]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_dp.c
add4b2434aa3d47ccc55f4262f928b241dad8ae5
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/types.h>
32 #include <linux/notifier.h>
33 #include <linux/reboot.h>
34 #include <asm/byteorder.h>
35 #include <drm/drmP.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_crtc.h>
38 #include <drm/drm_crtc_helper.h>
39 #include <drm/drm_edid.h>
40 #include "intel_drv.h"
41 #include <drm/i915_drm.h>
42 #include "i915_drv.h"
43
44 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
45 #define DP_DPRX_ESI_LEN 14
46
47 /* Compliance test status bits */
48 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
49 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
50 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
51 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
52
53 struct dp_link_dpll {
54 int clock;
55 struct dpll dpll;
56 };
57
58 static const struct dp_link_dpll gen4_dpll[] = {
59 { 162000,
60 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
61 { 270000,
62 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
63 };
64
65 static const struct dp_link_dpll pch_dpll[] = {
66 { 162000,
67 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
68 { 270000,
69 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
70 };
71
72 static const struct dp_link_dpll vlv_dpll[] = {
73 { 162000,
74 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
75 { 270000,
76 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
77 };
78
79 /*
80 * CHV supports eDP 1.4 that have more link rates.
81 * Below only provides the fixed rate but exclude variable rate.
82 */
83 static const struct dp_link_dpll chv_dpll[] = {
84 /*
85 * CHV requires to program fractional division for m2.
86 * m2 is stored in fixed point format using formula below
87 * (m2_int << 22) | m2_fraction
88 */
89 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
90 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
91 { 270000, /* m2_int = 27, m2_fraction = 0 */
92 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
93 { 540000, /* m2_int = 27, m2_fraction = 0 */
94 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
95 };
96
97 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
98 324000, 432000, 540000 };
99 static const int skl_rates[] = { 162000, 216000, 270000,
100 324000, 432000, 540000 };
101 static const int cnl_rates[] = { 162000, 216000, 270000,
102 324000, 432000, 540000,
103 648000, 810000 };
104 static const int default_rates[] = { 162000, 270000, 540000 };
105
106 /**
107 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
108 * @intel_dp: DP struct
109 *
110 * If a CPU or PCH DP output is attached to an eDP panel, this function
111 * will return true, and false otherwise.
112 */
113 bool intel_dp_is_edp(struct intel_dp *intel_dp)
114 {
115 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
116
117 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
118 }
119
120 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
121 {
122 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
123
124 return intel_dig_port->base.base.dev;
125 }
126
127 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
128 {
129 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
130 }
131
132 static void intel_dp_link_down(struct intel_dp *intel_dp);
133 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
134 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
135 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
136 static void vlv_steal_power_sequencer(struct drm_device *dev,
137 enum pipe pipe);
138 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
139
140 /* update sink rates from dpcd */
141 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
142 {
143 int i, max_rate;
144
145 max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
146
147 for (i = 0; i < ARRAY_SIZE(default_rates); i++) {
148 if (default_rates[i] > max_rate)
149 break;
150 intel_dp->sink_rates[i] = default_rates[i];
151 }
152
153 intel_dp->num_sink_rates = i;
154 }
155
156 /* Theoretical max between source and sink */
157 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
158 {
159 return intel_dp->common_rates[intel_dp->num_common_rates - 1];
160 }
161
162 /* Theoretical max between source and sink */
163 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
164 {
165 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
166 int source_max = intel_dig_port->max_lanes;
167 int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
168
169 return min(source_max, sink_max);
170 }
171
172 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
173 {
174 return intel_dp->max_link_lane_count;
175 }
176
177 int
178 intel_dp_link_required(int pixel_clock, int bpp)
179 {
180 /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
181 return DIV_ROUND_UP(pixel_clock * bpp, 8);
182 }
183
184 int
185 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
186 {
187 /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
188 * link rate that is generally expressed in Gbps. Since, 8 bits of data
189 * is transmitted every LS_Clk per lane, there is no need to account for
190 * the channel encoding that is done in the PHY layer here.
191 */
192
193 return max_link_clock * max_lanes;
194 }
195
196 static int
197 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
198 {
199 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
200 struct intel_encoder *encoder = &intel_dig_port->base;
201 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
202 int max_dotclk = dev_priv->max_dotclk_freq;
203 int ds_max_dotclk;
204
205 int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
206
207 if (type != DP_DS_PORT_TYPE_VGA)
208 return max_dotclk;
209
210 ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
211 intel_dp->downstream_ports);
212
213 if (ds_max_dotclk != 0)
214 max_dotclk = min(max_dotclk, ds_max_dotclk);
215
216 return max_dotclk;
217 }
218
219 static void
220 intel_dp_set_source_rates(struct intel_dp *intel_dp)
221 {
222 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
223 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
224 enum port port = dig_port->port;
225 const int *source_rates;
226 int size;
227 u32 voltage;
228
229 /* This should only be done once */
230 WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);
231
232 if (IS_GEN9_LP(dev_priv)) {
233 source_rates = bxt_rates;
234 size = ARRAY_SIZE(bxt_rates);
235 } else if (IS_CANNONLAKE(dev_priv)) {
236 source_rates = cnl_rates;
237 size = ARRAY_SIZE(cnl_rates);
238 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
239 if (port == PORT_A || port == PORT_D ||
240 voltage == VOLTAGE_INFO_0_85V)
241 size -= 2;
242 } else if (IS_GEN9_BC(dev_priv)) {
243 source_rates = skl_rates;
244 size = ARRAY_SIZE(skl_rates);
245 } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
246 IS_BROADWELL(dev_priv)) {
247 source_rates = default_rates;
248 size = ARRAY_SIZE(default_rates);
249 } else {
250 source_rates = default_rates;
251 size = ARRAY_SIZE(default_rates) - 1;
252 }
253
254 intel_dp->source_rates = source_rates;
255 intel_dp->num_source_rates = size;
256 }
257
258 static int intersect_rates(const int *source_rates, int source_len,
259 const int *sink_rates, int sink_len,
260 int *common_rates)
261 {
262 int i = 0, j = 0, k = 0;
263
264 while (i < source_len && j < sink_len) {
265 if (source_rates[i] == sink_rates[j]) {
266 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
267 return k;
268 common_rates[k] = source_rates[i];
269 ++k;
270 ++i;
271 ++j;
272 } else if (source_rates[i] < sink_rates[j]) {
273 ++i;
274 } else {
275 ++j;
276 }
277 }
278 return k;
279 }
280
281 /* return index of rate in rates array, or -1 if not found */
282 static int intel_dp_rate_index(const int *rates, int len, int rate)
283 {
284 int i;
285
286 for (i = 0; i < len; i++)
287 if (rate == rates[i])
288 return i;
289
290 return -1;
291 }
292
293 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
294 {
295 WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
296
297 intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
298 intel_dp->num_source_rates,
299 intel_dp->sink_rates,
300 intel_dp->num_sink_rates,
301 intel_dp->common_rates);
302
303 /* Paranoia, there should always be something in common. */
304 if (WARN_ON(intel_dp->num_common_rates == 0)) {
305 intel_dp->common_rates[0] = default_rates[0];
306 intel_dp->num_common_rates = 1;
307 }
308 }
309
310 /* get length of common rates potentially limited by max_rate */
311 static int intel_dp_common_len_rate_limit(struct intel_dp *intel_dp,
312 int max_rate)
313 {
314 const int *common_rates = intel_dp->common_rates;
315 int i, common_len = intel_dp->num_common_rates;
316
317 /* Limit results by potentially reduced max rate */
318 for (i = 0; i < common_len; i++) {
319 if (common_rates[common_len - i - 1] <= max_rate)
320 return common_len - i;
321 }
322
323 return 0;
324 }
325
326 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
327 uint8_t lane_count)
328 {
329 /*
330 * FIXME: we need to synchronize the current link parameters with
331 * hardware readout. Currently fast link training doesn't work on
332 * boot-up.
333 */
334 if (link_rate == 0 ||
335 link_rate > intel_dp->max_link_rate)
336 return false;
337
338 if (lane_count == 0 ||
339 lane_count > intel_dp_max_lane_count(intel_dp))
340 return false;
341
342 return true;
343 }
344
345 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
346 int link_rate, uint8_t lane_count)
347 {
348 int index;
349
350 index = intel_dp_rate_index(intel_dp->common_rates,
351 intel_dp->num_common_rates,
352 link_rate);
353 if (index > 0) {
354 intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
355 intel_dp->max_link_lane_count = lane_count;
356 } else if (lane_count > 1) {
357 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
358 intel_dp->max_link_lane_count = lane_count >> 1;
359 } else {
360 DRM_ERROR("Link Training Unsuccessful\n");
361 return -1;
362 }
363
364 return 0;
365 }
366
367 static enum drm_mode_status
368 intel_dp_mode_valid(struct drm_connector *connector,
369 struct drm_display_mode *mode)
370 {
371 struct intel_dp *intel_dp = intel_attached_dp(connector);
372 struct intel_connector *intel_connector = to_intel_connector(connector);
373 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
374 int target_clock = mode->clock;
375 int max_rate, mode_rate, max_lanes, max_link_clock;
376 int max_dotclk;
377
378 max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
379
380 if (intel_dp_is_edp(intel_dp) && fixed_mode) {
381 if (mode->hdisplay > fixed_mode->hdisplay)
382 return MODE_PANEL;
383
384 if (mode->vdisplay > fixed_mode->vdisplay)
385 return MODE_PANEL;
386
387 target_clock = fixed_mode->clock;
388 }
389
390 max_link_clock = intel_dp_max_link_rate(intel_dp);
391 max_lanes = intel_dp_max_lane_count(intel_dp);
392
393 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
394 mode_rate = intel_dp_link_required(target_clock, 18);
395
396 if (mode_rate > max_rate || target_clock > max_dotclk)
397 return MODE_CLOCK_HIGH;
398
399 if (mode->clock < 10000)
400 return MODE_CLOCK_LOW;
401
402 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
403 return MODE_H_ILLEGAL;
404
405 return MODE_OK;
406 }
407
408 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
409 {
410 int i;
411 uint32_t v = 0;
412
413 if (src_bytes > 4)
414 src_bytes = 4;
415 for (i = 0; i < src_bytes; i++)
416 v |= ((uint32_t) src[i]) << ((3-i) * 8);
417 return v;
418 }
419
420 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
421 {
422 int i;
423 if (dst_bytes > 4)
424 dst_bytes = 4;
425 for (i = 0; i < dst_bytes; i++)
426 dst[i] = src >> ((3-i) * 8);
427 }
428
429 static void
430 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
431 struct intel_dp *intel_dp);
432 static void
433 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
434 struct intel_dp *intel_dp,
435 bool force_disable_vdd);
436 static void
437 intel_dp_pps_init(struct drm_device *dev, struct intel_dp *intel_dp);
438
439 static void pps_lock(struct intel_dp *intel_dp)
440 {
441 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
442 struct intel_encoder *encoder = &intel_dig_port->base;
443 struct drm_device *dev = encoder->base.dev;
444 struct drm_i915_private *dev_priv = to_i915(dev);
445
446 /*
447 * See vlv_power_sequencer_reset() why we need
448 * a power domain reference here.
449 */
450 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
451
452 mutex_lock(&dev_priv->pps_mutex);
453 }
454
455 static void pps_unlock(struct intel_dp *intel_dp)
456 {
457 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
458 struct intel_encoder *encoder = &intel_dig_port->base;
459 struct drm_device *dev = encoder->base.dev;
460 struct drm_i915_private *dev_priv = to_i915(dev);
461
462 mutex_unlock(&dev_priv->pps_mutex);
463
464 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
465 }
466
467 static void
468 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
469 {
470 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
471 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
472 enum pipe pipe = intel_dp->pps_pipe;
473 bool pll_enabled, release_cl_override = false;
474 enum dpio_phy phy = DPIO_PHY(pipe);
475 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
476 uint32_t DP;
477
478 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
479 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
480 pipe_name(pipe), port_name(intel_dig_port->port)))
481 return;
482
483 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
484 pipe_name(pipe), port_name(intel_dig_port->port));
485
486 /* Preserve the BIOS-computed detected bit. This is
487 * supposed to be read-only.
488 */
489 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
490 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
491 DP |= DP_PORT_WIDTH(1);
492 DP |= DP_LINK_TRAIN_PAT_1;
493
494 if (IS_CHERRYVIEW(dev_priv))
495 DP |= DP_PIPE_SELECT_CHV(pipe);
496 else if (pipe == PIPE_B)
497 DP |= DP_PIPEB_SELECT;
498
499 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
500
501 /*
502 * The DPLL for the pipe must be enabled for this to work.
503 * So enable temporarily it if it's not already enabled.
504 */
505 if (!pll_enabled) {
506 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
507 !chv_phy_powergate_ch(dev_priv, phy, ch, true);
508
509 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
510 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
511 DRM_ERROR("Failed to force on pll for pipe %c!\n",
512 pipe_name(pipe));
513 return;
514 }
515 }
516
517 /*
518 * Similar magic as in intel_dp_enable_port().
519 * We _must_ do this port enable + disable trick
520 * to make this power seqeuencer lock onto the port.
521 * Otherwise even VDD force bit won't work.
522 */
523 I915_WRITE(intel_dp->output_reg, DP);
524 POSTING_READ(intel_dp->output_reg);
525
526 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
527 POSTING_READ(intel_dp->output_reg);
528
529 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
530 POSTING_READ(intel_dp->output_reg);
531
532 if (!pll_enabled) {
533 vlv_force_pll_off(dev_priv, pipe);
534
535 if (release_cl_override)
536 chv_phy_powergate_ch(dev_priv, phy, ch, false);
537 }
538 }
539
540 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
541 {
542 struct intel_encoder *encoder;
543 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
544
545 /*
546 * We don't have power sequencer currently.
547 * Pick one that's not used by other ports.
548 */
549 for_each_intel_encoder(&dev_priv->drm, encoder) {
550 struct intel_dp *intel_dp;
551
552 if (encoder->type != INTEL_OUTPUT_DP &&
553 encoder->type != INTEL_OUTPUT_EDP)
554 continue;
555
556 intel_dp = enc_to_intel_dp(&encoder->base);
557
558 if (encoder->type == INTEL_OUTPUT_EDP) {
559 WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
560 intel_dp->active_pipe != intel_dp->pps_pipe);
561
562 if (intel_dp->pps_pipe != INVALID_PIPE)
563 pipes &= ~(1 << intel_dp->pps_pipe);
564 } else {
565 WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);
566
567 if (intel_dp->active_pipe != INVALID_PIPE)
568 pipes &= ~(1 << intel_dp->active_pipe);
569 }
570 }
571
572 if (pipes == 0)
573 return INVALID_PIPE;
574
575 return ffs(pipes) - 1;
576 }
577
578 static enum pipe
579 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
580 {
581 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
582 struct drm_device *dev = intel_dig_port->base.base.dev;
583 struct drm_i915_private *dev_priv = to_i915(dev);
584 enum pipe pipe;
585
586 lockdep_assert_held(&dev_priv->pps_mutex);
587
588 /* We should never land here with regular DP ports */
589 WARN_ON(!intel_dp_is_edp(intel_dp));
590
591 WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
592 intel_dp->active_pipe != intel_dp->pps_pipe);
593
594 if (intel_dp->pps_pipe != INVALID_PIPE)
595 return intel_dp->pps_pipe;
596
597 pipe = vlv_find_free_pps(dev_priv);
598
599 /*
600 * Didn't find one. This should not happen since there
601 * are two power sequencers and up to two eDP ports.
602 */
603 if (WARN_ON(pipe == INVALID_PIPE))
604 pipe = PIPE_A;
605
606 vlv_steal_power_sequencer(dev, pipe);
607 intel_dp->pps_pipe = pipe;
608
609 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
610 pipe_name(intel_dp->pps_pipe),
611 port_name(intel_dig_port->port));
612
613 /* init power sequencer on this pipe and port */
614 intel_dp_init_panel_power_sequencer(dev, intel_dp);
615 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, true);
616
617 /*
618 * Even vdd force doesn't work until we've made
619 * the power sequencer lock in on the port.
620 */
621 vlv_power_sequencer_kick(intel_dp);
622
623 return intel_dp->pps_pipe;
624 }
625
626 static int
627 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
628 {
629 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
630 struct drm_device *dev = intel_dig_port->base.base.dev;
631 struct drm_i915_private *dev_priv = to_i915(dev);
632
633 lockdep_assert_held(&dev_priv->pps_mutex);
634
635 /* We should never land here with regular DP ports */
636 WARN_ON(!intel_dp_is_edp(intel_dp));
637
638 /*
639 * TODO: BXT has 2 PPS instances. The correct port->PPS instance
640 * mapping needs to be retrieved from VBT, for now just hard-code to
641 * use instance #0 always.
642 */
643 if (!intel_dp->pps_reset)
644 return 0;
645
646 intel_dp->pps_reset = false;
647
648 /*
649 * Only the HW needs to be reprogrammed, the SW state is fixed and
650 * has been setup during connector init.
651 */
652 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, false);
653
654 return 0;
655 }
656
657 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
658 enum pipe pipe);
659
660 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
661 enum pipe pipe)
662 {
663 return I915_READ(PP_STATUS(pipe)) & PP_ON;
664 }
665
666 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
667 enum pipe pipe)
668 {
669 return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
670 }
671
672 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
673 enum pipe pipe)
674 {
675 return true;
676 }
677
678 static enum pipe
679 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
680 enum port port,
681 vlv_pipe_check pipe_check)
682 {
683 enum pipe pipe;
684
685 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
686 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
687 PANEL_PORT_SELECT_MASK;
688
689 if (port_sel != PANEL_PORT_SELECT_VLV(port))
690 continue;
691
692 if (!pipe_check(dev_priv, pipe))
693 continue;
694
695 return pipe;
696 }
697
698 return INVALID_PIPE;
699 }
700
701 static void
702 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
703 {
704 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
705 struct drm_device *dev = intel_dig_port->base.base.dev;
706 struct drm_i915_private *dev_priv = to_i915(dev);
707 enum port port = intel_dig_port->port;
708
709 lockdep_assert_held(&dev_priv->pps_mutex);
710
711 /* try to find a pipe with this port selected */
712 /* first pick one where the panel is on */
713 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
714 vlv_pipe_has_pp_on);
715 /* didn't find one? pick one where vdd is on */
716 if (intel_dp->pps_pipe == INVALID_PIPE)
717 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
718 vlv_pipe_has_vdd_on);
719 /* didn't find one? pick one with just the correct port */
720 if (intel_dp->pps_pipe == INVALID_PIPE)
721 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
722 vlv_pipe_any);
723
724 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
725 if (intel_dp->pps_pipe == INVALID_PIPE) {
726 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
727 port_name(port));
728 return;
729 }
730
731 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
732 port_name(port), pipe_name(intel_dp->pps_pipe));
733
734 intel_dp_init_panel_power_sequencer(dev, intel_dp);
735 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, false);
736 }
737
738 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
739 {
740 struct drm_device *dev = &dev_priv->drm;
741 struct intel_encoder *encoder;
742
743 if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
744 !IS_GEN9_LP(dev_priv)))
745 return;
746
747 /*
748 * We can't grab pps_mutex here due to deadlock with power_domain
749 * mutex when power_domain functions are called while holding pps_mutex.
750 * That also means that in order to use pps_pipe the code needs to
751 * hold both a power domain reference and pps_mutex, and the power domain
752 * reference get/put must be done while _not_ holding pps_mutex.
753 * pps_{lock,unlock}() do these steps in the correct order, so one
754 * should use them always.
