]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/intel_dp.c
ASoC: cs42xx8: fix the noise in the right dac channel with mono playback
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 /* Compliance test status bits */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
46 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51 int clock;
52 struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56 { 162000,
57 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58 { 270000,
59 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63 { 162000,
64 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65 { 270000,
66 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70 { 162000,
71 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72 { 270000,
73 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77 * CHV supports eDP 1.4 that have more link rates.
78 * Below only provides the fixed rate but exclude variable rate.
79 */
80 static const struct dp_link_dpll chv_dpll[] = {
81 /*
82 * CHV requires to program fractional division for m2.
83 * m2 is stored in fixed point format using formula below
84 * (m2_int << 22) | m2_fraction
85 */
86 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
87 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88 { 270000, /* m2_int = 27, m2_fraction = 0 */
89 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90 { 540000, /* m2_int = 27, m2_fraction = 0 */
91 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95 324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97 324000, 432000, 540000 };
98 static const int default_rates[] = { 162000, 270000, 540000 };
99
100 /**
101 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
102 * @intel_dp: DP struct
103 *
104 * If a CPU or PCH DP output is attached to an eDP panel, this function
105 * will return true, and false otherwise.
106 */
107 static bool is_edp(struct intel_dp *intel_dp)
108 {
109 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
110
111 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 }
113
114 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115 {
116 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
117
118 return intel_dig_port->base.base.dev;
119 }
120
121 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
122 {
123 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 }
125
126 static void intel_dp_link_down(struct intel_dp *intel_dp);
127 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 static void vlv_steal_power_sequencer(struct drm_device *dev,
131 enum pipe pipe);
132
133 static unsigned int intel_dp_unused_lane_mask(int lane_count)
134 {
135 return ~((1 << lane_count) - 1) & 0xf;
136 }
137
138 static int
139 intel_dp_max_link_bw(struct intel_dp *intel_dp)
140 {
141 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
142
143 switch (max_link_bw) {
144 case DP_LINK_BW_1_62:
145 case DP_LINK_BW_2_7:
146 case DP_LINK_BW_5_4:
147 break;
148 default:
149 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
150 max_link_bw);
151 max_link_bw = DP_LINK_BW_1_62;
152 break;
153 }
154 return max_link_bw;
155 }
156
157 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
158 {
159 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
160 struct drm_device *dev = intel_dig_port->base.base.dev;
161 u8 source_max, sink_max;
162
163 source_max = 4;
164 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
165 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
166 source_max = 2;
167
168 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
169
170 return min(source_max, sink_max);
171 }
172
173 /*
174 * The units on the numbers in the next two are... bizarre. Examples will
175 * make it clearer; this one parallels an example in the eDP spec.
176 *
177 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
178 *
179 * 270000 * 1 * 8 / 10 == 216000
180 *
181 * The actual data capacity of that configuration is 2.16Gbit/s, so the
182 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
183 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
184 * 119000. At 18bpp that's 2142000 kilobits per second.
185 *
186 * Thus the strange-looking division by 10 in intel_dp_link_required, to
187 * get the result in decakilobits instead of kilobits.
188 */
189
190 static int
191 intel_dp_link_required(int pixel_clock, int bpp)
192 {
193 return (pixel_clock * bpp + 9) / 10;
194 }
195
196 static int
197 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
198 {
199 return (max_link_clock * max_lanes * 8) / 10;
200 }
201
202 static enum drm_mode_status
203 intel_dp_mode_valid(struct drm_connector *connector,
204 struct drm_display_mode *mode)
205 {
206 struct intel_dp *intel_dp = intel_attached_dp(connector);
207 struct intel_connector *intel_connector = to_intel_connector(connector);
208 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
209 int target_clock = mode->clock;
210 int max_rate, mode_rate, max_lanes, max_link_clock;
211
212 if (is_edp(intel_dp) && fixed_mode) {
213 if (mode->hdisplay > fixed_mode->hdisplay)
214 return MODE_PANEL;
215
216 if (mode->vdisplay > fixed_mode->vdisplay)
217 return MODE_PANEL;
218
219 target_clock = fixed_mode->clock;
220 }
221
222 max_link_clock = intel_dp_max_link_rate(intel_dp);
223 max_lanes = intel_dp_max_lane_count(intel_dp);
224
225 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
226 mode_rate = intel_dp_link_required(target_clock, 18);
227
228 if (mode_rate > max_rate)
229 return MODE_CLOCK_HIGH;
230
231 if (mode->clock < 10000)
232 return MODE_CLOCK_LOW;
233
234 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
235 return MODE_H_ILLEGAL;
236
237 return MODE_OK;
238 }
239
240 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
241 {
242 int i;
243 uint32_t v = 0;
244
245 if (src_bytes > 4)
246 src_bytes = 4;
247 for (i = 0; i < src_bytes; i++)
248 v |= ((uint32_t) src[i]) << ((3-i) * 8);
249 return v;
250 }
251
252 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
253 {
254 int i;
255 if (dst_bytes > 4)
256 dst_bytes = 4;
257 for (i = 0; i < dst_bytes; i++)
258 dst[i] = src >> ((3-i) * 8);
259 }
260
261 static void
262 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
263 struct intel_dp *intel_dp);
264 static void
265 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
266 struct intel_dp *intel_dp);
267
268 static void pps_lock(struct intel_dp *intel_dp)
269 {
270 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
271 struct intel_encoder *encoder = &intel_dig_port->base;
272 struct drm_device *dev = encoder->base.dev;
273 struct drm_i915_private *dev_priv = dev->dev_private;
274 enum intel_display_power_domain power_domain;
275
276 /*
277 * See vlv_power_sequencer_reset() why we need
278 * a power domain reference here.
279 */
280 power_domain = intel_display_port_aux_power_domain(encoder);
281 intel_display_power_get(dev_priv, power_domain);
282
283 mutex_lock(&dev_priv->pps_mutex);
284 }
285
286 static void pps_unlock(struct intel_dp *intel_dp)
287 {
288 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
289 struct intel_encoder *encoder = &intel_dig_port->base;
290 struct drm_device *dev = encoder->base.dev;
291 struct drm_i915_private *dev_priv = dev->dev_private;
292 enum intel_display_power_domain power_domain;
293
294 mutex_unlock(&dev_priv->pps_mutex);
295
296 power_domain = intel_display_port_aux_power_domain(encoder);
297 intel_display_power_put(dev_priv, power_domain);
298 }
299
300 static void
301 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
302 {
303 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
304 struct drm_device *dev = intel_dig_port->base.base.dev;
305 struct drm_i915_private *dev_priv = dev->dev_private;
306 enum pipe pipe = intel_dp->pps_pipe;
307 bool pll_enabled, release_cl_override = false;
308 enum dpio_phy phy = DPIO_PHY(pipe);
309 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
310 uint32_t DP;
311
312 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
313 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
314 pipe_name(pipe), port_name(intel_dig_port->port)))
315 return;
316
317 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
318 pipe_name(pipe), port_name(intel_dig_port->port));
319
320 /* Preserve the BIOS-computed detected bit. This is
321 * supposed to be read-only.
322 */
323 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
324 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
325 DP |= DP_PORT_WIDTH(1);
326 DP |= DP_LINK_TRAIN_PAT_1;
327
328 if (IS_CHERRYVIEW(dev))
329 DP |= DP_PIPE_SELECT_CHV(pipe);
330 else if (pipe == PIPE_B)
331 DP |= DP_PIPEB_SELECT;
332
333 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
334
335 /*
336 * The DPLL for the pipe must be enabled for this to work.
337 * So enable temporarily it if it's not already enabled.
338 */
339 if (!pll_enabled) {
340 release_cl_override = IS_CHERRYVIEW(dev) &&
341 !chv_phy_powergate_ch(dev_priv, phy, ch, true);
342
343 vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
344 &chv_dpll[0].dpll : &vlv_dpll[0].dpll);
345 }
346
347 /*
348 * Similar magic as in intel_dp_enable_port().
349 * We _must_ do this port enable + disable trick
350 * to make this power seqeuencer lock onto the port.
351 * Otherwise even VDD force bit won't work.
352 */
353 I915_WRITE(intel_dp->output_reg, DP);
354 POSTING_READ(intel_dp->output_reg);
355
356 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
357 POSTING_READ(intel_dp->output_reg);
358
359 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
360 POSTING_READ(intel_dp->output_reg);
361
362 if (!pll_enabled) {
363 vlv_force_pll_off(dev, pipe);
364
365 if (release_cl_override)
366 chv_phy_powergate_ch(dev_priv, phy, ch, false);
367 }
368 }
369
370 static enum pipe
371 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
372 {
373 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
374 struct drm_device *dev = intel_dig_port->base.base.dev;
375 struct drm_i915_private *dev_priv = dev->dev_private;
376 struct intel_encoder *encoder;
377 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
378 enum pipe pipe;
379
380 lockdep_assert_held(&dev_priv->pps_mutex);
381
382 /* We should never land here with regular DP ports */
383 WARN_ON(!is_edp(intel_dp));
384
385 if (intel_dp->pps_pipe != INVALID_PIPE)
386 return intel_dp->pps_pipe;
387
388 /*
389 * We don't have power sequencer currently.
390 * Pick one that's not used by other ports.
391 */
392 for_each_intel_encoder(dev, encoder) {
393 struct intel_dp *tmp;
394
395 if (encoder->type != INTEL_OUTPUT_EDP)
396 continue;
397
398 tmp = enc_to_intel_dp(&encoder->base);
399
400 if (tmp->pps_pipe != INVALID_PIPE)
401 pipes &= ~(1 << tmp->pps_pipe);
402 }
403
404 /*
405 * Didn't find one. This should not happen since there
406 * are two power sequencers and up to two eDP ports.
407 */
408 if (WARN_ON(pipes == 0))
409 pipe = PIPE_A;
410 else
411 pipe = ffs(pipes) - 1;
412
413 vlv_steal_power_sequencer(dev, pipe);
414 intel_dp->pps_pipe = pipe;
415
416 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
417 pipe_name(intel_dp->pps_pipe),
418 port_name(intel_dig_port->port));
419
420 /* init power sequencer on this pipe and port */
421 intel_dp_init_panel_power_sequencer(dev, intel_dp);
422 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
423
424 /*
425 * Even vdd force doesn't work until we've made
426 * the power sequencer lock in on the port.
427 */
428 vlv_power_sequencer_kick(intel_dp);
429
430 return intel_dp->pps_pipe;
431 }
432
433 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
434 enum pipe pipe);
435
436 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
437 enum pipe pipe)
438 {
439 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
440 }
441
442 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
443 enum pipe pipe)
444 {
445 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
446 }
447
448 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
449 enum pipe pipe)
450 {
451 return true;
452 }
453
454 static enum pipe
455 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
456 enum port port,
457 vlv_pipe_check pipe_check)
458 {
459 enum pipe pipe;
460
461 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
462 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
463 PANEL_PORT_SELECT_MASK;
464
465 if (port_sel != PANEL_PORT_SELECT_VLV(port))
466 continue;
467
468 if (!pipe_check(dev_priv, pipe))
469 continue;
470
471 return pipe;
472 }
473
474 return INVALID_PIPE;
475 }
476
477 static void
478 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
479 {
480 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
481 struct drm_device *dev = intel_dig_port->base.base.dev;
482 struct drm_i915_private *dev_priv = dev->dev_private;
483 enum port port = intel_dig_port->port;
484
485 lockdep_assert_held(&dev_priv->pps_mutex);
486
487 /* try to find a pipe with this port selected */
488 /* first pick one where the panel is on */
489 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
490 vlv_pipe_has_pp_on);
491 /* didn't find one? pick one where vdd is on */
492 if (intel_dp->pps_pipe == INVALID_PIPE)
493 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
494 vlv_pipe_has_vdd_on);
495 /* didn't find one? pick one with just the correct port */
496 if (intel_dp->pps_pipe == INVALID_PIPE)
497 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
498 vlv_pipe_any);
499
500 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
501 if (intel_dp->pps_pipe == INVALID_PIPE) {
502 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
503 port_name(port));
504 return;
505 }
506
507 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
508 port_name(port), pipe_name(intel_dp->pps_pipe));
509
510 intel_dp_init_panel_power_sequencer(dev, intel_dp);
511 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
512 }
513
514 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
515 {
516 struct drm_device *dev = dev_priv->dev;
517 struct intel_encoder *encoder;
518
519 if (WARN_ON(!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)))
520 return;
521
522 /*
523 * We can't grab pps_mutex here due to deadlock with power_domain
524 * mutex when power_domain functions are called while holding pps_mutex.
525 * That also means that in order to use pps_pipe the code needs to
526 * hold both a power domain reference and pps_mutex, and the power domain
527 * reference get/put must be done while _not_ holding pps_mutex.
528 * pps_{lock,unlock}() do these steps in the correct order, so one
529 * should use them always.
530 */
531
532 for_each_intel_encoder(dev, encoder) {
533 struct intel_dp *intel_dp;
534
535 if (encoder->type != INTEL_OUTPUT_EDP)
536 continue;
537
538 intel_dp = enc_to_intel_dp(&encoder->base);
539 intel_dp->pps_pipe = INVALID_PIPE;
540 }
541 }
542
543 static i915_reg_t
544 _pp_ctrl_reg(struct intel_dp *intel_dp)
545 {
546 struct drm_device *dev = intel_dp_to_dev(intel_dp);
547
548 if (IS_BROXTON(dev))
549 return BXT_PP_CONTROL(0);
550 else if (HAS_PCH_SPLIT(dev))
551 return PCH_PP_CONTROL;
552 else
553 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
554 }
555
556 static i915_reg_t
557 _pp_stat_reg(struct intel_dp *intel_dp)
558 {
559 struct drm_device *dev = intel_dp_to_dev(intel_dp);
560
561 if (IS_BROXTON(dev))
562 return BXT_PP_STATUS(0);
563 else if (HAS_PCH_SPLIT(dev))
564 return PCH_PP_STATUS;
565 else
566 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
567 }
568
569 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
570 This function only applicable when panel PM state is not to be tracked */
571 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
572 void *unused)
573 {
574 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
575 edp_notifier);
576 struct drm_device *dev = intel_dp_to_dev(intel_dp);
577 struct drm_i915_private *dev_priv = dev->dev_private;
578
579 if (!is_edp(intel_dp) || code != SYS_RESTART)
580 return 0;
581
582 pps_lock(intel_dp);
583
584 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
585 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
586 i915_reg_t pp_ctrl_reg, pp_div_reg;
587 u32 pp_div;
588
589 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
590 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
591 pp_div = I915_READ(pp_div_reg);
592 pp_div &= PP_REFERENCE_DIVIDER_MASK;
593
594 /* 0x1F write to PP_DIV_REG sets max cycle delay */
595 I915_WRITE(pp_div_reg, pp_div | 0x1F);
596 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
597 msleep(intel_dp->panel_power_cycle_delay);
598 }
599
600 pps_unlock(intel_dp);
601
602 return 0;
603 }
604
605 static bool edp_have_panel_power(struct intel_dp *intel_dp)
606 {
607 struct drm_device *dev = intel_dp_to_dev(intel_dp);
608 struct drm_i915_private *dev_priv = dev->dev_private;
609
610 lockdep_assert_held(&dev_priv->pps_mutex);
611
612 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
613 intel_dp->pps_pipe == INVALID_PIPE)
614 return false;
615
616 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
617 }
618
619 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
620 {
621 struct drm_device *dev = intel_dp_to_dev(intel_dp);
622 struct drm_i915_private *dev_priv = dev->dev_private;
623
624 lockdep_assert_held(&dev_priv->pps_mutex);
625
626 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
627 intel_dp->pps_pipe == INVALID_PIPE)
628 return false;
629
630 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
631 }
632
633 static void
634 intel_dp_check_edp(struct intel_dp *intel_dp)
635 {
636 struct drm_device *dev = intel_dp_to_dev(intel_dp);
637 struct drm_i915_private *dev_priv = dev->dev_private;
638
639 if (!is_edp(intel_dp))
640 return;
641
642 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
643 WARN(1, "eDP powered off while attempting aux channel communication.\n");
644 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
645 I915_READ(_pp_stat_reg(intel_dp)),
646 I915_READ(_pp_ctrl_reg(intel_dp)));
647 }
648 }
649
650 static uint32_t
651 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
652 {
653 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
654 struct drm_device *dev = intel_dig_port->base.base.dev;
655 struct drm_i915_private *dev_priv = dev->dev_private;
656 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
657 uint32_t status;
658 bool done;
659
660 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
661 if (has_aux_irq)
662 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
663 msecs_to_jiffies_timeout(10));
664 else
665 done = wait_for_atomic(C, 10) == 0;
666 if (!done)
667 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
668 has_aux_irq);
669 #undef C
670
671 return status;
672 }
673
674 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
675 {
676 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
677 struct drm_device *dev = intel_dig_port->base.base.dev;
678
679 /*
680 * The clock divider is based off the hrawclk, and would like to run at
681 * 2MHz. So, take the hrawclk value and divide by 2 and use that
682 */
683 return index ? 0 : DIV_ROUND_CLOSEST(intel_hrawclk(dev), 2);
684 }
685
686 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
687 {
688 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
689 struct drm_device *dev = intel_dig_port->base.base.dev;
690 struct drm_i915_private *dev_priv = dev->dev_private;
691
692 if (index)
693 return 0;
694
695 if (intel_dig_port->port == PORT_A) {
696 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
697
698 } else {
699 return DIV_ROUND_CLOSEST(intel_pch_rawclk(dev), 2);
700 }
701 }
702
703 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
704 {
705 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
706 struct drm_device *dev = intel_dig_port->base.base.dev;
707 struct drm_i915_private *dev_priv = dev->dev_private;
708
709 if (intel_dig_port->port == PORT_A) {
710 if (index)
711 return 0;
712 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
713 } else if (HAS_PCH_LPT_H(dev_priv)) {
714 /* Workaround for non-ULT HSW */
715 switch (index) {
716 case 0: return 63;
717 case 1: return 72;
718 default: return 0;
719 }
720 } else {
721 return index ? 0 : DIV_ROUND_CLOSEST(intel_pch_rawclk(dev), 2);
722 }
723 }
724
725 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
726 {
727 return index ? 0 : 100;
728 }
729
730 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
731 {
732 /*
733 * SKL doesn't need us to program the AUX clock divider (Hardware will
734 * derive the clock from CDCLK automatically). We still implement the
735 * get_aux_clock_divider vfunc to plug-in into the existing code.
736 */
737 return index ? 0 : 1;
738 }
739
740 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
741 bool has_aux_irq,
742 int send_bytes,
743 uint32_t aux_clock_divider)
744 {
745 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
746 struct drm_device *dev = intel_dig_port->base.base.dev;
747 uint32_t precharge, timeout;
748
749 if (IS_GEN6(dev))
750 precharge = 3;
751 else
752 precharge = 5;
753
754 if (IS_BROADWELL(dev) && intel_dig_port->port == PORT_A)
755 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
756 else
757 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
758
759 return DP_AUX_CH_CTL_SEND_BUSY |
760 DP_AUX_CH_CTL_DONE |
761 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
762 DP_AUX_CH_CTL_TIME_OUT_ERROR |
763 timeout |
764 DP_AUX_CH_CTL_RECEIVE_ERROR |
765 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
766 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
767 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
768 }
769
770 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
771 bool has_aux_irq,
772 int send_bytes,
773 uint32_t unused)
774 {
775 return DP_AUX_CH_CTL_SEND_BUSY |
776 DP_AUX_CH_CTL_DONE |
777 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
778 DP_AUX_CH_CTL_TIME_OUT_ERROR |
779 DP_AUX_CH_CTL_TIME_OUT_1600us |
780 DP_AUX_CH_CTL_RECEIVE_ERROR |
781 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
782 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
783 }
784
785 static int
786 intel_dp_aux_ch(struct intel_dp *intel_dp,
787 const uint8_t *send, int send_bytes,
788 uint8_t *recv, int recv_size)
789 {
790 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
791 struct drm_device *dev = intel_dig_port->base.base.dev;
792 struct drm_i915_private *dev_priv = dev->dev_private;
793 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
794 uint32_t aux_clock_divider;
795 int i, ret, recv_bytes;
796 uint32_t status;
797 int try, clock = 0;
798 bool has_aux_irq = HAS_AUX_IRQ(dev);
799 bool vdd;
800
801 pps_lock(intel_dp);
802
803 /*
804 * We will be called with VDD already enabled for dpcd/edid/oui reads.
805 * In such cases we want to leave VDD enabled and it's up to upper layers
806 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
807 * ourselves.
808 */
809 vdd = edp_panel_vdd_on(intel_dp);
810
811 /* dp aux is extremely sensitive to irq latency, hence request the
812 * lowest possible wakeup latency and so prevent the cpu from going into
813 * deep sleep states.
