]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/intel_dp.c
Merge tag 'v3.18-rc7' into drm-next
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_crtc.h>
35 #include <drm/drm_crtc_helper.h>
36 #include <drm/drm_edid.h>
37 #include "intel_drv.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40
41 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
42
43 struct dp_link_dpll {
44 int link_bw;
45 struct dpll dpll;
46 };
47
48 static const struct dp_link_dpll gen4_dpll[] = {
49 { DP_LINK_BW_1_62,
50 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
51 { DP_LINK_BW_2_7,
52 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
53 };
54
55 static const struct dp_link_dpll pch_dpll[] = {
56 { DP_LINK_BW_1_62,
57 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
58 { DP_LINK_BW_2_7,
59 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
60 };
61
62 static const struct dp_link_dpll vlv_dpll[] = {
63 { DP_LINK_BW_1_62,
64 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
65 { DP_LINK_BW_2_7,
66 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
67 };
68
69 /*
70 * CHV supports eDP 1.4 that have more link rates.
71 * Below only provides the fixed rate but exclude variable rate.
72 */
73 static const struct dp_link_dpll chv_dpll[] = {
74 /*
75 * CHV requires to program fractional division for m2.
76 * m2 is stored in fixed point format using formula below
77 * (m2_int << 22) | m2_fraction
78 */
79 { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */
80 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
81 { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */
82 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
83 { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */
84 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
85 };
86
87 /**
88 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
89 * @intel_dp: DP struct
90 *
91 * If a CPU or PCH DP output is attached to an eDP panel, this function
92 * will return true, and false otherwise.
93 */
94 static bool is_edp(struct intel_dp *intel_dp)
95 {
96 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
97
98 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
99 }
100
101 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
102 {
103 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
104
105 return intel_dig_port->base.base.dev;
106 }
107
108 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
109 {
110 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
111 }
112
113 static void intel_dp_link_down(struct intel_dp *intel_dp);
114 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
115 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
116 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
117 static void vlv_steal_power_sequencer(struct drm_device *dev,
118 enum pipe pipe);
119
120 int
121 intel_dp_max_link_bw(struct intel_dp *intel_dp)
122 {
123 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
124 struct drm_device *dev = intel_dp->attached_connector->base.dev;
125
126 switch (max_link_bw) {
127 case DP_LINK_BW_1_62:
128 case DP_LINK_BW_2_7:
129 break;
130 case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
131 if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
132 INTEL_INFO(dev)->gen >= 8) &&
133 intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
134 max_link_bw = DP_LINK_BW_5_4;
135 else
136 max_link_bw = DP_LINK_BW_2_7;
137 break;
138 default:
139 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
140 max_link_bw);
141 max_link_bw = DP_LINK_BW_1_62;
142 break;
143 }
144 return max_link_bw;
145 }
146
147 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
148 {
149 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
150 struct drm_device *dev = intel_dig_port->base.base.dev;
151 u8 source_max, sink_max;
152
153 source_max = 4;
154 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
155 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
156 source_max = 2;
157
158 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
159
160 return min(source_max, sink_max);
161 }
162
163 /*
164 * The units on the numbers in the next two are... bizarre. Examples will
165 * make it clearer; this one parallels an example in the eDP spec.
166 *
167 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
168 *
169 * 270000 * 1 * 8 / 10 == 216000
170 *
171 * The actual data capacity of that configuration is 2.16Gbit/s, so the
172 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
173 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
174 * 119000. At 18bpp that's 2142000 kilobits per second.
175 *
176 * Thus the strange-looking division by 10 in intel_dp_link_required, to
177 * get the result in decakilobits instead of kilobits.
178 */
179
180 static int
181 intel_dp_link_required(int pixel_clock, int bpp)
182 {
183 return (pixel_clock * bpp + 9) / 10;
184 }
185
186 static int
187 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
188 {
189 return (max_link_clock * max_lanes * 8) / 10;
190 }
191
192 static enum drm_mode_status
193 intel_dp_mode_valid(struct drm_connector *connector,
194 struct drm_display_mode *mode)
195 {
196 struct intel_dp *intel_dp = intel_attached_dp(connector);
197 struct intel_connector *intel_connector = to_intel_connector(connector);
198 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
199 int target_clock = mode->clock;
200 int max_rate, mode_rate, max_lanes, max_link_clock;
201
202 if (is_edp(intel_dp) && fixed_mode) {
203 if (mode->hdisplay > fixed_mode->hdisplay)
204 return MODE_PANEL;
205
206 if (mode->vdisplay > fixed_mode->vdisplay)
207 return MODE_PANEL;
208
209 target_clock = fixed_mode->clock;
210 }
211
212 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
213 max_lanes = intel_dp_max_lane_count(intel_dp);
214
215 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
216 mode_rate = intel_dp_link_required(target_clock, 18);
217
218 if (mode_rate > max_rate)
219 return MODE_CLOCK_HIGH;
220
221 if (mode->clock < 10000)
222 return MODE_CLOCK_LOW;
223
224 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
225 return MODE_H_ILLEGAL;
226
227 return MODE_OK;
228 }
229
230 static uint32_t
231 pack_aux(const uint8_t *src, int src_bytes)
232 {
233 int i;
234 uint32_t v = 0;
235
236 if (src_bytes > 4)
237 src_bytes = 4;
238 for (i = 0; i < src_bytes; i++)
239 v |= ((uint32_t) src[i]) << ((3-i) * 8);
240 return v;
241 }
242
243 static void
244 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
245 {
246 int i;
247 if (dst_bytes > 4)
248 dst_bytes = 4;
249 for (i = 0; i < dst_bytes; i++)
250 dst[i] = src >> ((3-i) * 8);
251 }
252
253 /* hrawclock is 1/4 the FSB frequency */
254 static int
255 intel_hrawclk(struct drm_device *dev)
256 {
257 struct drm_i915_private *dev_priv = dev->dev_private;
258 uint32_t clkcfg;
259
260 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
261 if (IS_VALLEYVIEW(dev))
262 return 200;
263
264 clkcfg = I915_READ(CLKCFG);
265 switch (clkcfg & CLKCFG_FSB_MASK) {
266 case CLKCFG_FSB_400:
267 return 100;
268 case CLKCFG_FSB_533:
269 return 133;
270 case CLKCFG_FSB_667:
271 return 166;
272 case CLKCFG_FSB_800:
273 return 200;
274 case CLKCFG_FSB_1067:
275 return 266;
276 case CLKCFG_FSB_1333:
277 return 333;
278 /* these two are just a guess; one of them might be right */
279 case CLKCFG_FSB_1600:
280 case CLKCFG_FSB_1600_ALT:
281 return 400;
282 default:
283 return 133;
284 }
285 }
286
287 static void
288 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
289 struct intel_dp *intel_dp);
290 static void
291 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
292 struct intel_dp *intel_dp);
293
294 static void pps_lock(struct intel_dp *intel_dp)
295 {
296 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
297 struct intel_encoder *encoder = &intel_dig_port->base;
298 struct drm_device *dev = encoder->base.dev;
299 struct drm_i915_private *dev_priv = dev->dev_private;
300 enum intel_display_power_domain power_domain;
301
302 /*
303 * See vlv_power_sequencer_reset() why we need
304 * a power domain reference here.
305 */
306 power_domain = intel_display_port_power_domain(encoder);
307 intel_display_power_get(dev_priv, power_domain);
308
309 mutex_lock(&dev_priv->pps_mutex);
310 }
311
312 static void pps_unlock(struct intel_dp *intel_dp)
313 {
314 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
315 struct intel_encoder *encoder = &intel_dig_port->base;
316 struct drm_device *dev = encoder->base.dev;
317 struct drm_i915_private *dev_priv = dev->dev_private;
318 enum intel_display_power_domain power_domain;
319
320 mutex_unlock(&dev_priv->pps_mutex);
321
322 power_domain = intel_display_port_power_domain(encoder);
323 intel_display_power_put(dev_priv, power_domain);
324 }
325
326 static void
327 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
328 {
329 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
330 struct drm_device *dev = intel_dig_port->base.base.dev;
331 struct drm_i915_private *dev_priv = dev->dev_private;
332 enum pipe pipe = intel_dp->pps_pipe;
333 bool pll_enabled;
334 uint32_t DP;
335
336 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
337 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
338 pipe_name(pipe), port_name(intel_dig_port->port)))
339 return;
340
341 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
342 pipe_name(pipe), port_name(intel_dig_port->port));
343
344 /* Preserve the BIOS-computed detected bit. This is
345 * supposed to be read-only.
346 */
347 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
348 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
349 DP |= DP_PORT_WIDTH(1);
350 DP |= DP_LINK_TRAIN_PAT_1;
351
352 if (IS_CHERRYVIEW(dev))
353 DP |= DP_PIPE_SELECT_CHV(pipe);
354 else if (pipe == PIPE_B)
355 DP |= DP_PIPEB_SELECT;
356
357 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
358
359 /*
360 * The DPLL for the pipe must be enabled for this to work.
361 * So enable temporarily it if it's not already enabled.
362 */
363 if (!pll_enabled)
364 vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
365 &chv_dpll[0].dpll : &vlv_dpll[0].dpll);
366
367 /*
368 * Similar magic as in intel_dp_enable_port().
369 * We _must_ do this port enable + disable trick
370 * to make this power seqeuencer lock onto the port.
371 * Otherwise even VDD force bit won't work.
372 */
373 I915_WRITE(intel_dp->output_reg, DP);
374 POSTING_READ(intel_dp->output_reg);
375
376 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
377 POSTING_READ(intel_dp->output_reg);
378
379 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
380 POSTING_READ(intel_dp->output_reg);
381
382 if (!pll_enabled)
383 vlv_force_pll_off(dev, pipe);
384 }
385
386 static enum pipe
387 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
388 {
389 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
390 struct drm_device *dev = intel_dig_port->base.base.dev;
391 struct drm_i915_private *dev_priv = dev->dev_private;
392 struct intel_encoder *encoder;
393 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
394 enum pipe pipe;
395
396 lockdep_assert_held(&dev_priv->pps_mutex);
397
398 /* We should never land here with regular DP ports */
399 WARN_ON(!is_edp(intel_dp));
400
401 if (intel_dp->pps_pipe != INVALID_PIPE)
402 return intel_dp->pps_pipe;
403
404 /*
405 * We don't have power sequencer currently.
406 * Pick one that's not used by other ports.
407 */
408 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
409 base.head) {
410 struct intel_dp *tmp;
411
412 if (encoder->type != INTEL_OUTPUT_EDP)
413 continue;
414
415 tmp = enc_to_intel_dp(&encoder->base);
416
417 if (tmp->pps_pipe != INVALID_PIPE)
418 pipes &= ~(1 << tmp->pps_pipe);
419 }
420
421 /*
422 * Didn't find one. This should not happen since there
423 * are two power sequencers and up to two eDP ports.
424 */
425 if (WARN_ON(pipes == 0))
426 pipe = PIPE_A;
427 else
428 pipe = ffs(pipes) - 1;
429
430 vlv_steal_power_sequencer(dev, pipe);
431 intel_dp->pps_pipe = pipe;
432
433 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
434 pipe_name(intel_dp->pps_pipe),
435 port_name(intel_dig_port->port));
436
437 /* init power sequencer on this pipe and port */
438 intel_dp_init_panel_power_sequencer(dev, intel_dp);
439 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
440
441 /*
442 * Even vdd force doesn't work until we've made
443 * the power sequencer lock in on the port.
444 */
445 vlv_power_sequencer_kick(intel_dp);
446
447 return intel_dp->pps_pipe;
448 }
449
450 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
451 enum pipe pipe);
452
453 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
454 enum pipe pipe)
455 {
456 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
457 }
458
459 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
460 enum pipe pipe)
461 {
462 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
463 }
464
465 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
466 enum pipe pipe)
467 {
468 return true;
469 }
470
471 static enum pipe
472 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
473 enum port port,
474 vlv_pipe_check pipe_check)
475 {
476 enum pipe pipe;
477
478 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
479 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
480 PANEL_PORT_SELECT_MASK;
481
482 if (port_sel != PANEL_PORT_SELECT_VLV(port))
483 continue;
484
485 if (!pipe_check(dev_priv, pipe))
486 continue;
487
488 return pipe;
489 }
490
491 return INVALID_PIPE;
492 }
493
494 static void
495 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
496 {
497 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
498 struct drm_device *dev = intel_dig_port->base.base.dev;
499 struct drm_i915_private *dev_priv = dev->dev_private;
500 enum port port = intel_dig_port->port;
501
502 lockdep_assert_held(&dev_priv->pps_mutex);
503
504 /* try to find a pipe with this port selected */
505 /* first pick one where the panel is on */
506 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
507 vlv_pipe_has_pp_on);
508 /* didn't find one? pick one where vdd is on */
509 if (intel_dp->pps_pipe == INVALID_PIPE)
510 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
511 vlv_pipe_has_vdd_on);
512 /* didn't find one? pick one with just the correct port */
513 if (intel_dp->pps_pipe == INVALID_PIPE)
514 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
515 vlv_pipe_any);
516
517 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
518 if (intel_dp->pps_pipe == INVALID_PIPE) {
519 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
520 port_name(port));
521 return;
522 }
523
524 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
525 port_name(port), pipe_name(intel_dp->pps_pipe));
526
527 intel_dp_init_panel_power_sequencer(dev, intel_dp);
528 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
529 }
530
531 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
532 {
533 struct drm_device *dev = dev_priv->dev;
534 struct intel_encoder *encoder;
535
536 if (WARN_ON(!IS_VALLEYVIEW(dev)))
537 return;
538
539 /*
540 * We can't grab pps_mutex here due to deadlock with power_domain
541 * mutex when power_domain functions are called while holding pps_mutex.
542 * That also means that in order to use pps_pipe the code needs to
543 * hold both a power domain reference and pps_mutex, and the power domain
544 * reference get/put must be done while _not_ holding pps_mutex.
545 * pps_{lock,unlock}() do these steps in the correct order, so one
546 * should use them always.
547 */
548
549 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
550 struct intel_dp *intel_dp;
551
552 if (encoder->type != INTEL_OUTPUT_EDP)
553 continue;
554
555 intel_dp = enc_to_intel_dp(&encoder->base);
556 intel_dp->pps_pipe = INVALID_PIPE;
557 }
558 }
559
560 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
561 {
562 struct drm_device *dev = intel_dp_to_dev(intel_dp);
563
564 if (HAS_PCH_SPLIT(dev))
565 return PCH_PP_CONTROL;
566 else
567 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
568 }
569
570 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
571 {
572 struct drm_device *dev = intel_dp_to_dev(intel_dp);
573
574 if (HAS_PCH_SPLIT(dev))
575 return PCH_PP_STATUS;
576 else
577 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
578 }
579
580 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
581 This function only applicable when panel PM state is not to be tracked */
582 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
583 void *unused)
584 {
585 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
586 edp_notifier);
587 struct drm_device *dev = intel_dp_to_dev(intel_dp);
588 struct drm_i915_private *dev_priv = dev->dev_private;
589 u32 pp_div;
590 u32 pp_ctrl_reg, pp_div_reg;
591
592 if (!is_edp(intel_dp) || code != SYS_RESTART)
593 return 0;
594
595 pps_lock(intel_dp);
596
597 if (IS_VALLEYVIEW(dev)) {
598 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
599
600 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
601 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
602 pp_div = I915_READ(pp_div_reg);
603 pp_div &= PP_REFERENCE_DIVIDER_MASK;
604
605 /* 0x1F write to PP_DIV_REG sets max cycle delay */
606 I915_WRITE(pp_div_reg, pp_div | 0x1F);
607 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
608 msleep(intel_dp->panel_power_cycle_delay);
609 }
610
611 pps_unlock(intel_dp);
612
613 return 0;
614 }
615
616 static bool edp_have_panel_power(struct intel_dp *intel_dp)
617 {
618 struct drm_device *dev = intel_dp_to_dev(intel_dp);
619 struct drm_i915_private *dev_priv = dev->dev_private;
620
621 lockdep_assert_held(&dev_priv->pps_mutex);
622
623 if (IS_VALLEYVIEW(dev) &&
624 intel_dp->pps_pipe == INVALID_PIPE)
625 return false;
626
627 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
628 }
629
630 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
631 {
632 struct drm_device *dev = intel_dp_to_dev(intel_dp);
633 struct drm_i915_private *dev_priv = dev->dev_private;
634
635 lockdep_assert_held(&dev_priv->pps_mutex);
636
637 if (IS_VALLEYVIEW(dev) &&
638 intel_dp->pps_pipe == INVALID_PIPE)
639 return false;
640
641 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
642 }
643
644 static void
645 intel_dp_check_edp(struct intel_dp *intel_dp)
646 {
647 struct drm_device *dev = intel_dp_to_dev(intel_dp);
648 struct drm_i915_private *dev_priv = dev->dev_private;
649
650 if (!is_edp(intel_dp))
651 return;
652
653 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
654 WARN(1, "eDP powered off while attempting aux channel communication.\n");
655 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
656 I915_READ(_pp_stat_reg(intel_dp)),
657 I915_READ(_pp_ctrl_reg(intel_dp)));
658 }
659 }
660
661 static uint32_t
662 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
663 {
664 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
665 struct drm_device *dev = intel_dig_port->base.base.dev;
666 struct drm_i915_private *dev_priv = dev->dev_private;
667 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
668 uint32_t status;
669 bool done;
670
671 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
672 if (has_aux_irq)
673 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
674 msecs_to_jiffies_timeout(10));
675 else
676 done = wait_for_atomic(C, 10) == 0;
677 if (!done)
678 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
679 has_aux_irq);
680 #undef C
681
682 return status;
683 }
684
685 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
686 {
687 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
688 struct drm_device *dev = intel_dig_port->base.base.dev;
689
690 /*
691 * The clock divider is based off the hrawclk, and would like to run at
692 * 2MHz. So, take the hrawclk value and divide by 2 and use that
693 */
694 return index ? 0 : intel_hrawclk(dev) / 2;
695 }
696
697 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
698 {
699 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
700 struct drm_device *dev = intel_dig_port->base.base.dev;
701
702 if (index)
703 return 0;
704
705 if (intel_dig_port->port == PORT_A) {
706 if (IS_GEN6(dev) || IS_GEN7(dev))
707 return 200; /* SNB & IVB eDP input clock at 400Mhz */
708 else
709 return 225; /* eDP input clock at 450Mhz */
710 } else {
711 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
712 }
713 }
714
715 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
716 {
717 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
718 struct drm_device *dev = intel_dig_port->base.base.dev;
719 struct drm_i915_private *dev_priv = dev->dev_private;
720
721 if (intel_dig_port->port == PORT_A) {
722 if (index)
723 return 0;
724 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
725 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
726 /* Workaround for non-ULT HSW */
727 switch (index) {
728 case 0: return 63;
729 case 1: return 72;
730 default: return 0;
731 }
732 } else {
733 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
734 }
735 }
736
737 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
738 {
739 return index ? 0 : 100;
740 }
741
742 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
743 {
744 /*
745 * SKL doesn't need us to program the AUX clock divider (Hardware will
746 * derive the clock from CDCLK automatically). We still implement the
747 * get_aux_clock_divider vfunc to plug-in into the existing code.
