]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_dp.c
drm/i915: decouple gen9 and gen10 dp signal levels.
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/types.h>
32 #include <linux/notifier.h>
33 #include <linux/reboot.h>
34 #include <asm/byteorder.h>
35 #include <drm/drmP.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_crtc.h>
38 #include <drm/drm_crtc_helper.h>
39 #include <drm/drm_edid.h>
40 #include "intel_drv.h"
41 #include <drm/i915_drm.h>
42 #include "i915_drv.h"
43
44 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
45
46 /* Compliance test status bits */
47 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
48 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
50 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
51
52 struct dp_link_dpll {
53 int clock;
54 struct dpll dpll;
55 };
56
57 static const struct dp_link_dpll gen4_dpll[] = {
58 { 162000,
59 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
60 { 270000,
61 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
62 };
63
64 static const struct dp_link_dpll pch_dpll[] = {
65 { 162000,
66 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
67 { 270000,
68 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
69 };
70
71 static const struct dp_link_dpll vlv_dpll[] = {
72 { 162000,
73 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
74 { 270000,
75 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
76 };
77
78 /*
79 * CHV supports eDP 1.4 that have more link rates.
80 * Below only provides the fixed rate but exclude variable rate.
81 */
82 static const struct dp_link_dpll chv_dpll[] = {
83 /*
84 * CHV requires to program fractional division for m2.
85 * m2 is stored in fixed point format using formula below
86 * (m2_int << 22) | m2_fraction
87 */
88 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
89 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
90 { 270000, /* m2_int = 27, m2_fraction = 0 */
91 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
92 { 540000, /* m2_int = 27, m2_fraction = 0 */
93 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
94 };
95
96 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
97 324000, 432000, 540000 };
98 static const int skl_rates[] = { 162000, 216000, 270000,
99 324000, 432000, 540000 };
100 static const int cnl_rates[] = { 162000, 216000, 270000,
101 324000, 432000, 540000,
102 648000, 810000 };
103 static const int default_rates[] = { 162000, 270000, 540000 };
104
105 /**
106 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
107 * @intel_dp: DP struct
108 *
109 * If a CPU or PCH DP output is attached to an eDP panel, this function
110 * will return true, and false otherwise.
111 */
112 bool intel_dp_is_edp(struct intel_dp *intel_dp)
113 {
114 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
115
116 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
117 }
118
119 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
120 {
121 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
122
123 return intel_dig_port->base.base.dev;
124 }
125
126 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
127 {
128 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
129 }
130
131 static void intel_dp_link_down(struct intel_dp *intel_dp);
132 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
133 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
134 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
135 static void vlv_steal_power_sequencer(struct drm_device *dev,
136 enum pipe pipe);
137 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
138
139 static int intel_dp_num_rates(u8 link_bw_code)
140 {
141 switch (link_bw_code) {
142 default:
143 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
144 link_bw_code);
145 case DP_LINK_BW_1_62:
146 return 1;
147 case DP_LINK_BW_2_7:
148 return 2;
149 case DP_LINK_BW_5_4:
150 return 3;
151 }
152 }
153
154 /* update sink rates from dpcd */
155 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
156 {
157 int i, num_rates;
158
159 num_rates = intel_dp_num_rates(intel_dp->dpcd[DP_MAX_LINK_RATE]);
160
161 for (i = 0; i < num_rates; i++)
162 intel_dp->sink_rates[i] = default_rates[i];
163
164 intel_dp->num_sink_rates = num_rates;
165 }
166
167 /* Theoretical max between source and sink */
168 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
169 {
170 return intel_dp->common_rates[intel_dp->num_common_rates - 1];
171 }
172
173 /* Theoretical max between source and sink */
174 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
175 {
176 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
177 int source_max = intel_dig_port->max_lanes;
178 int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
179
180 return min(source_max, sink_max);
181 }
182
183 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
184 {
185 return intel_dp->max_link_lane_count;
186 }
187
188 int
189 intel_dp_link_required(int pixel_clock, int bpp)
190 {
191 /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
192 return DIV_ROUND_UP(pixel_clock * bpp, 8);
193 }
194
195 int
196 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
197 {
198 /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
199 * link rate that is generally expressed in Gbps. Since, 8 bits of data
200 * is transmitted every LS_Clk per lane, there is no need to account for
201 * the channel encoding that is done in the PHY layer here.
202 */
203
204 return max_link_clock * max_lanes;
205 }
206
207 static int
208 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
209 {
210 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
211 struct intel_encoder *encoder = &intel_dig_port->base;
212 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
213 int max_dotclk = dev_priv->max_dotclk_freq;
214 int ds_max_dotclk;
215
216 int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
217
218 if (type != DP_DS_PORT_TYPE_VGA)
219 return max_dotclk;
220
221 ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
222 intel_dp->downstream_ports);
223
224 if (ds_max_dotclk != 0)
225 max_dotclk = min(max_dotclk, ds_max_dotclk);
226
227 return max_dotclk;
228 }
229
230 static void
231 intel_dp_set_source_rates(struct intel_dp *intel_dp)
232 {
233 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
234 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
235 enum port port = dig_port->port;
236 const int *source_rates;
237 int size;
238 u32 voltage;
239
240 /* This should only be done once */
241 WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);
242
243 if (IS_GEN9_LP(dev_priv)) {
244 source_rates = bxt_rates;
245 size = ARRAY_SIZE(bxt_rates);
246 } else if (IS_CANNONLAKE(dev_priv)) {
247 source_rates = cnl_rates;
248 size = ARRAY_SIZE(cnl_rates);
249 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
250 if (port == PORT_A || port == PORT_D ||
251 voltage == VOLTAGE_INFO_0_85V)
252 size -= 2;
253 } else if (IS_GEN9_BC(dev_priv)) {
254 source_rates = skl_rates;
255 size = ARRAY_SIZE(skl_rates);
256 } else {
257 source_rates = default_rates;
258 size = ARRAY_SIZE(default_rates);
259 }
260
261 /* This depends on the fact that 5.4 is last value in the array */
262 if (!intel_dp_source_supports_hbr2(intel_dp))
263 size--;
264
265 intel_dp->source_rates = source_rates;
266 intel_dp->num_source_rates = size;
267 }
268
269 static int intersect_rates(const int *source_rates, int source_len,
270 const int *sink_rates, int sink_len,
271 int *common_rates)
272 {
273 int i = 0, j = 0, k = 0;
274
275 while (i < source_len && j < sink_len) {
276 if (source_rates[i] == sink_rates[j]) {
277 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
278 return k;
279 common_rates[k] = source_rates[i];
280 ++k;
281 ++i;
282 ++j;
283 } else if (source_rates[i] < sink_rates[j]) {
284 ++i;
285 } else {
286 ++j;
287 }
288 }
289 return k;
290 }
291
292 /* return index of rate in rates array, or -1 if not found */
293 static int intel_dp_rate_index(const int *rates, int len, int rate)
294 {
295 int i;
296
297 for (i = 0; i < len; i++)
298 if (rate == rates[i])
299 return i;
300
301 return -1;
302 }
303
304 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
305 {
306 WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
307
308 intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
309 intel_dp->num_source_rates,
310 intel_dp->sink_rates,
311 intel_dp->num_sink_rates,
312 intel_dp->common_rates);
313
314 /* Paranoia, there should always be something in common. */
315 if (WARN_ON(intel_dp->num_common_rates == 0)) {
316 intel_dp->common_rates[0] = default_rates[0];
317 intel_dp->num_common_rates = 1;
318 }
319 }
320
321 /* get length of common rates potentially limited by max_rate */
322 static int intel_dp_common_len_rate_limit(struct intel_dp *intel_dp,
323 int max_rate)
324 {
325 const int *common_rates = intel_dp->common_rates;
326 int i, common_len = intel_dp->num_common_rates;
327
328 /* Limit results by potentially reduced max rate */
329 for (i = 0; i < common_len; i++) {
330 if (common_rates[common_len - i - 1] <= max_rate)
331 return common_len - i;
332 }
333
334 return 0;
335 }
336
337 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
338 uint8_t lane_count)
339 {
340 /*
341 * FIXME: we need to synchronize the current link parameters with
342 * hardware readout. Currently fast link training doesn't work on
343 * boot-up.
344 */
345 if (link_rate == 0 ||
346 link_rate > intel_dp->max_link_rate)
347 return false;
348
349 if (lane_count == 0 ||
350 lane_count > intel_dp_max_lane_count(intel_dp))
351 return false;
352
353 return true;
354 }
355
356 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
357 int link_rate, uint8_t lane_count)
358 {
359 int index;
360
361 index = intel_dp_rate_index(intel_dp->common_rates,
362 intel_dp->num_common_rates,
363 link_rate);
364 if (index > 0) {
365 intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
366 intel_dp->max_link_lane_count = lane_count;
367 } else if (lane_count > 1) {
368 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
369 intel_dp->max_link_lane_count = lane_count >> 1;
370 } else {
371 DRM_ERROR("Link Training Unsuccessful\n");
372 return -1;
373 }
374
375 return 0;
376 }
377
378 static enum drm_mode_status
379 intel_dp_mode_valid(struct drm_connector *connector,
380 struct drm_display_mode *mode)
381 {
382 struct intel_dp *intel_dp = intel_attached_dp(connector);
383 struct intel_connector *intel_connector = to_intel_connector(connector);
384 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
385 int target_clock = mode->clock;
386 int max_rate, mode_rate, max_lanes, max_link_clock;
387 int max_dotclk;
388
389 max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
390
391 if (intel_dp_is_edp(intel_dp) && fixed_mode) {
392 if (mode->hdisplay > fixed_mode->hdisplay)
393 return MODE_PANEL;
394
395 if (mode->vdisplay > fixed_mode->vdisplay)
396 return MODE_PANEL;
397
398 target_clock = fixed_mode->clock;
399 }
400
401 max_link_clock = intel_dp_max_link_rate(intel_dp);
402 max_lanes = intel_dp_max_lane_count(intel_dp);
403
404 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
405 mode_rate = intel_dp_link_required(target_clock, 18);
406
407 if (mode_rate > max_rate || target_clock > max_dotclk)
408 return MODE_CLOCK_HIGH;
409
410 if (mode->clock < 10000)
411 return MODE_CLOCK_LOW;
412
413 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
414 return MODE_H_ILLEGAL;
415
416 return MODE_OK;
417 }
418
419 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
420 {
421 int i;
422 uint32_t v = 0;
423
424 if (src_bytes > 4)
425 src_bytes = 4;
426 for (i = 0; i < src_bytes; i++)
427 v |= ((uint32_t) src[i]) << ((3-i) * 8);
428 return v;
429 }
430
431 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
432 {
433 int i;
434 if (dst_bytes > 4)
435 dst_bytes = 4;
436 for (i = 0; i < dst_bytes; i++)
437 dst[i] = src >> ((3-i) * 8);
438 }
439
440 static void
441 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
442 struct intel_dp *intel_dp);
443 static void
444 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
445 struct intel_dp *intel_dp,
446 bool force_disable_vdd);
447 static void
448 intel_dp_pps_init(struct drm_device *dev, struct intel_dp *intel_dp);
449
450 static void pps_lock(struct intel_dp *intel_dp)
451 {
452 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
453 struct intel_encoder *encoder = &intel_dig_port->base;
454 struct drm_device *dev = encoder->base.dev;
455 struct drm_i915_private *dev_priv = to_i915(dev);
456
457 /*
458 * See vlv_power_sequencer_reset() why we need
459 * a power domain reference here.
460 */
461 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
462
463 mutex_lock(&dev_priv->pps_mutex);
464 }
465
466 static void pps_unlock(struct intel_dp *intel_dp)
467 {
468 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
469 struct intel_encoder *encoder = &intel_dig_port->base;
470 struct drm_device *dev = encoder->base.dev;
471 struct drm_i915_private *dev_priv = to_i915(dev);
472
473 mutex_unlock(&dev_priv->pps_mutex);
474
475 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
476 }
477
478 static void
479 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
480 {
481 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
482 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
483 enum pipe pipe = intel_dp->pps_pipe;
484 bool pll_enabled, release_cl_override = false;
485 enum dpio_phy phy = DPIO_PHY(pipe);
486 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
487 uint32_t DP;
488
489 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
490 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
491 pipe_name(pipe), port_name(intel_dig_port->port)))
492 return;
493
494 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
495 pipe_name(pipe), port_name(intel_dig_port->port));
496
497 /* Preserve the BIOS-computed detected bit. This is
498 * supposed to be read-only.
499 */
500 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
501 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
502 DP |= DP_PORT_WIDTH(1);
503 DP |= DP_LINK_TRAIN_PAT_1;
504
505 if (IS_CHERRYVIEW(dev_priv))
506 DP |= DP_PIPE_SELECT_CHV(pipe);
507 else if (pipe == PIPE_B)
508 DP |= DP_PIPEB_SELECT;
509
510 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
511
512 /*
513 * The DPLL for the pipe must be enabled for this to work.
514 * So enable temporarily it if it's not already enabled.
515 */
516 if (!pll_enabled) {
517 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
518 !chv_phy_powergate_ch(dev_priv, phy, ch, true);
519
520 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
521 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
522 DRM_ERROR("Failed to force on pll for pipe %c!\n",
523 pipe_name(pipe));
524 return;
525 }
526 }
527
528 /*
529 * Similar magic as in intel_dp_enable_port().
530 * We _must_ do this port enable + disable trick
531 * to make this power seqeuencer lock onto the port.
532 * Otherwise even VDD force bit won't work.
533 */
534 I915_WRITE(intel_dp->output_reg, DP);
535 POSTING_READ(intel_dp->output_reg);
536
537 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
538 POSTING_READ(intel_dp->output_reg);
539
540 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
541 POSTING_READ(intel_dp->output_reg);
542
543 if (!pll_enabled) {
544 vlv_force_pll_off(dev_priv, pipe);
545
546 if (release_cl_override)
547 chv_phy_powergate_ch(dev_priv, phy, ch, false);
548 }
549 }
550
551 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
552 {
553 struct intel_encoder *encoder;
554 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
555
556 /*
557 * We don't have power sequencer currently.
558 * Pick one that's not used by other ports.
559 */
560 for_each_intel_encoder(&dev_priv->drm, encoder) {
561 struct intel_dp *intel_dp;
562
563 if (encoder->type != INTEL_OUTPUT_DP &&
564 encoder->type != INTEL_OUTPUT_EDP)
565 continue;
566
567 intel_dp = enc_to_intel_dp(&encoder->base);
568
569 if (encoder->type == INTEL_OUTPUT_EDP) {
570 WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
571 intel_dp->active_pipe != intel_dp->pps_pipe);
572
573 if (intel_dp->pps_pipe != INVALID_PIPE)
574 pipes &= ~(1 << intel_dp->pps_pipe);
575 } else {
576 WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);
577
578 if (intel_dp->active_pipe != INVALID_PIPE)
579 pipes &= ~(1 << intel_dp->active_pipe);
580 }
581 }
582
583 if (pipes == 0)
584 return INVALID_PIPE;
585
586 return ffs(pipes) - 1;
587 }
588
589 static enum pipe
590 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
591 {
592 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
593 struct drm_device *dev = intel_dig_port->base.base.dev;
594 struct drm_i915_private *dev_priv = to_i915(dev);
595 enum pipe pipe;
596
597 lockdep_assert_held(&dev_priv->pps_mutex);
598
599 /* We should never land here with regular DP ports */
600 WARN_ON(!intel_dp_is_edp(intel_dp));
601
602 WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
603 intel_dp->active_pipe != intel_dp->pps_pipe);
604
605 if (intel_dp->pps_pipe != INVALID_PIPE)
606 return intel_dp->pps_pipe;
607
608 pipe = vlv_find_free_pps(dev_priv);
609
610 /*
611 * Didn't find one. This should not happen since there
612 * are two power sequencers and up to two eDP ports.
613 */
614 if (WARN_ON(pipe == INVALID_PIPE))
615 pipe = PIPE_A;
616
617 vlv_steal_power_sequencer(dev, pipe);
618 intel_dp->pps_pipe = pipe;
619
620 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
621 pipe_name(intel_dp->pps_pipe),
622 port_name(intel_dig_port->port));
623
624 /* init power sequencer on this pipe and port */
625 intel_dp_init_panel_power_sequencer(dev, intel_dp);
626 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, true);
627
628 /*
629 * Even vdd force doesn't work until we've made
630 * the power sequencer lock in on the port.
631 */
632 vlv_power_sequencer_kick(intel_dp);
633
634 return intel_dp->pps_pipe;
635 }
636
637 static int
638 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
639 {
640 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
641 struct drm_device *dev = intel_dig_port->base.base.dev;
642 struct drm_i915_private *dev_priv = to_i915(dev);
643
644 lockdep_assert_held(&dev_priv->pps_mutex);
645
646 /* We should never land here with regular DP ports */
647 WARN_ON(!intel_dp_is_edp(intel_dp));
648
649 /*
650 * TODO: BXT has 2 PPS instances. The correct port->PPS instance
651 * mapping needs to be retrieved from VBT, for now just hard-code to
652 * use instance #0 always.
653 */
654 if (!intel_dp->pps_reset)
655 return 0;
656
657 intel_dp->pps_reset = false;
658
659 /*
660 * Only the HW needs to be reprogrammed, the SW state is fixed and
661 * has been setup during connector init.
662 */
663 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, false);
664
665 return 0;
666 }
667
668 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
669 enum pipe pipe);
670
671 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
672 enum pipe pipe)
673 {
674 return I915_READ(PP_STATUS(pipe)) & PP_ON;
675 }
676
677 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
678 enum pipe pipe)
679 {
680 return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
681 }
682
683 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
684 enum pipe pipe)
685 {
686 return true;
687 }
688
689 static enum pipe
690 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
691 enum port port,
692 vlv_pipe_check pipe_check)
693 {
694 enum pipe pipe;
695
696 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
697 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
698 PANEL_PORT_SELECT_MASK;
699
700 if (port_sel != PANEL_PORT_SELECT_VLV(port))
701 continue;
702
703 if (!pipe_check(dev_priv, pipe))
704 continue;
705
706 return pipe;
707 }
708
709 return INVALID_PIPE;
710 }
711
712 static void
713 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
714 {
715 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
716 struct drm_device *dev = intel_dig_port->base.base.dev;
717 struct drm_i915_private *dev_priv = to_i915(dev);
718 enum port port = intel_dig_port->port;
719
720 lockdep_assert_held(&dev_priv->pps_mutex);
721
722 /* try to find a pipe with this port selected */
723 /* first pick one where the panel is on */
724 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
725 vlv_pipe_has_pp_on);
726 /* didn't find one? pick one where vdd is on */
727 if (intel_dp->pps_pipe == INVALID_PIPE)
728 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
729 vlv_pipe_has_vdd_on);
730 /* didn't find one? pick one with just the correct port */
731 if (intel_dp->pps_pipe == INVALID_PIPE)
732 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
733 vlv_pipe_any);
734
735 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
736 if (intel_dp->pps_pipe == INVALID_PIPE) {
737 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
738 port_name(port));
739 return;
740 }
741
742 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
743 port_name(port), pipe_name(intel_dp->pps_pipe));
744
745 intel_dp_init_panel_power_sequencer(dev, intel_dp);
746 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, false);
747 }
748
749 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
750 {
751 struct drm_device *dev = &dev_priv->drm;
752 struct intel_encoder *encoder;
753
754 if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
755 !IS_GEN9_LP(dev_priv)))
756 return;
757
758 /*
759 * We can't grab pps_mutex here due to deadlock with power_domain
760 * mutex when power_domain functions are called while holding pps_mutex.
761 * That also means that in order to use pps_pipe the code needs to
762 * hold both a power domain reference and pps_mutex, and the power domain
763 * reference get/put must be done while _not_ holding pps_mutex.
764 * pps_{lock,unlock}() do these steps in the correct order, so one
765 * should use them always.
