]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_dp.c
drm/i915: enable DisplayPort support on IGDNG
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include "drmP.h"
30 #include "drm.h"
31 #include "drm_crtc.h"
32 #include "drm_crtc_helper.h"
33 #include "intel_drv.h"
34 #include "i915_drm.h"
35 #include "i915_drv.h"
36 #include "intel_dp.h"
37
38 #define DP_LINK_STATUS_SIZE 6
39 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
40
41 #define DP_LINK_CONFIGURATION_SIZE 9
42
43 struct intel_dp_priv {
44 uint32_t output_reg;
45 uint32_t DP;
46 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
47 uint32_t save_DP;
48 uint8_t save_link_configuration[DP_LINK_CONFIGURATION_SIZE];
49 bool has_audio;
50 int dpms_mode;
51 uint8_t link_bw;
52 uint8_t lane_count;
53 uint8_t dpcd[4];
54 struct intel_output *intel_output;
55 struct i2c_adapter adapter;
56 struct i2c_algo_dp_aux_data algo;
57 };
58
59 static void
60 intel_dp_link_train(struct intel_output *intel_output, uint32_t DP,
61 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]);
62
63 static void
64 intel_dp_link_down(struct intel_output *intel_output, uint32_t DP);
65
66 static int
67 intel_dp_max_lane_count(struct intel_output *intel_output)
68 {
69 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
70 int max_lane_count = 4;
71
72 if (dp_priv->dpcd[0] >= 0x11) {
73 max_lane_count = dp_priv->dpcd[2] & 0x1f;
74 switch (max_lane_count) {
75 case 1: case 2: case 4:
76 break;
77 default:
78 max_lane_count = 4;
79 }
80 }
81 return max_lane_count;
82 }
83
84 static int
85 intel_dp_max_link_bw(struct intel_output *intel_output)
86 {
87 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
88 int max_link_bw = dp_priv->dpcd[1];
89
90 switch (max_link_bw) {
91 case DP_LINK_BW_1_62:
92 case DP_LINK_BW_2_7:
93 break;
94 default:
95 max_link_bw = DP_LINK_BW_1_62;
96 break;
97 }
98 return max_link_bw;
99 }
100
101 static int
102 intel_dp_link_clock(uint8_t link_bw)
103 {
104 if (link_bw == DP_LINK_BW_2_7)
105 return 270000;
106 else
107 return 162000;
108 }
109
110 /* I think this is a fiction */
111 static int
112 intel_dp_link_required(int pixel_clock)
113 {
114 return pixel_clock * 3;
115 }
116
117 static int
118 intel_dp_mode_valid(struct drm_connector *connector,
119 struct drm_display_mode *mode)
120 {
121 struct intel_output *intel_output = to_intel_output(connector);
122 int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_output));
123 int max_lanes = intel_dp_max_lane_count(intel_output);
124
125 if (intel_dp_link_required(mode->clock) > max_link_clock * max_lanes)
126 return MODE_CLOCK_HIGH;
127
128 if (mode->clock < 10000)
129 return MODE_CLOCK_LOW;
130
131 return MODE_OK;
132 }
133
134 static uint32_t
135 pack_aux(uint8_t *src, int src_bytes)
136 {
137 int i;
138 uint32_t v = 0;
139
140 if (src_bytes > 4)
141 src_bytes = 4;
142 for (i = 0; i < src_bytes; i++)
143 v |= ((uint32_t) src[i]) << ((3-i) * 8);
144 return v;
145 }
146
147 static void
148 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
149 {
150 int i;
151 if (dst_bytes > 4)
152 dst_bytes = 4;
153 for (i = 0; i < dst_bytes; i++)
154 dst[i] = src >> ((3-i) * 8);
155 }
156
157 /* hrawclock is 1/4 the FSB frequency */
158 static int
159 intel_hrawclk(struct drm_device *dev)
160 {
161 struct drm_i915_private *dev_priv = dev->dev_private;
162 uint32_t clkcfg;
163
164 clkcfg = I915_READ(CLKCFG);
165 switch (clkcfg & CLKCFG_FSB_MASK) {
166 case CLKCFG_FSB_400:
167 return 100;
168 case CLKCFG_FSB_533:
169 return 133;
170 case CLKCFG_FSB_667:
171 return 166;
172 case CLKCFG_FSB_800:
173 return 200;
174 case CLKCFG_FSB_1067:
175 return 266;
176 case CLKCFG_FSB_1333:
177 return 333;
178 /* these two are just a guess; one of them might be right */
179 case CLKCFG_FSB_1600:
180 case CLKCFG_FSB_1600_ALT:
181 return 400;
182 default:
183 return 133;
184 }
185 }
186
187 static int
188 intel_dp_aux_ch(struct intel_output *intel_output,
189 uint8_t *send, int send_bytes,
190 uint8_t *recv, int recv_size)
191 {
192 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
193 uint32_t output_reg = dp_priv->output_reg;
194 struct drm_device *dev = intel_output->base.dev;
195 struct drm_i915_private *dev_priv = dev->dev_private;
196 uint32_t ch_ctl = output_reg + 0x10;
197 uint32_t ch_data = ch_ctl + 4;
198 int i;
199 int recv_bytes;
200 uint32_t ctl;
201 uint32_t status;
