]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_dp.c
drm/i915/glk: Reuse broxton code for geminilake
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 /* Compliance test status bits */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
46 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51 int clock;
52 struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56 { 162000,
57 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58 { 270000,
59 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63 { 162000,
64 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65 { 270000,
66 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70 { 162000,
71 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72 { 270000,
73 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77 * CHV supports eDP 1.4 that have more link rates.
78 * Below only provides the fixed rate but exclude variable rate.
79 */
80 static const struct dp_link_dpll chv_dpll[] = {
81 /*
82 * CHV requires to program fractional division for m2.
83 * m2 is stored in fixed point format using formula below
84 * (m2_int << 22) | m2_fraction
85 */
86 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
87 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88 { 270000, /* m2_int = 27, m2_fraction = 0 */
89 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90 { 540000, /* m2_int = 27, m2_fraction = 0 */
91 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95 324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97 324000, 432000, 540000 };
98 static const int default_rates[] = { 162000, 270000, 540000 };
99
100 /**
101 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
102 * @intel_dp: DP struct
103 *
104 * If a CPU or PCH DP output is attached to an eDP panel, this function
105 * will return true, and false otherwise.
106 */
107 static bool is_edp(struct intel_dp *intel_dp)
108 {
109 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
110
111 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 }
113
114 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115 {
116 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
117
118 return intel_dig_port->base.base.dev;
119 }
120
121 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
122 {
123 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 }
125
126 static void intel_dp_link_down(struct intel_dp *intel_dp);
127 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 static void vlv_steal_power_sequencer(struct drm_device *dev,
131 enum pipe pipe);
132 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
133
134 static int
135 intel_dp_max_link_bw(struct intel_dp *intel_dp)
136 {
137 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
138
139 switch (max_link_bw) {
140 case DP_LINK_BW_1_62:
141 case DP_LINK_BW_2_7:
142 case DP_LINK_BW_5_4:
143 break;
144 default:
145 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
146 max_link_bw);
147 max_link_bw = DP_LINK_BW_1_62;
148 break;
149 }
150 return max_link_bw;
151 }
152
153 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
154 {
155 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
156 u8 source_max, sink_max;
157
158 source_max = intel_dig_port->max_lanes;
159 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
160
161 return min(source_max, sink_max);
162 }
163
164 /*
165 * The units on the numbers in the next two are... bizarre. Examples will
166 * make it clearer; this one parallels an example in the eDP spec.
167 *
168 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
169 *
170 * 270000 * 1 * 8 / 10 == 216000
171 *
172 * The actual data capacity of that configuration is 2.16Gbit/s, so the
173 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
174 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
175 * 119000. At 18bpp that's 2142000 kilobits per second.
176 *
177 * Thus the strange-looking division by 10 in intel_dp_link_required, to
178 * get the result in decakilobits instead of kilobits.
179 */
180
181 static int
182 intel_dp_link_required(int pixel_clock, int bpp)
183 {
184 return (pixel_clock * bpp + 9) / 10;
185 }
186
187 static int
188 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
189 {
190 return (max_link_clock * max_lanes * 8) / 10;
191 }
192
193 static int
194 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
195 {
196 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
197 struct intel_encoder *encoder = &intel_dig_port->base;
198 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
199 int max_dotclk = dev_priv->max_dotclk_freq;
200 int ds_max_dotclk;
201
202 int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
203
204 if (type != DP_DS_PORT_TYPE_VGA)
205 return max_dotclk;
206
207 ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
208 intel_dp->downstream_ports);
209
210 if (ds_max_dotclk != 0)
211 max_dotclk = min(max_dotclk, ds_max_dotclk);
212
213 return max_dotclk;
214 }
215
216 static int
217 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
218 {
219 if (intel_dp->num_sink_rates) {
220 *sink_rates = intel_dp->sink_rates;
221 return intel_dp->num_sink_rates;
222 }
223
224 *sink_rates = default_rates;
225
226 return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
227 }
228
229 static int
230 intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
231 {
232 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
233 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
234 int size;
235
236 if (IS_GEN9_LP(dev_priv)) {
237 *source_rates = bxt_rates;
238 size = ARRAY_SIZE(bxt_rates);
239 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
240 *source_rates = skl_rates;
241 size = ARRAY_SIZE(skl_rates);
242 } else {
243 *source_rates = default_rates;
244 size = ARRAY_SIZE(default_rates);
245 }
246
247 /* This depends on the fact that 5.4 is last value in the array */
248 if (!intel_dp_source_supports_hbr2(intel_dp))
249 size--;
250
251 return size;
252 }
253
254 static int intersect_rates(const int *source_rates, int source_len,
255 const int *sink_rates, int sink_len,
256 int *common_rates)
257 {
258 int i = 0, j = 0, k = 0;
259
260 while (i < source_len && j < sink_len) {
261 if (source_rates[i] == sink_rates[j]) {
262 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
263 return k;
264 common_rates[k] = source_rates[i];
265 ++k;
266 ++i;
267 ++j;
268 } else if (source_rates[i] < sink_rates[j]) {
269 ++i;
270 } else {
271 ++j;
272 }
273 }
274 return k;
275 }
276
277 static int intel_dp_common_rates(struct intel_dp *intel_dp,
278 int *common_rates)
279 {
280 const int *source_rates, *sink_rates;
281 int source_len, sink_len;
282
283 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
284 source_len = intel_dp_source_rates(intel_dp, &source_rates);
285
286 return intersect_rates(source_rates, source_len,
287 sink_rates, sink_len,
288 common_rates);
289 }
290
291 static enum drm_mode_status
292 intel_dp_mode_valid(struct drm_connector *connector,
293 struct drm_display_mode *mode)
294 {
295 struct intel_dp *intel_dp = intel_attached_dp(connector);
296 struct intel_connector *intel_connector = to_intel_connector(connector);
297 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
298 int target_clock = mode->clock;
299 int max_rate, mode_rate, max_lanes, max_link_clock;
300 int max_dotclk;
301
302 max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
303
304 if (is_edp(intel_dp) && fixed_mode) {
305 if (mode->hdisplay > fixed_mode->hdisplay)
306 return MODE_PANEL;
307
308 if (mode->vdisplay > fixed_mode->vdisplay)
309 return MODE_PANEL;
310
311 target_clock = fixed_mode->clock;
312 }
313
314 max_link_clock = intel_dp_max_link_rate(intel_dp);
315 max_lanes = intel_dp_max_lane_count(intel_dp);
316
317 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
318 mode_rate = intel_dp_link_required(target_clock, 18);
319
320 if (mode_rate > max_rate || target_clock > max_dotclk)
321 return MODE_CLOCK_HIGH;
322
323 if (mode->clock < 10000)
324 return MODE_CLOCK_LOW;
325
326 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
327 return MODE_H_ILLEGAL;
328
329 return MODE_OK;
330 }
331
332 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
333 {
334 int i;
335 uint32_t v = 0;
336
337 if (src_bytes > 4)
338 src_bytes = 4;
339 for (i = 0; i < src_bytes; i++)
340 v |= ((uint32_t) src[i]) << ((3-i) * 8);
341 return v;
342 }
343
344 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
345 {
346 int i;
347 if (dst_bytes > 4)
348 dst_bytes = 4;
349 for (i = 0; i < dst_bytes; i++)
350 dst[i] = src >> ((3-i) * 8);
351 }
352
353 static void
354 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
355 struct intel_dp *intel_dp);
356 static void
357 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
358 struct intel_dp *intel_dp);
359 static void
360 intel_dp_pps_init(struct drm_device *dev, struct intel_dp *intel_dp);
361
362 static void pps_lock(struct intel_dp *intel_dp)
363 {
364 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
365 struct intel_encoder *encoder = &intel_dig_port->base;
366 struct drm_device *dev = encoder->base.dev;
367 struct drm_i915_private *dev_priv = to_i915(dev);
368 enum intel_display_power_domain power_domain;
369
370 /*
371 * See vlv_power_sequencer_reset() why we need
372 * a power domain reference here.
373 */
374 power_domain = intel_display_port_aux_power_domain(encoder);
375 intel_display_power_get(dev_priv, power_domain);
376
377 mutex_lock(&dev_priv->pps_mutex);
378 }
379
380 static void pps_unlock(struct intel_dp *intel_dp)
381 {
382 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
383 struct intel_encoder *encoder = &intel_dig_port->base;
384 struct drm_device *dev = encoder->base.dev;
385 struct drm_i915_private *dev_priv = to_i915(dev);
386 enum intel_display_power_domain power_domain;
387
388 mutex_unlock(&dev_priv->pps_mutex);
389
390 power_domain = intel_display_port_aux_power_domain(encoder);
391 intel_display_power_put(dev_priv, power_domain);
392 }
393
394 static void
395 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
396 {
397 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
398 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
399 enum pipe pipe = intel_dp->pps_pipe;
400 bool pll_enabled, release_cl_override = false;
401 enum dpio_phy phy = DPIO_PHY(pipe);
402 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
403 uint32_t DP;
404
405 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
406 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
407 pipe_name(pipe), port_name(intel_dig_port->port)))
408 return;
409
410 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
411 pipe_name(pipe), port_name(intel_dig_port->port));
412
413 /* Preserve the BIOS-computed detected bit. This is
414 * supposed to be read-only.
415 */
416 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
417 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
418 DP |= DP_PORT_WIDTH(1);
419 DP |= DP_LINK_TRAIN_PAT_1;
420
421 if (IS_CHERRYVIEW(dev_priv))
422 DP |= DP_PIPE_SELECT_CHV(pipe);
423 else if (pipe == PIPE_B)
424 DP |= DP_PIPEB_SELECT;
425
426 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
427
428 /*
429 * The DPLL for the pipe must be enabled for this to work.
430 * So enable temporarily it if it's not already enabled.
431 */
432 if (!pll_enabled) {
433 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
434 !chv_phy_powergate_ch(dev_priv, phy, ch, true);
435
436 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
437 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
438 DRM_ERROR("Failed to force on pll for pipe %c!\n",
439 pipe_name(pipe));
440 return;
441 }
442 }
443
444 /*
445 * Similar magic as in intel_dp_enable_port().
446 * We _must_ do this port enable + disable trick
447 * to make this power seqeuencer lock onto the port.
448 * Otherwise even VDD force bit won't work.
449 */
450 I915_WRITE(intel_dp->output_reg, DP);
451 POSTING_READ(intel_dp->output_reg);
452
453 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
454 POSTING_READ(intel_dp->output_reg);
455
456 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
457 POSTING_READ(intel_dp->output_reg);
458
459 if (!pll_enabled) {
460 vlv_force_pll_off(dev_priv, pipe);
461
462 if (release_cl_override)
463 chv_phy_powergate_ch(dev_priv, phy, ch, false);
464 }
465 }
466
467 static enum pipe
468 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
469 {
470 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
471 struct drm_device *dev = intel_dig_port->base.base.dev;
472 struct drm_i915_private *dev_priv = to_i915(dev);
473 struct intel_encoder *encoder;
474 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
475 enum pipe pipe;
476
477 lockdep_assert_held(&dev_priv->pps_mutex);
478
479 /* We should never land here with regular DP ports */
480 WARN_ON(!is_edp(intel_dp));
481
482 if (intel_dp->pps_pipe != INVALID_PIPE)
483 return intel_dp->pps_pipe;
484
485 /*
486 * We don't have power sequencer currently.
487 * Pick one that's not used by other ports.
488 */
489 for_each_intel_encoder(dev, encoder) {
490 struct intel_dp *tmp;
491
492 if (encoder->type != INTEL_OUTPUT_EDP)
493 continue;
494
495 tmp = enc_to_intel_dp(&encoder->base);
496
497 if (tmp->pps_pipe != INVALID_PIPE)
498 pipes &= ~(1 << tmp->pps_pipe);
499 }
500
501 /*
502 * Didn't find one. This should not happen since there
503 * are two power sequencers and up to two eDP ports.
504 */
505 if (WARN_ON(pipes == 0))
506 pipe = PIPE_A;
507 else
508 pipe = ffs(pipes) - 1;
509
510 vlv_steal_power_sequencer(dev, pipe);
511 intel_dp->pps_pipe = pipe;
512
513 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
514 pipe_name(intel_dp->pps_pipe),
515 port_name(intel_dig_port->port));
516
517 /* init power sequencer on this pipe and port */
518 intel_dp_init_panel_power_sequencer(dev, intel_dp);
519 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
520
521 /*
522 * Even vdd force doesn't work until we've made
523 * the power sequencer lock in on the port.
524 */
525 vlv_power_sequencer_kick(intel_dp);
526
527 return intel_dp->pps_pipe;
528 }
529
530 static int
531 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
532 {
533 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
534 struct drm_device *dev = intel_dig_port->base.base.dev;
535 struct drm_i915_private *dev_priv = to_i915(dev);
536
537 lockdep_assert_held(&dev_priv->pps_mutex);
538
539 /* We should never land here with regular DP ports */
540 WARN_ON(!is_edp(intel_dp));
541
542 /*
543 * TODO: BXT has 2 PPS instances. The correct port->PPS instance
544 * mapping needs to be retrieved from VBT, for now just hard-code to
545 * use instance #0 always.
546 */
547 if (!intel_dp->pps_reset)
548 return 0;
549
550 intel_dp->pps_reset = false;
551
552 /*
553 * Only the HW needs to be reprogrammed, the SW state is fixed and
554 * has been setup during connector init.
555 */
556 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
557
558 return 0;
559 }
560
561 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
562 enum pipe pipe);
563
564 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
565 enum pipe pipe)
566 {
567 return I915_READ(PP_STATUS(pipe)) & PP_ON;
568 }
569
570 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
571 enum pipe pipe)
572 {
573 return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
574 }
575
576 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
577 enum pipe pipe)
578 {
579 return true;
580 }
581
582 static enum pipe
583 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
584 enum port port,
585 vlv_pipe_check pipe_check)
586 {
587 enum pipe pipe;
588
589 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
590 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
591 PANEL_PORT_SELECT_MASK;
592
593 if (port_sel != PANEL_PORT_SELECT_VLV(port))
594 continue;
595
596 if (!pipe_check(dev_priv, pipe))
597 continue;
598
599 return pipe;
600 }
601
602 return INVALID_PIPE;
603 }
604
605 static void
606 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
607 {
608 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
609 struct drm_device *dev = intel_dig_port->base.base.dev;
610 struct drm_i915_private *dev_priv = to_i915(dev);
611 enum port port = intel_dig_port->port;
612
613 lockdep_assert_held(&dev_priv->pps_mutex);
614
615 /* try to find a pipe with this port selected */
616 /* first pick one where the panel is on */
617 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
618 vlv_pipe_has_pp_on);
619 /* didn't find one? pick one where vdd is on */
620 if (intel_dp->pps_pipe == INVALID_PIPE)
621 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
622 vlv_pipe_has_vdd_on);
623 /* didn't find one? pick one with just the correct port */
624 if (intel_dp->pps_pipe == INVALID_PIPE)
625 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
626 vlv_pipe_any);
627
628 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
629 if (intel_dp->pps_pipe == INVALID_PIPE) {
630 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
631 port_name(port));
632 return;
633 }
634
635 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
636 port_name(port), pipe_name(intel_dp->pps_pipe));
637
638 intel_dp_init_panel_power_sequencer(dev, intel_dp);
639 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
640 }
641
642 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
643 {
644 struct drm_device *dev = &dev_priv->drm;
645 struct intel_encoder *encoder;
646
647 if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
648 !IS_GEN9_LP(dev_priv)))
649 return;
650
651 /*
652 * We can't grab pps_mutex here due to deadlock with power_domain
653 * mutex when power_domain functions are called while holding pps_mutex.
654 * That also means that in order to use pps_pipe the code needs to
655 * hold both a power domain reference and pps_mutex, and the power domain
656 * reference get/put must be done while _not_ holding pps_mutex.
657 * pps_{lock,unlock}() do these steps in the correct order, so one
658 * should use them always.
659 */
660
661 for_each_intel_encoder(dev, encoder) {
662 struct intel_dp *intel_dp;
663
664 if (encoder->type != INTEL_OUTPUT_EDP)
665 continue;
666
667 intel_dp = enc_to_intel_dp(&encoder->base);
668 if (IS_GEN9_LP(dev_priv))
669 intel_dp->pps_reset = true;
670 else
671 intel_dp->pps_pipe = INVALID_PIPE;
672 }
673 }
674
675 struct pps_registers {
676 i915_reg_t pp_ctrl;
677 i915_reg_t pp_stat;
678 i915_reg_t pp_on;
679 i915_reg_t pp_off;
680 i915_reg_t pp_div;
681 };
682
683 static void intel_pps_get_registers(struct drm_i915_private *dev_priv,
684 struct intel_dp *intel_dp,
685 struct pps_registers *regs)
686 {
687 int pps_idx = 0;
688
689 memset(regs, 0, sizeof(*regs));
690
691 if (IS_GEN9_LP(dev_priv))
692 pps_idx = bxt_power_sequencer_idx(intel_dp);
693 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
694 pps_idx = vlv_power_sequencer_pipe(intel_dp);
695
696 regs->pp_ctrl = PP_CONTROL(pps_idx);
697 regs->pp_stat = PP_STATUS(pps_idx);
698 regs->pp_on = PP_ON_DELAYS(pps_idx);
699 regs->pp_off = PP_OFF_DELAYS(pps_idx);
700 if (!IS_GEN9_LP(dev_priv))
701 regs->pp_div = PP_DIVISOR(pps_idx);
702 }
703
704 static i915_reg_t
705 _pp_ctrl_reg(struct intel_dp *intel_dp)
706 {
707 struct pps_registers regs;
708
709 intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
710 &regs);
711
712 return regs.pp_ctrl;
713 }
714
715 static i915_reg_t
716 _pp_stat_reg(struct intel_dp *intel_dp)
717 {
718 struct pps_registers regs;
719
720 intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
721 &regs);
722
723 return regs.pp_stat;
724 }
725
726 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
727 This function only applicable when panel PM state is not to be tracked */
728 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
729 void *unused)
730 {
731 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
732 edp_notifier);
733 struct drm_device *dev = intel_dp_to_dev(intel_dp);
734 struct drm_i915_private *dev_priv = to_i915(dev);
735
736 if (!is_edp(intel_dp) || code != SYS_RESTART)
737 return 0;
738
739 pps_lock(intel_dp);
740
741 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
742 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
743 i915_reg_t pp_ctrl_reg, pp_div_reg;
744 u32 pp_div;
745
746 pp_ctrl_reg = PP_CONTROL(pipe);
747 pp_div_reg = PP_DIVISOR(pipe);
748 pp_div = I915_READ(pp_div_reg);
749 pp_div &= PP_REFERENCE_DIVIDER_MASK;
750
751 /* 0x1F write to PP_DIV_REG sets max cycle delay */
752 I915_WRITE(pp_div_reg, pp_div | 0x1F);
753 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
754 msleep(intel_dp->panel_power_cycle_delay);
755 }
756
757 pps_unlock(intel_dp);
758
759 return 0;
760 }
761
762 static bool edp_have_panel_power(struct intel_dp *intel_dp)
763 {
764 struct drm_device *dev = intel_dp_to_dev(intel_dp);
765 struct drm_i915_private *dev_priv = to_i915(dev);
766
767 lockdep_assert_held(&dev_priv->pps_mutex);
768
769 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
770 intel_dp->pps_pipe == INVALID_PIPE)
771 return false;
772
773 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
774 }
775
776 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
777 {
778 struct drm_device *dev = intel_dp_to_dev(intel_dp);
779 struct drm_i915_private *dev_priv = to_i915(dev);
780
781 lockdep_assert_held(&dev_priv->pps_mutex);
782
783 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
784 intel_dp->pps_pipe == INVALID_PIPE)
785 return false;
786
787 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
788 }
789
790 static void
791 intel_dp_check_edp(struct intel_dp *intel_dp)
792 {
793 struct drm_device *dev = intel_dp_to_dev(intel_dp);
794 struct drm_i915_private *dev_priv = to_i915(dev);
795
796 if (!is_edp(intel_dp))
797 return;
798
799 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
800 WARN(1, "eDP powered off while attempting aux channel communication.\n");
801 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
802 I915_READ(_pp_stat_reg(intel_dp)),
803 I915_READ(_pp_ctrl_reg(intel_dp)));
804 }
805 }
806
807 static uint32_t
808 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
809 {
810 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
811 struct drm_device *dev = intel_dig_port->base.base.dev;
812 struct drm_i915_private *dev_priv = to_i915(dev);
813 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
814 uint32_t status;
815 bool done;
816
817 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
818 if (has_aux_irq)
819 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
820 msecs_to_jiffies_timeout(10));
821 else
822 done = wait_for(C, 10) == 0;
823 if (!done)
824 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
825 has_aux_irq);
826 #undef C
827
828 return status;
829 }
830
831 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
832 {
833 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
834 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
835
836 if (index)
837 return 0;
838
839 /*
840 * The clock divider is based off the hrawclk, and would like to run at
841 * 2MHz. So, take the hrawclk value and divide by 2000 and use that
842 */
843 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
844 }
845
846 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
847 {
848 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
849 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
850
851 if (index)
852 return 0;
853
854 /*
855 * The clock divider is based off the cdclk or PCH rawclk, and would
856 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and
857 * divide by 2000 and use that
858 */
859 if (intel_dig_port->port == PORT_A)
860 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
861 else
862 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
863 }
864
865 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
866 {
867 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
868 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
869
870 if (intel_dig_port->port != PORT_A && HAS_PCH_LPT_H(dev_priv)) {
871 /* Workaround for non-ULT HSW */
872 switch (index) {
873 case 0: return 63;
874 case 1: return 72;
875 default: return 0;
876 }
877 }
878
879 return ilk_get_aux_clock_divider(intel_dp, index);
880 }
881
882 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
883 {
884 /*
885 * SKL doesn't need us to program the AUX clock divider (Hardware will
886 * derive the clock from CDCLK automatically). We still implement the
887 * get_aux_clock_divider vfunc to plug-in into the existing code.
