_pipeb_force(struct drm_device *dev)
16334 {
16335 struct drm_i915_private *dev_priv = to_i915(dev);
16336
16337 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
16338 DRM_INFO("applying pipe b force quirk\n");
16339 }
16340
16341 /*
16342 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
16343 */
16344 static void quirk_ssc_force_disable(struct drm_device *dev)
16345 {
16346 struct drm_i915_private *dev_priv = to_i915(dev);
16347 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
16348 DRM_INFO("applying lvds SSC disable quirk\n");
16349 }
16350
16351 /*
16352 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
16353 * brightness value
16354 */
16355 static void quirk_invert_brightness(struct drm_device *dev)
16356 {
16357 struct drm_i915_private *dev_priv = to_i915(dev);
16358 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
16359 DRM_INFO("applying inverted panel brightness quirk\n");
16360 }
16361
16362 /* Some VBT's incorrectly indicate no backlight is present */
16363 static void quirk_backlight_present(struct drm_device *dev)
16364 {
16365 struct drm_i915_private *dev_priv = to_i915(dev);
16366 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
16367 DRM_INFO("applying backlight present quirk\n");
16368 }
16369
16370 struct intel_quirk {
16371 int device;
16372 int subsystem_vendor;
16373 int subsystem_device;
16374 void (*hook)(struct drm_device *dev);
16375 };
16376
16377 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
16378 struct intel_dmi_quirk {
16379 void (*hook)(struct drm_device *dev);
16380 const struct dmi_system_id (*dmi_id_list)[];
16381 };
16382
16383 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
16384 {
16385 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
16386 return 1;
16387 }
16388
16389 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
16390 {
16391 .dmi_id_list = &(const struct dmi_system_id[]) {
16392 {
16393 .callback = intel_dmi_reverse_brightness,
16394 .ident = "NCR Corporation",
16395 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
16396 DMI_MATCH(DMI_PRODUCT_NAME, ""),
16397 },
16398 },
16399 { } /* terminating entry */
16400 },
16401 .hook = quirk_invert_brightness,
16402 },
16403 };
16404
16405 static struct intel_quirk intel_quirks[] = {
16406 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
16407 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
16408
16409 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
16410 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
16411
16412 /* 830 needs to leave pipe A & dpll A up */
16413 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
16414
16415 /* 830 needs to leave pipe B & dpll B up */
16416 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
16417
16418 /* Lenovo U160 cannot use SSC on LVDS */
16419 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
16420
16421 /* Sony Vaio Y cannot use SSC on LVDS */
16422 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
16423
16424 /* Acer Aspire 5734Z must invert backlight brightness */
16425 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
16426
16427 /* Acer/eMachines G725 */
16428 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
16429
16430 /* Acer/eMachines e725 */
16431 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
16432
16433 /* Acer/Packard Bell NCL20 */
16434 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
16435
16436 /* Acer Aspire 4736Z */
16437 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
16438
16439 /* Acer Aspire 5336 */
16440 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
16441
16442 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
16443 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
16444
16445 /* Acer C720 Chromebook (Core i3 4005U) */
16446 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
16447
16448 /* Apple Macbook 2,1 (Core 2 T7400) */
16449 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
16450
16451 /* Apple Macbook 4,1 */
16452 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
16453
16454 /* Toshiba CB35 Chromebook (Celeron 2955U) */
16455 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
16456
16457 /* HP Chromebook 14 (Celeron 2955U) */
16458 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
16459
16460 /* Dell Chromebook 11 */
16461 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
16462
16463 /* Dell Chromebook 11 (2015 version) */
16464 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
16465 };
16466
16467 static void intel_init_quirks(struct drm_device *dev)
16468 {
16469 struct pci_dev *d = dev->pdev;
16470 int i;
16471
16472 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
16473 struct intel_quirk *q = &intel_quirks[i];
16474
16475 if (d->device == q->device &&
16476 (d->subsystem_vendor == q->subsystem_vendor ||
16477 q->subsystem_vendor == PCI_ANY_ID) &&
16478 (d->subsystem_device == q->subsystem_device ||
16479 q->subsystem_device == PCI_ANY_ID))
16480 q->hook(dev);
16481 }
16482 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
16483 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
16484 intel_dmi_quirks[i].hook(dev);
16485 }
16486 }
16487
16488 /* Disable the VGA plane that we never use */
16489 static void i915_disable_vga(struct drm_i915_private *dev_priv)
16490 {
16491 struct pci_dev *pdev = dev_priv->drm.pdev;
16492 u8 sr1;
16493 i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
16494
16495 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
16496 vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
16497 outb(SR01, VGA_SR_INDEX);
16498 sr1 = inb(VGA_SR_DATA);
16499 outb(sr1 | 1<<5, VGA_SR_DATA);
16500 vga_put(pdev, VGA_RSRC_LEGACY_IO);
16501 udelay(300);
16502
16503 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
16504 POSTING_READ(vga_reg);
16505 }
16506
16507 void intel_modeset_init_hw(struct drm_device *dev)
16508 {
16509 struct drm_i915_private *dev_priv = to_i915(dev);
16510
16511 intel_update_cdclk(dev_priv);
16512
16513 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
16514
16515 intel_init_clock_gating(dev_priv);
16516 }
16517
16518 /*
16519 * Calculate what we think the watermarks should be for the state we've read
16520 * out of the hardware and then immediately program those watermarks so that
16521 * we ensure the hardware settings match our internal state.