814 */
815 pm_qos_update_request(&dev_priv->pm_qos, 0);
816
817 intel_dp_check_edp(intel_dp);
818
819 /* Try to wait for any previous AUX channel activity */
820 for (try = 0; try < 3; try++) {
821 status = I915_READ_NOTRACE(ch_ctl);
822 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
823 break;
824 msleep(1);
825 }
826
827 if (try == 3) {
828 static u32 last_status = -1;
829 const u32 status = I915_READ(ch_ctl);
830
831 if (status != last_status) {
832 WARN(1, "dp_aux_ch not started status 0x%08x\n",
833 status);
834 last_status = status;
835 }
836
837 ret = -EBUSY;
838 goto out;
839 }
840
841 /* Only 5 data registers! */
842 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
843 ret = -E2BIG;
844 goto out;
845 }
846
847 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
848 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
849 has_aux_irq,
850 send_bytes,
851 aux_clock_divider);
852
853 /* Must try at least 3 times according to DP spec */
854 for (try = 0; try < 5; try++) {
855 /* Load the send data into the aux channel data registers */
856 for (i = 0; i < send_bytes; i += 4)
857 I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
858 intel_dp_pack_aux(send + i,
859 send_bytes - i));
860
861 /* Send the command and wait for it to complete */
862 I915_WRITE(ch_ctl, send_ctl);
863
864 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
865
866 /* Clear done status and any errors */
867 I915_WRITE(ch_ctl,
868 status |
869 DP_AUX_CH_CTL_DONE |
870 DP_AUX_CH_CTL_TIME_OUT_ERROR |
871 DP_AUX_CH_CTL_RECEIVE_ERROR);
872
873 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
874 continue;
875
876 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
877 * 400us delay required for errors and timeouts
878 * Timeout errors from the HW already meet this
879 * requirement so skip to next iteration
880 */
881 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
882 usleep_range(400, 500);
883 continue;
884 }
885 if (status & DP_AUX_CH_CTL_DONE)
886 goto done;
887 }
888 }
889
890 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
891 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
892 ret = -EBUSY;
893 goto out;
894 }
895
896 done:
897 /* Check for timeout or receive error.
898 * Timeouts occur when the sink is not connected
899 */
900 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
901 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
902 ret = -EIO;
903 goto out;
904 }
905
906 /* Timeouts occur when the device isn't connected, so they're
907 * "normal" -- don't fill the kernel log with these */
908 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
909 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
910 ret = -ETIMEDOUT;
911 goto out;
912 }
913
914 /* Unload any bytes sent back from the other side */
915 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
916 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
917
918 /*
919 * By BSpec: "Message sizes of 0 or >20 are not allowed."
920 * We have no idea of what happened so we return -EBUSY so
921 * drm layer takes care for the necessary retries.
922 */
923 if (recv_bytes == 0 || recv_bytes > 20) {
924 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
925 recv_bytes);
926 /*
927 * FIXME: This patch was created on top of a series that
928 * organize the retries at drm level. There EBUSY should
929 * also take care for 1ms wait before retrying.
930 * That aux retries re-org is still needed and after that is
931 * merged we remove this sleep from here.
932 */
933 usleep_range(1000, 1500);
934 ret = -EBUSY;
935 goto out;
936 }
937
938 if (recv_bytes > recv_size)
939 recv_bytes = recv_size;
940
941 for (i = 0; i < recv_bytes; i += 4)
942 intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
943 recv + i, recv_bytes - i);
944
945 ret = recv_bytes;
946 out:
947 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
948
949 if (vdd)
950 edp_panel_vdd_off(intel_dp, false);
951
952 pps_unlock(intel_dp);
953
954 return ret;
955 }
956
957 #define BARE_ADDRESS_SIZE 3
958 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
959 static ssize_t
960 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
961 {
962 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
963 uint8_t txbuf[20], rxbuf[20];
964 size_t txsize, rxsize;
965 int ret;
966
967 txbuf[0] = (msg->request << 4) |
968 ((msg->address >> 16) & 0xf);
969 txbuf[1] = (msg->address >> 8) & 0xff;
970 txbuf[2] = msg->address & 0xff;
971 txbuf[3] = msg->size - 1;
972
973 switch (msg->request & ~DP_AUX_I2C_MOT) {
974 case DP_AUX_NATIVE_WRITE:
975 case DP_AUX_I2C_WRITE:
976 case DP_AUX_I2C_WRITE_STATUS_UPDATE:
977 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
978 rxsize = 2; /* 0 or 1 data bytes */
979
980 if (WARN_ON(txsize > 20))
981 return -E2BIG;
982
983 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
984
985 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
986 if (ret > 0) {
987 msg->reply = rxbuf[0] >> 4;
988
989 if (ret > 1) {
990 /* Number of bytes written in a short write. */
991 ret = clamp_t(int, rxbuf[1], 0, msg->size);
992 } else {
993 /* Return payload size. */
994 ret = msg->size;
995 }
996 }
997 break;
998
999 case DP_AUX_NATIVE_READ:
1000 case DP_AUX_I2C_READ:
1001 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1002 rxsize = msg->size + 1;
1003
1004 if (WARN_ON(rxsize > 20))
1005 return -E2BIG;
1006
1007 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1008 if (ret > 0) {
1009 msg->reply = rxbuf[0] >> 4;
1010 /*
1011 * Assume happy day, and copy the data. The caller is
1012 * expected to check msg->reply before touching it.
1013 *
1014 * Return payload size.
1015 */
1016 ret--;
1017 memcpy(msg->buffer, rxbuf + 1, ret);
1018 }
1019 break;
1020
1021 default:
1022 ret = -EINVAL;
1023 break;
1024 }
1025
1026 return ret;
1027 }
1028
1029 static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1030 enum port port)
1031 {
1032 switch (port) {
1033 case PORT_B:
1034 case PORT_C:
1035 case PORT_D:
1036 return DP_AUX_CH_CTL(port);
1037 default:
1038 MISSING_CASE(port);
1039 return DP_AUX_CH_CTL(PORT_B);
1040 }
1041 }
1042
1043 static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1044 enum port port, int index)
1045 {
1046 switch (port) {
1047 case PORT_B:
1048 case PORT_C:
1049 case PORT_D:
1050 return DP_AUX_CH_DATA(port, index);
1051 default:
1052 MISSING_CASE(port);
1053 return DP_AUX_CH_DATA(PORT_B, index);
1054 }
1055 }
1056
1057 static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1058 enum port port)
1059 {
1060 switch (port) {
1061 case PORT_A:
1062 return DP_AUX_CH_CTL(port);
1063 case PORT_B:
1064 case PORT_C:
1065 case PORT_D:
1066 return PCH_DP_AUX_CH_CTL(port);
1067 default:
1068 MISSING_CASE(port);
1069 return DP_AUX_CH_CTL(PORT_A);
1070 }
1071 }
1072
1073 static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1074 enum port port, int index)
1075 {
1076 switch (port) {
1077 case PORT_A:
1078 return DP_AUX_CH_DATA(port, index);
1079 case PORT_B:
1080 case PORT_C:
1081 case PORT_D:
1082 return PCH_DP_AUX_CH_DATA(port, index);
1083 default:
1084 MISSING_CASE(port);
1085 return DP_AUX_CH_DATA(PORT_A, index);
1086 }
1087 }
1088
1089 /*
1090 * On SKL we don't have Aux for port E so we rely
1091 * on VBT to set a proper alternate aux channel.
1092 */
1093 static enum port skl_porte_aux_port(struct drm_i915_private *dev_priv)
1094 {
1095 const struct ddi_vbt_port_info *info =
1096 &dev_priv->vbt.ddi_port_info[PORT_E];
1097
1098 switch (info->alternate_aux_channel) {
1099 case DP_AUX_A:
1100 return PORT_A;
1101 case DP_AUX_B:
1102 return PORT_B;
1103 case DP_AUX_C:
1104 return PORT_C;
1105 case DP_AUX_D:
1106 return PORT_D;
1107 default:
1108 MISSING_CASE(info->alternate_aux_channel);
1109 return PORT_A;
1110 }
1111 }
1112
1113 static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1114 enum port port)
1115 {
1116 if (port == PORT_E)
1117 port = skl_porte_aux_port(dev_priv);
1118
1119 switch (port) {
1120 case PORT_A:
1121 case PORT_B:
1122 case PORT_C:
1123 case PORT_D:
1124 return DP_AUX_CH_CTL(port);
1125 default:
1126 MISSING_CASE(port);
1127 return DP_AUX_CH_CTL(PORT_A);
1128 }
1129 }
1130
1131 static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1132 enum port port, int index)
1133 {
1134 if (port == PORT_E)
1135 port = skl_porte_aux_port(dev_priv);
1136
1137 switch (port) {
1138 case PORT_A:
1139 case PORT_B:
1140 case PORT_C:
1141 case PORT_D:
1142 return DP_AUX_CH_DATA(port, index);
1143 default:
1144 MISSING_CASE(port);
1145 return DP_AUX_CH_DATA(PORT_A, index);
1146 }
1147 }
1148
1149 static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1150 enum port port)
1151 {
1152 if (INTEL_INFO(dev_priv)->gen >= 9)
1153 return skl_aux_ctl_reg(dev_priv, port);
1154 else if (HAS_PCH_SPLIT(dev_priv))
1155 return ilk_aux_ctl_reg(dev_priv, port);
1156 else
1157 return g4x_aux_ctl_reg(dev_priv, port);
1158 }
1159
1160 static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1161 enum port port, int index)
1162 {
1163 if (INTEL_INFO(dev_priv)->gen >= 9)
1164 return skl_aux_data_reg(dev_priv, port, index);
1165 else if (HAS_PCH_SPLIT(dev_priv))
1166 return ilk_aux_data_reg(dev_priv, port, index);
1167 else
1168 return g4x_aux_data_reg(dev_priv, port, index);
1169 }
1170
1171 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1172 {
1173 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1174 enum port port = dp_to_dig_port(intel_dp)->port;
1175 int i;
1176
1177 intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1178 for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1179 intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1180 }
1181
1182 static void
1183 intel_dp_aux_fini(struct intel_dp *intel_dp)
1184 {
1185 drm_dp_aux_unregister(&intel_dp->aux);
1186 kfree(intel_dp->aux.name);
1187 }
1188
1189 static int
1190 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1191 {
1192 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1193 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1194 enum port port = intel_dig_port->port;
1195 int ret;
1196
1197 intel_aux_reg_init(intel_dp);
1198
1199 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1200 if (!intel_dp->aux.name)
1201 return -ENOMEM;
1202
1203 intel_dp->aux.dev = dev->dev;
1204 intel_dp->aux.transfer = intel_dp_aux_transfer;
1205
1206 DRM_DEBUG_KMS("registering %s bus for %s\n",
1207 intel_dp->aux.name,
1208 connector->base.kdev->kobj.name);
1209
1210 ret = drm_dp_aux_register(&intel_dp->aux);
1211 if (ret < 0) {
1212 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1213 intel_dp->aux.name, ret);
1214 kfree(intel_dp->aux.name);
1215 return ret;
1216 }
1217
1218 ret = sysfs_create_link(&connector->base.kdev->kobj,
1219 &intel_dp->aux.ddc.dev.kobj,
1220 intel_dp->aux.ddc.dev.kobj.name);
1221 if (ret < 0) {
1222 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n",
1223 intel_dp->aux.name, ret);
1224 intel_dp_aux_fini(intel_dp);
1225 return ret;
1226 }
1227
1228 return 0;
1229 }
1230
1231 static void
1232 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1233 {
1234 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1235
1236 if (!intel_connector->mst_port)
1237 sysfs_remove_link(&intel_connector->base.kdev->kobj,
1238 intel_dp->aux.ddc.dev.kobj.name);
1239 intel_connector_unregister(intel_connector);
1240 }
1241
1242 static void
1243 skl_edp_set_pll_config(struct intel_crtc_state *pipe_config)
1244 {
1245 u32 ctrl1;
1246
1247 memset(&pipe_config->dpll_hw_state, 0,
1248 sizeof(pipe_config->dpll_hw_state));
1249
1250 pipe_config->ddi_pll_sel = SKL_DPLL0;
1251 pipe_config->dpll_hw_state.cfgcr1 = 0;
1252 pipe_config->dpll_hw_state.cfgcr2 = 0;
1253
1254 ctrl1 = DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
1255 switch (pipe_config->port_clock / 2) {
1256 case 81000:
1257 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
1258 SKL_DPLL0);
1259 break;
1260 case 135000:
1261 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350,
1262 SKL_DPLL0);
1263 break;
1264 case 270000:
1265 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700,
1266 SKL_DPLL0);
1267 break;
1268 case 162000:
1269 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620,
1270 SKL_DPLL0);
1271 break;
1272 /* TBD: For DP link rates 2.16 GHz and 4.32 GHz, VCO is 8640 which
1273 results in CDCLK change. Need to handle the change of CDCLK by
1274 disabling pipes and re-enabling them */
1275 case 108000:
1276 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
1277 SKL_DPLL0);
1278 break;
1279 case 216000:
1280 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160,
1281 SKL_DPLL0);
1282 break;
1283
1284 }
1285 pipe_config->dpll_hw_state.ctrl1 = ctrl1;
1286 }
1287
1288 void
1289 hsw_dp_set_ddi_pll_sel(struct intel_crtc_state *pipe_config)
1290 {
1291 memset(&pipe_config->dpll_hw_state, 0,
1292 sizeof(pipe_config->dpll_hw_state));
1293
1294 switch (pipe_config->port_clock / 2) {
1295 case 81000:
1296 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
1297 break;
1298 case 135000:
1299 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
1300 break;
1301 case 270000:
1302 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
1303 break;
1304 }
1305 }
1306
1307 static int
1308 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1309 {
1310 if (intel_dp->num_sink_rates) {
1311 *sink_rates = intel_dp->sink_rates;
1312 return intel_dp->num_sink_rates;
1313 }
1314
1315 *sink_rates = default_rates;
1316
1317 return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1318 }
1319
1320 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1321 {
1322 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1323 struct drm_device *dev = dig_port->base.base.dev;
1324
1325 /* WaDisableHBR2:skl */
1326 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0))
1327 return false;
1328
1329 if ((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || IS_BROADWELL(dev) ||
1330 (INTEL_INFO(dev)->gen >= 9))
1331 return true;
1332 else
1333 return false;
1334 }
1335
1336 static int
1337 intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1338 {
1339 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1340 struct drm_device *dev = dig_port->base.base.dev;
1341 int size;
1342
1343 if (IS_BROXTON(dev)) {
1344 *source_rates = bxt_rates;
1345 size = ARRAY_SIZE(bxt_rates);
1346 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1347 *source_rates = skl_rates;
1348 size = ARRAY_SIZE(skl_rates);
1349 } else {
1350 *source_rates = default_rates;
1351 size = ARRAY_SIZE(default_rates);
1352 }
1353
1354 /* This depends on the fact that 5.4 is last value in the array */
1355 if (!intel_dp_source_supports_hbr2(intel_dp))
1356 size--;
1357
1358 return size;
1359 }
1360
1361 static void
1362 intel_dp_set_clock(struct intel_encoder *encoder,
1363 struct intel_crtc_state *pipe_config)
1364 {
1365 struct drm_device *dev = encoder->base.dev;
1366 const struct dp_link_dpll *divisor = NULL;
1367 int i, count = 0;
1368
1369 if (IS_G4X(dev)) {
1370 divisor = gen4_dpll;
1371 count = ARRAY_SIZE(gen4_dpll);
1372 } else if (HAS_PCH_SPLIT(dev)) {
1373 divisor = pch_dpll;
1374 count = ARRAY_SIZE(pch_dpll);
1375 } else if (IS_CHERRYVIEW(dev)) {
1376 divisor = chv_dpll;
1377 count = ARRAY_SIZE(chv_dpll);
1378 } else if (IS_VALLEYVIEW(dev)) {
1379 divisor = vlv_dpll;
1380 count = ARRAY_SIZE(vlv_dpll);
1381 }
1382
1383 if (divisor && count) {
1384 for (i = 0; i < count; i++) {
1385 if (pipe_config->port_clock == divisor[i].clock) {
1386 pipe_config->dpll = divisor[i].dpll;
1387 pipe_config->clock_set = true;
1388 break;
1389 }
1390 }
1391 }
1392 }
1393
1394 static int intersect_rates(const int *source_rates, int source_len,
1395 const int *sink_rates, int sink_len,
1396 int *common_rates)
1397 {
1398 int i = 0, j = 0, k = 0;
1399
1400 while (i < source_len && j < sink_len) {
1401 if (source_rates[i] == sink_rates[j]) {
1402 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1403 return k;
1404 common_rates[k] = source_rates[i];
1405 ++k;
1406 ++i;
1407 ++j;
1408 } else if (source_rates[i] < sink_rates[j]) {
1409 ++i;
1410 } else {
1411 ++j;
1412 }
1413 }
1414 return k;
1415 }
1416
1417 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1418 int *common_rates)
1419 {
1420 const int *source_rates, *sink_rates;
1421 int source_len, sink_len;
1422
1423 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1424 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1425
1426 return intersect_rates(source_rates, source_len,
1427 sink_rates, sink_len,
1428 common_rates);
1429 }
1430
1431 static void snprintf_int_array(char *str, size_t len,
1432 const int *array, int nelem)
1433 {
1434 int i;
1435
1436 str[0] = '\0';
1437
1438 for (i = 0; i < nelem; i++) {
1439 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1440 if (r >= len)
1441 return;
1442 str += r;
1443 len -= r;
1444 }
1445 }
1446
1447 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1448 {
1449 const int *source_rates, *sink_rates;
1450 int source_len, sink_len, common_len;
1451 int common_rates[DP_MAX_SUPPORTED_RATES];
1452 char str[128]; /* FIXME: too big for stack? */
1453
1454 if ((drm_debug & DRM_UT_KMS) == 0)
1455 return;
1456
1457 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1458 snprintf_int_array(str, sizeof(str), source_rates, source_len);
1459 DRM_DEBUG_KMS("source rates: %s\n", str);
1460
1461 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1462 snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1463 DRM_DEBUG_KMS("sink rates: %s\n", str);
1464
1465 common_len = intel_dp_common_rates(intel_dp, common_rates);
1466 snprintf_int_array(str, sizeof(str), common_rates, common_len);
1467 DRM_DEBUG_KMS("common rates: %s\n", str);
1468 }
1469
1470 static int rate_to_index(int find, const int *rates)
1471 {
1472 int i = 0;
1473
1474 for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1475 if (find == rates[i])
1476 break;
1477
1478 return i;
1479 }
1480
1481 int
1482 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1483 {
1484 int rates[DP_MAX_SUPPORTED_RATES] = {};
1485 int len;
1486
1487 len = intel_dp_common_rates(intel_dp, rates);
1488 if (WARN_ON(len <= 0))
1489 return 162000;
1490
1491 return rates[rate_to_index(0, rates) - 1];
1492 }
1493
1494 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1495 {
1496 return rate_to_index(rate, intel_dp->sink_rates);
1497 }
1498
1499 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1500 uint8_t *link_bw, uint8_t *rate_select)
1501 {
1502 if (intel_dp->num_sink_rates) {
1503 *link_bw = 0;
1504 *rate_select =
1505 intel_dp_rate_select(intel_dp, port_clock);
1506 } else {
1507 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1508 *rate_select = 0;
1509 }
1510 }
1511
1512 bool
1513 intel_dp_compute_config(struct intel_encoder *encoder,
1514 struct intel_crtc_state *pipe_config)
1515 {
1516 struct drm_device *dev = encoder->base.dev;
1517 struct drm_i915_private *dev_priv = dev->dev_private;
1518 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1519 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1520 enum port port = dp_to_dig_port(intel_dp)->port;
1521 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1522 struct intel_connector *intel_connector = intel_dp->attached_connector;
1523 int lane_count, clock;
1524 int min_lane_count = 1;
1525 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1526 /* Conveniently, the link BW constants become indices with a shift...*/
1527 int min_clock = 0;
1528 int max_clock;
1529 int bpp, mode_rate;
1530 int link_avail, link_clock;
1531 int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1532 int common_len;
1533 uint8_t link_bw, rate_select;
1534
1535 common_len = intel_dp_common_rates(intel_dp, common_rates);
1536
1537 /* No common link rates between source and sink */
1538 WARN_ON(common_len <= 0);
1539
1540 max_clock = common_len - 1;
1541
1542 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1543 pipe_config->has_pch_encoder = true;
1544
1545 pipe_config->has_dp_encoder = true;
1546 pipe_config->has_drrs = false;
1547 pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1548
1549 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1550 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1551 adjusted_mode);
1552
1553 if (INTEL_INFO(dev)->gen >= 9) {
1554 int ret;
1555 ret = skl_update_scaler_crtc(pipe_config);
1556 if (ret)
1557 return ret;
1558 }
1559
1560 if (HAS_GMCH_DISPLAY(dev))
1561 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1562 intel_connector->panel.fitting_mode);
1563 else
1564 intel_pch_panel_fitting(intel_crtc, pipe_config,
1565 intel_connector->panel.fitting_mode);
1566 }
1567
1568 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1569 return false;
1570
1571 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1572 "max bw %d pixel clock %iKHz\n",
1573 max_lane_count, common_rates[max_clock],
1574 adjusted_mode->crtc_clock);
1575
1576 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1577 * bpc in between. */
1578 bpp = pipe_config->pipe_bpp;
1579 if (is_edp(intel_dp)) {
1580
1581 /* Get bpp from vbt only for panels that dont have bpp in edid */
1582 if (intel_connector->base.display_info.bpc == 0 &&
1583 (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp)) {
1584 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1585 dev_priv->vbt.edp_bpp);
1586 bpp = dev_priv->vbt.edp_bpp;
1587 }
1588
1589 /*
1590 * Use the maximum clock and number of lanes the eDP panel
1591 * advertizes being capable of. The panels are generally
1592 * designed to support only a single clock and lane
1593 * configuration, and typically these values correspond to the
1594 * native resolution of the panel.
