]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/intel_dp.c
drm/i915: Avoid early timeout during AUX transfers
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 /* Compliance test status bits */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
46 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51 int clock;
52 struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56 { 162000,
57 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58 { 270000,
59 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63 { 162000,
64 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65 { 270000,
66 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70 { 162000,
71 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72 { 270000,
73 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77 * CHV supports eDP 1.4 that have more link rates.
78 * Below only provides the fixed rate but exclude variable rate.
79 */
80 static const struct dp_link_dpll chv_dpll[] = {
81 /*
82 * CHV requires to program fractional division for m2.
83 * m2 is stored in fixed point format using formula below
84 * (m2_int << 22) | m2_fraction
85 */
86 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
87 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88 { 270000, /* m2_int = 27, m2_fraction = 0 */
89 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90 { 540000, /* m2_int = 27, m2_fraction = 0 */
91 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95 324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97 324000, 432000, 540000 };
98 static const int default_rates[] = { 162000, 270000, 540000 };
99
100 /**
101 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
102 * @intel_dp: DP struct
103 *
104 * If a CPU or PCH DP output is attached to an eDP panel, this function
105 * will return true, and false otherwise.
106 */
107 static bool is_edp(struct intel_dp *intel_dp)
108 {
109 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
110
111 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 }
113
114 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115 {
116 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
117
118 return intel_dig_port->base.base.dev;
119 }
120
121 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
122 {
123 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 }
125
126 static void intel_dp_link_down(struct intel_dp *intel_dp);
127 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 static void vlv_steal_power_sequencer(struct drm_device *dev,
131 enum pipe pipe);
132 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
133
134 static unsigned int intel_dp_unused_lane_mask(int lane_count)
135 {
136 return ~((1 << lane_count) - 1) & 0xf;
137 }
138
139 static int
140 intel_dp_max_link_bw(struct intel_dp *intel_dp)
141 {
142 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
143
144 switch (max_link_bw) {
145 case DP_LINK_BW_1_62:
146 case DP_LINK_BW_2_7:
147 case DP_LINK_BW_5_4:
148 break;
149 default:
150 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
151 max_link_bw);
152 max_link_bw = DP_LINK_BW_1_62;
153 break;
154 }
155 return max_link_bw;
156 }
157
158 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
159 {
160 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
161 u8 source_max, sink_max;
162
163 source_max = intel_dig_port->max_lanes;
164 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
165
166 return min(source_max, sink_max);
167 }
168
169 /*
170 * The units on the numbers in the next two are... bizarre. Examples will
171 * make it clearer; this one parallels an example in the eDP spec.
172 *
173 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
174 *
175 * 270000 * 1 * 8 / 10 == 216000
176 *
177 * The actual data capacity of that configuration is 2.16Gbit/s, so the
178 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
179 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
180 * 119000. At 18bpp that's 2142000 kilobits per second.
181 *
182 * Thus the strange-looking division by 10 in intel_dp_link_required, to
183 * get the result in decakilobits instead of kilobits.
184 */
185
186 static int
187 intel_dp_link_required(int pixel_clock, int bpp)
188 {
189 return (pixel_clock * bpp + 9) / 10;
190 }
191
192 static int
193 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
194 {
195 return (max_link_clock * max_lanes * 8) / 10;
196 }
197
198 static enum drm_mode_status
199 intel_dp_mode_valid(struct drm_connector *connector,
200 struct drm_display_mode *mode)
201 {
202 struct intel_dp *intel_dp = intel_attached_dp(connector);
203 struct intel_connector *intel_connector = to_intel_connector(connector);
204 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
205 int target_clock = mode->clock;
206 int max_rate, mode_rate, max_lanes, max_link_clock;
207 int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
208
209 if (is_edp(intel_dp) && fixed_mode) {
210 if (mode->hdisplay > fixed_mode->hdisplay)
211 return MODE_PANEL;
212
213 if (mode->vdisplay > fixed_mode->vdisplay)
214 return MODE_PANEL;
215
216 target_clock = fixed_mode->clock;
217 }
218
219 max_link_clock = intel_dp_max_link_rate(intel_dp);
220 max_lanes = intel_dp_max_lane_count(intel_dp);
221
222 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
223 mode_rate = intel_dp_link_required(target_clock, 18);
224
225 if (mode_rate > max_rate || target_clock > max_dotclk)
226 return MODE_CLOCK_HIGH;
227
228 if (mode->clock < 10000)
229 return MODE_CLOCK_LOW;
230
231 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
232 return MODE_H_ILLEGAL;
233
234 return MODE_OK;
235 }
236
237 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
238 {
239 int i;
240 uint32_t v = 0;
241
242 if (src_bytes > 4)
243 src_bytes = 4;
244 for (i = 0; i < src_bytes; i++)
245 v |= ((uint32_t) src[i]) << ((3-i) * 8);
246 return v;
247 }
248
249 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
250 {
251 int i;
252 if (dst_bytes > 4)
253 dst_bytes = 4;
254 for (i = 0; i < dst_bytes; i++)
255 dst[i] = src >> ((3-i) * 8);
256 }
257
258 static void
259 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
260 struct intel_dp *intel_dp);
261 static void
262 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
263 struct intel_dp *intel_dp);
264
265 static void pps_lock(struct intel_dp *intel_dp)
266 {
267 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
268 struct intel_encoder *encoder = &intel_dig_port->base;
269 struct drm_device *dev = encoder->base.dev;
270 struct drm_i915_private *dev_priv = dev->dev_private;
271 enum intel_display_power_domain power_domain;
272
273 /*
274 * See vlv_power_sequencer_reset() why we need
275 * a power domain reference here.
276 */
277 power_domain = intel_display_port_aux_power_domain(encoder);
278 intel_display_power_get(dev_priv, power_domain);
279
280 mutex_lock(&dev_priv->pps_mutex);
281 }
282
283 static void pps_unlock(struct intel_dp *intel_dp)
284 {
285 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
286 struct intel_encoder *encoder = &intel_dig_port->base;
287 struct drm_device *dev = encoder->base.dev;
288 struct drm_i915_private *dev_priv = dev->dev_private;
289 enum intel_display_power_domain power_domain;
290
291 mutex_unlock(&dev_priv->pps_mutex);
292
293 power_domain = intel_display_port_aux_power_domain(encoder);
294 intel_display_power_put(dev_priv, power_domain);
295 }
296
297 static void
298 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
299 {
300 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
301 struct drm_device *dev = intel_dig_port->base.base.dev;
302 struct drm_i915_private *dev_priv = dev->dev_private;
303 enum pipe pipe = intel_dp->pps_pipe;
304 bool pll_enabled, release_cl_override = false;
305 enum dpio_phy phy = DPIO_PHY(pipe);
306 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
307 uint32_t DP;
308
309 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
310 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
311 pipe_name(pipe), port_name(intel_dig_port->port)))
312 return;
313
314 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
315 pipe_name(pipe), port_name(intel_dig_port->port));
316
317 /* Preserve the BIOS-computed detected bit. This is
318 * supposed to be read-only.
319 */
320 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
321 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
322 DP |= DP_PORT_WIDTH(1);
323 DP |= DP_LINK_TRAIN_PAT_1;
324
325 if (IS_CHERRYVIEW(dev))
326 DP |= DP_PIPE_SELECT_CHV(pipe);
327 else if (pipe == PIPE_B)
328 DP |= DP_PIPEB_SELECT;
329
330 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
331
332 /*
333 * The DPLL for the pipe must be enabled for this to work.
334 * So enable temporarily it if it's not already enabled.
335 */
336 if (!pll_enabled) {
337 release_cl_override = IS_CHERRYVIEW(dev) &&
338 !chv_phy_powergate_ch(dev_priv, phy, ch, true);
339
340 if (vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
341 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
342 DRM_ERROR("Failed to force on pll for pipe %c!\n",
343 pipe_name(pipe));
344 return;
345 }
346 }
347
348 /*
349 * Similar magic as in intel_dp_enable_port().
350 * We _must_ do this port enable + disable trick
351 * to make this power seqeuencer lock onto the port.
352 * Otherwise even VDD force bit won't work.
353 */
354 I915_WRITE(intel_dp->output_reg, DP);
355 POSTING_READ(intel_dp->output_reg);
356
357 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
358 POSTING_READ(intel_dp->output_reg);
359
360 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
361 POSTING_READ(intel_dp->output_reg);
362
363 if (!pll_enabled) {
364 vlv_force_pll_off(dev, pipe);
365
366 if (release_cl_override)
367 chv_phy_powergate_ch(dev_priv, phy, ch, false);
368 }
369 }
370
371 static enum pipe
372 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
373 {
374 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
375 struct drm_device *dev = intel_dig_port->base.base.dev;
376 struct drm_i915_private *dev_priv = dev->dev_private;
377 struct intel_encoder *encoder;
378 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
379 enum pipe pipe;
380
381 lockdep_assert_held(&dev_priv->pps_mutex);
382
383 /* We should never land here with regular DP ports */
384 WARN_ON(!is_edp(intel_dp));
385
386 if (intel_dp->pps_pipe != INVALID_PIPE)
387 return intel_dp->pps_pipe;
388
389 /*
390 * We don't have power sequencer currently.
391 * Pick one that's not used by other ports.
392 */
393 for_each_intel_encoder(dev, encoder) {
394 struct intel_dp *tmp;
395
396 if (encoder->type != INTEL_OUTPUT_EDP)
397 continue;
398
399 tmp = enc_to_intel_dp(&encoder->base);
400
401 if (tmp->pps_pipe != INVALID_PIPE)
402 pipes &= ~(1 << tmp->pps_pipe);
403 }
404
405 /*
406 * Didn't find one. This should not happen since there
407 * are two power sequencers and up to two eDP ports.
408 */
409 if (WARN_ON(pipes == 0))
410 pipe = PIPE_A;
411 else
412 pipe = ffs(pipes) - 1;
413
414 vlv_steal_power_sequencer(dev, pipe);
415 intel_dp->pps_pipe = pipe;
416
417 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
418 pipe_name(intel_dp->pps_pipe),
419 port_name(intel_dig_port->port));
420
421 /* init power sequencer on this pipe and port */
422 intel_dp_init_panel_power_sequencer(dev, intel_dp);
423 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
424
425 /*
426 * Even vdd force doesn't work until we've made
427 * the power sequencer lock in on the port.
428 */
429 vlv_power_sequencer_kick(intel_dp);
430
431 return intel_dp->pps_pipe;
432 }
433
434 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
435 enum pipe pipe);
436
437 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
438 enum pipe pipe)
439 {
440 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
441 }
442
443 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
444 enum pipe pipe)
445 {
446 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
447 }
448
449 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
450 enum pipe pipe)
451 {
452 return true;
453 }
454
455 static enum pipe
456 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
457 enum port port,
458 vlv_pipe_check pipe_check)
459 {
460 enum pipe pipe;
461
462 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
463 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
464 PANEL_PORT_SELECT_MASK;
465
466 if (port_sel != PANEL_PORT_SELECT_VLV(port))
467 continue;
468
469 if (!pipe_check(dev_priv, pipe))
470 continue;
471
472 return pipe;
473 }
474
475 return INVALID_PIPE;
476 }
477
478 static void
479 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
480 {
481 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
482 struct drm_device *dev = intel_dig_port->base.base.dev;
483 struct drm_i915_private *dev_priv = dev->dev_private;
484 enum port port = intel_dig_port->port;
485
486 lockdep_assert_held(&dev_priv->pps_mutex);
487
488 /* try to find a pipe with this port selected */
489 /* first pick one where the panel is on */
490 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
491 vlv_pipe_has_pp_on);
492 /* didn't find one? pick one where vdd is on */
493 if (intel_dp->pps_pipe == INVALID_PIPE)
494 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
495 vlv_pipe_has_vdd_on);
496 /* didn't find one? pick one with just the correct port */
497 if (intel_dp->pps_pipe == INVALID_PIPE)
498 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
499 vlv_pipe_any);
500
501 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
502 if (intel_dp->pps_pipe == INVALID_PIPE) {
503 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
504 port_name(port));
505 return;
506 }
507
508 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
509 port_name(port), pipe_name(intel_dp->pps_pipe));
510
511 intel_dp_init_panel_power_sequencer(dev, intel_dp);
512 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
513 }
514
515 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
516 {
517 struct drm_device *dev = dev_priv->dev;
518 struct intel_encoder *encoder;
519
520 if (WARN_ON(!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)))
521 return;
522
523 /*
524 * We can't grab pps_mutex here due to deadlock with power_domain
525 * mutex when power_domain functions are called while holding pps_mutex.
526 * That also means that in order to use pps_pipe the code needs to
527 * hold both a power domain reference and pps_mutex, and the power domain
528 * reference get/put must be done while _not_ holding pps_mutex.
529 * pps_{lock,unlock}() do these steps in the correct order, so one
530 * should use them always.
531 */
532
533 for_each_intel_encoder(dev, encoder) {
534 struct intel_dp *intel_dp;
535
536 if (encoder->type != INTEL_OUTPUT_EDP)
537 continue;
538
539 intel_dp = enc_to_intel_dp(&encoder->base);
540 intel_dp->pps_pipe = INVALID_PIPE;
541 }
542 }
543
544 static i915_reg_t
545 _pp_ctrl_reg(struct intel_dp *intel_dp)
546 {
547 struct drm_device *dev = intel_dp_to_dev(intel_dp);
548
549 if (IS_BROXTON(dev))
550 return BXT_PP_CONTROL(0);
551 else if (HAS_PCH_SPLIT(dev))
552 return PCH_PP_CONTROL;
553 else
554 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
555 }
556
557 static i915_reg_t
558 _pp_stat_reg(struct intel_dp *intel_dp)
559 {
560 struct drm_device *dev = intel_dp_to_dev(intel_dp);
561
562 if (IS_BROXTON(dev))
563 return BXT_PP_STATUS(0);
564 else if (HAS_PCH_SPLIT(dev))
565 return PCH_PP_STATUS;
566 else
567 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
568 }
569
570 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
571 This function only applicable when panel PM state is not to be tracked */
572 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
573 void *unused)
574 {
575 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
576 edp_notifier);
577 struct drm_device *dev = intel_dp_to_dev(intel_dp);
578 struct drm_i915_private *dev_priv = dev->dev_private;
579
580 if (!is_edp(intel_dp) || code != SYS_RESTART)
581 return 0;
582
583 pps_lock(intel_dp);
584
585 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
586 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
587 i915_reg_t pp_ctrl_reg, pp_div_reg;
588 u32 pp_div;
589
590 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
591 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
592 pp_div = I915_READ(pp_div_reg);
593 pp_div &= PP_REFERENCE_DIVIDER_MASK;
594
595 /* 0x1F write to PP_DIV_REG sets max cycle delay */
596 I915_WRITE(pp_div_reg, pp_div | 0x1F);
597 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
598 msleep(intel_dp->panel_power_cycle_delay);
599 }
600
601 pps_unlock(intel_dp);
602
603 return 0;
604 }
605
606 static bool edp_have_panel_power(struct intel_dp *intel_dp)
607 {
608 struct drm_device *dev = intel_dp_to_dev(intel_dp);
609 struct drm_i915_private *dev_priv = dev->dev_private;
610
611 lockdep_assert_held(&dev_priv->pps_mutex);
612
613 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
614 intel_dp->pps_pipe == INVALID_PIPE)
615 return false;
616
617 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
618 }
619
620 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
621 {
622 struct drm_device *dev = intel_dp_to_dev(intel_dp);
623 struct drm_i915_private *dev_priv = dev->dev_private;
624
625 lockdep_assert_held(&dev_priv->pps_mutex);
626
627 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
628 intel_dp->pps_pipe == INVALID_PIPE)
629 return false;
630
631 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
632 }
633
634 static void
635 intel_dp_check_edp(struct intel_dp *intel_dp)
636 {
637 struct drm_device *dev = intel_dp_to_dev(intel_dp);
638 struct drm_i915_private *dev_priv = dev->dev_private;
639
640 if (!is_edp(intel_dp))
641 return;
642
643 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
644 WARN(1, "eDP powered off while attempting aux channel communication.\n");
645 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
646 I915_READ(_pp_stat_reg(intel_dp)),
647 I915_READ(_pp_ctrl_reg(intel_dp)));
648 }
649 }
650
651 static uint32_t
652 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
653 {
654 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
655 struct drm_device *dev = intel_dig_port->base.base.dev;
656 struct drm_i915_private *dev_priv = dev->dev_private;
657 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
658 uint32_t status;
659 bool done;
660
661 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
662 if (has_aux_irq)
663 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
664 msecs_to_jiffies_timeout(10));
665 else
666 done = wait_for(C, 10) == 0;
667 if (!done)
668 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
669 has_aux_irq);
670 #undef C
671
672 return status;
673 }
674
675 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
676 {
677 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
678 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
679
680 if (index)
681 return 0;
682
683 /*
684 * The clock divider is based off the hrawclk, and would like to run at
685 * 2MHz. So, take the hrawclk value and divide by 2000 and use that
686 */
687 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
688 }
689
690 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
691 {
692 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
693 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
694
695 if (index)
696 return 0;
697
698 /*
699 * The clock divider is based off the cdclk or PCH rawclk, and would
700 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and
701 * divide by 2000 and use that
702 */
703 if (intel_dig_port->port == PORT_A)
704 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
705 else
706 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
707 }
708
709 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
710 {
711 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
712 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
713
714 if (intel_dig_port->port != PORT_A && HAS_PCH_LPT_H(dev_priv)) {
715 /* Workaround for non-ULT HSW */
716 switch (index) {
717 case 0: return 63;
718 case 1: return 72;
719 default: return 0;
720 }
721 }
722
723 return ilk_get_aux_clock_divider(intel_dp, index);
724 }
725
726 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
727 {
728 /*
729 * SKL doesn't need us to program the AUX clock divider (Hardware will
730 * derive the clock from CDCLK automatically). We still implement the
731 * get_aux_clock_divider vfunc to plug-in into the existing code.
732 */
733 return index ? 0 : 1;
734 }
735
736 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
737 bool has_aux_irq,
738 int send_bytes,
739 uint32_t aux_clock_divider)
740 {
741 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
742 struct drm_device *dev = intel_dig_port->base.base.dev;
743 uint32_t precharge, timeout;
744
745 if (IS_GEN6(dev))
746 precharge = 3;
747 else
748 precharge = 5;
749
750 if (IS_BROADWELL(dev) && intel_dig_port->port == PORT_A)
751 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
752 else
753 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
754
755 return DP_AUX_CH_CTL_SEND_BUSY |
756 DP_AUX_CH_CTL_DONE |
757 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
758 DP_AUX_CH_CTL_TIME_OUT_ERROR |
759 timeout |
760 DP_AUX_CH_CTL_RECEIVE_ERROR |
761 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
762 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
763 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
764 }
765
766 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
767 bool has_aux_irq,
768 int send_bytes,
769 uint32_t unused)
770 {
771 return DP_AUX_CH_CTL_SEND_BUSY |
772 DP_AUX_CH_CTL_DONE |
773 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
774 DP_AUX_CH_CTL_TIME_OUT_ERROR |
775 DP_AUX_CH_CTL_TIME_OUT_1600us |
776 DP_AUX_CH_CTL_RECEIVE_ERROR |
777 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
778 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
779 }
780
781 static int
782 intel_dp_aux_ch(struct intel_dp *intel_dp,
783 const uint8_t *send, int send_bytes,
784 uint8_t *recv, int recv_size)
785 {
786 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
787 struct drm_device *dev = intel_dig_port->base.base.dev;
788 struct drm_i915_private *dev_priv = dev->dev_private;
789 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
790 uint32_t aux_clock_divider;
791 int i, ret, recv_bytes;
792 uint32_t status;
793 int try, clock = 0;
794 bool has_aux_irq = HAS_AUX_IRQ(dev);
795 bool vdd;
796
797 pps_lock(intel_dp);
798
799 /*
800 * We will be called with VDD already enabled for dpcd/edid/oui reads.
801 * In such cases we want to leave VDD enabled and it's up to upper layers
802 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
803 * ourselves.
804 */
805 vdd = edp_panel_vdd_on(intel_dp);
806
807 /* dp aux is extremely sensitive to irq latency, hence request the
808 * lowest possible wakeup latency and so prevent the cpu from going into
809 * deep sleep states.
810 */
811 pm_qos_update_request(&dev_priv->pm_qos, 0);
812
813 intel_dp_check_edp(intel_dp);
814
815 /* Try to wait for any previous AUX channel activity */
816 for (try = 0; try < 3; try++) {
817 status = I915_READ_NOTRACE(ch_ctl);
818 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
819 break;
820 msleep(1);
821 }
822
823 if (try == 3) {
824 static u32 last_status = -1;
825 const u32 status = I915_READ(ch_ctl);
826
827 if (status != last_status) {
828 WARN(1, "dp_aux_ch not started status 0x%08x\n",
829 status);
830 last_status = status;
831 }
832
833 ret = -EBUSY;
834 goto out;
835 }
836
837 /* Only 5 data registers! */
838 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
839 ret = -E2BIG;
840 goto out;
841 }
842
843 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
844 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
845 has_aux_irq,
846 send_bytes,
847 aux_clock_divider);
848
849 /* Must try at least 3 times according to DP spec */
850 for (try = 0; try < 5; try++) {
851 /* Load the send data into the aux channel data registers */
852 for (i = 0; i < send_bytes; i += 4)
853 I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
854 intel_dp_pack_aux(send + i,
855 send_bytes - i));
856
857 /* Send the command and wait for it to complete */
858 I915_WRITE(ch_ctl, send_ctl);
859
860 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
861
862 /* Clear done status and any errors */
863 I915_WRITE(ch_ctl,
864 status |
865 DP_AUX_CH_CTL_DONE |
866 DP_AUX_CH_CTL_TIME_OUT_ERROR |
867 DP_AUX_CH_CTL_RECEIVE_ERROR);
868
869 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
870 continue;
871
872 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
873 * 400us delay required for errors and timeouts
874 * Timeout errors from the HW already meet this
875 * requirement so skip to next iteration
876 */
877 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
878 usleep_range(400, 500);
879 continue;
880 }
881 if (status & DP_AUX_CH_CTL_DONE)
882 goto done;
883 }
884 }
885
886 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
887 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
888 ret = -EBUSY;
889 goto out;
890 }
891
892 done:
893 /* Check for timeout or receive error.