202 uint32_t aux_clock_divider;
203 int try;
204
205 /* The clock divider is based off the hrawclk,
206 * and would like to run at 2MHz. So, take the
207 * hrawclk value and divide by 2 and use that
208 */
209 /* IGDNG: input clock fixed at 125Mhz, so aux_bit_clk always 62 */
210 if (IS_IGDNG(dev))
211 aux_clock_divider = 62;
212 else
213 aux_clock_divider = intel_hrawclk(dev) / 2;
214
215 /* Must try at least 3 times according to DP spec */
216 for (try = 0; try < 5; try++) {
217 /* Load the send data into the aux channel data registers */
218 for (i = 0; i < send_bytes; i += 4) {
219 uint32_t d = pack_aux(send + i, send_bytes - i);;
220
221 I915_WRITE(ch_data + i, d);
222 }
223
224 ctl = (DP_AUX_CH_CTL_SEND_BUSY |
225 DP_AUX_CH_CTL_TIME_OUT_400us |
226 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
227 (5 << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
228 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
229 DP_AUX_CH_CTL_DONE |
230 DP_AUX_CH_CTL_TIME_OUT_ERROR |
231 DP_AUX_CH_CTL_RECEIVE_ERROR);
232
233 /* Send the command and wait for it to complete */
234 I915_WRITE(ch_ctl, ctl);
235 (void) I915_READ(ch_ctl);
236 for (;;) {
237 udelay(100);
238 status = I915_READ(ch_ctl);
239 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
240 break;
241 }
242
243 /* Clear done status and any errors */
244 I915_WRITE(ch_ctl, (status |
245 DP_AUX_CH_CTL_DONE |
246 DP_AUX_CH_CTL_TIME_OUT_ERROR |
247 DP_AUX_CH_CTL_RECEIVE_ERROR));
248 (void) I915_READ(ch_ctl);
249 if ((status & DP_AUX_CH_CTL_TIME_OUT_ERROR) == 0)
250 break;
251 }
252
253 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
254 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
255 return -EBUSY;
256 }
257
258 /* Check for timeout or receive error.
259 * Timeouts occur when the sink is not connected
260 */
261 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
262 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
263 return -EIO;
264 }
265
266 /* Timeouts occur when the device isn't connected, so they're
267 * "normal" -- don't fill the kernel log with these */
268 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
269 DRM_DEBUG("dp_aux_ch timeout status 0x%08x\n", status);
270 return -ETIMEDOUT;
271 }
272
273 /* Unload any bytes sent back from the other side */
274 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
275 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
276
277 if (recv_bytes > recv_size)
278 recv_bytes = recv_size;
279
280 for (i = 0; i < recv_bytes; i += 4) {
281 uint32_t d = I915_READ(ch_data + i);
282
283 unpack_aux(d, recv + i, recv_bytes - i);
284 }
285
286 return recv_bytes;
287 }
288
289 /* Write data to the aux channel in native mode */
290 static int
291 intel_dp_aux_native_write(struct intel_output *intel_output,
292 uint16_t address, uint8_t *send, int send_bytes)
293 {
294 int ret;
295 uint8_t msg[20];
296 int msg_bytes;
297 uint8_t ack;
298
299 if (send_bytes > 16)
300 return -1;
301 msg[0] = AUX_NATIVE_WRITE << 4;
302 msg[1] = address >> 8;
303 msg[2] = address & 0xff;
304 msg[3] = send_bytes - 1;
305 memcpy(&msg[4], send, send_bytes);
306 msg_bytes = send_bytes + 4;
307 for (;;) {
308 ret = intel_dp_aux_ch(intel_output, msg, msg_bytes, &ack, 1);
309 if (ret < 0)
310 return ret;
311 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
312 break;
313 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
314 udelay(100);
315 else
316 return -EIO;
317 }
318 return send_bytes;
319 }
320
321 /* Write a single byte to the aux channel in native mode */
322 static int
323 intel_dp_aux_native_write_1(struct intel_output *intel_output,
324 uint16_t address, uint8_t byte)
325 {
326 return intel_dp_aux_native_write(intel_output, address, &byte, 1);
327 }
328
329 /* read bytes from a native aux channel */
330 static int
331 intel_dp_aux_native_read(struct intel_output *intel_output,
332 uint16_t address, uint8_t *recv, int recv_bytes)
333 {
334 uint8_t msg[4];
335 int msg_bytes;
336 uint8_t reply[20];
337 int reply_bytes;
338 uint8_t ack;
339 int ret;
340
341 msg[0] = AUX_NATIVE_READ << 4;
342 msg[1] = address >> 8;
343 msg[2] = address & 0xff;
344 msg[3] = recv_bytes - 1;
345
346 msg_bytes = 4;
347 reply_bytes = recv_bytes + 1;
348
349 for (;;) {
350 ret = intel_dp_aux_ch(intel_output, msg, msg_bytes,
351 reply, reply_bytes);
352 if (ret == 0)
353 return -EPROTO;
354 if (ret < 0)
355 return ret;