16522 *
16523 * We can calculate what we think WM's should be by creating a duplicate of the
16524 * current state (which was constructed during hardware readout) and running it
16525 * through the atomic check code to calculate new watermark values in the
16526 * state object.
16527 */
16528 static void sanitize_watermarks(struct drm_device *dev)
16529 {
16530 struct drm_i915_private *dev_priv = to_i915(dev);
16531 struct drm_atomic_state *state;
16532 struct intel_atomic_state *intel_state;
16533 struct drm_crtc *crtc;
16534 struct drm_crtc_state *cstate;
16535 struct drm_modeset_acquire_ctx ctx;
16536 int ret;
16537 int i;
16538
16539 /* Only supported on platforms that use atomic watermark design */
16540 if (!dev_priv->display.optimize_watermarks)
16541 return;
16542
16543 /*
16544 * We need to hold connection_mutex before calling duplicate_state so
16545 * that the connector loop is protected.
16546 */
16547 drm_modeset_acquire_init(&ctx, 0);
16548 retry:
16549 ret = drm_modeset_lock_all_ctx(dev, &ctx);
16550 if (ret == -EDEADLK) {
16551 drm_modeset_backoff(&ctx);
16552 goto retry;
16553 } else if (WARN_ON(ret)) {
16554 goto fail;
16555 }
16556
16557 state = drm_atomic_helper_duplicate_state(dev, &ctx);
16558 if (WARN_ON(IS_ERR(state)))
16559 goto fail;
16560
16561 intel_state = to_intel_atomic_state(state);
16562
16563 /*
16564 * Hardware readout is the only time we don't want to calculate
16565 * intermediate watermarks (since we don't trust the current
16566 * watermarks).
16567 */
16568 intel_state->skip_intermediate_wm = true;
16569
16570 ret = intel_atomic_check(dev, state);
16571 if (ret) {
16572 /*
16573 * If we fail here, it means that the hardware appears to be
16574 * programmed in a way that shouldn't be possible, given our
16575 * understanding of watermark requirements. This might mean a
16576 * mistake in the hardware readout code or a mistake in the
16577 * watermark calculations for a given platform. Raise a WARN
16578 * so that this is noticeable.
16579 *
16580 * If this actually happens, we'll have to just leave the
16581 * BIOS-programmed watermarks untouched and hope for the best.
16582 */
16583 WARN(true, "Could not determine valid watermarks for inherited state\n");
16584 goto put_state;
16585 }
16586
16587 /* Write calculated watermark values back */
16588 for_each_crtc_in_state(state, crtc, cstate, i) {
16589 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
16590
16591 cs->wm.need_postvbl_update = true;
16592 dev_priv->display.optimize_watermarks(intel_state, cs);
16593 }
16594
16595 put_state:
16596 drm_atomic_state_put(state);
16597 fail:
16598 drm_modeset_drop_locks(&ctx);
16599 drm_modeset_acquire_fini(&ctx);
16600 }
16601
16602 static void intel_atomic_helper_free_state(struct work_struct *work)
16603 {
16604 struct drm_i915_private *dev_priv =
16605 container_of(work, typeof(*dev_priv), atomic_helper.free_work);
16606 struct intel_atomic_state *state, *next;
16607 struct llist_node *freed;
16608
16609 freed = llist_del_all(&dev_priv->atomic_helper.free_list);
16610 llist_for_each_entry_safe(state, next, freed, freed)
16611 drm_atomic_state_put(&state->base);
16612 }
16613
16614 int intel_modeset_init(struct drm_device *dev)
16615 {
16616 struct drm_i915_private *dev_priv = to_i915(dev);
16617 struct i915_ggtt *ggtt = &dev_priv->ggtt;
16618 enum pipe pipe;
16619 struct intel_crtc *crtc;
16620
16621 drm_mode_config_init(dev);
16622
16623 dev->mode_config.min_width = 0;
16624 dev->mode_config.min_height = 0;
16625
16626 dev->mode_config.preferred_depth = 24;
16627 dev->mode_config.prefer_shadow = 1;
16628
16629 dev->mode_config.allow_fb_modifiers = true;
16630
16631 dev->mode_config.funcs = &intel_mode_funcs;
16632
16633 INIT_WORK(&dev_priv->atomic_helper.free_work,
16634 intel_atomic_helper_free_state);
16635
16636 intel_init_quirks(dev);
16637
16638 intel_init_pm(dev_priv);
16639
16640 if (INTEL_INFO(dev_priv)->num_pipes == 0)
16641 return 0;
16642
16643 /*
16644 * There may be no VBT; and if the BIOS enabled SSC we can
16645 * just keep using it to avoid unnecessary flicker. Whereas if the
16646 * BIOS isn't using it, don't assume it will work even if the VBT
16647 * indicates as much.
