]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_dp.c
a5c562850d475c7e9ae4f0154bef98723d6d150d
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 /* Compliance test status bits */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
46 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51 int clock;
52 struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56 { 162000,
57 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58 { 270000,
59 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63 { 162000,
64 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65 { 270000,
66 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70 { 162000,
71 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72 { 270000,
73 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77 * CHV supports eDP 1.4 that have more link rates.
78 * Below only provides the fixed rate but exclude variable rate.
79 */
80 static const struct dp_link_dpll chv_dpll[] = {
81 /*
82 * CHV requires to program fractional division for m2.
83 * m2 is stored in fixed point format using formula below
84 * (m2_int << 22) | m2_fraction
85 */
86 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
87 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88 { 270000, /* m2_int = 27, m2_fraction = 0 */
89 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90 { 540000, /* m2_int = 27, m2_fraction = 0 */
91 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95 324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97 324000, 432000, 540000 };
98 static const int default_rates[] = { 162000, 270000, 540000 };
99
100 /**
101 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
102 * @intel_dp: DP struct
103 *
104 * If a CPU or PCH DP output is attached to an eDP panel, this function
105 * will return true, and false otherwise.
106 */
107 static bool is_edp(struct intel_dp *intel_dp)
108 {
109 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
110
111 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 }
113
114 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115 {
116 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
117
118 return intel_dig_port->base.base.dev;
119 }
120
121 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
122 {
123 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 }
125
126 static void intel_dp_link_down(struct intel_dp *intel_dp);
127 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 static void vlv_steal_power_sequencer(struct drm_device *dev,
131 enum pipe pipe);
132 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
133
134 static int
135 intel_dp_max_link_bw(struct intel_dp *intel_dp)
136 {
137 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
138
139 switch (max_link_bw) {
140 case DP_LINK_BW_1_62:
141 case DP_LINK_BW_2_7:
142 case DP_LINK_BW_5_4:
143 break;
144 default:
145 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
146 max_link_bw);
147 max_link_bw = DP_LINK_BW_1_62;
148 break;
149 }
150 return max_link_bw;
151 }
152
153 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
154 {
155 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
156 u8 source_max, sink_max;
157
158 source_max = intel_dig_port->max_lanes;
159 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
160
161 return min(source_max, sink_max);
162 }
163
164 /*
165 * The units on the numbers in the next two are... bizarre. Examples will
166 * make it clearer; this one parallels an example in the eDP spec.
167 *
168 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
169 *
170 * 270000 * 1 * 8 / 10 == 216000
171 *
172 * The actual data capacity of that configuration is 2.16Gbit/s, so the
173 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
174 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
175 * 119000. At 18bpp that's 2142000 kilobits per second.
176 *
177 * Thus the strange-looking division by 10 in intel_dp_link_required, to
178 * get the result in decakilobits instead of kilobits.
179 */
180
181 static int
182 intel_dp_link_required(int pixel_clock, int bpp)
183 {
184 return (pixel_clock * bpp + 9) / 10;
185 }
186
187 static int
188 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
189 {
190 return (max_link_clock * max_lanes * 8) / 10;
191 }
192
193 static int
194 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
195 {
196 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
197 struct intel_encoder *encoder = &intel_dig_port->base;
198 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
199 int max_dotclk = dev_priv->max_dotclk_freq;
200 int ds_max_dotclk;
201
202 int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
203
204 if (type != DP_DS_PORT_TYPE_VGA)
205 return max_dotclk;
206
207 ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
208 intel_dp->downstream_ports);
209
210 if (ds_max_dotclk != 0)
211 max_dotclk = min(max_dotclk, ds_max_dotclk);
212
213 return max_dotclk;
214 }
215
216 static enum drm_mode_status
217 intel_dp_mode_valid(struct drm_connector *connector,
218 struct drm_display_mode *mode)
219 {
220 struct intel_dp *intel_dp = intel_attached_dp(connector);
221 struct intel_connector *intel_connector = to_intel_connector(connector);
222 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
223 int target_clock = mode->clock;
224 int max_rate, mode_rate, max_lanes, max_link_clock;
225 int max_dotclk;
226
227 max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
228
229 if (is_edp(intel_dp) && fixed_mode) {
230 if (mode->hdisplay > fixed_mode->hdisplay)
231 return MODE_PANEL;
232
233 if (mode->vdisplay > fixed_mode->vdisplay)
234 return MODE_PANEL;
235
236 target_clock = fixed_mode->clock;
237 }
238
239 max_link_clock = intel_dp_max_link_rate(intel_dp);
240 max_lanes = intel_dp_max_lane_count(intel_dp);
241
242 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
243 mode_rate = intel_dp_link_required(target_clock, 18);
244
245 if (mode_rate > max_rate || target_clock > max_dotclk)
246 return MODE_CLOCK_HIGH;
247
248 if (mode->clock < 10000)
249 return MODE_CLOCK_LOW;
250
251 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
252 return MODE_H_ILLEGAL;
253
254 return MODE_OK;
255 }
256
257 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
258 {
259 int i;
260 uint32_t v = 0;
261
262 if (src_bytes > 4)
263 src_bytes = 4;
264 for (i = 0; i < src_bytes; i++)
265 v |= ((uint32_t) src[i]) << ((3-i) * 8);
266 return v;
267 }
268
269 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
270 {
271 int i;
272 if (dst_bytes > 4)
273 dst_bytes = 4;
274 for (i = 0; i < dst_bytes; i++)
275 dst[i] = src >> ((3-i) * 8);
276 }
277
278 static void
279 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
280 struct intel_dp *intel_dp);
281 static void
282 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
283 struct intel_dp *intel_dp);
284 static void
285 intel_dp_pps_init(struct drm_device *dev, struct intel_dp *intel_dp);
286
287 static void pps_lock(struct intel_dp *intel_dp)
288 {
289 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
290 struct intel_encoder *encoder = &intel_dig_port->base;
291 struct drm_device *dev = encoder->base.dev;
292 struct drm_i915_private *dev_priv = to_i915(dev);
293 enum intel_display_power_domain power_domain;
294
295 /*
296 * See vlv_power_sequencer_reset() why we need
297 * a power domain reference here.
298 */
299 power_domain = intel_display_port_aux_power_domain(encoder);
300 intel_display_power_get(dev_priv, power_domain);
301
302 mutex_lock(&dev_priv->pps_mutex);
303 }
304
305 static void pps_unlock(struct intel_dp *intel_dp)
306 {
307 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
308 struct intel_encoder *encoder = &intel_dig_port->base;
309 struct drm_device *dev = encoder->base.dev;
310 struct drm_i915_private *dev_priv = to_i915(dev);
311 enum intel_display_power_domain power_domain;
312
313 mutex_unlock(&dev_priv->pps_mutex);
314
315 power_domain = intel_display_port_aux_power_domain(encoder);
316 intel_display_power_put(dev_priv, power_domain);
317 }
318
319 static void
320 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
321 {
322 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
323 struct drm_device *dev = intel_dig_port->base.base.dev;
324 struct drm_i915_private *dev_priv = to_i915(dev);
325 enum pipe pipe = intel_dp->pps_pipe;
326 bool pll_enabled, release_cl_override = false;
327 enum dpio_phy phy = DPIO_PHY(pipe);
328 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
329 uint32_t DP;
330
331 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
332 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
333 pipe_name(pipe), port_name(intel_dig_port->port)))
334 return;
335
336 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
337 pipe_name(pipe), port_name(intel_dig_port->port));
338
339 /* Preserve the BIOS-computed detected bit. This is
340 * supposed to be read-only.
341 */
342 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
343 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
344 DP |= DP_PORT_WIDTH(1);
345 DP |= DP_LINK_TRAIN_PAT_1;
346
347 if (IS_CHERRYVIEW(dev))
348 DP |= DP_PIPE_SELECT_CHV(pipe);
349 else if (pipe == PIPE_B)
350 DP |= DP_PIPEB_SELECT;
351
352 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
353
354 /*
355 * The DPLL for the pipe must be enabled for this to work.
356 * So enable temporarily it if it's not already enabled.
357 */
358 if (!pll_enabled) {
359 release_cl_override = IS_CHERRYVIEW(dev) &&
360 !chv_phy_powergate_ch(dev_priv, phy, ch, true);
361
362 if (vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
363 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
364 DRM_ERROR("Failed to force on pll for pipe %c!\n",
365 pipe_name(pipe));
366 return;
367 }
368 }
369
370 /*
371 * Similar magic as in intel_dp_enable_port().
372 * We _must_ do this port enable + disable trick
373 * to make this power seqeuencer lock onto the port.
374 * Otherwise even VDD force bit won't work.
375 */
376 I915_WRITE(intel_dp->output_reg, DP);
377 POSTING_READ(intel_dp->output_reg);
378
379 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
380 POSTING_READ(intel_dp->output_reg);
381
382 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
383 POSTING_READ(intel_dp->output_reg);
384
385 if (!pll_enabled) {
386 vlv_force_pll_off(dev, pipe);
387
388 if (release_cl_override)
389 chv_phy_powergate_ch(dev_priv, phy, ch, false);
390 }
391 }
392
393 static enum pipe
394 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
395 {
396 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
397 struct drm_device *dev = intel_dig_port->base.base.dev;
398 struct drm_i915_private *dev_priv = to_i915(dev);
399 struct intel_encoder *encoder;
400 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
401 enum pipe pipe;
402
403 lockdep_assert_held(&dev_priv->pps_mutex);
404
405 /* We should never land here with regular DP ports */
406 WARN_ON(!is_edp(intel_dp));
407
408 if (intel_dp->pps_pipe != INVALID_PIPE)
409 return intel_dp->pps_pipe;
410
411 /*
412 * We don't have power sequencer currently.
413 * Pick one that's not used by other ports.
414 */
415 for_each_intel_encoder(dev, encoder) {
416 struct intel_dp *tmp;
417
418 if (encoder->type != INTEL_OUTPUT_EDP)
419 continue;
420
421 tmp = enc_to_intel_dp(&encoder->base);
422
423 if (tmp->pps_pipe != INVALID_PIPE)
424 pipes &= ~(1 << tmp->pps_pipe);
425 }
426
427 /*
428 * Didn't find one. This should not happen since there
429 * are two power sequencers and up to two eDP ports.
430 */
431 if (WARN_ON(pipes == 0))
432 pipe = PIPE_A;
433 else
434 pipe = ffs(pipes) - 1;
435
436 vlv_steal_power_sequencer(dev, pipe);
437 intel_dp->pps_pipe = pipe;
438
439 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
440 pipe_name(intel_dp->pps_pipe),
441 port_name(intel_dig_port->port));
442
443 /* init power sequencer on this pipe and port */
444 intel_dp_init_panel_power_sequencer(dev, intel_dp);
445 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
446
447 /*
448 * Even vdd force doesn't work until we've made
449 * the power sequencer lock in on the port.
450 */
451 vlv_power_sequencer_kick(intel_dp);
452
453 return intel_dp->pps_pipe;
454 }
455
456 static int
457 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
458 {
459 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
460 struct drm_device *dev = intel_dig_port->base.base.dev;
461 struct drm_i915_private *dev_priv = to_i915(dev);
462
463 lockdep_assert_held(&dev_priv->pps_mutex);
464
465 /* We should never land here with regular DP ports */
466 WARN_ON(!is_edp(intel_dp));
467
468 /*
469 * TODO: BXT has 2 PPS instances. The correct port->PPS instance
470 * mapping needs to be retrieved from VBT, for now just hard-code to
471 * use instance #0 always.
472 */
473 if (!intel_dp->pps_reset)
474 return 0;
475
476 intel_dp->pps_reset = false;
477
478 /*
479 * Only the HW needs to be reprogrammed, the SW state is fixed and
480 * has been setup during connector init.
481 */
482 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
483
484 return 0;
485 }
486
487 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
488 enum pipe pipe);
489
490 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
491 enum pipe pipe)
492 {
493 return I915_READ(PP_STATUS(pipe)) & PP_ON;
494 }
495
496 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
497 enum pipe pipe)
498 {
499 return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
500 }
501
502 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
503 enum pipe pipe)
504 {
505 return true;
506 }
507
508 static enum pipe
509 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
510 enum port port,
511 vlv_pipe_check pipe_check)
512 {
513 enum pipe pipe;
514
515 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
516 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
517 PANEL_PORT_SELECT_MASK;
518
519 if (port_sel != PANEL_PORT_SELECT_VLV(port))
520 continue;
521
522 if (!pipe_check(dev_priv, pipe))
523 continue;
524
525 return pipe;
526 }
527
528 return INVALID_PIPE;
529 }
530
531 static void
532 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
533 {
534 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
535 struct drm_device *dev = intel_dig_port->base.base.dev;
536 struct drm_i915_private *dev_priv = to_i915(dev);
537 enum port port = intel_dig_port->port;
538
539 lockdep_assert_held(&dev_priv->pps_mutex);
540
541 /* try to find a pipe with this port selected */
542 /* first pick one where the panel is on */
543 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
544 vlv_pipe_has_pp_on);
545 /* didn't find one? pick one where vdd is on */
546 if (intel_dp->pps_pipe == INVALID_PIPE)
547 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
548 vlv_pipe_has_vdd_on);
549 /* didn't find one? pick one with just the correct port */
550 if (intel_dp->pps_pipe == INVALID_PIPE)
551 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
552 vlv_pipe_any);
553
554 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
555 if (intel_dp->pps_pipe == INVALID_PIPE) {
556 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
557 port_name(port));
558 return;
559 }
560
561 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
562 port_name(port), pipe_name(intel_dp->pps_pipe));
563
564 intel_dp_init_panel_power_sequencer(dev, intel_dp);
565 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
566 }
567
568 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
569 {
570 struct drm_device *dev = &dev_priv->drm;
571 struct intel_encoder *encoder;
572
573 if (WARN_ON(!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
574 !IS_BROXTON(dev)))
575 return;
576
577 /*
578 * We can't grab pps_mutex here due to deadlock with power_domain
579 * mutex when power_domain functions are called while holding pps_mutex.
580 * That also means that in order to use pps_pipe the code needs to
581 * hold both a power domain reference and pps_mutex, and the power domain
582 * reference get/put must be done while _not_ holding pps_mutex.
583 * pps_{lock,unlock}() do these steps in the correct order, so one
584 * should use them always.
585 */
586
587 for_each_intel_encoder(dev, encoder) {
588 struct intel_dp *intel_dp;
589
590 if (encoder->type != INTEL_OUTPUT_EDP)
591 continue;
592
593 intel_dp = enc_to_intel_dp(&encoder->base);
594 if (IS_BROXTON(dev))
595 intel_dp->pps_reset = true;
596 else
597 intel_dp->pps_pipe = INVALID_PIPE;
598 }
599 }
600
601 struct pps_registers {
602 i915_reg_t pp_ctrl;
603 i915_reg_t pp_stat;
604 i915_reg_t pp_on;
605 i915_reg_t pp_off;
606 i915_reg_t pp_div;
607 };
608
609 static void intel_pps_get_registers(struct drm_i915_private *dev_priv,
610 struct intel_dp *intel_dp,
611 struct pps_registers *regs)
612 {
613 int pps_idx = 0;
614
615 memset(regs, 0, sizeof(*regs));
616
617 if (IS_BROXTON(dev_priv))
618 pps_idx = bxt_power_sequencer_idx(intel_dp);
619 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
620 pps_idx = vlv_power_sequencer_pipe(intel_dp);
621
622 regs->pp_ctrl = PP_CONTROL(pps_idx);
623 regs->pp_stat = PP_STATUS(pps_idx);
624 regs->pp_on = PP_ON_DELAYS(pps_idx);
625 regs->pp_off = PP_OFF_DELAYS(pps_idx);
626 if (!IS_BROXTON(dev_priv))
627 regs->pp_div = PP_DIVISOR(pps_idx);
628 }
629
630 static i915_reg_t
631 _pp_ctrl_reg(struct intel_dp *intel_dp)
632 {
633 struct pps_registers regs;
634
635 intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
636 &regs);
637
638 return regs.pp_ctrl;
639 }
640
641 static i915_reg_t
642 _pp_stat_reg(struct intel_dp *intel_dp)
643 {
644 struct pps_registers regs;
645
646 intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
647 &regs);
648
649 return regs.pp_stat;
650 }
651
652 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
653 This function only applicable when panel PM state is not to be tracked */
654 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
655 void *unused)
656 {
657 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
658 edp_notifier);
659 struct drm_device *dev = intel_dp_to_dev(intel_dp);
660 struct drm_i915_private *dev_priv = to_i915(dev);
661
662 if (!is_edp(intel_dp) || code != SYS_RESTART)
663 return 0;
664
665 pps_lock(intel_dp);
666
667 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
668 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
669 i915_reg_t pp_ctrl_reg, pp_div_reg;
670 u32 pp_div;
671
672 pp_ctrl_reg = PP_CONTROL(pipe);
673 pp_div_reg = PP_DIVISOR(pipe);
674 pp_div = I915_READ(pp_div_reg);
675 pp_div &= PP_REFERENCE_DIVIDER_MASK;
676
677 /* 0x1F write to PP_DIV_REG sets max cycle delay */
678 I915_WRITE(pp_div_reg, pp_div | 0x1F);
679 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
680 msleep(intel_dp->panel_power_cycle_delay);
681 }
682
683 pps_unlock(intel_dp);
684
685 return 0;
686 }
687
688 static bool edp_have_panel_power(struct intel_dp *intel_dp)
689 {
690 struct drm_device *dev = intel_dp_to_dev(intel_dp);
691 struct drm_i915_private *dev_priv = to_i915(dev);
692
693 lockdep_assert_held(&dev_priv->pps_mutex);
694
695 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
696 intel_dp->pps_pipe == INVALID_PIPE)
697 return false;
698
699 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
700 }
701
702 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
703 {
704 struct drm_device *dev = intel_dp_to_dev(intel_dp);
705 struct drm_i915_private *dev_priv = to_i915(dev);
706
707 lockdep_assert_held(&dev_priv->pps_mutex);
708
709 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
710 intel_dp->pps_pipe == INVALID_PIPE)
711 return false;
712
713 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
714 }
715
716 static void
717 intel_dp_check_edp(struct intel_dp *intel_dp)
718 {
719 struct drm_device *dev = intel_dp_to_dev(intel_dp);
720 struct drm_i915_private *dev_priv = to_i915(dev);
721
722 if (!is_edp(intel_dp))
723 return;
724
725 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
726 WARN(1, "eDP powered off while attempting aux channel communication.\n");
727 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
728 I915_READ(_pp_stat_reg(intel_dp)),
729 I915_READ(_pp_ctrl_reg(intel_dp)));
730 }
731 }
732
733 static uint32_t
734 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
735 {
736 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
737 struct drm_device *dev = intel_dig_port->base.base.dev;
738 struct drm_i915_private *dev_priv = to_i915(dev);
739 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
740 uint32_t status;
741 bool done;
742
743 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
744 if (has_aux_irq)
745 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
746 msecs_to_jiffies_timeout(10));
747 else
748 done = wait_for(C, 10) == 0;
749 if (!done)
750 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
751 has_aux_irq);
752 #undef C
753
754 return status;
755 }
756
757 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
758 {
759 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
760 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
761
762 if (index)
763 return 0;
764
765 /*
766 * The clock divider is based off the hrawclk, and would like to run at
767 * 2MHz. So, take the hrawclk value and divide by 2000 and use that
768 */
769 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
770 }
771
772 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
773 {
774 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
775 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
776
777 if (index)
778 return 0;
779
780 /*
781 * The clock divider is based off the cdclk or PCH rawclk, and would
782 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and
783 * divide by 2000 and use that
784 */
785 if (intel_dig_port->port == PORT_A)
786 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
787 else
788 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
789 }
790
791 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
792 {
793 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
794 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
795
796 if (intel_dig_port->port != PORT_A && HAS_PCH_LPT_H(dev_priv)) {
797 /* Workaround for non-ULT HSW */
798 switch (index) {
799 case 0: return 63;
800 case 1: return 72;
801 default: return 0;
802 }
803 }
804
805 return ilk_get_aux_clock_divider(intel_dp, index);
806 }
807
808 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
809 {
810 /*
811 * SKL doesn't need us to program the AUX clock divider (Hardware will
812 * derive the clock from CDCLK automatically). We still implement the
813 * get_aux_clock_divider vfunc to plug-in into the existing code.