766 */
767
768 for_each_intel_encoder(dev, encoder) {
769 struct intel_dp *intel_dp;
770
771 if (encoder->type != INTEL_OUTPUT_DP &&
772 encoder->type != INTEL_OUTPUT_EDP)
773 continue;
774
775 intel_dp = enc_to_intel_dp(&encoder->base);
776
777 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
778
779 if (encoder->type != INTEL_OUTPUT_EDP)
780 continue;
781
782 if (IS_GEN9_LP(dev_priv))
783 intel_dp->pps_reset = true;
784 else
785 intel_dp->pps_pipe = INVALID_PIPE;
786 }
787 }
788
789 struct pps_registers {
790 i915_reg_t pp_ctrl;
791 i915_reg_t pp_stat;
792 i915_reg_t pp_on;
793 i915_reg_t pp_off;
794 i915_reg_t pp_div;
795 };
796
797 static void intel_pps_get_registers(struct drm_i915_private *dev_priv,
798 struct intel_dp *intel_dp,
799 struct pps_registers *regs)
800 {
801 int pps_idx = 0;
802
803 memset(regs, 0, sizeof(*regs));
804
805 if (IS_GEN9_LP(dev_priv))
806 pps_idx = bxt_power_sequencer_idx(intel_dp);
807 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
808 pps_idx = vlv_power_sequencer_pipe(intel_dp);
809
810 regs->pp_ctrl = PP_CONTROL(pps_idx);
811 regs->pp_stat = PP_STATUS(pps_idx);
812 regs->pp_on = PP_ON_DELAYS(pps_idx);
813 regs->pp_off = PP_OFF_DELAYS(pps_idx);
814 if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv))
815 regs->pp_div = PP_DIVISOR(pps_idx);
816 }
817
818 static i915_reg_t
819 _pp_ctrl_reg(struct intel_dp *intel_dp)
820 {
821 struct pps_registers regs;
822
823 intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
824 &regs);
825
826 return regs.pp_ctrl;
827 }
828
829 static i915_reg_t
830 _pp_stat_reg(struct intel_dp *intel_dp)
831 {
832 struct pps_registers regs;
833
834 intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
835 &regs);
836
837 return regs.pp_stat;
838 }
839
840 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
841 This function only applicable when panel PM state is not to be tracked */
842 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
843 void *unused)
844 {
845 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
846 edp_notifier);
847 struct drm_device *dev = intel_dp_to_dev(intel_dp);
848 struct drm_i915_private *dev_priv = to_i915(dev);
849
850 if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
851 return 0;
852
853 pps_lock(intel_dp);
854
855 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
856 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
857 i915_reg_t pp_ctrl_reg, pp_div_reg;
858 u32 pp_div;
859
860 pp_ctrl_reg = PP_CONTROL(pipe);
861 pp_div_reg = PP_DIVISOR(pipe);
862 pp_div = I915_READ(pp_div_reg);
863 pp_div &= PP_REFERENCE_DIVIDER_MASK;
864
865 /* 0x1F write to PP_DIV_REG sets max cycle delay */
866 I915_WRITE(pp_div_reg, pp_div | 0x1F);
867 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
868 msleep(intel_dp->panel_power_cycle_delay);
869 }
870
871 pps_unlock(intel_dp);
872
873 return 0;
874 }
875
876 static bool edp_have_panel_power(struct intel_dp *intel_dp)
877 {
878 struct drm_device *dev = intel_dp_to_dev(intel_dp);
879 struct drm_i915_private *dev_priv = to_i915(dev);
880
881 lockdep_assert_held(&dev_priv->pps_mutex);
882
883 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
884 intel_dp->pps_pipe == INVALID_PIPE)
885 return false;
886
887 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
888 }
889
890 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
891 {
892 struct drm_device *dev = intel_dp_to_dev(intel_dp);
893 struct drm_i915_private *dev_priv = to_i915(dev);
894
895 lockdep_assert_held(&dev_priv->pps_mutex);
896
897 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
898 intel_dp->pps_pipe == INVALID_PIPE)
899 return false;
900
901 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
902 }
903
904 static void
905 intel_dp_check_edp(struct intel_dp *intel_dp)
906 {
907 struct drm_device *dev = intel_dp_to_dev(intel_dp);
908 struct drm_i915_private *dev_priv = to_i915(dev);
909
910 if (!intel_dp_is_edp(intel_dp))
911 return;
912
913 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
914 WARN(1, "eDP powered off while attempting aux channel communication.\n");
915 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
916 I915_READ(_pp_stat_reg(intel_dp)),
917 I915_READ(_pp_ctrl_reg(intel_dp)));
918 }
919 }
920
921 static uint32_t
922 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
923 {
924 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
925 struct drm_device *dev = intel_dig_port->base.base.dev;
926 struct drm_i915_private *dev_priv = to_i915(dev);
927 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
928 uint32_t status;
929 bool done;
930
931 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
932 if (has_aux_irq)
933 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
934 msecs_to_jiffies_timeout(10));
935 else
936 done = wait_for(C, 10) == 0;
937 if (!done)
938 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
939 has_aux_irq);
940 #undef C
941
942 return status;
943 }
944
945 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
946 {
947 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
948 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
949
950 if (index)
951 return 0;
952
953 /*
954 * The clock divider is based off the hrawclk, and would like to run at
955 * 2MHz. So, take the hrawclk value and divide by 2000 and use that
956 */
957 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
958 }
959
960 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
961 {
962 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
963 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
964
965 if (index)
966 return 0;
967
968 /*
969 * The clock divider is based off the cdclk or PCH rawclk, and would
970 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and
971 * divide by 2000 and use that
972 */
973 if (intel_dig_port->port == PORT_A)
974 return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
975 else
976 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
977 }
978
979 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
980 {
981 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
982 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
983
984 if (intel_dig_port->port != PORT_A && HAS_PCH_LPT_H(dev_priv)) {
985 /* Workaround for non-ULT HSW */
986 switch (index) {
987 case 0: return 63;
988 case 1: return 72;
989 default: return 0;
990 }
991 }
992
993 return ilk_get_aux_clock_divider(intel_dp, index);
994 }
995
996 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
997 {
998 /*
999 * SKL doesn't need us to program the AUX clock divider (Hardware will
1000 * derive the clock from CDCLK automatically). We still implement the
1001 * get_aux_clock_divider vfunc to plug-in into the existing code.
1002 */
1003 return index ? 0 : 1;
1004 }
1005
1006 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1007 bool has_aux_irq,
1008 int send_bytes,
1009 uint32_t aux_clock_divider)
1010 {
1011 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1012 struct drm_i915_private *dev_priv =
1013 to_i915(intel_dig_port->base.base.dev);
1014 uint32_t precharge, timeout;
1015
1016 if (IS_GEN6(dev_priv))
1017 precharge = 3;
1018 else
1019 precharge = 5;
1020
1021 if (IS_BROADWELL(dev_priv) && intel_dig_port->port == PORT_A)
1022 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1023 else
1024 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1025
1026 return DP_AUX_CH_CTL_SEND_BUSY |
1027 DP_AUX_CH_CTL_DONE |
1028 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
1029 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1030 timeout |
1031 DP_AUX_CH_CTL_RECEIVE_ERROR |
1032 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1033 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1034 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1035 }
1036
1037 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1038 bool has_aux_irq,
1039 int send_bytes,
1040 uint32_t unused)
1041 {
1042 return DP_AUX_CH_CTL_SEND_BUSY |
1043 DP_AUX_CH_CTL_DONE |
1044 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
1045 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1046 DP_AUX_CH_CTL_TIME_OUT_1600us |
1047 DP_AUX_CH_CTL_RECEIVE_ERROR |
1048 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1049 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1050 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1051 }
1052
1053 static int
1054 intel_dp_aux_ch(struct intel_dp *intel_dp,
1055 const uint8_t *send, int send_bytes,
1056 uint8_t *recv, int recv_size)
1057 {
1058 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1059 struct drm_i915_private *dev_priv =
1060 to_i915(intel_dig_port->base.base.dev);
1061 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
1062 uint32_t aux_clock_divider;
1063 int i, ret, recv_bytes;
1064 uint32_t status;
1065 int try, clock = 0;
1066 bool has_aux_irq = HAS_AUX_IRQ(dev_priv);
1067 bool vdd;
1068
1069 pps_lock(intel_dp);
1070
1071 /*
1072 * We will be called with VDD already enabled for dpcd/edid/oui reads.
1073 * In such cases we want to leave VDD enabled and it's up to upper layers
1074 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1075 * ourselves.
1076 */
1077 vdd = edp_panel_vdd_on(intel_dp);
1078
1079 /* dp aux is extremely sensitive to irq latency, hence request the
1080 * lowest possible wakeup latency and so prevent the cpu from going into
1081 * deep sleep states.
1082 */
1083 pm_qos_update_request(&dev_priv->pm_qos, 0);
1084
1085 intel_dp_check_edp(intel_dp);
1086
1087 /* Try to wait for any previous AUX channel activity */
1088 for (try = 0; try < 3; try++) {
1089 status = I915_READ_NOTRACE(ch_ctl);
1090 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1091 break;
1092 msleep(1);
1093 }
1094
1095 if (try == 3) {
1096 static u32 last_status = -1;
1097 const u32 status = I915_READ(ch_ctl);
1098
1099 if (status != last_status) {
1100 WARN(1, "dp_aux_ch not started status 0x%08x\n",
1101 status);
1102 last_status = status;
1103 }
1104
1105 ret = -EBUSY;
1106 goto out;
1107 }
1108
1109 /* Only 5 data registers! */
1110 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
1111 ret = -E2BIG;
1112 goto out;
1113 }
1114
1115 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1116 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1117 has_aux_irq,
1118 send_bytes,
1119 aux_clock_divider);
1120
1121 /* Must try at least 3 times according to DP spec */
1122 for (try = 0; try < 5; try++) {
1123 /* Load the send data into the aux channel data registers */
1124 for (i = 0; i < send_bytes; i += 4)
1125 I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
1126 intel_dp_pack_aux(send + i,
1127 send_bytes - i));
1128
1129 /* Send the command and wait for it to complete */
1130 I915_WRITE(ch_ctl, send_ctl);
1131
1132 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
1133
1134 /* Clear done status and any errors */
1135 I915_WRITE(ch_ctl,
1136 status |
1137 DP_AUX_CH_CTL_DONE |
1138 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1139 DP_AUX_CH_CTL_RECEIVE_ERROR);
1140
1141 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1142 continue;
1143
1144 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1145 * 400us delay required for errors and timeouts
1146 * Timeout errors from the HW already meet this
1147 * requirement so skip to next iteration
1148 */
1149 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1150 usleep_range(400, 500);
1151 continue;
1152 }
1153 if (status & DP_AUX_CH_CTL_DONE)
1154 goto done;
1155 }
1156 }
1157
1158 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1159 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1160 ret = -EBUSY;
1161 goto out;
1162 }
1163
1164 done:
1165 /* Check for timeout or receive error.
1166 * Timeouts occur when the sink is not connected
1167 */
1168 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1169 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1170 ret = -EIO;
1171 goto out;
1172 }
1173
1174 /* Timeouts occur when the device isn't connected, so they're
1175 * "normal" -- don't fill the kernel log with these */
1176 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1177 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1178 ret = -ETIMEDOUT;
1179 goto out;
1180 }
1181
1182 /* Unload any bytes sent back from the other side */
1183 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1184 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1185
1186 /*
1187 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1188 * We have no idea of what happened so we return -EBUSY so
1189 * drm layer takes care for the necessary retries.
1190 */
1191 if (recv_bytes == 0 || recv_bytes > 20) {
1192 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1193 recv_bytes);
1194 /*
1195 * FIXME: This patch was created on top of a series that
1196 * organize the retries at drm level. There EBUSY should
1197 * also take care for 1ms wait before retrying.
1198 * That aux retries re-org is still needed and after that is
1199 * merged we remove this sleep from here.
1200 */
1201 usleep_range(1000, 1500);
1202 ret = -EBUSY;
1203 goto out;
1204 }
1205
1206 if (recv_bytes > recv_size)
1207 recv_bytes = recv_size;
1208
1209 for (i = 0; i < recv_bytes; i += 4)
1210 intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
1211 recv + i, recv_bytes - i);
1212
1213 ret = recv_bytes;
1214 out:
1215 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
1216
1217 if (vdd)
1218 edp_panel_vdd_off(intel_dp, false);
1219
1220 pps_unlock(intel_dp);
1221
1222 return ret;
1223 }
1224
1225 #define BARE_ADDRESS_SIZE 3
1226 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
1227 static ssize_t
1228 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1229 {
1230 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1231 uint8_t txbuf[20], rxbuf[20];
1232 size_t txsize, rxsize;
1233 int ret;
1234
1235 txbuf[0] = (msg->request << 4) |
1236 ((msg->address >> 16) & 0xf);
1237 txbuf[1] = (msg->address >> 8) & 0xff;
1238 txbuf[2] = msg->address & 0xff;
1239 txbuf[3] = msg->size - 1;
1240
1241 switch (msg->request & ~DP_AUX_I2C_MOT) {
1242 case DP_AUX_NATIVE_WRITE:
1243 case DP_AUX_I2C_WRITE:
1244 case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1245 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1246 rxsize = 2; /* 0 or 1 data bytes */
1247
1248 if (WARN_ON(txsize > 20))
1249 return -E2BIG;
1250
1251 WARN_ON(!msg->buffer != !msg->size);
1252
1253 if (msg->buffer)
1254 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1255
1256 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1257 if (ret > 0) {
1258 msg->reply = rxbuf[0] >> 4;
1259
1260 if (ret > 1) {
1261 /* Number of bytes written in a short write. */
1262 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1263 } else {
1264 /* Return payload size. */
1265 ret = msg->size;
1266 }
1267 }
1268 break;
1269
1270 case DP_AUX_NATIVE_READ:
1271 case DP_AUX_I2C_READ:
1272 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1273 rxsize = msg->size + 1;
1274
1275 if (WARN_ON(rxsize > 20))
1276 return -E2BIG;
1277
1278 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1279 if (ret > 0) {
1280 msg->reply = rxbuf[0] >> 4;
1281 /*
1282 * Assume happy day, and copy the data. The caller is
1283 * expected to check msg->reply before touching it.
1284 *
1285 * Return payload size.
1286 */
1287 ret--;
1288 memcpy(msg->buffer, rxbuf + 1, ret);
1289 }
1290 break;
1291
1292 default:
1293 ret = -EINVAL;
1294 break;
1295 }
1296
1297 return ret;
1298 }
1299
1300 static enum port intel_aux_port(struct drm_i915_private *dev_priv,
1301 enum port port)
1302 {
1303 const struct ddi_vbt_port_info *info =
1304 &dev_priv->vbt.ddi_port_info[port];
1305 enum port aux_port;
1306
1307 if (!info->alternate_aux_channel) {
1308 DRM_DEBUG_KMS("using AUX %c for port %c (platform default)\n",
1309 port_name(port), port_name(port));
1310 return port;
1311 }
1312
1313 switch (info->alternate_aux_channel) {
1314 case DP_AUX_A:
1315 aux_port = PORT_A;
1316 break;
1317 case DP_AUX_B:
1318 aux_port = PORT_B;
1319 break;
1320 case DP_AUX_C:
1321 aux_port = PORT_C;
1322 break;
1323 case DP_AUX_D:
1324 aux_port = PORT_D;
1325 break;
1326 default:
1327 MISSING_CASE(info->alternate_aux_channel);
1328 aux_port = PORT_A;
1329 break;
1330 }
1331
1332 DRM_DEBUG_KMS("using AUX %c for port %c (VBT)\n",
1333 port_name(aux_port), port_name(port));
1334
1335 return aux_port;
1336 }
1337
1338 static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1339 enum port port)
1340 {
1341 switch (port) {
1342 case PORT_B:
1343 case PORT_C:
1344 case PORT_D:
1345 return DP_AUX_CH_CTL(port);
1346 default:
1347 MISSING_CASE(port);
1348 return DP_AUX_CH_CTL(PORT_B);
1349 }
1350 }
1351
1352 static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1353 enum port port, int index)
1354 {
1355 switch (port) {
1356 case PORT_B:
1357 case PORT_C:
1358 case PORT_D:
1359 return DP_AUX_CH_DATA(port, index);
1360 default:
1361 MISSING_CASE(port);
1362 return DP_AUX_CH_DATA(PORT_B, index);
1363 }
1364 }
1365
1366 static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1367 enum port port)
1368 {
1369 switch (port) {
1370 case PORT_A:
1371 return DP_AUX_CH_CTL(port);
1372 case PORT_B:
1373 case PORT_C:
1374 case PORT_D:
1375 return PCH_DP_AUX_CH_CTL(port);
1376 default:
1377 MISSING_CASE(port);
1378 return DP_AUX_CH_CTL(PORT_A);
1379 }
1380 }
1381
1382 static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1383 enum port port, int index)
1384 {
1385 switch (port) {
1386 case PORT_A:
1387 return DP_AUX_CH_DATA(port, index);
1388 case PORT_B:
1389 case PORT_C:
1390 case PORT_D:
1391 return PCH_DP_AUX_CH_DATA(port, index);
1392 default:
1393 MISSING_CASE(port);
1394 return DP_AUX_CH_DATA(PORT_A, index);
1395 }
1396 }
1397
1398 static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1399 enum port port)
1400 {
1401 switch (port) {
1402 case PORT_A:
1403 case PORT_B:
1404 case PORT_C:
1405 case PORT_D:
1406 return DP_AUX_CH_CTL(port);
1407 default:
1408 MISSING_CASE(port);
1409 return DP_AUX_CH_CTL(PORT_A);
1410 }
1411 }
1412
1413 static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1414 enum port port, int index)
1415 {
1416 switch (port) {
1417 case PORT_A:
1418 case PORT_B:
1419 case PORT_C:
1420 case PORT_D:
1421 return DP_AUX_CH_DATA(port, index);
1422 default:
1423 MISSING_CASE(port);
1424 return DP_AUX_CH_DATA(PORT_A, index);
1425 }
1426 }
1427
1428 static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1429 enum port port)
1430 {
1431 if (INTEL_INFO(dev_priv)->gen >= 9)
1432 return skl_aux_ctl_reg(dev_priv, port);
1433 else if (HAS_PCH_SPLIT(dev_priv))
1434 return ilk_aux_ctl_reg(dev_priv, port);
1435 else
1436 return g4x_aux_ctl_reg(dev_priv, port);
1437 }
1438
1439 static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1440 enum port port, int index)
1441 {
1442 if (INTEL_INFO(dev_priv)->gen >= 9)
1443 return skl_aux_data_reg(dev_priv, port, index);
1444 else if (HAS_PCH_SPLIT(dev_priv))
1445 return ilk_aux_data_reg(dev_priv, port, index);
1446 else
1447 return g4x_aux_data_reg(dev_priv, port, index);
1448 }
1449
1450 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1451 {
1452 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1453 enum port port = intel_aux_port(dev_priv,
1454 dp_to_dig_port(intel_dp)->port);
1455 int i;
1456
1457 intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1458 for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1459 intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1460 }
1461
1462 static void
1463 intel_dp_aux_fini(struct intel_dp *intel_dp)
1464 {
1465 kfree(intel_dp->aux.name);
1466 }
1467
1468 static void
1469 intel_dp_aux_init(struct intel_dp *intel_dp)
1470 {
1471 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1472 enum port port = intel_dig_port->port;
1473
1474 intel_aux_reg_init(intel_dp);
1475 drm_dp_aux_init(&intel_dp->aux);
1476
1477 /* Failure to allocate our preferred name is not critical */
1478 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1479 intel_dp->aux.transfer = intel_dp_aux_transfer;
1480 }
1481
1482 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1483 {
1484 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1485 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
1486
1487 if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
1488 IS_BROADWELL(dev_priv) || (INTEL_GEN(dev_priv) >= 9))
1489 return true;
1490 else
1491 return false;
1492 }
1493
1494 static void
1495 intel_dp_set_clock(struct intel_encoder *encoder,
1496 struct intel_crtc_state *pipe_config)
1497 {
1498 struct drm_device *dev = encoder->base.dev;
1499 struct drm_i915_private *dev_priv = to_i915(dev);
1500 const struct dp_link_dpll *divisor = NULL;
1501 int i, count = 0;
1502
1503 if (IS_G4X(dev_priv)) {
1504 divisor = gen4_dpll;
1505 count = ARRAY_SIZE(gen4_dpll);
1506 } else if (HAS_PCH_SPLIT(dev_priv)) {
1507 divisor = pch_dpll;
1508 count = ARRAY_SIZE(pch_dpll);
1509 } else if (IS_CHERRYVIEW(dev_priv)) {
1510 divisor = chv_dpll;
1511 count = ARRAY_SIZE(chv_dpll);
1512 } else if (IS_VALLEYVIEW(dev_priv)) {
1513 divisor = vlv_dpll;
1514 count = ARRAY_SIZE(vlv_dpll);
1515 }
1516
1517 if (divisor && count) {
1518 for (i = 0; i < count; i++) {
1519 if (pipe_config->port_clock == divisor[i].clock) {
1520 pipe_config->dpll = divisor[i].dpll;
1521 pipe_config->clock_set = true;
1522 break;
1523 }
1524 }
1525 }
1526 }
1527
1528 static void snprintf_int_array(char *str, size_t len,
1529 const int *array, int nelem)
1530 {
1531 int i;
1532
1533 str[0] = '\0';
1534
1535 for (i = 0; i < nelem; i++) {
1536 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1537 if (r >= len)
1538 return;
1539 str += r;
1540 len -= r;
1541 }
1542 }
1543
1544 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1545 {
1546 char str[128]; /* FIXME: too big for stack? */
1547
1548 if ((drm_debug & DRM_UT_KMS) == 0)
1549 return;
1550
1551 snprintf_int_array(str, sizeof(str),
1552 intel_dp->source_rates, intel_dp->num_source_rates);
1553 DRM_DEBUG_KMS("source rates: %s\n", str);
1554
1555 snprintf_int_array(str, sizeof(str),
1556 intel_dp->sink_rates, intel_dp->num_sink_rates);
1557 DRM_DEBUG_KMS("sink rates: %s\n", str);
1558
1559 snprintf_int_array(str, sizeof(str),
1560 intel_dp->common_rates, intel_dp->num_common_rates);
1561 DRM_DEBUG_KMS("common rates: %s\n", str);
1562 }
1563
1564 int
1565 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1566 {
1567 int len;
1568
1569 len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1570 if (WARN_ON(len <= 0))
1571 return 162000;
1572
1573 return intel_dp->common_rates[len - 1];
1574 }
1575
1576 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1577 {
1578 int i = intel_dp_rate_index(intel_dp->sink_rates,
1579 intel_dp->num_sink_rates, rate);
1580
1581 if (WARN_ON(i < 0))
1582 i = 0;
1583
1584 return i;
1585 }
1586
1587 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1588 uint8_t *link_bw, uint8_t *rate_select)
1589 {
1590 /* eDP 1.4 rate select method. */
1591 if (intel_dp->use_rate_select) {
1592 *link_bw = 0;
1593 *rate_select =
1594 intel_dp_rate_select(intel_dp, port_clock);
1595 } else {
1596 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1597 *rate_select = 0;
1598 }
1599 }
1600
1601 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1602 struct intel_crtc_state *pipe_config)
1603 {
1604 int bpp, bpc;
1605
1606 bpp = pipe_config->pipe_bpp;
1607 bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1608
1609 if (bpc > 0)
1610 bpp = min(bpp, 3*bpc);
1611
1612 /* For DP Compliance we override the computed bpp for the pipe */
1613 if (intel_dp->compliance.test_data.bpc != 0) {
1614 pipe_config->pipe_bpp = 3*intel_dp->compliance.test_data.bpc;
1615 pipe_config->dither_force_disable = pipe_config->pipe_bpp == 6*3;
1616 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n",
1617 pipe_config->pipe_bpp);
1618 }
1619 return bpp;
1620 }
1621
1622 static bool intel_edp_compare_alt_mode(struct drm_display_mode *m1,
1623 struct drm_display_mode *m2)
1624 {
1625 bool bres = false;
1626
1627 if (m1 && m2)
1628 bres = (m1->hdisplay == m2->hdisplay &&
1629 m1->hsync_start == m2->hsync_start &&
1630 m1->hsync_end == m2->hsync_end &&
1631 m1->htotal == m2->htotal &&
1632 m1->vdisplay == m2->vdisplay &&
1633 m1->vsync_start == m2->vsync_start &&
1634 m1->vsync_end == m2->vsync_end &&
1635 m1->vtotal == m2->vtotal);
1636 return bres;
1637 }
1638
1639 bool
1640 intel_dp_compute_config(struct intel_encoder *encoder,
1641 struct intel_crtc_state *pipe_config,
1642 struct drm_connector_state *conn_state)
1643 {
1644 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1645 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1646 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1647 enum port port = dp_to_dig_port(intel_dp)->port;
1648 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1649 struct intel_connector *intel_connector = intel_dp->attached_connector;
1650 struct intel_digital_connector_state *intel_conn_state =
1651 to_intel_digital_connector_state(conn_state);
1652 int lane_count, clock;
1653 int min_lane_count = 1;
1654 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1655 /* Conveniently, the link BW constants become indices with a shift...*/
1656 int min_clock = 0;
1657 int max_clock;
1658 int bpp, mode_rate;
1659 int link_avail, link_clock;
1660 int common_len;
1661 uint8_t link_bw, rate_select;
1662 bool reduce_m_n = drm_dp_has_quirk(&intel_dp->desc,
1663 DP_DPCD_QUIRK_LIMITED_M_N);
1664
1665 common_len = intel_dp_common_len_rate_limit(intel_dp,
1666 intel_dp->max_link_rate);
1667
1668 /* No common link rates between source and sink */
1669 WARN_ON(common_len <= 0);
1670
1671 max_clock = common_len - 1;
1672
1673 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
1674 pipe_config->has_pch_encoder = true;
1675
1676 pipe_config->has_drrs = false;
1677 if (port == PORT_A)
1678 pipe_config->has_audio = false;
1679 else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
1680 pipe_config->has_audio = intel_dp->has_audio;
1681 else
1682 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
1683
1684 if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1685 struct drm_display_mode *panel_mode =
1686 intel_connector->panel.alt_fixed_mode;
1687 struct drm_display_mode *req_mode = &pipe_config->base.mode;
1688
1689 if (!intel_edp_compare_alt_mode(req_mode, panel_mode))
1690 panel_mode = intel_connector->panel.fixed_mode;
1691
1692 drm_mode_debug_printmodeline(panel_mode);
1693
1694 intel_fixed_panel_mode(panel_mode, adjusted_mode);
1695
1696 if (INTEL_GEN(dev_priv) >= 9) {
1697 int ret;
1698 ret = skl_update_scaler_crtc(pipe_config);
1699 if (ret)
1700 return ret;
1701 }
1702
1703 if (HAS_GMCH_DISPLAY(dev_priv))
1704 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1705 conn_state->scaling_mode);
1706 else
1707 intel_pch_panel_fitting(intel_crtc, pipe_config,
1708 conn_state->scaling_mode);
1709 }
1710
1711 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1712 return false;
1713
1714 /* Use values requested by Compliance Test Request */
1715 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1716 int index;
1717
1718 /* Validate the compliance test data since max values
1719 * might have changed due to link train fallback.