16648 */
16649 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
16650 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
16651 DREF_SSC1_ENABLE);
16652
16653 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
16654 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
16655 bios_lvds_use_ssc ? "en" : "dis",
16656 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
16657 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
16658 }
16659 }
16660
16661 if (IS_GEN2(dev_priv)) {
16662 dev->mode_config.max_width = 2048;
16663 dev->mode_config.max_height = 2048;
16664 } else if (IS_GEN3(dev_priv)) {
16665 dev->mode_config.max_width = 4096;
16666 dev->mode_config.max_height = 4096;
16667 } else {
16668 dev->mode_config.max_width = 8192;
16669 dev->mode_config.max_height = 8192;
16670 }
16671
16672 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
16673 dev->mode_config.cursor_width = IS_I845G(dev_priv) ? 64 : 512;
16674 dev->mode_config.cursor_height = 1023;
16675 } else if (IS_GEN2(dev_priv)) {
16676 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
16677 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
16678 } else {
16679 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
16680 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
16681 }
16682
16683 dev->mode_config.fb_base = ggtt->mappable_base;
16684
16685 DRM_DEBUG_KMS("%d display pipe%s available.\n",
16686 INTEL_INFO(dev_priv)->num_pipes,
16687 INTEL_INFO(dev_priv)->num_pipes > 1 ? "s" : "");
16688
16689 for_each_pipe(dev_priv, pipe) {
16690 int ret;
16691
16692 ret = intel_crtc_init(dev_priv, pipe);
16693 if (ret) {
16694 drm_mode_config_cleanup(dev);
16695 return ret;
16696 }
16697 }
16698
16699 intel_update_czclk(dev_priv);
16700 intel_update_cdclk(dev_priv);
16701 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
16702
16703 intel_shared_dpll_init(dev);
16704
16705 if (dev_priv->max_cdclk_freq == 0)
16706 intel_update_max_cdclk(dev_priv);
16707
16708 /* Just disable it once at startup */
16709 i915_disable_vga(dev_priv);
16710 intel_setup_outputs(dev_priv);
16711
16712 drm_modeset_lock_all(dev);
16713 intel_modeset_setup_hw_state(dev);
16714 drm_modeset_unlock_all(dev);
16715
16716 for_each_intel_crtc(dev, crtc) {
16717 struct intel_initial_plane_config plane_config = {};
16718
16719 if (!crtc->active)
16720 continue;
16721
16722 /*
16723 * Note that reserving the BIOS fb up front prevents us
16724 * from stuffing other stolen allocations like the ring
16725 * on top. This prevents some ugliness at boot time, and
16726 * can even allow for smooth boot transitions if the BIOS
16727 * fb is large enough for the active pipe configuration.
16728 */
16729 dev_priv->display.get_initial_plane_config(crtc,
16730 &plane_config);
16731
16732 /*
16733 * If the fb is shared between multiple heads, we'll
16734 * just get the first one.
16735 */
16736 intel_find_initial_plane_obj(crtc, &plane_config);
16737 }
16738
16739 /*
16740 * Make sure hardware watermarks really match the state we read out.
16741 * Note that we need to do this after reconstructing the BIOS fb's
16742 * since the watermark calculation done here will use pstate->fb.
