]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/intel_dp.c
drm/i915: force link training when requested by Sink
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 /* Compliance test status bits */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
46 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51 int clock;
52 struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56 { 162000,
57 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58 { 270000,
59 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63 { 162000,
64 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65 { 270000,
66 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70 { 162000,
71 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72 { 270000,
73 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77 * CHV supports eDP 1.4 that have more link rates.
78 * Below only provides the fixed rate but exclude variable rate.
79 */
80 static const struct dp_link_dpll chv_dpll[] = {
81 /*
82 * CHV requires to program fractional division for m2.
83 * m2 is stored in fixed point format using formula below
84 * (m2_int << 22) | m2_fraction
85 */
86 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
87 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88 { 270000, /* m2_int = 27, m2_fraction = 0 */
89 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90 { 540000, /* m2_int = 27, m2_fraction = 0 */
91 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95 324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97 324000, 432000, 540000 };
98 static const int default_rates[] = { 162000, 270000, 540000 };
99
100 /**
101 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
102 * @intel_dp: DP struct
103 *
104 * If a CPU or PCH DP output is attached to an eDP panel, this function
105 * will return true, and false otherwise.
106 */
107 static bool is_edp(struct intel_dp *intel_dp)
108 {
109 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
110
111 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 }
113
114 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115 {
116 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
117
118 return intel_dig_port->base.base.dev;
119 }
120
121 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
122 {
123 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 }
125
126 static void intel_dp_link_down(struct intel_dp *intel_dp);
127 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 static void vlv_steal_power_sequencer(struct drm_device *dev,
131 enum pipe pipe);
132
133 static unsigned int intel_dp_unused_lane_mask(int lane_count)
134 {
135 return ~((1 << lane_count) - 1) & 0xf;
136 }
137
138 static int
139 intel_dp_max_link_bw(struct intel_dp *intel_dp)
140 {
141 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
142
143 switch (max_link_bw) {
144 case DP_LINK_BW_1_62:
145 case DP_LINK_BW_2_7:
146 case DP_LINK_BW_5_4:
147 break;
148 default:
149 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
150 max_link_bw);
151 max_link_bw = DP_LINK_BW_1_62;
152 break;
153 }
154 return max_link_bw;
155 }
156
157 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
158 {
159 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
160 struct drm_device *dev = intel_dig_port->base.base.dev;
161 u8 source_max, sink_max;
162
163 source_max = 4;
164 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
165 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
166 source_max = 2;
167
168 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
169
170 return min(source_max, sink_max);
171 }
172
173 /*
174 * The units on the numbers in the next two are... bizarre. Examples will
175 * make it clearer; this one parallels an example in the eDP spec.
176 *
177 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
178 *
179 * 270000 * 1 * 8 / 10 == 216000
180 *
181 * The actual data capacity of that configuration is 2.16Gbit/s, so the
182 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
183 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
184 * 119000. At 18bpp that's 2142000 kilobits per second.
185 *
186 * Thus the strange-looking division by 10 in intel_dp_link_required, to
187 * get the result in decakilobits instead of kilobits.
188 */
189
190 static int
191 intel_dp_link_required(int pixel_clock, int bpp)
192 {
193 return (pixel_clock * bpp + 9) / 10;
194 }
195
196 static int
197 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
198 {
199 return (max_link_clock * max_lanes * 8) / 10;
200 }
201
202 static enum drm_mode_status
203 intel_dp_mode_valid(struct drm_connector *connector,
204 struct drm_display_mode *mode)
205 {
206 struct intel_dp *intel_dp = intel_attached_dp(connector);
207 struct intel_connector *intel_connector = to_intel_connector(connector);
208 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
209 int target_clock = mode->clock;
210 int max_rate, mode_rate, max_lanes, max_link_clock;
211
212 if (is_edp(intel_dp) && fixed_mode) {
213 if (mode->hdisplay > fixed_mode->hdisplay)
214 return MODE_PANEL;
215
216 if (mode->vdisplay > fixed_mode->vdisplay)
217 return MODE_PANEL;
218
219 target_clock = fixed_mode->clock;
220 }
221
222 max_link_clock = intel_dp_max_link_rate(intel_dp);
223 max_lanes = intel_dp_max_lane_count(intel_dp);
224
225 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
226 mode_rate = intel_dp_link_required(target_clock, 18);
227
228 if (mode_rate > max_rate)
229 return MODE_CLOCK_HIGH;
230
231 if (mode->clock < 10000)
232 return MODE_CLOCK_LOW;
233
234 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
235 return MODE_H_ILLEGAL;
236
237 return MODE_OK;
238 }
239
240 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
241 {
242 int i;
243 uint32_t v = 0;
244
245 if (src_bytes > 4)
246 src_bytes = 4;
247 for (i = 0; i < src_bytes; i++)
248 v |= ((uint32_t) src[i]) << ((3-i) * 8);
249 return v;
250 }
251
252 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
253 {
254 int i;
255 if (dst_bytes > 4)
256 dst_bytes = 4;
257 for (i = 0; i < dst_bytes; i++)
258 dst[i] = src >> ((3-i) * 8);
259 }
260
261 static void
262 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
263 struct intel_dp *intel_dp);
264 static void
265 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
266 struct intel_dp *intel_dp);
267
268 static void pps_lock(struct intel_dp *intel_dp)
269 {
270 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
271 struct intel_encoder *encoder = &intel_dig_port->base;
272 struct drm_device *dev = encoder->base.dev;
273 struct drm_i915_private *dev_priv = dev->dev_private;
274 enum intel_display_power_domain power_domain;
275
276 /*
277 * See vlv_power_sequencer_reset() why we need
278 * a power domain reference here.
279 */
280 power_domain = intel_display_port_power_domain(encoder);
281 intel_display_power_get(dev_priv, power_domain);
282
283 mutex_lock(&dev_priv->pps_mutex);
284 }
285
286 static void pps_unlock(struct intel_dp *intel_dp)
287 {
288 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
289 struct intel_encoder *encoder = &intel_dig_port->base;
290 struct drm_device *dev = encoder->base.dev;
291 struct drm_i915_private *dev_priv = dev->dev_private;
292 enum intel_display_power_domain power_domain;
293
294 mutex_unlock(&dev_priv->pps_mutex);
295
296 power_domain = intel_display_port_power_domain(encoder);
297 intel_display_power_put(dev_priv, power_domain);
298 }
299
300 static void
301 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
302 {
303 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
304 struct drm_device *dev = intel_dig_port->base.base.dev;
305 struct drm_i915_private *dev_priv = dev->dev_private;
306 enum pipe pipe = intel_dp->pps_pipe;
307 bool pll_enabled, release_cl_override = false;
308 enum dpio_phy phy = DPIO_PHY(pipe);
309 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
310 uint32_t DP;
311
312 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
313 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
314 pipe_name(pipe), port_name(intel_dig_port->port)))
315 return;
316
317 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
318 pipe_name(pipe), port_name(intel_dig_port->port));
319
320 /* Preserve the BIOS-computed detected bit. This is
321 * supposed to be read-only.
322 */
323 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
324 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
325 DP |= DP_PORT_WIDTH(1);
326 DP |= DP_LINK_TRAIN_PAT_1;
327
328 if (IS_CHERRYVIEW(dev))
329 DP |= DP_PIPE_SELECT_CHV(pipe);
330 else if (pipe == PIPE_B)
331 DP |= DP_PIPEB_SELECT;
332
333 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
334
335 /*
336 * The DPLL for the pipe must be enabled for this to work.
337 * So enable temporarily it if it's not already enabled.
338 */
339 if (!pll_enabled) {
340 release_cl_override = IS_CHERRYVIEW(dev) &&
341 !chv_phy_powergate_ch(dev_priv, phy, ch, true);
342
343 vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
344 &chv_dpll[0].dpll : &vlv_dpll[0].dpll);
345 }
346
347 /*
348 * Similar magic as in intel_dp_enable_port().
349 * We _must_ do this port enable + disable trick
350 * to make this power seqeuencer lock onto the port.
351 * Otherwise even VDD force bit won't work.
352 */
353 I915_WRITE(intel_dp->output_reg, DP);
354 POSTING_READ(intel_dp->output_reg);
355
356 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
357 POSTING_READ(intel_dp->output_reg);
358
359 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
360 POSTING_READ(intel_dp->output_reg);
361
362 if (!pll_enabled) {
363 vlv_force_pll_off(dev, pipe);
364
365 if (release_cl_override)
366 chv_phy_powergate_ch(dev_priv, phy, ch, false);
367 }
368 }
369
370 static enum pipe
371 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
372 {
373 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
374 struct drm_device *dev = intel_dig_port->base.base.dev;
375 struct drm_i915_private *dev_priv = dev->dev_private;
376 struct intel_encoder *encoder;
377 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
378 enum pipe pipe;
379
380 lockdep_assert_held(&dev_priv->pps_mutex);
381
382 /* We should never land here with regular DP ports */
383 WARN_ON(!is_edp(intel_dp));
384
385 if (intel_dp->pps_pipe != INVALID_PIPE)
386 return intel_dp->pps_pipe;
387
388 /*
389 * We don't have power sequencer currently.
390 * Pick one that's not used by other ports.
391 */
392 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
393 base.head) {
394 struct intel_dp *tmp;
395
396 if (encoder->type != INTEL_OUTPUT_EDP)
397 continue;
398
399 tmp = enc_to_intel_dp(&encoder->base);
400
401 if (tmp->pps_pipe != INVALID_PIPE)
402 pipes &= ~(1 << tmp->pps_pipe);
403 }
404
405 /*
406 * Didn't find one. This should not happen since there
407 * are two power sequencers and up to two eDP ports.
408 */
409 if (WARN_ON(pipes == 0))
410 pipe = PIPE_A;
411 else
412 pipe = ffs(pipes) - 1;
413
414 vlv_steal_power_sequencer(dev, pipe);
415 intel_dp->pps_pipe = pipe;
416
417 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
418 pipe_name(intel_dp->pps_pipe),
419 port_name(intel_dig_port->port));
420
421 /* init power sequencer on this pipe and port */
422 intel_dp_init_panel_power_sequencer(dev, intel_dp);
423 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
424
425 /*
426 * Even vdd force doesn't work until we've made
427 * the power sequencer lock in on the port.
428 */
429 vlv_power_sequencer_kick(intel_dp);
430
431 return intel_dp->pps_pipe;
432 }
433
434 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
435 enum pipe pipe);
436
437 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
438 enum pipe pipe)
439 {
440 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
441 }
442
443 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
444 enum pipe pipe)
445 {
446 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
447 }
448
449 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
450 enum pipe pipe)
451 {
452 return true;
453 }
454
455 static enum pipe
456 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
457 enum port port,
458 vlv_pipe_check pipe_check)
459 {
460 enum pipe pipe;
461
462 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
463 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
464 PANEL_PORT_SELECT_MASK;
465
466 if (port_sel != PANEL_PORT_SELECT_VLV(port))
467 continue;
468
469 if (!pipe_check(dev_priv, pipe))
470 continue;
471
472 return pipe;
473 }
474
475 return INVALID_PIPE;
476 }
477
478 static void
479 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
480 {
481 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
482 struct drm_device *dev = intel_dig_port->base.base.dev;
483 struct drm_i915_private *dev_priv = dev->dev_private;
484 enum port port = intel_dig_port->port;
485
486 lockdep_assert_held(&dev_priv->pps_mutex);
487
488 /* try to find a pipe with this port selected */
489 /* first pick one where the panel is on */
490 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
491 vlv_pipe_has_pp_on);
492 /* didn't find one? pick one where vdd is on */
493 if (intel_dp->pps_pipe == INVALID_PIPE)
494 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
495 vlv_pipe_has_vdd_on);
496 /* didn't find one? pick one with just the correct port */
497 if (intel_dp->pps_pipe == INVALID_PIPE)
498 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
499 vlv_pipe_any);
500
501 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
502 if (intel_dp->pps_pipe == INVALID_PIPE) {
503 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
504 port_name(port));
505 return;
506 }
507
508 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
509 port_name(port), pipe_name(intel_dp->pps_pipe));
510
511 intel_dp_init_panel_power_sequencer(dev, intel_dp);
512 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
513 }
514
515 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
516 {
517 struct drm_device *dev = dev_priv->dev;
518 struct intel_encoder *encoder;
519
520 if (WARN_ON(!IS_VALLEYVIEW(dev)))
521 return;
522
523 /*
524 * We can't grab pps_mutex here due to deadlock with power_domain
525 * mutex when power_domain functions are called while holding pps_mutex.
526 * That also means that in order to use pps_pipe the code needs to
527 * hold both a power domain reference and pps_mutex, and the power domain
528 * reference get/put must be done while _not_ holding pps_mutex.
529 * pps_{lock,unlock}() do these steps in the correct order, so one
530 * should use them always.
531 */
532
533 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
534 struct intel_dp *intel_dp;
535
536 if (encoder->type != INTEL_OUTPUT_EDP)
537 continue;
538
539 intel_dp = enc_to_intel_dp(&encoder->base);
540 intel_dp->pps_pipe = INVALID_PIPE;
541 }
542 }
543
544 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
545 {
546 struct drm_device *dev = intel_dp_to_dev(intel_dp);
547
548 if (IS_BROXTON(dev))
549 return BXT_PP_CONTROL(0);
550 else if (HAS_PCH_SPLIT(dev))
551 return PCH_PP_CONTROL;
552 else
553 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
554 }
555
556 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
557 {
558 struct drm_device *dev = intel_dp_to_dev(intel_dp);
559
560 if (IS_BROXTON(dev))
561 return BXT_PP_STATUS(0);
562 else if (HAS_PCH_SPLIT(dev))
563 return PCH_PP_STATUS;
564 else
565 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
566 }
567
568 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
569 This function only applicable when panel PM state is not to be tracked */
570 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
571 void *unused)
572 {
573 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
574 edp_notifier);
575 struct drm_device *dev = intel_dp_to_dev(intel_dp);
576 struct drm_i915_private *dev_priv = dev->dev_private;
577
578 if (!is_edp(intel_dp) || code != SYS_RESTART)
579 return 0;
580
581 pps_lock(intel_dp);
582
583 if (IS_VALLEYVIEW(dev)) {
584 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
585 u32 pp_ctrl_reg, pp_div_reg;
586 u32 pp_div;
587
588 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
589 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
590 pp_div = I915_READ(pp_div_reg);
591 pp_div &= PP_REFERENCE_DIVIDER_MASK;
592
593 /* 0x1F write to PP_DIV_REG sets max cycle delay */
594 I915_WRITE(pp_div_reg, pp_div | 0x1F);
595 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
596 msleep(intel_dp->panel_power_cycle_delay);
597 }
598
599 pps_unlock(intel_dp);
600
601 return 0;
602 }
603
604 static bool edp_have_panel_power(struct intel_dp *intel_dp)
605 {
606 struct drm_device *dev = intel_dp_to_dev(intel_dp);
607 struct drm_i915_private *dev_priv = dev->dev_private;
608
609 lockdep_assert_held(&dev_priv->pps_mutex);
610
611 if (IS_VALLEYVIEW(dev) &&
612 intel_dp->pps_pipe == INVALID_PIPE)
613 return false;
614
615 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
616 }
617
618 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
619 {
620 struct drm_device *dev = intel_dp_to_dev(intel_dp);
621 struct drm_i915_private *dev_priv = dev->dev_private;
622
623 lockdep_assert_held(&dev_priv->pps_mutex);
624
625 if (IS_VALLEYVIEW(dev) &&
626 intel_dp->pps_pipe == INVALID_PIPE)
627 return false;
628
629 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
630 }
631
632 static void
633 intel_dp_check_edp(struct intel_dp *intel_dp)
634 {
635 struct drm_device *dev = intel_dp_to_dev(intel_dp);
636 struct drm_i915_private *dev_priv = dev->dev_private;
637
638 if (!is_edp(intel_dp))
639 return;
640
641 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
642 WARN(1, "eDP powered off while attempting aux channel communication.\n");
643 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
644 I915_READ(_pp_stat_reg(intel_dp)),
645 I915_READ(_pp_ctrl_reg(intel_dp)));
646 }
647 }
648
649 static uint32_t
650 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
651 {
652 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
653 struct drm_device *dev = intel_dig_port->base.base.dev;
654 struct drm_i915_private *dev_priv = dev->dev_private;
655 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
656 uint32_t status;
657 bool done;
658
659 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
660 if (has_aux_irq)
661 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
662 msecs_to_jiffies_timeout(10));
663 else
664 done = wait_for_atomic(C, 10) == 0;
665 if (!done)
666 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
667 has_aux_irq);
668 #undef C
669
670 return status;
671 }
672
673 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
674 {
675 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
676 struct drm_device *dev = intel_dig_port->base.base.dev;
677
678 /*
679 * The clock divider is based off the hrawclk, and would like to run at
680 * 2MHz. So, take the hrawclk value and divide by 2 and use that
681 */
682 return index ? 0 : intel_hrawclk(dev) / 2;
683 }
684
685 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
686 {
687 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
688 struct drm_device *dev = intel_dig_port->base.base.dev;
689 struct drm_i915_private *dev_priv = dev->dev_private;
690
691 if (index)
692 return 0;
693
694 if (intel_dig_port->port == PORT_A) {
695 return DIV_ROUND_UP(dev_priv->cdclk_freq, 2000);
696
697 } else {
698 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
699 }
700 }
701
702 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
703 {
704 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
705 struct drm_device *dev = intel_dig_port->base.base.dev;
706 struct drm_i915_private *dev_priv = dev->dev_private;
707
708 if (intel_dig_port->port == PORT_A) {
709 if (index)
710 return 0;
711 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
712 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
713 /* Workaround for non-ULT HSW */
714 switch (index) {
715 case 0: return 63;
716 case 1: return 72;
717 default: return 0;
718 }
719 } else {
720 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
721 }
722 }
723
724 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
725 {
726 return index ? 0 : 100;
727 }
728
729 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
730 {
731 /*
732 * SKL doesn't need us to program the AUX clock divider (Hardware will
733 * derive the clock from CDCLK automatically). We still implement the
734 * get_aux_clock_divider vfunc to plug-in into the existing code.