755 */
756
757 for_each_intel_encoder(dev, encoder) {
758 struct intel_dp *intel_dp;
759
760 if (encoder->type != INTEL_OUTPUT_DP &&
761 encoder->type != INTEL_OUTPUT_EDP)
762 continue;
763
764 intel_dp = enc_to_intel_dp(&encoder->base);
765
766 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
767
768 if (encoder->type != INTEL_OUTPUT_EDP)
769 continue;
770
771 if (IS_GEN9_LP(dev_priv))
772 intel_dp->pps_reset = true;
773 else
774 intel_dp->pps_pipe = INVALID_PIPE;
775 }
776 }
777
778 struct pps_registers {
779 i915_reg_t pp_ctrl;
780 i915_reg_t pp_stat;
781 i915_reg_t pp_on;
782 i915_reg_t pp_off;
783 i915_reg_t pp_div;
784 };
785
786 static void intel_pps_get_registers(struct drm_i915_private *dev_priv,
787 struct intel_dp *intel_dp,
788 struct pps_registers *regs)
789 {
790 int pps_idx = 0;
791
792 memset(regs, 0, sizeof(*regs));
793
794 if (IS_GEN9_LP(dev_priv))
795 pps_idx = bxt_power_sequencer_idx(intel_dp);
796 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
797 pps_idx = vlv_power_sequencer_pipe(intel_dp);
798
799 regs->pp_ctrl = PP_CONTROL(pps_idx);
800 regs->pp_stat = PP_STATUS(pps_idx);
801 regs->pp_on = PP_ON_DELAYS(pps_idx);
802 regs->pp_off = PP_OFF_DELAYS(pps_idx);
803 if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv))
804 regs->pp_div = PP_DIVISOR(pps_idx);
805 }
806
807 static i915_reg_t
808 _pp_ctrl_reg(struct intel_dp *intel_dp)
809 {
810 struct pps_registers regs;
811
812 intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
813 &regs);
814
815 return regs.pp_ctrl;
816 }
817
818 static i915_reg_t
819 _pp_stat_reg(struct intel_dp *intel_dp)
820 {
821 struct pps_registers regs;
822
823 intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
824 &regs);
825
826 return regs.pp_stat;
827 }
828
829 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
830 This function only applicable when panel PM state is not to be tracked */
831 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
832 void *unused)
833 {
834 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
835 edp_notifier);
836 struct drm_device *dev = intel_dp_to_dev(intel_dp);
837 struct drm_i915_private *dev_priv = to_i915(dev);
838
839 if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
840 return 0;
841
842 pps_lock(intel_dp);
843
844 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
845 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
846 i915_reg_t pp_ctrl_reg, pp_div_reg;
847 u32 pp_div;
848
849 pp_ctrl_reg = PP_CONTROL(pipe);
850 pp_div_reg = PP_DIVISOR(pipe);
851 pp_div = I915_READ(pp_div_reg);
852 pp_div &= PP_REFERENCE_DIVIDER_MASK;
853
854 /* 0x1F write to PP_DIV_REG sets max cycle delay */
855 I915_WRITE(pp_div_reg, pp_div | 0x1F);
856 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
857 msleep(intel_dp->panel_power_cycle_delay);
858 }
859
860 pps_unlock(intel_dp);
861
862 return 0;
863 }
864
865 static bool edp_have_panel_power(struct intel_dp *intel_dp)
866 {
867 struct drm_device *dev = intel_dp_to_dev(intel_dp);
868 struct drm_i915_private *dev_priv = to_i915(dev);
869
870 lockdep_assert_held(&dev_priv->pps_mutex);
871
872 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
873 intel_dp->pps_pipe == INVALID_PIPE)
874 return false;
875
876 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
877 }
878
879 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
880 {
881 struct drm_device *dev = intel_dp_to_dev(intel_dp);
882 struct drm_i915_private *dev_priv = to_i915(dev);
883
884 lockdep_assert_held(&dev_priv->pps_mutex);
885
886 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
887 intel_dp->pps_pipe == INVALID_PIPE)
888 return false;
889
890 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
891 }
892
893 static void
894 intel_dp_check_edp(struct intel_dp *intel_dp)
895 {
896 struct drm_device *dev = intel_dp_to_dev(intel_dp);
897 struct drm_i915_private *dev_priv = to_i915(dev);
898
899 if (!intel_dp_is_edp(intel_dp))
900 return;
901
902 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
903 WARN(1, "eDP powered off while attempting aux channel communication.\n");
904 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
905 I915_READ(_pp_stat_reg(intel_dp)),
906 I915_READ(_pp_ctrl_reg(intel_dp)));
907 }
908 }
909
910 static uint32_t
911 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
912 {
913 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
914 struct drm_device *dev = intel_dig_port->base.base.dev;
915 struct drm_i915_private *dev_priv = to_i915(dev);
916 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
917 uint32_t status;
918 bool done;
919
920 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
921 if (has_aux_irq)
922 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
923 msecs_to_jiffies_timeout(10));
924 else
925 done = wait_for(C, 10) == 0;
926 if (!done)
927 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
928 has_aux_irq);
929 #undef C
930
931 return status;
932 }
933
934 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
935 {
936 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
937 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
938
939 if (index)
940 return 0;
941
942 /*
943 * The clock divider is based off the hrawclk, and would like to run at
944 * 2MHz. So, take the hrawclk value and divide by 2000 and use that
945 */
946 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
947 }
948
949 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
950 {
951 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
952 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
953
954 if (index)
955 return 0;
956
957 /*
958 * The clock divider is based off the cdclk or PCH rawclk, and would
959 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and
960 * divide by 2000 and use that
961 */
962 if (intel_dig_port->port == PORT_A)
963 return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
964 else
965 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
966 }
967
968 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
969 {
970 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
971 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
972
973 if (intel_dig_port->port != PORT_A && HAS_PCH_LPT_H(dev_priv)) {
974 /* Workaround for non-ULT HSW */
975 switch (index) {
976 case 0: return 63;
977 case 1: return 72;
978 default: return 0;
979 }
980 }
981
982 return ilk_get_aux_clock_divider(intel_dp, index);
983 }
984
985 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
986 {
987 /*
988 * SKL doesn't need us to program the AUX clock divider (Hardware will
989 * derive the clock from CDCLK automatically). We still implement the
990 * get_aux_clock_divider vfunc to plug-in into the existing code.
991 */
992 return index ? 0 : 1;
993 }
994
995 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
996 bool has_aux_irq,
997 int send_bytes,
998 uint32_t aux_clock_divider)
999 {
1000 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1001 struct drm_i915_private *dev_priv =
1002 to_i915(intel_dig_port->base.base.dev);
1003 uint32_t precharge, timeout;
1004
1005 if (IS_GEN6(dev_priv))
1006 precharge = 3;
1007 else
1008 precharge = 5;
1009
1010 if (IS_BROADWELL(dev_priv))
1011 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1012 else
1013 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1014
1015 return DP_AUX_CH_CTL_SEND_BUSY |
1016 DP_AUX_CH_CTL_DONE |
1017 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
1018 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1019 timeout |
1020 DP_AUX_CH_CTL_RECEIVE_ERROR |
1021 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1022 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1023 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1024 }
1025
1026 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1027 bool has_aux_irq,
1028 int send_bytes,
1029 uint32_t unused)
1030 {
1031 return DP_AUX_CH_CTL_SEND_BUSY |
1032 DP_AUX_CH_CTL_DONE |
1033 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
1034 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1035 DP_AUX_CH_CTL_TIME_OUT_MAX |
1036 DP_AUX_CH_CTL_RECEIVE_ERROR |
1037 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1038 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1039 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1040 }
1041
1042 static int
1043 intel_dp_aux_ch(struct intel_dp *intel_dp,
1044 const uint8_t *send, int send_bytes,
1045 uint8_t *recv, int recv_size)
1046 {
1047 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1048 struct drm_i915_private *dev_priv =
1049 to_i915(intel_dig_port->base.base.dev);
1050 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
1051 uint32_t aux_clock_divider;
1052 int i, ret, recv_bytes;
1053 uint32_t status;
1054 int try, clock = 0;
1055 bool has_aux_irq = HAS_AUX_IRQ(dev_priv);
1056 bool vdd;
1057
1058 pps_lock(intel_dp);
1059
1060 /*
1061 * We will be called with VDD already enabled for dpcd/edid/oui reads.
1062 * In such cases we want to leave VDD enabled and it's up to upper layers
1063 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1064 * ourselves.
1065 */
1066 vdd = edp_panel_vdd_on(intel_dp);
1067
1068 /* dp aux is extremely sensitive to irq latency, hence request the
1069 * lowest possible wakeup latency and so prevent the cpu from going into
1070 * deep sleep states.
1071 */
1072 pm_qos_update_request(&dev_priv->pm_qos, 0);
1073
1074 intel_dp_check_edp(intel_dp);
1075
1076 /* Try to wait for any previous AUX channel activity */
1077 for (try = 0; try < 3; try++) {
1078 status = I915_READ_NOTRACE(ch_ctl);
1079 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1080 break;
1081 msleep(1);
1082 }
1083
1084 if (try == 3) {
1085 static u32 last_status = -1;
1086 const u32 status = I915_READ(ch_ctl);
1087
1088 if (status != last_status) {
1089 WARN(1, "dp_aux_ch not started status 0x%08x\n",
1090 status);
1091 last_status = status;
1092 }
1093
1094 ret = -EBUSY;
1095 goto out;
1096 }
1097
1098 /* Only 5 data registers! */
1099 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
1100 ret = -E2BIG;
1101 goto out;
1102 }
1103
1104 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1105 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1106 has_aux_irq,
1107 send_bytes,
1108 aux_clock_divider);
1109
1110 /* Must try at least 3 times according to DP spec */
1111 for (try = 0; try < 5; try++) {
1112 /* Load the send data into the aux channel data registers */
1113 for (i = 0; i < send_bytes; i += 4)
1114 I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
1115 intel_dp_pack_aux(send + i,
1116 send_bytes - i));
1117
1118 /* Send the command and wait for it to complete */
1119 I915_WRITE(ch_ctl, send_ctl);
1120
1121 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
1122
1123 /* Clear done status and any errors */
1124 I915_WRITE(ch_ctl,
1125 status |
1126 DP_AUX_CH_CTL_DONE |
1127 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1128 DP_AUX_CH_CTL_RECEIVE_ERROR);
1129
1130 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1131 continue;
1132
1133 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1134 * 400us delay required for errors and timeouts
1135 * Timeout errors from the HW already meet this
1136 * requirement so skip to next iteration
1137 */
1138 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1139 usleep_range(400, 500);
1140 continue;
1141 }
1142 if (status & DP_AUX_CH_CTL_DONE)
1143 goto done;
1144 }
1145 }
1146
1147 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1148 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1149 ret = -EBUSY;
1150 goto out;
1151 }
1152
1153 done:
1154 /* Check for timeout or receive error.
1155 * Timeouts occur when the sink is not connected
1156 */
1157 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1158 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1159 ret = -EIO;
1160 goto out;
1161 }
1162
1163 /* Timeouts occur when the device isn't connected, so they're
1164 * "normal" -- don't fill the kernel log with these */
1165 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1166 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1167 ret = -ETIMEDOUT;
1168 goto out;
1169 }
1170
1171 /* Unload any bytes sent back from the other side */
1172 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1173 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1174
1175 /*
1176 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1177 * We have no idea of what happened so we return -EBUSY so
1178 * drm layer takes care for the necessary retries.
1179 */
1180 if (recv_bytes == 0 || recv_bytes > 20) {
1181 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1182 recv_bytes);
1183 /*
1184 * FIXME: This patch was created on top of a series that
1185 * organize the retries at drm level. There EBUSY should
1186 * also take care for 1ms wait before retrying.
1187 * That aux retries re-org is still needed and after that is
1188 * merged we remove this sleep from here.
1189 */
1190 usleep_range(1000, 1500);
1191 ret = -EBUSY;
1192 goto out;
1193 }
1194
1195 if (recv_bytes > recv_size)
1196 recv_bytes = recv_size;
1197
1198 for (i = 0; i < recv_bytes; i += 4)
1199 intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
1200 recv + i, recv_bytes - i);
1201
1202 ret = recv_bytes;
1203 out:
1204 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
1205
1206 if (vdd)
1207 edp_panel_vdd_off(intel_dp, false);
1208
1209 pps_unlock(intel_dp);
1210
1211 return ret;
1212 }
1213
1214 #define BARE_ADDRESS_SIZE 3
1215 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
1216 static ssize_t
1217 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1218 {
1219 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1220 uint8_t txbuf[20], rxbuf[20];
1221 size_t txsize, rxsize;
1222 int ret;
1223
1224 txbuf[0] = (msg->request << 4) |
1225 ((msg->address >> 16) & 0xf);
1226 txbuf[1] = (msg->address >> 8) & 0xff;
1227 txbuf[2] = msg->address & 0xff;
1228 txbuf[3] = msg->size - 1;
1229
1230 switch (msg->request & ~DP_AUX_I2C_MOT) {
1231 case DP_AUX_NATIVE_WRITE:
1232 case DP_AUX_I2C_WRITE:
1233 case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1234 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1235 rxsize = 2; /* 0 or 1 data bytes */
1236
1237 if (WARN_ON(txsize > 20))
1238 return -E2BIG;
1239
1240 WARN_ON(!msg->buffer != !msg->size);
1241
1242 if (msg->buffer)
1243 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1244
1245 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1246 if (ret > 0) {
1247 msg->reply = rxbuf[0] >> 4;
1248
1249 if (ret > 1) {
1250 /* Number of bytes written in a short write. */
1251 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1252 } else {
1253 /* Return payload size. */
1254 ret = msg->size;
1255 }
1256 }
1257 break;
1258
1259 case DP_AUX_NATIVE_READ:
1260 case DP_AUX_I2C_READ:
1261 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1262 rxsize = msg->size + 1;
1263
1264 if (WARN_ON(rxsize > 20))
1265 return -E2BIG;
1266
1267 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1268 if (ret > 0) {
1269 msg->reply = rxbuf[0] >> 4;
1270 /*
1271 * Assume happy day, and copy the data. The caller is
1272 * expected to check msg->reply before touching it.
1273 *
1274 * Return payload size.
1275 */
1276 ret--;
1277 memcpy(msg->buffer, rxbuf + 1, ret);
1278 }
1279 break;
1280
1281 default:
1282 ret = -EINVAL;
1283 break;
1284 }
1285
1286 return ret;
1287 }
1288
1289 static enum port intel_aux_port(struct drm_i915_private *dev_priv,
1290 enum port port)
1291 {
1292 const struct ddi_vbt_port_info *info =
1293 &dev_priv->vbt.ddi_port_info[port];
1294 enum port aux_port;
1295
1296 if (!info->alternate_aux_channel) {
1297 DRM_DEBUG_KMS("using AUX %c for port %c (platform default)\n",
1298 port_name(port), port_name(port));
1299 return port;
1300 }
1301
1302 switch (info->alternate_aux_channel) {
1303 case DP_AUX_A:
1304 aux_port = PORT_A;
1305 break;
1306 case DP_AUX_B:
1307 aux_port = PORT_B;
1308 break;
1309 case DP_AUX_C:
1310 aux_port = PORT_C;
1311 break;
1312 case DP_AUX_D:
1313 aux_port = PORT_D;
1314 break;
1315 default:
1316 MISSING_CASE(info->alternate_aux_channel);
1317 aux_port = PORT_A;
1318 break;
1319 }
1320
1321 DRM_DEBUG_KMS("using AUX %c for port %c (VBT)\n",
1322 port_name(aux_port), port_name(port));
1323
1324 return aux_port;
1325 }
1326
1327 static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1328 enum port port)
1329 {
1330 switch (port) {
1331 case PORT_B:
1332 case PORT_C:
1333 case PORT_D:
1334 return DP_AUX_CH_CTL(port);
1335 default:
1336 MISSING_CASE(port);
1337 return DP_AUX_CH_CTL(PORT_B);
1338 }
1339 }
1340
1341 static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1342 enum port port, int index)
1343 {
1344 switch (port) {
1345 case PORT_B:
1346 case PORT_C:
1347 case PORT_D:
1348 return DP_AUX_CH_DATA(port, index);
1349 default:
1350 MISSING_CASE(port);
1351 return DP_AUX_CH_DATA(PORT_B, index);
1352 }
1353 }
1354
1355 static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1356 enum port port)
1357 {
1358 switch (port) {
1359 case PORT_A:
1360 return DP_AUX_CH_CTL(port);
1361 case PORT_B:
1362 case PORT_C:
1363 case PORT_D:
1364 return PCH_DP_AUX_CH_CTL(port);
1365 default:
1366 MISSING_CASE(port);
1367 return DP_AUX_CH_CTL(PORT_A);
1368 }
1369 }
1370
1371 static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1372 enum port port, int index)
1373 {
1374 switch (port) {
1375 case PORT_A:
1376 return DP_AUX_CH_DATA(port, index);
1377 case PORT_B:
1378 case PORT_C:
1379 case PORT_D:
1380 return PCH_DP_AUX_CH_DATA(port, index);
1381 default:
1382 MISSING_CASE(port);
1383 return DP_AUX_CH_DATA(PORT_A, index);
1384 }
1385 }
1386
1387 static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1388 enum port port)
1389 {
1390 switch (port) {
1391 case PORT_A:
1392 case PORT_B:
1393 case PORT_C:
1394 case PORT_D:
1395 return DP_AUX_CH_CTL(port);
1396 default:
1397 MISSING_CASE(port);
1398 return DP_AUX_CH_CTL(PORT_A);
1399 }
1400 }
1401
1402 static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1403 enum port port, int index)
1404 {
1405 switch (port) {
1406 case PORT_A:
1407 case PORT_B:
1408 case PORT_C:
1409 case PORT_D:
1410 return DP_AUX_CH_DATA(port, index);
1411 default:
1412 MISSING_CASE(port);
1413 return DP_AUX_CH_DATA(PORT_A, index);
1414 }
1415 }
1416
1417 static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1418 enum port port)
1419 {
1420 if (INTEL_INFO(dev_priv)->gen >= 9)
1421 return skl_aux_ctl_reg(dev_priv, port);
1422 else if (HAS_PCH_SPLIT(dev_priv))
1423 return ilk_aux_ctl_reg(dev_priv, port);
1424 else
1425 return g4x_aux_ctl_reg(dev_priv, port);
1426 }
1427
1428 static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1429 enum port port, int index)
1430 {
1431 if (INTEL_INFO(dev_priv)->gen >= 9)
1432 return skl_aux_data_reg(dev_priv, port, index);
1433 else if (HAS_PCH_SPLIT(dev_priv))
1434 return ilk_aux_data_reg(dev_priv, port, index);
1435 else
1436 return g4x_aux_data_reg(dev_priv, port, index);
1437 }
1438
1439 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1440 {
1441 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1442 enum port port = intel_aux_port(dev_priv,
1443 dp_to_dig_port(intel_dp)->port);
1444 int i;
1445
1446 intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1447 for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1448 intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1449 }
1450
1451 static void
1452 intel_dp_aux_fini(struct intel_dp *intel_dp)
1453 {
1454 kfree(intel_dp->aux.name);
1455 }
1456
1457 static void
1458 intel_dp_aux_init(struct intel_dp *intel_dp)
1459 {
1460 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1461 enum port port = intel_dig_port->port;
1462
1463 intel_aux_reg_init(intel_dp);
1464 drm_dp_aux_init(&intel_dp->aux);
1465
1466 /* Failure to allocate our preferred name is not critical */
1467 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1468 intel_dp->aux.transfer = intel_dp_aux_transfer;
1469 }
1470
1471 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1472 {
1473 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1474
1475 return max_rate >= 540000;
1476 }
1477
1478 static void
1479 intel_dp_set_clock(struct intel_encoder *encoder,
1480 struct intel_crtc_state *pipe_config)
1481 {
1482 struct drm_device *dev = encoder->base.dev;
1483 struct drm_i915_private *dev_priv = to_i915(dev);
1484 const struct dp_link_dpll *divisor = NULL;
1485 int i, count = 0;
1486
1487 if (IS_G4X(dev_priv)) {
1488 divisor = gen4_dpll;
1489 count = ARRAY_SIZE(gen4_dpll);
1490 } else if (HAS_PCH_SPLIT(dev_priv)) {
1491 divisor = pch_dpll;
1492 count = ARRAY_SIZE(pch_dpll);
1493 } else if (IS_CHERRYVIEW(dev_priv)) {
1494 divisor = chv_dpll;
1495 count = ARRAY_SIZE(chv_dpll);
1496 } else if (IS_VALLEYVIEW(dev_priv)) {
1497 divisor = vlv_dpll;
1498 count = ARRAY_SIZE(vlv_dpll);
1499 }
1500
1501 if (divisor && count) {
1502 for (i = 0; i < count; i++) {
1503 if (pipe_config->port_clock == divisor[i].clock) {
1504 pipe_config->dpll = divisor[i].dpll;
1505 pipe_config->clock_set = true;
1506 break;
1507 }
1508 }
1509 }
1510 }
1511
1512 static void snprintf_int_array(char *str, size_t len,
1513 const int *array, int nelem)
1514 {
1515 int i;
1516
1517 str[0] = '\0';
1518
1519 for (i = 0; i < nelem; i++) {
1520 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1521 if (r >= len)
1522 return;
1523 str += r;
1524 len -= r;
1525 }
1526 }
1527
1528 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1529 {
1530 char str[128]; /* FIXME: too big for stack? */
1531
1532 if ((drm_debug & DRM_UT_KMS) == 0)
1533 return;
1534
1535 snprintf_int_array(str, sizeof(str),
1536 intel_dp->source_rates, intel_dp->num_source_rates);
1537 DRM_DEBUG_KMS("source rates: %s\n", str);
1538
1539 snprintf_int_array(str, sizeof(str),
1540 intel_dp->sink_rates, intel_dp->num_sink_rates);
1541 DRM_DEBUG_KMS("sink rates: %s\n", str);
1542
1543 snprintf_int_array(str, sizeof(str),
1544 intel_dp->common_rates, intel_dp->num_common_rates);
1545 DRM_DEBUG_KMS("common rates: %s\n", str);
1546 }
1547
1548 int
1549 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1550 {
1551 int len;
1552
1553 len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1554 if (WARN_ON(len <= 0))
1555 return 162000;
1556
1557 return intel_dp->common_rates[len - 1];
1558 }
1559
1560 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1561 {
1562 int i = intel_dp_rate_index(intel_dp->sink_rates,
1563 intel_dp->num_sink_rates, rate);
1564
1565 if (WARN_ON(i < 0))
1566 i = 0;
1567
1568 return i;
1569 }
1570
1571 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1572 uint8_t *link_bw, uint8_t *rate_select)
1573 {
1574 /* eDP 1.4 rate select method. */
1575 if (intel_dp->use_rate_select) {
1576 *link_bw = 0;
1577 *rate_select =
1578 intel_dp_rate_select(intel_dp, port_clock);
1579 } else {
1580 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1581 *rate_select = 0;
1582 }
1583 }
1584
1585 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1586 struct intel_crtc_state *pipe_config)
1587 {
1588 int bpp, bpc;
1589
1590 bpp = pipe_config->pipe_bpp;
1591 bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1592
1593 if (bpc > 0)
1594 bpp = min(bpp, 3*bpc);
1595
1596 /* For DP Compliance we override the computed bpp for the pipe */
1597 if (intel_dp->compliance.test_data.bpc != 0) {
1598 pipe_config->pipe_bpp = 3*intel_dp->compliance.test_data.bpc;
1599 pipe_config->dither_force_disable = pipe_config->pipe_bpp == 6*3;
1600 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n",
1601 pipe_config->pipe_bpp);
1602 }
1603 return bpp;
1604 }
1605
1606 static bool intel_edp_compare_alt_mode(struct drm_display_mode *m1,
1607 struct drm_display_mode *m2)
1608 {
1609 bool bres = false;
1610
1611 if (m1 && m2)
1612 bres = (m1->hdisplay == m2->hdisplay &&
1613 m1->hsync_start == m2->hsync_start &&
1614 m1->hsync_end == m2->hsync_end &&
1615 m1->htotal == m2->htotal &&
1616 m1->vdisplay == m2->vdisplay &&
1617 m1->vsync_start == m2->vsync_start &&
1618 m1->vsync_end == m2->vsync_end &&
1619 m1->vtotal == m2->vtotal);
1620 return bres;
1621 }
1622
1623 bool
1624 intel_dp_compute_config(struct intel_encoder *encoder,
1625 struct intel_crtc_state *pipe_config,
1626 struct drm_connector_state *conn_state)
1627 {
1628 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1629 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1630 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1631 enum port port = dp_to_dig_port(intel_dp)->port;
1632 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1633 struct intel_connector *intel_connector = intel_dp->attached_connector;
1634 struct intel_digital_connector_state *intel_conn_state =
1635 to_intel_digital_connector_state(conn_state);
1636 int lane_count, clock;
1637 int min_lane_count = 1;
1638 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1639 /* Conveniently, the link BW constants become indices with a shift...*/
1640 int min_clock = 0;
1641 int max_clock;
1642 int bpp, mode_rate;
1643 int link_avail, link_clock;
1644 int common_len;
1645 uint8_t link_bw, rate_select;
1646 bool reduce_m_n = drm_dp_has_quirk(&intel_dp->desc,
1647 DP_DPCD_QUIRK_LIMITED_M_N);
1648
1649 common_len = intel_dp_common_len_rate_limit(intel_dp,
1650 intel_dp->max_link_rate);
1651
1652 /* No common link rates between source and sink */
1653 WARN_ON(common_len <= 0);
1654
1655 max_clock = common_len - 1;
1656
1657 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
1658 pipe_config->has_pch_encoder = true;
1659
1660 pipe_config->has_drrs = false;
1661 if (port == PORT_A)
1662 pipe_config->has_audio = false;
1663 else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
1664 pipe_config->has_audio = intel_dp->has_audio;
1665 else
1666 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
1667
1668 if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1669 struct drm_display_mode *panel_mode =
1670 intel_connector->panel.alt_fixed_mode;
1671 struct drm_display_mode *req_mode = &pipe_config->base.mode;
1672
1673 if (!intel_edp_compare_alt_mode(req_mode, panel_mode))
1674 panel_mode = intel_connector->panel.fixed_mode;
1675
1676 drm_mode_debug_printmodeline(panel_mode);
1677
1678 intel_fixed_panel_mode(panel_mode, adjusted_mode);
1679
1680 if (INTEL_GEN(dev_priv) >= 9) {
1681 int ret;
1682 ret = skl_update_scaler_crtc(pipe_config);
1683 if (ret)
1684 return ret;
1685 }
1686
1687 if (HAS_GMCH_DISPLAY(dev_priv))
1688 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1689 conn_state->scaling_mode);
1690 else
1691 intel_pch_panel_fitting(intel_crtc, pipe_config,
1692 conn_state->scaling_mode);
1693 }
1694
1695 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1696 return false;
1697
1698 /* Use values requested by Compliance Test Request */
1699 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1700 int index;
1701
1702 /* Validate the compliance test data since max values
1703 * might have changed due to link train fallback.
