]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/intel_dp.c
drm/i915: Add "Automatic" mode for the "Broadcast RGB" property
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
40
41 /**
42 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
43 * @intel_dp: DP struct
44 *
45 * If a CPU or PCH DP output is attached to an eDP panel, this function
46 * will return true, and false otherwise.
47 */
48 static bool is_edp(struct intel_dp *intel_dp)
49 {
50 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
51
52 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
53 }
54
55 /**
56 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
57 * @intel_dp: DP struct
58 *
59 * Returns true if the given DP struct corresponds to a PCH DP port attached
60 * to an eDP panel, false otherwise. Helpful for determining whether we
61 * may need FDI resources for a given DP output or not.
62 */
63 static bool is_pch_edp(struct intel_dp *intel_dp)
64 {
65 return intel_dp->is_pch_edp;
66 }
67
68 /**
69 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
70 * @intel_dp: DP struct
71 *
72 * Returns true if the given DP struct corresponds to a CPU eDP port.
73 */
74 static bool is_cpu_edp(struct intel_dp *intel_dp)
75 {
76 return is_edp(intel_dp) && !is_pch_edp(intel_dp);
77 }
78
79 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
80 {
81 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
82
83 return intel_dig_port->base.base.dev;
84 }
85
86 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
87 {
88 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
89 }
90
91 /**
92 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
93 * @encoder: DRM encoder
94 *
95 * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
96 * by intel_display.c.
97 */
98 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
99 {
100 struct intel_dp *intel_dp;
101
102 if (!encoder)
103 return false;
104
105 intel_dp = enc_to_intel_dp(encoder);
106
107 return is_pch_edp(intel_dp);
108 }
109
110 static void intel_dp_link_down(struct intel_dp *intel_dp);
111
112 void
113 intel_edp_link_config(struct intel_encoder *intel_encoder,
114 int *lane_num, int *link_bw)
115 {
116 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
117
118 *lane_num = intel_dp->lane_count;
119 *link_bw = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
120 }
121
122 int
123 intel_edp_target_clock(struct intel_encoder *intel_encoder,
124 struct drm_display_mode *mode)
125 {
126 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
127 struct intel_connector *intel_connector = intel_dp->attached_connector;
128
129 if (intel_connector->panel.fixed_mode)
130 return intel_connector->panel.fixed_mode->clock;
131 else
132 return mode->clock;
133 }
134
135 static int
136 intel_dp_max_link_bw(struct intel_dp *intel_dp)
137 {
138 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
139
140 switch (max_link_bw) {
141 case DP_LINK_BW_1_62:
142 case DP_LINK_BW_2_7:
143 break;
144 default:
145 max_link_bw = DP_LINK_BW_1_62;
146 break;
147 }
148 return max_link_bw;
149 }
150
151 /*
152 * The units on the numbers in the next two are... bizarre. Examples will
153 * make it clearer; this one parallels an example in the eDP spec.
154 *
155 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
156 *
157 * 270000 * 1 * 8 / 10 == 216000
158 *
159 * The actual data capacity of that configuration is 2.16Gbit/s, so the
160 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
161 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
162 * 119000. At 18bpp that's 2142000 kilobits per second.
163 *
164 * Thus the strange-looking division by 10 in intel_dp_link_required, to
165 * get the result in decakilobits instead of kilobits.
166 */
167
168 static int
169 intel_dp_link_required(int pixel_clock, int bpp)
170 {
171 return (pixel_clock * bpp + 9) / 10;
172 }
173
174 static int
175 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
176 {
177 return (max_link_clock * max_lanes * 8) / 10;
178 }
179
180 static bool
181 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
182 struct drm_display_mode *mode,
183 bool adjust_mode)
184 {
185 int max_link_clock =
186 drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
187 int max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
188 int max_rate, mode_rate;
189
190 mode_rate = intel_dp_link_required(mode->clock, 24);
191 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
192
193 if (mode_rate > max_rate) {
194 mode_rate = intel_dp_link_required(mode->clock, 18);
195 if (mode_rate > max_rate)
196 return false;
197
198 if (adjust_mode)
199 mode->private_flags
200 |= INTEL_MODE_DP_FORCE_6BPC;
201
202 return true;
203 }
204
205 return true;
206 }
207
208 static int
209 intel_dp_mode_valid(struct drm_connector *connector,
210 struct drm_display_mode *mode)
211 {
212 struct intel_dp *intel_dp = intel_attached_dp(connector);
213 struct intel_connector *intel_connector = to_intel_connector(connector);
214 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
215
216 if (is_edp(intel_dp) && fixed_mode) {
217 if (mode->hdisplay > fixed_mode->hdisplay)
218 return MODE_PANEL;
219
220 if (mode->vdisplay > fixed_mode->vdisplay)
221 return MODE_PANEL;
222 }
223
224 if (!intel_dp_adjust_dithering(intel_dp, mode, false))
225 return MODE_CLOCK_HIGH;
226
227 if (mode->clock < 10000)
228 return MODE_CLOCK_LOW;
229
230 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
231 return MODE_H_ILLEGAL;
232
233 return MODE_OK;
234 }
235
236 static uint32_t
237 pack_aux(uint8_t *src, int src_bytes)
238 {
239 int i;
240 uint32_t v = 0;
241
242 if (src_bytes > 4)
243 src_bytes = 4;
244 for (i = 0; i < src_bytes; i++)
245 v |= ((uint32_t) src[i]) << ((3-i) * 8);
246 return v;
247 }
248
249 static void
250 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
251 {
252 int i;
253 if (dst_bytes > 4)
254 dst_bytes = 4;
255 for (i = 0; i < dst_bytes; i++)
256 dst[i] = src >> ((3-i) * 8);
257 }
258
259 /* hrawclock is 1/4 the FSB frequency */
260 static int
261 intel_hrawclk(struct drm_device *dev)
262 {
263 struct drm_i915_private *dev_priv = dev->dev_private;
264 uint32_t clkcfg;
265
266 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
267 if (IS_VALLEYVIEW(dev))
268 return 200;
269
270 clkcfg = I915_READ(CLKCFG);
271 switch (clkcfg & CLKCFG_FSB_MASK) {
272 case CLKCFG_FSB_400:
273 return 100;
274 case CLKCFG_FSB_533:
275 return 133;
276 case CLKCFG_FSB_667:
277 return 166;
278 case CLKCFG_FSB_800:
279 return 200;
280 case CLKCFG_FSB_1067:
281 return 266;
282 case CLKCFG_FSB_1333:
283 return 333;
284 /* these two are just a guess; one of them might be right */
285 case CLKCFG_FSB_1600:
286 case CLKCFG_FSB_1600_ALT:
287 return 400;
288 default:
289 return 133;
290 }
291 }
292
293 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
294 {
295 struct drm_device *dev = intel_dp_to_dev(intel_dp);
296 struct drm_i915_private *dev_priv = dev->dev_private;
297
298 return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
299 }
300
301 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
302 {
303 struct drm_device *dev = intel_dp_to_dev(intel_dp);
304 struct drm_i915_private *dev_priv = dev->dev_private;
305
306 return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
307 }
308
309 static void
310 intel_dp_check_edp(struct intel_dp *intel_dp)
311 {
312 struct drm_device *dev = intel_dp_to_dev(intel_dp);
313 struct drm_i915_private *dev_priv = dev->dev_private;
314
315 if (!is_edp(intel_dp))
316 return;
317 if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
318 WARN(1, "eDP powered off while attempting aux channel communication.\n");
319 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
320 I915_READ(PCH_PP_STATUS),
321 I915_READ(PCH_PP_CONTROL));
322 }
323 }
324
325 static uint32_t
326 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
327 {
328 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
329 struct drm_device *dev = intel_dig_port->base.base.dev;
330 struct drm_i915_private *dev_priv = dev->dev_private;
331 uint32_t ch_ctl = intel_dp->output_reg + 0x10;
332 uint32_t status;
333 bool done;
334
335 if (IS_HASWELL(dev)) {
336 switch (intel_dig_port->port) {
337 case PORT_A:
338 ch_ctl = DPA_AUX_CH_CTL;
339 break;
340 case PORT_B:
341 ch_ctl = PCH_DPB_AUX_CH_CTL;
342 break;
343 case PORT_C:
344 ch_ctl = PCH_DPC_AUX_CH_CTL;
345 break;
346 case PORT_D:
347 ch_ctl = PCH_DPD_AUX_CH_CTL;
348 break;
349 default:
350 BUG();
351 }
352 }
353
354 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
355 if (has_aux_irq)
356 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C, 10);
357 else
358 done = wait_for_atomic(C, 10) == 0;
359 if (!done)
360 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
361 has_aux_irq);
362 #undef C
363
364 return status;
365 }
366
367 static int
368 intel_dp_aux_ch(struct intel_dp *intel_dp,
369 uint8_t *send, int send_bytes,
370 uint8_t *recv, int recv_size)
371 {
372 uint32_t output_reg = intel_dp->output_reg;
373 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
374 struct drm_device *dev = intel_dig_port->base.base.dev;
375 struct drm_i915_private *dev_priv = dev->dev_private;
376 uint32_t ch_ctl = output_reg + 0x10;
377 uint32_t ch_data = ch_ctl + 4;
378 int i, ret, recv_bytes;
379 uint32_t status;
380 uint32_t aux_clock_divider;
381 int try, precharge;
382 bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
383
384 /* dp aux is extremely sensitive to irq latency, hence request the
385 * lowest possible wakeup latency and so prevent the cpu from going into
386 * deep sleep states.
387 */
388 pm_qos_update_request(&dev_priv->pm_qos, 0);
389
390 if (IS_HASWELL(dev)) {
391 switch (intel_dig_port->port) {
392 case PORT_A:
393 ch_ctl = DPA_AUX_CH_CTL;
394 ch_data = DPA_AUX_CH_DATA1;
395 break;
396 case PORT_B:
397 ch_ctl = PCH_DPB_AUX_CH_CTL;
398 ch_data = PCH_DPB_AUX_CH_DATA1;
399 break;
400 case PORT_C:
401 ch_ctl = PCH_DPC_AUX_CH_CTL;
402 ch_data = PCH_DPC_AUX_CH_DATA1;
403 break;
404 case PORT_D:
405 ch_ctl = PCH_DPD_AUX_CH_CTL;
406 ch_data = PCH_DPD_AUX_CH_DATA1;
407 break;
408 default:
409 BUG();
410 }
411 }
412
413 intel_dp_check_edp(intel_dp);
414 /* The clock divider is based off the hrawclk,
415 * and would like to run at 2MHz. So, take the
416 * hrawclk value and divide by 2 and use that
417 *
418 * Note that PCH attached eDP panels should use a 125MHz input
419 * clock divider.