894 * Timeouts occur when the sink is not connected
895 */
896 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
897 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
898 ret = -EIO;
899 goto out;
900 }
901
902 /* Timeouts occur when the device isn't connected, so they're
903 * "normal" -- don't fill the kernel log with these */
904 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
905 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
906 ret = -ETIMEDOUT;
907 goto out;
908 }
909
910 /* Unload any bytes sent back from the other side */
911 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
912 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
913
914 /*
915 * By BSpec: "Message sizes of 0 or >20 are not allowed."
916 * We have no idea of what happened so we return -EBUSY so
917 * drm layer takes care for the necessary retries.
918 */
919 if (recv_bytes == 0 || recv_bytes > 20) {
920 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
921 recv_bytes);
922 /*
923 * FIXME: This patch was created on top of a series that
924 * organize the retries at drm level. There EBUSY should
925 * also take care for 1ms wait before retrying.
926 * That aux retries re-org is still needed and after that is
927 * merged we remove this sleep from here.
928 */
929 usleep_range(1000, 1500);
930 ret = -EBUSY;
931 goto out;
932 }
933
934 if (recv_bytes > recv_size)
935 recv_bytes = recv_size;
936
937 for (i = 0; i < recv_bytes; i += 4)
938 intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
939 recv + i, recv_bytes - i);
940
941 ret = recv_bytes;
942 out:
943 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
944
945 if (vdd)
946 edp_panel_vdd_off(intel_dp, false);
947
948 pps_unlock(intel_dp);
949
950 return ret;
951 }
952
953 #define BARE_ADDRESS_SIZE 3
954 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
955 static ssize_t
956 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
957 {
958 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
959 uint8_t txbuf[20], rxbuf[20];
960 size_t txsize, rxsize;
961 int ret;
962
963 txbuf[0] = (msg->request << 4) |
964 ((msg->address >> 16) & 0xf);
965 txbuf[1] = (msg->address >> 8) & 0xff;
966 txbuf[2] = msg->address & 0xff;
967 txbuf[3] = msg->size - 1;
968
969 switch (msg->request & ~DP_AUX_I2C_MOT) {
970 case DP_AUX_NATIVE_WRITE:
971 case DP_AUX_I2C_WRITE:
972 case DP_AUX_I2C_WRITE_STATUS_UPDATE:
973 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
974 rxsize = 2; /* 0 or 1 data bytes */
975
976 if (WARN_ON(txsize > 20))
977 return -E2BIG;
978
979 if (msg->buffer)
980 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
981 else
982 WARN_ON(msg->size);
983
984 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
985 if (ret > 0) {
986 msg->reply = rxbuf[0] >> 4;
987
988 if (ret > 1) {
989 /* Number of bytes written in a short write. */
990 ret = clamp_t(int, rxbuf[1], 0, msg->size);
991 } else {
992 /* Return payload size. */
993 ret = msg->size;
994 }
995 }
996 break;
997
998 case DP_AUX_NATIVE_READ:
999 case DP_AUX_I2C_READ:
1000 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1001 rxsize = msg->size + 1;
1002
1003 if (WARN_ON(rxsize > 20))
1004 return -E2BIG;
1005
1006 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1007 if (ret > 0) {
1008 msg->reply = rxbuf[0] >> 4;
1009 /*
1010 * Assume happy day, and copy the data. The caller is
1011 * expected to check msg->reply before touching it.
1012 *
1013 * Return payload size.
1014 */
1015 ret--;
1016 memcpy(msg->buffer, rxbuf + 1, ret);
1017 }
1018 break;
1019
1020 default:
1021 ret = -EINVAL;
1022 break;
1023 }
1024
1025 return ret;
1026 }
1027
1028 static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1029 enum port port)
1030 {
1031 switch (port) {
1032 case PORT_B:
1033 case PORT_C:
1034 case PORT_D:
1035 return DP_AUX_CH_CTL(port);
1036 default:
1037 MISSING_CASE(port);
1038 return DP_AUX_CH_CTL(PORT_B);
1039 }
1040 }
1041
1042 static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1043 enum port port, int index)
1044 {
1045 switch (port) {
1046 case PORT_B:
1047 case PORT_C:
1048 case PORT_D:
1049 return DP_AUX_CH_DATA(port, index);
1050 default:
1051 MISSING_CASE(port);
1052 return DP_AUX_CH_DATA(PORT_B, index);
1053 }
1054 }
1055
1056 static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1057 enum port port)
1058 {
1059 switch (port) {
1060 case PORT_A:
1061 return DP_AUX_CH_CTL(port);
1062 case PORT_B:
1063 case PORT_C:
1064 case PORT_D:
1065 return PCH_DP_AUX_CH_CTL(port);
1066 default:
1067 MISSING_CASE(port);
1068 return DP_AUX_CH_CTL(PORT_A);
1069 }
1070 }
1071
1072 static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1073 enum port port, int index)
1074 {
1075 switch (port) {
1076 case PORT_A:
1077 return DP_AUX_CH_DATA(port, index);
1078 case PORT_B:
1079 case PORT_C:
1080 case PORT_D:
1081 return PCH_DP_AUX_CH_DATA(port, index);
1082 default:
1083 MISSING_CASE(port);
1084 return DP_AUX_CH_DATA(PORT_A, index);
1085 }
1086 }
1087
1088 /*
1089 * On SKL we don't have Aux for port E so we rely
1090 * on VBT to set a proper alternate aux channel.
1091 */
1092 static enum port skl_porte_aux_port(struct drm_i915_private *dev_priv)
1093 {
1094 const struct ddi_vbt_port_info *info =
1095 &dev_priv->vbt.ddi_port_info[PORT_E];
1096
1097 switch (info->alternate_aux_channel) {
1098 case DP_AUX_A:
1099 return PORT_A;
1100 case DP_AUX_B:
1101 return PORT_B;
1102 case DP_AUX_C:
1103 return PORT_C;
1104 case DP_AUX_D:
1105 return PORT_D;
1106 default:
1107 MISSING_CASE(info->alternate_aux_channel);
1108 return PORT_A;
1109 }
1110 }
1111
1112 static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1113 enum port port)
1114 {
1115 if (port == PORT_E)
1116 port = skl_porte_aux_port(dev_priv);
1117
1118 switch (port) {
1119 case PORT_A:
1120 case PORT_B:
1121 case PORT_C:
1122 case PORT_D:
1123 return DP_AUX_CH_CTL(port);
1124 default:
1125 MISSING_CASE(port);
1126 return DP_AUX_CH_CTL(PORT_A);
1127 }
1128 }
1129
1130 static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1131 enum port port, int index)
1132 {
1133 if (port == PORT_E)
1134 port = skl_porte_aux_port(dev_priv);
1135
1136 switch (port) {
1137 case PORT_A:
1138 case PORT_B:
1139 case PORT_C:
1140 case PORT_D:
1141 return DP_AUX_CH_DATA(port, index);
1142 default:
1143 MISSING_CASE(port);
1144 return DP_AUX_CH_DATA(PORT_A, index);
1145 }
1146 }
1147
1148 static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1149 enum port port)
1150 {
1151 if (INTEL_INFO(dev_priv)->gen >= 9)
1152 return skl_aux_ctl_reg(dev_priv, port);
1153 else if (HAS_PCH_SPLIT(dev_priv))
1154 return ilk_aux_ctl_reg(dev_priv, port);
1155 else
1156 return g4x_aux_ctl_reg(dev_priv, port);
1157 }
1158
1159 static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1160 enum port port, int index)
1161 {
1162 if (INTEL_INFO(dev_priv)->gen >= 9)
1163 return skl_aux_data_reg(dev_priv, port, index);
1164 else if (HAS_PCH_SPLIT(dev_priv))
1165 return ilk_aux_data_reg(dev_priv, port, index);
1166 else
1167 return g4x_aux_data_reg(dev_priv, port, index);
1168 }
1169
1170 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1171 {
1172 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1173 enum port port = dp_to_dig_port(intel_dp)->port;
1174 int i;
1175
1176 intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1177 for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1178 intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1179 }
1180
1181 static void
1182 intel_dp_aux_fini(struct intel_dp *intel_dp)
1183 {
1184 drm_dp_aux_unregister(&intel_dp->aux);
1185 kfree(intel_dp->aux.name);
1186 }
1187
1188 static int
1189 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1190 {
1191 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1192 enum port port = intel_dig_port->port;
1193 int ret;
1194
1195 intel_aux_reg_init(intel_dp);
1196
1197 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1198 if (!intel_dp->aux.name)
1199 return -ENOMEM;
1200
1201 intel_dp->aux.dev = connector->base.kdev;
1202 intel_dp->aux.transfer = intel_dp_aux_transfer;
1203
1204 DRM_DEBUG_KMS("registering %s bus for %s\n",
1205 intel_dp->aux.name,
1206 connector->base.kdev->kobj.name);
1207
1208 ret = drm_dp_aux_register(&intel_dp->aux);
1209 if (ret < 0) {
1210 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1211 intel_dp->aux.name, ret);
1212 kfree(intel_dp->aux.name);
1213 return ret;
1214 }
1215
1216 return 0;
1217 }
1218
1219 static void
1220 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1221 {
1222 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1223
1224 intel_dp_aux_fini(intel_dp);
1225 intel_connector_unregister(intel_connector);
1226 }
1227
1228 static int
1229 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1230 {
1231 if (intel_dp->num_sink_rates) {
1232 *sink_rates = intel_dp->sink_rates;
1233 return intel_dp->num_sink_rates;
1234 }
1235
1236 *sink_rates = default_rates;
1237
1238 return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1239 }
1240
1241 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1242 {
1243 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1244 struct drm_device *dev = dig_port->base.base.dev;
1245
1246 /* WaDisableHBR2:skl */
1247 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0))
1248 return false;
1249
1250 if ((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || IS_BROADWELL(dev) ||
1251 (INTEL_INFO(dev)->gen >= 9))
1252 return true;
1253 else
1254 return false;
1255 }
1256
1257 static int
1258 intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1259 {
1260 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1261 struct drm_device *dev = dig_port->base.base.dev;
1262 int size;
1263
1264 if (IS_BROXTON(dev)) {
1265 *source_rates = bxt_rates;
1266 size = ARRAY_SIZE(bxt_rates);
1267 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1268 *source_rates = skl_rates;
1269 size = ARRAY_SIZE(skl_rates);
1270 } else {
1271 *source_rates = default_rates;
1272 size = ARRAY_SIZE(default_rates);
1273 }
1274
1275 /* This depends on the fact that 5.4 is last value in the array */
1276 if (!intel_dp_source_supports_hbr2(intel_dp))
1277 size--;
1278
1279 return size;
1280 }
1281
1282 static void
1283 intel_dp_set_clock(struct intel_encoder *encoder,
1284 struct intel_crtc_state *pipe_config)
1285 {
1286 struct drm_device *dev = encoder->base.dev;
1287 const struct dp_link_dpll *divisor = NULL;
1288 int i, count = 0;
1289
1290 if (IS_G4X(dev)) {
1291 divisor = gen4_dpll;
1292 count = ARRAY_SIZE(gen4_dpll);
1293 } else if (HAS_PCH_SPLIT(dev)) {
1294 divisor = pch_dpll;
1295 count = ARRAY_SIZE(pch_dpll);
1296 } else if (IS_CHERRYVIEW(dev)) {
1297 divisor = chv_dpll;
1298 count = ARRAY_SIZE(chv_dpll);
1299 } else if (IS_VALLEYVIEW(dev)) {
1300 divisor = vlv_dpll;
1301 count = ARRAY_SIZE(vlv_dpll);
1302 }
1303
1304 if (divisor && count) {
1305 for (i = 0; i < count; i++) {
1306 if (pipe_config->port_clock == divisor[i].clock) {
1307 pipe_config->dpll = divisor[i].dpll;
1308 pipe_config->clock_set = true;
1309 break;
1310 }
1311 }
1312 }
1313 }
1314
1315 static int intersect_rates(const int *source_rates, int source_len,
1316 const int *sink_rates, int sink_len,
1317 int *common_rates)
1318 {
1319 int i = 0, j = 0, k = 0;
1320
1321 while (i < source_len && j < sink_len) {
1322 if (source_rates[i] == sink_rates[j]) {
1323 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1324 return k;
1325 common_rates[k] = source_rates[i];
1326 ++k;
1327 ++i;
1328 ++j;
1329 } else if (source_rates[i] < sink_rates[j]) {
1330 ++i;
1331 } else {
1332 ++j;
1333 }
1334 }
1335 return k;
1336 }
1337
1338 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1339 int *common_rates)
1340 {
1341 const int *source_rates, *sink_rates;
1342 int source_len, sink_len;
1343
1344 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1345 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1346
1347 return intersect_rates(source_rates, source_len,
1348 sink_rates, sink_len,
1349 common_rates);
1350 }
1351
1352 static void snprintf_int_array(char *str, size_t len,
1353 const int *array, int nelem)
1354 {
1355 int i;
1356
1357 str[0] = '\0';
1358
1359 for (i = 0; i < nelem; i++) {
1360 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1361 if (r >= len)
1362 return;
1363 str += r;
1364 len -= r;
1365 }
1366 }
1367
1368 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1369 {
1370 const int *source_rates, *sink_rates;
1371 int source_len, sink_len, common_len;
1372 int common_rates[DP_MAX_SUPPORTED_RATES];
1373 char str[128]; /* FIXME: too big for stack? */
1374
1375 if ((drm_debug & DRM_UT_KMS) == 0)
1376 return;
1377
1378 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1379 snprintf_int_array(str, sizeof(str), source_rates, source_len);
1380 DRM_DEBUG_KMS("source rates: %s\n", str);
1381
1382 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1383 snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1384 DRM_DEBUG_KMS("sink rates: %s\n", str);
1385
1386 common_len = intel_dp_common_rates(intel_dp, common_rates);
1387 snprintf_int_array(str, sizeof(str), common_rates, common_len);
1388 DRM_DEBUG_KMS("common rates: %s\n", str);
1389 }
1390
1391 static int rate_to_index(int find, const int *rates)
1392 {
1393 int i = 0;
1394
1395 for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1396 if (find == rates[i])
1397 break;
1398
1399 return i;
1400 }
1401
1402 int
1403 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1404 {
1405 int rates[DP_MAX_SUPPORTED_RATES] = {};
1406 int len;
1407
1408 len = intel_dp_common_rates(intel_dp, rates);
1409 if (WARN_ON(len <= 0))
1410 return 162000;
1411
1412 return rates[rate_to_index(0, rates) - 1];
1413 }
1414
1415 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1416 {
1417 return rate_to_index(rate, intel_dp->sink_rates);
1418 }
1419
1420 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1421 uint8_t *link_bw, uint8_t *rate_select)
1422 {
1423 if (intel_dp->num_sink_rates) {
1424 *link_bw = 0;
1425 *rate_select =
1426 intel_dp_rate_select(intel_dp, port_clock);
1427 } else {
1428 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1429 *rate_select = 0;
1430 }
1431 }
1432
1433 bool
1434 intel_dp_compute_config(struct intel_encoder *encoder,
1435 struct intel_crtc_state *pipe_config)
1436 {
1437 struct drm_device *dev = encoder->base.dev;
1438 struct drm_i915_private *dev_priv = dev->dev_private;
1439 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1440 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1441 enum port port = dp_to_dig_port(intel_dp)->port;
1442 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1443 struct intel_connector *intel_connector = intel_dp->attached_connector;
1444 int lane_count, clock;
1445 int min_lane_count = 1;
1446 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1447 /* Conveniently, the link BW constants become indices with a shift...*/
1448 int min_clock = 0;
1449 int max_clock;
1450 int bpp, mode_rate;
1451 int link_avail, link_clock;
1452 int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1453 int common_len;
1454 uint8_t link_bw, rate_select;
1455
1456 common_len = intel_dp_common_rates(intel_dp, common_rates);
1457
1458 /* No common link rates between source and sink */
1459 WARN_ON(common_len <= 0);
1460
1461 max_clock = common_len - 1;
1462
1463 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1464 pipe_config->has_pch_encoder = true;
1465
1466 pipe_config->has_dp_encoder = true;
1467 pipe_config->has_drrs = false;
1468 pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1469
1470 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1471 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1472 adjusted_mode);
1473
1474 if (INTEL_INFO(dev)->gen >= 9) {
1475 int ret;
1476 ret = skl_update_scaler_crtc(pipe_config);
1477 if (ret)
1478 return ret;
1479 }
1480
1481 if (HAS_GMCH_DISPLAY(dev))
1482 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1483 intel_connector->panel.fitting_mode);
1484 else
1485 intel_pch_panel_fitting(intel_crtc, pipe_config,
1486 intel_connector->panel.fitting_mode);
1487 }
1488
1489 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1490 return false;
1491
1492 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1493 "max bw %d pixel clock %iKHz\n",
1494 max_lane_count, common_rates[max_clock],
1495 adjusted_mode->crtc_clock);
1496
1497 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1498 * bpc in between. */
1499 bpp = pipe_config->pipe_bpp;
1500 if (is_edp(intel_dp)) {
1501
1502 /* Get bpp from vbt only for panels that dont have bpp in edid */
1503 if (intel_connector->base.display_info.bpc == 0 &&
1504 (dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
1505 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1506 dev_priv->vbt.edp.bpp);
1507 bpp = dev_priv->vbt.edp.bpp;
1508 }
1509
1510 /*
1511 * Use the maximum clock and number of lanes the eDP panel
1512 * advertizes being capable of. The panels are generally
1513 * designed to support only a single clock and lane
1514 * configuration, and typically these values correspond to the
1515 * native resolution of the panel.
1516 */
1517 min_lane_count = max_lane_count;
1518 min_clock = max_clock;
1519 }
1520
1521 for (; bpp >= 6*3; bpp -= 2*3) {
1522 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1523 bpp);
1524
1525 for (clock = min_clock; clock <= max_clock; clock++) {
1526 for (lane_count = min_lane_count;
1527 lane_count <= max_lane_count;
1528 lane_count <<= 1) {
1529
1530 link_clock = common_rates[clock];
1531 link_avail = intel_dp_max_data_rate(link_clock,
1532 lane_count);
1533
1534 if (mode_rate <= link_avail) {
1535 goto found;
1536 }
1537 }
1538 }
1539 }
1540
1541 return false;
1542
1543 found:
1544 if (intel_dp->color_range_auto) {
1545 /*
1546 * See:
1547 * CEA-861-E - 5.1 Default Encoding Parameters
1548 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1549 */
1550 pipe_config->limited_color_range =
1551 bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1552 } else {
1553 pipe_config->limited_color_range =
1554 intel_dp->limited_color_range;
1555 }
1556
1557 pipe_config->lane_count = lane_count;
1558
1559 pipe_config->pipe_bpp = bpp;
1560 pipe_config->port_clock = common_rates[clock];
1561
1562 intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1563 &link_bw, &rate_select);
1564
1565 DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1566 link_bw, rate_select, pipe_config->lane_count,
1567 pipe_config->port_clock, bpp);
1568 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1569 mode_rate, link_avail);
1570
1571 intel_link_compute_m_n(bpp, lane_count,
1572 adjusted_mode->crtc_clock,
1573 pipe_config->port_clock,
1574 &pipe_config->dp_m_n);
1575
1576 if (intel_connector->panel.downclock_mode != NULL &&
1577 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1578 pipe_config->has_drrs = true;
1579 intel_link_compute_m_n(bpp, lane_count,
1580 intel_connector->panel.downclock_mode->clock,
1581 pipe_config->port_clock,
1582 &pipe_config->dp_m2_n2);
1583 }
1584
1585 if (!HAS_DDI(dev))
1586 intel_dp_set_clock(encoder, pipe_config);
1587
1588 return true;
1589 }
1590
1591 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1592 const struct intel_crtc_state *pipe_config)
1593 {
1594 intel_dp->link_rate = pipe_config->port_clock;
1595 intel_dp->lane_count = pipe_config->lane_count;
1596 }
1597
1598 static void intel_dp_prepare(struct intel_encoder *encoder)
1599 {
1600 struct drm_device *dev = encoder->base.dev;
1601 struct drm_i915_private *dev_priv = dev->dev_private;
1602 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1603 enum port port = dp_to_dig_port(intel_dp)->port;
1604 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1605 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1606
1607 intel_dp_set_link_params(intel_dp, crtc->config);
1608
1609 /*
1610 * There are four kinds of DP registers:
1611 *
1612 * IBX PCH
1613 * SNB CPU
1614 * IVB CPU
1615 * CPT PCH
1616 *
1617 * IBX PCH and CPU are the same for almost everything,
1618 * except that the CPU DP PLL is configured in this
1619 * register
1620 *
1621 * CPT PCH is quite different, having many bits moved
1622 * to the TRANS_DP_CTL register instead. That
1623 * configuration happens (oddly) in ironlake_pch_enable
1624 */
1625
1626 /* Preserve the BIOS-computed detected bit. This is
1627 * supposed to be read-only.