356 ack = reply[0];
357 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
358 memcpy(recv, reply + 1, ret - 1);
359 return ret - 1;
360 }
361 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
362 udelay(100);
363 else
364 return -EIO;
365 }
366 }
367
368 static int
369 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter,
370 uint8_t *send, int send_bytes,
371 uint8_t *recv, int recv_bytes)
372 {
373 struct intel_dp_priv *dp_priv = container_of(adapter,
374 struct intel_dp_priv,
375 adapter);
376 struct intel_output *intel_output = dp_priv->intel_output;
377
378 return intel_dp_aux_ch(intel_output,
379 send, send_bytes, recv, recv_bytes);
380 }
381
382 static int
383 intel_dp_i2c_init(struct intel_output *intel_output, const char *name)
384 {
385 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
386
387 DRM_ERROR("i2c_init %s\n", name);
388 dp_priv->algo.running = false;
389 dp_priv->algo.address = 0;
390 dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch;
391
392 memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter));
393 dp_priv->adapter.owner = THIS_MODULE;
394 dp_priv->adapter.class = I2C_CLASS_DDC;
395 strncpy (dp_priv->adapter.name, name, sizeof(dp_priv->adapter.name) - 1);
396 dp_priv->adapter.name[sizeof(dp_priv->adapter.name) - 1] = '\0';
397 dp_priv->adapter.algo_data = &dp_priv->algo;
398 dp_priv->adapter.dev.parent = &intel_output->base.kdev;
399
400 return i2c_dp_aux_add_bus(&dp_priv->adapter);
401 }
402
403 static bool
404 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
405 struct drm_display_mode *adjusted_mode)
406 {
407 struct intel_output *intel_output = enc_to_intel_output(encoder);
408 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
409 int lane_count, clock;
410 int max_lane_count = intel_dp_max_lane_count(intel_output);
411 int max_clock = intel_dp_max_link_bw(intel_output) == DP_LINK_BW_2_7 ? 1 : 0;
412 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
413
414 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
415 for (clock = 0; clock <= max_clock; clock++) {
416 int link_avail = intel_dp_link_clock(bws[clock]) * lane_count;
417
418 if (intel_dp_link_required(mode->clock) <= link_avail) {
419 dp_priv->link_bw = bws[clock];
420 dp_priv->lane_count = lane_count;
421 adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
422 DRM_DEBUG("Display port link bw %02x lane count %d clock %d\n",
423 dp_priv->link_bw, dp_priv->lane_count,
424 adjusted_mode->clock);
425 return true;
426 }
427 }
428 }
429 return false;
430 }
431
432 struct intel_dp_m_n {
433 uint32_t tu;
434 uint32_t gmch_m;
435 uint32_t gmch_n;
436 uint32_t link_m;
437 uint32_t link_n;
438 };
439
440 static void
441 intel_reduce_ratio(uint32_t *num, uint32_t *den)
442 {
443 while (*num > 0xffffff || *den > 0xffffff) {
444 *num >>= 1;
445 *den >>= 1;
446 }
447 }
448
449 static void
450 intel_dp_compute_m_n(int bytes_per_pixel,
451 int nlanes,
452 int pixel_clock,
453 int link_clock,
454 struct intel_dp_m_n *m_n)
455 {
456 m_n->tu = 64;
457 m_n->gmch_m = pixel_clock * bytes_per_pixel;
458 m_n->gmch_n = link_clock * nlanes;
459 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
460 m_n->link_m = pixel_clock;
461 m_n->link_n = link_clock;
462 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
463 }
464
465 void
466 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
467 struct drm_display_mode *adjusted_mode)
468 {
469 struct drm_device *dev = crtc->dev;
470 struct drm_mode_config *mode_config = &dev->mode_config;
471 struct drm_connector *connector;
472 struct drm_i915_private *dev_priv = dev->dev_private;
473 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
474 int lane_count = 4;
475 struct intel_dp_m_n m_n;
476
477 /*
478 * Find the lane count in the intel_output private
479 */
480 list_for_each_entry(connector, &mode_config->connector_list, head) {
481 struct intel_output *intel_output = to_intel_output(connector);
482 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
483
484 if (!connector->encoder || connector->encoder->crtc != crtc)
485 continue;
486
487 if (intel_output->type == INTEL_OUTPUT_DISPLAYPORT) {
488 lane_count = dp_priv->lane_count;
489 break;
490 }
491 }
492
493 /*
494 * Compute the GMCH and Link ratios. The '3' here is
495 * the number of bytes_per_pixel post-LUT, which we always
496 * set up for 8-bits of R/G/B, or 3 bytes total.