420 */
421 if (is_cpu_edp(intel_dp)) {
422 if (HAS_DDI(dev))
423 aux_clock_divider = intel_ddi_get_cdclk_freq(dev_priv) >> 1;
424 else if (IS_VALLEYVIEW(dev))
425 aux_clock_divider = 100;
426 else if (IS_GEN6(dev) || IS_GEN7(dev))
427 aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
428 else
429 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
430 } else if (HAS_PCH_SPLIT(dev))
431 aux_clock_divider = DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
432 else
433 aux_clock_divider = intel_hrawclk(dev) / 2;
434
435 if (IS_GEN6(dev))
436 precharge = 3;
437 else
438 precharge = 5;
439
440 /* Try to wait for any previous AUX channel activity */
441 for (try = 0; try < 3; try++) {
442 status = I915_READ_NOTRACE(ch_ctl);
443 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
444 break;
445 msleep(1);
446 }
447
448 if (try == 3) {
449 WARN(1, "dp_aux_ch not started status 0x%08x\n",
450 I915_READ(ch_ctl));
451 ret = -EBUSY;
452 goto out;
453 }
454
455 /* Must try at least 3 times according to DP spec */
456 for (try = 0; try < 5; try++) {
457 /* Load the send data into the aux channel data registers */
458 for (i = 0; i < send_bytes; i += 4)
459 I915_WRITE(ch_data + i,
460 pack_aux(send + i, send_bytes - i));
461
462 /* Send the command and wait for it to complete */
463 I915_WRITE(ch_ctl,
464 DP_AUX_CH_CTL_SEND_BUSY |
465 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
466 DP_AUX_CH_CTL_TIME_OUT_400us |
467 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
468 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
469 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
470 DP_AUX_CH_CTL_DONE |
471 DP_AUX_CH_CTL_TIME_OUT_ERROR |
472 DP_AUX_CH_CTL_RECEIVE_ERROR);
473
474 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
475
476 /* Clear done status and any errors */
477 I915_WRITE(ch_ctl,
478 status |
479 DP_AUX_CH_CTL_DONE |
480 DP_AUX_CH_CTL_TIME_OUT_ERROR |
481 DP_AUX_CH_CTL_RECEIVE_ERROR);
482
483 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
484 DP_AUX_CH_CTL_RECEIVE_ERROR))
485 continue;
486 if (status & DP_AUX_CH_CTL_DONE)
487 break;
488 }
489
490 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
491 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
492 ret = -EBUSY;
493 goto out;
494 }
495
496 /* Check for timeout or receive error.
497 * Timeouts occur when the sink is not connected
498 */
499 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
500 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
501 ret = -EIO;
502 goto out;
503 }
504
505 /* Timeouts occur when the device isn't connected, so they're
506 * "normal" -- don't fill the kernel log with these */
507 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
508 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
509 ret = -ETIMEDOUT;
510 goto out;
511 }
512
513 /* Unload any bytes sent back from the other side */
514 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
515 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
516 if (recv_bytes > recv_size)
517 recv_bytes = recv_size;
518
519 for (i = 0; i < recv_bytes; i += 4)
520 unpack_aux(I915_READ(ch_data + i),
521 recv + i, recv_bytes - i);
522
523 ret = recv_bytes;
524 out:
525 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
526
527 return ret;
528 }
529
530 /* Write data to the aux channel in native mode */
531 static int
532 intel_dp_aux_native_write(struct intel_dp *intel_dp,
533 uint16_t address, uint8_t *send, int send_bytes)
534 {
535 int ret;
536 uint8_t msg[20];
537 int msg_bytes;
538 uint8_t ack;
539
540 intel_dp_check_edp(intel_dp);
541 if (send_bytes > 16)
542 return -1;
543 msg[0] = AUX_NATIVE_WRITE << 4;
544 msg[1] = address >> 8;
545 msg[2] = address & 0xff;
546 msg[3] = send_bytes - 1;
547 memcpy(&msg[4], send, send_bytes);
548 msg_bytes = send_bytes + 4;
549 for (;;) {
550 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
551 if (ret < 0)
552 return ret;
553 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
554 break;
555 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
556 udelay(100);
557 else
558 return -EIO;
559 }
560 return send_bytes;
561 }
562
563 /* Write a single byte to the aux channel in native mode */
564 static int
565 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
566 uint16_t address, uint8_t byte)
567 {
568 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
569 }
570
571 /* read bytes from a native aux channel */
572 static int
573 intel_dp_aux_native_read(struct intel_dp *intel_dp,
574 uint16_t address, uint8_t *recv, int recv_bytes)
575 {
576 uint8_t msg[4];
577 int msg_bytes;
578 uint8_t reply[20];
579 int reply_bytes;
580 uint8_t ack;
581 int ret;
582
583 intel_dp_check_edp(intel_dp);
584 msg[0] = AUX_NATIVE_READ << 4;
585 msg[1] = address >> 8;
586 msg[2] = address & 0xff;
587 msg[3] = recv_bytes - 1;
588
589 msg_bytes = 4;
590 reply_bytes = recv_bytes + 1;
591
592 for (;;) {
593 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
594 reply, reply_bytes);
595 if (ret == 0)
596 return -EPROTO;
597 if (ret < 0)
598 return ret;
599 ack = reply[0];
600 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
601 memcpy(recv, reply + 1, ret - 1);
602 return ret - 1;
603 }
604 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
605 udelay(100);
606 else
607 return -EIO;
608 }
609 }
610
611 static int
612 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
613 uint8_t write_byte, uint8_t *read_byte)
614 {
615 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
616 struct intel_dp *intel_dp = container_of(adapter,
617 struct intel_dp,
618 adapter);
619 uint16_t address = algo_data->address;
620 uint8_t msg[5];
621 uint8_t reply[2];
622 unsigned retry;
623 int msg_bytes;
624 int reply_bytes;
625 int ret;
626
627 intel_dp_check_edp(intel_dp);
628 /* Set up the command byte */
629 if (mode & MODE_I2C_READ)
630 msg[0] = AUX_I2C_READ << 4;
631 else
632 msg[0] = AUX_I2C_WRITE << 4;
633
634 if (!(mode & MODE_I2C_STOP))
635 msg[0] |= AUX_I2C_MOT << 4;
636
637 msg[1] = address >> 8;
638 msg[2] = address;
639
640 switch (mode) {
641 case MODE_I2C_WRITE:
642 msg[3] = 0;
643 msg[4] = write_byte;
644 msg_bytes = 5;
645 reply_bytes = 1;
646 break;
647 case MODE_I2C_READ:
648 msg[3] = 0;
649 msg_bytes = 4;
650 reply_bytes = 2;
651 break;
652 default:
653 msg_bytes = 3;
654 reply_bytes = 1;
655 break;
656 }
657
658 for (retry = 0; retry < 5; retry++) {
659 ret = intel_dp_aux_ch(intel_dp,
660 msg, msg_bytes,
661 reply, reply_bytes);
662 if (ret < 0) {
663 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
664 return ret;
665 }
666
667 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
668 case AUX_NATIVE_REPLY_ACK:
669 /* I2C-over-AUX Reply field is only valid
670 * when paired with AUX ACK.
671 */
672 break;
673 case AUX_NATIVE_REPLY_NACK:
674 DRM_DEBUG_KMS("aux_ch native nack\n");
675 return -EREMOTEIO;
676 case AUX_NATIVE_REPLY_DEFER:
677 udelay(100);
678 continue;
679 default:
680 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
681 reply[0]);
682 return -EREMOTEIO;
683 }
684
685 switch (reply[0] & AUX_I2C_REPLY_MASK) {
686 case AUX_I2C_REPLY_ACK:
687 if (mode == MODE_I2C_READ) {
688 *read_byte = reply[1];
689 }
690 return reply_bytes - 1;
691 case AUX_I2C_REPLY_NACK:
692 DRM_DEBUG_KMS("aux_i2c nack\n");
693 return -EREMOTEIO;
694 case AUX_I2C_REPLY_DEFER:
695 DRM_DEBUG_KMS("aux_i2c defer\n");
696 udelay(100);
697 break;
698 default:
699 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
700 return -EREMOTEIO;
701 }
702 }
703
704 DRM_ERROR("too many retries, giving up\n");
705 return -EREMOTEIO;
706 }
707
708 static int
709 intel_dp_i2c_init(struct intel_dp *intel_dp,
710 struct intel_connector *intel_connector, const char *name)
711 {
712 int ret;
713
714 DRM_DEBUG_KMS("i2c_init %s\n", name);
715 intel_dp->algo.running = false;
716 intel_dp->algo.address = 0;
717 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
718
719 memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
720 intel_dp->adapter.owner = THIS_MODULE;
721 intel_dp->adapter.class = I2C_CLASS_DDC;
722 strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
723 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
724 intel_dp->adapter.algo_data = &intel_dp->algo;
725 intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
726
727 ironlake_edp_panel_vdd_on(intel_dp);
728 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
729 ironlake_edp_panel_vdd_off(intel_dp, false);
730 return ret;
731 }
732
733 bool
734 intel_dp_mode_fixup(struct drm_encoder *encoder,
735 const struct drm_display_mode *mode,
736 struct drm_display_mode *adjusted_mode)
737 {
738 struct drm_device *dev = encoder->dev;
739 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
740 struct intel_connector *intel_connector = intel_dp->attached_connector;
741 int lane_count, clock;
742 int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
743 int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
744 int bpp, mode_rate;
745 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
746
747 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
748 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
749 adjusted_mode);
750 intel_pch_panel_fitting(dev,
751 intel_connector->panel.fitting_mode,
752 mode, adjusted_mode);
753 }
754
755 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
756 return false;
757
758 DRM_DEBUG_KMS("DP link computation with max lane count %i "
759 "max bw %02x pixel clock %iKHz\n",
760 max_lane_count, bws[max_clock], adjusted_mode->clock);
761
762 if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
763 return false;
764
765 bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
766
767 if (intel_dp->color_range_auto) {
768 /*
769 * See:
770 * CEA-861-E - 5.1 Default Encoding Parameters
771 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
772 */
773 if (bpp != 18 && drm_mode_cea_vic(adjusted_mode) > 1)
774 intel_dp->color_range = DP_COLOR_RANGE_16_235;
775 else
776 intel_dp->color_range = 0;
777 }
778
779 if (intel_dp->color_range)
780 adjusted_mode->private_flags |= INTEL_MODE_LIMITED_COLOR_RANGE;
781
782 mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
783
784 for (clock = 0; clock <= max_clock; clock++) {
785 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
786 int link_bw_clock =
787 drm_dp_bw_code_to_link_rate(bws[clock]);
788 int link_avail = intel_dp_max_data_rate(link_bw_clock,
789 lane_count);
790
791 if (mode_rate <= link_avail) {
792 intel_dp->link_bw = bws[clock];
793 intel_dp->lane_count = lane_count;
794 adjusted_mode->clock = link_bw_clock;
795 DRM_DEBUG_KMS("DP link bw %02x lane "
796 "count %d clock %d bpp %d\n",
797 intel_dp->link_bw, intel_dp->lane_count,
798 adjusted_mode->clock, bpp);
799 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
800 mode_rate, link_avail);
801 return true;
802 }
803 }
804 }
805
806 return false;
807 }
808
809 void
810 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
811 struct drm_display_mode *adjusted_mode)
812 {
813 struct drm_device *dev = crtc->dev;
814 struct intel_encoder *intel_encoder;
815 struct intel_dp *intel_dp;
816 struct drm_i915_private *dev_priv = dev->dev_private;
817 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
818 int lane_count = 4;
819 struct intel_link_m_n m_n;
820 int pipe = intel_crtc->pipe;
821 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
822
823 /*
824 * Find the lane count in the intel_encoder private
825 */
826 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
827 intel_dp = enc_to_intel_dp(&intel_encoder->base);
828
829 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
830 intel_encoder->type == INTEL_OUTPUT_EDP)
831 {
832 lane_count = intel_dp->lane_count;
833 break;
834 }
835 }
836
837 /*
838 * Compute the GMCH and Link ratios. The '3' here is
839 * the number of bytes_per_pixel post-LUT, which we always
840 * set up for 8-bits of R/G/B, or 3 bytes total.
