]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/gpu/drm/i915/intel_dp.c
drm: drop _mode_ from update_edit_property()
[mirror_ubuntu-jammy-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/types.h>
32 #include <linux/notifier.h>
33 #include <linux/reboot.h>
34 #include <asm/byteorder.h>
35 #include <drm/drmP.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_crtc.h>
38 #include <drm/drm_crtc_helper.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_hdcp.h>
42 #include "intel_drv.h"
43 #include <drm/i915_drm.h>
44 #include "i915_drv.h"
45
46 #define DP_DPRX_ESI_LEN 14
47
48 /* Compliance test status bits */
49 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
50 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
51 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
52 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
53
54 struct dp_link_dpll {
55 int clock;
56 struct dpll dpll;
57 };
58
59 static const struct dp_link_dpll g4x_dpll[] = {
60 { 162000,
61 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
62 { 270000,
63 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
64 };
65
66 static const struct dp_link_dpll pch_dpll[] = {
67 { 162000,
68 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
69 { 270000,
70 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
71 };
72
73 static const struct dp_link_dpll vlv_dpll[] = {
74 { 162000,
75 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
76 { 270000,
77 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
78 };
79
80 /*
81 * CHV supports eDP 1.4 that have more link rates.
82 * Below only provides the fixed rate but exclude variable rate.
83 */
84 static const struct dp_link_dpll chv_dpll[] = {
85 /*
86 * CHV requires to program fractional division for m2.
87 * m2 is stored in fixed point format using formula below
88 * (m2_int << 22) | m2_fraction
89 */
90 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
91 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
92 { 270000, /* m2_int = 27, m2_fraction = 0 */
93 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
94 };
95
96 /**
97 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
98 * @intel_dp: DP struct
99 *
100 * If a CPU or PCH DP output is attached to an eDP panel, this function
101 * will return true, and false otherwise.
102 */
103 bool intel_dp_is_edp(struct intel_dp *intel_dp)
104 {
105 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
106
107 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
108 }
109
110 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
111 {
112 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
113
114 return intel_dig_port->base.base.dev;
115 }
116
117 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
118 {
119 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
120 }
121
122 static void intel_dp_link_down(struct intel_encoder *encoder,
123 const struct intel_crtc_state *old_crtc_state);
124 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
125 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
126 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
127 const struct intel_crtc_state *crtc_state);
128 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
129 enum pipe pipe);
130 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
131
132 /* update sink rates from dpcd */
133 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
134 {
135 static const int dp_rates[] = {
136 162000, 270000, 540000, 810000
137 };
138 int i, max_rate;
139
140 max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
141
142 for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
143 if (dp_rates[i] > max_rate)
144 break;
145 intel_dp->sink_rates[i] = dp_rates[i];
146 }
147
148 intel_dp->num_sink_rates = i;
149 }
150
151 /* Get length of rates array potentially limited by max_rate. */
152 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
153 {
154 int i;
155
156 /* Limit results by potentially reduced max rate */
157 for (i = 0; i < len; i++) {
158 if (rates[len - i - 1] <= max_rate)
159 return len - i;
160 }
161
162 return 0;
163 }
164
165 /* Get length of common rates array potentially limited by max_rate. */
166 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
167 int max_rate)
168 {
169 return intel_dp_rate_limit_len(intel_dp->common_rates,
170 intel_dp->num_common_rates, max_rate);
171 }
172
173 /* Theoretical max between source and sink */
174 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
175 {
176 return intel_dp->common_rates[intel_dp->num_common_rates - 1];
177 }
178
179 /* Theoretical max between source and sink */
180 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
181 {
182 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
183 int source_max = intel_dig_port->max_lanes;
184 int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
185
186 return min(source_max, sink_max);
187 }
188
189 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
190 {
191 return intel_dp->max_link_lane_count;
192 }
193
194 int
195 intel_dp_link_required(int pixel_clock, int bpp)
196 {
197 /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
198 return DIV_ROUND_UP(pixel_clock * bpp, 8);
199 }
200
201 int
202 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
203 {
204 /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
205 * link rate that is generally expressed in Gbps. Since, 8 bits of data
206 * is transmitted every LS_Clk per lane, there is no need to account for
207 * the channel encoding that is done in the PHY layer here.
208 */
209
210 return max_link_clock * max_lanes;
211 }
212
213 static int
214 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
215 {
216 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
217 struct intel_encoder *encoder = &intel_dig_port->base;
218 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
219 int max_dotclk = dev_priv->max_dotclk_freq;
220 int ds_max_dotclk;
221
222 int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
223
224 if (type != DP_DS_PORT_TYPE_VGA)
225 return max_dotclk;
226
227 ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
228 intel_dp->downstream_ports);
229
230 if (ds_max_dotclk != 0)
231 max_dotclk = min(max_dotclk, ds_max_dotclk);
232
233 return max_dotclk;
234 }
235
236 static int cnl_max_source_rate(struct intel_dp *intel_dp)
237 {
238 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
239 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
240 enum port port = dig_port->base.port;
241
242 u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
243
244 /* Low voltage SKUs are limited to max of 5.4G */
245 if (voltage == VOLTAGE_INFO_0_85V)
246 return 540000;
247
248 /* For this SKU 8.1G is supported in all ports */
249 if (IS_CNL_WITH_PORT_F(dev_priv))
250 return 810000;
251
252 /* For other SKUs, max rate on ports A and D is 5.4G */
253 if (port == PORT_A || port == PORT_D)
254 return 540000;
255
256 return 810000;
257 }
258
259 static int icl_max_source_rate(struct intel_dp *intel_dp)
260 {
261 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
262 enum port port = dig_port->base.port;
263
264 if (port == PORT_B)
265 return 540000;
266
267 return 810000;
268 }
269
270 static void
271 intel_dp_set_source_rates(struct intel_dp *intel_dp)
272 {
273 /* The values must be in increasing order */
274 static const int cnl_rates[] = {
275 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
276 };
277 static const int bxt_rates[] = {
278 162000, 216000, 243000, 270000, 324000, 432000, 540000
279 };
280 static const int skl_rates[] = {
281 162000, 216000, 270000, 324000, 432000, 540000
282 };
283 static const int hsw_rates[] = {
284 162000, 270000, 540000
285 };
286 static const int g4x_rates[] = {
287 162000, 270000
288 };
289 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
290 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
291 const struct ddi_vbt_port_info *info =
292 &dev_priv->vbt.ddi_port_info[dig_port->base.port];
293 const int *source_rates;
294 int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
295
296 /* This should only be done once */
297 WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);
298
299 if (INTEL_GEN(dev_priv) >= 10) {
300 source_rates = cnl_rates;
301 size = ARRAY_SIZE(cnl_rates);
302 if (INTEL_GEN(dev_priv) == 10)
303 max_rate = cnl_max_source_rate(intel_dp);
304 else
305 max_rate = icl_max_source_rate(intel_dp);
306 } else if (IS_GEN9_LP(dev_priv)) {
307 source_rates = bxt_rates;
308 size = ARRAY_SIZE(bxt_rates);
309 } else if (IS_GEN9_BC(dev_priv)) {
310 source_rates = skl_rates;
311 size = ARRAY_SIZE(skl_rates);
312 } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
313 IS_BROADWELL(dev_priv)) {
314 source_rates = hsw_rates;
315 size = ARRAY_SIZE(hsw_rates);
316 } else {
317 source_rates = g4x_rates;
318 size = ARRAY_SIZE(g4x_rates);
319 }
320
321 if (max_rate && vbt_max_rate)
322 max_rate = min(max_rate, vbt_max_rate);
323 else if (vbt_max_rate)
324 max_rate = vbt_max_rate;
325
326 if (max_rate)
327 size = intel_dp_rate_limit_len(source_rates, size, max_rate);
328
329 intel_dp->source_rates = source_rates;
330 intel_dp->num_source_rates = size;
331 }
332
333 static int intersect_rates(const int *source_rates, int source_len,
334 const int *sink_rates, int sink_len,
335 int *common_rates)
336 {
337 int i = 0, j = 0, k = 0;
338
339 while (i < source_len && j < sink_len) {
340 if (source_rates[i] == sink_rates[j]) {
341 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
342 return k;
343 common_rates[k] = source_rates[i];
344 ++k;
345 ++i;
346 ++j;
347 } else if (source_rates[i] < sink_rates[j]) {
348 ++i;
349 } else {
350 ++j;
351 }
352 }
353 return k;
354 }
355
356 /* return index of rate in rates array, or -1 if not found */
357 static int intel_dp_rate_index(const int *rates, int len, int rate)
358 {
359 int i;
360
361 for (i = 0; i < len; i++)
362 if (rate == rates[i])
363 return i;
364
365 return -1;
366 }
367
368 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
369 {
370 WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
371
372 intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
373 intel_dp->num_source_rates,
374 intel_dp->sink_rates,
375 intel_dp->num_sink_rates,
376 intel_dp->common_rates);
377
378 /* Paranoia, there should always be something in common. */
379 if (WARN_ON(intel_dp->num_common_rates == 0)) {
380 intel_dp->common_rates[0] = 162000;
381 intel_dp->num_common_rates = 1;
382 }
383 }
384
385 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
386 uint8_t lane_count)
387 {
388 /*
389 * FIXME: we need to synchronize the current link parameters with
390 * hardware readout. Currently fast link training doesn't work on
391 * boot-up.
392 */
393 if (link_rate == 0 ||
394 link_rate > intel_dp->max_link_rate)
395 return false;
396
397 if (lane_count == 0 ||
398 lane_count > intel_dp_max_lane_count(intel_dp))
399 return false;
400
401 return true;
402 }
403
404 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
405 int link_rate, uint8_t lane_count)
406 {
407 int index;
408
409 index = intel_dp_rate_index(intel_dp->common_rates,
410 intel_dp->num_common_rates,
411 link_rate);
412 if (index > 0) {
413 intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
414 intel_dp->max_link_lane_count = lane_count;
415 } else if (lane_count > 1) {
416 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
417 intel_dp->max_link_lane_count = lane_count >> 1;
418 } else {
419 DRM_ERROR("Link Training Unsuccessful\n");
420 return -1;
421 }
422
423 return 0;
424 }
425
426 static enum drm_mode_status
427 intel_dp_mode_valid(struct drm_connector *connector,
428 struct drm_display_mode *mode)
429 {
430 struct intel_dp *intel_dp = intel_attached_dp(connector);
431 struct intel_connector *intel_connector = to_intel_connector(connector);
432 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
433 int target_clock = mode->clock;
434 int max_rate, mode_rate, max_lanes, max_link_clock;
435 int max_dotclk;
436
437 if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
438 return MODE_NO_DBLESCAN;
439
440 max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
441
442 if (intel_dp_is_edp(intel_dp) && fixed_mode) {
443 if (mode->hdisplay > fixed_mode->hdisplay)
444 return MODE_PANEL;
445
446 if (mode->vdisplay > fixed_mode->vdisplay)
447 return MODE_PANEL;
448
449 target_clock = fixed_mode->clock;
450 }
451
452 max_link_clock = intel_dp_max_link_rate(intel_dp);
453 max_lanes = intel_dp_max_lane_count(intel_dp);
454
455 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
456 mode_rate = intel_dp_link_required(target_clock, 18);
457
458 if (mode_rate > max_rate || target_clock > max_dotclk)
459 return MODE_CLOCK_HIGH;
460
461 if (mode->clock < 10000)
462 return MODE_CLOCK_LOW;
463
464 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
465 return MODE_H_ILLEGAL;
466
467 return MODE_OK;
468 }
469
470 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
471 {
472 int i;
473 uint32_t v = 0;
474
475 if (src_bytes > 4)
476 src_bytes = 4;
477 for (i = 0; i < src_bytes; i++)
478 v |= ((uint32_t) src[i]) << ((3-i) * 8);
479 return v;
480 }
481
482 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
483 {
484 int i;
485 if (dst_bytes > 4)
486 dst_bytes = 4;
487 for (i = 0; i < dst_bytes; i++)
488 dst[i] = src >> ((3-i) * 8);
489 }
490
491 static void
492 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
493 static void
494 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
495 bool force_disable_vdd);
496 static void
497 intel_dp_pps_init(struct intel_dp *intel_dp);
498
499 static void pps_lock(struct intel_dp *intel_dp)
500 {
501 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
502
503 /*
504 * See intel_power_sequencer_reset() why we need
505 * a power domain reference here.
506 */
507 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
508
509 mutex_lock(&dev_priv->pps_mutex);
510 }
511
512 static void pps_unlock(struct intel_dp *intel_dp)
513 {
514 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
515
516 mutex_unlock(&dev_priv->pps_mutex);
517
518 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
519 }
520
521 static void
522 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
523 {
524 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
525 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
526 enum pipe pipe = intel_dp->pps_pipe;
527 bool pll_enabled, release_cl_override = false;
528 enum dpio_phy phy = DPIO_PHY(pipe);
529 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
530 uint32_t DP;
531
532 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
533 "skipping pipe %c power sequencer kick due to port %c being active\n",
534 pipe_name(pipe), port_name(intel_dig_port->base.port)))
535 return;
536
537 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
538 pipe_name(pipe), port_name(intel_dig_port->base.port));
539
540 /* Preserve the BIOS-computed detected bit. This is
541 * supposed to be read-only.
542 */
543 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
544 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
545 DP |= DP_PORT_WIDTH(1);
546 DP |= DP_LINK_TRAIN_PAT_1;
547
548 if (IS_CHERRYVIEW(dev_priv))
549 DP |= DP_PIPE_SEL_CHV(pipe);
550 else
551 DP |= DP_PIPE_SEL(pipe);
552
553 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
554
555 /*
556 * The DPLL for the pipe must be enabled for this to work.
557 * So enable temporarily it if it's not already enabled.
558 */
559 if (!pll_enabled) {
560 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
561 !chv_phy_powergate_ch(dev_priv, phy, ch, true);
562
563 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
564 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
565 DRM_ERROR("Failed to force on pll for pipe %c!\n",
566 pipe_name(pipe));
567 return;
568 }
569 }
570
571 /*
572 * Similar magic as in intel_dp_enable_port().
573 * We _must_ do this port enable + disable trick
574 * to make this power sequencer lock onto the port.
575 * Otherwise even VDD force bit won't work.
576 */
577 I915_WRITE(intel_dp->output_reg, DP);
578 POSTING_READ(intel_dp->output_reg);
579
580 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
581 POSTING_READ(intel_dp->output_reg);
582
583 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
584 POSTING_READ(intel_dp->output_reg);
585
586 if (!pll_enabled) {
587 vlv_force_pll_off(dev_priv, pipe);
588
589 if (release_cl_override)
590 chv_phy_powergate_ch(dev_priv, phy, ch, false);
591 }
592 }
593
594 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
595 {
596 struct intel_encoder *encoder;
597 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
598
599 /*
600 * We don't have power sequencer currently.
601 * Pick one that's not used by other ports.
602 */
603 for_each_intel_encoder(&dev_priv->drm, encoder) {
604 struct intel_dp *intel_dp;
605
606 if (encoder->type != INTEL_OUTPUT_DP &&
607 encoder->type != INTEL_OUTPUT_EDP)
608 continue;
609
610 intel_dp = enc_to_intel_dp(&encoder->base);
611
612 if (encoder->type == INTEL_OUTPUT_EDP) {
613 WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
614 intel_dp->active_pipe != intel_dp->pps_pipe);
615
616 if (intel_dp->pps_pipe != INVALID_PIPE)
617 pipes &= ~(1 << intel_dp->pps_pipe);
618 } else {
619 WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);
620
621 if (intel_dp->active_pipe != INVALID_PIPE)
622 pipes &= ~(1 << intel_dp->active_pipe);
623 }
624 }
625
626 if (pipes == 0)
627 return INVALID_PIPE;
628
629 return ffs(pipes) - 1;
630 }
631
632 static enum pipe
633 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
634 {
635 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
636 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
637 enum pipe pipe;
638
639 lockdep_assert_held(&dev_priv->pps_mutex);
640
641 /* We should never land here with regular DP ports */
642 WARN_ON(!intel_dp_is_edp(intel_dp));
643
644 WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
645 intel_dp->active_pipe != intel_dp->pps_pipe);
646
647 if (intel_dp->pps_pipe != INVALID_PIPE)
648 return intel_dp->pps_pipe;
649
650 pipe = vlv_find_free_pps(dev_priv);
651
652 /*
653 * Didn't find one. This should not happen since there
654 * are two power sequencers and up to two eDP ports.
655 */
656 if (WARN_ON(pipe == INVALID_PIPE))
657 pipe = PIPE_A;
658
659 vlv_steal_power_sequencer(dev_priv, pipe);
660 intel_dp->pps_pipe = pipe;
661
662 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
663 pipe_name(intel_dp->pps_pipe),
664 port_name(intel_dig_port->base.port));
665
666 /* init power sequencer on this pipe and port */
667 intel_dp_init_panel_power_sequencer(intel_dp);
668 intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
669
670 /*
671 * Even vdd force doesn't work until we've made
672 * the power sequencer lock in on the port.
673 */
674 vlv_power_sequencer_kick(intel_dp);
675
676 return intel_dp->pps_pipe;
677 }
678
679 static int
680 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
681 {
682 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
683 int backlight_controller = dev_priv->vbt.backlight.controller;
684
685 lockdep_assert_held(&dev_priv->pps_mutex);
686
687 /* We should never land here with regular DP ports */
688 WARN_ON(!intel_dp_is_edp(intel_dp));
689
690 if (!intel_dp->pps_reset)
691 return backlight_controller;
692
693 intel_dp->pps_reset = false;
694
695 /*
696 * Only the HW needs to be reprogrammed, the SW state is fixed and
697 * has been setup during connector init.
698 */
699 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
700
701 return backlight_controller;
702 }
703
704 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
705 enum pipe pipe);
706
707 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
708 enum pipe pipe)
709 {
710 return I915_READ(PP_STATUS(pipe)) & PP_ON;
711 }
712
713 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
714 enum pipe pipe)
715 {
716 return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
717 }
718
719 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
720 enum pipe pipe)
721 {
722 return true;
723 }
724
725 static enum pipe
726 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
727 enum port port,
728 vlv_pipe_check pipe_check)
729 {
730 enum pipe pipe;
731
732 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
733 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
734 PANEL_PORT_SELECT_MASK;
735
736 if (port_sel != PANEL_PORT_SELECT_VLV(port))
737 continue;
738
739 if (!pipe_check(dev_priv, pipe))
740 continue;
741
742 return pipe;
743 }
744
745 return INVALID_PIPE;
746 }
747
748 static void
749 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
750 {
751 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
752 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
753 enum port port = intel_dig_port->base.port;
754
755 lockdep_assert_held(&dev_priv->pps_mutex);
756
757 /* try to find a pipe with this port selected */
758 /* first pick one where the panel is on */
759 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
760 vlv_pipe_has_pp_on);
761 /* didn't find one? pick one where vdd is on */
762 if (intel_dp->pps_pipe == INVALID_PIPE)
763 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
764 vlv_pipe_has_vdd_on);
765 /* didn't find one? pick one with just the correct port */
766 if (intel_dp->pps_pipe == INVALID_PIPE)
767 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
768 vlv_pipe_any);
769
770 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
771 if (intel_dp->pps_pipe == INVALID_PIPE) {
772 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
773 port_name(port));
774 return;
775 }
776
777 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
778 port_name(port), pipe_name(intel_dp->pps_pipe));
779
780 intel_dp_init_panel_power_sequencer(intel_dp);
781 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
782 }
783
784 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
785 {
786 struct intel_encoder *encoder;
787
788 if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
789 !IS_GEN9_LP(dev_priv)))
790 return;
791
792 /*
793 * We can't grab pps_mutex here due to deadlock with power_domain
794 * mutex when power_domain functions are called while holding pps_mutex.
795 * That also means that in order to use pps_pipe the code needs to
796 * hold both a power domain reference and pps_mutex, and the power domain
797 * reference get/put must be done while _not_ holding pps_mutex.
798 * pps_{lock,unlock}() do these steps in the correct order, so one
799 * should use them always.
800 */
801
802 for_each_intel_encoder(&dev_priv->drm, encoder) {
803 struct intel_dp *intel_dp;
804
805 if (encoder->type != INTEL_OUTPUT_DP &&
806 encoder->type != INTEL_OUTPUT_EDP &&
807 encoder->type != INTEL_OUTPUT_DDI)
808 continue;
809
810 intel_dp = enc_to_intel_dp(&encoder->base);
811
812 /* Skip pure DVI/HDMI DDI encoders */
813 if (!i915_mmio_reg_valid(intel_dp->output_reg))
814 continue;
815
816 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
817
818 if (encoder->type != INTEL_OUTPUT_EDP)
819 continue;
820
821 if (IS_GEN9_LP(dev_priv))
822 intel_dp->pps_reset = true;
823 else
824 intel_dp->pps_pipe = INVALID_PIPE;
825 }
826 }
827
828 struct pps_registers {
829 i915_reg_t pp_ctrl;
830 i915_reg_t pp_stat;
831 i915_reg_t pp_on;
832 i915_reg_t pp_off;
833 i915_reg_t pp_div;
834 };
835
836 static void intel_pps_get_registers(struct intel_dp *intel_dp,
837 struct pps_registers *regs)
838 {
839 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
840 int pps_idx = 0;
841
842 memset(regs, 0, sizeof(*regs));
843
844 if (IS_GEN9_LP(dev_priv))
845 pps_idx = bxt_power_sequencer_idx(intel_dp);
846 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
847 pps_idx = vlv_power_sequencer_pipe(intel_dp);
848
849 regs->pp_ctrl = PP_CONTROL(pps_idx);
850 regs->pp_stat = PP_STATUS(pps_idx);
851 regs->pp_on = PP_ON_DELAYS(pps_idx);
852 regs->pp_off = PP_OFF_DELAYS(pps_idx);
853 if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv) &&
854 !HAS_PCH_ICP(dev_priv))
855 regs->pp_div = PP_DIVISOR(pps_idx);
856 }
857
858 static i915_reg_t
859 _pp_ctrl_reg(struct intel_dp *intel_dp)
860 {
861 struct pps_registers regs;
862
863 intel_pps_get_registers(intel_dp, &regs);
864
865 return regs.pp_ctrl;
866 }
867
868 static i915_reg_t
869 _pp_stat_reg(struct intel_dp *intel_dp)
870 {
871 struct pps_registers regs;
872
873 intel_pps_get_registers(intel_dp, &regs);
874
875 return regs.pp_stat;
876 }
877
878 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
879 This function only applicable when panel PM state is not to be tracked */
880 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
881 void *unused)
882 {
883 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
884 edp_notifier);
885 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
886
887 if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
888 return 0;
889
890 pps_lock(intel_dp);
891
892 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
893 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
894 i915_reg_t pp_ctrl_reg, pp_div_reg;
895 u32 pp_div;
896
897 pp_ctrl_reg = PP_CONTROL(pipe);
898 pp_div_reg = PP_DIVISOR(pipe);
899 pp_div = I915_READ(pp_div_reg);
900 pp_div &= PP_REFERENCE_DIVIDER_MASK;
901
902 /* 0x1F write to PP_DIV_REG sets max cycle delay */
903 I915_WRITE(pp_div_reg, pp_div | 0x1F);
904 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
905 msleep(intel_dp->panel_power_cycle_delay);
906 }
907
908 pps_unlock(intel_dp);
909
910 return 0;
911 }
912
913 static bool edp_have_panel_power(struct intel_dp *intel_dp)
914 {
915 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
916
917 lockdep_assert_held(&dev_priv->pps_mutex);
918
919 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
920 intel_dp->pps_pipe == INVALID_PIPE)
921 return false;
922
923 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
924 }
925
926 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
927 {
928 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
929
930 lockdep_assert_held(&dev_priv->pps_mutex);
931
932 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
933 intel_dp->pps_pipe == INVALID_PIPE)
934 return false;
935
936 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
937 }
938
939 static void
940 intel_dp_check_edp(struct intel_dp *intel_dp)
941 {
942 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
943
944 if (!intel_dp_is_edp(intel_dp))
945 return;
946
947 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
948 WARN(1, "eDP powered off while attempting aux channel communication.\n");
949 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
950 I915_READ(_pp_stat_reg(intel_dp)),
951 I915_READ(_pp_ctrl_reg(intel_dp)));
952 }
953 }
954
955 static uint32_t
956 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
957 {
958 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
959 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
960 uint32_t status;
961 bool done;
962
963 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
964 if (has_aux_irq)
965 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
966 msecs_to_jiffies_timeout(10));
967 else
968 done = wait_for(C, 10) == 0;
969 if (!done)
970 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
971 has_aux_irq);
972 #undef C
973
974 return status;
975 }
976
977 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
978 {
979 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
980
981 if (index)
982 return 0;
983
984 /*
985 * The clock divider is based off the hrawclk, and would like to run at
986 * 2MHz. So, take the hrawclk value and divide by 2000 and use that
987 */
988 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
989 }
990
991 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
992 {
993 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
994
995 if (index)
996 return 0;
997
998 /*
999 * The clock divider is based off the cdclk or PCH rawclk, and would
1000 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and
1001 * divide by 2000 and use that
1002 */
1003 if (intel_dp->aux_ch == AUX_CH_A)
1004 return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1005 else
1006 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1007 }
1008
1009 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1010 {
1011 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1012
1013 if (intel_dp->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1014 /* Workaround for non-ULT HSW */
1015 switch (index) {
1016 case 0: return 63;
1017 case 1: return 72;
1018 default: return 0;
1019 }
1020 }
1021
1022 return ilk_get_aux_clock_divider(intel_dp, index);
1023 }
1024
1025 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1026 {
1027 /*
1028 * SKL doesn't need us to program the AUX clock divider (Hardware will
1029 * derive the clock from CDCLK automatically). We still implement the
1030 * get_aux_clock_divider vfunc to plug-in into the existing code.