814 */
815 return index ? 0 : 1;
816 }
817
818 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
819 bool has_aux_irq,
820 int send_bytes,
821 uint32_t aux_clock_divider)
822 {
823 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
824 struct drm_device *dev = intel_dig_port->base.base.dev;
825 uint32_t precharge, timeout;
826
827 if (IS_GEN6(dev))
828 precharge = 3;
829 else
830 precharge = 5;
831
832 if (IS_BROADWELL(dev) && intel_dig_port->port == PORT_A)
833 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
834 else
835 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
836
837 return DP_AUX_CH_CTL_SEND_BUSY |
838 DP_AUX_CH_CTL_DONE |
839 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
840 DP_AUX_CH_CTL_TIME_OUT_ERROR |
841 timeout |
842 DP_AUX_CH_CTL_RECEIVE_ERROR |
843 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
844 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
845 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
846 }
847
848 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
849 bool has_aux_irq,
850 int send_bytes,
851 uint32_t unused)
852 {
853 return DP_AUX_CH_CTL_SEND_BUSY |
854 DP_AUX_CH_CTL_DONE |
855 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
856 DP_AUX_CH_CTL_TIME_OUT_ERROR |
857 DP_AUX_CH_CTL_TIME_OUT_1600us |
858 DP_AUX_CH_CTL_RECEIVE_ERROR |
859 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
860 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
861 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
862 }
863
864 static int
865 intel_dp_aux_ch(struct intel_dp *intel_dp,
866 const uint8_t *send, int send_bytes,
867 uint8_t *recv, int recv_size)
868 {
869 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
870 struct drm_device *dev = intel_dig_port->base.base.dev;
871 struct drm_i915_private *dev_priv = to_i915(dev);
872 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
873 uint32_t aux_clock_divider;
874 int i, ret, recv_bytes;
875 uint32_t status;
876 int try, clock = 0;
877 bool has_aux_irq = HAS_AUX_IRQ(dev);
878 bool vdd;
879
880 pps_lock(intel_dp);
881
882 /*
883 * We will be called with VDD already enabled for dpcd/edid/oui reads.
884 * In such cases we want to leave VDD enabled and it's up to upper layers
885 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
886 * ourselves.
887 */
888 vdd = edp_panel_vdd_on(intel_dp);
889
890 /* dp aux is extremely sensitive to irq latency, hence request the
891 * lowest possible wakeup latency and so prevent the cpu from going into
892 * deep sleep states.
893 */
894 pm_qos_update_request(&dev_priv->pm_qos, 0);
895
896 intel_dp_check_edp(intel_dp);
897
898 /* Try to wait for any previous AUX channel activity */
899 for (try = 0; try < 3; try++) {
900 status = I915_READ_NOTRACE(ch_ctl);
901 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
902 break;
903 msleep(1);
904 }
905
906 if (try == 3) {
907 static u32 last_status = -1;
908 const u32 status = I915_READ(ch_ctl);
909
910 if (status != last_status) {
911 WARN(1, "dp_aux_ch not started status 0x%08x\n",
912 status);
913 last_status = status;
914 }
915
916 ret = -EBUSY;
917 goto out;
918 }
919
920 /* Only 5 data registers! */
921 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
922 ret = -E2BIG;
923 goto out;
924 }
925
926 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
927 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
928 has_aux_irq,
929 send_bytes,
930 aux_clock_divider);
931
932 /* Must try at least 3 times according to DP spec */
933 for (try = 0; try < 5; try++) {
934 /* Load the send data into the aux channel data registers */
935 for (i = 0; i < send_bytes; i += 4)
936 I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
937 intel_dp_pack_aux(send + i,
938 send_bytes - i));
939
940 /* Send the command and wait for it to complete */
941 I915_WRITE(ch_ctl, send_ctl);
942
943 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
944
945 /* Clear done status and any errors */
946 I915_WRITE(ch_ctl,
947 status |
948 DP_AUX_CH_CTL_DONE |
949 DP_AUX_CH_CTL_TIME_OUT_ERROR |
950 DP_AUX_CH_CTL_RECEIVE_ERROR);
951
952 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
953 continue;
954
955 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
956 * 400us delay required for errors and timeouts
957 * Timeout errors from the HW already meet this
958 * requirement so skip to next iteration
959 */
960 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
961 usleep_range(400, 500);
962 continue;
963 }
964 if (status & DP_AUX_CH_CTL_DONE)
965 goto done;
966 }
967 }
968
969 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
970 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
971 ret = -EBUSY;
972 goto out;
973 }
974
975 done:
976 /* Check for timeout or receive error.
977 * Timeouts occur when the sink is not connected
978 */
979 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
980 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
981 ret = -EIO;
982 goto out;
983 }
984
985 /* Timeouts occur when the device isn't connected, so they're
986 * "normal" -- don't fill the kernel log with these */
987 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
988 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
989 ret = -ETIMEDOUT;
990 goto out;
991 }
992
993 /* Unload any bytes sent back from the other side */
994 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
995 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
996
997 /*
998 * By BSpec: "Message sizes of 0 or >20 are not allowed."
999 * We have no idea of what happened so we return -EBUSY so
1000 * drm layer takes care for the necessary retries.
1001 */
1002 if (recv_bytes == 0 || recv_bytes > 20) {
1003 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1004 recv_bytes);
1005 /*
1006 * FIXME: This patch was created on top of a series that
1007 * organize the retries at drm level. There EBUSY should
1008 * also take care for 1ms wait before retrying.
1009 * That aux retries re-org is still needed and after that is
1010 * merged we remove this sleep from here.
1011 */
1012 usleep_range(1000, 1500);
1013 ret = -EBUSY;
1014 goto out;
1015 }
1016
1017 if (recv_bytes > recv_size)
1018 recv_bytes = recv_size;
1019
1020 for (i = 0; i < recv_bytes; i += 4)
1021 intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
1022 recv + i, recv_bytes - i);
1023
1024 ret = recv_bytes;
1025 out:
1026 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
1027
1028 if (vdd)
1029 edp_panel_vdd_off(intel_dp, false);
1030
1031 pps_unlock(intel_dp);
1032
1033 return ret;
1034 }
1035
1036 #define BARE_ADDRESS_SIZE 3
1037 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
1038 static ssize_t
1039 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1040 {
1041 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1042 uint8_t txbuf[20], rxbuf[20];
1043 size_t txsize, rxsize;
1044 int ret;
1045
1046 txbuf[0] = (msg->request << 4) |
1047 ((msg->address >> 16) & 0xf);
1048 txbuf[1] = (msg->address >> 8) & 0xff;
1049 txbuf[2] = msg->address & 0xff;
1050 txbuf[3] = msg->size - 1;
1051
1052 switch (msg->request & ~DP_AUX_I2C_MOT) {
1053 case DP_AUX_NATIVE_WRITE:
1054 case DP_AUX_I2C_WRITE:
1055 case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1056 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1057 rxsize = 2; /* 0 or 1 data bytes */
1058
1059 if (WARN_ON(txsize > 20))
1060 return -E2BIG;
1061
1062 WARN_ON(!msg->buffer != !msg->size);
1063
1064 if (msg->buffer)
1065 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1066
1067 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1068 if (ret > 0) {
1069 msg->reply = rxbuf[0] >> 4;
1070
1071 if (ret > 1) {
1072 /* Number of bytes written in a short write. */
1073 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1074 } else {
1075 /* Return payload size. */
1076 ret = msg->size;
1077 }
1078 }
1079 break;
1080
1081 case DP_AUX_NATIVE_READ:
1082 case DP_AUX_I2C_READ:
1083 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1084 rxsize = msg->size + 1;
1085
1086 if (WARN_ON(rxsize > 20))
1087 return -E2BIG;
1088
1089 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1090 if (ret > 0) {
1091 msg->reply = rxbuf[0] >> 4;
1092 /*
1093 * Assume happy day, and copy the data. The caller is
1094 * expected to check msg->reply before touching it.
1095 *
1096 * Return payload size.
1097 */
1098 ret--;
1099 memcpy(msg->buffer, rxbuf + 1, ret);
1100 }
1101 break;
1102
1103 default:
1104 ret = -EINVAL;
1105 break;
1106 }
1107
1108 return ret;
1109 }
1110
1111 static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1112 enum port port)
1113 {
1114 switch (port) {
1115 case PORT_B:
1116 case PORT_C:
1117 case PORT_D:
1118 return DP_AUX_CH_CTL(port);
1119 default:
1120 MISSING_CASE(port);
1121 return DP_AUX_CH_CTL(PORT_B);
1122 }
1123 }
1124
1125 static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1126 enum port port, int index)
1127 {
1128 switch (port) {
1129 case PORT_B:
1130 case PORT_C:
1131 case PORT_D:
1132 return DP_AUX_CH_DATA(port, index);
1133 default:
1134 MISSING_CASE(port);
1135 return DP_AUX_CH_DATA(PORT_B, index);
1136 }
1137 }
1138
1139 static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1140 enum port port)
1141 {
1142 switch (port) {
1143 case PORT_A:
1144 return DP_AUX_CH_CTL(port);
1145 case PORT_B:
1146 case PORT_C:
1147 case PORT_D:
1148 return PCH_DP_AUX_CH_CTL(port);
1149 default:
1150 MISSING_CASE(port);
1151 return DP_AUX_CH_CTL(PORT_A);
1152 }
1153 }
1154
1155 static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1156 enum port port, int index)
1157 {
1158 switch (port) {
1159 case PORT_A:
1160 return DP_AUX_CH_DATA(port, index);
1161 case PORT_B:
1162 case PORT_C:
1163 case PORT_D:
1164 return PCH_DP_AUX_CH_DATA(port, index);
1165 default:
1166 MISSING_CASE(port);
1167 return DP_AUX_CH_DATA(PORT_A, index);
1168 }
1169 }
1170
1171 /*
1172 * On SKL we don't have Aux for port E so we rely
1173 * on VBT to set a proper alternate aux channel.
1174 */
1175 static enum port skl_porte_aux_port(struct drm_i915_private *dev_priv)
1176 {
1177 const struct ddi_vbt_port_info *info =
1178 &dev_priv->vbt.ddi_port_info[PORT_E];
1179
1180 switch (info->alternate_aux_channel) {
1181 case DP_AUX_A:
1182 return PORT_A;
1183 case DP_AUX_B:
1184 return PORT_B;
1185 case DP_AUX_C:
1186 return PORT_C;
1187 case DP_AUX_D:
1188 return PORT_D;
1189 default:
1190 MISSING_CASE(info->alternate_aux_channel);
1191 return PORT_A;
1192 }
1193 }
1194
1195 static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1196 enum port port)
1197 {
1198 if (port == PORT_E)
1199 port = skl_porte_aux_port(dev_priv);
1200
1201 switch (port) {
1202 case PORT_A:
1203 case PORT_B:
1204 case PORT_C:
1205 case PORT_D:
1206 return DP_AUX_CH_CTL(port);
1207 default:
1208 MISSING_CASE(port);
1209 return DP_AUX_CH_CTL(PORT_A);
1210 }
1211 }
1212
1213 static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1214 enum port port, int index)
1215 {
1216 if (port == PORT_E)
1217 port = skl_porte_aux_port(dev_priv);
1218
1219 switch (port) {
1220 case PORT_A:
1221 case PORT_B:
1222 case PORT_C:
1223 case PORT_D:
1224 return DP_AUX_CH_DATA(port, index);
1225 default:
1226 MISSING_CASE(port);
1227 return DP_AUX_CH_DATA(PORT_A, index);
1228 }
1229 }
1230
1231 static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1232 enum port port)
1233 {
1234 if (INTEL_INFO(dev_priv)->gen >= 9)
1235 return skl_aux_ctl_reg(dev_priv, port);
1236 else if (HAS_PCH_SPLIT(dev_priv))
1237 return ilk_aux_ctl_reg(dev_priv, port);
1238 else
1239 return g4x_aux_ctl_reg(dev_priv, port);
1240 }
1241
1242 static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1243 enum port port, int index)
1244 {
1245 if (INTEL_INFO(dev_priv)->gen >= 9)
1246 return skl_aux_data_reg(dev_priv, port, index);
1247 else if (HAS_PCH_SPLIT(dev_priv))
1248 return ilk_aux_data_reg(dev_priv, port, index);
1249 else
1250 return g4x_aux_data_reg(dev_priv, port, index);
1251 }
1252
1253 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1254 {
1255 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1256 enum port port = dp_to_dig_port(intel_dp)->port;
1257 int i;
1258
1259 intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1260 for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1261 intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1262 }
1263
1264 static void
1265 intel_dp_aux_fini(struct intel_dp *intel_dp)
1266 {
1267 kfree(intel_dp->aux.name);
1268 }
1269
1270 static void
1271 intel_dp_aux_init(struct intel_dp *intel_dp)
1272 {
1273 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1274 enum port port = intel_dig_port->port;
1275
1276 intel_aux_reg_init(intel_dp);
1277 drm_dp_aux_init(&intel_dp->aux);
1278
1279 /* Failure to allocate our preferred name is not critical */
1280 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1281 intel_dp->aux.transfer = intel_dp_aux_transfer;
1282 }
1283
1284 static int
1285 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1286 {
1287 if (intel_dp->num_sink_rates) {
1288 *sink_rates = intel_dp->sink_rates;
1289 return intel_dp->num_sink_rates;
1290 }
1291
1292 *sink_rates = default_rates;
1293
1294 return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1295 }
1296
1297 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1298 {
1299 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1300 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
1301
1302 if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
1303 IS_BROADWELL(dev_priv) || (INTEL_GEN(dev_priv) >= 9))
1304 return true;
1305 else
1306 return false;
1307 }
1308
1309 static int
1310 intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1311 {
1312 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1313 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
1314 int size;
1315
1316 if (IS_BROXTON(dev_priv)) {
1317 *source_rates = bxt_rates;
1318 size = ARRAY_SIZE(bxt_rates);
1319 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
1320 *source_rates = skl_rates;
1321 size = ARRAY_SIZE(skl_rates);
1322 } else {
1323 *source_rates = default_rates;
1324 size = ARRAY_SIZE(default_rates);
1325 }
1326
1327 /* This depends on the fact that 5.4 is last value in the array */
1328 if (!intel_dp_source_supports_hbr2(intel_dp))
1329 size--;
1330
1331 return size;
1332 }
1333
1334 static void
1335 intel_dp_set_clock(struct intel_encoder *encoder,
1336 struct intel_crtc_state *pipe_config)
1337 {
1338 struct drm_device *dev = encoder->base.dev;
1339 const struct dp_link_dpll *divisor = NULL;
1340 int i, count = 0;
1341
1342 if (IS_G4X(dev)) {
1343 divisor = gen4_dpll;
1344 count = ARRAY_SIZE(gen4_dpll);
1345 } else if (HAS_PCH_SPLIT(dev)) {
1346 divisor = pch_dpll;
1347 count = ARRAY_SIZE(pch_dpll);
1348 } else if (IS_CHERRYVIEW(dev)) {
1349 divisor = chv_dpll;
1350 count = ARRAY_SIZE(chv_dpll);
1351 } else if (IS_VALLEYVIEW(dev)) {
1352 divisor = vlv_dpll;
1353 count = ARRAY_SIZE(vlv_dpll);
1354 }
1355
1356 if (divisor && count) {
1357 for (i = 0; i < count; i++) {
1358 if (pipe_config->port_clock == divisor[i].clock) {
1359 pipe_config->dpll = divisor[i].dpll;
1360 pipe_config->clock_set = true;
1361 break;
1362 }
1363 }
1364 }
1365 }
1366
1367 static int intersect_rates(const int *source_rates, int source_len,
1368 const int *sink_rates, int sink_len,
1369 int *common_rates)
1370 {
1371 int i = 0, j = 0, k = 0;
1372
1373 while (i < source_len && j < sink_len) {
1374 if (source_rates[i] == sink_rates[j]) {
1375 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1376 return k;
1377 common_rates[k] = source_rates[i];
1378 ++k;
1379 ++i;
1380 ++j;
1381 } else if (source_rates[i] < sink_rates[j]) {
1382 ++i;
1383 } else {
1384 ++j;
1385 }
1386 }
1387 return k;
1388 }
1389
1390 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1391 int *common_rates)
1392 {
1393 const int *source_rates, *sink_rates;
1394 int source_len, sink_len;
1395
1396 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1397 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1398
1399 return intersect_rates(source_rates, source_len,
1400 sink_rates, sink_len,
1401 common_rates);
1402 }
1403
1404 static void snprintf_int_array(char *str, size_t len,
1405 const int *array, int nelem)
1406 {
1407 int i;
1408
1409 str[0] = '\0';
1410
1411 for (i = 0; i < nelem; i++) {
1412 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1413 if (r >= len)
1414 return;
1415 str += r;
1416 len -= r;
1417 }
1418 }
1419
1420 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1421 {
1422 const int *source_rates, *sink_rates;
1423 int source_len, sink_len, common_len;
1424 int common_rates[DP_MAX_SUPPORTED_RATES];
1425 char str[128]; /* FIXME: too big for stack? */
1426
1427 if ((drm_debug & DRM_UT_KMS) == 0)
1428 return;
1429
1430 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1431 snprintf_int_array(str, sizeof(str), source_rates, source_len);
1432 DRM_DEBUG_KMS("source rates: %s\n", str);
1433
1434 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1435 snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1436 DRM_DEBUG_KMS("sink rates: %s\n", str);
1437
1438 common_len = intel_dp_common_rates(intel_dp, common_rates);
1439 snprintf_int_array(str, sizeof(str), common_rates, common_len);
1440 DRM_DEBUG_KMS("common rates: %s\n", str);
1441 }
1442
1443 static void intel_dp_print_hw_revision(struct intel_dp *intel_dp)
1444 {
1445 uint8_t rev;
1446 int len;
1447
1448 if ((drm_debug & DRM_UT_KMS) == 0)
1449 return;
1450
1451 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1452 DP_DWN_STRM_PORT_PRESENT))
1453 return;
1454
1455 len = drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_HW_REV, &rev, 1);
1456 if (len < 0)
1457 return;
1458
1459 DRM_DEBUG_KMS("sink hw revision: %d.%d\n", (rev & 0xf0) >> 4, rev & 0xf);
1460 }
1461
1462 static void intel_dp_print_sw_revision(struct intel_dp *intel_dp)
1463 {
1464 uint8_t rev[2];
1465 int len;
1466
1467 if ((drm_debug & DRM_UT_KMS) == 0)
1468 return;
1469
1470 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1471 DP_DWN_STRM_PORT_PRESENT))
1472 return;
1473
1474 len = drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_SW_REV, &rev, 2);
1475 if (len < 0)
1476 return;
1477
1478 DRM_DEBUG_KMS("sink sw revision: %d.%d\n", rev[0], rev[1]);
1479 }
1480
1481 static int rate_to_index(int find, const int *rates)
1482 {
1483 int i = 0;
1484
1485 for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1486 if (find == rates[i])
1487 break;
1488
1489 return i;
1490 }
1491
1492 int
1493 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1494 {
1495 int rates[DP_MAX_SUPPORTED_RATES] = {};
1496 int len;
1497
1498 len = intel_dp_common_rates(intel_dp, rates);
1499 if (WARN_ON(len <= 0))
1500 return 162000;
1501
1502 return rates[len - 1];
1503 }
1504
1505 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1506 {
1507 return rate_to_index(rate, intel_dp->sink_rates);
1508 }
1509
1510 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1511 uint8_t *link_bw, uint8_t *rate_select)
1512 {
1513 if (intel_dp->num_sink_rates) {
1514 *link_bw = 0;
1515 *rate_select =
1516 intel_dp_rate_select(intel_dp, port_clock);
1517 } else {
1518 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1519 *rate_select = 0;
1520 }
1521 }
1522
1523 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1524 struct intel_crtc_state *pipe_config)
1525 {
1526 int bpp, bpc;
1527
1528 bpp = pipe_config->pipe_bpp;
1529 bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1530
1531 if (bpc > 0)
1532 bpp = min(bpp, 3*bpc);
1533
1534 return bpp;
1535 }
1536
1537 bool
1538 intel_dp_compute_config(struct intel_encoder *encoder,
1539 struct intel_crtc_state *pipe_config,
1540 struct drm_connector_state *conn_state)
1541 {
1542 struct drm_device *dev = encoder->base.dev;
1543 struct drm_i915_private *dev_priv = to_i915(dev);
1544 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1545 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1546 enum port port = dp_to_dig_port(intel_dp)->port;
1547 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1548 struct intel_connector *intel_connector = intel_dp->attached_connector;
1549 int lane_count, clock;
1550 int min_lane_count = 1;
1551 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1552 /* Conveniently, the link BW constants become indices with a shift...*/
1553 int min_clock = 0;
1554 int max_clock;
1555 int bpp, mode_rate;
1556 int link_avail, link_clock;
1557 int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1558 int common_len;
1559 uint8_t link_bw, rate_select;
1560
1561 common_len = intel_dp_common_rates(intel_dp, common_rates);
1562
1563 /* No common link rates between source and sink */
1564 WARN_ON(common_len <= 0);
1565
1566 max_clock = common_len - 1;
1567
1568 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
1569 pipe_config->has_pch_encoder = true;
1570
1571 pipe_config->has_drrs = false;
1572 pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1573
1574 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1575 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1576 adjusted_mode);
1577
1578 if (INTEL_INFO(dev)->gen >= 9) {
1579 int ret;
1580 ret = skl_update_scaler_crtc(pipe_config);
1581 if (ret)
1582 return ret;
1583 }
1584
1585 if (HAS_GMCH_DISPLAY(dev))
1586 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1587 intel_connector->panel.fitting_mode);
1588 else
1589 intel_pch_panel_fitting(intel_crtc, pipe_config,
1590 intel_connector->panel.fitting_mode);
1591 }
1592
1593 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1594 return false;
1595
1596 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1597 "max bw %d pixel clock %iKHz\n",
1598 max_lane_count, common_rates[max_clock],
1599 adjusted_mode->crtc_clock);
1600
1601 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1602 * bpc in between. */
1603 bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
1604 if (is_edp(intel_dp)) {
1605
1606 /* Get bpp from vbt only for panels that dont have bpp in edid */
1607 if (intel_connector->base.display_info.bpc == 0 &&
1608 (dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
1609 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1610 dev_priv->vbt.edp.bpp);
1611 bpp = dev_priv->vbt.edp.bpp;
1612 }
1613
1614 /*
1615 * Use the maximum clock and number of lanes the eDP panel
1616 * advertizes being capable of. The panels are generally
1617 * designed to support only a single clock and lane
1618 * configuration, and typically these values correspond to the
1619 * native resolution of the panel.
