]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/intel_display.c
Merge branch 'fix/asoc' into for-linus
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/i2c.h>
28 #include "drmP.h"
29 #include "intel_drv.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32
33 #include "drm_crtc_helper.h"
34
35 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
36
37 typedef struct {
38 /* given values */
39 int n;
40 int m1, m2;
41 int p1, p2;
42 /* derived values */
43 int dot;
44 int vco;
45 int m;
46 int p;
47 } intel_clock_t;
48
49 typedef struct {
50 int min, max;
51 } intel_range_t;
52
53 typedef struct {
54 int dot_limit;
55 int p2_slow, p2_fast;
56 } intel_p2_t;
57
58 #define INTEL_P2_NUM 2
59 typedef struct intel_limit intel_limit_t;
60 struct intel_limit {
61 intel_range_t dot, vco, n, m, m1, m2, p, p1;
62 intel_p2_t p2;
63 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
64 int, int, intel_clock_t *);
65 };
66
67 #define I8XX_DOT_MIN 25000
68 #define I8XX_DOT_MAX 350000
69 #define I8XX_VCO_MIN 930000
70 #define I8XX_VCO_MAX 1400000
71 #define I8XX_N_MIN 3
72 #define I8XX_N_MAX 16
73 #define I8XX_M_MIN 96
74 #define I8XX_M_MAX 140
75 #define I8XX_M1_MIN 18
76 #define I8XX_M1_MAX 26
77 #define I8XX_M2_MIN 6
78 #define I8XX_M2_MAX 16
79 #define I8XX_P_MIN 4
80 #define I8XX_P_MAX 128
81 #define I8XX_P1_MIN 2
82 #define I8XX_P1_MAX 33
83 #define I8XX_P1_LVDS_MIN 1
84 #define I8XX_P1_LVDS_MAX 6
85 #define I8XX_P2_SLOW 4
86 #define I8XX_P2_FAST 2
87 #define I8XX_P2_LVDS_SLOW 14
88 #define I8XX_P2_LVDS_FAST 14 /* No fast option */
89 #define I8XX_P2_SLOW_LIMIT 165000
90
91 #define I9XX_DOT_MIN 20000
92 #define I9XX_DOT_MAX 400000
93 #define I9XX_VCO_MIN 1400000
94 #define I9XX_VCO_MAX 2800000
95 #define IGD_VCO_MIN 1700000
96 #define IGD_VCO_MAX 3500000
97 #define I9XX_N_MIN 1
98 #define I9XX_N_MAX 6
99 /* IGD's Ncounter is a ring counter */
100 #define IGD_N_MIN 3
101 #define IGD_N_MAX 6
102 #define I9XX_M_MIN 70
103 #define I9XX_M_MAX 120
104 #define IGD_M_MIN 2
105 #define IGD_M_MAX 256
106 #define I9XX_M1_MIN 10
107 #define I9XX_M1_MAX 22
108 #define I9XX_M2_MIN 5
109 #define I9XX_M2_MAX 9
110 /* IGD M1 is reserved, and must be 0 */
111 #define IGD_M1_MIN 0
112 #define IGD_M1_MAX 0
113 #define IGD_M2_MIN 0
114 #define IGD_M2_MAX 254
115 #define I9XX_P_SDVO_DAC_MIN 5
116 #define I9XX_P_SDVO_DAC_MAX 80
117 #define I9XX_P_LVDS_MIN 7
118 #define I9XX_P_LVDS_MAX 98
119 #define IGD_P_LVDS_MIN 7
120 #define IGD_P_LVDS_MAX 112
121 #define I9XX_P1_MIN 1
122 #define I9XX_P1_MAX 8
123 #define I9XX_P2_SDVO_DAC_SLOW 10
124 #define I9XX_P2_SDVO_DAC_FAST 5
125 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
126 #define I9XX_P2_LVDS_SLOW 14
127 #define I9XX_P2_LVDS_FAST 7
128 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
129
130 #define INTEL_LIMIT_I8XX_DVO_DAC 0
131 #define INTEL_LIMIT_I8XX_LVDS 1
132 #define INTEL_LIMIT_I9XX_SDVO_DAC 2
133 #define INTEL_LIMIT_I9XX_LVDS 3
134 #define INTEL_LIMIT_G4X_SDVO 4
135 #define INTEL_LIMIT_G4X_HDMI_DAC 5
136 #define INTEL_LIMIT_G4X_SINGLE_CHANNEL_LVDS 6
137 #define INTEL_LIMIT_G4X_DUAL_CHANNEL_LVDS 7
138 #define INTEL_LIMIT_IGD_SDVO_DAC 8
139 #define INTEL_LIMIT_IGD_LVDS 9
140
141 /*The parameter is for SDVO on G4x platform*/
142 #define G4X_DOT_SDVO_MIN 25000
143 #define G4X_DOT_SDVO_MAX 270000
144 #define G4X_VCO_MIN 1750000
145 #define G4X_VCO_MAX 3500000
146 #define G4X_N_SDVO_MIN 1
147 #define G4X_N_SDVO_MAX 4
148 #define G4X_M_SDVO_MIN 104
149 #define G4X_M_SDVO_MAX 138
150 #define G4X_M1_SDVO_MIN 17
151 #define G4X_M1_SDVO_MAX 23
152 #define G4X_M2_SDVO_MIN 5
153 #define G4X_M2_SDVO_MAX 11
154 #define G4X_P_SDVO_MIN 10
155 #define G4X_P_SDVO_MAX 30
156 #define G4X_P1_SDVO_MIN 1
157 #define G4X_P1_SDVO_MAX 3
158 #define G4X_P2_SDVO_SLOW 10
159 #define G4X_P2_SDVO_FAST 10
160 #define G4X_P2_SDVO_LIMIT 270000
161
162 /*The parameter is for HDMI_DAC on G4x platform*/
163 #define G4X_DOT_HDMI_DAC_MIN 22000
164 #define G4X_DOT_HDMI_DAC_MAX 400000
165 #define G4X_N_HDMI_DAC_MIN 1
166 #define G4X_N_HDMI_DAC_MAX 4
167 #define G4X_M_HDMI_DAC_MIN 104
168 #define G4X_M_HDMI_DAC_MAX 138
169 #define G4X_M1_HDMI_DAC_MIN 16
170 #define G4X_M1_HDMI_DAC_MAX 23
171 #define G4X_M2_HDMI_DAC_MIN 5
172 #define G4X_M2_HDMI_DAC_MAX 11
173 #define G4X_P_HDMI_DAC_MIN 5
174 #define G4X_P_HDMI_DAC_MAX 80
175 #define G4X_P1_HDMI_DAC_MIN 1
176 #define G4X_P1_HDMI_DAC_MAX 8
177 #define G4X_P2_HDMI_DAC_SLOW 10
178 #define G4X_P2_HDMI_DAC_FAST 5
179 #define G4X_P2_HDMI_DAC_LIMIT 165000
180
181 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
182 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
184 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
186 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
188 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
190 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
192 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
194 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
199
200 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
201 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
203 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
204 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
205 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
206 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
207 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
209 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
211 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
212 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
213 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
215 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
216 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
218
219 static bool
220 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
221 int target, int refclk, intel_clock_t *best_clock);
222 static bool
223 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
224 int target, int refclk, intel_clock_t *best_clock);
225
226 static const intel_limit_t intel_limits[] = {
227 { /* INTEL_LIMIT_I8XX_DVO_DAC */
228 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
229 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
230 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
231 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
232 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
233 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
234 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
235 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
236 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
237 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
238 .find_pll = intel_find_best_PLL,
239 },
240 { /* INTEL_LIMIT_I8XX_LVDS */
241 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
242 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
243 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
244 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
245 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
246 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
247 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
248 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
249 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
250 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
251 .find_pll = intel_find_best_PLL,
252 },
253 { /* INTEL_LIMIT_I9XX_SDVO_DAC */
254 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
255 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
256 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
257 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
258 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
259 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
260 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
261 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
262 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
263 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
264 .find_pll = intel_find_best_PLL,
265 },
266 { /* INTEL_LIMIT_I9XX_LVDS */
267 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
268 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
269 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
270 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
271 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
272 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
273 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
274 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
275 /* The single-channel range is 25-112Mhz, and dual-channel
276 * is 80-224Mhz. Prefer single channel as much as possible.