735 */
736 return index ? 0 : 1;
737 }
738
739 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
740 bool has_aux_irq,
741 int send_bytes,
742 uint32_t aux_clock_divider)
743 {
744 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
745 struct drm_device *dev = intel_dig_port->base.base.dev;
746 uint32_t precharge, timeout;
747
748 if (IS_GEN6(dev))
749 precharge = 3;
750 else
751 precharge = 5;
752
753 if (IS_BROADWELL(dev) && intel_dig_port->port == PORT_A)
754 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
755 else
756 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
757
758 return DP_AUX_CH_CTL_SEND_BUSY |
759 DP_AUX_CH_CTL_DONE |
760 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
761 DP_AUX_CH_CTL_TIME_OUT_ERROR |
762 timeout |
763 DP_AUX_CH_CTL_RECEIVE_ERROR |
764 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
765 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
766 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
767 }
768
769 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
770 bool has_aux_irq,
771 int send_bytes,
772 uint32_t unused)
773 {
774 return DP_AUX_CH_CTL_SEND_BUSY |
775 DP_AUX_CH_CTL_DONE |
776 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
777 DP_AUX_CH_CTL_TIME_OUT_ERROR |
778 DP_AUX_CH_CTL_TIME_OUT_1600us |
779 DP_AUX_CH_CTL_RECEIVE_ERROR |
780 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
781 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
782 }
783
784 static int
785 intel_dp_aux_ch(struct intel_dp *intel_dp,
786 const uint8_t *send, int send_bytes,
787 uint8_t *recv, int recv_size)
788 {
789 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
790 struct drm_device *dev = intel_dig_port->base.base.dev;
791 struct drm_i915_private *dev_priv = dev->dev_private;
792 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
793 uint32_t aux_clock_divider;
794 int i, ret, recv_bytes;
795 uint32_t status;
796 int try, clock = 0;
797 bool has_aux_irq = HAS_AUX_IRQ(dev);
798 bool vdd;
799
800 pps_lock(intel_dp);
801
802 /*
803 * We will be called with VDD already enabled for dpcd/edid/oui reads.
804 * In such cases we want to leave VDD enabled and it's up to upper layers
805 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
806 * ourselves.
807 */
808 vdd = edp_panel_vdd_on(intel_dp);
809
810 /* dp aux is extremely sensitive to irq latency, hence request the
811 * lowest possible wakeup latency and so prevent the cpu from going into
812 * deep sleep states.
813 */
814 pm_qos_update_request(&dev_priv->pm_qos, 0);
815
816 intel_dp_check_edp(intel_dp);
817
818 intel_aux_display_runtime_get(dev_priv);
819
820 /* Try to wait for any previous AUX channel activity */
821 for (try = 0; try < 3; try++) {
822 status = I915_READ_NOTRACE(ch_ctl);
823 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
824 break;
825 msleep(1);
826 }
827
828 if (try == 3) {
829 static u32 last_status = -1;
830 const u32 status = I915_READ(ch_ctl);
831
832 if (status != last_status) {
833 WARN(1, "dp_aux_ch not started status 0x%08x\n",
834 status);
835 last_status = status;
836 }
837
838 ret = -EBUSY;
839 goto out;
840 }
841
842 /* Only 5 data registers! */
843 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
844 ret = -E2BIG;
845 goto out;
846 }
847
848 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
849 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
850 has_aux_irq,
851 send_bytes,
852 aux_clock_divider);
853
854 /* Must try at least 3 times according to DP spec */
855 for (try = 0; try < 5; try++) {
856 /* Load the send data into the aux channel data registers */
857 for (i = 0; i < send_bytes; i += 4)
858 I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
859 intel_dp_pack_aux(send + i,
860 send_bytes - i));
861
862 /* Send the command and wait for it to complete */
863 I915_WRITE(ch_ctl, send_ctl);
864
865 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
866
867 /* Clear done status and any errors */
868 I915_WRITE(ch_ctl,
869 status |
870 DP_AUX_CH_CTL_DONE |
871 DP_AUX_CH_CTL_TIME_OUT_ERROR |
872 DP_AUX_CH_CTL_RECEIVE_ERROR);
873
874 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
875 continue;
876
877 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
878 * 400us delay required for errors and timeouts
879 * Timeout errors from the HW already meet this
880 * requirement so skip to next iteration
881 */
882 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
883 usleep_range(400, 500);
884 continue;
885 }
886 if (status & DP_AUX_CH_CTL_DONE)
887 goto done;
888 }
889 }
890
891 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
892 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
893 ret = -EBUSY;
894 goto out;
895 }
896
897 done:
898 /* Check for timeout or receive error.
899 * Timeouts occur when the sink is not connected
900 */
901 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
902 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
903 ret = -EIO;
904 goto out;
905 }
906
907 /* Timeouts occur when the device isn't connected, so they're
908 * "normal" -- don't fill the kernel log with these */
909 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
910 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
911 ret = -ETIMEDOUT;
912 goto out;
913 }
914
915 /* Unload any bytes sent back from the other side */
916 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
917 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
918 if (recv_bytes > recv_size)
919 recv_bytes = recv_size;
920
921 for (i = 0; i < recv_bytes; i += 4)
922 intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
923 recv + i, recv_bytes - i);
924
925 ret = recv_bytes;
926 out:
927 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
928 intel_aux_display_runtime_put(dev_priv);
929
930 if (vdd)
931 edp_panel_vdd_off(intel_dp, false);
932
933 pps_unlock(intel_dp);
934
935 return ret;
936 }
937
938 #define BARE_ADDRESS_SIZE 3
939 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
940 static ssize_t
941 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
942 {
943 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
944 uint8_t txbuf[20], rxbuf[20];
945 size_t txsize, rxsize;
946 int ret;
947
948 txbuf[0] = (msg->request << 4) |
949 ((msg->address >> 16) & 0xf);
950 txbuf[1] = (msg->address >> 8) & 0xff;
951 txbuf[2] = msg->address & 0xff;
952 txbuf[3] = msg->size - 1;
953
954 switch (msg->request & ~DP_AUX_I2C_MOT) {
955 case DP_AUX_NATIVE_WRITE:
956 case DP_AUX_I2C_WRITE:
957 case DP_AUX_I2C_WRITE_STATUS_UPDATE:
958 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
959 rxsize = 2; /* 0 or 1 data bytes */
960
961 if (WARN_ON(txsize > 20))
962 return -E2BIG;
963
964 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
965
966 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
967 if (ret > 0) {
968 msg->reply = rxbuf[0] >> 4;
969
970 if (ret > 1) {
971 /* Number of bytes written in a short write. */
972 ret = clamp_t(int, rxbuf[1], 0, msg->size);
973 } else {
974 /* Return payload size. */
975 ret = msg->size;
976 }
977 }
978 break;
979
980 case DP_AUX_NATIVE_READ:
981 case DP_AUX_I2C_READ:
982 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
983 rxsize = msg->size + 1;
984
985 if (WARN_ON(rxsize > 20))
986 return -E2BIG;
987
988 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
989 if (ret > 0) {
990 msg->reply = rxbuf[0] >> 4;
991 /*
992 * Assume happy day, and copy the data. The caller is
993 * expected to check msg->reply before touching it.
994 *
995 * Return payload size.
996 */
997 ret--;
998 memcpy(msg->buffer, rxbuf + 1, ret);
999 }
1000 break;
1001
1002 default:
1003 ret = -EINVAL;
1004 break;
1005 }
1006
1007 return ret;
1008 }
1009
1010 static uint32_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1011 enum port port)
1012 {
1013 switch (port) {
1014 case PORT_B:
1015 case PORT_C:
1016 case PORT_D:
1017 return DP_AUX_CH_CTL(port);
1018 default:
1019 MISSING_CASE(port);
1020 return DP_AUX_CH_CTL(PORT_B);
1021 }
1022 }
1023
1024 static uint32_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1025 enum port port, int index)
1026 {
1027 switch (port) {
1028 case PORT_B:
1029 case PORT_C:
1030 case PORT_D:
1031 return DP_AUX_CH_DATA(port, index);
1032 default:
1033 MISSING_CASE(port);
1034 return DP_AUX_CH_DATA(PORT_B, index);
1035 }
1036 }
1037
1038 static uint32_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1039 enum port port)
1040 {
1041 switch (port) {
1042 case PORT_A:
1043 return DP_AUX_CH_CTL(port);
1044 case PORT_B:
1045 case PORT_C:
1046 case PORT_D:
1047 return PCH_DP_AUX_CH_CTL(port);
1048 default:
1049 MISSING_CASE(port);
1050 return DP_AUX_CH_CTL(PORT_A);
1051 }
1052 }
1053
1054 static uint32_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1055 enum port port, int index)
1056 {
1057 switch (port) {
1058 case PORT_A:
1059 return DP_AUX_CH_DATA(port, index);
1060 case PORT_B:
1061 case PORT_C:
1062 case PORT_D:
1063 return PCH_DP_AUX_CH_DATA(port, index);
1064 default:
1065 MISSING_CASE(port);
1066 return DP_AUX_CH_DATA(PORT_A, index);
1067 }
1068 }
1069
1070 /*
1071 * On SKL we don't have Aux for port E so we rely
1072 * on VBT to set a proper alternate aux channel.
1073 */
1074 static enum port skl_porte_aux_port(struct drm_i915_private *dev_priv)
1075 {
1076 const struct ddi_vbt_port_info *info =
1077 &dev_priv->vbt.ddi_port_info[PORT_E];
1078
1079 switch (info->alternate_aux_channel) {
1080 case DP_AUX_A:
1081 return PORT_A;
1082 case DP_AUX_B:
1083 return PORT_B;
1084 case DP_AUX_C:
1085 return PORT_C;
1086 case DP_AUX_D:
1087 return PORT_D;
1088 default:
1089 MISSING_CASE(info->alternate_aux_channel);
1090 return PORT_A;
1091 }
1092 }
1093
1094 static uint32_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1095 enum port port)
1096 {
1097 if (port == PORT_E)
1098 port = skl_porte_aux_port(dev_priv);
1099
1100 switch (port) {
1101 case PORT_A:
1102 case PORT_B:
1103 case PORT_C:
1104 case PORT_D:
1105 return DP_AUX_CH_CTL(port);
1106 default:
1107 MISSING_CASE(port);
1108 return DP_AUX_CH_CTL(PORT_A);
1109 }
1110 }
1111
1112 static uint32_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1113 enum port port, int index)
1114 {
1115 if (port == PORT_E)
1116 port = skl_porte_aux_port(dev_priv);
1117
1118 switch (port) {
1119 case PORT_A:
1120 case PORT_B:
1121 case PORT_C:
1122 case PORT_D:
1123 return DP_AUX_CH_DATA(port, index);
1124 default:
1125 MISSING_CASE(port);
1126 return DP_AUX_CH_DATA(PORT_A, index);
1127 }
1128 }
1129
1130 static uint32_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1131 enum port port)
1132 {
1133 if (INTEL_INFO(dev_priv)->gen >= 9)
1134 return skl_aux_ctl_reg(dev_priv, port);
1135 else if (HAS_PCH_SPLIT(dev_priv))
1136 return ilk_aux_ctl_reg(dev_priv, port);
1137 else
1138 return g4x_aux_ctl_reg(dev_priv, port);
1139 }
1140
1141 static uint32_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1142 enum port port, int index)
1143 {
1144 if (INTEL_INFO(dev_priv)->gen >= 9)
1145 return skl_aux_data_reg(dev_priv, port, index);
1146 else if (HAS_PCH_SPLIT(dev_priv))
1147 return ilk_aux_data_reg(dev_priv, port, index);
1148 else
1149 return g4x_aux_data_reg(dev_priv, port, index);
1150 }
1151
1152 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1153 {
1154 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1155 enum port port = dp_to_dig_port(intel_dp)->port;
1156 int i;
1157
1158 intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1159 for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1160 intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1161 }
1162
1163 static void
1164 intel_dp_aux_fini(struct intel_dp *intel_dp)
1165 {
1166 drm_dp_aux_unregister(&intel_dp->aux);
1167 kfree(intel_dp->aux.name);
1168 }
1169
1170 static int
1171 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1172 {
1173 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1174 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1175 enum port port = intel_dig_port->port;
1176 int ret;
1177
1178 intel_aux_reg_init(intel_dp);
1179
1180 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1181 if (!intel_dp->aux.name)
1182 return -ENOMEM;
1183
1184 intel_dp->aux.dev = dev->dev;
1185 intel_dp->aux.transfer = intel_dp_aux_transfer;
1186
1187 DRM_DEBUG_KMS("registering %s bus for %s\n",
1188 intel_dp->aux.name,
1189 connector->base.kdev->kobj.name);
1190
1191 ret = drm_dp_aux_register(&intel_dp->aux);
1192 if (ret < 0) {
1193 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1194 intel_dp->aux.name, ret);
1195 kfree(intel_dp->aux.name);
1196 return ret;
1197 }
1198
1199 ret = sysfs_create_link(&connector->base.kdev->kobj,
1200 &intel_dp->aux.ddc.dev.kobj,
1201 intel_dp->aux.ddc.dev.kobj.name);
1202 if (ret < 0) {
1203 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n",
1204 intel_dp->aux.name, ret);
1205 intel_dp_aux_fini(intel_dp);
1206 return ret;
1207 }
1208
1209 return 0;
1210 }
1211
1212 static void
1213 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1214 {
1215 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1216
1217 if (!intel_connector->mst_port)
1218 sysfs_remove_link(&intel_connector->base.kdev->kobj,
1219 intel_dp->aux.ddc.dev.kobj.name);
1220 intel_connector_unregister(intel_connector);
1221 }
1222
1223 static void
1224 skl_edp_set_pll_config(struct intel_crtc_state *pipe_config)
1225 {
1226 u32 ctrl1;
1227
1228 memset(&pipe_config->dpll_hw_state, 0,
1229 sizeof(pipe_config->dpll_hw_state));
1230
1231 pipe_config->ddi_pll_sel = SKL_DPLL0;
1232 pipe_config->dpll_hw_state.cfgcr1 = 0;
1233 pipe_config->dpll_hw_state.cfgcr2 = 0;
1234
1235 ctrl1 = DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
1236 switch (pipe_config->port_clock / 2) {
1237 case 81000:
1238 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
1239 SKL_DPLL0);
1240 break;
1241 case 135000:
1242 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350,
1243 SKL_DPLL0);
1244 break;
1245 case 270000:
1246 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700,
1247 SKL_DPLL0);
1248 break;
1249 case 162000:
1250 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620,
1251 SKL_DPLL0);
1252 break;
1253 /* TBD: For DP link rates 2.16 GHz and 4.32 GHz, VCO is 8640 which
1254 results in CDCLK change. Need to handle the change of CDCLK by
1255 disabling pipes and re-enabling them */
1256 case 108000:
1257 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
1258 SKL_DPLL0);
1259 break;
1260 case 216000:
1261 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160,
1262 SKL_DPLL0);
1263 break;
1264
1265 }
1266 pipe_config->dpll_hw_state.ctrl1 = ctrl1;
1267 }
1268
1269 void
1270 hsw_dp_set_ddi_pll_sel(struct intel_crtc_state *pipe_config)
1271 {
1272 memset(&pipe_config->dpll_hw_state, 0,
1273 sizeof(pipe_config->dpll_hw_state));
1274
1275 switch (pipe_config->port_clock / 2) {
1276 case 81000:
1277 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
1278 break;
1279 case 135000:
1280 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
1281 break;
1282 case 270000:
1283 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
1284 break;
1285 }
1286 }
1287
1288 static int
1289 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1290 {
1291 if (intel_dp->num_sink_rates) {
1292 *sink_rates = intel_dp->sink_rates;
1293 return intel_dp->num_sink_rates;
1294 }
1295
1296 *sink_rates = default_rates;
1297
1298 return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1299 }
1300
1301 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1302 {
1303 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1304 struct drm_device *dev = dig_port->base.base.dev;
1305
1306 /* WaDisableHBR2:skl */
1307 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0))
1308 return false;
1309
1310 if ((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || IS_BROADWELL(dev) ||
1311 (INTEL_INFO(dev)->gen >= 9))
1312 return true;
1313 else
1314 return false;
1315 }
1316
1317 static int
1318 intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1319 {
1320 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1321 struct drm_device *dev = dig_port->base.base.dev;
1322 int size;
1323
1324 if (IS_BROXTON(dev)) {
1325 *source_rates = bxt_rates;
1326 size = ARRAY_SIZE(bxt_rates);
1327 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1328 *source_rates = skl_rates;
1329 size = ARRAY_SIZE(skl_rates);
1330 } else {
1331 *source_rates = default_rates;
1332 size = ARRAY_SIZE(default_rates);
1333 }
1334
1335 /* This depends on the fact that 5.4 is last value in the array */
1336 if (!intel_dp_source_supports_hbr2(intel_dp))
1337 size--;
1338
1339 return size;
1340 }
1341
1342 static void
1343 intel_dp_set_clock(struct intel_encoder *encoder,
1344 struct intel_crtc_state *pipe_config)
1345 {
1346 struct drm_device *dev = encoder->base.dev;
1347 const struct dp_link_dpll *divisor = NULL;
1348 int i, count = 0;
1349
1350 if (IS_G4X(dev)) {
1351 divisor = gen4_dpll;
1352 count = ARRAY_SIZE(gen4_dpll);
1353 } else if (HAS_PCH_SPLIT(dev)) {
1354 divisor = pch_dpll;
1355 count = ARRAY_SIZE(pch_dpll);
1356 } else if (IS_CHERRYVIEW(dev)) {
1357 divisor = chv_dpll;
1358 count = ARRAY_SIZE(chv_dpll);
1359 } else if (IS_VALLEYVIEW(dev)) {
1360 divisor = vlv_dpll;
1361 count = ARRAY_SIZE(vlv_dpll);
1362 }
1363
1364 if (divisor && count) {
1365 for (i = 0; i < count; i++) {
1366 if (pipe_config->port_clock == divisor[i].clock) {
1367 pipe_config->dpll = divisor[i].dpll;
1368 pipe_config->clock_set = true;
1369 break;
1370 }
1371 }
1372 }
1373 }
1374
1375 static int intersect_rates(const int *source_rates, int source_len,
1376 const int *sink_rates, int sink_len,
1377 int *common_rates)
1378 {
1379 int i = 0, j = 0, k = 0;
1380
1381 while (i < source_len && j < sink_len) {
1382 if (source_rates[i] == sink_rates[j]) {
1383 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1384 return k;
1385 common_rates[k] = source_rates[i];
1386 ++k;
1387 ++i;
1388 ++j;
1389 } else if (source_rates[i] < sink_rates[j]) {
1390 ++i;
1391 } else {
1392 ++j;
1393 }
1394 }
1395 return k;
1396 }
1397
1398 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1399 int *common_rates)
1400 {
1401 const int *source_rates, *sink_rates;
1402 int source_len, sink_len;
1403
1404 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1405 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1406
1407 return intersect_rates(source_rates, source_len,
1408 sink_rates, sink_len,
1409 common_rates);
1410 }
1411
1412 static void snprintf_int_array(char *str, size_t len,
1413 const int *array, int nelem)
1414 {
1415 int i;
1416
1417 str[0] = '\0';
1418
1419 for (i = 0; i < nelem; i++) {
1420 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1421 if (r >= len)
1422 return;
1423 str += r;
1424 len -= r;
1425 }
1426 }
1427
1428 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1429 {
1430 const int *source_rates, *sink_rates;
1431 int source_len, sink_len, common_len;
1432 int common_rates[DP_MAX_SUPPORTED_RATES];
1433 char str[128]; /* FIXME: too big for stack? */
1434
1435 if ((drm_debug & DRM_UT_KMS) == 0)
1436 return;
1437
1438 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1439 snprintf_int_array(str, sizeof(str), source_rates, source_len);
1440 DRM_DEBUG_KMS("source rates: %s\n", str);
1441
1442 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1443 snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1444 DRM_DEBUG_KMS("sink rates: %s\n", str);
1445
1446 common_len = intel_dp_common_rates(intel_dp, common_rates);
1447 snprintf_int_array(str, sizeof(str), common_rates, common_len);
1448 DRM_DEBUG_KMS("common rates: %s\n", str);
1449 }
1450
1451 static int rate_to_index(int find, const int *rates)
1452 {
1453 int i = 0;
1454
1455 for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1456 if (find == rates[i])
1457 break;
1458
1459 return i;
1460 }
1461
1462 int
1463 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1464 {
1465 int rates[DP_MAX_SUPPORTED_RATES] = {};
1466 int len;
1467
1468 len = intel_dp_common_rates(intel_dp, rates);
1469 if (WARN_ON(len <= 0))
1470 return 162000;
1471
1472 return rates[rate_to_index(0, rates) - 1];
1473 }
1474
1475 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1476 {
1477 return rate_to_index(rate, intel_dp->sink_rates);
1478 }
1479
1480 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1481 uint8_t *link_bw, uint8_t *rate_select)
1482 {
1483 if (intel_dp->num_sink_rates) {
1484 *link_bw = 0;
1485 *rate_select =
1486 intel_dp_rate_select(intel_dp, port_clock);
1487 } else {
1488 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1489 *rate_select = 0;
1490 }
1491 }
1492
1493 bool
1494 intel_dp_compute_config(struct intel_encoder *encoder,
1495 struct intel_crtc_state *pipe_config)
1496 {
1497 struct drm_device *dev = encoder->base.dev;
1498 struct drm_i915_private *dev_priv = dev->dev_private;
1499 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1500 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1501 enum port port = dp_to_dig_port(intel_dp)->port;
1502 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1503 struct intel_connector *intel_connector = intel_dp->attached_connector;
1504 int lane_count, clock;
1505 int min_lane_count = 1;
1506 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1507 /* Conveniently, the link BW constants become indices with a shift...*/
1508 int min_clock = 0;
1509 int max_clock;
1510 int bpp, mode_rate;
1511 int link_avail, link_clock;
1512 int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1513 int common_len;
1514 uint8_t link_bw, rate_select;
1515
1516 common_len = intel_dp_common_rates(intel_dp, common_rates);
1517
1518 /* No common link rates between source and sink */
1519 WARN_ON(common_len <= 0);
1520
1521 max_clock = common_len - 1;
1522
1523 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1524 pipe_config->has_pch_encoder = true;
1525
1526 pipe_config->has_dp_encoder = true;
1527 pipe_config->has_drrs = false;
1528 pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1529
1530 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1531 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1532 adjusted_mode);
1533
1534 if (INTEL_INFO(dev)->gen >= 9) {
1535 int ret;
1536 ret = skl_update_scaler_crtc(pipe_config);
1537 if (ret)
1538 return ret;
1539 }
1540
1541 if (HAS_GMCH_DISPLAY(dev))
1542 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1543 intel_connector->panel.fitting_mode);
1544 else
1545 intel_pch_panel_fitting(intel_crtc, pipe_config,
1546 intel_connector->panel.fitting_mode);
1547 }
1548
1549 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1550 return false;
1551
1552 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1553 "max bw %d pixel clock %iKHz\n",
1554 max_lane_count, common_rates[max_clock],
1555 adjusted_mode->crtc_clock);
1556
1557 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1558 * bpc in between. */
1559 bpp = pipe_config->pipe_bpp;
1560 if (is_edp(intel_dp)) {
1561
1562 /* Get bpp from vbt only for panels that dont have bpp in edid */
1563 if (intel_connector->base.display_info.bpc == 0 &&
1564 (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp)) {
1565 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1566 dev_priv->vbt.edp_bpp);
1567 bpp = dev_priv->vbt.edp_bpp;
1568 }
1569
1570 /*
1571 * Use the maximum clock and number of lanes the eDP panel
1572 * advertizes being capable of. The panels are generally
1573 * designed to support only a single clock and lane
1574 * configuration, and typically these values correspond to the
1575 * native resolution of the panel.