497 */
498 intel_dp_compute_m_n(3, lane_count,
499 mode->clock, adjusted_mode->clock, &m_n);
500
501 if (IS_IGDNG(dev)) {
502 if (intel_crtc->pipe == 0) {
503 I915_WRITE(TRANSA_DATA_M1,
504 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
505 m_n.gmch_m);
506 I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
507 I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
508 I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
509 } else {
510 I915_WRITE(TRANSB_DATA_M1,
511 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
512 m_n.gmch_m);
513 I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
514 I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
515 I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
516 }
517 } else {
518 if (intel_crtc->pipe == 0) {
519 I915_WRITE(PIPEA_GMCH_DATA_M,
520 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
521 m_n.gmch_m);
522 I915_WRITE(PIPEA_GMCH_DATA_N,
523 m_n.gmch_n);
524 I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
525 I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
526 } else {
527 I915_WRITE(PIPEB_GMCH_DATA_M,
528 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
529 m_n.gmch_m);
530 I915_WRITE(PIPEB_GMCH_DATA_N,
531 m_n.gmch_n);
532 I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
533 I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
534 }
535 }
536 }
537
538 static void
539 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
540 struct drm_display_mode *adjusted_mode)
541 {
542 struct intel_output *intel_output = enc_to_intel_output(encoder);
543 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
544 struct drm_crtc *crtc = intel_output->enc.crtc;
545 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
546
547 dp_priv->DP = (DP_LINK_TRAIN_OFF |
548 DP_VOLTAGE_0_4 |
549 DP_PRE_EMPHASIS_0 |
550 DP_SYNC_VS_HIGH |
551 DP_SYNC_HS_HIGH);
552
553 switch (dp_priv->lane_count) {
554 case 1:
555 dp_priv->DP |= DP_PORT_WIDTH_1;
556 break;
557 case 2:
558 dp_priv->DP |= DP_PORT_WIDTH_2;
559 break;
560 case 4:
561 dp_priv->DP |= DP_PORT_WIDTH_4;
562 break;
563 }
564 if (dp_priv->has_audio)
565 dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE;
566
567 memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
568 dp_priv->link_configuration[0] = dp_priv->link_bw;
569 dp_priv->link_configuration[1] = dp_priv->lane_count;
570
571 /*
572 * Check for DPCD version > 1.1,
573 * enable enahanced frame stuff in that case
574 */
575 if (dp_priv->dpcd[0] >= 0x11) {
576 dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
577 dp_priv->DP |= DP_ENHANCED_FRAMING;
578 }
579
580 if (intel_crtc->pipe == 1)
581 dp_priv->DP |= DP_PIPEB_SELECT;
582 }
583
584
585 static void
586 intel_dp_dpms(struct drm_encoder *encoder, int mode)
587 {
588 struct intel_output *intel_output = enc_to_intel_output(encoder);
589 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
590 struct drm_device *dev = intel_output->base.dev;
591 struct drm_i915_private *dev_priv = dev->dev_private;
592 uint32_t dp_reg = I915_READ(dp_priv->output_reg);
593
594 if (mode != DRM_MODE_DPMS_ON) {
595 if (dp_reg & DP_PORT_EN)
596 intel_dp_link_down(intel_output, dp_priv->DP);
597 } else {
598 if (!(dp_reg & DP_PORT_EN))
599 intel_dp_link_train(intel_output, dp_priv->DP, dp_priv->link_configuration);
600 }
601 dp_priv->dpms_mode = mode;
602 }
603
604 /*
605 * Fetch AUX CH registers 0x202 - 0x207 which contain
606 * link status information
607 */
608 static bool
609 intel_dp_get_link_status(struct intel_output *intel_output,
610 uint8_t link_status[DP_LINK_STATUS_SIZE])
611 {
612 int ret;
613
614 ret = intel_dp_aux_native_read(intel_output,
615 DP_LANE0_1_STATUS,
616 link_status, DP_LINK_STATUS_SIZE);
617 if (ret != DP_LINK_STATUS_SIZE)
618 return false;
619 return true;
620 }
621
622 static uint8_t
623 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
624 int r)
625 {
626 return link_status[r - DP_LANE0_1_STATUS];
627 }
628
629 static void
630 intel_dp_save(struct drm_connector *connector)
631 {
632 struct intel_output *intel_output = to_intel_output(connector);
633 struct drm_device *dev = intel_output->base.dev;
634 struct drm_i915_private *dev_priv = dev->dev_private;
635 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
636
637 dp_priv->save_DP = I915_READ(dp_priv->output_reg);
638 intel_dp_aux_native_read(intel_output, DP_LINK_BW_SET,
639 dp_priv->save_link_configuration,
640 sizeof (dp_priv->save_link_configuration));
641 }
642
643 static uint8_t
644 intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
645 int lane)
646 {
647 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
648 int s = ((lane & 1) ?