1620 */
1621 min_lane_count = max_lane_count;
1622 min_clock = max_clock;
1623 }
1624
1625 for (; bpp >= 6*3; bpp -= 2*3) {
1626 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1627 bpp);
1628
1629 for (clock = min_clock; clock <= max_clock; clock++) {
1630 for (lane_count = min_lane_count;
1631 lane_count <= max_lane_count;
1632 lane_count <<= 1) {
1633
1634 link_clock = common_rates[clock];
1635 link_avail = intel_dp_max_data_rate(link_clock,
1636 lane_count);
1637
1638 if (mode_rate <= link_avail) {
1639 goto found;
1640 }
1641 }
1642 }
1643 }
1644
1645 return false;
1646
1647 found:
1648 if (intel_dp->color_range_auto) {
1649 /*
1650 * See:
1651 * CEA-861-E - 5.1 Default Encoding Parameters
1652 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1653 */
1654 pipe_config->limited_color_range =
1655 bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1656 } else {
1657 pipe_config->limited_color_range =
1658 intel_dp->limited_color_range;
1659 }
1660
1661 pipe_config->lane_count = lane_count;
1662
1663 pipe_config->pipe_bpp = bpp;
1664 pipe_config->port_clock = common_rates[clock];
1665
1666 intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1667 &link_bw, &rate_select);
1668
1669 DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1670 link_bw, rate_select, pipe_config->lane_count,
1671 pipe_config->port_clock, bpp);
1672 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1673 mode_rate, link_avail);
1674
1675 intel_link_compute_m_n(bpp, lane_count,
1676 adjusted_mode->crtc_clock,
1677 pipe_config->port_clock,
1678 &pipe_config->dp_m_n);
1679
1680 if (intel_connector->panel.downclock_mode != NULL &&
1681 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1682 pipe_config->has_drrs = true;
1683 intel_link_compute_m_n(bpp, lane_count,
1684 intel_connector->panel.downclock_mode->clock,
1685 pipe_config->port_clock,
1686 &pipe_config->dp_m2_n2);
1687 }
1688
1689 /*
1690 * DPLL0 VCO may need to be adjusted to get the correct
1691 * clock for eDP. This will affect cdclk as well.
1692 */
1693 if (is_edp(intel_dp) &&
1694 (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))) {
1695 int vco;
1696
1697 switch (pipe_config->port_clock / 2) {
1698 case 108000:
1699 case 216000:
1700 vco = 8640000;
1701 break;
1702 default:
1703 vco = 8100000;
1704 break;
1705 }
1706
1707 to_intel_atomic_state(pipe_config->base.state)->cdclk_pll_vco = vco;
1708 }
1709
1710 if (!HAS_DDI(dev_priv))
1711 intel_dp_set_clock(encoder, pipe_config);
1712
1713 return true;
1714 }
1715
1716 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1717 int link_rate, uint8_t lane_count,
1718 bool link_mst)
1719 {
1720 intel_dp->link_rate = link_rate;
1721 intel_dp->lane_count = lane_count;
1722 intel_dp->link_mst = link_mst;
1723 }
1724
1725 static void intel_dp_prepare(struct intel_encoder *encoder,
1726 struct intel_crtc_state *pipe_config)
1727 {
1728 struct drm_device *dev = encoder->base.dev;
1729 struct drm_i915_private *dev_priv = to_i915(dev);
1730 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1731 enum port port = dp_to_dig_port(intel_dp)->port;
1732 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1733 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1734
1735 intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
1736 pipe_config->lane_count,
1737 intel_crtc_has_type(pipe_config,
1738 INTEL_OUTPUT_DP_MST));
1739
1740 /*
1741 * There are four kinds of DP registers:
1742 *
1743 * IBX PCH
1744 * SNB CPU
1745 * IVB CPU
1746 * CPT PCH
1747 *
1748 * IBX PCH and CPU are the same for almost everything,
1749 * except that the CPU DP PLL is configured in this
1750 * register
1751 *
1752 * CPT PCH is quite different, having many bits moved
1753 * to the TRANS_DP_CTL register instead. That
1754 * configuration happens (oddly) in ironlake_pch_enable
1755 */
1756
1757 /* Preserve the BIOS-computed detected bit. This is
1758 * supposed to be read-only.
1759 */
1760 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1761
1762 /* Handle DP bits in common between all three register formats */
1763 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1764 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
1765
1766 /* Split out the IBX/CPU vs CPT settings */
1767
1768 if (IS_GEN7(dev) && port == PORT_A) {
1769 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1770 intel_dp->DP |= DP_SYNC_HS_HIGH;
1771 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1772 intel_dp->DP |= DP_SYNC_VS_HIGH;
1773 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1774
1775 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1776 intel_dp->DP |= DP_ENHANCED_FRAMING;
1777
1778 intel_dp->DP |= crtc->pipe << 29;
1779 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1780 u32 trans_dp;
1781
1782 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1783
1784 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1785 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1786 trans_dp |= TRANS_DP_ENH_FRAMING;
1787 else
1788 trans_dp &= ~TRANS_DP_ENH_FRAMING;
1789 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1790 } else {
1791 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1792 !IS_CHERRYVIEW(dev) && pipe_config->limited_color_range)
1793 intel_dp->DP |= DP_COLOR_RANGE_16_235;
1794
1795 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1796 intel_dp->DP |= DP_SYNC_HS_HIGH;
1797 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1798 intel_dp->DP |= DP_SYNC_VS_HIGH;
1799 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1800
1801 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1802 intel_dp->DP |= DP_ENHANCED_FRAMING;
1803
1804 if (IS_CHERRYVIEW(dev))
1805 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1806 else if (crtc->pipe == PIPE_B)
1807 intel_dp->DP |= DP_PIPEB_SELECT;
1808 }
1809 }
1810
1811 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1812 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1813
1814 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1815 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1816
1817 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1818 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1819
1820 static void intel_pps_verify_state(struct drm_i915_private *dev_priv,
1821 struct intel_dp *intel_dp);
1822
1823 static void wait_panel_status(struct intel_dp *intel_dp,
1824 u32 mask,
1825 u32 value)
1826 {
1827 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1828 struct drm_i915_private *dev_priv = to_i915(dev);
1829 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1830
1831 lockdep_assert_held(&dev_priv->pps_mutex);
1832
1833 intel_pps_verify_state(dev_priv, intel_dp);
1834
1835 pp_stat_reg = _pp_stat_reg(intel_dp);
1836 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1837
1838 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1839 mask, value,
1840 I915_READ(pp_stat_reg),
1841 I915_READ(pp_ctrl_reg));
1842
1843 if (intel_wait_for_register(dev_priv,
1844 pp_stat_reg, mask, value,
1845 5000))
1846 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1847 I915_READ(pp_stat_reg),
1848 I915_READ(pp_ctrl_reg));
1849
1850 DRM_DEBUG_KMS("Wait complete\n");
1851 }
1852
1853 static void wait_panel_on(struct intel_dp *intel_dp)
1854 {
1855 DRM_DEBUG_KMS("Wait for panel power on\n");
1856 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1857 }
1858
1859 static void wait_panel_off(struct intel_dp *intel_dp)
1860 {
1861 DRM_DEBUG_KMS("Wait for panel power off time\n");
1862 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1863 }
1864
1865 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1866 {
1867 ktime_t panel_power_on_time;
1868 s64 panel_power_off_duration;
1869
1870 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1871
1872 /* take the difference of currrent time and panel power off time
1873 * and then make panel wait for t11_t12 if needed. */
1874 panel_power_on_time = ktime_get_boottime();
1875 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
1876
1877 /* When we disable the VDD override bit last we have to do the manual
1878 * wait. */
1879 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
1880 wait_remaining_ms_from_jiffies(jiffies,
1881 intel_dp->panel_power_cycle_delay - panel_power_off_duration);
1882
1883 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1884 }
1885
1886 static void wait_backlight_on(struct intel_dp *intel_dp)
1887 {
1888 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1889 intel_dp->backlight_on_delay);
1890 }
1891
1892 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1893 {
1894 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1895 intel_dp->backlight_off_delay);
1896 }
1897
1898 /* Read the current pp_control value, unlocking the register if it
1899 * is locked
1900 */
1901
1902 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1903 {
1904 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1905 struct drm_i915_private *dev_priv = to_i915(dev);
1906 u32 control;
1907
1908 lockdep_assert_held(&dev_priv->pps_mutex);
1909
1910 control = I915_READ(_pp_ctrl_reg(intel_dp));
1911 if (WARN_ON(!HAS_DDI(dev_priv) &&
1912 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
1913 control &= ~PANEL_UNLOCK_MASK;
1914 control |= PANEL_UNLOCK_REGS;
1915 }
1916 return control;
1917 }
1918
1919 /*
1920 * Must be paired with edp_panel_vdd_off().
1921 * Must hold pps_mutex around the whole on/off sequence.
1922 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1923 */
1924 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1925 {
1926 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1927 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1928 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1929 struct drm_i915_private *dev_priv = to_i915(dev);
1930 enum intel_display_power_domain power_domain;
1931 u32 pp;
1932 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1933 bool need_to_disable = !intel_dp->want_panel_vdd;
1934
1935 lockdep_assert_held(&dev_priv->pps_mutex);
1936
1937 if (!is_edp(intel_dp))
1938 return false;
1939
1940 cancel_delayed_work(&intel_dp->panel_vdd_work);
1941 intel_dp->want_panel_vdd = true;
1942
1943 if (edp_have_panel_vdd(intel_dp))
1944 return need_to_disable;
1945
1946 power_domain = intel_display_port_aux_power_domain(intel_encoder);
1947 intel_display_power_get(dev_priv, power_domain);
1948
1949 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1950 port_name(intel_dig_port->port));
1951
1952 if (!edp_have_panel_power(intel_dp))
1953 wait_panel_power_cycle(intel_dp);
1954
1955 pp = ironlake_get_pp_control(intel_dp);
1956 pp |= EDP_FORCE_VDD;
1957
1958 pp_stat_reg = _pp_stat_reg(intel_dp);
1959 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1960
1961 I915_WRITE(pp_ctrl_reg, pp);
1962 POSTING_READ(pp_ctrl_reg);
1963 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1964 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1965 /*
1966 * If the panel wasn't on, delay before accessing aux channel
1967 */
1968 if (!edp_have_panel_power(intel_dp)) {
1969 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1970 port_name(intel_dig_port->port));
1971 msleep(intel_dp->panel_power_up_delay);
1972 }
1973
1974 return need_to_disable;
1975 }
1976
1977 /*
1978 * Must be paired with intel_edp_panel_vdd_off() or
1979 * intel_edp_panel_off().
1980 * Nested calls to these functions are not allowed since
1981 * we drop the lock. Caller must use some higher level
1982 * locking to prevent nested calls from other threads.
1983 */
1984 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1985 {
1986 bool vdd;
1987
1988 if (!is_edp(intel_dp))
1989 return;
1990
1991 pps_lock(intel_dp);
1992 vdd = edp_panel_vdd_on(intel_dp);
1993 pps_unlock(intel_dp);
1994
1995 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1996 port_name(dp_to_dig_port(intel_dp)->port));
1997 }
1998
1999 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2000 {
2001 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2002 struct drm_i915_private *dev_priv = to_i915(dev);
2003 struct intel_digital_port *intel_dig_port =
2004 dp_to_dig_port(intel_dp);
2005 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2006 enum intel_display_power_domain power_domain;
2007 u32 pp;
2008 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2009
2010 lockdep_assert_held(&dev_priv->pps_mutex);
2011
2012 WARN_ON(intel_dp->want_panel_vdd);
2013
2014 if (!edp_have_panel_vdd(intel_dp))
2015 return;
2016
2017 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2018 port_name(intel_dig_port->port));
2019
2020 pp = ironlake_get_pp_control(intel_dp);
2021 pp &= ~EDP_FORCE_VDD;
2022
2023 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2024 pp_stat_reg = _pp_stat_reg(intel_dp);
2025
2026 I915_WRITE(pp_ctrl_reg, pp);
2027 POSTING_READ(pp_ctrl_reg);
2028
2029 /* Make sure sequencer is idle before allowing subsequent activity */
2030 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2031 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2032
2033 if ((pp & PANEL_POWER_ON) == 0)
2034 intel_dp->panel_power_off_time = ktime_get_boottime();
2035
2036 power_domain = intel_display_port_aux_power_domain(intel_encoder);
2037 intel_display_power_put(dev_priv, power_domain);
2038 }
2039
2040 static void edp_panel_vdd_work(struct work_struct *__work)
2041 {
2042 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
2043 struct intel_dp, panel_vdd_work);
2044
2045 pps_lock(intel_dp);
2046 if (!intel_dp->want_panel_vdd)
2047 edp_panel_vdd_off_sync(intel_dp);
2048 pps_unlock(intel_dp);
2049 }
2050
2051 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2052 {
2053 unsigned long delay;
2054
2055 /*
2056 * Queue the timer to fire a long time from now (relative to the power
2057 * down delay) to keep the panel power up across a sequence of
2058 * operations.
2059 */
2060 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2061 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2062 }
2063
2064 /*
2065 * Must be paired with edp_panel_vdd_on().
2066 * Must hold pps_mutex around the whole on/off sequence.
2067 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2068 */
2069 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2070 {
2071 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2072
2073 lockdep_assert_held(&dev_priv->pps_mutex);
2074
2075 if (!is_edp(intel_dp))
2076 return;
2077
2078 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2079 port_name(dp_to_dig_port(intel_dp)->port));
2080
2081 intel_dp->want_panel_vdd = false;
2082
2083 if (sync)
2084 edp_panel_vdd_off_sync(intel_dp);
2085 else
2086 edp_panel_vdd_schedule_off(intel_dp);
2087 }
2088
2089 static void edp_panel_on(struct intel_dp *intel_dp)
2090 {
2091 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2092 struct drm_i915_private *dev_priv = to_i915(dev);
2093 u32 pp;
2094 i915_reg_t pp_ctrl_reg;
2095
2096 lockdep_assert_held(&dev_priv->pps_mutex);
2097
2098 if (!is_edp(intel_dp))
2099 return;
2100
2101 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2102 port_name(dp_to_dig_port(intel_dp)->port));
2103
2104 if (WARN(edp_have_panel_power(intel_dp),
2105 "eDP port %c panel power already on\n",
2106 port_name(dp_to_dig_port(intel_dp)->port)))
2107 return;
2108
2109 wait_panel_power_cycle(intel_dp);
2110
2111 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2112 pp = ironlake_get_pp_control(intel_dp);
2113 if (IS_GEN5(dev)) {
2114 /* ILK workaround: disable reset around power sequence */
2115 pp &= ~PANEL_POWER_RESET;
2116 I915_WRITE(pp_ctrl_reg, pp);
2117 POSTING_READ(pp_ctrl_reg);
2118 }
2119
2120 pp |= PANEL_POWER_ON;
2121 if (!IS_GEN5(dev))
2122 pp |= PANEL_POWER_RESET;
2123
2124 I915_WRITE(pp_ctrl_reg, pp);
2125 POSTING_READ(pp_ctrl_reg);
2126
2127 wait_panel_on(intel_dp);
2128 intel_dp->last_power_on = jiffies;
2129
2130 if (IS_GEN5(dev)) {
2131 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2132 I915_WRITE(pp_ctrl_reg, pp);
2133 POSTING_READ(pp_ctrl_reg);
2134 }
2135 }
2136
2137 void intel_edp_panel_on(struct intel_dp *intel_dp)
2138 {
2139 if (!is_edp(intel_dp))
2140 return;
2141
2142 pps_lock(intel_dp);
2143 edp_panel_on(intel_dp);
2144 pps_unlock(intel_dp);
2145 }
2146
2147
2148 static void edp_panel_off(struct intel_dp *intel_dp)
2149 {
2150 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2151 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2152 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2153 struct drm_i915_private *dev_priv = to_i915(dev);
2154 enum intel_display_power_domain power_domain;
2155 u32 pp;
2156 i915_reg_t pp_ctrl_reg;
2157
2158 lockdep_assert_held(&dev_priv->pps_mutex);
2159
2160 if (!is_edp(intel_dp))
2161 return;
2162
2163 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2164 port_name(dp_to_dig_port(intel_dp)->port));
2165
2166 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2167 port_name(dp_to_dig_port(intel_dp)->port));
2168
2169 pp = ironlake_get_pp_control(intel_dp);
2170 /* We need to switch off panel power _and_ force vdd, for otherwise some
2171 * panels get very unhappy and cease to work. */
2172 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2173 EDP_BLC_ENABLE);
2174
2175 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2176
2177 intel_dp->want_panel_vdd = false;
2178
2179 I915_WRITE(pp_ctrl_reg, pp);
2180 POSTING_READ(pp_ctrl_reg);
2181
2182 intel_dp->panel_power_off_time = ktime_get_boottime();
2183 wait_panel_off(intel_dp);
2184
2185 /* We got a reference when we enabled the VDD. */
2186 power_domain = intel_display_port_aux_power_domain(intel_encoder);
2187 intel_display_power_put(dev_priv, power_domain);
2188 }
2189
2190 void intel_edp_panel_off(struct intel_dp *intel_dp)
2191 {
2192 if (!is_edp(intel_dp))
2193 return;
2194
2195 pps_lock(intel_dp);
2196 edp_panel_off(intel_dp);
2197 pps_unlock(intel_dp);
2198 }
2199
2200 /* Enable backlight in the panel power control. */
2201 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2202 {
2203 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2204 struct drm_device *dev = intel_dig_port->base.base.dev;
2205 struct drm_i915_private *dev_priv = to_i915(dev);
2206 u32 pp;
2207 i915_reg_t pp_ctrl_reg;
2208
2209 /*
2210 * If we enable the backlight right away following a panel power
2211 * on, we may see slight flicker as the panel syncs with the eDP
2212 * link. So delay a bit to make sure the image is solid before
2213 * allowing it to appear.
2214 */
2215 wait_backlight_on(intel_dp);
2216
2217 pps_lock(intel_dp);
2218
2219 pp = ironlake_get_pp_control(intel_dp);
2220 pp |= EDP_BLC_ENABLE;
2221
2222 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2223
2224 I915_WRITE(pp_ctrl_reg, pp);
2225 POSTING_READ(pp_ctrl_reg);
2226
2227 pps_unlock(intel_dp);
2228 }
2229
2230 /* Enable backlight PWM and backlight PP control. */
2231 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2232 {
2233 if (!is_edp(intel_dp))
2234 return;
2235
2236 DRM_DEBUG_KMS("\n");
2237
2238 intel_panel_enable_backlight(intel_dp->attached_connector);
2239 _intel_edp_backlight_on(intel_dp);
2240 }
2241
2242 /* Disable backlight in the panel power control. */
2243 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2244 {
2245 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2246 struct drm_i915_private *dev_priv = to_i915(dev);
2247 u32 pp;
2248 i915_reg_t pp_ctrl_reg;
2249
2250 if (!is_edp(intel_dp))
2251 return;
2252
2253 pps_lock(intel_dp);
2254
2255 pp = ironlake_get_pp_control(intel_dp);
2256 pp &= ~EDP_BLC_ENABLE;
2257
2258 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2259
2260 I915_WRITE(pp_ctrl_reg, pp);
2261 POSTING_READ(pp_ctrl_reg);
2262
2263 pps_unlock(intel_dp);
2264
2265 intel_dp->last_backlight_off = jiffies;
2266 edp_wait_backlight_off(intel_dp);
2267 }
2268
2269 /* Disable backlight PP control and backlight PWM. */
2270 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2271 {
2272 if (!is_edp(intel_dp))
2273 return;
2274
2275 DRM_DEBUG_KMS("\n");
2276
2277 _intel_edp_backlight_off(intel_dp);
2278 intel_panel_disable_backlight(intel_dp->attached_connector);
2279 }
2280
2281 /*
2282 * Hook for controlling the panel power control backlight through the bl_power
2283 * sysfs attribute. Take care to handle multiple calls.