748 */
749 return index ? 0 : 1;
750 }
751
752 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
753 bool has_aux_irq,
754 int send_bytes,
755 uint32_t aux_clock_divider)
756 {
757 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
758 struct drm_device *dev = intel_dig_port->base.base.dev;
759 uint32_t precharge, timeout;
760
761 if (IS_GEN6(dev))
762 precharge = 3;
763 else
764 precharge = 5;
765
766 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
767 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
768 else
769 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
770
771 return DP_AUX_CH_CTL_SEND_BUSY |
772 DP_AUX_CH_CTL_DONE |
773 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
774 DP_AUX_CH_CTL_TIME_OUT_ERROR |
775 timeout |
776 DP_AUX_CH_CTL_RECEIVE_ERROR |
777 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
778 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
779 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
780 }
781
782 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
783 bool has_aux_irq,
784 int send_bytes,
785 uint32_t unused)
786 {
787 return DP_AUX_CH_CTL_SEND_BUSY |
788 DP_AUX_CH_CTL_DONE |
789 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
790 DP_AUX_CH_CTL_TIME_OUT_ERROR |
791 DP_AUX_CH_CTL_TIME_OUT_1600us |
792 DP_AUX_CH_CTL_RECEIVE_ERROR |
793 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
794 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
795 }
796
797 static int
798 intel_dp_aux_ch(struct intel_dp *intel_dp,
799 const uint8_t *send, int send_bytes,
800 uint8_t *recv, int recv_size)
801 {
802 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
803 struct drm_device *dev = intel_dig_port->base.base.dev;
804 struct drm_i915_private *dev_priv = dev->dev_private;
805 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
806 uint32_t ch_data = ch_ctl + 4;
807 uint32_t aux_clock_divider;
808 int i, ret, recv_bytes;
809 uint32_t status;
810 int try, clock = 0;
811 bool has_aux_irq = HAS_AUX_IRQ(dev);
812 bool vdd;
813
814 pps_lock(intel_dp);
815
816 /*
817 * We will be called with VDD already enabled for dpcd/edid/oui reads.
818 * In such cases we want to leave VDD enabled and it's up to upper layers
819 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
820 * ourselves.
821 */
822 vdd = edp_panel_vdd_on(intel_dp);
823
824 /* dp aux is extremely sensitive to irq latency, hence request the
825 * lowest possible wakeup latency and so prevent the cpu from going into
826 * deep sleep states.
827 */
828 pm_qos_update_request(&dev_priv->pm_qos, 0);
829
830 intel_dp_check_edp(intel_dp);
831
832 intel_aux_display_runtime_get(dev_priv);
833
834 /* Try to wait for any previous AUX channel activity */
835 for (try = 0; try < 3; try++) {
836 status = I915_READ_NOTRACE(ch_ctl);
837 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
838 break;
839 msleep(1);
840 }
841
842 if (try == 3) {
843 WARN(1, "dp_aux_ch not started status 0x%08x\n",
844 I915_READ(ch_ctl));
845 ret = -EBUSY;
846 goto out;
847 }
848
849 /* Only 5 data registers! */
850 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
851 ret = -E2BIG;
852 goto out;
853 }
854
855 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
856 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
857 has_aux_irq,
858 send_bytes,
859 aux_clock_divider);
860
861 /* Must try at least 3 times according to DP spec */
862 for (try = 0; try < 5; try++) {
863 /* Load the send data into the aux channel data registers */
864 for (i = 0; i < send_bytes; i += 4)
865 I915_WRITE(ch_data + i,
866 pack_aux(send + i, send_bytes - i));
867
868 /* Send the command and wait for it to complete */
869 I915_WRITE(ch_ctl, send_ctl);
870
871 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
872
873 /* Clear done status and any errors */
874 I915_WRITE(ch_ctl,
875 status |
876 DP_AUX_CH_CTL_DONE |
877 DP_AUX_CH_CTL_TIME_OUT_ERROR |
878 DP_AUX_CH_CTL_RECEIVE_ERROR);
879
880 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
881 DP_AUX_CH_CTL_RECEIVE_ERROR))
882 continue;
883 if (status & DP_AUX_CH_CTL_DONE)
884 break;
885 }
886 if (status & DP_AUX_CH_CTL_DONE)
887 break;
888 }
889
890 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
891 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
892 ret = -EBUSY;
893 goto out;
894 }
895
896 /* Check for timeout or receive error.
897 * Timeouts occur when the sink is not connected
898 */
899 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
900 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
901 ret = -EIO;
902 goto out;
903 }
904
905 /* Timeouts occur when the device isn't connected, so they're
906 * "normal" -- don't fill the kernel log with these */
907 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
908 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
909 ret = -ETIMEDOUT;
910 goto out;
911 }
912
913 /* Unload any bytes sent back from the other side */
914 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
915 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
916 if (recv_bytes > recv_size)
917 recv_bytes = recv_size;
918
919 for (i = 0; i < recv_bytes; i += 4)
920 unpack_aux(I915_READ(ch_data + i),
921 recv + i, recv_bytes - i);
922
923 ret = recv_bytes;
924 out:
925 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
926 intel_aux_display_runtime_put(dev_priv);
927
928 if (vdd)
929 edp_panel_vdd_off(intel_dp, false);
930
931 pps_unlock(intel_dp);
932
933 return ret;
934 }
935
936 #define BARE_ADDRESS_SIZE 3
937 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
938 static ssize_t
939 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
940 {
941 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
942 uint8_t txbuf[20], rxbuf[20];
943 size_t txsize, rxsize;
944 int ret;
945
946 txbuf[0] = msg->request << 4;
947 txbuf[1] = msg->address >> 8;
948 txbuf[2] = msg->address & 0xff;
949 txbuf[3] = msg->size - 1;
950
951 switch (msg->request & ~DP_AUX_I2C_MOT) {
952 case DP_AUX_NATIVE_WRITE:
953 case DP_AUX_I2C_WRITE:
954 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
955 rxsize = 1;
956
957 if (WARN_ON(txsize > 20))
958 return -E2BIG;
959
960 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
961
962 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
963 if (ret > 0) {
964 msg->reply = rxbuf[0] >> 4;
965
966 /* Return payload size. */
967 ret = msg->size;
968 }
969 break;
970
971 case DP_AUX_NATIVE_READ:
972 case DP_AUX_I2C_READ:
973 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
974 rxsize = msg->size + 1;
975
976 if (WARN_ON(rxsize > 20))
977 return -E2BIG;
978
979 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
980 if (ret > 0) {
981 msg->reply = rxbuf[0] >> 4;
982 /*
983 * Assume happy day, and copy the data. The caller is
984 * expected to check msg->reply before touching it.
985 *
986 * Return payload size.
987 */
988 ret--;
989 memcpy(msg->buffer, rxbuf + 1, ret);
990 }
991 break;
992
993 default:
994 ret = -EINVAL;
995 break;
996 }
997
998 return ret;
999 }
1000
1001 static void
1002 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1003 {
1004 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1005 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1006 enum port port = intel_dig_port->port;
1007 const char *name = NULL;
1008 int ret;
1009
1010 switch (port) {
1011 case PORT_A:
1012 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
1013 name = "DPDDC-A";
1014 break;
1015 case PORT_B:
1016 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
1017 name = "DPDDC-B";
1018 break;
1019 case PORT_C:
1020 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
1021 name = "DPDDC-C";
1022 break;
1023 case PORT_D:
1024 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
1025 name = "DPDDC-D";
1026 break;
1027 default:
1028 BUG();
1029 }
1030
1031 /*
1032 * The AUX_CTL register is usually DP_CTL + 0x10.
1033 *
1034 * On Haswell and Broadwell though:
1035 * - Both port A DDI_BUF_CTL and DDI_AUX_CTL are on the CPU
1036 * - Port B/C/D AUX channels are on the PCH, DDI_BUF_CTL on the CPU
1037 *
1038 * Skylake moves AUX_CTL back next to DDI_BUF_CTL, on the CPU.
1039 */
1040 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1041 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
1042
1043 intel_dp->aux.name = name;
1044 intel_dp->aux.dev = dev->dev;
1045 intel_dp->aux.transfer = intel_dp_aux_transfer;
1046
1047 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
1048 connector->base.kdev->kobj.name);
1049
1050 ret = drm_dp_aux_register(&intel_dp->aux);
1051 if (ret < 0) {
1052 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1053 name, ret);
1054 return;
1055 }
1056
1057 ret = sysfs_create_link(&connector->base.kdev->kobj,
1058 &intel_dp->aux.ddc.dev.kobj,
1059 intel_dp->aux.ddc.dev.kobj.name);
1060 if (ret < 0) {
1061 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
1062 drm_dp_aux_unregister(&intel_dp->aux);
1063 }
1064 }
1065
1066 static void
1067 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1068 {
1069 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1070
1071 if (!intel_connector->mst_port)
1072 sysfs_remove_link(&intel_connector->base.kdev->kobj,
1073 intel_dp->aux.ddc.dev.kobj.name);
1074 intel_connector_unregister(intel_connector);
1075 }
1076
1077 static void
1078 hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw)
1079 {
1080 switch (link_bw) {
1081 case DP_LINK_BW_1_62:
1082 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
1083 break;
1084 case DP_LINK_BW_2_7:
1085 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
1086 break;
1087 case DP_LINK_BW_5_4:
1088 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
1089 break;
1090 }
1091 }
1092
1093 static void
1094 intel_dp_set_clock(struct intel_encoder *encoder,
1095 struct intel_crtc_config *pipe_config, int link_bw)
1096 {
1097 struct drm_device *dev = encoder->base.dev;
1098 const struct dp_link_dpll *divisor = NULL;
1099 int i, count = 0;
1100
1101 if (IS_G4X(dev)) {
1102 divisor = gen4_dpll;
1103 count = ARRAY_SIZE(gen4_dpll);
1104 } else if (HAS_PCH_SPLIT(dev)) {
1105 divisor = pch_dpll;
1106 count = ARRAY_SIZE(pch_dpll);
1107 } else if (IS_CHERRYVIEW(dev)) {
1108 divisor = chv_dpll;
1109 count = ARRAY_SIZE(chv_dpll);
1110 } else if (IS_VALLEYVIEW(dev)) {
1111 divisor = vlv_dpll;
1112 count = ARRAY_SIZE(vlv_dpll);
1113 }
1114
1115 if (divisor && count) {
1116 for (i = 0; i < count; i++) {
1117 if (link_bw == divisor[i].link_bw) {
1118 pipe_config->dpll = divisor[i].dpll;
1119 pipe_config->clock_set = true;
1120 break;
1121 }
1122 }
1123 }
1124 }
1125
1126 bool
1127 intel_dp_compute_config(struct intel_encoder *encoder,
1128 struct intel_crtc_config *pipe_config)
1129 {
1130 struct drm_device *dev = encoder->base.dev;
1131 struct drm_i915_private *dev_priv = dev->dev_private;
1132 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
1133 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1134 enum port port = dp_to_dig_port(intel_dp)->port;
1135 struct intel_crtc *intel_crtc = encoder->new_crtc;
1136 struct intel_connector *intel_connector = intel_dp->attached_connector;
1137 int lane_count, clock;
1138 int min_lane_count = 1;
1139 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1140 /* Conveniently, the link BW constants become indices with a shift...*/
1141 int min_clock = 0;
1142 int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
1143 int bpp, mode_rate;
1144 static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
1145 int link_avail, link_clock;
1146
1147 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1148 pipe_config->has_pch_encoder = true;
1149
1150 pipe_config->has_dp_encoder = true;
1151 pipe_config->has_drrs = false;
1152 pipe_config->has_audio = intel_dp->has_audio;
1153
1154 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1155 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1156 adjusted_mode);
1157 if (!HAS_PCH_SPLIT(dev))
1158 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1159 intel_connector->panel.fitting_mode);
1160 else
1161 intel_pch_panel_fitting(intel_crtc, pipe_config,
1162 intel_connector->panel.fitting_mode);
1163 }
1164
1165 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1166 return false;
1167
1168 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1169 "max bw %02x pixel clock %iKHz\n",
1170 max_lane_count, bws[max_clock],
1171 adjusted_mode->crtc_clock);
1172
1173 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1174 * bpc in between. */
1175 bpp = pipe_config->pipe_bpp;
1176 if (is_edp(intel_dp)) {
1177 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
1178 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1179 dev_priv->vbt.edp_bpp);
1180 bpp = dev_priv->vbt.edp_bpp;
1181 }
1182
1183 /*
1184 * Use the maximum clock and number of lanes the eDP panel
1185 * advertizes being capable of. The panels are generally
1186 * designed to support only a single clock and lane
1187 * configuration, and typically these values correspond to the
1188 * native resolution of the panel.
1189 */
1190 min_lane_count = max_lane_count;
1191 min_clock = max_clock;
1192 }
1193
1194 for (; bpp >= 6*3; bpp -= 2*3) {
1195 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1196 bpp);
1197
1198 for (clock = min_clock; clock <= max_clock; clock++) {
1199 for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
1200 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
1201 link_avail = intel_dp_max_data_rate(link_clock,
1202 lane_count);
1203
1204 if (mode_rate <= link_avail) {
1205 goto found;
1206 }
1207 }
1208 }
1209 }
1210
1211 return false;
1212
1213 found:
1214 if (intel_dp->color_range_auto) {
1215 /*
1216 * See:
1217 * CEA-861-E - 5.1 Default Encoding Parameters
1218 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1219 */
1220 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
1221 intel_dp->color_range = DP_COLOR_RANGE_16_235;
1222 else
1223 intel_dp->color_range = 0;
1224 }
1225
1226 if (intel_dp->color_range)
1227 pipe_config->limited_color_range = true;
1228
1229 intel_dp->link_bw = bws[clock];
1230 intel_dp->lane_count = lane_count;
1231 pipe_config->pipe_bpp = bpp;
1232 pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
1233
1234 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
1235 intel_dp->link_bw, intel_dp->lane_count,
1236 pipe_config->port_clock, bpp);
1237 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1238 mode_rate, link_avail);
1239
1240 intel_link_compute_m_n(bpp, lane_count,
1241 adjusted_mode->crtc_clock,
1242 pipe_config->port_clock,
1243 &pipe_config->dp_m_n);
1244
1245 if (intel_connector->panel.downclock_mode != NULL &&
1246 intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
1247 pipe_config->has_drrs = true;
1248 intel_link_compute_m_n(bpp, lane_count,
1249 intel_connector->panel.downclock_mode->clock,
1250 pipe_config->port_clock,
1251 &pipe_config->dp_m2_n2);
1252 }
1253
1254 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1255 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
1256 else
1257 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
1258
1259 return true;
1260 }
1261
1262 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1263 {
1264 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1265 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1266 struct drm_device *dev = crtc->base.dev;
1267 struct drm_i915_private *dev_priv = dev->dev_private;
1268 u32 dpa_ctl;
1269
1270 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
1271 dpa_ctl = I915_READ(DP_A);
1272 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1273
1274 if (crtc->config.port_clock == 162000) {
1275 /* For a long time we've carried around a ILK-DevA w/a for the
1276 * 160MHz clock. If we're really unlucky, it's still required.
1277 */
1278 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1279 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1280 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1281 } else {
1282 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1283 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1284 }
1285
1286 I915_WRITE(DP_A, dpa_ctl);
1287
1288 POSTING_READ(DP_A);
1289 udelay(500);
1290 }
1291
1292 static void intel_dp_prepare(struct intel_encoder *encoder)
1293 {
1294 struct drm_device *dev = encoder->base.dev;
1295 struct drm_i915_private *dev_priv = dev->dev_private;
1296 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1297 enum port port = dp_to_dig_port(intel_dp)->port;
1298 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1299 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
1300
1301 /*
1302 * There are four kinds of DP registers:
1303 *
1304 * IBX PCH
1305 * SNB CPU
1306 * IVB CPU
1307 * CPT PCH
1308 *
1309 * IBX PCH and CPU are the same for almost everything,
1310 * except that the CPU DP PLL is configured in this
1311 * register
1312 *
1313 * CPT PCH is quite different, having many bits moved
1314 * to the TRANS_DP_CTL register instead. That
1315 * configuration happens (oddly) in ironlake_pch_enable
1316 */
1317
1318 /* Preserve the BIOS-computed detected bit. This is
1319 * supposed to be read-only.
1320 */
1321 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1322
1323 /* Handle DP bits in common between all three register formats */
1324 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1325 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1326
1327 if (crtc->config.has_audio)
1328 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1329
1330 /* Split out the IBX/CPU vs CPT settings */
1331
1332 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1333 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1334 intel_dp->DP |= DP_SYNC_HS_HIGH;
1335 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1336 intel_dp->DP |= DP_SYNC_VS_HIGH;
1337 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1338
1339 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1340 intel_dp->DP |= DP_ENHANCED_FRAMING;
1341
1342 intel_dp->DP |= crtc->pipe << 29;
1343 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1344 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1345 intel_dp->DP |= intel_dp->color_range;
1346
1347 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1348 intel_dp->DP |= DP_SYNC_HS_HIGH;
1349 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1350 intel_dp->DP |= DP_SYNC_VS_HIGH;
1351 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1352
1353 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1354 intel_dp->DP |= DP_ENHANCED_FRAMING;
1355
1356 if (!IS_CHERRYVIEW(dev)) {
1357 if (crtc->pipe == 1)
1358 intel_dp->DP |= DP_PIPEB_SELECT;
1359 } else {
1360 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1361 }
1362 } else {
1363 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1364 }
1365 }
1366
1367 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1368 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1369
1370 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1371 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1372
1373 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1374 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1375
1376 static void wait_panel_status(struct intel_dp *intel_dp,
1377 u32 mask,
1378 u32 value)
1379 {
1380 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1381 struct drm_i915_private *dev_priv = dev->dev_private;
1382 u32 pp_stat_reg, pp_ctrl_reg;
1383
1384 lockdep_assert_held(&dev_priv->pps_mutex);
1385
1386 pp_stat_reg = _pp_stat_reg(intel_dp);
1387 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1388
1389 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1390 mask, value,
1391 I915_READ(pp_stat_reg),
1392 I915_READ(pp_ctrl_reg));
1393
1394 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1395 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1396 I915_READ(pp_stat_reg),
1397 I915_READ(pp_ctrl_reg));
1398 }
1399
1400 DRM_DEBUG_KMS("Wait complete\n");
1401 }
1402
1403 static void wait_panel_on(struct intel_dp *intel_dp)
1404 {
1405 DRM_DEBUG_KMS("Wait for panel power on\n");
1406 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1407 }
1408
1409 static void wait_panel_off(struct intel_dp *intel_dp)
1410 {
1411 DRM_DEBUG_KMS("Wait for panel power off time\n");
1412 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1413 }
1414
1415 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1416 {
1417 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1418
1419 /* When we disable the VDD override bit last we have to do the manual
1420 * wait. */
1421 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1422 intel_dp->panel_power_cycle_delay);
1423
1424 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1425 }
1426
1427 static void wait_backlight_on(struct intel_dp *intel_dp)
1428 {
1429 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1430 intel_dp->backlight_on_delay);
1431 }
1432
1433 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1434 {
1435 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1436 intel_dp->backlight_off_delay);
1437 }
1438
1439 /* Read the current pp_control value, unlocking the register if it
1440 * is locked
1441 */
1442
1443 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1444 {
1445 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1446 struct drm_i915_private *dev_priv = dev->dev_private;
1447 u32 control;
1448
1449 lockdep_assert_held(&dev_priv->pps_mutex);
1450
1451 control = I915_READ(_pp_ctrl_reg(intel_dp));
1452 control &= ~PANEL_UNLOCK_MASK;
1453 control |= PANEL_UNLOCK_REGS;
1454 return control;
1455 }
1456
1457 /*
1458 * Must be paired with edp_panel_vdd_off().
1459 * Must hold pps_mutex around the whole on/off sequence.