1704 */
1705 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1706 intel_dp->compliance.test_lane_count)) {
1707 index = intel_dp_rate_index(intel_dp->common_rates,
1708 intel_dp->num_common_rates,
1709 intel_dp->compliance.test_link_rate);
1710 if (index >= 0)
1711 min_clock = max_clock = index;
1712 min_lane_count = max_lane_count = intel_dp->compliance.test_lane_count;
1713 }
1714 }
1715 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1716 "max bw %d pixel clock %iKHz\n",
1717 max_lane_count, intel_dp->common_rates[max_clock],
1718 adjusted_mode->crtc_clock);
1719
1720 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1721 * bpc in between. */
1722 bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
1723 if (intel_dp_is_edp(intel_dp)) {
1724
1725 /* Get bpp from vbt only for panels that dont have bpp in edid */
1726 if (intel_connector->base.display_info.bpc == 0 &&
1727 (dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
1728 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1729 dev_priv->vbt.edp.bpp);
1730 bpp = dev_priv->vbt.edp.bpp;
1731 }
1732
1733 /*
1734 * Use the maximum clock and number of lanes the eDP panel
1735 * advertizes being capable of. The panels are generally
1736 * designed to support only a single clock and lane
1737 * configuration, and typically these values correspond to the
1738 * native resolution of the panel.
1739 */
1740 min_lane_count = max_lane_count;
1741 min_clock = max_clock;
1742 }
1743
1744 for (; bpp >= 6*3; bpp -= 2*3) {
1745 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1746 bpp);
1747
1748 for (clock = min_clock; clock <= max_clock; clock++) {
1749 for (lane_count = min_lane_count;
1750 lane_count <= max_lane_count;
1751 lane_count <<= 1) {
1752
1753 link_clock = intel_dp->common_rates[clock];
1754 link_avail = intel_dp_max_data_rate(link_clock,
1755 lane_count);
1756
1757 if (mode_rate <= link_avail) {
1758 goto found;
1759 }
1760 }
1761 }
1762 }
1763
1764 return false;
1765
1766 found:
1767 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
1768 /*
1769 * See:
1770 * CEA-861-E - 5.1 Default Encoding Parameters
1771 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1772 */
1773 pipe_config->limited_color_range =
1774 bpp != 18 &&
1775 drm_default_rgb_quant_range(adjusted_mode) ==
1776 HDMI_QUANTIZATION_RANGE_LIMITED;
1777 } else {
1778 pipe_config->limited_color_range =
1779 intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
1780 }
1781
1782 pipe_config->lane_count = lane_count;
1783
1784 pipe_config->pipe_bpp = bpp;
1785 pipe_config->port_clock = intel_dp->common_rates[clock];
1786
1787 intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1788 &link_bw, &rate_select);
1789
1790 DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1791 link_bw, rate_select, pipe_config->lane_count,
1792 pipe_config->port_clock, bpp);
1793 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1794 mode_rate, link_avail);
1795
1796 intel_link_compute_m_n(bpp, lane_count,
1797 adjusted_mode->crtc_clock,
1798 pipe_config->port_clock,
1799 &pipe_config->dp_m_n,
1800 reduce_m_n);
1801
1802 if (intel_connector->panel.downclock_mode != NULL &&
1803 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1804 pipe_config->has_drrs = true;
1805 intel_link_compute_m_n(bpp, lane_count,
1806 intel_connector->panel.downclock_mode->clock,
1807 pipe_config->port_clock,
1808 &pipe_config->dp_m2_n2,
1809 reduce_m_n);
1810 }
1811
1812 /*
1813 * DPLL0 VCO may need to be adjusted to get the correct
1814 * clock for eDP. This will affect cdclk as well.
1815 */
1816 if (intel_dp_is_edp(intel_dp) && IS_GEN9_BC(dev_priv)) {
1817 int vco;
1818
1819 switch (pipe_config->port_clock / 2) {
1820 case 108000:
1821 case 216000:
1822 vco = 8640000;
1823 break;
1824 default:
1825 vco = 8100000;
1826 break;
1827 }
1828
1829 to_intel_atomic_state(pipe_config->base.state)->cdclk.logical.vco = vco;
1830 }
1831
1832 if (!HAS_DDI(dev_priv))
1833 intel_dp_set_clock(encoder, pipe_config);
1834
1835 intel_psr_compute_config(intel_dp, pipe_config);
1836
1837 return true;
1838 }
1839
1840 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1841 int link_rate, uint8_t lane_count,
1842 bool link_mst)
1843 {
1844 intel_dp->link_rate = link_rate;
1845 intel_dp->lane_count = lane_count;
1846 intel_dp->link_mst = link_mst;
1847 }
1848
1849 static void intel_dp_prepare(struct intel_encoder *encoder,
1850 const struct intel_crtc_state *pipe_config)
1851 {
1852 struct drm_device *dev = encoder->base.dev;
1853 struct drm_i915_private *dev_priv = to_i915(dev);
1854 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1855 enum port port = dp_to_dig_port(intel_dp)->port;
1856 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1857 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1858
1859 intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
1860 pipe_config->lane_count,
1861 intel_crtc_has_type(pipe_config,
1862 INTEL_OUTPUT_DP_MST));
1863
1864 /*
1865 * There are four kinds of DP registers:
1866 *
1867 * IBX PCH
1868 * SNB CPU
1869 * IVB CPU
1870 * CPT PCH
1871 *
1872 * IBX PCH and CPU are the same for almost everything,
1873 * except that the CPU DP PLL is configured in this
1874 * register
1875 *
1876 * CPT PCH is quite different, having many bits moved
1877 * to the TRANS_DP_CTL register instead. That
1878 * configuration happens (oddly) in ironlake_pch_enable
1879 */
1880
1881 /* Preserve the BIOS-computed detected bit. This is
1882 * supposed to be read-only.
1883 */
1884 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1885
1886 /* Handle DP bits in common between all three register formats */
1887 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1888 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
1889
1890 /* Split out the IBX/CPU vs CPT settings */
1891
1892 if (IS_GEN7(dev_priv) && port == PORT_A) {
1893 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1894 intel_dp->DP |= DP_SYNC_HS_HIGH;
1895 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1896 intel_dp->DP |= DP_SYNC_VS_HIGH;
1897 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1898
1899 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1900 intel_dp->DP |= DP_ENHANCED_FRAMING;
1901
1902 intel_dp->DP |= crtc->pipe << 29;
1903 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
1904 u32 trans_dp;
1905
1906 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1907
1908 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1909 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1910 trans_dp |= TRANS_DP_ENH_FRAMING;
1911 else
1912 trans_dp &= ~TRANS_DP_ENH_FRAMING;
1913 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1914 } else {
1915 if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
1916 intel_dp->DP |= DP_COLOR_RANGE_16_235;
1917
1918 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1919 intel_dp->DP |= DP_SYNC_HS_HIGH;
1920 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1921 intel_dp->DP |= DP_SYNC_VS_HIGH;
1922 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1923
1924 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1925 intel_dp->DP |= DP_ENHANCED_FRAMING;
1926
1927 if (IS_CHERRYVIEW(dev_priv))
1928 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1929 else if (crtc->pipe == PIPE_B)
1930 intel_dp->DP |= DP_PIPEB_SELECT;
1931 }
1932 }
1933
1934 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1935 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1936
1937 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1938 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1939
1940 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1941 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1942
1943 static void intel_pps_verify_state(struct drm_i915_private *dev_priv,
1944 struct intel_dp *intel_dp);
1945
1946 static void wait_panel_status(struct intel_dp *intel_dp,
1947 u32 mask,
1948 u32 value)
1949 {
1950 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1951 struct drm_i915_private *dev_priv = to_i915(dev);
1952 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1953
1954 lockdep_assert_held(&dev_priv->pps_mutex);
1955
1956 intel_pps_verify_state(dev_priv, intel_dp);
1957
1958 pp_stat_reg = _pp_stat_reg(intel_dp);
1959 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1960
1961 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1962 mask, value,
1963 I915_READ(pp_stat_reg),
1964 I915_READ(pp_ctrl_reg));
1965
1966 if (intel_wait_for_register(dev_priv,
1967 pp_stat_reg, mask, value,
1968 5000))
1969 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1970 I915_READ(pp_stat_reg),
1971 I915_READ(pp_ctrl_reg));
1972
1973 DRM_DEBUG_KMS("Wait complete\n");
1974 }
1975
1976 static void wait_panel_on(struct intel_dp *intel_dp)
1977 {
1978 DRM_DEBUG_KMS("Wait for panel power on\n");
1979 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1980 }
1981
1982 static void wait_panel_off(struct intel_dp *intel_dp)
1983 {
1984 DRM_DEBUG_KMS("Wait for panel power off time\n");
1985 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1986 }
1987
1988 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1989 {
1990 ktime_t panel_power_on_time;
1991 s64 panel_power_off_duration;
1992
1993 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1994
1995 /* take the difference of currrent time and panel power off time
1996 * and then make panel wait for t11_t12 if needed. */
1997 panel_power_on_time = ktime_get_boottime();
1998 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
1999
2000 /* When we disable the VDD override bit last we have to do the manual
2001 * wait. */
2002 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2003 wait_remaining_ms_from_jiffies(jiffies,
2004 intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2005
2006 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2007 }
2008
2009 static void wait_backlight_on(struct intel_dp *intel_dp)
2010 {
2011 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2012 intel_dp->backlight_on_delay);
2013 }
2014
2015 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2016 {
2017 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2018 intel_dp->backlight_off_delay);
2019 }
2020
2021 /* Read the current pp_control value, unlocking the register if it
2022 * is locked
2023 */
2024
2025 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2026 {
2027 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2028 struct drm_i915_private *dev_priv = to_i915(dev);
2029 u32 control;
2030
2031 lockdep_assert_held(&dev_priv->pps_mutex);
2032
2033 control = I915_READ(_pp_ctrl_reg(intel_dp));
2034 if (WARN_ON(!HAS_DDI(dev_priv) &&
2035 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2036 control &= ~PANEL_UNLOCK_MASK;
2037 control |= PANEL_UNLOCK_REGS;
2038 }
2039 return control;
2040 }
2041
2042 /*
2043 * Must be paired with edp_panel_vdd_off().
2044 * Must hold pps_mutex around the whole on/off sequence.
2045 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2046 */
2047 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2048 {
2049 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2050 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2051 struct drm_i915_private *dev_priv = to_i915(dev);
2052 u32 pp;
2053 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2054 bool need_to_disable = !intel_dp->want_panel_vdd;
2055
2056 lockdep_assert_held(&dev_priv->pps_mutex);
2057
2058 if (!intel_dp_is_edp(intel_dp))
2059 return false;
2060
2061 cancel_delayed_work(&intel_dp->panel_vdd_work);
2062 intel_dp->want_panel_vdd = true;
2063
2064 if (edp_have_panel_vdd(intel_dp))
2065 return need_to_disable;
2066
2067 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
2068
2069 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
2070 port_name(intel_dig_port->port));
2071
2072 if (!edp_have_panel_power(intel_dp))
2073 wait_panel_power_cycle(intel_dp);
2074
2075 pp = ironlake_get_pp_control(intel_dp);
2076 pp |= EDP_FORCE_VDD;
2077
2078 pp_stat_reg = _pp_stat_reg(intel_dp);
2079 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2080
2081 I915_WRITE(pp_ctrl_reg, pp);
2082 POSTING_READ(pp_ctrl_reg);
2083 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2084 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2085 /*
2086 * If the panel wasn't on, delay before accessing aux channel
2087 */
2088 if (!edp_have_panel_power(intel_dp)) {
2089 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
2090 port_name(intel_dig_port->port));
2091 msleep(intel_dp->panel_power_up_delay);
2092 }
2093
2094 return need_to_disable;
2095 }
2096
2097 /*
2098 * Must be paired with intel_edp_panel_vdd_off() or
2099 * intel_edp_panel_off().
2100 * Nested calls to these functions are not allowed since
2101 * we drop the lock. Caller must use some higher level
2102 * locking to prevent nested calls from other threads.
2103 */
2104 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2105 {
2106 bool vdd;
2107
2108 if (!intel_dp_is_edp(intel_dp))
2109 return;
2110
2111 pps_lock(intel_dp);
2112 vdd = edp_panel_vdd_on(intel_dp);
2113 pps_unlock(intel_dp);
2114
2115 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2116 port_name(dp_to_dig_port(intel_dp)->port));
2117 }
2118
2119 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2120 {
2121 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2122 struct drm_i915_private *dev_priv = to_i915(dev);
2123 struct intel_digital_port *intel_dig_port =
2124 dp_to_dig_port(intel_dp);
2125 u32 pp;
2126 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2127
2128 lockdep_assert_held(&dev_priv->pps_mutex);
2129
2130 WARN_ON(intel_dp->want_panel_vdd);
2131
2132 if (!edp_have_panel_vdd(intel_dp))
2133 return;
2134
2135 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2136 port_name(intel_dig_port->port));
2137
2138 pp = ironlake_get_pp_control(intel_dp);
2139 pp &= ~EDP_FORCE_VDD;
2140
2141 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2142 pp_stat_reg = _pp_stat_reg(intel_dp);
2143
2144 I915_WRITE(pp_ctrl_reg, pp);
2145 POSTING_READ(pp_ctrl_reg);
2146
2147 /* Make sure sequencer is idle before allowing subsequent activity */
2148 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2149 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2150
2151 if ((pp & PANEL_POWER_ON) == 0)
2152 intel_dp->panel_power_off_time = ktime_get_boottime();
2153
2154 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
2155 }
2156
2157 static void edp_panel_vdd_work(struct work_struct *__work)
2158 {
2159 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
2160 struct intel_dp, panel_vdd_work);
2161
2162 pps_lock(intel_dp);
2163 if (!intel_dp->want_panel_vdd)
2164 edp_panel_vdd_off_sync(intel_dp);
2165 pps_unlock(intel_dp);
2166 }
2167
2168 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2169 {
2170 unsigned long delay;
2171
2172 /*
2173 * Queue the timer to fire a long time from now (relative to the power
2174 * down delay) to keep the panel power up across a sequence of
2175 * operations.
2176 */
2177 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2178 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2179 }
2180
2181 /*
2182 * Must be paired with edp_panel_vdd_on().
2183 * Must hold pps_mutex around the whole on/off sequence.
2184 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2185 */
2186 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2187 {
2188 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2189
2190 lockdep_assert_held(&dev_priv->pps_mutex);
2191
2192 if (!intel_dp_is_edp(intel_dp))
2193 return;
2194
2195 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2196 port_name(dp_to_dig_port(intel_dp)->port));
2197
2198 intel_dp->want_panel_vdd = false;
2199
2200 if (sync)
2201 edp_panel_vdd_off_sync(intel_dp);
2202 else
2203 edp_panel_vdd_schedule_off(intel_dp);
2204 }
2205
2206 static void edp_panel_on(struct intel_dp *intel_dp)
2207 {
2208 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2209 struct drm_i915_private *dev_priv = to_i915(dev);
2210 u32 pp;
2211 i915_reg_t pp_ctrl_reg;
2212
2213 lockdep_assert_held(&dev_priv->pps_mutex);
2214
2215 if (!intel_dp_is_edp(intel_dp))
2216 return;
2217
2218 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2219 port_name(dp_to_dig_port(intel_dp)->port));
2220
2221 if (WARN(edp_have_panel_power(intel_dp),
2222 "eDP port %c panel power already on\n",
2223 port_name(dp_to_dig_port(intel_dp)->port)))
2224 return;
2225
2226 wait_panel_power_cycle(intel_dp);
2227
2228 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2229 pp = ironlake_get_pp_control(intel_dp);
2230 if (IS_GEN5(dev_priv)) {
2231 /* ILK workaround: disable reset around power sequence */
2232 pp &= ~PANEL_POWER_RESET;
2233 I915_WRITE(pp_ctrl_reg, pp);
2234 POSTING_READ(pp_ctrl_reg);
2235 }
2236
2237 pp |= PANEL_POWER_ON;
2238 if (!IS_GEN5(dev_priv))
2239 pp |= PANEL_POWER_RESET;
2240
2241 I915_WRITE(pp_ctrl_reg, pp);
2242 POSTING_READ(pp_ctrl_reg);
2243
2244 wait_panel_on(intel_dp);
2245 intel_dp->last_power_on = jiffies;
2246
2247 if (IS_GEN5(dev_priv)) {
2248 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2249 I915_WRITE(pp_ctrl_reg, pp);
2250 POSTING_READ(pp_ctrl_reg);
2251 }
2252 }
2253
2254 void intel_edp_panel_on(struct intel_dp *intel_dp)
2255 {
2256 if (!intel_dp_is_edp(intel_dp))
2257 return;
2258
2259 pps_lock(intel_dp);
2260 edp_panel_on(intel_dp);
2261 pps_unlock(intel_dp);
2262 }
2263
2264
2265 static void edp_panel_off(struct intel_dp *intel_dp)
2266 {
2267 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2268 struct drm_i915_private *dev_priv = to_i915(dev);
2269 u32 pp;
2270 i915_reg_t pp_ctrl_reg;
2271
2272 lockdep_assert_held(&dev_priv->pps_mutex);
2273
2274 if (!intel_dp_is_edp(intel_dp))
2275 return;
2276
2277 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2278 port_name(dp_to_dig_port(intel_dp)->port));
2279
2280 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2281 port_name(dp_to_dig_port(intel_dp)->port));
2282
2283 pp = ironlake_get_pp_control(intel_dp);
2284 /* We need to switch off panel power _and_ force vdd, for otherwise some
2285 * panels get very unhappy and cease to work. */
2286 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2287 EDP_BLC_ENABLE);
2288
2289 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2290
2291 intel_dp->want_panel_vdd = false;
2292
2293 I915_WRITE(pp_ctrl_reg, pp);
2294 POSTING_READ(pp_ctrl_reg);
2295
2296 wait_panel_off(intel_dp);
2297 intel_dp->panel_power_off_time = ktime_get_boottime();
2298
2299 /* We got a reference when we enabled the VDD. */
2300 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
2301 }
2302
2303 void intel_edp_panel_off(struct intel_dp *intel_dp)
2304 {
2305 if (!intel_dp_is_edp(intel_dp))
2306 return;
2307
2308 pps_lock(intel_dp);
2309 edp_panel_off(intel_dp);
2310 pps_unlock(intel_dp);
2311 }
2312
2313 /* Enable backlight in the panel power control. */
2314 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2315 {
2316 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2317 struct drm_device *dev = intel_dig_port->base.base.dev;
2318 struct drm_i915_private *dev_priv = to_i915(dev);
2319 u32 pp;
2320 i915_reg_t pp_ctrl_reg;
2321
2322 /*
2323 * If we enable the backlight right away following a panel power
2324 * on, we may see slight flicker as the panel syncs with the eDP
2325 * link. So delay a bit to make sure the image is solid before
2326 * allowing it to appear.
2327 */
2328 wait_backlight_on(intel_dp);
2329
2330 pps_lock(intel_dp);
2331
2332 pp = ironlake_get_pp_control(intel_dp);
2333 pp |= EDP_BLC_ENABLE;
2334
2335 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2336
2337 I915_WRITE(pp_ctrl_reg, pp);
2338 POSTING_READ(pp_ctrl_reg);
2339
2340 pps_unlock(intel_dp);
2341 }
2342
2343 /* Enable backlight PWM and backlight PP control. */
2344 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
2345 const struct drm_connector_state *conn_state)
2346 {
2347 struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);
2348
2349 if (!intel_dp_is_edp(intel_dp))
2350 return;
2351
2352 DRM_DEBUG_KMS("\n");
2353
2354 intel_panel_enable_backlight(crtc_state, conn_state);
2355 _intel_edp_backlight_on(intel_dp);
2356 }
2357
2358 /* Disable backlight in the panel power control. */
2359 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2360 {
2361 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2362 struct drm_i915_private *dev_priv = to_i915(dev);
2363 u32 pp;
2364 i915_reg_t pp_ctrl_reg;
2365
2366 if (!intel_dp_is_edp(intel_dp))
2367 return;
2368
2369 pps_lock(intel_dp);
2370
2371 pp = ironlake_get_pp_control(intel_dp);
2372 pp &= ~EDP_BLC_ENABLE;
2373
2374 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2375
2376 I915_WRITE(pp_ctrl_reg, pp);
2377 POSTING_READ(pp_ctrl_reg);
2378
2379 pps_unlock(intel_dp);
2380
2381 intel_dp->last_backlight_off = jiffies;
2382 edp_wait_backlight_off(intel_dp);
2383 }
2384
2385 /* Disable backlight PP control and backlight PWM. */
2386 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2387 {
2388 struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);
2389
2390 if (!intel_dp_is_edp(intel_dp))
2391 return;
2392
2393 DRM_DEBUG_KMS("\n");
2394
2395 _intel_edp_backlight_off(intel_dp);
2396 intel_panel_disable_backlight(old_conn_state);
2397 }
2398
2399 /*
2400 * Hook for controlling the panel power control backlight through the bl_power
2401 * sysfs attribute. Take care to handle multiple calls.