649 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
650 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
651 uint8_t l = intel_dp_link_status(link_status, i);
652
653 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
654 }
655
656 static uint8_t
657 intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
658 int lane)
659 {
660 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
661 int s = ((lane & 1) ?
662 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
663 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
664 uint8_t l = intel_dp_link_status(link_status, i);
665
666 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
667 }
668
669
670 #if 0
671 static char *voltage_names[] = {
672 "0.4V", "0.6V", "0.8V", "1.2V"
673 };
674 static char *pre_emph_names[] = {
675 "0dB", "3.5dB", "6dB", "9.5dB"
676 };
677 static char *link_train_names[] = {
678 "pattern 1", "pattern 2", "idle", "off"
679 };
680 #endif
681
682 /*
683 * These are source-specific values; current Intel hardware supports
684 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
685 */
686 #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
687
688 static uint8_t
689 intel_dp_pre_emphasis_max(uint8_t voltage_swing)
690 {
691 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
692 case DP_TRAIN_VOLTAGE_SWING_400:
693 return DP_TRAIN_PRE_EMPHASIS_6;
694 case DP_TRAIN_VOLTAGE_SWING_600:
695 return DP_TRAIN_PRE_EMPHASIS_6;
696 case DP_TRAIN_VOLTAGE_SWING_800:
697 return DP_TRAIN_PRE_EMPHASIS_3_5;
698 case DP_TRAIN_VOLTAGE_SWING_1200:
699 default:
700 return DP_TRAIN_PRE_EMPHASIS_0;
701 }
702 }
703
704 static void
705 intel_get_adjust_train(struct intel_output *intel_output,
706 uint8_t link_status[DP_LINK_STATUS_SIZE],
707 int lane_count,
708 uint8_t train_set[4])
709 {
710 uint8_t v = 0;
711 uint8_t p = 0;
712 int lane;
713
714 for (lane = 0; lane < lane_count; lane++) {
715 uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
716 uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);
717
718 if (this_v > v)
719 v = this_v;
720 if (this_p > p)
721 p = this_p;
722 }
723
724 if (v >= I830_DP_VOLTAGE_MAX)
725 v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
726
727 if (p >= intel_dp_pre_emphasis_max(v))
728 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
729
730 for (lane = 0; lane < 4; lane++)
731 train_set[lane] = v | p;
732 }
733
734 static uint32_t
735 intel_dp_signal_levels(uint8_t train_set, int lane_count)
736 {
737 uint32_t signal_levels = 0;
738
739 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
740 case DP_TRAIN_VOLTAGE_SWING_400:
741 default:
742 signal_levels |= DP_VOLTAGE_0_4;
743 break;
744 case DP_TRAIN_VOLTAGE_SWING_600:
745 signal_levels |= DP_VOLTAGE_0_6;
746 break;
747 case DP_TRAIN_VOLTAGE_SWING_800:
748 signal_levels |= DP_VOLTAGE_0_8;
749 break;
750 case DP_TRAIN_VOLTAGE_SWING_1200:
751 signal_levels |= DP_VOLTAGE_1_2;
752 break;
753 }
754 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
755 case DP_TRAIN_PRE_EMPHASIS_0:
756 default:
757 signal_levels |= DP_PRE_EMPHASIS_0;
758 break;
759 case DP_TRAIN_PRE_EMPHASIS_3_5:
760 signal_levels |= DP_PRE_EMPHASIS_3_5;
761 break;
762 case DP_TRAIN_PRE_EMPHASIS_6:
763 signal_levels |= DP_PRE_EMPHASIS_6;
764 break;
765 case DP_TRAIN_PRE_EMPHASIS_9_5:
766 signal_levels |= DP_PRE_EMPHASIS_9_5;
767 break;
768 }
769 return signal_levels;
770 }
771
772 static uint8_t
773 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
774 int lane)
775 {
776 int i = DP_LANE0_1_STATUS + (lane >> 1);
777 int s = (lane & 1) * 4;
778 uint8_t l = intel_dp_link_status(link_status, i);
779
780 return (l >> s) & 0xf;
781 }
782
783 /* Check for clock recovery is done on all channels */
784 static bool
785 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
786 {
787 int lane;
788 uint8_t lane_status;
789
790 for (lane = 0; lane < lane_count; lane++) {
791 lane_status = intel_get_lane_status(link_status, lane);
792 if ((lane_status & DP_LANE_CR_DONE) == 0)
793 return false;
794 }
795 return true;
796 }
797
798 /* Check to see if channel eq is done on all channels */
799 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