277 */
278 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
279 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
280 .find_pll = intel_find_best_PLL,
281 },
282 /* below parameter and function is for G4X Chipset Family*/
283 { /* INTEL_LIMIT_G4X_SDVO */
284 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
285 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
286 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
287 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
288 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
289 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
290 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
291 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
292 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
293 .p2_slow = G4X_P2_SDVO_SLOW,
294 .p2_fast = G4X_P2_SDVO_FAST
295 },
296 .find_pll = intel_g4x_find_best_PLL,
297 },
298 { /* INTEL_LIMIT_G4X_HDMI_DAC */
299 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
300 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
301 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
302 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
303 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
304 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
305 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
306 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
307 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
308 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
309 .p2_fast = G4X_P2_HDMI_DAC_FAST
310 },
311 .find_pll = intel_g4x_find_best_PLL,
312 },
313 { /* INTEL_LIMIT_G4X_SINGLE_CHANNEL_LVDS */
314 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
315 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
316 .vco = { .min = G4X_VCO_MIN,
317 .max = G4X_VCO_MAX },
318 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
319 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
320 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
321 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
322 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
323 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
324 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
325 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
326 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
327 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
328 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
329 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
330 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
331 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
332 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
333 },
334 .find_pll = intel_g4x_find_best_PLL,
335 },
336 { /* INTEL_LIMIT_G4X_DUAL_CHANNEL_LVDS */
337 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
338 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
339 .vco = { .min = G4X_VCO_MIN,
340 .max = G4X_VCO_MAX },
341 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
342 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
343 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
344 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
345 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
346 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
347 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
348 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
349 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
350 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
351 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
352 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
353 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
354 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
355 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
356 },
357 .find_pll = intel_g4x_find_best_PLL,
358 },
359 { /* INTEL_LIMIT_IGD_SDVO */
360 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
361 .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
362 .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
363 .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
364 .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
365 .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
366 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
367 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
368 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
369 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
370 .find_pll = intel_find_best_PLL,
371 },
372 { /* INTEL_LIMIT_IGD_LVDS */
373 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
374 .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
375 .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
376 .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
377 .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
378 .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
379 .p = { .min = IGD_P_LVDS_MIN, .max = IGD_P_LVDS_MAX },
380 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
381 /* IGD only supports single-channel mode. */
382 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
383 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
384 .find_pll = intel_find_best_PLL,
385 },
386
387 };
388
389 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
390 {
391 struct drm_device *dev = crtc->dev;
392 struct drm_i915_private *dev_priv = dev->dev_private;
393 const intel_limit_t *limit;
394
395 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
396 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
397 LVDS_CLKB_POWER_UP)
398 /* LVDS with dual channel */
399 limit = &intel_limits
400 [INTEL_LIMIT_G4X_DUAL_CHANNEL_LVDS];
401 else
402 /* LVDS with dual channel */
403 limit = &intel_limits
404 [INTEL_LIMIT_G4X_SINGLE_CHANNEL_LVDS];
405 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
406 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
407 limit = &intel_limits[INTEL_LIMIT_G4X_HDMI_DAC];
408 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
409 limit = &intel_limits[INTEL_LIMIT_G4X_SDVO];
410 } else /* The option is for other outputs */
411 limit = &intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
412
413 return limit;
414 }
415
416 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
417 {
418 struct drm_device *dev = crtc->dev;
419 const intel_limit_t *limit;
420
421 if (IS_G4X(dev)) {
422 limit = intel_g4x_limit(crtc);
423 } else if (IS_I9XX(dev) && !IS_IGD(dev)) {
424 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
425 limit = &intel_limits[INTEL_LIMIT_I9XX_LVDS];
426 else
427 limit = &intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
428 } else if (IS_IGD(dev)) {
429 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
430 limit = &intel_limits[INTEL_LIMIT_IGD_LVDS];
431 else
432 limit = &intel_limits[INTEL_LIMIT_IGD_SDVO_DAC];
433 } else {
434 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
435 limit = &intel_limits[INTEL_LIMIT_I8XX_LVDS];
436 else
437 limit = &intel_limits[INTEL_LIMIT_I8XX_DVO_DAC];
438 }
439 return limit;
440 }
441
442 /* m1 is reserved as 0 in IGD, n is a ring counter */
443 static void igd_clock(int refclk, intel_clock_t *clock)
444 {
445 clock->m = clock->m2 + 2;
446 clock->p = clock->p1 * clock->p2;
447 clock->vco = refclk * clock->m / clock->n;
448 clock->dot = clock->vco / clock->p;
449 }
450
451 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
452 {
453 if (IS_IGD(dev)) {
454 igd_clock(refclk, clock);
455 return;
456 }
457 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
458 clock->p = clock->p1 * clock->p2;
459 clock->vco = refclk * clock->m / (clock->n + 2);
460 clock->dot = clock->vco / clock->p;
461 }
462
463 /**
464 * Returns whether any output on the specified pipe is of the specified type
465 */
466 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
467 {
468 struct drm_device *dev = crtc->dev;
469 struct drm_mode_config *mode_config = &dev->mode_config;
470 struct drm_connector *l_entry;
471
472 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
473 if (l_entry->encoder &&
474 l_entry->encoder->crtc == crtc) {
475 struct intel_output *intel_output = to_intel_output(l_entry);
476 if (intel_output->type == type)
477 return true;
478 }
479 }
480 return false;
481 }
482
483 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
484 /**
485 * Returns whether the given set of divisors are valid for a given refclk with
486 * the given connectors.
487 */
488
489 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
490 {
491 const intel_limit_t *limit = intel_limit (crtc);
492 struct drm_device *dev = crtc->dev;
493
494 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
495 INTELPllInvalid ("p1 out of range\n");
496 if (clock->p < limit->p.min || limit->p.max < clock->p)
497 INTELPllInvalid ("p out of range\n");
498 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
499 INTELPllInvalid ("m2 out of range\n");
500 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
501 INTELPllInvalid ("m1 out of range\n");
502 if (clock->m1 <= clock->m2 && !IS_IGD(dev))
503 INTELPllInvalid ("m1 <= m2\n");
504 if (clock->m < limit->m.min || limit->m.max < clock->m)
505 INTELPllInvalid ("m out of range\n");
506 if (clock->n < limit->n.min || limit->n.max < clock->n)
507 INTELPllInvalid ("n out of range\n");
508 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
509 INTELPllInvalid ("vco out of range\n");
510 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
511 * connector, etc., rather than just a single range.
512 */
513 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
514 INTELPllInvalid ("dot out of range\n");
515
516 return true;
517 }
518
519 static bool
520 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
521 int target, int refclk, intel_clock_t *best_clock)
522
523 {
524 struct drm_device *dev = crtc->dev;
525 struct drm_i915_private *dev_priv = dev->dev_private;
526 intel_clock_t clock;
527 int err = target;
528
529 if (IS_I9XX(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
530 (I915_READ(LVDS) & LVDS_PORT_EN) != 0) {
531 /*
532 * For LVDS, if the panel is on, just rely on its current
533 * settings for dual-channel. We haven't figured out how to
534 * reliably set up different single/dual channel state, if we
535 * even can.