841 */
842 intel_link_compute_m_n(intel_crtc->bpp, lane_count,
843 mode->clock, adjusted_mode->clock, &m_n);
844
845 if (IS_HASWELL(dev)) {
846 I915_WRITE(PIPE_DATA_M1(cpu_transcoder),
847 TU_SIZE(m_n.tu) | m_n.gmch_m);
848 I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
849 I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
850 I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
851 } else if (HAS_PCH_SPLIT(dev)) {
852 I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
853 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
854 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
855 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
856 } else if (IS_VALLEYVIEW(dev)) {
857 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
858 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
859 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
860 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
861 } else {
862 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
863 TU_SIZE(m_n.tu) | m_n.gmch_m);
864 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
865 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
866 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
867 }
868 }
869
870 void intel_dp_init_link_config(struct intel_dp *intel_dp)
871 {
872 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
873 intel_dp->link_configuration[0] = intel_dp->link_bw;
874 intel_dp->link_configuration[1] = intel_dp->lane_count;
875 intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
876 /*
877 * Check for DPCD version > 1.1 and enhanced framing support
878 */
879 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
880 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
881 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
882 }
883 }
884
885 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
886 {
887 struct drm_device *dev = crtc->dev;
888 struct drm_i915_private *dev_priv = dev->dev_private;
889 u32 dpa_ctl;
890
891 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
892 dpa_ctl = I915_READ(DP_A);
893 dpa_ctl &= ~DP_PLL_FREQ_MASK;
894
895 if (clock < 200000) {
896 /* For a long time we've carried around a ILK-DevA w/a for the
897 * 160MHz clock. If we're really unlucky, it's still required.
898 */
899 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
900 dpa_ctl |= DP_PLL_FREQ_160MHZ;
901 } else {
902 dpa_ctl |= DP_PLL_FREQ_270MHZ;
903 }
904
905 I915_WRITE(DP_A, dpa_ctl);
906
907 POSTING_READ(DP_A);
908 udelay(500);
909 }
910
911 static void
912 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
913 struct drm_display_mode *adjusted_mode)
914 {
915 struct drm_device *dev = encoder->dev;
916 struct drm_i915_private *dev_priv = dev->dev_private;
917 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
918 struct drm_crtc *crtc = encoder->crtc;
919 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
920
921 /*
922 * There are four kinds of DP registers:
923 *
924 * IBX PCH
925 * SNB CPU
926 * IVB CPU
927 * CPT PCH
928 *
929 * IBX PCH and CPU are the same for almost everything,
930 * except that the CPU DP PLL is configured in this
931 * register
932 *
933 * CPT PCH is quite different, having many bits moved
934 * to the TRANS_DP_CTL register instead. That
935 * configuration happens (oddly) in ironlake_pch_enable
936 */
937
938 /* Preserve the BIOS-computed detected bit. This is
939 * supposed to be read-only.
940 */
941 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
942
943 /* Handle DP bits in common between all three register formats */
944 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
945
946 switch (intel_dp->lane_count) {
947 case 1:
948 intel_dp->DP |= DP_PORT_WIDTH_1;
949 break;
950 case 2:
951 intel_dp->DP |= DP_PORT_WIDTH_2;
952 break;
953 case 4:
954 intel_dp->DP |= DP_PORT_WIDTH_4;
955 break;
956 }
957 if (intel_dp->has_audio) {
958 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
959 pipe_name(intel_crtc->pipe));
960 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
961 intel_write_eld(encoder, adjusted_mode);
962 }
963
964 intel_dp_init_link_config(intel_dp);
965
966 /* Split out the IBX/CPU vs CPT settings */
967
968 if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
969 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
970 intel_dp->DP |= DP_SYNC_HS_HIGH;
971 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
972 intel_dp->DP |= DP_SYNC_VS_HIGH;
973 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
974
975 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
976 intel_dp->DP |= DP_ENHANCED_FRAMING;
977
978 intel_dp->DP |= intel_crtc->pipe << 29;
979
980 /* don't miss out required setting for eDP */
981 if (adjusted_mode->clock < 200000)
982 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
983 else
984 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
985 } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
986 if (!HAS_PCH_SPLIT(dev))
987 intel_dp->DP |= intel_dp->color_range;
988
989 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
990 intel_dp->DP |= DP_SYNC_HS_HIGH;
991 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
992 intel_dp->DP |= DP_SYNC_VS_HIGH;
993 intel_dp->DP |= DP_LINK_TRAIN_OFF;
994
995 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
996 intel_dp->DP |= DP_ENHANCED_FRAMING;
997
998 if (intel_crtc->pipe == 1)
999 intel_dp->DP |= DP_PIPEB_SELECT;
1000
1001 if (is_cpu_edp(intel_dp)) {
1002 /* don't miss out required setting for eDP */
1003 if (adjusted_mode->clock < 200000)
1004 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1005 else
1006 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1007 }
1008 } else {
1009 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1010 }
1011
1012 if (is_cpu_edp(intel_dp))
1013 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
1014 }
1015
1016 #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1017 #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1018
1019 #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1020 #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1021
1022 #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1023 #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1024
1025 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
1026 u32 mask,
1027 u32 value)
1028 {
1029 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1030 struct drm_i915_private *dev_priv = dev->dev_private;
1031
1032 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1033 mask, value,
1034 I915_READ(PCH_PP_STATUS),
1035 I915_READ(PCH_PP_CONTROL));
1036
1037 if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
1038 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1039 I915_READ(PCH_PP_STATUS),
1040 I915_READ(PCH_PP_CONTROL));
1041 }
1042 }
1043
1044 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
1045 {
1046 DRM_DEBUG_KMS("Wait for panel power on\n");
1047 ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1048 }
1049
1050 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
1051 {
1052 DRM_DEBUG_KMS("Wait for panel power off time\n");
1053 ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1054 }
1055
1056 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
1057 {
1058 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1059 ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1060 }
1061
1062
1063 /* Read the current pp_control value, unlocking the register if it
1064 * is locked
1065 */
1066
1067 static u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
1068 {
1069 u32 control = I915_READ(PCH_PP_CONTROL);
1070
1071 control &= ~PANEL_UNLOCK_MASK;
1072 control |= PANEL_UNLOCK_REGS;
1073 return control;
1074 }
1075
1076 void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1077 {
1078 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1079 struct drm_i915_private *dev_priv = dev->dev_private;
1080 u32 pp;
1081
1082 if (!is_edp(intel_dp))
1083 return;
1084 DRM_DEBUG_KMS("Turn eDP VDD on\n");
1085
1086 WARN(intel_dp->want_panel_vdd,
1087 "eDP VDD already requested on\n");
1088
1089 intel_dp->want_panel_vdd = true;
1090
1091 if (ironlake_edp_have_panel_vdd(intel_dp)) {
1092 DRM_DEBUG_KMS("eDP VDD already on\n");
1093 return;
1094 }
1095
1096 if (!ironlake_edp_have_panel_power(intel_dp))
1097 ironlake_wait_panel_power_cycle(intel_dp);
1098
1099 pp = ironlake_get_pp_control(dev_priv);
1100 pp |= EDP_FORCE_VDD;
1101 I915_WRITE(PCH_PP_CONTROL, pp);
1102 POSTING_READ(PCH_PP_CONTROL);
1103 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1104 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1105
1106 /*
1107 * If the panel wasn't on, delay before accessing aux channel
1108 */
1109 if (!ironlake_edp_have_panel_power(intel_dp)) {
1110 DRM_DEBUG_KMS("eDP was not running\n");
1111 msleep(intel_dp->panel_power_up_delay);
1112 }
1113 }
1114
1115 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1116 {
1117 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1118 struct drm_i915_private *dev_priv = dev->dev_private;
1119 u32 pp;
1120
1121 if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1122 pp = ironlake_get_pp_control(dev_priv);
1123 pp &= ~EDP_FORCE_VDD;
1124 I915_WRITE(PCH_PP_CONTROL, pp);
1125 POSTING_READ(PCH_PP_CONTROL);
1126
1127 /* Make sure sequencer is idle before allowing subsequent activity */
1128 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1129 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1130
1131 msleep(intel_dp->panel_power_down_delay);
1132 }
1133 }
1134
1135 static void ironlake_panel_vdd_work(struct work_struct *__work)
1136 {
1137 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1138 struct intel_dp, panel_vdd_work);
1139 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1140
1141 mutex_lock(&dev->mode_config.mutex);
1142 ironlake_panel_vdd_off_sync(intel_dp);
1143 mutex_unlock(&dev->mode_config.mutex);
1144 }
1145
1146 void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1147 {
1148 if (!is_edp(intel_dp))
1149 return;
1150
1151 DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1152 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1153
1154 intel_dp->want_panel_vdd = false;
1155
1156 if (sync) {
1157 ironlake_panel_vdd_off_sync(intel_dp);
1158 } else {
1159 /*
1160 * Queue the timer to fire a long
1161 * time from now (relative to the power down delay)
1162 * to keep the panel power up across a sequence of operations
1163 */
1164 schedule_delayed_work(&intel_dp->panel_vdd_work,
1165 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1166 }
1167 }
1168
1169 void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1170 {
1171 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1172 struct drm_i915_private *dev_priv = dev->dev_private;
1173 u32 pp;
1174
1175 if (!is_edp(intel_dp))
1176 return;
1177
1178 DRM_DEBUG_KMS("Turn eDP power on\n");
1179
1180 if (ironlake_edp_have_panel_power(intel_dp)) {
1181 DRM_DEBUG_KMS("eDP power already on\n");
1182 return;
1183 }
1184
1185 ironlake_wait_panel_power_cycle(intel_dp);
1186
1187 pp = ironlake_get_pp_control(dev_priv);
1188 if (IS_GEN5(dev)) {
1189 /* ILK workaround: disable reset around power sequence */
1190 pp &= ~PANEL_POWER_RESET;
1191 I915_WRITE(PCH_PP_CONTROL, pp);
1192 POSTING_READ(PCH_PP_CONTROL);
1193 }
1194
1195 pp |= POWER_TARGET_ON;
1196 if (!IS_GEN5(dev))
1197 pp |= PANEL_POWER_RESET;
1198
1199 I915_WRITE(PCH_PP_CONTROL, pp);
1200 POSTING_READ(PCH_PP_CONTROL);
1201
1202 ironlake_wait_panel_on(intel_dp);
1203
1204 if (IS_GEN5(dev)) {
1205 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1206 I915_WRITE(PCH_PP_CONTROL, pp);
1207 POSTING_READ(PCH_PP_CONTROL);
1208 }
1209 }
1210
1211 void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1212 {
1213 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1214 struct drm_i915_private *dev_priv = dev->dev_private;
1215 u32 pp;
1216
1217 if (!is_edp(intel_dp))
1218 return;
1219
1220 DRM_DEBUG_KMS("Turn eDP power off\n");
1221
1222 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1223
1224 pp = ironlake_get_pp_control(dev_priv);
1225 /* We need to switch off panel power _and_ force vdd, for otherwise some
1226 * panels get very unhappy and cease to work. */
1227 pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1228 I915_WRITE(PCH_PP_CONTROL, pp);
1229 POSTING_READ(PCH_PP_CONTROL);
1230
1231 intel_dp->want_panel_vdd = false;
1232
1233 ironlake_wait_panel_off(intel_dp);
1234 }
1235
1236 void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1237 {
1238 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1239 struct drm_device *dev = intel_dig_port->base.base.dev;
1240 struct drm_i915_private *dev_priv = dev->dev_private;
1241 int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
1242 u32 pp;
1243
1244 if (!is_edp(intel_dp))
1245 return;
1246
1247 DRM_DEBUG_KMS("\n");
1248 /*
1249 * If we enable the backlight right away following a panel power
1250 * on, we may see slight flicker as the panel syncs with the eDP
1251 * link. So delay a bit to make sure the image is solid before
1252 * allowing it to appear.