888 */
889 return index ? 0 : 1;
890 }
891
892 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
893 bool has_aux_irq,
894 int send_bytes,
895 uint32_t aux_clock_divider)
896 {
897 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
898 struct drm_i915_private *dev_priv =
899 to_i915(intel_dig_port->base.base.dev);
900 uint32_t precharge, timeout;
901
902 if (IS_GEN6(dev_priv))
903 precharge = 3;
904 else
905 precharge = 5;
906
907 if (IS_BROADWELL(dev_priv) && intel_dig_port->port == PORT_A)
908 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
909 else
910 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
911
912 return DP_AUX_CH_CTL_SEND_BUSY |
913 DP_AUX_CH_CTL_DONE |
914 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
915 DP_AUX_CH_CTL_TIME_OUT_ERROR |
916 timeout |
917 DP_AUX_CH_CTL_RECEIVE_ERROR |
918 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
919 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
920 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
921 }
922
923 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
924 bool has_aux_irq,
925 int send_bytes,
926 uint32_t unused)
927 {
928 return DP_AUX_CH_CTL_SEND_BUSY |
929 DP_AUX_CH_CTL_DONE |
930 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
931 DP_AUX_CH_CTL_TIME_OUT_ERROR |
932 DP_AUX_CH_CTL_TIME_OUT_1600us |
933 DP_AUX_CH_CTL_RECEIVE_ERROR |
934 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
935 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
936 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
937 }
938
939 static int
940 intel_dp_aux_ch(struct intel_dp *intel_dp,
941 const uint8_t *send, int send_bytes,
942 uint8_t *recv, int recv_size)
943 {
944 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
945 struct drm_i915_private *dev_priv =
946 to_i915(intel_dig_port->base.base.dev);
947 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
948 uint32_t aux_clock_divider;
949 int i, ret, recv_bytes;
950 uint32_t status;
951 int try, clock = 0;
952 bool has_aux_irq = HAS_AUX_IRQ(dev_priv);
953 bool vdd;
954
955 pps_lock(intel_dp);
956
957 /*
958 * We will be called with VDD already enabled for dpcd/edid/oui reads.
959 * In such cases we want to leave VDD enabled and it's up to upper layers
960 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
961 * ourselves.
962 */
963 vdd = edp_panel_vdd_on(intel_dp);
964
965 /* dp aux is extremely sensitive to irq latency, hence request the
966 * lowest possible wakeup latency and so prevent the cpu from going into
967 * deep sleep states.
968 */
969 pm_qos_update_request(&dev_priv->pm_qos, 0);
970
971 intel_dp_check_edp(intel_dp);
972
973 /* Try to wait for any previous AUX channel activity */
974 for (try = 0; try < 3; try++) {
975 status = I915_READ_NOTRACE(ch_ctl);
976 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
977 break;
978 msleep(1);
979 }
980
981 if (try == 3) {
982 static u32 last_status = -1;
983 const u32 status = I915_READ(ch_ctl);
984
985 if (status != last_status) {
986 WARN(1, "dp_aux_ch not started status 0x%08x\n",
987 status);
988 last_status = status;
989 }
990
991 ret = -EBUSY;
992 goto out;
993 }
994
995 /* Only 5 data registers! */
996 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
997 ret = -E2BIG;
998 goto out;
999 }
1000
1001 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1002 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1003 has_aux_irq,
1004 send_bytes,
1005 aux_clock_divider);
1006
1007 /* Must try at least 3 times according to DP spec */
1008 for (try = 0; try < 5; try++) {
1009 /* Load the send data into the aux channel data registers */
1010 for (i = 0; i < send_bytes; i += 4)
1011 I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
1012 intel_dp_pack_aux(send + i,
1013 send_bytes - i));
1014
1015 /* Send the command and wait for it to complete */
1016 I915_WRITE(ch_ctl, send_ctl);
1017
1018 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
1019
1020 /* Clear done status and any errors */
1021 I915_WRITE(ch_ctl,
1022 status |
1023 DP_AUX_CH_CTL_DONE |
1024 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1025 DP_AUX_CH_CTL_RECEIVE_ERROR);
1026
1027 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1028 continue;
1029
1030 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1031 * 400us delay required for errors and timeouts
1032 * Timeout errors from the HW already meet this
1033 * requirement so skip to next iteration
1034 */
1035 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1036 usleep_range(400, 500);
1037 continue;
1038 }
1039 if (status & DP_AUX_CH_CTL_DONE)
1040 goto done;
1041 }
1042 }
1043
1044 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1045 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1046 ret = -EBUSY;
1047 goto out;
1048 }
1049
1050 done:
1051 /* Check for timeout or receive error.
1052 * Timeouts occur when the sink is not connected
1053 */
1054 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1055 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1056 ret = -EIO;
1057 goto out;
1058 }
1059
1060 /* Timeouts occur when the device isn't connected, so they're
1061 * "normal" -- don't fill the kernel log with these */
1062 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1063 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1064 ret = -ETIMEDOUT;
1065 goto out;
1066 }
1067
1068 /* Unload any bytes sent back from the other side */
1069 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1070 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1071
1072 /*
1073 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1074 * We have no idea of what happened so we return -EBUSY so
1075 * drm layer takes care for the necessary retries.
1076 */
1077 if (recv_bytes == 0 || recv_bytes > 20) {
1078 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1079 recv_bytes);
1080 /*
1081 * FIXME: This patch was created on top of a series that
1082 * organize the retries at drm level. There EBUSY should
1083 * also take care for 1ms wait before retrying.
1084 * That aux retries re-org is still needed and after that is
1085 * merged we remove this sleep from here.
1086 */
1087 usleep_range(1000, 1500);
1088 ret = -EBUSY;
1089 goto out;
1090 }
1091
1092 if (recv_bytes > recv_size)
1093 recv_bytes = recv_size;
1094
1095 for (i = 0; i < recv_bytes; i += 4)
1096 intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
1097 recv + i, recv_bytes - i);
1098
1099 ret = recv_bytes;
1100 out:
1101 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
1102
1103 if (vdd)
1104 edp_panel_vdd_off(intel_dp, false);
1105
1106 pps_unlock(intel_dp);
1107
1108 return ret;
1109 }
1110
1111 #define BARE_ADDRESS_SIZE 3
1112 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
1113 static ssize_t
1114 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1115 {
1116 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1117 uint8_t txbuf[20], rxbuf[20];
1118 size_t txsize, rxsize;
1119 int ret;
1120
1121 txbuf[0] = (msg->request << 4) |
1122 ((msg->address >> 16) & 0xf);
1123 txbuf[1] = (msg->address >> 8) & 0xff;
1124 txbuf[2] = msg->address & 0xff;
1125 txbuf[3] = msg->size - 1;
1126
1127 switch (msg->request & ~DP_AUX_I2C_MOT) {
1128 case DP_AUX_NATIVE_WRITE:
1129 case DP_AUX_I2C_WRITE:
1130 case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1131 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1132 rxsize = 2; /* 0 or 1 data bytes */
1133
1134 if (WARN_ON(txsize > 20))
1135 return -E2BIG;
1136
1137 WARN_ON(!msg->buffer != !msg->size);
1138
1139 if (msg->buffer)
1140 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1141
1142 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1143 if (ret > 0) {
1144 msg->reply = rxbuf[0] >> 4;
1145
1146 if (ret > 1) {
1147 /* Number of bytes written in a short write. */
1148 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1149 } else {
1150 /* Return payload size. */
1151 ret = msg->size;
1152 }
1153 }
1154 break;
1155
1156 case DP_AUX_NATIVE_READ:
1157 case DP_AUX_I2C_READ:
1158 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1159 rxsize = msg->size + 1;
1160
1161 if (WARN_ON(rxsize > 20))
1162 return -E2BIG;
1163
1164 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1165 if (ret > 0) {
1166 msg->reply = rxbuf[0] >> 4;
1167 /*
1168 * Assume happy day, and copy the data. The caller is
1169 * expected to check msg->reply before touching it.
1170 *
1171 * Return payload size.
1172 */
1173 ret--;
1174 memcpy(msg->buffer, rxbuf + 1, ret);
1175 }
1176 break;
1177
1178 default:
1179 ret = -EINVAL;
1180 break;
1181 }
1182
1183 return ret;
1184 }
1185
1186 static enum port intel_aux_port(struct drm_i915_private *dev_priv,
1187 enum port port)
1188 {
1189 const struct ddi_vbt_port_info *info =
1190 &dev_priv->vbt.ddi_port_info[port];
1191 enum port aux_port;
1192
1193 if (!info->alternate_aux_channel) {
1194 DRM_DEBUG_KMS("using AUX %c for port %c (platform default)\n",
1195 port_name(port), port_name(port));
1196 return port;
1197 }
1198
1199 switch (info->alternate_aux_channel) {
1200 case DP_AUX_A:
1201 aux_port = PORT_A;
1202 break;
1203 case DP_AUX_B:
1204 aux_port = PORT_B;
1205 break;
1206 case DP_AUX_C:
1207 aux_port = PORT_C;
1208 break;
1209 case DP_AUX_D:
1210 aux_port = PORT_D;
1211 break;
1212 default:
1213 MISSING_CASE(info->alternate_aux_channel);
1214 aux_port = PORT_A;
1215 break;
1216 }
1217
1218 DRM_DEBUG_KMS("using AUX %c for port %c (VBT)\n",
1219 port_name(aux_port), port_name(port));
1220
1221 return aux_port;
1222 }
1223
1224 static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1225 enum port port)
1226 {
1227 switch (port) {
1228 case PORT_B:
1229 case PORT_C:
1230 case PORT_D:
1231 return DP_AUX_CH_CTL(port);
1232 default:
1233 MISSING_CASE(port);
1234 return DP_AUX_CH_CTL(PORT_B);
1235 }
1236 }
1237
1238 static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1239 enum port port, int index)
1240 {
1241 switch (port) {
1242 case PORT_B:
1243 case PORT_C:
1244 case PORT_D:
1245 return DP_AUX_CH_DATA(port, index);
1246 default:
1247 MISSING_CASE(port);
1248 return DP_AUX_CH_DATA(PORT_B, index);
1249 }
1250 }
1251
1252 static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1253 enum port port)
1254 {
1255 switch (port) {
1256 case PORT_A:
1257 return DP_AUX_CH_CTL(port);
1258 case PORT_B:
1259 case PORT_C:
1260 case PORT_D:
1261 return PCH_DP_AUX_CH_CTL(port);
1262 default:
1263 MISSING_CASE(port);
1264 return DP_AUX_CH_CTL(PORT_A);
1265 }
1266 }
1267
1268 static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1269 enum port port, int index)
1270 {
1271 switch (port) {
1272 case PORT_A:
1273 return DP_AUX_CH_DATA(port, index);
1274 case PORT_B:
1275 case PORT_C:
1276 case PORT_D:
1277 return PCH_DP_AUX_CH_DATA(port, index);
1278 default:
1279 MISSING_CASE(port);
1280 return DP_AUX_CH_DATA(PORT_A, index);
1281 }
1282 }
1283
1284 static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1285 enum port port)
1286 {
1287 switch (port) {
1288 case PORT_A:
1289 case PORT_B:
1290 case PORT_C:
1291 case PORT_D:
1292 return DP_AUX_CH_CTL(port);
1293 default:
1294 MISSING_CASE(port);
1295 return DP_AUX_CH_CTL(PORT_A);
1296 }
1297 }
1298
1299 static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1300 enum port port, int index)
1301 {
1302 switch (port) {
1303 case PORT_A:
1304 case PORT_B:
1305 case PORT_C:
1306 case PORT_D:
1307 return DP_AUX_CH_DATA(port, index);
1308 default:
1309 MISSING_CASE(port);
1310 return DP_AUX_CH_DATA(PORT_A, index);
1311 }
1312 }
1313
1314 static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1315 enum port port)
1316 {
1317 if (INTEL_INFO(dev_priv)->gen >= 9)
1318 return skl_aux_ctl_reg(dev_priv, port);
1319 else if (HAS_PCH_SPLIT(dev_priv))
1320 return ilk_aux_ctl_reg(dev_priv, port);
1321 else
1322 return g4x_aux_ctl_reg(dev_priv, port);
1323 }
1324
1325 static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1326 enum port port, int index)
1327 {
1328 if (INTEL_INFO(dev_priv)->gen >= 9)
1329 return skl_aux_data_reg(dev_priv, port, index);
1330 else if (HAS_PCH_SPLIT(dev_priv))
1331 return ilk_aux_data_reg(dev_priv, port, index);
1332 else
1333 return g4x_aux_data_reg(dev_priv, port, index);
1334 }
1335
1336 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1337 {
1338 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1339 enum port port = intel_aux_port(dev_priv,
1340 dp_to_dig_port(intel_dp)->port);
1341 int i;
1342
1343 intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1344 for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1345 intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1346 }
1347
1348 static void
1349 intel_dp_aux_fini(struct intel_dp *intel_dp)
1350 {
1351 kfree(intel_dp->aux.name);
1352 }
1353
1354 static void
1355 intel_dp_aux_init(struct intel_dp *intel_dp)
1356 {
1357 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1358 enum port port = intel_dig_port->port;
1359
1360 intel_aux_reg_init(intel_dp);
1361 drm_dp_aux_init(&intel_dp->aux);
1362
1363 /* Failure to allocate our preferred name is not critical */
1364 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1365 intel_dp->aux.transfer = intel_dp_aux_transfer;
1366 }
1367
1368 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1369 {
1370 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1371 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
1372
1373 if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
1374 IS_BROADWELL(dev_priv) || (INTEL_GEN(dev_priv) >= 9))
1375 return true;
1376 else
1377 return false;
1378 }
1379
1380 static void
1381 intel_dp_set_clock(struct intel_encoder *encoder,
1382 struct intel_crtc_state *pipe_config)
1383 {
1384 struct drm_device *dev = encoder->base.dev;
1385 struct drm_i915_private *dev_priv = to_i915(dev);
1386 const struct dp_link_dpll *divisor = NULL;
1387 int i, count = 0;
1388
1389 if (IS_G4X(dev_priv)) {
1390 divisor = gen4_dpll;
1391 count = ARRAY_SIZE(gen4_dpll);
1392 } else if (HAS_PCH_SPLIT(dev_priv)) {
1393 divisor = pch_dpll;
1394 count = ARRAY_SIZE(pch_dpll);
1395 } else if (IS_CHERRYVIEW(dev_priv)) {
1396 divisor = chv_dpll;
1397 count = ARRAY_SIZE(chv_dpll);
1398 } else if (IS_VALLEYVIEW(dev_priv)) {
1399 divisor = vlv_dpll;
1400 count = ARRAY_SIZE(vlv_dpll);
1401 }
1402
1403 if (divisor && count) {
1404 for (i = 0; i < count; i++) {
1405 if (pipe_config->port_clock == divisor[i].clock) {
1406 pipe_config->dpll = divisor[i].dpll;
1407 pipe_config->clock_set = true;
1408 break;
1409 }
1410 }
1411 }
1412 }
1413
1414 static void snprintf_int_array(char *str, size_t len,
1415 const int *array, int nelem)
1416 {
1417 int i;
1418
1419 str[0] = '\0';
1420
1421 for (i = 0; i < nelem; i++) {
1422 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1423 if (r >= len)
1424 return;
1425 str += r;
1426 len -= r;
1427 }
1428 }
1429
1430 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1431 {
1432 const int *source_rates, *sink_rates;
1433 int source_len, sink_len, common_len;
1434 int common_rates[DP_MAX_SUPPORTED_RATES];
1435 char str[128]; /* FIXME: too big for stack? */
1436
1437 if ((drm_debug & DRM_UT_KMS) == 0)
1438 return;
1439
1440 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1441 snprintf_int_array(str, sizeof(str), source_rates, source_len);
1442 DRM_DEBUG_KMS("source rates: %s\n", str);
1443
1444 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1445 snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1446 DRM_DEBUG_KMS("sink rates: %s\n", str);
1447
1448 common_len = intel_dp_common_rates(intel_dp, common_rates);
1449 snprintf_int_array(str, sizeof(str), common_rates, common_len);
1450 DRM_DEBUG_KMS("common rates: %s\n", str);
1451 }
1452
1453 bool
1454 __intel_dp_read_desc(struct intel_dp *intel_dp, struct intel_dp_desc *desc)
1455 {
1456 u32 base = drm_dp_is_branch(intel_dp->dpcd) ? DP_BRANCH_OUI :
1457 DP_SINK_OUI;
1458
1459 return drm_dp_dpcd_read(&intel_dp->aux, base, desc, sizeof(*desc)) ==
1460 sizeof(*desc);
1461 }
1462
1463 bool intel_dp_read_desc(struct intel_dp *intel_dp)
1464 {
1465 struct intel_dp_desc *desc = &intel_dp->desc;
1466 bool oui_sup = intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] &
1467 DP_OUI_SUPPORT;
1468 int dev_id_len;
1469
1470 if (!__intel_dp_read_desc(intel_dp, desc))
1471 return false;
1472
1473 dev_id_len = strnlen(desc->device_id, sizeof(desc->device_id));
1474 DRM_DEBUG_KMS("DP %s: OUI %*phD%s dev-ID %*pE HW-rev %d.%d SW-rev %d.%d\n",
1475 drm_dp_is_branch(intel_dp->dpcd) ? "branch" : "sink",
1476 (int)sizeof(desc->oui), desc->oui, oui_sup ? "" : "(NS)",
1477 dev_id_len, desc->device_id,
1478 desc->hw_rev >> 4, desc->hw_rev & 0xf,
1479 desc->sw_major_rev, desc->sw_minor_rev);
1480
1481 return true;
1482 }
1483
1484 static int rate_to_index(int find, const int *rates)
1485 {
1486 int i = 0;
1487
1488 for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1489 if (find == rates[i])
1490 break;
1491
1492 return i;
1493 }
1494
1495 int
1496 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1497 {
1498 int rates[DP_MAX_SUPPORTED_RATES] = {};
1499 int len;
1500
1501 len = intel_dp_common_rates(intel_dp, rates);
1502 if (WARN_ON(len <= 0))
1503 return 162000;
1504
1505 return rates[len - 1];
1506 }
1507
1508 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1509 {
1510 return rate_to_index(rate, intel_dp->sink_rates);
1511 }
1512
1513 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1514 uint8_t *link_bw, uint8_t *rate_select)
1515 {
1516 if (intel_dp->num_sink_rates) {
1517 *link_bw = 0;
1518 *rate_select =
1519 intel_dp_rate_select(intel_dp, port_clock);
1520 } else {
1521 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1522 *rate_select = 0;
1523 }
1524 }
1525
1526 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1527 struct intel_crtc_state *pipe_config)
1528 {
1529 int bpp, bpc;
1530
1531 bpp = pipe_config->pipe_bpp;
1532 bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1533
1534 if (bpc > 0)
1535 bpp = min(bpp, 3*bpc);
1536
1537 return bpp;
1538 }
1539
1540 bool
1541 intel_dp_compute_config(struct intel_encoder *encoder,
1542 struct intel_crtc_state *pipe_config,
1543 struct drm_connector_state *conn_state)
1544 {
1545 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1546 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1547 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1548 enum port port = dp_to_dig_port(intel_dp)->port;
1549 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1550 struct intel_connector *intel_connector = intel_dp->attached_connector;
1551 int lane_count, clock;
1552 int min_lane_count = 1;
1553 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1554 /* Conveniently, the link BW constants become indices with a shift...*/
1555 int min_clock = 0;
1556 int max_clock;
1557 int bpp, mode_rate;
1558 int link_avail, link_clock;
1559 int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1560 int common_len;
1561 uint8_t link_bw, rate_select;
1562
1563 common_len = intel_dp_common_rates(intel_dp, common_rates);
1564
1565 /* No common link rates between source and sink */
1566 WARN_ON(common_len <= 0);
1567
1568 max_clock = common_len - 1;
1569
1570 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
1571 pipe_config->has_pch_encoder = true;
1572
1573 pipe_config->has_drrs = false;
1574 pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1575
1576 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1577 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1578 adjusted_mode);
1579
1580 if (INTEL_GEN(dev_priv) >= 9) {
1581 int ret;
1582 ret = skl_update_scaler_crtc(pipe_config);
1583 if (ret)
1584 return ret;
1585 }
1586
1587 if (HAS_GMCH_DISPLAY(dev_priv))
1588 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1589 intel_connector->panel.fitting_mode);
1590 else
1591 intel_pch_panel_fitting(intel_crtc, pipe_config,
1592 intel_connector->panel.fitting_mode);
1593 }
1594
1595 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1596 return false;
1597
1598 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1599 "max bw %d pixel clock %iKHz\n",
1600 max_lane_count, common_rates[max_clock],
1601 adjusted_mode->crtc_clock);
1602
1603 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1604 * bpc in between. */
1605 bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
1606 if (is_edp(intel_dp)) {
1607
1608 /* Get bpp from vbt only for panels that dont have bpp in edid */
1609 if (intel_connector->base.display_info.bpc == 0 &&
1610 (dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
1611 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1612 dev_priv->vbt.edp.bpp);
1613 bpp = dev_priv->vbt.edp.bpp;
1614 }
1615
1616 /*
1617 * Use the maximum clock and number of lanes the eDP panel
1618 * advertizes being capable of. The panels are generally
1619 * designed to support only a single clock and lane
1620 * configuration, and typically these values correspond to the
1621 * native resolution of the panel.