536 */
537 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
538 LVDS_CLKB_POWER_UP)
539 clock.p2 = limit->p2.p2_fast;
540 else
541 clock.p2 = limit->p2.p2_slow;
542 } else {
543 if (target < limit->p2.dot_limit)
544 clock.p2 = limit->p2.p2_slow;
545 else
546 clock.p2 = limit->p2.p2_fast;
547 }
548
549 memset (best_clock, 0, sizeof (*best_clock));
550
551 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
552 for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) {
553 /* m1 is always 0 in IGD */
554 if (clock.m2 >= clock.m1 && !IS_IGD(dev))
555 break;
556 for (clock.n = limit->n.min; clock.n <= limit->n.max;
557 clock.n++) {
558 for (clock.p1 = limit->p1.min;
559 clock.p1 <= limit->p1.max; clock.p1++) {
560 int this_err;
561
562 intel_clock(dev, refclk, &clock);
563
564 if (!intel_PLL_is_valid(crtc, &clock))
565 continue;
566
567 this_err = abs(clock.dot - target);
568 if (this_err < err) {
569 *best_clock = clock;
570 err = this_err;
571 }
572 }
573 }
574 }
575 }
576
577 return (err != target);
578 }
579
580 static bool
581 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
582 int target, int refclk, intel_clock_t *best_clock)
583 {
584 struct drm_device *dev = crtc->dev;
585 struct drm_i915_private *dev_priv = dev->dev_private;
586 intel_clock_t clock;
587 int max_n;
588 bool found;
589 /* approximately equals target * 0.00488 */
590 int err_most = (target >> 8) + (target >> 10);
591 found = false;
592
593 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
594 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
595 LVDS_CLKB_POWER_UP)
596 clock.p2 = limit->p2.p2_fast;
597 else
598 clock.p2 = limit->p2.p2_slow;
599 } else {
600 if (target < limit->p2.dot_limit)
601 clock.p2 = limit->p2.p2_slow;
602 else
603 clock.p2 = limit->p2.p2_fast;
604 }
605
606 memset(best_clock, 0, sizeof(*best_clock));
607 max_n = limit->n.max;
608 /* based on hardware requriment prefer smaller n to precision */
609 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
610 /* based on hardware requirment prefere larger m1,m2, p1 */
611 for (clock.m1 = limit->m1.max;
612 clock.m1 >= limit->m1.min; clock.m1--) {
613 for (clock.m2 = limit->m2.max;
614 clock.m2 >= limit->m2.min; clock.m2--) {
615 for (clock.p1 = limit->p1.max;
616 clock.p1 >= limit->p1.min; clock.p1--) {
617 int this_err;
618
619 intel_clock(dev, refclk, &clock);
620 if (!intel_PLL_is_valid(crtc, &clock))
621 continue;
622 this_err = abs(clock.dot - target) ;
623 if (this_err < err_most) {
624 *best_clock = clock;
625 err_most = this_err;
626 max_n = clock.n;
627 found = true;
628 }
629 }
630 }
631 }
632 }
633
634 return found;
635 }
636
637 void
638 intel_wait_for_vblank(struct drm_device *dev)
639 {
640 /* Wait for 20ms, i.e. one cycle at 50hz. */
641 mdelay(20);
642 }
643
644 static int
645 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
646 struct drm_framebuffer *old_fb)
647 {
648 struct drm_device *dev = crtc->dev;
649 struct drm_i915_private *dev_priv = dev->dev_private;
650 struct drm_i915_master_private *master_priv;
651 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652 struct intel_framebuffer *intel_fb;
653 struct drm_i915_gem_object *obj_priv;
654 struct drm_gem_object *obj;
655 int pipe = intel_crtc->pipe;
656 unsigned long Start, Offset;
657 int dspbase = (pipe == 0 ? DSPAADDR : DSPBADDR);
658 int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
659 int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
660 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
661 u32 dspcntr, alignment;
662 int ret;
663
664 /* no fb bound */
665 if (!crtc->fb) {
666 DRM_DEBUG("No FB bound\n");
667 return 0;
668 }
669
670 switch (pipe) {
671 case 0:
672 case 1:
673 break;
674 default:
675 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
676 return -EINVAL;
677 }
678
679 intel_fb = to_intel_framebuffer(crtc->fb);
680 obj = intel_fb->obj;
681 obj_priv = obj->driver_private;
682
683 switch (obj_priv->tiling_mode) {
684 case I915_TILING_NONE:
685 alignment = 64 * 1024;
686 break;
687 case I915_TILING_X:
688 /* pin() will align the object as required by fence */
689 alignment = 0;
690 break;
691 case I915_TILING_Y:
692 /* FIXME: Is this true? */
693 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
694 return -EINVAL;
695 default:
696 BUG();
697 }
698
699 mutex_lock(&dev->struct_mutex);
700 ret = i915_gem_object_pin(intel_fb->obj, alignment);
701 if (ret != 0) {
702 mutex_unlock(&dev->struct_mutex);
703 return ret;
704 }
705
706 ret = i915_gem_object_set_to_gtt_domain(intel_fb->obj, 1);
707 if (ret != 0) {
708 i915_gem_object_unpin(intel_fb->obj);
709 mutex_unlock(&dev->struct_mutex);
710 return ret;
711 }
712
713 dspcntr = I915_READ(dspcntr_reg);
714 /* Mask out pixel format bits in case we change it */
715 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
716 switch (crtc->fb->bits_per_pixel) {
717 case 8:
718 dspcntr |= DISPPLANE_8BPP;
719 break;
720 case 16:
721 if (crtc->fb->depth == 15)
722 dspcntr |= DISPPLANE_15_16BPP;
723 else
724 dspcntr |= DISPPLANE_16BPP;
725 break;
726 case 24:
727 case 32:
728 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
729 break;
730 default:
731 DRM_ERROR("Unknown color depth\n");
732 i915_gem_object_unpin(intel_fb->obj);
733 mutex_unlock(&dev->struct_mutex);
734 return -EINVAL;
735 }
736 I915_WRITE(dspcntr_reg, dspcntr);
737
738 Start = obj_priv->gtt_offset;
739 Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
740
741 DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
742 I915_WRITE(dspstride, crtc->fb->pitch);
743 if (IS_I965G(dev)) {
744 I915_WRITE(dspbase, Offset);
745 I915_READ(dspbase);
746 I915_WRITE(dspsurf, Start);
747 I915_READ(dspsurf);
748 } else {
749 I915_WRITE(dspbase, Start + Offset);
750 I915_READ(dspbase);
751 }
752
753 intel_wait_for_vblank(dev);
754
755 if (old_fb) {
756 intel_fb = to_intel_framebuffer(old_fb);
757 i915_gem_object_unpin(intel_fb->obj);
758 }
759 mutex_unlock(&dev->struct_mutex);
760
761 if (!dev->primary->master)
762 return 0;
763
764 master_priv = dev->primary->master->driver_priv;
765 if (!master_priv->sarea_priv)
766 return 0;
767
768 if (pipe) {
769 master_priv->sarea_priv->pipeB_x = x;
770 master_priv->sarea_priv->pipeB_y = y;
771 } else {
772 master_priv->sarea_priv->pipeA_x = x;
773 master_priv->sarea_priv->pipeA_y = y;
774 }
775
776 return 0;
777 }
778
779
780
781 /**
782 * Sets the power management mode of the pipe and plane.
783 *
784 * This code should probably grow support for turning the cursor off and back
785 * on appropriately at the same time as we're turning the pipe off/on.