2284 */
2285 static void intel_edp_backlight_power(struct intel_connector *connector,
2286 bool enable)
2287 {
2288 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2289 bool is_enabled;
2290
2291 pps_lock(intel_dp);
2292 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2293 pps_unlock(intel_dp);
2294
2295 if (is_enabled == enable)
2296 return;
2297
2298 DRM_DEBUG_KMS("panel power control backlight %s\n",
2299 enable ? "enable" : "disable");
2300
2301 if (enable)
2302 _intel_edp_backlight_on(intel_dp);
2303 else
2304 _intel_edp_backlight_off(intel_dp);
2305 }
2306
2307 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2308 {
2309 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2310 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2311 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2312
2313 I915_STATE_WARN(cur_state != state,
2314 "DP port %c state assertion failure (expected %s, current %s)\n",
2315 port_name(dig_port->port),
2316 onoff(state), onoff(cur_state));
2317 }
2318 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2319
2320 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2321 {
2322 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2323
2324 I915_STATE_WARN(cur_state != state,
2325 "eDP PLL state assertion failure (expected %s, current %s)\n",
2326 onoff(state), onoff(cur_state));
2327 }
2328 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2329 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2330
2331 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2332 struct intel_crtc_state *pipe_config)
2333 {
2334 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2335 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2336
2337 assert_pipe_disabled(dev_priv, crtc->pipe);
2338 assert_dp_port_disabled(intel_dp);
2339 assert_edp_pll_disabled(dev_priv);
2340
2341 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2342 pipe_config->port_clock);
2343
2344 intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2345
2346 if (pipe_config->port_clock == 162000)
2347 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2348 else
2349 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2350
2351 I915_WRITE(DP_A, intel_dp->DP);
2352 POSTING_READ(DP_A);
2353 udelay(500);
2354
2355 /*
2356 * [DevILK] Work around required when enabling DP PLL
2357 * while a pipe is enabled going to FDI:
2358 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2359 * 2. Program DP PLL enable
2360 */
2361 if (IS_GEN5(dev_priv))
2362 intel_wait_for_vblank_if_active(&dev_priv->drm, !crtc->pipe);
2363
2364 intel_dp->DP |= DP_PLL_ENABLE;
2365
2366 I915_WRITE(DP_A, intel_dp->DP);
2367 POSTING_READ(DP_A);
2368 udelay(200);
2369 }
2370
2371 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2372 {
2373 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2374 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2375 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2376
2377 assert_pipe_disabled(dev_priv, crtc->pipe);
2378 assert_dp_port_disabled(intel_dp);
2379 assert_edp_pll_enabled(dev_priv);
2380
2381 DRM_DEBUG_KMS("disabling eDP PLL\n");
2382
2383 intel_dp->DP &= ~DP_PLL_ENABLE;
2384
2385 I915_WRITE(DP_A, intel_dp->DP);
2386 POSTING_READ(DP_A);
2387 udelay(200);
2388 }
2389
2390 /* If the sink supports it, try to set the power state appropriately */
2391 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2392 {
2393 int ret, i;
2394
2395 /* Should have a valid DPCD by this point */
2396 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2397 return;
2398
2399 if (mode != DRM_MODE_DPMS_ON) {
2400 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2401 DP_SET_POWER_D3);
2402 } else {
2403 /*
2404 * When turning on, we need to retry for 1ms to give the sink
2405 * time to wake up.
2406 */
2407 for (i = 0; i < 3; i++) {
2408 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2409 DP_SET_POWER_D0);
2410 if (ret == 1)
2411 break;
2412 msleep(1);
2413 }
2414 }
2415
2416 if (ret != 1)
2417 DRM_DEBUG_KMS("failed to %s sink power state\n",
2418 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2419 }
2420
2421 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2422 enum pipe *pipe)
2423 {
2424 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2425 enum port port = dp_to_dig_port(intel_dp)->port;
2426 struct drm_device *dev = encoder->base.dev;
2427 struct drm_i915_private *dev_priv = to_i915(dev);
2428 enum intel_display_power_domain power_domain;
2429 u32 tmp;
2430 bool ret;
2431
2432 power_domain = intel_display_port_power_domain(encoder);
2433 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2434 return false;
2435
2436 ret = false;
2437
2438 tmp = I915_READ(intel_dp->output_reg);
2439
2440 if (!(tmp & DP_PORT_EN))
2441 goto out;
2442
2443 if (IS_GEN7(dev) && port == PORT_A) {
2444 *pipe = PORT_TO_PIPE_CPT(tmp);
2445 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2446 enum pipe p;
2447
2448 for_each_pipe(dev_priv, p) {
2449 u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2450 if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2451 *pipe = p;
2452 ret = true;
2453
2454 goto out;
2455 }
2456 }
2457
2458 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2459 i915_mmio_reg_offset(intel_dp->output_reg));
2460 } else if (IS_CHERRYVIEW(dev)) {
2461 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2462 } else {
2463 *pipe = PORT_TO_PIPE(tmp);
2464 }
2465
2466 ret = true;
2467
2468 out:
2469 intel_display_power_put(dev_priv, power_domain);
2470
2471 return ret;
2472 }
2473
2474 static void intel_dp_get_config(struct intel_encoder *encoder,
2475 struct intel_crtc_state *pipe_config)
2476 {
2477 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2478 u32 tmp, flags = 0;
2479 struct drm_device *dev = encoder->base.dev;
2480 struct drm_i915_private *dev_priv = to_i915(dev);
2481 enum port port = dp_to_dig_port(intel_dp)->port;
2482 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2483
2484 tmp = I915_READ(intel_dp->output_reg);
2485
2486 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2487
2488 if (HAS_PCH_CPT(dev) && port != PORT_A) {
2489 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2490
2491 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2492 flags |= DRM_MODE_FLAG_PHSYNC;
2493 else
2494 flags |= DRM_MODE_FLAG_NHSYNC;
2495
2496 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2497 flags |= DRM_MODE_FLAG_PVSYNC;
2498 else
2499 flags |= DRM_MODE_FLAG_NVSYNC;
2500 } else {
2501 if (tmp & DP_SYNC_HS_HIGH)
2502 flags |= DRM_MODE_FLAG_PHSYNC;
2503 else
2504 flags |= DRM_MODE_FLAG_NHSYNC;
2505
2506 if (tmp & DP_SYNC_VS_HIGH)
2507 flags |= DRM_MODE_FLAG_PVSYNC;
2508 else
2509 flags |= DRM_MODE_FLAG_NVSYNC;
2510 }
2511
2512 pipe_config->base.adjusted_mode.flags |= flags;
2513
2514 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2515 !IS_CHERRYVIEW(dev) && tmp & DP_COLOR_RANGE_16_235)
2516 pipe_config->limited_color_range = true;
2517
2518 pipe_config->lane_count =
2519 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2520
2521 intel_dp_get_m_n(crtc, pipe_config);
2522
2523 if (port == PORT_A) {
2524 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2525 pipe_config->port_clock = 162000;
2526 else
2527 pipe_config->port_clock = 270000;
2528 }
2529
2530 pipe_config->base.adjusted_mode.crtc_clock =
2531 intel_dotclock_calculate(pipe_config->port_clock,
2532 &pipe_config->dp_m_n);
2533
2534 if (is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2535 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2536 /*
2537 * This is a big fat ugly hack.
2538 *
2539 * Some machines in UEFI boot mode provide us a VBT that has 18
2540 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2541 * unknown we fail to light up. Yet the same BIOS boots up with
2542 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2543 * max, not what it tells us to use.
2544 *
2545 * Note: This will still be broken if the eDP panel is not lit
2546 * up by the BIOS, and thus we can't get the mode at module
2547 * load.
2548 */
2549 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2550 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2551 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2552 }
2553 }
2554
2555 static void intel_disable_dp(struct intel_encoder *encoder,
2556 struct intel_crtc_state *old_crtc_state,
2557 struct drm_connector_state *old_conn_state)
2558 {
2559 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2560 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2561
2562 if (old_crtc_state->has_audio)
2563 intel_audio_codec_disable(encoder);
2564
2565 if (HAS_PSR(dev_priv) && !HAS_DDI(dev_priv))
2566 intel_psr_disable(intel_dp);
2567
2568 /* Make sure the panel is off before trying to change the mode. But also
2569 * ensure that we have vdd while we switch off the panel. */
2570 intel_edp_panel_vdd_on(intel_dp);
2571 intel_edp_backlight_off(intel_dp);
2572 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2573 intel_edp_panel_off(intel_dp);
2574
2575 /* disable the port before the pipe on g4x */
2576 if (INTEL_GEN(dev_priv) < 5)
2577 intel_dp_link_down(intel_dp);
2578 }
2579
2580 static void ilk_post_disable_dp(struct intel_encoder *encoder,
2581 struct intel_crtc_state *old_crtc_state,
2582 struct drm_connector_state *old_conn_state)
2583 {
2584 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2585 enum port port = dp_to_dig_port(intel_dp)->port;
2586
2587 intel_dp_link_down(intel_dp);
2588
2589 /* Only ilk+ has port A */
2590 if (port == PORT_A)
2591 ironlake_edp_pll_off(intel_dp);
2592 }
2593
2594 static void vlv_post_disable_dp(struct intel_encoder *encoder,
2595 struct intel_crtc_state *old_crtc_state,
2596 struct drm_connector_state *old_conn_state)
2597 {
2598 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2599
2600 intel_dp_link_down(intel_dp);
2601 }
2602
2603 static void chv_post_disable_dp(struct intel_encoder *encoder,
2604 struct intel_crtc_state *old_crtc_state,
2605 struct drm_connector_state *old_conn_state)
2606 {
2607 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2608 struct drm_device *dev = encoder->base.dev;
2609 struct drm_i915_private *dev_priv = to_i915(dev);
2610
2611 intel_dp_link_down(intel_dp);
2612
2613 mutex_lock(&dev_priv->sb_lock);
2614
2615 /* Assert data lane reset */
2616 chv_data_lane_soft_reset(encoder, true);
2617
2618 mutex_unlock(&dev_priv->sb_lock);
2619 }
2620
2621 static void
2622 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2623 uint32_t *DP,
2624 uint8_t dp_train_pat)
2625 {
2626 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2627 struct drm_device *dev = intel_dig_port->base.base.dev;
2628 struct drm_i915_private *dev_priv = to_i915(dev);
2629 enum port port = intel_dig_port->port;
2630
2631 if (dp_train_pat & DP_TRAINING_PATTERN_MASK)
2632 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
2633 dp_train_pat & DP_TRAINING_PATTERN_MASK);
2634
2635 if (HAS_DDI(dev_priv)) {
2636 uint32_t temp = I915_READ(DP_TP_CTL(port));
2637
2638 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2639 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2640 else
2641 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2642
2643 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2644 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2645 case DP_TRAINING_PATTERN_DISABLE:
2646 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2647
2648 break;
2649 case DP_TRAINING_PATTERN_1:
2650 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2651 break;
2652 case DP_TRAINING_PATTERN_2:
2653 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2654 break;
2655 case DP_TRAINING_PATTERN_3:
2656 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2657 break;
2658 }
2659 I915_WRITE(DP_TP_CTL(port), temp);
2660
2661 } else if ((IS_GEN7(dev) && port == PORT_A) ||
2662 (HAS_PCH_CPT(dev) && port != PORT_A)) {
2663 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2664
2665 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2666 case DP_TRAINING_PATTERN_DISABLE:
2667 *DP |= DP_LINK_TRAIN_OFF_CPT;
2668 break;
2669 case DP_TRAINING_PATTERN_1:
2670 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2671 break;
2672 case DP_TRAINING_PATTERN_2:
2673 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2674 break;
2675 case DP_TRAINING_PATTERN_3:
2676 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2677 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2678 break;
2679 }
2680
2681 } else {
2682 if (IS_CHERRYVIEW(dev))
2683 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2684 else
2685 *DP &= ~DP_LINK_TRAIN_MASK;
2686
2687 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2688 case DP_TRAINING_PATTERN_DISABLE:
2689 *DP |= DP_LINK_TRAIN_OFF;
2690 break;
2691 case DP_TRAINING_PATTERN_1:
2692 *DP |= DP_LINK_TRAIN_PAT_1;
2693 break;
2694 case DP_TRAINING_PATTERN_2:
2695 *DP |= DP_LINK_TRAIN_PAT_2;
2696 break;
2697 case DP_TRAINING_PATTERN_3:
2698 if (IS_CHERRYVIEW(dev)) {
2699 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2700 } else {
2701 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2702 *DP |= DP_LINK_TRAIN_PAT_2;
2703 }
2704 break;
2705 }
2706 }
2707 }
2708
2709 static void intel_dp_enable_port(struct intel_dp *intel_dp,
2710 struct intel_crtc_state *old_crtc_state)
2711 {
2712 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2713 struct drm_i915_private *dev_priv = to_i915(dev);
2714
2715 /* enable with pattern 1 (as per spec) */
2716
2717 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
2718
2719 /*
2720 * Magic for VLV/CHV. We _must_ first set up the register
2721 * without actually enabling the port, and then do another
2722 * write to enable the port. Otherwise link training will
2723 * fail when the power sequencer is freshly used for this port.
2724 */
2725 intel_dp->DP |= DP_PORT_EN;
2726 if (old_crtc_state->has_audio)
2727 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2728
2729 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2730 POSTING_READ(intel_dp->output_reg);
2731 }
2732
2733 static void intel_enable_dp(struct intel_encoder *encoder,
2734 struct intel_crtc_state *pipe_config)
2735 {
2736 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2737 struct drm_device *dev = encoder->base.dev;
2738 struct drm_i915_private *dev_priv = to_i915(dev);
2739 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2740 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2741 enum pipe pipe = crtc->pipe;
2742
2743 if (WARN_ON(dp_reg & DP_PORT_EN))
2744 return;
2745
2746 pps_lock(intel_dp);
2747
2748 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2749 vlv_init_panel_power_sequencer(intel_dp);
2750
2751 intel_dp_enable_port(intel_dp, pipe_config);
2752
2753 edp_panel_vdd_on(intel_dp);
2754 edp_panel_on(intel_dp);
2755 edp_panel_vdd_off(intel_dp, true);
2756
2757 pps_unlock(intel_dp);
2758
2759 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
2760 unsigned int lane_mask = 0x0;
2761
2762 if (IS_CHERRYVIEW(dev))
2763 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
2764
2765 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2766 lane_mask);
2767 }
2768
2769 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2770 intel_dp_start_link_train(intel_dp);
2771 intel_dp_stop_link_train(intel_dp);
2772
2773 if (pipe_config->has_audio) {
2774 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2775 pipe_name(pipe));
2776 intel_audio_codec_enable(encoder);
2777 }
2778 }
2779
2780 static void g4x_enable_dp(struct intel_encoder *encoder,
2781 struct intel_crtc_state *pipe_config,
2782 struct drm_connector_state *conn_state)
2783 {
2784 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2785
2786 intel_enable_dp(encoder, pipe_config);
2787 intel_edp_backlight_on(intel_dp);
2788 }
2789
2790 static void vlv_enable_dp(struct intel_encoder *encoder,
2791 struct intel_crtc_state *pipe_config,
2792 struct drm_connector_state *conn_state)
2793 {
2794 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2795
2796 intel_edp_backlight_on(intel_dp);
2797 intel_psr_enable(intel_dp);
2798 }
2799
2800 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
2801 struct intel_crtc_state *pipe_config,
2802 struct drm_connector_state *conn_state)
2803 {
2804 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2805 enum port port = dp_to_dig_port(intel_dp)->port;
2806
2807 intel_dp_prepare(encoder, pipe_config);
2808
2809 /* Only ilk+ has port A */
2810 if (port == PORT_A)
2811 ironlake_edp_pll_on(intel_dp, pipe_config);
2812 }
2813
2814 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2815 {
2816 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2817 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
2818 enum pipe pipe = intel_dp->pps_pipe;
2819 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
2820
2821 edp_panel_vdd_off_sync(intel_dp);
2822
2823 /*
2824 * VLV seems to get confused when multiple power seqeuencers
2825 * have the same port selected (even if only one has power/vdd
2826 * enabled). The failure manifests as vlv_wait_port_ready() failing
2827 * CHV on the other hand doesn't seem to mind having the same port
2828 * selected in multiple power seqeuencers, but let's clear the
2829 * port select always when logically disconnecting a power sequencer
2830 * from a port.
2831 */
2832 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2833 pipe_name(pipe), port_name(intel_dig_port->port));
2834 I915_WRITE(pp_on_reg, 0);
2835 POSTING_READ(pp_on_reg);
2836
2837 intel_dp->pps_pipe = INVALID_PIPE;
2838 }
2839
2840 static void vlv_steal_power_sequencer(struct drm_device *dev,
2841 enum pipe pipe)
2842 {
2843 struct drm_i915_private *dev_priv = to_i915(dev);
2844 struct intel_encoder *encoder;
2845
2846 lockdep_assert_held(&dev_priv->pps_mutex);
2847
2848 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2849 return;
2850
2851 for_each_intel_encoder(dev, encoder) {
2852 struct intel_dp *intel_dp;
2853 enum port port;
2854
2855 if (encoder->type != INTEL_OUTPUT_EDP)
2856 continue;
2857
2858 intel_dp = enc_to_intel_dp(&encoder->base);
2859 port = dp_to_dig_port(intel_dp)->port;
2860
2861 if (intel_dp->pps_pipe != pipe)
2862 continue;
2863
2864 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2865 pipe_name(pipe), port_name(port));
2866
2867 WARN(encoder->base.crtc,
2868 "stealing pipe %c power sequencer from active eDP port %c\n",
2869 pipe_name(pipe), port_name(port));
2870
2871 /* make sure vdd is off before we steal it */
2872 vlv_detach_power_sequencer(intel_dp);
2873 }
2874 }
2875
2876 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2877 {
2878 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2879 struct intel_encoder *encoder = &intel_dig_port->base;
2880 struct drm_device *dev = encoder->base.dev;
2881 struct drm_i915_private *dev_priv = to_i915(dev);
2882 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2883
2884 lockdep_assert_held(&dev_priv->pps_mutex);
2885
2886 if (!is_edp(intel_dp))
2887 return;
2888
2889 if (intel_dp->pps_pipe == crtc->pipe)
2890 return;
2891
2892 /*
2893 * If another power sequencer was being used on this
2894 * port previously make sure to turn off vdd there while
2895 * we still have control of it.
2896 */
2897 if (intel_dp->pps_pipe != INVALID_PIPE)
2898 vlv_detach_power_sequencer(intel_dp);
2899
2900 /*
2901 * We may be stealing the power
2902 * sequencer from another port.