1576 */
1577 min_lane_count = max_lane_count;
1578 min_clock = max_clock;
1579 }
1580
1581 for (; bpp >= 6*3; bpp -= 2*3) {
1582 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1583 bpp);
1584
1585 for (clock = min_clock; clock <= max_clock; clock++) {
1586 for (lane_count = min_lane_count;
1587 lane_count <= max_lane_count;
1588 lane_count <<= 1) {
1589
1590 link_clock = common_rates[clock];
1591 link_avail = intel_dp_max_data_rate(link_clock,
1592 lane_count);
1593
1594 if (mode_rate <= link_avail) {
1595 goto found;
1596 }
1597 }
1598 }
1599 }
1600
1601 return false;
1602
1603 found:
1604 if (intel_dp->color_range_auto) {
1605 /*
1606 * See:
1607 * CEA-861-E - 5.1 Default Encoding Parameters
1608 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1609 */
1610 pipe_config->limited_color_range =
1611 bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1612 } else {
1613 pipe_config->limited_color_range =
1614 intel_dp->limited_color_range;
1615 }
1616
1617 pipe_config->lane_count = lane_count;
1618
1619 pipe_config->pipe_bpp = bpp;
1620 pipe_config->port_clock = common_rates[clock];
1621
1622 intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1623 &link_bw, &rate_select);
1624
1625 DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1626 link_bw, rate_select, pipe_config->lane_count,
1627 pipe_config->port_clock, bpp);
1628 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1629 mode_rate, link_avail);
1630
1631 intel_link_compute_m_n(bpp, lane_count,
1632 adjusted_mode->crtc_clock,
1633 pipe_config->port_clock,
1634 &pipe_config->dp_m_n);
1635
1636 if (intel_connector->panel.downclock_mode != NULL &&
1637 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1638 pipe_config->has_drrs = true;
1639 intel_link_compute_m_n(bpp, lane_count,
1640 intel_connector->panel.downclock_mode->clock,
1641 pipe_config->port_clock,
1642 &pipe_config->dp_m2_n2);
1643 }
1644
1645 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) && is_edp(intel_dp))
1646 skl_edp_set_pll_config(pipe_config);
1647 else if (IS_BROXTON(dev))
1648 /* handled in ddi */;
1649 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1650 hsw_dp_set_ddi_pll_sel(pipe_config);
1651 else
1652 intel_dp_set_clock(encoder, pipe_config);
1653
1654 return true;
1655 }
1656
1657 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1658 const struct intel_crtc_state *pipe_config)
1659 {
1660 intel_dp->link_rate = pipe_config->port_clock;
1661 intel_dp->lane_count = pipe_config->lane_count;
1662 }
1663
1664 static void intel_dp_prepare(struct intel_encoder *encoder)
1665 {
1666 struct drm_device *dev = encoder->base.dev;
1667 struct drm_i915_private *dev_priv = dev->dev_private;
1668 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1669 enum port port = dp_to_dig_port(intel_dp)->port;
1670 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1671 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1672
1673 intel_dp_set_link_params(intel_dp, crtc->config);
1674
1675 /*
1676 * There are four kinds of DP registers:
1677 *
1678 * IBX PCH
1679 * SNB CPU
1680 * IVB CPU
1681 * CPT PCH
1682 *
1683 * IBX PCH and CPU are the same for almost everything,
1684 * except that the CPU DP PLL is configured in this
1685 * register
1686 *
1687 * CPT PCH is quite different, having many bits moved
1688 * to the TRANS_DP_CTL register instead. That
1689 * configuration happens (oddly) in ironlake_pch_enable
1690 */
1691
1692 /* Preserve the BIOS-computed detected bit. This is
1693 * supposed to be read-only.
1694 */
1695 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1696
1697 /* Handle DP bits in common between all three register formats */
1698 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1699 intel_dp->DP |= DP_PORT_WIDTH(crtc->config->lane_count);
1700
1701 /* Split out the IBX/CPU vs CPT settings */
1702
1703 if (IS_GEN7(dev) && port == PORT_A) {
1704 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1705 intel_dp->DP |= DP_SYNC_HS_HIGH;
1706 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1707 intel_dp->DP |= DP_SYNC_VS_HIGH;
1708 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1709
1710 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1711 intel_dp->DP |= DP_ENHANCED_FRAMING;
1712
1713 intel_dp->DP |= crtc->pipe << 29;
1714 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1715 u32 trans_dp;
1716
1717 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1718
1719 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1720 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1721 trans_dp |= TRANS_DP_ENH_FRAMING;
1722 else
1723 trans_dp &= ~TRANS_DP_ENH_FRAMING;
1724 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1725 } else {
1726 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1727 crtc->config->limited_color_range)
1728 intel_dp->DP |= DP_COLOR_RANGE_16_235;
1729
1730 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1731 intel_dp->DP |= DP_SYNC_HS_HIGH;
1732 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1733 intel_dp->DP |= DP_SYNC_VS_HIGH;
1734 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1735
1736 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1737 intel_dp->DP |= DP_ENHANCED_FRAMING;
1738
1739 if (IS_CHERRYVIEW(dev))
1740 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1741 else if (crtc->pipe == PIPE_B)
1742 intel_dp->DP |= DP_PIPEB_SELECT;
1743 }
1744 }
1745
1746 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1747 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1748
1749 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1750 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1751
1752 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1753 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1754
1755 static void wait_panel_status(struct intel_dp *intel_dp,
1756 u32 mask,
1757 u32 value)
1758 {
1759 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1760 struct drm_i915_private *dev_priv = dev->dev_private;
1761 u32 pp_stat_reg, pp_ctrl_reg;
1762
1763 lockdep_assert_held(&dev_priv->pps_mutex);
1764
1765 pp_stat_reg = _pp_stat_reg(intel_dp);
1766 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1767
1768 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1769 mask, value,
1770 I915_READ(pp_stat_reg),
1771 I915_READ(pp_ctrl_reg));
1772
1773 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1774 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1775 I915_READ(pp_stat_reg),
1776 I915_READ(pp_ctrl_reg));
1777 }
1778
1779 DRM_DEBUG_KMS("Wait complete\n");
1780 }
1781
1782 static void wait_panel_on(struct intel_dp *intel_dp)
1783 {
1784 DRM_DEBUG_KMS("Wait for panel power on\n");
1785 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1786 }
1787
1788 static void wait_panel_off(struct intel_dp *intel_dp)
1789 {
1790 DRM_DEBUG_KMS("Wait for panel power off time\n");
1791 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1792 }
1793
1794 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1795 {
1796 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1797
1798 /* When we disable the VDD override bit last we have to do the manual
1799 * wait. */
1800 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1801 intel_dp->panel_power_cycle_delay);
1802
1803 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1804 }
1805
1806 static void wait_backlight_on(struct intel_dp *intel_dp)
1807 {
1808 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1809 intel_dp->backlight_on_delay);
1810 }
1811
1812 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1813 {
1814 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1815 intel_dp->backlight_off_delay);
1816 }
1817
1818 /* Read the current pp_control value, unlocking the register if it
1819 * is locked
1820 */
1821
1822 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1823 {
1824 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1825 struct drm_i915_private *dev_priv = dev->dev_private;
1826 u32 control;
1827
1828 lockdep_assert_held(&dev_priv->pps_mutex);
1829
1830 control = I915_READ(_pp_ctrl_reg(intel_dp));
1831 if (!IS_BROXTON(dev)) {
1832 control &= ~PANEL_UNLOCK_MASK;
1833 control |= PANEL_UNLOCK_REGS;
1834 }
1835 return control;
1836 }
1837
1838 /*
1839 * Must be paired with edp_panel_vdd_off().
1840 * Must hold pps_mutex around the whole on/off sequence.
1841 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1842 */
1843 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1844 {
1845 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1846 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1847 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1848 struct drm_i915_private *dev_priv = dev->dev_private;
1849 enum intel_display_power_domain power_domain;
1850 u32 pp;
1851 u32 pp_stat_reg, pp_ctrl_reg;
1852 bool need_to_disable = !intel_dp->want_panel_vdd;
1853
1854 lockdep_assert_held(&dev_priv->pps_mutex);
1855
1856 if (!is_edp(intel_dp))
1857 return false;
1858
1859 cancel_delayed_work(&intel_dp->panel_vdd_work);
1860 intel_dp->want_panel_vdd = true;
1861
1862 if (edp_have_panel_vdd(intel_dp))
1863 return need_to_disable;
1864
1865 power_domain = intel_display_port_power_domain(intel_encoder);
1866 intel_display_power_get(dev_priv, power_domain);
1867
1868 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1869 port_name(intel_dig_port->port));
1870
1871 if (!edp_have_panel_power(intel_dp))
1872 wait_panel_power_cycle(intel_dp);
1873
1874 pp = ironlake_get_pp_control(intel_dp);
1875 pp |= EDP_FORCE_VDD;
1876
1877 pp_stat_reg = _pp_stat_reg(intel_dp);
1878 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1879
1880 I915_WRITE(pp_ctrl_reg, pp);
1881 POSTING_READ(pp_ctrl_reg);
1882 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1883 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1884 /*
1885 * If the panel wasn't on, delay before accessing aux channel
1886 */
1887 if (!edp_have_panel_power(intel_dp)) {
1888 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1889 port_name(intel_dig_port->port));
1890 msleep(intel_dp->panel_power_up_delay);
1891 }
1892
1893 return need_to_disable;
1894 }
1895
1896 /*
1897 * Must be paired with intel_edp_panel_vdd_off() or
1898 * intel_edp_panel_off().
1899 * Nested calls to these functions are not allowed since
1900 * we drop the lock. Caller must use some higher level
1901 * locking to prevent nested calls from other threads.
1902 */
1903 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1904 {
1905 bool vdd;
1906
1907 if (!is_edp(intel_dp))
1908 return;
1909
1910 pps_lock(intel_dp);
1911 vdd = edp_panel_vdd_on(intel_dp);
1912 pps_unlock(intel_dp);
1913
1914 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1915 port_name(dp_to_dig_port(intel_dp)->port));
1916 }
1917
1918 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1919 {
1920 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1921 struct drm_i915_private *dev_priv = dev->dev_private;
1922 struct intel_digital_port *intel_dig_port =
1923 dp_to_dig_port(intel_dp);
1924 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1925 enum intel_display_power_domain power_domain;
1926 u32 pp;
1927 u32 pp_stat_reg, pp_ctrl_reg;
1928
1929 lockdep_assert_held(&dev_priv->pps_mutex);
1930
1931 WARN_ON(intel_dp->want_panel_vdd);
1932
1933 if (!edp_have_panel_vdd(intel_dp))
1934 return;
1935
1936 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1937 port_name(intel_dig_port->port));
1938
1939 pp = ironlake_get_pp_control(intel_dp);
1940 pp &= ~EDP_FORCE_VDD;
1941
1942 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1943 pp_stat_reg = _pp_stat_reg(intel_dp);
1944
1945 I915_WRITE(pp_ctrl_reg, pp);
1946 POSTING_READ(pp_ctrl_reg);
1947
1948 /* Make sure sequencer is idle before allowing subsequent activity */
1949 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1950 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1951
1952 if ((pp & POWER_TARGET_ON) == 0)
1953 intel_dp->last_power_cycle = jiffies;
1954
1955 power_domain = intel_display_port_power_domain(intel_encoder);
1956 intel_display_power_put(dev_priv, power_domain);
1957 }
1958
1959 static void edp_panel_vdd_work(struct work_struct *__work)
1960 {
1961 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1962 struct intel_dp, panel_vdd_work);
1963
1964 pps_lock(intel_dp);
1965 if (!intel_dp->want_panel_vdd)
1966 edp_panel_vdd_off_sync(intel_dp);
1967 pps_unlock(intel_dp);
1968 }
1969
1970 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1971 {
1972 unsigned long delay;
1973
1974 /*
1975 * Queue the timer to fire a long time from now (relative to the power
1976 * down delay) to keep the panel power up across a sequence of
1977 * operations.
1978 */
1979 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1980 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1981 }
1982
1983 /*
1984 * Must be paired with edp_panel_vdd_on().
1985 * Must hold pps_mutex around the whole on/off sequence.
1986 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1987 */
1988 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1989 {
1990 struct drm_i915_private *dev_priv =
1991 intel_dp_to_dev(intel_dp)->dev_private;
1992
1993 lockdep_assert_held(&dev_priv->pps_mutex);
1994
1995 if (!is_edp(intel_dp))
1996 return;
1997
1998 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
1999 port_name(dp_to_dig_port(intel_dp)->port));
2000
2001 intel_dp->want_panel_vdd = false;
2002
2003 if (sync)
2004 edp_panel_vdd_off_sync(intel_dp);
2005 else
2006 edp_panel_vdd_schedule_off(intel_dp);
2007 }
2008
2009 static void edp_panel_on(struct intel_dp *intel_dp)
2010 {
2011 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2012 struct drm_i915_private *dev_priv = dev->dev_private;
2013 u32 pp;
2014 u32 pp_ctrl_reg;
2015
2016 lockdep_assert_held(&dev_priv->pps_mutex);
2017
2018 if (!is_edp(intel_dp))
2019 return;
2020
2021 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2022 port_name(dp_to_dig_port(intel_dp)->port));
2023
2024 if (WARN(edp_have_panel_power(intel_dp),
2025 "eDP port %c panel power already on\n",
2026 port_name(dp_to_dig_port(intel_dp)->port)))
2027 return;
2028
2029 wait_panel_power_cycle(intel_dp);
2030
2031 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2032 pp = ironlake_get_pp_control(intel_dp);
2033 if (IS_GEN5(dev)) {
2034 /* ILK workaround: disable reset around power sequence */
2035 pp &= ~PANEL_POWER_RESET;
2036 I915_WRITE(pp_ctrl_reg, pp);
2037 POSTING_READ(pp_ctrl_reg);
2038 }
2039
2040 pp |= POWER_TARGET_ON;
2041 if (!IS_GEN5(dev))
2042 pp |= PANEL_POWER_RESET;
2043
2044 I915_WRITE(pp_ctrl_reg, pp);
2045 POSTING_READ(pp_ctrl_reg);
2046
2047 wait_panel_on(intel_dp);
2048 intel_dp->last_power_on = jiffies;
2049
2050 if (IS_GEN5(dev)) {
2051 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2052 I915_WRITE(pp_ctrl_reg, pp);
2053 POSTING_READ(pp_ctrl_reg);
2054 }
2055 }
2056
2057 void intel_edp_panel_on(struct intel_dp *intel_dp)
2058 {
2059 if (!is_edp(intel_dp))
2060 return;
2061
2062 pps_lock(intel_dp);
2063 edp_panel_on(intel_dp);
2064 pps_unlock(intel_dp);
2065 }
2066
2067
2068 static void edp_panel_off(struct intel_dp *intel_dp)
2069 {
2070 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2071 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2072 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2073 struct drm_i915_private *dev_priv = dev->dev_private;
2074 enum intel_display_power_domain power_domain;
2075 u32 pp;
2076 u32 pp_ctrl_reg;
2077
2078 lockdep_assert_held(&dev_priv->pps_mutex);
2079
2080 if (!is_edp(intel_dp))
2081 return;
2082
2083 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2084 port_name(dp_to_dig_port(intel_dp)->port));
2085
2086 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2087 port_name(dp_to_dig_port(intel_dp)->port));
2088
2089 pp = ironlake_get_pp_control(intel_dp);
2090 /* We need to switch off panel power _and_ force vdd, for otherwise some
2091 * panels get very unhappy and cease to work. */
2092 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2093 EDP_BLC_ENABLE);
2094
2095 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2096
2097 intel_dp->want_panel_vdd = false;
2098
2099 I915_WRITE(pp_ctrl_reg, pp);
2100 POSTING_READ(pp_ctrl_reg);
2101
2102 intel_dp->last_power_cycle = jiffies;
2103 wait_panel_off(intel_dp);
2104
2105 /* We got a reference when we enabled the VDD. */
2106 power_domain = intel_display_port_power_domain(intel_encoder);
2107 intel_display_power_put(dev_priv, power_domain);
2108 }
2109
2110 void intel_edp_panel_off(struct intel_dp *intel_dp)
2111 {
2112 if (!is_edp(intel_dp))
2113 return;
2114
2115 pps_lock(intel_dp);
2116 edp_panel_off(intel_dp);
2117 pps_unlock(intel_dp);
2118 }
2119
2120 /* Enable backlight in the panel power control. */
2121 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2122 {
2123 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2124 struct drm_device *dev = intel_dig_port->base.base.dev;
2125 struct drm_i915_private *dev_priv = dev->dev_private;
2126 u32 pp;
2127 u32 pp_ctrl_reg;
2128
2129 /*
2130 * If we enable the backlight right away following a panel power
2131 * on, we may see slight flicker as the panel syncs with the eDP
2132 * link. So delay a bit to make sure the image is solid before
2133 * allowing it to appear.