1031 */
1032 return index ? 0 : 1;
1033 }
1034
1035 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1036 bool has_aux_irq,
1037 int send_bytes,
1038 uint32_t aux_clock_divider)
1039 {
1040 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1041 struct drm_i915_private *dev_priv =
1042 to_i915(intel_dig_port->base.base.dev);
1043 uint32_t precharge, timeout;
1044
1045 if (IS_GEN6(dev_priv))
1046 precharge = 3;
1047 else
1048 precharge = 5;
1049
1050 if (IS_BROADWELL(dev_priv))
1051 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1052 else
1053 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1054
1055 return DP_AUX_CH_CTL_SEND_BUSY |
1056 DP_AUX_CH_CTL_DONE |
1057 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
1058 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1059 timeout |
1060 DP_AUX_CH_CTL_RECEIVE_ERROR |
1061 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1062 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1063 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1064 }
1065
1066 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1067 bool has_aux_irq,
1068 int send_bytes,
1069 uint32_t unused)
1070 {
1071 return DP_AUX_CH_CTL_SEND_BUSY |
1072 DP_AUX_CH_CTL_DONE |
1073 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
1074 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1075 DP_AUX_CH_CTL_TIME_OUT_MAX |
1076 DP_AUX_CH_CTL_RECEIVE_ERROR |
1077 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1078 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1079 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1080 }
1081
1082 static int
1083 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1084 const uint8_t *send, int send_bytes,
1085 uint8_t *recv, int recv_size,
1086 u32 aux_send_ctl_flags)
1087 {
1088 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1089 struct drm_i915_private *dev_priv =
1090 to_i915(intel_dig_port->base.base.dev);
1091 i915_reg_t ch_ctl, ch_data[5];
1092 uint32_t aux_clock_divider;
1093 int i, ret, recv_bytes;
1094 uint32_t status;
1095 int try, clock = 0;
1096 bool has_aux_irq = HAS_AUX_IRQ(dev_priv);
1097 bool vdd;
1098
1099 ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1100 for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1101 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1102
1103 pps_lock(intel_dp);
1104
1105 /*
1106 * We will be called with VDD already enabled for dpcd/edid/oui reads.
1107 * In such cases we want to leave VDD enabled and it's up to upper layers
1108 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1109 * ourselves.
1110 */
1111 vdd = edp_panel_vdd_on(intel_dp);
1112
1113 /* dp aux is extremely sensitive to irq latency, hence request the
1114 * lowest possible wakeup latency and so prevent the cpu from going into
1115 * deep sleep states.
1116 */
1117 pm_qos_update_request(&dev_priv->pm_qos, 0);
1118
1119 intel_dp_check_edp(intel_dp);
1120
1121 /* Try to wait for any previous AUX channel activity */
1122 for (try = 0; try < 3; try++) {
1123 status = I915_READ_NOTRACE(ch_ctl);
1124 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1125 break;
1126 msleep(1);
1127 }
1128
1129 if (try == 3) {
1130 static u32 last_status = -1;
1131 const u32 status = I915_READ(ch_ctl);
1132
1133 if (status != last_status) {
1134 WARN(1, "dp_aux_ch not started status 0x%08x\n",
1135 status);
1136 last_status = status;
1137 }
1138
1139 ret = -EBUSY;
1140 goto out;
1141 }
1142
1143 /* Only 5 data registers! */
1144 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
1145 ret = -E2BIG;
1146 goto out;
1147 }
1148
1149 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1150 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1151 has_aux_irq,
1152 send_bytes,
1153 aux_clock_divider);
1154
1155 send_ctl |= aux_send_ctl_flags;
1156
1157 /* Must try at least 3 times according to DP spec */
1158 for (try = 0; try < 5; try++) {
1159 /* Load the send data into the aux channel data registers */
1160 for (i = 0; i < send_bytes; i += 4)
1161 I915_WRITE(ch_data[i >> 2],
1162 intel_dp_pack_aux(send + i,
1163 send_bytes - i));
1164
1165 /* Send the command and wait for it to complete */
1166 I915_WRITE(ch_ctl, send_ctl);
1167
1168 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
1169
1170 /* Clear done status and any errors */
1171 I915_WRITE(ch_ctl,
1172 status |
1173 DP_AUX_CH_CTL_DONE |
1174 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1175 DP_AUX_CH_CTL_RECEIVE_ERROR);
1176
1177 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1178 * 400us delay required for errors and timeouts
1179 * Timeout errors from the HW already meet this
1180 * requirement so skip to next iteration
1181 */
1182 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1183 continue;
1184
1185 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1186 usleep_range(400, 500);
1187 continue;
1188 }
1189 if (status & DP_AUX_CH_CTL_DONE)
1190 goto done;
1191 }
1192 }
1193
1194 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1195 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1196 ret = -EBUSY;
1197 goto out;
1198 }
1199
1200 done:
1201 /* Check for timeout or receive error.
1202 * Timeouts occur when the sink is not connected
1203 */
1204 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1205 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1206 ret = -EIO;
1207 goto out;
1208 }
1209
1210 /* Timeouts occur when the device isn't connected, so they're
1211 * "normal" -- don't fill the kernel log with these */
1212 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1213 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1214 ret = -ETIMEDOUT;
1215 goto out;
1216 }
1217
1218 /* Unload any bytes sent back from the other side */
1219 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1220 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1221
1222 /*
1223 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1224 * We have no idea of what happened so we return -EBUSY so
1225 * drm layer takes care for the necessary retries.
1226 */
1227 if (recv_bytes == 0 || recv_bytes > 20) {
1228 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1229 recv_bytes);
1230 ret = -EBUSY;
1231 goto out;
1232 }
1233
1234 if (recv_bytes > recv_size)
1235 recv_bytes = recv_size;
1236
1237 for (i = 0; i < recv_bytes; i += 4)
1238 intel_dp_unpack_aux(I915_READ(ch_data[i >> 2]),
1239 recv + i, recv_bytes - i);
1240
1241 ret = recv_bytes;
1242 out:
1243 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
1244
1245 if (vdd)
1246 edp_panel_vdd_off(intel_dp, false);
1247
1248 pps_unlock(intel_dp);
1249
1250 return ret;
1251 }
1252
1253 #define BARE_ADDRESS_SIZE 3
1254 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
1255
1256 static void
1257 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1258 const struct drm_dp_aux_msg *msg)
1259 {
1260 txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1261 txbuf[1] = (msg->address >> 8) & 0xff;
1262 txbuf[2] = msg->address & 0xff;
1263 txbuf[3] = msg->size - 1;
1264 }
1265
1266 static ssize_t
1267 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1268 {
1269 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1270 uint8_t txbuf[20], rxbuf[20];
1271 size_t txsize, rxsize;
1272 int ret;
1273
1274 intel_dp_aux_header(txbuf, msg);
1275
1276 switch (msg->request & ~DP_AUX_I2C_MOT) {
1277 case DP_AUX_NATIVE_WRITE:
1278 case DP_AUX_I2C_WRITE:
1279 case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1280 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1281 rxsize = 2; /* 0 or 1 data bytes */
1282
1283 if (WARN_ON(txsize > 20))
1284 return -E2BIG;
1285
1286 WARN_ON(!msg->buffer != !msg->size);
1287
1288 if (msg->buffer)
1289 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1290
1291 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1292 rxbuf, rxsize, 0);
1293 if (ret > 0) {
1294 msg->reply = rxbuf[0] >> 4;
1295
1296 if (ret > 1) {
1297 /* Number of bytes written in a short write. */
1298 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1299 } else {
1300 /* Return payload size. */
1301 ret = msg->size;
1302 }
1303 }
1304 break;
1305
1306 case DP_AUX_NATIVE_READ:
1307 case DP_AUX_I2C_READ:
1308 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1309 rxsize = msg->size + 1;
1310
1311 if (WARN_ON(rxsize > 20))
1312 return -E2BIG;
1313
1314 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1315 rxbuf, rxsize, 0);
1316 if (ret > 0) {
1317 msg->reply = rxbuf[0] >> 4;
1318 /*
1319 * Assume happy day, and copy the data. The caller is
1320 * expected to check msg->reply before touching it.
1321 *
1322 * Return payload size.
1323 */
1324 ret--;
1325 memcpy(msg->buffer, rxbuf + 1, ret);
1326 }
1327 break;
1328
1329 default:
1330 ret = -EINVAL;
1331 break;
1332 }
1333
1334 return ret;
1335 }
1336
1337 static enum aux_ch intel_aux_ch(struct intel_dp *intel_dp)
1338 {
1339 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
1340 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1341 enum port port = encoder->port;
1342 const struct ddi_vbt_port_info *info =
1343 &dev_priv->vbt.ddi_port_info[port];
1344 enum aux_ch aux_ch;
1345
1346 if (!info->alternate_aux_channel) {
1347 aux_ch = (enum aux_ch) port;
1348
1349 DRM_DEBUG_KMS("using AUX %c for port %c (platform default)\n",
1350 aux_ch_name(aux_ch), port_name(port));
1351 return aux_ch;
1352 }
1353
1354 switch (info->alternate_aux_channel) {
1355 case DP_AUX_A:
1356 aux_ch = AUX_CH_A;
1357 break;
1358 case DP_AUX_B:
1359 aux_ch = AUX_CH_B;
1360 break;
1361 case DP_AUX_C:
1362 aux_ch = AUX_CH_C;
1363 break;
1364 case DP_AUX_D:
1365 aux_ch = AUX_CH_D;
1366 break;
1367 case DP_AUX_E:
1368 aux_ch = AUX_CH_E;
1369 break;
1370 case DP_AUX_F:
1371 aux_ch = AUX_CH_F;
1372 break;
1373 default:
1374 MISSING_CASE(info->alternate_aux_channel);
1375 aux_ch = AUX_CH_A;
1376 break;
1377 }
1378
1379 DRM_DEBUG_KMS("using AUX %c for port %c (VBT)\n",
1380 aux_ch_name(aux_ch), port_name(port));
1381
1382 return aux_ch;
1383 }
1384
1385 static enum intel_display_power_domain
1386 intel_aux_power_domain(struct intel_dp *intel_dp)
1387 {
1388 switch (intel_dp->aux_ch) {
1389 case AUX_CH_A:
1390 return POWER_DOMAIN_AUX_A;
1391 case AUX_CH_B:
1392 return POWER_DOMAIN_AUX_B;
1393 case AUX_CH_C:
1394 return POWER_DOMAIN_AUX_C;
1395 case AUX_CH_D:
1396 return POWER_DOMAIN_AUX_D;
1397 case AUX_CH_E:
1398 return POWER_DOMAIN_AUX_E;
1399 case AUX_CH_F:
1400 return POWER_DOMAIN_AUX_F;
1401 default:
1402 MISSING_CASE(intel_dp->aux_ch);
1403 return POWER_DOMAIN_AUX_A;
1404 }
1405 }
1406
1407 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1408 {
1409 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1410 enum aux_ch aux_ch = intel_dp->aux_ch;
1411
1412 switch (aux_ch) {
1413 case AUX_CH_B:
1414 case AUX_CH_C:
1415 case AUX_CH_D:
1416 return DP_AUX_CH_CTL(aux_ch);
1417 default:
1418 MISSING_CASE(aux_ch);
1419 return DP_AUX_CH_CTL(AUX_CH_B);
1420 }
1421 }
1422
1423 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1424 {
1425 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1426 enum aux_ch aux_ch = intel_dp->aux_ch;
1427
1428 switch (aux_ch) {
1429 case AUX_CH_B:
1430 case AUX_CH_C:
1431 case AUX_CH_D:
1432 return DP_AUX_CH_DATA(aux_ch, index);
1433 default:
1434 MISSING_CASE(aux_ch);
1435 return DP_AUX_CH_DATA(AUX_CH_B, index);
1436 }
1437 }
1438
1439 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1440 {
1441 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1442 enum aux_ch aux_ch = intel_dp->aux_ch;
1443
1444 switch (aux_ch) {
1445 case AUX_CH_A:
1446 return DP_AUX_CH_CTL(aux_ch);
1447 case AUX_CH_B:
1448 case AUX_CH_C:
1449 case AUX_CH_D:
1450 return PCH_DP_AUX_CH_CTL(aux_ch);
1451 default:
1452 MISSING_CASE(aux_ch);
1453 return DP_AUX_CH_CTL(AUX_CH_A);
1454 }
1455 }
1456
1457 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1458 {
1459 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1460 enum aux_ch aux_ch = intel_dp->aux_ch;
1461
1462 switch (aux_ch) {
1463 case AUX_CH_A:
1464 return DP_AUX_CH_DATA(aux_ch, index);
1465 case AUX_CH_B:
1466 case AUX_CH_C:
1467 case AUX_CH_D:
1468 return PCH_DP_AUX_CH_DATA(aux_ch, index);
1469 default:
1470 MISSING_CASE(aux_ch);
1471 return DP_AUX_CH_DATA(AUX_CH_A, index);
1472 }
1473 }
1474
1475 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1476 {
1477 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1478 enum aux_ch aux_ch = intel_dp->aux_ch;
1479
1480 switch (aux_ch) {
1481 case AUX_CH_A:
1482 case AUX_CH_B:
1483 case AUX_CH_C:
1484 case AUX_CH_D:
1485 case AUX_CH_E:
1486 case AUX_CH_F:
1487 return DP_AUX_CH_CTL(aux_ch);
1488 default:
1489 MISSING_CASE(aux_ch);
1490 return DP_AUX_CH_CTL(AUX_CH_A);
1491 }
1492 }
1493
1494 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1495 {
1496 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1497 enum aux_ch aux_ch = intel_dp->aux_ch;
1498
1499 switch (aux_ch) {
1500 case AUX_CH_A:
1501 case AUX_CH_B:
1502 case AUX_CH_C:
1503 case AUX_CH_D:
1504 case AUX_CH_E:
1505 case AUX_CH_F:
1506 return DP_AUX_CH_DATA(aux_ch, index);
1507 default:
1508 MISSING_CASE(aux_ch);
1509 return DP_AUX_CH_DATA(AUX_CH_A, index);
1510 }
1511 }
1512
1513 static void
1514 intel_dp_aux_fini(struct intel_dp *intel_dp)
1515 {
1516 kfree(intel_dp->aux.name);
1517 }
1518
1519 static void
1520 intel_dp_aux_init(struct intel_dp *intel_dp)
1521 {
1522 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1523 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
1524
1525 intel_dp->aux_ch = intel_aux_ch(intel_dp);
1526 intel_dp->aux_power_domain = intel_aux_power_domain(intel_dp);
1527
1528 if (INTEL_GEN(dev_priv) >= 9) {
1529 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1530 intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1531 } else if (HAS_PCH_SPLIT(dev_priv)) {
1532 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1533 intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1534 } else {
1535 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1536 intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1537 }
1538
1539 if (INTEL_GEN(dev_priv) >= 9)
1540 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1541 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1542 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1543 else if (HAS_PCH_SPLIT(dev_priv))
1544 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1545 else
1546 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1547
1548 if (INTEL_GEN(dev_priv) >= 9)
1549 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1550 else
1551 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1552
1553 drm_dp_aux_init(&intel_dp->aux);
1554
1555 /* Failure to allocate our preferred name is not critical */
1556 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
1557 port_name(encoder->port));
1558 intel_dp->aux.transfer = intel_dp_aux_transfer;
1559 }
1560
1561 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1562 {
1563 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1564
1565 return max_rate >= 540000;
1566 }
1567
1568 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1569 {
1570 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1571
1572 return max_rate >= 810000;
1573 }
1574
1575 static void
1576 intel_dp_set_clock(struct intel_encoder *encoder,
1577 struct intel_crtc_state *pipe_config)
1578 {
1579 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1580 const struct dp_link_dpll *divisor = NULL;
1581 int i, count = 0;
1582
1583 if (IS_G4X(dev_priv)) {
1584 divisor = g4x_dpll;
1585 count = ARRAY_SIZE(g4x_dpll);
1586 } else if (HAS_PCH_SPLIT(dev_priv)) {
1587 divisor = pch_dpll;
1588 count = ARRAY_SIZE(pch_dpll);
1589 } else if (IS_CHERRYVIEW(dev_priv)) {
1590 divisor = chv_dpll;
1591 count = ARRAY_SIZE(chv_dpll);
1592 } else if (IS_VALLEYVIEW(dev_priv)) {
1593 divisor = vlv_dpll;
1594 count = ARRAY_SIZE(vlv_dpll);
1595 }
1596
1597 if (divisor && count) {
1598 for (i = 0; i < count; i++) {
1599 if (pipe_config->port_clock == divisor[i].clock) {
1600 pipe_config->dpll = divisor[i].dpll;
1601 pipe_config->clock_set = true;
1602 break;
1603 }
1604 }
1605 }
1606 }
1607
1608 static void snprintf_int_array(char *str, size_t len,
1609 const int *array, int nelem)
1610 {
1611 int i;
1612
1613 str[0] = '\0';
1614
1615 for (i = 0; i < nelem; i++) {
1616 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1617 if (r >= len)
1618 return;
1619 str += r;
1620 len -= r;
1621 }
1622 }
1623
1624 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1625 {
1626 char str[128]; /* FIXME: too big for stack? */
1627
1628 if ((drm_debug & DRM_UT_KMS) == 0)
1629 return;
1630
1631 snprintf_int_array(str, sizeof(str),
1632 intel_dp->source_rates, intel_dp->num_source_rates);
1633 DRM_DEBUG_KMS("source rates: %s\n", str);
1634
1635 snprintf_int_array(str, sizeof(str),
1636 intel_dp->sink_rates, intel_dp->num_sink_rates);
1637 DRM_DEBUG_KMS("sink rates: %s\n", str);
1638
1639 snprintf_int_array(str, sizeof(str),
1640 intel_dp->common_rates, intel_dp->num_common_rates);
1641 DRM_DEBUG_KMS("common rates: %s\n", str);
1642 }
1643
1644 int
1645 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1646 {
1647 int len;
1648
1649 len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1650 if (WARN_ON(len <= 0))
1651 return 162000;
1652
1653 return intel_dp->common_rates[len - 1];
1654 }
1655
1656 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1657 {
1658 int i = intel_dp_rate_index(intel_dp->sink_rates,
1659 intel_dp->num_sink_rates, rate);
1660
1661 if (WARN_ON(i < 0))
1662 i = 0;
1663
1664 return i;
1665 }
1666
1667 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1668 uint8_t *link_bw, uint8_t *rate_select)
1669 {
1670 /* eDP 1.4 rate select method. */
1671 if (intel_dp->use_rate_select) {
1672 *link_bw = 0;
1673 *rate_select =
1674 intel_dp_rate_select(intel_dp, port_clock);
1675 } else {
1676 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1677 *rate_select = 0;
1678 }
1679 }
1680
1681 struct link_config_limits {
1682 int min_clock, max_clock;
1683 int min_lane_count, max_lane_count;
1684 int min_bpp, max_bpp;
1685 };
1686
1687 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1688 struct intel_crtc_state *pipe_config)
1689 {
1690 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1691 struct intel_connector *intel_connector = intel_dp->attached_connector;
1692 int bpp, bpc;
1693
1694 bpp = pipe_config->pipe_bpp;
1695 bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1696
1697 if (bpc > 0)
1698 bpp = min(bpp, 3*bpc);
1699
1700 if (intel_dp_is_edp(intel_dp)) {
1701 /* Get bpp from vbt only for panels that dont have bpp in edid */
1702 if (intel_connector->base.display_info.bpc == 0 &&
1703 dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1704 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1705 dev_priv->vbt.edp.bpp);
1706 bpp = dev_priv->vbt.edp.bpp;
1707 }
1708 }
1709
1710 return bpp;
1711 }
1712
1713 /* Adjust link config limits based on compliance test requests. */
1714 static void
1715 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1716 struct intel_crtc_state *pipe_config,
1717 struct link_config_limits *limits)
1718 {
1719 /* For DP Compliance we override the computed bpp for the pipe */
1720 if (intel_dp->compliance.test_data.bpc != 0) {
1721 int bpp = 3 * intel_dp->compliance.test_data.bpc;
1722
1723 limits->min_bpp = limits->max_bpp = bpp;
1724 pipe_config->dither_force_disable = bpp == 6 * 3;
1725
1726 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
1727 }
1728
1729 /* Use values requested by Compliance Test Request */
1730 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1731 int index;
1732
1733 /* Validate the compliance test data since max values
1734 * might have changed due to link train fallback.