2402 */
2403 static void intel_edp_backlight_power(struct intel_connector *connector,
2404 bool enable)
2405 {
2406 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2407 bool is_enabled;
2408
2409 pps_lock(intel_dp);
2410 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2411 pps_unlock(intel_dp);
2412
2413 if (is_enabled == enable)
2414 return;
2415
2416 DRM_DEBUG_KMS("panel power control backlight %s\n",
2417 enable ? "enable" : "disable");
2418
2419 if (enable)
2420 _intel_edp_backlight_on(intel_dp);
2421 else
2422 _intel_edp_backlight_off(intel_dp);
2423 }
2424
2425 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2426 {
2427 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2428 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2429 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2430
2431 I915_STATE_WARN(cur_state != state,
2432 "DP port %c state assertion failure (expected %s, current %s)\n",
2433 port_name(dig_port->port),
2434 onoff(state), onoff(cur_state));
2435 }
2436 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2437
2438 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2439 {
2440 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2441
2442 I915_STATE_WARN(cur_state != state,
2443 "eDP PLL state assertion failure (expected %s, current %s)\n",
2444 onoff(state), onoff(cur_state));
2445 }
2446 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2447 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2448
2449 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2450 const struct intel_crtc_state *pipe_config)
2451 {
2452 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2453 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2454
2455 assert_pipe_disabled(dev_priv, crtc->pipe);
2456 assert_dp_port_disabled(intel_dp);
2457 assert_edp_pll_disabled(dev_priv);
2458
2459 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2460 pipe_config->port_clock);
2461
2462 intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2463
2464 if (pipe_config->port_clock == 162000)
2465 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2466 else
2467 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2468
2469 I915_WRITE(DP_A, intel_dp->DP);
2470 POSTING_READ(DP_A);
2471 udelay(500);
2472
2473 /*
2474 * [DevILK] Work around required when enabling DP PLL
2475 * while a pipe is enabled going to FDI:
2476 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2477 * 2. Program DP PLL enable
2478 */
2479 if (IS_GEN5(dev_priv))
2480 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
2481
2482 intel_dp->DP |= DP_PLL_ENABLE;
2483
2484 I915_WRITE(DP_A, intel_dp->DP);
2485 POSTING_READ(DP_A);
2486 udelay(200);
2487 }
2488
2489 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2490 {
2491 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2492 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2493 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2494
2495 assert_pipe_disabled(dev_priv, crtc->pipe);
2496 assert_dp_port_disabled(intel_dp);
2497 assert_edp_pll_enabled(dev_priv);
2498
2499 DRM_DEBUG_KMS("disabling eDP PLL\n");
2500
2501 intel_dp->DP &= ~DP_PLL_ENABLE;
2502
2503 I915_WRITE(DP_A, intel_dp->DP);
2504 POSTING_READ(DP_A);
2505 udelay(200);
2506 }
2507
2508 /* If the sink supports it, try to set the power state appropriately */
2509 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2510 {
2511 int ret, i;
2512
2513 /* Should have a valid DPCD by this point */
2514 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2515 return;
2516
2517 if (mode != DRM_MODE_DPMS_ON) {
2518 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2519 DP_SET_POWER_D3);
2520 } else {
2521 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
2522
2523 /*
2524 * When turning on, we need to retry for 1ms to give the sink
2525 * time to wake up.
2526 */
2527 for (i = 0; i < 3; i++) {
2528 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2529 DP_SET_POWER_D0);
2530 if (ret == 1)
2531 break;
2532 msleep(1);
2533 }
2534
2535 if (ret == 1 && lspcon->active)
2536 lspcon_wait_pcon_mode(lspcon);
2537 }
2538
2539 if (ret != 1)
2540 DRM_DEBUG_KMS("failed to %s sink power state\n",
2541 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2542 }
2543
2544 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2545 enum pipe *pipe)
2546 {
2547 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2548 enum port port = dp_to_dig_port(intel_dp)->port;
2549 struct drm_device *dev = encoder->base.dev;
2550 struct drm_i915_private *dev_priv = to_i915(dev);
2551 u32 tmp;
2552 bool ret;
2553
2554 if (!intel_display_power_get_if_enabled(dev_priv,
2555 encoder->power_domain))
2556 return false;
2557
2558 ret = false;
2559
2560 tmp = I915_READ(intel_dp->output_reg);
2561
2562 if (!(tmp & DP_PORT_EN))
2563 goto out;
2564
2565 if (IS_GEN7(dev_priv) && port == PORT_A) {
2566 *pipe = PORT_TO_PIPE_CPT(tmp);
2567 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2568 enum pipe p;
2569
2570 for_each_pipe(dev_priv, p) {
2571 u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2572 if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2573 *pipe = p;
2574 ret = true;
2575
2576 goto out;
2577 }
2578 }
2579
2580 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2581 i915_mmio_reg_offset(intel_dp->output_reg));
2582 } else if (IS_CHERRYVIEW(dev_priv)) {
2583 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2584 } else {
2585 *pipe = PORT_TO_PIPE(tmp);
2586 }
2587
2588 ret = true;
2589
2590 out:
2591 intel_display_power_put(dev_priv, encoder->power_domain);
2592
2593 return ret;
2594 }
2595
2596 static void intel_dp_get_config(struct intel_encoder *encoder,
2597 struct intel_crtc_state *pipe_config)
2598 {
2599 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2600 u32 tmp, flags = 0;
2601 struct drm_device *dev = encoder->base.dev;
2602 struct drm_i915_private *dev_priv = to_i915(dev);
2603 enum port port = dp_to_dig_port(intel_dp)->port;
2604 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2605
2606 tmp = I915_READ(intel_dp->output_reg);
2607
2608 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2609
2610 if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2611 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2612
2613 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2614 flags |= DRM_MODE_FLAG_PHSYNC;
2615 else
2616 flags |= DRM_MODE_FLAG_NHSYNC;
2617
2618 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2619 flags |= DRM_MODE_FLAG_PVSYNC;
2620 else
2621 flags |= DRM_MODE_FLAG_NVSYNC;
2622 } else {
2623 if (tmp & DP_SYNC_HS_HIGH)
2624 flags |= DRM_MODE_FLAG_PHSYNC;
2625 else
2626 flags |= DRM_MODE_FLAG_NHSYNC;
2627
2628 if (tmp & DP_SYNC_VS_HIGH)
2629 flags |= DRM_MODE_FLAG_PVSYNC;
2630 else
2631 flags |= DRM_MODE_FLAG_NVSYNC;
2632 }
2633
2634 pipe_config->base.adjusted_mode.flags |= flags;
2635
2636 if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
2637 pipe_config->limited_color_range = true;
2638
2639 pipe_config->lane_count =
2640 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2641
2642 intel_dp_get_m_n(crtc, pipe_config);
2643
2644 if (port == PORT_A) {
2645 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2646 pipe_config->port_clock = 162000;
2647 else
2648 pipe_config->port_clock = 270000;
2649 }
2650
2651 pipe_config->base.adjusted_mode.crtc_clock =
2652 intel_dotclock_calculate(pipe_config->port_clock,
2653 &pipe_config->dp_m_n);
2654
2655 if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2656 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2657 /*
2658 * This is a big fat ugly hack.
2659 *
2660 * Some machines in UEFI boot mode provide us a VBT that has 18
2661 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2662 * unknown we fail to light up. Yet the same BIOS boots up with
2663 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2664 * max, not what it tells us to use.
2665 *
2666 * Note: This will still be broken if the eDP panel is not lit
2667 * up by the BIOS, and thus we can't get the mode at module
2668 * load.
2669 */
2670 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2671 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2672 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2673 }
2674 }
2675
2676 static void intel_disable_dp(struct intel_encoder *encoder,
2677 const struct intel_crtc_state *old_crtc_state,
2678 const struct drm_connector_state *old_conn_state)
2679 {
2680 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2681
2682 if (old_crtc_state->has_audio)
2683 intel_audio_codec_disable(encoder);
2684
2685 /* Make sure the panel is off before trying to change the mode. But also
2686 * ensure that we have vdd while we switch off the panel. */
2687 intel_edp_panel_vdd_on(intel_dp);
2688 intel_edp_backlight_off(old_conn_state);
2689 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2690 intel_edp_panel_off(intel_dp);
2691 }
2692
2693 static void g4x_disable_dp(struct intel_encoder *encoder,
2694 const struct intel_crtc_state *old_crtc_state,
2695 const struct drm_connector_state *old_conn_state)
2696 {
2697 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2698
2699 intel_disable_dp(encoder, old_crtc_state, old_conn_state);
2700
2701 /* disable the port before the pipe on g4x */
2702 intel_dp_link_down(intel_dp);
2703 }
2704
2705 static void ilk_disable_dp(struct intel_encoder *encoder,
2706 const struct intel_crtc_state *old_crtc_state,
2707 const struct drm_connector_state *old_conn_state)
2708 {
2709 intel_disable_dp(encoder, old_crtc_state, old_conn_state);
2710 }
2711
2712 static void vlv_disable_dp(struct intel_encoder *encoder,
2713 const struct intel_crtc_state *old_crtc_state,
2714 const struct drm_connector_state *old_conn_state)
2715 {
2716 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2717
2718 intel_psr_disable(intel_dp, old_crtc_state);
2719
2720 intel_disable_dp(encoder, old_crtc_state, old_conn_state);
2721 }
2722
2723 static void ilk_post_disable_dp(struct intel_encoder *encoder,
2724 const struct intel_crtc_state *old_crtc_state,
2725 const struct drm_connector_state *old_conn_state)
2726 {
2727 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2728 enum port port = dp_to_dig_port(intel_dp)->port;
2729
2730 intel_dp_link_down(intel_dp);
2731
2732 /* Only ilk+ has port A */
2733 if (port == PORT_A)
2734 ironlake_edp_pll_off(intel_dp);
2735 }
2736
2737 static void vlv_post_disable_dp(struct intel_encoder *encoder,
2738 const struct intel_crtc_state *old_crtc_state,
2739 const struct drm_connector_state *old_conn_state)
2740 {
2741 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2742
2743 intel_dp_link_down(intel_dp);
2744 }
2745
2746 static void chv_post_disable_dp(struct intel_encoder *encoder,
2747 const struct intel_crtc_state *old_crtc_state,
2748 const struct drm_connector_state *old_conn_state)
2749 {
2750 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2751 struct drm_device *dev = encoder->base.dev;
2752 struct drm_i915_private *dev_priv = to_i915(dev);
2753
2754 intel_dp_link_down(intel_dp);
2755
2756 mutex_lock(&dev_priv->sb_lock);
2757
2758 /* Assert data lane reset */
2759 chv_data_lane_soft_reset(encoder, true);
2760
2761 mutex_unlock(&dev_priv->sb_lock);
2762 }
2763
2764 static void
2765 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2766 uint32_t *DP,
2767 uint8_t dp_train_pat)
2768 {
2769 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2770 struct drm_device *dev = intel_dig_port->base.base.dev;
2771 struct drm_i915_private *dev_priv = to_i915(dev);
2772 enum port port = intel_dig_port->port;
2773
2774 if (dp_train_pat & DP_TRAINING_PATTERN_MASK)
2775 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
2776 dp_train_pat & DP_TRAINING_PATTERN_MASK);
2777
2778 if (HAS_DDI(dev_priv)) {
2779 uint32_t temp = I915_READ(DP_TP_CTL(port));
2780
2781 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2782 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2783 else
2784 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2785
2786 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2787 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2788 case DP_TRAINING_PATTERN_DISABLE:
2789 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2790
2791 break;
2792 case DP_TRAINING_PATTERN_1:
2793 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2794 break;
2795 case DP_TRAINING_PATTERN_2:
2796 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2797 break;
2798 case DP_TRAINING_PATTERN_3:
2799 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2800 break;
2801 }
2802 I915_WRITE(DP_TP_CTL(port), temp);
2803
2804 } else if ((IS_GEN7(dev_priv) && port == PORT_A) ||
2805 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
2806 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2807
2808 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2809 case DP_TRAINING_PATTERN_DISABLE:
2810 *DP |= DP_LINK_TRAIN_OFF_CPT;
2811 break;
2812 case DP_TRAINING_PATTERN_1:
2813 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2814 break;
2815 case DP_TRAINING_PATTERN_2:
2816 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2817 break;
2818 case DP_TRAINING_PATTERN_3:
2819 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2820 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2821 break;
2822 }
2823
2824 } else {
2825 if (IS_CHERRYVIEW(dev_priv))
2826 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2827 else
2828 *DP &= ~DP_LINK_TRAIN_MASK;
2829
2830 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2831 case DP_TRAINING_PATTERN_DISABLE:
2832 *DP |= DP_LINK_TRAIN_OFF;
2833 break;
2834 case DP_TRAINING_PATTERN_1:
2835 *DP |= DP_LINK_TRAIN_PAT_1;
2836 break;
2837 case DP_TRAINING_PATTERN_2:
2838 *DP |= DP_LINK_TRAIN_PAT_2;
2839 break;
2840 case DP_TRAINING_PATTERN_3:
2841 if (IS_CHERRYVIEW(dev_priv)) {
2842 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2843 } else {
2844 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2845 *DP |= DP_LINK_TRAIN_PAT_2;
2846 }
2847 break;
2848 }
2849 }
2850 }
2851
2852 static void intel_dp_enable_port(struct intel_dp *intel_dp,
2853 const struct intel_crtc_state *old_crtc_state)
2854 {
2855 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2856 struct drm_i915_private *dev_priv = to_i915(dev);
2857
2858 /* enable with pattern 1 (as per spec) */
2859
2860 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
2861
2862 /*
2863 * Magic for VLV/CHV. We _must_ first set up the register
2864 * without actually enabling the port, and then do another
2865 * write to enable the port. Otherwise link training will
2866 * fail when the power sequencer is freshly used for this port.
2867 */
2868 intel_dp->DP |= DP_PORT_EN;
2869 if (old_crtc_state->has_audio)
2870 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2871
2872 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2873 POSTING_READ(intel_dp->output_reg);
2874 }
2875
2876 static void intel_enable_dp(struct intel_encoder *encoder,
2877 const struct intel_crtc_state *pipe_config,
2878 const struct drm_connector_state *conn_state)
2879 {
2880 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2881 struct drm_device *dev = encoder->base.dev;
2882 struct drm_i915_private *dev_priv = to_i915(dev);
2883 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2884 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2885 enum pipe pipe = crtc->pipe;
2886
2887 if (WARN_ON(dp_reg & DP_PORT_EN))
2888 return;
2889
2890 pps_lock(intel_dp);
2891
2892 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2893 vlv_init_panel_power_sequencer(intel_dp);
2894
2895 intel_dp_enable_port(intel_dp, pipe_config);
2896
2897 edp_panel_vdd_on(intel_dp);
2898 edp_panel_on(intel_dp);
2899 edp_panel_vdd_off(intel_dp, true);
2900
2901 pps_unlock(intel_dp);
2902
2903 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2904 unsigned int lane_mask = 0x0;
2905
2906 if (IS_CHERRYVIEW(dev_priv))
2907 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
2908
2909 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2910 lane_mask);
2911 }
2912
2913 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2914 intel_dp_start_link_train(intel_dp);
2915 intel_dp_stop_link_train(intel_dp);
2916
2917 if (pipe_config->has_audio) {
2918 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2919 pipe_name(pipe));
2920 intel_audio_codec_enable(encoder, pipe_config, conn_state);
2921 }
2922 }
2923
2924 static void g4x_enable_dp(struct intel_encoder *encoder,
2925 const struct intel_crtc_state *pipe_config,
2926 const struct drm_connector_state *conn_state)
2927 {
2928 intel_enable_dp(encoder, pipe_config, conn_state);
2929 intel_edp_backlight_on(pipe_config, conn_state);
2930 }
2931
2932 static void vlv_enable_dp(struct intel_encoder *encoder,
2933 const struct intel_crtc_state *pipe_config,
2934 const struct drm_connector_state *conn_state)
2935 {
2936 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2937
2938 intel_edp_backlight_on(pipe_config, conn_state);
2939 intel_psr_enable(intel_dp, pipe_config);
2940 }
2941
2942 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
2943 const struct intel_crtc_state *pipe_config,
2944 const struct drm_connector_state *conn_state)
2945 {
2946 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2947 enum port port = dp_to_dig_port(intel_dp)->port;
2948
2949 intel_dp_prepare(encoder, pipe_config);
2950
2951 /* Only ilk+ has port A */
2952 if (port == PORT_A)
2953 ironlake_edp_pll_on(intel_dp, pipe_config);
2954 }
2955
2956 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2957 {
2958 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2959 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
2960 enum pipe pipe = intel_dp->pps_pipe;
2961 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
2962
2963 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
2964
2965 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2966 return;
2967
2968 edp_panel_vdd_off_sync(intel_dp);
2969
2970 /*
2971 * VLV seems to get confused when multiple power seqeuencers
2972 * have the same port selected (even if only one has power/vdd
2973 * enabled). The failure manifests as vlv_wait_port_ready() failing
2974 * CHV on the other hand doesn't seem to mind having the same port
2975 * selected in multiple power seqeuencers, but let's clear the
2976 * port select always when logically disconnecting a power sequencer
2977 * from a port.
2978 */
2979 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2980 pipe_name(pipe), port_name(intel_dig_port->port));
2981 I915_WRITE(pp_on_reg, 0);
2982 POSTING_READ(pp_on_reg);
2983
2984 intel_dp->pps_pipe = INVALID_PIPE;
2985 }
2986
2987 static void vlv_steal_power_sequencer(struct drm_device *dev,
2988 enum pipe pipe)
2989 {
2990 struct drm_i915_private *dev_priv = to_i915(dev);
2991 struct intel_encoder *encoder;
2992
2993 lockdep_assert_held(&dev_priv->pps_mutex);
2994
2995 for_each_intel_encoder(dev, encoder) {
2996 struct intel_dp *intel_dp;
2997 enum port port;
2998
2999 if (encoder->type != INTEL_OUTPUT_DP &&
3000 encoder->type != INTEL_OUTPUT_EDP)
3001 continue;
3002
3003 intel_dp = enc_to_intel_dp(&encoder->base);
3004 port = dp_to_dig_port(intel_dp)->port;
3005
3006 WARN(intel_dp->active_pipe == pipe,
3007 "stealing pipe %c power sequencer from active (e)DP port %c\n",
3008 pipe_name(pipe), port_name(port));
3009
3010 if (intel_dp->pps_pipe != pipe)
3011 continue;
3012
3013 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
3014 pipe_name(pipe), port_name(port));
3015
3016 /* make sure vdd is off before we steal it */
3017 vlv_detach_power_sequencer(intel_dp);
3018 }
3019 }
3020
3021 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
3022 {
3023 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3024 struct intel_encoder *encoder = &intel_dig_port->base;
3025 struct drm_device *dev = encoder->base.dev;
3026 struct drm_i915_private *dev_priv = to_i915(dev);
3027 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
3028
3029 lockdep_assert_held(&dev_priv->pps_mutex);
3030
3031 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3032
3033 if (intel_dp->pps_pipe != INVALID_PIPE &&
3034 intel_dp->pps_pipe != crtc->pipe) {
3035 /*
3036 * If another power sequencer was being used on this
3037 * port previously make sure to turn off vdd there while
3038 * we still have control of it.
3039 */
3040 vlv_detach_power_sequencer(intel_dp);
3041 }
3042
3043 /*
3044 * We may be stealing the power
3045 * sequencer from another port.