1622 */
1623 min_lane_count = max_lane_count;
1624 min_clock = max_clock;
1625 }
1626
1627 for (; bpp >= 6*3; bpp -= 2*3) {
1628 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1629 bpp);
1630
1631 for (clock = min_clock; clock <= max_clock; clock++) {
1632 for (lane_count = min_lane_count;
1633 lane_count <= max_lane_count;
1634 lane_count <<= 1) {
1635
1636 link_clock = common_rates[clock];
1637 link_avail = intel_dp_max_data_rate(link_clock,
1638 lane_count);
1639
1640 if (mode_rate <= link_avail) {
1641 goto found;
1642 }
1643 }
1644 }
1645 }
1646
1647 return false;
1648
1649 found:
1650 if (intel_dp->color_range_auto) {
1651 /*
1652 * See:
1653 * CEA-861-E - 5.1 Default Encoding Parameters
1654 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1655 */
1656 pipe_config->limited_color_range =
1657 bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1658 } else {
1659 pipe_config->limited_color_range =
1660 intel_dp->limited_color_range;
1661 }
1662
1663 pipe_config->lane_count = lane_count;
1664
1665 pipe_config->pipe_bpp = bpp;
1666 pipe_config->port_clock = common_rates[clock];
1667
1668 intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1669 &link_bw, &rate_select);
1670
1671 DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1672 link_bw, rate_select, pipe_config->lane_count,
1673 pipe_config->port_clock, bpp);
1674 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1675 mode_rate, link_avail);
1676
1677 intel_link_compute_m_n(bpp, lane_count,
1678 adjusted_mode->crtc_clock,
1679 pipe_config->port_clock,
1680 &pipe_config->dp_m_n);
1681
1682 if (intel_connector->panel.downclock_mode != NULL &&
1683 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1684 pipe_config->has_drrs = true;
1685 intel_link_compute_m_n(bpp, lane_count,
1686 intel_connector->panel.downclock_mode->clock,
1687 pipe_config->port_clock,
1688 &pipe_config->dp_m2_n2);
1689 }
1690
1691 /*
1692 * DPLL0 VCO may need to be adjusted to get the correct
1693 * clock for eDP. This will affect cdclk as well.
1694 */
1695 if (is_edp(intel_dp) &&
1696 (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))) {
1697 int vco;
1698
1699 switch (pipe_config->port_clock / 2) {
1700 case 108000:
1701 case 216000:
1702 vco = 8640000;
1703 break;
1704 default:
1705 vco = 8100000;
1706 break;
1707 }
1708
1709 to_intel_atomic_state(pipe_config->base.state)->cdclk_pll_vco = vco;
1710 }
1711
1712 if (!HAS_DDI(dev_priv))
1713 intel_dp_set_clock(encoder, pipe_config);
1714
1715 return true;
1716 }
1717
1718 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1719 int link_rate, uint8_t lane_count,
1720 bool link_mst)
1721 {
1722 intel_dp->link_rate = link_rate;
1723 intel_dp->lane_count = lane_count;
1724 intel_dp->link_mst = link_mst;
1725 }
1726
1727 static void intel_dp_prepare(struct intel_encoder *encoder,
1728 struct intel_crtc_state *pipe_config)
1729 {
1730 struct drm_device *dev = encoder->base.dev;
1731 struct drm_i915_private *dev_priv = to_i915(dev);
1732 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1733 enum port port = dp_to_dig_port(intel_dp)->port;
1734 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1735 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1736
1737 intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
1738 pipe_config->lane_count,
1739 intel_crtc_has_type(pipe_config,
1740 INTEL_OUTPUT_DP_MST));
1741
1742 /*
1743 * There are four kinds of DP registers:
1744 *
1745 * IBX PCH
1746 * SNB CPU
1747 * IVB CPU
1748 * CPT PCH
1749 *
1750 * IBX PCH and CPU are the same for almost everything,
1751 * except that the CPU DP PLL is configured in this
1752 * register
1753 *
1754 * CPT PCH is quite different, having many bits moved
1755 * to the TRANS_DP_CTL register instead. That
1756 * configuration happens (oddly) in ironlake_pch_enable
1757 */
1758
1759 /* Preserve the BIOS-computed detected bit. This is
1760 * supposed to be read-only.
1761 */
1762 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1763
1764 /* Handle DP bits in common between all three register formats */
1765 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1766 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
1767
1768 /* Split out the IBX/CPU vs CPT settings */
1769
1770 if (IS_GEN7(dev_priv) && port == PORT_A) {
1771 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1772 intel_dp->DP |= DP_SYNC_HS_HIGH;
1773 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1774 intel_dp->DP |= DP_SYNC_VS_HIGH;
1775 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1776
1777 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1778 intel_dp->DP |= DP_ENHANCED_FRAMING;
1779
1780 intel_dp->DP |= crtc->pipe << 29;
1781 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
1782 u32 trans_dp;
1783
1784 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1785
1786 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1787 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1788 trans_dp |= TRANS_DP_ENH_FRAMING;
1789 else
1790 trans_dp &= ~TRANS_DP_ENH_FRAMING;
1791 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1792 } else {
1793 if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
1794 intel_dp->DP |= DP_COLOR_RANGE_16_235;
1795
1796 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1797 intel_dp->DP |= DP_SYNC_HS_HIGH;
1798 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1799 intel_dp->DP |= DP_SYNC_VS_HIGH;
1800 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1801
1802 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1803 intel_dp->DP |= DP_ENHANCED_FRAMING;
1804
1805 if (IS_CHERRYVIEW(dev_priv))
1806 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1807 else if (crtc->pipe == PIPE_B)
1808 intel_dp->DP |= DP_PIPEB_SELECT;
1809 }
1810 }
1811
1812 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1813 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1814
1815 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1816 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1817
1818 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1819 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1820
1821 static void intel_pps_verify_state(struct drm_i915_private *dev_priv,
1822 struct intel_dp *intel_dp);
1823
1824 static void wait_panel_status(struct intel_dp *intel_dp,
1825 u32 mask,
1826 u32 value)
1827 {
1828 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1829 struct drm_i915_private *dev_priv = to_i915(dev);
1830 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1831
1832 lockdep_assert_held(&dev_priv->pps_mutex);
1833
1834 intel_pps_verify_state(dev_priv, intel_dp);
1835
1836 pp_stat_reg = _pp_stat_reg(intel_dp);
1837 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1838
1839 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1840 mask, value,
1841 I915_READ(pp_stat_reg),
1842 I915_READ(pp_ctrl_reg));
1843
1844 if (intel_wait_for_register(dev_priv,
1845 pp_stat_reg, mask, value,
1846 5000))
1847 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1848 I915_READ(pp_stat_reg),
1849 I915_READ(pp_ctrl_reg));
1850
1851 DRM_DEBUG_KMS("Wait complete\n");
1852 }
1853
1854 static void wait_panel_on(struct intel_dp *intel_dp)
1855 {
1856 DRM_DEBUG_KMS("Wait for panel power on\n");
1857 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1858 }
1859
1860 static void wait_panel_off(struct intel_dp *intel_dp)
1861 {
1862 DRM_DEBUG_KMS("Wait for panel power off time\n");
1863 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1864 }
1865
1866 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1867 {
1868 ktime_t panel_power_on_time;
1869 s64 panel_power_off_duration;
1870
1871 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1872
1873 /* take the difference of currrent time and panel power off time
1874 * and then make panel wait for t11_t12 if needed. */
1875 panel_power_on_time = ktime_get_boottime();
1876 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
1877
1878 /* When we disable the VDD override bit last we have to do the manual
1879 * wait. */
1880 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
1881 wait_remaining_ms_from_jiffies(jiffies,
1882 intel_dp->panel_power_cycle_delay - panel_power_off_duration);
1883
1884 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1885 }
1886
1887 static void wait_backlight_on(struct intel_dp *intel_dp)
1888 {
1889 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1890 intel_dp->backlight_on_delay);
1891 }
1892
1893 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1894 {
1895 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1896 intel_dp->backlight_off_delay);
1897 }
1898
1899 /* Read the current pp_control value, unlocking the register if it
1900 * is locked
1901 */
1902
1903 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1904 {
1905 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1906 struct drm_i915_private *dev_priv = to_i915(dev);
1907 u32 control;
1908
1909 lockdep_assert_held(&dev_priv->pps_mutex);
1910
1911 control = I915_READ(_pp_ctrl_reg(intel_dp));
1912 if (WARN_ON(!HAS_DDI(dev_priv) &&
1913 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
1914 control &= ~PANEL_UNLOCK_MASK;
1915 control |= PANEL_UNLOCK_REGS;
1916 }
1917 return control;
1918 }
1919
1920 /*
1921 * Must be paired with edp_panel_vdd_off().
1922 * Must hold pps_mutex around the whole on/off sequence.
1923 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1924 */
1925 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1926 {
1927 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1928 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1929 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1930 struct drm_i915_private *dev_priv = to_i915(dev);
1931 enum intel_display_power_domain power_domain;
1932 u32 pp;
1933 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1934 bool need_to_disable = !intel_dp->want_panel_vdd;
1935
1936 lockdep_assert_held(&dev_priv->pps_mutex);
1937
1938 if (!is_edp(intel_dp))
1939 return false;
1940
1941 cancel_delayed_work(&intel_dp->panel_vdd_work);
1942 intel_dp->want_panel_vdd = true;
1943
1944 if (edp_have_panel_vdd(intel_dp))
1945 return need_to_disable;
1946
1947 power_domain = intel_display_port_aux_power_domain(intel_encoder);
1948 intel_display_power_get(dev_priv, power_domain);
1949
1950 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1951 port_name(intel_dig_port->port));
1952
1953 if (!edp_have_panel_power(intel_dp))
1954 wait_panel_power_cycle(intel_dp);
1955
1956 pp = ironlake_get_pp_control(intel_dp);
1957 pp |= EDP_FORCE_VDD;
1958
1959 pp_stat_reg = _pp_stat_reg(intel_dp);
1960 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1961
1962 I915_WRITE(pp_ctrl_reg, pp);
1963 POSTING_READ(pp_ctrl_reg);
1964 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1965 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1966 /*
1967 * If the panel wasn't on, delay before accessing aux channel
1968 */
1969 if (!edp_have_panel_power(intel_dp)) {
1970 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1971 port_name(intel_dig_port->port));
1972 msleep(intel_dp->panel_power_up_delay);
1973 }
1974
1975 return need_to_disable;
1976 }
1977
1978 /*
1979 * Must be paired with intel_edp_panel_vdd_off() or
1980 * intel_edp_panel_off().
1981 * Nested calls to these functions are not allowed since
1982 * we drop the lock. Caller must use some higher level
1983 * locking to prevent nested calls from other threads.
1984 */
1985 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1986 {
1987 bool vdd;
1988
1989 if (!is_edp(intel_dp))
1990 return;
1991
1992 pps_lock(intel_dp);
1993 vdd = edp_panel_vdd_on(intel_dp);
1994 pps_unlock(intel_dp);
1995
1996 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1997 port_name(dp_to_dig_port(intel_dp)->port));
1998 }
1999
2000 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2001 {
2002 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2003 struct drm_i915_private *dev_priv = to_i915(dev);
2004 struct intel_digital_port *intel_dig_port =
2005 dp_to_dig_port(intel_dp);
2006 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2007 enum intel_display_power_domain power_domain;
2008 u32 pp;
2009 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2010
2011 lockdep_assert_held(&dev_priv->pps_mutex);
2012
2013 WARN_ON(intel_dp->want_panel_vdd);
2014
2015 if (!edp_have_panel_vdd(intel_dp))
2016 return;
2017
2018 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2019 port_name(intel_dig_port->port));
2020
2021 pp = ironlake_get_pp_control(intel_dp);
2022 pp &= ~EDP_FORCE_VDD;
2023
2024 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2025 pp_stat_reg = _pp_stat_reg(intel_dp);
2026
2027 I915_WRITE(pp_ctrl_reg, pp);
2028 POSTING_READ(pp_ctrl_reg);
2029
2030 /* Make sure sequencer is idle before allowing subsequent activity */
2031 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2032 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2033
2034 if ((pp & PANEL_POWER_ON) == 0)
2035 intel_dp->panel_power_off_time = ktime_get_boottime();
2036
2037 power_domain = intel_display_port_aux_power_domain(intel_encoder);
2038 intel_display_power_put(dev_priv, power_domain);
2039 }
2040
2041 static void edp_panel_vdd_work(struct work_struct *__work)
2042 {
2043 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
2044 struct intel_dp, panel_vdd_work);
2045
2046 pps_lock(intel_dp);
2047 if (!intel_dp->want_panel_vdd)
2048 edp_panel_vdd_off_sync(intel_dp);
2049 pps_unlock(intel_dp);
2050 }
2051
2052 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2053 {
2054 unsigned long delay;
2055
2056 /*
2057 * Queue the timer to fire a long time from now (relative to the power
2058 * down delay) to keep the panel power up across a sequence of
2059 * operations.
2060 */
2061 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2062 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2063 }
2064
2065 /*
2066 * Must be paired with edp_panel_vdd_on().
2067 * Must hold pps_mutex around the whole on/off sequence.
2068 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2069 */
2070 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2071 {
2072 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2073
2074 lockdep_assert_held(&dev_priv->pps_mutex);
2075
2076 if (!is_edp(intel_dp))
2077 return;
2078
2079 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2080 port_name(dp_to_dig_port(intel_dp)->port));
2081
2082 intel_dp->want_panel_vdd = false;
2083
2084 if (sync)
2085 edp_panel_vdd_off_sync(intel_dp);
2086 else
2087 edp_panel_vdd_schedule_off(intel_dp);
2088 }
2089
2090 static void edp_panel_on(struct intel_dp *intel_dp)
2091 {
2092 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2093 struct drm_i915_private *dev_priv = to_i915(dev);
2094 u32 pp;
2095 i915_reg_t pp_ctrl_reg;
2096
2097 lockdep_assert_held(&dev_priv->pps_mutex);
2098
2099 if (!is_edp(intel_dp))
2100 return;
2101
2102 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2103 port_name(dp_to_dig_port(intel_dp)->port));
2104
2105 if (WARN(edp_have_panel_power(intel_dp),
2106 "eDP port %c panel power already on\n",
2107 port_name(dp_to_dig_port(intel_dp)->port)))
2108 return;
2109
2110 wait_panel_power_cycle(intel_dp);
2111
2112 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2113 pp = ironlake_get_pp_control(intel_dp);
2114 if (IS_GEN5(dev_priv)) {
2115 /* ILK workaround: disable reset around power sequence */
2116 pp &= ~PANEL_POWER_RESET;
2117 I915_WRITE(pp_ctrl_reg, pp);
2118 POSTING_READ(pp_ctrl_reg);
2119 }
2120
2121 pp |= PANEL_POWER_ON;
2122 if (!IS_GEN5(dev_priv))
2123 pp |= PANEL_POWER_RESET;
2124
2125 I915_WRITE(pp_ctrl_reg, pp);
2126 POSTING_READ(pp_ctrl_reg);
2127
2128 wait_panel_on(intel_dp);
2129 intel_dp->last_power_on = jiffies;
2130
2131 if (IS_GEN5(dev_priv)) {
2132 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2133 I915_WRITE(pp_ctrl_reg, pp);
2134 POSTING_READ(pp_ctrl_reg);
2135 }
2136 }
2137
2138 void intel_edp_panel_on(struct intel_dp *intel_dp)
2139 {
2140 if (!is_edp(intel_dp))
2141 return;
2142
2143 pps_lock(intel_dp);
2144 edp_panel_on(intel_dp);
2145 pps_unlock(intel_dp);
2146 }
2147
2148
2149 static void edp_panel_off(struct intel_dp *intel_dp)
2150 {
2151 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2152 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2153 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2154 struct drm_i915_private *dev_priv = to_i915(dev);
2155 enum intel_display_power_domain power_domain;
2156 u32 pp;
2157 i915_reg_t pp_ctrl_reg;
2158
2159 lockdep_assert_held(&dev_priv->pps_mutex);
2160
2161 if (!is_edp(intel_dp))
2162 return;
2163
2164 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2165 port_name(dp_to_dig_port(intel_dp)->port));
2166
2167 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2168 port_name(dp_to_dig_port(intel_dp)->port));
2169
2170 pp = ironlake_get_pp_control(intel_dp);
2171 /* We need to switch off panel power _and_ force vdd, for otherwise some
2172 * panels get very unhappy and cease to work. */
2173 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2174 EDP_BLC_ENABLE);
2175
2176 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2177
2178 intel_dp->want_panel_vdd = false;
2179
2180 I915_WRITE(pp_ctrl_reg, pp);
2181 POSTING_READ(pp_ctrl_reg);
2182
2183 intel_dp->panel_power_off_time = ktime_get_boottime();
2184 wait_panel_off(intel_dp);
2185
2186 /* We got a reference when we enabled the VDD. */
2187 power_domain = intel_display_port_aux_power_domain(intel_encoder);
2188 intel_display_power_put(dev_priv, power_domain);
2189 }
2190
2191 void intel_edp_panel_off(struct intel_dp *intel_dp)
2192 {
2193 if (!is_edp(intel_dp))
2194 return;
2195
2196 pps_lock(intel_dp);
2197 edp_panel_off(intel_dp);
2198 pps_unlock(intel_dp);
2199 }
2200
2201 /* Enable backlight in the panel power control. */
2202 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2203 {
2204 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2205 struct drm_device *dev = intel_dig_port->base.base.dev;
2206 struct drm_i915_private *dev_priv = to_i915(dev);
2207 u32 pp;
2208 i915_reg_t pp_ctrl_reg;
2209
2210 /*
2211 * If we enable the backlight right away following a panel power
2212 * on, we may see slight flicker as the panel syncs with the eDP
2213 * link. So delay a bit to make sure the image is solid before
2214 * allowing it to appear.
2215 */
2216 wait_backlight_on(intel_dp);
2217
2218 pps_lock(intel_dp);
2219
2220 pp = ironlake_get_pp_control(intel_dp);
2221 pp |= EDP_BLC_ENABLE;
2222
2223 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2224
2225 I915_WRITE(pp_ctrl_reg, pp);
2226 POSTING_READ(pp_ctrl_reg);
2227
2228 pps_unlock(intel_dp);
2229 }
2230
2231 /* Enable backlight PWM and backlight PP control. */
2232 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2233 {
2234 if (!is_edp(intel_dp))
2235 return;
2236
2237 DRM_DEBUG_KMS("\n");
2238
2239 intel_panel_enable_backlight(intel_dp->attached_connector);
2240 _intel_edp_backlight_on(intel_dp);
2241 }
2242
2243 /* Disable backlight in the panel power control. */
2244 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2245 {
2246 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2247 struct drm_i915_private *dev_priv = to_i915(dev);
2248 u32 pp;
2249 i915_reg_t pp_ctrl_reg;
2250
2251 if (!is_edp(intel_dp))
2252 return;
2253
2254 pps_lock(intel_dp);
2255
2256 pp = ironlake_get_pp_control(intel_dp);
2257 pp &= ~EDP_BLC_ENABLE;
2258
2259 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2260
2261 I915_WRITE(pp_ctrl_reg, pp);
2262 POSTING_READ(pp_ctrl_reg);
2263
2264 pps_unlock(intel_dp);
2265
2266 intel_dp->last_backlight_off = jiffies;
2267 edp_wait_backlight_off(intel_dp);
2268 }
2269
2270 /* Disable backlight PP control and backlight PWM. */
2271 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2272 {
2273 if (!is_edp(intel_dp))
2274 return;
2275
2276 DRM_DEBUG_KMS("\n");
2277
2278 _intel_edp_backlight_off(intel_dp);
2279 intel_panel_disable_backlight(intel_dp->attached_connector);
2280 }
2281
2282 /*
2283 * Hook for controlling the panel power control backlight through the bl_power
2284 * sysfs attribute. Take care to handle multiple calls.