1460 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1461 */
1462 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1463 {
1464 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1465 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1466 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1467 struct drm_i915_private *dev_priv = dev->dev_private;
1468 enum intel_display_power_domain power_domain;
1469 u32 pp;
1470 u32 pp_stat_reg, pp_ctrl_reg;
1471 bool need_to_disable = !intel_dp->want_panel_vdd;
1472
1473 lockdep_assert_held(&dev_priv->pps_mutex);
1474
1475 if (!is_edp(intel_dp))
1476 return false;
1477
1478 intel_dp->want_panel_vdd = true;
1479
1480 if (edp_have_panel_vdd(intel_dp))
1481 return need_to_disable;
1482
1483 power_domain = intel_display_port_power_domain(intel_encoder);
1484 intel_display_power_get(dev_priv, power_domain);
1485
1486 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1487 port_name(intel_dig_port->port));
1488
1489 if (!edp_have_panel_power(intel_dp))
1490 wait_panel_power_cycle(intel_dp);
1491
1492 pp = ironlake_get_pp_control(intel_dp);
1493 pp |= EDP_FORCE_VDD;
1494
1495 pp_stat_reg = _pp_stat_reg(intel_dp);
1496 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1497
1498 I915_WRITE(pp_ctrl_reg, pp);
1499 POSTING_READ(pp_ctrl_reg);
1500 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1501 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1502 /*
1503 * If the panel wasn't on, delay before accessing aux channel
1504 */
1505 if (!edp_have_panel_power(intel_dp)) {
1506 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1507 port_name(intel_dig_port->port));
1508 msleep(intel_dp->panel_power_up_delay);
1509 }
1510
1511 return need_to_disable;
1512 }
1513
1514 /*
1515 * Must be paired with intel_edp_panel_vdd_off() or
1516 * intel_edp_panel_off().
1517 * Nested calls to these functions are not allowed since
1518 * we drop the lock. Caller must use some higher level
1519 * locking to prevent nested calls from other threads.
1520 */
1521 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1522 {
1523 bool vdd;
1524
1525 if (!is_edp(intel_dp))
1526 return;
1527
1528 pps_lock(intel_dp);
1529 vdd = edp_panel_vdd_on(intel_dp);
1530 pps_unlock(intel_dp);
1531
1532 WARN(!vdd, "eDP port %c VDD already requested on\n",
1533 port_name(dp_to_dig_port(intel_dp)->port));
1534 }
1535
1536 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1537 {
1538 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1539 struct drm_i915_private *dev_priv = dev->dev_private;
1540 struct intel_digital_port *intel_dig_port =
1541 dp_to_dig_port(intel_dp);
1542 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1543 enum intel_display_power_domain power_domain;
1544 u32 pp;
1545 u32 pp_stat_reg, pp_ctrl_reg;
1546
1547 lockdep_assert_held(&dev_priv->pps_mutex);
1548
1549 WARN_ON(intel_dp->want_panel_vdd);
1550
1551 if (!edp_have_panel_vdd(intel_dp))
1552 return;
1553
1554 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1555 port_name(intel_dig_port->port));
1556
1557 pp = ironlake_get_pp_control(intel_dp);
1558 pp &= ~EDP_FORCE_VDD;
1559
1560 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1561 pp_stat_reg = _pp_stat_reg(intel_dp);
1562
1563 I915_WRITE(pp_ctrl_reg, pp);
1564 POSTING_READ(pp_ctrl_reg);
1565
1566 /* Make sure sequencer is idle before allowing subsequent activity */
1567 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1568 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1569
1570 if ((pp & POWER_TARGET_ON) == 0)
1571 intel_dp->last_power_cycle = jiffies;
1572
1573 power_domain = intel_display_port_power_domain(intel_encoder);
1574 intel_display_power_put(dev_priv, power_domain);
1575 }
1576
1577 static void edp_panel_vdd_work(struct work_struct *__work)
1578 {
1579 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1580 struct intel_dp, panel_vdd_work);
1581
1582 pps_lock(intel_dp);
1583 if (!intel_dp->want_panel_vdd)
1584 edp_panel_vdd_off_sync(intel_dp);
1585 pps_unlock(intel_dp);
1586 }
1587
1588 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1589 {
1590 unsigned long delay;
1591
1592 /*
1593 * Queue the timer to fire a long time from now (relative to the power
1594 * down delay) to keep the panel power up across a sequence of
1595 * operations.
1596 */
1597 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1598 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1599 }
1600
1601 /*
1602 * Must be paired with edp_panel_vdd_on().
1603 * Must hold pps_mutex around the whole on/off sequence.
1604 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1605 */
1606 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1607 {
1608 struct drm_i915_private *dev_priv =
1609 intel_dp_to_dev(intel_dp)->dev_private;
1610
1611 lockdep_assert_held(&dev_priv->pps_mutex);
1612
1613 if (!is_edp(intel_dp))
1614 return;
1615
1616 WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
1617 port_name(dp_to_dig_port(intel_dp)->port));
1618
1619 intel_dp->want_panel_vdd = false;
1620
1621 if (sync)
1622 edp_panel_vdd_off_sync(intel_dp);
1623 else
1624 edp_panel_vdd_schedule_off(intel_dp);
1625 }
1626
1627 static void edp_panel_on(struct intel_dp *intel_dp)
1628 {
1629 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1630 struct drm_i915_private *dev_priv = dev->dev_private;
1631 u32 pp;
1632 u32 pp_ctrl_reg;
1633
1634 lockdep_assert_held(&dev_priv->pps_mutex);
1635
1636 if (!is_edp(intel_dp))
1637 return;
1638
1639 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
1640 port_name(dp_to_dig_port(intel_dp)->port));
1641
1642 if (WARN(edp_have_panel_power(intel_dp),
1643 "eDP port %c panel power already on\n",
1644 port_name(dp_to_dig_port(intel_dp)->port)))
1645 return;
1646
1647 wait_panel_power_cycle(intel_dp);
1648
1649 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1650 pp = ironlake_get_pp_control(intel_dp);
1651 if (IS_GEN5(dev)) {
1652 /* ILK workaround: disable reset around power sequence */
1653 pp &= ~PANEL_POWER_RESET;
1654 I915_WRITE(pp_ctrl_reg, pp);
1655 POSTING_READ(pp_ctrl_reg);
1656 }
1657
1658 pp |= POWER_TARGET_ON;
1659 if (!IS_GEN5(dev))
1660 pp |= PANEL_POWER_RESET;
1661
1662 I915_WRITE(pp_ctrl_reg, pp);
1663 POSTING_READ(pp_ctrl_reg);
1664
1665 wait_panel_on(intel_dp);
1666 intel_dp->last_power_on = jiffies;
1667
1668 if (IS_GEN5(dev)) {
1669 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1670 I915_WRITE(pp_ctrl_reg, pp);
1671 POSTING_READ(pp_ctrl_reg);
1672 }
1673 }
1674
1675 void intel_edp_panel_on(struct intel_dp *intel_dp)
1676 {
1677 if (!is_edp(intel_dp))
1678 return;
1679
1680 pps_lock(intel_dp);
1681 edp_panel_on(intel_dp);
1682 pps_unlock(intel_dp);
1683 }
1684
1685
1686 static void edp_panel_off(struct intel_dp *intel_dp)
1687 {
1688 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1689 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1690 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1691 struct drm_i915_private *dev_priv = dev->dev_private;
1692 enum intel_display_power_domain power_domain;
1693 u32 pp;
1694 u32 pp_ctrl_reg;
1695
1696 lockdep_assert_held(&dev_priv->pps_mutex);
1697
1698 if (!is_edp(intel_dp))
1699 return;
1700
1701 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
1702 port_name(dp_to_dig_port(intel_dp)->port));
1703
1704 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
1705 port_name(dp_to_dig_port(intel_dp)->port));
1706
1707 pp = ironlake_get_pp_control(intel_dp);
1708 /* We need to switch off panel power _and_ force vdd, for otherwise some
1709 * panels get very unhappy and cease to work. */
1710 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1711 EDP_BLC_ENABLE);
1712
1713 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1714
1715 intel_dp->want_panel_vdd = false;
1716
1717 I915_WRITE(pp_ctrl_reg, pp);
1718 POSTING_READ(pp_ctrl_reg);
1719
1720 intel_dp->last_power_cycle = jiffies;
1721 wait_panel_off(intel_dp);
1722
1723 /* We got a reference when we enabled the VDD. */
1724 power_domain = intel_display_port_power_domain(intel_encoder);
1725 intel_display_power_put(dev_priv, power_domain);
1726 }
1727
1728 void intel_edp_panel_off(struct intel_dp *intel_dp)
1729 {
1730 if (!is_edp(intel_dp))
1731 return;
1732
1733 pps_lock(intel_dp);
1734 edp_panel_off(intel_dp);
1735 pps_unlock(intel_dp);
1736 }
1737
1738 /* Enable backlight in the panel power control. */
1739 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
1740 {
1741 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1742 struct drm_device *dev = intel_dig_port->base.base.dev;
1743 struct drm_i915_private *dev_priv = dev->dev_private;
1744 u32 pp;
1745 u32 pp_ctrl_reg;
1746
1747 /*
1748 * If we enable the backlight right away following a panel power
1749 * on, we may see slight flicker as the panel syncs with the eDP
1750 * link. So delay a bit to make sure the image is solid before
1751 * allowing it to appear.
1752 */
1753 wait_backlight_on(intel_dp);
1754
1755 pps_lock(intel_dp);
1756
1757 pp = ironlake_get_pp_control(intel_dp);
1758 pp |= EDP_BLC_ENABLE;
1759
1760 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1761
1762 I915_WRITE(pp_ctrl_reg, pp);
1763 POSTING_READ(pp_ctrl_reg);
1764
1765 pps_unlock(intel_dp);
1766 }
1767
1768 /* Enable backlight PWM and backlight PP control. */
1769 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1770 {
1771 if (!is_edp(intel_dp))
1772 return;
1773
1774 DRM_DEBUG_KMS("\n");
1775
1776 intel_panel_enable_backlight(intel_dp->attached_connector);
1777 _intel_edp_backlight_on(intel_dp);
1778 }
1779
1780 /* Disable backlight in the panel power control. */
1781 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
1782 {
1783 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1784 struct drm_i915_private *dev_priv = dev->dev_private;
1785 u32 pp;
1786 u32 pp_ctrl_reg;
1787
1788 if (!is_edp(intel_dp))
1789 return;
1790
1791 pps_lock(intel_dp);
1792
1793 pp = ironlake_get_pp_control(intel_dp);
1794 pp &= ~EDP_BLC_ENABLE;
1795
1796 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1797
1798 I915_WRITE(pp_ctrl_reg, pp);
1799 POSTING_READ(pp_ctrl_reg);
1800
1801 pps_unlock(intel_dp);
1802
1803 intel_dp->last_backlight_off = jiffies;
1804 edp_wait_backlight_off(intel_dp);
1805 }
1806
1807 /* Disable backlight PP control and backlight PWM. */
1808 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1809 {
1810 if (!is_edp(intel_dp))
1811 return;
1812
1813 DRM_DEBUG_KMS("\n");
1814
1815 _intel_edp_backlight_off(intel_dp);
1816 intel_panel_disable_backlight(intel_dp->attached_connector);
1817 }
1818
1819 /*
1820 * Hook for controlling the panel power control backlight through the bl_power
1821 * sysfs attribute. Take care to handle multiple calls.
1822 */
1823 static void intel_edp_backlight_power(struct intel_connector *connector,
1824 bool enable)
1825 {
1826 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
1827 bool is_enabled;
1828
1829 pps_lock(intel_dp);
1830 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
1831 pps_unlock(intel_dp);
1832
1833 if (is_enabled == enable)
1834 return;
1835
1836 DRM_DEBUG_KMS("panel power control backlight %s\n",
1837 enable ? "enable" : "disable");
1838
1839 if (enable)
1840 _intel_edp_backlight_on(intel_dp);
1841 else
1842 _intel_edp_backlight_off(intel_dp);
1843 }
1844
1845 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1846 {
1847 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1848 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1849 struct drm_device *dev = crtc->dev;
1850 struct drm_i915_private *dev_priv = dev->dev_private;
1851 u32 dpa_ctl;
1852
1853 assert_pipe_disabled(dev_priv,
1854 to_intel_crtc(crtc)->pipe);
1855
1856 DRM_DEBUG_KMS("\n");
1857 dpa_ctl = I915_READ(DP_A);
1858 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1859 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1860
1861 /* We don't adjust intel_dp->DP while tearing down the link, to
1862 * facilitate link retraining (e.g. after hotplug). Hence clear all
1863 * enable bits here to ensure that we don't enable too much. */
1864 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1865 intel_dp->DP |= DP_PLL_ENABLE;
1866 I915_WRITE(DP_A, intel_dp->DP);
1867 POSTING_READ(DP_A);
1868 udelay(200);
1869 }
1870
1871 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1872 {
1873 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1874 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1875 struct drm_device *dev = crtc->dev;
1876 struct drm_i915_private *dev_priv = dev->dev_private;
1877 u32 dpa_ctl;
1878
1879 assert_pipe_disabled(dev_priv,
1880 to_intel_crtc(crtc)->pipe);
1881
1882 dpa_ctl = I915_READ(DP_A);
1883 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1884 "dp pll off, should be on\n");
1885 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1886
1887 /* We can't rely on the value tracked for the DP register in
1888 * intel_dp->DP because link_down must not change that (otherwise link
1889 * re-training will fail. */
1890 dpa_ctl &= ~DP_PLL_ENABLE;
1891 I915_WRITE(DP_A, dpa_ctl);
1892 POSTING_READ(DP_A);
1893 udelay(200);
1894 }
1895
1896 /* If the sink supports it, try to set the power state appropriately */
1897 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1898 {
1899 int ret, i;
1900
1901 /* Should have a valid DPCD by this point */
1902 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1903 return;
1904
1905 if (mode != DRM_MODE_DPMS_ON) {
1906 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1907 DP_SET_POWER_D3);
1908 } else {
1909 /*
1910 * When turning on, we need to retry for 1ms to give the sink
1911 * time to wake up.
1912 */
1913 for (i = 0; i < 3; i++) {
1914 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1915 DP_SET_POWER_D0);
1916 if (ret == 1)
1917 break;
1918 msleep(1);
1919 }
1920 }
1921
1922 if (ret != 1)
1923 DRM_DEBUG_KMS("failed to %s sink power state\n",
1924 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
1925 }
1926
1927 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1928 enum pipe *pipe)
1929 {
1930 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1931 enum port port = dp_to_dig_port(intel_dp)->port;
1932 struct drm_device *dev = encoder->base.dev;
1933 struct drm_i915_private *dev_priv = dev->dev_private;
1934 enum intel_display_power_domain power_domain;
1935 u32 tmp;
1936
1937 power_domain = intel_display_port_power_domain(encoder);
1938 if (!intel_display_power_is_enabled(dev_priv, power_domain))
1939 return false;
1940
1941 tmp = I915_READ(intel_dp->output_reg);
1942
1943 if (!(tmp & DP_PORT_EN))
1944 return false;
1945
1946 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1947 *pipe = PORT_TO_PIPE_CPT(tmp);
1948 } else if (IS_CHERRYVIEW(dev)) {
1949 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
1950 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1951 *pipe = PORT_TO_PIPE(tmp);
1952 } else {
1953 u32 trans_sel;
1954 u32 trans_dp;
1955 int i;
1956
1957 switch (intel_dp->output_reg) {
1958 case PCH_DP_B:
1959 trans_sel = TRANS_DP_PORT_SEL_B;
1960 break;
1961 case PCH_DP_C:
1962 trans_sel = TRANS_DP_PORT_SEL_C;
1963 break;
1964 case PCH_DP_D:
1965 trans_sel = TRANS_DP_PORT_SEL_D;
1966 break;
1967 default:
1968 return true;
1969 }
1970
1971 for_each_pipe(dev_priv, i) {
1972 trans_dp = I915_READ(TRANS_DP_CTL(i));
1973 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1974 *pipe = i;
1975 return true;
1976 }
1977 }
1978
1979 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1980 intel_dp->output_reg);
1981 }
1982
1983 return true;
1984 }
1985
1986 static void intel_dp_get_config(struct intel_encoder *encoder,
1987 struct intel_crtc_config *pipe_config)
1988 {
1989 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1990 u32 tmp, flags = 0;
1991 struct drm_device *dev = encoder->base.dev;
1992 struct drm_i915_private *dev_priv = dev->dev_private;
1993 enum port port = dp_to_dig_port(intel_dp)->port;
1994 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1995 int dotclock;
1996
1997 tmp = I915_READ(intel_dp->output_reg);
1998 if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1999 pipe_config->has_audio = true;
2000
2001 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
2002 if (tmp & DP_SYNC_HS_HIGH)
2003 flags |= DRM_MODE_FLAG_PHSYNC;
2004 else
2005 flags |= DRM_MODE_FLAG_NHSYNC;
2006
2007 if (tmp & DP_SYNC_VS_HIGH)
2008 flags |= DRM_MODE_FLAG_PVSYNC;
2009 else
2010 flags |= DRM_MODE_FLAG_NVSYNC;
2011 } else {
2012 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2013 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2014 flags |= DRM_MODE_FLAG_PHSYNC;
2015 else
2016 flags |= DRM_MODE_FLAG_NHSYNC;
2017
2018 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2019 flags |= DRM_MODE_FLAG_PVSYNC;
2020 else
2021 flags |= DRM_MODE_FLAG_NVSYNC;
2022 }
2023
2024 pipe_config->adjusted_mode.flags |= flags;
2025
2026 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2027 tmp & DP_COLOR_RANGE_16_235)
2028 pipe_config->limited_color_range = true;
2029
2030 pipe_config->has_dp_encoder = true;
2031
2032 intel_dp_get_m_n(crtc, pipe_config);
2033
2034 if (port == PORT_A) {
2035 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
2036 pipe_config->port_clock = 162000;
2037 else
2038 pipe_config->port_clock = 270000;
2039 }
2040
2041 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
2042 &pipe_config->dp_m_n);
2043
2044 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
2045 ironlake_check_encoder_dotclock(pipe_config, dotclock);
2046
2047 pipe_config->adjusted_mode.crtc_clock = dotclock;
2048
2049 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
2050 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2051 /*
2052 * This is a big fat ugly hack.
2053 *
2054 * Some machines in UEFI boot mode provide us a VBT that has 18
2055 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2056 * unknown we fail to light up. Yet the same BIOS boots up with
2057 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2058 * max, not what it tells us to use.
2059 *
2060 * Note: This will still be broken if the eDP panel is not lit
2061 * up by the BIOS, and thus we can't get the mode at module
2062 * load.