1735 */
1736 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1737 intel_dp->compliance.test_lane_count)) {
1738 index = intel_dp_rate_index(intel_dp->common_rates,
1739 intel_dp->num_common_rates,
1740 intel_dp->compliance.test_link_rate);
1741 if (index >= 0)
1742 limits->min_clock = limits->max_clock = index;
1743 limits->min_lane_count = limits->max_lane_count =
1744 intel_dp->compliance.test_lane_count;
1745 }
1746 }
1747 }
1748
1749 /* Optimize link config in order: max bpp, min clock, min lanes */
1750 static bool
1751 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
1752 struct intel_crtc_state *pipe_config,
1753 const struct link_config_limits *limits)
1754 {
1755 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1756 int bpp, clock, lane_count;
1757 int mode_rate, link_clock, link_avail;
1758
1759 for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
1760 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1761 bpp);
1762
1763 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
1764 for (lane_count = limits->min_lane_count;
1765 lane_count <= limits->max_lane_count;
1766 lane_count <<= 1) {
1767 link_clock = intel_dp->common_rates[clock];
1768 link_avail = intel_dp_max_data_rate(link_clock,
1769 lane_count);
1770
1771 if (mode_rate <= link_avail) {
1772 pipe_config->lane_count = lane_count;
1773 pipe_config->pipe_bpp = bpp;
1774 pipe_config->port_clock = link_clock;
1775
1776 return true;
1777 }
1778 }
1779 }
1780 }
1781
1782 return false;
1783 }
1784
1785 static bool
1786 intel_dp_compute_link_config(struct intel_encoder *encoder,
1787 struct intel_crtc_state *pipe_config)
1788 {
1789 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1790 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1791 struct link_config_limits limits;
1792 int common_len;
1793
1794 common_len = intel_dp_common_len_rate_limit(intel_dp,
1795 intel_dp->max_link_rate);
1796
1797 /* No common link rates between source and sink */
1798 WARN_ON(common_len <= 0);
1799
1800 limits.min_clock = 0;
1801 limits.max_clock = common_len - 1;
1802
1803 limits.min_lane_count = 1;
1804 limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
1805
1806 limits.min_bpp = 6 * 3;
1807 limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
1808
1809 if (intel_dp_is_edp(intel_dp)) {
1810 /*
1811 * Use the maximum clock and number of lanes the eDP panel
1812 * advertizes being capable of. The panels are generally
1813 * designed to support only a single clock and lane
1814 * configuration, and typically these values correspond to the
1815 * native resolution of the panel.
1816 */
1817 limits.min_lane_count = limits.max_lane_count;
1818 limits.min_clock = limits.max_clock;
1819 }
1820
1821 intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
1822
1823 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1824 "max rate %d max bpp %d pixel clock %iKHz\n",
1825 limits.max_lane_count,
1826 intel_dp->common_rates[limits.max_clock],
1827 limits.max_bpp, adjusted_mode->crtc_clock);
1828
1829 /*
1830 * Optimize for slow and wide. This is the place to add alternative
1831 * optimization policy.
1832 */
1833 if (!intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits))
1834 return false;
1835
1836 DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
1837 pipe_config->lane_count, pipe_config->port_clock,
1838 pipe_config->pipe_bpp);
1839
1840 DRM_DEBUG_KMS("DP link rate required %i available %i\n",
1841 intel_dp_link_required(adjusted_mode->crtc_clock,
1842 pipe_config->pipe_bpp),
1843 intel_dp_max_data_rate(pipe_config->port_clock,
1844 pipe_config->lane_count));
1845
1846 return true;
1847 }
1848
1849 bool
1850 intel_dp_compute_config(struct intel_encoder *encoder,
1851 struct intel_crtc_state *pipe_config,
1852 struct drm_connector_state *conn_state)
1853 {
1854 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1855 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1856 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1857 enum port port = encoder->port;
1858 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1859 struct intel_connector *intel_connector = intel_dp->attached_connector;
1860 struct intel_digital_connector_state *intel_conn_state =
1861 to_intel_digital_connector_state(conn_state);
1862 bool reduce_m_n = drm_dp_has_quirk(&intel_dp->desc,
1863 DP_DPCD_QUIRK_LIMITED_M_N);
1864
1865 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
1866 pipe_config->has_pch_encoder = true;
1867
1868 pipe_config->has_drrs = false;
1869 if (IS_G4X(dev_priv) || port == PORT_A)
1870 pipe_config->has_audio = false;
1871 else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
1872 pipe_config->has_audio = intel_dp->has_audio;
1873 else
1874 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
1875
1876 if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1877 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1878 adjusted_mode);
1879
1880 if (INTEL_GEN(dev_priv) >= 9) {
1881 int ret;
1882
1883 ret = skl_update_scaler_crtc(pipe_config);
1884 if (ret)
1885 return ret;
1886 }
1887
1888 if (HAS_GMCH_DISPLAY(dev_priv))
1889 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1890 conn_state->scaling_mode);
1891 else
1892 intel_pch_panel_fitting(intel_crtc, pipe_config,
1893 conn_state->scaling_mode);
1894 }
1895
1896 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
1897 return false;
1898
1899 if (HAS_GMCH_DISPLAY(dev_priv) &&
1900 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
1901 return false;
1902
1903 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1904 return false;
1905
1906 if (!intel_dp_compute_link_config(encoder, pipe_config))
1907 return false;
1908
1909 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
1910 /*
1911 * See:
1912 * CEA-861-E - 5.1 Default Encoding Parameters
1913 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1914 */
1915 pipe_config->limited_color_range =
1916 pipe_config->pipe_bpp != 18 &&
1917 drm_default_rgb_quant_range(adjusted_mode) ==
1918 HDMI_QUANTIZATION_RANGE_LIMITED;
1919 } else {
1920 pipe_config->limited_color_range =
1921 intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
1922 }
1923
1924 intel_link_compute_m_n(pipe_config->pipe_bpp, pipe_config->lane_count,
1925 adjusted_mode->crtc_clock,
1926 pipe_config->port_clock,
1927 &pipe_config->dp_m_n,
1928 reduce_m_n);
1929
1930 if (intel_connector->panel.downclock_mode != NULL &&
1931 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1932 pipe_config->has_drrs = true;
1933 intel_link_compute_m_n(pipe_config->pipe_bpp,
1934 pipe_config->lane_count,
1935 intel_connector->panel.downclock_mode->clock,
1936 pipe_config->port_clock,
1937 &pipe_config->dp_m2_n2,
1938 reduce_m_n);
1939 }
1940
1941 if (!HAS_DDI(dev_priv))
1942 intel_dp_set_clock(encoder, pipe_config);
1943
1944 intel_psr_compute_config(intel_dp, pipe_config);
1945
1946 return true;
1947 }
1948
1949 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1950 int link_rate, uint8_t lane_count,
1951 bool link_mst)
1952 {
1953 intel_dp->link_trained = false;
1954 intel_dp->link_rate = link_rate;
1955 intel_dp->lane_count = lane_count;
1956 intel_dp->link_mst = link_mst;
1957 }
1958
1959 static void intel_dp_prepare(struct intel_encoder *encoder,
1960 const struct intel_crtc_state *pipe_config)
1961 {
1962 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1963 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1964 enum port port = encoder->port;
1965 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
1966 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1967
1968 intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
1969 pipe_config->lane_count,
1970 intel_crtc_has_type(pipe_config,
1971 INTEL_OUTPUT_DP_MST));
1972
1973 /*
1974 * There are four kinds of DP registers:
1975 *
1976 * IBX PCH
1977 * SNB CPU
1978 * IVB CPU
1979 * CPT PCH
1980 *
1981 * IBX PCH and CPU are the same for almost everything,
1982 * except that the CPU DP PLL is configured in this
1983 * register
1984 *
1985 * CPT PCH is quite different, having many bits moved
1986 * to the TRANS_DP_CTL register instead. That
1987 * configuration happens (oddly) in ironlake_pch_enable
1988 */
1989
1990 /* Preserve the BIOS-computed detected bit. This is
1991 * supposed to be read-only.
1992 */
1993 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1994
1995 /* Handle DP bits in common between all three register formats */
1996 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1997 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
1998
1999 /* Split out the IBX/CPU vs CPT settings */
2000
2001 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2002 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2003 intel_dp->DP |= DP_SYNC_HS_HIGH;
2004 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2005 intel_dp->DP |= DP_SYNC_VS_HIGH;
2006 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2007
2008 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2009 intel_dp->DP |= DP_ENHANCED_FRAMING;
2010
2011 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2012 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2013 u32 trans_dp;
2014
2015 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2016
2017 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2018 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2019 trans_dp |= TRANS_DP_ENH_FRAMING;
2020 else
2021 trans_dp &= ~TRANS_DP_ENH_FRAMING;
2022 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2023 } else {
2024 if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2025 intel_dp->DP |= DP_COLOR_RANGE_16_235;
2026
2027 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2028 intel_dp->DP |= DP_SYNC_HS_HIGH;
2029 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2030 intel_dp->DP |= DP_SYNC_VS_HIGH;
2031 intel_dp->DP |= DP_LINK_TRAIN_OFF;
2032
2033 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2034 intel_dp->DP |= DP_ENHANCED_FRAMING;
2035
2036 if (IS_CHERRYVIEW(dev_priv))
2037 intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2038 else
2039 intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2040 }
2041 }
2042
2043 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
2044 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
2045
2046 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
2047 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
2048
2049 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2050 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
2051
2052 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2053
2054 static void wait_panel_status(struct intel_dp *intel_dp,
2055 u32 mask,
2056 u32 value)
2057 {
2058 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2059 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2060
2061 lockdep_assert_held(&dev_priv->pps_mutex);
2062
2063 intel_pps_verify_state(intel_dp);
2064
2065 pp_stat_reg = _pp_stat_reg(intel_dp);
2066 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2067
2068 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2069 mask, value,
2070 I915_READ(pp_stat_reg),
2071 I915_READ(pp_ctrl_reg));
2072
2073 if (intel_wait_for_register(dev_priv,
2074 pp_stat_reg, mask, value,
2075 5000))
2076 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2077 I915_READ(pp_stat_reg),
2078 I915_READ(pp_ctrl_reg));
2079
2080 DRM_DEBUG_KMS("Wait complete\n");
2081 }
2082
2083 static void wait_panel_on(struct intel_dp *intel_dp)
2084 {
2085 DRM_DEBUG_KMS("Wait for panel power on\n");
2086 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2087 }
2088
2089 static void wait_panel_off(struct intel_dp *intel_dp)
2090 {
2091 DRM_DEBUG_KMS("Wait for panel power off time\n");
2092 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2093 }
2094
2095 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2096 {
2097 ktime_t panel_power_on_time;
2098 s64 panel_power_off_duration;
2099
2100 DRM_DEBUG_KMS("Wait for panel power cycle\n");
2101
2102 /* take the difference of currrent time and panel power off time
2103 * and then make panel wait for t11_t12 if needed. */
2104 panel_power_on_time = ktime_get_boottime();
2105 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2106
2107 /* When we disable the VDD override bit last we have to do the manual
2108 * wait. */
2109 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2110 wait_remaining_ms_from_jiffies(jiffies,
2111 intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2112
2113 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2114 }
2115
2116 static void wait_backlight_on(struct intel_dp *intel_dp)
2117 {
2118 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2119 intel_dp->backlight_on_delay);
2120 }
2121
2122 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2123 {
2124 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2125 intel_dp->backlight_off_delay);
2126 }
2127
2128 /* Read the current pp_control value, unlocking the register if it
2129 * is locked
2130 */
2131
2132 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2133 {
2134 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2135 u32 control;
2136
2137 lockdep_assert_held(&dev_priv->pps_mutex);
2138
2139 control = I915_READ(_pp_ctrl_reg(intel_dp));
2140 if (WARN_ON(!HAS_DDI(dev_priv) &&
2141 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2142 control &= ~PANEL_UNLOCK_MASK;
2143 control |= PANEL_UNLOCK_REGS;
2144 }
2145 return control;
2146 }
2147
2148 /*
2149 * Must be paired with edp_panel_vdd_off().
2150 * Must hold pps_mutex around the whole on/off sequence.
2151 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2152 */
2153 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2154 {
2155 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2156 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2157 u32 pp;
2158 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2159 bool need_to_disable = !intel_dp->want_panel_vdd;
2160
2161 lockdep_assert_held(&dev_priv->pps_mutex);
2162
2163 if (!intel_dp_is_edp(intel_dp))
2164 return false;
2165
2166 cancel_delayed_work(&intel_dp->panel_vdd_work);
2167 intel_dp->want_panel_vdd = true;
2168
2169 if (edp_have_panel_vdd(intel_dp))
2170 return need_to_disable;
2171
2172 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
2173
2174 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
2175 port_name(intel_dig_port->base.port));
2176
2177 if (!edp_have_panel_power(intel_dp))
2178 wait_panel_power_cycle(intel_dp);
2179
2180 pp = ironlake_get_pp_control(intel_dp);
2181 pp |= EDP_FORCE_VDD;
2182
2183 pp_stat_reg = _pp_stat_reg(intel_dp);
2184 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2185
2186 I915_WRITE(pp_ctrl_reg, pp);
2187 POSTING_READ(pp_ctrl_reg);
2188 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2189 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2190 /*
2191 * If the panel wasn't on, delay before accessing aux channel
2192 */
2193 if (!edp_have_panel_power(intel_dp)) {
2194 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
2195 port_name(intel_dig_port->base.port));
2196 msleep(intel_dp->panel_power_up_delay);
2197 }
2198
2199 return need_to_disable;
2200 }
2201
2202 /*
2203 * Must be paired with intel_edp_panel_vdd_off() or
2204 * intel_edp_panel_off().
2205 * Nested calls to these functions are not allowed since
2206 * we drop the lock. Caller must use some higher level
2207 * locking to prevent nested calls from other threads.
2208 */
2209 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2210 {
2211 bool vdd;
2212
2213 if (!intel_dp_is_edp(intel_dp))
2214 return;
2215
2216 pps_lock(intel_dp);
2217 vdd = edp_panel_vdd_on(intel_dp);
2218 pps_unlock(intel_dp);
2219
2220 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2221 port_name(dp_to_dig_port(intel_dp)->base.port));
2222 }
2223
2224 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2225 {
2226 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2227 struct intel_digital_port *intel_dig_port =
2228 dp_to_dig_port(intel_dp);
2229 u32 pp;
2230 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2231
2232 lockdep_assert_held(&dev_priv->pps_mutex);
2233
2234 WARN_ON(intel_dp->want_panel_vdd);
2235
2236 if (!edp_have_panel_vdd(intel_dp))
2237 return;
2238
2239 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2240 port_name(intel_dig_port->base.port));
2241
2242 pp = ironlake_get_pp_control(intel_dp);
2243 pp &= ~EDP_FORCE_VDD;
2244
2245 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2246 pp_stat_reg = _pp_stat_reg(intel_dp);
2247
2248 I915_WRITE(pp_ctrl_reg, pp);
2249 POSTING_READ(pp_ctrl_reg);
2250
2251 /* Make sure sequencer is idle before allowing subsequent activity */
2252 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2253 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2254
2255 if ((pp & PANEL_POWER_ON) == 0)
2256 intel_dp->panel_power_off_time = ktime_get_boottime();
2257
2258 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
2259 }
2260
2261 static void edp_panel_vdd_work(struct work_struct *__work)
2262 {
2263 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
2264 struct intel_dp, panel_vdd_work);
2265
2266 pps_lock(intel_dp);
2267 if (!intel_dp->want_panel_vdd)
2268 edp_panel_vdd_off_sync(intel_dp);
2269 pps_unlock(intel_dp);
2270 }
2271
2272 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2273 {
2274 unsigned long delay;
2275
2276 /*
2277 * Queue the timer to fire a long time from now (relative to the power
2278 * down delay) to keep the panel power up across a sequence of
2279 * operations.
2280 */
2281 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2282 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2283 }
2284
2285 /*
2286 * Must be paired with edp_panel_vdd_on().
2287 * Must hold pps_mutex around the whole on/off sequence.
2288 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2289 */
2290 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2291 {
2292 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2293
2294 lockdep_assert_held(&dev_priv->pps_mutex);
2295
2296 if (!intel_dp_is_edp(intel_dp))
2297 return;
2298
2299 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2300 port_name(dp_to_dig_port(intel_dp)->base.port));
2301
2302 intel_dp->want_panel_vdd = false;
2303
2304 if (sync)
2305 edp_panel_vdd_off_sync(intel_dp);
2306 else
2307 edp_panel_vdd_schedule_off(intel_dp);
2308 }
2309
2310 static void edp_panel_on(struct intel_dp *intel_dp)
2311 {
2312 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2313 u32 pp;
2314 i915_reg_t pp_ctrl_reg;
2315
2316 lockdep_assert_held(&dev_priv->pps_mutex);
2317
2318 if (!intel_dp_is_edp(intel_dp))
2319 return;
2320
2321 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2322 port_name(dp_to_dig_port(intel_dp)->base.port));
2323
2324 if (WARN(edp_have_panel_power(intel_dp),
2325 "eDP port %c panel power already on\n",
2326 port_name(dp_to_dig_port(intel_dp)->base.port)))
2327 return;
2328
2329 wait_panel_power_cycle(intel_dp);
2330
2331 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2332 pp = ironlake_get_pp_control(intel_dp);
2333 if (IS_GEN5(dev_priv)) {
2334 /* ILK workaround: disable reset around power sequence */
2335 pp &= ~PANEL_POWER_RESET;
2336 I915_WRITE(pp_ctrl_reg, pp);
2337 POSTING_READ(pp_ctrl_reg);
2338 }
2339
2340 pp |= PANEL_POWER_ON;
2341 if (!IS_GEN5(dev_priv))
2342 pp |= PANEL_POWER_RESET;
2343
2344 I915_WRITE(pp_ctrl_reg, pp);
2345 POSTING_READ(pp_ctrl_reg);
2346
2347 wait_panel_on(intel_dp);
2348 intel_dp->last_power_on = jiffies;
2349
2350 if (IS_GEN5(dev_priv)) {
2351 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2352 I915_WRITE(pp_ctrl_reg, pp);
2353 POSTING_READ(pp_ctrl_reg);
2354 }
2355 }
2356
2357 void intel_edp_panel_on(struct intel_dp *intel_dp)
2358 {
2359 if (!intel_dp_is_edp(intel_dp))
2360 return;
2361
2362 pps_lock(intel_dp);
2363 edp_panel_on(intel_dp);
2364 pps_unlock(intel_dp);
2365 }
2366
2367
2368 static void edp_panel_off(struct intel_dp *intel_dp)
2369 {
2370 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2371 u32 pp;
2372 i915_reg_t pp_ctrl_reg;
2373
2374 lockdep_assert_held(&dev_priv->pps_mutex);
2375
2376 if (!intel_dp_is_edp(intel_dp))
2377 return;
2378
2379 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2380 port_name(dp_to_dig_port(intel_dp)->base.port));
2381
2382 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2383 port_name(dp_to_dig_port(intel_dp)->base.port));
2384
2385 pp = ironlake_get_pp_control(intel_dp);
2386 /* We need to switch off panel power _and_ force vdd, for otherwise some
2387 * panels get very unhappy and cease to work. */
2388 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2389 EDP_BLC_ENABLE);
2390
2391 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2392
2393 intel_dp->want_panel_vdd = false;
2394
2395 I915_WRITE(pp_ctrl_reg, pp);
2396 POSTING_READ(pp_ctrl_reg);
2397
2398 wait_panel_off(intel_dp);
2399 intel_dp->panel_power_off_time = ktime_get_boottime();
2400
2401 /* We got a reference when we enabled the VDD. */
2402 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
2403 }
2404
2405 void intel_edp_panel_off(struct intel_dp *intel_dp)
2406 {
2407 if (!intel_dp_is_edp(intel_dp))
2408 return;
2409
2410 pps_lock(intel_dp);
2411 edp_panel_off(intel_dp);
2412 pps_unlock(intel_dp);
2413 }
2414
2415 /* Enable backlight in the panel power control. */
2416 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2417 {
2418 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2419 u32 pp;
2420 i915_reg_t pp_ctrl_reg;
2421
2422 /*
2423 * If we enable the backlight right away following a panel power
2424 * on, we may see slight flicker as the panel syncs with the eDP
2425 * link. So delay a bit to make sure the image is solid before
2426 * allowing it to appear.
2427 */
2428 wait_backlight_on(intel_dp);
2429
2430 pps_lock(intel_dp);
2431
2432 pp = ironlake_get_pp_control(intel_dp);
2433 pp |= EDP_BLC_ENABLE;
2434
2435 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2436
2437 I915_WRITE(pp_ctrl_reg, pp);
2438 POSTING_READ(pp_ctrl_reg);
2439
2440 pps_unlock(intel_dp);
2441 }
2442
2443 /* Enable backlight PWM and backlight PP control. */
2444 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
2445 const struct drm_connector_state *conn_state)
2446 {
2447 struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);
2448
2449 if (!intel_dp_is_edp(intel_dp))
2450 return;
2451
2452 DRM_DEBUG_KMS("\n");
2453
2454 intel_panel_enable_backlight(crtc_state, conn_state);
2455 _intel_edp_backlight_on(intel_dp);
2456 }
2457
2458 /* Disable backlight in the panel power control. */
2459 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2460 {
2461 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2462 u32 pp;
2463 i915_reg_t pp_ctrl_reg;
2464
2465 if (!intel_dp_is_edp(intel_dp))
2466 return;
2467
2468 pps_lock(intel_dp);
2469
2470 pp = ironlake_get_pp_control(intel_dp);
2471 pp &= ~EDP_BLC_ENABLE;
2472
2473 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2474
2475 I915_WRITE(pp_ctrl_reg, pp);
2476 POSTING_READ(pp_ctrl_reg);
2477
2478 pps_unlock(intel_dp);
2479
2480 intel_dp->last_backlight_off = jiffies;
2481 edp_wait_backlight_off(intel_dp);
2482 }
2483
2484 /* Disable backlight PP control and backlight PWM. */
2485 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2486 {
2487 struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);
2488
2489 if (!intel_dp_is_edp(intel_dp))
2490 return;
2491
2492 DRM_DEBUG_KMS("\n");
2493
2494 _intel_edp_backlight_off(intel_dp);
2495 intel_panel_disable_backlight(old_conn_state);
2496 }
2497
2498 /*
2499 * Hook for controlling the panel power control backlight through the bl_power
2500 * sysfs attribute. Take care to handle multiple calls.