16743 */
16744 sanitize_watermarks(dev);
16745
16746 return 0;
16747 }
16748
16749 static void intel_enable_pipe_a(struct drm_device *dev)
16750 {
16751 struct intel_connector *connector;
16752 struct drm_connector *crt = NULL;
16753 struct intel_load_detect_pipe load_detect_temp;
16754 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
16755
16756 /* We can't just switch on the pipe A, we need to set things up with a
16757 * proper mode and output configuration. As a gross hack, enable pipe A
16758 * by enabling the load detect pipe once. */
16759 for_each_intel_connector(dev, connector) {
16760 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
16761 crt = &connector->base;
16762 break;
16763 }
16764 }
16765
16766 if (!crt)
16767 return;
16768
16769 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
16770 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
16771 }
16772
16773 static bool
16774 intel_check_plane_mapping(struct intel_crtc *crtc)
16775 {
16776 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
16777 u32 val;
16778
16779 if (INTEL_INFO(dev_priv)->num_pipes == 1)
16780 return true;
16781
16782 val = I915_READ(DSPCNTR(!crtc->plane));
16783
16784 if ((val & DISPLAY_PLANE_ENABLE) &&
16785 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
16786 return false;
16787
16788 return true;
16789 }
16790
16791 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
16792 {
16793 struct drm_device *dev = crtc->base.dev;
16794 struct intel_encoder *encoder;
16795
16796 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
16797 return true;
16798
16799 return false;
16800 }
16801
16802 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
16803 {
16804 struct drm_device *dev = encoder->base.dev;
16805 struct intel_connector *connector;
16806
16807 for_each_connector_on_encoder(dev, &encoder->base, connector)
16808 return connector;
16809
16810 return NULL;
16811 }
16812
16813 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
16814 enum transcoder pch_transcoder)
16815 {
16816 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
16817 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
16818 }
16819
16820 static void intel_sanitize_crtc(struct intel_crtc *crtc)
16821 {
16822 struct drm_device *dev = crtc->base.dev;
16823 struct drm_i915_private *dev_priv = to_i915(dev);
16824 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
16825
16826 /* Clear any frame start delays used for debugging left by the BIOS */
16827 if (!transcoder_is_dsi(cpu_transcoder)) {
16828 i915_reg_t reg = PIPECONF(cpu_transcoder);
16829
16830 I915_WRITE(reg,
16831 I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
16832 }
16833
16834 /* restore vblank interrupts to correct state */
16835 drm_crtc_vblank_reset(&crtc->base);
16836 if (crtc->active) {
16837 struct intel_plane *plane;
16838
16839 drm_crtc_vblank_on(&crtc->base);
16840
16841 /* Disable everything but the primary plane */
16842 for_each_intel_plane_on_crtc(dev, crtc, plane) {
16843 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
16844 continue;
16845
16846 plane->disable_plane(&plane->base, &crtc->base);
16847 }
16848 }
16849
16850 /* We need to sanitize the plane -> pipe mapping first because this will
16851 * disable the crtc (and hence change the state) if it is wrong. Note
16852 * that gen4+ has a fixed plane -> pipe mapping. */
16853 if (INTEL_GEN(dev_priv) < 4 && !intel_check_plane_mapping(crtc)) {
16854 bool plane;
16855
16856 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
16857 crtc->base.base.id, crtc->base.name);
16858
16859 /* Pipe has the wrong plane attached and the plane is active.
16860 * Temporarily change the plane mapping and disable everything
16861 * ... */
16862 plane = crtc->plane;
16863 crtc->base.primary->state->visible = true;
16864 crtc->plane = !plane;
16865 intel_crtc_disable_noatomic(&crtc->base);
16866 crtc->plane = plane;
16867 }
16868
16869 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
16870 crtc->pipe == PIPE_A && !crtc->active) {
16871 /* BIOS forgot to enable pipe A, this mostly happens after
16872 * resume. Force-enable the pipe to fix this, the update_dpms
16873 * call below we restore the pipe to the right state, but leave
16874 * the required bits on. */
16875 intel_enable_pipe_a(dev);
16876 }
16877
16878 /* Adjust the state of the output pipe according to whether we
16879 * have active connectors/encoders. */
16880 if (crtc->active && !intel_crtc_has_encoders(crtc))
16881 intel_crtc_disable_noatomic(&crtc->base);
16882
16883 if (crtc->active || HAS_GMCH_DISPLAY(dev_priv)) {
16884 /*
16885 * We start out with underrun reporting disabled to avoid races.
16886 * For correct bookkeeping mark this on active crtcs.
16887 *
16888 * Also on gmch platforms we dont have any hardware bits to
16889 * disable the underrun reporting. Which means we need to start
16890 * out with underrun reporting disabled also on inactive pipes,
16891 * since otherwise we'll complain about the garbage we read when
16892 * e.g. coming up after runtime pm.
16893 *
16894 * No protection against concurrent access is required - at
16895 * worst a fifo underrun happens which also sets this to false.
16896 */
16897 crtc->cpu_fifo_underrun_disabled = true;
16898 /*
16899 * We track the PCH trancoder underrun reporting state
16900 * within the crtc. With crtc for pipe A housing the underrun
16901 * reporting state for PCH transcoder A, crtc for pipe B housing
16902 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
16903 * and marking underrun reporting as disabled for the non-existing
16904 * PCH transcoders B and C would prevent enabling the south
16905 * error interrupt (see cpt_can_enable_serr_int()).