2134 */
2135 wait_backlight_on(intel_dp);
2136
2137 pps_lock(intel_dp);
2138
2139 pp = ironlake_get_pp_control(intel_dp);
2140 pp |= EDP_BLC_ENABLE;
2141
2142 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2143
2144 I915_WRITE(pp_ctrl_reg, pp);
2145 POSTING_READ(pp_ctrl_reg);
2146
2147 pps_unlock(intel_dp);
2148 }
2149
2150 /* Enable backlight PWM and backlight PP control. */
2151 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2152 {
2153 if (!is_edp(intel_dp))
2154 return;
2155
2156 DRM_DEBUG_KMS("\n");
2157
2158 intel_panel_enable_backlight(intel_dp->attached_connector);
2159 _intel_edp_backlight_on(intel_dp);
2160 }
2161
2162 /* Disable backlight in the panel power control. */
2163 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2164 {
2165 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2166 struct drm_i915_private *dev_priv = dev->dev_private;
2167 u32 pp;
2168 u32 pp_ctrl_reg;
2169
2170 if (!is_edp(intel_dp))
2171 return;
2172
2173 pps_lock(intel_dp);
2174
2175 pp = ironlake_get_pp_control(intel_dp);
2176 pp &= ~EDP_BLC_ENABLE;
2177
2178 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2179
2180 I915_WRITE(pp_ctrl_reg, pp);
2181 POSTING_READ(pp_ctrl_reg);
2182
2183 pps_unlock(intel_dp);
2184
2185 intel_dp->last_backlight_off = jiffies;
2186 edp_wait_backlight_off(intel_dp);
2187 }
2188
2189 /* Disable backlight PP control and backlight PWM. */
2190 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2191 {
2192 if (!is_edp(intel_dp))
2193 return;
2194
2195 DRM_DEBUG_KMS("\n");
2196
2197 _intel_edp_backlight_off(intel_dp);
2198 intel_panel_disable_backlight(intel_dp->attached_connector);
2199 }
2200
2201 /*
2202 * Hook for controlling the panel power control backlight through the bl_power
2203 * sysfs attribute. Take care to handle multiple calls.
2204 */
2205 static void intel_edp_backlight_power(struct intel_connector *connector,
2206 bool enable)
2207 {
2208 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2209 bool is_enabled;
2210
2211 pps_lock(intel_dp);
2212 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2213 pps_unlock(intel_dp);
2214
2215 if (is_enabled == enable)
2216 return;
2217
2218 DRM_DEBUG_KMS("panel power control backlight %s\n",
2219 enable ? "enable" : "disable");
2220
2221 if (enable)
2222 _intel_edp_backlight_on(intel_dp);
2223 else
2224 _intel_edp_backlight_off(intel_dp);
2225 }
2226
2227 static const char *state_string(bool enabled)
2228 {
2229 return enabled ? "on" : "off";
2230 }
2231
2232 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2233 {
2234 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2235 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2236 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2237
2238 I915_STATE_WARN(cur_state != state,
2239 "DP port %c state assertion failure (expected %s, current %s)\n",
2240 port_name(dig_port->port),
2241 state_string(state), state_string(cur_state));
2242 }
2243 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2244
2245 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2246 {
2247 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2248
2249 I915_STATE_WARN(cur_state != state,
2250 "eDP PLL state assertion failure (expected %s, current %s)\n",
2251 state_string(state), state_string(cur_state));
2252 }
2253 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2254 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2255
2256 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2257 {
2258 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2259 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2260 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2261
2262 assert_pipe_disabled(dev_priv, crtc->pipe);
2263 assert_dp_port_disabled(intel_dp);
2264 assert_edp_pll_disabled(dev_priv);
2265
2266 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2267 crtc->config->port_clock);
2268
2269 intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2270
2271 if (crtc->config->port_clock == 162000)
2272 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2273 else
2274 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2275
2276 I915_WRITE(DP_A, intel_dp->DP);
2277 POSTING_READ(DP_A);
2278 udelay(500);
2279
2280 intel_dp->DP |= DP_PLL_ENABLE;
2281
2282 I915_WRITE(DP_A, intel_dp->DP);
2283 POSTING_READ(DP_A);
2284 udelay(200);
2285 }
2286
2287 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2288 {
2289 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2290 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2291 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2292
2293 assert_pipe_disabled(dev_priv, crtc->pipe);
2294 assert_dp_port_disabled(intel_dp);
2295 assert_edp_pll_enabled(dev_priv);
2296
2297 DRM_DEBUG_KMS("disabling eDP PLL\n");
2298
2299 intel_dp->DP &= ~DP_PLL_ENABLE;
2300
2301 I915_WRITE(DP_A, intel_dp->DP);
2302 POSTING_READ(DP_A);
2303 udelay(200);
2304 }
2305
2306 /* If the sink supports it, try to set the power state appropriately */
2307 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2308 {
2309 int ret, i;
2310
2311 /* Should have a valid DPCD by this point */
2312 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2313 return;
2314
2315 if (mode != DRM_MODE_DPMS_ON) {
2316 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2317 DP_SET_POWER_D3);
2318 } else {
2319 /*
2320 * When turning on, we need to retry for 1ms to give the sink
2321 * time to wake up.
2322 */
2323 for (i = 0; i < 3; i++) {
2324 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2325 DP_SET_POWER_D0);
2326 if (ret == 1)
2327 break;
2328 msleep(1);
2329 }
2330 }
2331
2332 if (ret != 1)
2333 DRM_DEBUG_KMS("failed to %s sink power state\n",
2334 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2335 }
2336
2337 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2338 enum pipe *pipe)
2339 {
2340 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2341 enum port port = dp_to_dig_port(intel_dp)->port;
2342 struct drm_device *dev = encoder->base.dev;
2343 struct drm_i915_private *dev_priv = dev->dev_private;
2344 enum intel_display_power_domain power_domain;
2345 u32 tmp;
2346
2347 power_domain = intel_display_port_power_domain(encoder);
2348 if (!intel_display_power_is_enabled(dev_priv, power_domain))
2349 return false;
2350
2351 tmp = I915_READ(intel_dp->output_reg);
2352
2353 if (!(tmp & DP_PORT_EN))
2354 return false;
2355
2356 if (IS_GEN7(dev) && port == PORT_A) {
2357 *pipe = PORT_TO_PIPE_CPT(tmp);
2358 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2359 enum pipe p;
2360
2361 for_each_pipe(dev_priv, p) {
2362 u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2363 if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2364 *pipe = p;
2365 return true;
2366 }
2367 }
2368
2369 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2370 intel_dp->output_reg);
2371 } else if (IS_CHERRYVIEW(dev)) {
2372 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2373 } else {
2374 *pipe = PORT_TO_PIPE(tmp);
2375 }
2376
2377 return true;
2378 }
2379
2380 static void intel_dp_get_config(struct intel_encoder *encoder,
2381 struct intel_crtc_state *pipe_config)
2382 {
2383 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2384 u32 tmp, flags = 0;
2385 struct drm_device *dev = encoder->base.dev;
2386 struct drm_i915_private *dev_priv = dev->dev_private;
2387 enum port port = dp_to_dig_port(intel_dp)->port;
2388 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2389 int dotclock;
2390
2391 tmp = I915_READ(intel_dp->output_reg);
2392
2393 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2394
2395 if (HAS_PCH_CPT(dev) && port != PORT_A) {
2396 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2397
2398 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2399 flags |= DRM_MODE_FLAG_PHSYNC;
2400 else
2401 flags |= DRM_MODE_FLAG_NHSYNC;
2402
2403 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2404 flags |= DRM_MODE_FLAG_PVSYNC;
2405 else
2406 flags |= DRM_MODE_FLAG_NVSYNC;
2407 } else {
2408 if (tmp & DP_SYNC_HS_HIGH)
2409 flags |= DRM_MODE_FLAG_PHSYNC;
2410 else
2411 flags |= DRM_MODE_FLAG_NHSYNC;
2412
2413 if (tmp & DP_SYNC_VS_HIGH)
2414 flags |= DRM_MODE_FLAG_PVSYNC;
2415 else
2416 flags |= DRM_MODE_FLAG_NVSYNC;
2417 }
2418
2419 pipe_config->base.adjusted_mode.flags |= flags;
2420
2421 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2422 tmp & DP_COLOR_RANGE_16_235)
2423 pipe_config->limited_color_range = true;
2424
2425 pipe_config->has_dp_encoder = true;
2426
2427 pipe_config->lane_count =
2428 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2429
2430 intel_dp_get_m_n(crtc, pipe_config);
2431
2432 if (port == PORT_A) {
2433 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2434 pipe_config->port_clock = 162000;
2435 else
2436 pipe_config->port_clock = 270000;
2437 }
2438
2439 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
2440 &pipe_config->dp_m_n);
2441
2442 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
2443 ironlake_check_encoder_dotclock(pipe_config, dotclock);
2444
2445 pipe_config->base.adjusted_mode.crtc_clock = dotclock;
2446
2447 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
2448 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2449 /*
2450 * This is a big fat ugly hack.
2451 *
2452 * Some machines in UEFI boot mode provide us a VBT that has 18
2453 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2454 * unknown we fail to light up. Yet the same BIOS boots up with
2455 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2456 * max, not what it tells us to use.
2457 *
2458 * Note: This will still be broken if the eDP panel is not lit
2459 * up by the BIOS, and thus we can't get the mode at module
2460 * load.
2461 */
2462 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2463 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2464 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2465 }
2466 }
2467
2468 static void intel_disable_dp(struct intel_encoder *encoder)
2469 {
2470 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2471 struct drm_device *dev = encoder->base.dev;
2472 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2473
2474 if (crtc->config->has_audio)
2475 intel_audio_codec_disable(encoder);
2476
2477 if (HAS_PSR(dev) && !HAS_DDI(dev))
2478 intel_psr_disable(intel_dp);
2479
2480 /* Make sure the panel is off before trying to change the mode. But also
2481 * ensure that we have vdd while we switch off the panel. */
2482 intel_edp_panel_vdd_on(intel_dp);
2483 intel_edp_backlight_off(intel_dp);
2484 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2485 intel_edp_panel_off(intel_dp);
2486
2487 /* disable the port before the pipe on g4x */
2488 if (INTEL_INFO(dev)->gen < 5)
2489 intel_dp_link_down(intel_dp);
2490 }
2491
2492 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2493 {
2494 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2495 enum port port = dp_to_dig_port(intel_dp)->port;
2496
2497 intel_dp_link_down(intel_dp);
2498
2499 /* Only ilk+ has port A */
2500 if (port == PORT_A)
2501 ironlake_edp_pll_off(intel_dp);
2502 }
2503
2504 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2505 {
2506 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2507
2508 intel_dp_link_down(intel_dp);
2509 }
2510
2511 static void chv_data_lane_soft_reset(struct intel_encoder *encoder,
2512 bool reset)
2513 {
2514 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2515 enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
2516 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2517 enum pipe pipe = crtc->pipe;
2518 uint32_t val;
2519
2520 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2521 if (reset)
2522 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2523 else
2524 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
2525 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2526
2527 if (crtc->config->lane_count > 2) {
2528 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2529 if (reset)
2530 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2531 else
2532 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
2533 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2534 }
2535
2536 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2537 val |= CHV_PCS_REQ_SOFTRESET_EN;
2538 if (reset)
2539 val &= ~DPIO_PCS_CLK_SOFT_RESET;
2540 else
2541 val |= DPIO_PCS_CLK_SOFT_RESET;
2542 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2543
2544 if (crtc->config->lane_count > 2) {
2545 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2546 val |= CHV_PCS_REQ_SOFTRESET_EN;
2547 if (reset)
2548 val &= ~DPIO_PCS_CLK_SOFT_RESET;
2549 else
2550 val |= DPIO_PCS_CLK_SOFT_RESET;
2551 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2552 }
2553 }
2554
2555 static void chv_post_disable_dp(struct intel_encoder *encoder)
2556 {
2557 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2558 struct drm_device *dev = encoder->base.dev;
2559 struct drm_i915_private *dev_priv = dev->dev_private;
2560
2561 intel_dp_link_down(intel_dp);
2562
2563 mutex_lock(&dev_priv->sb_lock);
2564
2565 /* Assert data lane reset */
2566 chv_data_lane_soft_reset(encoder, true);
2567
2568 mutex_unlock(&dev_priv->sb_lock);
2569 }
2570
2571 static void
2572 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2573 uint32_t *DP,
2574 uint8_t dp_train_pat)
2575 {
2576 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2577 struct drm_device *dev = intel_dig_port->base.base.dev;
2578 struct drm_i915_private *dev_priv = dev->dev_private;
2579 enum port port = intel_dig_port->port;
2580
2581 if (HAS_DDI(dev)) {
2582 uint32_t temp = I915_READ(DP_TP_CTL(port));
2583
2584 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2585 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2586 else
2587 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2588
2589 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2590 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2591 case DP_TRAINING_PATTERN_DISABLE:
2592 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2593
2594 break;
2595 case DP_TRAINING_PATTERN_1:
2596 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2597 break;
2598 case DP_TRAINING_PATTERN_2:
2599 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2600 break;
2601 case DP_TRAINING_PATTERN_3:
2602 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2603 break;
2604 }
2605 I915_WRITE(DP_TP_CTL(port), temp);
2606
2607 } else if ((IS_GEN7(dev) && port == PORT_A) ||
2608 (HAS_PCH_CPT(dev) && port != PORT_A)) {
2609 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2610
2611 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2612 case DP_TRAINING_PATTERN_DISABLE:
2613 *DP |= DP_LINK_TRAIN_OFF_CPT;
2614 break;
2615 case DP_TRAINING_PATTERN_1:
2616 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2617 break;
2618 case DP_TRAINING_PATTERN_2:
2619 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2620 break;
2621 case DP_TRAINING_PATTERN_3:
2622 DRM_ERROR("DP training pattern 3 not supported\n");
2623 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2624 break;
2625 }
2626
2627 } else {
2628 if (IS_CHERRYVIEW(dev))
2629 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2630 else
2631 *DP &= ~DP_LINK_TRAIN_MASK;
2632
2633 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2634 case DP_TRAINING_PATTERN_DISABLE:
2635 *DP |= DP_LINK_TRAIN_OFF;
2636 break;
2637 case DP_TRAINING_PATTERN_1:
2638 *DP |= DP_LINK_TRAIN_PAT_1;
2639 break;
2640 case DP_TRAINING_PATTERN_2:
2641 *DP |= DP_LINK_TRAIN_PAT_2;
2642 break;
2643 case DP_TRAINING_PATTERN_3:
2644 if (IS_CHERRYVIEW(dev)) {
2645 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2646 } else {
2647 DRM_ERROR("DP training pattern 3 not supported\n");
2648 *DP |= DP_LINK_TRAIN_PAT_2;
2649 }
2650 break;
2651 }
2652 }
2653 }
2654
2655 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2656 {
2657 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2658 struct drm_i915_private *dev_priv = dev->dev_private;
2659 struct intel_crtc *crtc =
2660 to_intel_crtc(dp_to_dig_port(intel_dp)->base.base.crtc);
2661
2662 /* enable with pattern 1 (as per spec) */
2663 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2664 DP_TRAINING_PATTERN_1);
2665
2666 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2667 POSTING_READ(intel_dp->output_reg);
2668
2669 /*
2670 * Magic for VLV/CHV. We _must_ first set up the register
2671 * without actually enabling the port, and then do another
2672 * write to enable the port. Otherwise link training will
2673 * fail when the power sequencer is freshly used for this port.
2674 */
2675 intel_dp->DP |= DP_PORT_EN;
2676 if (crtc->config->has_audio)
2677 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2678
2679 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2680 POSTING_READ(intel_dp->output_reg);
2681 }
2682
2683 static void intel_enable_dp(struct intel_encoder *encoder)
2684 {
2685 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2686 struct drm_device *dev = encoder->base.dev;
2687 struct drm_i915_private *dev_priv = dev->dev_private;
2688 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2689 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2690 enum port port = dp_to_dig_port(intel_dp)->port;
2691 enum pipe pipe = crtc->pipe;
2692
2693 if (WARN_ON(dp_reg & DP_PORT_EN))
2694 return;
2695
2696 pps_lock(intel_dp);
2697
2698 if (IS_VALLEYVIEW(dev))
2699 vlv_init_panel_power_sequencer(intel_dp);
2700
2701 intel_dp_enable_port(intel_dp);
2702
2703 if (port == PORT_A && IS_GEN5(dev_priv)) {
2704 /*
2705 * Underrun reporting for the other pipe was disabled in
2706 * g4x_pre_enable_dp(). The eDP PLL and port have now been
2707 * enabled, so it's now safe to re-enable underrun reporting.