2501 */
2502 static void intel_edp_backlight_power(struct intel_connector *connector,
2503 bool enable)
2504 {
2505 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2506 bool is_enabled;
2507
2508 pps_lock(intel_dp);
2509 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2510 pps_unlock(intel_dp);
2511
2512 if (is_enabled == enable)
2513 return;
2514
2515 DRM_DEBUG_KMS("panel power control backlight %s\n",
2516 enable ? "enable" : "disable");
2517
2518 if (enable)
2519 _intel_edp_backlight_on(intel_dp);
2520 else
2521 _intel_edp_backlight_off(intel_dp);
2522 }
2523
2524 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2525 {
2526 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2527 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2528 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2529
2530 I915_STATE_WARN(cur_state != state,
2531 "DP port %c state assertion failure (expected %s, current %s)\n",
2532 port_name(dig_port->base.port),
2533 onoff(state), onoff(cur_state));
2534 }
2535 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2536
2537 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2538 {
2539 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2540
2541 I915_STATE_WARN(cur_state != state,
2542 "eDP PLL state assertion failure (expected %s, current %s)\n",
2543 onoff(state), onoff(cur_state));
2544 }
2545 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2546 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2547
2548 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2549 const struct intel_crtc_state *pipe_config)
2550 {
2551 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2552 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2553
2554 assert_pipe_disabled(dev_priv, crtc->pipe);
2555 assert_dp_port_disabled(intel_dp);
2556 assert_edp_pll_disabled(dev_priv);
2557
2558 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2559 pipe_config->port_clock);
2560
2561 intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2562
2563 if (pipe_config->port_clock == 162000)
2564 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2565 else
2566 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2567
2568 I915_WRITE(DP_A, intel_dp->DP);
2569 POSTING_READ(DP_A);
2570 udelay(500);
2571
2572 /*
2573 * [DevILK] Work around required when enabling DP PLL
2574 * while a pipe is enabled going to FDI:
2575 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2576 * 2. Program DP PLL enable
2577 */
2578 if (IS_GEN5(dev_priv))
2579 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
2580
2581 intel_dp->DP |= DP_PLL_ENABLE;
2582
2583 I915_WRITE(DP_A, intel_dp->DP);
2584 POSTING_READ(DP_A);
2585 udelay(200);
2586 }
2587
2588 static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
2589 const struct intel_crtc_state *old_crtc_state)
2590 {
2591 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
2592 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2593
2594 assert_pipe_disabled(dev_priv, crtc->pipe);
2595 assert_dp_port_disabled(intel_dp);
2596 assert_edp_pll_enabled(dev_priv);
2597
2598 DRM_DEBUG_KMS("disabling eDP PLL\n");
2599
2600 intel_dp->DP &= ~DP_PLL_ENABLE;
2601
2602 I915_WRITE(DP_A, intel_dp->DP);
2603 POSTING_READ(DP_A);
2604 udelay(200);
2605 }
2606
2607 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
2608 {
2609 /*
2610 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
2611 * be capable of signalling downstream hpd with a long pulse.
2612 * Whether or not that means D3 is safe to use is not clear,
2613 * but let's assume so until proven otherwise.
2614 *
2615 * FIXME should really check all downstream ports...
2616 */
2617 return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
2618 intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
2619 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
2620 }
2621
2622 /* If the sink supports it, try to set the power state appropriately */
2623 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2624 {
2625 int ret, i;
2626
2627 /* Should have a valid DPCD by this point */
2628 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2629 return;
2630
2631 if (mode != DRM_MODE_DPMS_ON) {
2632 if (downstream_hpd_needs_d0(intel_dp))
2633 return;
2634
2635 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2636 DP_SET_POWER_D3);
2637 } else {
2638 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
2639
2640 /*
2641 * When turning on, we need to retry for 1ms to give the sink
2642 * time to wake up.
2643 */
2644 for (i = 0; i < 3; i++) {
2645 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2646 DP_SET_POWER_D0);
2647 if (ret == 1)
2648 break;
2649 msleep(1);
2650 }
2651
2652 if (ret == 1 && lspcon->active)
2653 lspcon_wait_pcon_mode(lspcon);
2654 }
2655
2656 if (ret != 1)
2657 DRM_DEBUG_KMS("failed to %s sink power state\n",
2658 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2659 }
2660
2661 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
2662 enum port port, enum pipe *pipe)
2663 {
2664 enum pipe p;
2665
2666 for_each_pipe(dev_priv, p) {
2667 u32 val = I915_READ(TRANS_DP_CTL(p));
2668
2669 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
2670 *pipe = p;
2671 return true;
2672 }
2673 }
2674
2675 DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));
2676
2677 /* must initialize pipe to something for the asserts */
2678 *pipe = PIPE_A;
2679
2680 return false;
2681 }
2682
2683 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
2684 i915_reg_t dp_reg, enum port port,
2685 enum pipe *pipe)
2686 {
2687 bool ret;
2688 u32 val;
2689
2690 val = I915_READ(dp_reg);
2691
2692 ret = val & DP_PORT_EN;
2693
2694 /* asserts want to know the pipe even if the port is disabled */
2695 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
2696 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
2697 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
2698 ret &= cpt_dp_port_selected(dev_priv, port, pipe);
2699 else if (IS_CHERRYVIEW(dev_priv))
2700 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
2701 else
2702 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
2703
2704 return ret;
2705 }
2706
2707 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2708 enum pipe *pipe)
2709 {
2710 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2711 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2712 bool ret;
2713
2714 if (!intel_display_power_get_if_enabled(dev_priv,
2715 encoder->power_domain))
2716 return false;
2717
2718 ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
2719 encoder->port, pipe);
2720
2721 intel_display_power_put(dev_priv, encoder->power_domain);
2722
2723 return ret;
2724 }
2725
2726 static void intel_dp_get_config(struct intel_encoder *encoder,
2727 struct intel_crtc_state *pipe_config)
2728 {
2729 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2730 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2731 u32 tmp, flags = 0;
2732 enum port port = encoder->port;
2733 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2734
2735 if (encoder->type == INTEL_OUTPUT_EDP)
2736 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
2737 else
2738 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
2739
2740 tmp = I915_READ(intel_dp->output_reg);
2741
2742 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2743
2744 if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2745 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2746
2747 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2748 flags |= DRM_MODE_FLAG_PHSYNC;
2749 else
2750 flags |= DRM_MODE_FLAG_NHSYNC;
2751
2752 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2753 flags |= DRM_MODE_FLAG_PVSYNC;
2754 else
2755 flags |= DRM_MODE_FLAG_NVSYNC;
2756 } else {
2757 if (tmp & DP_SYNC_HS_HIGH)
2758 flags |= DRM_MODE_FLAG_PHSYNC;
2759 else
2760 flags |= DRM_MODE_FLAG_NHSYNC;
2761
2762 if (tmp & DP_SYNC_VS_HIGH)
2763 flags |= DRM_MODE_FLAG_PVSYNC;
2764 else
2765 flags |= DRM_MODE_FLAG_NVSYNC;
2766 }
2767
2768 pipe_config->base.adjusted_mode.flags |= flags;
2769
2770 if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
2771 pipe_config->limited_color_range = true;
2772
2773 pipe_config->lane_count =
2774 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2775
2776 intel_dp_get_m_n(crtc, pipe_config);
2777
2778 if (port == PORT_A) {
2779 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2780 pipe_config->port_clock = 162000;
2781 else
2782 pipe_config->port_clock = 270000;
2783 }
2784
2785 pipe_config->base.adjusted_mode.crtc_clock =
2786 intel_dotclock_calculate(pipe_config->port_clock,
2787 &pipe_config->dp_m_n);
2788
2789 if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2790 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2791 /*
2792 * This is a big fat ugly hack.
2793 *
2794 * Some machines in UEFI boot mode provide us a VBT that has 18
2795 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2796 * unknown we fail to light up. Yet the same BIOS boots up with
2797 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2798 * max, not what it tells us to use.
2799 *
2800 * Note: This will still be broken if the eDP panel is not lit
2801 * up by the BIOS, and thus we can't get the mode at module
2802 * load.
2803 */
2804 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2805 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2806 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2807 }
2808 }
2809
2810 static void intel_disable_dp(struct intel_encoder *encoder,
2811 const struct intel_crtc_state *old_crtc_state,
2812 const struct drm_connector_state *old_conn_state)
2813 {
2814 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2815
2816 intel_dp->link_trained = false;
2817
2818 if (old_crtc_state->has_audio)
2819 intel_audio_codec_disable(encoder,
2820 old_crtc_state, old_conn_state);
2821
2822 /* Make sure the panel is off before trying to change the mode. But also
2823 * ensure that we have vdd while we switch off the panel. */
2824 intel_edp_panel_vdd_on(intel_dp);
2825 intel_edp_backlight_off(old_conn_state);
2826 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2827 intel_edp_panel_off(intel_dp);
2828 }
2829
2830 static void g4x_disable_dp(struct intel_encoder *encoder,
2831 const struct intel_crtc_state *old_crtc_state,
2832 const struct drm_connector_state *old_conn_state)
2833 {
2834 intel_disable_dp(encoder, old_crtc_state, old_conn_state);
2835 }
2836
2837 static void vlv_disable_dp(struct intel_encoder *encoder,
2838 const struct intel_crtc_state *old_crtc_state,
2839 const struct drm_connector_state *old_conn_state)
2840 {
2841 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2842
2843 intel_psr_disable(intel_dp, old_crtc_state);
2844
2845 intel_disable_dp(encoder, old_crtc_state, old_conn_state);
2846 }
2847
2848 static void g4x_post_disable_dp(struct intel_encoder *encoder,
2849 const struct intel_crtc_state *old_crtc_state,
2850 const struct drm_connector_state *old_conn_state)
2851 {
2852 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2853 enum port port = encoder->port;
2854
2855 /*
2856 * Bspec does not list a specific disable sequence for g4x DP.
2857 * Follow the ilk+ sequence (disable pipe before the port) for
2858 * g4x DP as it does not suffer from underruns like the normal
2859 * g4x modeset sequence (disable pipe after the port).
2860 */
2861 intel_dp_link_down(encoder, old_crtc_state);
2862
2863 /* Only ilk+ has port A */
2864 if (port == PORT_A)
2865 ironlake_edp_pll_off(intel_dp, old_crtc_state);
2866 }
2867
2868 static void vlv_post_disable_dp(struct intel_encoder *encoder,
2869 const struct intel_crtc_state *old_crtc_state,
2870 const struct drm_connector_state *old_conn_state)
2871 {
2872 intel_dp_link_down(encoder, old_crtc_state);
2873 }
2874
2875 static void chv_post_disable_dp(struct intel_encoder *encoder,
2876 const struct intel_crtc_state *old_crtc_state,
2877 const struct drm_connector_state *old_conn_state)
2878 {
2879 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2880
2881 intel_dp_link_down(encoder, old_crtc_state);
2882
2883 mutex_lock(&dev_priv->sb_lock);
2884
2885 /* Assert data lane reset */
2886 chv_data_lane_soft_reset(encoder, old_crtc_state, true);
2887
2888 mutex_unlock(&dev_priv->sb_lock);
2889 }
2890
2891 static void
2892 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2893 uint32_t *DP,
2894 uint8_t dp_train_pat)
2895 {
2896 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2897 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2898 enum port port = intel_dig_port->base.port;
2899 uint8_t train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
2900
2901 if (dp_train_pat & train_pat_mask)
2902 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
2903 dp_train_pat & train_pat_mask);
2904
2905 if (HAS_DDI(dev_priv)) {
2906 uint32_t temp = I915_READ(DP_TP_CTL(port));
2907
2908 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2909 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2910 else
2911 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2912
2913 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2914 switch (dp_train_pat & train_pat_mask) {
2915 case DP_TRAINING_PATTERN_DISABLE:
2916 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2917
2918 break;
2919 case DP_TRAINING_PATTERN_1:
2920 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2921 break;
2922 case DP_TRAINING_PATTERN_2:
2923 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2924 break;
2925 case DP_TRAINING_PATTERN_3:
2926 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2927 break;
2928 case DP_TRAINING_PATTERN_4:
2929 temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
2930 break;
2931 }
2932 I915_WRITE(DP_TP_CTL(port), temp);
2933
2934 } else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
2935 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
2936 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2937
2938 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2939 case DP_TRAINING_PATTERN_DISABLE:
2940 *DP |= DP_LINK_TRAIN_OFF_CPT;
2941 break;
2942 case DP_TRAINING_PATTERN_1:
2943 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2944 break;
2945 case DP_TRAINING_PATTERN_2:
2946 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2947 break;
2948 case DP_TRAINING_PATTERN_3:
2949 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2950 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2951 break;
2952 }
2953
2954 } else {
2955 *DP &= ~DP_LINK_TRAIN_MASK;
2956
2957 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2958 case DP_TRAINING_PATTERN_DISABLE:
2959 *DP |= DP_LINK_TRAIN_OFF;
2960 break;
2961 case DP_TRAINING_PATTERN_1:
2962 *DP |= DP_LINK_TRAIN_PAT_1;
2963 break;
2964 case DP_TRAINING_PATTERN_2:
2965 *DP |= DP_LINK_TRAIN_PAT_2;
2966 break;
2967 case DP_TRAINING_PATTERN_3:
2968 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2969 *DP |= DP_LINK_TRAIN_PAT_2;
2970 break;
2971 }
2972 }
2973 }
2974
2975 static void intel_dp_enable_port(struct intel_dp *intel_dp,
2976 const struct intel_crtc_state *old_crtc_state)
2977 {
2978 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2979
2980 /* enable with pattern 1 (as per spec) */
2981
2982 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
2983
2984 /*
2985 * Magic for VLV/CHV. We _must_ first set up the register
2986 * without actually enabling the port, and then do another
2987 * write to enable the port. Otherwise link training will
2988 * fail when the power sequencer is freshly used for this port.
2989 */
2990 intel_dp->DP |= DP_PORT_EN;
2991 if (old_crtc_state->has_audio)
2992 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2993
2994 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2995 POSTING_READ(intel_dp->output_reg);
2996 }
2997
2998 static void intel_enable_dp(struct intel_encoder *encoder,
2999 const struct intel_crtc_state *pipe_config,
3000 const struct drm_connector_state *conn_state)
3001 {
3002 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3003 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3004 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3005 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
3006 enum pipe pipe = crtc->pipe;
3007
3008 if (WARN_ON(dp_reg & DP_PORT_EN))
3009 return;
3010
3011 pps_lock(intel_dp);
3012
3013 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3014 vlv_init_panel_power_sequencer(encoder, pipe_config);
3015
3016 intel_dp_enable_port(intel_dp, pipe_config);
3017
3018 edp_panel_vdd_on(intel_dp);
3019 edp_panel_on(intel_dp);
3020 edp_panel_vdd_off(intel_dp, true);
3021
3022 pps_unlock(intel_dp);
3023
3024 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3025 unsigned int lane_mask = 0x0;
3026
3027 if (IS_CHERRYVIEW(dev_priv))
3028 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3029
3030 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3031 lane_mask);
3032 }
3033
3034 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3035 intel_dp_start_link_train(intel_dp);
3036 intel_dp_stop_link_train(intel_dp);
3037
3038 if (pipe_config->has_audio) {
3039 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3040 pipe_name(pipe));
3041 intel_audio_codec_enable(encoder, pipe_config, conn_state);
3042 }
3043 }
3044
3045 static void g4x_enable_dp(struct intel_encoder *encoder,
3046 const struct intel_crtc_state *pipe_config,
3047 const struct drm_connector_state *conn_state)
3048 {
3049 intel_enable_dp(encoder, pipe_config, conn_state);
3050 intel_edp_backlight_on(pipe_config, conn_state);
3051 }
3052
3053 static void vlv_enable_dp(struct intel_encoder *encoder,
3054 const struct intel_crtc_state *pipe_config,
3055 const struct drm_connector_state *conn_state)
3056 {
3057 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3058
3059 intel_edp_backlight_on(pipe_config, conn_state);
3060 intel_psr_enable(intel_dp, pipe_config);
3061 }
3062
3063 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3064 const struct intel_crtc_state *pipe_config,
3065 const struct drm_connector_state *conn_state)
3066 {
3067 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3068 enum port port = encoder->port;
3069
3070 intel_dp_prepare(encoder, pipe_config);
3071
3072 /* Only ilk+ has port A */
3073 if (port == PORT_A)
3074 ironlake_edp_pll_on(intel_dp, pipe_config);
3075 }
3076
3077 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3078 {
3079 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3080 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3081 enum pipe pipe = intel_dp->pps_pipe;
3082 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3083
3084 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3085
3086 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
3087 return;
3088
3089 edp_panel_vdd_off_sync(intel_dp);
3090
3091 /*
3092 * VLV seems to get confused when multiple power sequencers
3093 * have the same port selected (even if only one has power/vdd
3094 * enabled). The failure manifests as vlv_wait_port_ready() failing
3095 * CHV on the other hand doesn't seem to mind having the same port
3096 * selected in multiple power sequencers, but let's clear the
3097 * port select always when logically disconnecting a power sequencer
3098 * from a port.
3099 */
3100 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
3101 pipe_name(pipe), port_name(intel_dig_port->base.port));
3102 I915_WRITE(pp_on_reg, 0);
3103 POSTING_READ(pp_on_reg);
3104
3105 intel_dp->pps_pipe = INVALID_PIPE;
3106 }
3107
3108 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3109 enum pipe pipe)
3110 {
3111 struct intel_encoder *encoder;
3112
3113 lockdep_assert_held(&dev_priv->pps_mutex);
3114
3115 for_each_intel_encoder(&dev_priv->drm, encoder) {
3116 struct intel_dp *intel_dp;
3117 enum port port;
3118
3119 if (encoder->type != INTEL_OUTPUT_DP &&
3120 encoder->type != INTEL_OUTPUT_EDP)
3121 continue;
3122
3123 intel_dp = enc_to_intel_dp(&encoder->base);
3124 port = dp_to_dig_port(intel_dp)->base.port;
3125
3126 WARN(intel_dp->active_pipe == pipe,
3127 "stealing pipe %c power sequencer from active (e)DP port %c\n",
3128 pipe_name(pipe), port_name(port));
3129
3130 if (intel_dp->pps_pipe != pipe)
3131 continue;
3132
3133 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
3134 pipe_name(pipe), port_name(port));
3135
3136 /* make sure vdd is off before we steal it */
3137 vlv_detach_power_sequencer(intel_dp);
3138 }
3139 }
3140
3141 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3142 const struct intel_crtc_state *crtc_state)
3143 {
3144 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3145 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3146 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3147
3148 lockdep_assert_held(&dev_priv->pps_mutex);
3149
3150 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3151
3152 if (intel_dp->pps_pipe != INVALID_PIPE &&
3153 intel_dp->pps_pipe != crtc->pipe) {
3154 /*
3155 * If another power sequencer was being used on this
3156 * port previously make sure to turn off vdd there while
3157 * we still have control of it.
3158 */
3159 vlv_detach_power_sequencer(intel_dp);
3160 }
3161
3162 /*
3163 * We may be stealing the power
3164 * sequencer from another port.