16906 */
16907 if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
16908 crtc->pch_fifo_underrun_disabled = true;
16909 }
16910 }
16911
16912 static void intel_sanitize_encoder(struct intel_encoder *encoder)
16913 {
16914 struct intel_connector *connector;
16915
16916 /* We need to check both for a crtc link (meaning that the
16917 * encoder is active and trying to read from a pipe) and the
16918 * pipe itself being active. */
16919 bool has_active_crtc = encoder->base.crtc &&
16920 to_intel_crtc(encoder->base.crtc)->active;
16921
16922 connector = intel_encoder_find_connector(encoder);
16923 if (connector && !has_active_crtc) {
16924 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
16925 encoder->base.base.id,
16926 encoder->base.name);
16927
16928 /* Connector is active, but has no active pipe. This is
16929 * fallout from our resume register restoring. Disable
16930 * the encoder manually again. */
16931 if (encoder->base.crtc) {
16932 struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
16933
16934 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
16935 encoder->base.base.id,
16936 encoder->base.name);
16937 encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16938 if (encoder->post_disable)
16939 encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16940 }
16941 encoder->base.crtc = NULL;
16942
16943 /* Inconsistent output/port/pipe state happens presumably due to
16944 * a bug in one of the get_hw_state functions. Or someplace else
16945 * in our code, like the register restore mess on resume. Clamp
16946 * things to off as a safer default. */
16947
16948 connector->base.dpms = DRM_MODE_DPMS_OFF;
16949 connector->base.encoder = NULL;
16950 }
16951 /* Enabled encoders without active connectors will be fixed in
16952 * the crtc fixup. */
16953 }
16954
16955 void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv)
16956 {
16957 i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
16958
16959 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
16960 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
16961 i915_disable_vga(dev_priv);
16962 }
16963 }
16964
16965 void i915_redisable_vga(struct drm_i915_private *dev_priv)
16966 {
16967 /* This function can be called both from intel_modeset_setup_hw_state or
16968 * at a very early point in our resume sequence, where the power well
16969 * structures are not yet restored. Since this function is at a very
16970 * paranoid "someone might have enabled VGA while we were not looking"
16971 * level, just check if the power well is enabled instead of trying to
16972 * follow the "don't touch the power well if we don't need it" policy
16973 * the rest of the driver uses. */
16974 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
16975 return;
16976
16977 i915_redisable_vga_power_on(dev_priv);
16978
16979 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
16980 }
16981
16982 static bool primary_get_hw_state(struct intel_plane *plane)
16983 {
16984 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
16985
16986 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
16987 }
16988
16989 /* FIXME read out full plane state for all planes */
16990 static void readout_plane_state(struct intel_crtc *crtc)
16991 {
16992 struct drm_plane *primary = crtc->base.primary;
16993 struct intel_plane_state *plane_state =
16994 to_intel_plane_state(primary->state);
16995
16996 plane_state->base.visible = crtc->active &&
16997 primary_get_hw_state(to_intel_plane(primary));
16998
16999 if (plane_state->base.visible)
17000 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
17001 }
17002
17003 static void intel_modeset_readout_hw_state(struct drm_device *dev)
17004 {
17005 struct drm_i915_private *dev_priv = to_i915(dev);
17006 enum pipe pipe;
17007 struct intel_crtc *crtc;
17008 struct intel_encoder *encoder;
17009 struct intel_connector *connector;
17010 int i;
17011
17012 dev_priv->active_crtcs = 0;
17013
17014 for_each_intel_crtc(dev, crtc) {
17015 struct intel_crtc_state *crtc_state =
17016 to_intel_crtc_state(crtc->base.state);
17017
17018 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
17019 memset(crtc_state, 0, sizeof(*crtc_state));
17020 crtc_state->base.crtc = &crtc->base;
17021
17022 crtc_state->base.active = crtc_state->base.enable =
17023 dev_priv->display.get_pipe_config(crtc, crtc_state);
17024
17025 crtc->base.enabled = crtc_state->base.enable;
17026 crtc->active = crtc_state->base.active;
17027
17028 if (crtc_state->base.active)
17029 dev_priv->active_crtcs |= 1 << crtc->pipe;
17030
17031 readout_plane_state(crtc);
17032
17033 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
17034 crtc->base.base.id, crtc->base.name,
17035 enableddisabled(crtc_state->base.active));
17036 }
17037
17038 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
17039 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
17040
17041 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
17042 &pll->state.hw_state);
17043 pll->state.crtc_mask = 0;
17044 for_each_intel_crtc(dev, crtc) {
17045 struct intel_crtc_state *crtc_state =
17046 to_intel_crtc_state(crtc->base.state);
17047
17048 if (crtc_state->base.active &&
17049 crtc_state->shared_dpll == pll)
17050 pll->state.crtc_mask |= 1 << crtc->pipe;
17051 }
17052 pll->active_mask = pll->state.crtc_mask;
17053
17054 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
17055 pll->name, pll->state.crtc_mask, pll->on);
17056 }
17057
17058 for_each_intel_encoder(dev, encoder) {
17059 pipe = 0;
17060
17061 if (encoder->get_hw_state(encoder, &pipe)) {
17062 struct intel_crtc_state *crtc_state;
17063
17064 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
17065 crtc_state = to_intel_crtc_state(crtc->base.state);
17066
17067 encoder->base.crtc = &crtc->base;
17068 crtc_state->output_types |= 1 << encoder->type;
17069 encoder->get_config(encoder, crtc_state);
17070 } else {
17071 encoder->base.crtc = NULL;
17072 }
17073
17074 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
17075 encoder->base.base.id, encoder->base.name,
17076 enableddisabled(encoder->base.crtc),
17077 pipe_name(pipe));
17078 }
17079
17080 for_each_intel_connector(dev, connector) {
17081 if (connector->get_hw_state(connector)) {
17082 connector->base.dpms = DRM_MODE_DPMS_ON;
17083
17084 encoder = connector->encoder;
17085 connector->base.encoder = &encoder->base;
17086
17087 if (encoder->base.crtc &&
17088 encoder->base.crtc->state->active) {
17089 /*
17090 * This has to be done during hardware readout
17091 * because anything calling .crtc_disable may
17092 * rely on the connector_mask being accurate.