1595 */
1596 min_lane_count = max_lane_count;
1597 min_clock = max_clock;
1598 }
1599
1600 for (; bpp >= 6*3; bpp -= 2*3) {
1601 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1602 bpp);
1603
1604 for (clock = min_clock; clock <= max_clock; clock++) {
1605 for (lane_count = min_lane_count;
1606 lane_count <= max_lane_count;
1607 lane_count <<= 1) {
1608
1609 link_clock = common_rates[clock];
1610 link_avail = intel_dp_max_data_rate(link_clock,
1611 lane_count);
1612
1613 if (mode_rate <= link_avail) {
1614 goto found;
1615 }
1616 }
1617 }
1618 }
1619
1620 return false;
1621
1622 found:
1623 if (intel_dp->color_range_auto) {
1624 /*
1625 * See:
1626 * CEA-861-E - 5.1 Default Encoding Parameters
1627 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1628 */
1629 pipe_config->limited_color_range =
1630 bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1631 } else {
1632 pipe_config->limited_color_range =
1633 intel_dp->limited_color_range;
1634 }
1635
1636 pipe_config->lane_count = lane_count;
1637
1638 pipe_config->pipe_bpp = bpp;
1639 pipe_config->port_clock = common_rates[clock];
1640
1641 intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1642 &link_bw, &rate_select);
1643
1644 DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1645 link_bw, rate_select, pipe_config->lane_count,
1646 pipe_config->port_clock, bpp);
1647 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1648 mode_rate, link_avail);
1649
1650 intel_link_compute_m_n(bpp, lane_count,
1651 adjusted_mode->crtc_clock,
1652 pipe_config->port_clock,
1653 &pipe_config->dp_m_n);
1654
1655 if (intel_connector->panel.downclock_mode != NULL &&
1656 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1657 pipe_config->has_drrs = true;
1658 intel_link_compute_m_n(bpp, lane_count,
1659 intel_connector->panel.downclock_mode->clock,
1660 pipe_config->port_clock,
1661 &pipe_config->dp_m2_n2);
1662 }
1663
1664 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) && is_edp(intel_dp))
1665 skl_edp_set_pll_config(pipe_config);
1666 else if (IS_BROXTON(dev))
1667 /* handled in ddi */;
1668 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1669 hsw_dp_set_ddi_pll_sel(pipe_config);
1670 else
1671 intel_dp_set_clock(encoder, pipe_config);
1672
1673 return true;
1674 }
1675
1676 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1677 const struct intel_crtc_state *pipe_config)
1678 {
1679 intel_dp->link_rate = pipe_config->port_clock;
1680 intel_dp->lane_count = pipe_config->lane_count;
1681 }
1682
1683 static void intel_dp_prepare(struct intel_encoder *encoder)
1684 {
1685 struct drm_device *dev = encoder->base.dev;
1686 struct drm_i915_private *dev_priv = dev->dev_private;
1687 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1688 enum port port = dp_to_dig_port(intel_dp)->port;
1689 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1690 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1691
1692 intel_dp_set_link_params(intel_dp, crtc->config);
1693
1694 /*
1695 * There are four kinds of DP registers:
1696 *
1697 * IBX PCH
1698 * SNB CPU
1699 * IVB CPU
1700 * CPT PCH
1701 *
1702 * IBX PCH and CPU are the same for almost everything,
1703 * except that the CPU DP PLL is configured in this
1704 * register
1705 *
1706 * CPT PCH is quite different, having many bits moved
1707 * to the TRANS_DP_CTL register instead. That
1708 * configuration happens (oddly) in ironlake_pch_enable
1709 */
1710
1711 /* Preserve the BIOS-computed detected bit. This is
1712 * supposed to be read-only.
1713 */
1714 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1715
1716 /* Handle DP bits in common between all three register formats */
1717 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1718 intel_dp->DP |= DP_PORT_WIDTH(crtc->config->lane_count);
1719
1720 /* Split out the IBX/CPU vs CPT settings */
1721
1722 if (IS_GEN7(dev) && port == PORT_A) {
1723 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1724 intel_dp->DP |= DP_SYNC_HS_HIGH;
1725 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1726 intel_dp->DP |= DP_SYNC_VS_HIGH;
1727 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1728
1729 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1730 intel_dp->DP |= DP_ENHANCED_FRAMING;
1731
1732 intel_dp->DP |= crtc->pipe << 29;
1733 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1734 u32 trans_dp;
1735
1736 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1737
1738 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1739 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1740 trans_dp |= TRANS_DP_ENH_FRAMING;
1741 else
1742 trans_dp &= ~TRANS_DP_ENH_FRAMING;
1743 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1744 } else {
1745 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1746 !IS_CHERRYVIEW(dev) && crtc->config->limited_color_range)
1747 intel_dp->DP |= DP_COLOR_RANGE_16_235;
1748
1749 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1750 intel_dp->DP |= DP_SYNC_HS_HIGH;
1751 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1752 intel_dp->DP |= DP_SYNC_VS_HIGH;
1753 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1754
1755 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1756 intel_dp->DP |= DP_ENHANCED_FRAMING;
1757
1758 if (IS_CHERRYVIEW(dev))
1759 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1760 else if (crtc->pipe == PIPE_B)
1761 intel_dp->DP |= DP_PIPEB_SELECT;
1762 }
1763 }
1764
1765 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1766 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1767
1768 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1769 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1770
1771 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1772 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1773
1774 static void wait_panel_status(struct intel_dp *intel_dp,
1775 u32 mask,
1776 u32 value)
1777 {
1778 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1779 struct drm_i915_private *dev_priv = dev->dev_private;
1780 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1781
1782 lockdep_assert_held(&dev_priv->pps_mutex);
1783
1784 pp_stat_reg = _pp_stat_reg(intel_dp);
1785 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1786
1787 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1788 mask, value,
1789 I915_READ(pp_stat_reg),
1790 I915_READ(pp_ctrl_reg));
1791
1792 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1793 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1794 I915_READ(pp_stat_reg),
1795 I915_READ(pp_ctrl_reg));
1796 }
1797
1798 DRM_DEBUG_KMS("Wait complete\n");
1799 }
1800
1801 static void wait_panel_on(struct intel_dp *intel_dp)
1802 {
1803 DRM_DEBUG_KMS("Wait for panel power on\n");
1804 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1805 }
1806
1807 static void wait_panel_off(struct intel_dp *intel_dp)
1808 {
1809 DRM_DEBUG_KMS("Wait for panel power off time\n");
1810 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1811 }
1812
1813 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1814 {
1815 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1816
1817 /* When we disable the VDD override bit last we have to do the manual
1818 * wait. */
1819 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1820 intel_dp->panel_power_cycle_delay);
1821
1822 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1823 }
1824
1825 static void wait_backlight_on(struct intel_dp *intel_dp)
1826 {
1827 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1828 intel_dp->backlight_on_delay);
1829 }
1830
1831 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1832 {
1833 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1834 intel_dp->backlight_off_delay);
1835 }
1836
1837 /* Read the current pp_control value, unlocking the register if it
1838 * is locked
1839 */
1840
1841 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1842 {
1843 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1844 struct drm_i915_private *dev_priv = dev->dev_private;
1845 u32 control;
1846
1847 lockdep_assert_held(&dev_priv->pps_mutex);
1848
1849 control = I915_READ(_pp_ctrl_reg(intel_dp));
1850 if (!IS_BROXTON(dev)) {
1851 control &= ~PANEL_UNLOCK_MASK;
1852 control |= PANEL_UNLOCK_REGS;
1853 }
1854 return control;
1855 }
1856
1857 /*
1858 * Must be paired with edp_panel_vdd_off().
1859 * Must hold pps_mutex around the whole on/off sequence.
1860 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1861 */
1862 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1863 {
1864 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1865 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1866 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1867 struct drm_i915_private *dev_priv = dev->dev_private;
1868 enum intel_display_power_domain power_domain;
1869 u32 pp;
1870 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1871 bool need_to_disable = !intel_dp->want_panel_vdd;
1872
1873 lockdep_assert_held(&dev_priv->pps_mutex);
1874
1875 if (!is_edp(intel_dp))
1876 return false;
1877
1878 cancel_delayed_work(&intel_dp->panel_vdd_work);
1879 intel_dp->want_panel_vdd = true;
1880
1881 if (edp_have_panel_vdd(intel_dp))
1882 return need_to_disable;
1883
1884 power_domain = intel_display_port_aux_power_domain(intel_encoder);
1885 intel_display_power_get(dev_priv, power_domain);
1886
1887 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1888 port_name(intel_dig_port->port));
1889
1890 if (!edp_have_panel_power(intel_dp))
1891 wait_panel_power_cycle(intel_dp);
1892
1893 pp = ironlake_get_pp_control(intel_dp);
1894 pp |= EDP_FORCE_VDD;
1895
1896 pp_stat_reg = _pp_stat_reg(intel_dp);
1897 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1898
1899 I915_WRITE(pp_ctrl_reg, pp);
1900 POSTING_READ(pp_ctrl_reg);
1901 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1902 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1903 /*
1904 * If the panel wasn't on, delay before accessing aux channel
1905 */
1906 if (!edp_have_panel_power(intel_dp)) {
1907 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1908 port_name(intel_dig_port->port));
1909 msleep(intel_dp->panel_power_up_delay);
1910 }
1911
1912 return need_to_disable;
1913 }
1914
1915 /*
1916 * Must be paired with intel_edp_panel_vdd_off() or
1917 * intel_edp_panel_off().
1918 * Nested calls to these functions are not allowed since
1919 * we drop the lock. Caller must use some higher level
1920 * locking to prevent nested calls from other threads.
1921 */
1922 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1923 {
1924 bool vdd;
1925
1926 if (!is_edp(intel_dp))
1927 return;
1928
1929 pps_lock(intel_dp);
1930 vdd = edp_panel_vdd_on(intel_dp);
1931 pps_unlock(intel_dp);
1932
1933 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1934 port_name(dp_to_dig_port(intel_dp)->port));
1935 }
1936
1937 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1938 {
1939 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1940 struct drm_i915_private *dev_priv = dev->dev_private;
1941 struct intel_digital_port *intel_dig_port =
1942 dp_to_dig_port(intel_dp);
1943 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1944 enum intel_display_power_domain power_domain;
1945 u32 pp;
1946 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1947
1948 lockdep_assert_held(&dev_priv->pps_mutex);
1949
1950 WARN_ON(intel_dp->want_panel_vdd);
1951
1952 if (!edp_have_panel_vdd(intel_dp))
1953 return;
1954
1955 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1956 port_name(intel_dig_port->port));
1957
1958 pp = ironlake_get_pp_control(intel_dp);
1959 pp &= ~EDP_FORCE_VDD;
1960
1961 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1962 pp_stat_reg = _pp_stat_reg(intel_dp);
1963
1964 I915_WRITE(pp_ctrl_reg, pp);
1965 POSTING_READ(pp_ctrl_reg);
1966
1967 /* Make sure sequencer is idle before allowing subsequent activity */
1968 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1969 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1970
1971 if ((pp & POWER_TARGET_ON) == 0)
1972 intel_dp->last_power_cycle = jiffies;
1973
1974 power_domain = intel_display_port_aux_power_domain(intel_encoder);
1975 intel_display_power_put(dev_priv, power_domain);
1976 }
1977
1978 static void edp_panel_vdd_work(struct work_struct *__work)
1979 {
1980 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1981 struct intel_dp, panel_vdd_work);
1982
1983 pps_lock(intel_dp);
1984 if (!intel_dp->want_panel_vdd)
1985 edp_panel_vdd_off_sync(intel_dp);
1986 pps_unlock(intel_dp);
1987 }
1988
1989 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1990 {
1991 unsigned long delay;
1992
1993 /*
1994 * Queue the timer to fire a long time from now (relative to the power
1995 * down delay) to keep the panel power up across a sequence of
1996 * operations.
1997 */
1998 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1999 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2000 }
2001
2002 /*
2003 * Must be paired with edp_panel_vdd_on().
2004 * Must hold pps_mutex around the whole on/off sequence.
2005 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2006 */
2007 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2008 {
2009 struct drm_i915_private *dev_priv =
2010 intel_dp_to_dev(intel_dp)->dev_private;
2011
2012 lockdep_assert_held(&dev_priv->pps_mutex);
2013
2014 if (!is_edp(intel_dp))
2015 return;
2016
2017 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2018 port_name(dp_to_dig_port(intel_dp)->port));
2019
2020 intel_dp->want_panel_vdd = false;
2021
2022 if (sync)
2023 edp_panel_vdd_off_sync(intel_dp);
2024 else
2025 edp_panel_vdd_schedule_off(intel_dp);
2026 }
2027
2028 static void edp_panel_on(struct intel_dp *intel_dp)
2029 {
2030 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2031 struct drm_i915_private *dev_priv = dev->dev_private;
2032 u32 pp;
2033 i915_reg_t pp_ctrl_reg;
2034
2035 lockdep_assert_held(&dev_priv->pps_mutex);
2036
2037 if (!is_edp(intel_dp))
2038 return;
2039
2040 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2041 port_name(dp_to_dig_port(intel_dp)->port));
2042
2043 if (WARN(edp_have_panel_power(intel_dp),
2044 "eDP port %c panel power already on\n",
2045 port_name(dp_to_dig_port(intel_dp)->port)))
2046 return;
2047
2048 wait_panel_power_cycle(intel_dp);
2049
2050 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2051 pp = ironlake_get_pp_control(intel_dp);
2052 if (IS_GEN5(dev)) {
2053 /* ILK workaround: disable reset around power sequence */
2054 pp &= ~PANEL_POWER_RESET;
2055 I915_WRITE(pp_ctrl_reg, pp);
2056 POSTING_READ(pp_ctrl_reg);
2057 }
2058
2059 pp |= POWER_TARGET_ON;
2060 if (!IS_GEN5(dev))
2061 pp |= PANEL_POWER_RESET;
2062
2063 I915_WRITE(pp_ctrl_reg, pp);
2064 POSTING_READ(pp_ctrl_reg);
2065
2066 wait_panel_on(intel_dp);
2067 intel_dp->last_power_on = jiffies;
2068
2069 if (IS_GEN5(dev)) {
2070 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2071 I915_WRITE(pp_ctrl_reg, pp);
2072 POSTING_READ(pp_ctrl_reg);
2073 }
2074 }
2075
2076 void intel_edp_panel_on(struct intel_dp *intel_dp)
2077 {
2078 if (!is_edp(intel_dp))
2079 return;
2080
2081 pps_lock(intel_dp);
2082 edp_panel_on(intel_dp);
2083 pps_unlock(intel_dp);
2084 }
2085
2086
2087 static void edp_panel_off(struct intel_dp *intel_dp)
2088 {
2089 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2090 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2091 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2092 struct drm_i915_private *dev_priv = dev->dev_private;
2093 enum intel_display_power_domain power_domain;
2094 u32 pp;
2095 i915_reg_t pp_ctrl_reg;
2096
2097 lockdep_assert_held(&dev_priv->pps_mutex);
2098
2099 if (!is_edp(intel_dp))
2100 return;
2101
2102 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2103 port_name(dp_to_dig_port(intel_dp)->port));
2104
2105 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2106 port_name(dp_to_dig_port(intel_dp)->port));
2107
2108 pp = ironlake_get_pp_control(intel_dp);
2109 /* We need to switch off panel power _and_ force vdd, for otherwise some
2110 * panels get very unhappy and cease to work. */
2111 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2112 EDP_BLC_ENABLE);
2113
2114 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2115
2116 intel_dp->want_panel_vdd = false;
2117
2118 I915_WRITE(pp_ctrl_reg, pp);
2119 POSTING_READ(pp_ctrl_reg);
2120
2121 intel_dp->last_power_cycle = jiffies;
2122 wait_panel_off(intel_dp);
2123
2124 /* We got a reference when we enabled the VDD. */
2125 power_domain = intel_display_port_aux_power_domain(intel_encoder);
2126 intel_display_power_put(dev_priv, power_domain);
2127 }
2128
2129 void intel_edp_panel_off(struct intel_dp *intel_dp)
2130 {
2131 if (!is_edp(intel_dp))
2132 return;
2133
2134 pps_lock(intel_dp);
2135 edp_panel_off(intel_dp);
2136 pps_unlock(intel_dp);
2137 }
2138
2139 /* Enable backlight in the panel power control. */
2140 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2141 {
2142 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2143 struct drm_device *dev = intel_dig_port->base.base.dev;
2144 struct drm_i915_private *dev_priv = dev->dev_private;
2145 u32 pp;
2146 i915_reg_t pp_ctrl_reg;
2147
2148 /*
2149 * If we enable the backlight right away following a panel power
2150 * on, we may see slight flicker as the panel syncs with the eDP
2151 * link. So delay a bit to make sure the image is solid before
2152 * allowing it to appear.
2153 */
2154 wait_backlight_on(intel_dp);
2155
2156 pps_lock(intel_dp);
2157
2158 pp = ironlake_get_pp_control(intel_dp);
2159 pp |= EDP_BLC_ENABLE;
2160
2161 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2162
2163 I915_WRITE(pp_ctrl_reg, pp);
2164 POSTING_READ(pp_ctrl_reg);
2165
2166 pps_unlock(intel_dp);
2167 }
2168
2169 /* Enable backlight PWM and backlight PP control. */
2170 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2171 {
2172 if (!is_edp(intel_dp))
2173 return;
2174
2175 DRM_DEBUG_KMS("\n");
2176
2177 intel_panel_enable_backlight(intel_dp->attached_connector);
2178 _intel_edp_backlight_on(intel_dp);
2179 }
2180
2181 /* Disable backlight in the panel power control. */
2182 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2183 {
2184 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2185 struct drm_i915_private *dev_priv = dev->dev_private;
2186 u32 pp;
2187 i915_reg_t pp_ctrl_reg;
2188
2189 if (!is_edp(intel_dp))
2190 return;
2191
2192 pps_lock(intel_dp);
2193
2194 pp = ironlake_get_pp_control(intel_dp);
2195 pp &= ~EDP_BLC_ENABLE;
2196
2197 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2198
2199 I915_WRITE(pp_ctrl_reg, pp);
2200 POSTING_READ(pp_ctrl_reg);
2201
2202 pps_unlock(intel_dp);
2203
2204 intel_dp->last_backlight_off = jiffies;
2205 edp_wait_backlight_off(intel_dp);
2206 }
2207
2208 /* Disable backlight PP control and backlight PWM. */
2209 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2210 {
2211 if (!is_edp(intel_dp))
2212 return;
2213
2214 DRM_DEBUG_KMS("\n");
2215
2216 _intel_edp_backlight_off(intel_dp);
2217 intel_panel_disable_backlight(intel_dp->attached_connector);
2218 }
2219
2220 /*
2221 * Hook for controlling the panel power control backlight through the bl_power
2222 * sysfs attribute. Take care to handle multiple calls.
2223 */
2224 static void intel_edp_backlight_power(struct intel_connector *connector,
2225 bool enable)
2226 {
2227 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2228 bool is_enabled;
2229
2230 pps_lock(intel_dp);
2231 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2232 pps_unlock(intel_dp);
2233
2234 if (is_enabled == enable)
2235 return;
2236
2237 DRM_DEBUG_KMS("panel power control backlight %s\n",
2238 enable ? "enable" : "disable");
2239
2240 if (enable)
2241 _intel_edp_backlight_on(intel_dp);
2242 else
2243 _intel_edp_backlight_off(intel_dp);
2244 }
2245
2246 static const char *state_string(bool enabled)
2247 {
2248 return enabled ? "on" : "off";
2249 }
2250
2251 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2252 {
2253 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2254 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2255 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2256
2257 I915_STATE_WARN(cur_state != state,
2258 "DP port %c state assertion failure (expected %s, current %s)\n",
2259 port_name(dig_port->port),
2260 state_string(state), state_string(cur_state));
2261 }
2262 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2263
2264 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2265 {
2266 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2267
2268 I915_STATE_WARN(cur_state != state,
2269 "eDP PLL state assertion failure (expected %s, current %s)\n",
2270 state_string(state), state_string(cur_state));
2271 }
2272 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2273 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2274
2275 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2276 {
2277 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2278 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2279 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2280
2281 assert_pipe_disabled(dev_priv, crtc->pipe);
2282 assert_dp_port_disabled(intel_dp);
2283 assert_edp_pll_disabled(dev_priv);
2284
2285 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2286 crtc->config->port_clock);
2287
2288 intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2289
2290 if (crtc->config->port_clock == 162000)
2291 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2292 else
2293 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2294
2295 I915_WRITE(DP_A, intel_dp->DP);
2296 POSTING_READ(DP_A);
2297 udelay(500);
2298
2299 intel_dp->DP |= DP_PLL_ENABLE;
2300
2301 I915_WRITE(DP_A, intel_dp->DP);
2302 POSTING_READ(DP_A);
2303 udelay(200);
2304 }
2305
2306 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2307 {
2308 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2309 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2310 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2311
2312 assert_pipe_disabled(dev_priv, crtc->pipe);
2313 assert_dp_port_disabled(intel_dp);
2314 assert_edp_pll_enabled(dev_priv);
2315
2316 DRM_DEBUG_KMS("disabling eDP PLL\n");
2317
2318 intel_dp->DP &= ~DP_PLL_ENABLE;
2319
2320 I915_WRITE(DP_A, intel_dp->DP);
2321 POSTING_READ(DP_A);
2322 udelay(200);
2323 }
2324
2325 /* If the sink supports it, try to set the power state appropriately */
2326 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2327 {
2328 int ret, i;
2329
2330 /* Should have a valid DPCD by this point */
2331 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2332 return;
2333
2334 if (mode != DRM_MODE_DPMS_ON) {
2335 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2336 DP_SET_POWER_D3);
2337 } else {
2338 /*
2339 * When turning on, we need to retry for 1ms to give the sink
2340 * time to wake up.