1253 */
1254 msleep(intel_dp->backlight_on_delay);
1255 pp = ironlake_get_pp_control(dev_priv);
1256 pp |= EDP_BLC_ENABLE;
1257 I915_WRITE(PCH_PP_CONTROL, pp);
1258 POSTING_READ(PCH_PP_CONTROL);
1259
1260 intel_panel_enable_backlight(dev, pipe);
1261 }
1262
1263 void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1264 {
1265 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1266 struct drm_i915_private *dev_priv = dev->dev_private;
1267 u32 pp;
1268
1269 if (!is_edp(intel_dp))
1270 return;
1271
1272 intel_panel_disable_backlight(dev);
1273
1274 DRM_DEBUG_KMS("\n");
1275 pp = ironlake_get_pp_control(dev_priv);
1276 pp &= ~EDP_BLC_ENABLE;
1277 I915_WRITE(PCH_PP_CONTROL, pp);
1278 POSTING_READ(PCH_PP_CONTROL);
1279 msleep(intel_dp->backlight_off_delay);
1280 }
1281
1282 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1283 {
1284 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1285 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1286 struct drm_device *dev = crtc->dev;
1287 struct drm_i915_private *dev_priv = dev->dev_private;
1288 u32 dpa_ctl;
1289
1290 assert_pipe_disabled(dev_priv,
1291 to_intel_crtc(crtc)->pipe);
1292
1293 DRM_DEBUG_KMS("\n");
1294 dpa_ctl = I915_READ(DP_A);
1295 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1296 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1297
1298 /* We don't adjust intel_dp->DP while tearing down the link, to
1299 * facilitate link retraining (e.g. after hotplug). Hence clear all
1300 * enable bits here to ensure that we don't enable too much. */
1301 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1302 intel_dp->DP |= DP_PLL_ENABLE;
1303 I915_WRITE(DP_A, intel_dp->DP);
1304 POSTING_READ(DP_A);
1305 udelay(200);
1306 }
1307
1308 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1309 {
1310 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1311 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1312 struct drm_device *dev = crtc->dev;
1313 struct drm_i915_private *dev_priv = dev->dev_private;
1314 u32 dpa_ctl;
1315
1316 assert_pipe_disabled(dev_priv,
1317 to_intel_crtc(crtc)->pipe);
1318
1319 dpa_ctl = I915_READ(DP_A);
1320 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1321 "dp pll off, should be on\n");
1322 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1323
1324 /* We can't rely on the value tracked for the DP register in
1325 * intel_dp->DP because link_down must not change that (otherwise link
1326 * re-training will fail. */
1327 dpa_ctl &= ~DP_PLL_ENABLE;
1328 I915_WRITE(DP_A, dpa_ctl);
1329 POSTING_READ(DP_A);
1330 udelay(200);
1331 }
1332
1333 /* If the sink supports it, try to set the power state appropriately */
1334 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1335 {
1336 int ret, i;
1337
1338 /* Should have a valid DPCD by this point */
1339 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1340 return;
1341
1342 if (mode != DRM_MODE_DPMS_ON) {
1343 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1344 DP_SET_POWER_D3);
1345 if (ret != 1)
1346 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1347 } else {
1348 /*
1349 * When turning on, we need to retry for 1ms to give the sink
1350 * time to wake up.
1351 */
1352 for (i = 0; i < 3; i++) {
1353 ret = intel_dp_aux_native_write_1(intel_dp,
1354 DP_SET_POWER,
1355 DP_SET_POWER_D0);
1356 if (ret == 1)
1357 break;
1358 msleep(1);
1359 }
1360 }
1361 }
1362
1363 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1364 enum pipe *pipe)
1365 {
1366 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1367 struct drm_device *dev = encoder->base.dev;
1368 struct drm_i915_private *dev_priv = dev->dev_private;
1369 u32 tmp = I915_READ(intel_dp->output_reg);
1370
1371 if (!(tmp & DP_PORT_EN))
1372 return false;
1373
1374 if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
1375 *pipe = PORT_TO_PIPE_CPT(tmp);
1376 } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1377 *pipe = PORT_TO_PIPE(tmp);
1378 } else {
1379 u32 trans_sel;
1380 u32 trans_dp;
1381 int i;
1382
1383 switch (intel_dp->output_reg) {
1384 case PCH_DP_B:
1385 trans_sel = TRANS_DP_PORT_SEL_B;
1386 break;
1387 case PCH_DP_C:
1388 trans_sel = TRANS_DP_PORT_SEL_C;
1389 break;
1390 case PCH_DP_D:
1391 trans_sel = TRANS_DP_PORT_SEL_D;
1392 break;
1393 default:
1394 return true;
1395 }
1396
1397 for_each_pipe(i) {
1398 trans_dp = I915_READ(TRANS_DP_CTL(i));
1399 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1400 *pipe = i;
1401 return true;
1402 }
1403 }
1404
1405 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1406 intel_dp->output_reg);
1407 }
1408
1409 return true;
1410 }
1411
1412 static void intel_disable_dp(struct intel_encoder *encoder)
1413 {
1414 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1415
1416 /* Make sure the panel is off before trying to change the mode. But also
1417 * ensure that we have vdd while we switch off the panel. */
1418 ironlake_edp_panel_vdd_on(intel_dp);
1419 ironlake_edp_backlight_off(intel_dp);
1420 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1421 ironlake_edp_panel_off(intel_dp);
1422
1423 /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1424 if (!is_cpu_edp(intel_dp))
1425 intel_dp_link_down(intel_dp);
1426 }
1427
1428 static void intel_post_disable_dp(struct intel_encoder *encoder)
1429 {
1430 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1431
1432 if (is_cpu_edp(intel_dp)) {
1433 intel_dp_link_down(intel_dp);
1434 ironlake_edp_pll_off(intel_dp);
1435 }
1436 }
1437
1438 static void intel_enable_dp(struct intel_encoder *encoder)
1439 {
1440 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1441 struct drm_device *dev = encoder->base.dev;
1442 struct drm_i915_private *dev_priv = dev->dev_private;
1443 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1444
1445 if (WARN_ON(dp_reg & DP_PORT_EN))
1446 return;
1447
1448 ironlake_edp_panel_vdd_on(intel_dp);
1449 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1450 intel_dp_start_link_train(intel_dp);
1451 ironlake_edp_panel_on(intel_dp);
1452 ironlake_edp_panel_vdd_off(intel_dp, true);
1453 intel_dp_complete_link_train(intel_dp);
1454 ironlake_edp_backlight_on(intel_dp);
1455 }
1456
1457 static void intel_pre_enable_dp(struct intel_encoder *encoder)
1458 {
1459 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1460
1461 if (is_cpu_edp(intel_dp))
1462 ironlake_edp_pll_on(intel_dp);
1463 }
1464
1465 /*
1466 * Native read with retry for link status and receiver capability reads for
1467 * cases where the sink may still be asleep.
1468 */
1469 static bool
1470 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1471 uint8_t *recv, int recv_bytes)
1472 {
1473 int ret, i;
1474
1475 /*
1476 * Sinks are *supposed* to come up within 1ms from an off state,
1477 * but we're also supposed to retry 3 times per the spec.