1720 */
1721 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1722 intel_dp->compliance.test_lane_count)) {
1723 index = intel_dp_rate_index(intel_dp->common_rates,
1724 intel_dp->num_common_rates,
1725 intel_dp->compliance.test_link_rate);
1726 if (index >= 0)
1727 min_clock = max_clock = index;
1728 min_lane_count = max_lane_count = intel_dp->compliance.test_lane_count;
1729 }
1730 }
1731 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1732 "max bw %d pixel clock %iKHz\n",
1733 max_lane_count, intel_dp->common_rates[max_clock],
1734 adjusted_mode->crtc_clock);
1735
1736 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1737 * bpc in between. */
1738 bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
1739 if (intel_dp_is_edp(intel_dp)) {
1740
1741 /* Get bpp from vbt only for panels that dont have bpp in edid */
1742 if (intel_connector->base.display_info.bpc == 0 &&
1743 (dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
1744 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1745 dev_priv->vbt.edp.bpp);
1746 bpp = dev_priv->vbt.edp.bpp;
1747 }
1748
1749 /*
1750 * Use the maximum clock and number of lanes the eDP panel
1751 * advertizes being capable of. The panels are generally
1752 * designed to support only a single clock and lane
1753 * configuration, and typically these values correspond to the
1754 * native resolution of the panel.
1755 */
1756 min_lane_count = max_lane_count;
1757 min_clock = max_clock;
1758 }
1759
1760 for (; bpp >= 6*3; bpp -= 2*3) {
1761 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1762 bpp);
1763
1764 for (clock = min_clock; clock <= max_clock; clock++) {
1765 for (lane_count = min_lane_count;
1766 lane_count <= max_lane_count;
1767 lane_count <<= 1) {
1768
1769 link_clock = intel_dp->common_rates[clock];
1770 link_avail = intel_dp_max_data_rate(link_clock,
1771 lane_count);
1772
1773 if (mode_rate <= link_avail) {
1774 goto found;
1775 }
1776 }
1777 }
1778 }
1779
1780 return false;
1781
1782 found:
1783 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
1784 /*
1785 * See:
1786 * CEA-861-E - 5.1 Default Encoding Parameters
1787 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1788 */
1789 pipe_config->limited_color_range =
1790 bpp != 18 &&
1791 drm_default_rgb_quant_range(adjusted_mode) ==
1792 HDMI_QUANTIZATION_RANGE_LIMITED;
1793 } else {
1794 pipe_config->limited_color_range =
1795 intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
1796 }
1797
1798 pipe_config->lane_count = lane_count;
1799
1800 pipe_config->pipe_bpp = bpp;
1801 pipe_config->port_clock = intel_dp->common_rates[clock];
1802
1803 intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1804 &link_bw, &rate_select);
1805
1806 DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1807 link_bw, rate_select, pipe_config->lane_count,
1808 pipe_config->port_clock, bpp);
1809 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1810 mode_rate, link_avail);
1811
1812 intel_link_compute_m_n(bpp, lane_count,
1813 adjusted_mode->crtc_clock,
1814 pipe_config->port_clock,
1815 &pipe_config->dp_m_n,
1816 reduce_m_n);
1817
1818 if (intel_connector->panel.downclock_mode != NULL &&
1819 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1820 pipe_config->has_drrs = true;
1821 intel_link_compute_m_n(bpp, lane_count,
1822 intel_connector->panel.downclock_mode->clock,
1823 pipe_config->port_clock,
1824 &pipe_config->dp_m2_n2,
1825 reduce_m_n);
1826 }
1827
1828 /*
1829 * DPLL0 VCO may need to be adjusted to get the correct
1830 * clock for eDP. This will affect cdclk as well.
1831 */
1832 if (intel_dp_is_edp(intel_dp) && IS_GEN9_BC(dev_priv)) {
1833 int vco;
1834
1835 switch (pipe_config->port_clock / 2) {
1836 case 108000:
1837 case 216000:
1838 vco = 8640000;
1839 break;
1840 default:
1841 vco = 8100000;
1842 break;
1843 }
1844
1845 to_intel_atomic_state(pipe_config->base.state)->cdclk.logical.vco = vco;
1846 }
1847
1848 if (!HAS_DDI(dev_priv))
1849 intel_dp_set_clock(encoder, pipe_config);
1850
1851 return true;
1852 }
1853
1854 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1855 int link_rate, uint8_t lane_count,
1856 bool link_mst)
1857 {
1858 intel_dp->link_rate = link_rate;
1859 intel_dp->lane_count = lane_count;
1860 intel_dp->link_mst = link_mst;
1861 }
1862
1863 static void intel_dp_prepare(struct intel_encoder *encoder,
1864 const struct intel_crtc_state *pipe_config)
1865 {
1866 struct drm_device *dev = encoder->base.dev;
1867 struct drm_i915_private *dev_priv = to_i915(dev);
1868 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1869 enum port port = dp_to_dig_port(intel_dp)->port;
1870 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1871 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1872
1873 intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
1874 pipe_config->lane_count,
1875 intel_crtc_has_type(pipe_config,
1876 INTEL_OUTPUT_DP_MST));
1877
1878 /*
1879 * There are four kinds of DP registers:
1880 *
1881 * IBX PCH
1882 * SNB CPU
1883 * IVB CPU
1884 * CPT PCH
1885 *
1886 * IBX PCH and CPU are the same for almost everything,
1887 * except that the CPU DP PLL is configured in this
1888 * register
1889 *
1890 * CPT PCH is quite different, having many bits moved
1891 * to the TRANS_DP_CTL register instead. That
1892 * configuration happens (oddly) in ironlake_pch_enable
1893 */
1894
1895 /* Preserve the BIOS-computed detected bit. This is
1896 * supposed to be read-only.
1897 */
1898 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1899
1900 /* Handle DP bits in common between all three register formats */
1901 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1902 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
1903
1904 /* Split out the IBX/CPU vs CPT settings */
1905
1906 if (IS_GEN7(dev_priv) && port == PORT_A) {
1907 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1908 intel_dp->DP |= DP_SYNC_HS_HIGH;
1909 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1910 intel_dp->DP |= DP_SYNC_VS_HIGH;
1911 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1912
1913 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1914 intel_dp->DP |= DP_ENHANCED_FRAMING;
1915
1916 intel_dp->DP |= crtc->pipe << 29;
1917 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
1918 u32 trans_dp;
1919
1920 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1921
1922 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1923 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1924 trans_dp |= TRANS_DP_ENH_FRAMING;
1925 else
1926 trans_dp &= ~TRANS_DP_ENH_FRAMING;
1927 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1928 } else {
1929 if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
1930 intel_dp->DP |= DP_COLOR_RANGE_16_235;
1931
1932 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1933 intel_dp->DP |= DP_SYNC_HS_HIGH;
1934 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1935 intel_dp->DP |= DP_SYNC_VS_HIGH;
1936 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1937
1938 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1939 intel_dp->DP |= DP_ENHANCED_FRAMING;
1940
1941 if (IS_CHERRYVIEW(dev_priv))
1942 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1943 else if (crtc->pipe == PIPE_B)
1944 intel_dp->DP |= DP_PIPEB_SELECT;
1945 }
1946 }
1947
1948 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1949 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1950
1951 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1952 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1953
1954 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1955 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1956
1957 static void intel_pps_verify_state(struct drm_i915_private *dev_priv,
1958 struct intel_dp *intel_dp);
1959
1960 static void wait_panel_status(struct intel_dp *intel_dp,
1961 u32 mask,
1962 u32 value)
1963 {
1964 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1965 struct drm_i915_private *dev_priv = to_i915(dev);
1966 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1967
1968 lockdep_assert_held(&dev_priv->pps_mutex);
1969
1970 intel_pps_verify_state(dev_priv, intel_dp);
1971
1972 pp_stat_reg = _pp_stat_reg(intel_dp);
1973 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1974
1975 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1976 mask, value,
1977 I915_READ(pp_stat_reg),
1978 I915_READ(pp_ctrl_reg));
1979
1980 if (intel_wait_for_register(dev_priv,
1981 pp_stat_reg, mask, value,
1982 5000))
1983 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1984 I915_READ(pp_stat_reg),
1985 I915_READ(pp_ctrl_reg));
1986
1987 DRM_DEBUG_KMS("Wait complete\n");
1988 }
1989
1990 static void wait_panel_on(struct intel_dp *intel_dp)
1991 {
1992 DRM_DEBUG_KMS("Wait for panel power on\n");
1993 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1994 }
1995
1996 static void wait_panel_off(struct intel_dp *intel_dp)
1997 {
1998 DRM_DEBUG_KMS("Wait for panel power off time\n");
1999 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2000 }
2001
2002 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2003 {
2004 ktime_t panel_power_on_time;
2005 s64 panel_power_off_duration;
2006
2007 DRM_DEBUG_KMS("Wait for panel power cycle\n");
2008
2009 /* take the difference of currrent time and panel power off time
2010 * and then make panel wait for t11_t12 if needed. */
2011 panel_power_on_time = ktime_get_boottime();
2012 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2013
2014 /* When we disable the VDD override bit last we have to do the manual
2015 * wait. */
2016 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2017 wait_remaining_ms_from_jiffies(jiffies,
2018 intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2019
2020 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2021 }
2022
2023 static void wait_backlight_on(struct intel_dp *intel_dp)
2024 {
2025 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2026 intel_dp->backlight_on_delay);
2027 }
2028
2029 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2030 {
2031 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2032 intel_dp->backlight_off_delay);
2033 }
2034
2035 /* Read the current pp_control value, unlocking the register if it
2036 * is locked
2037 */
2038
2039 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2040 {
2041 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2042 struct drm_i915_private *dev_priv = to_i915(dev);
2043 u32 control;
2044
2045 lockdep_assert_held(&dev_priv->pps_mutex);
2046
2047 control = I915_READ(_pp_ctrl_reg(intel_dp));
2048 if (WARN_ON(!HAS_DDI(dev_priv) &&
2049 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2050 control &= ~PANEL_UNLOCK_MASK;
2051 control |= PANEL_UNLOCK_REGS;
2052 }
2053 return control;
2054 }
2055
2056 /*
2057 * Must be paired with edp_panel_vdd_off().
2058 * Must hold pps_mutex around the whole on/off sequence.
2059 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2060 */
2061 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2062 {
2063 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2064 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2065 struct drm_i915_private *dev_priv = to_i915(dev);
2066 u32 pp;
2067 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2068 bool need_to_disable = !intel_dp->want_panel_vdd;
2069
2070 lockdep_assert_held(&dev_priv->pps_mutex);
2071
2072 if (!intel_dp_is_edp(intel_dp))
2073 return false;
2074
2075 cancel_delayed_work(&intel_dp->panel_vdd_work);
2076 intel_dp->want_panel_vdd = true;
2077
2078 if (edp_have_panel_vdd(intel_dp))
2079 return need_to_disable;
2080
2081 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
2082
2083 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
2084 port_name(intel_dig_port->port));
2085
2086 if (!edp_have_panel_power(intel_dp))
2087 wait_panel_power_cycle(intel_dp);
2088
2089 pp = ironlake_get_pp_control(intel_dp);
2090 pp |= EDP_FORCE_VDD;
2091
2092 pp_stat_reg = _pp_stat_reg(intel_dp);
2093 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2094
2095 I915_WRITE(pp_ctrl_reg, pp);
2096 POSTING_READ(pp_ctrl_reg);
2097 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2098 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2099 /*
2100 * If the panel wasn't on, delay before accessing aux channel
2101 */
2102 if (!edp_have_panel_power(intel_dp)) {
2103 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
2104 port_name(intel_dig_port->port));
2105 msleep(intel_dp->panel_power_up_delay);
2106 }
2107
2108 return need_to_disable;
2109 }
2110
2111 /*
2112 * Must be paired with intel_edp_panel_vdd_off() or
2113 * intel_edp_panel_off().
2114 * Nested calls to these functions are not allowed since
2115 * we drop the lock. Caller must use some higher level
2116 * locking to prevent nested calls from other threads.
2117 */
2118 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2119 {
2120 bool vdd;
2121
2122 if (!intel_dp_is_edp(intel_dp))
2123 return;
2124
2125 pps_lock(intel_dp);
2126 vdd = edp_panel_vdd_on(intel_dp);
2127 pps_unlock(intel_dp);
2128
2129 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2130 port_name(dp_to_dig_port(intel_dp)->port));
2131 }
2132
2133 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2134 {
2135 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2136 struct drm_i915_private *dev_priv = to_i915(dev);
2137 struct intel_digital_port *intel_dig_port =
2138 dp_to_dig_port(intel_dp);
2139 u32 pp;
2140 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2141
2142 lockdep_assert_held(&dev_priv->pps_mutex);
2143
2144 WARN_ON(intel_dp->want_panel_vdd);
2145
2146 if (!edp_have_panel_vdd(intel_dp))
2147 return;
2148
2149 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2150 port_name(intel_dig_port->port));
2151
2152 pp = ironlake_get_pp_control(intel_dp);
2153 pp &= ~EDP_FORCE_VDD;
2154
2155 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2156 pp_stat_reg = _pp_stat_reg(intel_dp);
2157
2158 I915_WRITE(pp_ctrl_reg, pp);
2159 POSTING_READ(pp_ctrl_reg);
2160
2161 /* Make sure sequencer is idle before allowing subsequent activity */
2162 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2163 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2164
2165 if ((pp & PANEL_POWER_ON) == 0)
2166 intel_dp->panel_power_off_time = ktime_get_boottime();
2167
2168 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
2169 }
2170
2171 static void edp_panel_vdd_work(struct work_struct *__work)
2172 {
2173 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
2174 struct intel_dp, panel_vdd_work);
2175
2176 pps_lock(intel_dp);
2177 if (!intel_dp->want_panel_vdd)
2178 edp_panel_vdd_off_sync(intel_dp);
2179 pps_unlock(intel_dp);
2180 }
2181
2182 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2183 {
2184 unsigned long delay;
2185
2186 /*
2187 * Queue the timer to fire a long time from now (relative to the power
2188 * down delay) to keep the panel power up across a sequence of
2189 * operations.
2190 */
2191 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2192 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2193 }
2194
2195 /*
2196 * Must be paired with edp_panel_vdd_on().
2197 * Must hold pps_mutex around the whole on/off sequence.
2198 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2199 */
2200 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2201 {
2202 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2203
2204 lockdep_assert_held(&dev_priv->pps_mutex);
2205
2206 if (!intel_dp_is_edp(intel_dp))
2207 return;
2208
2209 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2210 port_name(dp_to_dig_port(intel_dp)->port));
2211
2212 intel_dp->want_panel_vdd = false;
2213
2214 if (sync)
2215 edp_panel_vdd_off_sync(intel_dp);
2216 else
2217 edp_panel_vdd_schedule_off(intel_dp);
2218 }
2219
2220 static void edp_panel_on(struct intel_dp *intel_dp)
2221 {
2222 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2223 struct drm_i915_private *dev_priv = to_i915(dev);
2224 u32 pp;
2225 i915_reg_t pp_ctrl_reg;
2226
2227 lockdep_assert_held(&dev_priv->pps_mutex);
2228
2229 if (!intel_dp_is_edp(intel_dp))
2230 return;
2231
2232 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2233 port_name(dp_to_dig_port(intel_dp)->port));
2234
2235 if (WARN(edp_have_panel_power(intel_dp),
2236 "eDP port %c panel power already on\n",
2237 port_name(dp_to_dig_port(intel_dp)->port)))
2238 return;
2239
2240 wait_panel_power_cycle(intel_dp);
2241
2242 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2243 pp = ironlake_get_pp_control(intel_dp);
2244 if (IS_GEN5(dev_priv)) {
2245 /* ILK workaround: disable reset around power sequence */
2246 pp &= ~PANEL_POWER_RESET;
2247 I915_WRITE(pp_ctrl_reg, pp);
2248 POSTING_READ(pp_ctrl_reg);
2249 }
2250
2251 pp |= PANEL_POWER_ON;
2252 if (!IS_GEN5(dev_priv))
2253 pp |= PANEL_POWER_RESET;
2254
2255 I915_WRITE(pp_ctrl_reg, pp);
2256 POSTING_READ(pp_ctrl_reg);
2257
2258 wait_panel_on(intel_dp);
2259 intel_dp->last_power_on = jiffies;
2260
2261 if (IS_GEN5(dev_priv)) {
2262 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2263 I915_WRITE(pp_ctrl_reg, pp);
2264 POSTING_READ(pp_ctrl_reg);
2265 }
2266 }
2267
2268 void intel_edp_panel_on(struct intel_dp *intel_dp)
2269 {
2270 if (!intel_dp_is_edp(intel_dp))
2271 return;
2272
2273 pps_lock(intel_dp);
2274 edp_panel_on(intel_dp);
2275 pps_unlock(intel_dp);
2276 }
2277
2278
2279 static void edp_panel_off(struct intel_dp *intel_dp)
2280 {
2281 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2282 struct drm_i915_private *dev_priv = to_i915(dev);
2283 u32 pp;
2284 i915_reg_t pp_ctrl_reg;
2285
2286 lockdep_assert_held(&dev_priv->pps_mutex);
2287
2288 if (!intel_dp_is_edp(intel_dp))
2289 return;
2290
2291 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2292 port_name(dp_to_dig_port(intel_dp)->port));
2293
2294 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2295 port_name(dp_to_dig_port(intel_dp)->port));
2296
2297 pp = ironlake_get_pp_control(intel_dp);
2298 /* We need to switch off panel power _and_ force vdd, for otherwise some
2299 * panels get very unhappy and cease to work. */
2300 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2301 EDP_BLC_ENABLE);
2302
2303 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2304
2305 intel_dp->want_panel_vdd = false;
2306
2307 I915_WRITE(pp_ctrl_reg, pp);
2308 POSTING_READ(pp_ctrl_reg);
2309
2310 intel_dp->panel_power_off_time = ktime_get_boottime();
2311 wait_panel_off(intel_dp);
2312
2313 /* We got a reference when we enabled the VDD. */
2314 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
2315 }
2316
2317 void intel_edp_panel_off(struct intel_dp *intel_dp)
2318 {
2319 if (!intel_dp_is_edp(intel_dp))
2320 return;
2321
2322 pps_lock(intel_dp);
2323 edp_panel_off(intel_dp);
2324 pps_unlock(intel_dp);
2325 }
2326
2327 /* Enable backlight in the panel power control. */
2328 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2329 {
2330 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2331 struct drm_device *dev = intel_dig_port->base.base.dev;
2332 struct drm_i915_private *dev_priv = to_i915(dev);
2333 u32 pp;
2334 i915_reg_t pp_ctrl_reg;
2335
2336 /*
2337 * If we enable the backlight right away following a panel power
2338 * on, we may see slight flicker as the panel syncs with the eDP
2339 * link. So delay a bit to make sure the image is solid before
2340 * allowing it to appear.
2341 */
2342 wait_backlight_on(intel_dp);
2343
2344 pps_lock(intel_dp);
2345
2346 pp = ironlake_get_pp_control(intel_dp);
2347 pp |= EDP_BLC_ENABLE;
2348
2349 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2350
2351 I915_WRITE(pp_ctrl_reg, pp);
2352 POSTING_READ(pp_ctrl_reg);
2353
2354 pps_unlock(intel_dp);
2355 }
2356
2357 /* Enable backlight PWM and backlight PP control. */
2358 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
2359 const struct drm_connector_state *conn_state)
2360 {
2361 struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);
2362
2363 if (!intel_dp_is_edp(intel_dp))
2364 return;
2365
2366 DRM_DEBUG_KMS("\n");
2367
2368 intel_panel_enable_backlight(crtc_state, conn_state);
2369 _intel_edp_backlight_on(intel_dp);
2370 }
2371
2372 /* Disable backlight in the panel power control. */
2373 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2374 {
2375 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2376 struct drm_i915_private *dev_priv = to_i915(dev);
2377 u32 pp;
2378 i915_reg_t pp_ctrl_reg;
2379
2380 if (!intel_dp_is_edp(intel_dp))
2381 return;
2382
2383 pps_lock(intel_dp);
2384
2385 pp = ironlake_get_pp_control(intel_dp);
2386 pp &= ~EDP_BLC_ENABLE;
2387
2388 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2389
2390 I915_WRITE(pp_ctrl_reg, pp);
2391 POSTING_READ(pp_ctrl_reg);
2392
2393 pps_unlock(intel_dp);
2394
2395 intel_dp->last_backlight_off = jiffies;
2396 edp_wait_backlight_off(intel_dp);
2397 }
2398
2399 /* Disable backlight PP control and backlight PWM. */
2400 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2401 {
2402 struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);
2403
2404 if (!intel_dp_is_edp(intel_dp))
2405 return;
2406
2407 DRM_DEBUG_KMS("\n");
2408
2409 _intel_edp_backlight_off(intel_dp);
2410 intel_panel_disable_backlight(old_conn_state);
2411 }
2412
2413 /*
2414 * Hook for controlling the panel power control backlight through the bl_power
2415 * sysfs attribute. Take care to handle multiple calls.