2341 */
2342 for (i = 0; i < 3; i++) {
2343 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2344 DP_SET_POWER_D0);
2345 if (ret == 1)
2346 break;
2347 msleep(1);
2348 }
2349 }
2350
2351 if (ret != 1)
2352 DRM_DEBUG_KMS("failed to %s sink power state\n",
2353 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2354 }
2355
2356 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2357 enum pipe *pipe)
2358 {
2359 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2360 enum port port = dp_to_dig_port(intel_dp)->port;
2361 struct drm_device *dev = encoder->base.dev;
2362 struct drm_i915_private *dev_priv = dev->dev_private;
2363 enum intel_display_power_domain power_domain;
2364 u32 tmp;
2365
2366 power_domain = intel_display_port_power_domain(encoder);
2367 if (!intel_display_power_is_enabled(dev_priv, power_domain))
2368 return false;
2369
2370 tmp = I915_READ(intel_dp->output_reg);
2371
2372 if (!(tmp & DP_PORT_EN))
2373 return false;
2374
2375 if (IS_GEN7(dev) && port == PORT_A) {
2376 *pipe = PORT_TO_PIPE_CPT(tmp);
2377 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2378 enum pipe p;
2379
2380 for_each_pipe(dev_priv, p) {
2381 u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2382 if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2383 *pipe = p;
2384 return true;
2385 }
2386 }
2387
2388 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2389 i915_mmio_reg_offset(intel_dp->output_reg));
2390 } else if (IS_CHERRYVIEW(dev)) {
2391 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2392 } else {
2393 *pipe = PORT_TO_PIPE(tmp);
2394 }
2395
2396 return true;
2397 }
2398
2399 static void intel_dp_get_config(struct intel_encoder *encoder,
2400 struct intel_crtc_state *pipe_config)
2401 {
2402 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2403 u32 tmp, flags = 0;
2404 struct drm_device *dev = encoder->base.dev;
2405 struct drm_i915_private *dev_priv = dev->dev_private;
2406 enum port port = dp_to_dig_port(intel_dp)->port;
2407 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2408 int dotclock;
2409
2410 tmp = I915_READ(intel_dp->output_reg);
2411
2412 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2413
2414 if (HAS_PCH_CPT(dev) && port != PORT_A) {
2415 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2416
2417 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2418 flags |= DRM_MODE_FLAG_PHSYNC;
2419 else
2420 flags |= DRM_MODE_FLAG_NHSYNC;
2421
2422 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2423 flags |= DRM_MODE_FLAG_PVSYNC;
2424 else
2425 flags |= DRM_MODE_FLAG_NVSYNC;
2426 } else {
2427 if (tmp & DP_SYNC_HS_HIGH)
2428 flags |= DRM_MODE_FLAG_PHSYNC;
2429 else
2430 flags |= DRM_MODE_FLAG_NHSYNC;
2431
2432 if (tmp & DP_SYNC_VS_HIGH)
2433 flags |= DRM_MODE_FLAG_PVSYNC;
2434 else
2435 flags |= DRM_MODE_FLAG_NVSYNC;
2436 }
2437
2438 pipe_config->base.adjusted_mode.flags |= flags;
2439
2440 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2441 !IS_CHERRYVIEW(dev) && tmp & DP_COLOR_RANGE_16_235)
2442 pipe_config->limited_color_range = true;
2443
2444 pipe_config->has_dp_encoder = true;
2445
2446 pipe_config->lane_count =
2447 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2448
2449 intel_dp_get_m_n(crtc, pipe_config);
2450
2451 if (port == PORT_A) {
2452 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2453 pipe_config->port_clock = 162000;
2454 else
2455 pipe_config->port_clock = 270000;
2456 }
2457
2458 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
2459 &pipe_config->dp_m_n);
2460
2461 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
2462 ironlake_check_encoder_dotclock(pipe_config, dotclock);
2463
2464 pipe_config->base.adjusted_mode.crtc_clock = dotclock;
2465
2466 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
2467 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2468 /*
2469 * This is a big fat ugly hack.
2470 *
2471 * Some machines in UEFI boot mode provide us a VBT that has 18
2472 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2473 * unknown we fail to light up. Yet the same BIOS boots up with
2474 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2475 * max, not what it tells us to use.
2476 *
2477 * Note: This will still be broken if the eDP panel is not lit
2478 * up by the BIOS, and thus we can't get the mode at module
2479 * load.
2480 */
2481 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2482 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2483 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2484 }
2485 }
2486
2487 static void intel_disable_dp(struct intel_encoder *encoder)
2488 {
2489 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2490 struct drm_device *dev = encoder->base.dev;
2491 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2492
2493 if (crtc->config->has_audio)
2494 intel_audio_codec_disable(encoder);
2495
2496 if (HAS_PSR(dev) && !HAS_DDI(dev))
2497 intel_psr_disable(intel_dp);
2498
2499 /* Make sure the panel is off before trying to change the mode. But also
2500 * ensure that we have vdd while we switch off the panel. */
2501 intel_edp_panel_vdd_on(intel_dp);
2502 intel_edp_backlight_off(intel_dp);
2503 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2504 intel_edp_panel_off(intel_dp);
2505
2506 /* disable the port before the pipe on g4x */
2507 if (INTEL_INFO(dev)->gen < 5)
2508 intel_dp_link_down(intel_dp);
2509 }
2510
2511 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2512 {
2513 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2514 enum port port = dp_to_dig_port(intel_dp)->port;
2515
2516 intel_dp_link_down(intel_dp);
2517
2518 /* Only ilk+ has port A */
2519 if (port == PORT_A)
2520 ironlake_edp_pll_off(intel_dp);
2521 }
2522
2523 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2524 {
2525 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2526
2527 intel_dp_link_down(intel_dp);
2528 }
2529
2530 static void chv_data_lane_soft_reset(struct intel_encoder *encoder,
2531 bool reset)
2532 {
2533 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2534 enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
2535 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2536 enum pipe pipe = crtc->pipe;
2537 uint32_t val;
2538
2539 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2540 if (reset)
2541 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2542 else
2543 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
2544 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2545
2546 if (crtc->config->lane_count > 2) {
2547 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2548 if (reset)
2549 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2550 else
2551 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
2552 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2553 }
2554
2555 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2556 val |= CHV_PCS_REQ_SOFTRESET_EN;
2557 if (reset)
2558 val &= ~DPIO_PCS_CLK_SOFT_RESET;
2559 else
2560 val |= DPIO_PCS_CLK_SOFT_RESET;
2561 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2562
2563 if (crtc->config->lane_count > 2) {
2564 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2565 val |= CHV_PCS_REQ_SOFTRESET_EN;
2566 if (reset)
2567 val &= ~DPIO_PCS_CLK_SOFT_RESET;
2568 else
2569 val |= DPIO_PCS_CLK_SOFT_RESET;
2570 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2571 }
2572 }
2573
2574 static void chv_post_disable_dp(struct intel_encoder *encoder)
2575 {
2576 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2577 struct drm_device *dev = encoder->base.dev;
2578 struct drm_i915_private *dev_priv = dev->dev_private;
2579
2580 intel_dp_link_down(intel_dp);
2581
2582 mutex_lock(&dev_priv->sb_lock);
2583
2584 /* Assert data lane reset */
2585 chv_data_lane_soft_reset(encoder, true);
2586
2587 mutex_unlock(&dev_priv->sb_lock);
2588 }
2589
2590 static void
2591 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2592 uint32_t *DP,
2593 uint8_t dp_train_pat)
2594 {
2595 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2596 struct drm_device *dev = intel_dig_port->base.base.dev;
2597 struct drm_i915_private *dev_priv = dev->dev_private;
2598 enum port port = intel_dig_port->port;
2599
2600 if (HAS_DDI(dev)) {
2601 uint32_t temp = I915_READ(DP_TP_CTL(port));
2602
2603 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2604 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2605 else
2606 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2607
2608 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2609 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2610 case DP_TRAINING_PATTERN_DISABLE:
2611 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2612
2613 break;
2614 case DP_TRAINING_PATTERN_1:
2615 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2616 break;
2617 case DP_TRAINING_PATTERN_2:
2618 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2619 break;
2620 case DP_TRAINING_PATTERN_3:
2621 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2622 break;
2623 }
2624 I915_WRITE(DP_TP_CTL(port), temp);
2625
2626 } else if ((IS_GEN7(dev) && port == PORT_A) ||
2627 (HAS_PCH_CPT(dev) && port != PORT_A)) {
2628 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2629
2630 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2631 case DP_TRAINING_PATTERN_DISABLE:
2632 *DP |= DP_LINK_TRAIN_OFF_CPT;
2633 break;
2634 case DP_TRAINING_PATTERN_1:
2635 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2636 break;
2637 case DP_TRAINING_PATTERN_2:
2638 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2639 break;
2640 case DP_TRAINING_PATTERN_3:
2641 DRM_ERROR("DP training pattern 3 not supported\n");
2642 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2643 break;
2644 }
2645
2646 } else {
2647 if (IS_CHERRYVIEW(dev))
2648 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2649 else
2650 *DP &= ~DP_LINK_TRAIN_MASK;
2651
2652 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2653 case DP_TRAINING_PATTERN_DISABLE:
2654 *DP |= DP_LINK_TRAIN_OFF;
2655 break;
2656 case DP_TRAINING_PATTERN_1:
2657 *DP |= DP_LINK_TRAIN_PAT_1;
2658 break;
2659 case DP_TRAINING_PATTERN_2:
2660 *DP |= DP_LINK_TRAIN_PAT_2;
2661 break;
2662 case DP_TRAINING_PATTERN_3:
2663 if (IS_CHERRYVIEW(dev)) {
2664 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2665 } else {
2666 DRM_ERROR("DP training pattern 3 not supported\n");
2667 *DP |= DP_LINK_TRAIN_PAT_2;
2668 }
2669 break;
2670 }
2671 }
2672 }
2673
2674 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2675 {
2676 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2677 struct drm_i915_private *dev_priv = dev->dev_private;
2678 struct intel_crtc *crtc =
2679 to_intel_crtc(dp_to_dig_port(intel_dp)->base.base.crtc);
2680
2681 /* enable with pattern 1 (as per spec) */
2682 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2683 DP_TRAINING_PATTERN_1);
2684
2685 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2686 POSTING_READ(intel_dp->output_reg);
2687
2688 /*
2689 * Magic for VLV/CHV. We _must_ first set up the register
2690 * without actually enabling the port, and then do another
2691 * write to enable the port. Otherwise link training will
2692 * fail when the power sequencer is freshly used for this port.
2693 */
2694 intel_dp->DP |= DP_PORT_EN;
2695 if (crtc->config->has_audio)
2696 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2697
2698 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2699 POSTING_READ(intel_dp->output_reg);
2700 }
2701
2702 static void intel_enable_dp(struct intel_encoder *encoder)
2703 {
2704 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2705 struct drm_device *dev = encoder->base.dev;
2706 struct drm_i915_private *dev_priv = dev->dev_private;
2707 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2708 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2709 enum port port = dp_to_dig_port(intel_dp)->port;
2710 enum pipe pipe = crtc->pipe;
2711
2712 if (WARN_ON(dp_reg & DP_PORT_EN))
2713 return;
2714
2715 pps_lock(intel_dp);
2716
2717 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2718 vlv_init_panel_power_sequencer(intel_dp);
2719
2720 /*
2721 * We get an occasional spurious underrun between the port
2722 * enable and vdd enable, when enabling port A eDP.
2723 *
2724 * FIXME: Not sure if this applies to (PCH) port D eDP as well
2725 */
2726 if (port == PORT_A)
2727 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
2728
2729 intel_dp_enable_port(intel_dp);
2730
2731 if (port == PORT_A && IS_GEN5(dev_priv)) {
2732 /*
2733 * Underrun reporting for the other pipe was disabled in
2734 * g4x_pre_enable_dp(). The eDP PLL and port have now been
2735 * enabled, so it's now safe to re-enable underrun reporting.
2736 */
2737 intel_wait_for_vblank_if_active(dev_priv->dev, !pipe);
2738 intel_set_cpu_fifo_underrun_reporting(dev_priv, !pipe, true);
2739 intel_set_pch_fifo_underrun_reporting(dev_priv, !pipe, true);
2740 }
2741
2742 edp_panel_vdd_on(intel_dp);
2743 edp_panel_on(intel_dp);
2744 edp_panel_vdd_off(intel_dp, true);
2745
2746 if (port == PORT_A)
2747 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
2748
2749 pps_unlock(intel_dp);
2750
2751 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
2752 unsigned int lane_mask = 0x0;
2753
2754 if (IS_CHERRYVIEW(dev))
2755 lane_mask = intel_dp_unused_lane_mask(crtc->config->lane_count);
2756
2757 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2758 lane_mask);
2759 }
2760
2761 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2762 intel_dp_start_link_train(intel_dp);
2763 intel_dp_stop_link_train(intel_dp);
2764
2765 if (crtc->config->has_audio) {
2766 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2767 pipe_name(pipe));
2768 intel_audio_codec_enable(encoder);
2769 }
2770 }
2771
2772 static void g4x_enable_dp(struct intel_encoder *encoder)
2773 {
2774 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2775
2776 intel_enable_dp(encoder);
2777 intel_edp_backlight_on(intel_dp);
2778 }
2779
2780 static void vlv_enable_dp(struct intel_encoder *encoder)
2781 {
2782 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2783
2784 intel_edp_backlight_on(intel_dp);
2785 intel_psr_enable(intel_dp);
2786 }
2787
2788 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2789 {
2790 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2791 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2792 enum port port = dp_to_dig_port(intel_dp)->port;
2793 enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
2794
2795 intel_dp_prepare(encoder);
2796
2797 if (port == PORT_A && IS_GEN5(dev_priv)) {
2798 /*
2799 * We get FIFO underruns on the other pipe when
2800 * enabling the CPU eDP PLL, and when enabling CPU
2801 * eDP port. We could potentially avoid the PLL
2802 * underrun with a vblank wait just prior to enabling
2803 * the PLL, but that doesn't appear to help the port
2804 * enable case. Just sweep it all under the rug.
2805 */
2806 intel_set_cpu_fifo_underrun_reporting(dev_priv, !pipe, false);
2807 intel_set_pch_fifo_underrun_reporting(dev_priv, !pipe, false);
2808 }
2809
2810 /* Only ilk+ has port A */
2811 if (port == PORT_A)
2812 ironlake_edp_pll_on(intel_dp);
2813 }
2814
2815 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2816 {
2817 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2818 struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2819 enum pipe pipe = intel_dp->pps_pipe;
2820 i915_reg_t pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2821
2822 edp_panel_vdd_off_sync(intel_dp);
2823
2824 /*
2825 * VLV seems to get confused when multiple power seqeuencers
2826 * have the same port selected (even if only one has power/vdd
2827 * enabled). The failure manifests as vlv_wait_port_ready() failing
2828 * CHV on the other hand doesn't seem to mind having the same port
2829 * selected in multiple power seqeuencers, but let's clear the
2830 * port select always when logically disconnecting a power sequencer
2831 * from a port.
2832 */
2833 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2834 pipe_name(pipe), port_name(intel_dig_port->port));
2835 I915_WRITE(pp_on_reg, 0);
2836 POSTING_READ(pp_on_reg);
2837
2838 intel_dp->pps_pipe = INVALID_PIPE;
2839 }
2840
2841 static void vlv_steal_power_sequencer(struct drm_device *dev,
2842 enum pipe pipe)
2843 {
2844 struct drm_i915_private *dev_priv = dev->dev_private;
2845 struct intel_encoder *encoder;
2846
2847 lockdep_assert_held(&dev_priv->pps_mutex);
2848
2849 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2850 return;
2851
2852 for_each_intel_encoder(dev, encoder) {
2853 struct intel_dp *intel_dp;
2854 enum port port;
2855
2856 if (encoder->type != INTEL_OUTPUT_EDP)
2857 continue;
2858
2859 intel_dp = enc_to_intel_dp(&encoder->base);
2860 port = dp_to_dig_port(intel_dp)->port;
2861
2862 if (intel_dp->pps_pipe != pipe)
2863 continue;
2864
2865 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2866 pipe_name(pipe), port_name(port));
2867
2868 WARN(encoder->base.crtc,
2869 "stealing pipe %c power sequencer from active eDP port %c\n",
2870 pipe_name(pipe), port_name(port));
2871
2872 /* make sure vdd is off before we steal it */
2873 vlv_detach_power_sequencer(intel_dp);
2874 }
2875 }
2876
2877 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2878 {
2879 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2880 struct intel_encoder *encoder = &intel_dig_port->base;
2881 struct drm_device *dev = encoder->base.dev;
2882 struct drm_i915_private *dev_priv = dev->dev_private;
2883 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2884
2885 lockdep_assert_held(&dev_priv->pps_mutex);
2886
2887 if (!is_edp(intel_dp))
2888 return;
2889
2890 if (intel_dp->pps_pipe == crtc->pipe)
2891 return;
2892
2893 /*
2894 * If another power sequencer was being used on this
2895 * port previously make sure to turn off vdd there while
2896 * we still have control of it.
2897 */
2898 if (intel_dp->pps_pipe != INVALID_PIPE)
2899 vlv_detach_power_sequencer(intel_dp);
2900
2901 /*
2902 * We may be stealing the power
2903 * sequencer from another port.
2904 */
2905 vlv_steal_power_sequencer(dev, crtc->pipe);
2906
2907 /* now it's all ours */
2908 intel_dp->pps_pipe = crtc->pipe;
2909
2910 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2911 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2912
2913 /* init power sequencer on this pipe and port */
2914 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2915 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2916 }
2917
2918 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2919 {
2920 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2921 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2922 struct drm_device *dev = encoder->base.dev;
2923 struct drm_i915_private *dev_priv = dev->dev_private;
2924 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2925 enum dpio_channel port = vlv_dport_to_channel(dport);
2926 int pipe = intel_crtc->pipe;
2927 u32 val;
2928
2929 mutex_lock(&dev_priv->sb_lock);
2930
2931 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2932 val = 0;
2933 if (pipe)
2934 val |= (1<<21);
2935 else
2936 val &= ~(1<<21);
2937 val |= 0x001000c4;
2938 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2939 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2940 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2941
2942 mutex_unlock(&dev_priv->sb_lock);
2943
2944 intel_enable_dp(encoder);
2945 }
2946
2947 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2948 {
2949 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2950 struct drm_device *dev = encoder->base.dev;
2951 struct drm_i915_private *dev_priv = dev->dev_private;
2952 struct intel_crtc *intel_crtc =
2953 to_intel_crtc(encoder->base.crtc);
2954 enum dpio_channel port = vlv_dport_to_channel(dport);
2955 int pipe = intel_crtc->pipe;
2956
2957 intel_dp_prepare(encoder);
2958
2959 /* Program Tx lane resets to default */
2960 mutex_lock(&dev_priv->sb_lock);
2961 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2962 DPIO_PCS_TX_LANE2_RESET |
2963 DPIO_PCS_TX_LANE1_RESET);
2964 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2965 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2966 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2967 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2968 DPIO_PCS_CLK_SOFT_RESET);
2969
2970 /* Fix up inter-pair skew failure */
2971 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2972 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2973 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2974 mutex_unlock(&dev_priv->sb_lock);
2975 }
2976
2977 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2978 {
2979 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2980 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2981 struct drm_device *dev = encoder->base.dev;
2982 struct drm_i915_private *dev_priv = dev->dev_private;
2983 struct intel_crtc *intel_crtc =
2984 to_intel_crtc(encoder->base.crtc);
2985 enum dpio_channel ch = vlv_dport_to_channel(dport);
2986 int pipe = intel_crtc->pipe;
2987 int data, i, stagger;
2988 u32 val;
2989
2990 mutex_lock(&dev_priv->sb_lock);
2991
2992 /* allow hardware to manage TX FIFO reset source */
2993 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2994 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2995 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2996
2997 if (intel_crtc->config->lane_count > 2) {
2998 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2999 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
3000 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
3001 }
3002
3003 /* Program Tx lane latency optimal setting*/
3004 for (i = 0; i < intel_crtc->config->lane_count; i++) {
3005 /* Set the upar bit */
3006 if (intel_crtc->config->lane_count == 1)
3007 data = 0x0;
3008 else
3009 data = (i == 1) ? 0x0 : 0x1;
3010 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
3011 data << DPIO_UPAR_SHIFT);
3012 }
3013
3014 /* Data lane stagger programming */
3015 if (intel_crtc->config->port_clock > 270000)
3016 stagger = 0x18;
3017 else if (intel_crtc->config->port_clock > 135000)
3018 stagger = 0xd;
3019 else if (intel_crtc->config->port_clock > 67500)
3020 stagger = 0x7;
3021 else if (intel_crtc->config->port_clock > 33750)
3022 stagger = 0x4;
3023 else
3024 stagger = 0x2;
3025
3026 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
3027 val |= DPIO_TX2_STAGGER_MASK(0x1f);
3028 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
3029
3030 if (intel_crtc->config->lane_count > 2) {
3031 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
3032 val |= DPIO_TX2_STAGGER_MASK(0x1f);
3033 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
3034 }
3035
3036 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
3037 DPIO_LANESTAGGER_STRAP(stagger) |
3038 DPIO_LANESTAGGER_STRAP_OVRD |
3039 DPIO_TX1_STAGGER_MASK(0x1f) |
3040 DPIO_TX1_STAGGER_MULT(6) |
3041 DPIO_TX2_STAGGER_MULT(0));
3042
3043 if (intel_crtc->config->lane_count > 2) {
3044 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
3045 DPIO_LANESTAGGER_STRAP(stagger) |
3046 DPIO_LANESTAGGER_STRAP_OVRD |
3047 DPIO_TX1_STAGGER_MASK(0x1f) |
3048 DPIO_TX1_STAGGER_MULT(7) |
3049 DPIO_TX2_STAGGER_MULT(5));
3050 }
3051
3052 /* Deassert data lane reset */
3053 chv_data_lane_soft_reset(encoder, false);
3054
3055 mutex_unlock(&dev_priv->sb_lock);
3056
3057 intel_enable_dp(encoder);
3058
3059 /* Second common lane will stay alive on its own now */
3060 if (dport->release_cl2_override) {
3061 chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
3062 dport->release_cl2_override = false;
3063 }
3064 }
3065
3066 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
3067 {
3068 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
3069 struct drm_device *dev = encoder->base.dev;
3070 struct drm_i915_private *dev_priv = dev->dev_private;
3071 struct intel_crtc *intel_crtc =
3072 to_intel_crtc(encoder->base.crtc);
3073 enum dpio_channel ch = vlv_dport_to_channel(dport);
3074 enum pipe pipe = intel_crtc->pipe;
3075 unsigned int lane_mask =
3076 intel_dp_unused_lane_mask(intel_crtc->config->lane_count);
3077 u32 val;
3078
3079 intel_dp_prepare(encoder);
3080
3081 /*
3082 * Must trick the second common lane into life.