1478 */
1479 for (i = 0; i < 3; i++) {
1480 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1481 recv_bytes);
1482 if (ret == recv_bytes)
1483 return true;
1484 msleep(1);
1485 }
1486
1487 return false;
1488 }
1489
1490 /*
1491 * Fetch AUX CH registers 0x202 - 0x207 which contain
1492 * link status information
1493 */
1494 static bool
1495 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1496 {
1497 return intel_dp_aux_native_read_retry(intel_dp,
1498 DP_LANE0_1_STATUS,
1499 link_status,
1500 DP_LINK_STATUS_SIZE);
1501 }
1502
1503 #if 0
1504 static char *voltage_names[] = {
1505 "0.4V", "0.6V", "0.8V", "1.2V"
1506 };
1507 static char *pre_emph_names[] = {
1508 "0dB", "3.5dB", "6dB", "9.5dB"
1509 };
1510 static char *link_train_names[] = {
1511 "pattern 1", "pattern 2", "idle", "off"
1512 };
1513 #endif
1514
1515 /*
1516 * These are source-specific values; current Intel hardware supports
1517 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1518 */
1519
1520 static uint8_t
1521 intel_dp_voltage_max(struct intel_dp *intel_dp)
1522 {
1523 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1524
1525 if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1526 return DP_TRAIN_VOLTAGE_SWING_800;
1527 else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1528 return DP_TRAIN_VOLTAGE_SWING_1200;
1529 else
1530 return DP_TRAIN_VOLTAGE_SWING_800;
1531 }
1532
1533 static uint8_t
1534 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1535 {
1536 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1537
1538 if (IS_HASWELL(dev)) {
1539 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1540 case DP_TRAIN_VOLTAGE_SWING_400:
1541 return DP_TRAIN_PRE_EMPHASIS_9_5;
1542 case DP_TRAIN_VOLTAGE_SWING_600:
1543 return DP_TRAIN_PRE_EMPHASIS_6;
1544 case DP_TRAIN_VOLTAGE_SWING_800:
1545 return DP_TRAIN_PRE_EMPHASIS_3_5;
1546 case DP_TRAIN_VOLTAGE_SWING_1200:
1547 default:
1548 return DP_TRAIN_PRE_EMPHASIS_0;
1549 }
1550 } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1551 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1552 case DP_TRAIN_VOLTAGE_SWING_400:
1553 return DP_TRAIN_PRE_EMPHASIS_6;
1554 case DP_TRAIN_VOLTAGE_SWING_600:
1555 case DP_TRAIN_VOLTAGE_SWING_800:
1556 return DP_TRAIN_PRE_EMPHASIS_3_5;
1557 default:
1558 return DP_TRAIN_PRE_EMPHASIS_0;
1559 }
1560 } else {
1561 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1562 case DP_TRAIN_VOLTAGE_SWING_400:
1563 return DP_TRAIN_PRE_EMPHASIS_6;
1564 case DP_TRAIN_VOLTAGE_SWING_600:
1565 return DP_TRAIN_PRE_EMPHASIS_6;
1566 case DP_TRAIN_VOLTAGE_SWING_800:
1567 return DP_TRAIN_PRE_EMPHASIS_3_5;
1568 case DP_TRAIN_VOLTAGE_SWING_1200:
1569 default:
1570 return DP_TRAIN_PRE_EMPHASIS_0;
1571 }
1572 }
1573 }
1574
1575 static void
1576 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1577 {
1578 uint8_t v = 0;
1579 uint8_t p = 0;
1580 int lane;
1581 uint8_t voltage_max;
1582 uint8_t preemph_max;
1583
1584 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1585 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
1586 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
1587
1588 if (this_v > v)
1589 v = this_v;
1590 if (this_p > p)
1591 p = this_p;
1592 }
1593
1594 voltage_max = intel_dp_voltage_max(intel_dp);
1595 if (v >= voltage_max)
1596 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1597
1598 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1599 if (p >= preemph_max)
1600 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1601
1602 for (lane = 0; lane < 4; lane++)
1603 intel_dp->train_set[lane] = v | p;
1604 }
1605
1606 static uint32_t
1607 intel_gen4_signal_levels(uint8_t train_set)
1608 {
1609 uint32_t signal_levels = 0;
1610
1611 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1612 case DP_TRAIN_VOLTAGE_SWING_400:
1613 default:
1614 signal_levels |= DP_VOLTAGE_0_4;
1615 break;
1616 case DP_TRAIN_VOLTAGE_SWING_600:
1617 signal_levels |= DP_VOLTAGE_0_6;
1618 break;
1619 case DP_TRAIN_VOLTAGE_SWING_800:
1620 signal_levels |= DP_VOLTAGE_0_8;
1621 break;
1622 case DP_TRAIN_VOLTAGE_SWING_1200:
1623 signal_levels |= DP_VOLTAGE_1_2;
1624 break;
1625 }
1626 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1627 case DP_TRAIN_PRE_EMPHASIS_0:
1628 default:
1629 signal_levels |= DP_PRE_EMPHASIS_0;
1630 break;
1631 case DP_TRAIN_PRE_EMPHASIS_3_5:
1632 signal_levels |= DP_PRE_EMPHASIS_3_5;
1633 break;
1634 case DP_TRAIN_PRE_EMPHASIS_6:
1635 signal_levels |= DP_PRE_EMPHASIS_6;
1636 break;
1637 case DP_TRAIN_PRE_EMPHASIS_9_5:
1638 signal_levels |= DP_PRE_EMPHASIS_9_5;
1639 break;
1640 }
1641 return signal_levels;
1642 }
1643
1644 /* Gen6's DP voltage swing and pre-emphasis control */
1645 static uint32_t
1646 intel_gen6_edp_signal_levels(uint8_t train_set)
1647 {
1648 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1649 DP_TRAIN_PRE_EMPHASIS_MASK);
1650 switch (signal_levels) {
1651 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1652 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1653 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1654 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1655 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1656 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1657 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1658 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1659 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1660 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1661 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1662 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1663 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1664 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1665 default:
1666 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1667 "0x%x\n", signal_levels);
1668 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1669 }
1670 }
1671
1672 /* Gen7's DP voltage swing and pre-emphasis control */
1673 static uint32_t
1674 intel_gen7_edp_signal_levels(uint8_t train_set)
1675 {
1676 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1677 DP_TRAIN_PRE_EMPHASIS_MASK);
1678 switch (signal_levels) {
1679 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1680 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1681 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1682 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1683 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1684 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1685
1686 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1687 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1688 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1689 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1690
1691 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1692 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1693 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1694 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1695
1696 default:
1697 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1698 "0x%x\n", signal_levels);
1699 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1700 }
1701 }
1702
1703 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
1704 static uint32_t
1705 intel_hsw_signal_levels(uint8_t train_set)
1706 {
1707 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1708 DP_TRAIN_PRE_EMPHASIS_MASK);
1709 switch (signal_levels) {
1710 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1711 return DDI_BUF_EMP_400MV_0DB_HSW;
1712 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1713 return DDI_BUF_EMP_400MV_3_5DB_HSW;
1714 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1715 return DDI_BUF_EMP_400MV_6DB_HSW;
1716 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
1717 return DDI_BUF_EMP_400MV_9_5DB_HSW;
1718
1719 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1720 return DDI_BUF_EMP_600MV_0DB_HSW;
1721 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1722 return DDI_BUF_EMP_600MV_3_5DB_HSW;
1723 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1724 return DDI_BUF_EMP_600MV_6DB_HSW;
1725
1726 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1727 return DDI_BUF_EMP_800MV_0DB_HSW;
1728 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1729 return DDI_BUF_EMP_800MV_3_5DB_HSW;
1730 default:
1731 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1732 "0x%x\n", signal_levels);
1733 return DDI_BUF_EMP_400MV_0DB_HSW;
1734 }
1735 }
1736
1737 /* Properly updates "DP" with the correct signal levels. */
1738 static void
1739 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
1740 {
1741 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1742 struct drm_device *dev = intel_dig_port->base.base.dev;
1743 uint32_t signal_levels, mask;
1744 uint8_t train_set = intel_dp->train_set[0];
1745
1746 if (IS_HASWELL(dev)) {
1747 signal_levels = intel_hsw_signal_levels(train_set);
1748 mask = DDI_BUF_EMP_MASK;
1749 } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1750 signal_levels = intel_gen7_edp_signal_levels(train_set);
1751 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
1752 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1753 signal_levels = intel_gen6_edp_signal_levels(train_set);
1754 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
1755 } else {
1756 signal_levels = intel_gen4_signal_levels(train_set);
1757 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
1758 }
1759
1760 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
1761
1762 *DP = (*DP & ~mask) | signal_levels;
1763 }
1764
1765 static bool
1766 intel_dp_set_link_train(struct intel_dp *intel_dp,
1767 uint32_t dp_reg_value,
1768 uint8_t dp_train_pat)
1769 {
1770 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1771 struct drm_device *dev = intel_dig_port->base.base.dev;
1772 struct drm_i915_private *dev_priv = dev->dev_private;
1773 enum port port = intel_dig_port->port;
1774 int ret;
1775 uint32_t temp;
1776
1777 if (IS_HASWELL(dev)) {
1778 temp = I915_READ(DP_TP_CTL(port));
1779
1780 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
1781 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
1782 else
1783 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
1784
1785 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1786 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1787 case DP_TRAINING_PATTERN_DISABLE:
1788 temp |= DP_TP_CTL_LINK_TRAIN_IDLE;
1789 I915_WRITE(DP_TP_CTL(port), temp);
1790
1791 if (wait_for((I915_READ(DP_TP_STATUS(port)) &
1792 DP_TP_STATUS_IDLE_DONE), 1))
1793 DRM_ERROR("Timed out waiting for DP idle patterns\n");
1794
1795 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1796 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
1797
1798 break;
1799 case DP_TRAINING_PATTERN_1:
1800 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
1801 break;
1802 case DP_TRAINING_PATTERN_2:
1803 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
1804 break;
1805 case DP_TRAINING_PATTERN_3:
1806 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
1807 break;
1808 }
1809 I915_WRITE(DP_TP_CTL(port), temp);
1810
1811 } else if (HAS_PCH_CPT(dev) &&
1812 (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1813 dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1814
1815 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1816 case DP_TRAINING_PATTERN_DISABLE:
1817 dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1818 break;
1819 case DP_TRAINING_PATTERN_1:
1820 dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1821 break;
1822 case DP_TRAINING_PATTERN_2:
1823 dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1824 break;
1825 case DP_TRAINING_PATTERN_3:
1826 DRM_ERROR("DP training pattern 3 not supported\n");
1827 dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1828 break;
1829 }
1830
1831 } else {
1832 dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1833
1834 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1835 case DP_TRAINING_PATTERN_DISABLE:
1836 dp_reg_value |= DP_LINK_TRAIN_OFF;
1837 break;
1838 case DP_TRAINING_PATTERN_1:
1839 dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1840 break;
1841 case DP_TRAINING_PATTERN_2:
1842 dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1843 break;
1844 case DP_TRAINING_PATTERN_3:
1845 DRM_ERROR("DP training pattern 3 not supported\n");
1846 dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1847 break;
1848 }
1849 }
1850
1851 I915_WRITE(intel_dp->output_reg, dp_reg_value);
1852 POSTING_READ(intel_dp->output_reg);
1853
1854 intel_dp_aux_native_write_1(intel_dp,
1855 DP_TRAINING_PATTERN_SET,
1856 dp_train_pat);
1857
1858 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1859 DP_TRAINING_PATTERN_DISABLE) {
1860 ret = intel_dp_aux_native_write(intel_dp,
1861 DP_TRAINING_LANE0_SET,
1862 intel_dp->train_set,
1863 intel_dp->lane_count);
1864 if (ret != intel_dp->lane_count)
1865 return false;
1866 }
1867
1868 return true;
1869 }
1870
1871 /* Enable corresponding port and start training pattern 1 */
1872 void
1873 intel_dp_start_link_train(struct intel_dp *intel_dp)
1874 {
1875 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
1876 struct drm_device *dev = encoder->dev;
1877 int i;
1878 uint8_t voltage;
1879 bool clock_recovery = false;
1880 int voltage_tries, loop_tries;
1881 uint32_t DP = intel_dp->DP;
1882
1883 if (HAS_DDI(dev))
1884 intel_ddi_prepare_link_retrain(encoder);
1885
1886 /* Write the link configuration data */
1887 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1888 intel_dp->link_configuration,
1889 DP_LINK_CONFIGURATION_SIZE);
1890
1891 DP |= DP_PORT_EN;
1892
1893 memset(intel_dp->train_set, 0, 4);
1894 voltage = 0xff;
1895 voltage_tries = 0;
1896 loop_tries = 0;
1897 clock_recovery = false;
1898 for (;;) {
1899 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1900 uint8_t link_status[DP_LINK_STATUS_SIZE];
1901
1902 intel_dp_set_signal_levels(intel_dp, &DP);
1903
1904 /* Set training pattern 1 */
1905 if (!intel_dp_set_link_train(intel_dp, DP,
1906 DP_TRAINING_PATTERN_1 |
1907 DP_LINK_SCRAMBLING_DISABLE))
1908 break;
1909
1910 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
1911 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1912 DRM_ERROR("failed to get link status\n");
1913 break;
1914 }
1915
1916 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1917 DRM_DEBUG_KMS("clock recovery OK\n");
1918 clock_recovery = true;
1919 break;
1920 }
1921
1922 /* Check to see if we've tried the max voltage */
1923 for (i = 0; i < intel_dp->lane_count; i++)
1924 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1925 break;
1926 if (i == intel_dp->lane_count && voltage_tries == 5) {
1927 ++loop_tries;
1928 if (loop_tries == 5) {
1929 DRM_DEBUG_KMS("too many full retries, give up\n");
1930 break;
1931 }
1932 memset(intel_dp->train_set, 0, 4);
1933 voltage_tries = 0;
1934 continue;
1935 }
1936
1937 /* Check to see if we've tried the same voltage 5 times */
1938 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1939 ++voltage_tries;
1940 if (voltage_tries == 5) {
1941 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1942 break;
1943 }
1944 } else
1945 voltage_tries = 0;
1946 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1947
1948 /* Compute new intel_dp->train_set as requested by target */
1949 intel_get_adjust_train(intel_dp, link_status);
1950 }
1951
1952 intel_dp->DP = DP;
1953 }
1954
1955 void
1956 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1957 {
1958 bool channel_eq = false;
1959 int tries, cr_tries;
1960 uint32_t DP = intel_dp->DP;
1961
1962 /* channel equalization */
1963 tries = 0;
1964 cr_tries = 0;
1965 channel_eq = false;
1966 for (;;) {
1967 uint8_t link_status[DP_LINK_STATUS_SIZE];
1968
1969 if (cr_tries > 5) {
1970 DRM_ERROR("failed to train DP, aborting\n");
1971 intel_dp_link_down(intel_dp);
1972 break;
1973 }
1974
1975 intel_dp_set_signal_levels(intel_dp, &DP);
1976
1977 /* channel eq pattern */
1978 if (!intel_dp_set_link_train(intel_dp, DP,
1979 DP_TRAINING_PATTERN_2 |
1980 DP_LINK_SCRAMBLING_DISABLE))
1981 break;
1982
1983 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
1984 if (!intel_dp_get_link_status(intel_dp, link_status))
1985 break;
1986
1987 /* Make sure clock is still ok */
1988 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1989 intel_dp_start_link_train(intel_dp);
1990 cr_tries++;
1991 continue;
1992 }
1993
1994 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
1995 channel_eq = true;
1996 break;
1997 }
1998
1999 /* Try 5 times, then try clock recovery if that fails */
2000 if (tries > 5) {
2001 intel_dp_link_down(intel_dp);
2002 intel_dp_start_link_train(intel_dp);
2003 tries = 0;
2004 cr_tries++;
2005 continue;
2006 }
2007
2008 /* Compute new intel_dp->train_set as requested by target */
2009 intel_get_adjust_train(intel_dp, link_status);
2010 ++tries;
2011 }
2012
2013 if (channel_eq)
2014 DRM_DEBUG_KMS("Channel EQ done. DP Training successfull\n");
2015
2016 intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
2017 }
2018
2019 static void
2020 intel_dp_link_down(struct intel_dp *intel_dp)
2021 {
2022 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2023 struct drm_device *dev = intel_dig_port->base.base.dev;
2024 struct drm_i915_private *dev_priv = dev->dev_private;
2025 struct intel_crtc *intel_crtc =
2026 to_intel_crtc(intel_dig_port->base.base.crtc);
2027 uint32_t DP = intel_dp->DP;
2028
2029 /*
2030 * DDI code has a strict mode set sequence and we should try to respect
2031 * it, otherwise we might hang the machine in many different ways. So we
2032 * really should be disabling the port only on a complete crtc_disable
2033 * sequence. This function is just called under two conditions on DDI
2034 * code:
2035 * - Link train failed while doing crtc_enable, and on this case we
2036 * really should respect the mode set sequence and wait for a
2037 * crtc_disable.
2038 * - Someone turned the monitor off and intel_dp_check_link_status
2039 * called us. We don't need to disable the whole port on this case, so
2040 * when someone turns the monitor on again,
2041 * intel_ddi_prepare_link_retrain will take care of redoing the link
2042 * train.
2043 */
2044 if (HAS_DDI(dev))
2045 return;
2046
2047 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2048 return;
2049
2050 DRM_DEBUG_KMS("\n");
2051
2052 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
2053 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2054 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2055 } else {
2056 DP &= ~DP_LINK_TRAIN_MASK;
2057 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2058 }
2059 POSTING_READ(intel_dp->output_reg);
2060
2061 /* We don't really know why we're doing this */
2062 intel_wait_for_vblank(dev, intel_crtc->pipe);
2063
2064 if (HAS_PCH_IBX(dev) &&
2065 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2066 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2067
2068 /* Hardware workaround: leaving our transcoder select
2069 * set to transcoder B while it's off will prevent the
2070 * corresponding HDMI output on transcoder A.
2071 *
2072 * Combine this with another hardware workaround:
2073 * transcoder select bit can only be cleared while the
2074 * port is enabled.
2075 */
2076 DP &= ~DP_PIPEB_SELECT;
2077 I915_WRITE(intel_dp->output_reg, DP);
2078
2079 /* Changes to enable or select take place the vblank
2080 * after being written.
2081 */
2082 if (WARN_ON(crtc == NULL)) {
2083 /* We should never try to disable a port without a crtc
2084 * attached. For paranoia keep the code around for a
2085 * bit. */
2086 POSTING_READ(intel_dp->output_reg);
2087 msleep(50);
2088 } else
2089 intel_wait_for_vblank(dev, intel_crtc->pipe);
2090 }
2091
2092 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2093 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2094 POSTING_READ(intel_dp->output_reg);
2095 msleep(intel_dp->panel_power_down_delay);
2096 }
2097
2098 static bool
2099 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2100 {
2101 char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2102
2103 if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2104 sizeof(intel_dp->dpcd)) == 0)
2105 return false; /* aux transfer failed */
2106
2107 hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2108 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2109 DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2110
2111 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2112 return false; /* DPCD not present */
2113
2114 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2115 DP_DWN_STRM_PORT_PRESENT))
2116 return true; /* native DP sink */
2117
2118 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2119 return true; /* no per-port downstream info */
2120
2121 if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2122 intel_dp->downstream_ports,
2123 DP_MAX_DOWNSTREAM_PORTS) == 0)
2124 return false; /* downstream port status fetch failed */
2125
2126 return true;
2127 }
2128
2129 static void
2130 intel_dp_probe_oui(struct intel_dp *intel_dp)
2131 {
2132 u8 buf[3];
2133
2134 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2135 return;
2136
2137 ironlake_edp_panel_vdd_on(intel_dp);
2138
2139 if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2140 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2141 buf[0], buf[1], buf[2]);
2142
2143 if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2144 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2145 buf[0], buf[1], buf[2]);
2146
2147 ironlake_edp_panel_vdd_off(intel_dp, false);
2148 }
2149
2150 static bool
2151 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2152 {
2153 int ret;
2154
2155 ret = intel_dp_aux_native_read_retry(intel_dp,
2156 DP_DEVICE_SERVICE_IRQ_VECTOR,
2157 sink_irq_vector, 1);
2158 if (!ret)
2159 return false;
2160
2161 return true;
2162 }
2163
2164 static void
2165 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2166 {
2167 /* NAK by default */
2168 intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2169 }
2170
2171 /*
2172 * According to DP spec
2173 * 5.1.2:
2174 * 1. Read DPCD
2175 * 2. Configure link according to Receiver Capabilities
2176 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
2177 * 4. Check link status on receipt of hot-plug interrupt
2178 */
2179
2180 void
2181 intel_dp_check_link_status(struct intel_dp *intel_dp)
2182 {
2183 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2184 u8 sink_irq_vector;
2185 u8 link_status[DP_LINK_STATUS_SIZE];
2186
2187 if (!intel_encoder->connectors_active)
2188 return;
2189
2190 if (WARN_ON(!intel_encoder->base.crtc))
2191 return;
2192
2193 /* Try to read receiver status if the link appears to be up */
2194 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2195 intel_dp_link_down(intel_dp);
2196 return;
2197 }
2198
2199 /* Now read the DPCD to see if it's actually running */
2200 if (!intel_dp_get_dpcd(intel_dp)) {
2201 intel_dp_link_down(intel_dp);
2202 return;
2203 }
2204
2205 /* Try to read the source of the interrupt */
2206 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2207 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2208 /* Clear interrupt source */
2209 intel_dp_aux_native_write_1(intel_dp,
2210 DP_DEVICE_SERVICE_IRQ_VECTOR,
2211 sink_irq_vector);
2212
2213 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2214 intel_dp_handle_test_request(intel_dp);