17093 */
17094 encoder->base.crtc->state->connector_mask |=
17095 1 << drm_connector_index(&connector->base);
17096 encoder->base.crtc->state->encoder_mask |=
17097 1 << drm_encoder_index(&encoder->base);
17098 }
17099
17100 } else {
17101 connector->base.dpms = DRM_MODE_DPMS_OFF;
17102 connector->base.encoder = NULL;
17103 }
17104 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
17105 connector->base.base.id, connector->base.name,
17106 enableddisabled(connector->base.encoder));
17107 }
17108
17109 for_each_intel_crtc(dev, crtc) {
17110 struct intel_crtc_state *crtc_state =
17111 to_intel_crtc_state(crtc->base.state);
17112 int pixclk = 0;
17113
17114 crtc->base.hwmode = crtc_state->base.adjusted_mode;
17115
17116 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
17117 if (crtc_state->base.active) {
17118 intel_mode_from_pipe_config(&crtc->base.mode, crtc_state);
17119 intel_mode_from_pipe_config(&crtc_state->base.adjusted_mode, crtc_state);
17120 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
17121
17122 /*
17123 * The initial mode needs to be set in order to keep
17124 * the atomic core happy. It wants a valid mode if the
17125 * crtc's enabled, so we do the above call.
17126 *
17127 * But we don't set all the derived state fully, hence
17128 * set a flag to indicate that a full recalculation is
17129 * needed on the next commit.
17130 */
17131 crtc_state->base.mode.private_flags = I915_MODE_FLAG_INHERITED;
17132
17133 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
17134 pixclk = ilk_pipe_pixel_rate(crtc_state);
17135 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
17136 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
17137 else
17138 WARN_ON(dev_priv->display.modeset_calc_cdclk);
17139
17140 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
17141 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
17142 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
17143
17144 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
17145 update_scanline_offset(crtc);
17146 }
17147
17148 dev_priv->min_pixclk[crtc->pipe] = pixclk;
17149
17150 intel_pipe_config_sanity_check(dev_priv, crtc_state);
17151 }
17152 }
17153
17154 /* Scan out the current hw modeset state,
17155 * and sanitizes it to the current state
17156 */
17157 static void
17158 intel_modeset_setup_hw_state(struct drm_device *dev)
17159 {
17160 struct drm_i915_private *dev_priv = to_i915(dev);
17161 enum pipe pipe;
17162 struct intel_crtc *crtc;
17163 struct intel_encoder *encoder;
17164 int i;
17165
17166 intel_modeset_readout_hw_state(dev);
17167
17168 /* HW state is read out, now we need to sanitize this mess. */
17169 for_each_intel_encoder(dev, encoder) {
17170 intel_sanitize_encoder(encoder);
17171 }
17172
17173 for_each_pipe(dev_priv, pipe) {
17174 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
17175
17176 intel_sanitize_crtc(crtc);
17177 intel_dump_pipe_config(crtc, crtc->config,
17178 "[setup_hw_state]");
17179 }
17180
17181 intel_modeset_update_connector_atomic_state(dev);
17182
17183 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
17184 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
17185
17186 if (!pll->on || pll->active_mask)
17187 continue;
17188
17189 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
17190
17191 pll->funcs.disable(dev_priv, pll);
17192 pll->on = false;
17193 }
17194
17195 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
17196 vlv_wm_get_hw_state(dev);
17197 else if (IS_GEN9(dev_priv))
17198 skl_wm_get_hw_state(dev);
17199 else if (HAS_PCH_SPLIT(dev_priv))
17200 ilk_wm_get_hw_state(dev);
17201
17202 for_each_intel_crtc(dev, crtc) {
17203 unsigned long put_domains;
17204
17205 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
17206 if (WARN_ON(put_domains))
17207 modeset_put_power_domains(dev_priv, put_domains);
17208 }
17209 intel_display_set_init_power(dev_priv, false);
17210
17211 intel_fbc_init_pipe_state(dev_priv);
17212 }
17213
17214 void intel_display_resume(struct drm_device *dev)
17215 {
17216 struct drm_i915_private *dev_priv = to_i915(dev);
17217 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
17218 struct drm_modeset_acquire_ctx ctx;
17219 int ret;
17220
17221 dev_priv->modeset_restore_state = NULL;
17222 if (state)
17223 state->acquire_ctx = &ctx;
17224
17225 /*
17226 * This is a cludge because with real atomic modeset mode_config.mutex
17227 * won't be taken. Unfortunately some probed state like
17228 * audio_codec_enable is still protected by mode_config.mutex, so lock
17229 * it here for now.