3083 * Otherwise we can't even access the PLL.
3084 */
3085 if (ch == DPIO_CH0 && pipe == PIPE_B)
3086 dport->release_cl2_override =
3087 !chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
3088
3089 chv_phy_powergate_lanes(encoder, true, lane_mask);
3090
3091 mutex_lock(&dev_priv->sb_lock);
3092
3093 /* Assert data lane reset */
3094 chv_data_lane_soft_reset(encoder, true);
3095
3096 /* program left/right clock distribution */
3097 if (pipe != PIPE_B) {
3098 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
3099 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
3100 if (ch == DPIO_CH0)
3101 val |= CHV_BUFLEFTENA1_FORCE;
3102 if (ch == DPIO_CH1)
3103 val |= CHV_BUFRIGHTENA1_FORCE;
3104 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
3105 } else {
3106 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
3107 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
3108 if (ch == DPIO_CH0)
3109 val |= CHV_BUFLEFTENA2_FORCE;
3110 if (ch == DPIO_CH1)
3111 val |= CHV_BUFRIGHTENA2_FORCE;
3112 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
3113 }
3114
3115 /* program clock channel usage */
3116 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
3117 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
3118 if (pipe != PIPE_B)
3119 val &= ~CHV_PCS_USEDCLKCHANNEL;
3120 else
3121 val |= CHV_PCS_USEDCLKCHANNEL;
3122 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
3123
3124 if (intel_crtc->config->lane_count > 2) {
3125 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
3126 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
3127 if (pipe != PIPE_B)
3128 val &= ~CHV_PCS_USEDCLKCHANNEL;
3129 else
3130 val |= CHV_PCS_USEDCLKCHANNEL;
3131 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
3132 }
3133
3134 /*
3135 * This a a bit weird since generally CL
3136 * matches the pipe, but here we need to
3137 * pick the CL based on the port.
3138 */
3139 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
3140 if (pipe != PIPE_B)
3141 val &= ~CHV_CMN_USEDCLKCHANNEL;
3142 else
3143 val |= CHV_CMN_USEDCLKCHANNEL;
3144 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
3145
3146 mutex_unlock(&dev_priv->sb_lock);
3147 }
3148
3149 static void chv_dp_post_pll_disable(struct intel_encoder *encoder)
3150 {
3151 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3152 enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
3153 u32 val;
3154
3155 mutex_lock(&dev_priv->sb_lock);
3156
3157 /* disable left/right clock distribution */
3158 if (pipe != PIPE_B) {
3159 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
3160 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
3161 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
3162 } else {
3163 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
3164 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
3165 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
3166 }
3167
3168 mutex_unlock(&dev_priv->sb_lock);
3169
3170 /*
3171 * Leave the power down bit cleared for at least one
3172 * lane so that chv_powergate_phy_ch() will power
3173 * on something when the channel is otherwise unused.
3174 * When the port is off and the override is removed
3175 * the lanes power down anyway, so otherwise it doesn't
3176 * really matter what the state of power down bits is
3177 * after this.
3178 */
3179 chv_phy_powergate_lanes(encoder, false, 0x0);
3180 }
3181
3182 /*
3183 * Native read with retry for link status and receiver capability reads for
3184 * cases where the sink may still be asleep.
3185 *
3186 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
3187 * supposed to retry 3 times per the spec.
3188 */
3189 static ssize_t
3190 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
3191 void *buffer, size_t size)
3192 {
3193 ssize_t ret;
3194 int i;
3195
3196 /*
3197 * Sometime we just get the same incorrect byte repeated
3198 * over the entire buffer. Doing just one throw away read
3199 * initially seems to "solve" it.
3200 */
3201 drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
3202
3203 for (i = 0; i < 3; i++) {
3204 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
3205 if (ret == size)
3206 return ret;
3207 msleep(1);
3208 }
3209
3210 return ret;
3211 }
3212
3213 /*
3214 * Fetch AUX CH registers 0x202 - 0x207 which contain
3215 * link status information
3216 */
3217 bool
3218 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3219 {
3220 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3221 DP_LANE0_1_STATUS,
3222 link_status,
3223 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3224 }
3225
3226 /* These are source-specific values. */
3227 uint8_t
3228 intel_dp_voltage_max(struct intel_dp *intel_dp)
3229 {
3230 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3231 struct drm_i915_private *dev_priv = dev->dev_private;
3232 enum port port = dp_to_dig_port(intel_dp)->port;
3233
3234 if (IS_BROXTON(dev))
3235 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3236 else if (INTEL_INFO(dev)->gen >= 9) {
3237 if (dev_priv->edp_low_vswing && port == PORT_A)
3238 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3239 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3240 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
3241 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3242 else if (IS_GEN7(dev) && port == PORT_A)
3243 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3244 else if (HAS_PCH_CPT(dev) && port != PORT_A)
3245 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3246 else
3247 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3248 }
3249
3250 uint8_t
3251 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3252 {
3253 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3254 enum port port = dp_to_dig_port(intel_dp)->port;
3255
3256 if (INTEL_INFO(dev)->gen >= 9) {
3257 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3258 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3259 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3260 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3261 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3262 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3263 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3264 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3265 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3266 default:
3267 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3268 }
3269 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3270 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3271 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3272 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3273 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3274 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3275 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3276 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3277 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3278 default:
3279 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3280 }
3281 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
3282 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3283 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3284 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3285 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3286 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3287 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3288 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3289 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3290 default:
3291 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3292 }
3293 } else if (IS_GEN7(dev) && port == PORT_A) {
3294 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3295 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3296 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3297 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3298 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3299 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3300 default:
3301 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3302 }
3303 } else {
3304 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3305 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3306 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3307 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3308 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3309 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3310 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3311 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3312 default:
3313 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3314 }
3315 }
3316 }
3317
3318 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3319 {
3320 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3321 struct drm_i915_private *dev_priv = dev->dev_private;
3322 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3323 struct intel_crtc *intel_crtc =
3324 to_intel_crtc(dport->base.base.crtc);
3325 unsigned long demph_reg_value, preemph_reg_value,
3326 uniqtranscale_reg_value;
3327 uint8_t train_set = intel_dp->train_set[0];
3328 enum dpio_channel port = vlv_dport_to_channel(dport);
3329 int pipe = intel_crtc->pipe;
3330
3331 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3332 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3333 preemph_reg_value = 0x0004000;
3334 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3335 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3336 demph_reg_value = 0x2B405555;
3337 uniqtranscale_reg_value = 0x552AB83A;
3338 break;
3339 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3340 demph_reg_value = 0x2B404040;
3341 uniqtranscale_reg_value = 0x5548B83A;
3342 break;
3343 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3344 demph_reg_value = 0x2B245555;
3345 uniqtranscale_reg_value = 0x5560B83A;
3346 break;
3347 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3348 demph_reg_value = 0x2B405555;
3349 uniqtranscale_reg_value = 0x5598DA3A;
3350 break;
3351 default:
3352 return 0;
3353 }
3354 break;
3355 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3356 preemph_reg_value = 0x0002000;
3357 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3358 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3359 demph_reg_value = 0x2B404040;
3360 uniqtranscale_reg_value = 0x5552B83A;
3361 break;
3362 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3363 demph_reg_value = 0x2B404848;
3364 uniqtranscale_reg_value = 0x5580B83A;
3365 break;
3366 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3367 demph_reg_value = 0x2B404040;
3368 uniqtranscale_reg_value = 0x55ADDA3A;
3369 break;
3370 default:
3371 return 0;
3372 }
3373 break;
3374 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3375 preemph_reg_value = 0x0000000;
3376 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3377 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3378 demph_reg_value = 0x2B305555;
3379 uniqtranscale_reg_value = 0x5570B83A;
3380 break;
3381 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3382 demph_reg_value = 0x2B2B4040;
3383 uniqtranscale_reg_value = 0x55ADDA3A;
3384 break;
3385 default:
3386 return 0;
3387 }
3388 break;
3389 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3390 preemph_reg_value = 0x0006000;
3391 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3392 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3393 demph_reg_value = 0x1B405555;
3394 uniqtranscale_reg_value = 0x55ADDA3A;
3395 break;
3396 default:
3397 return 0;
3398 }
3399 break;
3400 default:
3401 return 0;
3402 }
3403
3404 mutex_lock(&dev_priv->sb_lock);
3405 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
3406 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3407 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3408 uniqtranscale_reg_value);
3409 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3410 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3411 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3412 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3413 mutex_unlock(&dev_priv->sb_lock);
3414
3415 return 0;
3416 }
3417
3418 static bool chv_need_uniq_trans_scale(uint8_t train_set)
3419 {
3420 return (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) == DP_TRAIN_PRE_EMPH_LEVEL_0 &&
3421 (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3422 }
3423
3424 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3425 {
3426 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3427 struct drm_i915_private *dev_priv = dev->dev_private;
3428 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3429 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3430 u32 deemph_reg_value, margin_reg_value, val;
3431 uint8_t train_set = intel_dp->train_set[0];
3432 enum dpio_channel ch = vlv_dport_to_channel(dport);
3433 enum pipe pipe = intel_crtc->pipe;
3434 int i;
3435
3436 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3437 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3438 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3439 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3440 deemph_reg_value = 128;
3441 margin_reg_value = 52;
3442 break;
3443 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3444 deemph_reg_value = 128;
3445 margin_reg_value = 77;
3446 break;
3447 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3448 deemph_reg_value = 128;
3449 margin_reg_value = 102;
3450 break;
3451 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3452 deemph_reg_value = 128;
3453 margin_reg_value = 154;
3454 /* FIXME extra to set for 1200 */
3455 break;
3456 default:
3457 return 0;
3458 }
3459 break;
3460 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3461 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3462 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3463 deemph_reg_value = 85;
3464 margin_reg_value = 78;
3465 break;
3466 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3467 deemph_reg_value = 85;
3468 margin_reg_value = 116;
3469 break;
3470 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3471 deemph_reg_value = 85;
3472 margin_reg_value = 154;
3473 break;
3474 default:
3475 return 0;
3476 }
3477 break;
3478 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3479 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3480 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3481 deemph_reg_value = 64;
3482 margin_reg_value = 104;
3483 break;
3484 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3485 deemph_reg_value = 64;
3486 margin_reg_value = 154;
3487 break;
3488 default:
3489 return 0;
3490 }
3491 break;
3492 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3493 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3494 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3495 deemph_reg_value = 43;
3496 margin_reg_value = 154;
3497 break;
3498 default:
3499 return 0;
3500 }
3501 break;
3502 default:
3503 return 0;
3504 }
3505
3506 mutex_lock(&dev_priv->sb_lock);
3507
3508 /* Clear calc init */
3509 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3510 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3511 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3512 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3513 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3514
3515 if (intel_crtc->config->lane_count > 2) {
3516 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3517 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3518 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3519 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3520 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3521 }
3522
3523 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
3524 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3525 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3526 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
3527
3528 if (intel_crtc->config->lane_count > 2) {
3529 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
3530 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3531 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3532 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
3533 }
3534
3535 /* Program swing deemph */
3536 for (i = 0; i < intel_crtc->config->lane_count; i++) {
3537 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3538 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3539 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3540 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3541 }
3542
3543 /* Program swing margin */
3544 for (i = 0; i < intel_crtc->config->lane_count; i++) {
3545 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3546
3547 val &= ~DPIO_SWING_MARGIN000_MASK;
3548 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3549
3550 /*
3551 * Supposedly this value shouldn't matter when unique transition
3552 * scale is disabled, but in fact it does matter. Let's just
3553 * always program the same value and hope it's OK.
3554 */
3555 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3556 val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
3557
3558 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3559 }
3560
3561 /*
3562 * The document said it needs to set bit 27 for ch0 and bit 26
3563 * for ch1. Might be a typo in the doc.
3564 * For now, for this unique transition scale selection, set bit
3565 * 27 for ch0 and ch1.
3566 */
3567 for (i = 0; i < intel_crtc->config->lane_count; i++) {
3568 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3569 if (chv_need_uniq_trans_scale(train_set))
3570 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3571 else
3572 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3573 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3574 }
3575
3576 /* Start swing calculation */
3577 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3578 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3579 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3580
3581 if (intel_crtc->config->lane_count > 2) {
3582 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3583 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3584 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3585 }
3586
3587 mutex_unlock(&dev_priv->sb_lock);
3588
3589 return 0;
3590 }
3591
3592 static uint32_t
3593 gen4_signal_levels(uint8_t train_set)
3594 {
3595 uint32_t signal_levels = 0;
3596
3597 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3598 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3599 default:
3600 signal_levels |= DP_VOLTAGE_0_4;
3601 break;
3602 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3603 signal_levels |= DP_VOLTAGE_0_6;
3604 break;
3605 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3606 signal_levels |= DP_VOLTAGE_0_8;
3607 break;
3608 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3609 signal_levels |= DP_VOLTAGE_1_2;
3610 break;
3611 }
3612 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3613 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3614 default:
3615 signal_levels |= DP_PRE_EMPHASIS_0;
3616 break;
3617 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3618 signal_levels |= DP_PRE_EMPHASIS_3_5;
3619 break;
3620 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3621 signal_levels |= DP_PRE_EMPHASIS_6;
3622 break;
3623 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3624 signal_levels |= DP_PRE_EMPHASIS_9_5;
3625 break;
3626 }
3627 return signal_levels;
3628 }
3629
3630 /* Gen6's DP voltage swing and pre-emphasis control */
3631 static uint32_t
3632 gen6_edp_signal_levels(uint8_t train_set)
3633 {
3634 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3635 DP_TRAIN_PRE_EMPHASIS_MASK);
3636 switch (signal_levels) {
3637 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3638 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3639 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3640 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3641 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3642 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3643 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3644 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3645 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3646 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3647 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3648 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3649 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3650 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3651 default:
3652 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3653 "0x%x\n", signal_levels);
3654 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3655 }
3656 }
3657
3658 /* Gen7's DP voltage swing and pre-emphasis control */
3659 static uint32_t
3660 gen7_edp_signal_levels(uint8_t train_set)
3661 {
3662 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3663 DP_TRAIN_PRE_EMPHASIS_MASK);
3664 switch (signal_levels) {
3665 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3666 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3667 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3668 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3669 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3670 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3671
3672 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3673 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3674 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3675 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3676
3677 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3678 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3679 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3680 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3681
3682 default:
3683 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3684 "0x%x\n", signal_levels);
3685 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3686 }
3687 }
3688
3689 void
3690 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3691 {
3692 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3693 enum port port = intel_dig_port->port;
3694 struct drm_device *dev = intel_dig_port->base.base.dev;
3695 struct drm_i915_private *dev_priv = to_i915(dev);
3696 uint32_t signal_levels, mask = 0;
3697 uint8_t train_set = intel_dp->train_set[0];
3698
3699 if (HAS_DDI(dev)) {
3700 signal_levels = ddi_signal_levels(intel_dp);
3701
3702 if (IS_BROXTON(dev))
3703 signal_levels = 0;
3704 else
3705 mask = DDI_BUF_EMP_MASK;
3706 } else if (IS_CHERRYVIEW(dev)) {
3707 signal_levels = chv_signal_levels(intel_dp);
3708 } else if (IS_VALLEYVIEW(dev)) {
3709 signal_levels = vlv_signal_levels(intel_dp);
3710 } else if (IS_GEN7(dev) && port == PORT_A) {
3711 signal_levels = gen7_edp_signal_levels(train_set);
3712 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3713 } else if (IS_GEN6(dev) && port == PORT_A) {
3714 signal_levels = gen6_edp_signal_levels(train_set);
3715 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3716 } else {
3717 signal_levels = gen4_signal_levels(train_set);
3718 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3719 }
3720
3721 if (mask)
3722 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3723
3724 DRM_DEBUG_KMS("Using vswing level %d\n",
3725 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3726 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3727 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3728 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3729
3730 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3731
3732 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3733 POSTING_READ(intel_dp->output_reg);
3734 }
3735
3736 void
3737 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3738 uint8_t dp_train_pat)
3739 {
3740 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3741 struct drm_i915_private *dev_priv =
3742 to_i915(intel_dig_port->base.base.dev);
3743
3744 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3745
3746 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3747 POSTING_READ(intel_dp->output_reg);
3748 }
3749
3750 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3751 {
3752 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3753 struct drm_device *dev = intel_dig_port->base.base.dev;
3754 struct drm_i915_private *dev_priv = dev->dev_private;
3755 enum port port = intel_dig_port->port;
3756 uint32_t val;
3757
3758 if (!HAS_DDI(dev))
3759 return;
3760
3761 val = I915_READ(DP_TP_CTL(port));
3762 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3763 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3764 I915_WRITE(DP_TP_CTL(port), val);
3765
3766 /*
3767 * On PORT_A we can have only eDP in SST mode. There the only reason
3768 * we need to set idle transmission mode is to work around a HW issue
3769 * where we enable the pipe while not in idle link-training mode.
3770 * In this case there is requirement to wait for a minimum number of
3771 * idle patterns to be sent.
3772 */
3773 if (port == PORT_A)
3774 return;
3775
3776 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3777 1))
3778 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3779 }
3780
3781 static void
3782 intel_dp_link_down(struct intel_dp *intel_dp)
3783 {
3784 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3785 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3786 enum port port = intel_dig_port->port;
3787 struct drm_device *dev = intel_dig_port->base.base.dev;
3788 struct drm_i915_private *dev_priv = dev->dev_private;
3789 uint32_t DP = intel_dp->DP;
3790
3791 if (WARN_ON(HAS_DDI(dev)))
3792 return;
3793
3794 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3795 return;
3796
3797 DRM_DEBUG_KMS("\n");
3798
3799 if ((IS_GEN7(dev) && port == PORT_A) ||
3800 (HAS_PCH_CPT(dev) && port != PORT_A)) {
3801 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3802 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3803 } else {
3804 if (IS_CHERRYVIEW(dev))
3805 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3806 else
3807 DP &= ~DP_LINK_TRAIN_MASK;
3808 DP |= DP_LINK_TRAIN_PAT_IDLE;
3809 }
3810 I915_WRITE(intel_dp->output_reg, DP);
3811 POSTING_READ(intel_dp->output_reg);
3812
3813 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3814 I915_WRITE(intel_dp->output_reg, DP);
3815 POSTING_READ(intel_dp->output_reg);
3816
3817 /*
3818 * HW workaround for IBX, we need to move the port
3819 * to transcoder A after disabling it to allow the
3820 * matching HDMI port to be enabled on transcoder A.
3821 */
3822 if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3823 /*
3824 * We get CPU/PCH FIFO underruns on the other pipe when
3825 * doing the workaround. Sweep them under the rug.