3046 */
3047 vlv_steal_power_sequencer(dev, crtc->pipe);
3048
3049 intel_dp->active_pipe = crtc->pipe;
3050
3051 if (!intel_dp_is_edp(intel_dp))
3052 return;
3053
3054 /* now it's all ours */
3055 intel_dp->pps_pipe = crtc->pipe;
3056
3057 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
3058 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
3059
3060 /* init power sequencer on this pipe and port */
3061 intel_dp_init_panel_power_sequencer(dev, intel_dp);
3062 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, true);
3063 }
3064
3065 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3066 const struct intel_crtc_state *pipe_config,
3067 const struct drm_connector_state *conn_state)
3068 {
3069 vlv_phy_pre_encoder_enable(encoder);
3070
3071 intel_enable_dp(encoder, pipe_config, conn_state);
3072 }
3073
3074 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3075 const struct intel_crtc_state *pipe_config,
3076 const struct drm_connector_state *conn_state)
3077 {
3078 intel_dp_prepare(encoder, pipe_config);
3079
3080 vlv_phy_pre_pll_enable(encoder);
3081 }
3082
3083 static void chv_pre_enable_dp(struct intel_encoder *encoder,
3084 const struct intel_crtc_state *pipe_config,
3085 const struct drm_connector_state *conn_state)
3086 {
3087 chv_phy_pre_encoder_enable(encoder);
3088
3089 intel_enable_dp(encoder, pipe_config, conn_state);
3090
3091 /* Second common lane will stay alive on its own now */
3092 chv_phy_release_cl2_override(encoder);
3093 }
3094
3095 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3096 const struct intel_crtc_state *pipe_config,
3097 const struct drm_connector_state *conn_state)
3098 {
3099 intel_dp_prepare(encoder, pipe_config);
3100
3101 chv_phy_pre_pll_enable(encoder);
3102 }
3103
3104 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3105 const struct intel_crtc_state *pipe_config,
3106 const struct drm_connector_state *conn_state)
3107 {
3108 chv_phy_post_pll_disable(encoder);
3109 }
3110
3111 /*
3112 * Fetch AUX CH registers 0x202 - 0x207 which contain
3113 * link status information
3114 */
3115 bool
3116 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3117 {
3118 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3119 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3120 }
3121
3122 static bool intel_dp_get_y_cord_status(struct intel_dp *intel_dp)
3123 {
3124 uint8_t psr_caps = 0;
3125
3126 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_CAPS, &psr_caps) != 1)
3127 return false;
3128 return psr_caps & DP_PSR2_SU_Y_COORDINATE_REQUIRED;
3129 }
3130
3131 static bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
3132 {
3133 uint8_t dprx = 0;
3134
3135 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
3136 &dprx) != 1)
3137 return false;
3138 return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
3139 }
3140
3141 static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
3142 {
3143 uint8_t alpm_caps = 0;
3144
3145 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
3146 &alpm_caps) != 1)
3147 return false;
3148 return alpm_caps & DP_ALPM_CAP;
3149 }
3150
3151 /* These are source-specific values. */
3152 uint8_t
3153 intel_dp_voltage_max(struct intel_dp *intel_dp)
3154 {
3155 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3156 enum port port = dp_to_dig_port(intel_dp)->port;
3157
3158 if (INTEL_GEN(dev_priv) >= 9) {
3159 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3160 return intel_ddi_dp_voltage_max(encoder);
3161 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3162 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3163 else if (IS_GEN7(dev_priv) && port == PORT_A)
3164 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3165 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3166 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3167 else
3168 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3169 }
3170
3171 uint8_t
3172 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3173 {
3174 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3175 enum port port = dp_to_dig_port(intel_dp)->port;
3176
3177 if (INTEL_GEN(dev_priv) >= 9) {
3178 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3179 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3180 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3181 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3182 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3183 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3184 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3185 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3186 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3187 default:
3188 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3189 }
3190 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3191 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3192 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3193 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3194 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3195 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3196 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3197 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3198 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3199 default:
3200 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3201 }
3202 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3203 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3204 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3205 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3206 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3207 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3208 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3209 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3210 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3211 default:
3212 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3213 }
3214 } else if (IS_GEN7(dev_priv) && port == PORT_A) {
3215 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3216 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3217 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3218 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3219 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3220 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3221 default:
3222 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3223 }
3224 } else {
3225 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3226 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3227 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3228 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3229 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3230 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3231 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3232 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3233 default:
3234 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3235 }
3236 }
3237 }
3238
3239 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3240 {
3241 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3242 unsigned long demph_reg_value, preemph_reg_value,
3243 uniqtranscale_reg_value;
3244 uint8_t train_set = intel_dp->train_set[0];
3245
3246 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3247 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3248 preemph_reg_value = 0x0004000;
3249 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3250 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3251 demph_reg_value = 0x2B405555;
3252 uniqtranscale_reg_value = 0x552AB83A;
3253 break;
3254 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3255 demph_reg_value = 0x2B404040;
3256 uniqtranscale_reg_value = 0x5548B83A;
3257 break;
3258 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3259 demph_reg_value = 0x2B245555;
3260 uniqtranscale_reg_value = 0x5560B83A;
3261 break;
3262 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3263 demph_reg_value = 0x2B405555;
3264 uniqtranscale_reg_value = 0x5598DA3A;
3265 break;
3266 default:
3267 return 0;
3268 }
3269 break;
3270 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3271 preemph_reg_value = 0x0002000;
3272 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3273 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3274 demph_reg_value = 0x2B404040;
3275 uniqtranscale_reg_value = 0x5552B83A;
3276 break;
3277 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3278 demph_reg_value = 0x2B404848;
3279 uniqtranscale_reg_value = 0x5580B83A;
3280 break;
3281 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3282 demph_reg_value = 0x2B404040;
3283 uniqtranscale_reg_value = 0x55ADDA3A;
3284 break;
3285 default:
3286 return 0;
3287 }
3288 break;
3289 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3290 preemph_reg_value = 0x0000000;
3291 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3292 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3293 demph_reg_value = 0x2B305555;
3294 uniqtranscale_reg_value = 0x5570B83A;
3295 break;
3296 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3297 demph_reg_value = 0x2B2B4040;
3298 uniqtranscale_reg_value = 0x55ADDA3A;
3299 break;
3300 default:
3301 return 0;
3302 }
3303 break;
3304 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3305 preemph_reg_value = 0x0006000;
3306 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3307 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3308 demph_reg_value = 0x1B405555;
3309 uniqtranscale_reg_value = 0x55ADDA3A;
3310 break;
3311 default:
3312 return 0;
3313 }
3314 break;
3315 default:
3316 return 0;
3317 }
3318
3319 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3320 uniqtranscale_reg_value, 0);
3321
3322 return 0;
3323 }
3324
3325 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3326 {
3327 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3328 u32 deemph_reg_value, margin_reg_value;
3329 bool uniq_trans_scale = false;
3330 uint8_t train_set = intel_dp->train_set[0];
3331
3332 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3333 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3334 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3335 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3336 deemph_reg_value = 128;
3337 margin_reg_value = 52;
3338 break;
3339 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3340 deemph_reg_value = 128;
3341 margin_reg_value = 77;
3342 break;
3343 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3344 deemph_reg_value = 128;
3345 margin_reg_value = 102;
3346 break;
3347 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3348 deemph_reg_value = 128;
3349 margin_reg_value = 154;
3350 uniq_trans_scale = true;
3351 break;
3352 default:
3353 return 0;
3354 }
3355 break;
3356 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3357 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3358 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3359 deemph_reg_value = 85;
3360 margin_reg_value = 78;
3361 break;
3362 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3363 deemph_reg_value = 85;
3364 margin_reg_value = 116;
3365 break;
3366 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3367 deemph_reg_value = 85;
3368 margin_reg_value = 154;
3369 break;
3370 default:
3371 return 0;
3372 }
3373 break;
3374 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3375 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3376 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3377 deemph_reg_value = 64;
3378 margin_reg_value = 104;
3379 break;
3380 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3381 deemph_reg_value = 64;
3382 margin_reg_value = 154;
3383 break;
3384 default:
3385 return 0;
3386 }
3387 break;
3388 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3389 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3390 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3391 deemph_reg_value = 43;
3392 margin_reg_value = 154;
3393 break;
3394 default:
3395 return 0;
3396 }
3397 break;
3398 default:
3399 return 0;
3400 }
3401
3402 chv_set_phy_signal_level(encoder, deemph_reg_value,
3403 margin_reg_value, uniq_trans_scale);
3404
3405 return 0;
3406 }
3407
3408 static uint32_t
3409 gen4_signal_levels(uint8_t train_set)
3410 {
3411 uint32_t signal_levels = 0;
3412
3413 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3414 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3415 default:
3416 signal_levels |= DP_VOLTAGE_0_4;
3417 break;
3418 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3419 signal_levels |= DP_VOLTAGE_0_6;
3420 break;
3421 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3422 signal_levels |= DP_VOLTAGE_0_8;
3423 break;
3424 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3425 signal_levels |= DP_VOLTAGE_1_2;
3426 break;
3427 }
3428 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3429 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3430 default:
3431 signal_levels |= DP_PRE_EMPHASIS_0;
3432 break;
3433 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3434 signal_levels |= DP_PRE_EMPHASIS_3_5;
3435 break;
3436 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3437 signal_levels |= DP_PRE_EMPHASIS_6;
3438 break;
3439 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3440 signal_levels |= DP_PRE_EMPHASIS_9_5;
3441 break;
3442 }
3443 return signal_levels;
3444 }
3445
3446 /* Gen6's DP voltage swing and pre-emphasis control */
3447 static uint32_t
3448 gen6_edp_signal_levels(uint8_t train_set)
3449 {
3450 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3451 DP_TRAIN_PRE_EMPHASIS_MASK);
3452 switch (signal_levels) {
3453 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3454 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3455 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3456 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3457 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3458 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3459 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3460 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3461 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3462 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3463 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3464 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3465 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3466 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3467 default:
3468 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3469 "0x%x\n", signal_levels);
3470 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3471 }
3472 }
3473
3474 /* Gen7's DP voltage swing and pre-emphasis control */
3475 static uint32_t
3476 gen7_edp_signal_levels(uint8_t train_set)
3477 {
3478 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3479 DP_TRAIN_PRE_EMPHASIS_MASK);
3480 switch (signal_levels) {
3481 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3482 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3483 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3484 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3485 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3486 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3487
3488 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3489 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3490 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3491 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3492
3493 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3494 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3495 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3496 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3497
3498 default:
3499 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3500 "0x%x\n", signal_levels);
3501 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3502 }
3503 }
3504
3505 void
3506 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3507 {
3508 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3509 enum port port = intel_dig_port->port;
3510 struct drm_device *dev = intel_dig_port->base.base.dev;
3511 struct drm_i915_private *dev_priv = to_i915(dev);
3512 uint32_t signal_levels, mask = 0;
3513 uint8_t train_set = intel_dp->train_set[0];
3514
3515 if (IS_GEN9_LP(dev_priv) || IS_CANNONLAKE(dev_priv)) {
3516 signal_levels = bxt_signal_levels(intel_dp);
3517 } else if (HAS_DDI(dev_priv)) {
3518 signal_levels = ddi_signal_levels(intel_dp);
3519 mask = DDI_BUF_EMP_MASK;
3520 } else if (IS_CHERRYVIEW(dev_priv)) {
3521 signal_levels = chv_signal_levels(intel_dp);
3522 } else if (IS_VALLEYVIEW(dev_priv)) {
3523 signal_levels = vlv_signal_levels(intel_dp);
3524 } else if (IS_GEN7(dev_priv) && port == PORT_A) {
3525 signal_levels = gen7_edp_signal_levels(train_set);
3526 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3527 } else if (IS_GEN6(dev_priv) && port == PORT_A) {
3528 signal_levels = gen6_edp_signal_levels(train_set);
3529 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3530 } else {
3531 signal_levels = gen4_signal_levels(train_set);
3532 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3533 }
3534
3535 if (mask)
3536 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3537
3538 DRM_DEBUG_KMS("Using vswing level %d\n",
3539 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3540 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3541 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3542 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3543
3544 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3545
3546 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3547 POSTING_READ(intel_dp->output_reg);
3548 }
3549
3550 void
3551 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3552 uint8_t dp_train_pat)
3553 {
3554 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3555 struct drm_i915_private *dev_priv =
3556 to_i915(intel_dig_port->base.base.dev);
3557
3558 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3559
3560 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3561 POSTING_READ(intel_dp->output_reg);
3562 }
3563
3564 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3565 {
3566 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3567 struct drm_device *dev = intel_dig_port->base.base.dev;
3568 struct drm_i915_private *dev_priv = to_i915(dev);
3569 enum port port = intel_dig_port->port;
3570 uint32_t val;
3571
3572 if (!HAS_DDI(dev_priv))
3573 return;
3574
3575 val = I915_READ(DP_TP_CTL(port));
3576 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3577 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3578 I915_WRITE(DP_TP_CTL(port), val);
3579
3580 /*
3581 * On PORT_A we can have only eDP in SST mode. There the only reason
3582 * we need to set idle transmission mode is to work around a HW issue
3583 * where we enable the pipe while not in idle link-training mode.
3584 * In this case there is requirement to wait for a minimum number of
3585 * idle patterns to be sent.
3586 */
3587 if (port == PORT_A)
3588 return;
3589
3590 if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
3591 DP_TP_STATUS_IDLE_DONE,
3592 DP_TP_STATUS_IDLE_DONE,
3593 1))
3594 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3595 }
3596
3597 static void
3598 intel_dp_link_down(struct intel_dp *intel_dp)
3599 {
3600 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3601 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3602 enum port port = intel_dig_port->port;
3603 struct drm_device *dev = intel_dig_port->base.base.dev;
3604 struct drm_i915_private *dev_priv = to_i915(dev);
3605 uint32_t DP = intel_dp->DP;
3606
3607 if (WARN_ON(HAS_DDI(dev_priv)))
3608 return;
3609
3610 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3611 return;
3612
3613 DRM_DEBUG_KMS("\n");
3614
3615 if ((IS_GEN7(dev_priv) && port == PORT_A) ||
3616 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3617 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3618 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3619 } else {
3620 if (IS_CHERRYVIEW(dev_priv))
3621 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3622 else
3623 DP &= ~DP_LINK_TRAIN_MASK;
3624 DP |= DP_LINK_TRAIN_PAT_IDLE;
3625 }
3626 I915_WRITE(intel_dp->output_reg, DP);
3627 POSTING_READ(intel_dp->output_reg);
3628
3629 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3630 I915_WRITE(intel_dp->output_reg, DP);
3631 POSTING_READ(intel_dp->output_reg);
3632
3633 /*
3634 * HW workaround for IBX, we need to move the port
3635 * to transcoder A after disabling it to allow the
3636 * matching HDMI port to be enabled on transcoder A.
3637 */
3638 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
3639 /*
3640 * We get CPU/PCH FIFO underruns on the other pipe when
3641 * doing the workaround. Sweep them under the rug.
3642 */
3643 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3644 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3645
3646 /* always enable with pattern 1 (as per spec) */
3647 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3648 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3649 I915_WRITE(intel_dp->output_reg, DP);
3650 POSTING_READ(intel_dp->output_reg);
3651
3652 DP &= ~DP_PORT_EN;
3653 I915_WRITE(intel_dp->output_reg, DP);
3654 POSTING_READ(intel_dp->output_reg);
3655
3656 intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
3657 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3658 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3659 }
3660
3661 msleep(intel_dp->panel_power_down_delay);
3662
3663 intel_dp->DP = DP;
3664
3665 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3666 pps_lock(intel_dp);
3667 intel_dp->active_pipe = INVALID_PIPE;
3668 pps_unlock(intel_dp);
3669 }
3670 }
3671
3672 bool
3673 intel_dp_read_dpcd(struct intel_dp *intel_dp)
3674 {
3675 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
3676 sizeof(intel_dp->dpcd)) < 0)
3677 return false; /* aux transfer failed */
3678
3679 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3680
3681 return intel_dp->dpcd[DP_DPCD_REV] != 0;
3682 }
3683
3684 static bool
3685 intel_edp_init_dpcd(struct intel_dp *intel_dp)
3686 {
3687 struct drm_i915_private *dev_priv =
3688 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
3689
3690 /* this function is meant to be called only once */
3691 WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
3692
3693 if (!intel_dp_read_dpcd(intel_dp))
3694 return false;
3695
3696 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
3697 drm_dp_is_branch(intel_dp->dpcd));
3698
3699 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3700 dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3701 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3702
3703 /* Check if the panel supports PSR */
3704 drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT,
3705 intel_dp->psr_dpcd,
3706 sizeof(intel_dp->psr_dpcd));
3707 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3708 dev_priv->psr.sink_support = true;
3709 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3710 }
3711
3712 if (INTEL_GEN(dev_priv) >= 9 &&
3713 (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3714 uint8_t frame_sync_cap;
3715
3716 dev_priv->psr.sink_support = true;
3717 if (drm_dp_dpcd_readb(&intel_dp->aux,
3718 DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3719 &frame_sync_cap) != 1)
3720 frame_sync_cap = 0;
3721 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3722 /* PSR2 needs frame sync as well */
3723 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3724 DRM_DEBUG_KMS("PSR2 %s on sink",
3725 dev_priv->psr.psr2_support ? "supported" : "not supported");
3726
3727 if (dev_priv->psr.psr2_support) {
3728 dev_priv->psr.y_cord_support =
3729 intel_dp_get_y_cord_status(intel_dp);
3730 dev_priv->psr.colorimetry_support =
3731 intel_dp_get_colorimetry_status(intel_dp);
3732 dev_priv->psr.alpm =
3733 intel_dp_get_alpm_status(intel_dp);
3734 }
3735
3736 }
3737
3738 /*
3739 * Read the eDP display control registers.
3740 *
3741 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
3742 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
3743 * set, but require eDP 1.4+ detection (e.g. for supported link rates
3744 * method). The display control registers should read zero if they're
3745 * not supported anyway.
3746 */
3747 if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
3748 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
3749 sizeof(intel_dp->edp_dpcd))
3750 DRM_DEBUG_KMS("EDP DPCD : %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
3751 intel_dp->edp_dpcd);
3752
3753 /* Intermediate frequency support */
3754 if (intel_dp->edp_dpcd[0] >= 0x03) { /* eDp v1.4 or higher */
3755 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3756 int i;
3757
3758 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
3759 sink_rates, sizeof(sink_rates));
3760
3761 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3762 int val = le16_to_cpu(sink_rates[i]);
3763
3764 if (val == 0)
3765 break;
3766
3767 /* Value read multiplied by 200kHz gives the per-lane
3768 * link rate in kHz. The source rates are, however,
3769 * stored in terms of LS_Clk kHz. The full conversion
3770 * back to symbols is
3771 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
3772 */
3773 intel_dp->sink_rates[i] = (val * 200) / 10;
3774 }
3775 intel_dp->num_sink_rates = i;
3776 }
3777
3778 if (intel_dp->num_sink_rates)
3779 intel_dp->use_rate_select = true;
3780 else
3781 intel_dp_set_sink_rates(intel_dp);
3782
3783 intel_dp_set_common_rates(intel_dp);
3784
3785 return true;
3786 }
3787
3788
3789 static bool
3790 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3791 {
3792 u8 sink_count;
3793
3794 if (!intel_dp_read_dpcd(intel_dp))
3795 return false;
3796
3797 /* Don't clobber cached eDP rates. */
3798 if (!intel_dp_is_edp(intel_dp)) {
3799 intel_dp_set_sink_rates(intel_dp);
3800 intel_dp_set_common_rates(intel_dp);
3801 }
3802
3803 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &sink_count) <= 0)
3804 return false;
3805
3806 /*
3807 * Sink count can change between short pulse hpd hence
3808 * a member variable in intel_dp will track any changes
3809 * between short pulse interrupts.
3810 */
3811 intel_dp->sink_count = DP_GET_SINK_COUNT(sink_count);
3812
3813 /*
3814 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3815 * a dongle is present but no display. Unless we require to know
3816 * if a dongle is present or not, we don't need to update
3817 * downstream port information. So, an early return here saves
3818 * time from performing other operations which are not required.