17230 */
17231 mutex_lock(&dev->mode_config.mutex);
17232 drm_modeset_acquire_init(&ctx, 0);
17233
17234 while (1) {
17235 ret = drm_modeset_lock_all_ctx(dev, &ctx);
17236 if (ret != -EDEADLK)
17237 break;
17238
17239 drm_modeset_backoff(&ctx);
17240 }
17241
17242 if (!ret)
17243 ret = __intel_display_resume(dev, state);
17244
17245 drm_modeset_drop_locks(&ctx);
17246 drm_modeset_acquire_fini(&ctx);
17247 mutex_unlock(&dev->mode_config.mutex);
17248
17249 if (ret)
17250 DRM_ERROR("Restoring old state failed with %i\n", ret);
17251 if (state)
17252 drm_atomic_state_put(state);
17253 }
17254
17255 void intel_modeset_gem_init(struct drm_device *dev)
17256 {
17257 struct drm_i915_private *dev_priv = to_i915(dev);
17258
17259 intel_init_gt_powersave(dev_priv);
17260
17261 intel_modeset_init_hw(dev);
17262
17263 intel_setup_overlay(dev_priv);
17264 }
17265
17266 int intel_connector_register(struct drm_connector *connector)
17267 {
17268 struct intel_connector *intel_connector = to_intel_connector(connector);
17269 int ret;
17270
17271 ret = intel_backlight_device_register(intel_connector);
17272 if (ret)
17273 goto err;
17274
17275 return 0;
17276
17277 err:
17278 return ret;
17279 }
17280
17281 void intel_connector_unregister(struct drm_connector *connector)
17282 {
17283 struct intel_connector *intel_connector = to_intel_connector(connector);
17284
17285 intel_backlight_device_unregister(intel_connector);
17286 intel_panel_destroy_backlight(connector);
17287 }
17288
17289 void intel_modeset_cleanup(struct drm_device *dev)
17290 {
17291 struct drm_i915_private *dev_priv = to_i915(dev);
17292
17293 flush_work(&dev_priv->atomic_helper.free_work);
17294 WARN_ON(!llist_empty(&dev_priv->atomic_helper.free_list));
17295
17296 intel_disable_gt_powersave(dev_priv);
17297
17298 /*
17299 * Interrupts and polling as the first thing to avoid creating havoc.
17300 * Too much stuff here (turning of connectors, ...) would
17301 * experience fancy races otherwise.
17302 */
17303 intel_irq_uninstall(dev_priv);
17304
17305 /*
17306 * Due to the hpd irq storm handling the hotplug work can re-arm the
17307 * poll handlers. Hence disable polling after hpd handling is shut down.
17308 */
17309 drm_kms_helper_poll_fini(dev);
17310
17311 intel_unregister_dsm_handler();
17312
17313 intel_fbc_global_disable(dev_priv);
17314
17315 /* flush any delayed tasks or pending work */
17316 flush_scheduled_work();
17317
17318 drm_mode_config_cleanup(dev);
17319
17320 intel_cleanup_overlay(dev_priv);
17321
17322 intel_cleanup_gt_powersave(dev_priv);
17323
17324 intel_teardown_gmbus(dev_priv);
17325 }
17326
17327 void intel_connector_attach_encoder(struct intel_connector *connector,
17328 struct intel_encoder *encoder)
17329 {
17330 connector->encoder = encoder;
17331 drm_mode_connector_attach_encoder(&connector->base,
17332 &encoder->base);
17333 }
17334
17335 /*
17336 * set vga decode state - true == enable VGA decode
17337 */
17338 int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, bool state)
17339 {
17340 unsigned reg = INTEL_GEN(dev_priv) >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
17341 u16 gmch_ctrl;
17342
17343 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
17344 DRM_ERROR("failed to read control word\n");
17345 return -EIO;
17346 }
17347
17348 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
17349 return 0;
17350
17351 if (state)
17352 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
17353 else
17354 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
17355
17356 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
17357 DRM_ERROR("failed to write control word\n");
17358 return -EIO;
17359 }
17360
17361 return 0;
17362 }
17363
17364 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
17365
17366 struct intel_display_error_state {
17367
17368 u32 power_well_driver;
17369
17370 int num_transcoders;
17371
17372 struct intel_cursor_error_state {
17373 u32 control;
17374 u32 position;
17375 u32 base;
17376 u32 size;
17377 } cursor[I915_MAX_PIPES];
17378
17379 struct intel_pipe_error_state {
17380 bool power_domain_on;
17381 u32 source;
17382 u32 stat;
17383 } pipe[I915_MAX_PIPES];
17384
17385 struct intel_plane_error_state {
17386 u32 control;
17387 u32 stride;
17388 u32 size;
17389 u32 pos;
17390 u32 addr;
17391 u32 surface;
17392 u32 tile_offset;
17393 } plane[I915_MAX_PIPES];
17394
17395 struct intel_transcoder_error_state {
17396 bool power_domain_on;
17397 enum transcoder cpu_transcoder;
17398
17399 u32 conf;
17400
17401 u32 htotal;
17402 u32 hblank;
17403 u32 hsync;
17404 u32 vtotal;
17405 u32 vblank;
17406 u32 vsync;
17407 } transcoder[4];
17408 };
17409
17410 struct intel_display_error_state *
17411 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
17412 {
17413 struct intel_display_error_state *error;
17414 int transcoders[] = {
17415 TRANSCODER_A,
17416 TRANSCODER_B,