800 DP_LANE_CHANNEL_EQ_DONE|\
801 DP_LANE_SYMBOL_LOCKED)
802 static bool
803 intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
804 {
805 uint8_t lane_align;
806 uint8_t lane_status;
807 int lane;
808
809 lane_align = intel_dp_link_status(link_status,
810 DP_LANE_ALIGN_STATUS_UPDATED);
811 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
812 return false;
813 for (lane = 0; lane < lane_count; lane++) {
814 lane_status = intel_get_lane_status(link_status, lane);
815 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
816 return false;
817 }
818 return true;
819 }
820
821 static bool
822 intel_dp_set_link_train(struct intel_output *intel_output,
823 uint32_t dp_reg_value,
824 uint8_t dp_train_pat,
825 uint8_t train_set[4],
826 bool first)
827 {
828 struct drm_device *dev = intel_output->base.dev;
829 struct drm_i915_private *dev_priv = dev->dev_private;
830 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
831 int ret;
832
833 I915_WRITE(dp_priv->output_reg, dp_reg_value);
834 POSTING_READ(dp_priv->output_reg);
835 if (first)
836 intel_wait_for_vblank(dev);
837
838 intel_dp_aux_native_write_1(intel_output,
839 DP_TRAINING_PATTERN_SET,
840 dp_train_pat);
841
842 ret = intel_dp_aux_native_write(intel_output,
843 DP_TRAINING_LANE0_SET, train_set, 4);
844 if (ret != 4)
845 return false;
846
847 return true;
848 }
849
850 static void
851 intel_dp_link_train(struct intel_output *intel_output, uint32_t DP,
852 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE])
853 {
854 struct drm_device *dev = intel_output->base.dev;
855 struct drm_i915_private *dev_priv = dev->dev_private;
856 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
857 uint8_t train_set[4];
858 uint8_t link_status[DP_LINK_STATUS_SIZE];
859 int i;
860 uint8_t voltage;
861 bool clock_recovery = false;
862 bool channel_eq = false;
863 bool first = true;
864 int tries;
865
866 /* Write the link configuration data */
867 intel_dp_aux_native_write(intel_output, 0x100,
868 link_configuration, DP_LINK_CONFIGURATION_SIZE);
869
870 DP |= DP_PORT_EN;
871 DP &= ~DP_LINK_TRAIN_MASK;
872 memset(train_set, 0, 4);
873 voltage = 0xff;
874 tries = 0;
875 clock_recovery = false;
876 for (;;) {
877 /* Use train_set[0] to set the voltage and pre emphasis values */
878 uint32_t signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
879 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
880
881 if (!intel_dp_set_link_train(intel_output, DP | DP_LINK_TRAIN_PAT_1,
882 DP_TRAINING_PATTERN_1, train_set, first))
883 break;
884 first = false;
885 /* Set training pattern 1 */
886
887 udelay(100);
888 if (!intel_dp_get_link_status(intel_output, link_status))
889 break;
890
891 if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) {
892 clock_recovery = true;
893 break;
894 }
895
896 /* Check to see if we've tried the max voltage */
897 for (i = 0; i < dp_priv->lane_count; i++)
898 if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
899 break;
900 if (i == dp_priv->lane_count)
901 break;
902
903 /* Check to see if we've tried the same voltage 5 times */
904 if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
905 ++tries;
906 if (tries == 5)
907 break;
908 } else
909 tries = 0;
910 voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
911
912 /* Compute new train_set as requested by target */
913 intel_get_adjust_train(intel_output, link_status, dp_priv->lane_count, train_set);
914 }
915
916 /* channel equalization */
917 tries = 0;
918 channel_eq = false;
919 for (;;) {
920 /* Use train_set[0] to set the voltage and pre emphasis values */
921 uint32_t signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
922 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
923
924 /* channel eq pattern */
925 if (!intel_dp_set_link_train(intel_output, DP | DP_LINK_TRAIN_PAT_2,
926 DP_TRAINING_PATTERN_2, train_set,
927 false))
928 break;
929
930 udelay(400);
931 if (!intel_dp_get_link_status(intel_output, link_status))
932 break;
933
934 if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) {
935 channel_eq = true;
936 break;
937 }
938
939 /* Try 5 times */
940 if (tries > 5)
941 break;
942
943 /* Compute new train_set as requested by target */