2063 */
2064 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2065 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2066 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2067 }
2068 }
2069
2070 static bool is_edp_psr(struct intel_dp *intel_dp)
2071 {
2072 return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
2073 }
2074
2075 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
2076 {
2077 struct drm_i915_private *dev_priv = dev->dev_private;
2078
2079 if (!HAS_PSR(dev))
2080 return false;
2081
2082 return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
2083 }
2084
2085 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
2086 struct edp_vsc_psr *vsc_psr)
2087 {
2088 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2089 struct drm_device *dev = dig_port->base.base.dev;
2090 struct drm_i915_private *dev_priv = dev->dev_private;
2091 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
2092 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
2093 u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
2094 uint32_t *data = (uint32_t *) vsc_psr;
2095 unsigned int i;
2096
2097 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
2098 the video DIP being updated before program video DIP data buffer
2099 registers for DIP being updated. */
2100 I915_WRITE(ctl_reg, 0);
2101 POSTING_READ(ctl_reg);
2102
2103 for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
2104 if (i < sizeof(struct edp_vsc_psr))
2105 I915_WRITE(data_reg + i, *data++);
2106 else
2107 I915_WRITE(data_reg + i, 0);
2108 }
2109
2110 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
2111 POSTING_READ(ctl_reg);
2112 }
2113
2114 static void intel_edp_psr_setup_vsc(struct intel_dp *intel_dp)
2115 {
2116 struct edp_vsc_psr psr_vsc;
2117
2118 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
2119 memset(&psr_vsc, 0, sizeof(psr_vsc));
2120 psr_vsc.sdp_header.HB0 = 0;
2121 psr_vsc.sdp_header.HB1 = 0x7;
2122 psr_vsc.sdp_header.HB2 = 0x2;
2123 psr_vsc.sdp_header.HB3 = 0x8;
2124 intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
2125 }
2126
2127 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
2128 {
2129 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2130 struct drm_device *dev = dig_port->base.base.dev;
2131 struct drm_i915_private *dev_priv = dev->dev_private;
2132 uint32_t aux_clock_divider;
2133 int precharge = 0x3;
2134 bool only_standby = false;
2135 static const uint8_t aux_msg[] = {
2136 [0] = DP_AUX_NATIVE_WRITE << 4,
2137 [1] = DP_SET_POWER >> 8,
2138 [2] = DP_SET_POWER & 0xff,
2139 [3] = 1 - 1,
2140 [4] = DP_SET_POWER_D0,
2141 };
2142 int i;
2143
2144 BUILD_BUG_ON(sizeof(aux_msg) > 20);
2145
2146 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
2147
2148 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
2149 only_standby = true;
2150
2151 /* Enable PSR in sink */
2152 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
2153 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
2154 DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
2155 else
2156 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
2157 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
2158
2159 /* Setup AUX registers */
2160 for (i = 0; i < sizeof(aux_msg); i += 4)
2161 I915_WRITE(EDP_PSR_AUX_DATA1(dev) + i,
2162 pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
2163
2164 I915_WRITE(EDP_PSR_AUX_CTL(dev),
2165 DP_AUX_CH_CTL_TIME_OUT_400us |
2166 (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
2167 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
2168 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
2169 }
2170
2171 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
2172 {
2173 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2174 struct drm_device *dev = dig_port->base.base.dev;
2175 struct drm_i915_private *dev_priv = dev->dev_private;
2176 uint32_t max_sleep_time = 0x1f;
2177 uint32_t idle_frames = 1;
2178 uint32_t val = 0x0;
2179 const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
2180 bool only_standby = false;
2181
2182 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
2183 only_standby = true;
2184
2185 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
2186 val |= EDP_PSR_LINK_STANDBY;
2187 val |= EDP_PSR_TP2_TP3_TIME_0us;
2188 val |= EDP_PSR_TP1_TIME_0us;
2189 val |= EDP_PSR_SKIP_AUX_EXIT;
2190 val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
2191 } else
2192 val |= EDP_PSR_LINK_DISABLE;
2193
2194 I915_WRITE(EDP_PSR_CTL(dev), val |
2195 (IS_BROADWELL(dev) ? 0 : link_entry_time) |
2196 max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
2197 idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
2198 EDP_PSR_ENABLE);
2199 }
2200
2201 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
2202 {
2203 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2204 struct drm_device *dev = dig_port->base.base.dev;
2205 struct drm_i915_private *dev_priv = dev->dev_private;
2206 struct drm_crtc *crtc = dig_port->base.base.crtc;
2207 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2208
2209 lockdep_assert_held(&dev_priv->psr.lock);
2210 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
2211 WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
2212
2213 dev_priv->psr.source_ok = false;
2214
2215 if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
2216 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
2217 return false;
2218 }
2219
2220 if (!i915.enable_psr) {
2221 DRM_DEBUG_KMS("PSR disable by flag\n");
2222 return false;
2223 }
2224
2225 /* Below limitations aren't valid for Broadwell */
2226 if (IS_BROADWELL(dev))
2227 goto out;
2228
2229 if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
2230 S3D_ENABLE) {
2231 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
2232 return false;
2233 }
2234
2235 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
2236 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
2237 return false;
2238 }
2239
2240 out:
2241 dev_priv->psr.source_ok = true;
2242 return true;
2243 }
2244
2245 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
2246 {
2247 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2248 struct drm_device *dev = intel_dig_port->base.base.dev;
2249 struct drm_i915_private *dev_priv = dev->dev_private;
2250
2251 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
2252 WARN_ON(dev_priv->psr.active);
2253 lockdep_assert_held(&dev_priv->psr.lock);
2254
2255 /* Enable/Re-enable PSR on the host */
2256 intel_edp_psr_enable_source(intel_dp);
2257
2258 dev_priv->psr.active = true;
2259 }
2260
2261 void intel_edp_psr_enable(struct intel_dp *intel_dp)
2262 {
2263 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2264 struct drm_i915_private *dev_priv = dev->dev_private;
2265
2266 if (!HAS_PSR(dev)) {
2267 DRM_DEBUG_KMS("PSR not supported on this platform\n");
2268 return;
2269 }
2270
2271 if (!is_edp_psr(intel_dp)) {
2272 DRM_DEBUG_KMS("PSR not supported by this panel\n");
2273 return;
2274 }
2275
2276 mutex_lock(&dev_priv->psr.lock);
2277 if (dev_priv->psr.enabled) {
2278 DRM_DEBUG_KMS("PSR already in use\n");
2279 goto unlock;
2280 }
2281
2282 if (!intel_edp_psr_match_conditions(intel_dp))
2283 goto unlock;
2284
2285 dev_priv->psr.busy_frontbuffer_bits = 0;
2286
2287 intel_edp_psr_setup_vsc(intel_dp);
2288
2289 /* Avoid continuous PSR exit by masking memup and hpd */
2290 I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
2291 EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
2292
2293 /* Enable PSR on the panel */
2294 intel_edp_psr_enable_sink(intel_dp);
2295
2296 dev_priv->psr.enabled = intel_dp;
2297 unlock:
2298 mutex_unlock(&dev_priv->psr.lock);
2299 }
2300
2301 void intel_edp_psr_disable(struct intel_dp *intel_dp)
2302 {
2303 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2304 struct drm_i915_private *dev_priv = dev->dev_private;
2305
2306 mutex_lock(&dev_priv->psr.lock);
2307 if (!dev_priv->psr.enabled) {
2308 mutex_unlock(&dev_priv->psr.lock);
2309 return;
2310 }
2311
2312 if (dev_priv->psr.active) {
2313 I915_WRITE(EDP_PSR_CTL(dev),
2314 I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
2315
2316 /* Wait till PSR is idle */
2317 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
2318 EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
2319 DRM_ERROR("Timed out waiting for PSR Idle State\n");
2320
2321 dev_priv->psr.active = false;
2322 } else {
2323 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
2324 }
2325
2326 dev_priv->psr.enabled = NULL;
2327 mutex_unlock(&dev_priv->psr.lock);
2328
2329 cancel_delayed_work_sync(&dev_priv->psr.work);
2330 }
2331
2332 static void intel_edp_psr_work(struct work_struct *work)
2333 {
2334 struct drm_i915_private *dev_priv =
2335 container_of(work, typeof(*dev_priv), psr.work.work);
2336 struct intel_dp *intel_dp = dev_priv->psr.enabled;
2337
2338 /* We have to make sure PSR is ready for re-enable
2339 * otherwise it keeps disabled until next full enable/disable cycle.
2340 * PSR might take some time to get fully disabled
2341 * and be ready for re-enable.
2342 */
2343 if (wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev_priv->dev)) &
2344 EDP_PSR_STATUS_STATE_MASK) == 0, 50)) {
2345 DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
2346 return;
2347 }
2348
2349 mutex_lock(&dev_priv->psr.lock);
2350 intel_dp = dev_priv->psr.enabled;
2351
2352 if (!intel_dp)
2353 goto unlock;
2354
2355 /*
2356 * The delayed work can race with an invalidate hence we need to
2357 * recheck. Since psr_flush first clears this and then reschedules we
2358 * won't ever miss a flush when bailing out here.
2359 */
2360 if (dev_priv->psr.busy_frontbuffer_bits)
2361 goto unlock;
2362
2363 intel_edp_psr_do_enable(intel_dp);
2364 unlock:
2365 mutex_unlock(&dev_priv->psr.lock);
2366 }
2367
2368 static void intel_edp_psr_do_exit(struct drm_device *dev)
2369 {
2370 struct drm_i915_private *dev_priv = dev->dev_private;
2371
2372 if (dev_priv->psr.active) {
2373 u32 val = I915_READ(EDP_PSR_CTL(dev));
2374
2375 WARN_ON(!(val & EDP_PSR_ENABLE));
2376
2377 I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
2378
2379 dev_priv->psr.active = false;
2380 }
2381
2382 }
2383
2384 void intel_edp_psr_invalidate(struct drm_device *dev,
2385 unsigned frontbuffer_bits)
2386 {
2387 struct drm_i915_private *dev_priv = dev->dev_private;
2388 struct drm_crtc *crtc;
2389 enum pipe pipe;
2390
2391 mutex_lock(&dev_priv->psr.lock);
2392 if (!dev_priv->psr.enabled) {
2393 mutex_unlock(&dev_priv->psr.lock);
2394 return;
2395 }
2396
2397 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2398 pipe = to_intel_crtc(crtc)->pipe;
2399
2400 intel_edp_psr_do_exit(dev);
2401
2402 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
2403
2404 dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
2405 mutex_unlock(&dev_priv->psr.lock);
2406 }
2407
2408 void intel_edp_psr_flush(struct drm_device *dev,
2409 unsigned frontbuffer_bits)
2410 {
2411 struct drm_i915_private *dev_priv = dev->dev_private;
2412 struct drm_crtc *crtc;
2413 enum pipe pipe;
2414
2415 mutex_lock(&dev_priv->psr.lock);
2416 if (!dev_priv->psr.enabled) {
2417 mutex_unlock(&dev_priv->psr.lock);
2418 return;
2419 }
2420
2421 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2422 pipe = to_intel_crtc(crtc)->pipe;
2423 dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
2424
2425 /*
2426 * On Haswell sprite plane updates don't result in a psr invalidating
2427 * signal in the hardware. Which means we need to manually fake this in
2428 * software for all flushes, not just when we've seen a preceding
2429 * invalidation through frontbuffer rendering.
2430 */
2431 if (IS_HASWELL(dev) &&
2432 (frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe)))
2433 intel_edp_psr_do_exit(dev);
2434
2435 if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
2436 schedule_delayed_work(&dev_priv->psr.work,
2437 msecs_to_jiffies(100));
2438 mutex_unlock(&dev_priv->psr.lock);
2439 }
2440
2441 void intel_edp_psr_init(struct drm_device *dev)
2442 {
2443 struct drm_i915_private *dev_priv = dev->dev_private;
2444
2445 INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work);
2446 mutex_init(&dev_priv->psr.lock);
2447 }
2448
2449 static void intel_disable_dp(struct intel_encoder *encoder)
2450 {
2451 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2452 struct drm_device *dev = encoder->base.dev;
2453 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2454
2455 if (crtc->config.has_audio)
2456 intel_audio_codec_disable(encoder);
2457
2458 /* Make sure the panel is off before trying to change the mode. But also
2459 * ensure that we have vdd while we switch off the panel. */
2460 intel_edp_panel_vdd_on(intel_dp);
2461 intel_edp_backlight_off(intel_dp);
2462 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2463 intel_edp_panel_off(intel_dp);
2464
2465 /* disable the port before the pipe on g4x */
2466 if (INTEL_INFO(dev)->gen < 5)
2467 intel_dp_link_down(intel_dp);
2468 }
2469
2470 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2471 {
2472 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2473 enum port port = dp_to_dig_port(intel_dp)->port;
2474
2475 intel_dp_link_down(intel_dp);
2476 if (port == PORT_A)
2477 ironlake_edp_pll_off(intel_dp);
2478 }
2479
2480 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2481 {
2482 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2483
2484 intel_dp_link_down(intel_dp);
2485 }
2486
2487 static void chv_post_disable_dp(struct intel_encoder *encoder)
2488 {
2489 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2490 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2491 struct drm_device *dev = encoder->base.dev;
2492 struct drm_i915_private *dev_priv = dev->dev_private;
2493 struct intel_crtc *intel_crtc =
2494 to_intel_crtc(encoder->base.crtc);
2495 enum dpio_channel ch = vlv_dport_to_channel(dport);
2496 enum pipe pipe = intel_crtc->pipe;
2497 u32 val;
2498
2499 intel_dp_link_down(intel_dp);
2500
2501 mutex_lock(&dev_priv->dpio_lock);
2502
2503 /* Propagate soft reset to data lane reset */
2504 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2505 val |= CHV_PCS_REQ_SOFTRESET_EN;
2506 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2507
2508 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2509 val |= CHV_PCS_REQ_SOFTRESET_EN;
2510 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2511
2512 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2513 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2514 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2515
2516 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2517 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2518 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2519
2520 mutex_unlock(&dev_priv->dpio_lock);
2521 }
2522
2523 static void
2524 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2525 uint32_t *DP,
2526 uint8_t dp_train_pat)
2527 {
2528 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2529 struct drm_device *dev = intel_dig_port->base.base.dev;
2530 struct drm_i915_private *dev_priv = dev->dev_private;
2531 enum port port = intel_dig_port->port;
2532
2533 if (HAS_DDI(dev)) {
2534 uint32_t temp = I915_READ(DP_TP_CTL(port));
2535
2536 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2537 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2538 else
2539 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2540
2541 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2542 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2543 case DP_TRAINING_PATTERN_DISABLE:
2544 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2545
2546 break;
2547 case DP_TRAINING_PATTERN_1:
2548 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2549 break;
2550 case DP_TRAINING_PATTERN_2:
2551 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2552 break;
2553 case DP_TRAINING_PATTERN_3:
2554 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2555 break;
2556 }
2557 I915_WRITE(DP_TP_CTL(port), temp);
2558
2559 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2560 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2561
2562 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2563 case DP_TRAINING_PATTERN_DISABLE:
2564 *DP |= DP_LINK_TRAIN_OFF_CPT;
2565 break;
2566 case DP_TRAINING_PATTERN_1:
2567 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2568 break;
2569 case DP_TRAINING_PATTERN_2:
2570 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2571 break;
2572 case DP_TRAINING_PATTERN_3:
2573 DRM_ERROR("DP training pattern 3 not supported\n");
2574 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2575 break;
2576 }
2577
2578 } else {
2579 if (IS_CHERRYVIEW(dev))
2580 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2581 else
2582 *DP &= ~DP_LINK_TRAIN_MASK;
2583
2584 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2585 case DP_TRAINING_PATTERN_DISABLE:
2586 *DP |= DP_LINK_TRAIN_OFF;
2587 break;
2588 case DP_TRAINING_PATTERN_1:
2589 *DP |= DP_LINK_TRAIN_PAT_1;
2590 break;
2591 case DP_TRAINING_PATTERN_2:
2592 *DP |= DP_LINK_TRAIN_PAT_2;
2593 break;
2594 case DP_TRAINING_PATTERN_3:
2595 if (IS_CHERRYVIEW(dev)) {
2596 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2597 } else {
2598 DRM_ERROR("DP training pattern 3 not supported\n");
2599 *DP |= DP_LINK_TRAIN_PAT_2;
2600 }
2601 break;
2602 }
2603 }
2604 }
2605
2606 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2607 {
2608 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2609 struct drm_i915_private *dev_priv = dev->dev_private;
2610
2611 /* enable with pattern 1 (as per spec) */
2612 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2613 DP_TRAINING_PATTERN_1);
2614
2615 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2616 POSTING_READ(intel_dp->output_reg);
2617
2618 /*
2619 * Magic for VLV/CHV. We _must_ first set up the register
2620 * without actually enabling the port, and then do another
2621 * write to enable the port. Otherwise link training will
2622 * fail when the power sequencer is freshly used for this port.
2623 */
2624 intel_dp->DP |= DP_PORT_EN;
2625
2626 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2627 POSTING_READ(intel_dp->output_reg);
2628 }
2629
2630 static void intel_enable_dp(struct intel_encoder *encoder)
2631 {
2632 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2633 struct drm_device *dev = encoder->base.dev;
2634 struct drm_i915_private *dev_priv = dev->dev_private;
2635 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2636 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2637
2638 if (WARN_ON(dp_reg & DP_PORT_EN))
2639 return;
2640
2641 pps_lock(intel_dp);
2642
2643 if (IS_VALLEYVIEW(dev))
2644 vlv_init_panel_power_sequencer(intel_dp);
2645
2646 intel_dp_enable_port(intel_dp);
2647
2648 edp_panel_vdd_on(intel_dp);
2649 edp_panel_on(intel_dp);
2650 edp_panel_vdd_off(intel_dp, true);
2651
2652 pps_unlock(intel_dp);
2653
2654 if (IS_VALLEYVIEW(dev))
2655 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp));
2656
2657 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2658 intel_dp_start_link_train(intel_dp);
2659 intel_dp_complete_link_train(intel_dp);
2660 intel_dp_stop_link_train(intel_dp);
2661
2662 if (crtc->config.has_audio) {
2663 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2664 pipe_name(crtc->pipe));
2665 intel_audio_codec_enable(encoder);
2666 }
2667 }
2668
2669 static void g4x_enable_dp(struct intel_encoder *encoder)
2670 {
2671 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2672
2673 intel_enable_dp(encoder);
2674 intel_edp_backlight_on(intel_dp);
2675 }
2676
2677 static void vlv_enable_dp(struct intel_encoder *encoder)
2678 {
2679 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2680
2681 intel_edp_backlight_on(intel_dp);
2682 }
2683
2684 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2685 {
2686 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2687 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2688
2689 intel_dp_prepare(encoder);
2690
2691 /* Only ilk+ has port A */
2692 if (dport->port == PORT_A) {
2693 ironlake_set_pll_cpu_edp(intel_dp);
2694 ironlake_edp_pll_on(intel_dp);
2695 }
2696 }
2697
2698 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2699 {
2700 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2701 struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2702 enum pipe pipe = intel_dp->pps_pipe;
2703 int pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2704
2705 edp_panel_vdd_off_sync(intel_dp);
2706
2707 /*
2708 * VLV seems to get confused when multiple power seqeuencers
2709 * have the same port selected (even if only one has power/vdd
2710 * enabled). The failure manifests as vlv_wait_port_ready() failing
2711 * CHV on the other hand doesn't seem to mind having the same port
2712 * selected in multiple power seqeuencers, but let's clear the
2713 * port select always when logically disconnecting a power sequencer
2714 * from a port.
2715 */
2716 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2717 pipe_name(pipe), port_name(intel_dig_port->port));
2718 I915_WRITE(pp_on_reg, 0);
2719 POSTING_READ(pp_on_reg);
2720
2721 intel_dp->pps_pipe = INVALID_PIPE;
2722 }
2723
2724 static void vlv_steal_power_sequencer(struct drm_device *dev,
2725 enum pipe pipe)
2726 {
2727 struct drm_i915_private *dev_priv = dev->dev_private;
2728 struct intel_encoder *encoder;
2729
2730 lockdep_assert_held(&dev_priv->pps_mutex);
2731
2732 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2733 return;
2734
2735 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2736 base.head) {
2737 struct intel_dp *intel_dp;
2738 enum port port;
2739
2740 if (encoder->type != INTEL_OUTPUT_EDP)
2741 continue;
2742
2743 intel_dp = enc_to_intel_dp(&encoder->base);
2744 port = dp_to_dig_port(intel_dp)->port;
2745
2746 if (intel_dp->pps_pipe != pipe)
2747 continue;
2748
2749 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2750 pipe_name(pipe), port_name(port));
2751
2752 WARN(encoder->connectors_active,
2753 "stealing pipe %c power sequencer from active eDP port %c\n",
2754 pipe_name(pipe), port_name(port));
2755
2756 /* make sure vdd is off before we steal it */
2757 vlv_detach_power_sequencer(intel_dp);
2758 }
2759 }
2760
2761 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2762 {
2763 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2764 struct intel_encoder *encoder = &intel_dig_port->base;
2765 struct drm_device *dev = encoder->base.dev;
2766 struct drm_i915_private *dev_priv = dev->dev_private;
2767 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2768
2769 lockdep_assert_held(&dev_priv->pps_mutex);
2770
2771 if (!is_edp(intel_dp))
2772 return;
2773
2774 if (intel_dp->pps_pipe == crtc->pipe)
2775 return;
2776
2777 /*
2778 * If another power sequencer was being used on this
2779 * port previously make sure to turn off vdd there while
2780 * we still have control of it.