17417 TRANSCODER_C,
17418 TRANSCODER_EDP,
17419 };
17420 int i;
17421
17422 if (INTEL_INFO(dev_priv)->num_pipes == 0)
17423 return NULL;
17424
17425 error = kzalloc(sizeof(*error), GFP_ATOMIC);
17426 if (error == NULL)
17427 return NULL;
17428
17429 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17430 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
17431
17432 for_each_pipe(dev_priv, i) {
17433 error->pipe[i].power_domain_on =
17434 __intel_display_power_is_enabled(dev_priv,
17435 POWER_DOMAIN_PIPE(i));
17436 if (!error->pipe[i].power_domain_on)
17437 continue;
17438
17439 error->cursor[i].control = I915_READ(CURCNTR(i));
17440 error->cursor[i].position = I915_READ(CURPOS(i));
17441 error->cursor[i].base = I915_READ(CURBASE(i));
17442
17443 error->plane[i].control = I915_READ(DSPCNTR(i));
17444 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
17445 if (INTEL_GEN(dev_priv) <= 3) {
17446 error->plane[i].size = I915_READ(DSPSIZE(i));
17447 error->plane[i].pos = I915_READ(DSPPOS(i));
17448 }
17449 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17450 error->plane[i].addr = I915_READ(DSPADDR(i));
17451 if (INTEL_GEN(dev_priv) >= 4) {
17452 error->plane[i].surface = I915_READ(DSPSURF(i));
17453 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
17454 }
17455
17456 error->pipe[i].source = I915_READ(PIPESRC(i));
17457
17458 if (HAS_GMCH_DISPLAY(dev_priv))
17459 error->pipe[i].stat = I915_READ(PIPESTAT(i));
17460 }
17461
17462 /* Note: this does not include DSI transcoders. */
17463 error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
17464 if (HAS_DDI(dev_priv))
17465 error->num_transcoders++; /* Account for eDP. */
17466
17467 for (i = 0; i < error->num_transcoders; i++) {
17468 enum transcoder cpu_transcoder = transcoders[i];
17469
17470 error->transcoder[i].power_domain_on =
17471 __intel_display_power_is_enabled(dev_priv,
17472 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
17473 if (!error->transcoder[i].power_domain_on)
17474 continue;
17475
17476 error->transcoder[i].cpu_transcoder = cpu_transcoder;
17477
17478 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
17479 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
17480 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
17481 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
17482 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
17483 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
17484 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
17485 }
17486
17487 return error;
17488 }
17489
17490 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
17491
17492 void
17493 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
17494 struct drm_i915_private *dev_priv,
17495 struct intel_display_error_state *error)
17496 {
17497 int i;
17498
17499 if (!error)
17500 return;
17501
17502 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev_priv)->num_pipes);
17503 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17504 err_printf(m, "PWR_WELL_CTL2: %08x\n",
17505 error->power_well_driver);
17506 for_each_pipe(dev_priv, i) {
17507 err_printf(m, "Pipe [%d]:\n", i);
17508 err_printf(m, " Power: %s\n",
17509 onoff(error->pipe[i].power_domain_on));
17510 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
17511 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
17512
17513 err_printf(m, "Plane [%d]:\n", i);
17514 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
17515 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
17516 if (INTEL_GEN(dev_priv) <= 3) {
17517 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
17518 err_printf(m, " POS: %08x\n", error->plane[i].pos);
17519 }
17520 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17521 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
17522 if (INTEL_GEN(dev_priv) >= 4) {
17523 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
17524 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
17525 }
17526
17527 err_printf(m, "Cursor [%d]:\n", i);
17528 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
17529 err_printf(m, " POS: %08x\n", error->cursor[i].position);
17530 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
17531 }
17532
17533 for (i = 0; i < error->num_transcoders; i++) {
17534 err_printf(m, "CPU transcoder: %s\n",
17535 transcoder_name(error->transcoder[i].cpu_transcoder));
17536 err_printf(m, " Power: %s\n",
17537 onoff(error->transcoder[i].power_domain_on));
17538 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
17539 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
17540 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
17541 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
17542 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
17543 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
17544 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
17545 }
17546 }
17547
17548 #endif