2708 */
2709 intel_wait_for_vblank_if_active(dev_priv->dev, !pipe);
2710 intel_set_cpu_fifo_underrun_reporting(dev_priv, !pipe, true);
2711 intel_set_pch_fifo_underrun_reporting(dev_priv, !pipe, true);
2712 }
2713
2714 edp_panel_vdd_on(intel_dp);
2715 edp_panel_on(intel_dp);
2716 edp_panel_vdd_off(intel_dp, true);
2717
2718 pps_unlock(intel_dp);
2719
2720 if (IS_VALLEYVIEW(dev)) {
2721 unsigned int lane_mask = 0x0;
2722
2723 if (IS_CHERRYVIEW(dev))
2724 lane_mask = intel_dp_unused_lane_mask(crtc->config->lane_count);
2725
2726 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2727 lane_mask);
2728 }
2729
2730 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2731 intel_dp_start_link_train(intel_dp);
2732 intel_dp_stop_link_train(intel_dp);
2733
2734 if (crtc->config->has_audio) {
2735 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2736 pipe_name(pipe));
2737 intel_audio_codec_enable(encoder);
2738 }
2739 }
2740
2741 static void g4x_enable_dp(struct intel_encoder *encoder)
2742 {
2743 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2744
2745 intel_enable_dp(encoder);
2746 intel_edp_backlight_on(intel_dp);
2747 }
2748
2749 static void vlv_enable_dp(struct intel_encoder *encoder)
2750 {
2751 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2752
2753 intel_edp_backlight_on(intel_dp);
2754 intel_psr_enable(intel_dp);
2755 }
2756
2757 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2758 {
2759 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2760 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2761 enum port port = dp_to_dig_port(intel_dp)->port;
2762 enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
2763
2764 intel_dp_prepare(encoder);
2765
2766 if (port == PORT_A && IS_GEN5(dev_priv)) {
2767 /*
2768 * We get FIFO underruns on the other pipe when
2769 * enabling the CPU eDP PLL, and when enabling CPU
2770 * eDP port. We could potentially avoid the PLL
2771 * underrun with a vblank wait just prior to enabling
2772 * the PLL, but that doesn't appear to help the port
2773 * enable case. Just sweep it all under the rug.
2774 */
2775 intel_set_cpu_fifo_underrun_reporting(dev_priv, !pipe, false);
2776 intel_set_pch_fifo_underrun_reporting(dev_priv, !pipe, false);
2777 }
2778
2779 /* Only ilk+ has port A */
2780 if (port == PORT_A)
2781 ironlake_edp_pll_on(intel_dp);
2782 }
2783
2784 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2785 {
2786 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2787 struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2788 enum pipe pipe = intel_dp->pps_pipe;
2789 int pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2790
2791 edp_panel_vdd_off_sync(intel_dp);
2792
2793 /*
2794 * VLV seems to get confused when multiple power seqeuencers
2795 * have the same port selected (even if only one has power/vdd
2796 * enabled). The failure manifests as vlv_wait_port_ready() failing
2797 * CHV on the other hand doesn't seem to mind having the same port
2798 * selected in multiple power seqeuencers, but let's clear the
2799 * port select always when logically disconnecting a power sequencer
2800 * from a port.
2801 */
2802 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2803 pipe_name(pipe), port_name(intel_dig_port->port));
2804 I915_WRITE(pp_on_reg, 0);
2805 POSTING_READ(pp_on_reg);
2806
2807 intel_dp->pps_pipe = INVALID_PIPE;
2808 }
2809
2810 static void vlv_steal_power_sequencer(struct drm_device *dev,
2811 enum pipe pipe)
2812 {
2813 struct drm_i915_private *dev_priv = dev->dev_private;
2814 struct intel_encoder *encoder;
2815
2816 lockdep_assert_held(&dev_priv->pps_mutex);
2817
2818 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2819 return;
2820
2821 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2822 base.head) {
2823 struct intel_dp *intel_dp;
2824 enum port port;
2825
2826 if (encoder->type != INTEL_OUTPUT_EDP)
2827 continue;
2828
2829 intel_dp = enc_to_intel_dp(&encoder->base);
2830 port = dp_to_dig_port(intel_dp)->port;
2831
2832 if (intel_dp->pps_pipe != pipe)
2833 continue;
2834
2835 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2836 pipe_name(pipe), port_name(port));
2837
2838 WARN(encoder->base.crtc,
2839 "stealing pipe %c power sequencer from active eDP port %c\n",
2840 pipe_name(pipe), port_name(port));
2841
2842 /* make sure vdd is off before we steal it */
2843 vlv_detach_power_sequencer(intel_dp);
2844 }
2845 }
2846
2847 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2848 {
2849 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2850 struct intel_encoder *encoder = &intel_dig_port->base;
2851 struct drm_device *dev = encoder->base.dev;
2852 struct drm_i915_private *dev_priv = dev->dev_private;
2853 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2854
2855 lockdep_assert_held(&dev_priv->pps_mutex);
2856
2857 if (!is_edp(intel_dp))
2858 return;
2859
2860 if (intel_dp->pps_pipe == crtc->pipe)
2861 return;
2862
2863 /*
2864 * If another power sequencer was being used on this
2865 * port previously make sure to turn off vdd there while
2866 * we still have control of it.
2867 */
2868 if (intel_dp->pps_pipe != INVALID_PIPE)
2869 vlv_detach_power_sequencer(intel_dp);
2870
2871 /*
2872 * We may be stealing the power
2873 * sequencer from another port.
2874 */
2875 vlv_steal_power_sequencer(dev, crtc->pipe);
2876
2877 /* now it's all ours */
2878 intel_dp->pps_pipe = crtc->pipe;
2879
2880 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2881 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2882
2883 /* init power sequencer on this pipe and port */
2884 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2885 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2886 }
2887
2888 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2889 {
2890 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2891 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2892 struct drm_device *dev = encoder->base.dev;
2893 struct drm_i915_private *dev_priv = dev->dev_private;
2894 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2895 enum dpio_channel port = vlv_dport_to_channel(dport);
2896 int pipe = intel_crtc->pipe;
2897 u32 val;
2898
2899 mutex_lock(&dev_priv->sb_lock);
2900
2901 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2902 val = 0;
2903 if (pipe)
2904 val |= (1<<21);
2905 else
2906 val &= ~(1<<21);
2907 val |= 0x001000c4;
2908 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2909 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2910 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2911
2912 mutex_unlock(&dev_priv->sb_lock);
2913
2914 intel_enable_dp(encoder);
2915 }
2916
2917 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2918 {
2919 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2920 struct drm_device *dev = encoder->base.dev;
2921 struct drm_i915_private *dev_priv = dev->dev_private;
2922 struct intel_crtc *intel_crtc =
2923 to_intel_crtc(encoder->base.crtc);
2924 enum dpio_channel port = vlv_dport_to_channel(dport);
2925 int pipe = intel_crtc->pipe;
2926
2927 intel_dp_prepare(encoder);
2928
2929 /* Program Tx lane resets to default */
2930 mutex_lock(&dev_priv->sb_lock);
2931 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2932 DPIO_PCS_TX_LANE2_RESET |
2933 DPIO_PCS_TX_LANE1_RESET);
2934 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2935 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2936 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2937 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2938 DPIO_PCS_CLK_SOFT_RESET);
2939
2940 /* Fix up inter-pair skew failure */
2941 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2942 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2943 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2944 mutex_unlock(&dev_priv->sb_lock);
2945 }
2946
2947 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2948 {
2949 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2950 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2951 struct drm_device *dev = encoder->base.dev;
2952 struct drm_i915_private *dev_priv = dev->dev_private;
2953 struct intel_crtc *intel_crtc =
2954 to_intel_crtc(encoder->base.crtc);
2955 enum dpio_channel ch = vlv_dport_to_channel(dport);
2956 int pipe = intel_crtc->pipe;
2957 int data, i, stagger;
2958 u32 val;
2959
2960 mutex_lock(&dev_priv->sb_lock);
2961
2962 /* allow hardware to manage TX FIFO reset source */
2963 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2964 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2965 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2966
2967 if (intel_crtc->config->lane_count > 2) {
2968 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2969 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2970 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2971 }
2972
2973 /* Program Tx lane latency optimal setting*/
2974 for (i = 0; i < intel_crtc->config->lane_count; i++) {
2975 /* Set the upar bit */
2976 if (intel_crtc->config->lane_count == 1)
2977 data = 0x0;
2978 else
2979 data = (i == 1) ? 0x0 : 0x1;
2980 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2981 data << DPIO_UPAR_SHIFT);
2982 }
2983
2984 /* Data lane stagger programming */
2985 if (intel_crtc->config->port_clock > 270000)
2986 stagger = 0x18;
2987 else if (intel_crtc->config->port_clock > 135000)
2988 stagger = 0xd;
2989 else if (intel_crtc->config->port_clock > 67500)
2990 stagger = 0x7;
2991 else if (intel_crtc->config->port_clock > 33750)
2992 stagger = 0x4;
2993 else
2994 stagger = 0x2;
2995
2996 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2997 val |= DPIO_TX2_STAGGER_MASK(0x1f);
2998 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2999
3000 if (intel_crtc->config->lane_count > 2) {
3001 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
3002 val |= DPIO_TX2_STAGGER_MASK(0x1f);
3003 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
3004 }
3005
3006 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
3007 DPIO_LANESTAGGER_STRAP(stagger) |
3008 DPIO_LANESTAGGER_STRAP_OVRD |
3009 DPIO_TX1_STAGGER_MASK(0x1f) |
3010 DPIO_TX1_STAGGER_MULT(6) |
3011 DPIO_TX2_STAGGER_MULT(0));
3012
3013 if (intel_crtc->config->lane_count > 2) {
3014 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
3015 DPIO_LANESTAGGER_STRAP(stagger) |
3016 DPIO_LANESTAGGER_STRAP_OVRD |
3017 DPIO_TX1_STAGGER_MASK(0x1f) |
3018 DPIO_TX1_STAGGER_MULT(7) |
3019 DPIO_TX2_STAGGER_MULT(5));
3020 }
3021
3022 /* Deassert data lane reset */
3023 chv_data_lane_soft_reset(encoder, false);
3024
3025 mutex_unlock(&dev_priv->sb_lock);
3026
3027 intel_enable_dp(encoder);
3028
3029 /* Second common lane will stay alive on its own now */
3030 if (dport->release_cl2_override) {
3031 chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
3032 dport->release_cl2_override = false;
3033 }
3034 }
3035
3036 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
3037 {
3038 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
3039 struct drm_device *dev = encoder->base.dev;
3040 struct drm_i915_private *dev_priv = dev->dev_private;
3041 struct intel_crtc *intel_crtc =
3042 to_intel_crtc(encoder->base.crtc);
3043 enum dpio_channel ch = vlv_dport_to_channel(dport);
3044 enum pipe pipe = intel_crtc->pipe;
3045 unsigned int lane_mask =
3046 intel_dp_unused_lane_mask(intel_crtc->config->lane_count);
3047 u32 val;
3048
3049 intel_dp_prepare(encoder);
3050
3051 /*
3052 * Must trick the second common lane into life.
3053 * Otherwise we can't even access the PLL.
3054 */
3055 if (ch == DPIO_CH0 && pipe == PIPE_B)
3056 dport->release_cl2_override =
3057 !chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
3058
3059 chv_phy_powergate_lanes(encoder, true, lane_mask);
3060
3061 mutex_lock(&dev_priv->sb_lock);
3062
3063 /* Assert data lane reset */
3064 chv_data_lane_soft_reset(encoder, true);
3065
3066 /* program left/right clock distribution */
3067 if (pipe != PIPE_B) {
3068 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
3069 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
3070 if (ch == DPIO_CH0)
3071 val |= CHV_BUFLEFTENA1_FORCE;
3072 if (ch == DPIO_CH1)
3073 val |= CHV_BUFRIGHTENA1_FORCE;
3074 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
3075 } else {
3076 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
3077 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
3078 if (ch == DPIO_CH0)
3079 val |= CHV_BUFLEFTENA2_FORCE;
3080 if (ch == DPIO_CH1)
3081 val |= CHV_BUFRIGHTENA2_FORCE;
3082 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
3083 }
3084
3085 /* program clock channel usage */
3086 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
3087 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
3088 if (pipe != PIPE_B)
3089 val &= ~CHV_PCS_USEDCLKCHANNEL;
3090 else
3091 val |= CHV_PCS_USEDCLKCHANNEL;
3092 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
3093
3094 if (intel_crtc->config->lane_count > 2) {
3095 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
3096 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
3097 if (pipe != PIPE_B)
3098 val &= ~CHV_PCS_USEDCLKCHANNEL;
3099 else
3100 val |= CHV_PCS_USEDCLKCHANNEL;
3101 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
3102 }
3103
3104 /*
3105 * This a a bit weird since generally CL
3106 * matches the pipe, but here we need to
3107 * pick the CL based on the port.
3108 */
3109 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
3110 if (pipe != PIPE_B)
3111 val &= ~CHV_CMN_USEDCLKCHANNEL;
3112 else
3113 val |= CHV_CMN_USEDCLKCHANNEL;
3114 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
3115
3116 mutex_unlock(&dev_priv->sb_lock);
3117 }
3118
3119 static void chv_dp_post_pll_disable(struct intel_encoder *encoder)
3120 {
3121 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3122 enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
3123 u32 val;
3124
3125 mutex_lock(&dev_priv->sb_lock);
3126
3127 /* disable left/right clock distribution */
3128 if (pipe != PIPE_B) {
3129 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
3130 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
3131 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
3132 } else {
3133 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
3134 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
3135 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
3136 }
3137
3138 mutex_unlock(&dev_priv->sb_lock);
3139
3140 /*
3141 * Leave the power down bit cleared for at least one
3142 * lane so that chv_powergate_phy_ch() will power
3143 * on something when the channel is otherwise unused.
3144 * When the port is off and the override is removed
3145 * the lanes power down anyway, so otherwise it doesn't
3146 * really matter what the state of power down bits is
3147 * after this.
3148 */
3149 chv_phy_powergate_lanes(encoder, false, 0x0);
3150 }
3151
3152 /*
3153 * Native read with retry for link status and receiver capability reads for
3154 * cases where the sink may still be asleep.
3155 *
3156 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
3157 * supposed to retry 3 times per the spec.
3158 */
3159 static ssize_t
3160 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
3161 void *buffer, size_t size)
3162 {
3163 ssize_t ret;
3164 int i;
3165
3166 /*
3167 * Sometime we just get the same incorrect byte repeated
3168 * over the entire buffer. Doing just one throw away read
3169 * initially seems to "solve" it.
3170 */
3171 drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
3172
3173 for (i = 0; i < 3; i++) {
3174 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
3175 if (ret == size)
3176 return ret;
3177 msleep(1);
3178 }
3179
3180 return ret;
3181 }
3182
3183 /*
3184 * Fetch AUX CH registers 0x202 - 0x207 which contain
3185 * link status information
3186 */
3187 bool
3188 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3189 {
3190 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3191 DP_LANE0_1_STATUS,
3192 link_status,
3193 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3194 }
3195
3196 /* These are source-specific values. */
3197 uint8_t
3198 intel_dp_voltage_max(struct intel_dp *intel_dp)
3199 {
3200 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3201 struct drm_i915_private *dev_priv = dev->dev_private;
3202 enum port port = dp_to_dig_port(intel_dp)->port;
3203
3204 if (IS_BROXTON(dev))
3205 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3206 else if (INTEL_INFO(dev)->gen >= 9) {
3207 if (dev_priv->edp_low_vswing && port == PORT_A)
3208 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3209 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3210 } else if (IS_VALLEYVIEW(dev))
3211 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3212 else if (IS_GEN7(dev) && port == PORT_A)
3213 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3214 else if (HAS_PCH_CPT(dev) && port != PORT_A)
3215 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3216 else
3217 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3218 }
3219
3220 uint8_t
3221 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3222 {
3223 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3224 enum port port = dp_to_dig_port(intel_dp)->port;
3225
3226 if (INTEL_INFO(dev)->gen >= 9) {
3227 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3228 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3229 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3230 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3231 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3232 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3233 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3234 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3235 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3236 default:
3237 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3238 }
3239 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3240 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3241 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3242 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3243 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3244 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3245 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3246 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3247 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3248 default:
3249 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3250 }
3251 } else if (IS_VALLEYVIEW(dev)) {
3252 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3253 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3254 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3255 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3256 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3257 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3258 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3259 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3260 default:
3261 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3262 }
3263 } else if (IS_GEN7(dev) && port == PORT_A) {
3264 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3265 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3266 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3267 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3268 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3269 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3270 default:
3271 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3272 }
3273 } else {
3274 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3275 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3276 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3277 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3278 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3279 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3280 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3281 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3282 default:
3283 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3284 }
3285 }
3286 }
3287
3288 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3289 {
3290 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3291 struct drm_i915_private *dev_priv = dev->dev_private;
3292 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3293 struct intel_crtc *intel_crtc =
3294 to_intel_crtc(dport->base.base.crtc);
3295 unsigned long demph_reg_value, preemph_reg_value,
3296 uniqtranscale_reg_value;
3297 uint8_t train_set = intel_dp->train_set[0];
3298 enum dpio_channel port = vlv_dport_to_channel(dport);
3299 int pipe = intel_crtc->pipe;
3300
3301 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3302 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3303 preemph_reg_value = 0x0004000;
3304 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3305 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3306 demph_reg_value = 0x2B405555;
3307 uniqtranscale_reg_value = 0x552AB83A;
3308 break;
3309 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3310 demph_reg_value = 0x2B404040;
3311 uniqtranscale_reg_value = 0x5548B83A;
3312 break;
3313 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3314 demph_reg_value = 0x2B245555;
3315 uniqtranscale_reg_value = 0x5560B83A;
3316 break;
3317 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3318 demph_reg_value = 0x2B405555;
3319 uniqtranscale_reg_value = 0x5598DA3A;
3320 break;
3321 default:
3322 return 0;
3323 }
3324 break;
3325 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3326 preemph_reg_value = 0x0002000;
3327 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3328 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3329 demph_reg_value = 0x2B404040;
3330 uniqtranscale_reg_value = 0x5552B83A;
3331 break;
3332 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3333 demph_reg_value = 0x2B404848;
3334 uniqtranscale_reg_value = 0x5580B83A;
3335 break;
3336 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3337 demph_reg_value = 0x2B404040;
3338 uniqtranscale_reg_value = 0x55ADDA3A;
3339 break;
3340 default:
3341 return 0;
3342 }
3343 break;
3344 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3345 preemph_reg_value = 0x0000000;
3346 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3347 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3348 demph_reg_value = 0x2B305555;
3349 uniqtranscale_reg_value = 0x5570B83A;
3350 break;
3351 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3352 demph_reg_value = 0x2B2B4040;
3353 uniqtranscale_reg_value = 0x55ADDA3A;
3354 break;
3355 default:
3356 return 0;
3357 }
3358 break;
3359 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3360 preemph_reg_value = 0x0006000;
3361 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3362 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3363 demph_reg_value = 0x1B405555;
3364 uniqtranscale_reg_value = 0x55ADDA3A;
3365 break;
3366 default:
3367 return 0;
3368 }
3369 break;
3370 default:
3371 return 0;
3372 }
3373
3374 mutex_lock(&dev_priv->sb_lock);
3375 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
3376 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3377 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3378 uniqtranscale_reg_value);
3379 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3380 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3381 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3382 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3383 mutex_unlock(&dev_priv->sb_lock);
3384
3385 return 0;
3386 }
3387
3388 static bool chv_need_uniq_trans_scale(uint8_t train_set)
3389 {
3390 return (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) == DP_TRAIN_PRE_EMPH_LEVEL_0 &&
3391 (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3392 }
3393
3394 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3395 {
3396 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3397 struct drm_i915_private *dev_priv = dev->dev_private;
3398 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3399 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3400 u32 deemph_reg_value, margin_reg_value, val;
3401 uint8_t train_set = intel_dp->train_set[0];
3402 enum dpio_channel ch = vlv_dport_to_channel(dport);
3403 enum pipe pipe = intel_crtc->pipe;
3404 int i;
3405
3406 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3407 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3408 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3409 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3410 deemph_reg_value = 128;
3411 margin_reg_value = 52;
3412 break;
3413 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3414 deemph_reg_value = 128;
3415 margin_reg_value = 77;
3416 break;
3417 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3418 deemph_reg_value = 128;
3419 margin_reg_value = 102;
3420 break;
3421 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3422 deemph_reg_value = 128;
3423 margin_reg_value = 154;
3424 /* FIXME extra to set for 1200 */
3425 break;
3426 default:
3427 return 0;
3428 }
3429 break;
3430 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3431 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3432 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3433 deemph_reg_value = 85;
3434 margin_reg_value = 78;
3435 break;
3436 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3437 deemph_reg_value = 85;
3438 margin_reg_value = 116;
3439 break;
3440 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3441 deemph_reg_value = 85;
3442 margin_reg_value = 154;
3443 break;
3444 default:
3445 return 0;
3446 }
3447 break;
3448 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3449 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3450 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3451 deemph_reg_value = 64;
3452 margin_reg_value = 104;
3453 break;
3454 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3455 deemph_reg_value = 64;
3456 margin_reg_value = 154;
3457 break;
3458 default:
3459 return 0;
3460 }
3461 break;
3462 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3463 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3464 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3465 deemph_reg_value = 43;
3466 margin_reg_value = 154;
3467 break;
3468 default:
3469 return 0;
3470 }
3471 break;
3472 default:
3473 return 0;
3474 }
3475
3476 mutex_lock(&dev_priv->sb_lock);
3477
3478 /* Clear calc init */
3479 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3480 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3481 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3482 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3483 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3484
3485 if (intel_crtc->config->lane_count > 2) {
3486 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3487 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3488 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3489 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3490 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3491 }
3492
3493 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
3494 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3495 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3496 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
3497
3498 if (intel_crtc->config->lane_count > 2) {
3499 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
3500 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3501 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3502 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
3503 }
3504
3505 /* Program swing deemph */
3506 for (i = 0; i < intel_crtc->config->lane_count; i++) {
3507 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3508 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3509 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3510 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3511 }
3512
3513 /* Program swing margin */
3514 for (i = 0; i < intel_crtc->config->lane_count; i++) {
3515 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3516
3517 val &= ~DPIO_SWING_MARGIN000_MASK;
3518 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3519
3520 /*
3521 * Supposedly this value shouldn't matter when unique transition
3522 * scale is disabled, but in fact it does matter. Let's just
3523 * always program the same value and hope it's OK.