786 */
787 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
788 {
789 struct drm_device *dev = crtc->dev;
790 struct drm_i915_master_private *master_priv;
791 struct drm_i915_private *dev_priv = dev->dev_private;
792 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
793 int pipe = intel_crtc->pipe;
794 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
795 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
796 int dspbase_reg = (pipe == 0) ? DSPAADDR : DSPBADDR;
797 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
798 u32 temp;
799 bool enabled;
800
801 /* XXX: When our outputs are all unaware of DPMS modes other than off
802 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
803 */
804 switch (mode) {
805 case DRM_MODE_DPMS_ON:
806 case DRM_MODE_DPMS_STANDBY:
807 case DRM_MODE_DPMS_SUSPEND:
808 /* Enable the DPLL */
809 temp = I915_READ(dpll_reg);
810 if ((temp & DPLL_VCO_ENABLE) == 0) {
811 I915_WRITE(dpll_reg, temp);
812 I915_READ(dpll_reg);
813 /* Wait for the clocks to stabilize. */
814 udelay(150);
815 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
816 I915_READ(dpll_reg);
817 /* Wait for the clocks to stabilize. */
818 udelay(150);
819 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
820 I915_READ(dpll_reg);
821 /* Wait for the clocks to stabilize. */
822 udelay(150);
823 }
824
825 /* Enable the pipe */
826 temp = I915_READ(pipeconf_reg);
827 if ((temp & PIPEACONF_ENABLE) == 0)
828 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
829
830 /* Enable the plane */
831 temp = I915_READ(dspcntr_reg);
832 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
833 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
834 /* Flush the plane changes */
835 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
836 }
837
838 intel_crtc_load_lut(crtc);
839
840 /* Give the overlay scaler a chance to enable if it's on this pipe */
841 //intel_crtc_dpms_video(crtc, true); TODO
842 break;
843 case DRM_MODE_DPMS_OFF:
844 /* Give the overlay scaler a chance to disable if it's on this pipe */
845 //intel_crtc_dpms_video(crtc, FALSE); TODO
846
847 /* Disable the VGA plane that we never use */
848 I915_WRITE(VGACNTRL, VGA_DISP_DISABLE);
849
850 /* Disable display plane */
851 temp = I915_READ(dspcntr_reg);
852 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
853 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
854 /* Flush the plane changes */
855 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
856 I915_READ(dspbase_reg);
857 }
858
859 if (!IS_I9XX(dev)) {
860 /* Wait for vblank for the disable to take effect */
861 intel_wait_for_vblank(dev);
862 }
863
864 /* Next, disable display pipes */
865 temp = I915_READ(pipeconf_reg);
866 if ((temp & PIPEACONF_ENABLE) != 0) {
867 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
868 I915_READ(pipeconf_reg);
869 }
870
871 /* Wait for vblank for the disable to take effect. */
872 intel_wait_for_vblank(dev);
873
874 temp = I915_READ(dpll_reg);
875 if ((temp & DPLL_VCO_ENABLE) != 0) {
876 I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
877 I915_READ(dpll_reg);
878 }
879
880 /* Wait for the clocks to turn off. */
881 udelay(150);
882 break;
883 }
884
885 if (!dev->primary->master)
886 return;
887
888 master_priv = dev->primary->master->driver_priv;
889 if (!master_priv->sarea_priv)
890 return;
891
892 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
893
894 switch (pipe) {
895 case 0:
896 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
897 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
898 break;
899 case 1:
900 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
901 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
902 break;
903 default:
904 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
905 break;
906 }
907
908 intel_crtc->dpms_mode = mode;
909 }
910
911 static void intel_crtc_prepare (struct drm_crtc *crtc)
912 {
913 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
914 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
915 }
916
917 static void intel_crtc_commit (struct drm_crtc *crtc)
918 {
919 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
920 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
921 }
922
923 void intel_encoder_prepare (struct drm_encoder *encoder)
924 {
925 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
926 /* lvds has its own version of prepare see intel_lvds_prepare */
927 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
928 }
929
930 void intel_encoder_commit (struct drm_encoder *encoder)
931 {
932 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
933 /* lvds has its own version of commit see intel_lvds_commit */
934 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
935 }
936
937 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
938 struct drm_display_mode *mode,
939 struct drm_display_mode *adjusted_mode)
940 {
941 return true;
942 }
943
944
945 /** Returns the core display clock speed for i830 - i945 */
946 static int intel_get_core_clock_speed(struct drm_device *dev)
947 {
948
949 /* Core clock values taken from the published datasheets.
950 * The 830 may go up to 166 Mhz, which we should check.
951 */
952 if (IS_I945G(dev))
953 return 400000;
954 else if (IS_I915G(dev))
955 return 333000;
956 else if (IS_I945GM(dev) || IS_845G(dev) || IS_IGDGM(dev))
957 return 200000;
958 else if (IS_I915GM(dev)) {
959 u16 gcfgc = 0;
960
961 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
962
963 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
964 return 133000;
965 else {
966 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
967 case GC_DISPLAY_CLOCK_333_MHZ:
968 return 333000;
969 default:
970 case GC_DISPLAY_CLOCK_190_200_MHZ:
971 return 190000;
972 }
973 }
974 } else if (IS_I865G(dev))
975 return 266000;
976 else if (IS_I855(dev)) {
977 u16 hpllcc = 0;
978 /* Assume that the hardware is in the high speed state. This
979 * should be the default.
980 */
981 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
982 case GC_CLOCK_133_200:
983 case GC_CLOCK_100_200:
984 return 200000;
985 case GC_CLOCK_166_250:
986 return 250000;
987 case GC_CLOCK_100_133:
988 return 133000;
989 }
990 } else /* 852, 830 */
991 return 133000;
992
993 return 0; /* Silence gcc warning */
994 }
995
996
997 /**
998 * Return the pipe currently connected to the panel fitter,
999 * or -1 if the panel fitter is not present or not in use
1000 */
1001 static int intel_panel_fitter_pipe (struct drm_device *dev)
1002 {
1003 struct drm_i915_private *dev_priv = dev->dev_private;
1004 u32 pfit_control;
1005
1006 /* i830 doesn't have a panel fitter */
1007 if (IS_I830(dev))
1008 return -1;
1009
1010 pfit_control = I915_READ(PFIT_CONTROL);
1011
1012 /* See if the panel fitter is in use */
1013 if ((pfit_control & PFIT_ENABLE) == 0)
1014 return -1;
1015
1016 /* 965 can place panel fitter on either pipe */
1017 if (IS_I965G(dev))
1018 return (pfit_control >> 29) & 0x3;
1019
1020 /* older chips can only use pipe 1 */
1021 return 1;
1022 }
1023
1024 static int intel_crtc_mode_set(struct drm_crtc *crtc,
1025 struct drm_display_mode *mode,
1026 struct drm_display_mode *adjusted_mode,
1027 int x, int y,
1028 struct drm_framebuffer *old_fb)
1029 {
1030 struct drm_device *dev = crtc->dev;
1031 struct drm_i915_private *dev_priv = dev->dev_private;
1032 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1033 int pipe = intel_crtc->pipe;
1034 int fp_reg = (pipe == 0) ? FPA0 : FPB0;
1035 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1036 int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
1037 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
1038 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1039 int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1040 int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1041 int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1042 int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1043 int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1044 int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1045 int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE;