3165 */
3166 vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3167
3168 intel_dp->active_pipe = crtc->pipe;
3169
3170 if (!intel_dp_is_edp(intel_dp))
3171 return;
3172
3173 /* now it's all ours */
3174 intel_dp->pps_pipe = crtc->pipe;
3175
3176 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
3177 pipe_name(intel_dp->pps_pipe), port_name(encoder->port));
3178
3179 /* init power sequencer on this pipe and port */
3180 intel_dp_init_panel_power_sequencer(intel_dp);
3181 intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3182 }
3183
3184 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3185 const struct intel_crtc_state *pipe_config,
3186 const struct drm_connector_state *conn_state)
3187 {
3188 vlv_phy_pre_encoder_enable(encoder, pipe_config);
3189
3190 intel_enable_dp(encoder, pipe_config, conn_state);
3191 }
3192
3193 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3194 const struct intel_crtc_state *pipe_config,
3195 const struct drm_connector_state *conn_state)
3196 {
3197 intel_dp_prepare(encoder, pipe_config);
3198
3199 vlv_phy_pre_pll_enable(encoder, pipe_config);
3200 }
3201
3202 static void chv_pre_enable_dp(struct intel_encoder *encoder,
3203 const struct intel_crtc_state *pipe_config,
3204 const struct drm_connector_state *conn_state)
3205 {
3206 chv_phy_pre_encoder_enable(encoder, pipe_config);
3207
3208 intel_enable_dp(encoder, pipe_config, conn_state);
3209
3210 /* Second common lane will stay alive on its own now */
3211 chv_phy_release_cl2_override(encoder);
3212 }
3213
3214 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3215 const struct intel_crtc_state *pipe_config,
3216 const struct drm_connector_state *conn_state)
3217 {
3218 intel_dp_prepare(encoder, pipe_config);
3219
3220 chv_phy_pre_pll_enable(encoder, pipe_config);
3221 }
3222
3223 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3224 const struct intel_crtc_state *old_crtc_state,
3225 const struct drm_connector_state *old_conn_state)
3226 {
3227 chv_phy_post_pll_disable(encoder, old_crtc_state);
3228 }
3229
3230 /*
3231 * Fetch AUX CH registers 0x202 - 0x207 which contain
3232 * link status information
3233 */
3234 bool
3235 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3236 {
3237 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3238 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3239 }
3240
3241 /* These are source-specific values. */
3242 uint8_t
3243 intel_dp_voltage_max(struct intel_dp *intel_dp)
3244 {
3245 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3246 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3247 enum port port = encoder->port;
3248
3249 if (HAS_DDI(dev_priv))
3250 return intel_ddi_dp_voltage_max(encoder);
3251 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3252 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3253 else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3254 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3255 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3256 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3257 else
3258 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3259 }
3260
3261 uint8_t
3262 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3263 {
3264 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3265 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3266 enum port port = encoder->port;
3267
3268 if (HAS_DDI(dev_priv)) {
3269 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3270 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3271 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3272 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3273 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3274 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3275 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3276 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3277 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3278 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3279 default:
3280 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3281 }
3282 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3283 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3284 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3285 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3286 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3287 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3288 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3289 default:
3290 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3291 }
3292 } else {
3293 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3294 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3295 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3296 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3297 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3298 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3299 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3300 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3301 default:
3302 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3303 }
3304 }
3305 }
3306
3307 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3308 {
3309 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3310 unsigned long demph_reg_value, preemph_reg_value,
3311 uniqtranscale_reg_value;
3312 uint8_t train_set = intel_dp->train_set[0];
3313
3314 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3315 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3316 preemph_reg_value = 0x0004000;
3317 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3318 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3319 demph_reg_value = 0x2B405555;
3320 uniqtranscale_reg_value = 0x552AB83A;
3321 break;
3322 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3323 demph_reg_value = 0x2B404040;
3324 uniqtranscale_reg_value = 0x5548B83A;
3325 break;
3326 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3327 demph_reg_value = 0x2B245555;
3328 uniqtranscale_reg_value = 0x5560B83A;
3329 break;
3330 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3331 demph_reg_value = 0x2B405555;
3332 uniqtranscale_reg_value = 0x5598DA3A;
3333 break;
3334 default:
3335 return 0;
3336 }
3337 break;
3338 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3339 preemph_reg_value = 0x0002000;
3340 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3341 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3342 demph_reg_value = 0x2B404040;
3343 uniqtranscale_reg_value = 0x5552B83A;
3344 break;
3345 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3346 demph_reg_value = 0x2B404848;
3347 uniqtranscale_reg_value = 0x5580B83A;
3348 break;
3349 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3350 demph_reg_value = 0x2B404040;
3351 uniqtranscale_reg_value = 0x55ADDA3A;
3352 break;
3353 default:
3354 return 0;
3355 }
3356 break;
3357 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3358 preemph_reg_value = 0x0000000;
3359 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3360 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3361 demph_reg_value = 0x2B305555;
3362 uniqtranscale_reg_value = 0x5570B83A;
3363 break;
3364 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3365 demph_reg_value = 0x2B2B4040;
3366 uniqtranscale_reg_value = 0x55ADDA3A;
3367 break;
3368 default:
3369 return 0;
3370 }
3371 break;
3372 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3373 preemph_reg_value = 0x0006000;
3374 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3375 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3376 demph_reg_value = 0x1B405555;
3377 uniqtranscale_reg_value = 0x55ADDA3A;
3378 break;
3379 default:
3380 return 0;
3381 }
3382 break;
3383 default:
3384 return 0;
3385 }
3386
3387 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3388 uniqtranscale_reg_value, 0);
3389
3390 return 0;
3391 }
3392
3393 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3394 {
3395 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3396 u32 deemph_reg_value, margin_reg_value;
3397 bool uniq_trans_scale = false;
3398 uint8_t train_set = intel_dp->train_set[0];
3399
3400 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3401 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3402 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3403 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3404 deemph_reg_value = 128;
3405 margin_reg_value = 52;
3406 break;
3407 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3408 deemph_reg_value = 128;
3409 margin_reg_value = 77;
3410 break;
3411 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3412 deemph_reg_value = 128;
3413 margin_reg_value = 102;
3414 break;
3415 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3416 deemph_reg_value = 128;
3417 margin_reg_value = 154;
3418 uniq_trans_scale = true;
3419 break;
3420 default:
3421 return 0;
3422 }
3423 break;
3424 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3425 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3426 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3427 deemph_reg_value = 85;
3428 margin_reg_value = 78;
3429 break;
3430 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3431 deemph_reg_value = 85;
3432 margin_reg_value = 116;
3433 break;
3434 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3435 deemph_reg_value = 85;
3436 margin_reg_value = 154;
3437 break;
3438 default:
3439 return 0;
3440 }
3441 break;
3442 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3443 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3444 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3445 deemph_reg_value = 64;
3446 margin_reg_value = 104;
3447 break;
3448 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3449 deemph_reg_value = 64;
3450 margin_reg_value = 154;
3451 break;
3452 default:
3453 return 0;
3454 }
3455 break;
3456 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3457 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3458 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3459 deemph_reg_value = 43;
3460 margin_reg_value = 154;
3461 break;
3462 default:
3463 return 0;
3464 }
3465 break;
3466 default:
3467 return 0;
3468 }
3469
3470 chv_set_phy_signal_level(encoder, deemph_reg_value,
3471 margin_reg_value, uniq_trans_scale);
3472
3473 return 0;
3474 }
3475
3476 static uint32_t
3477 g4x_signal_levels(uint8_t train_set)
3478 {
3479 uint32_t signal_levels = 0;
3480
3481 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3482 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3483 default:
3484 signal_levels |= DP_VOLTAGE_0_4;
3485 break;
3486 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3487 signal_levels |= DP_VOLTAGE_0_6;
3488 break;
3489 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3490 signal_levels |= DP_VOLTAGE_0_8;
3491 break;
3492 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3493 signal_levels |= DP_VOLTAGE_1_2;
3494 break;
3495 }
3496 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3497 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3498 default:
3499 signal_levels |= DP_PRE_EMPHASIS_0;
3500 break;
3501 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3502 signal_levels |= DP_PRE_EMPHASIS_3_5;
3503 break;
3504 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3505 signal_levels |= DP_PRE_EMPHASIS_6;
3506 break;
3507 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3508 signal_levels |= DP_PRE_EMPHASIS_9_5;
3509 break;
3510 }
3511 return signal_levels;
3512 }
3513
3514 /* SNB CPU eDP voltage swing and pre-emphasis control */
3515 static uint32_t
3516 snb_cpu_edp_signal_levels(uint8_t train_set)
3517 {
3518 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3519 DP_TRAIN_PRE_EMPHASIS_MASK);
3520 switch (signal_levels) {
3521 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3522 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3523 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3524 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3525 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3526 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3527 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3528 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3529 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3530 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3531 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3532 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3533 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3534 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3535 default:
3536 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3537 "0x%x\n", signal_levels);
3538 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3539 }
3540 }
3541
3542 /* IVB CPU eDP voltage swing and pre-emphasis control */
3543 static uint32_t
3544 ivb_cpu_edp_signal_levels(uint8_t train_set)
3545 {
3546 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3547 DP_TRAIN_PRE_EMPHASIS_MASK);
3548 switch (signal_levels) {
3549 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3550 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3551 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3552 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3553 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3554 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3555
3556 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3557 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3558 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3559 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3560
3561 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3562 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3563 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3564 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3565
3566 default:
3567 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3568 "0x%x\n", signal_levels);
3569 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3570 }
3571 }
3572
3573 void
3574 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3575 {
3576 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3577 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3578 enum port port = intel_dig_port->base.port;
3579 uint32_t signal_levels, mask = 0;
3580 uint8_t train_set = intel_dp->train_set[0];
3581
3582 if (IS_GEN9_LP(dev_priv) || IS_CANNONLAKE(dev_priv)) {
3583 signal_levels = bxt_signal_levels(intel_dp);
3584 } else if (HAS_DDI(dev_priv)) {
3585 signal_levels = ddi_signal_levels(intel_dp);
3586 mask = DDI_BUF_EMP_MASK;
3587 } else if (IS_CHERRYVIEW(dev_priv)) {
3588 signal_levels = chv_signal_levels(intel_dp);
3589 } else if (IS_VALLEYVIEW(dev_priv)) {
3590 signal_levels = vlv_signal_levels(intel_dp);
3591 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3592 signal_levels = ivb_cpu_edp_signal_levels(train_set);
3593 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3594 } else if (IS_GEN6(dev_priv) && port == PORT_A) {
3595 signal_levels = snb_cpu_edp_signal_levels(train_set);
3596 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3597 } else {
3598 signal_levels = g4x_signal_levels(train_set);
3599 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3600 }
3601
3602 if (mask)
3603 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3604
3605 DRM_DEBUG_KMS("Using vswing level %d\n",
3606 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3607 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3608 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3609 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3610
3611 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3612
3613 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3614 POSTING_READ(intel_dp->output_reg);
3615 }
3616
3617 void
3618 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3619 uint8_t dp_train_pat)
3620 {
3621 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3622 struct drm_i915_private *dev_priv =
3623 to_i915(intel_dig_port->base.base.dev);
3624
3625 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3626
3627 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3628 POSTING_READ(intel_dp->output_reg);
3629 }
3630
3631 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3632 {
3633 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3634 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3635 enum port port = intel_dig_port->base.port;
3636 uint32_t val;
3637
3638 if (!HAS_DDI(dev_priv))
3639 return;
3640
3641 val = I915_READ(DP_TP_CTL(port));
3642 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3643 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3644 I915_WRITE(DP_TP_CTL(port), val);
3645
3646 /*
3647 * On PORT_A we can have only eDP in SST mode. There the only reason
3648 * we need to set idle transmission mode is to work around a HW issue
3649 * where we enable the pipe while not in idle link-training mode.
3650 * In this case there is requirement to wait for a minimum number of
3651 * idle patterns to be sent.
3652 */
3653 if (port == PORT_A)
3654 return;
3655
3656 if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
3657 DP_TP_STATUS_IDLE_DONE,
3658 DP_TP_STATUS_IDLE_DONE,
3659 1))
3660 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3661 }
3662
3663 static void
3664 intel_dp_link_down(struct intel_encoder *encoder,
3665 const struct intel_crtc_state *old_crtc_state)
3666 {
3667 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3668 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3669 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
3670 enum port port = encoder->port;
3671 uint32_t DP = intel_dp->DP;
3672
3673 if (WARN_ON(HAS_DDI(dev_priv)))
3674 return;
3675
3676 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3677 return;
3678
3679 DRM_DEBUG_KMS("\n");
3680
3681 if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3682 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3683 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3684 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3685 } else {
3686 DP &= ~DP_LINK_TRAIN_MASK;
3687 DP |= DP_LINK_TRAIN_PAT_IDLE;
3688 }
3689 I915_WRITE(intel_dp->output_reg, DP);
3690 POSTING_READ(intel_dp->output_reg);
3691
3692 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3693 I915_WRITE(intel_dp->output_reg, DP);
3694 POSTING_READ(intel_dp->output_reg);
3695
3696 /*
3697 * HW workaround for IBX, we need to move the port
3698 * to transcoder A after disabling it to allow the
3699 * matching HDMI port to be enabled on transcoder A.
3700 */
3701 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
3702 /*
3703 * We get CPU/PCH FIFO underruns on the other pipe when
3704 * doing the workaround. Sweep them under the rug.
3705 */
3706 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3707 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3708
3709 /* always enable with pattern 1 (as per spec) */
3710 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
3711 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
3712 DP_LINK_TRAIN_PAT_1;
3713 I915_WRITE(intel_dp->output_reg, DP);
3714 POSTING_READ(intel_dp->output_reg);
3715
3716 DP &= ~DP_PORT_EN;
3717 I915_WRITE(intel_dp->output_reg, DP);
3718 POSTING_READ(intel_dp->output_reg);
3719
3720 intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
3721 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3722 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3723 }
3724
3725 msleep(intel_dp->panel_power_down_delay);
3726
3727 intel_dp->DP = DP;
3728
3729 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3730 pps_lock(intel_dp);
3731 intel_dp->active_pipe = INVALID_PIPE;
3732 pps_unlock(intel_dp);
3733 }
3734 }
3735
3736 bool
3737 intel_dp_read_dpcd(struct intel_dp *intel_dp)
3738 {
3739 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
3740 sizeof(intel_dp->dpcd)) < 0)
3741 return false; /* aux transfer failed */
3742
3743 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3744
3745 return intel_dp->dpcd[DP_DPCD_REV] != 0;
3746 }
3747
3748 static bool
3749 intel_edp_init_dpcd(struct intel_dp *intel_dp)
3750 {
3751 struct drm_i915_private *dev_priv =
3752 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
3753
3754 /* this function is meant to be called only once */
3755 WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
3756
3757 if (!intel_dp_read_dpcd(intel_dp))
3758 return false;
3759
3760 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
3761 drm_dp_is_branch(intel_dp->dpcd));
3762
3763 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3764 dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3765 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3766
3767 /*
3768 * Read the eDP display control registers.
3769 *
3770 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
3771 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
3772 * set, but require eDP 1.4+ detection (e.g. for supported link rates
3773 * method). The display control registers should read zero if they're
3774 * not supported anyway.
3775 */
3776 if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
3777 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
3778 sizeof(intel_dp->edp_dpcd))
3779 DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
3780 intel_dp->edp_dpcd);
3781
3782 /*
3783 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
3784 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
3785 */
3786 intel_psr_init_dpcd(intel_dp);
3787
3788 /* Read the eDP 1.4+ supported link rates. */
3789 if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
3790 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3791 int i;
3792
3793 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
3794 sink_rates, sizeof(sink_rates));
3795
3796 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3797 int val = le16_to_cpu(sink_rates[i]);
3798
3799 if (val == 0)
3800 break;
3801
3802 /* Value read multiplied by 200kHz gives the per-lane
3803 * link rate in kHz. The source rates are, however,
3804 * stored in terms of LS_Clk kHz. The full conversion
3805 * back to symbols is
3806 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
3807 */
3808 intel_dp->sink_rates[i] = (val * 200) / 10;
3809 }
3810 intel_dp->num_sink_rates = i;
3811 }
3812
3813 /*
3814 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
3815 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
3816 */
3817 if (intel_dp->num_sink_rates)
3818 intel_dp->use_rate_select = true;
3819 else
3820 intel_dp_set_sink_rates(intel_dp);
3821
3822 intel_dp_set_common_rates(intel_dp);
3823
3824 return true;
3825 }
3826
3827
3828 static bool
3829 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3830 {
3831 u8 sink_count;
3832
3833 if (!intel_dp_read_dpcd(intel_dp))
3834 return false;
3835
3836 /* Don't clobber cached eDP rates. */
3837 if (!intel_dp_is_edp(intel_dp)) {
3838 intel_dp_set_sink_rates(intel_dp);
3839 intel_dp_set_common_rates(intel_dp);
3840 }
3841
3842 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &sink_count) <= 0)
3843 return false;
3844
3845 /*
3846 * Sink count can change between short pulse hpd hence
3847 * a member variable in intel_dp will track any changes
3848 * between short pulse interrupts.
3849 */
3850 intel_dp->sink_count = DP_GET_SINK_COUNT(sink_count);
3851
3852 /*
3853 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3854 * a dongle is present but no display. Unless we require to know
3855 * if a dongle is present or not, we don't need to update
3856 * downstream port information. So, an early return here saves
3857 * time from performing other operations which are not required.
3858 */
3859 if (!intel_dp_is_edp(intel_dp) && !intel_dp->sink_count)
3860 return false;
3861
3862 if (!drm_dp_is_branch(intel_dp->dpcd))
3863 return true; /* native DP sink */
3864
3865 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3866 return true; /* no per-port downstream info */
3867
3868 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3869 intel_dp->downstream_ports,
3870 DP_MAX_DOWNSTREAM_PORTS) < 0)
3871 return false; /* downstream port status fetch failed */
3872
3873 return true;
3874 }
3875
3876 static bool
3877 intel_dp_can_mst(struct intel_dp *intel_dp)
3878 {
3879 u8 mstm_cap;
3880
3881 if (!i915_modparams.enable_dp_mst)
3882 return false;
3883
3884 if (!intel_dp->can_mst)
3885 return false;
3886
3887 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3888 return false;
3889
3890 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
3891 return false;
3892
3893 return mstm_cap & DP_MST_CAP;
3894 }
3895
3896 static void
3897 intel_dp_configure_mst(struct intel_dp *intel_dp)
3898 {
3899 if (!i915_modparams.enable_dp_mst)
3900 return;
3901
3902 if (!intel_dp->can_mst)
3903 return;
3904
3905 intel_dp->is_mst = intel_dp_can_mst(intel_dp);
3906
3907 if (intel_dp->is_mst)
3908 DRM_DEBUG_KMS("Sink is MST capable\n");
3909 else
3910 DRM_DEBUG_KMS("Sink is not MST capable\n");
3911
3912 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
3913 intel_dp->is_mst);
3914 }
3915
3916 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp,
3917 struct intel_crtc_state *crtc_state, bool disable_wa)
3918 {
3919 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3920 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3921 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3922 u8 buf;
3923 int ret = 0;
3924 int count = 0;
3925 int attempts = 10;
3926
3927 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3928 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3929 ret = -EIO;
3930 goto out;
3931 }
3932
3933 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3934 buf & ~DP_TEST_SINK_START) < 0) {
3935 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3936 ret = -EIO;
3937 goto out;
3938 }
3939
3940 do {
3941 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
3942
3943 if (drm_dp_dpcd_readb(&intel_dp->aux,
3944 DP_TEST_SINK_MISC, &buf) < 0) {
3945 ret = -EIO;
3946 goto out;
3947 }
3948 count = buf & DP_TEST_COUNT_MASK;
3949 } while (--attempts && count);
3950
3951 if (attempts == 0) {
3952 DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
3953 ret = -ETIMEDOUT;
3954 }
3955
3956 out:
3957 if (disable_wa)
3958 hsw_enable_ips(crtc_state);
3959 return ret;
3960 }
3961
3962 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp,
3963 struct intel_crtc_state *crtc_state)
3964 {
3965 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3966 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3967 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3968 u8 buf;
3969 int ret;
3970
3971 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3972 return -EIO;
3973
3974 if (!(buf & DP_TEST_CRC_SUPPORTED))
3975 return -ENOTTY;
3976
3977 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3978 return -EIO;
3979
3980 if (buf & DP_TEST_SINK_START) {
3981 ret = intel_dp_sink_crc_stop(intel_dp, crtc_state, false);
3982 if (ret)
3983 return ret;
3984 }
3985
3986 hsw_disable_ips(crtc_state);
3987
3988 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3989 buf | DP_TEST_SINK_START) < 0) {
3990 hsw_enable_ips(crtc_state);
3991 return -EIO;
3992 }
3993
3994 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
3995 return 0;
3996 }
3997
3998 int intel_dp_sink_crc(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state, u8 *crc)
3999 {
4000 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
4001 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
4002 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4003 u8 buf;
4004 int count, ret;
4005 int attempts = 6;
4006
4007 ret = intel_dp_sink_crc_start(intel_dp, crtc_state);
4008 if (ret)
4009 return ret;
4010
4011 do {
4012 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
4013
4014 if (drm_dp_dpcd_readb(&intel_dp->aux,
4015 DP_TEST_SINK_MISC, &buf) < 0) {
4016 ret = -EIO;
4017 goto stop;
4018 }
4019 count = buf & DP_TEST_COUNT_MASK;
4020
4021 } while (--attempts && count == 0);
4022
4023 if (attempts == 0) {
4024 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
4025 ret = -ETIMEDOUT;
4026 goto stop;
4027 }
4028
4029 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
4030 ret = -EIO;
4031 goto stop;
4032 }
4033
4034 stop:
4035 intel_dp_sink_crc_stop(intel_dp, crtc_state, true);
4036 return ret;
4037 }
4038
4039 static bool
4040 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4041 {
4042 return drm_dp_dpcd_readb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
4043 sink_irq_vector) == 1;
4044 }
4045
4046 static bool
4047 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4048 {
4049 return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4050 sink_irq_vector, DP_DPRX_ESI_LEN) ==
4051 DP_DPRX_ESI_LEN;
4052 }
4053
4054 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4055 {
4056 int status = 0;
4057 int test_link_rate;
4058 uint8_t test_lane_count, test_link_bw;
4059 /* (DP CTS 1.2)
4060 * 4.3.1.11
4061 */
4062 /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
4063 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
4064 &test_lane_count);
4065
4066 if (status <= 0) {
4067 DRM_DEBUG_KMS("Lane count read failed\n");
4068 return DP_TEST_NAK;
4069 }
4070 test_lane_count &= DP_MAX_LANE_COUNT_MASK;
4071
4072 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
4073 &test_link_bw);
4074 if (status <= 0) {
4075 DRM_DEBUG_KMS("Link Rate read failed\n");
4076 return DP_TEST_NAK;
4077 }
4078 test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4079
4080 /* Validate the requested link rate and lane count */
4081 if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
4082 test_lane_count))
4083 return DP_TEST_NAK;
4084
4085 intel_dp->compliance.test_lane_count = test_lane_count;
4086 intel_dp->compliance.test_link_rate = test_link_rate;
4087
4088 return DP_TEST_ACK;
4089 }
4090
4091 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4092 {
4093 uint8_t test_pattern;
4094 uint8_t test_misc;
4095 __be16 h_width, v_height;
4096 int status = 0;
4097
4098 /* Read the TEST_PATTERN (DP CTS 3.1.5) */
4099 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
4100 &test_pattern);
4101 if (status <= 0) {
4102 DRM_DEBUG_KMS("Test pattern read failed\n");
4103 return DP_TEST_NAK;
4104 }
4105 if (test_pattern != DP_COLOR_RAMP)
4106 return DP_TEST_NAK;
4107
4108 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
4109 &h_width, 2);
4110 if (status <= 0) {
4111 DRM_DEBUG_KMS("H Width read failed\n");
4112 return DP_TEST_NAK;
4113 }
4114
4115 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
4116 &v_height, 2);
4117 if (status <= 0) {
4118 DRM_DEBUG_KMS("V Height read failed\n");
4119 return DP_TEST_NAK;
4120 }
4121
4122 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
4123 &test_misc);
4124 if (status <= 0) {
4125 DRM_DEBUG_KMS("TEST MISC read failed\n");
4126 return DP_TEST_NAK;
4127 }
4128 if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
4129 return DP_TEST_NAK;
4130 if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
4131 return DP_TEST_NAK;
4132 switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
4133 case DP_TEST_BIT_DEPTH_6:
4134 intel_dp->compliance.test_data.bpc = 6;
4135 break;
4136 case DP_TEST_BIT_DEPTH_8:
4137 intel_dp->compliance.test_data.bpc = 8;
4138 break;
4139 default:
4140 return DP_TEST_NAK;
4141 }
4142
4143 intel_dp->compliance.test_data.video_pattern = test_pattern;
4144 intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
4145 intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
4146 /* Set test active flag here so userspace doesn't interrupt things */
4147 intel_dp->compliance.test_active = 1;
4148
4149 return DP_TEST_ACK;
4150 }
4151
4152 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4153 {
4154 uint8_t test_result = DP_TEST_ACK;
4155 struct intel_connector *intel_connector = intel_dp->attached_connector;
4156 struct drm_connector *connector = &intel_connector->base;
4157
4158 if (intel_connector->detect_edid == NULL ||
4159 connector->edid_corrupt ||
4160 intel_dp->aux.i2c_defer_count > 6) {
4161 /* Check EDID read for NACKs, DEFERs and corruption
4162 * (DP CTS 1.2 Core r1.1)
4163 * 4.2.2.4 : Failed EDID read, I2C_NAK
4164 * 4.2.2.5 : Failed EDID read, I2C_DEFER
4165 * 4.2.2.6 : EDID corruption detected
4166 * Use failsafe mode for all cases
4167 */
4168 if (intel_dp->aux.i2c_nack_count > 0 ||
4169 intel_dp->aux.i2c_defer_count > 0)
4170 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4171 intel_dp->aux.i2c_nack_count,
4172 intel_dp->aux.i2c_defer_count);
4173 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4174 } else {
4175 struct edid *block = intel_connector->detect_edid;
4176
4177 /* We have to write the checksum
4178 * of the last block read
4179 */
4180 block += intel_connector->detect_edid->extensions;
4181
4182 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
4183 block->checksum) <= 0)
4184 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4185
4186 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4187 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4188 }
4189
4190 /* Set test active flag here so userspace doesn't interrupt things */
4191 intel_dp->compliance.test_active = 1;
4192
4193 return test_result;
4194 }
4195
4196 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4197 {
4198 uint8_t test_result = DP_TEST_NAK;
4199 return test_result;
4200 }
4201
4202 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4203 {
4204 uint8_t response = DP_TEST_NAK;
4205 uint8_t request = 0;
4206 int status;
4207
4208 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4209 if (status <= 0) {
4210 DRM_DEBUG_KMS("Could not read test request from sink\n");
4211 goto update_status;
4212 }
4213
4214 switch (request) {
4215 case DP_TEST_LINK_TRAINING:
4216 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4217 response = intel_dp_autotest_link_training(intel_dp);
4218 break;
4219 case DP_TEST_LINK_VIDEO_PATTERN:
4220 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4221 response = intel_dp_autotest_video_pattern(intel_dp);
4222 break;
4223 case DP_TEST_LINK_EDID_READ:
4224 DRM_DEBUG_KMS("EDID test requested\n");
4225 response = intel_dp_autotest_edid(intel_dp);
4226 break;
4227 case DP_TEST_LINK_PHY_TEST_PATTERN:
4228 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4229 response = intel_dp_autotest_phy_pattern(intel_dp);
4230 break;
4231 default:
4232 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4233 break;
4234 }
4235
4236 if (response & DP_TEST_ACK)
4237 intel_dp->compliance.test_type = request;
4238
4239 update_status:
4240 status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4241 if (status <= 0)
4242 DRM_DEBUG_KMS("Could not write test response to sink\n");
4243 }
4244
4245 static int
4246 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4247 {
4248 bool bret;
4249
4250 if (intel_dp->is_mst) {
4251 u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4252 int ret = 0;
4253 int retry;
4254 bool handled;
4255 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4256 go_again:
4257 if (bret == true) {
4258
4259 /* check link status - esi[10] = 0x200c */
4260 if (intel_dp->active_mst_links &&
4261 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4262 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4263 intel_dp_start_link_train(intel_dp);
4264 intel_dp_stop_link_train(intel_dp);
4265 }
4266
4267 DRM_DEBUG_KMS("got esi %3ph\n", esi);
4268 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4269
4270 if (handled) {
4271 for (retry = 0; retry < 3; retry++) {
4272 int wret;
4273 wret = drm_dp_dpcd_write(&intel_dp->aux,
4274 DP_SINK_COUNT_ESI+1,
4275 &esi[1], 3);
4276 if (wret == 3) {
4277 break;
4278 }
4279 }
4280
4281 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4282 if (bret == true) {
4283 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4284 goto go_again;
4285 }
4286 } else
4287 ret = 0;
4288
4289 return ret;
4290 } else {
4291 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4292 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4293 intel_dp->is_mst = false;
4294 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4295 /* send a hotplug event */
4296 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4297 }
4298 }
4299 return -EINVAL;
4300 }
4301
4302 static bool
4303 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
4304 {
4305 u8 link_status[DP_LINK_STATUS_SIZE];
4306
4307 if (!intel_dp->link_trained)
4308 return false;
4309
4310 if (!intel_dp_get_link_status(intel_dp, link_status))
4311 return false;
4312
4313 /*
4314 * Validate the cached values of intel_dp->link_rate and
4315 * intel_dp->lane_count before attempting to retrain.