2903 */
2904 vlv_steal_power_sequencer(dev, crtc->pipe);
2905
2906 /* now it's all ours */
2907 intel_dp->pps_pipe = crtc->pipe;
2908
2909 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2910 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2911
2912 /* init power sequencer on this pipe and port */
2913 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2914 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2915 }
2916
2917 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
2918 struct intel_crtc_state *pipe_config,
2919 struct drm_connector_state *conn_state)
2920 {
2921 vlv_phy_pre_encoder_enable(encoder);
2922
2923 intel_enable_dp(encoder, pipe_config);
2924 }
2925
2926 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
2927 struct intel_crtc_state *pipe_config,
2928 struct drm_connector_state *conn_state)
2929 {
2930 intel_dp_prepare(encoder, pipe_config);
2931
2932 vlv_phy_pre_pll_enable(encoder);
2933 }
2934
2935 static void chv_pre_enable_dp(struct intel_encoder *encoder,
2936 struct intel_crtc_state *pipe_config,
2937 struct drm_connector_state *conn_state)
2938 {
2939 chv_phy_pre_encoder_enable(encoder);
2940
2941 intel_enable_dp(encoder, pipe_config);
2942
2943 /* Second common lane will stay alive on its own now */
2944 chv_phy_release_cl2_override(encoder);
2945 }
2946
2947 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
2948 struct intel_crtc_state *pipe_config,
2949 struct drm_connector_state *conn_state)
2950 {
2951 intel_dp_prepare(encoder, pipe_config);
2952
2953 chv_phy_pre_pll_enable(encoder);
2954 }
2955
2956 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
2957 struct intel_crtc_state *pipe_config,
2958 struct drm_connector_state *conn_state)
2959 {
2960 chv_phy_post_pll_disable(encoder);
2961 }
2962
2963 /*
2964 * Fetch AUX CH registers 0x202 - 0x207 which contain
2965 * link status information
2966 */
2967 bool
2968 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2969 {
2970 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
2971 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2972 }
2973
2974 /* These are source-specific values. */
2975 uint8_t
2976 intel_dp_voltage_max(struct intel_dp *intel_dp)
2977 {
2978 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2979 struct drm_i915_private *dev_priv = to_i915(dev);
2980 enum port port = dp_to_dig_port(intel_dp)->port;
2981
2982 if (IS_BROXTON(dev))
2983 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2984 else if (INTEL_INFO(dev)->gen >= 9) {
2985 if (dev_priv->vbt.edp.low_vswing && port == PORT_A)
2986 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2987 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2988 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2989 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2990 else if (IS_GEN7(dev) && port == PORT_A)
2991 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2992 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2993 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2994 else
2995 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2996 }
2997
2998 uint8_t
2999 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3000 {
3001 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3002 enum port port = dp_to_dig_port(intel_dp)->port;
3003
3004 if (INTEL_INFO(dev)->gen >= 9) {
3005 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3006 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3007 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3008 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3009 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3010 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3011 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3012 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3013 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3014 default:
3015 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3016 }
3017 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3018 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3019 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3020 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3021 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3022 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3023 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3024 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3025 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3026 default:
3027 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3028 }
3029 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
3030 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3031 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3032 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3033 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3034 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3035 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3036 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3037 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3038 default:
3039 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3040 }
3041 } else if (IS_GEN7(dev) && port == PORT_A) {
3042 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3043 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3044 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3045 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3046 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3047 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3048 default:
3049 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3050 }
3051 } else {
3052 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3053 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3054 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3055 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3056 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3057 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3058 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3059 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3060 default:
3061 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3062 }
3063 }
3064 }
3065
3066 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3067 {
3068 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3069 unsigned long demph_reg_value, preemph_reg_value,
3070 uniqtranscale_reg_value;
3071 uint8_t train_set = intel_dp->train_set[0];
3072
3073 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3074 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3075 preemph_reg_value = 0x0004000;
3076 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3077 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3078 demph_reg_value = 0x2B405555;
3079 uniqtranscale_reg_value = 0x552AB83A;
3080 break;
3081 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3082 demph_reg_value = 0x2B404040;
3083 uniqtranscale_reg_value = 0x5548B83A;
3084 break;
3085 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3086 demph_reg_value = 0x2B245555;
3087 uniqtranscale_reg_value = 0x5560B83A;
3088 break;
3089 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3090 demph_reg_value = 0x2B405555;
3091 uniqtranscale_reg_value = 0x5598DA3A;
3092 break;
3093 default:
3094 return 0;
3095 }
3096 break;
3097 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3098 preemph_reg_value = 0x0002000;
3099 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3100 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3101 demph_reg_value = 0x2B404040;
3102 uniqtranscale_reg_value = 0x5552B83A;
3103 break;
3104 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3105 demph_reg_value = 0x2B404848;
3106 uniqtranscale_reg_value = 0x5580B83A;
3107 break;
3108 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3109 demph_reg_value = 0x2B404040;
3110 uniqtranscale_reg_value = 0x55ADDA3A;
3111 break;
3112 default:
3113 return 0;
3114 }
3115 break;
3116 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3117 preemph_reg_value = 0x0000000;
3118 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3119 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3120 demph_reg_value = 0x2B305555;
3121 uniqtranscale_reg_value = 0x5570B83A;
3122 break;
3123 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3124 demph_reg_value = 0x2B2B4040;
3125 uniqtranscale_reg_value = 0x55ADDA3A;
3126 break;
3127 default:
3128 return 0;
3129 }
3130 break;
3131 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3132 preemph_reg_value = 0x0006000;
3133 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3134 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3135 demph_reg_value = 0x1B405555;
3136 uniqtranscale_reg_value = 0x55ADDA3A;
3137 break;
3138 default:
3139 return 0;
3140 }
3141 break;
3142 default:
3143 return 0;
3144 }
3145
3146 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3147 uniqtranscale_reg_value, 0);
3148
3149 return 0;
3150 }
3151
3152 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3153 {
3154 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3155 u32 deemph_reg_value, margin_reg_value;
3156 bool uniq_trans_scale = false;
3157 uint8_t train_set = intel_dp->train_set[0];
3158
3159 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3160 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3161 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3162 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3163 deemph_reg_value = 128;
3164 margin_reg_value = 52;
3165 break;
3166 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3167 deemph_reg_value = 128;
3168 margin_reg_value = 77;
3169 break;
3170 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3171 deemph_reg_value = 128;
3172 margin_reg_value = 102;
3173 break;
3174 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3175 deemph_reg_value = 128;
3176 margin_reg_value = 154;
3177 uniq_trans_scale = true;
3178 break;
3179 default:
3180 return 0;
3181 }
3182 break;
3183 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3184 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3185 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3186 deemph_reg_value = 85;
3187 margin_reg_value = 78;
3188 break;
3189 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3190 deemph_reg_value = 85;
3191 margin_reg_value = 116;
3192 break;
3193 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3194 deemph_reg_value = 85;
3195 margin_reg_value = 154;
3196 break;
3197 default:
3198 return 0;
3199 }
3200 break;
3201 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3202 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3203 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3204 deemph_reg_value = 64;
3205 margin_reg_value = 104;
3206 break;
3207 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3208 deemph_reg_value = 64;
3209 margin_reg_value = 154;
3210 break;
3211 default:
3212 return 0;
3213 }
3214 break;
3215 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3216 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3217 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3218 deemph_reg_value = 43;
3219 margin_reg_value = 154;
3220 break;
3221 default:
3222 return 0;
3223 }
3224 break;
3225 default:
3226 return 0;
3227 }
3228
3229 chv_set_phy_signal_level(encoder, deemph_reg_value,
3230 margin_reg_value, uniq_trans_scale);
3231
3232 return 0;
3233 }
3234
3235 static uint32_t
3236 gen4_signal_levels(uint8_t train_set)
3237 {
3238 uint32_t signal_levels = 0;
3239
3240 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3241 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3242 default:
3243 signal_levels |= DP_VOLTAGE_0_4;
3244 break;
3245 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3246 signal_levels |= DP_VOLTAGE_0_6;
3247 break;
3248 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3249 signal_levels |= DP_VOLTAGE_0_8;
3250 break;
3251 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3252 signal_levels |= DP_VOLTAGE_1_2;
3253 break;
3254 }
3255 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3256 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3257 default:
3258 signal_levels |= DP_PRE_EMPHASIS_0;
3259 break;
3260 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3261 signal_levels |= DP_PRE_EMPHASIS_3_5;
3262 break;
3263 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3264 signal_levels |= DP_PRE_EMPHASIS_6;
3265 break;
3266 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3267 signal_levels |= DP_PRE_EMPHASIS_9_5;
3268 break;
3269 }
3270 return signal_levels;
3271 }
3272
3273 /* Gen6's DP voltage swing and pre-emphasis control */
3274 static uint32_t
3275 gen6_edp_signal_levels(uint8_t train_set)
3276 {
3277 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3278 DP_TRAIN_PRE_EMPHASIS_MASK);
3279 switch (signal_levels) {
3280 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3281 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3282 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3283 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3284 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3285 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3286 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3287 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3288 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3289 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3290 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3291 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3292 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3293 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3294 default:
3295 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3296 "0x%x\n", signal_levels);
3297 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3298 }
3299 }
3300
3301 /* Gen7's DP voltage swing and pre-emphasis control */
3302 static uint32_t
3303 gen7_edp_signal_levels(uint8_t train_set)
3304 {
3305 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3306 DP_TRAIN_PRE_EMPHASIS_MASK);
3307 switch (signal_levels) {
3308 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3309 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3310 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3311 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3312 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3313 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3314
3315 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3316 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3317 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3318 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3319
3320 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3321 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3322 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3323 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3324
3325 default:
3326 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3327 "0x%x\n", signal_levels);
3328 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3329 }
3330 }
3331
3332 void
3333 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3334 {
3335 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3336 enum port port = intel_dig_port->port;
3337 struct drm_device *dev = intel_dig_port->base.base.dev;
3338 struct drm_i915_private *dev_priv = to_i915(dev);
3339 uint32_t signal_levels, mask = 0;
3340 uint8_t train_set = intel_dp->train_set[0];
3341
3342 if (HAS_DDI(dev_priv)) {
3343 signal_levels = ddi_signal_levels(intel_dp);
3344
3345 if (IS_BROXTON(dev))
3346 signal_levels = 0;
3347 else
3348 mask = DDI_BUF_EMP_MASK;
3349 } else if (IS_CHERRYVIEW(dev)) {
3350 signal_levels = chv_signal_levels(intel_dp);
3351 } else if (IS_VALLEYVIEW(dev)) {
3352 signal_levels = vlv_signal_levels(intel_dp);
3353 } else if (IS_GEN7(dev) && port == PORT_A) {
3354 signal_levels = gen7_edp_signal_levels(train_set);
3355 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3356 } else if (IS_GEN6(dev) && port == PORT_A) {
3357 signal_levels = gen6_edp_signal_levels(train_set);
3358 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3359 } else {
3360 signal_levels = gen4_signal_levels(train_set);
3361 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3362 }
3363
3364 if (mask)
3365 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3366
3367 DRM_DEBUG_KMS("Using vswing level %d\n",
3368 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3369 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3370 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3371 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3372
3373 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3374
3375 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3376 POSTING_READ(intel_dp->output_reg);
3377 }
3378
3379 void
3380 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3381 uint8_t dp_train_pat)
3382 {
3383 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3384 struct drm_i915_private *dev_priv =
3385 to_i915(intel_dig_port->base.base.dev);
3386
3387 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3388
3389 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3390 POSTING_READ(intel_dp->output_reg);
3391 }
3392
3393 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3394 {
3395 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3396 struct drm_device *dev = intel_dig_port->base.base.dev;
3397 struct drm_i915_private *dev_priv = to_i915(dev);
3398 enum port port = intel_dig_port->port;
3399 uint32_t val;
3400
3401 if (!HAS_DDI(dev_priv))
3402 return;
3403
3404 val = I915_READ(DP_TP_CTL(port));
3405 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3406 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3407 I915_WRITE(DP_TP_CTL(port), val);
3408
3409 /*
3410 * On PORT_A we can have only eDP in SST mode. There the only reason
3411 * we need to set idle transmission mode is to work around a HW issue
3412 * where we enable the pipe while not in idle link-training mode.
3413 * In this case there is requirement to wait for a minimum number of
3414 * idle patterns to be sent.
3415 */
3416 if (port == PORT_A)
3417 return;
3418
3419 if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
3420 DP_TP_STATUS_IDLE_DONE,
3421 DP_TP_STATUS_IDLE_DONE,
3422 1))
3423 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3424 }
3425
3426 static void
3427 intel_dp_link_down(struct intel_dp *intel_dp)
3428 {
3429 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3430 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3431 enum port port = intel_dig_port->port;
3432 struct drm_device *dev = intel_dig_port->base.base.dev;
3433 struct drm_i915_private *dev_priv = to_i915(dev);
3434 uint32_t DP = intel_dp->DP;
3435
3436 if (WARN_ON(HAS_DDI(dev_priv)))
3437 return;
3438
3439 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3440 return;
3441
3442 DRM_DEBUG_KMS("\n");
3443
3444 if ((IS_GEN7(dev) && port == PORT_A) ||
3445 (HAS_PCH_CPT(dev) && port != PORT_A)) {
3446 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3447 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3448 } else {
3449 if (IS_CHERRYVIEW(dev))
3450 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3451 else
3452 DP &= ~DP_LINK_TRAIN_MASK;
3453 DP |= DP_LINK_TRAIN_PAT_IDLE;
3454 }
3455 I915_WRITE(intel_dp->output_reg, DP);
3456 POSTING_READ(intel_dp->output_reg);
3457
3458 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3459 I915_WRITE(intel_dp->output_reg, DP);
3460 POSTING_READ(intel_dp->output_reg);
3461
3462 /*
3463 * HW workaround for IBX, we need to move the port
3464 * to transcoder A after disabling it to allow the
3465 * matching HDMI port to be enabled on transcoder A.
3466 */
3467 if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3468 /*
3469 * We get CPU/PCH FIFO underruns on the other pipe when
3470 * doing the workaround. Sweep them under the rug.
3471 */
3472 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3473 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3474
3475 /* always enable with pattern 1 (as per spec) */
3476 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3477 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3478 I915_WRITE(intel_dp->output_reg, DP);
3479 POSTING_READ(intel_dp->output_reg);
3480
3481 DP &= ~DP_PORT_EN;
3482 I915_WRITE(intel_dp->output_reg, DP);
3483 POSTING_READ(intel_dp->output_reg);
3484
3485 intel_wait_for_vblank_if_active(&dev_priv->drm, PIPE_A);
3486 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3487 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3488 }
3489
3490 msleep(intel_dp->panel_power_down_delay);
3491
3492 intel_dp->DP = DP;
3493 }
3494
3495 static bool
3496 intel_dp_read_dpcd(struct intel_dp *intel_dp)
3497 {
3498 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
3499 sizeof(intel_dp->dpcd)) < 0)
3500 return false; /* aux transfer failed */
3501
3502 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3503
3504 return intel_dp->dpcd[DP_DPCD_REV] != 0;
3505 }
3506
3507 static bool
3508 intel_edp_init_dpcd(struct intel_dp *intel_dp)
3509 {
3510 struct drm_i915_private *dev_priv =
3511 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
3512
3513 /* this function is meant to be called only once */
3514 WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
3515
3516 if (!intel_dp_read_dpcd(intel_dp))
3517 return false;
3518
3519 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3520 dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3521 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3522
3523 /* Check if the panel supports PSR */
3524 drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT,
3525 intel_dp->psr_dpcd,
3526 sizeof(intel_dp->psr_dpcd));
3527 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3528 dev_priv->psr.sink_support = true;
3529 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3530 }
3531
3532 if (INTEL_GEN(dev_priv) >= 9 &&
3533 (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3534 uint8_t frame_sync_cap;
3535
3536 dev_priv->psr.sink_support = true;
3537 drm_dp_dpcd_read(&intel_dp->aux,
3538 DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3539 &frame_sync_cap, 1);
3540 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3541 /* PSR2 needs frame sync as well */
3542 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3543 DRM_DEBUG_KMS("PSR2 %s on sink",
3544 dev_priv->psr.psr2_support ? "supported" : "not supported");
3545 }
3546
3547 /* Read the eDP Display control capabilities registers */
3548 if ((intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3549 drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
3550 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
3551 sizeof(intel_dp->edp_dpcd))
3552 DRM_DEBUG_KMS("EDP DPCD : %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
3553 intel_dp->edp_dpcd);
3554
3555 /* Intermediate frequency support */
3556 if (intel_dp->edp_dpcd[0] >= 0x03) { /* eDp v1.4 or higher */
3557 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3558 int i;
3559
3560 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
3561 sink_rates, sizeof(sink_rates));
3562
3563 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3564 int val = le16_to_cpu(sink_rates[i]);
3565
3566 if (val == 0)
3567 break;
3568
3569 /* Value read is in kHz while drm clock is saved in deca-kHz */
3570 intel_dp->sink_rates[i] = (val * 200) / 10;
3571 }
3572 intel_dp->num_sink_rates = i;
3573 }
3574
3575 return true;
3576 }
3577
3578
3579 static bool
3580 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3581 {
3582 if (!intel_dp_read_dpcd(intel_dp))
3583 return false;
3584
3585 if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT,
3586 &intel_dp->sink_count, 1) < 0)
3587 return false;
3588
3589 /*
3590 * Sink count can change between short pulse hpd hence
3591 * a member variable in intel_dp will track any changes
3592 * between short pulse interrupts.
3593 */
3594 intel_dp->sink_count = DP_GET_SINK_COUNT(intel_dp->sink_count);
3595
3596 /*
3597 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3598 * a dongle is present but no display. Unless we require to know
3599 * if a dongle is present or not, we don't need to update
3600 * downstream port information. So, an early return here saves
3601 * time from performing other operations which are not required.