3524 */
3525 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3526 val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
3527
3528 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3529 }
3530
3531 /*
3532 * The document said it needs to set bit 27 for ch0 and bit 26
3533 * for ch1. Might be a typo in the doc.
3534 * For now, for this unique transition scale selection, set bit
3535 * 27 for ch0 and ch1.
3536 */
3537 for (i = 0; i < intel_crtc->config->lane_count; i++) {
3538 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3539 if (chv_need_uniq_trans_scale(train_set))
3540 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3541 else
3542 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3543 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3544 }
3545
3546 /* Start swing calculation */
3547 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3548 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3549 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3550
3551 if (intel_crtc->config->lane_count > 2) {
3552 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3553 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3554 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3555 }
3556
3557 mutex_unlock(&dev_priv->sb_lock);
3558
3559 return 0;
3560 }
3561
3562 static uint32_t
3563 gen4_signal_levels(uint8_t train_set)
3564 {
3565 uint32_t signal_levels = 0;
3566
3567 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3568 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3569 default:
3570 signal_levels |= DP_VOLTAGE_0_4;
3571 break;
3572 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3573 signal_levels |= DP_VOLTAGE_0_6;
3574 break;
3575 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3576 signal_levels |= DP_VOLTAGE_0_8;
3577 break;
3578 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3579 signal_levels |= DP_VOLTAGE_1_2;
3580 break;
3581 }
3582 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3583 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3584 default:
3585 signal_levels |= DP_PRE_EMPHASIS_0;
3586 break;
3587 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3588 signal_levels |= DP_PRE_EMPHASIS_3_5;
3589 break;
3590 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3591 signal_levels |= DP_PRE_EMPHASIS_6;
3592 break;
3593 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3594 signal_levels |= DP_PRE_EMPHASIS_9_5;
3595 break;
3596 }
3597 return signal_levels;
3598 }
3599
3600 /* Gen6's DP voltage swing and pre-emphasis control */
3601 static uint32_t
3602 gen6_edp_signal_levels(uint8_t train_set)
3603 {
3604 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3605 DP_TRAIN_PRE_EMPHASIS_MASK);
3606 switch (signal_levels) {
3607 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3608 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3609 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3610 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3611 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3612 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3613 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3614 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3615 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3616 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3617 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3618 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3619 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3620 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3621 default:
3622 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3623 "0x%x\n", signal_levels);
3624 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3625 }
3626 }
3627
3628 /* Gen7's DP voltage swing and pre-emphasis control */
3629 static uint32_t
3630 gen7_edp_signal_levels(uint8_t train_set)
3631 {
3632 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3633 DP_TRAIN_PRE_EMPHASIS_MASK);
3634 switch (signal_levels) {
3635 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3636 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3637 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3638 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3639 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3640 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3641
3642 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3643 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3644 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3645 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3646
3647 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3648 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3649 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3650 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3651
3652 default:
3653 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3654 "0x%x\n", signal_levels);
3655 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3656 }
3657 }
3658
3659 void
3660 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3661 {
3662 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3663 enum port port = intel_dig_port->port;
3664 struct drm_device *dev = intel_dig_port->base.base.dev;
3665 struct drm_i915_private *dev_priv = to_i915(dev);
3666 uint32_t signal_levels, mask = 0;
3667 uint8_t train_set = intel_dp->train_set[0];
3668
3669 if (HAS_DDI(dev)) {
3670 signal_levels = ddi_signal_levels(intel_dp);
3671
3672 if (IS_BROXTON(dev))
3673 signal_levels = 0;
3674 else
3675 mask = DDI_BUF_EMP_MASK;
3676 } else if (IS_CHERRYVIEW(dev)) {
3677 signal_levels = chv_signal_levels(intel_dp);
3678 } else if (IS_VALLEYVIEW(dev)) {
3679 signal_levels = vlv_signal_levels(intel_dp);
3680 } else if (IS_GEN7(dev) && port == PORT_A) {
3681 signal_levels = gen7_edp_signal_levels(train_set);
3682 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3683 } else if (IS_GEN6(dev) && port == PORT_A) {
3684 signal_levels = gen6_edp_signal_levels(train_set);
3685 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3686 } else {
3687 signal_levels = gen4_signal_levels(train_set);
3688 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3689 }
3690
3691 if (mask)
3692 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3693
3694 DRM_DEBUG_KMS("Using vswing level %d\n",
3695 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3696 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3697 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3698 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3699
3700 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3701
3702 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3703 POSTING_READ(intel_dp->output_reg);
3704 }
3705
3706 void
3707 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3708 uint8_t dp_train_pat)
3709 {
3710 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3711 struct drm_i915_private *dev_priv =
3712 to_i915(intel_dig_port->base.base.dev);
3713
3714 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3715
3716 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3717 POSTING_READ(intel_dp->output_reg);
3718 }
3719
3720 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3721 {
3722 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3723 struct drm_device *dev = intel_dig_port->base.base.dev;
3724 struct drm_i915_private *dev_priv = dev->dev_private;
3725 enum port port = intel_dig_port->port;
3726 uint32_t val;
3727
3728 if (!HAS_DDI(dev))
3729 return;
3730
3731 val = I915_READ(DP_TP_CTL(port));
3732 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3733 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3734 I915_WRITE(DP_TP_CTL(port), val);
3735
3736 /*
3737 * On PORT_A we can have only eDP in SST mode. There the only reason
3738 * we need to set idle transmission mode is to work around a HW issue
3739 * where we enable the pipe while not in idle link-training mode.
3740 * In this case there is requirement to wait for a minimum number of
3741 * idle patterns to be sent.
3742 */
3743 if (port == PORT_A)
3744 return;
3745
3746 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3747 1))
3748 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3749 }
3750
3751 static void
3752 intel_dp_link_down(struct intel_dp *intel_dp)
3753 {
3754 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3755 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3756 enum port port = intel_dig_port->port;
3757 struct drm_device *dev = intel_dig_port->base.base.dev;
3758 struct drm_i915_private *dev_priv = dev->dev_private;
3759 uint32_t DP = intel_dp->DP;
3760
3761 if (WARN_ON(HAS_DDI(dev)))
3762 return;
3763
3764 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3765 return;
3766
3767 DRM_DEBUG_KMS("\n");
3768
3769 if ((IS_GEN7(dev) && port == PORT_A) ||
3770 (HAS_PCH_CPT(dev) && port != PORT_A)) {
3771 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3772 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3773 } else {
3774 if (IS_CHERRYVIEW(dev))
3775 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3776 else
3777 DP &= ~DP_LINK_TRAIN_MASK;
3778 DP |= DP_LINK_TRAIN_PAT_IDLE;
3779 }
3780 I915_WRITE(intel_dp->output_reg, DP);
3781 POSTING_READ(intel_dp->output_reg);
3782
3783 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3784 I915_WRITE(intel_dp->output_reg, DP);
3785 POSTING_READ(intel_dp->output_reg);
3786
3787 /*
3788 * HW workaround for IBX, we need to move the port
3789 * to transcoder A after disabling it to allow the
3790 * matching HDMI port to be enabled on transcoder A.
3791 */
3792 if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3793 /*
3794 * We get CPU/PCH FIFO underruns on the other pipe when
3795 * doing the workaround. Sweep them under the rug.
3796 */
3797 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3798 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3799
3800 /* always enable with pattern 1 (as per spec) */
3801 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3802 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3803 I915_WRITE(intel_dp->output_reg, DP);
3804 POSTING_READ(intel_dp->output_reg);
3805
3806 DP &= ~DP_PORT_EN;
3807 I915_WRITE(intel_dp->output_reg, DP);
3808 POSTING_READ(intel_dp->output_reg);
3809
3810 intel_wait_for_vblank_if_active(dev_priv->dev, PIPE_A);
3811 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3812 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3813 }
3814
3815 msleep(intel_dp->panel_power_down_delay);
3816
3817 intel_dp->DP = DP;
3818 }
3819
3820 static bool
3821 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3822 {
3823 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3824 struct drm_device *dev = dig_port->base.base.dev;
3825 struct drm_i915_private *dev_priv = dev->dev_private;
3826 uint8_t rev;
3827
3828 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3829 sizeof(intel_dp->dpcd)) < 0)
3830 return false; /* aux transfer failed */
3831
3832 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3833
3834 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3835 return false; /* DPCD not present */
3836
3837 /* Check if the panel supports PSR */
3838 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3839 if (is_edp(intel_dp)) {
3840 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3841 intel_dp->psr_dpcd,
3842 sizeof(intel_dp->psr_dpcd));
3843 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3844 dev_priv->psr.sink_support = true;
3845 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3846 }
3847
3848 if (INTEL_INFO(dev)->gen >= 9 &&
3849 (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3850 uint8_t frame_sync_cap;
3851
3852 dev_priv->psr.sink_support = true;
3853 intel_dp_dpcd_read_wake(&intel_dp->aux,
3854 DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3855 &frame_sync_cap, 1);
3856 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3857 /* PSR2 needs frame sync as well */
3858 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3859 DRM_DEBUG_KMS("PSR2 %s on sink",
3860 dev_priv->psr.psr2_support ? "supported" : "not supported");
3861 }
3862 }
3863
3864 DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
3865 yesno(intel_dp_source_supports_hbr2(intel_dp)),
3866 yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
3867
3868 /* Intermediate frequency support */
3869 if (is_edp(intel_dp) &&
3870 (intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3871 (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_EDP_DPCD_REV, &rev, 1) == 1) &&
3872 (rev >= 0x03)) { /* eDp v1.4 or higher */
3873 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3874 int i;
3875
3876 intel_dp_dpcd_read_wake(&intel_dp->aux,
3877 DP_SUPPORTED_LINK_RATES,
3878 sink_rates,
3879 sizeof(sink_rates));
3880
3881 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3882 int val = le16_to_cpu(sink_rates[i]);
3883
3884 if (val == 0)
3885 break;
3886
3887 /* Value read is in kHz while drm clock is saved in deca-kHz */
3888 intel_dp->sink_rates[i] = (val * 200) / 10;
3889 }
3890 intel_dp->num_sink_rates = i;
3891 }
3892
3893 intel_dp_print_rates(intel_dp);
3894
3895 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3896 DP_DWN_STRM_PORT_PRESENT))
3897 return true; /* native DP sink */
3898
3899 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3900 return true; /* no per-port downstream info */
3901
3902 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3903 intel_dp->downstream_ports,
3904 DP_MAX_DOWNSTREAM_PORTS) < 0)
3905 return false; /* downstream port status fetch failed */
3906
3907 return true;
3908 }
3909
3910 static void
3911 intel_dp_probe_oui(struct intel_dp *intel_dp)
3912 {
3913 u8 buf[3];
3914
3915 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3916 return;
3917
3918 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3919 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3920 buf[0], buf[1], buf[2]);
3921
3922 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3923 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3924 buf[0], buf[1], buf[2]);
3925 }
3926
3927 static bool
3928 intel_dp_probe_mst(struct intel_dp *intel_dp)
3929 {
3930 u8 buf[1];
3931
3932 if (!intel_dp->can_mst)
3933 return false;
3934
3935 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3936 return false;
3937
3938 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3939 if (buf[0] & DP_MST_CAP) {
3940 DRM_DEBUG_KMS("Sink is MST capable\n");
3941 intel_dp->is_mst = true;
3942 } else {
3943 DRM_DEBUG_KMS("Sink is not MST capable\n");
3944 intel_dp->is_mst = false;
3945 }
3946 }
3947
3948 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3949 return intel_dp->is_mst;
3950 }
3951
3952 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3953 {
3954 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3955 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3956 u8 buf;
3957 int ret = 0;
3958
3959 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3960 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3961 ret = -EIO;
3962 goto out;
3963 }
3964
3965 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3966 buf & ~DP_TEST_SINK_START) < 0) {
3967 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3968 ret = -EIO;
3969 goto out;
3970 }
3971
3972 intel_dp->sink_crc.started = false;
3973 out:
3974 hsw_enable_ips(intel_crtc);
3975 return ret;
3976 }
3977
3978 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
3979 {
3980 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3981 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3982 u8 buf;
3983 int ret;
3984
3985 if (intel_dp->sink_crc.started) {
3986 ret = intel_dp_sink_crc_stop(intel_dp);
3987 if (ret)
3988 return ret;
3989 }
3990
3991 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3992 return -EIO;
3993
3994 if (!(buf & DP_TEST_CRC_SUPPORTED))
3995 return -ENOTTY;
3996
3997 intel_dp->sink_crc.last_count = buf & DP_TEST_COUNT_MASK;
3998
3999 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
4000 return -EIO;
4001
4002 hsw_disable_ips(intel_crtc);
4003
4004 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4005 buf | DP_TEST_SINK_START) < 0) {
4006 hsw_enable_ips(intel_crtc);
4007 return -EIO;
4008 }
4009
4010 intel_dp->sink_crc.started = true;
4011 return 0;
4012 }
4013
4014 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
4015 {
4016 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
4017 struct drm_device *dev = dig_port->base.base.dev;
4018 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
4019 u8 buf;
4020 int count, ret;
4021 int attempts = 6;
4022 bool old_equal_new;
4023
4024 ret = intel_dp_sink_crc_start(intel_dp);
4025 if (ret)
4026 return ret;
4027
4028 do {
4029 intel_wait_for_vblank(dev, intel_crtc->pipe);
4030
4031 if (drm_dp_dpcd_readb(&intel_dp->aux,
4032 DP_TEST_SINK_MISC, &buf) < 0) {
4033 ret = -EIO;
4034 goto stop;
4035 }
4036 count = buf & DP_TEST_COUNT_MASK;
4037
4038 /*
4039 * Count might be reset during the loop. In this case
4040 * last known count needs to be reset as well.