944 intel_get_adjust_train(intel_output, link_status, dp_priv->lane_count, train_set);
945 ++tries;
946 }
947
948 I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_OFF);
949 POSTING_READ(dp_priv->output_reg);
950 intel_dp_aux_native_write_1(intel_output,
951 DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
952 }
953
954 static void
955 intel_dp_link_down(struct intel_output *intel_output, uint32_t DP)
956 {
957 struct drm_device *dev = intel_output->base.dev;
958 struct drm_i915_private *dev_priv = dev->dev_private;
959 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
960
961 DP &= ~DP_LINK_TRAIN_MASK;
962 I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
963 POSTING_READ(dp_priv->output_reg);
964
965 udelay(17000);
966
967 I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN);
968 POSTING_READ(dp_priv->output_reg);
969 }
970
971 static void
972 intel_dp_restore(struct drm_connector *connector)
973 {
974 struct intel_output *intel_output = to_intel_output(connector);
975 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
976
977 if (dp_priv->save_DP & DP_PORT_EN)
978 intel_dp_link_train(intel_output, dp_priv->save_DP, dp_priv->save_link_configuration);
979 else
980 intel_dp_link_down(intel_output, dp_priv->save_DP);
981 }
982
983 /*
984 * According to DP spec
985 * 5.1.2:
986 * 1. Read DPCD
987 * 2. Configure link according to Receiver Capabilities
988 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
989 * 4. Check link status on receipt of hot-plug interrupt
990 */
991
992 static void
993 intel_dp_check_link_status(struct intel_output *intel_output)
994 {
995 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
996 uint8_t link_status[DP_LINK_STATUS_SIZE];
997
998 if (!intel_output->enc.crtc)
999 return;
1000
1001 if (!intel_dp_get_link_status(intel_output, link_status)) {
1002 intel_dp_link_down(intel_output, dp_priv->DP);
1003 return;
1004 }
1005
1006 if (!intel_channel_eq_ok(link_status, dp_priv->lane_count))
1007 intel_dp_link_train(intel_output, dp_priv->DP, dp_priv->link_configuration);
1008 }
1009
1010 static enum drm_connector_status
1011 igdng_dp_detect(struct drm_connector *connector)
1012 {
1013 struct intel_output *intel_output = to_intel_output(connector);
1014 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
1015 enum drm_connector_status status;
1016
1017 status = connector_status_disconnected;
1018 if (intel_dp_aux_native_read(intel_output,
1019 0x000, dp_priv->dpcd,
1020 sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
1021 {
1022 if (dp_priv->dpcd[0] != 0)
1023 status = connector_status_connected;
1024 }
1025 return status;
1026 }
1027
1028 /**
1029 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1030 *
1031 * \return true if DP port is connected.
1032 * \return false if DP port is disconnected.
1033 */
1034 static enum drm_connector_status
1035 intel_dp_detect(struct drm_connector *connector)
1036 {
1037 struct intel_output *intel_output = to_intel_output(connector);
1038 struct drm_device *dev = intel_output->base.dev;
1039 struct drm_i915_private *dev_priv = dev->dev_private;
1040 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
1041 uint32_t temp, bit;
1042 enum drm_connector_status status;
1043
1044 dp_priv->has_audio = false;
1045
1046 if (IS_IGDNG(dev))
1047 return igdng_dp_detect(connector);
1048
1049 temp = I915_READ(PORT_HOTPLUG_EN);
1050
1051 I915_WRITE(PORT_HOTPLUG_EN,
1052 temp |
1053 DPB_HOTPLUG_INT_EN |
1054 DPC_HOTPLUG_INT_EN |
1055 DPD_HOTPLUG_INT_EN);
1056
1057 POSTING_READ(PORT_HOTPLUG_EN);
1058
1059 switch (dp_priv->output_reg) {
1060 case DP_B:
1061 bit = DPB_HOTPLUG_INT_STATUS;
1062 break;
1063 case DP_C:
1064 bit = DPC_HOTPLUG_INT_STATUS;
1065 break;
1066 case DP_D:
1067 bit = DPD_HOTPLUG_INT_STATUS;
1068 break;
1069 default:
1070 return connector_status_unknown;
1071 }
1072
1073 temp = I915_READ(PORT_HOTPLUG_STAT);
1074
1075 if ((temp & bit) == 0)
1076 return connector_status_disconnected;
1077
1078 status = connector_status_disconnected;
1079 if (intel_dp_aux_native_read(intel_output,
1080 0x000, dp_priv->dpcd,
1081 sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