1628 */
1629 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1630
1631 /* Handle DP bits in common between all three register formats */
1632 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1633 intel_dp->DP |= DP_PORT_WIDTH(crtc->config->lane_count);
1634
1635 /* Split out the IBX/CPU vs CPT settings */
1636
1637 if (IS_GEN7(dev) && port == PORT_A) {
1638 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1639 intel_dp->DP |= DP_SYNC_HS_HIGH;
1640 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1641 intel_dp->DP |= DP_SYNC_VS_HIGH;
1642 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1643
1644 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1645 intel_dp->DP |= DP_ENHANCED_FRAMING;
1646
1647 intel_dp->DP |= crtc->pipe << 29;
1648 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1649 u32 trans_dp;
1650
1651 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1652
1653 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1654 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1655 trans_dp |= TRANS_DP_ENH_FRAMING;
1656 else
1657 trans_dp &= ~TRANS_DP_ENH_FRAMING;
1658 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1659 } else {
1660 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1661 !IS_CHERRYVIEW(dev) && crtc->config->limited_color_range)
1662 intel_dp->DP |= DP_COLOR_RANGE_16_235;
1663
1664 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1665 intel_dp->DP |= DP_SYNC_HS_HIGH;
1666 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1667 intel_dp->DP |= DP_SYNC_VS_HIGH;
1668 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1669
1670 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1671 intel_dp->DP |= DP_ENHANCED_FRAMING;
1672
1673 if (IS_CHERRYVIEW(dev))
1674 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1675 else if (crtc->pipe == PIPE_B)
1676 intel_dp->DP |= DP_PIPEB_SELECT;
1677 }
1678 }
1679
1680 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1681 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1682
1683 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1684 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1685
1686 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1687 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1688
1689 static void wait_panel_status(struct intel_dp *intel_dp,
1690 u32 mask,
1691 u32 value)
1692 {
1693 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1694 struct drm_i915_private *dev_priv = dev->dev_private;
1695 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1696
1697 lockdep_assert_held(&dev_priv->pps_mutex);
1698
1699 pp_stat_reg = _pp_stat_reg(intel_dp);
1700 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1701
1702 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1703 mask, value,
1704 I915_READ(pp_stat_reg),
1705 I915_READ(pp_ctrl_reg));
1706
1707 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value,
1708 5 * USEC_PER_SEC, 10 * USEC_PER_MSEC))
1709 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1710 I915_READ(pp_stat_reg),
1711 I915_READ(pp_ctrl_reg));
1712
1713 DRM_DEBUG_KMS("Wait complete\n");
1714 }
1715
1716 static void wait_panel_on(struct intel_dp *intel_dp)
1717 {
1718 DRM_DEBUG_KMS("Wait for panel power on\n");
1719 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1720 }
1721
1722 static void wait_panel_off(struct intel_dp *intel_dp)
1723 {
1724 DRM_DEBUG_KMS("Wait for panel power off time\n");
1725 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1726 }
1727
1728 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1729 {
1730 ktime_t panel_power_on_time;
1731 s64 panel_power_off_duration;
1732
1733 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1734
1735 /* take the difference of currrent time and panel power off time
1736 * and then make panel wait for t11_t12 if needed. */
1737 panel_power_on_time = ktime_get_boottime();
1738 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
1739
1740 /* When we disable the VDD override bit last we have to do the manual
1741 * wait. */
1742 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
1743 wait_remaining_ms_from_jiffies(jiffies,
1744 intel_dp->panel_power_cycle_delay - panel_power_off_duration);
1745
1746 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1747 }
1748
1749 static void wait_backlight_on(struct intel_dp *intel_dp)
1750 {
1751 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1752 intel_dp->backlight_on_delay);
1753 }
1754
1755 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1756 {
1757 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1758 intel_dp->backlight_off_delay);
1759 }
1760
1761 /* Read the current pp_control value, unlocking the register if it
1762 * is locked
1763 */
1764
1765 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1766 {
1767 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1768 struct drm_i915_private *dev_priv = dev->dev_private;
1769 u32 control;
1770
1771 lockdep_assert_held(&dev_priv->pps_mutex);
1772
1773 control = I915_READ(_pp_ctrl_reg(intel_dp));
1774 if (!IS_BROXTON(dev)) {
1775 control &= ~PANEL_UNLOCK_MASK;
1776 control |= PANEL_UNLOCK_REGS;
1777 }
1778 return control;
1779 }
1780
1781 /*
1782 * Must be paired with edp_panel_vdd_off().
1783 * Must hold pps_mutex around the whole on/off sequence.
1784 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1785 */
1786 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1787 {
1788 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1789 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1790 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1791 struct drm_i915_private *dev_priv = dev->dev_private;
1792 enum intel_display_power_domain power_domain;
1793 u32 pp;
1794 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1795 bool need_to_disable = !intel_dp->want_panel_vdd;
1796
1797 lockdep_assert_held(&dev_priv->pps_mutex);
1798
1799 if (!is_edp(intel_dp))
1800 return false;
1801
1802 cancel_delayed_work(&intel_dp->panel_vdd_work);
1803 intel_dp->want_panel_vdd = true;
1804
1805 if (edp_have_panel_vdd(intel_dp))
1806 return need_to_disable;
1807
1808 power_domain = intel_display_port_aux_power_domain(intel_encoder);
1809 intel_display_power_get(dev_priv, power_domain);
1810
1811 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1812 port_name(intel_dig_port->port));
1813
1814 if (!edp_have_panel_power(intel_dp))
1815 wait_panel_power_cycle(intel_dp);
1816
1817 pp = ironlake_get_pp_control(intel_dp);
1818 pp |= EDP_FORCE_VDD;
1819
1820 pp_stat_reg = _pp_stat_reg(intel_dp);
1821 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1822
1823 I915_WRITE(pp_ctrl_reg, pp);
1824 POSTING_READ(pp_ctrl_reg);
1825 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1826 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1827 /*
1828 * If the panel wasn't on, delay before accessing aux channel
1829 */
1830 if (!edp_have_panel_power(intel_dp)) {
1831 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1832 port_name(intel_dig_port->port));
1833 msleep(intel_dp->panel_power_up_delay);
1834 }
1835
1836 return need_to_disable;
1837 }
1838
1839 /*
1840 * Must be paired with intel_edp_panel_vdd_off() or
1841 * intel_edp_panel_off().
1842 * Nested calls to these functions are not allowed since
1843 * we drop the lock. Caller must use some higher level
1844 * locking to prevent nested calls from other threads.
1845 */
1846 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1847 {
1848 bool vdd;
1849
1850 if (!is_edp(intel_dp))
1851 return;
1852
1853 pps_lock(intel_dp);
1854 vdd = edp_panel_vdd_on(intel_dp);
1855 pps_unlock(intel_dp);
1856
1857 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1858 port_name(dp_to_dig_port(intel_dp)->port));
1859 }
1860
1861 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1862 {
1863 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1864 struct drm_i915_private *dev_priv = dev->dev_private;
1865 struct intel_digital_port *intel_dig_port =
1866 dp_to_dig_port(intel_dp);
1867 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1868 enum intel_display_power_domain power_domain;
1869 u32 pp;
1870 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1871
1872 lockdep_assert_held(&dev_priv->pps_mutex);
1873
1874 WARN_ON(intel_dp->want_panel_vdd);
1875
1876 if (!edp_have_panel_vdd(intel_dp))
1877 return;
1878
1879 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1880 port_name(intel_dig_port->port));
1881
1882 pp = ironlake_get_pp_control(intel_dp);
1883 pp &= ~EDP_FORCE_VDD;
1884
1885 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1886 pp_stat_reg = _pp_stat_reg(intel_dp);
1887
1888 I915_WRITE(pp_ctrl_reg, pp);
1889 POSTING_READ(pp_ctrl_reg);
1890
1891 /* Make sure sequencer is idle before allowing subsequent activity */
1892 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1893 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1894
1895 if ((pp & POWER_TARGET_ON) == 0)
1896 intel_dp->panel_power_off_time = ktime_get_boottime();
1897
1898 power_domain = intel_display_port_aux_power_domain(intel_encoder);
1899 intel_display_power_put(dev_priv, power_domain);
1900 }
1901
1902 static void edp_panel_vdd_work(struct work_struct *__work)
1903 {
1904 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1905 struct intel_dp, panel_vdd_work);
1906
1907 pps_lock(intel_dp);
1908 if (!intel_dp->want_panel_vdd)
1909 edp_panel_vdd_off_sync(intel_dp);
1910 pps_unlock(intel_dp);
1911 }
1912
1913 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1914 {
1915 unsigned long delay;
1916
1917 /*
1918 * Queue the timer to fire a long time from now (relative to the power
1919 * down delay) to keep the panel power up across a sequence of
1920 * operations.
1921 */
1922 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1923 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1924 }
1925
1926 /*
1927 * Must be paired with edp_panel_vdd_on().
1928 * Must hold pps_mutex around the whole on/off sequence.
1929 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1930 */
1931 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1932 {
1933 struct drm_i915_private *dev_priv =
1934 intel_dp_to_dev(intel_dp)->dev_private;
1935
1936 lockdep_assert_held(&dev_priv->pps_mutex);
1937
1938 if (!is_edp(intel_dp))
1939 return;
1940
1941 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
1942 port_name(dp_to_dig_port(intel_dp)->port));
1943
1944 intel_dp->want_panel_vdd = false;
1945
1946 if (sync)
1947 edp_panel_vdd_off_sync(intel_dp);
1948 else
1949 edp_panel_vdd_schedule_off(intel_dp);
1950 }
1951
1952 static void edp_panel_on(struct intel_dp *intel_dp)
1953 {
1954 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1955 struct drm_i915_private *dev_priv = dev->dev_private;
1956 u32 pp;
1957 i915_reg_t pp_ctrl_reg;
1958
1959 lockdep_assert_held(&dev_priv->pps_mutex);
1960
1961 if (!is_edp(intel_dp))
1962 return;
1963
1964 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
1965 port_name(dp_to_dig_port(intel_dp)->port));
1966
1967 if (WARN(edp_have_panel_power(intel_dp),
1968 "eDP port %c panel power already on\n",
1969 port_name(dp_to_dig_port(intel_dp)->port)))
1970 return;
1971
1972 wait_panel_power_cycle(intel_dp);
1973
1974 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1975 pp = ironlake_get_pp_control(intel_dp);
1976 if (IS_GEN5(dev)) {
1977 /* ILK workaround: disable reset around power sequence */
1978 pp &= ~PANEL_POWER_RESET;
1979 I915_WRITE(pp_ctrl_reg, pp);
1980 POSTING_READ(pp_ctrl_reg);
1981 }
1982
1983 pp |= POWER_TARGET_ON;
1984 if (!IS_GEN5(dev))
1985 pp |= PANEL_POWER_RESET;
1986
1987 I915_WRITE(pp_ctrl_reg, pp);
1988 POSTING_READ(pp_ctrl_reg);
1989
1990 wait_panel_on(intel_dp);
1991 intel_dp->last_power_on = jiffies;
1992
1993 if (IS_GEN5(dev)) {
1994 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1995 I915_WRITE(pp_ctrl_reg, pp);
1996 POSTING_READ(pp_ctrl_reg);
1997 }
1998 }
1999
2000 void intel_edp_panel_on(struct intel_dp *intel_dp)
2001 {
2002 if (!is_edp(intel_dp))
2003 return;
2004
2005 pps_lock(intel_dp);
2006 edp_panel_on(intel_dp);
2007 pps_unlock(intel_dp);
2008 }
2009
2010
2011 static void edp_panel_off(struct intel_dp *intel_dp)
2012 {
2013 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2014 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2015 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2016 struct drm_i915_private *dev_priv = dev->dev_private;
2017 enum intel_display_power_domain power_domain;
2018 u32 pp;
2019 i915_reg_t pp_ctrl_reg;
2020
2021 lockdep_assert_held(&dev_priv->pps_mutex);
2022
2023 if (!is_edp(intel_dp))
2024 return;
2025
2026 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2027 port_name(dp_to_dig_port(intel_dp)->port));
2028
2029 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2030 port_name(dp_to_dig_port(intel_dp)->port));
2031
2032 pp = ironlake_get_pp_control(intel_dp);
2033 /* We need to switch off panel power _and_ force vdd, for otherwise some
2034 * panels get very unhappy and cease to work. */
2035 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2036 EDP_BLC_ENABLE);
2037
2038 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2039
2040 intel_dp->want_panel_vdd = false;
2041
2042 I915_WRITE(pp_ctrl_reg, pp);
2043 POSTING_READ(pp_ctrl_reg);
2044
2045 intel_dp->panel_power_off_time = ktime_get_boottime();
2046 wait_panel_off(intel_dp);
2047
2048 /* We got a reference when we enabled the VDD. */
2049 power_domain = intel_display_port_aux_power_domain(intel_encoder);
2050 intel_display_power_put(dev_priv, power_domain);
2051 }
2052
2053 void intel_edp_panel_off(struct intel_dp *intel_dp)
2054 {
2055 if (!is_edp(intel_dp))
2056 return;
2057
2058 pps_lock(intel_dp);
2059 edp_panel_off(intel_dp);
2060 pps_unlock(intel_dp);
2061 }
2062
2063 /* Enable backlight in the panel power control. */
2064 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2065 {
2066 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2067 struct drm_device *dev = intel_dig_port->base.base.dev;
2068 struct drm_i915_private *dev_priv = dev->dev_private;
2069 u32 pp;
2070 i915_reg_t pp_ctrl_reg;
2071
2072 /*
2073 * If we enable the backlight right away following a panel power
2074 * on, we may see slight flicker as the panel syncs with the eDP
2075 * link. So delay a bit to make sure the image is solid before
2076 * allowing it to appear.
2077 */
2078 wait_backlight_on(intel_dp);
2079
2080 pps_lock(intel_dp);
2081
2082 pp = ironlake_get_pp_control(intel_dp);
2083 pp |= EDP_BLC_ENABLE;
2084
2085 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2086
2087 I915_WRITE(pp_ctrl_reg, pp);
2088 POSTING_READ(pp_ctrl_reg);
2089
2090 pps_unlock(intel_dp);
2091 }
2092
2093 /* Enable backlight PWM and backlight PP control. */
2094 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2095 {
2096 if (!is_edp(intel_dp))
2097 return;
2098
2099 DRM_DEBUG_KMS("\n");
2100
2101 intel_panel_enable_backlight(intel_dp->attached_connector);
2102 _intel_edp_backlight_on(intel_dp);
2103 }
2104
2105 /* Disable backlight in the panel power control. */
2106 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2107 {
2108 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2109 struct drm_i915_private *dev_priv = dev->dev_private;
2110 u32 pp;
2111 i915_reg_t pp_ctrl_reg;
2112
2113 if (!is_edp(intel_dp))
2114 return;
2115
2116 pps_lock(intel_dp);
2117
2118 pp = ironlake_get_pp_control(intel_dp);
2119 pp &= ~EDP_BLC_ENABLE;
2120
2121 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2122
2123 I915_WRITE(pp_ctrl_reg, pp);
2124 POSTING_READ(pp_ctrl_reg);
2125
2126 pps_unlock(intel_dp);
2127
2128 intel_dp->last_backlight_off = jiffies;
2129 edp_wait_backlight_off(intel_dp);
2130 }
2131
2132 /* Disable backlight PP control and backlight PWM. */
2133 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2134 {
2135 if (!is_edp(intel_dp))
2136 return;
2137
2138 DRM_DEBUG_KMS("\n");
2139
2140 _intel_edp_backlight_off(intel_dp);
2141 intel_panel_disable_backlight(intel_dp->attached_connector);
2142 }
2143
2144 /*
2145 * Hook for controlling the panel power control backlight through the bl_power
2146 * sysfs attribute. Take care to handle multiple calls.
2147 */
2148 static void intel_edp_backlight_power(struct intel_connector *connector,
2149 bool enable)
2150 {
2151 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2152 bool is_enabled;
2153
2154 pps_lock(intel_dp);
2155 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2156 pps_unlock(intel_dp);
2157
2158 if (is_enabled == enable)
2159 return;
2160
2161 DRM_DEBUG_KMS("panel power control backlight %s\n",
2162 enable ? "enable" : "disable");
2163
2164 if (enable)
2165 _intel_edp_backlight_on(intel_dp);
2166 else
2167 _intel_edp_backlight_off(intel_dp);
2168 }
2169
2170 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2171 {
2172 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2173 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2174 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2175
2176 I915_STATE_WARN(cur_state != state,
2177 "DP port %c state assertion failure (expected %s, current %s)\n",
2178 port_name(dig_port->port),
2179 onoff(state), onoff(cur_state));
2180 }
2181 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2182
2183 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2184 {
2185 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2186
2187 I915_STATE_WARN(cur_state != state,
2188 "eDP PLL state assertion failure (expected %s, current %s)\n",
2189 onoff(state), onoff(cur_state));
2190 }
2191 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2192 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2193
2194 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2195 {
2196 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2197 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2198 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2199
2200 assert_pipe_disabled(dev_priv, crtc->pipe);
2201 assert_dp_port_disabled(intel_dp);
2202 assert_edp_pll_disabled(dev_priv);
2203
2204 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2205 crtc->config->port_clock);
2206
2207 intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2208
2209 if (crtc->config->port_clock == 162000)
2210 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2211 else
2212 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2213
2214 I915_WRITE(DP_A, intel_dp->DP);
2215 POSTING_READ(DP_A);
2216 udelay(500);
2217
2218 /*
2219 * [DevILK] Work around required when enabling DP PLL
2220 * while a pipe is enabled going to FDI:
2221 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2222 * 2. Program DP PLL enable
2223 */
2224 if (IS_GEN5(dev_priv))
2225 intel_wait_for_vblank_if_active(dev_priv->dev, !crtc->pipe);
2226
2227 intel_dp->DP |= DP_PLL_ENABLE;
2228
2229 I915_WRITE(DP_A, intel_dp->DP);
2230 POSTING_READ(DP_A);
2231 udelay(200);
2232 }
2233
2234 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2235 {
2236 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2237 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2238 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2239
2240 assert_pipe_disabled(dev_priv, crtc->pipe);
2241 assert_dp_port_disabled(intel_dp);
2242 assert_edp_pll_enabled(dev_priv);
2243
2244 DRM_DEBUG_KMS("disabling eDP PLL\n");
2245
2246 intel_dp->DP &= ~DP_PLL_ENABLE;
2247
2248 I915_WRITE(DP_A, intel_dp->DP);
2249 POSTING_READ(DP_A);
2250 udelay(200);
2251 }
2252
2253 /* If the sink supports it, try to set the power state appropriately */
2254 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2255 {
2256 int ret, i;
2257
2258 /* Should have a valid DPCD by this point */
2259 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2260 return;
2261
2262 if (mode != DRM_MODE_DPMS_ON) {
2263 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2264 DP_SET_POWER_D3);
2265 } else {
2266 /*
2267 * When turning on, we need to retry for 1ms to give the sink
2268 * time to wake up.
2269 */
2270 for (i = 0; i < 3; i++) {
2271 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2272 DP_SET_POWER_D0);
2273 if (ret == 1)
2274 break;
2275 msleep(1);
2276 }
2277 }
2278
2279 if (ret != 1)
2280 DRM_DEBUG_KMS("failed to %s sink power state\n",
2281 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2282 }
2283
2284 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2285 enum pipe *pipe)
2286 {
2287 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2288 enum port port = dp_to_dig_port(intel_dp)->port;
2289 struct drm_device *dev = encoder->base.dev;
2290 struct drm_i915_private *dev_priv = dev->dev_private;
2291 enum intel_display_power_domain power_domain;
2292 u32 tmp;
2293 bool ret;
2294
2295 power_domain = intel_display_port_power_domain(encoder);
2296 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2297 return false;
2298
2299 ret = false;
2300
2301 tmp = I915_READ(intel_dp->output_reg);
2302
2303 if (!(tmp & DP_PORT_EN))
2304 goto out;
2305
2306 if (IS_GEN7(dev) && port == PORT_A) {
2307 *pipe = PORT_TO_PIPE_CPT(tmp);
2308 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2309 enum pipe p;
2310
2311 for_each_pipe(dev_priv, p) {
2312 u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2313 if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2314 *pipe = p;
2315 ret = true;
2316
2317 goto out;
2318 }
2319 }
2320
2321 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2322 i915_mmio_reg_offset(intel_dp->output_reg));
2323 } else if (IS_CHERRYVIEW(dev)) {
2324 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2325 } else {
2326 *pipe = PORT_TO_PIPE(tmp);
2327 }
2328
2329 ret = true;
2330
2331 out:
2332 intel_display_power_put(dev_priv, power_domain);
2333
2334 return ret;
2335 }
2336
2337 static void intel_dp_get_config(struct intel_encoder *encoder,
2338 struct intel_crtc_state *pipe_config)
2339 {
2340 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2341 u32 tmp, flags = 0;
2342 struct drm_device *dev = encoder->base.dev;
2343 struct drm_i915_private *dev_priv = dev->dev_private;
2344 enum port port = dp_to_dig_port(intel_dp)->port;
2345 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2346
2347 tmp = I915_READ(intel_dp->output_reg);
2348
2349 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2350
2351 if (HAS_PCH_CPT(dev) && port != PORT_A) {
2352 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2353
2354 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2355 flags |= DRM_MODE_FLAG_PHSYNC;
2356 else
2357 flags |= DRM_MODE_FLAG_NHSYNC;
2358
2359 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2360 flags |= DRM_MODE_FLAG_PVSYNC;
2361 else
2362 flags |= DRM_MODE_FLAG_NVSYNC;
2363 } else {
2364 if (tmp & DP_SYNC_HS_HIGH)
2365 flags |= DRM_MODE_FLAG_PHSYNC;
2366 else
2367 flags |= DRM_MODE_FLAG_NHSYNC;
2368
2369 if (tmp & DP_SYNC_VS_HIGH)
2370 flags |= DRM_MODE_FLAG_PVSYNC;
2371 else
2372 flags |= DRM_MODE_FLAG_NVSYNC;
2373 }
2374
2375 pipe_config->base.adjusted_mode.flags |= flags;
2376
2377 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2378 !IS_CHERRYVIEW(dev) && tmp & DP_COLOR_RANGE_16_235)
2379 pipe_config->limited_color_range = true;
2380
2381 pipe_config->has_dp_encoder = true;
2382
2383 pipe_config->lane_count =
2384 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2385
2386 intel_dp_get_m_n(crtc, pipe_config);
2387
2388 if (port == PORT_A) {
2389 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2390 pipe_config->port_clock = 162000;
2391 else
2392 pipe_config->port_clock = 270000;
2393 }
2394
2395 pipe_config->base.adjusted_mode.crtc_clock =
2396 intel_dotclock_calculate(pipe_config->port_clock,
2397 &pipe_config->dp_m_n);
2398
2399 if (is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2400 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2401 /*
2402 * This is a big fat ugly hack.