2781 */
2782 if (intel_dp->pps_pipe != INVALID_PIPE)
2783 vlv_detach_power_sequencer(intel_dp);
2784
2785 /*
2786 * We may be stealing the power
2787 * sequencer from another port.
2788 */
2789 vlv_steal_power_sequencer(dev, crtc->pipe);
2790
2791 /* now it's all ours */
2792 intel_dp->pps_pipe = crtc->pipe;
2793
2794 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2795 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2796
2797 /* init power sequencer on this pipe and port */
2798 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2799 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2800 }
2801
2802 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2803 {
2804 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2805 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2806 struct drm_device *dev = encoder->base.dev;
2807 struct drm_i915_private *dev_priv = dev->dev_private;
2808 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2809 enum dpio_channel port = vlv_dport_to_channel(dport);
2810 int pipe = intel_crtc->pipe;
2811 u32 val;
2812
2813 mutex_lock(&dev_priv->dpio_lock);
2814
2815 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2816 val = 0;
2817 if (pipe)
2818 val |= (1<<21);
2819 else
2820 val &= ~(1<<21);
2821 val |= 0x001000c4;
2822 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2823 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2824 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2825
2826 mutex_unlock(&dev_priv->dpio_lock);
2827
2828 intel_enable_dp(encoder);
2829 }
2830
2831 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2832 {
2833 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2834 struct drm_device *dev = encoder->base.dev;
2835 struct drm_i915_private *dev_priv = dev->dev_private;
2836 struct intel_crtc *intel_crtc =
2837 to_intel_crtc(encoder->base.crtc);
2838 enum dpio_channel port = vlv_dport_to_channel(dport);
2839 int pipe = intel_crtc->pipe;
2840
2841 intel_dp_prepare(encoder);
2842
2843 /* Program Tx lane resets to default */
2844 mutex_lock(&dev_priv->dpio_lock);
2845 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2846 DPIO_PCS_TX_LANE2_RESET |
2847 DPIO_PCS_TX_LANE1_RESET);
2848 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2849 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2850 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2851 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2852 DPIO_PCS_CLK_SOFT_RESET);
2853
2854 /* Fix up inter-pair skew failure */
2855 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2856 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2857 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2858 mutex_unlock(&dev_priv->dpio_lock);
2859 }
2860
2861 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2862 {
2863 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2864 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2865 struct drm_device *dev = encoder->base.dev;
2866 struct drm_i915_private *dev_priv = dev->dev_private;
2867 struct intel_crtc *intel_crtc =
2868 to_intel_crtc(encoder->base.crtc);
2869 enum dpio_channel ch = vlv_dport_to_channel(dport);
2870 int pipe = intel_crtc->pipe;
2871 int data, i;
2872 u32 val;
2873
2874 mutex_lock(&dev_priv->dpio_lock);
2875
2876 /* allow hardware to manage TX FIFO reset source */
2877 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2878 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2879 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2880
2881 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2882 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2883 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2884
2885 /* Deassert soft data lane reset*/
2886 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2887 val |= CHV_PCS_REQ_SOFTRESET_EN;
2888 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2889
2890 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2891 val |= CHV_PCS_REQ_SOFTRESET_EN;
2892 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2893
2894 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2895 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2896 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2897
2898 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2899 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2900 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2901
2902 /* Program Tx lane latency optimal setting*/
2903 for (i = 0; i < 4; i++) {
2904 /* Set the latency optimal bit */
2905 data = (i == 1) ? 0x0 : 0x6;
2906 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2907 data << DPIO_FRC_LATENCY_SHFIT);
2908
2909 /* Set the upar bit */
2910 data = (i == 1) ? 0x0 : 0x1;
2911 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2912 data << DPIO_UPAR_SHIFT);
2913 }
2914
2915 /* Data lane stagger programming */
2916 /* FIXME: Fix up value only after power analysis */
2917
2918 mutex_unlock(&dev_priv->dpio_lock);
2919
2920 intel_enable_dp(encoder);
2921 }
2922
2923 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2924 {
2925 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2926 struct drm_device *dev = encoder->base.dev;
2927 struct drm_i915_private *dev_priv = dev->dev_private;
2928 struct intel_crtc *intel_crtc =
2929 to_intel_crtc(encoder->base.crtc);
2930 enum dpio_channel ch = vlv_dport_to_channel(dport);
2931 enum pipe pipe = intel_crtc->pipe;
2932 u32 val;
2933
2934 intel_dp_prepare(encoder);
2935
2936 mutex_lock(&dev_priv->dpio_lock);
2937
2938 /* program left/right clock distribution */
2939 if (pipe != PIPE_B) {
2940 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2941 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2942 if (ch == DPIO_CH0)
2943 val |= CHV_BUFLEFTENA1_FORCE;
2944 if (ch == DPIO_CH1)
2945 val |= CHV_BUFRIGHTENA1_FORCE;
2946 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2947 } else {
2948 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2949 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2950 if (ch == DPIO_CH0)
2951 val |= CHV_BUFLEFTENA2_FORCE;
2952 if (ch == DPIO_CH1)
2953 val |= CHV_BUFRIGHTENA2_FORCE;
2954 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2955 }
2956
2957 /* program clock channel usage */
2958 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2959 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2960 if (pipe != PIPE_B)
2961 val &= ~CHV_PCS_USEDCLKCHANNEL;
2962 else
2963 val |= CHV_PCS_USEDCLKCHANNEL;
2964 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2965
2966 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2967 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2968 if (pipe != PIPE_B)
2969 val &= ~CHV_PCS_USEDCLKCHANNEL;
2970 else
2971 val |= CHV_PCS_USEDCLKCHANNEL;
2972 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2973
2974 /*
2975 * This a a bit weird since generally CL
2976 * matches the pipe, but here we need to
2977 * pick the CL based on the port.
2978 */
2979 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2980 if (pipe != PIPE_B)
2981 val &= ~CHV_CMN_USEDCLKCHANNEL;
2982 else
2983 val |= CHV_CMN_USEDCLKCHANNEL;
2984 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2985
2986 mutex_unlock(&dev_priv->dpio_lock);
2987 }
2988
2989 /*
2990 * Native read with retry for link status and receiver capability reads for
2991 * cases where the sink may still be asleep.
2992 *
2993 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2994 * supposed to retry 3 times per the spec.
2995 */
2996 static ssize_t
2997 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2998 void *buffer, size_t size)
2999 {
3000 ssize_t ret;
3001 int i;
3002
3003 /*
3004 * Sometime we just get the same incorrect byte repeated
3005 * over the entire buffer. Doing just one throw away read
3006 * initially seems to "solve" it.
3007 */
3008 drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
3009
3010 for (i = 0; i < 3; i++) {
3011 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
3012 if (ret == size)
3013 return ret;
3014 msleep(1);
3015 }
3016
3017 return ret;
3018 }
3019
3020 /*
3021 * Fetch AUX CH registers 0x202 - 0x207 which contain
3022 * link status information
3023 */
3024 static bool
3025 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3026 {
3027 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3028 DP_LANE0_1_STATUS,
3029 link_status,
3030 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3031 }
3032
3033 /* These are source-specific values. */
3034 static uint8_t
3035 intel_dp_voltage_max(struct intel_dp *intel_dp)
3036 {
3037 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3038 enum port port = dp_to_dig_port(intel_dp)->port;
3039
3040 if (INTEL_INFO(dev)->gen >= 9)
3041 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3042 else if (IS_VALLEYVIEW(dev))
3043 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3044 else if (IS_GEN7(dev) && port == PORT_A)
3045 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3046 else if (HAS_PCH_CPT(dev) && port != PORT_A)
3047 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3048 else
3049 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3050 }
3051
3052 static uint8_t
3053 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3054 {
3055 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3056 enum port port = dp_to_dig_port(intel_dp)->port;
3057
3058 if (INTEL_INFO(dev)->gen >= 9) {
3059 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3060 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3061 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3062 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3063 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3064 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3065 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3066 default:
3067 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3068 }
3069 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3070 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3071 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3072 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3073 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3074 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3075 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3076 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3077 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3078 default:
3079 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3080 }
3081 } else if (IS_VALLEYVIEW(dev)) {
3082 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3083 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3084 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3085 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3086 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3087 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3088 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3089 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3090 default:
3091 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3092 }
3093 } else if (IS_GEN7(dev) && port == PORT_A) {
3094 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3095 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3096 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3097 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3098 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3099 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3100 default:
3101 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3102 }
3103 } else {
3104 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3105 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3106 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3107 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3108 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3109 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3110 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3111 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3112 default:
3113 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3114 }
3115 }
3116 }
3117
3118 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
3119 {
3120 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3121 struct drm_i915_private *dev_priv = dev->dev_private;
3122 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3123 struct intel_crtc *intel_crtc =
3124 to_intel_crtc(dport->base.base.crtc);
3125 unsigned long demph_reg_value, preemph_reg_value,
3126 uniqtranscale_reg_value;
3127 uint8_t train_set = intel_dp->train_set[0];
3128 enum dpio_channel port = vlv_dport_to_channel(dport);
3129 int pipe = intel_crtc->pipe;
3130
3131 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3132 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3133 preemph_reg_value = 0x0004000;
3134 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3135 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3136 demph_reg_value = 0x2B405555;
3137 uniqtranscale_reg_value = 0x552AB83A;
3138 break;
3139 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3140 demph_reg_value = 0x2B404040;
3141 uniqtranscale_reg_value = 0x5548B83A;
3142 break;
3143 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3144 demph_reg_value = 0x2B245555;
3145 uniqtranscale_reg_value = 0x5560B83A;
3146 break;
3147 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3148 demph_reg_value = 0x2B405555;
3149 uniqtranscale_reg_value = 0x5598DA3A;
3150 break;
3151 default:
3152 return 0;
3153 }
3154 break;
3155 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3156 preemph_reg_value = 0x0002000;
3157 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3158 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3159 demph_reg_value = 0x2B404040;
3160 uniqtranscale_reg_value = 0x5552B83A;
3161 break;
3162 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3163 demph_reg_value = 0x2B404848;
3164 uniqtranscale_reg_value = 0x5580B83A;
3165 break;
3166 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3167 demph_reg_value = 0x2B404040;
3168 uniqtranscale_reg_value = 0x55ADDA3A;
3169 break;
3170 default:
3171 return 0;
3172 }
3173 break;
3174 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3175 preemph_reg_value = 0x0000000;
3176 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3177 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3178 demph_reg_value = 0x2B305555;
3179 uniqtranscale_reg_value = 0x5570B83A;
3180 break;
3181 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3182 demph_reg_value = 0x2B2B4040;
3183 uniqtranscale_reg_value = 0x55ADDA3A;
3184 break;
3185 default:
3186 return 0;
3187 }
3188 break;
3189 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3190 preemph_reg_value = 0x0006000;
3191 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3192 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3193 demph_reg_value = 0x1B405555;
3194 uniqtranscale_reg_value = 0x55ADDA3A;
3195 break;
3196 default:
3197 return 0;
3198 }
3199 break;
3200 default:
3201 return 0;
3202 }
3203
3204 mutex_lock(&dev_priv->dpio_lock);
3205 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
3206 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3207 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3208 uniqtranscale_reg_value);
3209 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3210 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3211 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3212 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3213 mutex_unlock(&dev_priv->dpio_lock);
3214
3215 return 0;
3216 }
3217
3218 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
3219 {
3220 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3221 struct drm_i915_private *dev_priv = dev->dev_private;
3222 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3223 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3224 u32 deemph_reg_value, margin_reg_value, val;
3225 uint8_t train_set = intel_dp->train_set[0];
3226 enum dpio_channel ch = vlv_dport_to_channel(dport);
3227 enum pipe pipe = intel_crtc->pipe;
3228 int i;
3229
3230 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3231 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3232 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3233 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3234 deemph_reg_value = 128;
3235 margin_reg_value = 52;
3236 break;
3237 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3238 deemph_reg_value = 128;
3239 margin_reg_value = 77;
3240 break;
3241 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3242 deemph_reg_value = 128;
3243 margin_reg_value = 102;
3244 break;
3245 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3246 deemph_reg_value = 128;
3247 margin_reg_value = 154;
3248 /* FIXME extra to set for 1200 */
3249 break;
3250 default:
3251 return 0;
3252 }
3253 break;
3254 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3255 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3256 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3257 deemph_reg_value = 85;
3258 margin_reg_value = 78;
3259 break;
3260 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3261 deemph_reg_value = 85;
3262 margin_reg_value = 116;
3263 break;
3264 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3265 deemph_reg_value = 85;
3266 margin_reg_value = 154;
3267 break;
3268 default:
3269 return 0;
3270 }
3271 break;
3272 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3273 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3274 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3275 deemph_reg_value = 64;
3276 margin_reg_value = 104;
3277 break;
3278 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3279 deemph_reg_value = 64;
3280 margin_reg_value = 154;
3281 break;
3282 default:
3283 return 0;
3284 }
3285 break;
3286 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3287 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3288 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3289 deemph_reg_value = 43;
3290 margin_reg_value = 154;
3291 break;
3292 default:
3293 return 0;
3294 }
3295 break;
3296 default:
3297 return 0;
3298 }
3299
3300 mutex_lock(&dev_priv->dpio_lock);
3301
3302 /* Clear calc init */
3303 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3304 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3305 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3306 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3307 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3308
3309 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3310 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3311 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3312 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3313 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3314
3315 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
3316 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3317 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3318 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
3319
3320 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
3321 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3322 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3323 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
3324
3325 /* Program swing deemph */
3326 for (i = 0; i < 4; i++) {
3327 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3328 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3329 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3330 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3331 }
3332
3333 /* Program swing margin */
3334 for (i = 0; i < 4; i++) {
3335 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3336 val &= ~DPIO_SWING_MARGIN000_MASK;
3337 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3338 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3339 }
3340
3341 /* Disable unique transition scale */
3342 for (i = 0; i < 4; i++) {
3343 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3344 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3345 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3346 }
3347
3348 if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
3349 == DP_TRAIN_PRE_EMPH_LEVEL_0) &&
3350 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
3351 == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)) {
3352
3353 /*
3354 * The document said it needs to set bit 27 for ch0 and bit 26
3355 * for ch1. Might be a typo in the doc.
3356 * For now, for this unique transition scale selection, set bit
3357 * 27 for ch0 and ch1.
3358 */
3359 for (i = 0; i < 4; i++) {
3360 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3361 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3362 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3363 }
3364
3365 for (i = 0; i < 4; i++) {
3366 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3367 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3368 val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3369 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3370 }
3371 }
3372
3373 /* Start swing calculation */
3374 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3375 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3376 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3377
3378 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3379 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3380 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3381
3382 /* LRC Bypass */
3383 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
3384 val |= DPIO_LRC_BYPASS;
3385 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
3386
3387 mutex_unlock(&dev_priv->dpio_lock);
3388
3389 return 0;
3390 }
3391
3392 static void
3393 intel_get_adjust_train(struct intel_dp *intel_dp,
3394 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3395 {
3396 uint8_t v = 0;
3397 uint8_t p = 0;
3398 int lane;
3399 uint8_t voltage_max;
3400 uint8_t preemph_max;
3401
3402 for (lane = 0; lane < intel_dp->lane_count; lane++) {
3403 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
3404 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
3405
3406 if (this_v > v)
3407 v = this_v;
3408 if (this_p > p)
3409 p = this_p;
3410 }
3411
3412 voltage_max = intel_dp_voltage_max(intel_dp);
3413 if (v >= voltage_max)
3414 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
3415
3416 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
3417 if (p >= preemph_max)
3418 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
3419
3420 for (lane = 0; lane < 4; lane++)
3421 intel_dp->train_set[lane] = v | p;
3422 }
3423
3424 static uint32_t
3425 intel_gen4_signal_levels(uint8_t train_set)
3426 {
3427 uint32_t signal_levels = 0;
3428
3429 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3430 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3431 default:
3432 signal_levels |= DP_VOLTAGE_0_4;
3433 break;
3434 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3435 signal_levels |= DP_VOLTAGE_0_6;
3436 break;
3437 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3438 signal_levels |= DP_VOLTAGE_0_8;
3439 break;
3440 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3441 signal_levels |= DP_VOLTAGE_1_2;
3442 break;
3443 }
3444 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3445 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3446 default:
3447 signal_levels |= DP_PRE_EMPHASIS_0;
3448 break;
3449 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3450 signal_levels |= DP_PRE_EMPHASIS_3_5;
3451 break;
3452 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3453 signal_levels |= DP_PRE_EMPHASIS_6;
3454 break;
3455 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3456 signal_levels |= DP_PRE_EMPHASIS_9_5;
3457 break;
3458 }
3459 return signal_levels;
3460 }
3461
3462 /* Gen6's DP voltage swing and pre-emphasis control */
3463 static uint32_t
3464 intel_gen6_edp_signal_levels(uint8_t train_set)
3465 {
3466 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3467 DP_TRAIN_PRE_EMPHASIS_MASK);
3468 switch (signal_levels) {
3469 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3470 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3471 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3472 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3473 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3474 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3475 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3476 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3477 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3478 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3479 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3480 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3481 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3482 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3483 default:
3484 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3485 "0x%x\n", signal_levels);
3486 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3487 }
3488 }
3489
3490 /* Gen7's DP voltage swing and pre-emphasis control */
3491 static uint32_t
3492 intel_gen7_edp_signal_levels(uint8_t train_set)
3493 {
3494 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3495 DP_TRAIN_PRE_EMPHASIS_MASK);
3496 switch (signal_levels) {
3497 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3498 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3499 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3500 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3501 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3502 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3503
3504 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3505 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3506 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3507 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3508
3509 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3510 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3511 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3512 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3513
3514 default:
3515 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3516 "0x%x\n", signal_levels);
3517 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3518 }
3519 }
3520
3521 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
3522 static uint32_t
3523 intel_hsw_signal_levels(uint8_t train_set)
3524 {
3525 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3526 DP_TRAIN_PRE_EMPHASIS_MASK);
3527 switch (signal_levels) {
3528 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3529 return DDI_BUF_TRANS_SELECT(0);
3530 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3531 return DDI_BUF_TRANS_SELECT(1);
3532 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3533 return DDI_BUF_TRANS_SELECT(2);
3534 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
3535 return DDI_BUF_TRANS_SELECT(3);
3536
3537 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3538 return DDI_BUF_TRANS_SELECT(4);
3539 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3540 return DDI_BUF_TRANS_SELECT(5);
3541 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3542 return DDI_BUF_TRANS_SELECT(6);
3543
3544 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3545 return DDI_BUF_TRANS_SELECT(7);
3546 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3547 return DDI_BUF_TRANS_SELECT(8);
3548 default:
3549 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3550 "0x%x\n", signal_levels);
3551 return DDI_BUF_TRANS_SELECT(0);
3552 }
3553 }
3554
3555 /* Properly updates "DP" with the correct signal levels. */
3556 static void
3557 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
3558 {
3559 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3560 enum port port = intel_dig_port->port;
3561 struct drm_device *dev = intel_dig_port->base.base.dev;
3562 uint32_t signal_levels, mask;
3563 uint8_t train_set = intel_dp->train_set[0];
3564
3565 if (IS_HASWELL(dev) || IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
3566 signal_levels = intel_hsw_signal_levels(train_set);
3567 mask = DDI_BUF_EMP_MASK;
3568 } else if (IS_CHERRYVIEW(dev)) {
3569 signal_levels = intel_chv_signal_levels(intel_dp);
3570 mask = 0;
3571 } else if (IS_VALLEYVIEW(dev)) {
3572 signal_levels = intel_vlv_signal_levels(intel_dp);
3573 mask = 0;
3574 } else if (IS_GEN7(dev) && port == PORT_A) {
3575 signal_levels = intel_gen7_edp_signal_levels(train_set);
3576 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3577 } else if (IS_GEN6(dev) && port == PORT_A) {
3578 signal_levels = intel_gen6_edp_signal_levels(train_set);
3579 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3580 } else {
3581 signal_levels = intel_gen4_signal_levels(train_set);
3582 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3583 }
3584
3585 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3586
3587 *DP = (*DP & ~mask) | signal_levels;
3588 }
3589
3590 static bool
3591 intel_dp_set_link_train(struct intel_dp *intel_dp,
3592 uint32_t *DP,
3593 uint8_t dp_train_pat)
3594 {
3595 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3596 struct drm_device *dev = intel_dig_port->base.base.dev;
3597 struct drm_i915_private *dev_priv = dev->dev_private;
3598 uint8_t buf[sizeof(intel_dp->train_set) + 1];
3599 int ret, len;
3600
3601 _intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3602
3603 I915_WRITE(intel_dp->output_reg, *DP);
3604 POSTING_READ(intel_dp->output_reg);
3605
3606 buf[0] = dp_train_pat;
3607 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3608 DP_TRAINING_PATTERN_DISABLE) {
3609 /* don't write DP_TRAINING_LANEx_SET on disable */
3610 len = 1;
3611 } else {
3612 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3613 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3614 len = intel_dp->lane_count + 1;
3615 }
3616
3617 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3618 buf, len);
3619
3620 return ret == len;
3621 }
3622
3623 static bool
3624 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3625 uint8_t dp_train_pat)
3626 {
3627 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3628 intel_dp_set_signal_levels(intel_dp, DP);
3629 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3630 }
3631
3632 static bool
3633 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3634 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3635 {
3636 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3637 struct drm_device *dev = intel_dig_port->base.base.dev;
3638 struct drm_i915_private *dev_priv = dev->dev_private;
3639 int ret;
3640
3641 intel_get_adjust_train(intel_dp, link_status);
3642 intel_dp_set_signal_levels(intel_dp, DP);
3643
3644 I915_WRITE(intel_dp->output_reg, *DP);
3645 POSTING_READ(intel_dp->output_reg);
3646
3647 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3648 intel_dp->train_set, intel_dp->lane_count);
3649
3650 return ret == intel_dp->lane_count;
3651 }
3652
3653 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3654 {
3655 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3656 struct drm_device *dev = intel_dig_port->base.base.dev;
3657 struct drm_i915_private *dev_priv = dev->dev_private;
3658 enum port port = intel_dig_port->port;
3659 uint32_t val;
3660
3661 if (!HAS_DDI(dev))
3662 return;
3663
3664 val = I915_READ(DP_TP_CTL(port));
3665 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3666 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3667 I915_WRITE(DP_TP_CTL(port), val);
3668
3669 /*
3670 * On PORT_A we can have only eDP in SST mode. There the only reason
3671 * we need to set idle transmission mode is to work around a HW issue
3672 * where we enable the pipe while not in idle link-training mode.