4041 */
4042 if (count == 0)
4043 intel_dp->sink_crc.last_count = 0;
4044
4045 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
4046 ret = -EIO;
4047 goto stop;
4048 }
4049
4050 old_equal_new = (count == intel_dp->sink_crc.last_count &&
4051 !memcmp(intel_dp->sink_crc.last_crc, crc,
4052 6 * sizeof(u8)));
4053
4054 } while (--attempts && (count == 0 || old_equal_new));
4055
4056 intel_dp->sink_crc.last_count = buf & DP_TEST_COUNT_MASK;
4057 memcpy(intel_dp->sink_crc.last_crc, crc, 6 * sizeof(u8));
4058
4059 if (attempts == 0) {
4060 if (old_equal_new) {
4061 DRM_DEBUG_KMS("Unreliable Sink CRC counter: Current returned CRC is identical to the previous one\n");
4062 } else {
4063 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
4064 ret = -ETIMEDOUT;
4065 goto stop;
4066 }
4067 }
4068
4069 stop:
4070 intel_dp_sink_crc_stop(intel_dp);
4071 return ret;
4072 }
4073
4074 static bool
4075 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4076 {
4077 return intel_dp_dpcd_read_wake(&intel_dp->aux,
4078 DP_DEVICE_SERVICE_IRQ_VECTOR,
4079 sink_irq_vector, 1) == 1;
4080 }
4081
4082 static bool
4083 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4084 {
4085 int ret;
4086
4087 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
4088 DP_SINK_COUNT_ESI,
4089 sink_irq_vector, 14);
4090 if (ret != 14)
4091 return false;
4092
4093 return true;
4094 }
4095
4096 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4097 {
4098 uint8_t test_result = DP_TEST_ACK;
4099 return test_result;
4100 }
4101
4102 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4103 {
4104 uint8_t test_result = DP_TEST_NAK;
4105 return test_result;
4106 }
4107
4108 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4109 {
4110 uint8_t test_result = DP_TEST_NAK;
4111 struct intel_connector *intel_connector = intel_dp->attached_connector;
4112 struct drm_connector *connector = &intel_connector->base;
4113
4114 if (intel_connector->detect_edid == NULL ||
4115 connector->edid_corrupt ||
4116 intel_dp->aux.i2c_defer_count > 6) {
4117 /* Check EDID read for NACKs, DEFERs and corruption
4118 * (DP CTS 1.2 Core r1.1)
4119 * 4.2.2.4 : Failed EDID read, I2C_NAK
4120 * 4.2.2.5 : Failed EDID read, I2C_DEFER
4121 * 4.2.2.6 : EDID corruption detected
4122 * Use failsafe mode for all cases
4123 */
4124 if (intel_dp->aux.i2c_nack_count > 0 ||
4125 intel_dp->aux.i2c_defer_count > 0)
4126 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4127 intel_dp->aux.i2c_nack_count,
4128 intel_dp->aux.i2c_defer_count);
4129 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
4130 } else {
4131 struct edid *block = intel_connector->detect_edid;
4132
4133 /* We have to write the checksum
4134 * of the last block read
4135 */
4136 block += intel_connector->detect_edid->extensions;
4137
4138 if (!drm_dp_dpcd_write(&intel_dp->aux,
4139 DP_TEST_EDID_CHECKSUM,
4140 &block->checksum,
4141 1))
4142 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4143
4144 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4145 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
4146 }
4147
4148 /* Set test active flag here so userspace doesn't interrupt things */
4149 intel_dp->compliance_test_active = 1;
4150
4151 return test_result;
4152 }
4153
4154 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4155 {
4156 uint8_t test_result = DP_TEST_NAK;
4157 return test_result;
4158 }
4159
4160 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4161 {
4162 uint8_t response = DP_TEST_NAK;
4163 uint8_t rxdata = 0;
4164 int status = 0;
4165
4166 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
4167 if (status <= 0) {
4168 DRM_DEBUG_KMS("Could not read test request from sink\n");
4169 goto update_status;
4170 }
4171
4172 switch (rxdata) {
4173 case DP_TEST_LINK_TRAINING:
4174 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4175 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
4176 response = intel_dp_autotest_link_training(intel_dp);
4177 break;
4178 case DP_TEST_LINK_VIDEO_PATTERN:
4179 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4180 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
4181 response = intel_dp_autotest_video_pattern(intel_dp);
4182 break;
4183 case DP_TEST_LINK_EDID_READ:
4184 DRM_DEBUG_KMS("EDID test requested\n");
4185 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
4186 response = intel_dp_autotest_edid(intel_dp);
4187 break;
4188 case DP_TEST_LINK_PHY_TEST_PATTERN:
4189 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4190 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
4191 response = intel_dp_autotest_phy_pattern(intel_dp);
4192 break;
4193 default:
4194 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
4195 break;
4196 }
4197
4198 update_status:
4199 status = drm_dp_dpcd_write(&intel_dp->aux,
4200 DP_TEST_RESPONSE,
4201 &response, 1);
4202 if (status <= 0)
4203 DRM_DEBUG_KMS("Could not write test response to sink\n");
4204 }
4205
4206 static int
4207 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4208 {
4209 bool bret;
4210
4211 if (intel_dp->is_mst) {
4212 u8 esi[16] = { 0 };
4213 int ret = 0;
4214 int retry;
4215 bool handled;
4216 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4217 go_again:
4218 if (bret == true) {
4219
4220 /* check link status - esi[10] = 0x200c */
4221 if (intel_dp->active_mst_links &&
4222 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4223 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4224 intel_dp_start_link_train(intel_dp);
4225 intel_dp_stop_link_train(intel_dp);
4226 }
4227
4228 DRM_DEBUG_KMS("got esi %3ph\n", esi);
4229 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4230
4231 if (handled) {
4232 for (retry = 0; retry < 3; retry++) {
4233 int wret;
4234 wret = drm_dp_dpcd_write(&intel_dp->aux,
4235 DP_SINK_COUNT_ESI+1,
4236 &esi[1], 3);
4237 if (wret == 3) {
4238 break;
4239 }
4240 }
4241
4242 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4243 if (bret == true) {
4244 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4245 goto go_again;
4246 }
4247 } else
4248 ret = 0;
4249
4250 return ret;
4251 } else {
4252 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4253 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4254 intel_dp->is_mst = false;
4255 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4256 /* send a hotplug event */
4257 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4258 }
4259 }
4260 return -EINVAL;
4261 }
4262
4263 /*
4264 * According to DP spec
4265 * 5.1.2:
4266 * 1. Read DPCD
4267 * 2. Configure link according to Receiver Capabilities
4268 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4269 * 4. Check link status on receipt of hot-plug interrupt
4270 */
4271 static void
4272 intel_dp_check_link_status(struct intel_dp *intel_dp)
4273 {
4274 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4275 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4276 u8 sink_irq_vector;
4277 u8 link_status[DP_LINK_STATUS_SIZE];
4278
4279 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4280
4281 /*
4282 * Clearing compliance test variables to allow capturing
4283 * of values for next automated test request.
4284 */
4285 intel_dp->compliance_test_active = 0;
4286 intel_dp->compliance_test_type = 0;
4287 intel_dp->compliance_test_data = 0;
4288
4289 if (!intel_encoder->base.crtc)
4290 return;
4291
4292 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4293 return;
4294
4295 /* Try to read receiver status if the link appears to be up */
4296 if (!intel_dp_get_link_status(intel_dp, link_status)) {
4297 return;
4298 }
4299
4300 /* Now read the DPCD to see if it's actually running */
4301 if (!intel_dp_get_dpcd(intel_dp)) {
4302 return;
4303 }
4304
4305 /* Try to read the source of the interrupt */
4306 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4307 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4308 /* Clear interrupt source */
4309 drm_dp_dpcd_writeb(&intel_dp->aux,
4310 DP_DEVICE_SERVICE_IRQ_VECTOR,
4311 sink_irq_vector);
4312
4313 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4314 DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4315 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4316 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4317 }
4318
4319 /* if link training is requested we should perform it always */
4320 if ((intel_dp->compliance_test_type == DP_TEST_LINK_TRAINING) ||
4321 (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count))) {
4322 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4323 intel_encoder->base.name);
4324 intel_dp_start_link_train(intel_dp);
4325 intel_dp_stop_link_train(intel_dp);
4326 }
4327 }
4328
4329 /* XXX this is probably wrong for multiple downstream ports */
4330 static enum drm_connector_status
4331 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4332 {
4333 uint8_t *dpcd = intel_dp->dpcd;
4334 uint8_t type;
4335
4336 if (!intel_dp_get_dpcd(intel_dp))
4337 return connector_status_disconnected;
4338
4339 /* if there's no downstream port, we're done */
4340 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4341 return connector_status_connected;
4342
4343 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4344 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4345 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4346 uint8_t reg;
4347
4348 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
4349 &reg, 1) < 0)
4350 return connector_status_unknown;
4351
4352 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
4353 : connector_status_disconnected;
4354 }
4355
4356 /* If no HPD, poke DDC gently */
4357 if (drm_probe_ddc(&intel_dp->aux.ddc))
4358 return connector_status_connected;
4359
4360 /* Well we tried, say unknown for unreliable port types */
4361 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4362 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4363 if (type == DP_DS_PORT_TYPE_VGA ||
4364 type == DP_DS_PORT_TYPE_NON_EDID)
4365 return connector_status_unknown;
4366 } else {
4367 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4368 DP_DWN_STRM_PORT_TYPE_MASK;
4369 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4370 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4371 return connector_status_unknown;
4372 }
4373
4374 /* Anything else is out of spec, warn and ignore */
4375 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4376 return connector_status_disconnected;
4377 }
4378
4379 static enum drm_connector_status
4380 edp_detect(struct intel_dp *intel_dp)
4381 {
4382 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4383 enum drm_connector_status status;
4384
4385 status = intel_panel_detect(dev);
4386 if (status == connector_status_unknown)
4387 status = connector_status_connected;
4388
4389 return status;
4390 }
4391
4392 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4393 struct intel_digital_port *port)
4394 {
4395 u32 bit;
4396
4397 switch (port->port) {
4398 case PORT_A:
4399 return true;
4400 case PORT_B:
4401 bit = SDE_PORTB_HOTPLUG;
4402 break;
4403 case PORT_C:
4404 bit = SDE_PORTC_HOTPLUG;
4405 break;
4406 case PORT_D:
4407 bit = SDE_PORTD_HOTPLUG;
4408 break;
4409 default:
4410 MISSING_CASE(port->port);
4411 return false;
4412 }
4413
4414 return I915_READ(SDEISR) & bit;
4415 }
4416
4417 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4418 struct intel_digital_port *port)
4419 {
4420 u32 bit;
4421
4422 switch (port->port) {
4423 case PORT_A:
4424 return true;
4425 case PORT_B:
4426 bit = SDE_PORTB_HOTPLUG_CPT;
4427 break;
4428 case PORT_C:
4429 bit = SDE_PORTC_HOTPLUG_CPT;
4430 break;
4431 case PORT_D:
4432 bit = SDE_PORTD_HOTPLUG_CPT;
4433 break;
4434 case PORT_E:
4435 bit = SDE_PORTE_HOTPLUG_SPT;
4436 break;
4437 default:
4438 MISSING_CASE(port->port);
4439 return false;
4440 }
4441
4442 return I915_READ(SDEISR) & bit;
4443 }
4444
4445 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4446 struct intel_digital_port *port)
4447 {
4448 u32 bit;
4449
4450 switch (port->port) {
4451 case PORT_B:
4452 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4453 break;
4454 case PORT_C:
4455 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4456 break;
4457 case PORT_D:
4458 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4459 break;
4460 default:
4461 MISSING_CASE(port->port);
4462 return false;
4463 }
4464
4465 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4466 }
4467
4468 static bool vlv_digital_port_connected(struct drm_i915_private *dev_priv,
4469 struct intel_digital_port *port)
4470 {
4471 u32 bit;
4472
4473 switch (port->port) {
4474 case PORT_B:
4475 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
4476 break;
4477 case PORT_C:
4478 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
4479 break;
4480 case PORT_D:
4481 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
4482 break;
4483 default:
4484 MISSING_CASE(port->port);
4485 return false;
4486 }
4487
4488 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4489 }
4490
4491 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4492 struct intel_digital_port *intel_dig_port)
4493 {
4494 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4495 enum port port;
4496 u32 bit;
4497
4498 intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4499 switch (port) {
4500 case PORT_A:
4501 bit = BXT_DE_PORT_HP_DDIA;
4502 break;
4503 case PORT_B:
4504 bit = BXT_DE_PORT_HP_DDIB;
4505 break;
4506 case PORT_C:
4507 bit = BXT_DE_PORT_HP_DDIC;
4508 break;
4509 default:
4510 MISSING_CASE(port);
4511 return false;
4512 }
4513
4514 return I915_READ(GEN8_DE_PORT_ISR) & bit;
4515 }
4516
4517 /*
4518 * intel_digital_port_connected - is the specified port connected?
4519 * @dev_priv: i915 private structure
4520 * @port: the port to test
4521 *
4522 * Return %true if @port is connected, %false otherwise.
4523 */
4524 bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4525 struct intel_digital_port *port)
4526 {
4527 if (HAS_PCH_IBX(dev_priv))
4528 return ibx_digital_port_connected(dev_priv, port);
4529 if (HAS_PCH_SPLIT(dev_priv))
4530 return cpt_digital_port_connected(dev_priv, port);
4531 else if (IS_BROXTON(dev_priv))
4532 return bxt_digital_port_connected(dev_priv, port);
4533 else if (IS_VALLEYVIEW(dev_priv))
4534 return vlv_digital_port_connected(dev_priv, port);
4535 else
4536 return g4x_digital_port_connected(dev_priv, port);
4537 }
4538
4539 static enum drm_connector_status
4540 ironlake_dp_detect(struct intel_dp *intel_dp)
4541 {
4542 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4543 struct drm_i915_private *dev_priv = dev->dev_private;
4544 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4545
4546 if (!intel_digital_port_connected(dev_priv, intel_dig_port))
4547 return connector_status_disconnected;
4548
4549 return intel_dp_detect_dpcd(intel_dp);
4550 }
4551
4552 static enum drm_connector_status
4553 g4x_dp_detect(struct intel_dp *intel_dp)
4554 {
4555 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4556 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4557
4558 /* Can't disconnect eDP, but you can close the lid... */
4559 if (is_edp(intel_dp)) {
4560 enum drm_connector_status status;
4561
4562 status = intel_panel_detect(dev);
4563 if (status == connector_status_unknown)
4564 status = connector_status_connected;
4565 return status;
4566 }
4567
4568 if (!intel_digital_port_connected(dev->dev_private, intel_dig_port))
4569 return connector_status_disconnected;
4570
4571 return intel_dp_detect_dpcd(intel_dp);
4572 }
4573
4574 static struct edid *
4575 intel_dp_get_edid(struct intel_dp *intel_dp)
4576 {
4577 struct intel_connector *intel_connector = intel_dp->attached_connector;
4578
4579 /* use cached edid if we have one */
4580 if (intel_connector->edid) {
4581 /* invalid edid */
4582 if (IS_ERR(intel_connector->edid))
4583 return NULL;
4584
4585 return drm_edid_duplicate(intel_connector->edid);
4586 } else
4587 return drm_get_edid(&intel_connector->base,
4588 &intel_dp->aux.ddc);
4589 }
4590
4591 static void
4592 intel_dp_set_edid(struct intel_dp *intel_dp)
4593 {
4594 struct intel_connector *intel_connector = intel_dp->attached_connector;
4595 struct edid *edid;
4596
4597 edid = intel_dp_get_edid(intel_dp);
4598 intel_connector->detect_edid = edid;
4599
4600 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4601 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4602 else
4603 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4604 }
4605
4606 static void
4607 intel_dp_unset_edid(struct intel_dp *intel_dp)
4608 {
4609 struct intel_connector *intel_connector = intel_dp->attached_connector;
4610
4611 kfree(intel_connector->detect_edid);
4612 intel_connector->detect_edid = NULL;
4613
4614 intel_dp->has_audio = false;
4615 }
4616
4617 static enum intel_display_power_domain
4618 intel_dp_power_get(struct intel_dp *dp)
4619 {
4620 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4621 enum intel_display_power_domain power_domain;
4622
4623 power_domain = intel_display_port_power_domain(encoder);
4624 intel_display_power_get(to_i915(encoder->base.dev), power_domain);
4625
4626 return power_domain;
4627 }
4628
4629 static void
4630 intel_dp_power_put(struct intel_dp *dp,
4631 enum intel_display_power_domain power_domain)
4632 {
4633 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4634 intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4635 }
4636
4637 static enum drm_connector_status
4638 intel_dp_detect(struct drm_connector *connector, bool force)
4639 {
4640 struct intel_dp *intel_dp = intel_attached_dp(connector);
4641 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4642 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4643 struct drm_device *dev = connector->dev;
4644 enum drm_connector_status status;
4645 enum intel_display_power_domain power_domain;
4646 bool ret;
4647 u8 sink_irq_vector;
4648
4649 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4650 connector->base.id, connector->name);
4651 intel_dp_unset_edid(intel_dp);
4652
4653 if (intel_dp->is_mst) {
4654 /* MST devices are disconnected from a monitor POV */
4655 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4656 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4657 return connector_status_disconnected;
4658 }
4659
4660 power_domain = intel_dp_power_get(intel_dp);
4661
4662 /* Can't disconnect eDP, but you can close the lid... */
4663 if (is_edp(intel_dp))
4664 status = edp_detect(intel_dp);
4665 else if (HAS_PCH_SPLIT(dev))
4666 status = ironlake_dp_detect(intel_dp);
4667 else
4668 status = g4x_dp_detect(intel_dp);
4669 if (status != connector_status_connected) {
4670 intel_dp->compliance_test_active = 0;
4671 intel_dp->compliance_test_type = 0;
4672 intel_dp->compliance_test_data = 0;
4673
4674 goto out;
4675 }
4676
4677 intel_dp_probe_oui(intel_dp);
4678
4679 ret = intel_dp_probe_mst(intel_dp);
4680 if (ret) {
4681 /* if we are in MST mode then this connector
4682 won't appear connected or have anything with EDID on it */
4683 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4684 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4685 status = connector_status_disconnected;
4686 goto out;
4687 }
4688
4689 /*
4690 * Clearing NACK and defer counts to get their exact values
4691 * while reading EDID which are required by Compliance tests
4692 * 4.2.2.4 and 4.2.2.5
4693 */
4694 intel_dp->aux.i2c_nack_count = 0;
4695 intel_dp->aux.i2c_defer_count = 0;
4696
4697 intel_dp_set_edid(intel_dp);
4698
4699 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4700 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4701 status = connector_status_connected;
4702
4703 /* Try to read the source of the interrupt */
4704 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4705 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4706 /* Clear interrupt source */
4707 drm_dp_dpcd_writeb(&intel_dp->aux,
4708 DP_DEVICE_SERVICE_IRQ_VECTOR,
4709 sink_irq_vector);
4710
4711 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4712 intel_dp_handle_test_request(intel_dp);
4713 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4714 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4715 }
4716
4717 out:
4718 intel_dp_power_put(intel_dp, power_domain);
4719 return status;
4720 }
4721
4722 static void
4723 intel_dp_force(struct drm_connector *connector)
4724 {
4725 struct intel_dp *intel_dp = intel_attached_dp(connector);
4726 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4727 enum intel_display_power_domain power_domain;
4728
4729 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4730 connector->base.id, connector->name);
4731 intel_dp_unset_edid(intel_dp);
4732
4733 if (connector->status != connector_status_connected)
4734 return;
4735
4736 power_domain = intel_dp_power_get(intel_dp);
4737
4738 intel_dp_set_edid(intel_dp);
4739
4740 intel_dp_power_put(intel_dp, power_domain);
4741
4742 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4743 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4744 }
4745
4746 static int intel_dp_get_modes(struct drm_connector *connector)
4747 {
4748 struct intel_connector *intel_connector = to_intel_connector(connector);
4749 struct edid *edid;
4750
4751 edid = intel_connector->detect_edid;
4752 if (edid) {
4753 int ret = intel_connector_update_modes(connector, edid);
4754 if (ret)
4755 return ret;
4756 }
4757
4758 /* if eDP has no EDID, fall back to fixed mode */
4759 if (is_edp(intel_attached_dp(connector)) &&
4760 intel_connector->panel.fixed_mode) {
4761 struct drm_display_mode *mode;
4762
4763 mode = drm_mode_duplicate(connector->dev,
4764 intel_connector->panel.fixed_mode);
4765 if (mode) {
4766 drm_mode_probed_add(connector, mode);
4767 return 1;
4768 }
4769 }
4770
4771 return 0;
4772 }
4773
4774 static bool
4775 intel_dp_detect_audio(struct drm_connector *connector)
4776 {
4777 bool has_audio = false;
4778 struct edid *edid;
4779
4780 edid = to_intel_connector(connector)->detect_edid;
4781 if (edid)
4782 has_audio = drm_detect_monitor_audio(edid);
4783
4784 return has_audio;
4785 }
4786
4787 static int
4788 intel_dp_set_property(struct drm_connector *connector,
4789 struct drm_property *property,
4790 uint64_t val)
4791 {
4792 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4793 struct intel_connector *intel_connector = to_intel_connector(connector);
4794 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4795 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4796 int ret;
4797
4798 ret = drm_object_property_set_value(&connector->base, property, val);
4799 if (ret)
4800 return ret;
4801
4802 if (property == dev_priv->force_audio_property) {
4803 int i = val;
4804 bool has_audio;
4805
4806 if (i == intel_dp->force_audio)
4807 return 0;
4808
4809 intel_dp->force_audio = i;
4810
4811 if (i == HDMI_AUDIO_AUTO)
4812 has_audio = intel_dp_detect_audio(connector);
4813 else
4814 has_audio = (i == HDMI_AUDIO_ON);
4815
4816 if (has_audio == intel_dp->has_audio)
4817 return 0;
4818
4819 intel_dp->has_audio = has_audio;
4820 goto done;
4821 }
4822
4823 if (property == dev_priv->broadcast_rgb_property) {
4824 bool old_auto = intel_dp->color_range_auto;
4825 bool old_range = intel_dp->limited_color_range;
4826
4827 switch (val) {
4828 case INTEL_BROADCAST_RGB_AUTO:
4829 intel_dp->color_range_auto = true;
4830 break;
4831 case INTEL_BROADCAST_RGB_FULL:
4832 intel_dp->color_range_auto = false;
4833 intel_dp->limited_color_range = false;
4834 break;
4835 case INTEL_BROADCAST_RGB_LIMITED:
4836 intel_dp->color_range_auto = false;
4837 intel_dp->limited_color_range = true;
4838 break;
4839 default:
4840 return -EINVAL;
4841 }
4842
4843 if (old_auto == intel_dp->color_range_auto &&
4844 old_range == intel_dp->limited_color_range)
4845 return 0;
4846
4847 goto done;
4848 }
4849
4850 if (is_edp(intel_dp) &&
4851 property == connector->dev->mode_config.scaling_mode_property) {
4852 if (val == DRM_MODE_SCALE_NONE) {
4853 DRM_DEBUG_KMS("no scaling not supported\n");
4854 return -EINVAL;
4855 }
4856
4857 if (intel_connector->panel.fitting_mode == val) {
4858 /* the eDP scaling property is not changed */
4859 return 0;
4860 }
4861 intel_connector->panel.fitting_mode = val;
4862
4863 goto done;
4864 }
4865
4866 return -EINVAL;
4867
4868 done:
4869 if (intel_encoder->base.crtc)
4870 intel_crtc_restore_mode(intel_encoder->base.crtc);
4871
4872 return 0;
4873 }
4874
4875 static void
4876 intel_dp_connector_destroy(struct drm_connector *connector)
4877 {
4878 struct intel_connector *intel_connector = to_intel_connector(connector);
4879
4880 kfree(intel_connector->detect_edid);
4881
4882 if (!IS_ERR_OR_NULL(intel_connector->edid))
4883 kfree(intel_connector->edid);
4884
4885 /* Can't call is_edp() since the encoder may have been destroyed
4886 * already. */
4887 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4888 intel_panel_fini(&intel_connector->panel);
4889
4890 drm_connector_cleanup(connector);
4891 kfree(connector);
4892 }
4893
4894 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4895 {
4896 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4897 struct intel_dp *intel_dp = &intel_dig_port->dp;
4898
4899 intel_dp_aux_fini(intel_dp);
4900 intel_dp_mst_encoder_cleanup(intel_dig_port);
4901 if (is_edp(intel_dp)) {
4902 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4903 /*
4904 * vdd might still be enabled do to the delayed vdd off.