3819 */
3820 if (!intel_dp_is_edp(intel_dp) && !intel_dp->sink_count)
3821 return false;
3822
3823 if (!drm_dp_is_branch(intel_dp->dpcd))
3824 return true; /* native DP sink */
3825
3826 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3827 return true; /* no per-port downstream info */
3828
3829 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3830 intel_dp->downstream_ports,
3831 DP_MAX_DOWNSTREAM_PORTS) < 0)
3832 return false; /* downstream port status fetch failed */
3833
3834 return true;
3835 }
3836
3837 static bool
3838 intel_dp_can_mst(struct intel_dp *intel_dp)
3839 {
3840 u8 mstm_cap;
3841
3842 if (!i915_modparams.enable_dp_mst)
3843 return false;
3844
3845 if (!intel_dp->can_mst)
3846 return false;
3847
3848 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3849 return false;
3850
3851 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
3852 return false;
3853
3854 return mstm_cap & DP_MST_CAP;
3855 }
3856
3857 static void
3858 intel_dp_configure_mst(struct intel_dp *intel_dp)
3859 {
3860 if (!i915_modparams.enable_dp_mst)
3861 return;
3862
3863 if (!intel_dp->can_mst)
3864 return;
3865
3866 intel_dp->is_mst = intel_dp_can_mst(intel_dp);
3867
3868 if (intel_dp->is_mst)
3869 DRM_DEBUG_KMS("Sink is MST capable\n");
3870 else
3871 DRM_DEBUG_KMS("Sink is not MST capable\n");
3872
3873 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
3874 intel_dp->is_mst);
3875 }
3876
3877 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3878 {
3879 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3880 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3881 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3882 u8 buf;
3883 int ret = 0;
3884 int count = 0;
3885 int attempts = 10;
3886
3887 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3888 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3889 ret = -EIO;
3890 goto out;
3891 }
3892
3893 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3894 buf & ~DP_TEST_SINK_START) < 0) {
3895 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3896 ret = -EIO;
3897 goto out;
3898 }
3899
3900 do {
3901 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
3902
3903 if (drm_dp_dpcd_readb(&intel_dp->aux,
3904 DP_TEST_SINK_MISC, &buf) < 0) {
3905 ret = -EIO;
3906 goto out;
3907 }
3908 count = buf & DP_TEST_COUNT_MASK;
3909 } while (--attempts && count);
3910
3911 if (attempts == 0) {
3912 DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
3913 ret = -ETIMEDOUT;
3914 }
3915
3916 out:
3917 hsw_enable_ips(intel_crtc);
3918 return ret;
3919 }
3920
3921 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
3922 {
3923 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3924 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3925 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3926 u8 buf;
3927 int ret;
3928
3929 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3930 return -EIO;
3931
3932 if (!(buf & DP_TEST_CRC_SUPPORTED))
3933 return -ENOTTY;
3934
3935 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3936 return -EIO;
3937
3938 if (buf & DP_TEST_SINK_START) {
3939 ret = intel_dp_sink_crc_stop(intel_dp);
3940 if (ret)
3941 return ret;
3942 }
3943
3944 hsw_disable_ips(intel_crtc);
3945
3946 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3947 buf | DP_TEST_SINK_START) < 0) {
3948 hsw_enable_ips(intel_crtc);
3949 return -EIO;
3950 }
3951
3952 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
3953 return 0;
3954 }
3955
3956 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3957 {
3958 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3959 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3960 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3961 u8 buf;
3962 int count, ret;
3963 int attempts = 6;
3964
3965 ret = intel_dp_sink_crc_start(intel_dp);
3966 if (ret)
3967 return ret;
3968
3969 do {
3970 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
3971
3972 if (drm_dp_dpcd_readb(&intel_dp->aux,
3973 DP_TEST_SINK_MISC, &buf) < 0) {
3974 ret = -EIO;
3975 goto stop;
3976 }
3977 count = buf & DP_TEST_COUNT_MASK;
3978
3979 } while (--attempts && count == 0);
3980
3981 if (attempts == 0) {
3982 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
3983 ret = -ETIMEDOUT;
3984 goto stop;
3985 }
3986
3987 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
3988 ret = -EIO;
3989 goto stop;
3990 }
3991
3992 stop:
3993 intel_dp_sink_crc_stop(intel_dp);
3994 return ret;
3995 }
3996
3997 static bool
3998 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3999 {
4000 return drm_dp_dpcd_readb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
4001 sink_irq_vector) == 1;
4002 }
4003
4004 static bool
4005 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4006 {
4007 return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4008 sink_irq_vector, DP_DPRX_ESI_LEN) ==
4009 DP_DPRX_ESI_LEN;
4010 }
4011
4012 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4013 {
4014 int status = 0;
4015 int test_link_rate;
4016 uint8_t test_lane_count, test_link_bw;
4017 /* (DP CTS 1.2)
4018 * 4.3.1.11
4019 */
4020 /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
4021 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
4022 &test_lane_count);
4023
4024 if (status <= 0) {
4025 DRM_DEBUG_KMS("Lane count read failed\n");
4026 return DP_TEST_NAK;
4027 }
4028 test_lane_count &= DP_MAX_LANE_COUNT_MASK;
4029
4030 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
4031 &test_link_bw);
4032 if (status <= 0) {
4033 DRM_DEBUG_KMS("Link Rate read failed\n");
4034 return DP_TEST_NAK;
4035 }
4036 test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4037
4038 /* Validate the requested link rate and lane count */
4039 if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
4040 test_lane_count))
4041 return DP_TEST_NAK;
4042
4043 intel_dp->compliance.test_lane_count = test_lane_count;
4044 intel_dp->compliance.test_link_rate = test_link_rate;
4045
4046 return DP_TEST_ACK;
4047 }
4048
4049 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4050 {
4051 uint8_t test_pattern;
4052 uint8_t test_misc;
4053 __be16 h_width, v_height;
4054 int status = 0;
4055
4056 /* Read the TEST_PATTERN (DP CTS 3.1.5) */
4057 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
4058 &test_pattern);
4059 if (status <= 0) {
4060 DRM_DEBUG_KMS("Test pattern read failed\n");
4061 return DP_TEST_NAK;
4062 }
4063 if (test_pattern != DP_COLOR_RAMP)
4064 return DP_TEST_NAK;
4065
4066 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
4067 &h_width, 2);
4068 if (status <= 0) {
4069 DRM_DEBUG_KMS("H Width read failed\n");
4070 return DP_TEST_NAK;
4071 }
4072
4073 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
4074 &v_height, 2);
4075 if (status <= 0) {
4076 DRM_DEBUG_KMS("V Height read failed\n");
4077 return DP_TEST_NAK;
4078 }
4079
4080 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
4081 &test_misc);
4082 if (status <= 0) {
4083 DRM_DEBUG_KMS("TEST MISC read failed\n");
4084 return DP_TEST_NAK;
4085 }
4086 if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
4087 return DP_TEST_NAK;
4088 if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
4089 return DP_TEST_NAK;
4090 switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
4091 case DP_TEST_BIT_DEPTH_6:
4092 intel_dp->compliance.test_data.bpc = 6;
4093 break;
4094 case DP_TEST_BIT_DEPTH_8:
4095 intel_dp->compliance.test_data.bpc = 8;
4096 break;
4097 default:
4098 return DP_TEST_NAK;
4099 }
4100
4101 intel_dp->compliance.test_data.video_pattern = test_pattern;
4102 intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
4103 intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
4104 /* Set test active flag here so userspace doesn't interrupt things */
4105 intel_dp->compliance.test_active = 1;
4106
4107 return DP_TEST_ACK;
4108 }
4109
4110 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4111 {
4112 uint8_t test_result = DP_TEST_ACK;
4113 struct intel_connector *intel_connector = intel_dp->attached_connector;
4114 struct drm_connector *connector = &intel_connector->base;
4115
4116 if (intel_connector->detect_edid == NULL ||
4117 connector->edid_corrupt ||
4118 intel_dp->aux.i2c_defer_count > 6) {
4119 /* Check EDID read for NACKs, DEFERs and corruption
4120 * (DP CTS 1.2 Core r1.1)
4121 * 4.2.2.4 : Failed EDID read, I2C_NAK
4122 * 4.2.2.5 : Failed EDID read, I2C_DEFER
4123 * 4.2.2.6 : EDID corruption detected
4124 * Use failsafe mode for all cases
4125 */
4126 if (intel_dp->aux.i2c_nack_count > 0 ||
4127 intel_dp->aux.i2c_defer_count > 0)
4128 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4129 intel_dp->aux.i2c_nack_count,
4130 intel_dp->aux.i2c_defer_count);
4131 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4132 } else {
4133 struct edid *block = intel_connector->detect_edid;
4134
4135 /* We have to write the checksum
4136 * of the last block read
4137 */
4138 block += intel_connector->detect_edid->extensions;
4139
4140 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
4141 block->checksum) <= 0)
4142 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4143
4144 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4145 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4146 }
4147
4148 /* Set test active flag here so userspace doesn't interrupt things */
4149 intel_dp->compliance.test_active = 1;
4150
4151 return test_result;
4152 }
4153
4154 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4155 {
4156 uint8_t test_result = DP_TEST_NAK;
4157 return test_result;
4158 }
4159
4160 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4161 {
4162 uint8_t response = DP_TEST_NAK;
4163 uint8_t request = 0;
4164 int status;
4165
4166 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4167 if (status <= 0) {
4168 DRM_DEBUG_KMS("Could not read test request from sink\n");
4169 goto update_status;
4170 }
4171
4172 switch (request) {
4173 case DP_TEST_LINK_TRAINING:
4174 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4175 response = intel_dp_autotest_link_training(intel_dp);
4176 break;
4177 case DP_TEST_LINK_VIDEO_PATTERN:
4178 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4179 response = intel_dp_autotest_video_pattern(intel_dp);
4180 break;
4181 case DP_TEST_LINK_EDID_READ:
4182 DRM_DEBUG_KMS("EDID test requested\n");
4183 response = intel_dp_autotest_edid(intel_dp);
4184 break;
4185 case DP_TEST_LINK_PHY_TEST_PATTERN:
4186 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4187 response = intel_dp_autotest_phy_pattern(intel_dp);
4188 break;
4189 default:
4190 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4191 break;
4192 }
4193
4194 if (response & DP_TEST_ACK)
4195 intel_dp->compliance.test_type = request;
4196
4197 update_status:
4198 status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4199 if (status <= 0)
4200 DRM_DEBUG_KMS("Could not write test response to sink\n");
4201 }
4202
4203 static int
4204 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4205 {
4206 bool bret;
4207
4208 if (intel_dp->is_mst) {
4209 u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4210 int ret = 0;
4211 int retry;
4212 bool handled;
4213 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4214 go_again:
4215 if (bret == true) {
4216
4217 /* check link status - esi[10] = 0x200c */
4218 if (intel_dp->active_mst_links &&
4219 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4220 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4221 intel_dp_start_link_train(intel_dp);
4222 intel_dp_stop_link_train(intel_dp);
4223 }
4224
4225 DRM_DEBUG_KMS("got esi %3ph\n", esi);
4226 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4227
4228 if (handled) {
4229 for (retry = 0; retry < 3; retry++) {
4230 int wret;
4231 wret = drm_dp_dpcd_write(&intel_dp->aux,
4232 DP_SINK_COUNT_ESI+1,
4233 &esi[1], 3);
4234 if (wret == 3) {
4235 break;
4236 }
4237 }
4238
4239 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4240 if (bret == true) {
4241 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4242 goto go_again;
4243 }
4244 } else
4245 ret = 0;
4246
4247 return ret;
4248 } else {
4249 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4250 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4251 intel_dp->is_mst = false;
4252 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4253 /* send a hotplug event */
4254 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4255 }
4256 }
4257 return -EINVAL;
4258 }
4259
4260 static void
4261 intel_dp_retrain_link(struct intel_dp *intel_dp)
4262 {
4263 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4264 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4265 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
4266
4267 /* Suppress underruns caused by re-training */
4268 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
4269 if (crtc->config->has_pch_encoder)
4270 intel_set_pch_fifo_underrun_reporting(dev_priv,
4271 intel_crtc_pch_transcoder(crtc), false);
4272
4273 intel_dp_start_link_train(intel_dp);
4274 intel_dp_stop_link_train(intel_dp);
4275
4276 /* Keep underrun reporting disabled until things are stable */
4277 intel_wait_for_vblank(dev_priv, crtc->pipe);
4278
4279 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
4280 if (crtc->config->has_pch_encoder)
4281 intel_set_pch_fifo_underrun_reporting(dev_priv,
4282 intel_crtc_pch_transcoder(crtc), true);
4283 }
4284
4285 static void
4286 intel_dp_check_link_status(struct intel_dp *intel_dp)
4287 {
4288 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4289 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4290 u8 link_status[DP_LINK_STATUS_SIZE];
4291
4292 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4293
4294 if (!intel_dp_get_link_status(intel_dp, link_status)) {
4295 DRM_ERROR("Failed to get link status\n");
4296 return;
4297 }
4298
4299 if (!intel_encoder->base.crtc)
4300 return;
4301
4302 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4303 return;
4304
4305 /*
4306 * Validate the cached values of intel_dp->link_rate and
4307 * intel_dp->lane_count before attempting to retrain.
4308 */
4309 if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
4310 intel_dp->lane_count))
4311 return;
4312
4313 /* Retrain if Channel EQ or CR not ok */
4314 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
4315 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4316 intel_encoder->base.name);
4317
4318 intel_dp_retrain_link(intel_dp);
4319 }
4320 }
4321
4322 /*
4323 * According to DP spec
4324 * 5.1.2:
4325 * 1. Read DPCD
4326 * 2. Configure link according to Receiver Capabilities
4327 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4328 * 4. Check link status on receipt of hot-plug interrupt
4329 *
4330 * intel_dp_short_pulse - handles short pulse interrupts
4331 * when full detection is not required.
4332 * Returns %true if short pulse is handled and full detection
4333 * is NOT required and %false otherwise.
4334 */
4335 static bool
4336 intel_dp_short_pulse(struct intel_dp *intel_dp)
4337 {
4338 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4339 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4340 u8 sink_irq_vector = 0;
4341 u8 old_sink_count = intel_dp->sink_count;
4342 bool ret;
4343
4344 /*
4345 * Clearing compliance test variables to allow capturing
4346 * of values for next automated test request.
4347 */
4348 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4349
4350 /*
4351 * Now read the DPCD to see if it's actually running
4352 * If the current value of sink count doesn't match with
4353 * the value that was stored earlier or dpcd read failed
4354 * we need to do full detection
4355 */
4356 ret = intel_dp_get_dpcd(intel_dp);
4357
4358 if ((old_sink_count != intel_dp->sink_count) || !ret) {
4359 /* No need to proceed if we are going to do full detect */
4360 return false;
4361 }
4362
4363 /* Try to read the source of the interrupt */
4364 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4365 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4366 sink_irq_vector != 0) {
4367 /* Clear interrupt source */
4368 drm_dp_dpcd_writeb(&intel_dp->aux,
4369 DP_DEVICE_SERVICE_IRQ_VECTOR,
4370 sink_irq_vector);
4371
4372 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4373 intel_dp_handle_test_request(intel_dp);
4374 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4375 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4376 }
4377
4378 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4379 intel_dp_check_link_status(intel_dp);
4380 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4381 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
4382 DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
4383 /* Send a Hotplug Uevent to userspace to start modeset */
4384 drm_kms_helper_hotplug_event(intel_encoder->base.dev);
4385 }
4386
4387 return true;
4388 }
4389
4390 /* XXX this is probably wrong for multiple downstream ports */
4391 static enum drm_connector_status
4392 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4393 {
4394 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4395 uint8_t *dpcd = intel_dp->dpcd;
4396 uint8_t type;
4397
4398 if (lspcon->active)
4399 lspcon_resume(lspcon);
4400
4401 if (!intel_dp_get_dpcd(intel_dp))
4402 return connector_status_disconnected;
4403
4404 if (intel_dp_is_edp(intel_dp))
4405 return connector_status_connected;
4406
4407 /* if there's no downstream port, we're done */
4408 if (!drm_dp_is_branch(dpcd))
4409 return connector_status_connected;
4410
4411 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4412 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4413 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4414
4415 return intel_dp->sink_count ?
4416 connector_status_connected : connector_status_disconnected;
4417 }
4418
4419 if (intel_dp_can_mst(intel_dp))
4420 return connector_status_connected;
4421
4422 /* If no HPD, poke DDC gently */
4423 if (drm_probe_ddc(&intel_dp->aux.ddc))
4424 return connector_status_connected;
4425
4426 /* Well we tried, say unknown for unreliable port types */
4427 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4428 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4429 if (type == DP_DS_PORT_TYPE_VGA ||
4430 type == DP_DS_PORT_TYPE_NON_EDID)
4431 return connector_status_unknown;
4432 } else {
4433 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4434 DP_DWN_STRM_PORT_TYPE_MASK;
4435 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4436 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4437 return connector_status_unknown;
4438 }
4439
4440 /* Anything else is out of spec, warn and ignore */
4441 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4442 return connector_status_disconnected;
4443 }
4444
4445 static enum drm_connector_status
4446 edp_detect(struct intel_dp *intel_dp)
4447 {
4448 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4449 struct drm_i915_private *dev_priv = to_i915(dev);
4450 enum drm_connector_status status;
4451
4452 status = intel_panel_detect(dev_priv);
4453 if (status == connector_status_unknown)
4454 status = connector_status_connected;
4455
4456 return status;
4457 }
4458
4459 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4460 struct intel_digital_port *port)
4461 {
4462 u32 bit;
4463
4464 switch (port->port) {
4465 case PORT_B:
4466 bit = SDE_PORTB_HOTPLUG;
4467 break;
4468 case PORT_C:
4469 bit = SDE_PORTC_HOTPLUG;
4470 break;
4471 case PORT_D:
4472 bit = SDE_PORTD_HOTPLUG;
4473 break;
4474 default:
4475 MISSING_CASE(port->port);
4476 return false;
4477 }
4478
4479 return I915_READ(SDEISR) & bit;
4480 }
4481
4482 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4483 struct intel_digital_port *port)
4484 {
4485 u32 bit;
4486
4487 switch (port->port) {
4488 case PORT_B:
4489 bit = SDE_PORTB_HOTPLUG_CPT;
4490 break;
4491 case PORT_C:
4492 bit = SDE_PORTC_HOTPLUG_CPT;
4493 break;
4494 case PORT_D:
4495 bit = SDE_PORTD_HOTPLUG_CPT;
4496 break;
4497 default:
4498 MISSING_CASE(port->port);
4499 return false;
4500 }
4501
4502 return I915_READ(SDEISR) & bit;
4503 }
4504
4505 static bool spt_digital_port_connected(struct drm_i915_private *dev_priv,
4506 struct intel_digital_port *port)
4507 {
4508 u32 bit;
4509
4510 switch (port->port) {
4511 case PORT_A:
4512 bit = SDE_PORTA_HOTPLUG_SPT;
4513 break;
4514 case PORT_E:
4515 bit = SDE_PORTE_HOTPLUG_SPT;
4516 break;
4517 default:
4518 return cpt_digital_port_connected(dev_priv, port);
4519 }
4520
4521 return I915_READ(SDEISR) & bit;
4522 }
4523
4524 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4525 struct intel_digital_port *port)
4526 {
4527 u32 bit;
4528
4529 switch (port->port) {
4530 case PORT_B:
4531 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4532 break;
4533 case PORT_C:
4534 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4535 break;
4536 case PORT_D:
4537 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4538 break;
4539 default:
4540 MISSING_CASE(port->port);
4541 return false;
4542 }
4543
4544 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4545 }
4546
4547 static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
4548 struct intel_digital_port *port)
4549 {
4550 u32 bit;
4551
4552 switch (port->port) {
4553 case PORT_B:
4554 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4555 break;
4556 case PORT_C:
4557 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4558 break;
4559 case PORT_D:
4560 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4561 break;
4562 default:
4563 MISSING_CASE(port->port);
4564 return false;
4565 }
4566
4567 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4568 }
4569
4570 static bool ilk_digital_port_connected(struct drm_i915_private *dev_priv,
4571 struct intel_digital_port *port)
4572 {
4573 if (port->port == PORT_A)
4574 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
4575 else
4576 return ibx_digital_port_connected(dev_priv, port);
4577 }
4578
4579 static bool snb_digital_port_connected(struct drm_i915_private *dev_priv,
4580 struct intel_digital_port *port)
4581 {
4582 if (port->port == PORT_A)
4583 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
4584 else
4585 return cpt_digital_port_connected(dev_priv, port);
4586 }
4587
4588 static bool ivb_digital_port_connected(struct drm_i915_private *dev_priv,
4589 struct intel_digital_port *port)
4590 {
4591 if (port->port == PORT_A)
4592 return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
4593 else
4594 return cpt_digital_port_connected(dev_priv, port);
4595 }
4596
4597 static bool bdw_digital_port_connected(struct drm_i915_private *dev_priv,
4598 struct intel_digital_port *port)
4599 {
4600 if (port->port == PORT_A)
4601 return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
4602 else
4603 return cpt_digital_port_connected(dev_priv, port);
4604 }
4605
4606 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4607 struct intel_digital_port *intel_dig_port)
4608 {
4609 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4610 enum port port;
4611 u32 bit;
4612
4613 port = intel_hpd_pin_to_port(intel_encoder->hpd_pin);
4614 switch (port) {
4615 case PORT_A:
4616 bit = BXT_DE_PORT_HP_DDIA;
4617 break;
4618 case PORT_B:
4619 bit = BXT_DE_PORT_HP_DDIB;
4620 break;
4621 case PORT_C:
4622 bit = BXT_DE_PORT_HP_DDIC;
4623 break;
4624 default:
4625 MISSING_CASE(port);
4626 return false;
4627 }
4628
4629 return I915_READ(GEN8_DE_PORT_ISR) & bit;
4630 }
4631
4632 /*
4633 * intel_digital_port_connected - is the specified port connected?
4634 * @dev_priv: i915 private structure
4635 * @port: the port to test
4636 *
4637 * Return %true if @port is connected, %false otherwise.
4638 */
4639 bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4640 struct intel_digital_port *port)
4641 {
4642 if (HAS_GMCH_DISPLAY(dev_priv)) {
4643 if (IS_GM45(dev_priv))
4644 return gm45_digital_port_connected(dev_priv, port);
4645 else
4646 return g4x_digital_port_connected(dev_priv, port);
4647 }
4648
4649 if (IS_GEN5(dev_priv))
4650 return ilk_digital_port_connected(dev_priv, port);
4651 else if (IS_GEN6(dev_priv))
4652 return snb_digital_port_connected(dev_priv, port);
4653 else if (IS_GEN7(dev_priv))
4654 return ivb_digital_port_connected(dev_priv, port);
4655 else if (IS_GEN8(dev_priv))
4656 return bdw_digital_port_connected(dev_priv, port);
4657 else if (IS_GEN9_LP(dev_priv))
4658 return bxt_digital_port_connected(dev_priv, port);
4659 else
4660 return spt_digital_port_connected(dev_priv, port);
4661 }
4662
4663 static struct edid *
4664 intel_dp_get_edid(struct intel_dp *intel_dp)
4665 {
4666 struct intel_connector *intel_connector = intel_dp->attached_connector;
4667
4668 /* use cached edid if we have one */
4669 if (intel_connector->edid) {
4670 /* invalid edid */
4671 if (IS_ERR(intel_connector->edid))
4672 return NULL;
4673
4674 return drm_edid_duplicate(intel_connector->edid);
4675 } else
4676 return drm_get_edid(&intel_connector->base,
4677 &intel_dp->aux.ddc);
4678 }
4679
4680 static void
4681 intel_dp_set_edid(struct intel_dp *intel_dp)
4682 {
4683 struct intel_connector *intel_connector = intel_dp->attached_connector;
4684 struct edid *edid;
4685
4686 intel_dp_unset_edid(intel_dp);
4687 edid = intel_dp_get_edid(intel_dp);
4688 intel_connector->detect_edid = edid;
4689
4690 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4691 }
4692
4693 static void
4694 intel_dp_unset_edid(struct intel_dp *intel_dp)
4695 {
4696 struct intel_connector *intel_connector = intel_dp->attached_connector;
4697
4698 kfree(intel_connector->detect_edid);
4699 intel_connector->detect_edid = NULL;
4700
4701 intel_dp->has_audio = false;
4702 }
4703
4704 static int
4705 intel_dp_long_pulse(struct intel_connector *intel_connector)
4706 {
4707 struct drm_connector *connector = &intel_connector->base;
4708 struct intel_dp *intel_dp = intel_attached_dp(connector);
4709 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4710 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4711 struct drm_device *dev = connector->dev;
4712 enum drm_connector_status status;
4713 u8 sink_irq_vector = 0;
4714
4715 WARN_ON(!drm_modeset_is_locked(&connector->dev->mode_config.connection_mutex));
4716
4717 intel_display_power_get(to_i915(dev), intel_dp->aux_power_domain);
4718
4719 /* Can't disconnect eDP, but you can close the lid... */
4720 if (intel_dp_is_edp(intel_dp))
4721 status = edp_detect(intel_dp);
4722 else if (intel_digital_port_connected(to_i915(dev),
4723 dp_to_dig_port(intel_dp)))
4724 status = intel_dp_detect_dpcd(intel_dp);
4725 else
4726 status = connector_status_disconnected;
4727
4728 if (status == connector_status_disconnected) {
4729 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4730
4731 if (intel_dp->is_mst) {
4732 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4733 intel_dp->is_mst,
4734 intel_dp->mst_mgr.mst_state);
4735 intel_dp->is_mst = false;
4736 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4737 intel_dp->is_mst);
4738 }
4739
4740 goto out;
4741 }
4742
4743 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4744 intel_encoder->type = INTEL_OUTPUT_DP;
4745
4746 if (intel_dp->reset_link_params) {
4747 /* Initial max link lane count */
4748 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
4749
4750 /* Initial max link rate */
4751 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
4752
4753 intel_dp->reset_link_params = false;
4754 }
4755
4756 intel_dp_print_rates(intel_dp);
4757
4758 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4759 drm_dp_is_branch(intel_dp->dpcd));
4760
4761 intel_dp_configure_mst(intel_dp);
4762
4763 if (intel_dp->is_mst) {
4764 /*
4765 * If we are in MST mode then this connector
4766 * won't appear connected or have anything
4767 * with EDID on it
4768 */
4769 status = connector_status_disconnected;
4770 goto out;
4771 } else {
4772 /*
4773 * If display is now connected check links status,
4774 * there has been known issues of link loss triggerring
4775 * long pulse.
4776 *
4777 * Some sinks (eg. ASUS PB287Q) seem to perform some
4778 * weird HPD ping pong during modesets. So we can apparently
4779 * end up with HPD going low during a modeset, and then
4780 * going back up soon after. And once that happens we must
4781 * retrain the link to get a picture. That's in case no
4782 * userspace component reacted to intermittent HPD dip.