3826 */
3827 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3828 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3829
3830 /* always enable with pattern 1 (as per spec) */
3831 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3832 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3833 I915_WRITE(intel_dp->output_reg, DP);
3834 POSTING_READ(intel_dp->output_reg);
3835
3836 DP &= ~DP_PORT_EN;
3837 I915_WRITE(intel_dp->output_reg, DP);
3838 POSTING_READ(intel_dp->output_reg);
3839
3840 intel_wait_for_vblank_if_active(dev_priv->dev, PIPE_A);
3841 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3842 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3843 }
3844
3845 msleep(intel_dp->panel_power_down_delay);
3846
3847 intel_dp->DP = DP;
3848 }
3849
3850 static bool
3851 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3852 {
3853 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3854 struct drm_device *dev = dig_port->base.base.dev;
3855 struct drm_i915_private *dev_priv = dev->dev_private;
3856 uint8_t rev;
3857
3858 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3859 sizeof(intel_dp->dpcd)) < 0)
3860 return false; /* aux transfer failed */
3861
3862 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3863
3864 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3865 return false; /* DPCD not present */
3866
3867 /* Check if the panel supports PSR */
3868 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3869 if (is_edp(intel_dp)) {
3870 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3871 intel_dp->psr_dpcd,
3872 sizeof(intel_dp->psr_dpcd));
3873 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3874 dev_priv->psr.sink_support = true;
3875 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3876 }
3877
3878 if (INTEL_INFO(dev)->gen >= 9 &&
3879 (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3880 uint8_t frame_sync_cap;
3881
3882 dev_priv->psr.sink_support = true;
3883 intel_dp_dpcd_read_wake(&intel_dp->aux,
3884 DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3885 &frame_sync_cap, 1);
3886 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3887 /* PSR2 needs frame sync as well */
3888 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3889 DRM_DEBUG_KMS("PSR2 %s on sink",
3890 dev_priv->psr.psr2_support ? "supported" : "not supported");
3891 }
3892 }
3893
3894 DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
3895 yesno(intel_dp_source_supports_hbr2(intel_dp)),
3896 yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
3897
3898 /* Intermediate frequency support */
3899 if (is_edp(intel_dp) &&
3900 (intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3901 (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_EDP_DPCD_REV, &rev, 1) == 1) &&
3902 (rev >= 0x03)) { /* eDp v1.4 or higher */
3903 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3904 int i;
3905
3906 intel_dp_dpcd_read_wake(&intel_dp->aux,
3907 DP_SUPPORTED_LINK_RATES,
3908 sink_rates,
3909 sizeof(sink_rates));
3910
3911 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3912 int val = le16_to_cpu(sink_rates[i]);
3913
3914 if (val == 0)
3915 break;
3916
3917 /* Value read is in kHz while drm clock is saved in deca-kHz */
3918 intel_dp->sink_rates[i] = (val * 200) / 10;
3919 }
3920 intel_dp->num_sink_rates = i;
3921 }
3922
3923 intel_dp_print_rates(intel_dp);
3924
3925 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3926 DP_DWN_STRM_PORT_PRESENT))
3927 return true; /* native DP sink */
3928
3929 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3930 return true; /* no per-port downstream info */
3931
3932 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3933 intel_dp->downstream_ports,
3934 DP_MAX_DOWNSTREAM_PORTS) < 0)
3935 return false; /* downstream port status fetch failed */
3936
3937 return true;
3938 }
3939
3940 static void
3941 intel_dp_probe_oui(struct intel_dp *intel_dp)
3942 {
3943 u8 buf[3];
3944
3945 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3946 return;
3947
3948 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3949 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3950 buf[0], buf[1], buf[2]);
3951
3952 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3953 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3954 buf[0], buf[1], buf[2]);
3955 }
3956
3957 static bool
3958 intel_dp_probe_mst(struct intel_dp *intel_dp)
3959 {
3960 u8 buf[1];
3961
3962 if (!intel_dp->can_mst)
3963 return false;
3964
3965 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3966 return false;
3967
3968 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3969 if (buf[0] & DP_MST_CAP) {
3970 DRM_DEBUG_KMS("Sink is MST capable\n");
3971 intel_dp->is_mst = true;
3972 } else {
3973 DRM_DEBUG_KMS("Sink is not MST capable\n");
3974 intel_dp->is_mst = false;
3975 }
3976 }
3977
3978 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3979 return intel_dp->is_mst;
3980 }
3981
3982 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3983 {
3984 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3985 struct drm_device *dev = dig_port->base.base.dev;
3986 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3987 u8 buf;
3988 int ret = 0;
3989 int count = 0;
3990 int attempts = 10;
3991
3992 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3993 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3994 ret = -EIO;
3995 goto out;
3996 }
3997
3998 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3999 buf & ~DP_TEST_SINK_START) < 0) {
4000 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
4001 ret = -EIO;
4002 goto out;
4003 }
4004
4005 do {
4006 intel_wait_for_vblank(dev, intel_crtc->pipe);
4007
4008 if (drm_dp_dpcd_readb(&intel_dp->aux,
4009 DP_TEST_SINK_MISC, &buf) < 0) {
4010 ret = -EIO;
4011 goto out;
4012 }
4013 count = buf & DP_TEST_COUNT_MASK;
4014 } while (--attempts && count);
4015
4016 if (attempts == 0) {
4017 DRM_ERROR("TIMEOUT: Sink CRC counter is not zeroed\n");
4018 ret = -ETIMEDOUT;
4019 }
4020
4021 out:
4022 hsw_enable_ips(intel_crtc);
4023 return ret;
4024 }
4025
4026 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
4027 {
4028 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
4029 struct drm_device *dev = dig_port->base.base.dev;
4030 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
4031 u8 buf;
4032 int ret;
4033
4034 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
4035 return -EIO;
4036
4037 if (!(buf & DP_TEST_CRC_SUPPORTED))
4038 return -ENOTTY;
4039
4040 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
4041 return -EIO;
4042
4043 if (buf & DP_TEST_SINK_START) {
4044 ret = intel_dp_sink_crc_stop(intel_dp);
4045 if (ret)
4046 return ret;
4047 }
4048
4049 hsw_disable_ips(intel_crtc);
4050
4051 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4052 buf | DP_TEST_SINK_START) < 0) {
4053 hsw_enable_ips(intel_crtc);
4054 return -EIO;
4055 }
4056
4057 intel_wait_for_vblank(dev, intel_crtc->pipe);
4058 return 0;
4059 }
4060
4061 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
4062 {
4063 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
4064 struct drm_device *dev = dig_port->base.base.dev;
4065 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
4066 u8 buf;
4067 int count, ret;
4068 int attempts = 6;
4069
4070 ret = intel_dp_sink_crc_start(intel_dp);
4071 if (ret)
4072 return ret;
4073
4074 do {
4075 intel_wait_for_vblank(dev, intel_crtc->pipe);
4076
4077 if (drm_dp_dpcd_readb(&intel_dp->aux,
4078 DP_TEST_SINK_MISC, &buf) < 0) {
4079 ret = -EIO;
4080 goto stop;
4081 }
4082 count = buf & DP_TEST_COUNT_MASK;
4083
4084 } while (--attempts && count == 0);
4085
4086 if (attempts == 0) {
4087 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
4088 ret = -ETIMEDOUT;
4089 goto stop;
4090 }
4091
4092 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
4093 ret = -EIO;
4094 goto stop;
4095 }
4096
4097 stop:
4098 intel_dp_sink_crc_stop(intel_dp);
4099 return ret;
4100 }
4101
4102 static bool
4103 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4104 {
4105 return intel_dp_dpcd_read_wake(&intel_dp->aux,
4106 DP_DEVICE_SERVICE_IRQ_VECTOR,
4107 sink_irq_vector, 1) == 1;
4108 }
4109
4110 static bool
4111 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4112 {
4113 int ret;
4114
4115 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
4116 DP_SINK_COUNT_ESI,
4117 sink_irq_vector, 14);
4118 if (ret != 14)
4119 return false;
4120
4121 return true;
4122 }
4123
4124 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4125 {
4126 uint8_t test_result = DP_TEST_ACK;
4127 return test_result;
4128 }
4129
4130 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4131 {
4132 uint8_t test_result = DP_TEST_NAK;
4133 return test_result;
4134 }
4135
4136 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4137 {
4138 uint8_t test_result = DP_TEST_NAK;
4139 struct intel_connector *intel_connector = intel_dp->attached_connector;
4140 struct drm_connector *connector = &intel_connector->base;
4141
4142 if (intel_connector->detect_edid == NULL ||
4143 connector->edid_corrupt ||
4144 intel_dp->aux.i2c_defer_count > 6) {
4145 /* Check EDID read for NACKs, DEFERs and corruption
4146 * (DP CTS 1.2 Core r1.1)
4147 * 4.2.2.4 : Failed EDID read, I2C_NAK
4148 * 4.2.2.5 : Failed EDID read, I2C_DEFER
4149 * 4.2.2.6 : EDID corruption detected
4150 * Use failsafe mode for all cases
4151 */
4152 if (intel_dp->aux.i2c_nack_count > 0 ||
4153 intel_dp->aux.i2c_defer_count > 0)
4154 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4155 intel_dp->aux.i2c_nack_count,
4156 intel_dp->aux.i2c_defer_count);
4157 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
4158 } else {
4159 struct edid *block = intel_connector->detect_edid;
4160
4161 /* We have to write the checksum
4162 * of the last block read
4163 */
4164 block += intel_connector->detect_edid->extensions;
4165
4166 if (!drm_dp_dpcd_write(&intel_dp->aux,
4167 DP_TEST_EDID_CHECKSUM,
4168 &block->checksum,
4169 1))
4170 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4171
4172 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4173 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
4174 }
4175
4176 /* Set test active flag here so userspace doesn't interrupt things */
4177 intel_dp->compliance_test_active = 1;
4178
4179 return test_result;
4180 }
4181
4182 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4183 {
4184 uint8_t test_result = DP_TEST_NAK;
4185 return test_result;
4186 }
4187
4188 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4189 {
4190 uint8_t response = DP_TEST_NAK;
4191 uint8_t rxdata = 0;
4192 int status = 0;
4193
4194 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
4195 if (status <= 0) {
4196 DRM_DEBUG_KMS("Could not read test request from sink\n");
4197 goto update_status;
4198 }
4199
4200 switch (rxdata) {
4201 case DP_TEST_LINK_TRAINING:
4202 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4203 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
4204 response = intel_dp_autotest_link_training(intel_dp);
4205 break;
4206 case DP_TEST_LINK_VIDEO_PATTERN:
4207 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4208 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
4209 response = intel_dp_autotest_video_pattern(intel_dp);
4210 break;
4211 case DP_TEST_LINK_EDID_READ:
4212 DRM_DEBUG_KMS("EDID test requested\n");
4213 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
4214 response = intel_dp_autotest_edid(intel_dp);
4215 break;
4216 case DP_TEST_LINK_PHY_TEST_PATTERN:
4217 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4218 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
4219 response = intel_dp_autotest_phy_pattern(intel_dp);
4220 break;
4221 default:
4222 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
4223 break;
4224 }
4225
4226 update_status:
4227 status = drm_dp_dpcd_write(&intel_dp->aux,
4228 DP_TEST_RESPONSE,
4229 &response, 1);
4230 if (status <= 0)
4231 DRM_DEBUG_KMS("Could not write test response to sink\n");
4232 }
4233
4234 static int
4235 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4236 {
4237 bool bret;
4238
4239 if (intel_dp->is_mst) {
4240 u8 esi[16] = { 0 };
4241 int ret = 0;
4242 int retry;
4243 bool handled;
4244 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4245 go_again:
4246 if (bret == true) {
4247
4248 /* check link status - esi[10] = 0x200c */
4249 if (intel_dp->active_mst_links &&
4250 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4251 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4252 intel_dp_start_link_train(intel_dp);
4253 intel_dp_stop_link_train(intel_dp);
4254 }
4255
4256 DRM_DEBUG_KMS("got esi %3ph\n", esi);
4257 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4258
4259 if (handled) {
4260 for (retry = 0; retry < 3; retry++) {
4261 int wret;
4262 wret = drm_dp_dpcd_write(&intel_dp->aux,
4263 DP_SINK_COUNT_ESI+1,
4264 &esi[1], 3);
4265 if (wret == 3) {
4266 break;
4267 }
4268 }
4269
4270 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4271 if (bret == true) {
4272 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4273 goto go_again;
4274 }
4275 } else
4276 ret = 0;
4277
4278 return ret;
4279 } else {
4280 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4281 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4282 intel_dp->is_mst = false;
4283 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4284 /* send a hotplug event */
4285 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4286 }
4287 }
4288 return -EINVAL;
4289 }
4290
4291 /*
4292 * According to DP spec
4293 * 5.1.2:
4294 * 1. Read DPCD
4295 * 2. Configure link according to Receiver Capabilities
4296 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4297 * 4. Check link status on receipt of hot-plug interrupt
4298 */
4299 static void
4300 intel_dp_check_link_status(struct intel_dp *intel_dp)
4301 {
4302 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4303 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4304 u8 sink_irq_vector;
4305 u8 link_status[DP_LINK_STATUS_SIZE];
4306
4307 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4308
4309 /*
4310 * Clearing compliance test variables to allow capturing
4311 * of values for next automated test request.
4312 */
4313 intel_dp->compliance_test_active = 0;
4314 intel_dp->compliance_test_type = 0;
4315 intel_dp->compliance_test_data = 0;
4316
4317 if (!intel_encoder->base.crtc)
4318 return;
4319
4320 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4321 return;
4322
4323 /* Try to read receiver status if the link appears to be up */
4324 if (!intel_dp_get_link_status(intel_dp, link_status)) {
4325 return;
4326 }
4327
4328 /* Now read the DPCD to see if it's actually running */
4329 if (!intel_dp_get_dpcd(intel_dp)) {
4330 return;
4331 }
4332
4333 /* Try to read the source of the interrupt */
4334 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4335 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4336 /* Clear interrupt source */
4337 drm_dp_dpcd_writeb(&intel_dp->aux,
4338 DP_DEVICE_SERVICE_IRQ_VECTOR,
4339 sink_irq_vector);
4340
4341 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4342 DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4343 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4344 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4345 }
4346
4347 /* if link training is requested we should perform it always */
4348 if ((intel_dp->compliance_test_type == DP_TEST_LINK_TRAINING) ||
4349 (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count))) {
4350 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4351 intel_encoder->base.name);
4352 intel_dp_start_link_train(intel_dp);
4353 intel_dp_stop_link_train(intel_dp);
4354 }
4355 }
4356
4357 /* XXX this is probably wrong for multiple downstream ports */
4358 static enum drm_connector_status
4359 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4360 {
4361 uint8_t *dpcd = intel_dp->dpcd;
4362 uint8_t type;
4363
4364 if (!intel_dp_get_dpcd(intel_dp))
4365 return connector_status_disconnected;
4366
4367 /* if there's no downstream port, we're done */
4368 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4369 return connector_status_connected;
4370
4371 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4372 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4373 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4374 uint8_t reg;
4375
4376 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
4377 &reg, 1) < 0)
4378 return connector_status_unknown;
4379
4380 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
4381 : connector_status_disconnected;
4382 }
4383
4384 /* If no HPD, poke DDC gently */
4385 if (drm_probe_ddc(&intel_dp->aux.ddc))
4386 return connector_status_connected;
4387
4388 /* Well we tried, say unknown for unreliable port types */
4389 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4390 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4391 if (type == DP_DS_PORT_TYPE_VGA ||
4392 type == DP_DS_PORT_TYPE_NON_EDID)
4393 return connector_status_unknown;
4394 } else {
4395 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4396 DP_DWN_STRM_PORT_TYPE_MASK;
4397 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4398 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4399 return connector_status_unknown;
4400 }
4401
4402 /* Anything else is out of spec, warn and ignore */
4403 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4404 return connector_status_disconnected;
4405 }
4406
4407 static enum drm_connector_status
4408 edp_detect(struct intel_dp *intel_dp)
4409 {
4410 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4411 enum drm_connector_status status;
4412
4413 status = intel_panel_detect(dev);
4414 if (status == connector_status_unknown)
4415 status = connector_status_connected;
4416
4417 return status;
4418 }
4419
4420 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4421 struct intel_digital_port *port)
4422 {
4423 u32 bit;
4424
4425 switch (port->port) {
4426 case PORT_A:
4427 return true;
4428 case PORT_B:
4429 bit = SDE_PORTB_HOTPLUG;
4430 break;
4431 case PORT_C:
4432 bit = SDE_PORTC_HOTPLUG;
4433 break;
4434 case PORT_D:
4435 bit = SDE_PORTD_HOTPLUG;
4436 break;
4437 default:
4438 MISSING_CASE(port->port);
4439 return false;
4440 }
4441
4442 return I915_READ(SDEISR) & bit;
4443 }
4444
4445 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4446 struct intel_digital_port *port)
4447 {
4448 u32 bit;
4449
4450 switch (port->port) {
4451 case PORT_A:
4452 return true;
4453 case PORT_B:
4454 bit = SDE_PORTB_HOTPLUG_CPT;
4455 break;
4456 case PORT_C:
4457 bit = SDE_PORTC_HOTPLUG_CPT;
4458 break;
4459 case PORT_D:
4460 bit = SDE_PORTD_HOTPLUG_CPT;
4461 break;
4462 case PORT_E:
4463 bit = SDE_PORTE_HOTPLUG_SPT;
4464 break;
4465 default:
4466 MISSING_CASE(port->port);
4467 return false;
4468 }
4469
4470 return I915_READ(SDEISR) & bit;
4471 }
4472
4473 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4474 struct intel_digital_port *port)
4475 {
4476 u32 bit;
4477
4478 switch (port->port) {
4479 case PORT_B:
4480 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4481 break;
4482 case PORT_C:
4483 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4484 break;
4485 case PORT_D:
4486 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4487 break;
4488 default:
4489 MISSING_CASE(port->port);
4490 return false;
4491 }
4492
4493 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4494 }
4495
4496 static bool vlv_digital_port_connected(struct drm_i915_private *dev_priv,
4497 struct intel_digital_port *port)
4498 {
4499 u32 bit;
4500
4501 switch (port->port) {
4502 case PORT_B:
4503 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
4504 break;
4505 case PORT_C:
4506 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
4507 break;
4508 case PORT_D:
4509 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
4510 break;
4511 default:
4512 MISSING_CASE(port->port);
4513 return false;
4514 }
4515
4516 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4517 }
4518
4519 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4520 struct intel_digital_port *intel_dig_port)
4521 {
4522 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4523 enum port port;
4524 u32 bit;
4525
4526 intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4527 switch (port) {
4528 case PORT_A:
4529 bit = BXT_DE_PORT_HP_DDIA;
4530 break;
4531 case PORT_B:
4532 bit = BXT_DE_PORT_HP_DDIB;
4533 break;
4534 case PORT_C:
4535 bit = BXT_DE_PORT_HP_DDIC;
4536 break;
4537 default:
4538 MISSING_CASE(port);
4539 return false;
4540 }
4541
4542 return I915_READ(GEN8_DE_PORT_ISR) & bit;
4543 }
4544
4545 /*
4546 * intel_digital_port_connected - is the specified port connected?
4547 * @dev_priv: i915 private structure
4548 * @port: the port to test
4549 *
4550 * Return %true if @port is connected, %false otherwise.
4551 */
4552 bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4553 struct intel_digital_port *port)
4554 {
4555 if (HAS_PCH_IBX(dev_priv))
4556 return ibx_digital_port_connected(dev_priv, port);
4557 if (HAS_PCH_SPLIT(dev_priv))
4558 return cpt_digital_port_connected(dev_priv, port);
4559 else if (IS_BROXTON(dev_priv))
4560 return bxt_digital_port_connected(dev_priv, port);
4561 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4562 return vlv_digital_port_connected(dev_priv, port);
4563 else
4564 return g4x_digital_port_connected(dev_priv, port);
4565 }
4566
4567 static struct edid *
4568 intel_dp_get_edid(struct intel_dp *intel_dp)
4569 {
4570 struct intel_connector *intel_connector = intel_dp->attached_connector;
4571
4572 /* use cached edid if we have one */
4573 if (intel_connector->edid) {
4574 /* invalid edid */
4575 if (IS_ERR(intel_connector->edid))
4576 return NULL;
4577
4578 return drm_edid_duplicate(intel_connector->edid);
4579 } else
4580 return drm_get_edid(&intel_connector->base,
4581 &intel_dp->aux.ddc);
4582 }
4583
4584 static void
4585 intel_dp_set_edid(struct intel_dp *intel_dp)
4586 {
4587 struct intel_connector *intel_connector = intel_dp->attached_connector;
4588 struct edid *edid;
4589
4590 edid = intel_dp_get_edid(intel_dp);
4591 intel_connector->detect_edid = edid;
4592
4593 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4594 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4595 else
4596 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4597 }
4598
4599 static void
4600 intel_dp_unset_edid(struct intel_dp *intel_dp)
4601 {
4602 struct intel_connector *intel_connector = intel_dp->attached_connector;
4603
4604 kfree(intel_connector->detect_edid);
4605 intel_connector->detect_edid = NULL;
4606
4607 intel_dp->has_audio = false;
4608 }
4609
4610 static enum drm_connector_status
4611 intel_dp_detect(struct drm_connector *connector, bool force)
4612 {
4613 struct intel_dp *intel_dp = intel_attached_dp(connector);
4614 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4615 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4616 struct drm_device *dev = connector->dev;
4617 enum drm_connector_status status;
4618 enum intel_display_power_domain power_domain;
4619 bool ret;
4620 u8 sink_irq_vector;
4621
4622 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4623 connector->base.id, connector->name);
4624 intel_dp_unset_edid(intel_dp);
4625
4626 if (intel_dp->is_mst) {
4627 /* MST devices are disconnected from a monitor POV */
4628 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4629 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4630 return connector_status_disconnected;
4631 }
4632
4633 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4634 intel_display_power_get(to_i915(dev), power_domain);
4635
4636 /* Can't disconnect eDP, but you can close the lid... */
4637 if (is_edp(intel_dp))
4638 status = edp_detect(intel_dp);
4639 else if (intel_digital_port_connected(to_i915(dev),
4640 dp_to_dig_port(intel_dp)))
4641 status = intel_dp_detect_dpcd(intel_dp);
4642 else
4643 status = connector_status_disconnected;
4644
4645 if (status != connector_status_connected) {
4646 intel_dp->compliance_test_active = 0;
4647 intel_dp->compliance_test_type = 0;
4648 intel_dp->compliance_test_data = 0;
4649
4650 goto out;
4651 }
4652
4653 intel_dp_probe_oui(intel_dp);
4654
4655 ret = intel_dp_probe_mst(intel_dp);
4656 if (ret) {
4657 /* if we are in MST mode then this connector
4658 won't appear connected or have anything with EDID on it */
4659 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4660 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4661 status = connector_status_disconnected;
4662 goto out;
4663 }
4664
4665 /*
4666 * Clearing NACK and defer counts to get their exact values
4667 * while reading EDID which are required by Compliance tests
4668 * 4.2.2.4 and 4.2.2.5
4669 */
4670 intel_dp->aux.i2c_nack_count = 0;
4671 intel_dp->aux.i2c_defer_count = 0;
4672
4673 intel_dp_set_edid(intel_dp);
4674
4675 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4676 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4677 status = connector_status_connected;
4678
4679 /* Try to read the source of the interrupt */
4680 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4681 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4682 /* Clear interrupt source */
4683 drm_dp_dpcd_writeb(&intel_dp->aux,
4684 DP_DEVICE_SERVICE_IRQ_VECTOR,
4685 sink_irq_vector);
4686
4687 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4688 intel_dp_handle_test_request(intel_dp);
4689 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4690 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4691 }
4692
4693 out:
4694 intel_display_power_put(to_i915(dev), power_domain);
4695 return status;
4696 }
4697
4698 static void
4699 intel_dp_force(struct drm_connector *connector)
4700 {
4701 struct intel_dp *intel_dp = intel_attached_dp(connector);
4702 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4703 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4704 enum intel_display_power_domain power_domain;
4705
4706 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4707 connector->base.id, connector->name);
4708 intel_dp_unset_edid(intel_dp);
4709
4710 if (connector->status != connector_status_connected)
4711 return;
4712
4713 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4714 intel_display_power_get(dev_priv, power_domain);
4715
4716 intel_dp_set_edid(intel_dp);
4717
4718 intel_display_power_put(dev_priv, power_domain);
4719
4720 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4721 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4722 }
4723
4724 static int intel_dp_get_modes(struct drm_connector *connector)
4725 {
4726 struct intel_connector *intel_connector = to_intel_connector(connector);
4727 struct edid *edid;
4728
4729 edid = intel_connector->detect_edid;
4730 if (edid) {
4731 int ret = intel_connector_update_modes(connector, edid);
4732 if (ret)
4733 return ret;
4734 }
4735
4736 /* if eDP has no EDID, fall back to fixed mode */
4737 if (is_edp(intel_attached_dp(connector)) &&
4738 intel_connector->panel.fixed_mode) {
4739 struct drm_display_mode *mode;
4740
4741 mode = drm_mode_duplicate(connector->dev,
4742 intel_connector->panel.fixed_mode);
4743 if (mode) {
4744 drm_mode_probed_add(connector, mode);
4745 return 1;
4746 }
4747 }
4748
4749 return 0;
4750 }
4751
4752 static bool
4753 intel_dp_detect_audio(struct drm_connector *connector)
4754 {
4755 bool has_audio = false;
4756 struct edid *edid;
4757
4758 edid = to_intel_connector(connector)->detect_edid;
4759 if (edid)
4760 has_audio = drm_detect_monitor_audio(edid);
4761
4762 return has_audio;
4763 }
4764
4765 static int
4766 intel_dp_set_property(struct drm_connector *connector,
4767 struct drm_property *property,
4768 uint64_t val)
4769 {
4770 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4771 struct intel_connector *intel_connector = to_intel_connector(connector);
4772 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4773 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4774 int ret;
4775
4776 ret = drm_object_property_set_value(&connector->base, property, val);
4777 if (ret)
4778 return ret;
4779
4780 if (property == dev_priv->force_audio_property) {
4781 int i = val;
4782 bool has_audio;
4783
4784 if (i == intel_dp->force_audio)
4785 return 0;
4786
4787 intel_dp->force_audio = i;
4788
4789 if (i == HDMI_AUDIO_AUTO)
4790 has_audio = intel_dp_detect_audio(connector);
4791 else
4792 has_audio = (i == HDMI_AUDIO_ON);
4793
4794 if (has_audio == intel_dp->has_audio)
4795 return 0;
4796
4797 intel_dp->has_audio = has_audio;
4798 goto done;
4799 }
4800
4801 if (property == dev_priv->broadcast_rgb_property) {
4802 bool old_auto = intel_dp->color_range_auto;
4803 bool old_range = intel_dp->limited_color_range;
4804
4805 switch (val) {
4806 case INTEL_BROADCAST_RGB_AUTO:
4807 intel_dp->color_range_auto = true;
4808 break;
4809 case INTEL_BROADCAST_RGB_FULL:
4810 intel_dp->color_range_auto = false;
4811 intel_dp->limited_color_range = false;
4812 break;
4813 case INTEL_BROADCAST_RGB_LIMITED:
4814 intel_dp->color_range_auto = false;
4815 intel_dp->limited_color_range = true;
4816 break;
4817 default:
4818 return -EINVAL;
4819 }
4820
4821 if (old_auto == intel_dp->color_range_auto &&
4822 old_range == intel_dp->limited_color_range)
4823 return 0;
4824
4825 goto done;
4826 }
4827
4828 if (is_edp(intel_dp) &&
4829 property == connector->dev->mode_config.scaling_mode_property) {
4830 if (val == DRM_MODE_SCALE_NONE) {
4831 DRM_DEBUG_KMS("no scaling not supported\n");
4832 return -EINVAL;
4833 }
4834
4835 if (intel_connector->panel.fitting_mode == val) {
4836 /* the eDP scaling property is not changed */
4837 return 0;
4838 }
4839 intel_connector->panel.fitting_mode = val;
4840
4841 goto done;
4842 }
4843
4844 return -EINVAL;
4845
4846 done:
4847 if (intel_encoder->base.crtc)
4848 intel_crtc_restore_mode(intel_encoder->base.crtc);
4849
4850 return 0;
4851 }
4852
4853 static void
4854 intel_dp_connector_destroy(struct drm_connector *connector)
4855 {
4856 struct intel_connector *intel_connector = to_intel_connector(connector);
4857
4858 kfree(intel_connector->detect_edid);
4859
4860 if (!IS_ERR_OR_NULL(intel_connector->edid))
4861 kfree(intel_connector->edid);
4862
4863 /* Can't call is_edp() since the encoder may have been destroyed
4864 * already. */
4865 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4866 intel_panel_fini(&intel_connector->panel);
4867
4868 drm_connector_cleanup(connector);
4869 kfree(connector);
4870 }
4871
4872 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4873 {
4874 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4875 struct intel_dp *intel_dp = &intel_dig_port->dp;
4876
4877 intel_dp_aux_fini(intel_dp);
4878 intel_dp_mst_encoder_cleanup(intel_dig_port);
4879 if (is_edp(intel_dp)) {
4880 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4881 /*
4882 * vdd might still be enabled do to the delayed vdd off.