2285 */
2286 static void intel_edp_backlight_power(struct intel_connector *connector,
2287 bool enable)
2288 {
2289 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2290 bool is_enabled;
2291
2292 pps_lock(intel_dp);
2293 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2294 pps_unlock(intel_dp);
2295
2296 if (is_enabled == enable)
2297 return;
2298
2299 DRM_DEBUG_KMS("panel power control backlight %s\n",
2300 enable ? "enable" : "disable");
2301
2302 if (enable)
2303 _intel_edp_backlight_on(intel_dp);
2304 else
2305 _intel_edp_backlight_off(intel_dp);
2306 }
2307
2308 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2309 {
2310 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2311 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2312 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2313
2314 I915_STATE_WARN(cur_state != state,
2315 "DP port %c state assertion failure (expected %s, current %s)\n",
2316 port_name(dig_port->port),
2317 onoff(state), onoff(cur_state));
2318 }
2319 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2320
2321 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2322 {
2323 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2324
2325 I915_STATE_WARN(cur_state != state,
2326 "eDP PLL state assertion failure (expected %s, current %s)\n",
2327 onoff(state), onoff(cur_state));
2328 }
2329 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2330 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2331
2332 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2333 struct intel_crtc_state *pipe_config)
2334 {
2335 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2336 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2337
2338 assert_pipe_disabled(dev_priv, crtc->pipe);
2339 assert_dp_port_disabled(intel_dp);
2340 assert_edp_pll_disabled(dev_priv);
2341
2342 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2343 pipe_config->port_clock);
2344
2345 intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2346
2347 if (pipe_config->port_clock == 162000)
2348 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2349 else
2350 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2351
2352 I915_WRITE(DP_A, intel_dp->DP);
2353 POSTING_READ(DP_A);
2354 udelay(500);
2355
2356 /*
2357 * [DevILK] Work around required when enabling DP PLL
2358 * while a pipe is enabled going to FDI:
2359 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2360 * 2. Program DP PLL enable
2361 */
2362 if (IS_GEN5(dev_priv))
2363 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
2364
2365 intel_dp->DP |= DP_PLL_ENABLE;
2366
2367 I915_WRITE(DP_A, intel_dp->DP);
2368 POSTING_READ(DP_A);
2369 udelay(200);
2370 }
2371
2372 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2373 {
2374 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2375 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2376 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2377
2378 assert_pipe_disabled(dev_priv, crtc->pipe);
2379 assert_dp_port_disabled(intel_dp);
2380 assert_edp_pll_enabled(dev_priv);
2381
2382 DRM_DEBUG_KMS("disabling eDP PLL\n");
2383
2384 intel_dp->DP &= ~DP_PLL_ENABLE;
2385
2386 I915_WRITE(DP_A, intel_dp->DP);
2387 POSTING_READ(DP_A);
2388 udelay(200);
2389 }
2390
2391 /* If the sink supports it, try to set the power state appropriately */
2392 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2393 {
2394 int ret, i;
2395
2396 /* Should have a valid DPCD by this point */
2397 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2398 return;
2399
2400 if (mode != DRM_MODE_DPMS_ON) {
2401 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2402 DP_SET_POWER_D3);
2403 } else {
2404 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
2405
2406 /*
2407 * When turning on, we need to retry for 1ms to give the sink
2408 * time to wake up.
2409 */
2410 for (i = 0; i < 3; i++) {
2411 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2412 DP_SET_POWER_D0);
2413 if (ret == 1)
2414 break;
2415 msleep(1);
2416 }
2417
2418 if (ret == 1 && lspcon->active)
2419 lspcon_wait_pcon_mode(lspcon);
2420 }
2421
2422 if (ret != 1)
2423 DRM_DEBUG_KMS("failed to %s sink power state\n",
2424 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2425 }
2426
2427 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2428 enum pipe *pipe)
2429 {
2430 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2431 enum port port = dp_to_dig_port(intel_dp)->port;
2432 struct drm_device *dev = encoder->base.dev;
2433 struct drm_i915_private *dev_priv = to_i915(dev);
2434 enum intel_display_power_domain power_domain;
2435 u32 tmp;
2436 bool ret;
2437
2438 power_domain = intel_display_port_power_domain(encoder);
2439 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2440 return false;
2441
2442 ret = false;
2443
2444 tmp = I915_READ(intel_dp->output_reg);
2445
2446 if (!(tmp & DP_PORT_EN))
2447 goto out;
2448
2449 if (IS_GEN7(dev_priv) && port == PORT_A) {
2450 *pipe = PORT_TO_PIPE_CPT(tmp);
2451 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2452 enum pipe p;
2453
2454 for_each_pipe(dev_priv, p) {
2455 u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2456 if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2457 *pipe = p;
2458 ret = true;
2459
2460 goto out;
2461 }
2462 }
2463
2464 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2465 i915_mmio_reg_offset(intel_dp->output_reg));
2466 } else if (IS_CHERRYVIEW(dev_priv)) {
2467 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2468 } else {
2469 *pipe = PORT_TO_PIPE(tmp);
2470 }
2471
2472 ret = true;
2473
2474 out:
2475 intel_display_power_put(dev_priv, power_domain);
2476
2477 return ret;
2478 }
2479
2480 static void intel_dp_get_config(struct intel_encoder *encoder,
2481 struct intel_crtc_state *pipe_config)
2482 {
2483 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2484 u32 tmp, flags = 0;
2485 struct drm_device *dev = encoder->base.dev;
2486 struct drm_i915_private *dev_priv = to_i915(dev);
2487 enum port port = dp_to_dig_port(intel_dp)->port;
2488 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2489
2490 tmp = I915_READ(intel_dp->output_reg);
2491
2492 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2493
2494 if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2495 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2496
2497 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2498 flags |= DRM_MODE_FLAG_PHSYNC;
2499 else
2500 flags |= DRM_MODE_FLAG_NHSYNC;
2501
2502 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2503 flags |= DRM_MODE_FLAG_PVSYNC;
2504 else
2505 flags |= DRM_MODE_FLAG_NVSYNC;
2506 } else {
2507 if (tmp & DP_SYNC_HS_HIGH)
2508 flags |= DRM_MODE_FLAG_PHSYNC;
2509 else
2510 flags |= DRM_MODE_FLAG_NHSYNC;
2511
2512 if (tmp & DP_SYNC_VS_HIGH)
2513 flags |= DRM_MODE_FLAG_PVSYNC;
2514 else
2515 flags |= DRM_MODE_FLAG_NVSYNC;
2516 }
2517
2518 pipe_config->base.adjusted_mode.flags |= flags;
2519
2520 if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
2521 pipe_config->limited_color_range = true;
2522
2523 pipe_config->lane_count =
2524 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2525
2526 intel_dp_get_m_n(crtc, pipe_config);
2527
2528 if (port == PORT_A) {
2529 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2530 pipe_config->port_clock = 162000;
2531 else
2532 pipe_config->port_clock = 270000;
2533 }
2534
2535 pipe_config->base.adjusted_mode.crtc_clock =
2536 intel_dotclock_calculate(pipe_config->port_clock,
2537 &pipe_config->dp_m_n);
2538
2539 if (is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2540 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2541 /*
2542 * This is a big fat ugly hack.
2543 *
2544 * Some machines in UEFI boot mode provide us a VBT that has 18
2545 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2546 * unknown we fail to light up. Yet the same BIOS boots up with
2547 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2548 * max, not what it tells us to use.
2549 *
2550 * Note: This will still be broken if the eDP panel is not lit
2551 * up by the BIOS, and thus we can't get the mode at module
2552 * load.
2553 */
2554 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2555 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2556 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2557 }
2558 }
2559
2560 static void intel_disable_dp(struct intel_encoder *encoder,
2561 struct intel_crtc_state *old_crtc_state,
2562 struct drm_connector_state *old_conn_state)
2563 {
2564 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2565 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2566
2567 if (old_crtc_state->has_audio)
2568 intel_audio_codec_disable(encoder);
2569
2570 if (HAS_PSR(dev_priv) && !HAS_DDI(dev_priv))
2571 intel_psr_disable(intel_dp);
2572
2573 /* Make sure the panel is off before trying to change the mode. But also
2574 * ensure that we have vdd while we switch off the panel. */
2575 intel_edp_panel_vdd_on(intel_dp);
2576 intel_edp_backlight_off(intel_dp);
2577 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2578 intel_edp_panel_off(intel_dp);
2579
2580 /* disable the port before the pipe on g4x */
2581 if (INTEL_GEN(dev_priv) < 5)
2582 intel_dp_link_down(intel_dp);
2583 }
2584
2585 static void ilk_post_disable_dp(struct intel_encoder *encoder,
2586 struct intel_crtc_state *old_crtc_state,
2587 struct drm_connector_state *old_conn_state)
2588 {
2589 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2590 enum port port = dp_to_dig_port(intel_dp)->port;
2591
2592 intel_dp_link_down(intel_dp);
2593
2594 /* Only ilk+ has port A */
2595 if (port == PORT_A)
2596 ironlake_edp_pll_off(intel_dp);
2597 }
2598
2599 static void vlv_post_disable_dp(struct intel_encoder *encoder,
2600 struct intel_crtc_state *old_crtc_state,
2601 struct drm_connector_state *old_conn_state)
2602 {
2603 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2604
2605 intel_dp_link_down(intel_dp);
2606 }
2607
2608 static void chv_post_disable_dp(struct intel_encoder *encoder,
2609 struct intel_crtc_state *old_crtc_state,
2610 struct drm_connector_state *old_conn_state)
2611 {
2612 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2613 struct drm_device *dev = encoder->base.dev;
2614 struct drm_i915_private *dev_priv = to_i915(dev);
2615
2616 intel_dp_link_down(intel_dp);
2617
2618 mutex_lock(&dev_priv->sb_lock);
2619
2620 /* Assert data lane reset */
2621 chv_data_lane_soft_reset(encoder, true);
2622
2623 mutex_unlock(&dev_priv->sb_lock);
2624 }
2625
2626 static void
2627 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2628 uint32_t *DP,
2629 uint8_t dp_train_pat)
2630 {
2631 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2632 struct drm_device *dev = intel_dig_port->base.base.dev;
2633 struct drm_i915_private *dev_priv = to_i915(dev);
2634 enum port port = intel_dig_port->port;
2635
2636 if (dp_train_pat & DP_TRAINING_PATTERN_MASK)
2637 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
2638 dp_train_pat & DP_TRAINING_PATTERN_MASK);
2639
2640 if (HAS_DDI(dev_priv)) {
2641 uint32_t temp = I915_READ(DP_TP_CTL(port));
2642
2643 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2644 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2645 else
2646 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2647
2648 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2649 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2650 case DP_TRAINING_PATTERN_DISABLE:
2651 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2652
2653 break;
2654 case DP_TRAINING_PATTERN_1:
2655 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2656 break;
2657 case DP_TRAINING_PATTERN_2:
2658 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2659 break;
2660 case DP_TRAINING_PATTERN_3:
2661 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2662 break;
2663 }
2664 I915_WRITE(DP_TP_CTL(port), temp);
2665
2666 } else if ((IS_GEN7(dev_priv) && port == PORT_A) ||
2667 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
2668 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2669
2670 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2671 case DP_TRAINING_PATTERN_DISABLE:
2672 *DP |= DP_LINK_TRAIN_OFF_CPT;
2673 break;
2674 case DP_TRAINING_PATTERN_1:
2675 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2676 break;
2677 case DP_TRAINING_PATTERN_2:
2678 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2679 break;
2680 case DP_TRAINING_PATTERN_3:
2681 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2682 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2683 break;
2684 }
2685
2686 } else {
2687 if (IS_CHERRYVIEW(dev_priv))
2688 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2689 else
2690 *DP &= ~DP_LINK_TRAIN_MASK;
2691
2692 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2693 case DP_TRAINING_PATTERN_DISABLE:
2694 *DP |= DP_LINK_TRAIN_OFF;
2695 break;
2696 case DP_TRAINING_PATTERN_1:
2697 *DP |= DP_LINK_TRAIN_PAT_1;
2698 break;
2699 case DP_TRAINING_PATTERN_2:
2700 *DP |= DP_LINK_TRAIN_PAT_2;
2701 break;
2702 case DP_TRAINING_PATTERN_3:
2703 if (IS_CHERRYVIEW(dev_priv)) {
2704 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2705 } else {
2706 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2707 *DP |= DP_LINK_TRAIN_PAT_2;
2708 }
2709 break;
2710 }
2711 }
2712 }
2713
2714 static void intel_dp_enable_port(struct intel_dp *intel_dp,
2715 struct intel_crtc_state *old_crtc_state)
2716 {
2717 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2718 struct drm_i915_private *dev_priv = to_i915(dev);
2719
2720 /* enable with pattern 1 (as per spec) */
2721
2722 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
2723
2724 /*
2725 * Magic for VLV/CHV. We _must_ first set up the register
2726 * without actually enabling the port, and then do another
2727 * write to enable the port. Otherwise link training will
2728 * fail when the power sequencer is freshly used for this port.
2729 */
2730 intel_dp->DP |= DP_PORT_EN;
2731 if (old_crtc_state->has_audio)
2732 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2733
2734 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2735 POSTING_READ(intel_dp->output_reg);
2736 }
2737
2738 static void intel_enable_dp(struct intel_encoder *encoder,
2739 struct intel_crtc_state *pipe_config,
2740 struct drm_connector_state *conn_state)
2741 {
2742 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2743 struct drm_device *dev = encoder->base.dev;
2744 struct drm_i915_private *dev_priv = to_i915(dev);
2745 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2746 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2747 enum pipe pipe = crtc->pipe;
2748
2749 if (WARN_ON(dp_reg & DP_PORT_EN))
2750 return;
2751
2752 pps_lock(intel_dp);
2753
2754 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2755 vlv_init_panel_power_sequencer(intel_dp);
2756
2757 intel_dp_enable_port(intel_dp, pipe_config);
2758
2759 edp_panel_vdd_on(intel_dp);
2760 edp_panel_on(intel_dp);
2761 edp_panel_vdd_off(intel_dp, true);
2762
2763 pps_unlock(intel_dp);
2764
2765 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2766 unsigned int lane_mask = 0x0;
2767
2768 if (IS_CHERRYVIEW(dev_priv))
2769 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
2770
2771 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2772 lane_mask);
2773 }
2774
2775 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2776 intel_dp_start_link_train(intel_dp);
2777 intel_dp_stop_link_train(intel_dp);
2778
2779 if (pipe_config->has_audio) {
2780 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2781 pipe_name(pipe));
2782 intel_audio_codec_enable(encoder, pipe_config, conn_state);
2783 }
2784 }
2785
2786 static void g4x_enable_dp(struct intel_encoder *encoder,
2787 struct intel_crtc_state *pipe_config,
2788 struct drm_connector_state *conn_state)
2789 {
2790 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2791
2792 intel_enable_dp(encoder, pipe_config, conn_state);
2793 intel_edp_backlight_on(intel_dp);
2794 }
2795
2796 static void vlv_enable_dp(struct intel_encoder *encoder,
2797 struct intel_crtc_state *pipe_config,
2798 struct drm_connector_state *conn_state)
2799 {
2800 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2801
2802 intel_edp_backlight_on(intel_dp);
2803 intel_psr_enable(intel_dp);
2804 }
2805
2806 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
2807 struct intel_crtc_state *pipe_config,
2808 struct drm_connector_state *conn_state)
2809 {
2810 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2811 enum port port = dp_to_dig_port(intel_dp)->port;
2812
2813 intel_dp_prepare(encoder, pipe_config);
2814
2815 /* Only ilk+ has port A */
2816 if (port == PORT_A)
2817 ironlake_edp_pll_on(intel_dp, pipe_config);
2818 }
2819
2820 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2821 {
2822 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2823 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
2824 enum pipe pipe = intel_dp->pps_pipe;
2825 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
2826
2827 edp_panel_vdd_off_sync(intel_dp);
2828
2829 /*
2830 * VLV seems to get confused when multiple power seqeuencers
2831 * have the same port selected (even if only one has power/vdd
2832 * enabled). The failure manifests as vlv_wait_port_ready() failing
2833 * CHV on the other hand doesn't seem to mind having the same port
2834 * selected in multiple power seqeuencers, but let's clear the
2835 * port select always when logically disconnecting a power sequencer
2836 * from a port.
2837 */
2838 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2839 pipe_name(pipe), port_name(intel_dig_port->port));
2840 I915_WRITE(pp_on_reg, 0);
2841 POSTING_READ(pp_on_reg);
2842
2843 intel_dp->pps_pipe = INVALID_PIPE;
2844 }
2845
2846 static void vlv_steal_power_sequencer(struct drm_device *dev,
2847 enum pipe pipe)
2848 {
2849 struct drm_i915_private *dev_priv = to_i915(dev);
2850 struct intel_encoder *encoder;
2851
2852 lockdep_assert_held(&dev_priv->pps_mutex);
2853
2854 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2855 return;
2856
2857 for_each_intel_encoder(dev, encoder) {
2858 struct intel_dp *intel_dp;
2859 enum port port;
2860
2861 if (encoder->type != INTEL_OUTPUT_EDP)
2862 continue;
2863
2864 intel_dp = enc_to_intel_dp(&encoder->base);
2865 port = dp_to_dig_port(intel_dp)->port;
2866
2867 if (intel_dp->pps_pipe != pipe)
2868 continue;
2869
2870 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2871 pipe_name(pipe), port_name(port));
2872
2873 WARN(encoder->base.crtc,
2874 "stealing pipe %c power sequencer from active eDP port %c\n",
2875 pipe_name(pipe), port_name(port));
2876
2877 /* make sure vdd is off before we steal it */
2878 vlv_detach_power_sequencer(intel_dp);
2879 }
2880 }
2881
2882 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2883 {
2884 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2885 struct intel_encoder *encoder = &intel_dig_port->base;
2886 struct drm_device *dev = encoder->base.dev;
2887 struct drm_i915_private *dev_priv = to_i915(dev);
2888 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2889
2890 lockdep_assert_held(&dev_priv->pps_mutex);
2891
2892 if (!is_edp(intel_dp))
2893 return;
2894
2895 if (intel_dp->pps_pipe == crtc->pipe)
2896 return;
2897
2898 /*
2899 * If another power sequencer was being used on this
2900 * port previously make sure to turn off vdd there while
2901 * we still have control of it.
2902 */
2903 if (intel_dp->pps_pipe != INVALID_PIPE)
2904 vlv_detach_power_sequencer(intel_dp);
2905
2906 /*
2907 * We may be stealing the power
2908 * sequencer from another port.