2215 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2216 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2217 }
2218
2219 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2220 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2221 drm_get_encoder_name(&intel_encoder->base));
2222 intel_dp_start_link_train(intel_dp);
2223 intel_dp_complete_link_train(intel_dp);
2224 }
2225 }
2226
2227 /* XXX this is probably wrong for multiple downstream ports */
2228 static enum drm_connector_status
2229 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2230 {
2231 uint8_t *dpcd = intel_dp->dpcd;
2232 bool hpd;
2233 uint8_t type;
2234
2235 if (!intel_dp_get_dpcd(intel_dp))
2236 return connector_status_disconnected;
2237
2238 /* if there's no downstream port, we're done */
2239 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2240 return connector_status_connected;
2241
2242 /* If we're HPD-aware, SINK_COUNT changes dynamically */
2243 hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2244 if (hpd) {
2245 uint8_t reg;
2246 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2247 &reg, 1))
2248 return connector_status_unknown;
2249 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2250 : connector_status_disconnected;
2251 }
2252
2253 /* If no HPD, poke DDC gently */
2254 if (drm_probe_ddc(&intel_dp->adapter))
2255 return connector_status_connected;
2256
2257 /* Well we tried, say unknown for unreliable port types */
2258 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2259 if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2260 return connector_status_unknown;
2261
2262 /* Anything else is out of spec, warn and ignore */
2263 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2264 return connector_status_disconnected;
2265 }
2266
2267 static enum drm_connector_status
2268 ironlake_dp_detect(struct intel_dp *intel_dp)
2269 {
2270 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2271 struct drm_i915_private *dev_priv = dev->dev_private;
2272 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2273 enum drm_connector_status status;
2274
2275 /* Can't disconnect eDP, but you can close the lid... */
2276 if (is_edp(intel_dp)) {
2277 status = intel_panel_detect(dev);
2278 if (status == connector_status_unknown)
2279 status = connector_status_connected;
2280 return status;
2281 }
2282
2283 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
2284 return connector_status_disconnected;
2285
2286 return intel_dp_detect_dpcd(intel_dp);
2287 }
2288
2289 static enum drm_connector_status
2290 g4x_dp_detect(struct intel_dp *intel_dp)
2291 {
2292 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2293 struct drm_i915_private *dev_priv = dev->dev_private;
2294 uint32_t bit;
2295
2296 switch (intel_dp->output_reg) {
2297 case DP_B:
2298 bit = DPB_HOTPLUG_LIVE_STATUS;
2299 break;
2300 case DP_C:
2301 bit = DPC_HOTPLUG_LIVE_STATUS;
2302 break;
2303 case DP_D:
2304 bit = DPD_HOTPLUG_LIVE_STATUS;
2305 break;
2306 default:
2307 return connector_status_unknown;
2308 }
2309
2310 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2311 return connector_status_disconnected;
2312
2313 return intel_dp_detect_dpcd(intel_dp);
2314 }
2315
2316 static struct edid *
2317 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2318 {
2319 struct intel_connector *intel_connector = to_intel_connector(connector);
2320
2321 /* use cached edid if we have one */
2322 if (intel_connector->edid) {
2323 struct edid *edid;
2324 int size;
2325
2326 /* invalid edid */
2327 if (IS_ERR(intel_connector->edid))
2328 return NULL;
2329
2330 size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
2331 edid = kmalloc(size, GFP_KERNEL);
2332 if (!edid)
2333 return NULL;
2334
2335 memcpy(edid, intel_connector->edid, size);
2336 return edid;
2337 }
2338
2339 return drm_get_edid(connector, adapter);
2340 }
2341
2342 static int
2343 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2344 {
2345 struct intel_connector *intel_connector = to_intel_connector(connector);
2346
2347 /* use cached edid if we have one */
2348 if (intel_connector->edid) {
2349 /* invalid edid */
2350 if (IS_ERR(intel_connector->edid))
2351 return 0;
2352
2353 return intel_connector_update_modes(connector,
2354 intel_connector->edid);
2355 }
2356
2357 return intel_ddc_get_modes(connector, adapter);
2358 }
2359
2360 static enum drm_connector_status
2361 intel_dp_detect(struct drm_connector *connector, bool force)
2362 {
2363 struct intel_dp *intel_dp = intel_attached_dp(connector);
2364 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2365 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2366 struct drm_device *dev = connector->dev;
2367 enum drm_connector_status status;
2368 struct edid *edid = NULL;
2369
2370 intel_dp->has_audio = false;
2371
2372 if (HAS_PCH_SPLIT(dev))
2373 status = ironlake_dp_detect(intel_dp);
2374 else
2375 status = g4x_dp_detect(intel_dp);
2376
2377 if (status != connector_status_connected)
2378 return status;
2379
2380 intel_dp_probe_oui(intel_dp);
2381
2382 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2383 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2384 } else {
2385 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2386 if (edid) {
2387 intel_dp->has_audio = drm_detect_monitor_audio(edid);
2388 kfree(edid);
2389 }
2390 }
2391
2392 if (intel_encoder->type != INTEL_OUTPUT_EDP)
2393 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2394 return connector_status_connected;
2395 }
2396
2397 static int intel_dp_get_modes(struct drm_connector *connector)
2398 {
2399 struct intel_dp *intel_dp = intel_attached_dp(connector);
2400 struct intel_connector *intel_connector = to_intel_connector(connector);
2401 struct drm_device *dev = connector->dev;
2402 int ret;
2403
2404 /* We should parse the EDID data and find out if it has an audio sink
2405 */
2406
2407 ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2408 if (ret)
2409 return ret;
2410
2411 /* if eDP has no EDID, fall back to fixed mode */
2412 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2413 struct drm_display_mode *mode;
2414 mode = drm_mode_duplicate(dev,
2415 intel_connector->panel.fixed_mode);
2416 if (mode) {
2417 drm_mode_probed_add(connector, mode);
2418 return 1;
2419 }
2420 }
2421 return 0;
2422 }
2423
2424 static bool
2425 intel_dp_detect_audio(struct drm_connector *connector)
2426 {
2427 struct intel_dp *intel_dp = intel_attached_dp(connector);
2428 struct edid *edid;
2429 bool has_audio = false;
2430
2431 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2432 if (edid) {
2433 has_audio = drm_detect_monitor_audio(edid);
2434 kfree(edid);
2435 }
2436
2437 return has_audio;
2438 }
2439
2440 static int
2441 intel_dp_set_property(struct drm_connector *connector,
2442 struct drm_property *property,
2443 uint64_t val)
2444 {
2445 struct drm_i915_private *dev_priv = connector->dev->dev_private;
2446 struct intel_connector *intel_connector = to_intel_connector(connector);
2447 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
2448 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2449 int ret;
2450
2451 ret = drm_object_property_set_value(&connector->base, property, val);
2452 if (ret)
2453 return ret;
2454
2455 if (property == dev_priv->force_audio_property) {
2456 int i = val;
2457 bool has_audio;
2458
2459 if (i == intel_dp->force_audio)
2460 return 0;
2461
2462 intel_dp->force_audio = i;
2463
2464 if (i == HDMI_AUDIO_AUTO)
2465 has_audio = intel_dp_detect_audio(connector);
2466 else
2467 has_audio = (i == HDMI_AUDIO_ON);
2468
2469 if (has_audio == intel_dp->has_audio)
2470 return 0;
2471
2472 intel_dp->has_audio = has_audio;
2473 goto done;
2474 }
2475
2476 if (property == dev_priv->broadcast_rgb_property) {
2477 switch (val) {
2478 case INTEL_BROADCAST_RGB_AUTO:
2479 intel_dp->color_range_auto = true;
2480 break;
2481 case INTEL_BROADCAST_RGB_FULL:
2482 intel_dp->color_range_auto = false;
2483 intel_dp->color_range = 0;
2484 break;
2485 case INTEL_BROADCAST_RGB_LIMITED:
2486 intel_dp->color_range_auto = false;
2487 intel_dp->color_range = DP_COLOR_RANGE_16_235;
2488 break;
2489 default:
2490 return -EINVAL;
2491 }
2492 goto done;
2493 }
2494
2495 if (is_edp(intel_dp) &&
2496 property == connector->dev->mode_config.scaling_mode_property) {
2497 if (val == DRM_MODE_SCALE_NONE) {
2498 DRM_DEBUG_KMS("no scaling not supported\n");
2499 return -EINVAL;
2500 }
2501
2502 if (intel_connector->panel.fitting_mode == val) {
2503 /* the eDP scaling property is not changed */
2504 return 0;
2505 }
2506 intel_connector->panel.fitting_mode = val;
2507
2508 goto done;
2509 }
2510
2511 return -EINVAL;
2512
2513 done:
2514 if (intel_encoder->base.crtc)
2515 intel_crtc_restore_mode(intel_encoder->base.crtc);
2516
2517 return 0;
2518 }
2519
2520 static void
2521 intel_dp_destroy(struct drm_connector *connector)
2522 {
2523 struct drm_device *dev = connector->dev;
2524 struct intel_dp *intel_dp = intel_attached_dp(connector);
2525 struct intel_connector *intel_connector = to_intel_connector(connector);
2526
2527 if (!IS_ERR_OR_NULL(intel_connector->edid))
2528 kfree(intel_connector->edid);
2529
2530 if (is_edp(intel_dp)) {
2531 intel_panel_destroy_backlight(dev);
2532 intel_panel_fini(&intel_connector->panel);
2533 }
2534
2535 drm_sysfs_connector_remove(connector);
2536 drm_connector_cleanup(connector);
2537 kfree(connector);
2538 }
2539
2540 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2541 {
2542 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2543 struct intel_dp *intel_dp = &intel_dig_port->dp;
2544
2545 i2c_del_adapter(&intel_dp->adapter);
2546 drm_encoder_cleanup(encoder);
2547 if (is_edp(intel_dp)) {
2548 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2549 ironlake_panel_vdd_off_sync(intel_dp);
2550 }
2551 kfree(intel_dig_port);
2552 }
2553
2554 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2555 .mode_fixup = intel_dp_mode_fixup,
2556 .mode_set = intel_dp_mode_set,
2557 .disable = intel_encoder_noop,
2558 };
2559
2560 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2561 .dpms = intel_connector_dpms,
2562 .detect = intel_dp_detect,
2563 .fill_modes = drm_helper_probe_single_connector_modes,
2564 .set_property = intel_dp_set_property,
2565 .destroy = intel_dp_destroy,
2566 };
2567
2568 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2569 .get_modes = intel_dp_get_modes,
2570 .mode_valid = intel_dp_mode_valid,
2571 .best_encoder = intel_best_encoder,
2572 };
2573
2574 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2575 .destroy = intel_dp_encoder_destroy,
2576 };
2577
2578 static void
2579 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2580 {
2581 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2582
2583 intel_dp_check_link_status(intel_dp);
2584 }
2585
2586 /* Return which DP Port should be selected for Transcoder DP control */
2587 int
2588 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2589 {
2590 struct drm_device *dev = crtc->dev;
2591 struct intel_encoder *intel_encoder;
2592 struct intel_dp *intel_dp;
2593
2594 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2595 intel_dp = enc_to_intel_dp(&intel_encoder->base);
2596
2597 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2598 intel_encoder->type == INTEL_OUTPUT_EDP)
2599 return intel_dp->output_reg;
2600 }
2601
2602 return -1;
2603 }
2604
2605 /* check the VBT to see whether the eDP is on DP-D port */
2606 bool intel_dpd_is_edp(struct drm_device *dev)
2607 {
2608 struct drm_i915_private *dev_priv = dev->dev_private;
2609 struct child_device_config *p_child;
2610 int i;
2611
2612 if (!dev_priv->child_dev_num)