2416 */
2417 static void intel_edp_backlight_power(struct intel_connector *connector,
2418 bool enable)
2419 {
2420 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2421 bool is_enabled;
2422
2423 pps_lock(intel_dp);
2424 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2425 pps_unlock(intel_dp);
2426
2427 if (is_enabled == enable)
2428 return;
2429
2430 DRM_DEBUG_KMS("panel power control backlight %s\n",
2431 enable ? "enable" : "disable");
2432
2433 if (enable)
2434 _intel_edp_backlight_on(intel_dp);
2435 else
2436 _intel_edp_backlight_off(intel_dp);
2437 }
2438
2439 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2440 {
2441 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2442 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2443 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2444
2445 I915_STATE_WARN(cur_state != state,
2446 "DP port %c state assertion failure (expected %s, current %s)\n",
2447 port_name(dig_port->port),
2448 onoff(state), onoff(cur_state));
2449 }
2450 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2451
2452 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2453 {
2454 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2455
2456 I915_STATE_WARN(cur_state != state,
2457 "eDP PLL state assertion failure (expected %s, current %s)\n",
2458 onoff(state), onoff(cur_state));
2459 }
2460 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2461 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2462
2463 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2464 const struct intel_crtc_state *pipe_config)
2465 {
2466 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2467 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2468
2469 assert_pipe_disabled(dev_priv, crtc->pipe);
2470 assert_dp_port_disabled(intel_dp);
2471 assert_edp_pll_disabled(dev_priv);
2472
2473 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2474 pipe_config->port_clock);
2475
2476 intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2477
2478 if (pipe_config->port_clock == 162000)
2479 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2480 else
2481 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2482
2483 I915_WRITE(DP_A, intel_dp->DP);
2484 POSTING_READ(DP_A);
2485 udelay(500);
2486
2487 /*
2488 * [DevILK] Work around required when enabling DP PLL
2489 * while a pipe is enabled going to FDI:
2490 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2491 * 2. Program DP PLL enable
2492 */
2493 if (IS_GEN5(dev_priv))
2494 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
2495
2496 intel_dp->DP |= DP_PLL_ENABLE;
2497
2498 I915_WRITE(DP_A, intel_dp->DP);
2499 POSTING_READ(DP_A);
2500 udelay(200);
2501 }
2502
2503 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2504 {
2505 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2506 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2507 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2508
2509 assert_pipe_disabled(dev_priv, crtc->pipe);
2510 assert_dp_port_disabled(intel_dp);
2511 assert_edp_pll_enabled(dev_priv);
2512
2513 DRM_DEBUG_KMS("disabling eDP PLL\n");
2514
2515 intel_dp->DP &= ~DP_PLL_ENABLE;
2516
2517 I915_WRITE(DP_A, intel_dp->DP);
2518 POSTING_READ(DP_A);
2519 udelay(200);
2520 }
2521
2522 /* If the sink supports it, try to set the power state appropriately */
2523 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2524 {
2525 int ret, i;
2526
2527 /* Should have a valid DPCD by this point */
2528 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2529 return;
2530
2531 if (mode != DRM_MODE_DPMS_ON) {
2532 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2533 DP_SET_POWER_D3);
2534 } else {
2535 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
2536
2537 /*
2538 * When turning on, we need to retry for 1ms to give the sink
2539 * time to wake up.
2540 */
2541 for (i = 0; i < 3; i++) {
2542 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2543 DP_SET_POWER_D0);
2544 if (ret == 1)
2545 break;
2546 msleep(1);
2547 }
2548
2549 if (ret == 1 && lspcon->active)
2550 lspcon_wait_pcon_mode(lspcon);
2551 }
2552
2553 if (ret != 1)
2554 DRM_DEBUG_KMS("failed to %s sink power state\n",
2555 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2556 }
2557
2558 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2559 enum pipe *pipe)
2560 {
2561 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2562 enum port port = dp_to_dig_port(intel_dp)->port;
2563 struct drm_device *dev = encoder->base.dev;
2564 struct drm_i915_private *dev_priv = to_i915(dev);
2565 u32 tmp;
2566 bool ret;
2567
2568 if (!intel_display_power_get_if_enabled(dev_priv,
2569 encoder->power_domain))
2570 return false;
2571
2572 ret = false;
2573
2574 tmp = I915_READ(intel_dp->output_reg);
2575
2576 if (!(tmp & DP_PORT_EN))
2577 goto out;
2578
2579 if (IS_GEN7(dev_priv) && port == PORT_A) {
2580 *pipe = PORT_TO_PIPE_CPT(tmp);
2581 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2582 enum pipe p;
2583
2584 for_each_pipe(dev_priv, p) {
2585 u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2586 if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2587 *pipe = p;
2588 ret = true;
2589
2590 goto out;
2591 }
2592 }
2593
2594 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2595 i915_mmio_reg_offset(intel_dp->output_reg));
2596 } else if (IS_CHERRYVIEW(dev_priv)) {
2597 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2598 } else {
2599 *pipe = PORT_TO_PIPE(tmp);
2600 }
2601
2602 ret = true;
2603
2604 out:
2605 intel_display_power_put(dev_priv, encoder->power_domain);
2606
2607 return ret;
2608 }
2609
2610 static void intel_dp_get_config(struct intel_encoder *encoder,
2611 struct intel_crtc_state *pipe_config)
2612 {
2613 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2614 u32 tmp, flags = 0;
2615 struct drm_device *dev = encoder->base.dev;
2616 struct drm_i915_private *dev_priv = to_i915(dev);
2617 enum port port = dp_to_dig_port(intel_dp)->port;
2618 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2619
2620 tmp = I915_READ(intel_dp->output_reg);
2621
2622 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2623
2624 if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2625 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2626
2627 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2628 flags |= DRM_MODE_FLAG_PHSYNC;
2629 else
2630 flags |= DRM_MODE_FLAG_NHSYNC;
2631
2632 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2633 flags |= DRM_MODE_FLAG_PVSYNC;
2634 else
2635 flags |= DRM_MODE_FLAG_NVSYNC;
2636 } else {
2637 if (tmp & DP_SYNC_HS_HIGH)
2638 flags |= DRM_MODE_FLAG_PHSYNC;
2639 else
2640 flags |= DRM_MODE_FLAG_NHSYNC;
2641
2642 if (tmp & DP_SYNC_VS_HIGH)
2643 flags |= DRM_MODE_FLAG_PVSYNC;
2644 else
2645 flags |= DRM_MODE_FLAG_NVSYNC;
2646 }
2647
2648 pipe_config->base.adjusted_mode.flags |= flags;
2649
2650 if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
2651 pipe_config->limited_color_range = true;
2652
2653 pipe_config->lane_count =
2654 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2655
2656 intel_dp_get_m_n(crtc, pipe_config);
2657
2658 if (port == PORT_A) {
2659 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2660 pipe_config->port_clock = 162000;
2661 else
2662 pipe_config->port_clock = 270000;
2663 }
2664
2665 pipe_config->base.adjusted_mode.crtc_clock =
2666 intel_dotclock_calculate(pipe_config->port_clock,
2667 &pipe_config->dp_m_n);
2668
2669 if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2670 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2671 /*
2672 * This is a big fat ugly hack.
2673 *
2674 * Some machines in UEFI boot mode provide us a VBT that has 18
2675 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2676 * unknown we fail to light up. Yet the same BIOS boots up with
2677 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2678 * max, not what it tells us to use.
2679 *
2680 * Note: This will still be broken if the eDP panel is not lit
2681 * up by the BIOS, and thus we can't get the mode at module
2682 * load.
2683 */
2684 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2685 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2686 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2687 }
2688 }
2689
2690 static void intel_disable_dp(struct intel_encoder *encoder,
2691 const struct intel_crtc_state *old_crtc_state,
2692 const struct drm_connector_state *old_conn_state)
2693 {
2694 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2695 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2696
2697 if (old_crtc_state->has_audio)
2698 intel_audio_codec_disable(encoder);
2699
2700 if (HAS_PSR(dev_priv) && !HAS_DDI(dev_priv))
2701 intel_psr_disable(intel_dp, old_crtc_state);
2702
2703 /* Make sure the panel is off before trying to change the mode. But also
2704 * ensure that we have vdd while we switch off the panel. */
2705 intel_edp_panel_vdd_on(intel_dp);
2706 intel_edp_backlight_off(old_conn_state);
2707 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2708 intel_edp_panel_off(intel_dp);
2709
2710 /* disable the port before the pipe on g4x */
2711 if (INTEL_GEN(dev_priv) < 5)
2712 intel_dp_link_down(intel_dp);
2713 }
2714
2715 static void ilk_post_disable_dp(struct intel_encoder *encoder,
2716 const struct intel_crtc_state *old_crtc_state,
2717 const struct drm_connector_state *old_conn_state)
2718 {
2719 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2720 enum port port = dp_to_dig_port(intel_dp)->port;
2721
2722 intel_dp_link_down(intel_dp);
2723
2724 /* Only ilk+ has port A */
2725 if (port == PORT_A)
2726 ironlake_edp_pll_off(intel_dp);
2727 }
2728
2729 static void vlv_post_disable_dp(struct intel_encoder *encoder,
2730 const struct intel_crtc_state *old_crtc_state,
2731 const struct drm_connector_state *old_conn_state)
2732 {
2733 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2734
2735 intel_dp_link_down(intel_dp);
2736 }
2737
2738 static void chv_post_disable_dp(struct intel_encoder *encoder,
2739 const struct intel_crtc_state *old_crtc_state,
2740 const struct drm_connector_state *old_conn_state)
2741 {
2742 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2743 struct drm_device *dev = encoder->base.dev;
2744 struct drm_i915_private *dev_priv = to_i915(dev);
2745
2746 intel_dp_link_down(intel_dp);
2747
2748 mutex_lock(&dev_priv->sb_lock);
2749
2750 /* Assert data lane reset */
2751 chv_data_lane_soft_reset(encoder, true);
2752
2753 mutex_unlock(&dev_priv->sb_lock);
2754 }
2755
2756 static void
2757 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2758 uint32_t *DP,
2759 uint8_t dp_train_pat)
2760 {
2761 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2762 struct drm_device *dev = intel_dig_port->base.base.dev;
2763 struct drm_i915_private *dev_priv = to_i915(dev);
2764 enum port port = intel_dig_port->port;
2765
2766 if (dp_train_pat & DP_TRAINING_PATTERN_MASK)
2767 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
2768 dp_train_pat & DP_TRAINING_PATTERN_MASK);
2769
2770 if (HAS_DDI(dev_priv)) {
2771 uint32_t temp = I915_READ(DP_TP_CTL(port));
2772
2773 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2774 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2775 else
2776 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2777
2778 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2779 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2780 case DP_TRAINING_PATTERN_DISABLE:
2781 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2782
2783 break;
2784 case DP_TRAINING_PATTERN_1:
2785 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2786 break;
2787 case DP_TRAINING_PATTERN_2:
2788 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2789 break;
2790 case DP_TRAINING_PATTERN_3:
2791 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2792 break;
2793 }
2794 I915_WRITE(DP_TP_CTL(port), temp);
2795
2796 } else if ((IS_GEN7(dev_priv) && port == PORT_A) ||
2797 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
2798 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2799
2800 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2801 case DP_TRAINING_PATTERN_DISABLE:
2802 *DP |= DP_LINK_TRAIN_OFF_CPT;
2803 break;
2804 case DP_TRAINING_PATTERN_1:
2805 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2806 break;
2807 case DP_TRAINING_PATTERN_2:
2808 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2809 break;
2810 case DP_TRAINING_PATTERN_3:
2811 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2812 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2813 break;
2814 }
2815
2816 } else {
2817 if (IS_CHERRYVIEW(dev_priv))
2818 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2819 else
2820 *DP &= ~DP_LINK_TRAIN_MASK;
2821
2822 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2823 case DP_TRAINING_PATTERN_DISABLE:
2824 *DP |= DP_LINK_TRAIN_OFF;
2825 break;
2826 case DP_TRAINING_PATTERN_1:
2827 *DP |= DP_LINK_TRAIN_PAT_1;
2828 break;
2829 case DP_TRAINING_PATTERN_2:
2830 *DP |= DP_LINK_TRAIN_PAT_2;
2831 break;
2832 case DP_TRAINING_PATTERN_3:
2833 if (IS_CHERRYVIEW(dev_priv)) {
2834 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2835 } else {
2836 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2837 *DP |= DP_LINK_TRAIN_PAT_2;
2838 }
2839 break;
2840 }
2841 }
2842 }
2843
2844 static void intel_dp_enable_port(struct intel_dp *intel_dp,
2845 const struct intel_crtc_state *old_crtc_state)
2846 {
2847 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2848 struct drm_i915_private *dev_priv = to_i915(dev);
2849
2850 /* enable with pattern 1 (as per spec) */
2851
2852 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
2853
2854 /*
2855 * Magic for VLV/CHV. We _must_ first set up the register
2856 * without actually enabling the port, and then do another
2857 * write to enable the port. Otherwise link training will
2858 * fail when the power sequencer is freshly used for this port.
2859 */
2860 intel_dp->DP |= DP_PORT_EN;
2861 if (old_crtc_state->has_audio)
2862 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2863
2864 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2865 POSTING_READ(intel_dp->output_reg);
2866 }
2867
2868 static void intel_enable_dp(struct intel_encoder *encoder,
2869 const struct intel_crtc_state *pipe_config,
2870 const struct drm_connector_state *conn_state)
2871 {
2872 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2873 struct drm_device *dev = encoder->base.dev;
2874 struct drm_i915_private *dev_priv = to_i915(dev);
2875 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2876 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2877 enum pipe pipe = crtc->pipe;
2878
2879 if (WARN_ON(dp_reg & DP_PORT_EN))
2880 return;
2881
2882 pps_lock(intel_dp);
2883
2884 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2885 vlv_init_panel_power_sequencer(intel_dp);
2886
2887 intel_dp_enable_port(intel_dp, pipe_config);
2888
2889 edp_panel_vdd_on(intel_dp);
2890 edp_panel_on(intel_dp);
2891 edp_panel_vdd_off(intel_dp, true);
2892
2893 pps_unlock(intel_dp);
2894
2895 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2896 unsigned int lane_mask = 0x0;
2897
2898 if (IS_CHERRYVIEW(dev_priv))
2899 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
2900
2901 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2902 lane_mask);
2903 }
2904
2905 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2906 intel_dp_start_link_train(intel_dp);
2907 intel_dp_stop_link_train(intel_dp);
2908
2909 if (pipe_config->has_audio) {
2910 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2911 pipe_name(pipe));
2912 intel_audio_codec_enable(encoder, pipe_config, conn_state);
2913 }
2914 }
2915
2916 static void g4x_enable_dp(struct intel_encoder *encoder,
2917 const struct intel_crtc_state *pipe_config,
2918 const struct drm_connector_state *conn_state)
2919 {
2920 intel_enable_dp(encoder, pipe_config, conn_state);
2921 intel_edp_backlight_on(pipe_config, conn_state);
2922 }
2923
2924 static void vlv_enable_dp(struct intel_encoder *encoder,
2925 const struct intel_crtc_state *pipe_config,
2926 const struct drm_connector_state *conn_state)
2927 {
2928 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2929
2930 intel_edp_backlight_on(pipe_config, conn_state);
2931 intel_psr_enable(intel_dp, pipe_config);
2932 }
2933
2934 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
2935 const struct intel_crtc_state *pipe_config,
2936 const struct drm_connector_state *conn_state)
2937 {
2938 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2939 enum port port = dp_to_dig_port(intel_dp)->port;
2940
2941 intel_dp_prepare(encoder, pipe_config);
2942
2943 /* Only ilk+ has port A */
2944 if (port == PORT_A)
2945 ironlake_edp_pll_on(intel_dp, pipe_config);
2946 }
2947
2948 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2949 {
2950 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2951 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
2952 enum pipe pipe = intel_dp->pps_pipe;
2953 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
2954
2955 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
2956
2957 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2958 return;
2959
2960 edp_panel_vdd_off_sync(intel_dp);
2961
2962 /*
2963 * VLV seems to get confused when multiple power seqeuencers
2964 * have the same port selected (even if only one has power/vdd
2965 * enabled). The failure manifests as vlv_wait_port_ready() failing
2966 * CHV on the other hand doesn't seem to mind having the same port
2967 * selected in multiple power seqeuencers, but let's clear the
2968 * port select always when logically disconnecting a power sequencer
2969 * from a port.
2970 */
2971 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2972 pipe_name(pipe), port_name(intel_dig_port->port));
2973 I915_WRITE(pp_on_reg, 0);
2974 POSTING_READ(pp_on_reg);
2975
2976 intel_dp->pps_pipe = INVALID_PIPE;
2977 }
2978
2979 static void vlv_steal_power_sequencer(struct drm_device *dev,
2980 enum pipe pipe)
2981 {
2982 struct drm_i915_private *dev_priv = to_i915(dev);
2983 struct intel_encoder *encoder;
2984
2985 lockdep_assert_held(&dev_priv->pps_mutex);
2986
2987 for_each_intel_encoder(dev, encoder) {
2988 struct intel_dp *intel_dp;
2989 enum port port;
2990
2991 if (encoder->type != INTEL_OUTPUT_DP &&
2992 encoder->type != INTEL_OUTPUT_EDP)
2993 continue;
2994
2995 intel_dp = enc_to_intel_dp(&encoder->base);
2996 port = dp_to_dig_port(intel_dp)->port;
2997
2998 WARN(intel_dp->active_pipe == pipe,
2999 "stealing pipe %c power sequencer from active (e)DP port %c\n",
3000 pipe_name(pipe), port_name(port));
3001
3002 if (intel_dp->pps_pipe != pipe)
3003 continue;
3004
3005 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
3006 pipe_name(pipe), port_name(port));
3007
3008 /* make sure vdd is off before we steal it */
3009 vlv_detach_power_sequencer(intel_dp);
3010 }
3011 }
3012
3013 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
3014 {
3015 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3016 struct intel_encoder *encoder = &intel_dig_port->base;
3017 struct drm_device *dev = encoder->base.dev;
3018 struct drm_i915_private *dev_priv = to_i915(dev);
3019 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
3020
3021 lockdep_assert_held(&dev_priv->pps_mutex);
3022
3023 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3024
3025 if (intel_dp->pps_pipe != INVALID_PIPE &&
3026 intel_dp->pps_pipe != crtc->pipe) {
3027 /*
3028 * If another power sequencer was being used on this
3029 * port previously make sure to turn off vdd there while
3030 * we still have control of it.
3031 */
3032 vlv_detach_power_sequencer(intel_dp);
3033 }
3034
3035 /*
3036 * We may be stealing the power
3037 * sequencer from another port.