2403 *
2404 * Some machines in UEFI boot mode provide us a VBT that has 18
2405 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2406 * unknown we fail to light up. Yet the same BIOS boots up with
2407 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2408 * max, not what it tells us to use.
2409 *
2410 * Note: This will still be broken if the eDP panel is not lit
2411 * up by the BIOS, and thus we can't get the mode at module
2412 * load.
2413 */
2414 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2415 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2416 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2417 }
2418 }
2419
2420 static void intel_disable_dp(struct intel_encoder *encoder)
2421 {
2422 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2423 struct drm_device *dev = encoder->base.dev;
2424 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2425
2426 if (crtc->config->has_audio)
2427 intel_audio_codec_disable(encoder);
2428
2429 if (HAS_PSR(dev) && !HAS_DDI(dev))
2430 intel_psr_disable(intel_dp);
2431
2432 /* Make sure the panel is off before trying to change the mode. But also
2433 * ensure that we have vdd while we switch off the panel. */
2434 intel_edp_panel_vdd_on(intel_dp);
2435 intel_edp_backlight_off(intel_dp);
2436 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2437 intel_edp_panel_off(intel_dp);
2438
2439 /* disable the port before the pipe on g4x */
2440 if (INTEL_INFO(dev)->gen < 5)
2441 intel_dp_link_down(intel_dp);
2442 }
2443
2444 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2445 {
2446 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2447 enum port port = dp_to_dig_port(intel_dp)->port;
2448
2449 intel_dp_link_down(intel_dp);
2450
2451 /* Only ilk+ has port A */
2452 if (port == PORT_A)
2453 ironlake_edp_pll_off(intel_dp);
2454 }
2455
2456 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2457 {
2458 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2459
2460 intel_dp_link_down(intel_dp);
2461 }
2462
2463 static void chv_data_lane_soft_reset(struct intel_encoder *encoder,
2464 bool reset)
2465 {
2466 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2467 enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
2468 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2469 enum pipe pipe = crtc->pipe;
2470 uint32_t val;
2471
2472 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2473 if (reset)
2474 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2475 else
2476 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
2477 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2478
2479 if (crtc->config->lane_count > 2) {
2480 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2481 if (reset)
2482 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2483 else
2484 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
2485 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2486 }
2487
2488 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2489 val |= CHV_PCS_REQ_SOFTRESET_EN;
2490 if (reset)
2491 val &= ~DPIO_PCS_CLK_SOFT_RESET;
2492 else
2493 val |= DPIO_PCS_CLK_SOFT_RESET;
2494 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2495
2496 if (crtc->config->lane_count > 2) {
2497 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2498 val |= CHV_PCS_REQ_SOFTRESET_EN;
2499 if (reset)
2500 val &= ~DPIO_PCS_CLK_SOFT_RESET;
2501 else
2502 val |= DPIO_PCS_CLK_SOFT_RESET;
2503 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2504 }
2505 }
2506
2507 static void chv_post_disable_dp(struct intel_encoder *encoder)
2508 {
2509 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2510 struct drm_device *dev = encoder->base.dev;
2511 struct drm_i915_private *dev_priv = dev->dev_private;
2512
2513 intel_dp_link_down(intel_dp);
2514
2515 mutex_lock(&dev_priv->sb_lock);
2516
2517 /* Assert data lane reset */
2518 chv_data_lane_soft_reset(encoder, true);
2519
2520 mutex_unlock(&dev_priv->sb_lock);
2521 }
2522
2523 static void
2524 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2525 uint32_t *DP,
2526 uint8_t dp_train_pat)
2527 {
2528 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2529 struct drm_device *dev = intel_dig_port->base.base.dev;
2530 struct drm_i915_private *dev_priv = dev->dev_private;
2531 enum port port = intel_dig_port->port;
2532
2533 if (HAS_DDI(dev)) {
2534 uint32_t temp = I915_READ(DP_TP_CTL(port));
2535
2536 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2537 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2538 else
2539 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2540
2541 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2542 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2543 case DP_TRAINING_PATTERN_DISABLE:
2544 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2545
2546 break;
2547 case DP_TRAINING_PATTERN_1:
2548 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2549 break;
2550 case DP_TRAINING_PATTERN_2:
2551 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2552 break;
2553 case DP_TRAINING_PATTERN_3:
2554 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2555 break;
2556 }
2557 I915_WRITE(DP_TP_CTL(port), temp);
2558
2559 } else if ((IS_GEN7(dev) && port == PORT_A) ||
2560 (HAS_PCH_CPT(dev) && port != PORT_A)) {
2561 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2562
2563 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2564 case DP_TRAINING_PATTERN_DISABLE:
2565 *DP |= DP_LINK_TRAIN_OFF_CPT;
2566 break;
2567 case DP_TRAINING_PATTERN_1:
2568 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2569 break;
2570 case DP_TRAINING_PATTERN_2:
2571 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2572 break;
2573 case DP_TRAINING_PATTERN_3:
2574 DRM_ERROR("DP training pattern 3 not supported\n");
2575 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2576 break;
2577 }
2578
2579 } else {
2580 if (IS_CHERRYVIEW(dev))
2581 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2582 else
2583 *DP &= ~DP_LINK_TRAIN_MASK;
2584
2585 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2586 case DP_TRAINING_PATTERN_DISABLE:
2587 *DP |= DP_LINK_TRAIN_OFF;
2588 break;
2589 case DP_TRAINING_PATTERN_1:
2590 *DP |= DP_LINK_TRAIN_PAT_1;
2591 break;
2592 case DP_TRAINING_PATTERN_2:
2593 *DP |= DP_LINK_TRAIN_PAT_2;
2594 break;
2595 case DP_TRAINING_PATTERN_3:
2596 if (IS_CHERRYVIEW(dev)) {
2597 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2598 } else {
2599 DRM_ERROR("DP training pattern 3 not supported\n");
2600 *DP |= DP_LINK_TRAIN_PAT_2;
2601 }
2602 break;
2603 }
2604 }
2605 }
2606
2607 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2608 {
2609 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2610 struct drm_i915_private *dev_priv = dev->dev_private;
2611 struct intel_crtc *crtc =
2612 to_intel_crtc(dp_to_dig_port(intel_dp)->base.base.crtc);
2613
2614 /* enable with pattern 1 (as per spec) */
2615 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2616 DP_TRAINING_PATTERN_1);
2617
2618 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2619 POSTING_READ(intel_dp->output_reg);
2620
2621 /*
2622 * Magic for VLV/CHV. We _must_ first set up the register
2623 * without actually enabling the port, and then do another
2624 * write to enable the port. Otherwise link training will
2625 * fail when the power sequencer is freshly used for this port.
2626 */
2627 intel_dp->DP |= DP_PORT_EN;
2628 if (crtc->config->has_audio)
2629 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2630
2631 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2632 POSTING_READ(intel_dp->output_reg);
2633 }
2634
2635 static void intel_enable_dp(struct intel_encoder *encoder)
2636 {
2637 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2638 struct drm_device *dev = encoder->base.dev;
2639 struct drm_i915_private *dev_priv = dev->dev_private;
2640 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2641 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2642 enum pipe pipe = crtc->pipe;
2643
2644 if (WARN_ON(dp_reg & DP_PORT_EN))
2645 return;
2646
2647 pps_lock(intel_dp);
2648
2649 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2650 vlv_init_panel_power_sequencer(intel_dp);
2651
2652 intel_dp_enable_port(intel_dp);
2653
2654 edp_panel_vdd_on(intel_dp);
2655 edp_panel_on(intel_dp);
2656 edp_panel_vdd_off(intel_dp, true);
2657
2658 pps_unlock(intel_dp);
2659
2660 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
2661 unsigned int lane_mask = 0x0;
2662
2663 if (IS_CHERRYVIEW(dev))
2664 lane_mask = intel_dp_unused_lane_mask(crtc->config->lane_count);
2665
2666 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2667 lane_mask);
2668 }
2669
2670 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2671 intel_dp_start_link_train(intel_dp);
2672 intel_dp_stop_link_train(intel_dp);
2673
2674 if (crtc->config->has_audio) {
2675 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2676 pipe_name(pipe));
2677 intel_audio_codec_enable(encoder);
2678 }
2679 }
2680
2681 static void g4x_enable_dp(struct intel_encoder *encoder)
2682 {
2683 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2684
2685 intel_enable_dp(encoder);
2686 intel_edp_backlight_on(intel_dp);
2687 }
2688
2689 static void vlv_enable_dp(struct intel_encoder *encoder)
2690 {
2691 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2692
2693 intel_edp_backlight_on(intel_dp);
2694 intel_psr_enable(intel_dp);
2695 }
2696
2697 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2698 {
2699 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2700 enum port port = dp_to_dig_port(intel_dp)->port;
2701
2702 intel_dp_prepare(encoder);
2703
2704 /* Only ilk+ has port A */
2705 if (port == PORT_A)
2706 ironlake_edp_pll_on(intel_dp);
2707 }
2708
2709 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2710 {
2711 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2712 struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2713 enum pipe pipe = intel_dp->pps_pipe;
2714 i915_reg_t pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2715
2716 edp_panel_vdd_off_sync(intel_dp);
2717
2718 /*
2719 * VLV seems to get confused when multiple power seqeuencers
2720 * have the same port selected (even if only one has power/vdd
2721 * enabled). The failure manifests as vlv_wait_port_ready() failing
2722 * CHV on the other hand doesn't seem to mind having the same port
2723 * selected in multiple power seqeuencers, but let's clear the
2724 * port select always when logically disconnecting a power sequencer
2725 * from a port.
2726 */
2727 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2728 pipe_name(pipe), port_name(intel_dig_port->port));
2729 I915_WRITE(pp_on_reg, 0);
2730 POSTING_READ(pp_on_reg);
2731
2732 intel_dp->pps_pipe = INVALID_PIPE;
2733 }
2734
2735 static void vlv_steal_power_sequencer(struct drm_device *dev,
2736 enum pipe pipe)
2737 {
2738 struct drm_i915_private *dev_priv = dev->dev_private;
2739 struct intel_encoder *encoder;
2740
2741 lockdep_assert_held(&dev_priv->pps_mutex);
2742
2743 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2744 return;
2745
2746 for_each_intel_encoder(dev, encoder) {
2747 struct intel_dp *intel_dp;
2748 enum port port;
2749
2750 if (encoder->type != INTEL_OUTPUT_EDP)
2751 continue;
2752
2753 intel_dp = enc_to_intel_dp(&encoder->base);
2754 port = dp_to_dig_port(intel_dp)->port;
2755
2756 if (intel_dp->pps_pipe != pipe)
2757 continue;
2758
2759 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2760 pipe_name(pipe), port_name(port));
2761
2762 WARN(encoder->base.crtc,
2763 "stealing pipe %c power sequencer from active eDP port %c\n",
2764 pipe_name(pipe), port_name(port));
2765
2766 /* make sure vdd is off before we steal it */
2767 vlv_detach_power_sequencer(intel_dp);
2768 }
2769 }
2770
2771 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2772 {
2773 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2774 struct intel_encoder *encoder = &intel_dig_port->base;
2775 struct drm_device *dev = encoder->base.dev;
2776 struct drm_i915_private *dev_priv = dev->dev_private;
2777 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2778
2779 lockdep_assert_held(&dev_priv->pps_mutex);
2780
2781 if (!is_edp(intel_dp))
2782 return;
2783
2784 if (intel_dp->pps_pipe == crtc->pipe)
2785 return;
2786
2787 /*
2788 * If another power sequencer was being used on this
2789 * port previously make sure to turn off vdd there while
2790 * we still have control of it.
2791 */
2792 if (intel_dp->pps_pipe != INVALID_PIPE)
2793 vlv_detach_power_sequencer(intel_dp);
2794
2795 /*
2796 * We may be stealing the power
2797 * sequencer from another port.
2798 */
2799 vlv_steal_power_sequencer(dev, crtc->pipe);
2800
2801 /* now it's all ours */
2802 intel_dp->pps_pipe = crtc->pipe;
2803
2804 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2805 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2806
2807 /* init power sequencer on this pipe and port */
2808 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2809 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2810 }
2811
2812 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2813 {
2814 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2815 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2816 struct drm_device *dev = encoder->base.dev;
2817 struct drm_i915_private *dev_priv = dev->dev_private;
2818 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2819 enum dpio_channel port = vlv_dport_to_channel(dport);
2820 int pipe = intel_crtc->pipe;
2821 u32 val;
2822
2823 mutex_lock(&dev_priv->sb_lock);
2824
2825 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2826 val = 0;
2827 if (pipe)
2828 val |= (1<<21);
2829 else
2830 val &= ~(1<<21);
2831 val |= 0x001000c4;
2832 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2833 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2834 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2835
2836 mutex_unlock(&dev_priv->sb_lock);
2837
2838 intel_enable_dp(encoder);
2839 }
2840
2841 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2842 {
2843 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2844 struct drm_device *dev = encoder->base.dev;
2845 struct drm_i915_private *dev_priv = dev->dev_private;
2846 struct intel_crtc *intel_crtc =
2847 to_intel_crtc(encoder->base.crtc);
2848 enum dpio_channel port = vlv_dport_to_channel(dport);
2849 int pipe = intel_crtc->pipe;
2850
2851 intel_dp_prepare(encoder);
2852
2853 /* Program Tx lane resets to default */
2854 mutex_lock(&dev_priv->sb_lock);
2855 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2856 DPIO_PCS_TX_LANE2_RESET |
2857 DPIO_PCS_TX_LANE1_RESET);
2858 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2859 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2860 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2861 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2862 DPIO_PCS_CLK_SOFT_RESET);
2863
2864 /* Fix up inter-pair skew failure */
2865 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2866 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2867 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2868 mutex_unlock(&dev_priv->sb_lock);
2869 }
2870
2871 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2872 {
2873 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2874 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2875 struct drm_device *dev = encoder->base.dev;
2876 struct drm_i915_private *dev_priv = dev->dev_private;
2877 struct intel_crtc *intel_crtc =
2878 to_intel_crtc(encoder->base.crtc);
2879 enum dpio_channel ch = vlv_dport_to_channel(dport);
2880 int pipe = intel_crtc->pipe;
2881 int data, i, stagger;
2882 u32 val;
2883
2884 mutex_lock(&dev_priv->sb_lock);
2885
2886 /* allow hardware to manage TX FIFO reset source */
2887 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2888 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2889 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2890
2891 if (intel_crtc->config->lane_count > 2) {
2892 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2893 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2894 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2895 }
2896
2897 /* Program Tx lane latency optimal setting*/
2898 for (i = 0; i < intel_crtc->config->lane_count; i++) {
2899 /* Set the upar bit */
2900 if (intel_crtc->config->lane_count == 1)
2901 data = 0x0;
2902 else
2903 data = (i == 1) ? 0x0 : 0x1;
2904 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2905 data << DPIO_UPAR_SHIFT);
2906 }
2907
2908 /* Data lane stagger programming */
2909 if (intel_crtc->config->port_clock > 270000)
2910 stagger = 0x18;
2911 else if (intel_crtc->config->port_clock > 135000)
2912 stagger = 0xd;
2913 else if (intel_crtc->config->port_clock > 67500)
2914 stagger = 0x7;
2915 else if (intel_crtc->config->port_clock > 33750)
2916 stagger = 0x4;
2917 else
2918 stagger = 0x2;
2919
2920 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2921 val |= DPIO_TX2_STAGGER_MASK(0x1f);
2922 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2923
2924 if (intel_crtc->config->lane_count > 2) {
2925 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2926 val |= DPIO_TX2_STAGGER_MASK(0x1f);
2927 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2928 }
2929
2930 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
2931 DPIO_LANESTAGGER_STRAP(stagger) |
2932 DPIO_LANESTAGGER_STRAP_OVRD |
2933 DPIO_TX1_STAGGER_MASK(0x1f) |
2934 DPIO_TX1_STAGGER_MULT(6) |
2935 DPIO_TX2_STAGGER_MULT(0));
2936
2937 if (intel_crtc->config->lane_count > 2) {
2938 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
2939 DPIO_LANESTAGGER_STRAP(stagger) |
2940 DPIO_LANESTAGGER_STRAP_OVRD |
2941 DPIO_TX1_STAGGER_MASK(0x1f) |
2942 DPIO_TX1_STAGGER_MULT(7) |
2943 DPIO_TX2_STAGGER_MULT(5));
2944 }
2945
2946 /* Deassert data lane reset */
2947 chv_data_lane_soft_reset(encoder, false);
2948
2949 mutex_unlock(&dev_priv->sb_lock);
2950
2951 intel_enable_dp(encoder);
2952
2953 /* Second common lane will stay alive on its own now */
2954 if (dport->release_cl2_override) {
2955 chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
2956 dport->release_cl2_override = false;
2957 }
2958 }
2959
2960 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2961 {
2962 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2963 struct drm_device *dev = encoder->base.dev;
2964 struct drm_i915_private *dev_priv = dev->dev_private;
2965 struct intel_crtc *intel_crtc =
2966 to_intel_crtc(encoder->base.crtc);
2967 enum dpio_channel ch = vlv_dport_to_channel(dport);
2968 enum pipe pipe = intel_crtc->pipe;
2969 unsigned int lane_mask =
2970 intel_dp_unused_lane_mask(intel_crtc->config->lane_count);
2971 u32 val;
2972
2973 intel_dp_prepare(encoder);
2974
2975 /*
2976 * Must trick the second common lane into life.
2977 * Otherwise we can't even access the PLL.
2978 */
2979 if (ch == DPIO_CH0 && pipe == PIPE_B)
2980 dport->release_cl2_override =
2981 !chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
2982
2983 chv_phy_powergate_lanes(encoder, true, lane_mask);
2984
2985 mutex_lock(&dev_priv->sb_lock);
2986
2987 /* Assert data lane reset */
2988 chv_data_lane_soft_reset(encoder, true);
2989
2990 /* program left/right clock distribution */
2991 if (pipe != PIPE_B) {
2992 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2993 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2994 if (ch == DPIO_CH0)
2995 val |= CHV_BUFLEFTENA1_FORCE;
2996 if (ch == DPIO_CH1)
2997 val |= CHV_BUFRIGHTENA1_FORCE;
2998 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2999 } else {
3000 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
3001 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
3002 if (ch == DPIO_CH0)
3003 val |= CHV_BUFLEFTENA2_FORCE;
3004 if (ch == DPIO_CH1)
3005 val |= CHV_BUFRIGHTENA2_FORCE;
3006 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
3007 }
3008
3009 /* program clock channel usage */
3010 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
3011 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
3012 if (pipe != PIPE_B)
3013 val &= ~CHV_PCS_USEDCLKCHANNEL;
3014 else
3015 val |= CHV_PCS_USEDCLKCHANNEL;
3016 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
3017
3018 if (intel_crtc->config->lane_count > 2) {
3019 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
3020 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
3021 if (pipe != PIPE_B)
3022 val &= ~CHV_PCS_USEDCLKCHANNEL;
3023 else
3024 val |= CHV_PCS_USEDCLKCHANNEL;
3025 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
3026 }
3027
3028 /*
3029 * This a a bit weird since generally CL
3030 * matches the pipe, but here we need to
3031 * pick the CL based on the port.
3032 */
3033 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
3034 if (pipe != PIPE_B)
3035 val &= ~CHV_CMN_USEDCLKCHANNEL;
3036 else
3037 val |= CHV_CMN_USEDCLKCHANNEL;
3038 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
3039
3040 mutex_unlock(&dev_priv->sb_lock);
3041 }
3042
3043 static void chv_dp_post_pll_disable(struct intel_encoder *encoder)
3044 {
3045 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3046 enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
3047 u32 val;
3048
3049 mutex_lock(&dev_priv->sb_lock);
3050
3051 /* disable left/right clock distribution */
3052 if (pipe != PIPE_B) {
3053 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
3054 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
3055 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
3056 } else {
3057 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
3058 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
3059 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
3060 }
3061
3062 mutex_unlock(&dev_priv->sb_lock);
3063
3064 /*
3065 * Leave the power down bit cleared for at least one
3066 * lane so that chv_powergate_phy_ch() will power
3067 * on something when the channel is otherwise unused.