1046 int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS;
1047 int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
1048 int refclk, num_outputs = 0;
1049 intel_clock_t clock;
1050 u32 dpll = 0, fp = 0, dspcntr, pipeconf;
1051 bool ok, is_sdvo = false, is_dvo = false;
1052 bool is_crt = false, is_lvds = false, is_tv = false;
1053 struct drm_mode_config *mode_config = &dev->mode_config;
1054 struct drm_connector *connector;
1055 const intel_limit_t *limit;
1056 int ret;
1057
1058 drm_vblank_pre_modeset(dev, pipe);
1059
1060 list_for_each_entry(connector, &mode_config->connector_list, head) {
1061 struct intel_output *intel_output = to_intel_output(connector);
1062
1063 if (!connector->encoder || connector->encoder->crtc != crtc)
1064 continue;
1065
1066 switch (intel_output->type) {
1067 case INTEL_OUTPUT_LVDS:
1068 is_lvds = true;
1069 break;
1070 case INTEL_OUTPUT_SDVO:
1071 case INTEL_OUTPUT_HDMI:
1072 is_sdvo = true;
1073 if (intel_output->needs_tv_clock)
1074 is_tv = true;
1075 break;
1076 case INTEL_OUTPUT_DVO:
1077 is_dvo = true;
1078 break;
1079 case INTEL_OUTPUT_TVOUT:
1080 is_tv = true;
1081 break;
1082 case INTEL_OUTPUT_ANALOG:
1083 is_crt = true;
1084 break;
1085 }
1086
1087 num_outputs++;
1088 }
1089
1090 if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
1091 refclk = dev_priv->lvds_ssc_freq * 1000;
1092 DRM_DEBUG("using SSC reference clock of %d MHz\n", refclk / 1000);
1093 } else if (IS_I9XX(dev)) {
1094 refclk = 96000;
1095 } else {
1096 refclk = 48000;
1097 }
1098
1099 /*
1100 * Returns a set of divisors for the desired target clock with the given
1101 * refclk, or FALSE. The returned values represent the clock equation:
1102 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
1103 */
1104 limit = intel_limit(crtc);
1105 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
1106 if (!ok) {
1107 DRM_ERROR("Couldn't find PLL settings for mode!\n");
1108 return -EINVAL;
1109 }
1110
1111 /* SDVO TV has fixed PLL values depend on its clock range,
1112 this mirrors vbios setting. */
1113 if (is_sdvo && is_tv) {
1114 if (adjusted_mode->clock >= 100000
1115 && adjusted_mode->clock < 140500) {
1116 clock.p1 = 2;
1117 clock.p2 = 10;
1118 clock.n = 3;
1119 clock.m1 = 16;
1120 clock.m2 = 8;
1121 } else if (adjusted_mode->clock >= 140500
1122 && adjusted_mode->clock <= 200000) {
1123 clock.p1 = 1;
1124 clock.p2 = 10;
1125 clock.n = 6;
1126 clock.m1 = 12;
1127 clock.m2 = 8;
1128 }
1129 }
1130
1131 if (IS_IGD(dev))
1132 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
1133 else
1134 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
1135
1136 dpll = DPLL_VGA_MODE_DIS;
1137 if (IS_I9XX(dev)) {
1138 if (is_lvds)
1139 dpll |= DPLLB_MODE_LVDS;
1140 else
1141 dpll |= DPLLB_MODE_DAC_SERIAL;
1142 if (is_sdvo) {
1143 dpll |= DPLL_DVO_HIGH_SPEED;
1144 if (IS_I945G(dev) || IS_I945GM(dev)) {
1145 int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
1146 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
1147 }
1148 }
1149
1150 /* compute bitmask from p1 value */
1151 if (IS_IGD(dev))
1152 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_IGD;
1153 else
1154 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1155 switch (clock.p2) {
1156 case 5:
1157 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1158 break;
1159 case 7:
1160 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1161 break;
1162 case 10:
1163 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1164 break;
1165 case 14:
1166 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1167 break;
1168 }
1169 if (IS_I965G(dev))
1170 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
1171 } else {
1172 if (is_lvds) {
1173 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1174 } else {
1175 if (clock.p1 == 2)
1176 dpll |= PLL_P1_DIVIDE_BY_TWO;
1177 else
1178 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1179 if (clock.p2 == 4)
1180 dpll |= PLL_P2_DIVIDE_BY_4;
1181 }
1182 }
1183
1184 if (is_sdvo && is_tv)
1185 dpll |= PLL_REF_INPUT_TVCLKINBC;
1186 else if (is_tv)
1187 /* XXX: just matching BIOS for now */
1188 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
1189 dpll |= 3;
1190 else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
1191 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1192 else
1193 dpll |= PLL_REF_INPUT_DREFCLK;
1194
1195 /* setup pipeconf */
1196 pipeconf = I915_READ(pipeconf_reg);
1197
1198 /* Set up the display plane register */
1199 dspcntr = DISPPLANE_GAMMA_ENABLE;
1200
1201 if (pipe == 0)
1202 dspcntr |= DISPPLANE_SEL_PIPE_A;
1203 else
1204 dspcntr |= DISPPLANE_SEL_PIPE_B;
1205
1206 if (pipe == 0 && !IS_I965G(dev)) {
1207 /* Enable pixel doubling when the dot clock is > 90% of the (display)
1208 * core speed.
1209 *
1210 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
1211 * pipe == 0 check?
1212 */
1213 if (mode->clock > intel_get_core_clock_speed(dev) * 9 / 10)
1214 pipeconf |= PIPEACONF_DOUBLE_WIDE;
1215 else
1216 pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
1217 }
1218
1219 dspcntr |= DISPLAY_PLANE_ENABLE;
1220 pipeconf |= PIPEACONF_ENABLE;
1221 dpll |= DPLL_VCO_ENABLE;
1222
1223
1224 /* Disable the panel fitter if it was on our pipe */
1225 if (intel_panel_fitter_pipe(dev) == pipe)
1226 I915_WRITE(PFIT_CONTROL, 0);
1227
1228 DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
1229 drm_mode_debug_printmodeline(mode);
1230
1231
1232 if (dpll & DPLL_VCO_ENABLE) {
1233 I915_WRITE(fp_reg, fp);
1234 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
1235 I915_READ(dpll_reg);
1236 udelay(150);
1237 }
1238
1239 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
1240 * This is an exception to the general rule that mode_set doesn't turn
1241 * things on.
1242 */
1243 if (is_lvds) {
1244 u32 lvds = I915_READ(LVDS);
1245
1246 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
1247 /* Set the B0-B3 data pairs corresponding to whether we're going to
1248 * set the DPLLs for dual-channel mode or not.
1249 */
1250 if (clock.p2 == 7)
1251 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
1252 else
1253 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
1254
1255 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
1256 * appropriately here, but we need to look more thoroughly into how
1257 * panels behave in the two modes.
1258 */
1259
1260 I915_WRITE(LVDS, lvds);
1261 I915_READ(LVDS);
1262 }
1263
1264 I915_WRITE(fp_reg, fp);
1265 I915_WRITE(dpll_reg, dpll);
1266 I915_READ(dpll_reg);
1267 /* Wait for the clocks to stabilize. */
1268 udelay(150);
1269
1270 if (IS_I965G(dev)) {
1271 int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
1272 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
1273 ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
1274 } else {
1275 /* write it again -- the BIOS does, after all */
1276 I915_WRITE(dpll_reg, dpll);
1277 }
1278 I915_READ(dpll_reg);
1279 /* Wait for the clocks to stabilize. */
1280 udelay(150);
1281
1282 I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
1283 ((adjusted_mode->crtc_htotal - 1) << 16));
1284 I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
1285 ((adjusted_mode->crtc_hblank_end - 1) << 16));
1286 I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
1287 ((adjusted_mode->crtc_hsync_end - 1) << 16));
1288 I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
1289 ((adjusted_mode->crtc_vtotal - 1) << 16));
1290 I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
1291 ((adjusted_mode->crtc_vblank_end - 1) << 16));
1292 I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
1293 ((adjusted_mode->crtc_vsync_end - 1) << 16));
1294 /* pipesrc and dspsize control the size that is scaled from, which should
1295 * always be the user's requested size.