4783 */
4784 intel_dp_check_link_status(intel_dp);
4785 }
4786
4787 /*
4788 * Clearing NACK and defer counts to get their exact values
4789 * while reading EDID which are required by Compliance tests
4790 * 4.2.2.4 and 4.2.2.5
4791 */
4792 intel_dp->aux.i2c_nack_count = 0;
4793 intel_dp->aux.i2c_defer_count = 0;
4794
4795 intel_dp_set_edid(intel_dp);
4796 if (intel_dp_is_edp(intel_dp) || intel_connector->detect_edid)
4797 status = connector_status_connected;
4798 intel_dp->detect_done = true;
4799
4800 /* Try to read the source of the interrupt */
4801 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4802 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4803 sink_irq_vector != 0) {
4804 /* Clear interrupt source */
4805 drm_dp_dpcd_writeb(&intel_dp->aux,
4806 DP_DEVICE_SERVICE_IRQ_VECTOR,
4807 sink_irq_vector);
4808
4809 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4810 intel_dp_handle_test_request(intel_dp);
4811 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4812 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4813 }
4814
4815 out:
4816 if (status != connector_status_connected && !intel_dp->is_mst)
4817 intel_dp_unset_edid(intel_dp);
4818
4819 intel_display_power_put(to_i915(dev), intel_dp->aux_power_domain);
4820 return status;
4821 }
4822
4823 static int
4824 intel_dp_detect(struct drm_connector *connector,
4825 struct drm_modeset_acquire_ctx *ctx,
4826 bool force)
4827 {
4828 struct intel_dp *intel_dp = intel_attached_dp(connector);
4829 int status = connector->status;
4830
4831 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4832 connector->base.id, connector->name);
4833
4834 /* If full detect is not performed yet, do a full detect */
4835 if (!intel_dp->detect_done)
4836 status = intel_dp_long_pulse(intel_dp->attached_connector);
4837
4838 intel_dp->detect_done = false;
4839
4840 return status;
4841 }
4842
4843 static void
4844 intel_dp_force(struct drm_connector *connector)
4845 {
4846 struct intel_dp *intel_dp = intel_attached_dp(connector);
4847 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4848 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4849
4850 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4851 connector->base.id, connector->name);
4852 intel_dp_unset_edid(intel_dp);
4853
4854 if (connector->status != connector_status_connected)
4855 return;
4856
4857 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
4858
4859 intel_dp_set_edid(intel_dp);
4860
4861 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
4862
4863 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4864 intel_encoder->type = INTEL_OUTPUT_DP;
4865 }
4866
4867 static int intel_dp_get_modes(struct drm_connector *connector)
4868 {
4869 struct intel_connector *intel_connector = to_intel_connector(connector);
4870 struct edid *edid;
4871
4872 edid = intel_connector->detect_edid;
4873 if (edid) {
4874 int ret = intel_connector_update_modes(connector, edid);
4875 if (ret)
4876 return ret;
4877 }
4878
4879 /* if eDP has no EDID, fall back to fixed mode */
4880 if (intel_dp_is_edp(intel_attached_dp(connector)) &&
4881 intel_connector->panel.fixed_mode) {
4882 struct drm_display_mode *mode;
4883
4884 mode = drm_mode_duplicate(connector->dev,
4885 intel_connector->panel.fixed_mode);
4886 if (mode) {
4887 drm_mode_probed_add(connector, mode);
4888 return 1;
4889 }
4890 }
4891
4892 return 0;
4893 }
4894
4895 static int
4896 intel_dp_connector_register(struct drm_connector *connector)
4897 {
4898 struct intel_dp *intel_dp = intel_attached_dp(connector);
4899 int ret;
4900
4901 ret = intel_connector_register(connector);
4902 if (ret)
4903 return ret;
4904
4905 i915_debugfs_connector_add(connector);
4906
4907 DRM_DEBUG_KMS("registering %s bus for %s\n",
4908 intel_dp->aux.name, connector->kdev->kobj.name);
4909
4910 intel_dp->aux.dev = connector->kdev;
4911 return drm_dp_aux_register(&intel_dp->aux);
4912 }
4913
4914 static void
4915 intel_dp_connector_unregister(struct drm_connector *connector)
4916 {
4917 drm_dp_aux_unregister(&intel_attached_dp(connector)->aux);
4918 intel_connector_unregister(connector);
4919 }
4920
4921 static void
4922 intel_dp_connector_destroy(struct drm_connector *connector)
4923 {
4924 struct intel_connector *intel_connector = to_intel_connector(connector);
4925
4926 kfree(intel_connector->detect_edid);
4927
4928 if (!IS_ERR_OR_NULL(intel_connector->edid))
4929 kfree(intel_connector->edid);
4930
4931 /*
4932 * Can't call intel_dp_is_edp() since the encoder may have been
4933 * destroyed already.
4934 */
4935 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4936 intel_panel_fini(&intel_connector->panel);
4937
4938 drm_connector_cleanup(connector);
4939 kfree(connector);
4940 }
4941
4942 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4943 {
4944 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4945 struct intel_dp *intel_dp = &intel_dig_port->dp;
4946
4947 intel_dp_mst_encoder_cleanup(intel_dig_port);
4948 if (intel_dp_is_edp(intel_dp)) {
4949 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4950 /*
4951 * vdd might still be enabled do to the delayed vdd off.
4952 * Make sure vdd is actually turned off here.
4953 */
4954 pps_lock(intel_dp);
4955 edp_panel_vdd_off_sync(intel_dp);
4956 pps_unlock(intel_dp);
4957
4958 if (intel_dp->edp_notifier.notifier_call) {
4959 unregister_reboot_notifier(&intel_dp->edp_notifier);
4960 intel_dp->edp_notifier.notifier_call = NULL;
4961 }
4962 }
4963
4964 intel_dp_aux_fini(intel_dp);
4965
4966 drm_encoder_cleanup(encoder);
4967 kfree(intel_dig_port);
4968 }
4969
4970 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4971 {
4972 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4973
4974 if (!intel_dp_is_edp(intel_dp))
4975 return;
4976
4977 /*
4978 * vdd might still be enabled do to the delayed vdd off.
4979 * Make sure vdd is actually turned off here.
4980 */
4981 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4982 pps_lock(intel_dp);
4983 edp_panel_vdd_off_sync(intel_dp);
4984 pps_unlock(intel_dp);
4985 }
4986
4987 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4988 {
4989 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4990 struct drm_device *dev = intel_dig_port->base.base.dev;
4991 struct drm_i915_private *dev_priv = to_i915(dev);
4992
4993 lockdep_assert_held(&dev_priv->pps_mutex);
4994
4995 if (!edp_have_panel_vdd(intel_dp))
4996 return;
4997
4998 /*
4999 * The VDD bit needs a power domain reference, so if the bit is
5000 * already enabled when we boot or resume, grab this reference and
5001 * schedule a vdd off, so we don't hold on to the reference
5002 * indefinitely.
5003 */
5004 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
5005 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
5006
5007 edp_panel_vdd_schedule_off(intel_dp);
5008 }
5009
5010 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
5011 {
5012 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5013
5014 if ((intel_dp->DP & DP_PORT_EN) == 0)
5015 return INVALID_PIPE;
5016
5017 if (IS_CHERRYVIEW(dev_priv))
5018 return DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5019 else
5020 return PORT_TO_PIPE(intel_dp->DP);
5021 }
5022
5023 void intel_dp_encoder_reset(struct drm_encoder *encoder)
5024 {
5025 struct drm_i915_private *dev_priv = to_i915(encoder->dev);
5026 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5027 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5028
5029 if (!HAS_DDI(dev_priv))
5030 intel_dp->DP = I915_READ(intel_dp->output_reg);
5031
5032 if (lspcon->active)
5033 lspcon_resume(lspcon);
5034
5035 intel_dp->reset_link_params = true;
5036
5037 pps_lock(intel_dp);
5038
5039 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5040 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
5041
5042 if (intel_dp_is_edp(intel_dp)) {
5043 /* Reinit the power sequencer, in case BIOS did something with it. */
5044 intel_dp_pps_init(encoder->dev, intel_dp);
5045 intel_edp_panel_vdd_sanitize(intel_dp);
5046 }
5047
5048 pps_unlock(intel_dp);
5049 }
5050
5051 static const struct drm_connector_funcs intel_dp_connector_funcs = {
5052 .force = intel_dp_force,
5053 .fill_modes = drm_helper_probe_single_connector_modes,
5054 .atomic_get_property = intel_digital_connector_atomic_get_property,
5055 .atomic_set_property = intel_digital_connector_atomic_set_property,
5056 .late_register = intel_dp_connector_register,
5057 .early_unregister = intel_dp_connector_unregister,
5058 .destroy = intel_dp_connector_destroy,
5059 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
5060 .atomic_duplicate_state = intel_digital_connector_duplicate_state,
5061 };
5062
5063 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
5064 .detect_ctx = intel_dp_detect,
5065 .get_modes = intel_dp_get_modes,
5066 .mode_valid = intel_dp_mode_valid,
5067 .atomic_check = intel_digital_connector_atomic_check,
5068 };
5069
5070 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
5071 .reset = intel_dp_encoder_reset,
5072 .destroy = intel_dp_encoder_destroy,
5073 };
5074
5075 enum irqreturn
5076 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
5077 {
5078 struct intel_dp *intel_dp = &intel_dig_port->dp;
5079 struct drm_device *dev = intel_dig_port->base.base.dev;
5080 struct drm_i915_private *dev_priv = to_i915(dev);
5081 enum irqreturn ret = IRQ_NONE;
5082
5083 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
5084 intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
5085 intel_dig_port->base.type = INTEL_OUTPUT_DP;
5086
5087 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
5088 /*
5089 * vdd off can generate a long pulse on eDP which
5090 * would require vdd on to handle it, and thus we
5091 * would end up in an endless cycle of
5092 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
5093 */
5094 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
5095 port_name(intel_dig_port->port));
5096 return IRQ_HANDLED;
5097 }
5098
5099 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
5100 port_name(intel_dig_port->port),
5101 long_hpd ? "long" : "short");
5102
5103 if (long_hpd) {
5104 intel_dp->reset_link_params = true;
5105 intel_dp->detect_done = false;
5106 return IRQ_NONE;
5107 }
5108
5109 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
5110
5111 if (intel_dp->is_mst) {
5112 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
5113 /*
5114 * If we were in MST mode, and device is not
5115 * there, get out of MST mode
5116 */
5117 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5118 intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
5119 intel_dp->is_mst = false;
5120 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5121 intel_dp->is_mst);
5122 intel_dp->detect_done = false;
5123 goto put_power;
5124 }
5125 }
5126
5127 if (!intel_dp->is_mst) {
5128 if (!intel_dp_short_pulse(intel_dp)) {
5129 intel_dp->detect_done = false;
5130 goto put_power;
5131 }
5132 }
5133
5134 ret = IRQ_HANDLED;
5135
5136 put_power:
5137 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
5138
5139 return ret;
5140 }
5141
5142 /* check the VBT to see whether the eDP is on another port */
5143 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
5144 {
5145 /*
5146 * eDP not supported on g4x. so bail out early just
5147 * for a bit extra safety in case the VBT is bonkers.
5148 */
5149 if (INTEL_GEN(dev_priv) < 5)
5150 return false;
5151
5152 if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
5153 return true;
5154
5155 return intel_bios_is_port_edp(dev_priv, port);
5156 }
5157
5158 static void
5159 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5160 {
5161 struct drm_i915_private *dev_priv = to_i915(connector->dev);
5162
5163 intel_attach_force_audio_property(connector);
5164 intel_attach_broadcast_rgb_property(connector);
5165
5166 if (intel_dp_is_edp(intel_dp)) {
5167 u32 allowed_scalers;
5168
5169 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
5170 if (!HAS_GMCH_DISPLAY(dev_priv))
5171 allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
5172
5173 drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
5174
5175 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
5176
5177 }
5178 }
5179
5180 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
5181 {
5182 intel_dp->panel_power_off_time = ktime_get_boottime();
5183 intel_dp->last_power_on = jiffies;
5184 intel_dp->last_backlight_off = jiffies;
5185 }
5186
5187 static void
5188 intel_pps_readout_hw_state(struct drm_i915_private *dev_priv,
5189 struct intel_dp *intel_dp, struct edp_power_seq *seq)
5190 {
5191 u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
5192 struct pps_registers regs;
5193
5194 intel_pps_get_registers(dev_priv, intel_dp, &regs);
5195
5196 /* Workaround: Need to write PP_CONTROL with the unlock key as
5197 * the very first thing. */
5198 pp_ctl = ironlake_get_pp_control(intel_dp);
5199
5200 pp_on = I915_READ(regs.pp_on);
5201 pp_off = I915_READ(regs.pp_off);
5202 if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv)) {
5203 I915_WRITE(regs.pp_ctrl, pp_ctl);
5204 pp_div = I915_READ(regs.pp_div);
5205 }
5206
5207 /* Pull timing values out of registers */
5208 seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
5209 PANEL_POWER_UP_DELAY_SHIFT;
5210
5211 seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
5212 PANEL_LIGHT_ON_DELAY_SHIFT;
5213
5214 seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
5215 PANEL_LIGHT_OFF_DELAY_SHIFT;
5216
5217 seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5218 PANEL_POWER_DOWN_DELAY_SHIFT;
5219
5220 if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv)) {
5221 seq->t11_t12 = ((pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
5222 BXT_POWER_CYCLE_DELAY_SHIFT) * 1000;
5223 } else {
5224 seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5225 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5226 }
5227 }
5228
5229 static void
5230 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
5231 {
5232 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5233 state_name,
5234 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
5235 }
5236
5237 static void
5238 intel_pps_verify_state(struct drm_i915_private *dev_priv,
5239 struct intel_dp *intel_dp)
5240 {
5241 struct edp_power_seq hw;
5242 struct edp_power_seq *sw = &intel_dp->pps_delays;
5243
5244 intel_pps_readout_hw_state(dev_priv, intel_dp, &hw);
5245
5246 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
5247 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
5248 DRM_ERROR("PPS state mismatch\n");
5249 intel_pps_dump_state("sw", sw);
5250 intel_pps_dump_state("hw", &hw);
5251 }
5252 }
5253
5254 static void
5255 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
5256 struct intel_dp *intel_dp)
5257 {
5258 struct drm_i915_private *dev_priv = to_i915(dev);
5259 struct edp_power_seq cur, vbt, spec,
5260 *final = &intel_dp->pps_delays;
5261
5262 lockdep_assert_held(&dev_priv->pps_mutex);
5263
5264 /* already initialized? */
5265 if (final->t11_t12 != 0)
5266 return;
5267
5268 intel_pps_readout_hw_state(dev_priv, intel_dp, &cur);
5269
5270 intel_pps_dump_state("cur", &cur);
5271
5272 vbt = dev_priv->vbt.edp.pps;
5273 /* On Toshiba Satellite P50-C-18C system the VBT T12 delay
5274 * of 500ms appears to be too short. Ocassionally the panel
5275 * just fails to power back on. Increasing the delay to 800ms
5276 * seems sufficient to avoid this problem.
5277 */
5278 if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
5279 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
5280 DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
5281 vbt.t11_t12);
5282 }
5283 /* T11_T12 delay is special and actually in units of 100ms, but zero
5284 * based in the hw (so we need to add 100 ms). But the sw vbt
5285 * table multiplies it with 1000 to make it in units of 100usec,
5286 * too. */
5287 vbt.t11_t12 += 100 * 10;
5288
5289 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5290 * our hw here, which are all in 100usec. */
5291 spec.t1_t3 = 210 * 10;
5292 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5293 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5294 spec.t10 = 500 * 10;
5295 /* This one is special and actually in units of 100ms, but zero
5296 * based in the hw (so we need to add 100 ms). But the sw vbt
5297 * table multiplies it with 1000 to make it in units of 100usec,
5298 * too. */
5299 spec.t11_t12 = (510 + 100) * 10;
5300
5301 intel_pps_dump_state("vbt", &vbt);
5302
5303 /* Use the max of the register settings and vbt. If both are
5304 * unset, fall back to the spec limits. */
5305 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
5306 spec.field : \
5307 max(cur.field, vbt.field))
5308 assign_final(t1_t3);
5309 assign_final(t8);
5310 assign_final(t9);
5311 assign_final(t10);
5312 assign_final(t11_t12);
5313 #undef assign_final
5314
5315 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
5316 intel_dp->panel_power_up_delay = get_delay(t1_t3);
5317 intel_dp->backlight_on_delay = get_delay(t8);
5318 intel_dp->backlight_off_delay = get_delay(t9);
5319 intel_dp->panel_power_down_delay = get_delay(t10);
5320 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5321 #undef get_delay
5322
5323 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5324 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5325 intel_dp->panel_power_cycle_delay);
5326
5327 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5328 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5329
5330 /*
5331 * We override the HW backlight delays to 1 because we do manual waits
5332 * on them. For T8, even BSpec recommends doing it. For T9, if we
5333 * don't do this, we'll end up waiting for the backlight off delay
5334 * twice: once when we do the manual sleep, and once when we disable
5335 * the panel and wait for the PP_STATUS bit to become zero.
5336 */
5337 final->t8 = 1;
5338 final->t9 = 1;
5339
5340 /*
5341 * HW has only a 100msec granularity for t11_t12 so round it up
5342 * accordingly.
5343 */
5344 final->t11_t12 = roundup(final->t11_t12, 100 * 10);
5345 }
5346
5347 static void
5348 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5349 struct intel_dp *intel_dp,
5350 bool force_disable_vdd)
5351 {
5352 struct drm_i915_private *dev_priv = to_i915(dev);
5353 u32 pp_on, pp_off, pp_div, port_sel = 0;
5354 int div = dev_priv->rawclk_freq / 1000;
5355 struct pps_registers regs;
5356 enum port port = dp_to_dig_port(intel_dp)->port;
5357 const struct edp_power_seq *seq = &intel_dp->pps_delays;
5358
5359 lockdep_assert_held(&dev_priv->pps_mutex);
5360
5361 intel_pps_get_registers(dev_priv, intel_dp, &regs);
5362
5363 /*
5364 * On some VLV machines the BIOS can leave the VDD
5365 * enabled even on power seqeuencers which aren't
5366 * hooked up to any port. This would mess up the
5367 * power domain tracking the first time we pick
5368 * one of these power sequencers for use since
5369 * edp_panel_vdd_on() would notice that the VDD was
5370 * already on and therefore wouldn't grab the power
5371 * domain reference. Disable VDD first to avoid this.
5372 * This also avoids spuriously turning the VDD on as
5373 * soon as the new power seqeuencer gets initialized.
5374 */
5375 if (force_disable_vdd) {
5376 u32 pp = ironlake_get_pp_control(intel_dp);
5377
5378 WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
5379
5380 if (pp & EDP_FORCE_VDD)
5381 DRM_DEBUG_KMS("VDD already on, disabling first\n");
5382
5383 pp &= ~EDP_FORCE_VDD;
5384
5385 I915_WRITE(regs.pp_ctrl, pp);
5386 }
5387
5388 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5389 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
5390 pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5391 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5392 /* Compute the divisor for the pp clock, simply match the Bspec
5393 * formula. */
5394 if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv)) {
5395 pp_div = I915_READ(regs.pp_ctrl);
5396 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5397 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5398 << BXT_POWER_CYCLE_DELAY_SHIFT);
5399 } else {
5400 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5401 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5402 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5403 }
5404
5405 /* Haswell doesn't have any port selection bits for the panel
5406 * power sequencer any more. */
5407 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5408 port_sel = PANEL_PORT_SELECT_VLV(port);
5409 } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
5410 if (port == PORT_A)
5411 port_sel = PANEL_PORT_SELECT_DPA;
5412 else
5413 port_sel = PANEL_PORT_SELECT_DPD;
5414 }
5415
5416 pp_on |= port_sel;
5417
5418 I915_WRITE(regs.pp_on, pp_on);
5419 I915_WRITE(regs.pp_off, pp_off);
5420 if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv))
5421 I915_WRITE(regs.pp_ctrl, pp_div);
5422 else
5423 I915_WRITE(regs.pp_div, pp_div);
5424
5425 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5426 I915_READ(regs.pp_on),
5427 I915_READ(regs.pp_off),
5428 (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv)) ?
5429 (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
5430 I915_READ(regs.pp_div));
5431 }
5432
5433 static void intel_dp_pps_init(struct drm_device *dev,
5434 struct intel_dp *intel_dp)
5435 {
5436 struct drm_i915_private *dev_priv = to_i915(dev);
5437
5438 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5439 vlv_initial_power_sequencer_setup(intel_dp);
5440 } else {
5441 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5442 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, false);
5443 }
5444 }
5445
5446 /**
5447 * intel_dp_set_drrs_state - program registers for RR switch to take effect
5448 * @dev_priv: i915 device
5449 * @crtc_state: a pointer to the active intel_crtc_state
5450 * @refresh_rate: RR to be programmed
5451 *
5452 * This function gets called when refresh rate (RR) has to be changed from
5453 * one frequency to another. Switches can be between high and low RR
5454 * supported by the panel or to any other RR based on media playback (in
5455 * this case, RR value needs to be passed from user space).
5456 *
5457 * The caller of this function needs to take a lock on dev_priv->drrs.
5458 */
5459 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
5460 const struct intel_crtc_state *crtc_state,
5461 int refresh_rate)
5462 {
5463 struct intel_encoder *encoder;
5464 struct intel_digital_port *dig_port = NULL;
5465 struct intel_dp *intel_dp = dev_priv->drrs.dp;
5466 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
5467 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5468
5469 if (refresh_rate <= 0) {
5470 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5471 return;
5472 }
5473
5474 if (intel_dp == NULL) {
5475 DRM_DEBUG_KMS("DRRS not supported.\n");
5476 return;
5477 }
5478
5479 dig_port = dp_to_dig_port(intel_dp);
5480 encoder = &dig_port->base;
5481 intel_crtc = to_intel_crtc(encoder->base.crtc);
5482
5483 if (!intel_crtc) {
5484 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5485 return;
5486 }
5487
5488 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5489 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5490 return;
5491 }
5492
5493 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5494 refresh_rate)
5495 index = DRRS_LOW_RR;
5496
5497 if (index == dev_priv->drrs.refresh_rate_type) {
5498 DRM_DEBUG_KMS(
5499 "DRRS requested for previously set RR...ignoring\n");
5500 return;
5501 }
5502
5503 if (!crtc_state->base.active) {
5504 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5505 return;
5506 }
5507
5508 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
5509 switch (index) {
5510 case DRRS_HIGH_RR:
5511 intel_dp_set_m_n(intel_crtc, M1_N1);
5512 break;
5513 case DRRS_LOW_RR:
5514 intel_dp_set_m_n(intel_crtc, M2_N2);
5515 break;
5516 case DRRS_MAX_RR:
5517 default:
5518 DRM_ERROR("Unsupported refreshrate type\n");
5519 }
5520 } else if (INTEL_GEN(dev_priv) > 6) {
5521 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
5522 u32 val;
5523
5524 val = I915_READ(reg);
5525 if (index > DRRS_HIGH_RR) {
5526 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5527 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5528 else
5529 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5530 } else {
5531 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5532 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5533 else
5534 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5535 }
5536 I915_WRITE(reg, val);
5537 }
5538
5539 dev_priv->drrs.refresh_rate_type = index;
5540
5541 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5542 }
5543
5544 /**
5545 * intel_edp_drrs_enable - init drrs struct if supported
5546 * @intel_dp: DP struct
5547 * @crtc_state: A pointer to the active crtc state.