3068 * When the port is off and the override is removed
3069 * the lanes power down anyway, so otherwise it doesn't
3070 * really matter what the state of power down bits is
3071 * after this.
3072 */
3073 chv_phy_powergate_lanes(encoder, false, 0x0);
3074 }
3075
3076 /*
3077 * Fetch AUX CH registers 0x202 - 0x207 which contain
3078 * link status information
3079 */
3080 bool
3081 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3082 {
3083 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3084 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3085 }
3086
3087 /* These are source-specific values. */
3088 uint8_t
3089 intel_dp_voltage_max(struct intel_dp *intel_dp)
3090 {
3091 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3092 struct drm_i915_private *dev_priv = dev->dev_private;
3093 enum port port = dp_to_dig_port(intel_dp)->port;
3094
3095 if (IS_BROXTON(dev))
3096 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3097 else if (INTEL_INFO(dev)->gen >= 9) {
3098 if (dev_priv->vbt.edp.low_vswing && port == PORT_A)
3099 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3100 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3101 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
3102 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3103 else if (IS_GEN7(dev) && port == PORT_A)
3104 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3105 else if (HAS_PCH_CPT(dev) && port != PORT_A)
3106 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3107 else
3108 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3109 }
3110
3111 uint8_t
3112 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3113 {
3114 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3115 enum port port = dp_to_dig_port(intel_dp)->port;
3116
3117 if (INTEL_INFO(dev)->gen >= 9) {
3118 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3119 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3120 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3121 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3122 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3123 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3124 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3125 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3126 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3127 default:
3128 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3129 }
3130 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3131 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3132 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3133 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3134 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3135 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3136 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3137 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3138 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3139 default:
3140 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3141 }
3142 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
3143 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3144 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3145 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3146 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3147 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3148 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3149 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3150 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3151 default:
3152 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3153 }
3154 } else if (IS_GEN7(dev) && port == PORT_A) {
3155 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3156 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3157 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3158 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3159 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3160 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3161 default:
3162 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3163 }
3164 } else {
3165 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3166 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3167 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3168 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3169 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3170 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3171 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3172 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3173 default:
3174 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3175 }
3176 }
3177 }
3178
3179 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3180 {
3181 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3182 struct drm_i915_private *dev_priv = dev->dev_private;
3183 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3184 struct intel_crtc *intel_crtc =
3185 to_intel_crtc(dport->base.base.crtc);
3186 unsigned long demph_reg_value, preemph_reg_value,
3187 uniqtranscale_reg_value;
3188 uint8_t train_set = intel_dp->train_set[0];
3189 enum dpio_channel port = vlv_dport_to_channel(dport);
3190 int pipe = intel_crtc->pipe;
3191
3192 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3193 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3194 preemph_reg_value = 0x0004000;
3195 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3196 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3197 demph_reg_value = 0x2B405555;
3198 uniqtranscale_reg_value = 0x552AB83A;
3199 break;
3200 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3201 demph_reg_value = 0x2B404040;
3202 uniqtranscale_reg_value = 0x5548B83A;
3203 break;
3204 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3205 demph_reg_value = 0x2B245555;
3206 uniqtranscale_reg_value = 0x5560B83A;
3207 break;
3208 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3209 demph_reg_value = 0x2B405555;
3210 uniqtranscale_reg_value = 0x5598DA3A;
3211 break;
3212 default:
3213 return 0;
3214 }
3215 break;
3216 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3217 preemph_reg_value = 0x0002000;
3218 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3219 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3220 demph_reg_value = 0x2B404040;
3221 uniqtranscale_reg_value = 0x5552B83A;
3222 break;
3223 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3224 demph_reg_value = 0x2B404848;
3225 uniqtranscale_reg_value = 0x5580B83A;
3226 break;
3227 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3228 demph_reg_value = 0x2B404040;
3229 uniqtranscale_reg_value = 0x55ADDA3A;
3230 break;
3231 default:
3232 return 0;
3233 }
3234 break;
3235 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3236 preemph_reg_value = 0x0000000;
3237 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3238 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3239 demph_reg_value = 0x2B305555;
3240 uniqtranscale_reg_value = 0x5570B83A;
3241 break;
3242 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3243 demph_reg_value = 0x2B2B4040;
3244 uniqtranscale_reg_value = 0x55ADDA3A;
3245 break;
3246 default:
3247 return 0;
3248 }
3249 break;
3250 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3251 preemph_reg_value = 0x0006000;
3252 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3253 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3254 demph_reg_value = 0x1B405555;
3255 uniqtranscale_reg_value = 0x55ADDA3A;
3256 break;
3257 default:
3258 return 0;
3259 }
3260 break;
3261 default:
3262 return 0;
3263 }
3264
3265 mutex_lock(&dev_priv->sb_lock);
3266 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
3267 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3268 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3269 uniqtranscale_reg_value);
3270 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3271 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3272 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3273 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3274 mutex_unlock(&dev_priv->sb_lock);
3275
3276 return 0;
3277 }
3278
3279 static bool chv_need_uniq_trans_scale(uint8_t train_set)
3280 {
3281 return (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) == DP_TRAIN_PRE_EMPH_LEVEL_0 &&
3282 (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3283 }
3284
3285 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3286 {
3287 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3288 struct drm_i915_private *dev_priv = dev->dev_private;
3289 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3290 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3291 u32 deemph_reg_value, margin_reg_value, val;
3292 uint8_t train_set = intel_dp->train_set[0];
3293 enum dpio_channel ch = vlv_dport_to_channel(dport);
3294 enum pipe pipe = intel_crtc->pipe;
3295 int i;
3296
3297 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3298 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3299 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3300 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3301 deemph_reg_value = 128;
3302 margin_reg_value = 52;
3303 break;
3304 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3305 deemph_reg_value = 128;
3306 margin_reg_value = 77;
3307 break;
3308 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3309 deemph_reg_value = 128;
3310 margin_reg_value = 102;
3311 break;
3312 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3313 deemph_reg_value = 128;
3314 margin_reg_value = 154;
3315 /* FIXME extra to set for 1200 */
3316 break;
3317 default:
3318 return 0;
3319 }
3320 break;
3321 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3322 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3323 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3324 deemph_reg_value = 85;
3325 margin_reg_value = 78;
3326 break;
3327 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3328 deemph_reg_value = 85;
3329 margin_reg_value = 116;
3330 break;
3331 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3332 deemph_reg_value = 85;
3333 margin_reg_value = 154;
3334 break;
3335 default:
3336 return 0;
3337 }
3338 break;
3339 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3340 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3341 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3342 deemph_reg_value = 64;
3343 margin_reg_value = 104;
3344 break;
3345 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3346 deemph_reg_value = 64;
3347 margin_reg_value = 154;
3348 break;
3349 default:
3350 return 0;
3351 }
3352 break;
3353 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3354 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3355 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3356 deemph_reg_value = 43;
3357 margin_reg_value = 154;
3358 break;
3359 default:
3360 return 0;
3361 }
3362 break;
3363 default:
3364 return 0;
3365 }
3366
3367 mutex_lock(&dev_priv->sb_lock);
3368
3369 /* Clear calc init */
3370 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3371 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3372 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3373 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3374 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3375
3376 if (intel_crtc->config->lane_count > 2) {
3377 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3378 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3379 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3380 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3381 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3382 }
3383
3384 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
3385 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3386 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3387 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
3388
3389 if (intel_crtc->config->lane_count > 2) {
3390 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
3391 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3392 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3393 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
3394 }
3395
3396 /* Program swing deemph */
3397 for (i = 0; i < intel_crtc->config->lane_count; i++) {
3398 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3399 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3400 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3401 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3402 }
3403
3404 /* Program swing margin */
3405 for (i = 0; i < intel_crtc->config->lane_count; i++) {
3406 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3407
3408 val &= ~DPIO_SWING_MARGIN000_MASK;
3409 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3410
3411 /*
3412 * Supposedly this value shouldn't matter when unique transition
3413 * scale is disabled, but in fact it does matter. Let's just
3414 * always program the same value and hope it's OK.
3415 */
3416 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3417 val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
3418
3419 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3420 }
3421
3422 /*
3423 * The document said it needs to set bit 27 for ch0 and bit 26
3424 * for ch1. Might be a typo in the doc.
3425 * For now, for this unique transition scale selection, set bit
3426 * 27 for ch0 and ch1.
3427 */
3428 for (i = 0; i < intel_crtc->config->lane_count; i++) {
3429 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3430 if (chv_need_uniq_trans_scale(train_set))
3431 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3432 else
3433 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3434 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3435 }
3436
3437 /* Start swing calculation */
3438 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3439 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3440 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3441
3442 if (intel_crtc->config->lane_count > 2) {
3443 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3444 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3445 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3446 }
3447
3448 mutex_unlock(&dev_priv->sb_lock);
3449
3450 return 0;
3451 }
3452
3453 static uint32_t
3454 gen4_signal_levels(uint8_t train_set)
3455 {
3456 uint32_t signal_levels = 0;
3457
3458 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3459 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3460 default:
3461 signal_levels |= DP_VOLTAGE_0_4;
3462 break;
3463 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3464 signal_levels |= DP_VOLTAGE_0_6;
3465 break;
3466 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3467 signal_levels |= DP_VOLTAGE_0_8;
3468 break;
3469 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3470 signal_levels |= DP_VOLTAGE_1_2;
3471 break;
3472 }
3473 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3474 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3475 default:
3476 signal_levels |= DP_PRE_EMPHASIS_0;
3477 break;
3478 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3479 signal_levels |= DP_PRE_EMPHASIS_3_5;
3480 break;
3481 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3482 signal_levels |= DP_PRE_EMPHASIS_6;
3483 break;
3484 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3485 signal_levels |= DP_PRE_EMPHASIS_9_5;
3486 break;
3487 }
3488 return signal_levels;
3489 }
3490
3491 /* Gen6's DP voltage swing and pre-emphasis control */
3492 static uint32_t
3493 gen6_edp_signal_levels(uint8_t train_set)
3494 {
3495 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3496 DP_TRAIN_PRE_EMPHASIS_MASK);
3497 switch (signal_levels) {
3498 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3499 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3500 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3501 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3502 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3503 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3504 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3505 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3506 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3507 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3508 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3509 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3510 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3511 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3512 default:
3513 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3514 "0x%x\n", signal_levels);
3515 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3516 }
3517 }
3518
3519 /* Gen7's DP voltage swing and pre-emphasis control */
3520 static uint32_t
3521 gen7_edp_signal_levels(uint8_t train_set)
3522 {
3523 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3524 DP_TRAIN_PRE_EMPHASIS_MASK);
3525 switch (signal_levels) {
3526 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3527 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3528 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3529 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3530 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3531 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3532
3533 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3534 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3535 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3536 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3537
3538 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3539 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3540 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3541 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3542
3543 default:
3544 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3545 "0x%x\n", signal_levels);
3546 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3547 }
3548 }
3549
3550 void
3551 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3552 {
3553 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3554 enum port port = intel_dig_port->port;
3555 struct drm_device *dev = intel_dig_port->base.base.dev;
3556 struct drm_i915_private *dev_priv = to_i915(dev);
3557 uint32_t signal_levels, mask = 0;
3558 uint8_t train_set = intel_dp->train_set[0];
3559
3560 if (HAS_DDI(dev)) {
3561 signal_levels = ddi_signal_levels(intel_dp);
3562
3563 if (IS_BROXTON(dev))
3564 signal_levels = 0;
3565 else
3566 mask = DDI_BUF_EMP_MASK;
3567 } else if (IS_CHERRYVIEW(dev)) {
3568 signal_levels = chv_signal_levels(intel_dp);
3569 } else if (IS_VALLEYVIEW(dev)) {
3570 signal_levels = vlv_signal_levels(intel_dp);
3571 } else if (IS_GEN7(dev) && port == PORT_A) {
3572 signal_levels = gen7_edp_signal_levels(train_set);
3573 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3574 } else if (IS_GEN6(dev) && port == PORT_A) {
3575 signal_levels = gen6_edp_signal_levels(train_set);
3576 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3577 } else {
3578 signal_levels = gen4_signal_levels(train_set);
3579 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3580 }
3581
3582 if (mask)
3583 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3584
3585 DRM_DEBUG_KMS("Using vswing level %d\n",
3586 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3587 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3588 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3589 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3590
3591 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3592
3593 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3594 POSTING_READ(intel_dp->output_reg);
3595 }
3596
3597 void
3598 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3599 uint8_t dp_train_pat)
3600 {
3601 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3602 struct drm_i915_private *dev_priv =
3603 to_i915(intel_dig_port->base.base.dev);
3604
3605 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3606
3607 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3608 POSTING_READ(intel_dp->output_reg);
3609 }
3610
3611 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3612 {
3613 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3614 struct drm_device *dev = intel_dig_port->base.base.dev;
3615 struct drm_i915_private *dev_priv = dev->dev_private;
3616 enum port port = intel_dig_port->port;
3617 uint32_t val;
3618
3619 if (!HAS_DDI(dev))
3620 return;
3621
3622 val = I915_READ(DP_TP_CTL(port));
3623 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3624 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3625 I915_WRITE(DP_TP_CTL(port), val);
3626
3627 /*
3628 * On PORT_A we can have only eDP in SST mode. There the only reason
3629 * we need to set idle transmission mode is to work around a HW issue
3630 * where we enable the pipe while not in idle link-training mode.
3631 * In this case there is requirement to wait for a minimum number of
3632 * idle patterns to be sent.
3633 */
3634 if (port == PORT_A)
3635 return;
3636
3637 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3638 1))
3639 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3640 }
3641
3642 static void
3643 intel_dp_link_down(struct intel_dp *intel_dp)
3644 {
3645 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3646 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3647 enum port port = intel_dig_port->port;
3648 struct drm_device *dev = intel_dig_port->base.base.dev;
3649 struct drm_i915_private *dev_priv = dev->dev_private;
3650 uint32_t DP = intel_dp->DP;
3651
3652 if (WARN_ON(HAS_DDI(dev)))
3653 return;
3654
3655 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3656 return;
3657
3658 DRM_DEBUG_KMS("\n");
3659
3660 if ((IS_GEN7(dev) && port == PORT_A) ||
3661 (HAS_PCH_CPT(dev) && port != PORT_A)) {
3662 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3663 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3664 } else {
3665 if (IS_CHERRYVIEW(dev))
3666 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3667 else
3668 DP &= ~DP_LINK_TRAIN_MASK;
3669 DP |= DP_LINK_TRAIN_PAT_IDLE;
3670 }
3671 I915_WRITE(intel_dp->output_reg, DP);
3672 POSTING_READ(intel_dp->output_reg);
3673
3674 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3675 I915_WRITE(intel_dp->output_reg, DP);
3676 POSTING_READ(intel_dp->output_reg);
3677
3678 /*
3679 * HW workaround for IBX, we need to move the port
3680 * to transcoder A after disabling it to allow the
3681 * matching HDMI port to be enabled on transcoder A.
3682 */
3683 if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3684 /*
3685 * We get CPU/PCH FIFO underruns on the other pipe when
3686 * doing the workaround. Sweep them under the rug.
3687 */
3688 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3689 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3690
3691 /* always enable with pattern 1 (as per spec) */
3692 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3693 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3694 I915_WRITE(intel_dp->output_reg, DP);
3695 POSTING_READ(intel_dp->output_reg);
3696
3697 DP &= ~DP_PORT_EN;
3698 I915_WRITE(intel_dp->output_reg, DP);
3699 POSTING_READ(intel_dp->output_reg);
3700
3701 intel_wait_for_vblank_if_active(dev_priv->dev, PIPE_A);
3702 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3703 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3704 }
3705
3706 msleep(intel_dp->panel_power_down_delay);
3707
3708 intel_dp->DP = DP;
3709 }
3710
3711 static bool
3712 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3713 {
3714 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3715 struct drm_device *dev = dig_port->base.base.dev;
3716 struct drm_i915_private *dev_priv = dev->dev_private;
3717 uint8_t rev;
3718
3719 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
3720 sizeof(intel_dp->dpcd)) < 0)
3721 return false; /* aux transfer failed */
3722
3723 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3724
3725 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3726 return false; /* DPCD not present */
3727
3728 if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT,
3729 &intel_dp->sink_count, 1) < 0)
3730 return false;
3731
3732 /*
3733 * Sink count can change between short pulse hpd hence
3734 * a member variable in intel_dp will track any changes
3735 * between short pulse interrupts.
3736 */
3737 intel_dp->sink_count = DP_GET_SINK_COUNT(intel_dp->sink_count);
3738
3739 /*
3740 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3741 * a dongle is present but no display. Unless we require to know
3742 * if a dongle is present or not, we don't need to update
3743 * downstream port information. So, an early return here saves
3744 * time from performing other operations which are not required.