1296 */
1297 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
1298 I915_WRITE(dsppos_reg, 0);
1299 I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
1300 I915_WRITE(pipeconf_reg, pipeconf);
1301 I915_READ(pipeconf_reg);
1302
1303 intel_wait_for_vblank(dev);
1304
1305 I915_WRITE(dspcntr_reg, dspcntr);
1306
1307 /* Flush the plane changes */
1308 ret = intel_pipe_set_base(crtc, x, y, old_fb);
1309 if (ret != 0)
1310 return ret;
1311
1312 drm_vblank_post_modeset(dev, pipe);
1313
1314 return 0;
1315 }
1316
1317 /** Loads the palette/gamma unit for the CRTC with the prepared values */
1318 void intel_crtc_load_lut(struct drm_crtc *crtc)
1319 {
1320 struct drm_device *dev = crtc->dev;
1321 struct drm_i915_private *dev_priv = dev->dev_private;
1322 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1323 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
1324 int i;
1325
1326 /* The clocks have to be on to load the palette. */
1327 if (!crtc->enabled)
1328 return;
1329
1330 for (i = 0; i < 256; i++) {
1331 I915_WRITE(palreg + 4 * i,
1332 (intel_crtc->lut_r[i] << 16) |
1333 (intel_crtc->lut_g[i] << 8) |
1334 intel_crtc->lut_b[i]);
1335 }
1336 }
1337
1338 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
1339 struct drm_file *file_priv,
1340 uint32_t handle,
1341 uint32_t width, uint32_t height)
1342 {
1343 struct drm_device *dev = crtc->dev;
1344 struct drm_i915_private *dev_priv = dev->dev_private;
1345 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1346 struct drm_gem_object *bo;
1347 struct drm_i915_gem_object *obj_priv;
1348 int pipe = intel_crtc->pipe;
1349 uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
1350 uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
1351 uint32_t temp;
1352 size_t addr;
1353 int ret;
1354
1355 DRM_DEBUG("\n");
1356
1357 /* if we want to turn off the cursor ignore width and height */
1358 if (!handle) {
1359 DRM_DEBUG("cursor off\n");
1360 temp = CURSOR_MODE_DISABLE;
1361 addr = 0;
1362 bo = NULL;
1363 mutex_lock(&dev->struct_mutex);
1364 goto finish;
1365 }
1366
1367 /* Currently we only support 64x64 cursors */
1368 if (width != 64 || height != 64) {
1369 DRM_ERROR("we currently only support 64x64 cursors\n");
1370 return -EINVAL;
1371 }
1372
1373 bo = drm_gem_object_lookup(dev, file_priv, handle);
1374 if (!bo)
1375 return -ENOENT;
1376
1377 obj_priv = bo->driver_private;
1378
1379 if (bo->size < width * height * 4) {
1380 DRM_ERROR("buffer is to small\n");
1381 ret = -ENOMEM;
1382 goto fail;
1383 }
1384
1385 /* we only need to pin inside GTT if cursor is non-phy */
1386 mutex_lock(&dev->struct_mutex);
1387 if (!dev_priv->cursor_needs_physical) {
1388 ret = i915_gem_object_pin(bo, PAGE_SIZE);
1389 if (ret) {
1390 DRM_ERROR("failed to pin cursor bo\n");
1391 goto fail_locked;
1392 }
1393 addr = obj_priv->gtt_offset;
1394 } else {
1395 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
1396 if (ret) {
1397 DRM_ERROR("failed to attach phys object\n");
1398 goto fail_locked;
1399 }
1400 addr = obj_priv->phys_obj->handle->busaddr;
1401 }
1402
1403 temp = 0;
1404 /* set the pipe for the cursor */
1405 temp |= (pipe << 28);
1406 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
1407
1408 finish:
1409 I915_WRITE(control, temp);
1410 I915_WRITE(base, addr);
1411
1412 if (intel_crtc->cursor_bo) {
1413 if (dev_priv->cursor_needs_physical) {
1414 if (intel_crtc->cursor_bo != bo)
1415 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
1416 } else
1417 i915_gem_object_unpin(intel_crtc->cursor_bo);
1418 drm_gem_object_unreference(intel_crtc->cursor_bo);
1419 }
1420 mutex_unlock(&dev->struct_mutex);
1421
1422 intel_crtc->cursor_addr = addr;
1423 intel_crtc->cursor_bo = bo;
1424
1425 return 0;
1426 fail:
1427 mutex_lock(&dev->struct_mutex);
1428 fail_locked:
1429 drm_gem_object_unreference(bo);
1430 mutex_unlock(&dev->struct_mutex);
1431 return ret;
1432 }
1433
1434 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1435 {
1436 struct drm_device *dev = crtc->dev;
1437 struct drm_i915_private *dev_priv = dev->dev_private;
1438 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1439 int pipe = intel_crtc->pipe;
1440 uint32_t temp = 0;
1441 uint32_t adder;
1442
1443 if (x < 0) {
1444 temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
1445 x = -x;
1446 }
1447 if (y < 0) {
1448 temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
1449 y = -y;
1450 }
1451
1452 temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
1453 temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1454
1455 adder = intel_crtc->cursor_addr;
1456 I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
1457 I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
1458
1459 return 0;
1460 }
1461
1462 /** Sets the color ramps on behalf of RandR */
1463 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
1464 u16 blue, int regno)
1465 {
1466 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1467
1468 intel_crtc->lut_r[regno] = red >> 8;
1469 intel_crtc->lut_g[regno] = green >> 8;
1470 intel_crtc->lut_b[regno] = blue >> 8;
1471 }
1472
1473 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
1474 u16 *blue, uint32_t size)
1475 {
1476 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1477 int i;
1478
1479 if (size != 256)
1480 return;
1481
1482 for (i = 0; i < 256; i++) {
1483 intel_crtc->lut_r[i] = red[i] >> 8;
1484 intel_crtc->lut_g[i] = green[i] >> 8;
1485 intel_crtc->lut_b[i] = blue[i] >> 8;
1486 }
1487
1488 intel_crtc_load_lut(crtc);
1489 }
1490
1491 /**
1492 * Get a pipe with a simple mode set on it for doing load-based monitor
1493 * detection.
1494 *
1495 * It will be up to the load-detect code to adjust the pipe as appropriate for
1496 * its requirements. The pipe will be connected to no other outputs.
1497 *
1498 * Currently this code will only succeed if there is a pipe with no outputs
1499 * configured for it. In the future, it could choose to temporarily disable
1500 * some outputs to free up a pipe for its use.
1501 *
1502 * \return crtc, or NULL if no pipes are available.
1503 */
1504
1505 /* VESA 640x480x72Hz mode to set on the pipe */
1506 static struct drm_display_mode load_detect_mode = {
1507 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
1508 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1509 };
1510
1511 struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
1512 struct drm_display_mode *mode,
1513 int *dpms_mode)
1514 {
1515 struct intel_crtc *intel_crtc;
1516 struct drm_crtc *possible_crtc;
1517 struct drm_crtc *supported_crtc =NULL;
1518 struct drm_encoder *encoder = &intel_output->enc;
1519 struct drm_crtc *crtc = NULL;
1520 struct drm_device *dev = encoder->dev;
1521 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1522 struct drm_crtc_helper_funcs *crtc_funcs;
1523 int i = -1;
1524
1525 /*
1526 * Algorithm gets a little messy:
1527 * - if the connector already has an assigned crtc, use it (but make
1528 * sure it's on first)
1529 * - try to find the first unused crtc that can drive this connector,
1530 * and use that if we find one
1531 * - if there are no unused crtcs available, try to use the first
1532 * one we found that supports the connector
1533 */
1534
1535 /* See if we already have a CRTC for this connector */
1536 if (encoder->crtc) {
1537 crtc = encoder->crtc;
1538 /* Make sure the crtc and connector are running */
1539 intel_crtc = to_intel_crtc(crtc);
1540 *dpms_mode = intel_crtc->dpms_mode;
1541 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
1542 crtc_funcs = crtc->helper_private;
1543 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1544 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
1545 }
1546 return crtc;
1547 }
1548
1549 /* Find an unused one (if possible) */
1550 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
1551 i++;
1552 if (!(encoder->possible_crtcs & (1 << i)))
1553 continue;
1554 if (!possible_crtc->enabled) {
1555 crtc = possible_crtc;
1556 break;
1557 }
1558 if (!supported_crtc)
1559 supported_crtc = possible_crtc;
1560 }
1561
1562 /*
1563 * If we didn't find an unused CRTC, don't use any.