3673 * In this case there is requirement to wait for a minimum number of
3674 * idle patterns to be sent.
3675 */
3676 if (port == PORT_A)
3677 return;
3678
3679 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3680 1))
3681 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3682 }
3683
3684 /* Enable corresponding port and start training pattern 1 */
3685 void
3686 intel_dp_start_link_train(struct intel_dp *intel_dp)
3687 {
3688 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3689 struct drm_device *dev = encoder->dev;
3690 int i;
3691 uint8_t voltage;
3692 int voltage_tries, loop_tries;
3693 uint32_t DP = intel_dp->DP;
3694 uint8_t link_config[2];
3695
3696 if (HAS_DDI(dev))
3697 intel_ddi_prepare_link_retrain(encoder);
3698
3699 /* Write the link configuration data */
3700 link_config[0] = intel_dp->link_bw;
3701 link_config[1] = intel_dp->lane_count;
3702 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3703 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3704 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3705
3706 link_config[0] = 0;
3707 link_config[1] = DP_SET_ANSI_8B10B;
3708 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3709
3710 DP |= DP_PORT_EN;
3711
3712 /* clock recovery */
3713 if (!intel_dp_reset_link_train(intel_dp, &DP,
3714 DP_TRAINING_PATTERN_1 |
3715 DP_LINK_SCRAMBLING_DISABLE)) {
3716 DRM_ERROR("failed to enable link training\n");
3717 return;
3718 }
3719
3720 voltage = 0xff;
3721 voltage_tries = 0;
3722 loop_tries = 0;
3723 for (;;) {
3724 uint8_t link_status[DP_LINK_STATUS_SIZE];
3725
3726 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3727 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3728 DRM_ERROR("failed to get link status\n");
3729 break;
3730 }
3731
3732 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3733 DRM_DEBUG_KMS("clock recovery OK\n");
3734 break;
3735 }
3736
3737 /* Check to see if we've tried the max voltage */
3738 for (i = 0; i < intel_dp->lane_count; i++)
3739 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3740 break;
3741 if (i == intel_dp->lane_count) {
3742 ++loop_tries;
3743 if (loop_tries == 5) {
3744 DRM_ERROR("too many full retries, give up\n");
3745 break;
3746 }
3747 intel_dp_reset_link_train(intel_dp, &DP,
3748 DP_TRAINING_PATTERN_1 |
3749 DP_LINK_SCRAMBLING_DISABLE);
3750 voltage_tries = 0;
3751 continue;
3752 }
3753
3754 /* Check to see if we've tried the same voltage 5 times */
3755 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3756 ++voltage_tries;
3757 if (voltage_tries == 5) {
3758 DRM_ERROR("too many voltage retries, give up\n");
3759 break;
3760 }
3761 } else
3762 voltage_tries = 0;
3763 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3764
3765 /* Update training set as requested by target */
3766 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3767 DRM_ERROR("failed to update link training\n");
3768 break;
3769 }
3770 }
3771
3772 intel_dp->DP = DP;
3773 }
3774
3775 void
3776 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3777 {
3778 bool channel_eq = false;
3779 int tries, cr_tries;
3780 uint32_t DP = intel_dp->DP;
3781 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3782
3783 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3784 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3785 training_pattern = DP_TRAINING_PATTERN_3;
3786
3787 /* channel equalization */
3788 if (!intel_dp_set_link_train(intel_dp, &DP,
3789 training_pattern |
3790 DP_LINK_SCRAMBLING_DISABLE)) {
3791 DRM_ERROR("failed to start channel equalization\n");
3792 return;
3793 }
3794
3795 tries = 0;
3796 cr_tries = 0;
3797 channel_eq = false;
3798 for (;;) {
3799 uint8_t link_status[DP_LINK_STATUS_SIZE];
3800
3801 if (cr_tries > 5) {
3802 DRM_ERROR("failed to train DP, aborting\n");
3803 break;
3804 }
3805
3806 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3807 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3808 DRM_ERROR("failed to get link status\n");
3809 break;
3810 }
3811
3812 /* Make sure clock is still ok */
3813 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3814 intel_dp_start_link_train(intel_dp);
3815 intel_dp_set_link_train(intel_dp, &DP,
3816 training_pattern |
3817 DP_LINK_SCRAMBLING_DISABLE);
3818 cr_tries++;
3819 continue;
3820 }
3821
3822 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3823 channel_eq = true;
3824 break;
3825 }
3826
3827 /* Try 5 times, then try clock recovery if that fails */
3828 if (tries > 5) {
3829 intel_dp_start_link_train(intel_dp);
3830 intel_dp_set_link_train(intel_dp, &DP,
3831 training_pattern |
3832 DP_LINK_SCRAMBLING_DISABLE);
3833 tries = 0;
3834 cr_tries++;
3835 continue;
3836 }
3837
3838 /* Update training set as requested by target */
3839 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3840 DRM_ERROR("failed to update link training\n");
3841 break;
3842 }
3843 ++tries;
3844 }
3845
3846 intel_dp_set_idle_link_train(intel_dp);
3847
3848 intel_dp->DP = DP;
3849
3850 if (channel_eq)
3851 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3852
3853 }
3854
3855 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3856 {
3857 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3858 DP_TRAINING_PATTERN_DISABLE);
3859 }
3860
3861 static void
3862 intel_dp_link_down(struct intel_dp *intel_dp)
3863 {
3864 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3865 enum port port = intel_dig_port->port;
3866 struct drm_device *dev = intel_dig_port->base.base.dev;
3867 struct drm_i915_private *dev_priv = dev->dev_private;
3868 struct intel_crtc *intel_crtc =
3869 to_intel_crtc(intel_dig_port->base.base.crtc);
3870 uint32_t DP = intel_dp->DP;
3871
3872 if (WARN_ON(HAS_DDI(dev)))
3873 return;
3874
3875 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3876 return;
3877
3878 DRM_DEBUG_KMS("\n");
3879
3880 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3881 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3882 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3883 } else {
3884 if (IS_CHERRYVIEW(dev))
3885 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3886 else
3887 DP &= ~DP_LINK_TRAIN_MASK;
3888 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3889 }
3890 POSTING_READ(intel_dp->output_reg);
3891
3892 if (HAS_PCH_IBX(dev) &&
3893 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3894 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3895
3896 /* Hardware workaround: leaving our transcoder select
3897 * set to transcoder B while it's off will prevent the
3898 * corresponding HDMI output on transcoder A.
3899 *
3900 * Combine this with another hardware workaround:
3901 * transcoder select bit can only be cleared while the
3902 * port is enabled.
3903 */
3904 DP &= ~DP_PIPEB_SELECT;
3905 I915_WRITE(intel_dp->output_reg, DP);
3906
3907 /* Changes to enable or select take place the vblank
3908 * after being written.
3909 */
3910 if (WARN_ON(crtc == NULL)) {
3911 /* We should never try to disable a port without a crtc
3912 * attached. For paranoia keep the code around for a
3913 * bit. */
3914 POSTING_READ(intel_dp->output_reg);
3915 msleep(50);
3916 } else
3917 intel_wait_for_vblank(dev, intel_crtc->pipe);
3918 }
3919
3920 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3921 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3922 POSTING_READ(intel_dp->output_reg);
3923 msleep(intel_dp->panel_power_down_delay);
3924 }
3925
3926 static bool
3927 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3928 {
3929 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3930 struct drm_device *dev = dig_port->base.base.dev;
3931 struct drm_i915_private *dev_priv = dev->dev_private;
3932
3933 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3934 sizeof(intel_dp->dpcd)) < 0)
3935 return false; /* aux transfer failed */
3936
3937 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3938
3939 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3940 return false; /* DPCD not present */
3941
3942 /* Check if the panel supports PSR */
3943 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3944 if (is_edp(intel_dp)) {
3945 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3946 intel_dp->psr_dpcd,
3947 sizeof(intel_dp->psr_dpcd));
3948 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3949 dev_priv->psr.sink_support = true;
3950 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3951 }
3952 }
3953
3954 /* Training Pattern 3 support, both source and sink */
3955 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3956 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED &&
3957 (IS_HASWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 8)) {
3958 intel_dp->use_tps3 = true;
3959 DRM_DEBUG_KMS("Displayport TPS3 supported\n");
3960 } else
3961 intel_dp->use_tps3 = false;
3962
3963 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3964 DP_DWN_STRM_PORT_PRESENT))
3965 return true; /* native DP sink */
3966
3967 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3968 return true; /* no per-port downstream info */
3969
3970 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3971 intel_dp->downstream_ports,
3972 DP_MAX_DOWNSTREAM_PORTS) < 0)
3973 return false; /* downstream port status fetch failed */
3974
3975 return true;
3976 }
3977
3978 static void
3979 intel_dp_probe_oui(struct intel_dp *intel_dp)
3980 {
3981 u8 buf[3];
3982
3983 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3984 return;
3985
3986 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3987 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3988 buf[0], buf[1], buf[2]);
3989
3990 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3991 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3992 buf[0], buf[1], buf[2]);
3993 }
3994
3995 static bool
3996 intel_dp_probe_mst(struct intel_dp *intel_dp)
3997 {
3998 u8 buf[1];
3999
4000 if (!intel_dp->can_mst)
4001 return false;
4002
4003 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4004 return false;
4005
4006 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
4007 if (buf[0] & DP_MST_CAP) {
4008 DRM_DEBUG_KMS("Sink is MST capable\n");
4009 intel_dp->is_mst = true;
4010 } else {
4011 DRM_DEBUG_KMS("Sink is not MST capable\n");
4012 intel_dp->is_mst = false;
4013 }
4014 }
4015
4016 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4017 return intel_dp->is_mst;
4018 }
4019
4020 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
4021 {
4022 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4023 struct drm_device *dev = intel_dig_port->base.base.dev;
4024 struct intel_crtc *intel_crtc =
4025 to_intel_crtc(intel_dig_port->base.base.crtc);
4026 u8 buf;
4027 int test_crc_count;
4028 int attempts = 6;
4029
4030 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
4031 return -EIO;
4032
4033 if (!(buf & DP_TEST_CRC_SUPPORTED))
4034 return -ENOTTY;
4035
4036 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
4037 return -EIO;
4038
4039 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4040 buf | DP_TEST_SINK_START) < 0)
4041 return -EIO;
4042
4043 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
4044 return -EIO;
4045 test_crc_count = buf & DP_TEST_COUNT_MASK;
4046
4047 do {
4048 if (drm_dp_dpcd_readb(&intel_dp->aux,
4049 DP_TEST_SINK_MISC, &buf) < 0)
4050 return -EIO;
4051 intel_wait_for_vblank(dev, intel_crtc->pipe);
4052 } while (--attempts && (buf & DP_TEST_COUNT_MASK) == test_crc_count);
4053
4054 if (attempts == 0) {
4055 DRM_ERROR("Panel is unable to calculate CRC after 6 vblanks\n");
4056 return -EIO;
4057 }
4058
4059 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
4060 return -EIO;
4061
4062 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
4063 return -EIO;
4064 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4065 buf & ~DP_TEST_SINK_START) < 0)
4066 return -EIO;
4067
4068 return 0;
4069 }
4070
4071 static bool
4072 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4073 {
4074 return intel_dp_dpcd_read_wake(&intel_dp->aux,
4075 DP_DEVICE_SERVICE_IRQ_VECTOR,
4076 sink_irq_vector, 1) == 1;
4077 }
4078
4079 static bool
4080 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4081 {
4082 int ret;
4083
4084 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
4085 DP_SINK_COUNT_ESI,
4086 sink_irq_vector, 14);
4087 if (ret != 14)
4088 return false;
4089
4090 return true;
4091 }
4092
4093 static void
4094 intel_dp_handle_test_request(struct intel_dp *intel_dp)
4095 {
4096 /* NAK by default */
4097 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
4098 }
4099
4100 static int
4101 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4102 {
4103 bool bret;
4104
4105 if (intel_dp->is_mst) {
4106 u8 esi[16] = { 0 };
4107 int ret = 0;
4108 int retry;
4109 bool handled;
4110 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4111 go_again:
4112 if (bret == true) {
4113
4114 /* check link status - esi[10] = 0x200c */
4115 if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4116 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4117 intel_dp_start_link_train(intel_dp);
4118 intel_dp_complete_link_train(intel_dp);
4119 intel_dp_stop_link_train(intel_dp);
4120 }
4121
4122 DRM_DEBUG_KMS("got esi %02x %02x %02x\n", esi[0], esi[1], esi[2]);
4123 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4124
4125 if (handled) {
4126 for (retry = 0; retry < 3; retry++) {
4127 int wret;
4128 wret = drm_dp_dpcd_write(&intel_dp->aux,
4129 DP_SINK_COUNT_ESI+1,
4130 &esi[1], 3);
4131 if (wret == 3) {
4132 break;
4133 }
4134 }
4135
4136 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4137 if (bret == true) {
4138 DRM_DEBUG_KMS("got esi2 %02x %02x %02x\n", esi[0], esi[1], esi[2]);
4139 goto go_again;
4140 }
4141 } else
4142 ret = 0;
4143
4144 return ret;
4145 } else {
4146 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4147 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4148 intel_dp->is_mst = false;
4149 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4150 /* send a hotplug event */
4151 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4152 }
4153 }
4154 return -EINVAL;
4155 }
4156
4157 /*
4158 * According to DP spec
4159 * 5.1.2:
4160 * 1. Read DPCD
4161 * 2. Configure link according to Receiver Capabilities
4162 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4163 * 4. Check link status on receipt of hot-plug interrupt
4164 */
4165 void
4166 intel_dp_check_link_status(struct intel_dp *intel_dp)
4167 {
4168 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4169 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4170 u8 sink_irq_vector;
4171 u8 link_status[DP_LINK_STATUS_SIZE];
4172
4173 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4174
4175 if (!intel_encoder->connectors_active)
4176 return;
4177
4178 if (WARN_ON(!intel_encoder->base.crtc))
4179 return;
4180
4181 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4182 return;
4183
4184 /* Try to read receiver status if the link appears to be up */
4185 if (!intel_dp_get_link_status(intel_dp, link_status)) {
4186 return;
4187 }
4188
4189 /* Now read the DPCD to see if it's actually running */
4190 if (!intel_dp_get_dpcd(intel_dp)) {
4191 return;
4192 }
4193
4194 /* Try to read the source of the interrupt */
4195 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4196 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4197 /* Clear interrupt source */
4198 drm_dp_dpcd_writeb(&intel_dp->aux,
4199 DP_DEVICE_SERVICE_IRQ_VECTOR,
4200 sink_irq_vector);
4201
4202 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4203 intel_dp_handle_test_request(intel_dp);
4204 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4205 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4206 }
4207
4208 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
4209 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4210 intel_encoder->base.name);
4211 intel_dp_start_link_train(intel_dp);
4212 intel_dp_complete_link_train(intel_dp);
4213 intel_dp_stop_link_train(intel_dp);
4214 }
4215 }
4216
4217 /* XXX this is probably wrong for multiple downstream ports */
4218 static enum drm_connector_status
4219 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4220 {
4221 uint8_t *dpcd = intel_dp->dpcd;
4222 uint8_t type;
4223
4224 if (!intel_dp_get_dpcd(intel_dp))
4225 return connector_status_disconnected;
4226
4227 /* if there's no downstream port, we're done */
4228 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4229 return connector_status_connected;
4230
4231 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4232 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4233 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4234 uint8_t reg;
4235
4236 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
4237 &reg, 1) < 0)
4238 return connector_status_unknown;
4239
4240 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
4241 : connector_status_disconnected;
4242 }
4243
4244 /* If no HPD, poke DDC gently */
4245 if (drm_probe_ddc(&intel_dp->aux.ddc))
4246 return connector_status_connected;
4247
4248 /* Well we tried, say unknown for unreliable port types */
4249 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4250 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4251 if (type == DP_DS_PORT_TYPE_VGA ||
4252 type == DP_DS_PORT_TYPE_NON_EDID)
4253 return connector_status_unknown;
4254 } else {
4255 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4256 DP_DWN_STRM_PORT_TYPE_MASK;
4257 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4258 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4259 return connector_status_unknown;
4260 }
4261
4262 /* Anything else is out of spec, warn and ignore */
4263 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4264 return connector_status_disconnected;
4265 }
4266
4267 static enum drm_connector_status
4268 edp_detect(struct intel_dp *intel_dp)
4269 {
4270 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4271 enum drm_connector_status status;
4272
4273 status = intel_panel_detect(dev);
4274 if (status == connector_status_unknown)
4275 status = connector_status_connected;
4276
4277 return status;
4278 }
4279
4280 static enum drm_connector_status
4281 ironlake_dp_detect(struct intel_dp *intel_dp)
4282 {
4283 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4284 struct drm_i915_private *dev_priv = dev->dev_private;
4285 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4286
4287 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4288 return connector_status_disconnected;
4289
4290 return intel_dp_detect_dpcd(intel_dp);
4291 }
4292
4293 static int g4x_digital_port_connected(struct drm_device *dev,
4294 struct intel_digital_port *intel_dig_port)
4295 {
4296 struct drm_i915_private *dev_priv = dev->dev_private;
4297 uint32_t bit;
4298
4299 if (IS_VALLEYVIEW(dev)) {
4300 switch (intel_dig_port->port) {
4301 case PORT_B:
4302 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
4303 break;
4304 case PORT_C:
4305 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
4306 break;
4307 case PORT_D:
4308 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
4309 break;
4310 default:
4311 return -EINVAL;
4312 }
4313 } else {
4314 switch (intel_dig_port->port) {
4315 case PORT_B:
4316 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4317 break;
4318 case PORT_C:
4319 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4320 break;
4321 case PORT_D:
4322 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4323 break;
4324 default:
4325 return -EINVAL;
4326 }
4327 }
4328
4329 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
4330 return 0;
4331 return 1;
4332 }
4333
4334 static enum drm_connector_status
4335 g4x_dp_detect(struct intel_dp *intel_dp)
4336 {
4337 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4338 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4339 int ret;
4340
4341 /* Can't disconnect eDP, but you can close the lid... */
4342 if (is_edp(intel_dp)) {
4343 enum drm_connector_status status;
4344
4345 status = intel_panel_detect(dev);
4346 if (status == connector_status_unknown)
4347 status = connector_status_connected;
4348 return status;
4349 }
4350
4351 ret = g4x_digital_port_connected(dev, intel_dig_port);
4352 if (ret == -EINVAL)
4353 return connector_status_unknown;
4354 else if (ret == 0)
4355 return connector_status_disconnected;
4356
4357 return intel_dp_detect_dpcd(intel_dp);
4358 }
4359
4360 static struct edid *
4361 intel_dp_get_edid(struct intel_dp *intel_dp)
4362 {
4363 struct intel_connector *intel_connector = intel_dp->attached_connector;
4364
4365 /* use cached edid if we have one */
4366 if (intel_connector->edid) {
4367 /* invalid edid */
4368 if (IS_ERR(intel_connector->edid))
4369 return NULL;
4370
4371 return drm_edid_duplicate(intel_connector->edid);
4372 } else
4373 return drm_get_edid(&intel_connector->base,
4374 &intel_dp->aux.ddc);
4375 }
4376
4377 static void
4378 intel_dp_set_edid(struct intel_dp *intel_dp)
4379 {
4380 struct intel_connector *intel_connector = intel_dp->attached_connector;
4381 struct edid *edid;
4382