2909 */
2910 vlv_steal_power_sequencer(dev, crtc->pipe);
2911
2912 /* now it's all ours */
2913 intel_dp->pps_pipe = crtc->pipe;
2914
2915 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2916 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2917
2918 /* init power sequencer on this pipe and port */
2919 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2920 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2921 }
2922
2923 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
2924 struct intel_crtc_state *pipe_config,
2925 struct drm_connector_state *conn_state)
2926 {
2927 vlv_phy_pre_encoder_enable(encoder);
2928
2929 intel_enable_dp(encoder, pipe_config, conn_state);
2930 }
2931
2932 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
2933 struct intel_crtc_state *pipe_config,
2934 struct drm_connector_state *conn_state)
2935 {
2936 intel_dp_prepare(encoder, pipe_config);
2937
2938 vlv_phy_pre_pll_enable(encoder);
2939 }
2940
2941 static void chv_pre_enable_dp(struct intel_encoder *encoder,
2942 struct intel_crtc_state *pipe_config,
2943 struct drm_connector_state *conn_state)
2944 {
2945 chv_phy_pre_encoder_enable(encoder);
2946
2947 intel_enable_dp(encoder, pipe_config, conn_state);
2948
2949 /* Second common lane will stay alive on its own now */
2950 chv_phy_release_cl2_override(encoder);
2951 }
2952
2953 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
2954 struct intel_crtc_state *pipe_config,
2955 struct drm_connector_state *conn_state)
2956 {
2957 intel_dp_prepare(encoder, pipe_config);
2958
2959 chv_phy_pre_pll_enable(encoder);
2960 }
2961
2962 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
2963 struct intel_crtc_state *pipe_config,
2964 struct drm_connector_state *conn_state)
2965 {
2966 chv_phy_post_pll_disable(encoder);
2967 }
2968
2969 /*
2970 * Fetch AUX CH registers 0x202 - 0x207 which contain
2971 * link status information
2972 */
2973 bool
2974 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2975 {
2976 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
2977 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2978 }
2979
2980 /* These are source-specific values. */
2981 uint8_t
2982 intel_dp_voltage_max(struct intel_dp *intel_dp)
2983 {
2984 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2985 enum port port = dp_to_dig_port(intel_dp)->port;
2986
2987 if (IS_GEN9_LP(dev_priv))
2988 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2989 else if (INTEL_GEN(dev_priv) >= 9) {
2990 if (dev_priv->vbt.edp.low_vswing && port == PORT_A)
2991 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2992 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2993 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2994 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2995 else if (IS_GEN7(dev_priv) && port == PORT_A)
2996 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2997 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
2998 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2999 else
3000 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3001 }
3002
3003 uint8_t
3004 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3005 {
3006 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3007 enum port port = dp_to_dig_port(intel_dp)->port;
3008
3009 if (INTEL_GEN(dev_priv) >= 9) {
3010 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3011 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3012 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3013 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3014 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3015 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3016 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3017 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3018 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3019 default:
3020 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3021 }
3022 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3023 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3024 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3025 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3026 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3027 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3028 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3029 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3030 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3031 default:
3032 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3033 }
3034 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3035 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3036 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3037 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3038 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3039 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3040 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3041 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3042 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3043 default:
3044 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3045 }
3046 } else if (IS_GEN7(dev_priv) && port == PORT_A) {
3047 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3048 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3049 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3050 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3051 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3052 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3053 default:
3054 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3055 }
3056 } else {
3057 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3058 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3059 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3060 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3061 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3062 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3063 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3064 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3065 default:
3066 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3067 }
3068 }
3069 }
3070
3071 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3072 {
3073 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3074 unsigned long demph_reg_value, preemph_reg_value,
3075 uniqtranscale_reg_value;
3076 uint8_t train_set = intel_dp->train_set[0];
3077
3078 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3079 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3080 preemph_reg_value = 0x0004000;
3081 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3082 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3083 demph_reg_value = 0x2B405555;
3084 uniqtranscale_reg_value = 0x552AB83A;
3085 break;
3086 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3087 demph_reg_value = 0x2B404040;
3088 uniqtranscale_reg_value = 0x5548B83A;
3089 break;
3090 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3091 demph_reg_value = 0x2B245555;
3092 uniqtranscale_reg_value = 0x5560B83A;
3093 break;
3094 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3095 demph_reg_value = 0x2B405555;
3096 uniqtranscale_reg_value = 0x5598DA3A;
3097 break;
3098 default:
3099 return 0;
3100 }
3101 break;
3102 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3103 preemph_reg_value = 0x0002000;
3104 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3105 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3106 demph_reg_value = 0x2B404040;
3107 uniqtranscale_reg_value = 0x5552B83A;
3108 break;
3109 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3110 demph_reg_value = 0x2B404848;
3111 uniqtranscale_reg_value = 0x5580B83A;
3112 break;
3113 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3114 demph_reg_value = 0x2B404040;
3115 uniqtranscale_reg_value = 0x55ADDA3A;
3116 break;
3117 default:
3118 return 0;
3119 }
3120 break;
3121 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3122 preemph_reg_value = 0x0000000;
3123 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3124 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3125 demph_reg_value = 0x2B305555;
3126 uniqtranscale_reg_value = 0x5570B83A;
3127 break;
3128 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3129 demph_reg_value = 0x2B2B4040;
3130 uniqtranscale_reg_value = 0x55ADDA3A;
3131 break;
3132 default:
3133 return 0;
3134 }
3135 break;
3136 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3137 preemph_reg_value = 0x0006000;
3138 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3139 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3140 demph_reg_value = 0x1B405555;
3141 uniqtranscale_reg_value = 0x55ADDA3A;
3142 break;
3143 default:
3144 return 0;
3145 }
3146 break;
3147 default:
3148 return 0;
3149 }
3150
3151 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3152 uniqtranscale_reg_value, 0);
3153
3154 return 0;
3155 }
3156
3157 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3158 {
3159 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3160 u32 deemph_reg_value, margin_reg_value;
3161 bool uniq_trans_scale = false;
3162 uint8_t train_set = intel_dp->train_set[0];
3163
3164 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3165 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3166 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3167 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3168 deemph_reg_value = 128;
3169 margin_reg_value = 52;
3170 break;
3171 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3172 deemph_reg_value = 128;
3173 margin_reg_value = 77;
3174 break;
3175 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3176 deemph_reg_value = 128;
3177 margin_reg_value = 102;
3178 break;
3179 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3180 deemph_reg_value = 128;
3181 margin_reg_value = 154;
3182 uniq_trans_scale = true;
3183 break;
3184 default:
3185 return 0;
3186 }
3187 break;
3188 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3189 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3190 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3191 deemph_reg_value = 85;
3192 margin_reg_value = 78;
3193 break;
3194 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3195 deemph_reg_value = 85;
3196 margin_reg_value = 116;
3197 break;
3198 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3199 deemph_reg_value = 85;
3200 margin_reg_value = 154;
3201 break;
3202 default:
3203 return 0;
3204 }
3205 break;
3206 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3207 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3208 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3209 deemph_reg_value = 64;
3210 margin_reg_value = 104;
3211 break;
3212 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3213 deemph_reg_value = 64;
3214 margin_reg_value = 154;
3215 break;
3216 default:
3217 return 0;
3218 }
3219 break;
3220 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3221 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3222 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3223 deemph_reg_value = 43;
3224 margin_reg_value = 154;
3225 break;
3226 default:
3227 return 0;
3228 }
3229 break;
3230 default:
3231 return 0;
3232 }
3233
3234 chv_set_phy_signal_level(encoder, deemph_reg_value,
3235 margin_reg_value, uniq_trans_scale);
3236
3237 return 0;
3238 }
3239
3240 static uint32_t
3241 gen4_signal_levels(uint8_t train_set)
3242 {
3243 uint32_t signal_levels = 0;
3244
3245 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3246 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3247 default:
3248 signal_levels |= DP_VOLTAGE_0_4;
3249 break;
3250 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3251 signal_levels |= DP_VOLTAGE_0_6;
3252 break;
3253 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3254 signal_levels |= DP_VOLTAGE_0_8;
3255 break;
3256 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3257 signal_levels |= DP_VOLTAGE_1_2;
3258 break;
3259 }
3260 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3261 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3262 default:
3263 signal_levels |= DP_PRE_EMPHASIS_0;
3264 break;
3265 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3266 signal_levels |= DP_PRE_EMPHASIS_3_5;
3267 break;
3268 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3269 signal_levels |= DP_PRE_EMPHASIS_6;
3270 break;
3271 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3272 signal_levels |= DP_PRE_EMPHASIS_9_5;
3273 break;
3274 }
3275 return signal_levels;
3276 }
3277
3278 /* Gen6's DP voltage swing and pre-emphasis control */
3279 static uint32_t
3280 gen6_edp_signal_levels(uint8_t train_set)
3281 {
3282 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3283 DP_TRAIN_PRE_EMPHASIS_MASK);
3284 switch (signal_levels) {
3285 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3286 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3287 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3288 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3289 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3290 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3291 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3292 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3293 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3294 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3295 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3296 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3297 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3298 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3299 default:
3300 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3301 "0x%x\n", signal_levels);
3302 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3303 }
3304 }
3305
3306 /* Gen7's DP voltage swing and pre-emphasis control */
3307 static uint32_t
3308 gen7_edp_signal_levels(uint8_t train_set)
3309 {
3310 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3311 DP_TRAIN_PRE_EMPHASIS_MASK);
3312 switch (signal_levels) {
3313 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3314 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3315 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3316 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3317 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3318 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3319
3320 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3321 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3322 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3323 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3324
3325 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3326 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3327 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3328 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3329
3330 default:
3331 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3332 "0x%x\n", signal_levels);
3333 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3334 }
3335 }
3336
3337 void
3338 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3339 {
3340 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3341 enum port port = intel_dig_port->port;
3342 struct drm_device *dev = intel_dig_port->base.base.dev;
3343 struct drm_i915_private *dev_priv = to_i915(dev);
3344 uint32_t signal_levels, mask = 0;
3345 uint8_t train_set = intel_dp->train_set[0];
3346
3347 if (HAS_DDI(dev_priv)) {
3348 signal_levels = ddi_signal_levels(intel_dp);
3349
3350 if (IS_BROXTON(dev_priv))
3351 signal_levels = 0;
3352 else
3353 mask = DDI_BUF_EMP_MASK;
3354 } else if (IS_CHERRYVIEW(dev_priv)) {
3355 signal_levels = chv_signal_levels(intel_dp);
3356 } else if (IS_VALLEYVIEW(dev_priv)) {
3357 signal_levels = vlv_signal_levels(intel_dp);
3358 } else if (IS_GEN7(dev_priv) && port == PORT_A) {
3359 signal_levels = gen7_edp_signal_levels(train_set);
3360 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3361 } else if (IS_GEN6(dev_priv) && port == PORT_A) {
3362 signal_levels = gen6_edp_signal_levels(train_set);
3363 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3364 } else {
3365 signal_levels = gen4_signal_levels(train_set);
3366 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3367 }
3368
3369 if (mask)
3370 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3371
3372 DRM_DEBUG_KMS("Using vswing level %d\n",
3373 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3374 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3375 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3376 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3377
3378 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3379
3380 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3381 POSTING_READ(intel_dp->output_reg);
3382 }
3383
3384 void
3385 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3386 uint8_t dp_train_pat)
3387 {
3388 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3389 struct drm_i915_private *dev_priv =
3390 to_i915(intel_dig_port->base.base.dev);
3391
3392 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3393
3394 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3395 POSTING_READ(intel_dp->output_reg);
3396 }
3397
3398 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3399 {
3400 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3401 struct drm_device *dev = intel_dig_port->base.base.dev;
3402 struct drm_i915_private *dev_priv = to_i915(dev);
3403 enum port port = intel_dig_port->port;
3404 uint32_t val;
3405
3406 if (!HAS_DDI(dev_priv))
3407 return;
3408
3409 val = I915_READ(DP_TP_CTL(port));
3410 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3411 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3412 I915_WRITE(DP_TP_CTL(port), val);
3413
3414 /*
3415 * On PORT_A we can have only eDP in SST mode. There the only reason
3416 * we need to set idle transmission mode is to work around a HW issue
3417 * where we enable the pipe while not in idle link-training mode.
3418 * In this case there is requirement to wait for a minimum number of
3419 * idle patterns to be sent.
3420 */
3421 if (port == PORT_A)
3422 return;
3423
3424 if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
3425 DP_TP_STATUS_IDLE_DONE,
3426 DP_TP_STATUS_IDLE_DONE,
3427 1))
3428 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3429 }
3430
3431 static void
3432 intel_dp_link_down(struct intel_dp *intel_dp)
3433 {
3434 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3435 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3436 enum port port = intel_dig_port->port;
3437 struct drm_device *dev = intel_dig_port->base.base.dev;
3438 struct drm_i915_private *dev_priv = to_i915(dev);
3439 uint32_t DP = intel_dp->DP;
3440
3441 if (WARN_ON(HAS_DDI(dev_priv)))
3442 return;
3443
3444 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3445 return;
3446
3447 DRM_DEBUG_KMS("\n");
3448
3449 if ((IS_GEN7(dev_priv) && port == PORT_A) ||
3450 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3451 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3452 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3453 } else {
3454 if (IS_CHERRYVIEW(dev_priv))
3455 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3456 else
3457 DP &= ~DP_LINK_TRAIN_MASK;
3458 DP |= DP_LINK_TRAIN_PAT_IDLE;
3459 }
3460 I915_WRITE(intel_dp->output_reg, DP);
3461 POSTING_READ(intel_dp->output_reg);
3462
3463 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3464 I915_WRITE(intel_dp->output_reg, DP);
3465 POSTING_READ(intel_dp->output_reg);
3466
3467 /*
3468 * HW workaround for IBX, we need to move the port
3469 * to transcoder A after disabling it to allow the
3470 * matching HDMI port to be enabled on transcoder A.
3471 */
3472 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
3473 /*
3474 * We get CPU/PCH FIFO underruns on the other pipe when
3475 * doing the workaround. Sweep them under the rug.
3476 */
3477 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3478 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3479
3480 /* always enable with pattern 1 (as per spec) */
3481 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3482 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3483 I915_WRITE(intel_dp->output_reg, DP);
3484 POSTING_READ(intel_dp->output_reg);
3485
3486 DP &= ~DP_PORT_EN;
3487 I915_WRITE(intel_dp->output_reg, DP);
3488 POSTING_READ(intel_dp->output_reg);
3489
3490 intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
3491 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3492 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3493 }
3494
3495 msleep(intel_dp->panel_power_down_delay);
3496
3497 intel_dp->DP = DP;
3498 }
3499
3500 bool
3501 intel_dp_read_dpcd(struct intel_dp *intel_dp)
3502 {
3503 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
3504 sizeof(intel_dp->dpcd)) < 0)
3505 return false; /* aux transfer failed */
3506
3507 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3508
3509 return intel_dp->dpcd[DP_DPCD_REV] != 0;
3510 }
3511
3512 static bool
3513 intel_edp_init_dpcd(struct intel_dp *intel_dp)
3514 {
3515 struct drm_i915_private *dev_priv =
3516 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
3517
3518 /* this function is meant to be called only once */
3519 WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
3520
3521 if (!intel_dp_read_dpcd(intel_dp))
3522 return false;
3523
3524 intel_dp_read_desc(intel_dp);
3525
3526 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3527 dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3528 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3529
3530 /* Check if the panel supports PSR */
3531 drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT,
3532 intel_dp->psr_dpcd,
3533 sizeof(intel_dp->psr_dpcd));
3534 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3535 dev_priv->psr.sink_support = true;
3536 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3537 }
3538
3539 if (INTEL_GEN(dev_priv) >= 9 &&
3540 (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3541 uint8_t frame_sync_cap;
3542
3543 dev_priv->psr.sink_support = true;
3544 drm_dp_dpcd_read(&intel_dp->aux,
3545 DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3546 &frame_sync_cap, 1);
3547 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3548 /* PSR2 needs frame sync as well */
3549 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3550 DRM_DEBUG_KMS("PSR2 %s on sink",
3551 dev_priv->psr.psr2_support ? "supported" : "not supported");
3552 }
3553
3554 /* Read the eDP Display control capabilities registers */
3555 if ((intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3556 drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
3557 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
3558 sizeof(intel_dp->edp_dpcd))
3559 DRM_DEBUG_KMS("EDP DPCD : %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
3560 intel_dp->edp_dpcd);
3561
3562 /* Intermediate frequency support */
3563 if (intel_dp->edp_dpcd[0] >= 0x03) { /* eDp v1.4 or higher */
3564 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3565 int i;
3566
3567 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
3568 sink_rates, sizeof(sink_rates));
3569
3570 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3571 int val = le16_to_cpu(sink_rates[i]);
3572
3573 if (val == 0)
3574 break;
3575
3576 /* Value read is in kHz while drm clock is saved in deca-kHz */
3577 intel_dp->sink_rates[i] = (val * 200) / 10;
3578 }
3579 intel_dp->num_sink_rates = i;
3580 }
3581
3582 return true;
3583 }
3584
3585
3586 static bool
3587 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3588 {
3589 if (!intel_dp_read_dpcd(intel_dp))
3590 return false;
3591
3592 if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT,
3593 &intel_dp->sink_count, 1) < 0)
3594 return false;
3595
3596 /*
3597 * Sink count can change between short pulse hpd hence
3598 * a member variable in intel_dp will track any changes
3599 * between short pulse interrupts.
3600 */
3601 intel_dp->sink_count = DP_GET_SINK_COUNT(intel_dp->sink_count);
3602
3603 /*
3604 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3605 * a dongle is present but no display. Unless we require to know
3606 * if a dongle is present or not, we don't need to update
3607 * downstream port information. So, an early return here saves
3608 * time from performing other operations which are not required.