1564 */
1565 if (!crtc) {
1566 return NULL;
1567 }
1568
1569 encoder->crtc = crtc;
1570 intel_output->load_detect_temp = true;
1571
1572 intel_crtc = to_intel_crtc(crtc);
1573 *dpms_mode = intel_crtc->dpms_mode;
1574
1575 if (!crtc->enabled) {
1576 if (!mode)
1577 mode = &load_detect_mode;
1578 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
1579 } else {
1580 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
1581 crtc_funcs = crtc->helper_private;
1582 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1583 }
1584
1585 /* Add this connector to the crtc */
1586 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
1587 encoder_funcs->commit(encoder);
1588 }
1589 /* let the connector get through one full cycle before testing */
1590 intel_wait_for_vblank(dev);
1591
1592 return crtc;
1593 }
1594
1595 void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
1596 {
1597 struct drm_encoder *encoder = &intel_output->enc;
1598 struct drm_device *dev = encoder->dev;
1599 struct drm_crtc *crtc = encoder->crtc;
1600 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1601 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1602
1603 if (intel_output->load_detect_temp) {
1604 encoder->crtc = NULL;
1605 intel_output->load_detect_temp = false;
1606 crtc->enabled = drm_helper_crtc_in_use(crtc);
1607 drm_helper_disable_unused_functions(dev);
1608 }
1609
1610 /* Switch crtc and output back off if necessary */
1611 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
1612 if (encoder->crtc == crtc)
1613 encoder_funcs->dpms(encoder, dpms_mode);
1614 crtc_funcs->dpms(crtc, dpms_mode);
1615 }
1616 }
1617
1618 /* Returns the clock of the currently programmed mode of the given pipe. */
1619 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
1620 {
1621 struct drm_i915_private *dev_priv = dev->dev_private;
1622 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1623 int pipe = intel_crtc->pipe;
1624 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
1625 u32 fp;
1626 intel_clock_t clock;
1627
1628 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1629 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
1630 else
1631 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
1632
1633 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
1634 if (IS_IGD(dev)) {
1635 clock.n = ffs((fp & FP_N_IGD_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
1636 clock.m2 = (fp & FP_M2_IGD_DIV_MASK) >> FP_M2_DIV_SHIFT;
1637 } else {
1638 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
1639 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
1640 }
1641
1642 if (IS_I9XX(dev)) {
1643 if (IS_IGD(dev))
1644 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_IGD) >>
1645 DPLL_FPA01_P1_POST_DIV_SHIFT_IGD);
1646 else
1647 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
1648 DPLL_FPA01_P1_POST_DIV_SHIFT);
1649
1650 switch (dpll & DPLL_MODE_MASK) {
1651 case DPLLB_MODE_DAC_SERIAL:
1652 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
1653 5 : 10;
1654 break;
1655 case DPLLB_MODE_LVDS:
1656 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
1657 7 : 14;
1658 break;
1659 default:
1660 DRM_DEBUG("Unknown DPLL mode %08x in programmed "
1661 "mode\n", (int)(dpll & DPLL_MODE_MASK));
1662 return 0;
1663 }
1664
1665 /* XXX: Handle the 100Mhz refclk */
1666 intel_clock(dev, 96000, &clock);
1667 } else {
1668 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
1669
1670 if (is_lvds) {
1671 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
1672 DPLL_FPA01_P1_POST_DIV_SHIFT);
1673 clock.p2 = 14;
1674
1675 if ((dpll & PLL_REF_INPUT_MASK) ==
1676 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
1677 /* XXX: might not be 66MHz */
1678 intel_clock(dev, 66000, &clock);
1679 } else
1680 intel_clock(dev, 48000, &clock);
1681 } else {
1682 if (dpll & PLL_P1_DIVIDE_BY_TWO)
1683 clock.p1 = 2;
1684 else {
1685 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
1686 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
1687 }
1688 if (dpll & PLL_P2_DIVIDE_BY_4)
1689 clock.p2 = 4;
1690 else
1691 clock.p2 = 2;
1692
1693 intel_clock(dev, 48000, &clock);
1694 }
1695 }
1696
1697 /* XXX: It would be nice to validate the clocks, but we can't reuse
1698 * i830PllIsValid() because it relies on the xf86_config connector
1699 * configuration being accurate, which it isn't necessarily.
1700 */
1701
1702 return clock.dot;
1703 }
1704
1705 /** Returns the currently programmed mode of the given pipe. */
1706 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
1707 struct drm_crtc *crtc)
1708 {
1709 struct drm_i915_private *dev_priv = dev->dev_private;
1710 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1711 int pipe = intel_crtc->pipe;
1712 struct drm_display_mode *mode;
1713 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
1714 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
1715 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
1716 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
1717
1718 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
1719 if (!mode)
1720 return NULL;
1721
1722 mode->clock = intel_crtc_clock_get(dev, crtc);
1723 mode->hdisplay = (htot & 0xffff) + 1;
1724 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
1725 mode->hsync_start = (hsync & 0xffff) + 1;
1726 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
1727 mode->vdisplay = (vtot & 0xffff) + 1;
1728 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
1729 mode->vsync_start = (vsync & 0xffff) + 1;
1730 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
1731
1732 drm_mode_set_name(mode);
1733 drm_mode_set_crtcinfo(mode, 0);
1734
1735 return mode;
1736 }
1737
1738 static void intel_crtc_destroy(struct drm_crtc *crtc)
1739 {
1740 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1741
1742 drm_crtc_cleanup(crtc);
1743 kfree(intel_crtc);
1744 }
1745
1746 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
1747 .dpms = intel_crtc_dpms,
1748 .mode_fixup = intel_crtc_mode_fixup,
1749 .mode_set = intel_crtc_mode_set,
1750 .mode_set_base = intel_pipe_set_base,
1751 .prepare = intel_crtc_prepare,
1752 .commit = intel_crtc_commit,
1753 };
1754
1755 static const struct drm_crtc_funcs intel_crtc_funcs = {
1756 .cursor_set = intel_crtc_cursor_set,
1757 .cursor_move = intel_crtc_cursor_move,
1758 .gamma_set = intel_crtc_gamma_set,
1759 .set_config = drm_crtc_helper_set_config,
1760 .destroy = intel_crtc_destroy,
1761 };
1762
1763
1764 static void intel_crtc_init(struct drm_device *dev, int pipe)
1765 {
1766 struct intel_crtc *intel_crtc;
1767 int i;
1768
1769 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
1770 if (intel_crtc == NULL)
1771 return;
1772
1773 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
1774
1775 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
1776 intel_crtc->pipe = pipe;
1777 for (i = 0; i < 256; i++) {
1778 intel_crtc->lut_r[i] = i;
1779 intel_crtc->lut_g[i] = i;
1780 intel_crtc->lut_b[i] = i;
1781 }
1782
1783 intel_crtc->cursor_addr = 0;
1784 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