4383 edid = intel_dp_get_edid(intel_dp);
4384 intel_connector->detect_edid = edid;
4385
4386 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4387 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4388 else
4389 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4390 }
4391
4392 static void
4393 intel_dp_unset_edid(struct intel_dp *intel_dp)
4394 {
4395 struct intel_connector *intel_connector = intel_dp->attached_connector;
4396
4397 kfree(intel_connector->detect_edid);
4398 intel_connector->detect_edid = NULL;
4399
4400 intel_dp->has_audio = false;
4401 }
4402
4403 static enum intel_display_power_domain
4404 intel_dp_power_get(struct intel_dp *dp)
4405 {
4406 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4407 enum intel_display_power_domain power_domain;
4408
4409 power_domain = intel_display_port_power_domain(encoder);
4410 intel_display_power_get(to_i915(encoder->base.dev), power_domain);
4411
4412 return power_domain;
4413 }
4414
4415 static void
4416 intel_dp_power_put(struct intel_dp *dp,
4417 enum intel_display_power_domain power_domain)
4418 {
4419 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4420 intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4421 }
4422
4423 static enum drm_connector_status
4424 intel_dp_detect(struct drm_connector *connector, bool force)
4425 {
4426 struct intel_dp *intel_dp = intel_attached_dp(connector);
4427 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4428 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4429 struct drm_device *dev = connector->dev;
4430 enum drm_connector_status status;
4431 enum intel_display_power_domain power_domain;
4432 bool ret;
4433
4434 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4435 connector->base.id, connector->name);
4436 intel_dp_unset_edid(intel_dp);
4437
4438 if (intel_dp->is_mst) {
4439 /* MST devices are disconnected from a monitor POV */
4440 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4441 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4442 return connector_status_disconnected;
4443 }
4444
4445 power_domain = intel_dp_power_get(intel_dp);
4446
4447 /* Can't disconnect eDP, but you can close the lid... */
4448 if (is_edp(intel_dp))
4449 status = edp_detect(intel_dp);
4450 else if (HAS_PCH_SPLIT(dev))
4451 status = ironlake_dp_detect(intel_dp);
4452 else
4453 status = g4x_dp_detect(intel_dp);
4454 if (status != connector_status_connected)
4455 goto out;
4456
4457 intel_dp_probe_oui(intel_dp);
4458
4459 ret = intel_dp_probe_mst(intel_dp);
4460 if (ret) {
4461 /* if we are in MST mode then this connector
4462 won't appear connected or have anything with EDID on it */
4463 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4464 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4465 status = connector_status_disconnected;
4466 goto out;
4467 }
4468
4469 intel_dp_set_edid(intel_dp);
4470
4471 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4472 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4473 status = connector_status_connected;
4474
4475 out:
4476 intel_dp_power_put(intel_dp, power_domain);
4477 return status;
4478 }
4479
4480 static void
4481 intel_dp_force(struct drm_connector *connector)
4482 {
4483 struct intel_dp *intel_dp = intel_attached_dp(connector);
4484 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4485 enum intel_display_power_domain power_domain;
4486
4487 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4488 connector->base.id, connector->name);
4489 intel_dp_unset_edid(intel_dp);
4490
4491 if (connector->status != connector_status_connected)
4492 return;
4493
4494 power_domain = intel_dp_power_get(intel_dp);
4495
4496 intel_dp_set_edid(intel_dp);
4497
4498 intel_dp_power_put(intel_dp, power_domain);
4499
4500 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4501 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4502 }
4503
4504 static int intel_dp_get_modes(struct drm_connector *connector)
4505 {
4506 struct intel_connector *intel_connector = to_intel_connector(connector);
4507 struct edid *edid;
4508
4509 edid = intel_connector->detect_edid;
4510 if (edid) {
4511 int ret = intel_connector_update_modes(connector, edid);
4512 if (ret)
4513 return ret;
4514 }
4515
4516 /* if eDP has no EDID, fall back to fixed mode */
4517 if (is_edp(intel_attached_dp(connector)) &&
4518 intel_connector->panel.fixed_mode) {
4519 struct drm_display_mode *mode;
4520
4521 mode = drm_mode_duplicate(connector->dev,
4522 intel_connector->panel.fixed_mode);
4523 if (mode) {
4524 drm_mode_probed_add(connector, mode);
4525 return 1;
4526 }
4527 }
4528
4529 return 0;
4530 }
4531
4532 static bool
4533 intel_dp_detect_audio(struct drm_connector *connector)
4534 {
4535 bool has_audio = false;
4536 struct edid *edid;
4537
4538 edid = to_intel_connector(connector)->detect_edid;
4539 if (edid)
4540 has_audio = drm_detect_monitor_audio(edid);
4541
4542 return has_audio;
4543 }
4544
4545 static int
4546 intel_dp_set_property(struct drm_connector *connector,
4547 struct drm_property *property,
4548 uint64_t val)
4549 {
4550 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4551 struct intel_connector *intel_connector = to_intel_connector(connector);
4552 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4553 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4554 int ret;
4555
4556 ret = drm_object_property_set_value(&connector->base, property, val);
4557 if (ret)
4558 return ret;
4559
4560 if (property == dev_priv->force_audio_property) {
4561 int i = val;
4562 bool has_audio;
4563
4564 if (i == intel_dp->force_audio)
4565 return 0;
4566
4567 intel_dp->force_audio = i;
4568
4569 if (i == HDMI_AUDIO_AUTO)
4570 has_audio = intel_dp_detect_audio(connector);
4571 else
4572 has_audio = (i == HDMI_AUDIO_ON);
4573
4574 if (has_audio == intel_dp->has_audio)
4575 return 0;
4576
4577 intel_dp->has_audio = has_audio;
4578 goto done;
4579 }
4580
4581 if (property == dev_priv->broadcast_rgb_property) {
4582 bool old_auto = intel_dp->color_range_auto;
4583 uint32_t old_range = intel_dp->color_range;
4584
4585 switch (val) {
4586 case INTEL_BROADCAST_RGB_AUTO:
4587 intel_dp->color_range_auto = true;
4588 break;
4589 case INTEL_BROADCAST_RGB_FULL:
4590 intel_dp->color_range_auto = false;
4591 intel_dp->color_range = 0;
4592 break;
4593 case INTEL_BROADCAST_RGB_LIMITED:
4594 intel_dp->color_range_auto = false;
4595 intel_dp->color_range = DP_COLOR_RANGE_16_235;
4596 break;
4597 default:
4598 return -EINVAL;
4599 }
4600
4601 if (old_auto == intel_dp->color_range_auto &&
4602 old_range == intel_dp->color_range)
4603 return 0;
4604
4605 goto done;
4606 }
4607
4608 if (is_edp(intel_dp) &&
4609 property == connector->dev->mode_config.scaling_mode_property) {
4610 if (val == DRM_MODE_SCALE_NONE) {
4611 DRM_DEBUG_KMS("no scaling not supported\n");
4612 return -EINVAL;
4613 }
4614
4615 if (intel_connector->panel.fitting_mode == val) {
4616 /* the eDP scaling property is not changed */
4617 return 0;
4618 }
4619 intel_connector->panel.fitting_mode = val;
4620
4621 goto done;
4622 }
4623
4624 return -EINVAL;
4625
4626 done:
4627 if (intel_encoder->base.crtc)
4628 intel_crtc_restore_mode(intel_encoder->base.crtc);
4629
4630 return 0;
4631 }
4632
4633 static void
4634 intel_dp_connector_destroy(struct drm_connector *connector)
4635 {
4636 struct intel_connector *intel_connector = to_intel_connector(connector);
4637
4638 kfree(intel_connector->detect_edid);
4639
4640 if (!IS_ERR_OR_NULL(intel_connector->edid))
4641 kfree(intel_connector->edid);
4642
4643 /* Can't call is_edp() since the encoder may have been destroyed
4644 * already. */
4645 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4646 intel_panel_fini(&intel_connector->panel);
4647
4648 drm_connector_cleanup(connector);
4649 kfree(connector);
4650 }
4651
4652 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4653 {
4654 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4655 struct intel_dp *intel_dp = &intel_dig_port->dp;
4656
4657 drm_dp_aux_unregister(&intel_dp->aux);
4658 intel_dp_mst_encoder_cleanup(intel_dig_port);
4659 drm_encoder_cleanup(encoder);
4660 if (is_edp(intel_dp)) {
4661 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4662 /*
4663 * vdd might still be enabled do to the delayed vdd off.
4664 * Make sure vdd is actually turned off here.
4665 */
4666 pps_lock(intel_dp);
4667 edp_panel_vdd_off_sync(intel_dp);
4668 pps_unlock(intel_dp);
4669
4670 if (intel_dp->edp_notifier.notifier_call) {
4671 unregister_reboot_notifier(&intel_dp->edp_notifier);
4672 intel_dp->edp_notifier.notifier_call = NULL;
4673 }
4674 }
4675 kfree(intel_dig_port);
4676 }
4677
4678 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4679 {
4680 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4681
4682 if (!is_edp(intel_dp))
4683 return;
4684
4685 /*
4686 * vdd might still be enabled do to the delayed vdd off.
4687 * Make sure vdd is actually turned off here.
4688 */
4689 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4690 pps_lock(intel_dp);
4691 edp_panel_vdd_off_sync(intel_dp);
4692 pps_unlock(intel_dp);
4693 }
4694
4695 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4696 {
4697 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4698 struct drm_device *dev = intel_dig_port->base.base.dev;
4699 struct drm_i915_private *dev_priv = dev->dev_private;
4700 enum intel_display_power_domain power_domain;
4701
4702 lockdep_assert_held(&dev_priv->pps_mutex);
4703
4704 if (!edp_have_panel_vdd(intel_dp))
4705 return;
4706
4707 /*
4708 * The VDD bit needs a power domain reference, so if the bit is
4709 * already enabled when we boot or resume, grab this reference and
4710 * schedule a vdd off, so we don't hold on to the reference
4711 * indefinitely.
4712 */
4713 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4714 power_domain = intel_display_port_power_domain(&intel_dig_port->base);
4715 intel_display_power_get(dev_priv, power_domain);
4716
4717 edp_panel_vdd_schedule_off(intel_dp);
4718 }
4719
4720 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4721 {
4722 struct intel_dp *intel_dp;
4723
4724 if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4725 return;
4726
4727 intel_dp = enc_to_intel_dp(encoder);
4728
4729 pps_lock(intel_dp);
4730
4731 /*
4732 * Read out the current power sequencer assignment,
4733 * in case the BIOS did something with it.
4734 */
4735 if (IS_VALLEYVIEW(encoder->dev))
4736 vlv_initial_power_sequencer_setup(intel_dp);
4737
4738 intel_edp_panel_vdd_sanitize(intel_dp);
4739
4740 pps_unlock(intel_dp);
4741 }
4742
4743 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4744 .dpms = intel_connector_dpms,
4745 .detect = intel_dp_detect,
4746 .force = intel_dp_force,
4747 .fill_modes = drm_helper_probe_single_connector_modes,
4748 .set_property = intel_dp_set_property,
4749 .destroy = intel_dp_connector_destroy,
4750 };
4751
4752 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4753 .get_modes = intel_dp_get_modes,
4754 .mode_valid = intel_dp_mode_valid,
4755 .best_encoder = intel_best_encoder,
4756 };
4757
4758 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4759 .reset = intel_dp_encoder_reset,
4760 .destroy = intel_dp_encoder_destroy,
4761 };
4762
4763 void
4764 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4765 {
4766 return;
4767 }
4768
4769 bool
4770 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4771 {
4772 struct intel_dp *intel_dp = &intel_dig_port->dp;
4773 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4774 struct drm_device *dev = intel_dig_port->base.base.dev;
4775 struct drm_i915_private *dev_priv = dev->dev_private;
4776 enum intel_display_power_domain power_domain;
4777 bool ret = true;
4778
4779 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4780 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4781
4782 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4783 /*
4784 * vdd off can generate a long pulse on eDP which
4785 * would require vdd on to handle it, and thus we
4786 * would end up in an endless cycle of
4787 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4788 */
4789 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4790 port_name(intel_dig_port->port));
4791 return false;
4792 }
4793
4794 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4795 port_name(intel_dig_port->port),
4796 long_hpd ? "long" : "short");
4797
4798 power_domain = intel_display_port_power_domain(intel_encoder);
4799 intel_display_power_get(dev_priv, power_domain);
4800
4801 if (long_hpd) {
4802
4803 if (HAS_PCH_SPLIT(dev)) {
4804 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4805 goto mst_fail;
4806 } else {
4807 if (g4x_digital_port_connected(dev, intel_dig_port) != 1)
4808 goto mst_fail;
4809 }
4810
4811 if (!intel_dp_get_dpcd(intel_dp)) {
4812 goto mst_fail;
4813 }
4814
4815 intel_dp_probe_oui(intel_dp);
4816
4817 if (!intel_dp_probe_mst(intel_dp))
4818 goto mst_fail;
4819
4820 } else {
4821 if (intel_dp->is_mst) {
4822 if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4823 goto mst_fail;
4824 }
4825
4826 if (!intel_dp->is_mst) {
4827 /*
4828 * we'll check the link status via the normal hot plug path later -
4829 * but for short hpds we should check it now
4830 */
4831 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4832 intel_dp_check_link_status(intel_dp);
4833 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4834 }
4835 }
4836 ret = false;
4837 goto put_power;
4838 mst_fail:
4839 /* if we were in MST mode, and device is not there get out of MST mode */
4840 if (intel_dp->is_mst) {
4841 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4842 intel_dp->is_mst = false;
4843 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4844 }
4845 put_power:
4846 intel_display_power_put(dev_priv, power_domain);
4847
4848 return ret;
4849 }
4850
4851 /* Return which DP Port should be selected for Transcoder DP control */
4852 int
4853 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4854 {
4855 struct drm_device *dev = crtc->dev;
4856 struct intel_encoder *intel_encoder;
4857 struct intel_dp *intel_dp;
4858
4859 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4860 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4861
4862 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4863 intel_encoder->type == INTEL_OUTPUT_EDP)
4864 return intel_dp->output_reg;
4865 }
4866
4867 return -1;
4868 }
4869
4870 /* check the VBT to see whether the eDP is on DP-D port */
4871 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4872 {
4873 struct drm_i915_private *dev_priv = dev->dev_private;
4874 union child_device_config *p_child;
4875 int i;
4876 static const short port_mapping[] = {
4877 [PORT_B] = PORT_IDPB,
4878 [PORT_C] = PORT_IDPC,
4879 [PORT_D] = PORT_IDPD,
4880 };
4881
4882 if (port == PORT_A)
4883 return true;
4884
4885 if (!dev_priv->vbt.child_dev_num)
4886 return false;
4887
4888 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4889 p_child = dev_priv->vbt.child_dev + i;
4890
4891 if (p_child->common.dvo_port == port_mapping[port] &&
4892 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4893 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
4894 return true;
4895 }
4896 return false;
4897 }
4898
4899 void
4900 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4901 {
4902 struct intel_connector *intel_connector = to_intel_connector(connector);
4903
4904 intel_attach_force_audio_property(connector);
4905 intel_attach_broadcast_rgb_property(connector);
4906 intel_dp->color_range_auto = true;
4907
4908 if (is_edp(intel_dp)) {
4909 drm_mode_create_scaling_mode_property(connector->dev);
4910 drm_object_attach_property(
4911 &connector->base,
4912 connector->dev->mode_config.scaling_mode_property,
4913 DRM_MODE_SCALE_ASPECT);
4914 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4915 }
4916 }
4917
4918 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4919 {
4920 intel_dp->last_power_cycle = jiffies;
4921 intel_dp->last_power_on = jiffies;
4922 intel_dp->last_backlight_off = jiffies;
4923 }
4924
4925 static void
4926 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4927 struct intel_dp *intel_dp)
4928 {
4929 struct drm_i915_private *dev_priv = dev->dev_private;
4930 struct edp_power_seq cur, vbt, spec,
4931 *final = &intel_dp->pps_delays;
4932 u32 pp_on, pp_off, pp_div, pp;
4933 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4934
4935 lockdep_assert_held(&dev_priv->pps_mutex);
4936
4937 /* already initialized? */
4938 if (final->t11_t12 != 0)
4939 return;
4940
4941 if (HAS_PCH_SPLIT(dev)) {
4942 pp_ctrl_reg = PCH_PP_CONTROL;
4943 pp_on_reg = PCH_PP_ON_DELAYS;
4944 pp_off_reg = PCH_PP_OFF_DELAYS;
4945 pp_div_reg = PCH_PP_DIVISOR;
4946 } else {
4947 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4948
4949 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4950 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4951 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4952 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4953 }
4954
4955 /* Workaround: Need to write PP_CONTROL with the unlock key as
4956 * the very first thing. */
4957 pp = ironlake_get_pp_control(intel_dp);
4958 I915_WRITE(pp_ctrl_reg, pp);
4959
4960 pp_on = I915_READ(pp_on_reg);
4961 pp_off = I915_READ(pp_off_reg);
4962 pp_div = I915_READ(pp_div_reg);
4963
4964 /* Pull timing values out of registers */
4965 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4966 PANEL_POWER_UP_DELAY_SHIFT;
4967
4968 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4969 PANEL_LIGHT_ON_DELAY_SHIFT;
4970
4971 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4972 PANEL_LIGHT_OFF_DELAY_SHIFT;
4973
4974 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4975 PANEL_POWER_DOWN_DELAY_SHIFT;
4976
4977 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4978 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4979
4980 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4981 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4982
4983 vbt = dev_priv->vbt.edp_pps;
4984
4985 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4986 * our hw here, which are all in 100usec. */
4987 spec.t1_t3 = 210 * 10;
4988 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4989 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4990 spec.t10 = 500 * 10;
4991 /* This one is special and actually in units of 100ms, but zero
4992 * based in the hw (so we need to add 100 ms). But the sw vbt
4993 * table multiplies it with 1000 to make it in units of 100usec,
4994 * too. */
4995 spec.t11_t12 = (510 + 100) * 10;
4996
4997 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4998 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4999
5000 /* Use the max of the register settings and vbt. If both are
5001 * unset, fall back to the spec limits. */
5002 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
5003 spec.field : \
5004 max(cur.field, vbt.field))
5005 assign_final(t1_t3);
5006 assign_final(t8);
5007 assign_final(t9);
5008 assign_final(t10);
5009 assign_final(t11_t12);
5010 #undef assign_final
5011
5012 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
5013 intel_dp->panel_power_up_delay = get_delay(t1_t3);
5014 intel_dp->backlight_on_delay = get_delay(t8);
5015 intel_dp->backlight_off_delay = get_delay(t9);
5016 intel_dp->panel_power_down_delay = get_delay(t10);
5017 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5018 #undef get_delay
5019
5020 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5021 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5022 intel_dp->panel_power_cycle_delay);
5023
5024 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5025 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5026 }
5027
5028 static void
5029 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5030 struct intel_dp *intel_dp)
5031 {
5032 struct drm_i915_private *dev_priv = dev->dev_private;
5033 u32 pp_on, pp_off, pp_div, port_sel = 0;
5034 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
5035 int pp_on_reg, pp_off_reg, pp_div_reg;
5036 enum port port = dp_to_dig_port(intel_dp)->port;
5037 const struct edp_power_seq *seq = &intel_dp->pps_delays;
5038
5039 lockdep_assert_held(&dev_priv->pps_mutex);
5040
5041 if (HAS_PCH_SPLIT(dev)) {
5042 pp_on_reg = PCH_PP_ON_DELAYS;
5043 pp_off_reg = PCH_PP_OFF_DELAYS;
5044 pp_div_reg = PCH_PP_DIVISOR;
5045 } else {
5046 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5047
5048 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5049 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5050 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5051 }
5052
5053 /*
5054 * And finally store the new values in the power sequencer. The
5055 * backlight delays are set to 1 because we do manual waits on them. For
5056 * T8, even BSpec recommends doing it. For T9, if we don't do this,
5057 * we'll end up waiting for the backlight off delay twice: once when we
5058 * do the manual sleep, and once when we disable the panel and wait for
5059 * the PP_STATUS bit to become zero.