3609 */
3610 if (!is_edp(intel_dp) && !intel_dp->sink_count)
3611 return false;
3612
3613 if (!drm_dp_is_branch(intel_dp->dpcd))
3614 return true; /* native DP sink */
3615
3616 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3617 return true; /* no per-port downstream info */
3618
3619 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3620 intel_dp->downstream_ports,
3621 DP_MAX_DOWNSTREAM_PORTS) < 0)
3622 return false; /* downstream port status fetch failed */
3623
3624 return true;
3625 }
3626
3627 static bool
3628 intel_dp_can_mst(struct intel_dp *intel_dp)
3629 {
3630 u8 buf[1];
3631
3632 if (!i915.enable_dp_mst)
3633 return false;
3634
3635 if (!intel_dp->can_mst)
3636 return false;
3637
3638 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3639 return false;
3640
3641 if (drm_dp_dpcd_read(&intel_dp->aux, DP_MSTM_CAP, buf, 1) != 1)
3642 return false;
3643
3644 return buf[0] & DP_MST_CAP;
3645 }
3646
3647 static void
3648 intel_dp_configure_mst(struct intel_dp *intel_dp)
3649 {
3650 if (!i915.enable_dp_mst)
3651 return;
3652
3653 if (!intel_dp->can_mst)
3654 return;
3655
3656 intel_dp->is_mst = intel_dp_can_mst(intel_dp);
3657
3658 if (intel_dp->is_mst)
3659 DRM_DEBUG_KMS("Sink is MST capable\n");
3660 else
3661 DRM_DEBUG_KMS("Sink is not MST capable\n");
3662
3663 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
3664 intel_dp->is_mst);
3665 }
3666
3667 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3668 {
3669 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3670 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3671 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3672 u8 buf;
3673 int ret = 0;
3674 int count = 0;
3675 int attempts = 10;
3676
3677 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3678 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3679 ret = -EIO;
3680 goto out;
3681 }
3682
3683 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3684 buf & ~DP_TEST_SINK_START) < 0) {
3685 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3686 ret = -EIO;
3687 goto out;
3688 }
3689
3690 do {
3691 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
3692
3693 if (drm_dp_dpcd_readb(&intel_dp->aux,
3694 DP_TEST_SINK_MISC, &buf) < 0) {
3695 ret = -EIO;
3696 goto out;
3697 }
3698 count = buf & DP_TEST_COUNT_MASK;
3699 } while (--attempts && count);
3700
3701 if (attempts == 0) {
3702 DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
3703 ret = -ETIMEDOUT;
3704 }
3705
3706 out:
3707 hsw_enable_ips(intel_crtc);
3708 return ret;
3709 }
3710
3711 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
3712 {
3713 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3714 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3715 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3716 u8 buf;
3717 int ret;
3718
3719 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3720 return -EIO;
3721
3722 if (!(buf & DP_TEST_CRC_SUPPORTED))
3723 return -ENOTTY;
3724
3725 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3726 return -EIO;
3727
3728 if (buf & DP_TEST_SINK_START) {
3729 ret = intel_dp_sink_crc_stop(intel_dp);
3730 if (ret)
3731 return ret;
3732 }
3733
3734 hsw_disable_ips(intel_crtc);
3735
3736 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3737 buf | DP_TEST_SINK_START) < 0) {
3738 hsw_enable_ips(intel_crtc);
3739 return -EIO;
3740 }
3741
3742 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
3743 return 0;
3744 }
3745
3746 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3747 {
3748 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3749 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3750 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3751 u8 buf;
3752 int count, ret;
3753 int attempts = 6;
3754
3755 ret = intel_dp_sink_crc_start(intel_dp);
3756 if (ret)
3757 return ret;
3758
3759 do {
3760 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
3761
3762 if (drm_dp_dpcd_readb(&intel_dp->aux,
3763 DP_TEST_SINK_MISC, &buf) < 0) {
3764 ret = -EIO;
3765 goto stop;
3766 }
3767 count = buf & DP_TEST_COUNT_MASK;
3768
3769 } while (--attempts && count == 0);
3770
3771 if (attempts == 0) {
3772 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
3773 ret = -ETIMEDOUT;
3774 goto stop;
3775 }
3776
3777 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
3778 ret = -EIO;
3779 goto stop;
3780 }
3781
3782 stop:
3783 intel_dp_sink_crc_stop(intel_dp);
3784 return ret;
3785 }
3786
3787 static bool
3788 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3789 {
3790 return drm_dp_dpcd_read(&intel_dp->aux,
3791 DP_DEVICE_SERVICE_IRQ_VECTOR,
3792 sink_irq_vector, 1) == 1;
3793 }
3794
3795 static bool
3796 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3797 {
3798 int ret;
3799
3800 ret = drm_dp_dpcd_read(&intel_dp->aux,
3801 DP_SINK_COUNT_ESI,
3802 sink_irq_vector, 14);
3803 if (ret != 14)
3804 return false;
3805
3806 return true;
3807 }
3808
3809 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
3810 {
3811 uint8_t test_result = DP_TEST_ACK;
3812 return test_result;
3813 }
3814
3815 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
3816 {
3817 uint8_t test_result = DP_TEST_NAK;
3818 return test_result;
3819 }
3820
3821 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
3822 {
3823 uint8_t test_result = DP_TEST_NAK;
3824 struct intel_connector *intel_connector = intel_dp->attached_connector;
3825 struct drm_connector *connector = &intel_connector->base;
3826
3827 if (intel_connector->detect_edid == NULL ||
3828 connector->edid_corrupt ||
3829 intel_dp->aux.i2c_defer_count > 6) {
3830 /* Check EDID read for NACKs, DEFERs and corruption
3831 * (DP CTS 1.2 Core r1.1)
3832 * 4.2.2.4 : Failed EDID read, I2C_NAK
3833 * 4.2.2.5 : Failed EDID read, I2C_DEFER
3834 * 4.2.2.6 : EDID corruption detected
3835 * Use failsafe mode for all cases
3836 */
3837 if (intel_dp->aux.i2c_nack_count > 0 ||
3838 intel_dp->aux.i2c_defer_count > 0)
3839 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
3840 intel_dp->aux.i2c_nack_count,
3841 intel_dp->aux.i2c_defer_count);
3842 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
3843 } else {
3844 struct edid *block = intel_connector->detect_edid;
3845
3846 /* We have to write the checksum
3847 * of the last block read
3848 */
3849 block += intel_connector->detect_edid->extensions;
3850
3851 if (!drm_dp_dpcd_write(&intel_dp->aux,
3852 DP_TEST_EDID_CHECKSUM,
3853 &block->checksum,
3854 1))
3855 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
3856
3857 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
3858 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
3859 }
3860
3861 /* Set test active flag here so userspace doesn't interrupt things */
3862 intel_dp->compliance_test_active = 1;
3863
3864 return test_result;
3865 }
3866
3867 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
3868 {
3869 uint8_t test_result = DP_TEST_NAK;
3870 return test_result;
3871 }
3872
3873 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
3874 {
3875 uint8_t response = DP_TEST_NAK;
3876 uint8_t rxdata = 0;
3877 int status = 0;
3878
3879 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
3880 if (status <= 0) {
3881 DRM_DEBUG_KMS("Could not read test request from sink\n");
3882 goto update_status;
3883 }
3884
3885 switch (rxdata) {
3886 case DP_TEST_LINK_TRAINING:
3887 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
3888 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
3889 response = intel_dp_autotest_link_training(intel_dp);
3890 break;
3891 case DP_TEST_LINK_VIDEO_PATTERN:
3892 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
3893 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
3894 response = intel_dp_autotest_video_pattern(intel_dp);
3895 break;
3896 case DP_TEST_LINK_EDID_READ:
3897 DRM_DEBUG_KMS("EDID test requested\n");
3898 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
3899 response = intel_dp_autotest_edid(intel_dp);
3900 break;
3901 case DP_TEST_LINK_PHY_TEST_PATTERN:
3902 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
3903 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
3904 response = intel_dp_autotest_phy_pattern(intel_dp);
3905 break;
3906 default:
3907 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
3908 break;
3909 }
3910
3911 update_status:
3912 status = drm_dp_dpcd_write(&intel_dp->aux,
3913 DP_TEST_RESPONSE,
3914 &response, 1);
3915 if (status <= 0)
3916 DRM_DEBUG_KMS("Could not write test response to sink\n");
3917 }
3918
3919 static int
3920 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3921 {
3922 bool bret;
3923
3924 if (intel_dp->is_mst) {
3925 u8 esi[16] = { 0 };
3926 int ret = 0;
3927 int retry;
3928 bool handled;
3929 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3930 go_again:
3931 if (bret == true) {
3932
3933 /* check link status - esi[10] = 0x200c */
3934 if (intel_dp->active_mst_links &&
3935 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3936 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3937 intel_dp_start_link_train(intel_dp);
3938 intel_dp_stop_link_train(intel_dp);
3939 }
3940
3941 DRM_DEBUG_KMS("got esi %3ph\n", esi);
3942 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3943
3944 if (handled) {
3945 for (retry = 0; retry < 3; retry++) {
3946 int wret;
3947 wret = drm_dp_dpcd_write(&intel_dp->aux,
3948 DP_SINK_COUNT_ESI+1,
3949 &esi[1], 3);
3950 if (wret == 3) {
3951 break;
3952 }
3953 }
3954
3955 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3956 if (bret == true) {
3957 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
3958 goto go_again;
3959 }
3960 } else
3961 ret = 0;
3962
3963 return ret;
3964 } else {
3965 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3966 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3967 intel_dp->is_mst = false;
3968 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3969 /* send a hotplug event */
3970 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3971 }
3972 }
3973 return -EINVAL;
3974 }
3975
3976 static void
3977 intel_dp_retrain_link(struct intel_dp *intel_dp)
3978 {
3979 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3980 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3981 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
3982
3983 /* Suppress underruns caused by re-training */
3984 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
3985 if (crtc->config->has_pch_encoder)
3986 intel_set_pch_fifo_underrun_reporting(dev_priv,
3987 intel_crtc_pch_transcoder(crtc), false);
3988
3989 intel_dp_start_link_train(intel_dp);
3990 intel_dp_stop_link_train(intel_dp);
3991
3992 /* Keep underrun reporting disabled until things are stable */
3993 intel_wait_for_vblank(dev_priv, crtc->pipe);
3994
3995 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
3996 if (crtc->config->has_pch_encoder)
3997 intel_set_pch_fifo_underrun_reporting(dev_priv,
3998 intel_crtc_pch_transcoder(crtc), true);
3999 }
4000
4001 static void
4002 intel_dp_check_link_status(struct intel_dp *intel_dp)
4003 {
4004 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4005 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4006 u8 link_status[DP_LINK_STATUS_SIZE];
4007
4008 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4009
4010 if (!intel_dp_get_link_status(intel_dp, link_status)) {
4011 DRM_ERROR("Failed to get link status\n");
4012 return;
4013 }
4014
4015 if (!intel_encoder->base.crtc)
4016 return;
4017
4018 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4019 return;
4020
4021 /* FIXME: we need to synchronize this sort of stuff with hardware
4022 * readout */
4023 if (WARN_ON_ONCE(!intel_dp->lane_count))
4024 return;
4025
4026 /* if link training is requested we should perform it always */
4027 if ((intel_dp->compliance_test_type == DP_TEST_LINK_TRAINING) ||
4028 (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count))) {
4029 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4030 intel_encoder->base.name);
4031
4032 intel_dp_retrain_link(intel_dp);
4033 }
4034 }
4035
4036 /*
4037 * According to DP spec
4038 * 5.1.2:
4039 * 1. Read DPCD
4040 * 2. Configure link according to Receiver Capabilities
4041 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4042 * 4. Check link status on receipt of hot-plug interrupt
4043 *
4044 * intel_dp_short_pulse - handles short pulse interrupts
4045 * when full detection is not required.
4046 * Returns %true if short pulse is handled and full detection
4047 * is NOT required and %false otherwise.
4048 */
4049 static bool
4050 intel_dp_short_pulse(struct intel_dp *intel_dp)
4051 {
4052 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4053 u8 sink_irq_vector = 0;
4054 u8 old_sink_count = intel_dp->sink_count;
4055 bool ret;
4056
4057 /*
4058 * Clearing compliance test variables to allow capturing
4059 * of values for next automated test request.
4060 */
4061 intel_dp->compliance_test_active = 0;
4062 intel_dp->compliance_test_type = 0;
4063 intel_dp->compliance_test_data = 0;
4064
4065 /*
4066 * Now read the DPCD to see if it's actually running
4067 * If the current value of sink count doesn't match with
4068 * the value that was stored earlier or dpcd read failed
4069 * we need to do full detection
4070 */
4071 ret = intel_dp_get_dpcd(intel_dp);
4072
4073 if ((old_sink_count != intel_dp->sink_count) || !ret) {
4074 /* No need to proceed if we are going to do full detect */
4075 return false;
4076 }
4077
4078 /* Try to read the source of the interrupt */
4079 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4080 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4081 sink_irq_vector != 0) {
4082 /* Clear interrupt source */
4083 drm_dp_dpcd_writeb(&intel_dp->aux,
4084 DP_DEVICE_SERVICE_IRQ_VECTOR,
4085 sink_irq_vector);
4086
4087 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4088 DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4089 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4090 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4091 }
4092
4093 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4094 intel_dp_check_link_status(intel_dp);
4095 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4096
4097 return true;
4098 }
4099
4100 /* XXX this is probably wrong for multiple downstream ports */
4101 static enum drm_connector_status
4102 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4103 {
4104 uint8_t *dpcd = intel_dp->dpcd;
4105 uint8_t type;
4106
4107 if (!intel_dp_get_dpcd(intel_dp))
4108 return connector_status_disconnected;
4109
4110 if (is_edp(intel_dp))
4111 return connector_status_connected;
4112
4113 /* if there's no downstream port, we're done */
4114 if (!drm_dp_is_branch(dpcd))
4115 return connector_status_connected;
4116
4117 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4118 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4119 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4120
4121 return intel_dp->sink_count ?
4122 connector_status_connected : connector_status_disconnected;
4123 }
4124
4125 if (intel_dp_can_mst(intel_dp))
4126 return connector_status_connected;
4127
4128 /* If no HPD, poke DDC gently */
4129 if (drm_probe_ddc(&intel_dp->aux.ddc))
4130 return connector_status_connected;
4131
4132 /* Well we tried, say unknown for unreliable port types */
4133 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4134 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4135 if (type == DP_DS_PORT_TYPE_VGA ||
4136 type == DP_DS_PORT_TYPE_NON_EDID)
4137 return connector_status_unknown;
4138 } else {
4139 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4140 DP_DWN_STRM_PORT_TYPE_MASK;
4141 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4142 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4143 return connector_status_unknown;
4144 }
4145
4146 /* Anything else is out of spec, warn and ignore */
4147 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4148 return connector_status_disconnected;
4149 }
4150
4151 static enum drm_connector_status
4152 edp_detect(struct intel_dp *intel_dp)
4153 {
4154 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4155 enum drm_connector_status status;
4156
4157 status = intel_panel_detect(dev);
4158 if (status == connector_status_unknown)
4159 status = connector_status_connected;
4160
4161 return status;
4162 }
4163
4164 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4165 struct intel_digital_port *port)
4166 {
4167 u32 bit;
4168
4169 switch (port->port) {
4170 case PORT_A:
4171 return true;
4172 case PORT_B:
4173 bit = SDE_PORTB_HOTPLUG;
4174 break;
4175 case PORT_C:
4176 bit = SDE_PORTC_HOTPLUG;
4177 break;
4178 case PORT_D:
4179 bit = SDE_PORTD_HOTPLUG;
4180 break;
4181 default:
4182 MISSING_CASE(port->port);
4183 return false;
4184 }
4185
4186 return I915_READ(SDEISR) & bit;
4187 }
4188
4189 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4190 struct intel_digital_port *port)
4191 {
4192 u32 bit;
4193
4194 switch (port->port) {
4195 case PORT_A:
4196 return true;
4197 case PORT_B:
4198 bit = SDE_PORTB_HOTPLUG_CPT;
4199 break;
4200 case PORT_C:
4201 bit = SDE_PORTC_HOTPLUG_CPT;
4202 break;
4203 case PORT_D:
4204 bit = SDE_PORTD_HOTPLUG_CPT;
4205 break;
4206 case PORT_E:
4207 bit = SDE_PORTE_HOTPLUG_SPT;
4208 break;
4209 default:
4210 MISSING_CASE(port->port);
4211 return false;
4212 }
4213
4214 return I915_READ(SDEISR) & bit;
4215 }
4216
4217 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4218 struct intel_digital_port *port)
4219 {
4220 u32 bit;
4221
4222 switch (port->port) {
4223 case PORT_B:
4224 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4225 break;
4226 case PORT_C:
4227 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4228 break;
4229 case PORT_D:
4230 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4231 break;
4232 default:
4233 MISSING_CASE(port->port);
4234 return false;
4235 }
4236
4237 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4238 }
4239
4240 static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
4241 struct intel_digital_port *port)
4242 {
4243 u32 bit;
4244
4245 switch (port->port) {
4246 case PORT_B:
4247 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4248 break;
4249 case PORT_C:
4250 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4251 break;
4252 case PORT_D:
4253 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4254 break;
4255 default:
4256 MISSING_CASE(port->port);
4257 return false;
4258 }
4259
4260 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4261 }
4262
4263 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4264 struct intel_digital_port *intel_dig_port)
4265 {
4266 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4267 enum port port;
4268 u32 bit;
4269
4270 intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4271 switch (port) {
4272 case PORT_A:
4273 bit = BXT_DE_PORT_HP_DDIA;
4274 break;
4275 case PORT_B:
4276 bit = BXT_DE_PORT_HP_DDIB;
4277 break;
4278 case PORT_C:
4279 bit = BXT_DE_PORT_HP_DDIC;
4280 break;
4281 default:
4282 MISSING_CASE(port);
4283 return false;
4284 }
4285
4286 return I915_READ(GEN8_DE_PORT_ISR) & bit;
4287 }
4288
4289 /*
4290 * intel_digital_port_connected - is the specified port connected?
4291 * @dev_priv: i915 private structure
4292 * @port: the port to test
4293 *
4294 * Return %true if @port is connected, %false otherwise.
4295 */
4296 static bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4297 struct intel_digital_port *port)
4298 {
4299 if (HAS_PCH_IBX(dev_priv))
4300 return ibx_digital_port_connected(dev_priv, port);
4301 else if (HAS_PCH_SPLIT(dev_priv))
4302 return cpt_digital_port_connected(dev_priv, port);
4303 else if (IS_GEN9_LP(dev_priv))
4304 return bxt_digital_port_connected(dev_priv, port);
4305 else if (IS_GM45(dev_priv))
4306 return gm45_digital_port_connected(dev_priv, port);
4307 else
4308 return g4x_digital_port_connected(dev_priv, port);
4309 }
4310
4311 static struct edid *
4312 intel_dp_get_edid(struct intel_dp *intel_dp)
4313 {
4314 struct intel_connector *intel_connector = intel_dp->attached_connector;
4315
4316 /* use cached edid if we have one */
4317 if (intel_connector->edid) {
4318 /* invalid edid */
4319 if (IS_ERR(intel_connector->edid))
4320 return NULL;
4321
4322 return drm_edid_duplicate(intel_connector->edid);
4323 } else
4324 return drm_get_edid(&intel_connector->base,
4325 &intel_dp->aux.ddc);
4326 }
4327
4328 static void
4329 intel_dp_set_edid(struct intel_dp *intel_dp)
4330 {
4331 struct intel_connector *intel_connector = intel_dp->attached_connector;
4332 struct edid *edid;
4333
4334 intel_dp_unset_edid(intel_dp);
4335 edid = intel_dp_get_edid(intel_dp);
4336 intel_connector->detect_edid = edid;
4337
4338 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4339 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4340 else
4341 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4342 }
4343
4344 static void
4345 intel_dp_unset_edid(struct intel_dp *intel_dp)
4346 {
4347 struct intel_connector *intel_connector = intel_dp->attached_connector;
4348
4349 kfree(intel_connector->detect_edid);
4350 intel_connector->detect_edid = NULL;
4351
4352 intel_dp->has_audio = false;
4353 }
4354
4355 static enum drm_connector_status
4356 intel_dp_long_pulse(struct intel_connector *intel_connector)
4357 {
4358 struct drm_connector *connector = &intel_connector->base;
4359 struct intel_dp *intel_dp = intel_attached_dp(connector);
4360 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4361 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4362 struct drm_device *dev = connector->dev;
4363 enum drm_connector_status status;
4364 enum intel_display_power_domain power_domain;
4365 u8 sink_irq_vector = 0;
4366
4367 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4368 intel_display_power_get(to_i915(dev), power_domain);
4369
4370 /* Can't disconnect eDP, but you can close the lid... */
4371 if (is_edp(intel_dp))
4372 status = edp_detect(intel_dp);
4373 else if (intel_digital_port_connected(to_i915(dev),
4374 dp_to_dig_port(intel_dp)))
4375 status = intel_dp_detect_dpcd(intel_dp);
4376 else
4377 status = connector_status_disconnected;
4378
4379 if (status == connector_status_disconnected) {
4380 intel_dp->compliance_test_active = 0;
4381 intel_dp->compliance_test_type = 0;
4382 intel_dp->compliance_test_data = 0;
4383
4384 if (intel_dp->is_mst) {
4385 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4386 intel_dp->is_mst,
4387 intel_dp->mst_mgr.mst_state);
4388 intel_dp->is_mst = false;
4389 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4390 intel_dp->is_mst);
4391 }
4392
4393 goto out;
4394 }
4395
4396 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4397 intel_encoder->type = INTEL_OUTPUT_DP;
4398
4399 DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
4400 yesno(intel_dp_source_supports_hbr2(intel_dp)),
4401 yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
4402
4403 intel_dp_print_rates(intel_dp);
4404
4405 intel_dp_read_desc(intel_dp);
4406
4407 intel_dp_configure_mst(intel_dp);
4408
4409 if (intel_dp->is_mst) {
4410 /*
4411 * If we are in MST mode then this connector
4412 * won't appear connected or have anything
4413 * with EDID on it
4414 */
4415 status = connector_status_disconnected;
4416 goto out;
4417 } else if (connector->status == connector_status_connected) {
4418 /*
4419 * If display was connected already and is still connected
4420 * check links status, there has been known issues of
4421 * link loss triggerring long pulse!!!!