4316 */
4317 if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
4318 intel_dp->lane_count))
4319 return false;
4320
4321 /* Retrain if Channel EQ or CR not ok */
4322 return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
4323 }
4324
4325 /*
4326 * If display is now connected check links status,
4327 * there has been known issues of link loss triggering
4328 * long pulse.
4329 *
4330 * Some sinks (eg. ASUS PB287Q) seem to perform some
4331 * weird HPD ping pong during modesets. So we can apparently
4332 * end up with HPD going low during a modeset, and then
4333 * going back up soon after. And once that happens we must
4334 * retrain the link to get a picture. That's in case no
4335 * userspace component reacted to intermittent HPD dip.
4336 */
4337 int intel_dp_retrain_link(struct intel_encoder *encoder,
4338 struct drm_modeset_acquire_ctx *ctx)
4339 {
4340 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4341 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4342 struct intel_connector *connector = intel_dp->attached_connector;
4343 struct drm_connector_state *conn_state;
4344 struct intel_crtc_state *crtc_state;
4345 struct intel_crtc *crtc;
4346 int ret;
4347
4348 /* FIXME handle the MST connectors as well */
4349
4350 if (!connector || connector->base.status != connector_status_connected)
4351 return 0;
4352
4353 ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
4354 ctx);
4355 if (ret)
4356 return ret;
4357
4358 conn_state = connector->base.state;
4359
4360 crtc = to_intel_crtc(conn_state->crtc);
4361 if (!crtc)
4362 return 0;
4363
4364 ret = drm_modeset_lock(&crtc->base.mutex, ctx);
4365 if (ret)
4366 return ret;
4367
4368 crtc_state = to_intel_crtc_state(crtc->base.state);
4369
4370 WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));
4371
4372 if (!crtc_state->base.active)
4373 return 0;
4374
4375 if (conn_state->commit &&
4376 !try_wait_for_completion(&conn_state->commit->hw_done))
4377 return 0;
4378
4379 if (!intel_dp_needs_link_retrain(intel_dp))
4380 return 0;
4381
4382 /* Suppress underruns caused by re-training */
4383 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
4384 if (crtc->config->has_pch_encoder)
4385 intel_set_pch_fifo_underrun_reporting(dev_priv,
4386 intel_crtc_pch_transcoder(crtc), false);
4387
4388 intel_dp_start_link_train(intel_dp);
4389 intel_dp_stop_link_train(intel_dp);
4390
4391 /* Keep underrun reporting disabled until things are stable */
4392 intel_wait_for_vblank(dev_priv, crtc->pipe);
4393
4394 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
4395 if (crtc->config->has_pch_encoder)
4396 intel_set_pch_fifo_underrun_reporting(dev_priv,
4397 intel_crtc_pch_transcoder(crtc), true);
4398
4399 return 0;
4400 }
4401
4402 /*
4403 * If display is now connected check links status,
4404 * there has been known issues of link loss triggering
4405 * long pulse.
4406 *
4407 * Some sinks (eg. ASUS PB287Q) seem to perform some
4408 * weird HPD ping pong during modesets. So we can apparently
4409 * end up with HPD going low during a modeset, and then
4410 * going back up soon after. And once that happens we must
4411 * retrain the link to get a picture. That's in case no
4412 * userspace component reacted to intermittent HPD dip.
4413 */
4414 static bool intel_dp_hotplug(struct intel_encoder *encoder,
4415 struct intel_connector *connector)
4416 {
4417 struct drm_modeset_acquire_ctx ctx;
4418 bool changed;
4419 int ret;
4420
4421 changed = intel_encoder_hotplug(encoder, connector);
4422
4423 drm_modeset_acquire_init(&ctx, 0);
4424
4425 for (;;) {
4426 ret = intel_dp_retrain_link(encoder, &ctx);
4427
4428 if (ret == -EDEADLK) {
4429 drm_modeset_backoff(&ctx);
4430 continue;
4431 }
4432
4433 break;
4434 }
4435
4436 drm_modeset_drop_locks(&ctx);
4437 drm_modeset_acquire_fini(&ctx);
4438 WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
4439
4440 return changed;
4441 }
4442
4443 /*
4444 * According to DP spec
4445 * 5.1.2:
4446 * 1. Read DPCD
4447 * 2. Configure link according to Receiver Capabilities
4448 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4449 * 4. Check link status on receipt of hot-plug interrupt
4450 *
4451 * intel_dp_short_pulse - handles short pulse interrupts
4452 * when full detection is not required.
4453 * Returns %true if short pulse is handled and full detection
4454 * is NOT required and %false otherwise.
4455 */
4456 static bool
4457 intel_dp_short_pulse(struct intel_dp *intel_dp)
4458 {
4459 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
4460 u8 sink_irq_vector = 0;
4461 u8 old_sink_count = intel_dp->sink_count;
4462 bool ret;
4463
4464 /*
4465 * Clearing compliance test variables to allow capturing
4466 * of values for next automated test request.
4467 */
4468 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4469
4470 /*
4471 * Now read the DPCD to see if it's actually running
4472 * If the current value of sink count doesn't match with
4473 * the value that was stored earlier or dpcd read failed
4474 * we need to do full detection
4475 */
4476 ret = intel_dp_get_dpcd(intel_dp);
4477
4478 if ((old_sink_count != intel_dp->sink_count) || !ret) {
4479 /* No need to proceed if we are going to do full detect */
4480 return false;
4481 }
4482
4483 /* Try to read the source of the interrupt */
4484 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4485 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4486 sink_irq_vector != 0) {
4487 /* Clear interrupt source */
4488 drm_dp_dpcd_writeb(&intel_dp->aux,
4489 DP_DEVICE_SERVICE_IRQ_VECTOR,
4490 sink_irq_vector);
4491
4492 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4493 intel_dp_handle_test_request(intel_dp);
4494 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4495 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4496 }
4497
4498 /* Handle CEC interrupts, if any */
4499 drm_dp_cec_irq(&intel_dp->aux);
4500
4501 /* defer to the hotplug work for link retraining if needed */
4502 if (intel_dp_needs_link_retrain(intel_dp))
4503 return false;
4504
4505 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
4506 DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
4507 /* Send a Hotplug Uevent to userspace to start modeset */
4508 drm_kms_helper_hotplug_event(&dev_priv->drm);
4509 }
4510
4511 return true;
4512 }
4513
4514 /* XXX this is probably wrong for multiple downstream ports */
4515 static enum drm_connector_status
4516 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4517 {
4518 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4519 uint8_t *dpcd = intel_dp->dpcd;
4520 uint8_t type;
4521
4522 if (lspcon->active)
4523 lspcon_resume(lspcon);
4524
4525 if (!intel_dp_get_dpcd(intel_dp))
4526 return connector_status_disconnected;
4527
4528 if (intel_dp_is_edp(intel_dp))
4529 return connector_status_connected;
4530
4531 /* if there's no downstream port, we're done */
4532 if (!drm_dp_is_branch(dpcd))
4533 return connector_status_connected;
4534
4535 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4536 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4537 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4538
4539 return intel_dp->sink_count ?
4540 connector_status_connected : connector_status_disconnected;
4541 }
4542
4543 if (intel_dp_can_mst(intel_dp))
4544 return connector_status_connected;
4545
4546 /* If no HPD, poke DDC gently */
4547 if (drm_probe_ddc(&intel_dp->aux.ddc))
4548 return connector_status_connected;
4549
4550 /* Well we tried, say unknown for unreliable port types */
4551 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4552 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4553 if (type == DP_DS_PORT_TYPE_VGA ||
4554 type == DP_DS_PORT_TYPE_NON_EDID)
4555 return connector_status_unknown;
4556 } else {
4557 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4558 DP_DWN_STRM_PORT_TYPE_MASK;
4559 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4560 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4561 return connector_status_unknown;
4562 }
4563
4564 /* Anything else is out of spec, warn and ignore */
4565 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4566 return connector_status_disconnected;
4567 }
4568
4569 static enum drm_connector_status
4570 edp_detect(struct intel_dp *intel_dp)
4571 {
4572 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
4573 enum drm_connector_status status;
4574
4575 status = intel_panel_detect(dev_priv);
4576 if (status == connector_status_unknown)
4577 status = connector_status_connected;
4578
4579 return status;
4580 }
4581
4582 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
4583 {
4584 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4585 u32 bit;
4586
4587 switch (encoder->hpd_pin) {
4588 case HPD_PORT_B:
4589 bit = SDE_PORTB_HOTPLUG;
4590 break;
4591 case HPD_PORT_C:
4592 bit = SDE_PORTC_HOTPLUG;
4593 break;
4594 case HPD_PORT_D:
4595 bit = SDE_PORTD_HOTPLUG;
4596 break;
4597 default:
4598 MISSING_CASE(encoder->hpd_pin);
4599 return false;
4600 }
4601
4602 return I915_READ(SDEISR) & bit;
4603 }
4604
4605 static bool cpt_digital_port_connected(struct intel_encoder *encoder)
4606 {
4607 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4608 u32 bit;
4609
4610 switch (encoder->hpd_pin) {
4611 case HPD_PORT_B:
4612 bit = SDE_PORTB_HOTPLUG_CPT;
4613 break;
4614 case HPD_PORT_C:
4615 bit = SDE_PORTC_HOTPLUG_CPT;
4616 break;
4617 case HPD_PORT_D:
4618 bit = SDE_PORTD_HOTPLUG_CPT;
4619 break;
4620 default:
4621 MISSING_CASE(encoder->hpd_pin);
4622 return false;
4623 }
4624
4625 return I915_READ(SDEISR) & bit;
4626 }
4627
4628 static bool spt_digital_port_connected(struct intel_encoder *encoder)
4629 {
4630 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4631 u32 bit;
4632
4633 switch (encoder->hpd_pin) {
4634 case HPD_PORT_A:
4635 bit = SDE_PORTA_HOTPLUG_SPT;
4636 break;
4637 case HPD_PORT_E:
4638 bit = SDE_PORTE_HOTPLUG_SPT;
4639 break;
4640 default:
4641 return cpt_digital_port_connected(encoder);
4642 }
4643
4644 return I915_READ(SDEISR) & bit;
4645 }
4646
4647 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
4648 {
4649 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4650 u32 bit;
4651
4652 switch (encoder->hpd_pin) {
4653 case HPD_PORT_B:
4654 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4655 break;
4656 case HPD_PORT_C:
4657 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4658 break;
4659 case HPD_PORT_D:
4660 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4661 break;
4662 default:
4663 MISSING_CASE(encoder->hpd_pin);
4664 return false;
4665 }
4666
4667 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4668 }
4669
4670 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
4671 {
4672 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4673 u32 bit;
4674
4675 switch (encoder->hpd_pin) {
4676 case HPD_PORT_B:
4677 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4678 break;
4679 case HPD_PORT_C:
4680 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4681 break;
4682 case HPD_PORT_D:
4683 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4684 break;
4685 default:
4686 MISSING_CASE(encoder->hpd_pin);
4687 return false;
4688 }
4689
4690 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4691 }
4692
4693 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
4694 {
4695 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4696
4697 if (encoder->hpd_pin == HPD_PORT_A)
4698 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
4699 else
4700 return ibx_digital_port_connected(encoder);
4701 }
4702
4703 static bool snb_digital_port_connected(struct intel_encoder *encoder)
4704 {
4705 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4706
4707 if (encoder->hpd_pin == HPD_PORT_A)
4708 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
4709 else
4710 return cpt_digital_port_connected(encoder);
4711 }
4712
4713 static bool ivb_digital_port_connected(struct intel_encoder *encoder)
4714 {
4715 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4716
4717 if (encoder->hpd_pin == HPD_PORT_A)
4718 return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
4719 else
4720 return cpt_digital_port_connected(encoder);
4721 }
4722
4723 static bool bdw_digital_port_connected(struct intel_encoder *encoder)
4724 {
4725 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4726
4727 if (encoder->hpd_pin == HPD_PORT_A)
4728 return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
4729 else
4730 return cpt_digital_port_connected(encoder);
4731 }
4732
4733 static bool bxt_digital_port_connected(struct intel_encoder *encoder)
4734 {
4735 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4736 u32 bit;
4737
4738 switch (encoder->hpd_pin) {
4739 case HPD_PORT_A:
4740 bit = BXT_DE_PORT_HP_DDIA;
4741 break;
4742 case HPD_PORT_B:
4743 bit = BXT_DE_PORT_HP_DDIB;
4744 break;
4745 case HPD_PORT_C:
4746 bit = BXT_DE_PORT_HP_DDIC;
4747 break;
4748 default:
4749 MISSING_CASE(encoder->hpd_pin);
4750 return false;
4751 }
4752
4753 return I915_READ(GEN8_DE_PORT_ISR) & bit;
4754 }
4755
4756 /*
4757 * intel_digital_port_connected - is the specified port connected?
4758 * @encoder: intel_encoder
4759 *
4760 * Return %true if port is connected, %false otherwise.
4761 */
4762 bool intel_digital_port_connected(struct intel_encoder *encoder)
4763 {
4764 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4765
4766 if (HAS_GMCH_DISPLAY(dev_priv)) {
4767 if (IS_GM45(dev_priv))
4768 return gm45_digital_port_connected(encoder);
4769 else
4770 return g4x_digital_port_connected(encoder);
4771 }
4772
4773 if (IS_GEN5(dev_priv))
4774 return ilk_digital_port_connected(encoder);
4775 else if (IS_GEN6(dev_priv))
4776 return snb_digital_port_connected(encoder);
4777 else if (IS_GEN7(dev_priv))
4778 return ivb_digital_port_connected(encoder);
4779 else if (IS_GEN8(dev_priv))
4780 return bdw_digital_port_connected(encoder);
4781 else if (IS_GEN9_LP(dev_priv))
4782 return bxt_digital_port_connected(encoder);
4783 else
4784 return spt_digital_port_connected(encoder);
4785 }
4786
4787 static struct edid *
4788 intel_dp_get_edid(struct intel_dp *intel_dp)
4789 {
4790 struct intel_connector *intel_connector = intel_dp->attached_connector;
4791
4792 /* use cached edid if we have one */
4793 if (intel_connector->edid) {
4794 /* invalid edid */
4795 if (IS_ERR(intel_connector->edid))
4796 return NULL;
4797
4798 return drm_edid_duplicate(intel_connector->edid);
4799 } else
4800 return drm_get_edid(&intel_connector->base,
4801 &intel_dp->aux.ddc);
4802 }
4803
4804 static void
4805 intel_dp_set_edid(struct intel_dp *intel_dp)
4806 {
4807 struct intel_connector *intel_connector = intel_dp->attached_connector;
4808 struct edid *edid;
4809
4810 intel_dp_unset_edid(intel_dp);
4811 edid = intel_dp_get_edid(intel_dp);
4812 intel_connector->detect_edid = edid;
4813
4814 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4815 drm_dp_cec_set_edid(&intel_dp->aux, edid);
4816 }
4817
4818 static void
4819 intel_dp_unset_edid(struct intel_dp *intel_dp)
4820 {
4821 struct intel_connector *intel_connector = intel_dp->attached_connector;
4822
4823 drm_dp_cec_unset_edid(&intel_dp->aux);
4824 kfree(intel_connector->detect_edid);
4825 intel_connector->detect_edid = NULL;
4826
4827 intel_dp->has_audio = false;
4828 }
4829
4830 static int
4831 intel_dp_long_pulse(struct intel_connector *connector)
4832 {
4833 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
4834 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
4835 enum drm_connector_status status;
4836 u8 sink_irq_vector = 0;
4837
4838 WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
4839
4840 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
4841
4842 /* Can't disconnect eDP, but you can close the lid... */
4843 if (intel_dp_is_edp(intel_dp))
4844 status = edp_detect(intel_dp);
4845 else if (intel_digital_port_connected(&dp_to_dig_port(intel_dp)->base))
4846 status = intel_dp_detect_dpcd(intel_dp);
4847 else
4848 status = connector_status_disconnected;
4849
4850 if (status == connector_status_disconnected) {
4851 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4852
4853 if (intel_dp->is_mst) {
4854 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4855 intel_dp->is_mst,
4856 intel_dp->mst_mgr.mst_state);
4857 intel_dp->is_mst = false;
4858 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4859 intel_dp->is_mst);
4860 }
4861
4862 goto out;
4863 }
4864
4865 if (intel_dp->reset_link_params) {
4866 /* Initial max link lane count */
4867 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
4868
4869 /* Initial max link rate */
4870 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
4871
4872 intel_dp->reset_link_params = false;
4873 }
4874
4875 intel_dp_print_rates(intel_dp);
4876
4877 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4878 drm_dp_is_branch(intel_dp->dpcd));
4879
4880 intel_dp_configure_mst(intel_dp);
4881
4882 if (intel_dp->is_mst) {
4883 /*
4884 * If we are in MST mode then this connector
4885 * won't appear connected or have anything
4886 * with EDID on it
4887 */
4888 status = connector_status_disconnected;
4889 goto out;
4890 }
4891
4892 /*
4893 * Clearing NACK and defer counts to get their exact values
4894 * while reading EDID which are required by Compliance tests
4895 * 4.2.2.4 and 4.2.2.5
4896 */
4897 intel_dp->aux.i2c_nack_count = 0;
4898 intel_dp->aux.i2c_defer_count = 0;
4899
4900 intel_dp_set_edid(intel_dp);
4901 if (intel_dp_is_edp(intel_dp) || connector->detect_edid)
4902 status = connector_status_connected;
4903 intel_dp->detect_done = true;
4904
4905 /* Try to read the source of the interrupt */
4906 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4907 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4908 sink_irq_vector != 0) {
4909 /* Clear interrupt source */
4910 drm_dp_dpcd_writeb(&intel_dp->aux,
4911 DP_DEVICE_SERVICE_IRQ_VECTOR,
4912 sink_irq_vector);
4913
4914 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4915 intel_dp_handle_test_request(intel_dp);
4916 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4917 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4918 }
4919
4920 out:
4921 if (status != connector_status_connected && !intel_dp->is_mst)
4922 intel_dp_unset_edid(intel_dp);
4923
4924 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
4925 return status;
4926 }
4927
4928 static int
4929 intel_dp_detect(struct drm_connector *connector,
4930 struct drm_modeset_acquire_ctx *ctx,
4931 bool force)
4932 {
4933 struct intel_dp *intel_dp = intel_attached_dp(connector);
4934 int status = connector->status;
4935
4936 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4937 connector->base.id, connector->name);
4938
4939 /* If full detect is not performed yet, do a full detect */
4940 if (!intel_dp->detect_done) {
4941 struct drm_crtc *crtc;
4942 int ret;
4943
4944 crtc = connector->state->crtc;
4945 if (crtc) {
4946 ret = drm_modeset_lock(&crtc->mutex, ctx);
4947 if (ret)
4948 return ret;
4949 }
4950
4951 status = intel_dp_long_pulse(intel_dp->attached_connector);
4952 }
4953
4954 intel_dp->detect_done = false;
4955
4956 return status;
4957 }
4958
4959 static void
4960 intel_dp_force(struct drm_connector *connector)
4961 {
4962 struct intel_dp *intel_dp = intel_attached_dp(connector);
4963 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4964 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4965
4966 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4967 connector->base.id, connector->name);
4968 intel_dp_unset_edid(intel_dp);
4969
4970 if (connector->status != connector_status_connected)
4971 return;
4972
4973 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
4974
4975 intel_dp_set_edid(intel_dp);
4976
4977 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
4978 }
4979
4980 static int intel_dp_get_modes(struct drm_connector *connector)
4981 {
4982 struct intel_connector *intel_connector = to_intel_connector(connector);
4983 struct edid *edid;
4984
4985 edid = intel_connector->detect_edid;
4986 if (edid) {
4987 int ret = intel_connector_update_modes(connector, edid);
4988 if (ret)
4989 return ret;
4990 }
4991
4992 /* if eDP has no EDID, fall back to fixed mode */
4993 if (intel_dp_is_edp(intel_attached_dp(connector)) &&
4994 intel_connector->panel.fixed_mode) {
4995 struct drm_display_mode *mode;
4996
4997 mode = drm_mode_duplicate(connector->dev,
4998 intel_connector->panel.fixed_mode);
4999 if (mode) {
5000 drm_mode_probed_add(connector, mode);
5001 return 1;
5002 }
5003 }
5004
5005 return 0;
5006 }
5007
5008 static int
5009 intel_dp_connector_register(struct drm_connector *connector)
5010 {
5011 struct intel_dp *intel_dp = intel_attached_dp(connector);
5012 struct drm_device *dev = connector->dev;
5013 int ret;
5014
5015 ret = intel_connector_register(connector);
5016 if (ret)
5017 return ret;
5018
5019 i915_debugfs_connector_add(connector);
5020
5021 DRM_DEBUG_KMS("registering %s bus for %s\n",
5022 intel_dp->aux.name, connector->kdev->kobj.name);
5023
5024 intel_dp->aux.dev = connector->kdev;
5025 ret = drm_dp_aux_register(&intel_dp->aux);
5026 if (!ret)
5027 drm_dp_cec_register_connector(&intel_dp->aux,
5028 connector->name, dev->dev);
5029 return ret;
5030 }
5031
5032 static void
5033 intel_dp_connector_unregister(struct drm_connector *connector)
5034 {
5035 struct intel_dp *intel_dp = intel_attached_dp(connector);
5036
5037 drm_dp_cec_unregister_connector(&intel_dp->aux);
5038 drm_dp_aux_unregister(&intel_dp->aux);
5039 intel_connector_unregister(connector);
5040 }
5041
5042 static void
5043 intel_dp_connector_destroy(struct drm_connector *connector)
5044 {
5045 struct intel_connector *intel_connector = to_intel_connector(connector);
5046
5047 kfree(intel_connector->detect_edid);
5048
5049 if (!IS_ERR_OR_NULL(intel_connector->edid))
5050 kfree(intel_connector->edid);
5051
5052 /*
5053 * Can't call intel_dp_is_edp() since the encoder may have been
5054 * destroyed already.