4883 * Make sure vdd is actually turned off here.
4884 */
4885 pps_lock(intel_dp);
4886 edp_panel_vdd_off_sync(intel_dp);
4887 pps_unlock(intel_dp);
4888
4889 if (intel_dp->edp_notifier.notifier_call) {
4890 unregister_reboot_notifier(&intel_dp->edp_notifier);
4891 intel_dp->edp_notifier.notifier_call = NULL;
4892 }
4893 }
4894 drm_encoder_cleanup(encoder);
4895 kfree(intel_dig_port);
4896 }
4897
4898 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4899 {
4900 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4901
4902 if (!is_edp(intel_dp))
4903 return;
4904
4905 /*
4906 * vdd might still be enabled do to the delayed vdd off.
4907 * Make sure vdd is actually turned off here.
4908 */
4909 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4910 pps_lock(intel_dp);
4911 edp_panel_vdd_off_sync(intel_dp);
4912 pps_unlock(intel_dp);
4913 }
4914
4915 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4916 {
4917 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4918 struct drm_device *dev = intel_dig_port->base.base.dev;
4919 struct drm_i915_private *dev_priv = dev->dev_private;
4920 enum intel_display_power_domain power_domain;
4921
4922 lockdep_assert_held(&dev_priv->pps_mutex);
4923
4924 if (!edp_have_panel_vdd(intel_dp))
4925 return;
4926
4927 /*
4928 * The VDD bit needs a power domain reference, so if the bit is
4929 * already enabled when we boot or resume, grab this reference and
4930 * schedule a vdd off, so we don't hold on to the reference
4931 * indefinitely.
4932 */
4933 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4934 power_domain = intel_display_port_aux_power_domain(&intel_dig_port->base);
4935 intel_display_power_get(dev_priv, power_domain);
4936
4937 edp_panel_vdd_schedule_off(intel_dp);
4938 }
4939
4940 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4941 {
4942 struct intel_dp *intel_dp;
4943
4944 if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4945 return;
4946
4947 intel_dp = enc_to_intel_dp(encoder);
4948
4949 pps_lock(intel_dp);
4950
4951 /*
4952 * Read out the current power sequencer assignment,
4953 * in case the BIOS did something with it.
4954 */
4955 if (IS_VALLEYVIEW(encoder->dev) || IS_CHERRYVIEW(encoder->dev))
4956 vlv_initial_power_sequencer_setup(intel_dp);
4957
4958 intel_edp_panel_vdd_sanitize(intel_dp);
4959
4960 pps_unlock(intel_dp);
4961 }
4962
4963 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4964 .dpms = drm_atomic_helper_connector_dpms,
4965 .detect = intel_dp_detect,
4966 .force = intel_dp_force,
4967 .fill_modes = drm_helper_probe_single_connector_modes,
4968 .set_property = intel_dp_set_property,
4969 .atomic_get_property = intel_connector_atomic_get_property,
4970 .destroy = intel_dp_connector_destroy,
4971 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4972 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4973 };
4974
4975 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4976 .get_modes = intel_dp_get_modes,
4977 .mode_valid = intel_dp_mode_valid,
4978 .best_encoder = intel_best_encoder,
4979 };
4980
4981 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4982 .reset = intel_dp_encoder_reset,
4983 .destroy = intel_dp_encoder_destroy,
4984 };
4985
4986 enum irqreturn
4987 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4988 {
4989 struct intel_dp *intel_dp = &intel_dig_port->dp;
4990 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4991 struct drm_device *dev = intel_dig_port->base.base.dev;
4992 struct drm_i915_private *dev_priv = dev->dev_private;
4993 enum intel_display_power_domain power_domain;
4994 enum irqreturn ret = IRQ_NONE;
4995
4996 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
4997 intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
4998 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4999
5000 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
5001 /*
5002 * vdd off can generate a long pulse on eDP which
5003 * would require vdd on to handle it, and thus we
5004 * would end up in an endless cycle of
5005 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
5006 */
5007 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
5008 port_name(intel_dig_port->port));
5009 return IRQ_HANDLED;
5010 }
5011
5012 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
5013 port_name(intel_dig_port->port),
5014 long_hpd ? "long" : "short");
5015
5016 power_domain = intel_display_port_aux_power_domain(intel_encoder);
5017 intel_display_power_get(dev_priv, power_domain);
5018
5019 if (long_hpd) {
5020 /* indicate that we need to restart link training */
5021 intel_dp->train_set_valid = false;
5022
5023 if (!intel_digital_port_connected(dev_priv, intel_dig_port))
5024 goto mst_fail;
5025
5026 if (!intel_dp_get_dpcd(intel_dp)) {
5027 goto mst_fail;
5028 }
5029
5030 intel_dp_probe_oui(intel_dp);
5031
5032 if (!intel_dp_probe_mst(intel_dp)) {
5033 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
5034 intel_dp_check_link_status(intel_dp);
5035 drm_modeset_unlock(&dev->mode_config.connection_mutex);
5036 goto mst_fail;
5037 }
5038 } else {
5039 if (intel_dp->is_mst) {
5040 if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
5041 goto mst_fail;
5042 }
5043
5044 if (!intel_dp->is_mst) {
5045 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
5046 intel_dp_check_link_status(intel_dp);
5047 drm_modeset_unlock(&dev->mode_config.connection_mutex);
5048 }
5049 }
5050
5051 ret = IRQ_HANDLED;
5052
5053 goto put_power;
5054 mst_fail:
5055 /* if we were in MST mode, and device is not there get out of MST mode */
5056 if (intel_dp->is_mst) {
5057 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
5058 intel_dp->is_mst = false;
5059 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
5060 }
5061 put_power:
5062 intel_display_power_put(dev_priv, power_domain);
5063
5064 return ret;
5065 }
5066
5067 /* check the VBT to see whether the eDP is on another port */
5068 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
5069 {
5070 struct drm_i915_private *dev_priv = dev->dev_private;
5071 union child_device_config *p_child;
5072 int i;
5073 static const short port_mapping[] = {
5074 [PORT_B] = DVO_PORT_DPB,
5075 [PORT_C] = DVO_PORT_DPC,
5076 [PORT_D] = DVO_PORT_DPD,
5077 [PORT_E] = DVO_PORT_DPE,
5078 };
5079
5080 /*
5081 * eDP not supported on g4x. so bail out early just
5082 * for a bit extra safety in case the VBT is bonkers.
5083 */
5084 if (INTEL_INFO(dev)->gen < 5)
5085 return false;
5086
5087 if (port == PORT_A)
5088 return true;
5089
5090 if (!dev_priv->vbt.child_dev_num)
5091 return false;
5092
5093 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
5094 p_child = dev_priv->vbt.child_dev + i;
5095
5096 if (p_child->common.dvo_port == port_mapping[port] &&
5097 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
5098 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
5099 return true;
5100 }
5101 return false;
5102 }
5103
5104 void
5105 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5106 {
5107 struct intel_connector *intel_connector = to_intel_connector(connector);
5108
5109 intel_attach_force_audio_property(connector);
5110 intel_attach_broadcast_rgb_property(connector);
5111 intel_dp->color_range_auto = true;
5112
5113 if (is_edp(intel_dp)) {
5114 drm_mode_create_scaling_mode_property(connector->dev);
5115 drm_object_attach_property(
5116 &connector->base,
5117 connector->dev->mode_config.scaling_mode_property,
5118 DRM_MODE_SCALE_ASPECT);
5119 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
5120 }
5121 }
5122
5123 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
5124 {
5125 intel_dp->last_power_cycle = jiffies;
5126 intel_dp->last_power_on = jiffies;
5127 intel_dp->last_backlight_off = jiffies;
5128 }
5129
5130 static void
5131 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
5132 struct intel_dp *intel_dp)
5133 {
5134 struct drm_i915_private *dev_priv = dev->dev_private;
5135 struct edp_power_seq cur, vbt, spec,
5136 *final = &intel_dp->pps_delays;
5137 u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
5138 i915_reg_t pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
5139
5140 lockdep_assert_held(&dev_priv->pps_mutex);
5141
5142 /* already initialized? */
5143 if (final->t11_t12 != 0)
5144 return;
5145
5146 if (IS_BROXTON(dev)) {
5147 /*
5148 * TODO: BXT has 2 sets of PPS registers.
5149 * Correct Register for Broxton need to be identified
5150 * using VBT. hardcoding for now
5151 */
5152 pp_ctrl_reg = BXT_PP_CONTROL(0);
5153 pp_on_reg = BXT_PP_ON_DELAYS(0);
5154 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5155 } else if (HAS_PCH_SPLIT(dev)) {
5156 pp_ctrl_reg = PCH_PP_CONTROL;
5157 pp_on_reg = PCH_PP_ON_DELAYS;
5158 pp_off_reg = PCH_PP_OFF_DELAYS;
5159 pp_div_reg = PCH_PP_DIVISOR;
5160 } else {
5161 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5162
5163 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
5164 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5165 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5166 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5167 }
5168
5169 /* Workaround: Need to write PP_CONTROL with the unlock key as
5170 * the very first thing. */
5171 pp_ctl = ironlake_get_pp_control(intel_dp);
5172
5173 pp_on = I915_READ(pp_on_reg);
5174 pp_off = I915_READ(pp_off_reg);
5175 if (!IS_BROXTON(dev)) {
5176 I915_WRITE(pp_ctrl_reg, pp_ctl);
5177 pp_div = I915_READ(pp_div_reg);
5178 }
5179
5180 /* Pull timing values out of registers */
5181 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
5182 PANEL_POWER_UP_DELAY_SHIFT;
5183
5184 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
5185 PANEL_LIGHT_ON_DELAY_SHIFT;
5186
5187 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
5188 PANEL_LIGHT_OFF_DELAY_SHIFT;
5189
5190 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5191 PANEL_POWER_DOWN_DELAY_SHIFT;
5192
5193 if (IS_BROXTON(dev)) {
5194 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
5195 BXT_POWER_CYCLE_DELAY_SHIFT;
5196 if (tmp > 0)
5197 cur.t11_t12 = (tmp - 1) * 1000;
5198 else
5199 cur.t11_t12 = 0;
5200 } else {
5201 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5202 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5203 }
5204
5205 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5206 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
5207
5208 vbt = dev_priv->vbt.edp_pps;
5209
5210 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5211 * our hw here, which are all in 100usec. */
5212 spec.t1_t3 = 210 * 10;
5213 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5214 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5215 spec.t10 = 500 * 10;
5216 /* This one is special and actually in units of 100ms, but zero
5217 * based in the hw (so we need to add 100 ms). But the sw vbt
5218 * table multiplies it with 1000 to make it in units of 100usec,
5219 * too. */
5220 spec.t11_t12 = (510 + 100) * 10;
5221
5222 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5223 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
5224
5225 /* Use the max of the register settings and vbt. If both are
5226 * unset, fall back to the spec limits. */
5227 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
5228 spec.field : \
5229 max(cur.field, vbt.field))
5230 assign_final(t1_t3);
5231 assign_final(t8);
5232 assign_final(t9);
5233 assign_final(t10);
5234 assign_final(t11_t12);
5235 #undef assign_final
5236
5237 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
5238 intel_dp->panel_power_up_delay = get_delay(t1_t3);
5239 intel_dp->backlight_on_delay = get_delay(t8);
5240 intel_dp->backlight_off_delay = get_delay(t9);
5241 intel_dp->panel_power_down_delay = get_delay(t10);
5242 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5243 #undef get_delay
5244
5245 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5246 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5247 intel_dp->panel_power_cycle_delay);
5248
5249 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5250 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5251 }
5252
5253 static void
5254 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5255 struct intel_dp *intel_dp)
5256 {
5257 struct drm_i915_private *dev_priv = dev->dev_private;
5258 u32 pp_on, pp_off, pp_div, port_sel = 0;
5259 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
5260 i915_reg_t pp_on_reg, pp_off_reg, pp_div_reg, pp_ctrl_reg;
5261 enum port port = dp_to_dig_port(intel_dp)->port;
5262 const struct edp_power_seq *seq = &intel_dp->pps_delays;
5263
5264 lockdep_assert_held(&dev_priv->pps_mutex);
5265
5266 if (IS_BROXTON(dev)) {
5267 /*
5268 * TODO: BXT has 2 sets of PPS registers.
5269 * Correct Register for Broxton need to be identified
5270 * using VBT. hardcoding for now
5271 */
5272 pp_ctrl_reg = BXT_PP_CONTROL(0);
5273 pp_on_reg = BXT_PP_ON_DELAYS(0);
5274 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5275
5276 } else if (HAS_PCH_SPLIT(dev)) {
5277 pp_on_reg = PCH_PP_ON_DELAYS;
5278 pp_off_reg = PCH_PP_OFF_DELAYS;
5279 pp_div_reg = PCH_PP_DIVISOR;
5280 } else {
5281 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5282
5283 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5284 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5285 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5286 }
5287
5288 /*
5289 * And finally store the new values in the power sequencer. The
5290 * backlight delays are set to 1 because we do manual waits on them. For
5291 * T8, even BSpec recommends doing it. For T9, if we don't do this,
5292 * we'll end up waiting for the backlight off delay twice: once when we
5293 * do the manual sleep, and once when we disable the panel and wait for
5294 * the PP_STATUS bit to become zero.
5295 */
5296 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5297 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
5298 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5299 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5300 /* Compute the divisor for the pp clock, simply match the Bspec
5301 * formula. */
5302 if (IS_BROXTON(dev)) {
5303 pp_div = I915_READ(pp_ctrl_reg);
5304 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5305 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
5306 << BXT_POWER_CYCLE_DELAY_SHIFT);
5307 } else {
5308 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5309 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5310 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5311 }
5312
5313 /* Haswell doesn't have any port selection bits for the panel
5314 * power sequencer any more. */
5315 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5316 port_sel = PANEL_PORT_SELECT_VLV(port);
5317 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5318 if (port == PORT_A)
5319 port_sel = PANEL_PORT_SELECT_DPA;
5320 else
5321 port_sel = PANEL_PORT_SELECT_DPD;
5322 }
5323
5324 pp_on |= port_sel;
5325
5326 I915_WRITE(pp_on_reg, pp_on);
5327 I915_WRITE(pp_off_reg, pp_off);
5328 if (IS_BROXTON(dev))
5329 I915_WRITE(pp_ctrl_reg, pp_div);
5330 else
5331 I915_WRITE(pp_div_reg, pp_div);
5332
5333 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5334 I915_READ(pp_on_reg),
5335 I915_READ(pp_off_reg),
5336 IS_BROXTON(dev) ?
5337 (I915_READ(pp_ctrl_reg) & BXT_POWER_CYCLE_DELAY_MASK) :
5338 I915_READ(pp_div_reg));
5339 }
5340
5341 /**
5342 * intel_dp_set_drrs_state - program registers for RR switch to take effect
5343 * @dev: DRM device
5344 * @refresh_rate: RR to be programmed
5345 *
5346 * This function gets called when refresh rate (RR) has to be changed from
5347 * one frequency to another. Switches can be between high and low RR
5348 * supported by the panel or to any other RR based on media playback (in
5349 * this case, RR value needs to be passed from user space).
5350 *
5351 * The caller of this function needs to take a lock on dev_priv->drrs.
5352 */
5353 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
5354 {
5355 struct drm_i915_private *dev_priv = dev->dev_private;
5356 struct intel_encoder *encoder;
5357 struct intel_digital_port *dig_port = NULL;
5358 struct intel_dp *intel_dp = dev_priv->drrs.dp;
5359 struct intel_crtc_state *config = NULL;
5360 struct intel_crtc *intel_crtc = NULL;
5361 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5362
5363 if (refresh_rate <= 0) {
5364 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5365 return;
5366 }
5367
5368 if (intel_dp == NULL) {
5369 DRM_DEBUG_KMS("DRRS not supported.\n");
5370 return;
5371 }
5372
5373 /*
5374 * FIXME: This needs proper synchronization with psr state for some
5375 * platforms that cannot have PSR and DRRS enabled at the same time.