4422 */
4423 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4424 intel_dp_check_link_status(intel_dp);
4425 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4426 goto out;
4427 }
4428
4429 /*
4430 * Clearing NACK and defer counts to get their exact values
4431 * while reading EDID which are required by Compliance tests
4432 * 4.2.2.4 and 4.2.2.5
4433 */
4434 intel_dp->aux.i2c_nack_count = 0;
4435 intel_dp->aux.i2c_defer_count = 0;
4436
4437 intel_dp_set_edid(intel_dp);
4438 if (is_edp(intel_dp) || intel_connector->detect_edid)
4439 status = connector_status_connected;
4440 intel_dp->detect_done = true;
4441
4442 /* Try to read the source of the interrupt */
4443 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4444 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4445 sink_irq_vector != 0) {
4446 /* Clear interrupt source */
4447 drm_dp_dpcd_writeb(&intel_dp->aux,
4448 DP_DEVICE_SERVICE_IRQ_VECTOR,
4449 sink_irq_vector);
4450
4451 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4452 intel_dp_handle_test_request(intel_dp);
4453 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4454 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4455 }
4456
4457 out:
4458 if (status != connector_status_connected && !intel_dp->is_mst)
4459 intel_dp_unset_edid(intel_dp);
4460
4461 intel_display_power_put(to_i915(dev), power_domain);
4462 return status;
4463 }
4464
4465 static enum drm_connector_status
4466 intel_dp_detect(struct drm_connector *connector, bool force)
4467 {
4468 struct intel_dp *intel_dp = intel_attached_dp(connector);
4469 enum drm_connector_status status = connector->status;
4470
4471 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4472 connector->base.id, connector->name);
4473
4474 /* If full detect is not performed yet, do a full detect */
4475 if (!intel_dp->detect_done)
4476 status = intel_dp_long_pulse(intel_dp->attached_connector);
4477
4478 intel_dp->detect_done = false;
4479
4480 return status;
4481 }
4482
4483 static void
4484 intel_dp_force(struct drm_connector *connector)
4485 {
4486 struct intel_dp *intel_dp = intel_attached_dp(connector);
4487 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4488 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4489 enum intel_display_power_domain power_domain;
4490
4491 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4492 connector->base.id, connector->name);
4493 intel_dp_unset_edid(intel_dp);
4494
4495 if (connector->status != connector_status_connected)
4496 return;
4497
4498 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4499 intel_display_power_get(dev_priv, power_domain);
4500
4501 intel_dp_set_edid(intel_dp);
4502
4503 intel_display_power_put(dev_priv, power_domain);
4504
4505 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4506 intel_encoder->type = INTEL_OUTPUT_DP;
4507 }
4508
4509 static int intel_dp_get_modes(struct drm_connector *connector)
4510 {
4511 struct intel_connector *intel_connector = to_intel_connector(connector);
4512 struct edid *edid;
4513
4514 edid = intel_connector->detect_edid;
4515 if (edid) {
4516 int ret = intel_connector_update_modes(connector, edid);
4517 if (ret)
4518 return ret;
4519 }
4520
4521 /* if eDP has no EDID, fall back to fixed mode */
4522 if (is_edp(intel_attached_dp(connector)) &&
4523 intel_connector->panel.fixed_mode) {
4524 struct drm_display_mode *mode;
4525
4526 mode = drm_mode_duplicate(connector->dev,
4527 intel_connector->panel.fixed_mode);
4528 if (mode) {
4529 drm_mode_probed_add(connector, mode);
4530 return 1;
4531 }
4532 }
4533
4534 return 0;
4535 }
4536
4537 static bool
4538 intel_dp_detect_audio(struct drm_connector *connector)
4539 {
4540 bool has_audio = false;
4541 struct edid *edid;
4542
4543 edid = to_intel_connector(connector)->detect_edid;
4544 if (edid)
4545 has_audio = drm_detect_monitor_audio(edid);
4546
4547 return has_audio;
4548 }
4549
4550 static int
4551 intel_dp_set_property(struct drm_connector *connector,
4552 struct drm_property *property,
4553 uint64_t val)
4554 {
4555 struct drm_i915_private *dev_priv = to_i915(connector->dev);
4556 struct intel_connector *intel_connector = to_intel_connector(connector);
4557 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4558 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4559 int ret;
4560
4561 ret = drm_object_property_set_value(&connector->base, property, val);
4562 if (ret)
4563 return ret;
4564
4565 if (property == dev_priv->force_audio_property) {
4566 int i = val;
4567 bool has_audio;
4568
4569 if (i == intel_dp->force_audio)
4570 return 0;
4571
4572 intel_dp->force_audio = i;
4573
4574 if (i == HDMI_AUDIO_AUTO)
4575 has_audio = intel_dp_detect_audio(connector);
4576 else
4577 has_audio = (i == HDMI_AUDIO_ON);
4578
4579 if (has_audio == intel_dp->has_audio)
4580 return 0;
4581
4582 intel_dp->has_audio = has_audio;
4583 goto done;
4584 }
4585
4586 if (property == dev_priv->broadcast_rgb_property) {
4587 bool old_auto = intel_dp->color_range_auto;
4588 bool old_range = intel_dp->limited_color_range;
4589
4590 switch (val) {
4591 case INTEL_BROADCAST_RGB_AUTO:
4592 intel_dp->color_range_auto = true;
4593 break;
4594 case INTEL_BROADCAST_RGB_FULL:
4595 intel_dp->color_range_auto = false;
4596 intel_dp->limited_color_range = false;
4597 break;
4598 case INTEL_BROADCAST_RGB_LIMITED:
4599 intel_dp->color_range_auto = false;
4600 intel_dp->limited_color_range = true;
4601 break;
4602 default:
4603 return -EINVAL;
4604 }
4605
4606 if (old_auto == intel_dp->color_range_auto &&
4607 old_range == intel_dp->limited_color_range)
4608 return 0;
4609
4610 goto done;
4611 }
4612
4613 if (is_edp(intel_dp) &&
4614 property == connector->dev->mode_config.scaling_mode_property) {
4615 if (val == DRM_MODE_SCALE_NONE) {
4616 DRM_DEBUG_KMS("no scaling not supported\n");
4617 return -EINVAL;
4618 }
4619 if (HAS_GMCH_DISPLAY(dev_priv) &&
4620 val == DRM_MODE_SCALE_CENTER) {
4621 DRM_DEBUG_KMS("centering not supported\n");
4622 return -EINVAL;
4623 }
4624
4625 if (intel_connector->panel.fitting_mode == val) {
4626 /* the eDP scaling property is not changed */
4627 return 0;
4628 }
4629 intel_connector->panel.fitting_mode = val;
4630
4631 goto done;
4632 }
4633
4634 return -EINVAL;
4635
4636 done:
4637 if (intel_encoder->base.crtc)
4638 intel_crtc_restore_mode(intel_encoder->base.crtc);
4639
4640 return 0;
4641 }
4642
4643 static int
4644 intel_dp_connector_register(struct drm_connector *connector)
4645 {
4646 struct intel_dp *intel_dp = intel_attached_dp(connector);
4647 int ret;
4648
4649 ret = intel_connector_register(connector);
4650 if (ret)
4651 return ret;
4652
4653 i915_debugfs_connector_add(connector);
4654
4655 DRM_DEBUG_KMS("registering %s bus for %s\n",
4656 intel_dp->aux.name, connector->kdev->kobj.name);
4657
4658 intel_dp->aux.dev = connector->kdev;
4659 return drm_dp_aux_register(&intel_dp->aux);
4660 }
4661
4662 static void
4663 intel_dp_connector_unregister(struct drm_connector *connector)
4664 {
4665 drm_dp_aux_unregister(&intel_attached_dp(connector)->aux);
4666 intel_connector_unregister(connector);
4667 }
4668
4669 static void
4670 intel_dp_connector_destroy(struct drm_connector *connector)
4671 {
4672 struct intel_connector *intel_connector = to_intel_connector(connector);
4673
4674 kfree(intel_connector->detect_edid);
4675
4676 if (!IS_ERR_OR_NULL(intel_connector->edid))
4677 kfree(intel_connector->edid);
4678
4679 /* Can't call is_edp() since the encoder may have been destroyed
4680 * already. */
4681 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4682 intel_panel_fini(&intel_connector->panel);
4683
4684 drm_connector_cleanup(connector);
4685 kfree(connector);
4686 }
4687
4688 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4689 {
4690 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4691 struct intel_dp *intel_dp = &intel_dig_port->dp;
4692
4693 intel_dp_mst_encoder_cleanup(intel_dig_port);
4694 if (is_edp(intel_dp)) {
4695 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4696 /*
4697 * vdd might still be enabled do to the delayed vdd off.
4698 * Make sure vdd is actually turned off here.
4699 */
4700 pps_lock(intel_dp);
4701 edp_panel_vdd_off_sync(intel_dp);
4702 pps_unlock(intel_dp);
4703
4704 if (intel_dp->edp_notifier.notifier_call) {
4705 unregister_reboot_notifier(&intel_dp->edp_notifier);
4706 intel_dp->edp_notifier.notifier_call = NULL;
4707 }
4708 }
4709
4710 intel_dp_aux_fini(intel_dp);
4711
4712 drm_encoder_cleanup(encoder);
4713 kfree(intel_dig_port);
4714 }
4715
4716 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4717 {
4718 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4719
4720 if (!is_edp(intel_dp))
4721 return;
4722
4723 /*
4724 * vdd might still be enabled do to the delayed vdd off.
4725 * Make sure vdd is actually turned off here.
4726 */
4727 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4728 pps_lock(intel_dp);
4729 edp_panel_vdd_off_sync(intel_dp);
4730 pps_unlock(intel_dp);
4731 }
4732
4733 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4734 {
4735 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4736 struct drm_device *dev = intel_dig_port->base.base.dev;
4737 struct drm_i915_private *dev_priv = to_i915(dev);
4738 enum intel_display_power_domain power_domain;
4739
4740 lockdep_assert_held(&dev_priv->pps_mutex);
4741
4742 if (!edp_have_panel_vdd(intel_dp))
4743 return;
4744
4745 /*
4746 * The VDD bit needs a power domain reference, so if the bit is
4747 * already enabled when we boot or resume, grab this reference and
4748 * schedule a vdd off, so we don't hold on to the reference
4749 * indefinitely.
4750 */
4751 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4752 power_domain = intel_display_port_aux_power_domain(&intel_dig_port->base);
4753 intel_display_power_get(dev_priv, power_domain);
4754
4755 edp_panel_vdd_schedule_off(intel_dp);
4756 }
4757
4758 void intel_dp_encoder_reset(struct drm_encoder *encoder)
4759 {
4760 struct drm_i915_private *dev_priv = to_i915(encoder->dev);
4761 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4762 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4763
4764 if (!HAS_DDI(dev_priv))
4765 intel_dp->DP = I915_READ(intel_dp->output_reg);
4766
4767 if (lspcon->active)
4768 lspcon_resume(lspcon);
4769
4770 if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4771 return;
4772
4773 pps_lock(intel_dp);
4774
4775 /* Reinit the power sequencer, in case BIOS did something with it. */
4776 intel_dp_pps_init(encoder->dev, intel_dp);
4777 intel_edp_panel_vdd_sanitize(intel_dp);
4778
4779 pps_unlock(intel_dp);
4780 }
4781
4782 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4783 .dpms = drm_atomic_helper_connector_dpms,
4784 .detect = intel_dp_detect,
4785 .force = intel_dp_force,
4786 .fill_modes = drm_helper_probe_single_connector_modes,
4787 .set_property = intel_dp_set_property,
4788 .atomic_get_property = intel_connector_atomic_get_property,
4789 .late_register = intel_dp_connector_register,
4790 .early_unregister = intel_dp_connector_unregister,
4791 .destroy = intel_dp_connector_destroy,
4792 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4793 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4794 };
4795
4796 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4797 .get_modes = intel_dp_get_modes,
4798 .mode_valid = intel_dp_mode_valid,
4799 };
4800
4801 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4802 .reset = intel_dp_encoder_reset,
4803 .destroy = intel_dp_encoder_destroy,
4804 };
4805
4806 enum irqreturn
4807 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4808 {
4809 struct intel_dp *intel_dp = &intel_dig_port->dp;
4810 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4811 struct drm_device *dev = intel_dig_port->base.base.dev;
4812 struct drm_i915_private *dev_priv = to_i915(dev);
4813 enum intel_display_power_domain power_domain;
4814 enum irqreturn ret = IRQ_NONE;
4815
4816 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
4817 intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
4818 intel_dig_port->base.type = INTEL_OUTPUT_DP;
4819
4820 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4821 /*
4822 * vdd off can generate a long pulse on eDP which
4823 * would require vdd on to handle it, and thus we
4824 * would end up in an endless cycle of
4825 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4826 */
4827 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4828 port_name(intel_dig_port->port));
4829 return IRQ_HANDLED;
4830 }
4831
4832 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4833 port_name(intel_dig_port->port),
4834 long_hpd ? "long" : "short");
4835
4836 if (long_hpd) {
4837 intel_dp->detect_done = false;
4838 return IRQ_NONE;
4839 }
4840
4841 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4842 intel_display_power_get(dev_priv, power_domain);
4843
4844 if (intel_dp->is_mst) {
4845 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
4846 /*
4847 * If we were in MST mode, and device is not
4848 * there, get out of MST mode
4849 */
4850 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4851 intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4852 intel_dp->is_mst = false;
4853 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4854 intel_dp->is_mst);
4855 intel_dp->detect_done = false;
4856 goto put_power;
4857 }
4858 }
4859
4860 if (!intel_dp->is_mst) {
4861 if (!intel_dp_short_pulse(intel_dp)) {
4862 intel_dp->detect_done = false;
4863 goto put_power;
4864 }
4865 }
4866
4867 ret = IRQ_HANDLED;
4868
4869 put_power:
4870 intel_display_power_put(dev_priv, power_domain);
4871
4872 return ret;
4873 }
4874
4875 /* check the VBT to see whether the eDP is on another port */
4876 bool intel_dp_is_edp(struct drm_i915_private *dev_priv, enum port port)
4877 {
4878 /*
4879 * eDP not supported on g4x. so bail out early just
4880 * for a bit extra safety in case the VBT is bonkers.
4881 */
4882 if (INTEL_GEN(dev_priv) < 5)
4883 return false;
4884
4885 if (port == PORT_A)
4886 return true;
4887
4888 return intel_bios_is_port_edp(dev_priv, port);
4889 }
4890
4891 void
4892 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4893 {
4894 struct intel_connector *intel_connector = to_intel_connector(connector);
4895
4896 intel_attach_force_audio_property(connector);
4897 intel_attach_broadcast_rgb_property(connector);
4898 intel_dp->color_range_auto = true;
4899
4900 if (is_edp(intel_dp)) {
4901 drm_mode_create_scaling_mode_property(connector->dev);
4902 drm_object_attach_property(
4903 &connector->base,
4904 connector->dev->mode_config.scaling_mode_property,
4905 DRM_MODE_SCALE_ASPECT);
4906 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4907 }
4908 }
4909
4910 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4911 {
4912 intel_dp->panel_power_off_time = ktime_get_boottime();
4913 intel_dp->last_power_on = jiffies;
4914 intel_dp->last_backlight_off = jiffies;
4915 }
4916
4917 static void
4918 intel_pps_readout_hw_state(struct drm_i915_private *dev_priv,
4919 struct intel_dp *intel_dp, struct edp_power_seq *seq)
4920 {
4921 u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
4922 struct pps_registers regs;
4923
4924 intel_pps_get_registers(dev_priv, intel_dp, &regs);
4925
4926 /* Workaround: Need to write PP_CONTROL with the unlock key as
4927 * the very first thing. */
4928 pp_ctl = ironlake_get_pp_control(intel_dp);
4929
4930 pp_on = I915_READ(regs.pp_on);
4931 pp_off = I915_READ(regs.pp_off);
4932 if (!IS_GEN9_LP(dev_priv)) {
4933 I915_WRITE(regs.pp_ctrl, pp_ctl);
4934 pp_div = I915_READ(regs.pp_div);
4935 }
4936
4937 /* Pull timing values out of registers */
4938 seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4939 PANEL_POWER_UP_DELAY_SHIFT;
4940
4941 seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4942 PANEL_LIGHT_ON_DELAY_SHIFT;
4943
4944 seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4945 PANEL_LIGHT_OFF_DELAY_SHIFT;
4946
4947 seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4948 PANEL_POWER_DOWN_DELAY_SHIFT;
4949
4950 if (IS_GEN9_LP(dev_priv)) {
4951 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
4952 BXT_POWER_CYCLE_DELAY_SHIFT;
4953 if (tmp > 0)
4954 seq->t11_t12 = (tmp - 1) * 1000;
4955 else
4956 seq->t11_t12 = 0;
4957 } else {
4958 seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4959 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4960 }
4961 }
4962
4963 static void
4964 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
4965 {
4966 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4967 state_name,
4968 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
4969 }
4970
4971 static void
4972 intel_pps_verify_state(struct drm_i915_private *dev_priv,
4973 struct intel_dp *intel_dp)
4974 {
4975 struct edp_power_seq hw;
4976 struct edp_power_seq *sw = &intel_dp->pps_delays;
4977
4978 intel_pps_readout_hw_state(dev_priv, intel_dp, &hw);
4979
4980 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
4981 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
4982 DRM_ERROR("PPS state mismatch\n");
4983 intel_pps_dump_state("sw", sw);
4984 intel_pps_dump_state("hw", &hw);
4985 }
4986 }
4987
4988 static void
4989 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4990 struct intel_dp *intel_dp)
4991 {
4992 struct drm_i915_private *dev_priv = to_i915(dev);
4993 struct edp_power_seq cur, vbt, spec,
4994 *final = &intel_dp->pps_delays;
4995
4996 lockdep_assert_held(&dev_priv->pps_mutex);
4997
4998 /* already initialized? */
4999 if (final->t11_t12 != 0)
5000 return;
5001
5002 intel_pps_readout_hw_state(dev_priv, intel_dp, &cur);
5003
5004 intel_pps_dump_state("cur", &cur);
5005
5006 vbt = dev_priv->vbt.edp.pps;
5007
5008 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5009 * our hw here, which are all in 100usec. */
5010 spec.t1_t3 = 210 * 10;
5011 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5012 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5013 spec.t10 = 500 * 10;
5014 /* This one is special and actually in units of 100ms, but zero
5015 * based in the hw (so we need to add 100 ms). But the sw vbt
5016 * table multiplies it with 1000 to make it in units of 100usec,
5017 * too. */
5018 spec.t11_t12 = (510 + 100) * 10;
5019
5020 intel_pps_dump_state("vbt", &vbt);
5021
5022 /* Use the max of the register settings and vbt. If both are
5023 * unset, fall back to the spec limits. */
5024 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
5025 spec.field : \
5026 max(cur.field, vbt.field))
5027 assign_final(t1_t3);
5028 assign_final(t8);
5029 assign_final(t9);
5030 assign_final(t10);
5031 assign_final(t11_t12);
5032 #undef assign_final
5033
5034 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
5035 intel_dp->panel_power_up_delay = get_delay(t1_t3);
5036 intel_dp->backlight_on_delay = get_delay(t8);
5037 intel_dp->backlight_off_delay = get_delay(t9);
5038 intel_dp->panel_power_down_delay = get_delay(t10);
5039 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5040 #undef get_delay
5041
5042 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5043 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5044 intel_dp->panel_power_cycle_delay);
5045
5046 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5047 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5048
5049 /*
5050 * We override the HW backlight delays to 1 because we do manual waits
5051 * on them. For T8, even BSpec recommends doing it. For T9, if we
5052 * don't do this, we'll end up waiting for the backlight off delay
5053 * twice: once when we do the manual sleep, and once when we disable
5054 * the panel and wait for the PP_STATUS bit to become zero.
5055 */
5056 final->t8 = 1;
5057 final->t9 = 1;
5058 }
5059
5060 static void
5061 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5062 struct intel_dp *intel_dp)
5063 {
5064 struct drm_i915_private *dev_priv = to_i915(dev);
5065 u32 pp_on, pp_off, pp_div, port_sel = 0;
5066 int div = dev_priv->rawclk_freq / 1000;
5067 struct pps_registers regs;
5068 enum port port = dp_to_dig_port(intel_dp)->port;
5069 const struct edp_power_seq *seq = &intel_dp->pps_delays;
5070
5071 lockdep_assert_held(&dev_priv->pps_mutex);
5072
5073 intel_pps_get_registers(dev_priv, intel_dp, &regs);
5074
5075 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5076 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
5077 pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5078 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5079 /* Compute the divisor for the pp clock, simply match the Bspec
5080 * formula. */
5081 if (IS_GEN9_LP(dev_priv)) {
5082 pp_div = I915_READ(regs.pp_ctrl);
5083 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5084 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
5085 << BXT_POWER_CYCLE_DELAY_SHIFT);
5086 } else {
5087 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5088 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5089 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5090 }
5091
5092 /* Haswell doesn't have any port selection bits for the panel
5093 * power sequencer any more. */
5094 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5095 port_sel = PANEL_PORT_SELECT_VLV(port);
5096 } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
5097 if (port == PORT_A)
5098 port_sel = PANEL_PORT_SELECT_DPA;
5099 else
5100 port_sel = PANEL_PORT_SELECT_DPD;
5101 }
5102
5103 pp_on |= port_sel;
5104
5105 I915_WRITE(regs.pp_on, pp_on);
5106 I915_WRITE(regs.pp_off, pp_off);
5107 if (IS_GEN9_LP(dev_priv))
5108 I915_WRITE(regs.pp_ctrl, pp_div);
5109 else
5110 I915_WRITE(regs.pp_div, pp_div);
5111
5112 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5113 I915_READ(regs.pp_on),
5114 I915_READ(regs.pp_off),
5115 IS_GEN9_LP(dev_priv) ?
5116 (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
5117 I915_READ(regs.pp_div));
5118 }
5119
5120 static void intel_dp_pps_init(struct drm_device *dev,
5121 struct intel_dp *intel_dp)
5122 {
5123 struct drm_i915_private *dev_priv = to_i915(dev);
5124
5125 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5126 vlv_initial_power_sequencer_setup(intel_dp);
5127 } else {
5128 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5129 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5130 }
5131 }
5132
5133 /**
5134 * intel_dp_set_drrs_state - program registers for RR switch to take effect
5135 * @dev_priv: i915 device
5136 * @crtc_state: a pointer to the active intel_crtc_state
5137 * @refresh_rate: RR to be programmed
5138 *
5139 * This function gets called when refresh rate (RR) has to be changed from
5140 * one frequency to another. Switches can be between high and low RR
5141 * supported by the panel or to any other RR based on media playback (in
5142 * this case, RR value needs to be passed from user space).
5143 *
5144 * The caller of this function needs to take a lock on dev_priv->drrs.
5145 */
5146 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
5147 struct intel_crtc_state *crtc_state,
5148 int refresh_rate)
5149 {
5150 struct intel_encoder *encoder;
5151 struct intel_digital_port *dig_port = NULL;
5152 struct intel_dp *intel_dp = dev_priv->drrs.dp;
5153 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
5154 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5155
5156 if (refresh_rate <= 0) {
5157 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5158 return;
5159 }
5160
5161 if (intel_dp == NULL) {
5162 DRM_DEBUG_KMS("DRRS not supported.\n");
5163 return;
5164 }
5165
5166 /*
5167 * FIXME: This needs proper synchronization with psr state for some
5168 * platforms that cannot have PSR and DRRS enabled at the same time.
5169 */
5170
5171 dig_port = dp_to_dig_port(intel_dp);
5172 encoder = &dig_port->base;
5173 intel_crtc = to_intel_crtc(encoder->base.crtc);
5174
5175 if (!intel_crtc) {
5176 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5177 return;
5178 }
5179
5180 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5181 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5182 return;
5183 }
5184
5185 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5186 refresh_rate)
5187 index = DRRS_LOW_RR;
5188
5189 if (index == dev_priv->drrs.refresh_rate_type) {
5190 DRM_DEBUG_KMS(
5191 "DRRS requested for previously set RR...ignoring\n");
5192 return;
5193 }
5194
5195 if (!crtc_state->base.active) {
5196 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5197 return;
5198 }
5199
5200 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
5201 switch (index) {
5202 case DRRS_HIGH_RR:
5203 intel_dp_set_m_n(intel_crtc, M1_N1);
5204 break;
5205 case DRRS_LOW_RR:
5206 intel_dp_set_m_n(intel_crtc, M2_N2);
5207 break;
5208 case DRRS_MAX_RR:
5209 default:
5210 DRM_ERROR("Unsupported refreshrate type\n");
5211 }
5212 } else if (INTEL_GEN(dev_priv) > 6) {
5213 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
5214 u32 val;
5215
5216 val = I915_READ(reg);
5217 if (index > DRRS_HIGH_RR) {
5218 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5219 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5220 else
5221 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5222 } else {
5223 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5224 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5225 else
5226 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5227 }
5228 I915_WRITE(reg, val);
5229 }
5230
5231 dev_priv->drrs.refresh_rate_type = index;
5232
5233 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5234 }
5235
5236 /**
5237 * intel_edp_drrs_enable - init drrs struct if supported
5238 * @intel_dp: DP struct
5239 * @crtc_state: A pointer to the active crtc state.