2613 return false;
2614
2615 for (i = 0; i < dev_priv->child_dev_num; i++) {
2616 p_child = dev_priv->child_dev + i;
2617
2618 if (p_child->dvo_port == PORT_IDPD &&
2619 p_child->device_type == DEVICE_TYPE_eDP)
2620 return true;
2621 }
2622 return false;
2623 }
2624
2625 static void
2626 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2627 {
2628 struct intel_connector *intel_connector = to_intel_connector(connector);
2629
2630 intel_attach_force_audio_property(connector);
2631 intel_attach_broadcast_rgb_property(connector);
2632 intel_dp->color_range_auto = true;
2633
2634 if (is_edp(intel_dp)) {
2635 drm_mode_create_scaling_mode_property(connector->dev);
2636 drm_object_attach_property(
2637 &connector->base,
2638 connector->dev->mode_config.scaling_mode_property,
2639 DRM_MODE_SCALE_ASPECT);
2640 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
2641 }
2642 }
2643
2644 static void
2645 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
2646 struct intel_dp *intel_dp)
2647 {
2648 struct drm_i915_private *dev_priv = dev->dev_private;
2649 struct edp_power_seq cur, vbt, spec, final;
2650 u32 pp_on, pp_off, pp_div, pp;
2651
2652 /* Workaround: Need to write PP_CONTROL with the unlock key as
2653 * the very first thing. */
2654 pp = ironlake_get_pp_control(dev_priv);
2655 I915_WRITE(PCH_PP_CONTROL, pp);
2656
2657 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2658 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2659 pp_div = I915_READ(PCH_PP_DIVISOR);
2660
2661 /* Pull timing values out of registers */
2662 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2663 PANEL_POWER_UP_DELAY_SHIFT;
2664
2665 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2666 PANEL_LIGHT_ON_DELAY_SHIFT;
2667
2668 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2669 PANEL_LIGHT_OFF_DELAY_SHIFT;
2670
2671 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2672 PANEL_POWER_DOWN_DELAY_SHIFT;
2673
2674 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2675 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2676
2677 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2678 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2679
2680 vbt = dev_priv->edp.pps;
2681
2682 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
2683 * our hw here, which are all in 100usec. */
2684 spec.t1_t3 = 210 * 10;
2685 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
2686 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
2687 spec.t10 = 500 * 10;
2688 /* This one is special and actually in units of 100ms, but zero
2689 * based in the hw (so we need to add 100 ms). But the sw vbt
2690 * table multiplies it with 1000 to make it in units of 100usec,
2691 * too. */
2692 spec.t11_t12 = (510 + 100) * 10;
2693
2694 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2695 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2696
2697 /* Use the max of the register settings and vbt. If both are
2698 * unset, fall back to the spec limits. */
2699 #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
2700 spec.field : \
2701 max(cur.field, vbt.field))
2702 assign_final(t1_t3);
2703 assign_final(t8);
2704 assign_final(t9);
2705 assign_final(t10);
2706 assign_final(t11_t12);
2707 #undef assign_final
2708
2709 #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
2710 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2711 intel_dp->backlight_on_delay = get_delay(t8);
2712 intel_dp->backlight_off_delay = get_delay(t9);
2713 intel_dp->panel_power_down_delay = get_delay(t10);
2714 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2715 #undef get_delay
2716
2717 /* And finally store the new values in the power sequencer. */
2718 pp_on = (final.t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
2719 (final.t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
2720 pp_off = (final.t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
2721 (final.t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
2722 /* Compute the divisor for the pp clock, simply match the Bspec
2723 * formula. */
2724 pp_div = ((100 * intel_pch_rawclk(dev))/2 - 1)
2725 << PP_REFERENCE_DIVIDER_SHIFT;
2726 pp_div |= (DIV_ROUND_UP(final.t11_t12, 1000)
2727 << PANEL_POWER_CYCLE_DELAY_SHIFT);
2728
2729 /* Haswell doesn't have any port selection bits for the panel
2730 * power sequencer any more. */
2731 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
2732 if (is_cpu_edp(intel_dp))
2733 pp_on |= PANEL_POWER_PORT_DP_A;
2734 else
2735 pp_on |= PANEL_POWER_PORT_DP_D;
2736 }
2737
2738 I915_WRITE(PCH_PP_ON_DELAYS, pp_on);
2739 I915_WRITE(PCH_PP_OFF_DELAYS, pp_off);
2740 I915_WRITE(PCH_PP_DIVISOR, pp_div);
2741
2742
2743 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2744 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2745 intel_dp->panel_power_cycle_delay);
2746
2747 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2748 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2749
2750 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
2751 I915_READ(PCH_PP_ON_DELAYS),
2752 I915_READ(PCH_PP_OFF_DELAYS),
2753 I915_READ(PCH_PP_DIVISOR));
2754 }
2755
2756 void
2757 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
2758 struct intel_connector *intel_connector)
2759 {
2760 struct drm_connector *connector = &intel_connector->base;
2761 struct intel_dp *intel_dp = &intel_dig_port->dp;
2762 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2763 struct drm_device *dev = intel_encoder->base.dev;
2764 struct drm_i915_private *dev_priv = dev->dev_private;
2765 struct drm_display_mode *fixed_mode = NULL;
2766 enum port port = intel_dig_port->port;
2767 const char *name = NULL;
2768 int type;
2769
2770 /* Preserve the current hw state. */
2771 intel_dp->DP = I915_READ(intel_dp->output_reg);
2772 intel_dp->attached_connector = intel_connector;
2773
2774 if (HAS_PCH_SPLIT(dev) && port == PORT_D)
2775 if (intel_dpd_is_edp(dev))
2776 intel_dp->is_pch_edp = true;
2777
2778 /*
2779 * FIXME : We need to initialize built-in panels before external panels.
2780 * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
2781 */
2782 if (IS_VALLEYVIEW(dev) && port == PORT_C) {
2783 type = DRM_MODE_CONNECTOR_eDP;
2784 intel_encoder->type = INTEL_OUTPUT_EDP;
2785 } else if (port == PORT_A || is_pch_edp(intel_dp)) {
2786 type = DRM_MODE_CONNECTOR_eDP;
2787 intel_encoder->type = INTEL_OUTPUT_EDP;
2788 } else {
2789 /* The intel_encoder->type value may be INTEL_OUTPUT_UNKNOWN for
2790 * DDI or INTEL_OUTPUT_DISPLAYPORT for the older gens, so don't
2791 * rewrite it.
2792 */
2793 type = DRM_MODE_CONNECTOR_DisplayPort;
2794 }
2795
2796 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2797 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2798
2799 connector->polled = DRM_CONNECTOR_POLL_HPD;
2800 connector->interlace_allowed = true;
2801 connector->doublescan_allowed = 0;
2802
2803 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2804 ironlake_panel_vdd_work);
2805
2806 intel_connector_attach_encoder(intel_connector, intel_encoder);
2807 drm_sysfs_connector_add(connector);
2808
2809 if (HAS_DDI(dev))
2810 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2811 else
2812 intel_connector->get_hw_state = intel_connector_get_hw_state;
2813
2814
2815 /* Set up the DDC bus. */
2816 switch (port) {
2817 case PORT_A:
2818 name = "DPDDC-A";
2819 break;
2820 case PORT_B:
2821 dev_priv->hotplug_supported_mask |= DPB_HOTPLUG_INT_STATUS;
2822 name = "DPDDC-B";
2823 break;
2824 case PORT_C:
2825 dev_priv->hotplug_supported_mask |= DPC_HOTPLUG_INT_STATUS;
2826 name = "DPDDC-C";
2827 break;
2828 case PORT_D:
2829 dev_priv->hotplug_supported_mask |= DPD_HOTPLUG_INT_STATUS;
2830 name = "DPDDC-D";
2831 break;
2832 default:
2833 WARN(1, "Invalid port %c\n", port_name(port));
2834 break;
2835 }
2836
2837 if (is_edp(intel_dp))
2838 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2839
2840 intel_dp_i2c_init(intel_dp, intel_connector, name);
2841
2842 /* Cache DPCD and EDID for edp. */
2843 if (is_edp(intel_dp)) {
2844 bool ret;
2845 struct drm_display_mode *scan;
2846 struct edid *edid;
2847
2848 ironlake_edp_panel_vdd_on(intel_dp);
2849 ret = intel_dp_get_dpcd(intel_dp);
2850 ironlake_edp_panel_vdd_off(intel_dp, false);
2851
2852 if (ret) {
2853 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2854 dev_priv->no_aux_handshake =
2855 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2856 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2857 } else {
2858 /* if this fails, presume the device is a ghost */
2859 DRM_INFO("failed to retrieve link info, disabling eDP\n");
2860 intel_dp_encoder_destroy(&intel_encoder->base);
2861 intel_dp_destroy(connector);
2862 return;
2863 }
2864
2865 ironlake_edp_panel_vdd_on(intel_dp);
2866 edid = drm_get_edid(connector, &intel_dp->adapter);
2867 if (edid) {
2868 if (drm_add_edid_modes(connector, edid)) {
2869 drm_mode_connector_update_edid_property(connector, edid);
2870 drm_edid_to_eld(connector, edid);
2871 } else {
2872 kfree(edid);
2873 edid = ERR_PTR(-EINVAL);
2874 }
2875 } else {
2876 edid = ERR_PTR(-ENOENT);
2877 }
2878 intel_connector->edid = edid;
2879
2880 /* prefer fixed mode from EDID if available */
2881 list_for_each_entry(scan, &connector->probed_modes, head) {
2882 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
2883 fixed_mode = drm_mode_duplicate(dev, scan);
2884 break;
2885 }
2886 }
2887
2888 /* fallback to VBT if available for eDP */
2889 if (!fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
2890 fixed_mode = drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2891 if (fixed_mode)
2892 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
2893 }
2894
2895 ironlake_edp_panel_vdd_off(intel_dp, false);
2896 }
2897
2898 if (is_edp(intel_dp)) {
2899 intel_panel_init(&intel_connector->panel, fixed_mode);
2900 intel_panel_setup_backlight(connector);
2901 }
2902
2903 intel_dp_add_properties(intel_dp, connector);
2904
2905 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2906 * 0xd. Failure to do so will result in spurious interrupts being
2907 * generated on the port when a cable is not attached.
2908 */
2909 if (IS_G4X(dev) && !IS_GM45(dev)) {
2910 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2911 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2912 }
2913 }
2914
2915 void
2916 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2917 {
2918 struct intel_digital_port *intel_dig_port;
2919 struct intel_encoder *intel_encoder;
2920 struct drm_encoder *encoder;
2921 struct intel_connector *intel_connector;
2922
2923 intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
2924 if (!intel_dig_port)
2925 return;
2926
2927 intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2928 if (!intel_connector) {
2929 kfree(intel_dig_port);
2930 return;
2931 }
2932
2933 intel_encoder = &intel_dig_port->base;
2934 encoder = &intel_encoder->base;
2935
2936 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2937 DRM_MODE_ENCODER_TMDS);
2938 drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2939
2940 intel_encoder->enable = intel_enable_dp;
2941 intel_encoder->pre_enable = intel_pre_enable_dp;
2942 intel_encoder->disable = intel_disable_dp;
2943 intel_encoder->post_disable = intel_post_disable_dp;
2944 intel_encoder->get_hw_state = intel_dp_get_hw_state;
2945
2946 intel_dig_port->port = port;
2947 intel_dig_port->dp.output_reg = output_reg;
2948
2949 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2950 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2951 intel_encoder->cloneable = false;
2952 intel_encoder->hot_plug = intel_dp_hot_plug;
2953
2954 intel_dp_init_connector(intel_dig_port, intel_connector);
2955 }