5060 */
5061 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5062 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
5063 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5064 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5065 /* Compute the divisor for the pp clock, simply match the Bspec
5066 * formula. */
5067 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5068 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5069 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5070
5071 /* Haswell doesn't have any port selection bits for the panel
5072 * power sequencer any more. */
5073 if (IS_VALLEYVIEW(dev)) {
5074 port_sel = PANEL_PORT_SELECT_VLV(port);
5075 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5076 if (port == PORT_A)
5077 port_sel = PANEL_PORT_SELECT_DPA;
5078 else
5079 port_sel = PANEL_PORT_SELECT_DPD;
5080 }
5081
5082 pp_on |= port_sel;
5083
5084 I915_WRITE(pp_on_reg, pp_on);
5085 I915_WRITE(pp_off_reg, pp_off);
5086 I915_WRITE(pp_div_reg, pp_div);
5087
5088 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5089 I915_READ(pp_on_reg),
5090 I915_READ(pp_off_reg),
5091 I915_READ(pp_div_reg));
5092 }
5093
5094 void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
5095 {
5096 struct drm_i915_private *dev_priv = dev->dev_private;
5097 struct intel_encoder *encoder;
5098 struct intel_dp *intel_dp = NULL;
5099 struct intel_crtc_config *config = NULL;
5100 struct intel_crtc *intel_crtc = NULL;
5101 struct intel_connector *intel_connector = dev_priv->drrs.connector;
5102 u32 reg, val;
5103 enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
5104
5105 if (refresh_rate <= 0) {
5106 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5107 return;
5108 }
5109
5110 if (intel_connector == NULL) {
5111 DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
5112 return;
5113 }
5114
5115 /*
5116 * FIXME: This needs proper synchronization with psr state. But really
5117 * hard to tell without seeing the user of this function of this code.
5118 * Check locking and ordering once that lands.
5119 */
5120 if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
5121 DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
5122 return;
5123 }
5124
5125 encoder = intel_attached_encoder(&intel_connector->base);
5126 intel_dp = enc_to_intel_dp(&encoder->base);
5127 intel_crtc = encoder->new_crtc;
5128
5129 if (!intel_crtc) {
5130 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5131 return;
5132 }
5133
5134 config = &intel_crtc->config;
5135
5136 if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
5137 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5138 return;
5139 }
5140
5141 if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
5142 index = DRRS_LOW_RR;
5143
5144 if (index == intel_dp->drrs_state.refresh_rate_type) {
5145 DRM_DEBUG_KMS(
5146 "DRRS requested for previously set RR...ignoring\n");
5147 return;
5148 }
5149
5150 if (!intel_crtc->active) {
5151 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5152 return;
5153 }
5154
5155 if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
5156 reg = PIPECONF(intel_crtc->config.cpu_transcoder);
5157 val = I915_READ(reg);
5158 if (index > DRRS_HIGH_RR) {
5159 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5160 intel_dp_set_m_n(intel_crtc);
5161 } else {
5162 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5163 }
5164 I915_WRITE(reg, val);
5165 }
5166
5167 /*
5168 * mutex taken to ensure that there is no race between differnt
5169 * drrs calls trying to update refresh rate. This scenario may occur
5170 * in future when idleness detection based DRRS in kernel and
5171 * possible calls from user space to set differnt RR are made.
5172 */
5173
5174 mutex_lock(&intel_dp->drrs_state.mutex);
5175
5176 intel_dp->drrs_state.refresh_rate_type = index;
5177
5178 mutex_unlock(&intel_dp->drrs_state.mutex);
5179
5180 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5181 }
5182
5183 static struct drm_display_mode *
5184 intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
5185 struct intel_connector *intel_connector,
5186 struct drm_display_mode *fixed_mode)
5187 {
5188 struct drm_connector *connector = &intel_connector->base;
5189 struct intel_dp *intel_dp = &intel_dig_port->dp;
5190 struct drm_device *dev = intel_dig_port->base.base.dev;
5191 struct drm_i915_private *dev_priv = dev->dev_private;
5192 struct drm_display_mode *downclock_mode = NULL;
5193
5194 if (INTEL_INFO(dev)->gen <= 6) {
5195 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5196 return NULL;
5197 }
5198
5199 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5200 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5201 return NULL;
5202 }
5203
5204 downclock_mode = intel_find_panel_downclock
5205 (dev, fixed_mode, connector);
5206
5207 if (!downclock_mode) {
5208 DRM_DEBUG_KMS("DRRS not supported\n");
5209 return NULL;
5210 }
5211
5212 dev_priv->drrs.connector = intel_connector;
5213
5214 mutex_init(&intel_dp->drrs_state.mutex);
5215
5216 intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
5217
5218 intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
5219 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5220 return downclock_mode;
5221 }
5222
5223 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5224 struct intel_connector *intel_connector)
5225 {
5226 struct drm_connector *connector = &intel_connector->base;
5227 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5228 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5229 struct drm_device *dev = intel_encoder->base.dev;
5230 struct drm_i915_private *dev_priv = dev->dev_private;
5231 struct drm_display_mode *fixed_mode = NULL;
5232 struct drm_display_mode *downclock_mode = NULL;
5233 bool has_dpcd;
5234 struct drm_display_mode *scan;
5235 struct edid *edid;
5236
5237 intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
5238
5239 if (!is_edp(intel_dp))
5240 return true;
5241
5242 pps_lock(intel_dp);
5243 intel_edp_panel_vdd_sanitize(intel_dp);
5244 pps_unlock(intel_dp);
5245
5246 /* Cache DPCD and EDID for edp. */
5247 has_dpcd = intel_dp_get_dpcd(intel_dp);
5248
5249 if (has_dpcd) {
5250 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5251 dev_priv->no_aux_handshake =
5252 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5253 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5254 } else {
5255 /* if this fails, presume the device is a ghost */
5256 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5257 return false;
5258 }
5259
5260 /* We now know it's not a ghost, init power sequence regs. */
5261 pps_lock(intel_dp);
5262 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5263 pps_unlock(intel_dp);
5264
5265 mutex_lock(&dev->mode_config.mutex);
5266 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5267 if (edid) {
5268 if (drm_add_edid_modes(connector, edid)) {
5269 drm_mode_connector_update_edid_property(connector,
5270 edid);
5271 drm_edid_to_eld(connector, edid);
5272 } else {
5273 kfree(edid);
5274 edid = ERR_PTR(-EINVAL);
5275 }
5276 } else {
5277 edid = ERR_PTR(-ENOENT);
5278 }
5279 intel_connector->edid = edid;
5280
5281 /* prefer fixed mode from EDID if available */
5282 list_for_each_entry(scan, &connector->probed_modes, head) {
5283 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5284 fixed_mode = drm_mode_duplicate(dev, scan);
5285 downclock_mode = intel_dp_drrs_init(
5286 intel_dig_port,
5287 intel_connector, fixed_mode);
5288 break;
5289 }
5290 }
5291
5292 /* fallback to VBT if available for eDP */
5293 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5294 fixed_mode = drm_mode_duplicate(dev,
5295 dev_priv->vbt.lfp_lvds_vbt_mode);
5296 if (fixed_mode)
5297 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5298 }
5299 mutex_unlock(&dev->mode_config.mutex);
5300
5301 if (IS_VALLEYVIEW(dev)) {
5302 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5303 register_reboot_notifier(&intel_dp->edp_notifier);
5304 }
5305
5306 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5307 intel_connector->panel.backlight_power = intel_edp_backlight_power;
5308 intel_panel_setup_backlight(connector);
5309
5310 return true;
5311 }
5312
5313 bool
5314 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5315 struct intel_connector *intel_connector)
5316 {
5317 struct drm_connector *connector = &intel_connector->base;
5318 struct intel_dp *intel_dp = &intel_dig_port->dp;
5319 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5320 struct drm_device *dev = intel_encoder->base.dev;
5321 struct drm_i915_private *dev_priv = dev->dev_private;
5322 enum port port = intel_dig_port->port;
5323 int type;
5324
5325 intel_dp->pps_pipe = INVALID_PIPE;
5326
5327 /* intel_dp vfuncs */
5328 if (INTEL_INFO(dev)->gen >= 9)
5329 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5330 else if (IS_VALLEYVIEW(dev))
5331 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5332 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5333 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5334 else if (HAS_PCH_SPLIT(dev))
5335 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5336 else
5337 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5338
5339 if (INTEL_INFO(dev)->gen >= 9)
5340 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5341 else
5342 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5343
5344 /* Preserve the current hw state. */
5345 intel_dp->DP = I915_READ(intel_dp->output_reg);
5346 intel_dp->attached_connector = intel_connector;
5347
5348 if (intel_dp_is_edp(dev, port))
5349 type = DRM_MODE_CONNECTOR_eDP;
5350 else
5351 type = DRM_MODE_CONNECTOR_DisplayPort;
5352
5353 /*
5354 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5355 * for DP the encoder type can be set by the caller to
5356 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5357 */
5358 if (type == DRM_MODE_CONNECTOR_eDP)
5359 intel_encoder->type = INTEL_OUTPUT_EDP;
5360
5361 /* eDP only on port B and/or C on vlv/chv */
5362 if (WARN_ON(IS_VALLEYVIEW(dev) && is_edp(intel_dp) &&
5363 port != PORT_B && port != PORT_C))
5364 return false;
5365
5366 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5367 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5368 port_name(port));
5369
5370 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5371 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5372
5373 connector->interlace_allowed = true;
5374 connector->doublescan_allowed = 0;
5375
5376 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5377 edp_panel_vdd_work);
5378
5379 intel_connector_attach_encoder(intel_connector, intel_encoder);
5380 drm_connector_register(connector);
5381
5382 if (HAS_DDI(dev))
5383 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5384 else
5385 intel_connector->get_hw_state = intel_connector_get_hw_state;
5386 intel_connector->unregister = intel_dp_connector_unregister;
5387
5388 /* Set up the hotplug pin. */
5389 switch (port) {
5390 case PORT_A:
5391 intel_encoder->hpd_pin = HPD_PORT_A;
5392 break;
5393 case PORT_B:
5394 intel_encoder->hpd_pin = HPD_PORT_B;
5395 break;
5396 case PORT_C:
5397 intel_encoder->hpd_pin = HPD_PORT_C;
5398 break;
5399 case PORT_D:
5400 intel_encoder->hpd_pin = HPD_PORT_D;
5401 break;
5402 default:
5403 BUG();
5404 }
5405
5406 if (is_edp(intel_dp)) {
5407 pps_lock(intel_dp);
5408 intel_dp_init_panel_power_timestamps(intel_dp);
5409 if (IS_VALLEYVIEW(dev))
5410 vlv_initial_power_sequencer_setup(intel_dp);
5411 else
5412 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5413 pps_unlock(intel_dp);
5414 }
5415
5416 intel_dp_aux_init(intel_dp, intel_connector);
5417
5418 /* init MST on ports that can support it */
5419 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5420 if (port == PORT_B || port == PORT_C || port == PORT_D) {
5421 intel_dp_mst_encoder_init(intel_dig_port,
5422 intel_connector->base.base.id);
5423 }
5424 }
5425
5426 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5427 drm_dp_aux_unregister(&intel_dp->aux);
5428 if (is_edp(intel_dp)) {
5429 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5430 /*
5431 * vdd might still be enabled do to the delayed vdd off.
5432 * Make sure vdd is actually turned off here.
5433 */
5434 pps_lock(intel_dp);
5435 edp_panel_vdd_off_sync(intel_dp);
5436 pps_unlock(intel_dp);
5437 }
5438 drm_connector_unregister(connector);
5439 drm_connector_cleanup(connector);
5440 return false;
5441 }
5442
5443 intel_dp_add_properties(intel_dp, connector);
5444
5445 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5446 * 0xd. Failure to do so will result in spurious interrupts being
5447 * generated on the port when a cable is not attached.
5448 */
5449 if (IS_G4X(dev) && !IS_GM45(dev)) {
5450 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5451 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5452 }
5453
5454 return true;
5455 }
5456
5457 void
5458 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
5459 {
5460 struct drm_i915_private *dev_priv = dev->dev_private;
5461 struct intel_digital_port *intel_dig_port;
5462 struct intel_encoder *intel_encoder;
5463 struct drm_encoder *encoder;
5464 struct intel_connector *intel_connector;
5465
5466 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5467 if (!intel_dig_port)
5468 return;
5469
5470 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
5471 if (!intel_connector) {
5472 kfree(intel_dig_port);
5473 return;
5474 }
5475
5476 intel_encoder = &intel_dig_port->base;
5477 encoder = &intel_encoder->base;
5478
5479 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5480 DRM_MODE_ENCODER_TMDS);
5481
5482 intel_encoder->compute_config = intel_dp_compute_config;
5483 intel_encoder->disable = intel_disable_dp;
5484 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5485 intel_encoder->get_config = intel_dp_get_config;
5486 intel_encoder->suspend = intel_dp_encoder_suspend;
5487 if (IS_CHERRYVIEW(dev)) {
5488 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5489 intel_encoder->pre_enable = chv_pre_enable_dp;
5490 intel_encoder->enable = vlv_enable_dp;
5491 intel_encoder->post_disable = chv_post_disable_dp;
5492 } else if (IS_VALLEYVIEW(dev)) {
5493 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5494 intel_encoder->pre_enable = vlv_pre_enable_dp;
5495 intel_encoder->enable = vlv_enable_dp;
5496 intel_encoder->post_disable = vlv_post_disable_dp;
5497 } else {
5498 intel_encoder->pre_enable = g4x_pre_enable_dp;
5499 intel_encoder->enable = g4x_enable_dp;
5500 if (INTEL_INFO(dev)->gen >= 5)
5501 intel_encoder->post_disable = ilk_post_disable_dp;
5502 }
5503
5504 intel_dig_port->port = port;
5505 intel_dig_port->dp.output_reg = output_reg;
5506
5507 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5508 if (IS_CHERRYVIEW(dev)) {
5509 if (port == PORT_D)
5510 intel_encoder->crtc_mask = 1 << 2;
5511 else
5512 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5513 } else {
5514 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5515 }
5516 intel_encoder->cloneable = 0;
5517 intel_encoder->hot_plug = intel_dp_hot_plug;
5518
5519 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5520 dev_priv->hpd_irq_port[port] = intel_dig_port;
5521
5522 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
5523 drm_encoder_cleanup(encoder);
5524 kfree(intel_dig_port);
5525 kfree(intel_connector);
5526 }
5527 }
5528
5529 void intel_dp_mst_suspend(struct drm_device *dev)
5530 {
5531 struct drm_i915_private *dev_priv = dev->dev_private;
5532 int i;
5533
5534 /* disable MST */
5535 for (i = 0; i < I915_MAX_PORTS; i++) {
5536 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5537 if (!intel_dig_port)
5538 continue;
5539
5540 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5541 if (!intel_dig_port->dp.can_mst)
5542 continue;
5543 if (intel_dig_port->dp.is_mst)
5544 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5545 }
5546 }
5547 }
5548
5549 void intel_dp_mst_resume(struct drm_device *dev)
5550 {
5551 struct drm_i915_private *dev_priv = dev->dev_private;
5552 int i;
5553
5554 for (i = 0; i < I915_MAX_PORTS; i++) {
5555 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5556 if (!intel_dig_port)
5557 continue;
5558 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5559 int ret;
5560
5561 if (!intel_dig_port->dp.can_mst)
5562 continue;
5563
5564 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5565 if (ret != 0) {
5566 intel_dp_check_mst_status(&intel_dig_port->dp);
5567 }
5568 }
5569 }
5570 }