1785 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
1786
1787 intel_crtc->mode_set.crtc = &intel_crtc->base;
1788 intel_crtc->mode_set.connectors = (struct drm_connector **)(intel_crtc + 1);
1789 intel_crtc->mode_set.num_connectors = 0;
1790
1791 if (i915_fbpercrtc) {
1792
1793
1794
1795 }
1796 }
1797
1798 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
1799 {
1800 struct drm_crtc *crtc = NULL;
1801
1802 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1803 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1804 if (intel_crtc->pipe == pipe)
1805 break;
1806 }
1807 return crtc;
1808 }
1809
1810 static int intel_connector_clones(struct drm_device *dev, int type_mask)
1811 {
1812 int index_mask = 0;
1813 struct drm_connector *connector;
1814 int entry = 0;
1815
1816 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1817 struct intel_output *intel_output = to_intel_output(connector);
1818 if (type_mask & (1 << intel_output->type))
1819 index_mask |= (1 << entry);
1820 entry++;
1821 }
1822 return index_mask;
1823 }
1824
1825
1826 static void intel_setup_outputs(struct drm_device *dev)
1827 {
1828 struct drm_i915_private *dev_priv = dev->dev_private;
1829 struct drm_connector *connector;
1830
1831 intel_crt_init(dev);
1832
1833 /* Set up integrated LVDS */
1834 if (IS_MOBILE(dev) && !IS_I830(dev))
1835 intel_lvds_init(dev);
1836
1837 if (IS_I9XX(dev)) {
1838 int found;
1839 u32 reg;
1840
1841 if (I915_READ(SDVOB) & SDVO_DETECTED) {
1842 found = intel_sdvo_init(dev, SDVOB);
1843 if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
1844 intel_hdmi_init(dev, SDVOB);
1845 }
1846
1847 /* Before G4X SDVOC doesn't have its own detect register */
1848 if (IS_G4X(dev))
1849 reg = SDVOC;
1850 else
1851 reg = SDVOB;
1852
1853 if (I915_READ(reg) & SDVO_DETECTED) {
1854 found = intel_sdvo_init(dev, SDVOC);
1855 if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
1856 intel_hdmi_init(dev, SDVOC);
1857 }
1858 } else
1859 intel_dvo_init(dev);
1860
1861 if (IS_I9XX(dev) && IS_MOBILE(dev))
1862 intel_tv_init(dev);
1863
1864 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1865 struct intel_output *intel_output = to_intel_output(connector);
1866 struct drm_encoder *encoder = &intel_output->enc;
1867 int crtc_mask = 0, clone_mask = 0;
1868
1869 /* valid crtcs */
1870 switch(intel_output->type) {
1871 case INTEL_OUTPUT_HDMI:
1872 crtc_mask = ((1 << 0)|
1873 (1 << 1));
1874 clone_mask = ((1 << INTEL_OUTPUT_HDMI));
1875 break;
1876 case INTEL_OUTPUT_DVO:
1877 case INTEL_OUTPUT_SDVO:
1878 crtc_mask = ((1 << 0)|
1879 (1 << 1));
1880 clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
1881 (1 << INTEL_OUTPUT_DVO) |
1882 (1 << INTEL_OUTPUT_SDVO));
1883 break;
1884 case INTEL_OUTPUT_ANALOG:
1885 crtc_mask = ((1 << 0)|
1886 (1 << 1));
1887 clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
1888 (1 << INTEL_OUTPUT_DVO) |
1889 (1 << INTEL_OUTPUT_SDVO));
1890 break;
1891 case INTEL_OUTPUT_LVDS:
1892 crtc_mask = (1 << 1);
1893 clone_mask = (1 << INTEL_OUTPUT_LVDS);
1894 break;
1895 case INTEL_OUTPUT_TVOUT:
1896 crtc_mask = ((1 << 0) |
1897 (1 << 1));
1898 clone_mask = (1 << INTEL_OUTPUT_TVOUT);
1899 break;
1900 }
1901 encoder->possible_crtcs = crtc_mask;
1902 encoder->possible_clones = intel_connector_clones(dev, clone_mask);
1903 }
1904 }
1905
1906 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
1907 {
1908 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1909 struct drm_device *dev = fb->dev;
1910
1911 if (fb->fbdev)
1912 intelfb_remove(dev, fb);
1913
1914 drm_framebuffer_cleanup(fb);
1915 mutex_lock(&dev->struct_mutex);
1916 drm_gem_object_unreference(intel_fb->obj);
1917 mutex_unlock(&dev->struct_mutex);
1918
1919 kfree(intel_fb);
1920 }
1921
1922 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
1923 struct drm_file *file_priv,
1924 unsigned int *handle)
1925 {
1926 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1927 struct drm_gem_object *object = intel_fb->obj;
1928
1929 return drm_gem_handle_create(file_priv, object, handle);
1930 }
1931
1932 static const struct drm_framebuffer_funcs intel_fb_funcs = {
1933 .destroy = intel_user_framebuffer_destroy,
1934 .create_handle = intel_user_framebuffer_create_handle,
1935 };
1936
1937 int intel_framebuffer_create(struct drm_device *dev,
1938 struct drm_mode_fb_cmd *mode_cmd,
1939 struct drm_framebuffer **fb,
1940 struct drm_gem_object *obj)
1941 {
1942 struct intel_framebuffer *intel_fb;
1943 int ret;
1944
1945 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1946 if (!intel_fb)
1947 return -ENOMEM;
1948
1949 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
1950 if (ret) {
1951 DRM_ERROR("framebuffer init failed %d\n", ret);
1952 return ret;
1953 }
1954
1955 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
1956
1957 intel_fb->obj = obj;
1958
1959 *fb = &intel_fb->base;
1960
1961 return 0;
1962 }
1963
1964
1965 static struct drm_framebuffer *
1966 intel_user_framebuffer_create(struct drm_device *dev,
1967 struct drm_file *filp,
1968 struct drm_mode_fb_cmd *mode_cmd)
1969 {
1970 struct drm_gem_object *obj;
1971 struct drm_framebuffer *fb;
1972 int ret;
1973
1974 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
1975 if (!obj)
1976 return NULL;
1977
1978 ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
1979 if (ret) {
1980 mutex_lock(&dev->struct_mutex);
1981 drm_gem_object_unreference(obj);
1982 mutex_unlock(&dev->struct_mutex);
1983 return NULL;
1984 }
1985
1986 return fb;
1987 }
1988
1989 static const struct drm_mode_config_funcs intel_mode_funcs = {
1990 .fb_create = intel_user_framebuffer_create,
1991 .fb_changed = intelfb_probe,
1992 };
1993
1994 void intel_modeset_init(struct drm_device *dev)
1995 {
1996 int num_pipe;
1997 int i;
1998
1999 drm_mode_config_init(dev);
2000
2001 dev->mode_config.min_width = 0;
2002 dev->mode_config.min_height = 0;
2003
2004 dev->mode_config.funcs = (void *)&intel_mode_funcs;
2005
2006 if (IS_I965G(dev)) {
2007 dev->mode_config.max_width = 8192;
2008 dev->mode_config.max_height = 8192;
2009 } else {
2010 dev->mode_config.max_width = 2048;
2011 dev->mode_config.max_height = 2048;
2012 }
2013
2014 /* set memory base */
2015 if (IS_I9XX(dev))
2016 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
2017 else
2018 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
2019
2020 if (IS_MOBILE(dev) || IS_I9XX(dev))
2021 num_pipe = 2;
2022 else
2023 num_pipe = 1;
2024 DRM_DEBUG("%d display pipe%s available.\n",
2025 num_pipe, num_pipe > 1 ? "s" : "");
2026
2027 for (i = 0; i < num_pipe; i++) {
2028 intel_crtc_init(dev, i);
2029 }
2030
2031 intel_setup_outputs(dev);
2032 }
2033
2034 void intel_modeset_cleanup(struct drm_device *dev)
2035 {
2036 drm_mode_config_cleanup(dev);
2037 }
2038
2039
2040 /* current intel driver doesn't take advantage of encoders
2041 always give back the encoder for the connector
2042 */
2043 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
2044 {
2045 struct intel_output *intel_output = to_intel_output(connector);
2046
2047 return &intel_output->enc;
2048 }