3745 */
3746 if (!is_edp(intel_dp) && !intel_dp->sink_count)
3747 return false;
3748
3749 /* Check if the panel supports PSR */
3750 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3751 if (is_edp(intel_dp)) {
3752 drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT,
3753 intel_dp->psr_dpcd,
3754 sizeof(intel_dp->psr_dpcd));
3755 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3756 dev_priv->psr.sink_support = true;
3757 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3758 }
3759
3760 if (INTEL_INFO(dev)->gen >= 9 &&
3761 (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3762 uint8_t frame_sync_cap;
3763
3764 dev_priv->psr.sink_support = true;
3765 drm_dp_dpcd_read(&intel_dp->aux,
3766 DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3767 &frame_sync_cap, 1);
3768 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3769 /* PSR2 needs frame sync as well */
3770 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3771 DRM_DEBUG_KMS("PSR2 %s on sink",
3772 dev_priv->psr.psr2_support ? "supported" : "not supported");
3773 }
3774 }
3775
3776 DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
3777 yesno(intel_dp_source_supports_hbr2(intel_dp)),
3778 yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
3779
3780 /* Intermediate frequency support */
3781 if (is_edp(intel_dp) &&
3782 (intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3783 (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV, &rev, 1) == 1) &&
3784 (rev >= 0x03)) { /* eDp v1.4 or higher */
3785 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3786 int i;
3787
3788 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
3789 sink_rates, sizeof(sink_rates));
3790
3791 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3792 int val = le16_to_cpu(sink_rates[i]);
3793
3794 if (val == 0)
3795 break;
3796
3797 /* Value read is in kHz while drm clock is saved in deca-kHz */
3798 intel_dp->sink_rates[i] = (val * 200) / 10;
3799 }
3800 intel_dp->num_sink_rates = i;
3801 }
3802
3803 intel_dp_print_rates(intel_dp);
3804
3805 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3806 DP_DWN_STRM_PORT_PRESENT))
3807 return true; /* native DP sink */
3808
3809 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3810 return true; /* no per-port downstream info */
3811
3812 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3813 intel_dp->downstream_ports,
3814 DP_MAX_DOWNSTREAM_PORTS) < 0)
3815 return false; /* downstream port status fetch failed */
3816
3817 return true;
3818 }
3819
3820 static void
3821 intel_dp_probe_oui(struct intel_dp *intel_dp)
3822 {
3823 u8 buf[3];
3824
3825 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3826 return;
3827
3828 if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3829 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3830 buf[0], buf[1], buf[2]);
3831
3832 if (drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3833 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3834 buf[0], buf[1], buf[2]);
3835 }
3836
3837 static bool
3838 intel_dp_probe_mst(struct intel_dp *intel_dp)
3839 {
3840 u8 buf[1];
3841
3842 if (!i915.enable_dp_mst)
3843 return false;
3844
3845 if (!intel_dp->can_mst)
3846 return false;
3847
3848 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3849 return false;
3850
3851 if (drm_dp_dpcd_read(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3852 if (buf[0] & DP_MST_CAP) {
3853 DRM_DEBUG_KMS("Sink is MST capable\n");
3854 intel_dp->is_mst = true;
3855 } else {
3856 DRM_DEBUG_KMS("Sink is not MST capable\n");
3857 intel_dp->is_mst = false;
3858 }
3859 }
3860
3861 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3862 return intel_dp->is_mst;
3863 }
3864
3865 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3866 {
3867 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3868 struct drm_device *dev = dig_port->base.base.dev;
3869 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3870 u8 buf;
3871 int ret = 0;
3872 int count = 0;
3873 int attempts = 10;
3874
3875 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3876 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3877 ret = -EIO;
3878 goto out;
3879 }
3880
3881 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3882 buf & ~DP_TEST_SINK_START) < 0) {
3883 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3884 ret = -EIO;
3885 goto out;
3886 }
3887
3888 do {
3889 intel_wait_for_vblank(dev, intel_crtc->pipe);
3890
3891 if (drm_dp_dpcd_readb(&intel_dp->aux,
3892 DP_TEST_SINK_MISC, &buf) < 0) {
3893 ret = -EIO;
3894 goto out;
3895 }
3896 count = buf & DP_TEST_COUNT_MASK;
3897 } while (--attempts && count);
3898
3899 if (attempts == 0) {
3900 DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
3901 ret = -ETIMEDOUT;
3902 }
3903
3904 out:
3905 hsw_enable_ips(intel_crtc);
3906 return ret;
3907 }
3908
3909 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
3910 {
3911 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3912 struct drm_device *dev = dig_port->base.base.dev;
3913 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3914 u8 buf;
3915 int ret;
3916
3917 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3918 return -EIO;
3919
3920 if (!(buf & DP_TEST_CRC_SUPPORTED))
3921 return -ENOTTY;
3922
3923 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3924 return -EIO;
3925
3926 if (buf & DP_TEST_SINK_START) {
3927 ret = intel_dp_sink_crc_stop(intel_dp);
3928 if (ret)
3929 return ret;
3930 }
3931
3932 hsw_disable_ips(intel_crtc);
3933
3934 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3935 buf | DP_TEST_SINK_START) < 0) {
3936 hsw_enable_ips(intel_crtc);
3937 return -EIO;
3938 }
3939
3940 intel_wait_for_vblank(dev, intel_crtc->pipe);
3941 return 0;
3942 }
3943
3944 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3945 {
3946 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3947 struct drm_device *dev = dig_port->base.base.dev;
3948 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3949 u8 buf;
3950 int count, ret;
3951 int attempts = 6;
3952
3953 ret = intel_dp_sink_crc_start(intel_dp);
3954 if (ret)
3955 return ret;
3956
3957 do {
3958 intel_wait_for_vblank(dev, intel_crtc->pipe);
3959
3960 if (drm_dp_dpcd_readb(&intel_dp->aux,
3961 DP_TEST_SINK_MISC, &buf) < 0) {
3962 ret = -EIO;
3963 goto stop;
3964 }
3965 count = buf & DP_TEST_COUNT_MASK;
3966
3967 } while (--attempts && count == 0);
3968
3969 if (attempts == 0) {
3970 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
3971 ret = -ETIMEDOUT;
3972 goto stop;
3973 }
3974
3975 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
3976 ret = -EIO;
3977 goto stop;
3978 }
3979
3980 stop:
3981 intel_dp_sink_crc_stop(intel_dp);
3982 return ret;
3983 }
3984
3985 static bool
3986 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3987 {
3988 return drm_dp_dpcd_read(&intel_dp->aux,
3989 DP_DEVICE_SERVICE_IRQ_VECTOR,
3990 sink_irq_vector, 1) == 1;
3991 }
3992
3993 static bool
3994 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3995 {
3996 int ret;
3997
3998 ret = drm_dp_dpcd_read(&intel_dp->aux,
3999 DP_SINK_COUNT_ESI,
4000 sink_irq_vector, 14);
4001 if (ret != 14)
4002 return false;
4003
4004 return true;
4005 }
4006
4007 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4008 {
4009 uint8_t test_result = DP_TEST_ACK;
4010 return test_result;
4011 }
4012
4013 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4014 {
4015 uint8_t test_result = DP_TEST_NAK;
4016 return test_result;
4017 }
4018
4019 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4020 {
4021 uint8_t test_result = DP_TEST_NAK;
4022 struct intel_connector *intel_connector = intel_dp->attached_connector;
4023 struct drm_connector *connector = &intel_connector->base;
4024
4025 if (intel_connector->detect_edid == NULL ||
4026 connector->edid_corrupt ||
4027 intel_dp->aux.i2c_defer_count > 6) {
4028 /* Check EDID read for NACKs, DEFERs and corruption
4029 * (DP CTS 1.2 Core r1.1)
4030 * 4.2.2.4 : Failed EDID read, I2C_NAK
4031 * 4.2.2.5 : Failed EDID read, I2C_DEFER
4032 * 4.2.2.6 : EDID corruption detected
4033 * Use failsafe mode for all cases
4034 */
4035 if (intel_dp->aux.i2c_nack_count > 0 ||
4036 intel_dp->aux.i2c_defer_count > 0)
4037 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4038 intel_dp->aux.i2c_nack_count,
4039 intel_dp->aux.i2c_defer_count);
4040 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
4041 } else {
4042 struct edid *block = intel_connector->detect_edid;
4043
4044 /* We have to write the checksum
4045 * of the last block read
4046 */
4047 block += intel_connector->detect_edid->extensions;
4048
4049 if (!drm_dp_dpcd_write(&intel_dp->aux,
4050 DP_TEST_EDID_CHECKSUM,
4051 &block->checksum,
4052 1))
4053 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4054
4055 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4056 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
4057 }
4058
4059 /* Set test active flag here so userspace doesn't interrupt things */
4060 intel_dp->compliance_test_active = 1;
4061
4062 return test_result;
4063 }
4064
4065 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4066 {
4067 uint8_t test_result = DP_TEST_NAK;
4068 return test_result;
4069 }
4070
4071 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4072 {
4073 uint8_t response = DP_TEST_NAK;
4074 uint8_t rxdata = 0;
4075 int status = 0;
4076
4077 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
4078 if (status <= 0) {
4079 DRM_DEBUG_KMS("Could not read test request from sink\n");
4080 goto update_status;
4081 }
4082
4083 switch (rxdata) {
4084 case DP_TEST_LINK_TRAINING:
4085 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4086 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
4087 response = intel_dp_autotest_link_training(intel_dp);
4088 break;
4089 case DP_TEST_LINK_VIDEO_PATTERN:
4090 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4091 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
4092 response = intel_dp_autotest_video_pattern(intel_dp);
4093 break;
4094 case DP_TEST_LINK_EDID_READ:
4095 DRM_DEBUG_KMS("EDID test requested\n");
4096 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
4097 response = intel_dp_autotest_edid(intel_dp);
4098 break;
4099 case DP_TEST_LINK_PHY_TEST_PATTERN:
4100 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4101 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
4102 response = intel_dp_autotest_phy_pattern(intel_dp);
4103 break;
4104 default:
4105 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
4106 break;
4107 }
4108
4109 update_status:
4110 status = drm_dp_dpcd_write(&intel_dp->aux,
4111 DP_TEST_RESPONSE,
4112 &response, 1);
4113 if (status <= 0)
4114 DRM_DEBUG_KMS("Could not write test response to sink\n");
4115 }
4116
4117 static int
4118 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4119 {
4120 bool bret;
4121
4122 if (intel_dp->is_mst) {
4123 u8 esi[16] = { 0 };
4124 int ret = 0;
4125 int retry;
4126 bool handled;
4127 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4128 go_again:
4129 if (bret == true) {
4130
4131 /* check link status - esi[10] = 0x200c */
4132 if (intel_dp->active_mst_links &&
4133 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4134 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4135 intel_dp_start_link_train(intel_dp);
4136 intel_dp_stop_link_train(intel_dp);
4137 }
4138
4139 DRM_DEBUG_KMS("got esi %3ph\n", esi);
4140 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4141
4142 if (handled) {
4143 for (retry = 0; retry < 3; retry++) {
4144 int wret;
4145 wret = drm_dp_dpcd_write(&intel_dp->aux,
4146 DP_SINK_COUNT_ESI+1,
4147 &esi[1], 3);
4148 if (wret == 3) {
4149 break;
4150 }
4151 }
4152
4153 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4154 if (bret == true) {
4155 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4156 goto go_again;
4157 }
4158 } else
4159 ret = 0;
4160
4161 return ret;
4162 } else {
4163 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4164 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4165 intel_dp->is_mst = false;
4166 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4167 /* send a hotplug event */
4168 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4169 }
4170 }
4171 return -EINVAL;
4172 }
4173
4174 static void
4175 intel_dp_check_link_status(struct intel_dp *intel_dp)
4176 {
4177 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4178 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4179 u8 link_status[DP_LINK_STATUS_SIZE];
4180
4181 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4182
4183 if (!intel_dp_get_link_status(intel_dp, link_status)) {
4184 DRM_ERROR("Failed to get link status\n");
4185 return;
4186 }
4187
4188 if (!intel_encoder->base.crtc)
4189 return;
4190
4191 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4192 return;
4193
4194 /* if link training is requested we should perform it always */
4195 if ((intel_dp->compliance_test_type == DP_TEST_LINK_TRAINING) ||
4196 (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count))) {
4197 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4198 intel_encoder->base.name);
4199 intel_dp_start_link_train(intel_dp);
4200 intel_dp_stop_link_train(intel_dp);
4201 }
4202 }
4203
4204 /*
4205 * According to DP spec
4206 * 5.1.2:
4207 * 1. Read DPCD
4208 * 2. Configure link according to Receiver Capabilities
4209 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4210 * 4. Check link status on receipt of hot-plug interrupt
4211 *
4212 * intel_dp_short_pulse - handles short pulse interrupts
4213 * when full detection is not required.
4214 * Returns %true if short pulse is handled and full detection
4215 * is NOT required and %false otherwise.
4216 */
4217 static bool
4218 intel_dp_short_pulse(struct intel_dp *intel_dp)
4219 {
4220 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4221 u8 sink_irq_vector;
4222 u8 old_sink_count = intel_dp->sink_count;
4223 bool ret;
4224
4225 /*
4226 * Clearing compliance test variables to allow capturing
4227 * of values for next automated test request.
4228 */
4229 intel_dp->compliance_test_active = 0;
4230 intel_dp->compliance_test_type = 0;
4231 intel_dp->compliance_test_data = 0;
4232
4233 /*
4234 * Now read the DPCD to see if it's actually running
4235 * If the current value of sink count doesn't match with
4236 * the value that was stored earlier or dpcd read failed
4237 * we need to do full detection
4238 */
4239 ret = intel_dp_get_dpcd(intel_dp);
4240
4241 if ((old_sink_count != intel_dp->sink_count) || !ret) {
4242 /* No need to proceed if we are going to do full detect */
4243 return false;
4244 }
4245
4246 /* Try to read the source of the interrupt */
4247 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4248 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4249 /* Clear interrupt source */
4250 drm_dp_dpcd_writeb(&intel_dp->aux,
4251 DP_DEVICE_SERVICE_IRQ_VECTOR,
4252 sink_irq_vector);
4253
4254 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4255 DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4256 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4257 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4258 }
4259
4260 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4261 intel_dp_check_link_status(intel_dp);
4262 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4263
4264 return true;
4265 }
4266
4267 /* XXX this is probably wrong for multiple downstream ports */
4268 static enum drm_connector_status
4269 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4270 {
4271 uint8_t *dpcd = intel_dp->dpcd;
4272 uint8_t type;
4273
4274 if (!intel_dp_get_dpcd(intel_dp))
4275 return connector_status_disconnected;
4276
4277 if (is_edp(intel_dp))
4278 return connector_status_connected;
4279
4280 /* if there's no downstream port, we're done */
4281 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4282 return connector_status_connected;
4283
4284 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4285 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4286 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4287
4288 return intel_dp->sink_count ?
4289 connector_status_connected : connector_status_disconnected;
4290 }
4291
4292 /* If no HPD, poke DDC gently */
4293 if (drm_probe_ddc(&intel_dp->aux.ddc))
4294 return connector_status_connected;
4295
4296 /* Well we tried, say unknown for unreliable port types */
4297 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4298 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4299 if (type == DP_DS_PORT_TYPE_VGA ||
4300 type == DP_DS_PORT_TYPE_NON_EDID)
4301 return connector_status_unknown;
4302 } else {
4303 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4304 DP_DWN_STRM_PORT_TYPE_MASK;
4305 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4306 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4307 return connector_status_unknown;
4308 }
4309
4310 /* Anything else is out of spec, warn and ignore */
4311 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4312 return connector_status_disconnected;
4313 }
4314
4315 static enum drm_connector_status
4316 edp_detect(struct intel_dp *intel_dp)
4317 {
4318 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4319 enum drm_connector_status status;
4320
4321 status = intel_panel_detect(dev);
4322 if (status == connector_status_unknown)
4323 status = connector_status_connected;
4324
4325 return status;
4326 }
4327
4328 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4329 struct intel_digital_port *port)
4330 {
4331 u32 bit;
4332
4333 switch (port->port) {
4334 case PORT_A:
4335 return true;
4336 case PORT_B:
4337 bit = SDE_PORTB_HOTPLUG;
4338 break;
4339 case PORT_C:
4340 bit = SDE_PORTC_HOTPLUG;
4341 break;
4342 case PORT_D:
4343 bit = SDE_PORTD_HOTPLUG;
4344 break;
4345 default:
4346 MISSING_CASE(port->port);
4347 return false;
4348 }
4349
4350 return I915_READ(SDEISR) & bit;
4351 }
4352
4353 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4354 struct intel_digital_port *port)
4355 {
4356 u32 bit;
4357
4358 switch (port->port) {
4359 case PORT_A:
4360 return true;
4361 case PORT_B:
4362 bit = SDE_PORTB_HOTPLUG_CPT;
4363 break;
4364 case PORT_C:
4365 bit = SDE_PORTC_HOTPLUG_CPT;
4366 break;
4367 case PORT_D:
4368 bit = SDE_PORTD_HOTPLUG_CPT;
4369 break;
4370 case PORT_E:
4371 bit = SDE_PORTE_HOTPLUG_SPT;
4372 break;
4373 default:
4374 MISSING_CASE(port->port);
4375 return false;
4376 }
4377
4378 return I915_READ(SDEISR) & bit;
4379 }
4380
4381 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4382 struct intel_digital_port *port)
4383 {
4384 u32 bit;
4385
4386 switch (port->port) {
4387 case PORT_B:
4388 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4389 break;
4390 case PORT_C:
4391 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4392 break;
4393 case PORT_D:
4394 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4395 break;
4396 default:
4397 MISSING_CASE(port->port);
4398 return false;
4399 }
4400
4401 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4402 }
4403
4404 static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
4405 struct intel_digital_port *port)
4406 {
4407 u32 bit;
4408
4409 switch (port->port) {
4410 case PORT_B:
4411 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4412 break;
4413 case PORT_C:
4414 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4415 break;
4416 case PORT_D:
4417 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4418 break;
4419 default:
4420 MISSING_CASE(port->port);
4421 return false;
4422 }
4423
4424 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4425 }
4426
4427 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4428 struct intel_digital_port *intel_dig_port)
4429 {
4430 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4431 enum port port;
4432 u32 bit;
4433
4434 intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4435 switch (port) {
4436 case PORT_A:
4437 bit = BXT_DE_PORT_HP_DDIA;
4438 break;
4439 case PORT_B:
4440 bit = BXT_DE_PORT_HP_DDIB;
4441 break;
4442 case PORT_C:
4443 bit = BXT_DE_PORT_HP_DDIC;
4444 break;
4445 default:
4446 MISSING_CASE(port);
4447 return false;
4448 }
4449
4450 return I915_READ(GEN8_DE_PORT_ISR) & bit;
4451 }
4452
4453 /*
4454 * intel_digital_port_connected - is the specified port connected?
4455 * @dev_priv: i915 private structure
4456 * @port: the port to test
4457 *
4458 * Return %true if @port is connected, %false otherwise.
4459 */
4460 bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4461 struct intel_digital_port *port)
4462 {
4463 if (HAS_PCH_IBX(dev_priv))
4464 return ibx_digital_port_connected(dev_priv, port);
4465 else if (HAS_PCH_SPLIT(dev_priv))
4466 return cpt_digital_port_connected(dev_priv, port);
4467 else if (IS_BROXTON(dev_priv))
4468 return bxt_digital_port_connected(dev_priv, port);
4469 else if (IS_GM45(dev_priv))
4470 return gm45_digital_port_connected(dev_priv, port);
4471 else
4472 return g4x_digital_port_connected(dev_priv, port);
4473 }
4474
4475 static struct edid *
4476 intel_dp_get_edid(struct intel_dp *intel_dp)
4477 {
4478 struct intel_connector *intel_connector = intel_dp->attached_connector;
4479
4480 /* use cached edid if we have one */
4481 if (intel_connector->edid) {
4482 /* invalid edid */
4483 if (IS_ERR(intel_connector->edid))
4484 return NULL;
4485
4486 return drm_edid_duplicate(intel_connector->edid);
4487 } else
4488 return drm_get_edid(&intel_connector->base,
4489 &intel_dp->aux.ddc);
4490 }
4491
4492 static void
4493 intel_dp_set_edid(struct intel_dp *intel_dp)
4494 {
4495 struct intel_connector *intel_connector = intel_dp->attached_connector;
4496 struct edid *edid;
4497
4498 intel_dp_unset_edid(intel_dp);
4499 edid = intel_dp_get_edid(intel_dp);
4500 intel_connector->detect_edid = edid;
4501
4502 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4503 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4504 else
4505 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4506 }
4507
4508 static void
4509 intel_dp_unset_edid(struct intel_dp *intel_dp)
4510 {
4511 struct intel_connector *intel_connector = intel_dp->attached_connector;
4512
4513 kfree(intel_connector->detect_edid);
4514 intel_connector->detect_edid = NULL;
4515
4516 intel_dp->has_audio = false;
4517 }
4518
4519 static void
4520 intel_dp_long_pulse(struct intel_connector *intel_connector)
4521 {
4522 struct drm_connector *connector = &intel_connector->base;
4523 struct intel_dp *intel_dp = intel_attached_dp(connector);
4524 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4525 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4526 struct drm_device *dev = connector->dev;
4527 enum drm_connector_status status;
4528 enum intel_display_power_domain power_domain;
4529 bool ret;
4530 u8 sink_irq_vector;
4531
4532 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4533 intel_display_power_get(to_i915(dev), power_domain);
4534
4535 /* Can't disconnect eDP, but you can close the lid... */
4536 if (is_edp(intel_dp))
4537 status = edp_detect(intel_dp);
4538 else if (intel_digital_port_connected(to_i915(dev),
4539 dp_to_dig_port(intel_dp)))
4540 status = intel_dp_detect_dpcd(intel_dp);
4541 else
4542 status = connector_status_disconnected;
4543
4544 if (status != connector_status_connected) {
4545 intel_dp->compliance_test_active = 0;
4546 intel_dp->compliance_test_type = 0;
4547 intel_dp->compliance_test_data = 0;
4548
4549 if (intel_dp->is_mst) {
4550 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4551 intel_dp->is_mst,
4552 intel_dp->mst_mgr.mst_state);
4553 intel_dp->is_mst = false;
4554 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4555 intel_dp->is_mst);
4556 }
4557
4558 goto out;
4559 }
4560
4561 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4562 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4563
4564 intel_dp_probe_oui(intel_dp);
4565
4566 ret = intel_dp_probe_mst(intel_dp);
4567 if (ret) {
4568 /*
4569 * If we are in MST mode then this connector
4570 * won't appear connected or have anything
4571 * with EDID on it
4572 */
4573 status = connector_status_disconnected;
4574 goto out;
4575 } else if (connector->status == connector_status_connected) {
4576 /*
4577 * If display was connected already and is still connected
4578 * check links status, there has been known issues of
4579 * link loss triggerring long pulse!!!!