3038 */
3039 vlv_steal_power_sequencer(dev, crtc->pipe);
3040
3041 intel_dp->active_pipe = crtc->pipe;
3042
3043 if (!intel_dp_is_edp(intel_dp))
3044 return;
3045
3046 /* now it's all ours */
3047 intel_dp->pps_pipe = crtc->pipe;
3048
3049 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
3050 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
3051
3052 /* init power sequencer on this pipe and port */
3053 intel_dp_init_panel_power_sequencer(dev, intel_dp);
3054 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, true);
3055 }
3056
3057 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3058 const struct intel_crtc_state *pipe_config,
3059 const struct drm_connector_state *conn_state)
3060 {
3061 vlv_phy_pre_encoder_enable(encoder);
3062
3063 intel_enable_dp(encoder, pipe_config, conn_state);
3064 }
3065
3066 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3067 const struct intel_crtc_state *pipe_config,
3068 const struct drm_connector_state *conn_state)
3069 {
3070 intel_dp_prepare(encoder, pipe_config);
3071
3072 vlv_phy_pre_pll_enable(encoder);
3073 }
3074
3075 static void chv_pre_enable_dp(struct intel_encoder *encoder,
3076 const struct intel_crtc_state *pipe_config,
3077 const struct drm_connector_state *conn_state)
3078 {
3079 chv_phy_pre_encoder_enable(encoder);
3080
3081 intel_enable_dp(encoder, pipe_config, conn_state);
3082
3083 /* Second common lane will stay alive on its own now */
3084 chv_phy_release_cl2_override(encoder);
3085 }
3086
3087 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3088 const struct intel_crtc_state *pipe_config,
3089 const struct drm_connector_state *conn_state)
3090 {
3091 intel_dp_prepare(encoder, pipe_config);
3092
3093 chv_phy_pre_pll_enable(encoder);
3094 }
3095
3096 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3097 const struct intel_crtc_state *pipe_config,
3098 const struct drm_connector_state *conn_state)
3099 {
3100 chv_phy_post_pll_disable(encoder);
3101 }
3102
3103 /*
3104 * Fetch AUX CH registers 0x202 - 0x207 which contain
3105 * link status information
3106 */
3107 bool
3108 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3109 {
3110 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3111 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3112 }
3113
3114 static bool intel_dp_get_y_cord_status(struct intel_dp *intel_dp)
3115 {
3116 uint8_t psr_caps = 0;
3117
3118 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_CAPS, &psr_caps) != 1)
3119 return false;
3120 return psr_caps & DP_PSR2_SU_Y_COORDINATE_REQUIRED;
3121 }
3122
3123 static bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
3124 {
3125 uint8_t dprx = 0;
3126
3127 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
3128 &dprx) != 1)
3129 return false;
3130 return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
3131 }
3132
3133 static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
3134 {
3135 uint8_t alpm_caps = 0;
3136
3137 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
3138 &alpm_caps) != 1)
3139 return false;
3140 return alpm_caps & DP_ALPM_CAP;
3141 }
3142
3143 /* These are source-specific values. */
3144 uint8_t
3145 intel_dp_voltage_max(struct intel_dp *intel_dp)
3146 {
3147 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3148 enum port port = dp_to_dig_port(intel_dp)->port;
3149
3150 if (IS_GEN9_LP(dev_priv))
3151 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3152 else if (INTEL_GEN(dev_priv) >= 9) {
3153 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3154 return intel_ddi_dp_voltage_max(encoder);
3155 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3156 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3157 else if (IS_GEN7(dev_priv) && port == PORT_A)
3158 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3159 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3160 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3161 else
3162 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3163 }
3164
3165 uint8_t
3166 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3167 {
3168 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3169 enum port port = dp_to_dig_port(intel_dp)->port;
3170
3171 if (INTEL_GEN(dev_priv) >= 9) {
3172 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3173 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3174 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3175 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3176 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3177 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3178 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3179 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3180 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3181 default:
3182 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3183 }
3184 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3185 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3186 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3187 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3188 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3189 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3190 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3191 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3192 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3193 default:
3194 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3195 }
3196 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3197 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3198 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3199 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3200 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3201 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3202 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3203 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3204 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3205 default:
3206 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3207 }
3208 } else if (IS_GEN7(dev_priv) && port == PORT_A) {
3209 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3210 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3211 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3212 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3213 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3214 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3215 default:
3216 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3217 }
3218 } else {
3219 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3220 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3221 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3222 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3223 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3224 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3225 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3226 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3227 default:
3228 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3229 }
3230 }
3231 }
3232
3233 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3234 {
3235 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3236 unsigned long demph_reg_value, preemph_reg_value,
3237 uniqtranscale_reg_value;
3238 uint8_t train_set = intel_dp->train_set[0];
3239
3240 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3241 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3242 preemph_reg_value = 0x0004000;
3243 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3244 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3245 demph_reg_value = 0x2B405555;
3246 uniqtranscale_reg_value = 0x552AB83A;
3247 break;
3248 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3249 demph_reg_value = 0x2B404040;
3250 uniqtranscale_reg_value = 0x5548B83A;
3251 break;
3252 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3253 demph_reg_value = 0x2B245555;
3254 uniqtranscale_reg_value = 0x5560B83A;
3255 break;
3256 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3257 demph_reg_value = 0x2B405555;
3258 uniqtranscale_reg_value = 0x5598DA3A;
3259 break;
3260 default:
3261 return 0;
3262 }
3263 break;
3264 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3265 preemph_reg_value = 0x0002000;
3266 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3267 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3268 demph_reg_value = 0x2B404040;
3269 uniqtranscale_reg_value = 0x5552B83A;
3270 break;
3271 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3272 demph_reg_value = 0x2B404848;
3273 uniqtranscale_reg_value = 0x5580B83A;
3274 break;
3275 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3276 demph_reg_value = 0x2B404040;
3277 uniqtranscale_reg_value = 0x55ADDA3A;
3278 break;
3279 default:
3280 return 0;
3281 }
3282 break;
3283 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3284 preemph_reg_value = 0x0000000;
3285 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3286 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3287 demph_reg_value = 0x2B305555;
3288 uniqtranscale_reg_value = 0x5570B83A;
3289 break;
3290 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3291 demph_reg_value = 0x2B2B4040;
3292 uniqtranscale_reg_value = 0x55ADDA3A;
3293 break;
3294 default:
3295 return 0;
3296 }
3297 break;
3298 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3299 preemph_reg_value = 0x0006000;
3300 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3301 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3302 demph_reg_value = 0x1B405555;
3303 uniqtranscale_reg_value = 0x55ADDA3A;
3304 break;
3305 default:
3306 return 0;
3307 }
3308 break;
3309 default:
3310 return 0;
3311 }
3312
3313 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3314 uniqtranscale_reg_value, 0);
3315
3316 return 0;
3317 }
3318
3319 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3320 {
3321 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3322 u32 deemph_reg_value, margin_reg_value;
3323 bool uniq_trans_scale = false;
3324 uint8_t train_set = intel_dp->train_set[0];
3325
3326 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3327 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3328 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3329 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3330 deemph_reg_value = 128;
3331 margin_reg_value = 52;
3332 break;
3333 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3334 deemph_reg_value = 128;
3335 margin_reg_value = 77;
3336 break;
3337 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3338 deemph_reg_value = 128;
3339 margin_reg_value = 102;
3340 break;
3341 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3342 deemph_reg_value = 128;
3343 margin_reg_value = 154;
3344 uniq_trans_scale = true;
3345 break;
3346 default:
3347 return 0;
3348 }
3349 break;
3350 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3351 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3352 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3353 deemph_reg_value = 85;
3354 margin_reg_value = 78;
3355 break;
3356 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3357 deemph_reg_value = 85;
3358 margin_reg_value = 116;
3359 break;
3360 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3361 deemph_reg_value = 85;
3362 margin_reg_value = 154;
3363 break;
3364 default:
3365 return 0;
3366 }
3367 break;
3368 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3369 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3370 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3371 deemph_reg_value = 64;
3372 margin_reg_value = 104;
3373 break;
3374 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3375 deemph_reg_value = 64;
3376 margin_reg_value = 154;
3377 break;
3378 default:
3379 return 0;
3380 }
3381 break;
3382 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3383 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3384 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3385 deemph_reg_value = 43;
3386 margin_reg_value = 154;
3387 break;
3388 default:
3389 return 0;
3390 }
3391 break;
3392 default:
3393 return 0;
3394 }
3395
3396 chv_set_phy_signal_level(encoder, deemph_reg_value,
3397 margin_reg_value, uniq_trans_scale);
3398
3399 return 0;
3400 }
3401
3402 static uint32_t
3403 gen4_signal_levels(uint8_t train_set)
3404 {
3405 uint32_t signal_levels = 0;
3406
3407 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3408 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3409 default:
3410 signal_levels |= DP_VOLTAGE_0_4;
3411 break;
3412 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3413 signal_levels |= DP_VOLTAGE_0_6;
3414 break;
3415 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3416 signal_levels |= DP_VOLTAGE_0_8;
3417 break;
3418 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3419 signal_levels |= DP_VOLTAGE_1_2;
3420 break;
3421 }
3422 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3423 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3424 default:
3425 signal_levels |= DP_PRE_EMPHASIS_0;
3426 break;
3427 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3428 signal_levels |= DP_PRE_EMPHASIS_3_5;
3429 break;
3430 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3431 signal_levels |= DP_PRE_EMPHASIS_6;
3432 break;
3433 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3434 signal_levels |= DP_PRE_EMPHASIS_9_5;
3435 break;
3436 }
3437 return signal_levels;
3438 }
3439
3440 /* Gen6's DP voltage swing and pre-emphasis control */
3441 static uint32_t
3442 gen6_edp_signal_levels(uint8_t train_set)
3443 {
3444 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3445 DP_TRAIN_PRE_EMPHASIS_MASK);
3446 switch (signal_levels) {
3447 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3448 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3449 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3450 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3451 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3452 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3453 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3454 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3455 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3456 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3457 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3458 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3459 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3460 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3461 default:
3462 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3463 "0x%x\n", signal_levels);
3464 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3465 }
3466 }
3467
3468 /* Gen7's DP voltage swing and pre-emphasis control */
3469 static uint32_t
3470 gen7_edp_signal_levels(uint8_t train_set)
3471 {
3472 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3473 DP_TRAIN_PRE_EMPHASIS_MASK);
3474 switch (signal_levels) {
3475 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3476 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3477 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3478 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3479 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3480 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3481
3482 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3483 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3484 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3485 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3486
3487 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3488 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3489 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3490 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3491
3492 default:
3493 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3494 "0x%x\n", signal_levels);
3495 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3496 }
3497 }
3498
3499 void
3500 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3501 {
3502 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3503 enum port port = intel_dig_port->port;
3504 struct drm_device *dev = intel_dig_port->base.base.dev;
3505 struct drm_i915_private *dev_priv = to_i915(dev);
3506 uint32_t signal_levels, mask = 0;
3507 uint8_t train_set = intel_dp->train_set[0];
3508
3509 if (IS_GEN9_LP(dev_priv) || IS_CANNONLAKE(dev_priv)) {
3510 signal_levels = bxt_signal_levels(intel_dp);
3511 } else if (HAS_DDI(dev_priv)) {
3512 signal_levels = ddi_signal_levels(intel_dp);
3513 mask = DDI_BUF_EMP_MASK;
3514 } else if (IS_CHERRYVIEW(dev_priv)) {
3515 signal_levels = chv_signal_levels(intel_dp);
3516 } else if (IS_VALLEYVIEW(dev_priv)) {
3517 signal_levels = vlv_signal_levels(intel_dp);
3518 } else if (IS_GEN7(dev_priv) && port == PORT_A) {
3519 signal_levels = gen7_edp_signal_levels(train_set);
3520 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3521 } else if (IS_GEN6(dev_priv) && port == PORT_A) {
3522 signal_levels = gen6_edp_signal_levels(train_set);
3523 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3524 } else {
3525 signal_levels = gen4_signal_levels(train_set);
3526 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3527 }
3528
3529 if (mask)
3530 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3531
3532 DRM_DEBUG_KMS("Using vswing level %d\n",
3533 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3534 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3535 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3536 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3537
3538 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3539
3540 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3541 POSTING_READ(intel_dp->output_reg);
3542 }
3543
3544 void
3545 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3546 uint8_t dp_train_pat)
3547 {
3548 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3549 struct drm_i915_private *dev_priv =
3550 to_i915(intel_dig_port->base.base.dev);
3551
3552 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3553
3554 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3555 POSTING_READ(intel_dp->output_reg);
3556 }
3557
3558 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3559 {
3560 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3561 struct drm_device *dev = intel_dig_port->base.base.dev;
3562 struct drm_i915_private *dev_priv = to_i915(dev);
3563 enum port port = intel_dig_port->port;
3564 uint32_t val;
3565
3566 if (!HAS_DDI(dev_priv))
3567 return;
3568
3569 val = I915_READ(DP_TP_CTL(port));
3570 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3571 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3572 I915_WRITE(DP_TP_CTL(port), val);
3573
3574 /*
3575 * On PORT_A we can have only eDP in SST mode. There the only reason
3576 * we need to set idle transmission mode is to work around a HW issue
3577 * where we enable the pipe while not in idle link-training mode.
3578 * In this case there is requirement to wait for a minimum number of
3579 * idle patterns to be sent.
3580 */
3581 if (port == PORT_A)
3582 return;
3583
3584 if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
3585 DP_TP_STATUS_IDLE_DONE,
3586 DP_TP_STATUS_IDLE_DONE,
3587 1))
3588 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3589 }
3590
3591 static void
3592 intel_dp_link_down(struct intel_dp *intel_dp)
3593 {
3594 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3595 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3596 enum port port = intel_dig_port->port;
3597 struct drm_device *dev = intel_dig_port->base.base.dev;
3598 struct drm_i915_private *dev_priv = to_i915(dev);
3599 uint32_t DP = intel_dp->DP;
3600
3601 if (WARN_ON(HAS_DDI(dev_priv)))
3602 return;
3603
3604 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3605 return;
3606
3607 DRM_DEBUG_KMS("\n");
3608
3609 if ((IS_GEN7(dev_priv) && port == PORT_A) ||
3610 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3611 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3612 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3613 } else {
3614 if (IS_CHERRYVIEW(dev_priv))
3615 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3616 else
3617 DP &= ~DP_LINK_TRAIN_MASK;
3618 DP |= DP_LINK_TRAIN_PAT_IDLE;
3619 }
3620 I915_WRITE(intel_dp->output_reg, DP);
3621 POSTING_READ(intel_dp->output_reg);
3622
3623 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3624 I915_WRITE(intel_dp->output_reg, DP);
3625 POSTING_READ(intel_dp->output_reg);
3626
3627 /*
3628 * HW workaround for IBX, we need to move the port
3629 * to transcoder A after disabling it to allow the
3630 * matching HDMI port to be enabled on transcoder A.
3631 */
3632 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
3633 /*
3634 * We get CPU/PCH FIFO underruns on the other pipe when
3635 * doing the workaround. Sweep them under the rug.
3636 */
3637 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3638 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3639
3640 /* always enable with pattern 1 (as per spec) */
3641 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3642 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3643 I915_WRITE(intel_dp->output_reg, DP);
3644 POSTING_READ(intel_dp->output_reg);
3645
3646 DP &= ~DP_PORT_EN;
3647 I915_WRITE(intel_dp->output_reg, DP);
3648 POSTING_READ(intel_dp->output_reg);
3649
3650 intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
3651 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3652 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3653 }
3654
3655 msleep(intel_dp->panel_power_down_delay);
3656
3657 intel_dp->DP = DP;
3658
3659 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3660 pps_lock(intel_dp);
3661 intel_dp->active_pipe = INVALID_PIPE;
3662 pps_unlock(intel_dp);
3663 }
3664 }
3665
3666 bool
3667 intel_dp_read_dpcd(struct intel_dp *intel_dp)
3668 {
3669 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
3670 sizeof(intel_dp->dpcd)) < 0)
3671 return false; /* aux transfer failed */
3672
3673 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3674
3675 return intel_dp->dpcd[DP_DPCD_REV] != 0;
3676 }
3677
3678 static bool
3679 intel_edp_init_dpcd(struct intel_dp *intel_dp)
3680 {
3681 struct drm_i915_private *dev_priv =
3682 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
3683
3684 /* this function is meant to be called only once */
3685 WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
3686
3687 if (!intel_dp_read_dpcd(intel_dp))
3688 return false;
3689
3690 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
3691 drm_dp_is_branch(intel_dp->dpcd));
3692
3693 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3694 dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3695 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3696
3697 /* Check if the panel supports PSR */
3698 drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT,
3699 intel_dp->psr_dpcd,
3700 sizeof(intel_dp->psr_dpcd));
3701 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3702 dev_priv->psr.sink_support = true;
3703 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3704 }
3705
3706 if (INTEL_GEN(dev_priv) >= 9 &&
3707 (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3708 uint8_t frame_sync_cap;
3709
3710 dev_priv->psr.sink_support = true;
3711 if (drm_dp_dpcd_readb(&intel_dp->aux,
3712 DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3713 &frame_sync_cap) != 1)
3714 frame_sync_cap = 0;
3715 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3716 /* PSR2 needs frame sync as well */
3717 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3718 DRM_DEBUG_KMS("PSR2 %s on sink",
3719 dev_priv->psr.psr2_support ? "supported" : "not supported");
3720
3721 if (dev_priv->psr.psr2_support) {
3722 dev_priv->psr.y_cord_support =
3723 intel_dp_get_y_cord_status(intel_dp);
3724 dev_priv->psr.colorimetry_support =
3725 intel_dp_get_colorimetry_status(intel_dp);
3726 dev_priv->psr.alpm =
3727 intel_dp_get_alpm_status(intel_dp);
3728 }
3729
3730 }
3731
3732 /* Read the eDP Display control capabilities registers */
3733 if ((intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3734 drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
3735 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
3736 sizeof(intel_dp->edp_dpcd))
3737 DRM_DEBUG_KMS("EDP DPCD : %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
3738 intel_dp->edp_dpcd);
3739
3740 /* Intermediate frequency support */
3741 if (intel_dp->edp_dpcd[0] >= 0x03) { /* eDp v1.4 or higher */
3742 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3743 int i;
3744
3745 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
3746 sink_rates, sizeof(sink_rates));
3747
3748 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3749 int val = le16_to_cpu(sink_rates[i]);
3750
3751 if (val == 0)
3752 break;
3753
3754 /* Value read multiplied by 200kHz gives the per-lane
3755 * link rate in kHz. The source rates are, however,
3756 * stored in terms of LS_Clk kHz. The full conversion
3757 * back to symbols is
3758 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
3759 */
3760 intel_dp->sink_rates[i] = (val * 200) / 10;
3761 }
3762 intel_dp->num_sink_rates = i;
3763 }
3764
3765 if (intel_dp->num_sink_rates)
3766 intel_dp->use_rate_select = true;
3767 else
3768 intel_dp_set_sink_rates(intel_dp);
3769
3770 intel_dp_set_common_rates(intel_dp);
3771
3772 return true;
3773 }
3774
3775
3776 static bool
3777 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3778 {
3779 u8 sink_count;
3780
3781 if (!intel_dp_read_dpcd(intel_dp))
3782 return false;
3783
3784 /* Don't clobber cached eDP rates. */
3785 if (!intel_dp_is_edp(intel_dp)) {
3786 intel_dp_set_sink_rates(intel_dp);
3787 intel_dp_set_common_rates(intel_dp);
3788 }
3789
3790 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &sink_count) <= 0)
3791 return false;
3792
3793 /*
3794 * Sink count can change between short pulse hpd hence
3795 * a member variable in intel_dp will track any changes
3796 * between short pulse interrupts.
3797 */
3798 intel_dp->sink_count = DP_GET_SINK_COUNT(sink_count);
3799
3800 /*
3801 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3802 * a dongle is present but no display. Unless we require to know
3803 * if a dongle is present or not, we don't need to update
3804 * downstream port information. So, an early return here saves
3805 * time from performing other operations which are not required.