3602 */
3603 if (!is_edp(intel_dp) && !intel_dp->sink_count)
3604 return false;
3605
3606 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3607 DP_DWN_STRM_PORT_PRESENT))
3608 return true; /* native DP sink */
3609
3610 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3611 return true; /* no per-port downstream info */
3612
3613 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3614 intel_dp->downstream_ports,
3615 DP_MAX_DOWNSTREAM_PORTS) < 0)
3616 return false; /* downstream port status fetch failed */
3617
3618 return true;
3619 }
3620
3621 static void
3622 intel_dp_probe_oui(struct intel_dp *intel_dp)
3623 {
3624 u8 buf[3];
3625
3626 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3627 return;
3628
3629 if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3630 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3631 buf[0], buf[1], buf[2]);
3632
3633 if (drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3634 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3635 buf[0], buf[1], buf[2]);
3636 }
3637
3638 static bool
3639 intel_dp_can_mst(struct intel_dp *intel_dp)
3640 {
3641 u8 buf[1];
3642
3643 if (!i915.enable_dp_mst)
3644 return false;
3645
3646 if (!intel_dp->can_mst)
3647 return false;
3648
3649 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3650 return false;
3651
3652 if (drm_dp_dpcd_read(&intel_dp->aux, DP_MSTM_CAP, buf, 1) != 1)
3653 return false;
3654
3655 return buf[0] & DP_MST_CAP;
3656 }
3657
3658 static void
3659 intel_dp_configure_mst(struct intel_dp *intel_dp)
3660 {
3661 if (!i915.enable_dp_mst)
3662 return;
3663
3664 if (!intel_dp->can_mst)
3665 return;
3666
3667 intel_dp->is_mst = intel_dp_can_mst(intel_dp);
3668
3669 if (intel_dp->is_mst)
3670 DRM_DEBUG_KMS("Sink is MST capable\n");
3671 else
3672 DRM_DEBUG_KMS("Sink is not MST capable\n");
3673
3674 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
3675 intel_dp->is_mst);
3676 }
3677
3678 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3679 {
3680 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3681 struct drm_device *dev = dig_port->base.base.dev;
3682 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3683 u8 buf;
3684 int ret = 0;
3685 int count = 0;
3686 int attempts = 10;
3687
3688 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3689 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3690 ret = -EIO;
3691 goto out;
3692 }
3693
3694 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3695 buf & ~DP_TEST_SINK_START) < 0) {
3696 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3697 ret = -EIO;
3698 goto out;
3699 }
3700
3701 do {
3702 intel_wait_for_vblank(dev, intel_crtc->pipe);
3703
3704 if (drm_dp_dpcd_readb(&intel_dp->aux,
3705 DP_TEST_SINK_MISC, &buf) < 0) {
3706 ret = -EIO;
3707 goto out;
3708 }
3709 count = buf & DP_TEST_COUNT_MASK;
3710 } while (--attempts && count);
3711
3712 if (attempts == 0) {
3713 DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
3714 ret = -ETIMEDOUT;
3715 }
3716
3717 out:
3718 hsw_enable_ips(intel_crtc);
3719 return ret;
3720 }
3721
3722 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
3723 {
3724 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3725 struct drm_device *dev = dig_port->base.base.dev;
3726 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3727 u8 buf;
3728 int ret;
3729
3730 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3731 return -EIO;
3732
3733 if (!(buf & DP_TEST_CRC_SUPPORTED))
3734 return -ENOTTY;
3735
3736 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3737 return -EIO;
3738
3739 if (buf & DP_TEST_SINK_START) {
3740 ret = intel_dp_sink_crc_stop(intel_dp);
3741 if (ret)
3742 return ret;
3743 }
3744
3745 hsw_disable_ips(intel_crtc);
3746
3747 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3748 buf | DP_TEST_SINK_START) < 0) {
3749 hsw_enable_ips(intel_crtc);
3750 return -EIO;
3751 }
3752
3753 intel_wait_for_vblank(dev, intel_crtc->pipe);
3754 return 0;
3755 }
3756
3757 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3758 {
3759 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3760 struct drm_device *dev = dig_port->base.base.dev;
3761 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3762 u8 buf;
3763 int count, ret;
3764 int attempts = 6;
3765
3766 ret = intel_dp_sink_crc_start(intel_dp);
3767 if (ret)
3768 return ret;
3769
3770 do {
3771 intel_wait_for_vblank(dev, intel_crtc->pipe);
3772
3773 if (drm_dp_dpcd_readb(&intel_dp->aux,
3774 DP_TEST_SINK_MISC, &buf) < 0) {
3775 ret = -EIO;
3776 goto stop;
3777 }
3778 count = buf & DP_TEST_COUNT_MASK;
3779
3780 } while (--attempts && count == 0);
3781
3782 if (attempts == 0) {
3783 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
3784 ret = -ETIMEDOUT;
3785 goto stop;
3786 }
3787
3788 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
3789 ret = -EIO;
3790 goto stop;
3791 }
3792
3793 stop:
3794 intel_dp_sink_crc_stop(intel_dp);
3795 return ret;
3796 }
3797
3798 static bool
3799 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3800 {
3801 return drm_dp_dpcd_read(&intel_dp->aux,
3802 DP_DEVICE_SERVICE_IRQ_VECTOR,
3803 sink_irq_vector, 1) == 1;
3804 }
3805
3806 static bool
3807 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3808 {
3809 int ret;
3810
3811 ret = drm_dp_dpcd_read(&intel_dp->aux,
3812 DP_SINK_COUNT_ESI,
3813 sink_irq_vector, 14);
3814 if (ret != 14)
3815 return false;
3816
3817 return true;
3818 }
3819
3820 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
3821 {
3822 uint8_t test_result = DP_TEST_ACK;
3823 return test_result;
3824 }
3825
3826 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
3827 {
3828 uint8_t test_result = DP_TEST_NAK;
3829 return test_result;
3830 }
3831
3832 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
3833 {
3834 uint8_t test_result = DP_TEST_NAK;
3835 struct intel_connector *intel_connector = intel_dp->attached_connector;
3836 struct drm_connector *connector = &intel_connector->base;
3837
3838 if (intel_connector->detect_edid == NULL ||
3839 connector->edid_corrupt ||
3840 intel_dp->aux.i2c_defer_count > 6) {
3841 /* Check EDID read for NACKs, DEFERs and corruption
3842 * (DP CTS 1.2 Core r1.1)
3843 * 4.2.2.4 : Failed EDID read, I2C_NAK
3844 * 4.2.2.5 : Failed EDID read, I2C_DEFER
3845 * 4.2.2.6 : EDID corruption detected
3846 * Use failsafe mode for all cases
3847 */
3848 if (intel_dp->aux.i2c_nack_count > 0 ||
3849 intel_dp->aux.i2c_defer_count > 0)
3850 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
3851 intel_dp->aux.i2c_nack_count,
3852 intel_dp->aux.i2c_defer_count);
3853 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
3854 } else {
3855 struct edid *block = intel_connector->detect_edid;
3856
3857 /* We have to write the checksum
3858 * of the last block read
3859 */
3860 block += intel_connector->detect_edid->extensions;
3861
3862 if (!drm_dp_dpcd_write(&intel_dp->aux,
3863 DP_TEST_EDID_CHECKSUM,
3864 &block->checksum,
3865 1))
3866 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
3867
3868 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
3869 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
3870 }
3871
3872 /* Set test active flag here so userspace doesn't interrupt things */
3873 intel_dp->compliance_test_active = 1;
3874
3875 return test_result;
3876 }
3877
3878 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
3879 {
3880 uint8_t test_result = DP_TEST_NAK;
3881 return test_result;
3882 }
3883
3884 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
3885 {
3886 uint8_t response = DP_TEST_NAK;
3887 uint8_t rxdata = 0;
3888 int status = 0;
3889
3890 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
3891 if (status <= 0) {
3892 DRM_DEBUG_KMS("Could not read test request from sink\n");
3893 goto update_status;
3894 }
3895
3896 switch (rxdata) {
3897 case DP_TEST_LINK_TRAINING:
3898 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
3899 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
3900 response = intel_dp_autotest_link_training(intel_dp);
3901 break;
3902 case DP_TEST_LINK_VIDEO_PATTERN:
3903 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
3904 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
3905 response = intel_dp_autotest_video_pattern(intel_dp);
3906 break;
3907 case DP_TEST_LINK_EDID_READ:
3908 DRM_DEBUG_KMS("EDID test requested\n");
3909 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
3910 response = intel_dp_autotest_edid(intel_dp);
3911 break;
3912 case DP_TEST_LINK_PHY_TEST_PATTERN:
3913 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
3914 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
3915 response = intel_dp_autotest_phy_pattern(intel_dp);
3916 break;
3917 default:
3918 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
3919 break;
3920 }
3921
3922 update_status:
3923 status = drm_dp_dpcd_write(&intel_dp->aux,
3924 DP_TEST_RESPONSE,
3925 &response, 1);
3926 if (status <= 0)
3927 DRM_DEBUG_KMS("Could not write test response to sink\n");
3928 }
3929
3930 static int
3931 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3932 {
3933 bool bret;
3934
3935 if (intel_dp->is_mst) {
3936 u8 esi[16] = { 0 };
3937 int ret = 0;
3938 int retry;
3939 bool handled;
3940 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3941 go_again:
3942 if (bret == true) {
3943
3944 /* check link status - esi[10] = 0x200c */
3945 if (intel_dp->active_mst_links &&
3946 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3947 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3948 intel_dp_start_link_train(intel_dp);
3949 intel_dp_stop_link_train(intel_dp);
3950 }
3951
3952 DRM_DEBUG_KMS("got esi %3ph\n", esi);
3953 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3954
3955 if (handled) {
3956 for (retry = 0; retry < 3; retry++) {
3957 int wret;
3958 wret = drm_dp_dpcd_write(&intel_dp->aux,
3959 DP_SINK_COUNT_ESI+1,
3960 &esi[1], 3);
3961 if (wret == 3) {
3962 break;
3963 }
3964 }
3965
3966 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3967 if (bret == true) {
3968 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
3969 goto go_again;
3970 }
3971 } else
3972 ret = 0;
3973
3974 return ret;
3975 } else {
3976 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3977 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3978 intel_dp->is_mst = false;
3979 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3980 /* send a hotplug event */
3981 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3982 }
3983 }
3984 return -EINVAL;
3985 }
3986
3987 static void
3988 intel_dp_check_link_status(struct intel_dp *intel_dp)
3989 {
3990 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3991 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3992 u8 link_status[DP_LINK_STATUS_SIZE];
3993
3994 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3995
3996 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3997 DRM_ERROR("Failed to get link status\n");
3998 return;
3999 }
4000
4001 if (!intel_encoder->base.crtc)
4002 return;
4003
4004 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4005 return;
4006
4007 /* if link training is requested we should perform it always */
4008 if ((intel_dp->compliance_test_type == DP_TEST_LINK_TRAINING) ||
4009 (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count))) {
4010 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4011 intel_encoder->base.name);
4012 intel_dp_start_link_train(intel_dp);
4013 intel_dp_stop_link_train(intel_dp);
4014 }
4015 }
4016
4017 /*
4018 * According to DP spec
4019 * 5.1.2:
4020 * 1. Read DPCD
4021 * 2. Configure link according to Receiver Capabilities
4022 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4023 * 4. Check link status on receipt of hot-plug interrupt
4024 *
4025 * intel_dp_short_pulse - handles short pulse interrupts
4026 * when full detection is not required.
4027 * Returns %true if short pulse is handled and full detection
4028 * is NOT required and %false otherwise.
4029 */
4030 static bool
4031 intel_dp_short_pulse(struct intel_dp *intel_dp)
4032 {
4033 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4034 u8 sink_irq_vector = 0;
4035 u8 old_sink_count = intel_dp->sink_count;
4036 bool ret;
4037
4038 /*
4039 * Clearing compliance test variables to allow capturing
4040 * of values for next automated test request.
4041 */
4042 intel_dp->compliance_test_active = 0;
4043 intel_dp->compliance_test_type = 0;
4044 intel_dp->compliance_test_data = 0;
4045
4046 /*
4047 * Now read the DPCD to see if it's actually running
4048 * If the current value of sink count doesn't match with
4049 * the value that was stored earlier or dpcd read failed
4050 * we need to do full detection
4051 */
4052 ret = intel_dp_get_dpcd(intel_dp);
4053
4054 if ((old_sink_count != intel_dp->sink_count) || !ret) {
4055 /* No need to proceed if we are going to do full detect */
4056 return false;
4057 }
4058
4059 /* Try to read the source of the interrupt */
4060 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4061 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4062 sink_irq_vector != 0) {
4063 /* Clear interrupt source */
4064 drm_dp_dpcd_writeb(&intel_dp->aux,
4065 DP_DEVICE_SERVICE_IRQ_VECTOR,
4066 sink_irq_vector);
4067
4068 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4069 DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4070 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4071 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4072 }
4073
4074 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4075 intel_dp_check_link_status(intel_dp);
4076 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4077
4078 return true;
4079 }
4080
4081 /* XXX this is probably wrong for multiple downstream ports */
4082 static enum drm_connector_status
4083 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4084 {
4085 uint8_t *dpcd = intel_dp->dpcd;
4086 uint8_t type;
4087
4088 if (!intel_dp_get_dpcd(intel_dp))
4089 return connector_status_disconnected;
4090
4091 if (is_edp(intel_dp))
4092 return connector_status_connected;
4093
4094 /* if there's no downstream port, we're done */
4095 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4096 return connector_status_connected;
4097
4098 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4099 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4100 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4101
4102 return intel_dp->sink_count ?
4103 connector_status_connected : connector_status_disconnected;
4104 }
4105
4106 if (intel_dp_can_mst(intel_dp))
4107 return connector_status_connected;
4108
4109 /* If no HPD, poke DDC gently */
4110 if (drm_probe_ddc(&intel_dp->aux.ddc))
4111 return connector_status_connected;
4112
4113 /* Well we tried, say unknown for unreliable port types */
4114 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4115 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4116 if (type == DP_DS_PORT_TYPE_VGA ||
4117 type == DP_DS_PORT_TYPE_NON_EDID)
4118 return connector_status_unknown;
4119 } else {
4120 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4121 DP_DWN_STRM_PORT_TYPE_MASK;
4122 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4123 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4124 return connector_status_unknown;
4125 }
4126
4127 /* Anything else is out of spec, warn and ignore */
4128 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4129 return connector_status_disconnected;
4130 }
4131
4132 static enum drm_connector_status
4133 edp_detect(struct intel_dp *intel_dp)
4134 {
4135 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4136 enum drm_connector_status status;
4137
4138 status = intel_panel_detect(dev);
4139 if (status == connector_status_unknown)
4140 status = connector_status_connected;
4141
4142 return status;
4143 }
4144
4145 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4146 struct intel_digital_port *port)
4147 {
4148 u32 bit;
4149
4150 switch (port->port) {
4151 case PORT_A:
4152 return true;
4153 case PORT_B:
4154 bit = SDE_PORTB_HOTPLUG;
4155 break;
4156 case PORT_C:
4157 bit = SDE_PORTC_HOTPLUG;
4158 break;
4159 case PORT_D:
4160 bit = SDE_PORTD_HOTPLUG;
4161 break;
4162 default:
4163 MISSING_CASE(port->port);
4164 return false;
4165 }
4166
4167 return I915_READ(SDEISR) & bit;
4168 }
4169
4170 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4171 struct intel_digital_port *port)
4172 {
4173 u32 bit;
4174
4175 switch (port->port) {
4176 case PORT_A:
4177 return true;
4178 case PORT_B:
4179 bit = SDE_PORTB_HOTPLUG_CPT;
4180 break;
4181 case PORT_C:
4182 bit = SDE_PORTC_HOTPLUG_CPT;
4183 break;
4184 case PORT_D:
4185 bit = SDE_PORTD_HOTPLUG_CPT;
4186 break;
4187 case PORT_E:
4188 bit = SDE_PORTE_HOTPLUG_SPT;
4189 break;
4190 default:
4191 MISSING_CASE(port->port);
4192 return false;
4193 }
4194
4195 return I915_READ(SDEISR) & bit;
4196 }
4197
4198 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4199 struct intel_digital_port *port)
4200 {
4201 u32 bit;
4202
4203 switch (port->port) {
4204 case PORT_B:
4205 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4206 break;
4207 case PORT_C:
4208 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4209 break;
4210 case PORT_D:
4211 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4212 break;
4213 default:
4214 MISSING_CASE(port->port);
4215 return false;
4216 }
4217
4218 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4219 }
4220
4221 static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
4222 struct intel_digital_port *port)
4223 {
4224 u32 bit;
4225
4226 switch (port->port) {
4227 case PORT_B:
4228 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4229 break;
4230 case PORT_C:
4231 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4232 break;
4233 case PORT_D:
4234 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4235 break;
4236 default:
4237 MISSING_CASE(port->port);
4238 return false;
4239 }
4240
4241 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4242 }
4243
4244 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4245 struct intel_digital_port *intel_dig_port)
4246 {
4247 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4248 enum port port;
4249 u32 bit;
4250
4251 intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4252 switch (port) {
4253 case PORT_A:
4254 bit = BXT_DE_PORT_HP_DDIA;
4255 break;
4256 case PORT_B:
4257 bit = BXT_DE_PORT_HP_DDIB;
4258 break;
4259 case PORT_C:
4260 bit = BXT_DE_PORT_HP_DDIC;
4261 break;
4262 default:
4263 MISSING_CASE(port);
4264 return false;
4265 }
4266
4267 return I915_READ(GEN8_DE_PORT_ISR) & bit;
4268 }
4269
4270 /*
4271 * intel_digital_port_connected - is the specified port connected?
4272 * @dev_priv: i915 private structure
4273 * @port: the port to test
4274 *
4275 * Return %true if @port is connected, %false otherwise.
4276 */
4277 static bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4278 struct intel_digital_port *port)
4279 {
4280 if (HAS_PCH_IBX(dev_priv))
4281 return ibx_digital_port_connected(dev_priv, port);
4282 else if (HAS_PCH_SPLIT(dev_priv))
4283 return cpt_digital_port_connected(dev_priv, port);
4284 else if (IS_BROXTON(dev_priv))
4285 return bxt_digital_port_connected(dev_priv, port);
4286 else if (IS_GM45(dev_priv))
4287 return gm45_digital_port_connected(dev_priv, port);
4288 else
4289 return g4x_digital_port_connected(dev_priv, port);
4290 }
4291
4292 static struct edid *
4293 intel_dp_get_edid(struct intel_dp *intel_dp)
4294 {
4295 struct intel_connector *intel_connector = intel_dp->attached_connector;
4296
4297 /* use cached edid if we have one */
4298 if (intel_connector->edid) {
4299 /* invalid edid */
4300 if (IS_ERR(intel_connector->edid))
4301 return NULL;
4302
4303 return drm_edid_duplicate(intel_connector->edid);
4304 } else
4305 return drm_get_edid(&intel_connector->base,
4306 &intel_dp->aux.ddc);
4307 }
4308
4309 static void
4310 intel_dp_set_edid(struct intel_dp *intel_dp)
4311 {
4312 struct intel_connector *intel_connector = intel_dp->attached_connector;
4313 struct edid *edid;
4314
4315 intel_dp_unset_edid(intel_dp);
4316 edid = intel_dp_get_edid(intel_dp);
4317 intel_connector->detect_edid = edid;
4318
4319 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4320 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4321 else
4322 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4323 }
4324
4325 static void
4326 intel_dp_unset_edid(struct intel_dp *intel_dp)
4327 {
4328 struct intel_connector *intel_connector = intel_dp->attached_connector;
4329
4330 kfree(intel_connector->detect_edid);
4331 intel_connector->detect_edid = NULL;
4332
4333 intel_dp->has_audio = false;
4334 }
4335
4336 static enum drm_connector_status
4337 intel_dp_long_pulse(struct intel_connector *intel_connector)
4338 {
4339 struct drm_connector *connector = &intel_connector->base;
4340 struct intel_dp *intel_dp = intel_attached_dp(connector);
4341 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4342 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4343 struct drm_device *dev = connector->dev;
4344 enum drm_connector_status status;
4345 enum intel_display_power_domain power_domain;
4346 u8 sink_irq_vector = 0;
4347
4348 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4349 intel_display_power_get(to_i915(dev), power_domain);
4350
4351 /* Can't disconnect eDP, but you can close the lid... */
4352 if (is_edp(intel_dp))
4353 status = edp_detect(intel_dp);
4354 else if (intel_digital_port_connected(to_i915(dev),
4355 dp_to_dig_port(intel_dp)))
4356 status = intel_dp_detect_dpcd(intel_dp);
4357 else
4358 status = connector_status_disconnected;
4359
4360 if (status == connector_status_disconnected) {
4361 intel_dp->compliance_test_active = 0;
4362 intel_dp->compliance_test_type = 0;
4363 intel_dp->compliance_test_data = 0;
4364
4365 if (intel_dp->is_mst) {
4366 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4367 intel_dp->is_mst,
4368 intel_dp->mst_mgr.mst_state);
4369 intel_dp->is_mst = false;
4370 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4371 intel_dp->is_mst);
4372 }
4373
4374 goto out;
4375 }
4376
4377 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4378 intel_encoder->type = INTEL_OUTPUT_DP;
4379
4380 DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
4381 yesno(intel_dp_source_supports_hbr2(intel_dp)),
4382 yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
4383
4384 intel_dp_print_rates(intel_dp);
4385
4386 intel_dp_probe_oui(intel_dp);
4387
4388 intel_dp_print_hw_revision(intel_dp);
4389 intel_dp_print_sw_revision(intel_dp);
4390
4391 intel_dp_configure_mst(intel_dp);
4392
4393 if (intel_dp->is_mst) {
4394 /*
4395 * If we are in MST mode then this connector
4396 * won't appear connected or have anything
4397 * with EDID on it
4398 */
4399 status = connector_status_disconnected;
4400 goto out;
4401 } else if (connector->status == connector_status_connected) {
4402 /*
4403 * If display was connected already and is still connected
4404 * check links status, there has been known issues of
4405 * link loss triggerring long pulse!!!!