5055 */
5056 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5057 intel_panel_fini(&intel_connector->panel);
5058
5059 drm_connector_cleanup(connector);
5060 kfree(connector);
5061 }
5062
5063 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
5064 {
5065 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
5066 struct intel_dp *intel_dp = &intel_dig_port->dp;
5067
5068 intel_dp_mst_encoder_cleanup(intel_dig_port);
5069 if (intel_dp_is_edp(intel_dp)) {
5070 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5071 /*
5072 * vdd might still be enabled do to the delayed vdd off.
5073 * Make sure vdd is actually turned off here.
5074 */
5075 pps_lock(intel_dp);
5076 edp_panel_vdd_off_sync(intel_dp);
5077 pps_unlock(intel_dp);
5078
5079 if (intel_dp->edp_notifier.notifier_call) {
5080 unregister_reboot_notifier(&intel_dp->edp_notifier);
5081 intel_dp->edp_notifier.notifier_call = NULL;
5082 }
5083 }
5084
5085 intel_dp_aux_fini(intel_dp);
5086
5087 drm_encoder_cleanup(encoder);
5088 kfree(intel_dig_port);
5089 }
5090
5091 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5092 {
5093 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
5094
5095 if (!intel_dp_is_edp(intel_dp))
5096 return;
5097
5098 /*
5099 * vdd might still be enabled do to the delayed vdd off.
5100 * Make sure vdd is actually turned off here.
5101 */
5102 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5103 pps_lock(intel_dp);
5104 edp_panel_vdd_off_sync(intel_dp);
5105 pps_unlock(intel_dp);
5106 }
5107
5108 static
5109 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
5110 u8 *an)
5111 {
5112 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
5113 static const struct drm_dp_aux_msg msg = {
5114 .request = DP_AUX_NATIVE_WRITE,
5115 .address = DP_AUX_HDCP_AKSV,
5116 .size = DRM_HDCP_KSV_LEN,
5117 };
5118 uint8_t txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5119 ssize_t dpcd_ret;
5120 int ret;
5121
5122 /* Output An first, that's easy */
5123 dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
5124 an, DRM_HDCP_AN_LEN);
5125 if (dpcd_ret != DRM_HDCP_AN_LEN) {
5126 DRM_ERROR("Failed to write An over DP/AUX (%zd)\n", dpcd_ret);
5127 return dpcd_ret >= 0 ? -EIO : dpcd_ret;
5128 }
5129
5130 /*
5131 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
5132 * order to get it on the wire, we need to create the AUX header as if
5133 * we were writing the data, and then tickle the hardware to output the
5134 * data once the header is sent out.
5135 */
5136 intel_dp_aux_header(txbuf, &msg);
5137
5138 ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5139 rxbuf, sizeof(rxbuf),
5140 DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5141 if (ret < 0) {
5142 DRM_ERROR("Write Aksv over DP/AUX failed (%d)\n", ret);
5143 return ret;
5144 } else if (ret == 0) {
5145 DRM_ERROR("Aksv write over DP/AUX was empty\n");
5146 return -EIO;
5147 }
5148
5149 reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5150 return reply == DP_AUX_NATIVE_REPLY_ACK ? 0 : -EIO;
5151 }
5152
5153 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
5154 u8 *bksv)
5155 {
5156 ssize_t ret;
5157 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
5158 DRM_HDCP_KSV_LEN);
5159 if (ret != DRM_HDCP_KSV_LEN) {
5160 DRM_ERROR("Read Bksv from DP/AUX failed (%zd)\n", ret);
5161 return ret >= 0 ? -EIO : ret;
5162 }
5163 return 0;
5164 }
5165
5166 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
5167 u8 *bstatus)
5168 {
5169 ssize_t ret;
5170 /*
5171 * For some reason the HDMI and DP HDCP specs call this register
5172 * definition by different names. In the HDMI spec, it's called BSTATUS,
5173 * but in DP it's called BINFO.
5174 */
5175 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
5176 bstatus, DRM_HDCP_BSTATUS_LEN);
5177 if (ret != DRM_HDCP_BSTATUS_LEN) {
5178 DRM_ERROR("Read bstatus from DP/AUX failed (%zd)\n", ret);
5179 return ret >= 0 ? -EIO : ret;
5180 }
5181 return 0;
5182 }
5183
5184 static
5185 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
5186 u8 *bcaps)
5187 {
5188 ssize_t ret;
5189
5190 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5191 bcaps, 1);
5192 if (ret != 1) {
5193 DRM_ERROR("Read bcaps from DP/AUX failed (%zd)\n", ret);
5194 return ret >= 0 ? -EIO : ret;
5195 }
5196
5197 return 0;
5198 }
5199
5200 static
5201 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
5202 bool *repeater_present)
5203 {
5204 ssize_t ret;
5205 u8 bcaps;
5206
5207 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
5208 if (ret)
5209 return ret;
5210
5211 *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
5212 return 0;
5213 }
5214
5215 static
5216 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
5217 u8 *ri_prime)
5218 {
5219 ssize_t ret;
5220 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
5221 ri_prime, DRM_HDCP_RI_LEN);
5222 if (ret != DRM_HDCP_RI_LEN) {
5223 DRM_ERROR("Read Ri' from DP/AUX failed (%zd)\n", ret);
5224 return ret >= 0 ? -EIO : ret;
5225 }
5226 return 0;
5227 }
5228
5229 static
5230 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
5231 bool *ksv_ready)
5232 {
5233 ssize_t ret;
5234 u8 bstatus;
5235 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
5236 &bstatus, 1);
5237 if (ret != 1) {
5238 DRM_ERROR("Read bstatus from DP/AUX failed (%zd)\n", ret);
5239 return ret >= 0 ? -EIO : ret;
5240 }
5241 *ksv_ready = bstatus & DP_BSTATUS_READY;
5242 return 0;
5243 }
5244
5245 static
5246 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
5247 int num_downstream, u8 *ksv_fifo)
5248 {
5249 ssize_t ret;
5250 int i;
5251
5252 /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
5253 for (i = 0; i < num_downstream; i += 3) {
5254 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
5255 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
5256 DP_AUX_HDCP_KSV_FIFO,
5257 ksv_fifo + i * DRM_HDCP_KSV_LEN,
5258 len);
5259 if (ret != len) {
5260 DRM_ERROR("Read ksv[%d] from DP/AUX failed (%zd)\n", i,
5261 ret);
5262 return ret >= 0 ? -EIO : ret;
5263 }
5264 }
5265 return 0;
5266 }
5267
5268 static
5269 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
5270 int i, u32 *part)
5271 {
5272 ssize_t ret;
5273
5274 if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
5275 return -EINVAL;
5276
5277 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
5278 DP_AUX_HDCP_V_PRIME(i), part,
5279 DRM_HDCP_V_PRIME_PART_LEN);
5280 if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
5281 DRM_ERROR("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
5282 return ret >= 0 ? -EIO : ret;
5283 }
5284 return 0;
5285 }
5286
5287 static
5288 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
5289 bool enable)
5290 {
5291 /* Not used for single stream DisplayPort setups */
5292 return 0;
5293 }
5294
5295 static
5296 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
5297 {
5298 ssize_t ret;
5299 u8 bstatus;
5300
5301 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
5302 &bstatus, 1);
5303 if (ret != 1) {
5304 DRM_ERROR("Read bstatus from DP/AUX failed (%zd)\n", ret);
5305 return false;
5306 }
5307
5308 return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
5309 }
5310
5311 static
5312 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
5313 bool *hdcp_capable)
5314 {
5315 ssize_t ret;
5316 u8 bcaps;
5317
5318 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
5319 if (ret)
5320 return ret;
5321
5322 *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
5323 return 0;
5324 }
5325
5326 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
5327 .write_an_aksv = intel_dp_hdcp_write_an_aksv,
5328 .read_bksv = intel_dp_hdcp_read_bksv,
5329 .read_bstatus = intel_dp_hdcp_read_bstatus,
5330 .repeater_present = intel_dp_hdcp_repeater_present,
5331 .read_ri_prime = intel_dp_hdcp_read_ri_prime,
5332 .read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
5333 .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
5334 .read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
5335 .toggle_signalling = intel_dp_hdcp_toggle_signalling,
5336 .check_link = intel_dp_hdcp_check_link,
5337 .hdcp_capable = intel_dp_hdcp_capable,
5338 };
5339
5340 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
5341 {
5342 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5343
5344 lockdep_assert_held(&dev_priv->pps_mutex);
5345
5346 if (!edp_have_panel_vdd(intel_dp))
5347 return;
5348
5349 /*
5350 * The VDD bit needs a power domain reference, so if the bit is
5351 * already enabled when we boot or resume, grab this reference and
5352 * schedule a vdd off, so we don't hold on to the reference
5353 * indefinitely.
5354 */
5355 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
5356 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
5357
5358 edp_panel_vdd_schedule_off(intel_dp);
5359 }
5360
5361 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
5362 {
5363 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5364 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
5365 enum pipe pipe;
5366
5367 if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
5368 encoder->port, &pipe))
5369 return pipe;
5370
5371 return INVALID_PIPE;
5372 }
5373
5374 void intel_dp_encoder_reset(struct drm_encoder *encoder)
5375 {
5376 struct drm_i915_private *dev_priv = to_i915(encoder->dev);
5377 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5378 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5379
5380 if (!HAS_DDI(dev_priv))
5381 intel_dp->DP = I915_READ(intel_dp->output_reg);
5382
5383 if (lspcon->active)
5384 lspcon_resume(lspcon);
5385
5386 intel_dp->reset_link_params = true;
5387
5388 pps_lock(intel_dp);
5389
5390 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5391 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
5392
5393 if (intel_dp_is_edp(intel_dp)) {
5394 /* Reinit the power sequencer, in case BIOS did something with it. */
5395 intel_dp_pps_init(intel_dp);
5396 intel_edp_panel_vdd_sanitize(intel_dp);
5397 }
5398
5399 pps_unlock(intel_dp);
5400 }
5401
5402 static const struct drm_connector_funcs intel_dp_connector_funcs = {
5403 .force = intel_dp_force,
5404 .fill_modes = drm_helper_probe_single_connector_modes,
5405 .atomic_get_property = intel_digital_connector_atomic_get_property,
5406 .atomic_set_property = intel_digital_connector_atomic_set_property,
5407 .late_register = intel_dp_connector_register,
5408 .early_unregister = intel_dp_connector_unregister,
5409 .destroy = intel_dp_connector_destroy,
5410 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
5411 .atomic_duplicate_state = intel_digital_connector_duplicate_state,
5412 };
5413
5414 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
5415 .detect_ctx = intel_dp_detect,
5416 .get_modes = intel_dp_get_modes,
5417 .mode_valid = intel_dp_mode_valid,
5418 .atomic_check = intel_digital_connector_atomic_check,
5419 };
5420
5421 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
5422 .reset = intel_dp_encoder_reset,
5423 .destroy = intel_dp_encoder_destroy,
5424 };
5425
5426 enum irqreturn
5427 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
5428 {
5429 struct intel_dp *intel_dp = &intel_dig_port->dp;
5430 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5431 enum irqreturn ret = IRQ_NONE;
5432
5433 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
5434 /*
5435 * vdd off can generate a long pulse on eDP which
5436 * would require vdd on to handle it, and thus we
5437 * would end up in an endless cycle of
5438 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
5439 */
5440 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
5441 port_name(intel_dig_port->base.port));
5442 return IRQ_HANDLED;
5443 }
5444
5445 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
5446 port_name(intel_dig_port->base.port),
5447 long_hpd ? "long" : "short");
5448
5449 if (long_hpd) {
5450 intel_dp->reset_link_params = true;
5451 intel_dp->detect_done = false;
5452 return IRQ_NONE;
5453 }
5454
5455 intel_display_power_get(dev_priv, intel_dp->aux_power_domain);
5456
5457 if (intel_dp->is_mst) {
5458 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
5459 /*
5460 * If we were in MST mode, and device is not
5461 * there, get out of MST mode
5462 */
5463 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5464 intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
5465 intel_dp->is_mst = false;
5466 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5467 intel_dp->is_mst);
5468 intel_dp->detect_done = false;
5469 goto put_power;
5470 }
5471 }
5472
5473 if (!intel_dp->is_mst) {
5474 bool handled;
5475
5476 handled = intel_dp_short_pulse(intel_dp);
5477
5478 /* Short pulse can signify loss of hdcp authentication */
5479 intel_hdcp_check_link(intel_dp->attached_connector);
5480
5481 if (!handled) {
5482 intel_dp->detect_done = false;
5483 goto put_power;
5484 }
5485 }
5486
5487 ret = IRQ_HANDLED;
5488
5489 put_power:
5490 intel_display_power_put(dev_priv, intel_dp->aux_power_domain);
5491
5492 return ret;
5493 }
5494
5495 /* check the VBT to see whether the eDP is on another port */
5496 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
5497 {
5498 /*
5499 * eDP not supported on g4x. so bail out early just
5500 * for a bit extra safety in case the VBT is bonkers.
5501 */
5502 if (INTEL_GEN(dev_priv) < 5)
5503 return false;
5504
5505 if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
5506 return true;
5507
5508 return intel_bios_is_port_edp(dev_priv, port);
5509 }
5510
5511 static void
5512 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5513 {
5514 struct drm_i915_private *dev_priv = to_i915(connector->dev);
5515 enum port port = dp_to_dig_port(intel_dp)->base.port;
5516
5517 if (!IS_G4X(dev_priv) && port != PORT_A)
5518 intel_attach_force_audio_property(connector);
5519
5520 intel_attach_broadcast_rgb_property(connector);
5521
5522 if (intel_dp_is_edp(intel_dp)) {
5523 u32 allowed_scalers;
5524
5525 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
5526 if (!HAS_GMCH_DISPLAY(dev_priv))
5527 allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
5528
5529 drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
5530
5531 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
5532
5533 }
5534 }
5535
5536 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
5537 {
5538 intel_dp->panel_power_off_time = ktime_get_boottime();
5539 intel_dp->last_power_on = jiffies;
5540 intel_dp->last_backlight_off = jiffies;
5541 }
5542
5543 static void
5544 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
5545 {
5546 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5547 u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
5548 struct pps_registers regs;
5549
5550 intel_pps_get_registers(intel_dp, &regs);
5551
5552 /* Workaround: Need to write PP_CONTROL with the unlock key as
5553 * the very first thing. */
5554 pp_ctl = ironlake_get_pp_control(intel_dp);
5555
5556 pp_on = I915_READ(regs.pp_on);
5557 pp_off = I915_READ(regs.pp_off);
5558 if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv) &&
5559 !HAS_PCH_ICP(dev_priv)) {
5560 I915_WRITE(regs.pp_ctrl, pp_ctl);
5561 pp_div = I915_READ(regs.pp_div);
5562 }
5563
5564 /* Pull timing values out of registers */
5565 seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
5566 PANEL_POWER_UP_DELAY_SHIFT;
5567
5568 seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
5569 PANEL_LIGHT_ON_DELAY_SHIFT;
5570
5571 seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
5572 PANEL_LIGHT_OFF_DELAY_SHIFT;
5573
5574 seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5575 PANEL_POWER_DOWN_DELAY_SHIFT;
5576
5577 if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
5578 HAS_PCH_ICP(dev_priv)) {
5579 seq->t11_t12 = ((pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
5580 BXT_POWER_CYCLE_DELAY_SHIFT) * 1000;
5581 } else {
5582 seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5583 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5584 }
5585 }
5586
5587 static void
5588 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
5589 {
5590 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5591 state_name,
5592 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
5593 }
5594
5595 static void
5596 intel_pps_verify_state(struct intel_dp *intel_dp)
5597 {
5598 struct edp_power_seq hw;
5599 struct edp_power_seq *sw = &intel_dp->pps_delays;
5600
5601 intel_pps_readout_hw_state(intel_dp, &hw);
5602
5603 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
5604 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
5605 DRM_ERROR("PPS state mismatch\n");
5606 intel_pps_dump_state("sw", sw);
5607 intel_pps_dump_state("hw", &hw);
5608 }
5609 }
5610
5611 static void
5612 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
5613 {
5614 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5615 struct edp_power_seq cur, vbt, spec,
5616 *final = &intel_dp->pps_delays;
5617
5618 lockdep_assert_held(&dev_priv->pps_mutex);
5619
5620 /* already initialized? */
5621 if (final->t11_t12 != 0)
5622 return;
5623
5624 intel_pps_readout_hw_state(intel_dp, &cur);
5625
5626 intel_pps_dump_state("cur", &cur);
5627
5628 vbt = dev_priv->vbt.edp.pps;
5629 /* On Toshiba Satellite P50-C-18C system the VBT T12 delay
5630 * of 500ms appears to be too short. Ocassionally the panel
5631 * just fails to power back on. Increasing the delay to 800ms
5632 * seems sufficient to avoid this problem.
5633 */
5634 if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
5635 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
5636 DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
5637 vbt.t11_t12);
5638 }
5639 /* T11_T12 delay is special and actually in units of 100ms, but zero
5640 * based in the hw (so we need to add 100 ms). But the sw vbt
5641 * table multiplies it with 1000 to make it in units of 100usec,
5642 * too. */
5643 vbt.t11_t12 += 100 * 10;
5644
5645 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5646 * our hw here, which are all in 100usec. */
5647 spec.t1_t3 = 210 * 10;
5648 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5649 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5650 spec.t10 = 500 * 10;
5651 /* This one is special and actually in units of 100ms, but zero
5652 * based in the hw (so we need to add 100 ms). But the sw vbt
5653 * table multiplies it with 1000 to make it in units of 100usec,
5654 * too. */
5655 spec.t11_t12 = (510 + 100) * 10;
5656
5657 intel_pps_dump_state("vbt", &vbt);
5658
5659 /* Use the max of the register settings and vbt. If both are
5660 * unset, fall back to the spec limits. */
5661 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
5662 spec.field : \
5663 max(cur.field, vbt.field))
5664 assign_final(t1_t3);
5665 assign_final(t8);
5666 assign_final(t9);
5667 assign_final(t10);
5668 assign_final(t11_t12);
5669 #undef assign_final
5670
5671 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
5672 intel_dp->panel_power_up_delay = get_delay(t1_t3);
5673 intel_dp->backlight_on_delay = get_delay(t8);
5674 intel_dp->backlight_off_delay = get_delay(t9);
5675 intel_dp->panel_power_down_delay = get_delay(t10);
5676 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5677 #undef get_delay
5678
5679 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5680 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5681 intel_dp->panel_power_cycle_delay);
5682
5683 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5684 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5685
5686 /*
5687 * We override the HW backlight delays to 1 because we do manual waits
5688 * on them. For T8, even BSpec recommends doing it. For T9, if we
5689 * don't do this, we'll end up waiting for the backlight off delay
5690 * twice: once when we do the manual sleep, and once when we disable
5691 * the panel and wait for the PP_STATUS bit to become zero.
5692 */
5693 final->t8 = 1;
5694 final->t9 = 1;
5695
5696 /*
5697 * HW has only a 100msec granularity for t11_t12 so round it up
5698 * accordingly.
5699 */
5700 final->t11_t12 = roundup(final->t11_t12, 100 * 10);
5701 }
5702
5703 static void
5704 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
5705 bool force_disable_vdd)
5706 {
5707 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5708 u32 pp_on, pp_off, pp_div, port_sel = 0;
5709 int div = dev_priv->rawclk_freq / 1000;
5710 struct pps_registers regs;
5711 enum port port = dp_to_dig_port(intel_dp)->base.port;
5712 const struct edp_power_seq *seq = &intel_dp->pps_delays;
5713
5714 lockdep_assert_held(&dev_priv->pps_mutex);
5715
5716 intel_pps_get_registers(intel_dp, &regs);
5717
5718 /*
5719 * On some VLV machines the BIOS can leave the VDD
5720 * enabled even on power sequencers which aren't
5721 * hooked up to any port. This would mess up the
5722 * power domain tracking the first time we pick
5723 * one of these power sequencers for use since
5724 * edp_panel_vdd_on() would notice that the VDD was
5725 * already on and therefore wouldn't grab the power
5726 * domain reference. Disable VDD first to avoid this.
5727 * This also avoids spuriously turning the VDD on as
5728 * soon as the new power sequencer gets initialized.
5729 */
5730 if (force_disable_vdd) {
5731 u32 pp = ironlake_get_pp_control(intel_dp);
5732
5733 WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
5734
5735 if (pp & EDP_FORCE_VDD)
5736 DRM_DEBUG_KMS("VDD already on, disabling first\n");
5737
5738 pp &= ~EDP_FORCE_VDD;
5739
5740 I915_WRITE(regs.pp_ctrl, pp);
5741 }
5742
5743 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5744 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
5745 pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5746 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5747 /* Compute the divisor for the pp clock, simply match the Bspec
5748 * formula. */
5749 if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
5750 HAS_PCH_ICP(dev_priv)) {
5751 pp_div = I915_READ(regs.pp_ctrl);
5752 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5753 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5754 << BXT_POWER_CYCLE_DELAY_SHIFT);
5755 } else {
5756 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5757 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5758 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5759 }
5760
5761 /* Haswell doesn't have any port selection bits for the panel
5762 * power sequencer any more. */
5763 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5764 port_sel = PANEL_PORT_SELECT_VLV(port);
5765 } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
5766 switch (port) {
5767 case PORT_A:
5768 port_sel = PANEL_PORT_SELECT_DPA;
5769 break;
5770 case PORT_C:
5771 port_sel = PANEL_PORT_SELECT_DPC;
5772 break;
5773 case PORT_D:
5774 port_sel = PANEL_PORT_SELECT_DPD;
5775 break;
5776 default:
5777 MISSING_CASE(port);
5778 break;
5779 }
5780 }
5781
5782 pp_on |= port_sel;
5783
5784 I915_WRITE(regs.pp_on, pp_on);
5785 I915_WRITE(regs.pp_off, pp_off);
5786 if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
5787 HAS_PCH_ICP(dev_priv))
5788 I915_WRITE(regs.pp_ctrl, pp_div);
5789 else
5790 I915_WRITE(regs.pp_div, pp_div);
5791
5792 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5793 I915_READ(regs.pp_on),
5794 I915_READ(regs.pp_off),
5795 (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
5796 HAS_PCH_ICP(dev_priv)) ?
5797 (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
5798 I915_READ(regs.pp_div));
5799 }
5800
5801 static void intel_dp_pps_init(struct intel_dp *intel_dp)
5802 {
5803 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5804
5805 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5806 vlv_initial_power_sequencer_setup(intel_dp);
5807 } else {
5808 intel_dp_init_panel_power_sequencer(intel_dp);
5809 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
5810 }
5811 }
5812
5813 /**
5814 * intel_dp_set_drrs_state - program registers for RR switch to take effect
5815 * @dev_priv: i915 device
5816 * @crtc_state: a pointer to the active intel_crtc_state
5817 * @refresh_rate: RR to be programmed
5818 *
5819 * This function gets called when refresh rate (RR) has to be changed from
5820 * one frequency to another. Switches can be between high and low RR
5821 * supported by the panel or to any other RR based on media playback (in
5822 * this case, RR value needs to be passed from user space).