3806 */
3807 if (!intel_dp_is_edp(intel_dp) && !intel_dp->sink_count)
3808 return false;
3809
3810 if (!drm_dp_is_branch(intel_dp->dpcd))
3811 return true; /* native DP sink */
3812
3813 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3814 return true; /* no per-port downstream info */
3815
3816 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3817 intel_dp->downstream_ports,
3818 DP_MAX_DOWNSTREAM_PORTS) < 0)
3819 return false; /* downstream port status fetch failed */
3820
3821 return true;
3822 }
3823
3824 static bool
3825 intel_dp_can_mst(struct intel_dp *intel_dp)
3826 {
3827 u8 mstm_cap;
3828
3829 if (!i915.enable_dp_mst)
3830 return false;
3831
3832 if (!intel_dp->can_mst)
3833 return false;
3834
3835 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3836 return false;
3837
3838 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
3839 return false;
3840
3841 return mstm_cap & DP_MST_CAP;
3842 }
3843
3844 static void
3845 intel_dp_configure_mst(struct intel_dp *intel_dp)
3846 {
3847 if (!i915.enable_dp_mst)
3848 return;
3849
3850 if (!intel_dp->can_mst)
3851 return;
3852
3853 intel_dp->is_mst = intel_dp_can_mst(intel_dp);
3854
3855 if (intel_dp->is_mst)
3856 DRM_DEBUG_KMS("Sink is MST capable\n");
3857 else
3858 DRM_DEBUG_KMS("Sink is not MST capable\n");
3859
3860 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
3861 intel_dp->is_mst);
3862 }
3863
3864 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3865 {
3866 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3867 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3868 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3869 u8 buf;
3870 int ret = 0;
3871 int count = 0;
3872 int attempts = 10;
3873
3874 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3875 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3876 ret = -EIO;
3877 goto out;
3878 }
3879
3880 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3881 buf & ~DP_TEST_SINK_START) < 0) {
3882 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3883 ret = -EIO;
3884 goto out;
3885 }
3886
3887 do {
3888 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
3889
3890 if (drm_dp_dpcd_readb(&intel_dp->aux,
3891 DP_TEST_SINK_MISC, &buf) < 0) {
3892 ret = -EIO;
3893 goto out;
3894 }
3895 count = buf & DP_TEST_COUNT_MASK;
3896 } while (--attempts && count);
3897
3898 if (attempts == 0) {
3899 DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
3900 ret = -ETIMEDOUT;
3901 }
3902
3903 out:
3904 hsw_enable_ips(intel_crtc);
3905 return ret;
3906 }
3907
3908 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
3909 {
3910 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3911 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3912 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3913 u8 buf;
3914 int ret;
3915
3916 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3917 return -EIO;
3918
3919 if (!(buf & DP_TEST_CRC_SUPPORTED))
3920 return -ENOTTY;
3921
3922 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3923 return -EIO;
3924
3925 if (buf & DP_TEST_SINK_START) {
3926 ret = intel_dp_sink_crc_stop(intel_dp);
3927 if (ret)
3928 return ret;
3929 }
3930
3931 hsw_disable_ips(intel_crtc);
3932
3933 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3934 buf | DP_TEST_SINK_START) < 0) {
3935 hsw_enable_ips(intel_crtc);
3936 return -EIO;
3937 }
3938
3939 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
3940 return 0;
3941 }
3942
3943 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3944 {
3945 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3946 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3947 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3948 u8 buf;
3949 int count, ret;
3950 int attempts = 6;
3951
3952 ret = intel_dp_sink_crc_start(intel_dp);
3953 if (ret)
3954 return ret;
3955
3956 do {
3957 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
3958
3959 if (drm_dp_dpcd_readb(&intel_dp->aux,
3960 DP_TEST_SINK_MISC, &buf) < 0) {
3961 ret = -EIO;
3962 goto stop;
3963 }
3964 count = buf & DP_TEST_COUNT_MASK;
3965
3966 } while (--attempts && count == 0);
3967
3968 if (attempts == 0) {
3969 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
3970 ret = -ETIMEDOUT;
3971 goto stop;
3972 }
3973
3974 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
3975 ret = -EIO;
3976 goto stop;
3977 }
3978
3979 stop:
3980 intel_dp_sink_crc_stop(intel_dp);
3981 return ret;
3982 }
3983
3984 static bool
3985 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3986 {
3987 return drm_dp_dpcd_readb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
3988 sink_irq_vector) == 1;
3989 }
3990
3991 static bool
3992 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3993 {
3994 int ret;
3995
3996 ret = drm_dp_dpcd_read(&intel_dp->aux,
3997 DP_SINK_COUNT_ESI,
3998 sink_irq_vector, 14);
3999 if (ret != 14)
4000 return false;
4001
4002 return true;
4003 }
4004
4005 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4006 {
4007 int status = 0;
4008 int test_link_rate;
4009 uint8_t test_lane_count, test_link_bw;
4010 /* (DP CTS 1.2)
4011 * 4.3.1.11
4012 */
4013 /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
4014 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
4015 &test_lane_count);
4016
4017 if (status <= 0) {
4018 DRM_DEBUG_KMS("Lane count read failed\n");
4019 return DP_TEST_NAK;
4020 }
4021 test_lane_count &= DP_MAX_LANE_COUNT_MASK;
4022
4023 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
4024 &test_link_bw);
4025 if (status <= 0) {
4026 DRM_DEBUG_KMS("Link Rate read failed\n");
4027 return DP_TEST_NAK;
4028 }
4029 test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4030
4031 /* Validate the requested link rate and lane count */
4032 if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
4033 test_lane_count))
4034 return DP_TEST_NAK;
4035
4036 intel_dp->compliance.test_lane_count = test_lane_count;
4037 intel_dp->compliance.test_link_rate = test_link_rate;
4038
4039 return DP_TEST_ACK;
4040 }
4041
4042 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4043 {
4044 uint8_t test_pattern;
4045 uint8_t test_misc;
4046 __be16 h_width, v_height;
4047 int status = 0;
4048
4049 /* Read the TEST_PATTERN (DP CTS 3.1.5) */
4050 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
4051 &test_pattern);
4052 if (status <= 0) {
4053 DRM_DEBUG_KMS("Test pattern read failed\n");
4054 return DP_TEST_NAK;
4055 }
4056 if (test_pattern != DP_COLOR_RAMP)
4057 return DP_TEST_NAK;
4058
4059 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
4060 &h_width, 2);
4061 if (status <= 0) {
4062 DRM_DEBUG_KMS("H Width read failed\n");
4063 return DP_TEST_NAK;
4064 }
4065
4066 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
4067 &v_height, 2);
4068 if (status <= 0) {
4069 DRM_DEBUG_KMS("V Height read failed\n");
4070 return DP_TEST_NAK;
4071 }
4072
4073 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
4074 &test_misc);
4075 if (status <= 0) {
4076 DRM_DEBUG_KMS("TEST MISC read failed\n");
4077 return DP_TEST_NAK;
4078 }
4079 if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
4080 return DP_TEST_NAK;
4081 if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
4082 return DP_TEST_NAK;
4083 switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
4084 case DP_TEST_BIT_DEPTH_6:
4085 intel_dp->compliance.test_data.bpc = 6;
4086 break;
4087 case DP_TEST_BIT_DEPTH_8:
4088 intel_dp->compliance.test_data.bpc = 8;
4089 break;
4090 default:
4091 return DP_TEST_NAK;
4092 }
4093
4094 intel_dp->compliance.test_data.video_pattern = test_pattern;
4095 intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
4096 intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
4097 /* Set test active flag here so userspace doesn't interrupt things */
4098 intel_dp->compliance.test_active = 1;
4099
4100 return DP_TEST_ACK;
4101 }
4102
4103 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4104 {
4105 uint8_t test_result = DP_TEST_ACK;
4106 struct intel_connector *intel_connector = intel_dp->attached_connector;
4107 struct drm_connector *connector = &intel_connector->base;
4108
4109 if (intel_connector->detect_edid == NULL ||
4110 connector->edid_corrupt ||
4111 intel_dp->aux.i2c_defer_count > 6) {
4112 /* Check EDID read for NACKs, DEFERs and corruption
4113 * (DP CTS 1.2 Core r1.1)
4114 * 4.2.2.4 : Failed EDID read, I2C_NAK
4115 * 4.2.2.5 : Failed EDID read, I2C_DEFER
4116 * 4.2.2.6 : EDID corruption detected
4117 * Use failsafe mode for all cases
4118 */
4119 if (intel_dp->aux.i2c_nack_count > 0 ||
4120 intel_dp->aux.i2c_defer_count > 0)
4121 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4122 intel_dp->aux.i2c_nack_count,
4123 intel_dp->aux.i2c_defer_count);
4124 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4125 } else {
4126 struct edid *block = intel_connector->detect_edid;
4127
4128 /* We have to write the checksum
4129 * of the last block read
4130 */
4131 block += intel_connector->detect_edid->extensions;
4132
4133 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
4134 block->checksum) <= 0)
4135 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4136
4137 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4138 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4139 }
4140
4141 /* Set test active flag here so userspace doesn't interrupt things */
4142 intel_dp->compliance.test_active = 1;
4143
4144 return test_result;
4145 }
4146
4147 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4148 {
4149 uint8_t test_result = DP_TEST_NAK;
4150 return test_result;
4151 }
4152
4153 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4154 {
4155 uint8_t response = DP_TEST_NAK;
4156 uint8_t request = 0;
4157 int status;
4158
4159 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4160 if (status <= 0) {
4161 DRM_DEBUG_KMS("Could not read test request from sink\n");
4162 goto update_status;
4163 }
4164
4165 switch (request) {
4166 case DP_TEST_LINK_TRAINING:
4167 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4168 response = intel_dp_autotest_link_training(intel_dp);
4169 break;
4170 case DP_TEST_LINK_VIDEO_PATTERN:
4171 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4172 response = intel_dp_autotest_video_pattern(intel_dp);
4173 break;
4174 case DP_TEST_LINK_EDID_READ:
4175 DRM_DEBUG_KMS("EDID test requested\n");
4176 response = intel_dp_autotest_edid(intel_dp);
4177 break;
4178 case DP_TEST_LINK_PHY_TEST_PATTERN:
4179 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4180 response = intel_dp_autotest_phy_pattern(intel_dp);
4181 break;
4182 default:
4183 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4184 break;
4185 }
4186
4187 if (response & DP_TEST_ACK)
4188 intel_dp->compliance.test_type = request;
4189
4190 update_status:
4191 status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4192 if (status <= 0)
4193 DRM_DEBUG_KMS("Could not write test response to sink\n");
4194 }
4195
4196 static int
4197 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4198 {
4199 bool bret;
4200
4201 if (intel_dp->is_mst) {
4202 u8 esi[16] = { 0 };
4203 int ret = 0;
4204 int retry;
4205 bool handled;
4206 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4207 go_again:
4208 if (bret == true) {
4209
4210 /* check link status - esi[10] = 0x200c */
4211 if (intel_dp->active_mst_links &&
4212 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4213 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4214 intel_dp_start_link_train(intel_dp);
4215 intel_dp_stop_link_train(intel_dp);
4216 }
4217
4218 DRM_DEBUG_KMS("got esi %3ph\n", esi);
4219 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4220
4221 if (handled) {
4222 for (retry = 0; retry < 3; retry++) {
4223 int wret;
4224 wret = drm_dp_dpcd_write(&intel_dp->aux,
4225 DP_SINK_COUNT_ESI+1,
4226 &esi[1], 3);
4227 if (wret == 3) {
4228 break;
4229 }
4230 }
4231
4232 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4233 if (bret == true) {
4234 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4235 goto go_again;
4236 }
4237 } else
4238 ret = 0;
4239
4240 return ret;
4241 } else {
4242 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4243 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4244 intel_dp->is_mst = false;
4245 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4246 /* send a hotplug event */
4247 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4248 }
4249 }
4250 return -EINVAL;
4251 }
4252
4253 static void
4254 intel_dp_retrain_link(struct intel_dp *intel_dp)
4255 {
4256 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4257 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4258 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
4259
4260 /* Suppress underruns caused by re-training */
4261 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
4262 if (crtc->config->has_pch_encoder)
4263 intel_set_pch_fifo_underrun_reporting(dev_priv,
4264 intel_crtc_pch_transcoder(crtc), false);
4265
4266 intel_dp_start_link_train(intel_dp);
4267 intel_dp_stop_link_train(intel_dp);
4268
4269 /* Keep underrun reporting disabled until things are stable */
4270 intel_wait_for_vblank(dev_priv, crtc->pipe);
4271
4272 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
4273 if (crtc->config->has_pch_encoder)
4274 intel_set_pch_fifo_underrun_reporting(dev_priv,
4275 intel_crtc_pch_transcoder(crtc), true);
4276 }
4277
4278 static void
4279 intel_dp_check_link_status(struct intel_dp *intel_dp)
4280 {
4281 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4282 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4283 u8 link_status[DP_LINK_STATUS_SIZE];
4284
4285 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4286
4287 if (!intel_dp_get_link_status(intel_dp, link_status)) {
4288 DRM_ERROR("Failed to get link status\n");
4289 return;
4290 }
4291
4292 if (!intel_encoder->base.crtc)
4293 return;
4294
4295 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4296 return;
4297
4298 /*
4299 * Validate the cached values of intel_dp->link_rate and
4300 * intel_dp->lane_count before attempting to retrain.
4301 */
4302 if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
4303 intel_dp->lane_count))
4304 return;
4305
4306 /* Retrain if Channel EQ or CR not ok */
4307 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
4308 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4309 intel_encoder->base.name);
4310
4311 intel_dp_retrain_link(intel_dp);
4312 }
4313 }
4314
4315 /*
4316 * According to DP spec
4317 * 5.1.2:
4318 * 1. Read DPCD
4319 * 2. Configure link according to Receiver Capabilities
4320 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4321 * 4. Check link status on receipt of hot-plug interrupt
4322 *
4323 * intel_dp_short_pulse - handles short pulse interrupts
4324 * when full detection is not required.
4325 * Returns %true if short pulse is handled and full detection
4326 * is NOT required and %false otherwise.
4327 */
4328 static bool
4329 intel_dp_short_pulse(struct intel_dp *intel_dp)
4330 {
4331 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4332 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4333 u8 sink_irq_vector = 0;
4334 u8 old_sink_count = intel_dp->sink_count;
4335 bool ret;
4336
4337 /*
4338 * Clearing compliance test variables to allow capturing
4339 * of values for next automated test request.
4340 */
4341 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4342
4343 /*
4344 * Now read the DPCD to see if it's actually running
4345 * If the current value of sink count doesn't match with
4346 * the value that was stored earlier or dpcd read failed
4347 * we need to do full detection
4348 */
4349 ret = intel_dp_get_dpcd(intel_dp);
4350
4351 if ((old_sink_count != intel_dp->sink_count) || !ret) {
4352 /* No need to proceed if we are going to do full detect */
4353 return false;
4354 }
4355
4356 /* Try to read the source of the interrupt */
4357 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4358 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4359 sink_irq_vector != 0) {
4360 /* Clear interrupt source */
4361 drm_dp_dpcd_writeb(&intel_dp->aux,
4362 DP_DEVICE_SERVICE_IRQ_VECTOR,
4363 sink_irq_vector);
4364
4365 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4366 intel_dp_handle_test_request(intel_dp);
4367 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4368 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4369 }
4370
4371 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4372 intel_dp_check_link_status(intel_dp);
4373 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4374 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
4375 DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
4376 /* Send a Hotplug Uevent to userspace to start modeset */
4377 drm_kms_helper_hotplug_event(intel_encoder->base.dev);
4378 }
4379
4380 return true;
4381 }
4382
4383 /* XXX this is probably wrong for multiple downstream ports */
4384 static enum drm_connector_status
4385 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4386 {
4387 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4388 uint8_t *dpcd = intel_dp->dpcd;
4389 uint8_t type;
4390
4391 if (lspcon->active)
4392 lspcon_resume(lspcon);
4393
4394 if (!intel_dp_get_dpcd(intel_dp))
4395 return connector_status_disconnected;
4396
4397 if (intel_dp_is_edp(intel_dp))
4398 return connector_status_connected;
4399
4400 /* if there's no downstream port, we're done */
4401 if (!drm_dp_is_branch(dpcd))
4402 return connector_status_connected;
4403
4404 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4405 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4406 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4407
4408 return intel_dp->sink_count ?
4409 connector_status_connected : connector_status_disconnected;
4410 }
4411
4412 if (intel_dp_can_mst(intel_dp))
4413 return connector_status_connected;
4414
4415 /* If no HPD, poke DDC gently */
4416 if (drm_probe_ddc(&intel_dp->aux.ddc))
4417 return connector_status_connected;
4418
4419 /* Well we tried, say unknown for unreliable port types */
4420 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4421 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4422 if (type == DP_DS_PORT_TYPE_VGA ||
4423 type == DP_DS_PORT_TYPE_NON_EDID)
4424 return connector_status_unknown;
4425 } else {
4426 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4427 DP_DWN_STRM_PORT_TYPE_MASK;
4428 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4429 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4430 return connector_status_unknown;
4431 }
4432
4433 /* Anything else is out of spec, warn and ignore */
4434 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4435 return connector_status_disconnected;
4436 }
4437
4438 static enum drm_connector_status
4439 edp_detect(struct intel_dp *intel_dp)
4440 {
4441 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4442 struct drm_i915_private *dev_priv = to_i915(dev);
4443 enum drm_connector_status status;
4444
4445 status = intel_panel_detect(dev_priv);
4446 if (status == connector_status_unknown)
4447 status = connector_status_connected;
4448
4449 return status;
4450 }
4451
4452 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4453 struct intel_digital_port *port)
4454 {
4455 u32 bit;
4456
4457 switch (port->port) {
4458 case PORT_B:
4459 bit = SDE_PORTB_HOTPLUG;
4460 break;
4461 case PORT_C:
4462 bit = SDE_PORTC_HOTPLUG;
4463 break;
4464 case PORT_D:
4465 bit = SDE_PORTD_HOTPLUG;
4466 break;
4467 default:
4468 MISSING_CASE(port->port);
4469 return false;
4470 }
4471
4472 return I915_READ(SDEISR) & bit;
4473 }
4474
4475 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4476 struct intel_digital_port *port)
4477 {
4478 u32 bit;
4479
4480 switch (port->port) {
4481 case PORT_B:
4482 bit = SDE_PORTB_HOTPLUG_CPT;
4483 break;
4484 case PORT_C:
4485 bit = SDE_PORTC_HOTPLUG_CPT;
4486 break;
4487 case PORT_D:
4488 bit = SDE_PORTD_HOTPLUG_CPT;
4489 break;
4490 default:
4491 MISSING_CASE(port->port);
4492 return false;
4493 }
4494
4495 return I915_READ(SDEISR) & bit;
4496 }
4497
4498 static bool spt_digital_port_connected(struct drm_i915_private *dev_priv,
4499 struct intel_digital_port *port)
4500 {
4501 u32 bit;
4502
4503 switch (port->port) {
4504 case PORT_A:
4505 bit = SDE_PORTA_HOTPLUG_SPT;
4506 break;
4507 case PORT_E:
4508 bit = SDE_PORTE_HOTPLUG_SPT;
4509 break;
4510 default:
4511 return cpt_digital_port_connected(dev_priv, port);
4512 }
4513
4514 return I915_READ(SDEISR) & bit;
4515 }
4516
4517 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4518 struct intel_digital_port *port)
4519 {
4520 u32 bit;
4521
4522 switch (port->port) {
4523 case PORT_B:
4524 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4525 break;
4526 case PORT_C:
4527 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4528 break;
4529 case PORT_D:
4530 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4531 break;
4532 default:
4533 MISSING_CASE(port->port);
4534 return false;
4535 }
4536
4537 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4538 }
4539
4540 static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
4541 struct intel_digital_port *port)
4542 {
4543 u32 bit;
4544
4545 switch (port->port) {
4546 case PORT_B:
4547 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4548 break;
4549 case PORT_C:
4550 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4551 break;
4552 case PORT_D:
4553 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4554 break;
4555 default:
4556 MISSING_CASE(port->port);
4557 return false;
4558 }
4559
4560 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4561 }
4562
4563 static bool ilk_digital_port_connected(struct drm_i915_private *dev_priv,
4564 struct intel_digital_port *port)
4565 {
4566 if (port->port == PORT_A)
4567 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
4568 else
4569 return ibx_digital_port_connected(dev_priv, port);
4570 }
4571
4572 static bool snb_digital_port_connected(struct drm_i915_private *dev_priv,
4573 struct intel_digital_port *port)
4574 {
4575 if (port->port == PORT_A)
4576 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
4577 else
4578 return cpt_digital_port_connected(dev_priv, port);
4579 }
4580
4581 static bool ivb_digital_port_connected(struct drm_i915_private *dev_priv,
4582 struct intel_digital_port *port)
4583 {
4584 if (port->port == PORT_A)
4585 return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
4586 else
4587 return cpt_digital_port_connected(dev_priv, port);
4588 }
4589
4590 static bool bdw_digital_port_connected(struct drm_i915_private *dev_priv,
4591 struct intel_digital_port *port)
4592 {
4593 if (port->port == PORT_A)
4594 return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
4595 else
4596 return cpt_digital_port_connected(dev_priv, port);
4597 }
4598
4599 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4600 struct intel_digital_port *intel_dig_port)
4601 {
4602 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4603 enum port port;
4604 u32 bit;
4605
4606 port = intel_hpd_pin_to_port(intel_encoder->hpd_pin);
4607 switch (port) {
4608 case PORT_A:
4609 bit = BXT_DE_PORT_HP_DDIA;
4610 break;
4611 case PORT_B:
4612 bit = BXT_DE_PORT_HP_DDIB;
4613 break;
4614 case PORT_C:
4615 bit = BXT_DE_PORT_HP_DDIC;
4616 break;
4617 default:
4618 MISSING_CASE(port);
4619 return false;
4620 }
4621
4622 return I915_READ(GEN8_DE_PORT_ISR) & bit;
4623 }
4624
4625 /*
4626 * intel_digital_port_connected - is the specified port connected?
4627 * @dev_priv: i915 private structure
4628 * @port: the port to test
4629 *
4630 * Return %true if @port is connected, %false otherwise.
4631 */
4632 bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4633 struct intel_digital_port *port)
4634 {
4635 if (HAS_GMCH_DISPLAY(dev_priv)) {
4636 if (IS_GM45(dev_priv))
4637 return gm45_digital_port_connected(dev_priv, port);
4638 else
4639 return g4x_digital_port_connected(dev_priv, port);
4640 }
4641
4642 if (IS_GEN5(dev_priv))
4643 return ilk_digital_port_connected(dev_priv, port);
4644 else if (IS_GEN6(dev_priv))
4645 return snb_digital_port_connected(dev_priv, port);
4646 else if (IS_GEN7(dev_priv))
4647 return ivb_digital_port_connected(dev_priv, port);
4648 else if (IS_GEN8(dev_priv))
4649 return bdw_digital_port_connected(dev_priv, port);
4650 else if (IS_GEN9_LP(dev_priv))
4651 return bxt_digital_port_connected(dev_priv, port);
4652 else
4653 return spt_digital_port_connected(dev_priv, port);
4654 }
4655
4656 static struct edid *
4657 intel_dp_get_edid(struct intel_dp *intel_dp)
4658 {
4659 struct intel_connector *intel_connector = intel_dp->attached_connector;
4660
4661 /* use cached edid if we have one */
4662 if (intel_connector->edid) {
4663 /* invalid edid */
4664 if (IS_ERR(intel_connector->edid))
4665 return NULL;
4666
4667 return drm_edid_duplicate(intel_connector->edid);
4668 } else
4669 return drm_get_edid(&intel_connector->base,
4670 &intel_dp->aux.ddc);
4671 }
4672
4673 static void
4674 intel_dp_set_edid(struct intel_dp *intel_dp)
4675 {
4676 struct intel_connector *intel_connector = intel_dp->attached_connector;
4677 struct edid *edid;
4678
4679 intel_dp_unset_edid(intel_dp);
4680 edid = intel_dp_get_edid(intel_dp);
4681 intel_connector->detect_edid = edid;
4682
4683 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4684 }
4685
4686 static void
4687 intel_dp_unset_edid(struct intel_dp *intel_dp)
4688 {
4689 struct intel_connector *intel_connector = intel_dp->attached_connector;
4690
4691 kfree(intel_connector->detect_edid);
4692 intel_connector->detect_edid = NULL;
4693
4694 intel_dp->has_audio = false;
4695 }
4696
4697 static int
4698 intel_dp_long_pulse(struct intel_connector *intel_connector)
4699 {
4700 struct drm_connector *connector = &intel_connector->base;
4701 struct intel_dp *intel_dp = intel_attached_dp(connector);
4702 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4703 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4704 struct drm_device *dev = connector->dev;
4705 enum drm_connector_status status;
4706 u8 sink_irq_vector = 0;
4707
4708 WARN_ON(!drm_modeset_is_locked(&connector->dev->mode_config.connection_mutex));
4709
4710 intel_display_power_get(to_i915(dev), intel_dp->aux_power_domain);
4711
4712 /* Can't disconnect eDP, but you can close the lid... */
4713 if (intel_dp_is_edp(intel_dp))
4714 status = edp_detect(intel_dp);
4715 else if (intel_digital_port_connected(to_i915(dev),
4716 dp_to_dig_port(intel_dp)))
4717 status = intel_dp_detect_dpcd(intel_dp);
4718 else
4719 status = connector_status_disconnected;
4720
4721 if (status == connector_status_disconnected) {
4722 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4723
4724 if (intel_dp->is_mst) {
4725 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4726 intel_dp->is_mst,
4727 intel_dp->mst_mgr.mst_state);
4728 intel_dp->is_mst = false;
4729 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4730 intel_dp->is_mst);
4731 }
4732
4733 goto out;
4734 }
4735
4736 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4737 intel_encoder->type = INTEL_OUTPUT_DP;
4738
4739 DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
4740 yesno(intel_dp_source_supports_hbr2(intel_dp)),
4741 yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
4742
4743 if (intel_dp->reset_link_params) {
4744 /* Initial max link lane count */
4745 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
4746
4747 /* Initial max link rate */
4748 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
4749
4750 intel_dp->reset_link_params = false;
4751 }
4752
4753 intel_dp_print_rates(intel_dp);
4754
4755 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4756 drm_dp_is_branch(intel_dp->dpcd));
4757
4758 intel_dp_configure_mst(intel_dp);
4759
4760 if (intel_dp->is_mst) {
4761 /*
4762 * If we are in MST mode then this connector
4763 * won't appear connected or have anything
4764 * with EDID on it
4765 */
4766 status = connector_status_disconnected;
4767 goto out;
4768 } else {
4769 /*
4770 * If display is now connected check links status,
4771 * there has been known issues of link loss triggerring
4772 * long pulse.
4773 *
4774 * Some sinks (eg. ASUS PB287Q) seem to perform some
4775 * weird HPD ping pong during modesets. So we can apparently
4776 * end up with HPD going low during a modeset, and then
4777 * going back up soon after. And once that happens we must
4778 * retrain the link to get a picture. That's in case no
4779 * userspace component reacted to intermittent HPD dip.