5548 *
5549 * Initializes frontbuffer_bits and drrs.dp
5550 */
5551 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
5552 const struct intel_crtc_state *crtc_state)
5553 {
5554 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5555 struct drm_i915_private *dev_priv = to_i915(dev);
5556
5557 if (!crtc_state->has_drrs) {
5558 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5559 return;
5560 }
5561
5562 if (dev_priv->psr.enabled) {
5563 DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
5564 return;
5565 }
5566
5567 mutex_lock(&dev_priv->drrs.mutex);
5568 if (WARN_ON(dev_priv->drrs.dp)) {
5569 DRM_ERROR("DRRS already enabled\n");
5570 goto unlock;
5571 }
5572
5573 dev_priv->drrs.busy_frontbuffer_bits = 0;
5574
5575 dev_priv->drrs.dp = intel_dp;
5576
5577 unlock:
5578 mutex_unlock(&dev_priv->drrs.mutex);
5579 }
5580
5581 /**
5582 * intel_edp_drrs_disable - Disable DRRS
5583 * @intel_dp: DP struct
5584 * @old_crtc_state: Pointer to old crtc_state.
5585 *
5586 */
5587 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
5588 const struct intel_crtc_state *old_crtc_state)
5589 {
5590 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5591 struct drm_i915_private *dev_priv = to_i915(dev);
5592
5593 if (!old_crtc_state->has_drrs)
5594 return;
5595
5596 mutex_lock(&dev_priv->drrs.mutex);
5597 if (!dev_priv->drrs.dp) {
5598 mutex_unlock(&dev_priv->drrs.mutex);
5599 return;
5600 }
5601
5602 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5603 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
5604 intel_dp->attached_connector->panel.fixed_mode->vrefresh);
5605
5606 dev_priv->drrs.dp = NULL;
5607 mutex_unlock(&dev_priv->drrs.mutex);
5608
5609 cancel_delayed_work_sync(&dev_priv->drrs.work);
5610 }
5611
5612 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5613 {
5614 struct drm_i915_private *dev_priv =
5615 container_of(work, typeof(*dev_priv), drrs.work.work);
5616 struct intel_dp *intel_dp;
5617
5618 mutex_lock(&dev_priv->drrs.mutex);
5619
5620 intel_dp = dev_priv->drrs.dp;
5621
5622 if (!intel_dp)
5623 goto unlock;
5624
5625 /*
5626 * The delayed work can race with an invalidate hence we need to
5627 * recheck.
5628 */
5629
5630 if (dev_priv->drrs.busy_frontbuffer_bits)
5631 goto unlock;
5632
5633 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
5634 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
5635
5636 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5637 intel_dp->attached_connector->panel.downclock_mode->vrefresh);
5638 }
5639
5640 unlock:
5641 mutex_unlock(&dev_priv->drrs.mutex);
5642 }
5643
5644 /**
5645 * intel_edp_drrs_invalidate - Disable Idleness DRRS
5646 * @dev_priv: i915 device
5647 * @frontbuffer_bits: frontbuffer plane tracking bits
5648 *
5649 * This function gets called everytime rendering on the given planes start.
5650 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5651 *
5652 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5653 */
5654 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
5655 unsigned int frontbuffer_bits)
5656 {
5657 struct drm_crtc *crtc;
5658 enum pipe pipe;
5659
5660 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5661 return;
5662
5663 cancel_delayed_work(&dev_priv->drrs.work);
5664
5665 mutex_lock(&dev_priv->drrs.mutex);
5666 if (!dev_priv->drrs.dp) {
5667 mutex_unlock(&dev_priv->drrs.mutex);
5668 return;
5669 }
5670
5671 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5672 pipe = to_intel_crtc(crtc)->pipe;
5673
5674 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5675 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5676
5677 /* invalidate means busy screen hence upclock */
5678 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5679 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5680 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5681
5682 mutex_unlock(&dev_priv->drrs.mutex);
5683 }
5684
5685 /**
5686 * intel_edp_drrs_flush - Restart Idleness DRRS
5687 * @dev_priv: i915 device
5688 * @frontbuffer_bits: frontbuffer plane tracking bits
5689 *
5690 * This function gets called every time rendering on the given planes has
5691 * completed or flip on a crtc is completed. So DRRS should be upclocked
5692 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5693 * if no other planes are dirty.
5694 *
5695 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5696 */
5697 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
5698 unsigned int frontbuffer_bits)
5699 {
5700 struct drm_crtc *crtc;
5701 enum pipe pipe;
5702
5703 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5704 return;
5705
5706 cancel_delayed_work(&dev_priv->drrs.work);
5707
5708 mutex_lock(&dev_priv->drrs.mutex);
5709 if (!dev_priv->drrs.dp) {
5710 mutex_unlock(&dev_priv->drrs.mutex);
5711 return;
5712 }
5713
5714 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5715 pipe = to_intel_crtc(crtc)->pipe;
5716
5717 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5718 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5719
5720 /* flush means busy screen hence upclock */
5721 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5722 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5723 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5724
5725 /*
5726 * flush also means no more activity hence schedule downclock, if all
5727 * other fbs are quiescent too
5728 */
5729 if (!dev_priv->drrs.busy_frontbuffer_bits)
5730 schedule_delayed_work(&dev_priv->drrs.work,
5731 msecs_to_jiffies(1000));
5732 mutex_unlock(&dev_priv->drrs.mutex);
5733 }
5734
5735 /**
5736 * DOC: Display Refresh Rate Switching (DRRS)
5737 *
5738 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5739 * which enables swtching between low and high refresh rates,
5740 * dynamically, based on the usage scenario. This feature is applicable
5741 * for internal panels.
5742 *
5743 * Indication that the panel supports DRRS is given by the panel EDID, which
5744 * would list multiple refresh rates for one resolution.
5745 *
5746 * DRRS is of 2 types - static and seamless.
5747 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5748 * (may appear as a blink on screen) and is used in dock-undock scenario.
5749 * Seamless DRRS involves changing RR without any visual effect to the user
5750 * and can be used during normal system usage. This is done by programming
5751 * certain registers.
5752 *
5753 * Support for static/seamless DRRS may be indicated in the VBT based on
5754 * inputs from the panel spec.
5755 *
5756 * DRRS saves power by switching to low RR based on usage scenarios.
5757 *
5758 * The implementation is based on frontbuffer tracking implementation. When
5759 * there is a disturbance on the screen triggered by user activity or a periodic
5760 * system activity, DRRS is disabled (RR is changed to high RR). When there is
5761 * no movement on screen, after a timeout of 1 second, a switch to low RR is
5762 * made.
5763 *
5764 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
5765 * and intel_edp_drrs_flush() are called.
5766 *
5767 * DRRS can be further extended to support other internal panels and also
5768 * the scenario of video playback wherein RR is set based on the rate
5769 * requested by userspace.
5770 */
5771
5772 /**
5773 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5774 * @intel_connector: eDP connector
5775 * @fixed_mode: preferred mode of panel
5776 *
5777 * This function is called only once at driver load to initialize basic
5778 * DRRS stuff.
5779 *
5780 * Returns:
5781 * Downclock mode if panel supports it, else return NULL.
5782 * DRRS support is determined by the presence of downclock mode (apart
5783 * from VBT setting).
5784 */
5785 static struct drm_display_mode *
5786 intel_dp_drrs_init(struct intel_connector *intel_connector,
5787 struct drm_display_mode *fixed_mode)
5788 {
5789 struct drm_connector *connector = &intel_connector->base;
5790 struct drm_device *dev = connector->dev;
5791 struct drm_i915_private *dev_priv = to_i915(dev);
5792 struct drm_display_mode *downclock_mode = NULL;
5793
5794 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5795 mutex_init(&dev_priv->drrs.mutex);
5796
5797 if (INTEL_GEN(dev_priv) <= 6) {
5798 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5799 return NULL;
5800 }
5801
5802 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5803 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5804 return NULL;
5805 }
5806
5807 downclock_mode = intel_find_panel_downclock
5808 (dev_priv, fixed_mode, connector);
5809
5810 if (!downclock_mode) {
5811 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5812 return NULL;
5813 }
5814
5815 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5816
5817 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5818 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5819 return downclock_mode;
5820 }
5821
5822 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5823 struct intel_connector *intel_connector)
5824 {
5825 struct drm_connector *connector = &intel_connector->base;
5826 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5827 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5828 struct drm_device *dev = intel_encoder->base.dev;
5829 struct drm_i915_private *dev_priv = to_i915(dev);
5830 struct drm_display_mode *fixed_mode = NULL;
5831 struct drm_display_mode *alt_fixed_mode = NULL;
5832 struct drm_display_mode *downclock_mode = NULL;
5833 bool has_dpcd;
5834 struct drm_display_mode *scan;
5835 struct edid *edid;
5836 enum pipe pipe = INVALID_PIPE;
5837
5838 if (!intel_dp_is_edp(intel_dp))
5839 return true;
5840
5841 /*
5842 * On IBX/CPT we may get here with LVDS already registered. Since the
5843 * driver uses the only internal power sequencer available for both
5844 * eDP and LVDS bail out early in this case to prevent interfering
5845 * with an already powered-on LVDS power sequencer.
5846 */
5847 if (intel_get_lvds_encoder(dev)) {
5848 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
5849 DRM_INFO("LVDS was detected, not registering eDP\n");
5850
5851 return false;
5852 }
5853
5854 pps_lock(intel_dp);
5855
5856 intel_dp_init_panel_power_timestamps(intel_dp);
5857 intel_dp_pps_init(dev, intel_dp);
5858 intel_edp_panel_vdd_sanitize(intel_dp);
5859
5860 pps_unlock(intel_dp);
5861
5862 /* Cache DPCD and EDID for edp. */
5863 has_dpcd = intel_edp_init_dpcd(intel_dp);
5864
5865 if (!has_dpcd) {
5866 /* if this fails, presume the device is a ghost */
5867 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5868 goto out_vdd_off;
5869 }
5870
5871 mutex_lock(&dev->mode_config.mutex);
5872 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5873 if (edid) {
5874 if (drm_add_edid_modes(connector, edid)) {
5875 drm_mode_connector_update_edid_property(connector,
5876 edid);
5877 drm_edid_to_eld(connector, edid);
5878 } else {
5879 kfree(edid);
5880 edid = ERR_PTR(-EINVAL);
5881 }
5882 } else {
5883 edid = ERR_PTR(-ENOENT);
5884 }
5885 intel_connector->edid = edid;
5886
5887 /* prefer fixed mode from EDID if available, save an alt mode also */
5888 list_for_each_entry(scan, &connector->probed_modes, head) {
5889 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5890 fixed_mode = drm_mode_duplicate(dev, scan);
5891 downclock_mode = intel_dp_drrs_init(
5892 intel_connector, fixed_mode);
5893 } else if (!alt_fixed_mode) {
5894 alt_fixed_mode = drm_mode_duplicate(dev, scan);
5895 }
5896 }
5897
5898 /* fallback to VBT if available for eDP */
5899 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5900 fixed_mode = drm_mode_duplicate(dev,
5901 dev_priv->vbt.lfp_lvds_vbt_mode);
5902 if (fixed_mode) {
5903 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5904 connector->display_info.width_mm = fixed_mode->width_mm;
5905 connector->display_info.height_mm = fixed_mode->height_mm;
5906 }
5907 }
5908 mutex_unlock(&dev->mode_config.mutex);
5909
5910 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5911 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5912 register_reboot_notifier(&intel_dp->edp_notifier);
5913
5914 /*
5915 * Figure out the current pipe for the initial backlight setup.
5916 * If the current pipe isn't valid, try the PPS pipe, and if that
5917 * fails just assume pipe A.
5918 */
5919 pipe = vlv_active_pipe(intel_dp);
5920
5921 if (pipe != PIPE_A && pipe != PIPE_B)
5922 pipe = intel_dp->pps_pipe;
5923
5924 if (pipe != PIPE_A && pipe != PIPE_B)
5925 pipe = PIPE_A;
5926
5927 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5928 pipe_name(pipe));
5929 }
5930
5931 intel_panel_init(&intel_connector->panel, fixed_mode, alt_fixed_mode,
5932 downclock_mode);
5933 intel_connector->panel.backlight.power = intel_edp_backlight_power;
5934 intel_panel_setup_backlight(connector, pipe);
5935
5936 return true;
5937
5938 out_vdd_off:
5939 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5940 /*
5941 * vdd might still be enabled do to the delayed vdd off.
5942 * Make sure vdd is actually turned off here.
5943 */
5944 pps_lock(intel_dp);
5945 edp_panel_vdd_off_sync(intel_dp);
5946 pps_unlock(intel_dp);
5947
5948 return false;
5949 }
5950
5951 /* Set up the hotplug pin and aux power domain. */
5952 static void
5953 intel_dp_init_connector_port_info(struct intel_digital_port *intel_dig_port)
5954 {
5955 struct intel_encoder *encoder = &intel_dig_port->base;
5956 struct intel_dp *intel_dp = &intel_dig_port->dp;
5957
5958 encoder->hpd_pin = intel_hpd_pin(intel_dig_port->port);
5959
5960 switch (intel_dig_port->port) {
5961 case PORT_A:
5962 intel_dp->aux_power_domain = POWER_DOMAIN_AUX_A;
5963 break;
5964 case PORT_B:
5965 intel_dp->aux_power_domain = POWER_DOMAIN_AUX_B;
5966 break;
5967 case PORT_C:
5968 intel_dp->aux_power_domain = POWER_DOMAIN_AUX_C;
5969 break;
5970 case PORT_D:
5971 intel_dp->aux_power_domain = POWER_DOMAIN_AUX_D;
5972 break;
5973 case PORT_E:
5974 /* FIXME: Check VBT for actual wiring of PORT E */
5975 intel_dp->aux_power_domain = POWER_DOMAIN_AUX_D;
5976 break;
5977 default:
5978 MISSING_CASE(intel_dig_port->port);
5979 }
5980 }
5981
5982 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
5983 {
5984 struct intel_connector *intel_connector;
5985 struct drm_connector *connector;
5986
5987 intel_connector = container_of(work, typeof(*intel_connector),
5988 modeset_retry_work);
5989 connector = &intel_connector->base;
5990 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
5991 connector->name);
5992
5993 /* Grab the locks before changing connector property*/
5994 mutex_lock(&connector->dev->mode_config.mutex);
5995 /* Set connector link status to BAD and send a Uevent to notify
5996 * userspace to do a modeset.
5997 */
5998 drm_mode_connector_set_link_status_property(connector,
5999 DRM_MODE_LINK_STATUS_BAD);
6000 mutex_unlock(&connector->dev->mode_config.mutex);
6001 /* Send Hotplug uevent so userspace can reprobe */
6002 drm_kms_helper_hotplug_event(connector->dev);
6003 }
6004
6005 bool
6006 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
6007 struct intel_connector *intel_connector)
6008 {
6009 struct drm_connector *connector = &intel_connector->base;
6010 struct intel_dp *intel_dp = &intel_dig_port->dp;
6011 struct intel_encoder *intel_encoder = &intel_dig_port->base;
6012 struct drm_device *dev = intel_encoder->base.dev;
6013 struct drm_i915_private *dev_priv = to_i915(dev);
6014 enum port port = intel_dig_port->port;
6015 int type;
6016
6017 /* Initialize the work for modeset in case of link train failure */
6018 INIT_WORK(&intel_connector->modeset_retry_work,
6019 intel_dp_modeset_retry_work_fn);
6020
6021 if (WARN(intel_dig_port->max_lanes < 1,
6022 "Not enough lanes (%d) for DP on port %c\n",
6023 intel_dig_port->max_lanes, port_name(port)))
6024 return false;
6025
6026 intel_dp_set_source_rates(intel_dp);
6027
6028 intel_dp->reset_link_params = true;
6029 intel_dp->pps_pipe = INVALID_PIPE;
6030 intel_dp->active_pipe = INVALID_PIPE;
6031
6032 /* intel_dp vfuncs */
6033 if (INTEL_GEN(dev_priv) >= 9)
6034 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
6035 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6036 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
6037 else if (HAS_PCH_SPLIT(dev_priv))
6038 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
6039 else
6040 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
6041
6042 if (INTEL_GEN(dev_priv) >= 9)
6043 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
6044 else
6045 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
6046
6047 if (HAS_DDI(dev_priv))
6048 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
6049
6050 /* Preserve the current hw state. */
6051 intel_dp->DP = I915_READ(intel_dp->output_reg);
6052 intel_dp->attached_connector = intel_connector;
6053
6054 if (intel_dp_is_port_edp(dev_priv, port))
6055 type = DRM_MODE_CONNECTOR_eDP;
6056 else
6057 type = DRM_MODE_CONNECTOR_DisplayPort;
6058
6059 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6060 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6061
6062 /*
6063 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
6064 * for DP the encoder type can be set by the caller to
6065 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
6066 */
6067 if (type == DRM_MODE_CONNECTOR_eDP)
6068 intel_encoder->type = INTEL_OUTPUT_EDP;
6069
6070 /* eDP only on port B and/or C on vlv/chv */
6071 if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
6072 intel_dp_is_edp(intel_dp) &&
6073 port != PORT_B && port != PORT_C))
6074 return false;
6075
6076 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
6077 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
6078 port_name(port));
6079
6080 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
6081 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
6082
6083 connector->interlace_allowed = true;
6084 connector->doublescan_allowed = 0;
6085
6086 intel_dp_init_connector_port_info(intel_dig_port);
6087
6088 intel_dp_aux_init(intel_dp);
6089
6090 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
6091 edp_panel_vdd_work);
6092
6093 intel_connector_attach_encoder(intel_connector, intel_encoder);
6094
6095 if (HAS_DDI(dev_priv))
6096 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
6097 else
6098 intel_connector->get_hw_state = intel_connector_get_hw_state;
6099
6100 /* init MST on ports that can support it */
6101 if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
6102 (port == PORT_B || port == PORT_C || port == PORT_D))
6103 intel_dp_mst_encoder_init(intel_dig_port,
6104 intel_connector->base.base.id);
6105
6106 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
6107 intel_dp_aux_fini(intel_dp);
6108 intel_dp_mst_encoder_cleanup(intel_dig_port);
6109 goto fail;
6110 }
6111
6112 intel_dp_add_properties(intel_dp, connector);
6113
6114 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
6115 * 0xd. Failure to do so will result in spurious interrupts being
6116 * generated on the port when a cable is not attached.
6117 */
6118 if (IS_G4X(dev_priv) && !IS_GM45(dev_priv)) {
6119 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
6120 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
6121 }
6122
6123 return true;
6124
6125 fail:
6126 drm_connector_cleanup(connector);
6127
6128 return false;
6129 }
6130
6131 bool intel_dp_init(struct drm_i915_private *dev_priv,
6132 i915_reg_t output_reg,
6133 enum port port)
6134 {
6135 struct intel_digital_port *intel_dig_port;
6136 struct intel_encoder *intel_encoder;
6137 struct drm_encoder *encoder;
6138 struct intel_connector *intel_connector;
6139
6140 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
6141 if (!intel_dig_port)
6142 return false;
6143
6144 intel_connector = intel_connector_alloc();
6145 if (!intel_connector)
6146 goto err_connector_alloc;
6147
6148 intel_encoder = &intel_dig_port->base;
6149 encoder = &intel_encoder->base;
6150
6151 if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
6152 &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
6153 "DP %c", port_name(port)))
6154 goto err_encoder_init;
6155
6156 intel_encoder->compute_config = intel_dp_compute_config;
6157 intel_encoder->get_hw_state = intel_dp_get_hw_state;
6158 intel_encoder->get_config = intel_dp_get_config;
6159 intel_encoder->suspend = intel_dp_encoder_suspend;
6160 if (IS_CHERRYVIEW(dev_priv)) {
6161 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
6162 intel_encoder->pre_enable = chv_pre_enable_dp;
6163 intel_encoder->enable = vlv_enable_dp;
6164 intel_encoder->disable = vlv_disable_dp;
6165 intel_encoder->post_disable = chv_post_disable_dp;
6166 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
6167 } else if (IS_VALLEYVIEW(dev_priv)) {
6168 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
6169 intel_encoder->pre_enable = vlv_pre_enable_dp;
6170 intel_encoder->enable = vlv_enable_dp;
6171 intel_encoder->disable = vlv_disable_dp;
6172 intel_encoder->post_disable = vlv_post_disable_dp;
6173 } else if (INTEL_GEN(dev_priv) >= 5) {
6174 intel_encoder->pre_enable = g4x_pre_enable_dp;
6175 intel_encoder->enable = g4x_enable_dp;
6176 intel_encoder->disable = ilk_disable_dp;
6177 intel_encoder->post_disable = ilk_post_disable_dp;
6178 } else {
6179 intel_encoder->pre_enable = g4x_pre_enable_dp;
6180 intel_encoder->enable = g4x_enable_dp;
6181 intel_encoder->disable = g4x_disable_dp;
6182 }
6183
6184 intel_dig_port->port = port;
6185 intel_dig_port->dp.output_reg = output_reg;
6186 intel_dig_port->max_lanes = 4;
6187
6188 intel_encoder->type = INTEL_OUTPUT_DP;
6189 intel_encoder->power_domain = intel_port_to_power_domain(port);
6190 if (IS_CHERRYVIEW(dev_priv)) {
6191 if (port == PORT_D)
6192 intel_encoder->crtc_mask = 1 << 2;
6193 else
6194 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
6195 } else {
6196 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
6197 }
6198 intel_encoder->cloneable = 0;
6199 intel_encoder->port = port;
6200
6201 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
6202 dev_priv->hotplug.irq_port[port] = intel_dig_port;
6203
6204 if (port != PORT_A)
6205 intel_infoframe_init(intel_dig_port);
6206
6207 if (!intel_dp_init_connector(intel_dig_port, intel_connector))
6208 goto err_init_connector;
6209
6210 return true;
6211
6212 err_init_connector:
6213 drm_encoder_cleanup(encoder);
6214 err_encoder_init:
6215 kfree(intel_connector);
6216 err_connector_alloc:
6217 kfree(intel_dig_port);
6218 return false;
6219 }
6220
6221 void intel_dp_mst_suspend(struct drm_device *dev)
6222 {
6223 struct drm_i915_private *dev_priv = to_i915(dev);
6224 int i;
6225
6226 /* disable MST */
6227 for (i = 0; i < I915_MAX_PORTS; i++) {
6228 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6229
6230 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
6231 continue;
6232
6233 if (intel_dig_port->dp.is_mst)
6234 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
6235 }
6236 }
6237
6238 void intel_dp_mst_resume(struct drm_device *dev)
6239 {
6240 struct drm_i915_private *dev_priv = to_i915(dev);
6241 int i;
6242
6243 for (i = 0; i < I915_MAX_PORTS; i++) {
6244 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6245 int ret;
6246
6247 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
6248 continue;
6249
6250 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
6251 if (ret)
6252 intel_dp_check_mst_status(&intel_dig_port->dp);
6253 }
6254 }