4406 */
4407 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4408 intel_dp_check_link_status(intel_dp);
4409 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4410 goto out;
4411 }
4412
4413 /*
4414 * Clearing NACK and defer counts to get their exact values
4415 * while reading EDID which are required by Compliance tests
4416 * 4.2.2.4 and 4.2.2.5
4417 */
4418 intel_dp->aux.i2c_nack_count = 0;
4419 intel_dp->aux.i2c_defer_count = 0;
4420
4421 intel_dp_set_edid(intel_dp);
4422 if (is_edp(intel_dp) || intel_connector->detect_edid)
4423 status = connector_status_connected;
4424 intel_dp->detect_done = true;
4425
4426 /* Try to read the source of the interrupt */
4427 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4428 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4429 sink_irq_vector != 0) {
4430 /* Clear interrupt source */
4431 drm_dp_dpcd_writeb(&intel_dp->aux,
4432 DP_DEVICE_SERVICE_IRQ_VECTOR,
4433 sink_irq_vector);
4434
4435 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4436 intel_dp_handle_test_request(intel_dp);
4437 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4438 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4439 }
4440
4441 out:
4442 if (status != connector_status_connected && !intel_dp->is_mst)
4443 intel_dp_unset_edid(intel_dp);
4444
4445 intel_display_power_put(to_i915(dev), power_domain);
4446 return status;
4447 }
4448
4449 static enum drm_connector_status
4450 intel_dp_detect(struct drm_connector *connector, bool force)
4451 {
4452 struct intel_dp *intel_dp = intel_attached_dp(connector);
4453 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4454 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4455 enum drm_connector_status status = connector->status;
4456
4457 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4458 connector->base.id, connector->name);
4459
4460 if (intel_dp->is_mst) {
4461 /* MST devices are disconnected from a monitor POV */
4462 intel_dp_unset_edid(intel_dp);
4463 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4464 intel_encoder->type = INTEL_OUTPUT_DP;
4465 return connector_status_disconnected;
4466 }
4467
4468 /* If full detect is not performed yet, do a full detect */
4469 if (!intel_dp->detect_done)
4470 status = intel_dp_long_pulse(intel_dp->attached_connector);
4471
4472 intel_dp->detect_done = false;
4473
4474 return status;
4475 }
4476
4477 static void
4478 intel_dp_force(struct drm_connector *connector)
4479 {
4480 struct intel_dp *intel_dp = intel_attached_dp(connector);
4481 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4482 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4483 enum intel_display_power_domain power_domain;
4484
4485 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4486 connector->base.id, connector->name);
4487 intel_dp_unset_edid(intel_dp);
4488
4489 if (connector->status != connector_status_connected)
4490 return;
4491
4492 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4493 intel_display_power_get(dev_priv, power_domain);
4494
4495 intel_dp_set_edid(intel_dp);
4496
4497 intel_display_power_put(dev_priv, power_domain);
4498
4499 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4500 intel_encoder->type = INTEL_OUTPUT_DP;
4501 }
4502
4503 static int intel_dp_get_modes(struct drm_connector *connector)
4504 {
4505 struct intel_connector *intel_connector = to_intel_connector(connector);
4506 struct edid *edid;
4507
4508 edid = intel_connector->detect_edid;
4509 if (edid) {
4510 int ret = intel_connector_update_modes(connector, edid);
4511 if (ret)
4512 return ret;
4513 }
4514
4515 /* if eDP has no EDID, fall back to fixed mode */
4516 if (is_edp(intel_attached_dp(connector)) &&
4517 intel_connector->panel.fixed_mode) {
4518 struct drm_display_mode *mode;
4519
4520 mode = drm_mode_duplicate(connector->dev,
4521 intel_connector->panel.fixed_mode);
4522 if (mode) {
4523 drm_mode_probed_add(connector, mode);
4524 return 1;
4525 }
4526 }
4527
4528 return 0;
4529 }
4530
4531 static bool
4532 intel_dp_detect_audio(struct drm_connector *connector)
4533 {
4534 bool has_audio = false;
4535 struct edid *edid;
4536
4537 edid = to_intel_connector(connector)->detect_edid;
4538 if (edid)
4539 has_audio = drm_detect_monitor_audio(edid);
4540
4541 return has_audio;
4542 }
4543
4544 static int
4545 intel_dp_set_property(struct drm_connector *connector,
4546 struct drm_property *property,
4547 uint64_t val)
4548 {
4549 struct drm_i915_private *dev_priv = to_i915(connector->dev);
4550 struct intel_connector *intel_connector = to_intel_connector(connector);
4551 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4552 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4553 int ret;
4554
4555 ret = drm_object_property_set_value(&connector->base, property, val);
4556 if (ret)
4557 return ret;
4558
4559 if (property == dev_priv->force_audio_property) {
4560 int i = val;
4561 bool has_audio;
4562
4563 if (i == intel_dp->force_audio)
4564 return 0;
4565
4566 intel_dp->force_audio = i;
4567
4568 if (i == HDMI_AUDIO_AUTO)
4569 has_audio = intel_dp_detect_audio(connector);
4570 else
4571 has_audio = (i == HDMI_AUDIO_ON);
4572
4573 if (has_audio == intel_dp->has_audio)
4574 return 0;
4575
4576 intel_dp->has_audio = has_audio;
4577 goto done;
4578 }
4579
4580 if (property == dev_priv->broadcast_rgb_property) {
4581 bool old_auto = intel_dp->color_range_auto;
4582 bool old_range = intel_dp->limited_color_range;
4583
4584 switch (val) {
4585 case INTEL_BROADCAST_RGB_AUTO:
4586 intel_dp->color_range_auto = true;
4587 break;
4588 case INTEL_BROADCAST_RGB_FULL:
4589 intel_dp->color_range_auto = false;
4590 intel_dp->limited_color_range = false;
4591 break;
4592 case INTEL_BROADCAST_RGB_LIMITED:
4593 intel_dp->color_range_auto = false;
4594 intel_dp->limited_color_range = true;
4595 break;
4596 default:
4597 return -EINVAL;
4598 }
4599
4600 if (old_auto == intel_dp->color_range_auto &&
4601 old_range == intel_dp->limited_color_range)
4602 return 0;
4603
4604 goto done;
4605 }
4606
4607 if (is_edp(intel_dp) &&
4608 property == connector->dev->mode_config.scaling_mode_property) {
4609 if (val == DRM_MODE_SCALE_NONE) {
4610 DRM_DEBUG_KMS("no scaling not supported\n");
4611 return -EINVAL;
4612 }
4613 if (HAS_GMCH_DISPLAY(dev_priv) &&
4614 val == DRM_MODE_SCALE_CENTER) {
4615 DRM_DEBUG_KMS("centering not supported\n");
4616 return -EINVAL;
4617 }
4618
4619 if (intel_connector->panel.fitting_mode == val) {
4620 /* the eDP scaling property is not changed */
4621 return 0;
4622 }
4623 intel_connector->panel.fitting_mode = val;
4624
4625 goto done;
4626 }
4627
4628 return -EINVAL;
4629
4630 done:
4631 if (intel_encoder->base.crtc)
4632 intel_crtc_restore_mode(intel_encoder->base.crtc);
4633
4634 return 0;
4635 }
4636
4637 static int
4638 intel_dp_connector_register(struct drm_connector *connector)
4639 {
4640 struct intel_dp *intel_dp = intel_attached_dp(connector);
4641 int ret;
4642
4643 ret = intel_connector_register(connector);
4644 if (ret)
4645 return ret;
4646
4647 i915_debugfs_connector_add(connector);
4648
4649 DRM_DEBUG_KMS("registering %s bus for %s\n",
4650 intel_dp->aux.name, connector->kdev->kobj.name);
4651
4652 intel_dp->aux.dev = connector->kdev;
4653 return drm_dp_aux_register(&intel_dp->aux);
4654 }
4655
4656 static void
4657 intel_dp_connector_unregister(struct drm_connector *connector)
4658 {
4659 drm_dp_aux_unregister(&intel_attached_dp(connector)->aux);
4660 intel_connector_unregister(connector);
4661 }
4662
4663 static void
4664 intel_dp_connector_destroy(struct drm_connector *connector)
4665 {
4666 struct intel_connector *intel_connector = to_intel_connector(connector);
4667
4668 kfree(intel_connector->detect_edid);
4669
4670 if (!IS_ERR_OR_NULL(intel_connector->edid))
4671 kfree(intel_connector->edid);
4672
4673 /* Can't call is_edp() since the encoder may have been destroyed
4674 * already. */
4675 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4676 intel_panel_fini(&intel_connector->panel);
4677
4678 drm_connector_cleanup(connector);
4679 kfree(connector);
4680 }
4681
4682 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4683 {
4684 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4685 struct intel_dp *intel_dp = &intel_dig_port->dp;
4686
4687 intel_dp_mst_encoder_cleanup(intel_dig_port);
4688 if (is_edp(intel_dp)) {
4689 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4690 /*
4691 * vdd might still be enabled do to the delayed vdd off.
4692 * Make sure vdd is actually turned off here.
4693 */
4694 pps_lock(intel_dp);
4695 edp_panel_vdd_off_sync(intel_dp);
4696 pps_unlock(intel_dp);
4697
4698 if (intel_dp->edp_notifier.notifier_call) {
4699 unregister_reboot_notifier(&intel_dp->edp_notifier);
4700 intel_dp->edp_notifier.notifier_call = NULL;
4701 }
4702 }
4703
4704 intel_dp_aux_fini(intel_dp);
4705
4706 drm_encoder_cleanup(encoder);
4707 kfree(intel_dig_port);
4708 }
4709
4710 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4711 {
4712 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4713
4714 if (!is_edp(intel_dp))
4715 return;
4716
4717 /*
4718 * vdd might still be enabled do to the delayed vdd off.
4719 * Make sure vdd is actually turned off here.
4720 */
4721 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4722 pps_lock(intel_dp);
4723 edp_panel_vdd_off_sync(intel_dp);
4724 pps_unlock(intel_dp);
4725 }
4726
4727 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4728 {
4729 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4730 struct drm_device *dev = intel_dig_port->base.base.dev;
4731 struct drm_i915_private *dev_priv = to_i915(dev);
4732 enum intel_display_power_domain power_domain;
4733
4734 lockdep_assert_held(&dev_priv->pps_mutex);
4735
4736 if (!edp_have_panel_vdd(intel_dp))
4737 return;
4738
4739 /*
4740 * The VDD bit needs a power domain reference, so if the bit is
4741 * already enabled when we boot or resume, grab this reference and
4742 * schedule a vdd off, so we don't hold on to the reference
4743 * indefinitely.
4744 */
4745 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4746 power_domain = intel_display_port_aux_power_domain(&intel_dig_port->base);
4747 intel_display_power_get(dev_priv, power_domain);
4748
4749 edp_panel_vdd_schedule_off(intel_dp);
4750 }
4751
4752 void intel_dp_encoder_reset(struct drm_encoder *encoder)
4753 {
4754 struct drm_i915_private *dev_priv = to_i915(encoder->dev);
4755 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4756
4757 if (!HAS_DDI(dev_priv))
4758 intel_dp->DP = I915_READ(intel_dp->output_reg);
4759
4760 if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4761 return;
4762
4763 pps_lock(intel_dp);
4764
4765 /* Reinit the power sequencer, in case BIOS did something with it. */
4766 intel_dp_pps_init(encoder->dev, intel_dp);
4767 intel_edp_panel_vdd_sanitize(intel_dp);
4768
4769 pps_unlock(intel_dp);
4770 }
4771
4772 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4773 .dpms = drm_atomic_helper_connector_dpms,
4774 .detect = intel_dp_detect,
4775 .force = intel_dp_force,
4776 .fill_modes = drm_helper_probe_single_connector_modes,
4777 .set_property = intel_dp_set_property,
4778 .atomic_get_property = intel_connector_atomic_get_property,
4779 .late_register = intel_dp_connector_register,
4780 .early_unregister = intel_dp_connector_unregister,
4781 .destroy = intel_dp_connector_destroy,
4782 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4783 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4784 };
4785
4786 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4787 .get_modes = intel_dp_get_modes,
4788 .mode_valid = intel_dp_mode_valid,
4789 };
4790
4791 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4792 .reset = intel_dp_encoder_reset,
4793 .destroy = intel_dp_encoder_destroy,
4794 };
4795
4796 enum irqreturn
4797 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4798 {
4799 struct intel_dp *intel_dp = &intel_dig_port->dp;
4800 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4801 struct drm_device *dev = intel_dig_port->base.base.dev;
4802 struct drm_i915_private *dev_priv = to_i915(dev);
4803 enum intel_display_power_domain power_domain;
4804 enum irqreturn ret = IRQ_NONE;
4805
4806 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
4807 intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
4808 intel_dig_port->base.type = INTEL_OUTPUT_DP;
4809
4810 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4811 /*
4812 * vdd off can generate a long pulse on eDP which
4813 * would require vdd on to handle it, and thus we
4814 * would end up in an endless cycle of
4815 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4816 */
4817 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4818 port_name(intel_dig_port->port));
4819 return IRQ_HANDLED;
4820 }
4821
4822 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4823 port_name(intel_dig_port->port),
4824 long_hpd ? "long" : "short");
4825
4826 if (long_hpd) {
4827 intel_dp->detect_done = false;
4828 return IRQ_NONE;
4829 }
4830
4831 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4832 intel_display_power_get(dev_priv, power_domain);
4833
4834 if (intel_dp->is_mst) {
4835 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
4836 /*
4837 * If we were in MST mode, and device is not
4838 * there, get out of MST mode
4839 */
4840 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4841 intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4842 intel_dp->is_mst = false;
4843 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4844 intel_dp->is_mst);
4845 intel_dp->detect_done = false;
4846 goto put_power;
4847 }
4848 }
4849
4850 if (!intel_dp->is_mst) {
4851 if (!intel_dp_short_pulse(intel_dp)) {
4852 intel_dp->detect_done = false;
4853 goto put_power;
4854 }
4855 }
4856
4857 ret = IRQ_HANDLED;
4858
4859 put_power:
4860 intel_display_power_put(dev_priv, power_domain);
4861
4862 return ret;
4863 }
4864
4865 /* check the VBT to see whether the eDP is on another port */
4866 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4867 {
4868 struct drm_i915_private *dev_priv = to_i915(dev);
4869
4870 /*
4871 * eDP not supported on g4x. so bail out early just
4872 * for a bit extra safety in case the VBT is bonkers.
4873 */
4874 if (INTEL_INFO(dev)->gen < 5)
4875 return false;
4876
4877 if (port == PORT_A)
4878 return true;
4879
4880 return intel_bios_is_port_edp(dev_priv, port);
4881 }
4882
4883 void
4884 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4885 {
4886 struct intel_connector *intel_connector = to_intel_connector(connector);
4887
4888 intel_attach_force_audio_property(connector);
4889 intel_attach_broadcast_rgb_property(connector);
4890 intel_dp->color_range_auto = true;
4891
4892 if (is_edp(intel_dp)) {
4893 drm_mode_create_scaling_mode_property(connector->dev);
4894 drm_object_attach_property(
4895 &connector->base,
4896 connector->dev->mode_config.scaling_mode_property,
4897 DRM_MODE_SCALE_ASPECT);
4898 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4899 }
4900 }
4901
4902 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4903 {
4904 intel_dp->panel_power_off_time = ktime_get_boottime();
4905 intel_dp->last_power_on = jiffies;
4906 intel_dp->last_backlight_off = jiffies;
4907 }
4908
4909 static void
4910 intel_pps_readout_hw_state(struct drm_i915_private *dev_priv,
4911 struct intel_dp *intel_dp, struct edp_power_seq *seq)
4912 {
4913 u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
4914 struct pps_registers regs;
4915
4916 intel_pps_get_registers(dev_priv, intel_dp, &regs);
4917
4918 /* Workaround: Need to write PP_CONTROL with the unlock key as
4919 * the very first thing. */
4920 pp_ctl = ironlake_get_pp_control(intel_dp);
4921
4922 pp_on = I915_READ(regs.pp_on);
4923 pp_off = I915_READ(regs.pp_off);
4924 if (!IS_BROXTON(dev_priv)) {
4925 I915_WRITE(regs.pp_ctrl, pp_ctl);
4926 pp_div = I915_READ(regs.pp_div);
4927 }
4928
4929 /* Pull timing values out of registers */
4930 seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4931 PANEL_POWER_UP_DELAY_SHIFT;
4932
4933 seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4934 PANEL_LIGHT_ON_DELAY_SHIFT;
4935
4936 seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4937 PANEL_LIGHT_OFF_DELAY_SHIFT;
4938
4939 seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4940 PANEL_POWER_DOWN_DELAY_SHIFT;
4941
4942 if (IS_BROXTON(dev_priv)) {
4943 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
4944 BXT_POWER_CYCLE_DELAY_SHIFT;
4945 if (tmp > 0)
4946 seq->t11_t12 = (tmp - 1) * 1000;
4947 else
4948 seq->t11_t12 = 0;
4949 } else {
4950 seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4951 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4952 }
4953 }
4954
4955 static void
4956 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
4957 {
4958 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4959 state_name,
4960 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
4961 }
4962
4963 static void
4964 intel_pps_verify_state(struct drm_i915_private *dev_priv,
4965 struct intel_dp *intel_dp)
4966 {
4967 struct edp_power_seq hw;
4968 struct edp_power_seq *sw = &intel_dp->pps_delays;
4969
4970 intel_pps_readout_hw_state(dev_priv, intel_dp, &hw);
4971
4972 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
4973 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
4974 DRM_ERROR("PPS state mismatch\n");
4975 intel_pps_dump_state("sw", sw);
4976 intel_pps_dump_state("hw", &hw);
4977 }
4978 }
4979
4980 static void
4981 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4982 struct intel_dp *intel_dp)
4983 {
4984 struct drm_i915_private *dev_priv = to_i915(dev);
4985 struct edp_power_seq cur, vbt, spec,
4986 *final = &intel_dp->pps_delays;
4987
4988 lockdep_assert_held(&dev_priv->pps_mutex);
4989
4990 /* already initialized? */
4991 if (final->t11_t12 != 0)
4992 return;
4993
4994 intel_pps_readout_hw_state(dev_priv, intel_dp, &cur);
4995
4996 intel_pps_dump_state("cur", &cur);
4997
4998 vbt = dev_priv->vbt.edp.pps;
4999
5000 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5001 * our hw here, which are all in 100usec. */
5002 spec.t1_t3 = 210 * 10;
5003 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5004 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5005 spec.t10 = 500 * 10;
5006 /* This one is special and actually in units of 100ms, but zero
5007 * based in the hw (so we need to add 100 ms). But the sw vbt
5008 * table multiplies it with 1000 to make it in units of 100usec,
5009 * too. */
5010 spec.t11_t12 = (510 + 100) * 10;
5011
5012 intel_pps_dump_state("vbt", &vbt);
5013
5014 /* Use the max of the register settings and vbt. If both are
5015 * unset, fall back to the spec limits. */
5016 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
5017 spec.field : \
5018 max(cur.field, vbt.field))
5019 assign_final(t1_t3);
5020 assign_final(t8);
5021 assign_final(t9);
5022 assign_final(t10);
5023 assign_final(t11_t12);
5024 #undef assign_final
5025
5026 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
5027 intel_dp->panel_power_up_delay = get_delay(t1_t3);
5028 intel_dp->backlight_on_delay = get_delay(t8);
5029 intel_dp->backlight_off_delay = get_delay(t9);
5030 intel_dp->panel_power_down_delay = get_delay(t10);
5031 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5032 #undef get_delay
5033
5034 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5035 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5036 intel_dp->panel_power_cycle_delay);
5037
5038 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5039 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5040
5041 /*
5042 * We override the HW backlight delays to 1 because we do manual waits
5043 * on them. For T8, even BSpec recommends doing it. For T9, if we
5044 * don't do this, we'll end up waiting for the backlight off delay
5045 * twice: once when we do the manual sleep, and once when we disable
5046 * the panel and wait for the PP_STATUS bit to become zero.
5047 */
5048 final->t8 = 1;
5049 final->t9 = 1;
5050 }
5051
5052 static void
5053 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5054 struct intel_dp *intel_dp)
5055 {
5056 struct drm_i915_private *dev_priv = to_i915(dev);
5057 u32 pp_on, pp_off, pp_div, port_sel = 0;
5058 int div = dev_priv->rawclk_freq / 1000;
5059 struct pps_registers regs;
5060 enum port port = dp_to_dig_port(intel_dp)->port;
5061 const struct edp_power_seq *seq = &intel_dp->pps_delays;
5062
5063 lockdep_assert_held(&dev_priv->pps_mutex);
5064
5065 intel_pps_get_registers(dev_priv, intel_dp, &regs);
5066
5067 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5068 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
5069 pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5070 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5071 /* Compute the divisor for the pp clock, simply match the Bspec
5072 * formula. */
5073 if (IS_BROXTON(dev)) {
5074 pp_div = I915_READ(regs.pp_ctrl);
5075 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5076 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
5077 << BXT_POWER_CYCLE_DELAY_SHIFT);
5078 } else {
5079 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5080 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5081 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5082 }
5083
5084 /* Haswell doesn't have any port selection bits for the panel
5085 * power sequencer any more. */
5086 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5087 port_sel = PANEL_PORT_SELECT_VLV(port);
5088 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5089 if (port == PORT_A)
5090 port_sel = PANEL_PORT_SELECT_DPA;
5091 else
5092 port_sel = PANEL_PORT_SELECT_DPD;
5093 }
5094
5095 pp_on |= port_sel;
5096
5097 I915_WRITE(regs.pp_on, pp_on);
5098 I915_WRITE(regs.pp_off, pp_off);
5099 if (IS_BROXTON(dev))
5100 I915_WRITE(regs.pp_ctrl, pp_div);
5101 else
5102 I915_WRITE(regs.pp_div, pp_div);
5103
5104 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5105 I915_READ(regs.pp_on),
5106 I915_READ(regs.pp_off),
5107 IS_BROXTON(dev) ?
5108 (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
5109 I915_READ(regs.pp_div));
5110 }
5111
5112 static void intel_dp_pps_init(struct drm_device *dev,
5113 struct intel_dp *intel_dp)
5114 {
5115 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5116 vlv_initial_power_sequencer_setup(intel_dp);
5117 } else {
5118 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5119 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5120 }
5121 }
5122
5123 /**
5124 * intel_dp_set_drrs_state - program registers for RR switch to take effect
5125 * @dev_priv: i915 device
5126 * @crtc_state: a pointer to the active intel_crtc_state
5127 * @refresh_rate: RR to be programmed
5128 *
5129 * This function gets called when refresh rate (RR) has to be changed from
5130 * one frequency to another. Switches can be between high and low RR
5131 * supported by the panel or to any other RR based on media playback (in
5132 * this case, RR value needs to be passed from user space).
5133 *
5134 * The caller of this function needs to take a lock on dev_priv->drrs.
5135 */
5136 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
5137 struct intel_crtc_state *crtc_state,
5138 int refresh_rate)
5139 {
5140 struct intel_encoder *encoder;
5141 struct intel_digital_port *dig_port = NULL;
5142 struct intel_dp *intel_dp = dev_priv->drrs.dp;
5143 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
5144 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5145
5146 if (refresh_rate <= 0) {
5147 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5148 return;
5149 }
5150
5151 if (intel_dp == NULL) {
5152 DRM_DEBUG_KMS("DRRS not supported.\n");
5153 return;
5154 }
5155
5156 /*
5157 * FIXME: This needs proper synchronization with psr state for some
5158 * platforms that cannot have PSR and DRRS enabled at the same time.
5159 */
5160
5161 dig_port = dp_to_dig_port(intel_dp);
5162 encoder = &dig_port->base;
5163 intel_crtc = to_intel_crtc(encoder->base.crtc);
5164
5165 if (!intel_crtc) {
5166 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5167 return;
5168 }
5169
5170 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5171 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5172 return;
5173 }
5174
5175 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5176 refresh_rate)
5177 index = DRRS_LOW_RR;
5178
5179 if (index == dev_priv->drrs.refresh_rate_type) {
5180 DRM_DEBUG_KMS(
5181 "DRRS requested for previously set RR...ignoring\n");
5182 return;
5183 }
5184
5185 if (!crtc_state->base.active) {
5186 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5187 return;
5188 }
5189
5190 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
5191 switch (index) {
5192 case DRRS_HIGH_RR:
5193 intel_dp_set_m_n(intel_crtc, M1_N1);
5194 break;
5195 case DRRS_LOW_RR:
5196 intel_dp_set_m_n(intel_crtc, M2_N2);
5197 break;
5198 case DRRS_MAX_RR:
5199 default:
5200 DRM_ERROR("Unsupported refreshrate type\n");
5201 }
5202 } else if (INTEL_GEN(dev_priv) > 6) {
5203 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
5204 u32 val;
5205
5206 val = I915_READ(reg);
5207 if (index > DRRS_HIGH_RR) {
5208 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5209 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5210 else
5211 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5212 } else {
5213 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5214 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5215 else
5216 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5217 }
5218 I915_WRITE(reg, val);
5219 }
5220
5221 dev_priv->drrs.refresh_rate_type = index;
5222
5223 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5224 }
5225
5226 /**
5227 * intel_edp_drrs_enable - init drrs struct if supported
5228 * @intel_dp: DP struct
5229 * @crtc_state: A pointer to the active crtc state.