4780 */
4781 intel_dp_check_link_status(intel_dp);
4782 }
4783
4784 /*
4785 * Clearing NACK and defer counts to get their exact values
4786 * while reading EDID which are required by Compliance tests
4787 * 4.2.2.4 and 4.2.2.5
4788 */
4789 intel_dp->aux.i2c_nack_count = 0;
4790 intel_dp->aux.i2c_defer_count = 0;
4791
4792 intel_dp_set_edid(intel_dp);
4793 if (intel_dp_is_edp(intel_dp) || intel_connector->detect_edid)
4794 status = connector_status_connected;
4795 intel_dp->detect_done = true;
4796
4797 /* Try to read the source of the interrupt */
4798 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4799 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4800 sink_irq_vector != 0) {
4801 /* Clear interrupt source */
4802 drm_dp_dpcd_writeb(&intel_dp->aux,
4803 DP_DEVICE_SERVICE_IRQ_VECTOR,
4804 sink_irq_vector);
4805
4806 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4807 intel_dp_handle_test_request(intel_dp);
4808 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4809 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4810 }
4811
4812 out:
4813 if (status != connector_status_connected && !intel_dp->is_mst)
4814 intel_dp_unset_edid(intel_dp);
4815
4816 intel_display_power_put(to_i915(dev), intel_dp->aux_power_domain);
4817 return status;
4818 }
4819
4820 static int
4821 intel_dp_detect(struct drm_connector *connector,
4822 struct drm_modeset_acquire_ctx *ctx,
4823 bool force)
4824 {
4825 struct intel_dp *intel_dp = intel_attached_dp(connector);
4826 int status = connector->status;
4827
4828 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4829 connector->base.id, connector->name);
4830
4831 /* If full detect is not performed yet, do a full detect */
4832 if (!intel_dp->detect_done)
4833 status = intel_dp_long_pulse(intel_dp->attached_connector);
4834
4835 intel_dp->detect_done = false;
4836
4837 return status;
4838 }
4839
4840 static void
4841 intel_dp_force(struct drm_connector *connector)
4842 {
4843 struct intel_dp *intel_dp = intel_attached_dp(connector);
4844 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4845 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4846
4847 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4848 connector->base.id, connector->name);
4849 intel_dp_unset_edid(intel_dp);
4850
4851 if (connector->status != connector_status_connected)
4852 return;
4853
4854 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
4855
4856 intel_dp_set_edid(intel_dp);
4857
4858 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
4859
4860 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4861 intel_encoder->type = INTEL_OUTPUT_DP;
4862 }
4863
4864 static int intel_dp_get_modes(struct drm_connector *connector)
4865 {
4866 struct intel_connector *intel_connector = to_intel_connector(connector);
4867 struct edid *edid;
4868
4869 edid = intel_connector->detect_edid;
4870 if (edid) {
4871 int ret = intel_connector_update_modes(connector, edid);
4872 if (ret)
4873 return ret;
4874 }
4875
4876 /* if eDP has no EDID, fall back to fixed mode */
4877 if (intel_dp_is_edp(intel_attached_dp(connector)) &&
4878 intel_connector->panel.fixed_mode) {
4879 struct drm_display_mode *mode;
4880
4881 mode = drm_mode_duplicate(connector->dev,
4882 intel_connector->panel.fixed_mode);
4883 if (mode) {
4884 drm_mode_probed_add(connector, mode);
4885 return 1;
4886 }
4887 }
4888
4889 return 0;
4890 }
4891
4892 static int
4893 intel_dp_connector_register(struct drm_connector *connector)
4894 {
4895 struct intel_dp *intel_dp = intel_attached_dp(connector);
4896 int ret;
4897
4898 ret = intel_connector_register(connector);
4899 if (ret)
4900 return ret;
4901
4902 i915_debugfs_connector_add(connector);
4903
4904 DRM_DEBUG_KMS("registering %s bus for %s\n",
4905 intel_dp->aux.name, connector->kdev->kobj.name);
4906
4907 intel_dp->aux.dev = connector->kdev;
4908 return drm_dp_aux_register(&intel_dp->aux);
4909 }
4910
4911 static void
4912 intel_dp_connector_unregister(struct drm_connector *connector)
4913 {
4914 drm_dp_aux_unregister(&intel_attached_dp(connector)->aux);
4915 intel_connector_unregister(connector);
4916 }
4917
4918 static void
4919 intel_dp_connector_destroy(struct drm_connector *connector)
4920 {
4921 struct intel_connector *intel_connector = to_intel_connector(connector);
4922
4923 kfree(intel_connector->detect_edid);
4924
4925 if (!IS_ERR_OR_NULL(intel_connector->edid))
4926 kfree(intel_connector->edid);
4927
4928 /*
4929 * Can't call intel_dp_is_edp() since the encoder may have been
4930 * destroyed already.
4931 */
4932 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4933 intel_panel_fini(&intel_connector->panel);
4934
4935 drm_connector_cleanup(connector);
4936 kfree(connector);
4937 }
4938
4939 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4940 {
4941 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4942 struct intel_dp *intel_dp = &intel_dig_port->dp;
4943
4944 intel_dp_mst_encoder_cleanup(intel_dig_port);
4945 if (intel_dp_is_edp(intel_dp)) {
4946 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4947 /*
4948 * vdd might still be enabled do to the delayed vdd off.
4949 * Make sure vdd is actually turned off here.
4950 */
4951 pps_lock(intel_dp);
4952 edp_panel_vdd_off_sync(intel_dp);
4953 pps_unlock(intel_dp);
4954
4955 if (intel_dp->edp_notifier.notifier_call) {
4956 unregister_reboot_notifier(&intel_dp->edp_notifier);
4957 intel_dp->edp_notifier.notifier_call = NULL;
4958 }
4959 }
4960
4961 intel_dp_aux_fini(intel_dp);
4962
4963 drm_encoder_cleanup(encoder);
4964 kfree(intel_dig_port);
4965 }
4966
4967 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4968 {
4969 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4970
4971 if (!intel_dp_is_edp(intel_dp))
4972 return;
4973
4974 /*
4975 * vdd might still be enabled do to the delayed vdd off.
4976 * Make sure vdd is actually turned off here.
4977 */
4978 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4979 pps_lock(intel_dp);
4980 edp_panel_vdd_off_sync(intel_dp);
4981 pps_unlock(intel_dp);
4982 }
4983
4984 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4985 {
4986 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4987 struct drm_device *dev = intel_dig_port->base.base.dev;
4988 struct drm_i915_private *dev_priv = to_i915(dev);
4989
4990 lockdep_assert_held(&dev_priv->pps_mutex);
4991
4992 if (!edp_have_panel_vdd(intel_dp))
4993 return;
4994
4995 /*
4996 * The VDD bit needs a power domain reference, so if the bit is
4997 * already enabled when we boot or resume, grab this reference and
4998 * schedule a vdd off, so we don't hold on to the reference
4999 * indefinitely.
5000 */
5001 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
5002 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
5003
5004 edp_panel_vdd_schedule_off(intel_dp);
5005 }
5006
5007 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
5008 {
5009 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5010
5011 if ((intel_dp->DP & DP_PORT_EN) == 0)
5012 return INVALID_PIPE;
5013
5014 if (IS_CHERRYVIEW(dev_priv))
5015 return DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5016 else
5017 return PORT_TO_PIPE(intel_dp->DP);
5018 }
5019
5020 void intel_dp_encoder_reset(struct drm_encoder *encoder)
5021 {
5022 struct drm_i915_private *dev_priv = to_i915(encoder->dev);
5023 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5024 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5025
5026 if (!HAS_DDI(dev_priv))
5027 intel_dp->DP = I915_READ(intel_dp->output_reg);
5028
5029 if (lspcon->active)
5030 lspcon_resume(lspcon);
5031
5032 intel_dp->reset_link_params = true;
5033
5034 pps_lock(intel_dp);
5035
5036 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5037 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
5038
5039 if (intel_dp_is_edp(intel_dp)) {
5040 /* Reinit the power sequencer, in case BIOS did something with it. */
5041 intel_dp_pps_init(encoder->dev, intel_dp);
5042 intel_edp_panel_vdd_sanitize(intel_dp);
5043 }
5044
5045 pps_unlock(intel_dp);
5046 }
5047
5048 static const struct drm_connector_funcs intel_dp_connector_funcs = {
5049 .force = intel_dp_force,
5050 .fill_modes = drm_helper_probe_single_connector_modes,
5051 .atomic_get_property = intel_digital_connector_atomic_get_property,
5052 .atomic_set_property = intel_digital_connector_atomic_set_property,
5053 .late_register = intel_dp_connector_register,
5054 .early_unregister = intel_dp_connector_unregister,
5055 .destroy = intel_dp_connector_destroy,
5056 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
5057 .atomic_duplicate_state = intel_digital_connector_duplicate_state,
5058 };
5059
5060 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
5061 .detect_ctx = intel_dp_detect,
5062 .get_modes = intel_dp_get_modes,
5063 .mode_valid = intel_dp_mode_valid,
5064 .atomic_check = intel_digital_connector_atomic_check,
5065 };
5066
5067 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
5068 .reset = intel_dp_encoder_reset,
5069 .destroy = intel_dp_encoder_destroy,
5070 };
5071
5072 enum irqreturn
5073 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
5074 {
5075 struct intel_dp *intel_dp = &intel_dig_port->dp;
5076 struct drm_device *dev = intel_dig_port->base.base.dev;
5077 struct drm_i915_private *dev_priv = to_i915(dev);
5078 enum irqreturn ret = IRQ_NONE;
5079
5080 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
5081 intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
5082 intel_dig_port->base.type = INTEL_OUTPUT_DP;
5083
5084 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
5085 /*
5086 * vdd off can generate a long pulse on eDP which
5087 * would require vdd on to handle it, and thus we
5088 * would end up in an endless cycle of
5089 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
5090 */
5091 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
5092 port_name(intel_dig_port->port));
5093 return IRQ_HANDLED;
5094 }
5095
5096 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
5097 port_name(intel_dig_port->port),
5098 long_hpd ? "long" : "short");
5099
5100 if (long_hpd) {
5101 intel_dp->reset_link_params = true;
5102 intel_dp->detect_done = false;
5103 return IRQ_NONE;
5104 }
5105
5106 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
5107
5108 if (intel_dp->is_mst) {
5109 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
5110 /*
5111 * If we were in MST mode, and device is not
5112 * there, get out of MST mode
5113 */
5114 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5115 intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
5116 intel_dp->is_mst = false;
5117 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5118 intel_dp->is_mst);
5119 intel_dp->detect_done = false;
5120 goto put_power;
5121 }
5122 }
5123
5124 if (!intel_dp->is_mst) {
5125 if (!intel_dp_short_pulse(intel_dp)) {
5126 intel_dp->detect_done = false;
5127 goto put_power;
5128 }
5129 }
5130
5131 ret = IRQ_HANDLED;
5132
5133 put_power:
5134 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
5135
5136 return ret;
5137 }
5138
5139 /* check the VBT to see whether the eDP is on another port */
5140 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
5141 {
5142 /*
5143 * eDP not supported on g4x. so bail out early just
5144 * for a bit extra safety in case the VBT is bonkers.
5145 */
5146 if (INTEL_GEN(dev_priv) < 5)
5147 return false;
5148
5149 if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
5150 return true;
5151
5152 return intel_bios_is_port_edp(dev_priv, port);
5153 }
5154
5155 static void
5156 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5157 {
5158 struct drm_i915_private *dev_priv = to_i915(connector->dev);
5159
5160 intel_attach_force_audio_property(connector);
5161 intel_attach_broadcast_rgb_property(connector);
5162
5163 if (intel_dp_is_edp(intel_dp)) {
5164 u32 allowed_scalers;
5165
5166 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
5167 if (!HAS_GMCH_DISPLAY(dev_priv))
5168 allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
5169
5170 drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
5171
5172 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
5173
5174 }
5175 }
5176
5177 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
5178 {
5179 intel_dp->panel_power_off_time = ktime_get_boottime();
5180 intel_dp->last_power_on = jiffies;
5181 intel_dp->last_backlight_off = jiffies;
5182 }
5183
5184 static void
5185 intel_pps_readout_hw_state(struct drm_i915_private *dev_priv,
5186 struct intel_dp *intel_dp, struct edp_power_seq *seq)
5187 {
5188 u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
5189 struct pps_registers regs;
5190
5191 intel_pps_get_registers(dev_priv, intel_dp, &regs);
5192
5193 /* Workaround: Need to write PP_CONTROL with the unlock key as
5194 * the very first thing. */
5195 pp_ctl = ironlake_get_pp_control(intel_dp);
5196
5197 pp_on = I915_READ(regs.pp_on);
5198 pp_off = I915_READ(regs.pp_off);
5199 if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv)) {
5200 I915_WRITE(regs.pp_ctrl, pp_ctl);
5201 pp_div = I915_READ(regs.pp_div);
5202 }
5203
5204 /* Pull timing values out of registers */
5205 seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
5206 PANEL_POWER_UP_DELAY_SHIFT;
5207
5208 seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
5209 PANEL_LIGHT_ON_DELAY_SHIFT;
5210
5211 seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
5212 PANEL_LIGHT_OFF_DELAY_SHIFT;
5213
5214 seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5215 PANEL_POWER_DOWN_DELAY_SHIFT;
5216
5217 if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv)) {
5218 seq->t11_t12 = ((pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
5219 BXT_POWER_CYCLE_DELAY_SHIFT) * 1000;
5220 } else {
5221 seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5222 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5223 }
5224 }
5225
5226 static void
5227 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
5228 {
5229 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5230 state_name,
5231 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
5232 }
5233
5234 static void
5235 intel_pps_verify_state(struct drm_i915_private *dev_priv,
5236 struct intel_dp *intel_dp)
5237 {
5238 struct edp_power_seq hw;
5239 struct edp_power_seq *sw = &intel_dp->pps_delays;
5240
5241 intel_pps_readout_hw_state(dev_priv, intel_dp, &hw);
5242
5243 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
5244 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
5245 DRM_ERROR("PPS state mismatch\n");
5246 intel_pps_dump_state("sw", sw);
5247 intel_pps_dump_state("hw", &hw);
5248 }
5249 }
5250
5251 static void
5252 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
5253 struct intel_dp *intel_dp)
5254 {
5255 struct drm_i915_private *dev_priv = to_i915(dev);
5256 struct edp_power_seq cur, vbt, spec,
5257 *final = &intel_dp->pps_delays;
5258
5259 lockdep_assert_held(&dev_priv->pps_mutex);
5260
5261 /* already initialized? */
5262 if (final->t11_t12 != 0)
5263 return;
5264
5265 intel_pps_readout_hw_state(dev_priv, intel_dp, &cur);
5266
5267 intel_pps_dump_state("cur", &cur);
5268
5269 vbt = dev_priv->vbt.edp.pps;
5270 /* On Toshiba Satellite P50-C-18C system the VBT T12 delay
5271 * of 500ms appears to be too short. Ocassionally the panel
5272 * just fails to power back on. Increasing the delay to 800ms
5273 * seems sufficient to avoid this problem.
5274 */
5275 if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
5276 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 800 * 10);
5277 DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
5278 vbt.t11_t12);
5279 }
5280 /* T11_T12 delay is special and actually in units of 100ms, but zero
5281 * based in the hw (so we need to add 100 ms). But the sw vbt
5282 * table multiplies it with 1000 to make it in units of 100usec,
5283 * too. */
5284 vbt.t11_t12 += 100 * 10;
5285
5286 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5287 * our hw here, which are all in 100usec. */
5288 spec.t1_t3 = 210 * 10;
5289 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5290 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5291 spec.t10 = 500 * 10;
5292 /* This one is special and actually in units of 100ms, but zero
5293 * based in the hw (so we need to add 100 ms). But the sw vbt
5294 * table multiplies it with 1000 to make it in units of 100usec,
5295 * too. */
5296 spec.t11_t12 = (510 + 100) * 10;
5297
5298 intel_pps_dump_state("vbt", &vbt);
5299
5300 /* Use the max of the register settings and vbt. If both are
5301 * unset, fall back to the spec limits. */
5302 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
5303 spec.field : \
5304 max(cur.field, vbt.field))
5305 assign_final(t1_t3);
5306 assign_final(t8);
5307 assign_final(t9);
5308 assign_final(t10);
5309 assign_final(t11_t12);
5310 #undef assign_final
5311
5312 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
5313 intel_dp->panel_power_up_delay = get_delay(t1_t3);
5314 intel_dp->backlight_on_delay = get_delay(t8);
5315 intel_dp->backlight_off_delay = get_delay(t9);
5316 intel_dp->panel_power_down_delay = get_delay(t10);
5317 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5318 #undef get_delay
5319
5320 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5321 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5322 intel_dp->panel_power_cycle_delay);
5323
5324 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5325 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5326
5327 /*
5328 * We override the HW backlight delays to 1 because we do manual waits
5329 * on them. For T8, even BSpec recommends doing it. For T9, if we
5330 * don't do this, we'll end up waiting for the backlight off delay
5331 * twice: once when we do the manual sleep, and once when we disable
5332 * the panel and wait for the PP_STATUS bit to become zero.
5333 */
5334 final->t8 = 1;
5335 final->t9 = 1;
5336 }
5337
5338 static void
5339 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5340 struct intel_dp *intel_dp,
5341 bool force_disable_vdd)
5342 {
5343 struct drm_i915_private *dev_priv = to_i915(dev);
5344 u32 pp_on, pp_off, pp_div, port_sel = 0;
5345 int div = dev_priv->rawclk_freq / 1000;
5346 struct pps_registers regs;
5347 enum port port = dp_to_dig_port(intel_dp)->port;
5348 const struct edp_power_seq *seq = &intel_dp->pps_delays;
5349
5350 lockdep_assert_held(&dev_priv->pps_mutex);
5351
5352 intel_pps_get_registers(dev_priv, intel_dp, &regs);
5353
5354 /*
5355 * On some VLV machines the BIOS can leave the VDD
5356 * enabled even on power seqeuencers which aren't
5357 * hooked up to any port. This would mess up the
5358 * power domain tracking the first time we pick
5359 * one of these power sequencers for use since
5360 * edp_panel_vdd_on() would notice that the VDD was
5361 * already on and therefore wouldn't grab the power
5362 * domain reference. Disable VDD first to avoid this.
5363 * This also avoids spuriously turning the VDD on as
5364 * soon as the new power seqeuencer gets initialized.
5365 */
5366 if (force_disable_vdd) {
5367 u32 pp = ironlake_get_pp_control(intel_dp);
5368
5369 WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
5370
5371 if (pp & EDP_FORCE_VDD)
5372 DRM_DEBUG_KMS("VDD already on, disabling first\n");
5373
5374 pp &= ~EDP_FORCE_VDD;
5375
5376 I915_WRITE(regs.pp_ctrl, pp);
5377 }
5378
5379 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5380 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
5381 pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5382 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5383 /* Compute the divisor for the pp clock, simply match the Bspec
5384 * formula. */
5385 if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv)) {
5386 pp_div = I915_READ(regs.pp_ctrl);
5387 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5388 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5389 << BXT_POWER_CYCLE_DELAY_SHIFT);
5390 } else {
5391 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5392 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5393 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5394 }
5395
5396 /* Haswell doesn't have any port selection bits for the panel
5397 * power sequencer any more. */
5398 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5399 port_sel = PANEL_PORT_SELECT_VLV(port);
5400 } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
5401 if (port == PORT_A)
5402 port_sel = PANEL_PORT_SELECT_DPA;
5403 else
5404 port_sel = PANEL_PORT_SELECT_DPD;
5405 }
5406
5407 pp_on |= port_sel;
5408
5409 I915_WRITE(regs.pp_on, pp_on);
5410 I915_WRITE(regs.pp_off, pp_off);
5411 if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv))
5412 I915_WRITE(regs.pp_ctrl, pp_div);
5413 else
5414 I915_WRITE(regs.pp_div, pp_div);
5415
5416 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5417 I915_READ(regs.pp_on),
5418 I915_READ(regs.pp_off),
5419 (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv)) ?
5420 (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
5421 I915_READ(regs.pp_div));
5422 }
5423
5424 static void intel_dp_pps_init(struct drm_device *dev,
5425 struct intel_dp *intel_dp)
5426 {
5427 struct drm_i915_private *dev_priv = to_i915(dev);
5428
5429 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5430 vlv_initial_power_sequencer_setup(intel_dp);
5431 } else {
5432 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5433 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, false);
5434 }
5435 }
5436
5437 /**
5438 * intel_dp_set_drrs_state - program registers for RR switch to take effect
5439 * @dev_priv: i915 device
5440 * @crtc_state: a pointer to the active intel_crtc_state
5441 * @refresh_rate: RR to be programmed
5442 *
5443 * This function gets called when refresh rate (RR) has to be changed from
5444 * one frequency to another. Switches can be between high and low RR
5445 * supported by the panel or to any other RR based on media playback (in
5446 * this case, RR value needs to be passed from user space).
5447 *
5448 * The caller of this function needs to take a lock on dev_priv->drrs.
5449 */
5450 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
5451 const struct intel_crtc_state *crtc_state,
5452 int refresh_rate)
5453 {
5454 struct intel_encoder *encoder;
5455 struct intel_digital_port *dig_port = NULL;
5456 struct intel_dp *intel_dp = dev_priv->drrs.dp;
5457 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
5458 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5459
5460 if (refresh_rate <= 0) {
5461 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5462 return;
5463 }
5464
5465 if (intel_dp == NULL) {
5466 DRM_DEBUG_KMS("DRRS not supported.\n");
5467 return;
5468 }
5469
5470 /*
5471 * FIXME: This needs proper synchronization with psr state for some
5472 * platforms that cannot have PSR and DRRS enabled at the same time.
5473 */
5474
5475 dig_port = dp_to_dig_port(intel_dp);
5476 encoder = &dig_port->base;
5477 intel_crtc = to_intel_crtc(encoder->base.crtc);
5478
5479 if (!intel_crtc) {
5480 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5481 return;
5482 }
5483
5484 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5485 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5486 return;
5487 }
5488
5489 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5490 refresh_rate)
5491 index = DRRS_LOW_RR;
5492
5493 if (index == dev_priv->drrs.refresh_rate_type) {
5494 DRM_DEBUG_KMS(
5495 "DRRS requested for previously set RR...ignoring\n");
5496 return;
5497 }
5498
5499 if (!crtc_state->base.active) {
5500 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5501 return;
5502 }
5503
5504 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
5505 switch (index) {
5506 case DRRS_HIGH_RR:
5507 intel_dp_set_m_n(intel_crtc, M1_N1);
5508 break;
5509 case DRRS_LOW_RR:
5510 intel_dp_set_m_n(intel_crtc, M2_N2);
5511 break;
5512 case DRRS_MAX_RR:
5513 default:
5514 DRM_ERROR("Unsupported refreshrate type\n");
5515 }
5516 } else if (INTEL_GEN(dev_priv) > 6) {
5517 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
5518 u32 val;
5519
5520 val = I915_READ(reg);
5521 if (index > DRRS_HIGH_RR) {
5522 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5523 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5524 else
5525 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5526 } else {
5527 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5528 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5529 else
5530 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5531 }
5532 I915_WRITE(reg, val);
5533 }
5534
5535 dev_priv->drrs.refresh_rate_type = index;
5536
5537 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5538 }
5539
5540 /**
5541 * intel_edp_drrs_enable - init drrs struct if supported
5542 * @intel_dp: DP struct
5543 * @crtc_state: A pointer to the active crtc state.