4580 */
4581 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4582 intel_dp_check_link_status(intel_dp);
4583 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4584 goto out;
4585 }
4586
4587 /*
4588 * Clearing NACK and defer counts to get their exact values
4589 * while reading EDID which are required by Compliance tests
4590 * 4.2.2.4 and 4.2.2.5
4591 */
4592 intel_dp->aux.i2c_nack_count = 0;
4593 intel_dp->aux.i2c_defer_count = 0;
4594
4595 intel_dp_set_edid(intel_dp);
4596
4597 status = connector_status_connected;
4598 intel_dp->detect_done = true;
4599
4600 /* Try to read the source of the interrupt */
4601 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4602 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4603 /* Clear interrupt source */
4604 drm_dp_dpcd_writeb(&intel_dp->aux,
4605 DP_DEVICE_SERVICE_IRQ_VECTOR,
4606 sink_irq_vector);
4607
4608 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4609 intel_dp_handle_test_request(intel_dp);
4610 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4611 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4612 }
4613
4614 out:
4615 if ((status != connector_status_connected) &&
4616 (intel_dp->is_mst == false))
4617 intel_dp_unset_edid(intel_dp);
4618
4619 intel_display_power_put(to_i915(dev), power_domain);
4620 return;
4621 }
4622
4623 static enum drm_connector_status
4624 intel_dp_detect(struct drm_connector *connector, bool force)
4625 {
4626 struct intel_dp *intel_dp = intel_attached_dp(connector);
4627 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4628 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4629 struct intel_connector *intel_connector = to_intel_connector(connector);
4630
4631 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4632 connector->base.id, connector->name);
4633
4634 if (intel_dp->is_mst) {
4635 /* MST devices are disconnected from a monitor POV */
4636 intel_dp_unset_edid(intel_dp);
4637 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4638 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4639 return connector_status_disconnected;
4640 }
4641
4642 /* If full detect is not performed yet, do a full detect */
4643 if (!intel_dp->detect_done)
4644 intel_dp_long_pulse(intel_dp->attached_connector);
4645
4646 intel_dp->detect_done = false;
4647
4648 if (intel_connector->detect_edid)
4649 return connector_status_connected;
4650 else
4651 return connector_status_disconnected;
4652 }
4653
4654 static void
4655 intel_dp_force(struct drm_connector *connector)
4656 {
4657 struct intel_dp *intel_dp = intel_attached_dp(connector);
4658 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4659 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4660 enum intel_display_power_domain power_domain;
4661
4662 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4663 connector->base.id, connector->name);
4664 intel_dp_unset_edid(intel_dp);
4665
4666 if (connector->status != connector_status_connected)
4667 return;
4668
4669 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4670 intel_display_power_get(dev_priv, power_domain);
4671
4672 intel_dp_set_edid(intel_dp);
4673
4674 intel_display_power_put(dev_priv, power_domain);
4675
4676 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4677 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4678 }
4679
4680 static int intel_dp_get_modes(struct drm_connector *connector)
4681 {
4682 struct intel_connector *intel_connector = to_intel_connector(connector);
4683 struct edid *edid;
4684
4685 edid = intel_connector->detect_edid;
4686 if (edid) {
4687 int ret = intel_connector_update_modes(connector, edid);
4688 if (ret)
4689 return ret;
4690 }
4691
4692 /* if eDP has no EDID, fall back to fixed mode */
4693 if (is_edp(intel_attached_dp(connector)) &&
4694 intel_connector->panel.fixed_mode) {
4695 struct drm_display_mode *mode;
4696
4697 mode = drm_mode_duplicate(connector->dev,
4698 intel_connector->panel.fixed_mode);
4699 if (mode) {
4700 drm_mode_probed_add(connector, mode);
4701 return 1;
4702 }
4703 }
4704
4705 return 0;
4706 }
4707
4708 static bool
4709 intel_dp_detect_audio(struct drm_connector *connector)
4710 {
4711 bool has_audio = false;
4712 struct edid *edid;
4713
4714 edid = to_intel_connector(connector)->detect_edid;
4715 if (edid)
4716 has_audio = drm_detect_monitor_audio(edid);
4717
4718 return has_audio;
4719 }
4720
4721 static int
4722 intel_dp_set_property(struct drm_connector *connector,
4723 struct drm_property *property,
4724 uint64_t val)
4725 {
4726 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4727 struct intel_connector *intel_connector = to_intel_connector(connector);
4728 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4729 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4730 int ret;
4731
4732 ret = drm_object_property_set_value(&connector->base, property, val);
4733 if (ret)
4734 return ret;
4735
4736 if (property == dev_priv->force_audio_property) {
4737 int i = val;
4738 bool has_audio;
4739
4740 if (i == intel_dp->force_audio)
4741 return 0;
4742
4743 intel_dp->force_audio = i;
4744
4745 if (i == HDMI_AUDIO_AUTO)
4746 has_audio = intel_dp_detect_audio(connector);
4747 else
4748 has_audio = (i == HDMI_AUDIO_ON);
4749
4750 if (has_audio == intel_dp->has_audio)
4751 return 0;
4752
4753 intel_dp->has_audio = has_audio;
4754 goto done;
4755 }
4756
4757 if (property == dev_priv->broadcast_rgb_property) {
4758 bool old_auto = intel_dp->color_range_auto;
4759 bool old_range = intel_dp->limited_color_range;
4760
4761 switch (val) {
4762 case INTEL_BROADCAST_RGB_AUTO:
4763 intel_dp->color_range_auto = true;
4764 break;
4765 case INTEL_BROADCAST_RGB_FULL:
4766 intel_dp->color_range_auto = false;
4767 intel_dp->limited_color_range = false;
4768 break;
4769 case INTEL_BROADCAST_RGB_LIMITED:
4770 intel_dp->color_range_auto = false;
4771 intel_dp->limited_color_range = true;
4772 break;
4773 default:
4774 return -EINVAL;
4775 }
4776
4777 if (old_auto == intel_dp->color_range_auto &&
4778 old_range == intel_dp->limited_color_range)
4779 return 0;
4780
4781 goto done;
4782 }
4783
4784 if (is_edp(intel_dp) &&
4785 property == connector->dev->mode_config.scaling_mode_property) {
4786 if (val == DRM_MODE_SCALE_NONE) {
4787 DRM_DEBUG_KMS("no scaling not supported\n");
4788 return -EINVAL;
4789 }
4790 if (HAS_GMCH_DISPLAY(dev_priv) &&
4791 val == DRM_MODE_SCALE_CENTER) {
4792 DRM_DEBUG_KMS("centering not supported\n");
4793 return -EINVAL;
4794 }
4795
4796 if (intel_connector->panel.fitting_mode == val) {
4797 /* the eDP scaling property is not changed */
4798 return 0;
4799 }
4800 intel_connector->panel.fitting_mode = val;
4801
4802 goto done;
4803 }
4804
4805 return -EINVAL;
4806
4807 done:
4808 if (intel_encoder->base.crtc)
4809 intel_crtc_restore_mode(intel_encoder->base.crtc);
4810
4811 return 0;
4812 }
4813
4814 static void
4815 intel_dp_connector_destroy(struct drm_connector *connector)
4816 {
4817 struct intel_connector *intel_connector = to_intel_connector(connector);
4818
4819 kfree(intel_connector->detect_edid);
4820
4821 if (!IS_ERR_OR_NULL(intel_connector->edid))
4822 kfree(intel_connector->edid);
4823
4824 /* Can't call is_edp() since the encoder may have been destroyed
4825 * already. */
4826 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4827 intel_panel_fini(&intel_connector->panel);
4828
4829 drm_connector_cleanup(connector);
4830 kfree(connector);
4831 }
4832
4833 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4834 {
4835 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4836 struct intel_dp *intel_dp = &intel_dig_port->dp;
4837
4838 intel_dp_mst_encoder_cleanup(intel_dig_port);
4839 if (is_edp(intel_dp)) {
4840 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4841 /*
4842 * vdd might still be enabled do to the delayed vdd off.
4843 * Make sure vdd is actually turned off here.
4844 */
4845 pps_lock(intel_dp);
4846 edp_panel_vdd_off_sync(intel_dp);
4847 pps_unlock(intel_dp);
4848
4849 if (intel_dp->edp_notifier.notifier_call) {
4850 unregister_reboot_notifier(&intel_dp->edp_notifier);
4851 intel_dp->edp_notifier.notifier_call = NULL;
4852 }
4853 }
4854 drm_encoder_cleanup(encoder);
4855 kfree(intel_dig_port);
4856 }
4857
4858 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4859 {
4860 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4861
4862 if (!is_edp(intel_dp))
4863 return;
4864
4865 /*
4866 * vdd might still be enabled do to the delayed vdd off.
4867 * Make sure vdd is actually turned off here.
4868 */
4869 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4870 pps_lock(intel_dp);
4871 edp_panel_vdd_off_sync(intel_dp);
4872 pps_unlock(intel_dp);
4873 }
4874
4875 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4876 {
4877 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4878 struct drm_device *dev = intel_dig_port->base.base.dev;
4879 struct drm_i915_private *dev_priv = dev->dev_private;
4880 enum intel_display_power_domain power_domain;
4881
4882 lockdep_assert_held(&dev_priv->pps_mutex);
4883
4884 if (!edp_have_panel_vdd(intel_dp))
4885 return;
4886
4887 /*
4888 * The VDD bit needs a power domain reference, so if the bit is
4889 * already enabled when we boot or resume, grab this reference and
4890 * schedule a vdd off, so we don't hold on to the reference
4891 * indefinitely.
4892 */
4893 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4894 power_domain = intel_display_port_aux_power_domain(&intel_dig_port->base);
4895 intel_display_power_get(dev_priv, power_domain);
4896
4897 edp_panel_vdd_schedule_off(intel_dp);
4898 }
4899
4900 void intel_dp_encoder_reset(struct drm_encoder *encoder)
4901 {
4902 struct drm_i915_private *dev_priv = to_i915(encoder->dev);
4903 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4904
4905 if (!HAS_DDI(dev_priv))
4906 intel_dp->DP = I915_READ(intel_dp->output_reg);
4907
4908 if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4909 return;
4910
4911 pps_lock(intel_dp);
4912
4913 /*
4914 * Read out the current power sequencer assignment,
4915 * in case the BIOS did something with it.
4916 */
4917 if (IS_VALLEYVIEW(encoder->dev) || IS_CHERRYVIEW(encoder->dev))
4918 vlv_initial_power_sequencer_setup(intel_dp);
4919
4920 intel_edp_panel_vdd_sanitize(intel_dp);
4921
4922 pps_unlock(intel_dp);
4923 }
4924
4925 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4926 .dpms = drm_atomic_helper_connector_dpms,
4927 .detect = intel_dp_detect,
4928 .force = intel_dp_force,
4929 .fill_modes = drm_helper_probe_single_connector_modes,
4930 .set_property = intel_dp_set_property,
4931 .atomic_get_property = intel_connector_atomic_get_property,
4932 .destroy = intel_dp_connector_destroy,
4933 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4934 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4935 };
4936
4937 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4938 .get_modes = intel_dp_get_modes,
4939 .mode_valid = intel_dp_mode_valid,
4940 .best_encoder = intel_best_encoder,
4941 };
4942
4943 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4944 .reset = intel_dp_encoder_reset,
4945 .destroy = intel_dp_encoder_destroy,
4946 };
4947
4948 enum irqreturn
4949 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4950 {
4951 struct intel_dp *intel_dp = &intel_dig_port->dp;
4952 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4953 struct drm_device *dev = intel_dig_port->base.base.dev;
4954 struct drm_i915_private *dev_priv = dev->dev_private;
4955 enum intel_display_power_domain power_domain;
4956 enum irqreturn ret = IRQ_NONE;
4957
4958 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
4959 intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
4960 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4961
4962 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4963 /*
4964 * vdd off can generate a long pulse on eDP which
4965 * would require vdd on to handle it, and thus we
4966 * would end up in an endless cycle of
4967 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4968 */
4969 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4970 port_name(intel_dig_port->port));
4971 return IRQ_HANDLED;
4972 }
4973
4974 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4975 port_name(intel_dig_port->port),
4976 long_hpd ? "long" : "short");
4977
4978 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4979 intel_display_power_get(dev_priv, power_domain);
4980
4981 if (long_hpd) {
4982 intel_dp_long_pulse(intel_dp->attached_connector);
4983 if (intel_dp->is_mst)
4984 ret = IRQ_HANDLED;
4985 goto put_power;
4986
4987 } else {
4988 if (intel_dp->is_mst) {
4989 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
4990 /*
4991 * If we were in MST mode, and device is not
4992 * there, get out of MST mode
4993 */
4994 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4995 intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4996 intel_dp->is_mst = false;
4997 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4998 intel_dp->is_mst);
4999 goto put_power;
5000 }
5001 }
5002
5003 if (!intel_dp->is_mst) {
5004 if (!intel_dp_short_pulse(intel_dp)) {
5005 intel_dp_long_pulse(intel_dp->attached_connector);
5006 goto put_power;
5007 }
5008 }
5009 }
5010
5011 ret = IRQ_HANDLED;
5012
5013 put_power:
5014 intel_display_power_put(dev_priv, power_domain);
5015
5016 return ret;
5017 }
5018
5019 /* check the VBT to see whether the eDP is on another port */
5020 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
5021 {
5022 struct drm_i915_private *dev_priv = dev->dev_private;
5023
5024 /*
5025 * eDP not supported on g4x. so bail out early just
5026 * for a bit extra safety in case the VBT is bonkers.
5027 */
5028 if (INTEL_INFO(dev)->gen < 5)
5029 return false;
5030
5031 if (port == PORT_A)
5032 return true;
5033
5034 return intel_bios_is_port_edp(dev_priv, port);
5035 }
5036
5037 void
5038 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5039 {
5040 struct intel_connector *intel_connector = to_intel_connector(connector);
5041
5042 intel_attach_force_audio_property(connector);
5043 intel_attach_broadcast_rgb_property(connector);
5044 intel_dp->color_range_auto = true;
5045
5046 if (is_edp(intel_dp)) {
5047 drm_mode_create_scaling_mode_property(connector->dev);
5048 drm_object_attach_property(
5049 &connector->base,
5050 connector->dev->mode_config.scaling_mode_property,
5051 DRM_MODE_SCALE_ASPECT);
5052 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
5053 }
5054 }
5055
5056 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
5057 {
5058 intel_dp->panel_power_off_time = ktime_get_boottime();
5059 intel_dp->last_power_on = jiffies;
5060 intel_dp->last_backlight_off = jiffies;
5061 }
5062
5063 static void
5064 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
5065 struct intel_dp *intel_dp)
5066 {
5067 struct drm_i915_private *dev_priv = dev->dev_private;
5068 struct edp_power_seq cur, vbt, spec,
5069 *final = &intel_dp->pps_delays;
5070 u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
5071 i915_reg_t pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
5072
5073 lockdep_assert_held(&dev_priv->pps_mutex);
5074
5075 /* already initialized? */
5076 if (final->t11_t12 != 0)
5077 return;
5078
5079 if (IS_BROXTON(dev)) {
5080 /*
5081 * TODO: BXT has 2 sets of PPS registers.
5082 * Correct Register for Broxton need to be identified
5083 * using VBT. hardcoding for now
5084 */
5085 pp_ctrl_reg = BXT_PP_CONTROL(0);
5086 pp_on_reg = BXT_PP_ON_DELAYS(0);
5087 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5088 } else if (HAS_PCH_SPLIT(dev)) {
5089 pp_ctrl_reg = PCH_PP_CONTROL;
5090 pp_on_reg = PCH_PP_ON_DELAYS;
5091 pp_off_reg = PCH_PP_OFF_DELAYS;
5092 pp_div_reg = PCH_PP_DIVISOR;
5093 } else {
5094 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5095
5096 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
5097 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5098 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5099 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5100 }
5101
5102 /* Workaround: Need to write PP_CONTROL with the unlock key as
5103 * the very first thing. */
5104 pp_ctl = ironlake_get_pp_control(intel_dp);
5105
5106 pp_on = I915_READ(pp_on_reg);
5107 pp_off = I915_READ(pp_off_reg);
5108 if (!IS_BROXTON(dev)) {
5109 I915_WRITE(pp_ctrl_reg, pp_ctl);
5110 pp_div = I915_READ(pp_div_reg);
5111 }
5112
5113 /* Pull timing values out of registers */
5114 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
5115 PANEL_POWER_UP_DELAY_SHIFT;
5116
5117 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
5118 PANEL_LIGHT_ON_DELAY_SHIFT;
5119
5120 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
5121 PANEL_LIGHT_OFF_DELAY_SHIFT;
5122
5123 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5124 PANEL_POWER_DOWN_DELAY_SHIFT;
5125
5126 if (IS_BROXTON(dev)) {
5127 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
5128 BXT_POWER_CYCLE_DELAY_SHIFT;
5129 if (tmp > 0)
5130 cur.t11_t12 = (tmp - 1) * 1000;
5131 else
5132 cur.t11_t12 = 0;
5133 } else {
5134 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5135 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5136 }
5137
5138 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5139 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
5140
5141 vbt = dev_priv->vbt.edp.pps;
5142
5143 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5144 * our hw here, which are all in 100usec. */
5145 spec.t1_t3 = 210 * 10;
5146 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5147 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5148 spec.t10 = 500 * 10;
5149 /* This one is special and actually in units of 100ms, but zero
5150 * based in the hw (so we need to add 100 ms). But the sw vbt
5151 * table multiplies it with 1000 to make it in units of 100usec,
5152 * too. */
5153 spec.t11_t12 = (510 + 100) * 10;
5154
5155 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5156 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
5157
5158 /* Use the max of the register settings and vbt. If both are
5159 * unset, fall back to the spec limits. */
5160 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
5161 spec.field : \
5162 max(cur.field, vbt.field))
5163 assign_final(t1_t3);
5164 assign_final(t8);
5165 assign_final(t9);
5166 assign_final(t10);
5167 assign_final(t11_t12);
5168 #undef assign_final
5169
5170 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
5171 intel_dp->panel_power_up_delay = get_delay(t1_t3);
5172 intel_dp->backlight_on_delay = get_delay(t8);
5173 intel_dp->backlight_off_delay = get_delay(t9);
5174 intel_dp->panel_power_down_delay = get_delay(t10);
5175 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5176 #undef get_delay
5177
5178 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5179 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5180 intel_dp->panel_power_cycle_delay);
5181
5182 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5183 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5184 }
5185
5186 static void
5187 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5188 struct intel_dp *intel_dp)
5189 {
5190 struct drm_i915_private *dev_priv = dev->dev_private;
5191 u32 pp_on, pp_off, pp_div, port_sel = 0;
5192 int div = dev_priv->rawclk_freq / 1000;
5193 i915_reg_t pp_on_reg, pp_off_reg, pp_div_reg, pp_ctrl_reg;
5194 enum port port = dp_to_dig_port(intel_dp)->port;
5195 const struct edp_power_seq *seq = &intel_dp->pps_delays;
5196
5197 lockdep_assert_held(&dev_priv->pps_mutex);
5198
5199 if (IS_BROXTON(dev)) {
5200 /*
5201 * TODO: BXT has 2 sets of PPS registers.
5202 * Correct Register for Broxton need to be identified
5203 * using VBT. hardcoding for now
5204 */
5205 pp_ctrl_reg = BXT_PP_CONTROL(0);
5206 pp_on_reg = BXT_PP_ON_DELAYS(0);
5207 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5208
5209 } else if (HAS_PCH_SPLIT(dev)) {
5210 pp_on_reg = PCH_PP_ON_DELAYS;
5211 pp_off_reg = PCH_PP_OFF_DELAYS;
5212 pp_div_reg = PCH_PP_DIVISOR;
5213 } else {
5214 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5215
5216 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5217 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5218 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5219 }
5220
5221 /*
5222 * And finally store the new values in the power sequencer. The
5223 * backlight delays are set to 1 because we do manual waits on them. For
5224 * T8, even BSpec recommends doing it. For T9, if we don't do this,
5225 * we'll end up waiting for the backlight off delay twice: once when we
5226 * do the manual sleep, and once when we disable the panel and wait for
5227 * the PP_STATUS bit to become zero.
5228 */
5229 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5230 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
5231 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5232 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5233 /* Compute the divisor for the pp clock, simply match the Bspec
5234 * formula. */
5235 if (IS_BROXTON(dev)) {
5236 pp_div = I915_READ(pp_ctrl_reg);
5237 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5238 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
5239 << BXT_POWER_CYCLE_DELAY_SHIFT);
5240 } else {
5241 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5242 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5243 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5244 }
5245
5246 /* Haswell doesn't have any port selection bits for the panel
5247 * power sequencer any more. */
5248 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5249 port_sel = PANEL_PORT_SELECT_VLV(port);
5250 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5251 if (port == PORT_A)
5252 port_sel = PANEL_PORT_SELECT_DPA;
5253 else
5254 port_sel = PANEL_PORT_SELECT_DPD;
5255 }
5256
5257 pp_on |= port_sel;
5258
5259 I915_WRITE(pp_on_reg, pp_on);
5260 I915_WRITE(pp_off_reg, pp_off);
5261 if (IS_BROXTON(dev))
5262 I915_WRITE(pp_ctrl_reg, pp_div);
5263 else
5264 I915_WRITE(pp_div_reg, pp_div);
5265
5266 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5267 I915_READ(pp_on_reg),
5268 I915_READ(pp_off_reg),
5269 IS_BROXTON(dev) ?
5270 (I915_READ(pp_ctrl_reg) & BXT_POWER_CYCLE_DELAY_MASK) :
5271 I915_READ(pp_div_reg));
5272 }
5273
5274 /**
5275 * intel_dp_set_drrs_state - program registers for RR switch to take effect
5276 * @dev: DRM device
5277 * @refresh_rate: RR to be programmed
5278 *
5279 * This function gets called when refresh rate (RR) has to be changed from
5280 * one frequency to another. Switches can be between high and low RR
5281 * supported by the panel or to any other RR based on media playback (in
5282 * this case, RR value needs to be passed from user space).
5283 *
5284 * The caller of this function needs to take a lock on dev_priv->drrs.
5285 */
5286 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
5287 {
5288 struct drm_i915_private *dev_priv = dev->dev_private;
5289 struct intel_encoder *encoder;
5290 struct intel_digital_port *dig_port = NULL;
5291 struct intel_dp *intel_dp = dev_priv->drrs.dp;
5292 struct intel_crtc_state *config = NULL;
5293 struct intel_crtc *intel_crtc = NULL;
5294 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5295
5296 if (refresh_rate <= 0) {
5297 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5298 return;
5299 }
5300
5301 if (intel_dp == NULL) {
5302 DRM_DEBUG_KMS("DRRS not supported.\n");
5303 return;
5304 }
5305
5306 /*
5307 * FIXME: This needs proper synchronization with psr state for some
5308 * platforms that cannot have PSR and DRRS enabled at the same time.