5376 */
5377
5378 dig_port = dp_to_dig_port(intel_dp);
5379 encoder = &dig_port->base;
5380 intel_crtc = to_intel_crtc(encoder->base.crtc);
5381
5382 if (!intel_crtc) {
5383 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5384 return;
5385 }
5386
5387 config = intel_crtc->config;
5388
5389 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5390 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5391 return;
5392 }
5393
5394 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5395 refresh_rate)
5396 index = DRRS_LOW_RR;
5397
5398 if (index == dev_priv->drrs.refresh_rate_type) {
5399 DRM_DEBUG_KMS(
5400 "DRRS requested for previously set RR...ignoring\n");
5401 return;
5402 }
5403
5404 if (!intel_crtc->active) {
5405 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5406 return;
5407 }
5408
5409 if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
5410 switch (index) {
5411 case DRRS_HIGH_RR:
5412 intel_dp_set_m_n(intel_crtc, M1_N1);
5413 break;
5414 case DRRS_LOW_RR:
5415 intel_dp_set_m_n(intel_crtc, M2_N2);
5416 break;
5417 case DRRS_MAX_RR:
5418 default:
5419 DRM_ERROR("Unsupported refreshrate type\n");
5420 }
5421 } else if (INTEL_INFO(dev)->gen > 6) {
5422 i915_reg_t reg = PIPECONF(intel_crtc->config->cpu_transcoder);
5423 u32 val;
5424
5425 val = I915_READ(reg);
5426 if (index > DRRS_HIGH_RR) {
5427 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5428 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5429 else
5430 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5431 } else {
5432 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5433 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5434 else
5435 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5436 }
5437 I915_WRITE(reg, val);
5438 }
5439
5440 dev_priv->drrs.refresh_rate_type = index;
5441
5442 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5443 }
5444
5445 /**
5446 * intel_edp_drrs_enable - init drrs struct if supported
5447 * @intel_dp: DP struct
5448 *
5449 * Initializes frontbuffer_bits and drrs.dp
5450 */
5451 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5452 {
5453 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5454 struct drm_i915_private *dev_priv = dev->dev_private;
5455 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5456 struct drm_crtc *crtc = dig_port->base.base.crtc;
5457 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5458
5459 if (!intel_crtc->config->has_drrs) {
5460 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5461 return;
5462 }
5463
5464 mutex_lock(&dev_priv->drrs.mutex);
5465 if (WARN_ON(dev_priv->drrs.dp)) {
5466 DRM_ERROR("DRRS already enabled\n");
5467 goto unlock;
5468 }
5469
5470 dev_priv->drrs.busy_frontbuffer_bits = 0;
5471
5472 dev_priv->drrs.dp = intel_dp;
5473
5474 unlock:
5475 mutex_unlock(&dev_priv->drrs.mutex);
5476 }
5477
5478 /**
5479 * intel_edp_drrs_disable - Disable DRRS
5480 * @intel_dp: DP struct
5481 *
5482 */
5483 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5484 {
5485 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5486 struct drm_i915_private *dev_priv = dev->dev_private;
5487 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5488 struct drm_crtc *crtc = dig_port->base.base.crtc;
5489 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5490
5491 if (!intel_crtc->config->has_drrs)
5492 return;
5493
5494 mutex_lock(&dev_priv->drrs.mutex);
5495 if (!dev_priv->drrs.dp) {
5496 mutex_unlock(&dev_priv->drrs.mutex);
5497 return;
5498 }
5499
5500 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5501 intel_dp_set_drrs_state(dev_priv->dev,
5502 intel_dp->attached_connector->panel.
5503 fixed_mode->vrefresh);
5504
5505 dev_priv->drrs.dp = NULL;
5506 mutex_unlock(&dev_priv->drrs.mutex);
5507
5508 cancel_delayed_work_sync(&dev_priv->drrs.work);
5509 }
5510
5511 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5512 {
5513 struct drm_i915_private *dev_priv =
5514 container_of(work, typeof(*dev_priv), drrs.work.work);
5515 struct intel_dp *intel_dp;
5516
5517 mutex_lock(&dev_priv->drrs.mutex);
5518
5519 intel_dp = dev_priv->drrs.dp;
5520
5521 if (!intel_dp)
5522 goto unlock;
5523
5524 /*
5525 * The delayed work can race with an invalidate hence we need to
5526 * recheck.
5527 */
5528
5529 if (dev_priv->drrs.busy_frontbuffer_bits)
5530 goto unlock;
5531
5532 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5533 intel_dp_set_drrs_state(dev_priv->dev,
5534 intel_dp->attached_connector->panel.
5535 downclock_mode->vrefresh);
5536
5537 unlock:
5538 mutex_unlock(&dev_priv->drrs.mutex);
5539 }
5540
5541 /**
5542 * intel_edp_drrs_invalidate - Disable Idleness DRRS
5543 * @dev: DRM device
5544 * @frontbuffer_bits: frontbuffer plane tracking bits
5545 *
5546 * This function gets called everytime rendering on the given planes start.
5547 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5548 *
5549 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5550 */
5551 void intel_edp_drrs_invalidate(struct drm_device *dev,
5552 unsigned frontbuffer_bits)
5553 {
5554 struct drm_i915_private *dev_priv = dev->dev_private;
5555 struct drm_crtc *crtc;
5556 enum pipe pipe;
5557
5558 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5559 return;
5560
5561 cancel_delayed_work(&dev_priv->drrs.work);
5562
5563 mutex_lock(&dev_priv->drrs.mutex);
5564 if (!dev_priv->drrs.dp) {
5565 mutex_unlock(&dev_priv->drrs.mutex);
5566 return;
5567 }
5568
5569 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5570 pipe = to_intel_crtc(crtc)->pipe;
5571
5572 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5573 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5574
5575 /* invalidate means busy screen hence upclock */
5576 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5577 intel_dp_set_drrs_state(dev_priv->dev,
5578 dev_priv->drrs.dp->attached_connector->panel.
5579 fixed_mode->vrefresh);
5580
5581 mutex_unlock(&dev_priv->drrs.mutex);
5582 }
5583
5584 /**
5585 * intel_edp_drrs_flush - Restart Idleness DRRS
5586 * @dev: DRM device
5587 * @frontbuffer_bits: frontbuffer plane tracking bits
5588 *
5589 * This function gets called every time rendering on the given planes has
5590 * completed or flip on a crtc is completed. So DRRS should be upclocked
5591 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5592 * if no other planes are dirty.
5593 *
5594 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5595 */
5596 void intel_edp_drrs_flush(struct drm_device *dev,
5597 unsigned frontbuffer_bits)
5598 {
5599 struct drm_i915_private *dev_priv = dev->dev_private;
5600 struct drm_crtc *crtc;
5601 enum pipe pipe;
5602
5603 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5604 return;
5605
5606 cancel_delayed_work(&dev_priv->drrs.work);
5607
5608 mutex_lock(&dev_priv->drrs.mutex);
5609 if (!dev_priv->drrs.dp) {
5610 mutex_unlock(&dev_priv->drrs.mutex);
5611 return;
5612 }
5613
5614 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5615 pipe = to_intel_crtc(crtc)->pipe;
5616
5617 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5618 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5619
5620 /* flush means busy screen hence upclock */
5621 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5622 intel_dp_set_drrs_state(dev_priv->dev,
5623 dev_priv->drrs.dp->attached_connector->panel.
5624 fixed_mode->vrefresh);
5625
5626 /*
5627 * flush also means no more activity hence schedule downclock, if all
5628 * other fbs are quiescent too
5629 */
5630 if (!dev_priv->drrs.busy_frontbuffer_bits)
5631 schedule_delayed_work(&dev_priv->drrs.work,
5632 msecs_to_jiffies(1000));
5633 mutex_unlock(&dev_priv->drrs.mutex);
5634 }
5635
5636 /**
5637 * DOC: Display Refresh Rate Switching (DRRS)
5638 *
5639 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5640 * which enables swtching between low and high refresh rates,
5641 * dynamically, based on the usage scenario. This feature is applicable
5642 * for internal panels.
5643 *
5644 * Indication that the panel supports DRRS is given by the panel EDID, which
5645 * would list multiple refresh rates for one resolution.
5646 *
5647 * DRRS is of 2 types - static and seamless.
5648 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5649 * (may appear as a blink on screen) and is used in dock-undock scenario.
5650 * Seamless DRRS involves changing RR without any visual effect to the user
5651 * and can be used during normal system usage. This is done by programming
5652 * certain registers.
5653 *
5654 * Support for static/seamless DRRS may be indicated in the VBT based on
5655 * inputs from the panel spec.
5656 *
5657 * DRRS saves power by switching to low RR based on usage scenarios.
5658 *
5659 * eDP DRRS:-
5660 * The implementation is based on frontbuffer tracking implementation.
5661 * When there is a disturbance on the screen triggered by user activity or a
5662 * periodic system activity, DRRS is disabled (RR is changed to high RR).
5663 * When there is no movement on screen, after a timeout of 1 second, a switch
5664 * to low RR is made.
5665 * For integration with frontbuffer tracking code,
5666 * intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called.
5667 *
5668 * DRRS can be further extended to support other internal panels and also
5669 * the scenario of video playback wherein RR is set based on the rate
5670 * requested by userspace.
5671 */
5672
5673 /**
5674 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5675 * @intel_connector: eDP connector
5676 * @fixed_mode: preferred mode of panel
5677 *
5678 * This function is called only once at driver load to initialize basic
5679 * DRRS stuff.
5680 *
5681 * Returns:
5682 * Downclock mode if panel supports it, else return NULL.
5683 * DRRS support is determined by the presence of downclock mode (apart
5684 * from VBT setting).
5685 */
5686 static struct drm_display_mode *
5687 intel_dp_drrs_init(struct intel_connector *intel_connector,
5688 struct drm_display_mode *fixed_mode)
5689 {
5690 struct drm_connector *connector = &intel_connector->base;
5691 struct drm_device *dev = connector->dev;
5692 struct drm_i915_private *dev_priv = dev->dev_private;
5693 struct drm_display_mode *downclock_mode = NULL;
5694
5695 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5696 mutex_init(&dev_priv->drrs.mutex);
5697
5698 if (INTEL_INFO(dev)->gen <= 6) {
5699 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5700 return NULL;
5701 }
5702
5703 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5704 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5705 return NULL;
5706 }
5707
5708 downclock_mode = intel_find_panel_downclock
5709 (dev, fixed_mode, connector);
5710
5711 if (!downclock_mode) {
5712 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5713 return NULL;
5714 }
5715
5716 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5717
5718 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5719 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5720 return downclock_mode;
5721 }
5722
5723 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5724 struct intel_connector *intel_connector)
5725 {
5726 struct drm_connector *connector = &intel_connector->base;
5727 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5728 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5729 struct drm_device *dev = intel_encoder->base.dev;
5730 struct drm_i915_private *dev_priv = dev->dev_private;
5731 struct drm_display_mode *fixed_mode = NULL;
5732 struct drm_display_mode *downclock_mode = NULL;
5733 bool has_dpcd;
5734 struct drm_display_mode *scan;
5735 struct edid *edid;
5736 enum pipe pipe = INVALID_PIPE;
5737
5738 if (!is_edp(intel_dp))
5739 return true;
5740
5741 pps_lock(intel_dp);
5742 intel_edp_panel_vdd_sanitize(intel_dp);
5743 pps_unlock(intel_dp);
5744
5745 /* Cache DPCD and EDID for edp. */
5746 has_dpcd = intel_dp_get_dpcd(intel_dp);
5747
5748 if (has_dpcd) {
5749 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5750 dev_priv->no_aux_handshake =
5751 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5752 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5753 } else {
5754 /* if this fails, presume the device is a ghost */
5755 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5756 return false;
5757 }
5758
5759 /* We now know it's not a ghost, init power sequence regs. */
5760 pps_lock(intel_dp);
5761 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5762 pps_unlock(intel_dp);
5763
5764 mutex_lock(&dev->mode_config.mutex);
5765 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5766 if (edid) {
5767 if (drm_add_edid_modes(connector, edid)) {
5768 drm_mode_connector_update_edid_property(connector,
5769 edid);
5770 drm_edid_to_eld(connector, edid);
5771 } else {
5772 kfree(edid);
5773 edid = ERR_PTR(-EINVAL);
5774 }
5775 } else {
5776 edid = ERR_PTR(-ENOENT);
5777 }
5778 intel_connector->edid = edid;
5779
5780 /* prefer fixed mode from EDID if available */
5781 list_for_each_entry(scan, &connector->probed_modes, head) {
5782 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5783 fixed_mode = drm_mode_duplicate(dev, scan);
5784 downclock_mode = intel_dp_drrs_init(
5785 intel_connector, fixed_mode);
5786 break;
5787 }
5788 }
5789
5790 /* fallback to VBT if available for eDP */
5791 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5792 fixed_mode = drm_mode_duplicate(dev,
5793 dev_priv->vbt.lfp_lvds_vbt_mode);
5794 if (fixed_mode)
5795 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5796 }
5797 mutex_unlock(&dev->mode_config.mutex);
5798
5799 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5800 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5801 register_reboot_notifier(&intel_dp->edp_notifier);
5802
5803 /*
5804 * Figure out the current pipe for the initial backlight setup.
5805 * If the current pipe isn't valid, try the PPS pipe, and if that
5806 * fails just assume pipe A.
5807 */
5808 if (IS_CHERRYVIEW(dev))
5809 pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5810 else
5811 pipe = PORT_TO_PIPE(intel_dp->DP);
5812
5813 if (pipe != PIPE_A && pipe != PIPE_B)
5814 pipe = intel_dp->pps_pipe;
5815
5816 if (pipe != PIPE_A && pipe != PIPE_B)
5817 pipe = PIPE_A;
5818
5819 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5820 pipe_name(pipe));
5821 }
5822
5823 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5824 intel_connector->panel.backlight.power = intel_edp_backlight_power;
5825 intel_panel_setup_backlight(connector, pipe);
5826
5827 return true;
5828 }
5829
5830 bool
5831 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5832 struct intel_connector *intel_connector)
5833 {
5834 struct drm_connector *connector = &intel_connector->base;
5835 struct intel_dp *intel_dp = &intel_dig_port->dp;
5836 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5837 struct drm_device *dev = intel_encoder->base.dev;
5838 struct drm_i915_private *dev_priv = dev->dev_private;
5839 enum port port = intel_dig_port->port;
5840 int type, ret;
5841
5842 intel_dp->pps_pipe = INVALID_PIPE;
5843
5844 /* intel_dp vfuncs */
5845 if (INTEL_INFO(dev)->gen >= 9)
5846 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5847 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5848 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5849 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5850 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5851 else if (HAS_PCH_SPLIT(dev))
5852 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5853 else
5854 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5855
5856 if (INTEL_INFO(dev)->gen >= 9)
5857 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5858 else
5859 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5860
5861 if (HAS_DDI(dev))
5862 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
5863
5864 /* Preserve the current hw state. */
5865 intel_dp->DP = I915_READ(intel_dp->output_reg);
5866 intel_dp->attached_connector = intel_connector;
5867
5868 if (intel_dp_is_edp(dev, port))
5869 type = DRM_MODE_CONNECTOR_eDP;
5870 else
5871 type = DRM_MODE_CONNECTOR_DisplayPort;
5872
5873 /*
5874 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5875 * for DP the encoder type can be set by the caller to
5876 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5877 */
5878 if (type == DRM_MODE_CONNECTOR_eDP)
5879 intel_encoder->type = INTEL_OUTPUT_EDP;
5880
5881 /* eDP only on port B and/or C on vlv/chv */
5882 if (WARN_ON((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
5883 is_edp(intel_dp) && port != PORT_B && port != PORT_C))
5884 return false;
5885
5886 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5887 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5888 port_name(port));
5889
5890 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5891 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5892
5893 connector->interlace_allowed = true;
5894 connector->doublescan_allowed = 0;
5895
5896 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5897 edp_panel_vdd_work);
5898
5899 intel_connector_attach_encoder(intel_connector, intel_encoder);
5900 drm_connector_register(connector);
5901
5902 if (HAS_DDI(dev))
5903 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5904 else
5905 intel_connector->get_hw_state = intel_connector_get_hw_state;
5906 intel_connector->unregister = intel_dp_connector_unregister;
5907
5908 /* Set up the hotplug pin. */
5909 switch (port) {
5910 case PORT_A:
5911 intel_encoder->hpd_pin = HPD_PORT_A;
5912 break;
5913 case PORT_B:
5914 intel_encoder->hpd_pin = HPD_PORT_B;
5915 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
5916 intel_encoder->hpd_pin = HPD_PORT_A;
5917 break;
5918 case PORT_C:
5919 intel_encoder->hpd_pin = HPD_PORT_C;
5920 break;
5921 case PORT_D:
5922 intel_encoder->hpd_pin = HPD_PORT_D;
5923 break;
5924 case PORT_E:
5925 intel_encoder->hpd_pin = HPD_PORT_E;
5926 break;
5927 default:
5928 BUG();
5929 }
5930
5931 if (is_edp(intel_dp)) {
5932 pps_lock(intel_dp);
5933 intel_dp_init_panel_power_timestamps(intel_dp);
5934 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5935 vlv_initial_power_sequencer_setup(intel_dp);
5936 else
5937 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5938 pps_unlock(intel_dp);
5939 }
5940
5941 ret = intel_dp_aux_init(intel_dp, intel_connector);
5942 if (ret)
5943 goto fail;
5944
5945 /* init MST on ports that can support it */
5946 if (HAS_DP_MST(dev) &&
5947 (port == PORT_B || port == PORT_C || port == PORT_D))
5948 intel_dp_mst_encoder_init(intel_dig_port,
5949 intel_connector->base.base.id);
5950
5951 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5952 intel_dp_aux_fini(intel_dp);
5953 intel_dp_mst_encoder_cleanup(intel_dig_port);
5954 goto fail;
5955 }
5956
5957 intel_dp_add_properties(intel_dp, connector);
5958
5959 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5960 * 0xd. Failure to do so will result in spurious interrupts being
5961 * generated on the port when a cable is not attached.
5962 */
5963 if (IS_G4X(dev) && !IS_GM45(dev)) {
5964 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5965 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5966 }
5967
5968 i915_debugfs_connector_add(connector);
5969
5970 return true;
5971
5972 fail:
5973 if (is_edp(intel_dp)) {
5974 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5975 /*
5976 * vdd might still be enabled do to the delayed vdd off.
5977 * Make sure vdd is actually turned off here.
5978 */
5979 pps_lock(intel_dp);
5980 edp_panel_vdd_off_sync(intel_dp);
5981 pps_unlock(intel_dp);
5982 }
5983 drm_connector_unregister(connector);
5984 drm_connector_cleanup(connector);
5985
5986 return false;
5987 }
5988
5989 void
5990 intel_dp_init(struct drm_device *dev,
5991 i915_reg_t output_reg, enum port port)
5992 {
5993 struct drm_i915_private *dev_priv = dev->dev_private;
5994 struct intel_digital_port *intel_dig_port;
5995 struct intel_encoder *intel_encoder;
5996 struct drm_encoder *encoder;
5997 struct intel_connector *intel_connector;
5998
5999 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
6000 if (!intel_dig_port)
6001 return;
6002
6003 intel_connector = intel_connector_alloc();
6004 if (!intel_connector)
6005 goto err_connector_alloc;
6006
6007 intel_encoder = &intel_dig_port->base;
6008 encoder = &intel_encoder->base;
6009
6010 if (drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
6011 DRM_MODE_ENCODER_TMDS, NULL))
6012 goto err_encoder_init;
6013
6014 intel_encoder->compute_config = intel_dp_compute_config;
6015 intel_encoder->disable = intel_disable_dp;
6016 intel_encoder->get_hw_state = intel_dp_get_hw_state;
6017 intel_encoder->get_config = intel_dp_get_config;
6018 intel_encoder->suspend = intel_dp_encoder_suspend;
6019 if (IS_CHERRYVIEW(dev)) {
6020 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
6021 intel_encoder->pre_enable = chv_pre_enable_dp;
6022 intel_encoder->enable = vlv_enable_dp;
6023 intel_encoder->post_disable = chv_post_disable_dp;
6024 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
6025 } else if (IS_VALLEYVIEW(dev)) {
6026 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
6027 intel_encoder->pre_enable = vlv_pre_enable_dp;
6028 intel_encoder->enable = vlv_enable_dp;
6029 intel_encoder->post_disable = vlv_post_disable_dp;
6030 } else {
6031 intel_encoder->pre_enable = g4x_pre_enable_dp;
6032 intel_encoder->enable = g4x_enable_dp;
6033 if (INTEL_INFO(dev)->gen >= 5)
6034 intel_encoder->post_disable = ilk_post_disable_dp;
6035 }
6036
6037 intel_dig_port->port = port;
6038 dev_priv->dig_port_map[port] = intel_encoder;
6039 intel_dig_port->dp.output_reg = output_reg;
6040
6041 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
6042 if (IS_CHERRYVIEW(dev)) {
6043 if (port == PORT_D)
6044 intel_encoder->crtc_mask = 1 << 2;
6045 else
6046 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
6047 } else {
6048 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
6049 }
6050 intel_encoder->cloneable = 0;
6051
6052 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
6053 dev_priv->hotplug.irq_port[port] = intel_dig_port;
6054
6055 if (!intel_dp_init_connector(intel_dig_port, intel_connector))
6056 goto err_init_connector;
6057
6058 return;
6059
6060 err_init_connector:
6061 drm_encoder_cleanup(encoder);
6062 err_encoder_init:
6063 kfree(intel_connector);
6064 err_connector_alloc:
6065 kfree(intel_dig_port);
6066
6067 return;
6068 }
6069
6070 void intel_dp_mst_suspend(struct drm_device *dev)
6071 {
6072 struct drm_i915_private *dev_priv = dev->dev_private;
6073 int i;
6074
6075 /* disable MST */
6076 for (i = 0; i < I915_MAX_PORTS; i++) {
6077 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6078 if (!intel_dig_port)
6079 continue;
6080
6081 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6082 if (!intel_dig_port->dp.can_mst)
6083 continue;
6084 if (intel_dig_port->dp.is_mst)
6085 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
6086 }
6087 }
6088 }
6089
6090 void intel_dp_mst_resume(struct drm_device *dev)
6091 {
6092 struct drm_i915_private *dev_priv = dev->dev_private;
6093 int i;
6094
6095 for (i = 0; i < I915_MAX_PORTS; i++) {
6096 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6097 if (!intel_dig_port)
6098 continue;
6099 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6100 int ret;
6101
6102 if (!intel_dig_port->dp.can_mst)
6103 continue;
6104
6105 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
6106 if (ret != 0) {
6107 intel_dp_check_mst_status(&intel_dig_port->dp);
6108 }
6109 }
6110 }
6111 }