5544 *
5545 * Initializes frontbuffer_bits and drrs.dp
5546 */
5547 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
5548 const struct intel_crtc_state *crtc_state)
5549 {
5550 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5551 struct drm_i915_private *dev_priv = to_i915(dev);
5552
5553 if (!crtc_state->has_drrs) {
5554 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5555 return;
5556 }
5557
5558 mutex_lock(&dev_priv->drrs.mutex);
5559 if (WARN_ON(dev_priv->drrs.dp)) {
5560 DRM_ERROR("DRRS already enabled\n");
5561 goto unlock;
5562 }
5563
5564 dev_priv->drrs.busy_frontbuffer_bits = 0;
5565
5566 dev_priv->drrs.dp = intel_dp;
5567
5568 unlock:
5569 mutex_unlock(&dev_priv->drrs.mutex);
5570 }
5571
5572 /**
5573 * intel_edp_drrs_disable - Disable DRRS
5574 * @intel_dp: DP struct
5575 * @old_crtc_state: Pointer to old crtc_state.
5576 *
5577 */
5578 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
5579 const struct intel_crtc_state *old_crtc_state)
5580 {
5581 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5582 struct drm_i915_private *dev_priv = to_i915(dev);
5583
5584 if (!old_crtc_state->has_drrs)
5585 return;
5586
5587 mutex_lock(&dev_priv->drrs.mutex);
5588 if (!dev_priv->drrs.dp) {
5589 mutex_unlock(&dev_priv->drrs.mutex);
5590 return;
5591 }
5592
5593 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5594 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
5595 intel_dp->attached_connector->panel.fixed_mode->vrefresh);
5596
5597 dev_priv->drrs.dp = NULL;
5598 mutex_unlock(&dev_priv->drrs.mutex);
5599
5600 cancel_delayed_work_sync(&dev_priv->drrs.work);
5601 }
5602
5603 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5604 {
5605 struct drm_i915_private *dev_priv =
5606 container_of(work, typeof(*dev_priv), drrs.work.work);
5607 struct intel_dp *intel_dp;
5608
5609 mutex_lock(&dev_priv->drrs.mutex);
5610
5611 intel_dp = dev_priv->drrs.dp;
5612
5613 if (!intel_dp)
5614 goto unlock;
5615
5616 /*
5617 * The delayed work can race with an invalidate hence we need to
5618 * recheck.
5619 */
5620
5621 if (dev_priv->drrs.busy_frontbuffer_bits)
5622 goto unlock;
5623
5624 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
5625 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
5626
5627 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5628 intel_dp->attached_connector->panel.downclock_mode->vrefresh);
5629 }
5630
5631 unlock:
5632 mutex_unlock(&dev_priv->drrs.mutex);
5633 }
5634
5635 /**
5636 * intel_edp_drrs_invalidate - Disable Idleness DRRS
5637 * @dev_priv: i915 device
5638 * @frontbuffer_bits: frontbuffer plane tracking bits
5639 *
5640 * This function gets called everytime rendering on the given planes start.
5641 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5642 *
5643 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5644 */
5645 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
5646 unsigned int frontbuffer_bits)
5647 {
5648 struct drm_crtc *crtc;
5649 enum pipe pipe;
5650
5651 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5652 return;
5653
5654 cancel_delayed_work(&dev_priv->drrs.work);
5655
5656 mutex_lock(&dev_priv->drrs.mutex);
5657 if (!dev_priv->drrs.dp) {
5658 mutex_unlock(&dev_priv->drrs.mutex);
5659 return;
5660 }
5661
5662 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5663 pipe = to_intel_crtc(crtc)->pipe;
5664
5665 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5666 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5667
5668 /* invalidate means busy screen hence upclock */
5669 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5670 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5671 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5672
5673 mutex_unlock(&dev_priv->drrs.mutex);
5674 }
5675
5676 /**
5677 * intel_edp_drrs_flush - Restart Idleness DRRS
5678 * @dev_priv: i915 device
5679 * @frontbuffer_bits: frontbuffer plane tracking bits
5680 *
5681 * This function gets called every time rendering on the given planes has
5682 * completed or flip on a crtc is completed. So DRRS should be upclocked
5683 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5684 * if no other planes are dirty.
5685 *
5686 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5687 */
5688 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
5689 unsigned int frontbuffer_bits)
5690 {
5691 struct drm_crtc *crtc;
5692 enum pipe pipe;
5693
5694 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5695 return;
5696
5697 cancel_delayed_work(&dev_priv->drrs.work);
5698
5699 mutex_lock(&dev_priv->drrs.mutex);
5700 if (!dev_priv->drrs.dp) {
5701 mutex_unlock(&dev_priv->drrs.mutex);
5702 return;
5703 }
5704
5705 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5706 pipe = to_intel_crtc(crtc)->pipe;
5707
5708 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5709 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5710
5711 /* flush means busy screen hence upclock */
5712 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5713 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5714 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5715
5716 /*
5717 * flush also means no more activity hence schedule downclock, if all
5718 * other fbs are quiescent too
5719 */
5720 if (!dev_priv->drrs.busy_frontbuffer_bits)
5721 schedule_delayed_work(&dev_priv->drrs.work,
5722 msecs_to_jiffies(1000));
5723 mutex_unlock(&dev_priv->drrs.mutex);
5724 }
5725
5726 /**
5727 * DOC: Display Refresh Rate Switching (DRRS)
5728 *
5729 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5730 * which enables swtching between low and high refresh rates,
5731 * dynamically, based on the usage scenario. This feature is applicable
5732 * for internal panels.
5733 *
5734 * Indication that the panel supports DRRS is given by the panel EDID, which
5735 * would list multiple refresh rates for one resolution.
5736 *
5737 * DRRS is of 2 types - static and seamless.
5738 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5739 * (may appear as a blink on screen) and is used in dock-undock scenario.
5740 * Seamless DRRS involves changing RR without any visual effect to the user
5741 * and can be used during normal system usage. This is done by programming
5742 * certain registers.
5743 *
5744 * Support for static/seamless DRRS may be indicated in the VBT based on
5745 * inputs from the panel spec.
5746 *
5747 * DRRS saves power by switching to low RR based on usage scenarios.
5748 *
5749 * The implementation is based on frontbuffer tracking implementation. When
5750 * there is a disturbance on the screen triggered by user activity or a periodic
5751 * system activity, DRRS is disabled (RR is changed to high RR). When there is
5752 * no movement on screen, after a timeout of 1 second, a switch to low RR is
5753 * made.
5754 *
5755 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
5756 * and intel_edp_drrs_flush() are called.
5757 *
5758 * DRRS can be further extended to support other internal panels and also
5759 * the scenario of video playback wherein RR is set based on the rate
5760 * requested by userspace.
5761 */
5762
5763 /**
5764 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5765 * @intel_connector: eDP connector
5766 * @fixed_mode: preferred mode of panel
5767 *
5768 * This function is called only once at driver load to initialize basic
5769 * DRRS stuff.
5770 *
5771 * Returns:
5772 * Downclock mode if panel supports it, else return NULL.
5773 * DRRS support is determined by the presence of downclock mode (apart
5774 * from VBT setting).
5775 */
5776 static struct drm_display_mode *
5777 intel_dp_drrs_init(struct intel_connector *intel_connector,
5778 struct drm_display_mode *fixed_mode)
5779 {
5780 struct drm_connector *connector = &intel_connector->base;
5781 struct drm_device *dev = connector->dev;
5782 struct drm_i915_private *dev_priv = to_i915(dev);
5783 struct drm_display_mode *downclock_mode = NULL;
5784
5785 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5786 mutex_init(&dev_priv->drrs.mutex);
5787
5788 if (INTEL_GEN(dev_priv) <= 6) {
5789 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5790 return NULL;
5791 }
5792
5793 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5794 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5795 return NULL;
5796 }
5797
5798 downclock_mode = intel_find_panel_downclock
5799 (dev_priv, fixed_mode, connector);
5800
5801 if (!downclock_mode) {
5802 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5803 return NULL;
5804 }
5805
5806 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5807
5808 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5809 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5810 return downclock_mode;
5811 }
5812
5813 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5814 struct intel_connector *intel_connector)
5815 {
5816 struct drm_connector *connector = &intel_connector->base;
5817 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5818 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5819 struct drm_device *dev = intel_encoder->base.dev;
5820 struct drm_i915_private *dev_priv = to_i915(dev);
5821 struct drm_display_mode *fixed_mode = NULL;
5822 struct drm_display_mode *alt_fixed_mode = NULL;
5823 struct drm_display_mode *downclock_mode = NULL;
5824 bool has_dpcd;
5825 struct drm_display_mode *scan;
5826 struct edid *edid;
5827 enum pipe pipe = INVALID_PIPE;
5828
5829 if (!intel_dp_is_edp(intel_dp))
5830 return true;
5831
5832 /*
5833 * On IBX/CPT we may get here with LVDS already registered. Since the
5834 * driver uses the only internal power sequencer available for both
5835 * eDP and LVDS bail out early in this case to prevent interfering
5836 * with an already powered-on LVDS power sequencer.
5837 */
5838 if (intel_get_lvds_encoder(dev)) {
5839 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
5840 DRM_INFO("LVDS was detected, not registering eDP\n");
5841
5842 return false;
5843 }
5844
5845 pps_lock(intel_dp);
5846
5847 intel_dp_init_panel_power_timestamps(intel_dp);
5848 intel_dp_pps_init(dev, intel_dp);
5849 intel_edp_panel_vdd_sanitize(intel_dp);
5850
5851 pps_unlock(intel_dp);
5852
5853 /* Cache DPCD and EDID for edp. */
5854 has_dpcd = intel_edp_init_dpcd(intel_dp);
5855
5856 if (!has_dpcd) {
5857 /* if this fails, presume the device is a ghost */
5858 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5859 goto out_vdd_off;
5860 }
5861
5862 mutex_lock(&dev->mode_config.mutex);
5863 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5864 if (edid) {
5865 if (drm_add_edid_modes(connector, edid)) {
5866 drm_mode_connector_update_edid_property(connector,
5867 edid);
5868 drm_edid_to_eld(connector, edid);
5869 } else {
5870 kfree(edid);
5871 edid = ERR_PTR(-EINVAL);
5872 }
5873 } else {
5874 edid = ERR_PTR(-ENOENT);
5875 }
5876 intel_connector->edid = edid;
5877
5878 /* prefer fixed mode from EDID if available, save an alt mode also */
5879 list_for_each_entry(scan, &connector->probed_modes, head) {
5880 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5881 fixed_mode = drm_mode_duplicate(dev, scan);
5882 downclock_mode = intel_dp_drrs_init(
5883 intel_connector, fixed_mode);
5884 } else if (!alt_fixed_mode) {
5885 alt_fixed_mode = drm_mode_duplicate(dev, scan);
5886 }
5887 }
5888
5889 /* fallback to VBT if available for eDP */
5890 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5891 fixed_mode = drm_mode_duplicate(dev,
5892 dev_priv->vbt.lfp_lvds_vbt_mode);
5893 if (fixed_mode) {
5894 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5895 connector->display_info.width_mm = fixed_mode->width_mm;
5896 connector->display_info.height_mm = fixed_mode->height_mm;
5897 }
5898 }
5899 mutex_unlock(&dev->mode_config.mutex);
5900
5901 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5902 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5903 register_reboot_notifier(&intel_dp->edp_notifier);
5904
5905 /*
5906 * Figure out the current pipe for the initial backlight setup.
5907 * If the current pipe isn't valid, try the PPS pipe, and if that
5908 * fails just assume pipe A.
5909 */
5910 pipe = vlv_active_pipe(intel_dp);
5911
5912 if (pipe != PIPE_A && pipe != PIPE_B)
5913 pipe = intel_dp->pps_pipe;
5914
5915 if (pipe != PIPE_A && pipe != PIPE_B)
5916 pipe = PIPE_A;
5917
5918 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5919 pipe_name(pipe));
5920 }
5921
5922 intel_panel_init(&intel_connector->panel, fixed_mode, alt_fixed_mode,
5923 downclock_mode);
5924 intel_connector->panel.backlight.power = intel_edp_backlight_power;
5925 intel_panel_setup_backlight(connector, pipe);
5926
5927 return true;
5928
5929 out_vdd_off:
5930 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5931 /*
5932 * vdd might still be enabled do to the delayed vdd off.
5933 * Make sure vdd is actually turned off here.
5934 */
5935 pps_lock(intel_dp);
5936 edp_panel_vdd_off_sync(intel_dp);
5937 pps_unlock(intel_dp);
5938
5939 return false;
5940 }
5941
5942 /* Set up the hotplug pin and aux power domain. */
5943 static void
5944 intel_dp_init_connector_port_info(struct intel_digital_port *intel_dig_port)
5945 {
5946 struct intel_encoder *encoder = &intel_dig_port->base;
5947 struct intel_dp *intel_dp = &intel_dig_port->dp;
5948
5949 encoder->hpd_pin = intel_hpd_pin(intel_dig_port->port);
5950
5951 switch (intel_dig_port->port) {
5952 case PORT_A:
5953 intel_dp->aux_power_domain = POWER_DOMAIN_AUX_A;
5954 break;
5955 case PORT_B:
5956 intel_dp->aux_power_domain = POWER_DOMAIN_AUX_B;
5957 break;
5958 case PORT_C:
5959 intel_dp->aux_power_domain = POWER_DOMAIN_AUX_C;
5960 break;
5961 case PORT_D:
5962 intel_dp->aux_power_domain = POWER_DOMAIN_AUX_D;
5963 break;
5964 case PORT_E:
5965 /* FIXME: Check VBT for actual wiring of PORT E */
5966 intel_dp->aux_power_domain = POWER_DOMAIN_AUX_D;
5967 break;
5968 default:
5969 MISSING_CASE(intel_dig_port->port);
5970 }
5971 }
5972
5973 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
5974 {
5975 struct intel_connector *intel_connector;
5976 struct drm_connector *connector;
5977
5978 intel_connector = container_of(work, typeof(*intel_connector),
5979 modeset_retry_work);
5980 connector = &intel_connector->base;
5981 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
5982 connector->name);
5983
5984 /* Grab the locks before changing connector property*/
5985 mutex_lock(&connector->dev->mode_config.mutex);
5986 /* Set connector link status to BAD and send a Uevent to notify
5987 * userspace to do a modeset.
5988 */
5989 drm_mode_connector_set_link_status_property(connector,
5990 DRM_MODE_LINK_STATUS_BAD);
5991 mutex_unlock(&connector->dev->mode_config.mutex);
5992 /* Send Hotplug uevent so userspace can reprobe */
5993 drm_kms_helper_hotplug_event(connector->dev);
5994 }
5995
5996 bool
5997 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5998 struct intel_connector *intel_connector)
5999 {
6000 struct drm_connector *connector = &intel_connector->base;
6001 struct intel_dp *intel_dp = &intel_dig_port->dp;
6002 struct intel_encoder *intel_encoder = &intel_dig_port->base;
6003 struct drm_device *dev = intel_encoder->base.dev;
6004 struct drm_i915_private *dev_priv = to_i915(dev);
6005 enum port port = intel_dig_port->port;
6006 int type;
6007
6008 /* Initialize the work for modeset in case of link train failure */
6009 INIT_WORK(&intel_connector->modeset_retry_work,
6010 intel_dp_modeset_retry_work_fn);
6011
6012 if (WARN(intel_dig_port->max_lanes < 1,
6013 "Not enough lanes (%d) for DP on port %c\n",
6014 intel_dig_port->max_lanes, port_name(port)))
6015 return false;
6016
6017 intel_dp_set_source_rates(intel_dp);
6018
6019 intel_dp->reset_link_params = true;
6020 intel_dp->pps_pipe = INVALID_PIPE;
6021 intel_dp->active_pipe = INVALID_PIPE;
6022
6023 /* intel_dp vfuncs */
6024 if (INTEL_GEN(dev_priv) >= 9)
6025 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
6026 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6027 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
6028 else if (HAS_PCH_SPLIT(dev_priv))
6029 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
6030 else
6031 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
6032
6033 if (INTEL_GEN(dev_priv) >= 9)
6034 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
6035 else
6036 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
6037
6038 if (HAS_DDI(dev_priv))
6039 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
6040
6041 /* Preserve the current hw state. */
6042 intel_dp->DP = I915_READ(intel_dp->output_reg);
6043 intel_dp->attached_connector = intel_connector;
6044
6045 if (intel_dp_is_port_edp(dev_priv, port))
6046 type = DRM_MODE_CONNECTOR_eDP;
6047 else
6048 type = DRM_MODE_CONNECTOR_DisplayPort;
6049
6050 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6051 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6052
6053 /*
6054 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
6055 * for DP the encoder type can be set by the caller to
6056 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
6057 */
6058 if (type == DRM_MODE_CONNECTOR_eDP)
6059 intel_encoder->type = INTEL_OUTPUT_EDP;
6060
6061 /* eDP only on port B and/or C on vlv/chv */
6062 if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
6063 intel_dp_is_edp(intel_dp) &&
6064 port != PORT_B && port != PORT_C))
6065 return false;
6066
6067 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
6068 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
6069 port_name(port));
6070
6071 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
6072 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
6073
6074 connector->interlace_allowed = true;
6075 connector->doublescan_allowed = 0;
6076
6077 intel_dp_init_connector_port_info(intel_dig_port);
6078
6079 intel_dp_aux_init(intel_dp);
6080
6081 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
6082 edp_panel_vdd_work);
6083
6084 intel_connector_attach_encoder(intel_connector, intel_encoder);
6085
6086 if (HAS_DDI(dev_priv))
6087 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
6088 else
6089 intel_connector->get_hw_state = intel_connector_get_hw_state;
6090
6091 /* init MST on ports that can support it */
6092 if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
6093 (port == PORT_B || port == PORT_C || port == PORT_D))
6094 intel_dp_mst_encoder_init(intel_dig_port,
6095 intel_connector->base.base.id);
6096
6097 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
6098 intel_dp_aux_fini(intel_dp);
6099 intel_dp_mst_encoder_cleanup(intel_dig_port);
6100 goto fail;
6101 }
6102
6103 intel_dp_add_properties(intel_dp, connector);
6104
6105 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
6106 * 0xd. Failure to do so will result in spurious interrupts being
6107 * generated on the port when a cable is not attached.
6108 */
6109 if (IS_G4X(dev_priv) && !IS_GM45(dev_priv)) {
6110 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
6111 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
6112 }
6113
6114 return true;
6115
6116 fail:
6117 drm_connector_cleanup(connector);
6118
6119 return false;
6120 }
6121
6122 bool intel_dp_init(struct drm_i915_private *dev_priv,
6123 i915_reg_t output_reg,
6124 enum port port)
6125 {
6126 struct intel_digital_port *intel_dig_port;
6127 struct intel_encoder *intel_encoder;
6128 struct drm_encoder *encoder;
6129 struct intel_connector *intel_connector;
6130
6131 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
6132 if (!intel_dig_port)
6133 return false;
6134
6135 intel_connector = intel_connector_alloc();
6136 if (!intel_connector)
6137 goto err_connector_alloc;
6138
6139 intel_encoder = &intel_dig_port->base;
6140 encoder = &intel_encoder->base;
6141
6142 if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
6143 &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
6144 "DP %c", port_name(port)))
6145 goto err_encoder_init;
6146
6147 intel_encoder->compute_config = intel_dp_compute_config;
6148 intel_encoder->disable = intel_disable_dp;
6149 intel_encoder->get_hw_state = intel_dp_get_hw_state;
6150 intel_encoder->get_config = intel_dp_get_config;
6151 intel_encoder->suspend = intel_dp_encoder_suspend;
6152 if (IS_CHERRYVIEW(dev_priv)) {
6153 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
6154 intel_encoder->pre_enable = chv_pre_enable_dp;
6155 intel_encoder->enable = vlv_enable_dp;
6156 intel_encoder->post_disable = chv_post_disable_dp;
6157 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
6158 } else if (IS_VALLEYVIEW(dev_priv)) {
6159 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
6160 intel_encoder->pre_enable = vlv_pre_enable_dp;
6161 intel_encoder->enable = vlv_enable_dp;
6162 intel_encoder->post_disable = vlv_post_disable_dp;
6163 } else {
6164 intel_encoder->pre_enable = g4x_pre_enable_dp;
6165 intel_encoder->enable = g4x_enable_dp;
6166 if (INTEL_GEN(dev_priv) >= 5)
6167 intel_encoder->post_disable = ilk_post_disable_dp;
6168 }
6169
6170 intel_dig_port->port = port;
6171 intel_dig_port->dp.output_reg = output_reg;
6172 intel_dig_port->max_lanes = 4;
6173
6174 intel_encoder->type = INTEL_OUTPUT_DP;
6175 intel_encoder->power_domain = intel_port_to_power_domain(port);
6176 if (IS_CHERRYVIEW(dev_priv)) {
6177 if (port == PORT_D)
6178 intel_encoder->crtc_mask = 1 << 2;
6179 else
6180 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
6181 } else {
6182 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
6183 }
6184 intel_encoder->cloneable = 0;
6185 intel_encoder->port = port;
6186
6187 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
6188 dev_priv->hotplug.irq_port[port] = intel_dig_port;
6189
6190 if (port != PORT_A)
6191 intel_infoframe_init(intel_dig_port);
6192
6193 if (!intel_dp_init_connector(intel_dig_port, intel_connector))
6194 goto err_init_connector;
6195
6196 return true;
6197
6198 err_init_connector:
6199 drm_encoder_cleanup(encoder);
6200 err_encoder_init:
6201 kfree(intel_connector);
6202 err_connector_alloc:
6203 kfree(intel_dig_port);
6204 return false;
6205 }
6206
6207 void intel_dp_mst_suspend(struct drm_device *dev)
6208 {
6209 struct drm_i915_private *dev_priv = to_i915(dev);
6210 int i;
6211
6212 /* disable MST */
6213 for (i = 0; i < I915_MAX_PORTS; i++) {
6214 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6215
6216 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
6217 continue;
6218
6219 if (intel_dig_port->dp.is_mst)
6220 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
6221 }
6222 }
6223
6224 void intel_dp_mst_resume(struct drm_device *dev)
6225 {
6226 struct drm_i915_private *dev_priv = to_i915(dev);
6227 int i;
6228
6229 for (i = 0; i < I915_MAX_PORTS; i++) {
6230 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6231 int ret;
6232
6233 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
6234 continue;
6235
6236 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
6237 if (ret)
6238 intel_dp_check_mst_status(&intel_dig_port->dp);
6239 }
6240 }