5240 *
5241 * Initializes frontbuffer_bits and drrs.dp
5242 */
5243 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
5244 struct intel_crtc_state *crtc_state)
5245 {
5246 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5247 struct drm_i915_private *dev_priv = to_i915(dev);
5248
5249 if (!crtc_state->has_drrs) {
5250 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5251 return;
5252 }
5253
5254 mutex_lock(&dev_priv->drrs.mutex);
5255 if (WARN_ON(dev_priv->drrs.dp)) {
5256 DRM_ERROR("DRRS already enabled\n");
5257 goto unlock;
5258 }
5259
5260 dev_priv->drrs.busy_frontbuffer_bits = 0;
5261
5262 dev_priv->drrs.dp = intel_dp;
5263
5264 unlock:
5265 mutex_unlock(&dev_priv->drrs.mutex);
5266 }
5267
5268 /**
5269 * intel_edp_drrs_disable - Disable DRRS
5270 * @intel_dp: DP struct
5271 * @old_crtc_state: Pointer to old crtc_state.
5272 *
5273 */
5274 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
5275 struct intel_crtc_state *old_crtc_state)
5276 {
5277 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5278 struct drm_i915_private *dev_priv = to_i915(dev);
5279
5280 if (!old_crtc_state->has_drrs)
5281 return;
5282
5283 mutex_lock(&dev_priv->drrs.mutex);
5284 if (!dev_priv->drrs.dp) {
5285 mutex_unlock(&dev_priv->drrs.mutex);
5286 return;
5287 }
5288
5289 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5290 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
5291 intel_dp->attached_connector->panel.fixed_mode->vrefresh);
5292
5293 dev_priv->drrs.dp = NULL;
5294 mutex_unlock(&dev_priv->drrs.mutex);
5295
5296 cancel_delayed_work_sync(&dev_priv->drrs.work);
5297 }
5298
5299 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5300 {
5301 struct drm_i915_private *dev_priv =
5302 container_of(work, typeof(*dev_priv), drrs.work.work);
5303 struct intel_dp *intel_dp;
5304
5305 mutex_lock(&dev_priv->drrs.mutex);
5306
5307 intel_dp = dev_priv->drrs.dp;
5308
5309 if (!intel_dp)
5310 goto unlock;
5311
5312 /*
5313 * The delayed work can race with an invalidate hence we need to
5314 * recheck.
5315 */
5316
5317 if (dev_priv->drrs.busy_frontbuffer_bits)
5318 goto unlock;
5319
5320 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
5321 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
5322
5323 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5324 intel_dp->attached_connector->panel.downclock_mode->vrefresh);
5325 }
5326
5327 unlock:
5328 mutex_unlock(&dev_priv->drrs.mutex);
5329 }
5330
5331 /**
5332 * intel_edp_drrs_invalidate - Disable Idleness DRRS
5333 * @dev_priv: i915 device
5334 * @frontbuffer_bits: frontbuffer plane tracking bits
5335 *
5336 * This function gets called everytime rendering on the given planes start.
5337 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5338 *
5339 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5340 */
5341 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
5342 unsigned int frontbuffer_bits)
5343 {
5344 struct drm_crtc *crtc;
5345 enum pipe pipe;
5346
5347 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5348 return;
5349
5350 cancel_delayed_work(&dev_priv->drrs.work);
5351
5352 mutex_lock(&dev_priv->drrs.mutex);
5353 if (!dev_priv->drrs.dp) {
5354 mutex_unlock(&dev_priv->drrs.mutex);
5355 return;
5356 }
5357
5358 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5359 pipe = to_intel_crtc(crtc)->pipe;
5360
5361 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5362 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5363
5364 /* invalidate means busy screen hence upclock */
5365 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5366 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5367 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5368
5369 mutex_unlock(&dev_priv->drrs.mutex);
5370 }
5371
5372 /**
5373 * intel_edp_drrs_flush - Restart Idleness DRRS
5374 * @dev_priv: i915 device
5375 * @frontbuffer_bits: frontbuffer plane tracking bits
5376 *
5377 * This function gets called every time rendering on the given planes has
5378 * completed or flip on a crtc is completed. So DRRS should be upclocked
5379 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5380 * if no other planes are dirty.
5381 *
5382 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5383 */
5384 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
5385 unsigned int frontbuffer_bits)
5386 {
5387 struct drm_crtc *crtc;
5388 enum pipe pipe;
5389
5390 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5391 return;
5392
5393 cancel_delayed_work(&dev_priv->drrs.work);
5394
5395 mutex_lock(&dev_priv->drrs.mutex);
5396 if (!dev_priv->drrs.dp) {
5397 mutex_unlock(&dev_priv->drrs.mutex);
5398 return;
5399 }
5400
5401 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5402 pipe = to_intel_crtc(crtc)->pipe;
5403
5404 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5405 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5406
5407 /* flush means busy screen hence upclock */
5408 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5409 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5410 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5411
5412 /*
5413 * flush also means no more activity hence schedule downclock, if all
5414 * other fbs are quiescent too
5415 */
5416 if (!dev_priv->drrs.busy_frontbuffer_bits)
5417 schedule_delayed_work(&dev_priv->drrs.work,
5418 msecs_to_jiffies(1000));
5419 mutex_unlock(&dev_priv->drrs.mutex);
5420 }
5421
5422 /**
5423 * DOC: Display Refresh Rate Switching (DRRS)
5424 *
5425 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5426 * which enables swtching between low and high refresh rates,
5427 * dynamically, based on the usage scenario. This feature is applicable
5428 * for internal panels.
5429 *
5430 * Indication that the panel supports DRRS is given by the panel EDID, which
5431 * would list multiple refresh rates for one resolution.
5432 *
5433 * DRRS is of 2 types - static and seamless.
5434 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5435 * (may appear as a blink on screen) and is used in dock-undock scenario.
5436 * Seamless DRRS involves changing RR without any visual effect to the user
5437 * and can be used during normal system usage. This is done by programming
5438 * certain registers.
5439 *
5440 * Support for static/seamless DRRS may be indicated in the VBT based on
5441 * inputs from the panel spec.
5442 *
5443 * DRRS saves power by switching to low RR based on usage scenarios.
5444 *
5445 * The implementation is based on frontbuffer tracking implementation. When
5446 * there is a disturbance on the screen triggered by user activity or a periodic
5447 * system activity, DRRS is disabled (RR is changed to high RR). When there is
5448 * no movement on screen, after a timeout of 1 second, a switch to low RR is
5449 * made.
5450 *
5451 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
5452 * and intel_edp_drrs_flush() are called.
5453 *
5454 * DRRS can be further extended to support other internal panels and also
5455 * the scenario of video playback wherein RR is set based on the rate
5456 * requested by userspace.
5457 */
5458
5459 /**
5460 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5461 * @intel_connector: eDP connector
5462 * @fixed_mode: preferred mode of panel
5463 *
5464 * This function is called only once at driver load to initialize basic
5465 * DRRS stuff.
5466 *
5467 * Returns:
5468 * Downclock mode if panel supports it, else return NULL.
5469 * DRRS support is determined by the presence of downclock mode (apart
5470 * from VBT setting).
5471 */
5472 static struct drm_display_mode *
5473 intel_dp_drrs_init(struct intel_connector *intel_connector,
5474 struct drm_display_mode *fixed_mode)
5475 {
5476 struct drm_connector *connector = &intel_connector->base;
5477 struct drm_device *dev = connector->dev;
5478 struct drm_i915_private *dev_priv = to_i915(dev);
5479 struct drm_display_mode *downclock_mode = NULL;
5480
5481 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5482 mutex_init(&dev_priv->drrs.mutex);
5483
5484 if (INTEL_GEN(dev_priv) <= 6) {
5485 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5486 return NULL;
5487 }
5488
5489 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5490 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5491 return NULL;
5492 }
5493
5494 downclock_mode = intel_find_panel_downclock
5495 (dev, fixed_mode, connector);
5496
5497 if (!downclock_mode) {
5498 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5499 return NULL;
5500 }
5501
5502 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5503
5504 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5505 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5506 return downclock_mode;
5507 }
5508
5509 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5510 struct intel_connector *intel_connector)
5511 {
5512 struct drm_connector *connector = &intel_connector->base;
5513 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5514 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5515 struct drm_device *dev = intel_encoder->base.dev;
5516 struct drm_i915_private *dev_priv = to_i915(dev);
5517 struct drm_display_mode *fixed_mode = NULL;
5518 struct drm_display_mode *downclock_mode = NULL;
5519 bool has_dpcd;
5520 struct drm_display_mode *scan;
5521 struct edid *edid;
5522 enum pipe pipe = INVALID_PIPE;
5523
5524 if (!is_edp(intel_dp))
5525 return true;
5526
5527 /*
5528 * On IBX/CPT we may get here with LVDS already registered. Since the
5529 * driver uses the only internal power sequencer available for both
5530 * eDP and LVDS bail out early in this case to prevent interfering
5531 * with an already powered-on LVDS power sequencer.
5532 */
5533 if (intel_get_lvds_encoder(dev)) {
5534 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
5535 DRM_INFO("LVDS was detected, not registering eDP\n");
5536
5537 return false;
5538 }
5539
5540 pps_lock(intel_dp);
5541
5542 intel_dp_init_panel_power_timestamps(intel_dp);
5543 intel_dp_pps_init(dev, intel_dp);
5544 intel_edp_panel_vdd_sanitize(intel_dp);
5545
5546 pps_unlock(intel_dp);
5547
5548 /* Cache DPCD and EDID for edp. */
5549 has_dpcd = intel_edp_init_dpcd(intel_dp);
5550
5551 if (!has_dpcd) {
5552 /* if this fails, presume the device is a ghost */
5553 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5554 goto out_vdd_off;
5555 }
5556
5557 mutex_lock(&dev->mode_config.mutex);
5558 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5559 if (edid) {
5560 if (drm_add_edid_modes(connector, edid)) {
5561 drm_mode_connector_update_edid_property(connector,
5562 edid);
5563 drm_edid_to_eld(connector, edid);
5564 } else {
5565 kfree(edid);
5566 edid = ERR_PTR(-EINVAL);
5567 }
5568 } else {
5569 edid = ERR_PTR(-ENOENT);
5570 }
5571 intel_connector->edid = edid;
5572
5573 /* prefer fixed mode from EDID if available */
5574 list_for_each_entry(scan, &connector->probed_modes, head) {
5575 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5576 fixed_mode = drm_mode_duplicate(dev, scan);
5577 downclock_mode = intel_dp_drrs_init(
5578 intel_connector, fixed_mode);
5579 break;
5580 }
5581 }
5582
5583 /* fallback to VBT if available for eDP */
5584 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5585 fixed_mode = drm_mode_duplicate(dev,
5586 dev_priv->vbt.lfp_lvds_vbt_mode);
5587 if (fixed_mode) {
5588 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5589 connector->display_info.width_mm = fixed_mode->width_mm;
5590 connector->display_info.height_mm = fixed_mode->height_mm;
5591 }
5592 }
5593 mutex_unlock(&dev->mode_config.mutex);
5594
5595 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5596 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5597 register_reboot_notifier(&intel_dp->edp_notifier);
5598
5599 /*
5600 * Figure out the current pipe for the initial backlight setup.
5601 * If the current pipe isn't valid, try the PPS pipe, and if that
5602 * fails just assume pipe A.
5603 */
5604 if (IS_CHERRYVIEW(dev_priv))
5605 pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5606 else
5607 pipe = PORT_TO_PIPE(intel_dp->DP);
5608
5609 if (pipe != PIPE_A && pipe != PIPE_B)
5610 pipe = intel_dp->pps_pipe;
5611
5612 if (pipe != PIPE_A && pipe != PIPE_B)
5613 pipe = PIPE_A;
5614
5615 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5616 pipe_name(pipe));
5617 }
5618
5619 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5620 intel_connector->panel.backlight.power = intel_edp_backlight_power;
5621 intel_panel_setup_backlight(connector, pipe);
5622
5623 return true;
5624
5625 out_vdd_off:
5626 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5627 /*
5628 * vdd might still be enabled do to the delayed vdd off.
5629 * Make sure vdd is actually turned off here.
5630 */
5631 pps_lock(intel_dp);
5632 edp_panel_vdd_off_sync(intel_dp);
5633 pps_unlock(intel_dp);
5634
5635 return false;
5636 }
5637
5638 bool
5639 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5640 struct intel_connector *intel_connector)
5641 {
5642 struct drm_connector *connector = &intel_connector->base;
5643 struct intel_dp *intel_dp = &intel_dig_port->dp;
5644 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5645 struct drm_device *dev = intel_encoder->base.dev;
5646 struct drm_i915_private *dev_priv = to_i915(dev);
5647 enum port port = intel_dig_port->port;
5648 int type;
5649
5650 if (WARN(intel_dig_port->max_lanes < 1,
5651 "Not enough lanes (%d) for DP on port %c\n",
5652 intel_dig_port->max_lanes, port_name(port)))
5653 return false;
5654
5655 intel_dp->pps_pipe = INVALID_PIPE;
5656
5657 /* intel_dp vfuncs */
5658 if (INTEL_GEN(dev_priv) >= 9)
5659 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5660 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5661 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5662 else if (HAS_PCH_SPLIT(dev_priv))
5663 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5664 else
5665 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
5666
5667 if (INTEL_GEN(dev_priv) >= 9)
5668 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5669 else
5670 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
5671
5672 if (HAS_DDI(dev_priv))
5673 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
5674
5675 /* Preserve the current hw state. */
5676 intel_dp->DP = I915_READ(intel_dp->output_reg);
5677 intel_dp->attached_connector = intel_connector;
5678
5679 if (intel_dp_is_edp(dev_priv, port))
5680 type = DRM_MODE_CONNECTOR_eDP;
5681 else
5682 type = DRM_MODE_CONNECTOR_DisplayPort;
5683
5684 /*
5685 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5686 * for DP the encoder type can be set by the caller to
5687 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5688 */
5689 if (type == DRM_MODE_CONNECTOR_eDP)
5690 intel_encoder->type = INTEL_OUTPUT_EDP;
5691
5692 /* eDP only on port B and/or C on vlv/chv */
5693 if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
5694 is_edp(intel_dp) && port != PORT_B && port != PORT_C))
5695 return false;
5696
5697 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5698 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5699 port_name(port));
5700
5701 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5702 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5703
5704 connector->interlace_allowed = true;
5705 connector->doublescan_allowed = 0;
5706
5707 intel_dp_aux_init(intel_dp);
5708
5709 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5710 edp_panel_vdd_work);
5711
5712 intel_connector_attach_encoder(intel_connector, intel_encoder);
5713
5714 if (HAS_DDI(dev_priv))
5715 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5716 else
5717 intel_connector->get_hw_state = intel_connector_get_hw_state;
5718
5719 /* Set up the hotplug pin. */
5720 switch (port) {
5721 case PORT_A:
5722 intel_encoder->hpd_pin = HPD_PORT_A;
5723 break;
5724 case PORT_B:
5725 intel_encoder->hpd_pin = HPD_PORT_B;
5726 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
5727 intel_encoder->hpd_pin = HPD_PORT_A;
5728 break;
5729 case PORT_C:
5730 intel_encoder->hpd_pin = HPD_PORT_C;
5731 break;
5732 case PORT_D:
5733 intel_encoder->hpd_pin = HPD_PORT_D;
5734 break;
5735 case PORT_E:
5736 intel_encoder->hpd_pin = HPD_PORT_E;
5737 break;
5738 default:
5739 BUG();
5740 }
5741
5742 /* init MST on ports that can support it */
5743 if (HAS_DP_MST(dev_priv) && !is_edp(intel_dp) &&
5744 (port == PORT_B || port == PORT_C || port == PORT_D))
5745 intel_dp_mst_encoder_init(intel_dig_port,
5746 intel_connector->base.base.id);
5747
5748 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5749 intel_dp_aux_fini(intel_dp);
5750 intel_dp_mst_encoder_cleanup(intel_dig_port);
5751 goto fail;
5752 }
5753
5754 intel_dp_add_properties(intel_dp, connector);
5755
5756 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5757 * 0xd. Failure to do so will result in spurious interrupts being
5758 * generated on the port when a cable is not attached.
5759 */
5760 if (IS_G4X(dev_priv) && !IS_GM45(dev_priv)) {
5761 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5762 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5763 }
5764
5765 return true;
5766
5767 fail:
5768 drm_connector_cleanup(connector);
5769
5770 return false;
5771 }
5772
5773 bool intel_dp_init(struct drm_i915_private *dev_priv,
5774 i915_reg_t output_reg,
5775 enum port port)
5776 {
5777 struct intel_digital_port *intel_dig_port;
5778 struct intel_encoder *intel_encoder;
5779 struct drm_encoder *encoder;
5780 struct intel_connector *intel_connector;
5781
5782 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5783 if (!intel_dig_port)
5784 return false;
5785
5786 intel_connector = intel_connector_alloc();
5787 if (!intel_connector)
5788 goto err_connector_alloc;
5789
5790 intel_encoder = &intel_dig_port->base;
5791 encoder = &intel_encoder->base;
5792
5793 if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
5794 &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
5795 "DP %c", port_name(port)))
5796 goto err_encoder_init;
5797
5798 intel_encoder->compute_config = intel_dp_compute_config;
5799 intel_encoder->disable = intel_disable_dp;
5800 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5801 intel_encoder->get_config = intel_dp_get_config;
5802 intel_encoder->suspend = intel_dp_encoder_suspend;
5803 if (IS_CHERRYVIEW(dev_priv)) {
5804 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5805 intel_encoder->pre_enable = chv_pre_enable_dp;
5806 intel_encoder->enable = vlv_enable_dp;
5807 intel_encoder->post_disable = chv_post_disable_dp;
5808 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
5809 } else if (IS_VALLEYVIEW(dev_priv)) {
5810 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5811 intel_encoder->pre_enable = vlv_pre_enable_dp;
5812 intel_encoder->enable = vlv_enable_dp;
5813 intel_encoder->post_disable = vlv_post_disable_dp;
5814 } else {
5815 intel_encoder->pre_enable = g4x_pre_enable_dp;
5816 intel_encoder->enable = g4x_enable_dp;
5817 if (INTEL_GEN(dev_priv) >= 5)
5818 intel_encoder->post_disable = ilk_post_disable_dp;
5819 }
5820
5821 intel_dig_port->port = port;
5822 intel_dig_port->dp.output_reg = output_reg;
5823 intel_dig_port->max_lanes = 4;
5824
5825 intel_encoder->type = INTEL_OUTPUT_DP;
5826 if (IS_CHERRYVIEW(dev_priv)) {
5827 if (port == PORT_D)
5828 intel_encoder->crtc_mask = 1 << 2;
5829 else
5830 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5831 } else {
5832 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5833 }
5834 intel_encoder->cloneable = 0;
5835 intel_encoder->port = port;
5836
5837 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5838 dev_priv->hotplug.irq_port[port] = intel_dig_port;
5839
5840 if (!intel_dp_init_connector(intel_dig_port, intel_connector))
5841 goto err_init_connector;
5842
5843 return true;
5844
5845 err_init_connector:
5846 drm_encoder_cleanup(encoder);
5847 err_encoder_init:
5848 kfree(intel_connector);
5849 err_connector_alloc:
5850 kfree(intel_dig_port);
5851 return false;
5852 }
5853
5854 void intel_dp_mst_suspend(struct drm_device *dev)
5855 {
5856 struct drm_i915_private *dev_priv = to_i915(dev);
5857 int i;
5858
5859 /* disable MST */
5860 for (i = 0; i < I915_MAX_PORTS; i++) {
5861 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5862
5863 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
5864 continue;
5865
5866 if (intel_dig_port->dp.is_mst)
5867 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5868 }
5869 }
5870
5871 void intel_dp_mst_resume(struct drm_device *dev)
5872 {
5873 struct drm_i915_private *dev_priv = to_i915(dev);
5874 int i;
5875
5876 for (i = 0; i < I915_MAX_PORTS; i++) {
5877 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5878 int ret;
5879
5880 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
5881 continue;
5882
5883 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5884 if (ret)
5885 intel_dp_check_mst_status(&intel_dig_port->dp);
5886 }
5887 }