5823 *
5824 * The caller of this function needs to take a lock on dev_priv->drrs.
5825 */
5826 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
5827 const struct intel_crtc_state *crtc_state,
5828 int refresh_rate)
5829 {
5830 struct intel_encoder *encoder;
5831 struct intel_digital_port *dig_port = NULL;
5832 struct intel_dp *intel_dp = dev_priv->drrs.dp;
5833 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
5834 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5835
5836 if (refresh_rate <= 0) {
5837 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5838 return;
5839 }
5840
5841 if (intel_dp == NULL) {
5842 DRM_DEBUG_KMS("DRRS not supported.\n");
5843 return;
5844 }
5845
5846 dig_port = dp_to_dig_port(intel_dp);
5847 encoder = &dig_port->base;
5848
5849 if (!intel_crtc) {
5850 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5851 return;
5852 }
5853
5854 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5855 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5856 return;
5857 }
5858
5859 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5860 refresh_rate)
5861 index = DRRS_LOW_RR;
5862
5863 if (index == dev_priv->drrs.refresh_rate_type) {
5864 DRM_DEBUG_KMS(
5865 "DRRS requested for previously set RR...ignoring\n");
5866 return;
5867 }
5868
5869 if (!crtc_state->base.active) {
5870 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5871 return;
5872 }
5873
5874 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
5875 switch (index) {
5876 case DRRS_HIGH_RR:
5877 intel_dp_set_m_n(intel_crtc, M1_N1);
5878 break;
5879 case DRRS_LOW_RR:
5880 intel_dp_set_m_n(intel_crtc, M2_N2);
5881 break;
5882 case DRRS_MAX_RR:
5883 default:
5884 DRM_ERROR("Unsupported refreshrate type\n");
5885 }
5886 } else if (INTEL_GEN(dev_priv) > 6) {
5887 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
5888 u32 val;
5889
5890 val = I915_READ(reg);
5891 if (index > DRRS_HIGH_RR) {
5892 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5893 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5894 else
5895 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5896 } else {
5897 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5898 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5899 else
5900 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5901 }
5902 I915_WRITE(reg, val);
5903 }
5904
5905 dev_priv->drrs.refresh_rate_type = index;
5906
5907 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5908 }
5909
5910 /**
5911 * intel_edp_drrs_enable - init drrs struct if supported
5912 * @intel_dp: DP struct
5913 * @crtc_state: A pointer to the active crtc state.
5914 *
5915 * Initializes frontbuffer_bits and drrs.dp
5916 */
5917 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
5918 const struct intel_crtc_state *crtc_state)
5919 {
5920 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5921
5922 if (!crtc_state->has_drrs) {
5923 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5924 return;
5925 }
5926
5927 if (dev_priv->psr.enabled) {
5928 DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
5929 return;
5930 }
5931
5932 mutex_lock(&dev_priv->drrs.mutex);
5933 if (WARN_ON(dev_priv->drrs.dp)) {
5934 DRM_ERROR("DRRS already enabled\n");
5935 goto unlock;
5936 }
5937
5938 dev_priv->drrs.busy_frontbuffer_bits = 0;
5939
5940 dev_priv->drrs.dp = intel_dp;
5941
5942 unlock:
5943 mutex_unlock(&dev_priv->drrs.mutex);
5944 }
5945
5946 /**
5947 * intel_edp_drrs_disable - Disable DRRS
5948 * @intel_dp: DP struct
5949 * @old_crtc_state: Pointer to old crtc_state.
5950 *
5951 */
5952 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
5953 const struct intel_crtc_state *old_crtc_state)
5954 {
5955 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
5956
5957 if (!old_crtc_state->has_drrs)
5958 return;
5959
5960 mutex_lock(&dev_priv->drrs.mutex);
5961 if (!dev_priv->drrs.dp) {
5962 mutex_unlock(&dev_priv->drrs.mutex);
5963 return;
5964 }
5965
5966 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5967 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
5968 intel_dp->attached_connector->panel.fixed_mode->vrefresh);
5969
5970 dev_priv->drrs.dp = NULL;
5971 mutex_unlock(&dev_priv->drrs.mutex);
5972
5973 cancel_delayed_work_sync(&dev_priv->drrs.work);
5974 }
5975
5976 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5977 {
5978 struct drm_i915_private *dev_priv =
5979 container_of(work, typeof(*dev_priv), drrs.work.work);
5980 struct intel_dp *intel_dp;
5981
5982 mutex_lock(&dev_priv->drrs.mutex);
5983
5984 intel_dp = dev_priv->drrs.dp;
5985
5986 if (!intel_dp)
5987 goto unlock;
5988
5989 /*
5990 * The delayed work can race with an invalidate hence we need to
5991 * recheck.
5992 */
5993
5994 if (dev_priv->drrs.busy_frontbuffer_bits)
5995 goto unlock;
5996
5997 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
5998 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
5999
6000 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
6001 intel_dp->attached_connector->panel.downclock_mode->vrefresh);
6002 }
6003
6004 unlock:
6005 mutex_unlock(&dev_priv->drrs.mutex);
6006 }
6007
6008 /**
6009 * intel_edp_drrs_invalidate - Disable Idleness DRRS
6010 * @dev_priv: i915 device
6011 * @frontbuffer_bits: frontbuffer plane tracking bits
6012 *
6013 * This function gets called everytime rendering on the given planes start.
6014 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
6015 *
6016 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
6017 */
6018 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
6019 unsigned int frontbuffer_bits)
6020 {
6021 struct drm_crtc *crtc;
6022 enum pipe pipe;
6023
6024 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6025 return;
6026
6027 cancel_delayed_work(&dev_priv->drrs.work);
6028
6029 mutex_lock(&dev_priv->drrs.mutex);
6030 if (!dev_priv->drrs.dp) {
6031 mutex_unlock(&dev_priv->drrs.mutex);
6032 return;
6033 }
6034
6035 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
6036 pipe = to_intel_crtc(crtc)->pipe;
6037
6038 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
6039 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
6040
6041 /* invalidate means busy screen hence upclock */
6042 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6043 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
6044 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6045
6046 mutex_unlock(&dev_priv->drrs.mutex);
6047 }
6048
6049 /**
6050 * intel_edp_drrs_flush - Restart Idleness DRRS
6051 * @dev_priv: i915 device
6052 * @frontbuffer_bits: frontbuffer plane tracking bits
6053 *
6054 * This function gets called every time rendering on the given planes has
6055 * completed or flip on a crtc is completed. So DRRS should be upclocked
6056 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
6057 * if no other planes are dirty.
6058 *
6059 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
6060 */
6061 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
6062 unsigned int frontbuffer_bits)
6063 {
6064 struct drm_crtc *crtc;
6065 enum pipe pipe;
6066
6067 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6068 return;
6069
6070 cancel_delayed_work(&dev_priv->drrs.work);
6071
6072 mutex_lock(&dev_priv->drrs.mutex);
6073 if (!dev_priv->drrs.dp) {
6074 mutex_unlock(&dev_priv->drrs.mutex);
6075 return;
6076 }
6077
6078 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
6079 pipe = to_intel_crtc(crtc)->pipe;
6080
6081 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
6082 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
6083
6084 /* flush means busy screen hence upclock */
6085 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6086 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
6087 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6088
6089 /*
6090 * flush also means no more activity hence schedule downclock, if all
6091 * other fbs are quiescent too
6092 */
6093 if (!dev_priv->drrs.busy_frontbuffer_bits)
6094 schedule_delayed_work(&dev_priv->drrs.work,
6095 msecs_to_jiffies(1000));
6096 mutex_unlock(&dev_priv->drrs.mutex);
6097 }
6098
6099 /**
6100 * DOC: Display Refresh Rate Switching (DRRS)
6101 *
6102 * Display Refresh Rate Switching (DRRS) is a power conservation feature
6103 * which enables swtching between low and high refresh rates,
6104 * dynamically, based on the usage scenario. This feature is applicable
6105 * for internal panels.
6106 *
6107 * Indication that the panel supports DRRS is given by the panel EDID, which
6108 * would list multiple refresh rates for one resolution.
6109 *
6110 * DRRS is of 2 types - static and seamless.
6111 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
6112 * (may appear as a blink on screen) and is used in dock-undock scenario.
6113 * Seamless DRRS involves changing RR without any visual effect to the user
6114 * and can be used during normal system usage. This is done by programming
6115 * certain registers.
6116 *
6117 * Support for static/seamless DRRS may be indicated in the VBT based on
6118 * inputs from the panel spec.
6119 *
6120 * DRRS saves power by switching to low RR based on usage scenarios.
6121 *
6122 * The implementation is based on frontbuffer tracking implementation. When
6123 * there is a disturbance on the screen triggered by user activity or a periodic
6124 * system activity, DRRS is disabled (RR is changed to high RR). When there is
6125 * no movement on screen, after a timeout of 1 second, a switch to low RR is
6126 * made.
6127 *
6128 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
6129 * and intel_edp_drrs_flush() are called.
6130 *
6131 * DRRS can be further extended to support other internal panels and also
6132 * the scenario of video playback wherein RR is set based on the rate
6133 * requested by userspace.
6134 */
6135
6136 /**
6137 * intel_dp_drrs_init - Init basic DRRS work and mutex.
6138 * @connector: eDP connector
6139 * @fixed_mode: preferred mode of panel
6140 *
6141 * This function is called only once at driver load to initialize basic
6142 * DRRS stuff.
6143 *
6144 * Returns:
6145 * Downclock mode if panel supports it, else return NULL.
6146 * DRRS support is determined by the presence of downclock mode (apart
6147 * from VBT setting).
6148 */
6149 static struct drm_display_mode *
6150 intel_dp_drrs_init(struct intel_connector *connector,
6151 struct drm_display_mode *fixed_mode)
6152 {
6153 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
6154 struct drm_display_mode *downclock_mode = NULL;
6155
6156 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
6157 mutex_init(&dev_priv->drrs.mutex);
6158
6159 if (INTEL_GEN(dev_priv) <= 6) {
6160 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
6161 return NULL;
6162 }
6163
6164 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
6165 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
6166 return NULL;
6167 }
6168
6169 downclock_mode = intel_find_panel_downclock(dev_priv, fixed_mode,
6170 &connector->base);
6171
6172 if (!downclock_mode) {
6173 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
6174 return NULL;
6175 }
6176
6177 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
6178
6179 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
6180 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
6181 return downclock_mode;
6182 }
6183
6184 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
6185 struct intel_connector *intel_connector)
6186 {
6187 struct drm_device *dev = intel_dp_to_dev(intel_dp);
6188 struct drm_i915_private *dev_priv = to_i915(dev);
6189 struct drm_connector *connector = &intel_connector->base;
6190 struct drm_display_mode *fixed_mode = NULL;
6191 struct drm_display_mode *downclock_mode = NULL;
6192 bool has_dpcd;
6193 struct drm_display_mode *scan;
6194 struct edid *edid;
6195 enum pipe pipe = INVALID_PIPE;
6196
6197 if (!intel_dp_is_edp(intel_dp))
6198 return true;
6199
6200 /*
6201 * On IBX/CPT we may get here with LVDS already registered. Since the
6202 * driver uses the only internal power sequencer available for both
6203 * eDP and LVDS bail out early in this case to prevent interfering
6204 * with an already powered-on LVDS power sequencer.
6205 */
6206 if (intel_get_lvds_encoder(&dev_priv->drm)) {
6207 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
6208 DRM_INFO("LVDS was detected, not registering eDP\n");
6209
6210 return false;
6211 }
6212
6213 pps_lock(intel_dp);
6214
6215 intel_dp_init_panel_power_timestamps(intel_dp);
6216 intel_dp_pps_init(intel_dp);
6217 intel_edp_panel_vdd_sanitize(intel_dp);
6218
6219 pps_unlock(intel_dp);
6220
6221 /* Cache DPCD and EDID for edp. */
6222 has_dpcd = intel_edp_init_dpcd(intel_dp);
6223
6224 if (!has_dpcd) {
6225 /* if this fails, presume the device is a ghost */
6226 DRM_INFO("failed to retrieve link info, disabling eDP\n");
6227 goto out_vdd_off;
6228 }
6229
6230 mutex_lock(&dev->mode_config.mutex);
6231 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
6232 if (edid) {
6233 if (drm_add_edid_modes(connector, edid)) {
6234 drm_connector_update_edid_property(connector,
6235 edid);
6236 } else {
6237 kfree(edid);
6238 edid = ERR_PTR(-EINVAL);
6239 }
6240 } else {
6241 edid = ERR_PTR(-ENOENT);
6242 }
6243 intel_connector->edid = edid;
6244
6245 /* prefer fixed mode from EDID if available */
6246 list_for_each_entry(scan, &connector->probed_modes, head) {
6247 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
6248 fixed_mode = drm_mode_duplicate(dev, scan);
6249 downclock_mode = intel_dp_drrs_init(
6250 intel_connector, fixed_mode);
6251 break;
6252 }
6253 }
6254
6255 /* fallback to VBT if available for eDP */
6256 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
6257 fixed_mode = drm_mode_duplicate(dev,
6258 dev_priv->vbt.lfp_lvds_vbt_mode);
6259 if (fixed_mode) {
6260 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
6261 connector->display_info.width_mm = fixed_mode->width_mm;
6262 connector->display_info.height_mm = fixed_mode->height_mm;
6263 }
6264 }
6265 mutex_unlock(&dev->mode_config.mutex);
6266
6267 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6268 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
6269 register_reboot_notifier(&intel_dp->edp_notifier);
6270
6271 /*
6272 * Figure out the current pipe for the initial backlight setup.
6273 * If the current pipe isn't valid, try the PPS pipe, and if that
6274 * fails just assume pipe A.
6275 */
6276 pipe = vlv_active_pipe(intel_dp);
6277
6278 if (pipe != PIPE_A && pipe != PIPE_B)
6279 pipe = intel_dp->pps_pipe;
6280
6281 if (pipe != PIPE_A && pipe != PIPE_B)
6282 pipe = PIPE_A;
6283
6284 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
6285 pipe_name(pipe));
6286 }
6287
6288 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
6289 intel_connector->panel.backlight.power = intel_edp_backlight_power;
6290 intel_panel_setup_backlight(connector, pipe);
6291
6292 return true;
6293
6294 out_vdd_off:
6295 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6296 /*
6297 * vdd might still be enabled do to the delayed vdd off.
6298 * Make sure vdd is actually turned off here.
6299 */
6300 pps_lock(intel_dp);
6301 edp_panel_vdd_off_sync(intel_dp);
6302 pps_unlock(intel_dp);
6303
6304 return false;
6305 }
6306
6307 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
6308 {
6309 struct intel_connector *intel_connector;
6310 struct drm_connector *connector;
6311
6312 intel_connector = container_of(work, typeof(*intel_connector),
6313 modeset_retry_work);
6314 connector = &intel_connector->base;
6315 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
6316 connector->name);
6317
6318 /* Grab the locks before changing connector property*/
6319 mutex_lock(&connector->dev->mode_config.mutex);
6320 /* Set connector link status to BAD and send a Uevent to notify
6321 * userspace to do a modeset.
6322 */
6323 drm_mode_connector_set_link_status_property(connector,
6324 DRM_MODE_LINK_STATUS_BAD);
6325 mutex_unlock(&connector->dev->mode_config.mutex);
6326 /* Send Hotplug uevent so userspace can reprobe */
6327 drm_kms_helper_hotplug_event(connector->dev);
6328 }
6329
6330 bool
6331 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
6332 struct intel_connector *intel_connector)
6333 {
6334 struct drm_connector *connector = &intel_connector->base;
6335 struct intel_dp *intel_dp = &intel_dig_port->dp;
6336 struct intel_encoder *intel_encoder = &intel_dig_port->base;
6337 struct drm_device *dev = intel_encoder->base.dev;
6338 struct drm_i915_private *dev_priv = to_i915(dev);
6339 enum port port = intel_encoder->port;
6340 int type;
6341
6342 /* Initialize the work for modeset in case of link train failure */
6343 INIT_WORK(&intel_connector->modeset_retry_work,
6344 intel_dp_modeset_retry_work_fn);
6345
6346 if (WARN(intel_dig_port->max_lanes < 1,
6347 "Not enough lanes (%d) for DP on port %c\n",
6348 intel_dig_port->max_lanes, port_name(port)))
6349 return false;
6350
6351 intel_dp_set_source_rates(intel_dp);
6352
6353 intel_dp->reset_link_params = true;
6354 intel_dp->pps_pipe = INVALID_PIPE;
6355 intel_dp->active_pipe = INVALID_PIPE;
6356
6357 /* intel_dp vfuncs */
6358 if (HAS_DDI(dev_priv))
6359 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
6360
6361 /* Preserve the current hw state. */
6362 intel_dp->DP = I915_READ(intel_dp->output_reg);
6363 intel_dp->attached_connector = intel_connector;
6364
6365 if (intel_dp_is_port_edp(dev_priv, port))
6366 type = DRM_MODE_CONNECTOR_eDP;
6367 else
6368 type = DRM_MODE_CONNECTOR_DisplayPort;
6369
6370 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6371 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6372
6373 /*
6374 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
6375 * for DP the encoder type can be set by the caller to
6376 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
6377 */
6378 if (type == DRM_MODE_CONNECTOR_eDP)
6379 intel_encoder->type = INTEL_OUTPUT_EDP;
6380
6381 /* eDP only on port B and/or C on vlv/chv */
6382 if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
6383 intel_dp_is_edp(intel_dp) &&
6384 port != PORT_B && port != PORT_C))
6385 return false;
6386
6387 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
6388 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
6389 port_name(port));
6390
6391 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
6392 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
6393
6394 if (!HAS_GMCH_DISPLAY(dev_priv))
6395 connector->interlace_allowed = true;
6396 connector->doublescan_allowed = 0;
6397
6398 intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
6399
6400 intel_dp_aux_init(intel_dp);
6401
6402 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
6403 edp_panel_vdd_work);
6404
6405 intel_connector_attach_encoder(intel_connector, intel_encoder);
6406
6407 if (HAS_DDI(dev_priv))
6408 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
6409 else
6410 intel_connector->get_hw_state = intel_connector_get_hw_state;
6411
6412 /* init MST on ports that can support it */
6413 if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
6414 (port == PORT_B || port == PORT_C ||
6415 port == PORT_D || port == PORT_F))
6416 intel_dp_mst_encoder_init(intel_dig_port,
6417 intel_connector->base.base.id);
6418
6419 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
6420 intel_dp_aux_fini(intel_dp);
6421 intel_dp_mst_encoder_cleanup(intel_dig_port);
6422 goto fail;
6423 }
6424
6425 intel_dp_add_properties(intel_dp, connector);
6426
6427 if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
6428 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
6429 if (ret)
6430 DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
6431 }
6432
6433 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
6434 * 0xd. Failure to do so will result in spurious interrupts being
6435 * generated on the port when a cable is not attached.
6436 */
6437 if (IS_G45(dev_priv)) {
6438 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
6439 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
6440 }
6441
6442 return true;
6443
6444 fail:
6445 drm_connector_cleanup(connector);
6446
6447 return false;
6448 }
6449
6450 bool intel_dp_init(struct drm_i915_private *dev_priv,
6451 i915_reg_t output_reg,
6452 enum port port)
6453 {
6454 struct intel_digital_port *intel_dig_port;
6455 struct intel_encoder *intel_encoder;
6456 struct drm_encoder *encoder;
6457 struct intel_connector *intel_connector;
6458
6459 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
6460 if (!intel_dig_port)
6461 return false;
6462
6463 intel_connector = intel_connector_alloc();
6464 if (!intel_connector)
6465 goto err_connector_alloc;
6466
6467 intel_encoder = &intel_dig_port->base;
6468 encoder = &intel_encoder->base;
6469
6470 if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
6471 &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
6472 "DP %c", port_name(port)))
6473 goto err_encoder_init;
6474
6475 intel_encoder->hotplug = intel_dp_hotplug;
6476 intel_encoder->compute_config = intel_dp_compute_config;
6477 intel_encoder->get_hw_state = intel_dp_get_hw_state;
6478 intel_encoder->get_config = intel_dp_get_config;
6479 intel_encoder->suspend = intel_dp_encoder_suspend;
6480 if (IS_CHERRYVIEW(dev_priv)) {
6481 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
6482 intel_encoder->pre_enable = chv_pre_enable_dp;
6483 intel_encoder->enable = vlv_enable_dp;
6484 intel_encoder->disable = vlv_disable_dp;
6485 intel_encoder->post_disable = chv_post_disable_dp;
6486 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
6487 } else if (IS_VALLEYVIEW(dev_priv)) {
6488 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
6489 intel_encoder->pre_enable = vlv_pre_enable_dp;
6490 intel_encoder->enable = vlv_enable_dp;
6491 intel_encoder->disable = vlv_disable_dp;
6492 intel_encoder->post_disable = vlv_post_disable_dp;
6493 } else {
6494 intel_encoder->pre_enable = g4x_pre_enable_dp;
6495 intel_encoder->enable = g4x_enable_dp;
6496 intel_encoder->disable = g4x_disable_dp;
6497 intel_encoder->post_disable = g4x_post_disable_dp;
6498 }
6499
6500 intel_dig_port->dp.output_reg = output_reg;
6501 intel_dig_port->max_lanes = 4;
6502
6503 intel_encoder->type = INTEL_OUTPUT_DP;
6504 intel_encoder->power_domain = intel_port_to_power_domain(port);
6505 if (IS_CHERRYVIEW(dev_priv)) {
6506 if (port == PORT_D)
6507 intel_encoder->crtc_mask = 1 << 2;
6508 else
6509 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
6510 } else {
6511 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
6512 }
6513 intel_encoder->cloneable = 0;
6514 intel_encoder->port = port;
6515
6516 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
6517 dev_priv->hotplug.irq_port[port] = intel_dig_port;
6518
6519 if (port != PORT_A)
6520 intel_infoframe_init(intel_dig_port);
6521
6522 if (!intel_dp_init_connector(intel_dig_port, intel_connector))
6523 goto err_init_connector;
6524
6525 return true;
6526
6527 err_init_connector:
6528 drm_encoder_cleanup(encoder);
6529 err_encoder_init:
6530 kfree(intel_connector);
6531 err_connector_alloc:
6532 kfree(intel_dig_port);
6533 return false;
6534 }
6535
6536 void intel_dp_mst_suspend(struct drm_device *dev)
6537 {
6538 struct drm_i915_private *dev_priv = to_i915(dev);
6539 int i;
6540
6541 /* disable MST */
6542 for (i = 0; i < I915_MAX_PORTS; i++) {
6543 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6544
6545 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
6546 continue;
6547
6548 if (intel_dig_port->dp.is_mst)
6549 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
6550 }
6551 }
6552
6553 void intel_dp_mst_resume(struct drm_device *dev)
6554 {
6555 struct drm_i915_private *dev_priv = to_i915(dev);
6556 int i;
6557
6558 for (i = 0; i < I915_MAX_PORTS; i++) {
6559 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6560 int ret;
6561
6562 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
6563 continue;
6564
6565 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
6566 if (ret)
6567 intel_dp_check_mst_status(&intel_dig_port->dp);
6568 }
6569 }