5230 *
5231 * Initializes frontbuffer_bits and drrs.dp
5232 */
5233 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
5234 struct intel_crtc_state *crtc_state)
5235 {
5236 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5237 struct drm_i915_private *dev_priv = to_i915(dev);
5238
5239 if (!crtc_state->has_drrs) {
5240 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5241 return;
5242 }
5243
5244 mutex_lock(&dev_priv->drrs.mutex);
5245 if (WARN_ON(dev_priv->drrs.dp)) {
5246 DRM_ERROR("DRRS already enabled\n");
5247 goto unlock;
5248 }
5249
5250 dev_priv->drrs.busy_frontbuffer_bits = 0;
5251
5252 dev_priv->drrs.dp = intel_dp;
5253
5254 unlock:
5255 mutex_unlock(&dev_priv->drrs.mutex);
5256 }
5257
5258 /**
5259 * intel_edp_drrs_disable - Disable DRRS
5260 * @intel_dp: DP struct
5261 * @old_crtc_state: Pointer to old crtc_state.
5262 *
5263 */
5264 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
5265 struct intel_crtc_state *old_crtc_state)
5266 {
5267 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5268 struct drm_i915_private *dev_priv = to_i915(dev);
5269
5270 if (!old_crtc_state->has_drrs)
5271 return;
5272
5273 mutex_lock(&dev_priv->drrs.mutex);
5274 if (!dev_priv->drrs.dp) {
5275 mutex_unlock(&dev_priv->drrs.mutex);
5276 return;
5277 }
5278
5279 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5280 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
5281 intel_dp->attached_connector->panel.fixed_mode->vrefresh);
5282
5283 dev_priv->drrs.dp = NULL;
5284 mutex_unlock(&dev_priv->drrs.mutex);
5285
5286 cancel_delayed_work_sync(&dev_priv->drrs.work);
5287 }
5288
5289 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5290 {
5291 struct drm_i915_private *dev_priv =
5292 container_of(work, typeof(*dev_priv), drrs.work.work);
5293 struct intel_dp *intel_dp;
5294
5295 mutex_lock(&dev_priv->drrs.mutex);
5296
5297 intel_dp = dev_priv->drrs.dp;
5298
5299 if (!intel_dp)
5300 goto unlock;
5301
5302 /*
5303 * The delayed work can race with an invalidate hence we need to
5304 * recheck.
5305 */
5306
5307 if (dev_priv->drrs.busy_frontbuffer_bits)
5308 goto unlock;
5309
5310 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
5311 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
5312
5313 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5314 intel_dp->attached_connector->panel.downclock_mode->vrefresh);
5315 }
5316
5317 unlock:
5318 mutex_unlock(&dev_priv->drrs.mutex);
5319 }
5320
5321 /**
5322 * intel_edp_drrs_invalidate - Disable Idleness DRRS
5323 * @dev_priv: i915 device
5324 * @frontbuffer_bits: frontbuffer plane tracking bits
5325 *
5326 * This function gets called everytime rendering on the given planes start.
5327 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5328 *
5329 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5330 */
5331 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
5332 unsigned int frontbuffer_bits)
5333 {
5334 struct drm_crtc *crtc;
5335 enum pipe pipe;
5336
5337 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5338 return;
5339
5340 cancel_delayed_work(&dev_priv->drrs.work);
5341
5342 mutex_lock(&dev_priv->drrs.mutex);
5343 if (!dev_priv->drrs.dp) {
5344 mutex_unlock(&dev_priv->drrs.mutex);
5345 return;
5346 }
5347
5348 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5349 pipe = to_intel_crtc(crtc)->pipe;
5350
5351 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5352 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5353
5354 /* invalidate means busy screen hence upclock */
5355 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5356 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5357 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5358
5359 mutex_unlock(&dev_priv->drrs.mutex);
5360 }
5361
5362 /**
5363 * intel_edp_drrs_flush - Restart Idleness DRRS
5364 * @dev_priv: i915 device
5365 * @frontbuffer_bits: frontbuffer plane tracking bits
5366 *
5367 * This function gets called every time rendering on the given planes has
5368 * completed or flip on a crtc is completed. So DRRS should be upclocked
5369 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5370 * if no other planes are dirty.
5371 *
5372 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5373 */
5374 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
5375 unsigned int frontbuffer_bits)
5376 {
5377 struct drm_crtc *crtc;
5378 enum pipe pipe;
5379
5380 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5381 return;
5382
5383 cancel_delayed_work(&dev_priv->drrs.work);
5384
5385 mutex_lock(&dev_priv->drrs.mutex);
5386 if (!dev_priv->drrs.dp) {
5387 mutex_unlock(&dev_priv->drrs.mutex);
5388 return;
5389 }
5390
5391 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5392 pipe = to_intel_crtc(crtc)->pipe;
5393
5394 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5395 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5396
5397 /* flush means busy screen hence upclock */
5398 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5399 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5400 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5401
5402 /*
5403 * flush also means no more activity hence schedule downclock, if all
5404 * other fbs are quiescent too
5405 */
5406 if (!dev_priv->drrs.busy_frontbuffer_bits)
5407 schedule_delayed_work(&dev_priv->drrs.work,
5408 msecs_to_jiffies(1000));
5409 mutex_unlock(&dev_priv->drrs.mutex);
5410 }
5411
5412 /**
5413 * DOC: Display Refresh Rate Switching (DRRS)
5414 *
5415 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5416 * which enables swtching between low and high refresh rates,
5417 * dynamically, based on the usage scenario. This feature is applicable
5418 * for internal panels.
5419 *
5420 * Indication that the panel supports DRRS is given by the panel EDID, which
5421 * would list multiple refresh rates for one resolution.
5422 *
5423 * DRRS is of 2 types - static and seamless.
5424 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5425 * (may appear as a blink on screen) and is used in dock-undock scenario.
5426 * Seamless DRRS involves changing RR without any visual effect to the user
5427 * and can be used during normal system usage. This is done by programming
5428 * certain registers.
5429 *
5430 * Support for static/seamless DRRS may be indicated in the VBT based on
5431 * inputs from the panel spec.
5432 *
5433 * DRRS saves power by switching to low RR based on usage scenarios.
5434 *
5435 * The implementation is based on frontbuffer tracking implementation. When
5436 * there is a disturbance on the screen triggered by user activity or a periodic
5437 * system activity, DRRS is disabled (RR is changed to high RR). When there is
5438 * no movement on screen, after a timeout of 1 second, a switch to low RR is
5439 * made.
5440 *
5441 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
5442 * and intel_edp_drrs_flush() are called.
5443 *
5444 * DRRS can be further extended to support other internal panels and also
5445 * the scenario of video playback wherein RR is set based on the rate
5446 * requested by userspace.
5447 */
5448
5449 /**
5450 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5451 * @intel_connector: eDP connector
5452 * @fixed_mode: preferred mode of panel
5453 *
5454 * This function is called only once at driver load to initialize basic
5455 * DRRS stuff.
5456 *
5457 * Returns:
5458 * Downclock mode if panel supports it, else return NULL.
5459 * DRRS support is determined by the presence of downclock mode (apart
5460 * from VBT setting).
5461 */
5462 static struct drm_display_mode *
5463 intel_dp_drrs_init(struct intel_connector *intel_connector,
5464 struct drm_display_mode *fixed_mode)
5465 {
5466 struct drm_connector *connector = &intel_connector->base;
5467 struct drm_device *dev = connector->dev;
5468 struct drm_i915_private *dev_priv = to_i915(dev);
5469 struct drm_display_mode *downclock_mode = NULL;
5470
5471 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5472 mutex_init(&dev_priv->drrs.mutex);
5473
5474 if (INTEL_INFO(dev)->gen <= 6) {
5475 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5476 return NULL;
5477 }
5478
5479 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5480 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5481 return NULL;
5482 }
5483
5484 downclock_mode = intel_find_panel_downclock
5485 (dev, fixed_mode, connector);
5486
5487 if (!downclock_mode) {
5488 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5489 return NULL;
5490 }
5491
5492 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5493
5494 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5495 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5496 return downclock_mode;
5497 }
5498
5499 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5500 struct intel_connector *intel_connector)
5501 {
5502 struct drm_connector *connector = &intel_connector->base;
5503 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5504 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5505 struct drm_device *dev = intel_encoder->base.dev;
5506 struct drm_i915_private *dev_priv = to_i915(dev);
5507 struct drm_display_mode *fixed_mode = NULL;
5508 struct drm_display_mode *downclock_mode = NULL;
5509 bool has_dpcd;
5510 struct drm_display_mode *scan;
5511 struct edid *edid;
5512 enum pipe pipe = INVALID_PIPE;
5513
5514 if (!is_edp(intel_dp))
5515 return true;
5516
5517 /*
5518 * On IBX/CPT we may get here with LVDS already registered. Since the
5519 * driver uses the only internal power sequencer available for both
5520 * eDP and LVDS bail out early in this case to prevent interfering
5521 * with an already powered-on LVDS power sequencer.
5522 */
5523 if (intel_get_lvds_encoder(dev)) {
5524 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
5525 DRM_INFO("LVDS was detected, not registering eDP\n");
5526
5527 return false;
5528 }
5529
5530 pps_lock(intel_dp);
5531
5532 intel_dp_init_panel_power_timestamps(intel_dp);
5533 intel_dp_pps_init(dev, intel_dp);
5534 intel_edp_panel_vdd_sanitize(intel_dp);
5535
5536 pps_unlock(intel_dp);
5537
5538 /* Cache DPCD and EDID for edp. */
5539 has_dpcd = intel_edp_init_dpcd(intel_dp);
5540
5541 if (!has_dpcd) {
5542 /* if this fails, presume the device is a ghost */
5543 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5544 goto out_vdd_off;
5545 }
5546
5547 mutex_lock(&dev->mode_config.mutex);
5548 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5549 if (edid) {
5550 if (drm_add_edid_modes(connector, edid)) {
5551 drm_mode_connector_update_edid_property(connector,
5552 edid);
5553 drm_edid_to_eld(connector, edid);
5554 } else {
5555 kfree(edid);
5556 edid = ERR_PTR(-EINVAL);
5557 }
5558 } else {
5559 edid = ERR_PTR(-ENOENT);
5560 }
5561 intel_connector->edid = edid;
5562
5563 /* prefer fixed mode from EDID if available */
5564 list_for_each_entry(scan, &connector->probed_modes, head) {
5565 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5566 fixed_mode = drm_mode_duplicate(dev, scan);
5567 downclock_mode = intel_dp_drrs_init(
5568 intel_connector, fixed_mode);
5569 break;
5570 }
5571 }
5572
5573 /* fallback to VBT if available for eDP */
5574 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5575 fixed_mode = drm_mode_duplicate(dev,
5576 dev_priv->vbt.lfp_lvds_vbt_mode);
5577 if (fixed_mode) {
5578 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5579 connector->display_info.width_mm = fixed_mode->width_mm;
5580 connector->display_info.height_mm = fixed_mode->height_mm;
5581 }
5582 }
5583 mutex_unlock(&dev->mode_config.mutex);
5584
5585 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5586 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5587 register_reboot_notifier(&intel_dp->edp_notifier);
5588
5589 /*
5590 * Figure out the current pipe for the initial backlight setup.
5591 * If the current pipe isn't valid, try the PPS pipe, and if that
5592 * fails just assume pipe A.
5593 */
5594 if (IS_CHERRYVIEW(dev))
5595 pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5596 else
5597 pipe = PORT_TO_PIPE(intel_dp->DP);
5598
5599 if (pipe != PIPE_A && pipe != PIPE_B)
5600 pipe = intel_dp->pps_pipe;
5601
5602 if (pipe != PIPE_A && pipe != PIPE_B)
5603 pipe = PIPE_A;
5604
5605 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5606 pipe_name(pipe));
5607 }
5608
5609 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5610 intel_connector->panel.backlight.power = intel_edp_backlight_power;
5611 intel_panel_setup_backlight(connector, pipe);
5612
5613 return true;
5614
5615 out_vdd_off:
5616 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5617 /*
5618 * vdd might still be enabled do to the delayed vdd off.
5619 * Make sure vdd is actually turned off here.
5620 */
5621 pps_lock(intel_dp);
5622 edp_panel_vdd_off_sync(intel_dp);
5623 pps_unlock(intel_dp);
5624
5625 return false;
5626 }
5627
5628 bool
5629 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5630 struct intel_connector *intel_connector)
5631 {
5632 struct drm_connector *connector = &intel_connector->base;
5633 struct intel_dp *intel_dp = &intel_dig_port->dp;
5634 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5635 struct drm_device *dev = intel_encoder->base.dev;
5636 struct drm_i915_private *dev_priv = to_i915(dev);
5637 enum port port = intel_dig_port->port;
5638 int type;
5639
5640 if (WARN(intel_dig_port->max_lanes < 1,
5641 "Not enough lanes (%d) for DP on port %c\n",
5642 intel_dig_port->max_lanes, port_name(port)))
5643 return false;
5644
5645 intel_dp->pps_pipe = INVALID_PIPE;
5646
5647 /* intel_dp vfuncs */
5648 if (INTEL_INFO(dev)->gen >= 9)
5649 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5650 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5651 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5652 else if (HAS_PCH_SPLIT(dev))
5653 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5654 else
5655 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
5656
5657 if (INTEL_INFO(dev)->gen >= 9)
5658 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5659 else
5660 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
5661
5662 if (HAS_DDI(dev_priv))
5663 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
5664
5665 /* Preserve the current hw state. */
5666 intel_dp->DP = I915_READ(intel_dp->output_reg);
5667 intel_dp->attached_connector = intel_connector;
5668
5669 if (intel_dp_is_edp(dev, port))
5670 type = DRM_MODE_CONNECTOR_eDP;
5671 else
5672 type = DRM_MODE_CONNECTOR_DisplayPort;
5673
5674 /*
5675 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5676 * for DP the encoder type can be set by the caller to
5677 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5678 */
5679 if (type == DRM_MODE_CONNECTOR_eDP)
5680 intel_encoder->type = INTEL_OUTPUT_EDP;
5681
5682 /* eDP only on port B and/or C on vlv/chv */
5683 if (WARN_ON((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
5684 is_edp(intel_dp) && port != PORT_B && port != PORT_C))
5685 return false;
5686
5687 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5688 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5689 port_name(port));
5690
5691 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5692 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5693
5694 connector->interlace_allowed = true;
5695 connector->doublescan_allowed = 0;
5696
5697 intel_dp_aux_init(intel_dp);
5698
5699 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5700 edp_panel_vdd_work);
5701
5702 intel_connector_attach_encoder(intel_connector, intel_encoder);
5703
5704 if (HAS_DDI(dev_priv))
5705 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5706 else
5707 intel_connector->get_hw_state = intel_connector_get_hw_state;
5708
5709 /* Set up the hotplug pin. */
5710 switch (port) {
5711 case PORT_A:
5712 intel_encoder->hpd_pin = HPD_PORT_A;
5713 break;
5714 case PORT_B:
5715 intel_encoder->hpd_pin = HPD_PORT_B;
5716 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
5717 intel_encoder->hpd_pin = HPD_PORT_A;
5718 break;
5719 case PORT_C:
5720 intel_encoder->hpd_pin = HPD_PORT_C;
5721 break;
5722 case PORT_D:
5723 intel_encoder->hpd_pin = HPD_PORT_D;
5724 break;
5725 case PORT_E:
5726 intel_encoder->hpd_pin = HPD_PORT_E;
5727 break;
5728 default:
5729 BUG();
5730 }
5731
5732 /* init MST on ports that can support it */
5733 if (HAS_DP_MST(dev) && !is_edp(intel_dp) &&
5734 (port == PORT_B || port == PORT_C || port == PORT_D))
5735 intel_dp_mst_encoder_init(intel_dig_port,
5736 intel_connector->base.base.id);
5737
5738 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5739 intel_dp_aux_fini(intel_dp);
5740 intel_dp_mst_encoder_cleanup(intel_dig_port);
5741 goto fail;
5742 }
5743
5744 intel_dp_add_properties(intel_dp, connector);
5745
5746 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5747 * 0xd. Failure to do so will result in spurious interrupts being
5748 * generated on the port when a cable is not attached.
5749 */
5750 if (IS_G4X(dev) && !IS_GM45(dev)) {
5751 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5752 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5753 }
5754
5755 return true;
5756
5757 fail:
5758 drm_connector_cleanup(connector);
5759
5760 return false;
5761 }
5762
5763 bool intel_dp_init(struct drm_device *dev,
5764 i915_reg_t output_reg,
5765 enum port port)
5766 {
5767 struct drm_i915_private *dev_priv = to_i915(dev);
5768 struct intel_digital_port *intel_dig_port;
5769 struct intel_encoder *intel_encoder;
5770 struct drm_encoder *encoder;
5771 struct intel_connector *intel_connector;
5772
5773 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5774 if (!intel_dig_port)
5775 return false;
5776
5777 intel_connector = intel_connector_alloc();
5778 if (!intel_connector)
5779 goto err_connector_alloc;
5780
5781 intel_encoder = &intel_dig_port->base;
5782 encoder = &intel_encoder->base;
5783
5784 if (drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5785 DRM_MODE_ENCODER_TMDS, "DP %c", port_name(port)))
5786 goto err_encoder_init;
5787
5788 intel_encoder->compute_config = intel_dp_compute_config;
5789 intel_encoder->disable = intel_disable_dp;
5790 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5791 intel_encoder->get_config = intel_dp_get_config;
5792 intel_encoder->suspend = intel_dp_encoder_suspend;
5793 if (IS_CHERRYVIEW(dev)) {
5794 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5795 intel_encoder->pre_enable = chv_pre_enable_dp;
5796 intel_encoder->enable = vlv_enable_dp;
5797 intel_encoder->post_disable = chv_post_disable_dp;
5798 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
5799 } else if (IS_VALLEYVIEW(dev)) {
5800 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5801 intel_encoder->pre_enable = vlv_pre_enable_dp;
5802 intel_encoder->enable = vlv_enable_dp;
5803 intel_encoder->post_disable = vlv_post_disable_dp;
5804 } else {
5805 intel_encoder->pre_enable = g4x_pre_enable_dp;
5806 intel_encoder->enable = g4x_enable_dp;
5807 if (INTEL_INFO(dev)->gen >= 5)
5808 intel_encoder->post_disable = ilk_post_disable_dp;
5809 }
5810
5811 intel_dig_port->port = port;
5812 intel_dig_port->dp.output_reg = output_reg;
5813 intel_dig_port->max_lanes = 4;
5814
5815 intel_encoder->type = INTEL_OUTPUT_DP;
5816 if (IS_CHERRYVIEW(dev)) {
5817 if (port == PORT_D)
5818 intel_encoder->crtc_mask = 1 << 2;
5819 else
5820 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5821 } else {
5822 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5823 }
5824 intel_encoder->cloneable = 0;
5825 intel_encoder->port = port;
5826
5827 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5828 dev_priv->hotplug.irq_port[port] = intel_dig_port;
5829
5830 if (!intel_dp_init_connector(intel_dig_port, intel_connector))
5831 goto err_init_connector;
5832
5833 return true;
5834
5835 err_init_connector:
5836 drm_encoder_cleanup(encoder);
5837 err_encoder_init:
5838 kfree(intel_connector);
5839 err_connector_alloc:
5840 kfree(intel_dig_port);
5841 return false;
5842 }
5843
5844 void intel_dp_mst_suspend(struct drm_device *dev)
5845 {
5846 struct drm_i915_private *dev_priv = to_i915(dev);
5847 int i;
5848
5849 /* disable MST */
5850 for (i = 0; i < I915_MAX_PORTS; i++) {
5851 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5852
5853 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
5854 continue;
5855
5856 if (intel_dig_port->dp.is_mst)
5857 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5858 }
5859 }
5860
5861 void intel_dp_mst_resume(struct drm_device *dev)
5862 {
5863 struct drm_i915_private *dev_priv = to_i915(dev);
5864 int i;
5865
5866 for (i = 0; i < I915_MAX_PORTS; i++) {
5867 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5868 int ret;
5869
5870 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
5871 continue;
5872
5873 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5874 if (ret)
5875 intel_dp_check_mst_status(&intel_dig_port->dp);
5876 }
5877 }