5309 */
5310
5311 dig_port = dp_to_dig_port(intel_dp);
5312 encoder = &dig_port->base;
5313 intel_crtc = to_intel_crtc(encoder->base.crtc);
5314
5315 if (!intel_crtc) {
5316 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5317 return;
5318 }
5319
5320 config = intel_crtc->config;
5321
5322 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5323 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5324 return;
5325 }
5326
5327 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5328 refresh_rate)
5329 index = DRRS_LOW_RR;
5330
5331 if (index == dev_priv->drrs.refresh_rate_type) {
5332 DRM_DEBUG_KMS(
5333 "DRRS requested for previously set RR...ignoring\n");
5334 return;
5335 }
5336
5337 if (!intel_crtc->active) {
5338 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5339 return;
5340 }
5341
5342 if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
5343 switch (index) {
5344 case DRRS_HIGH_RR:
5345 intel_dp_set_m_n(intel_crtc, M1_N1);
5346 break;
5347 case DRRS_LOW_RR:
5348 intel_dp_set_m_n(intel_crtc, M2_N2);
5349 break;
5350 case DRRS_MAX_RR:
5351 default:
5352 DRM_ERROR("Unsupported refreshrate type\n");
5353 }
5354 } else if (INTEL_INFO(dev)->gen > 6) {
5355 i915_reg_t reg = PIPECONF(intel_crtc->config->cpu_transcoder);
5356 u32 val;
5357
5358 val = I915_READ(reg);
5359 if (index > DRRS_HIGH_RR) {
5360 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5361 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5362 else
5363 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5364 } else {
5365 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5366 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5367 else
5368 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5369 }
5370 I915_WRITE(reg, val);
5371 }
5372
5373 dev_priv->drrs.refresh_rate_type = index;
5374
5375 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5376 }
5377
5378 /**
5379 * intel_edp_drrs_enable - init drrs struct if supported
5380 * @intel_dp: DP struct
5381 *
5382 * Initializes frontbuffer_bits and drrs.dp
5383 */
5384 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5385 {
5386 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5387 struct drm_i915_private *dev_priv = dev->dev_private;
5388 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5389 struct drm_crtc *crtc = dig_port->base.base.crtc;
5390 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5391
5392 if (!intel_crtc->config->has_drrs) {
5393 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5394 return;
5395 }
5396
5397 mutex_lock(&dev_priv->drrs.mutex);
5398 if (WARN_ON(dev_priv->drrs.dp)) {
5399 DRM_ERROR("DRRS already enabled\n");
5400 goto unlock;
5401 }
5402
5403 dev_priv->drrs.busy_frontbuffer_bits = 0;
5404
5405 dev_priv->drrs.dp = intel_dp;
5406
5407 unlock:
5408 mutex_unlock(&dev_priv->drrs.mutex);
5409 }
5410
5411 /**
5412 * intel_edp_drrs_disable - Disable DRRS
5413 * @intel_dp: DP struct
5414 *
5415 */
5416 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5417 {
5418 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5419 struct drm_i915_private *dev_priv = dev->dev_private;
5420 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5421 struct drm_crtc *crtc = dig_port->base.base.crtc;
5422 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5423
5424 if (!intel_crtc->config->has_drrs)
5425 return;
5426
5427 mutex_lock(&dev_priv->drrs.mutex);
5428 if (!dev_priv->drrs.dp) {
5429 mutex_unlock(&dev_priv->drrs.mutex);
5430 return;
5431 }
5432
5433 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5434 intel_dp_set_drrs_state(dev_priv->dev,
5435 intel_dp->attached_connector->panel.
5436 fixed_mode->vrefresh);
5437
5438 dev_priv->drrs.dp = NULL;
5439 mutex_unlock(&dev_priv->drrs.mutex);
5440
5441 cancel_delayed_work_sync(&dev_priv->drrs.work);
5442 }
5443
5444 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5445 {
5446 struct drm_i915_private *dev_priv =
5447 container_of(work, typeof(*dev_priv), drrs.work.work);
5448 struct intel_dp *intel_dp;
5449
5450 mutex_lock(&dev_priv->drrs.mutex);
5451
5452 intel_dp = dev_priv->drrs.dp;
5453
5454 if (!intel_dp)
5455 goto unlock;
5456
5457 /*
5458 * The delayed work can race with an invalidate hence we need to
5459 * recheck.
5460 */
5461
5462 if (dev_priv->drrs.busy_frontbuffer_bits)
5463 goto unlock;
5464
5465 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5466 intel_dp_set_drrs_state(dev_priv->dev,
5467 intel_dp->attached_connector->panel.
5468 downclock_mode->vrefresh);
5469
5470 unlock:
5471 mutex_unlock(&dev_priv->drrs.mutex);
5472 }
5473
5474 /**
5475 * intel_edp_drrs_invalidate - Disable Idleness DRRS
5476 * @dev: DRM device
5477 * @frontbuffer_bits: frontbuffer plane tracking bits
5478 *
5479 * This function gets called everytime rendering on the given planes start.
5480 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5481 *
5482 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5483 */
5484 void intel_edp_drrs_invalidate(struct drm_device *dev,
5485 unsigned frontbuffer_bits)
5486 {
5487 struct drm_i915_private *dev_priv = dev->dev_private;
5488 struct drm_crtc *crtc;
5489 enum pipe pipe;
5490
5491 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5492 return;
5493
5494 cancel_delayed_work(&dev_priv->drrs.work);
5495
5496 mutex_lock(&dev_priv->drrs.mutex);
5497 if (!dev_priv->drrs.dp) {
5498 mutex_unlock(&dev_priv->drrs.mutex);
5499 return;
5500 }
5501
5502 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5503 pipe = to_intel_crtc(crtc)->pipe;
5504
5505 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5506 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5507
5508 /* invalidate means busy screen hence upclock */
5509 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5510 intel_dp_set_drrs_state(dev_priv->dev,
5511 dev_priv->drrs.dp->attached_connector->panel.
5512 fixed_mode->vrefresh);
5513
5514 mutex_unlock(&dev_priv->drrs.mutex);
5515 }
5516
5517 /**
5518 * intel_edp_drrs_flush - Restart Idleness DRRS
5519 * @dev: DRM device
5520 * @frontbuffer_bits: frontbuffer plane tracking bits
5521 *
5522 * This function gets called every time rendering on the given planes has
5523 * completed or flip on a crtc is completed. So DRRS should be upclocked
5524 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5525 * if no other planes are dirty.
5526 *
5527 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5528 */
5529 void intel_edp_drrs_flush(struct drm_device *dev,
5530 unsigned frontbuffer_bits)
5531 {
5532 struct drm_i915_private *dev_priv = dev->dev_private;
5533 struct drm_crtc *crtc;
5534 enum pipe pipe;
5535
5536 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5537 return;
5538
5539 cancel_delayed_work(&dev_priv->drrs.work);
5540
5541 mutex_lock(&dev_priv->drrs.mutex);
5542 if (!dev_priv->drrs.dp) {
5543 mutex_unlock(&dev_priv->drrs.mutex);
5544 return;
5545 }
5546
5547 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5548 pipe = to_intel_crtc(crtc)->pipe;
5549
5550 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5551 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5552
5553 /* flush means busy screen hence upclock */
5554 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5555 intel_dp_set_drrs_state(dev_priv->dev,
5556 dev_priv->drrs.dp->attached_connector->panel.
5557 fixed_mode->vrefresh);
5558
5559 /*
5560 * flush also means no more activity hence schedule downclock, if all
5561 * other fbs are quiescent too
5562 */
5563 if (!dev_priv->drrs.busy_frontbuffer_bits)
5564 schedule_delayed_work(&dev_priv->drrs.work,
5565 msecs_to_jiffies(1000));
5566 mutex_unlock(&dev_priv->drrs.mutex);
5567 }
5568
5569 /**
5570 * DOC: Display Refresh Rate Switching (DRRS)
5571 *
5572 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5573 * which enables swtching between low and high refresh rates,
5574 * dynamically, based on the usage scenario. This feature is applicable
5575 * for internal panels.
5576 *
5577 * Indication that the panel supports DRRS is given by the panel EDID, which
5578 * would list multiple refresh rates for one resolution.
5579 *
5580 * DRRS is of 2 types - static and seamless.
5581 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5582 * (may appear as a blink on screen) and is used in dock-undock scenario.
5583 * Seamless DRRS involves changing RR without any visual effect to the user
5584 * and can be used during normal system usage. This is done by programming
5585 * certain registers.
5586 *
5587 * Support for static/seamless DRRS may be indicated in the VBT based on
5588 * inputs from the panel spec.
5589 *
5590 * DRRS saves power by switching to low RR based on usage scenarios.
5591 *
5592 * eDP DRRS:-
5593 * The implementation is based on frontbuffer tracking implementation.
5594 * When there is a disturbance on the screen triggered by user activity or a
5595 * periodic system activity, DRRS is disabled (RR is changed to high RR).
5596 * When there is no movement on screen, after a timeout of 1 second, a switch
5597 * to low RR is made.
5598 * For integration with frontbuffer tracking code,
5599 * intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called.
5600 *
5601 * DRRS can be further extended to support other internal panels and also
5602 * the scenario of video playback wherein RR is set based on the rate
5603 * requested by userspace.
5604 */
5605
5606 /**
5607 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5608 * @intel_connector: eDP connector
5609 * @fixed_mode: preferred mode of panel
5610 *
5611 * This function is called only once at driver load to initialize basic
5612 * DRRS stuff.
5613 *
5614 * Returns:
5615 * Downclock mode if panel supports it, else return NULL.
5616 * DRRS support is determined by the presence of downclock mode (apart
5617 * from VBT setting).
5618 */
5619 static struct drm_display_mode *
5620 intel_dp_drrs_init(struct intel_connector *intel_connector,
5621 struct drm_display_mode *fixed_mode)
5622 {
5623 struct drm_connector *connector = &intel_connector->base;
5624 struct drm_device *dev = connector->dev;
5625 struct drm_i915_private *dev_priv = dev->dev_private;
5626 struct drm_display_mode *downclock_mode = NULL;
5627
5628 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5629 mutex_init(&dev_priv->drrs.mutex);
5630
5631 if (INTEL_INFO(dev)->gen <= 6) {
5632 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5633 return NULL;
5634 }
5635
5636 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5637 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5638 return NULL;
5639 }
5640
5641 downclock_mode = intel_find_panel_downclock
5642 (dev, fixed_mode, connector);
5643
5644 if (!downclock_mode) {
5645 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5646 return NULL;
5647 }
5648
5649 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5650
5651 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5652 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5653 return downclock_mode;
5654 }
5655
5656 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5657 struct intel_connector *intel_connector)
5658 {
5659 struct drm_connector *connector = &intel_connector->base;
5660 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5661 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5662 struct drm_device *dev = intel_encoder->base.dev;
5663 struct drm_i915_private *dev_priv = dev->dev_private;
5664 struct drm_display_mode *fixed_mode = NULL;
5665 struct drm_display_mode *downclock_mode = NULL;
5666 bool has_dpcd;
5667 struct drm_display_mode *scan;
5668 struct edid *edid;
5669 enum pipe pipe = INVALID_PIPE;
5670
5671 if (!is_edp(intel_dp))
5672 return true;
5673
5674 pps_lock(intel_dp);
5675 intel_edp_panel_vdd_sanitize(intel_dp);
5676 pps_unlock(intel_dp);
5677
5678 /* Cache DPCD and EDID for edp. */
5679 has_dpcd = intel_dp_get_dpcd(intel_dp);
5680
5681 if (has_dpcd) {
5682 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5683 dev_priv->no_aux_handshake =
5684 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5685 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5686 } else {
5687 /* if this fails, presume the device is a ghost */
5688 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5689 return false;
5690 }
5691
5692 /* We now know it's not a ghost, init power sequence regs. */
5693 pps_lock(intel_dp);
5694 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5695 pps_unlock(intel_dp);
5696
5697 mutex_lock(&dev->mode_config.mutex);
5698 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5699 if (edid) {
5700 if (drm_add_edid_modes(connector, edid)) {
5701 drm_mode_connector_update_edid_property(connector,
5702 edid);
5703 drm_edid_to_eld(connector, edid);
5704 } else {
5705 kfree(edid);
5706 edid = ERR_PTR(-EINVAL);
5707 }
5708 } else {
5709 edid = ERR_PTR(-ENOENT);
5710 }
5711 intel_connector->edid = edid;
5712
5713 /* prefer fixed mode from EDID if available */
5714 list_for_each_entry(scan, &connector->probed_modes, head) {
5715 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5716 fixed_mode = drm_mode_duplicate(dev, scan);
5717 downclock_mode = intel_dp_drrs_init(
5718 intel_connector, fixed_mode);
5719 break;
5720 }
5721 }
5722
5723 /* fallback to VBT if available for eDP */
5724 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5725 fixed_mode = drm_mode_duplicate(dev,
5726 dev_priv->vbt.lfp_lvds_vbt_mode);
5727 if (fixed_mode) {
5728 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5729 connector->display_info.width_mm = fixed_mode->width_mm;
5730 connector->display_info.height_mm = fixed_mode->height_mm;
5731 }
5732 }
5733 mutex_unlock(&dev->mode_config.mutex);
5734
5735 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5736 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5737 register_reboot_notifier(&intel_dp->edp_notifier);
5738
5739 /*
5740 * Figure out the current pipe for the initial backlight setup.
5741 * If the current pipe isn't valid, try the PPS pipe, and if that
5742 * fails just assume pipe A.
5743 */
5744 if (IS_CHERRYVIEW(dev))
5745 pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5746 else
5747 pipe = PORT_TO_PIPE(intel_dp->DP);
5748
5749 if (pipe != PIPE_A && pipe != PIPE_B)
5750 pipe = intel_dp->pps_pipe;
5751
5752 if (pipe != PIPE_A && pipe != PIPE_B)
5753 pipe = PIPE_A;
5754
5755 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5756 pipe_name(pipe));
5757 }
5758
5759 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5760 intel_connector->panel.backlight.power = intel_edp_backlight_power;
5761 intel_panel_setup_backlight(connector, pipe);
5762
5763 return true;
5764 }
5765
5766 bool
5767 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5768 struct intel_connector *intel_connector)
5769 {
5770 struct drm_connector *connector = &intel_connector->base;
5771 struct intel_dp *intel_dp = &intel_dig_port->dp;
5772 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5773 struct drm_device *dev = intel_encoder->base.dev;
5774 struct drm_i915_private *dev_priv = dev->dev_private;
5775 enum port port = intel_dig_port->port;
5776 int type, ret;
5777
5778 if (WARN(intel_dig_port->max_lanes < 1,
5779 "Not enough lanes (%d) for DP on port %c\n",
5780 intel_dig_port->max_lanes, port_name(port)))
5781 return false;
5782
5783 intel_dp->pps_pipe = INVALID_PIPE;
5784
5785 /* intel_dp vfuncs */
5786 if (INTEL_INFO(dev)->gen >= 9)
5787 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5788 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5789 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5790 else if (HAS_PCH_SPLIT(dev))
5791 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5792 else
5793 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
5794
5795 if (INTEL_INFO(dev)->gen >= 9)
5796 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5797 else
5798 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
5799
5800 if (HAS_DDI(dev))
5801 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
5802
5803 /* Preserve the current hw state. */
5804 intel_dp->DP = I915_READ(intel_dp->output_reg);
5805 intel_dp->attached_connector = intel_connector;
5806
5807 if (intel_dp_is_edp(dev, port))
5808 type = DRM_MODE_CONNECTOR_eDP;
5809 else
5810 type = DRM_MODE_CONNECTOR_DisplayPort;
5811
5812 /*
5813 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5814 * for DP the encoder type can be set by the caller to
5815 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5816 */
5817 if (type == DRM_MODE_CONNECTOR_eDP)
5818 intel_encoder->type = INTEL_OUTPUT_EDP;
5819
5820 /* eDP only on port B and/or C on vlv/chv */
5821 if (WARN_ON((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
5822 is_edp(intel_dp) && port != PORT_B && port != PORT_C))
5823 return false;
5824
5825 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5826 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5827 port_name(port));
5828
5829 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5830 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5831
5832 connector->interlace_allowed = true;
5833 connector->doublescan_allowed = 0;
5834
5835 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5836 edp_panel_vdd_work);
5837
5838 intel_connector_attach_encoder(intel_connector, intel_encoder);
5839 drm_connector_register(connector);
5840
5841 if (HAS_DDI(dev))
5842 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5843 else
5844 intel_connector->get_hw_state = intel_connector_get_hw_state;
5845 intel_connector->unregister = intel_dp_connector_unregister;
5846
5847 /* Set up the hotplug pin. */
5848 switch (port) {
5849 case PORT_A:
5850 intel_encoder->hpd_pin = HPD_PORT_A;
5851 break;
5852 case PORT_B:
5853 intel_encoder->hpd_pin = HPD_PORT_B;
5854 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
5855 intel_encoder->hpd_pin = HPD_PORT_A;
5856 break;
5857 case PORT_C:
5858 intel_encoder->hpd_pin = HPD_PORT_C;
5859 break;
5860 case PORT_D:
5861 intel_encoder->hpd_pin = HPD_PORT_D;
5862 break;
5863 case PORT_E:
5864 intel_encoder->hpd_pin = HPD_PORT_E;
5865 break;
5866 default:
5867 BUG();
5868 }
5869
5870 if (is_edp(intel_dp)) {
5871 pps_lock(intel_dp);
5872 intel_dp_init_panel_power_timestamps(intel_dp);
5873 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5874 vlv_initial_power_sequencer_setup(intel_dp);
5875 else
5876 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5877 pps_unlock(intel_dp);
5878 }
5879
5880 ret = intel_dp_aux_init(intel_dp, intel_connector);
5881 if (ret)
5882 goto fail;
5883
5884 /* init MST on ports that can support it */
5885 if (HAS_DP_MST(dev) &&
5886 (port == PORT_B || port == PORT_C || port == PORT_D))
5887 intel_dp_mst_encoder_init(intel_dig_port,
5888 intel_connector->base.base.id);
5889
5890 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5891 intel_dp_aux_fini(intel_dp);
5892 intel_dp_mst_encoder_cleanup(intel_dig_port);
5893 goto fail;
5894 }
5895
5896 intel_dp_add_properties(intel_dp, connector);
5897
5898 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5899 * 0xd. Failure to do so will result in spurious interrupts being
5900 * generated on the port when a cable is not attached.
5901 */
5902 if (IS_G4X(dev) && !IS_GM45(dev)) {
5903 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5904 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5905 }
5906
5907 i915_debugfs_connector_add(connector);
5908
5909 return true;
5910
5911 fail:
5912 if (is_edp(intel_dp)) {
5913 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5914 /*
5915 * vdd might still be enabled do to the delayed vdd off.
5916 * Make sure vdd is actually turned off here.
5917 */
5918 pps_lock(intel_dp);
5919 edp_panel_vdd_off_sync(intel_dp);
5920 pps_unlock(intel_dp);
5921 }
5922 drm_connector_unregister(connector);
5923 drm_connector_cleanup(connector);
5924
5925 return false;
5926 }
5927
5928 bool intel_dp_init(struct drm_device *dev,
5929 i915_reg_t output_reg,
5930 enum port port)
5931 {
5932 struct drm_i915_private *dev_priv = dev->dev_private;
5933 struct intel_digital_port *intel_dig_port;
5934 struct intel_encoder *intel_encoder;
5935 struct drm_encoder *encoder;
5936 struct intel_connector *intel_connector;
5937
5938 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5939 if (!intel_dig_port)
5940 return false;
5941
5942 intel_connector = intel_connector_alloc();
5943 if (!intel_connector)
5944 goto err_connector_alloc;
5945
5946 intel_encoder = &intel_dig_port->base;
5947 encoder = &intel_encoder->base;
5948
5949 if (drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5950 DRM_MODE_ENCODER_TMDS, NULL))
5951 goto err_encoder_init;
5952
5953 intel_encoder->compute_config = intel_dp_compute_config;
5954 intel_encoder->disable = intel_disable_dp;
5955 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5956 intel_encoder->get_config = intel_dp_get_config;
5957 intel_encoder->suspend = intel_dp_encoder_suspend;
5958 if (IS_CHERRYVIEW(dev)) {
5959 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5960 intel_encoder->pre_enable = chv_pre_enable_dp;
5961 intel_encoder->enable = vlv_enable_dp;
5962 intel_encoder->post_disable = chv_post_disable_dp;
5963 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
5964 } else if (IS_VALLEYVIEW(dev)) {
5965 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5966 intel_encoder->pre_enable = vlv_pre_enable_dp;
5967 intel_encoder->enable = vlv_enable_dp;
5968 intel_encoder->post_disable = vlv_post_disable_dp;
5969 } else {
5970 intel_encoder->pre_enable = g4x_pre_enable_dp;
5971 intel_encoder->enable = g4x_enable_dp;
5972 if (INTEL_INFO(dev)->gen >= 5)
5973 intel_encoder->post_disable = ilk_post_disable_dp;
5974 }
5975
5976 intel_dig_port->port = port;
5977 intel_dig_port->dp.output_reg = output_reg;
5978 intel_dig_port->max_lanes = 4;
5979
5980 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5981 if (IS_CHERRYVIEW(dev)) {
5982 if (port == PORT_D)
5983 intel_encoder->crtc_mask = 1 << 2;
5984 else
5985 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5986 } else {
5987 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5988 }
5989 intel_encoder->cloneable = 0;
5990
5991 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5992 dev_priv->hotplug.irq_port[port] = intel_dig_port;
5993
5994 if (!intel_dp_init_connector(intel_dig_port, intel_connector))
5995 goto err_init_connector;
5996
5997 return true;
5998
5999 err_init_connector:
6000 drm_encoder_cleanup(encoder);
6001 err_encoder_init:
6002 kfree(intel_connector);
6003 err_connector_alloc:
6004 kfree(intel_dig_port);
6005 return false;
6006 }
6007
6008 void intel_dp_mst_suspend(struct drm_device *dev)
6009 {
6010 struct drm_i915_private *dev_priv = dev->dev_private;
6011 int i;
6012
6013 /* disable MST */
6014 for (i = 0; i < I915_MAX_PORTS; i++) {
6015 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6016 if (!intel_dig_port)
6017 continue;
6018
6019 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6020 if (!intel_dig_port->dp.can_mst)
6021 continue;
6022 if (intel_dig_port->dp.is_mst)
6023 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
6024 }
6025 }
6026 }
6027
6028 void intel_dp_mst_resume(struct drm_device *dev)
6029 {
6030 struct drm_i915_private *dev_priv = dev->dev_private;
6031 int i;
6032
6033 for (i = 0; i < I915_MAX_PORTS; i++) {
6034 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6035 if (!intel_dig_port)
6036 continue;
6037 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6038 int ret;
6039
6040 if (!intel_dig_port->dp.can_mst)
6041 continue;
6042
6043 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
6044 if (ret != 0) {
6045 intel_dp_check_mst_status(&intel_dig_port->dp);
6046 }
6047 }
6048 }
6049 }