1082 {
1083 if (dp_priv->dpcd[0] != 0)
1084 status = connector_status_connected;
1085 }
1086 return status;
1087 }
1088
1089 static int intel_dp_get_modes(struct drm_connector *connector)
1090 {
1091 struct intel_output *intel_output = to_intel_output(connector);
1092
1093 /* We should parse the EDID data and find out if it has an audio sink
1094 */
1095
1096 return intel_ddc_get_modes(intel_output);
1097 }
1098
1099 static void
1100 intel_dp_destroy (struct drm_connector *connector)
1101 {
1102 struct intel_output *intel_output = to_intel_output(connector);
1103
1104 if (intel_output->i2c_bus)
1105 intel_i2c_destroy(intel_output->i2c_bus);
1106 drm_sysfs_connector_remove(connector);
1107 drm_connector_cleanup(connector);
1108 kfree(intel_output);
1109 }
1110
1111 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1112 .dpms = intel_dp_dpms,
1113 .mode_fixup = intel_dp_mode_fixup,
1114 .prepare = intel_encoder_prepare,
1115 .mode_set = intel_dp_mode_set,
1116 .commit = intel_encoder_commit,
1117 };
1118
1119 static const struct drm_connector_funcs intel_dp_connector_funcs = {
1120 .dpms = drm_helper_connector_dpms,
1121 .save = intel_dp_save,
1122 .restore = intel_dp_restore,
1123 .detect = intel_dp_detect,
1124 .fill_modes = drm_helper_probe_single_connector_modes,
1125 .destroy = intel_dp_destroy,
1126 };
1127
1128 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1129 .get_modes = intel_dp_get_modes,
1130 .mode_valid = intel_dp_mode_valid,
1131 .best_encoder = intel_best_encoder,
1132 };
1133
1134 static void intel_dp_enc_destroy(struct drm_encoder *encoder)
1135 {
1136 drm_encoder_cleanup(encoder);
1137 }
1138
1139 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1140 .destroy = intel_dp_enc_destroy,
1141 };
1142
1143 void
1144 intel_dp_hot_plug(struct intel_output *intel_output)
1145 {
1146 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
1147
1148 if (dp_priv->dpms_mode == DRM_MODE_DPMS_ON)
1149 intel_dp_check_link_status(intel_output);
1150 }
1151
1152 void
1153 intel_dp_init(struct drm_device *dev, int output_reg)
1154 {
1155 struct drm_i915_private *dev_priv = dev->dev_private;
1156 struct drm_connector *connector;
1157 struct intel_output *intel_output;
1158 struct intel_dp_priv *dp_priv;
1159 const char *name = NULL;
1160
1161 intel_output = kcalloc(sizeof(struct intel_output) +
1162 sizeof(struct intel_dp_priv), 1, GFP_KERNEL);
1163 if (!intel_output)
1164 return;
1165
1166 dp_priv = (struct intel_dp_priv *)(intel_output + 1);
1167
1168 connector = &intel_output->base;
1169 drm_connector_init(dev, connector, &intel_dp_connector_funcs,
1170 DRM_MODE_CONNECTOR_DisplayPort);
1171 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1172
1173 intel_output->type = INTEL_OUTPUT_DISPLAYPORT;
1174
1175 connector->interlace_allowed = true;
1176 connector->doublescan_allowed = 0;
1177
1178 dp_priv->intel_output = intel_output;
1179 dp_priv->output_reg = output_reg;
1180 dp_priv->has_audio = false;
1181 dp_priv->dpms_mode = DRM_MODE_DPMS_ON;
1182 intel_output->dev_priv = dp_priv;
1183
1184 drm_encoder_init(dev, &intel_output->enc, &intel_dp_enc_funcs,
1185 DRM_MODE_ENCODER_TMDS);
1186 drm_encoder_helper_add(&intel_output->enc, &intel_dp_helper_funcs);
1187
1188 drm_mode_connector_attach_encoder(&intel_output->base,
1189 &intel_output->enc);
1190 drm_sysfs_connector_add(connector);
1191
1192 /* Set up the DDC bus. */
1193 switch (output_reg) {
1194 case DP_B:
1195 case PCH_DP_B:
1196 name = "DPDDC-B";
1197 break;
1198 case DP_C:
1199 case PCH_DP_C:
1200 name = "DPDDC-C";
1201 break;
1202 case DP_D:
1203 case PCH_DP_D:
1204 name = "DPDDC-D";
1205 break;
1206 }
1207
1208 intel_dp_i2c_init(intel_output, name);
1209 intel_output->ddc_bus = &dp_priv->adapter;
1210 intel_output->hot_plug = intel_dp_hot_plug;
1211
1212 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
1213 * 0xd. Failure to do so will result in spurious interrupts being
1214 * generated on the port when a cable is not attached.
1215 */
1216 if (IS_G4X(dev) && !IS_GM45(dev)) {
1217 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
1218 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
1219 }
1220 }