4905 * Make sure vdd is actually turned off here.
4906 */
4907 pps_lock(intel_dp);
4908 edp_panel_vdd_off_sync(intel_dp);
4909 pps_unlock(intel_dp);
4910
4911 if (intel_dp->edp_notifier.notifier_call) {
4912 unregister_reboot_notifier(&intel_dp->edp_notifier);
4913 intel_dp->edp_notifier.notifier_call = NULL;
4914 }
4915 }
4916 drm_encoder_cleanup(encoder);
4917 kfree(intel_dig_port);
4918 }
4919
4920 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4921 {
4922 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4923
4924 if (!is_edp(intel_dp))
4925 return;
4926
4927 /*
4928 * vdd might still be enabled do to the delayed vdd off.
4929 * Make sure vdd is actually turned off here.
4930 */
4931 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4932 pps_lock(intel_dp);
4933 edp_panel_vdd_off_sync(intel_dp);
4934 pps_unlock(intel_dp);
4935 }
4936
4937 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4938 {
4939 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4940 struct drm_device *dev = intel_dig_port->base.base.dev;
4941 struct drm_i915_private *dev_priv = dev->dev_private;
4942 enum intel_display_power_domain power_domain;
4943
4944 lockdep_assert_held(&dev_priv->pps_mutex);
4945
4946 if (!edp_have_panel_vdd(intel_dp))
4947 return;
4948
4949 /*
4950 * The VDD bit needs a power domain reference, so if the bit is
4951 * already enabled when we boot or resume, grab this reference and
4952 * schedule a vdd off, so we don't hold on to the reference
4953 * indefinitely.
4954 */
4955 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4956 power_domain = intel_display_port_power_domain(&intel_dig_port->base);
4957 intel_display_power_get(dev_priv, power_domain);
4958
4959 edp_panel_vdd_schedule_off(intel_dp);
4960 }
4961
4962 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4963 {
4964 struct intel_dp *intel_dp;
4965
4966 if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4967 return;
4968
4969 intel_dp = enc_to_intel_dp(encoder);
4970
4971 pps_lock(intel_dp);
4972
4973 /*
4974 * Read out the current power sequencer assignment,
4975 * in case the BIOS did something with it.
4976 */
4977 if (IS_VALLEYVIEW(encoder->dev))
4978 vlv_initial_power_sequencer_setup(intel_dp);
4979
4980 intel_edp_panel_vdd_sanitize(intel_dp);
4981
4982 pps_unlock(intel_dp);
4983 }
4984
4985 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4986 .dpms = drm_atomic_helper_connector_dpms,
4987 .detect = intel_dp_detect,
4988 .force = intel_dp_force,
4989 .fill_modes = drm_helper_probe_single_connector_modes,
4990 .set_property = intel_dp_set_property,
4991 .atomic_get_property = intel_connector_atomic_get_property,
4992 .destroy = intel_dp_connector_destroy,
4993 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4994 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4995 };
4996
4997 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4998 .get_modes = intel_dp_get_modes,
4999 .mode_valid = intel_dp_mode_valid,
5000 .best_encoder = intel_best_encoder,
5001 };
5002
5003 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
5004 .reset = intel_dp_encoder_reset,
5005 .destroy = intel_dp_encoder_destroy,
5006 };
5007
5008 enum irqreturn
5009 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
5010 {
5011 struct intel_dp *intel_dp = &intel_dig_port->dp;
5012 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5013 struct drm_device *dev = intel_dig_port->base.base.dev;
5014 struct drm_i915_private *dev_priv = dev->dev_private;
5015 enum intel_display_power_domain power_domain;
5016 enum irqreturn ret = IRQ_NONE;
5017
5018 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
5019 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
5020
5021 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
5022 /*
5023 * vdd off can generate a long pulse on eDP which
5024 * would require vdd on to handle it, and thus we
5025 * would end up in an endless cycle of
5026 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
5027 */
5028 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
5029 port_name(intel_dig_port->port));
5030 return IRQ_HANDLED;
5031 }
5032
5033 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
5034 port_name(intel_dig_port->port),
5035 long_hpd ? "long" : "short");
5036
5037 power_domain = intel_display_port_power_domain(intel_encoder);
5038 intel_display_power_get(dev_priv, power_domain);
5039
5040 if (long_hpd) {
5041 /* indicate that we need to restart link training */
5042 intel_dp->train_set_valid = false;
5043
5044 if (!intel_digital_port_connected(dev_priv, intel_dig_port))
5045 goto mst_fail;
5046
5047 if (!intel_dp_get_dpcd(intel_dp)) {
5048 goto mst_fail;
5049 }
5050
5051 intel_dp_probe_oui(intel_dp);
5052
5053 if (!intel_dp_probe_mst(intel_dp)) {
5054 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
5055 intel_dp_check_link_status(intel_dp);
5056 drm_modeset_unlock(&dev->mode_config.connection_mutex);
5057 goto mst_fail;
5058 }
5059 } else {
5060 if (intel_dp->is_mst) {
5061 if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
5062 goto mst_fail;
5063 }
5064
5065 if (!intel_dp->is_mst) {
5066 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
5067 intel_dp_check_link_status(intel_dp);
5068 drm_modeset_unlock(&dev->mode_config.connection_mutex);
5069 }
5070 }
5071
5072 ret = IRQ_HANDLED;
5073
5074 goto put_power;
5075 mst_fail:
5076 /* if we were in MST mode, and device is not there get out of MST mode */
5077 if (intel_dp->is_mst) {
5078 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
5079 intel_dp->is_mst = false;
5080 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
5081 }
5082 put_power:
5083 intel_display_power_put(dev_priv, power_domain);
5084
5085 return ret;
5086 }
5087
5088 /* Return which DP Port should be selected for Transcoder DP control */
5089 int
5090 intel_trans_dp_port_sel(struct drm_crtc *crtc)
5091 {
5092 struct drm_device *dev = crtc->dev;
5093 struct intel_encoder *intel_encoder;
5094 struct intel_dp *intel_dp;
5095
5096 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5097 intel_dp = enc_to_intel_dp(&intel_encoder->base);
5098
5099 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
5100 intel_encoder->type == INTEL_OUTPUT_EDP)
5101 return intel_dp->output_reg;
5102 }
5103
5104 return -1;
5105 }
5106
5107 /* check the VBT to see whether the eDP is on another port */
5108 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
5109 {
5110 struct drm_i915_private *dev_priv = dev->dev_private;
5111 union child_device_config *p_child;
5112 int i;
5113 static const short port_mapping[] = {
5114 [PORT_B] = DVO_PORT_DPB,
5115 [PORT_C] = DVO_PORT_DPC,
5116 [PORT_D] = DVO_PORT_DPD,
5117 [PORT_E] = DVO_PORT_DPE,
5118 };
5119
5120 /*
5121 * eDP not supported on g4x. so bail out early just
5122 * for a bit extra safety in case the VBT is bonkers.
5123 */
5124 if (INTEL_INFO(dev)->gen < 5)
5125 return false;
5126
5127 if (port == PORT_A)
5128 return true;
5129
5130 if (!dev_priv->vbt.child_dev_num)
5131 return false;
5132
5133 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
5134 p_child = dev_priv->vbt.child_dev + i;
5135
5136 if (p_child->common.dvo_port == port_mapping[port] &&
5137 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
5138 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
5139 return true;
5140 }
5141 return false;
5142 }
5143
5144 void
5145 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5146 {
5147 struct intel_connector *intel_connector = to_intel_connector(connector);
5148
5149 intel_attach_force_audio_property(connector);
5150 intel_attach_broadcast_rgb_property(connector);
5151 intel_dp->color_range_auto = true;
5152
5153 if (is_edp(intel_dp)) {
5154 drm_mode_create_scaling_mode_property(connector->dev);
5155 drm_object_attach_property(
5156 &connector->base,
5157 connector->dev->mode_config.scaling_mode_property,
5158 DRM_MODE_SCALE_ASPECT);
5159 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
5160 }
5161 }
5162
5163 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
5164 {
5165 intel_dp->last_power_cycle = jiffies;
5166 intel_dp->last_power_on = jiffies;
5167 intel_dp->last_backlight_off = jiffies;
5168 }
5169
5170 static void
5171 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
5172 struct intel_dp *intel_dp)
5173 {
5174 struct drm_i915_private *dev_priv = dev->dev_private;
5175 struct edp_power_seq cur, vbt, spec,
5176 *final = &intel_dp->pps_delays;
5177 u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
5178 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg = 0;
5179
5180 lockdep_assert_held(&dev_priv->pps_mutex);
5181
5182 /* already initialized? */
5183 if (final->t11_t12 != 0)
5184 return;
5185
5186 if (IS_BROXTON(dev)) {
5187 /*
5188 * TODO: BXT has 2 sets of PPS registers.
5189 * Correct Register for Broxton need to be identified
5190 * using VBT. hardcoding for now
5191 */
5192 pp_ctrl_reg = BXT_PP_CONTROL(0);
5193 pp_on_reg = BXT_PP_ON_DELAYS(0);
5194 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5195 } else if (HAS_PCH_SPLIT(dev)) {
5196 pp_ctrl_reg = PCH_PP_CONTROL;
5197 pp_on_reg = PCH_PP_ON_DELAYS;
5198 pp_off_reg = PCH_PP_OFF_DELAYS;
5199 pp_div_reg = PCH_PP_DIVISOR;
5200 } else {
5201 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5202
5203 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
5204 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5205 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5206 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5207 }
5208
5209 /* Workaround: Need to write PP_CONTROL with the unlock key as
5210 * the very first thing. */
5211 pp_ctl = ironlake_get_pp_control(intel_dp);
5212
5213 pp_on = I915_READ(pp_on_reg);
5214 pp_off = I915_READ(pp_off_reg);
5215 if (!IS_BROXTON(dev)) {
5216 I915_WRITE(pp_ctrl_reg, pp_ctl);
5217 pp_div = I915_READ(pp_div_reg);
5218 }
5219
5220 /* Pull timing values out of registers */
5221 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
5222 PANEL_POWER_UP_DELAY_SHIFT;
5223
5224 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
5225 PANEL_LIGHT_ON_DELAY_SHIFT;
5226
5227 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
5228 PANEL_LIGHT_OFF_DELAY_SHIFT;
5229
5230 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5231 PANEL_POWER_DOWN_DELAY_SHIFT;
5232
5233 if (IS_BROXTON(dev)) {
5234 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
5235 BXT_POWER_CYCLE_DELAY_SHIFT;
5236 if (tmp > 0)
5237 cur.t11_t12 = (tmp - 1) * 1000;
5238 else
5239 cur.t11_t12 = 0;
5240 } else {
5241 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5242 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5243 }
5244
5245 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5246 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
5247
5248 vbt = dev_priv->vbt.edp_pps;
5249
5250 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5251 * our hw here, which are all in 100usec. */
5252 spec.t1_t3 = 210 * 10;
5253 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5254 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5255 spec.t10 = 500 * 10;
5256 /* This one is special and actually in units of 100ms, but zero
5257 * based in the hw (so we need to add 100 ms). But the sw vbt
5258 * table multiplies it with 1000 to make it in units of 100usec,
5259 * too. */
5260 spec.t11_t12 = (510 + 100) * 10;
5261
5262 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5263 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
5264
5265 /* Use the max of the register settings and vbt. If both are
5266 * unset, fall back to the spec limits. */
5267 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
5268 spec.field : \
5269 max(cur.field, vbt.field))
5270 assign_final(t1_t3);
5271 assign_final(t8);
5272 assign_final(t9);
5273 assign_final(t10);
5274 assign_final(t11_t12);
5275 #undef assign_final
5276
5277 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
5278 intel_dp->panel_power_up_delay = get_delay(t1_t3);
5279 intel_dp->backlight_on_delay = get_delay(t8);
5280 intel_dp->backlight_off_delay = get_delay(t9);
5281 intel_dp->panel_power_down_delay = get_delay(t10);
5282 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5283 #undef get_delay
5284
5285 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5286 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5287 intel_dp->panel_power_cycle_delay);
5288
5289 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5290 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5291 }
5292
5293 static void
5294 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5295 struct intel_dp *intel_dp)
5296 {
5297 struct drm_i915_private *dev_priv = dev->dev_private;
5298 u32 pp_on, pp_off, pp_div, port_sel = 0;
5299 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
5300 int pp_on_reg, pp_off_reg, pp_div_reg = 0, pp_ctrl_reg;
5301 enum port port = dp_to_dig_port(intel_dp)->port;
5302 const struct edp_power_seq *seq = &intel_dp->pps_delays;
5303
5304 lockdep_assert_held(&dev_priv->pps_mutex);
5305
5306 if (IS_BROXTON(dev)) {
5307 /*
5308 * TODO: BXT has 2 sets of PPS registers.
5309 * Correct Register for Broxton need to be identified
5310 * using VBT. hardcoding for now
5311 */
5312 pp_ctrl_reg = BXT_PP_CONTROL(0);
5313 pp_on_reg = BXT_PP_ON_DELAYS(0);
5314 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5315
5316 } else if (HAS_PCH_SPLIT(dev)) {
5317 pp_on_reg = PCH_PP_ON_DELAYS;
5318 pp_off_reg = PCH_PP_OFF_DELAYS;
5319 pp_div_reg = PCH_PP_DIVISOR;
5320 } else {
5321 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5322
5323 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5324 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5325 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5326 }
5327
5328 /*
5329 * And finally store the new values in the power sequencer. The
5330 * backlight delays are set to 1 because we do manual waits on them. For
5331 * T8, even BSpec recommends doing it. For T9, if we don't do this,
5332 * we'll end up waiting for the backlight off delay twice: once when we
5333 * do the manual sleep, and once when we disable the panel and wait for
5334 * the PP_STATUS bit to become zero.
5335 */
5336 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5337 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
5338 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5339 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5340 /* Compute the divisor for the pp clock, simply match the Bspec
5341 * formula. */
5342 if (IS_BROXTON(dev)) {
5343 pp_div = I915_READ(pp_ctrl_reg);
5344 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5345 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
5346 << BXT_POWER_CYCLE_DELAY_SHIFT);
5347 } else {
5348 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5349 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5350 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5351 }
5352
5353 /* Haswell doesn't have any port selection bits for the panel
5354 * power sequencer any more. */
5355 if (IS_VALLEYVIEW(dev)) {
5356 port_sel = PANEL_PORT_SELECT_VLV(port);
5357 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5358 if (port == PORT_A)
5359 port_sel = PANEL_PORT_SELECT_DPA;
5360 else
5361 port_sel = PANEL_PORT_SELECT_DPD;
5362 }
5363
5364 pp_on |= port_sel;
5365
5366 I915_WRITE(pp_on_reg, pp_on);
5367 I915_WRITE(pp_off_reg, pp_off);
5368 if (IS_BROXTON(dev))
5369 I915_WRITE(pp_ctrl_reg, pp_div);
5370 else
5371 I915_WRITE(pp_div_reg, pp_div);
5372
5373 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5374 I915_READ(pp_on_reg),
5375 I915_READ(pp_off_reg),
5376 IS_BROXTON(dev) ?
5377 (I915_READ(pp_ctrl_reg) & BXT_POWER_CYCLE_DELAY_MASK) :
5378 I915_READ(pp_div_reg));
5379 }
5380
5381 /**
5382 * intel_dp_set_drrs_state - program registers for RR switch to take effect
5383 * @dev: DRM device
5384 * @refresh_rate: RR to be programmed
5385 *
5386 * This function gets called when refresh rate (RR) has to be changed from
5387 * one frequency to another. Switches can be between high and low RR
5388 * supported by the panel or to any other RR based on media playback (in
5389 * this case, RR value needs to be passed from user space).
5390 *
5391 * The caller of this function needs to take a lock on dev_priv->drrs.
5392 */
5393 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
5394 {
5395 struct drm_i915_private *dev_priv = dev->dev_private;
5396 struct intel_encoder *encoder;
5397 struct intel_digital_port *dig_port = NULL;
5398 struct intel_dp *intel_dp = dev_priv->drrs.dp;
5399 struct intel_crtc_state *config = NULL;
5400 struct intel_crtc *intel_crtc = NULL;
5401 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5402
5403 if (refresh_rate <= 0) {
5404 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5405 return;
5406 }
5407
5408 if (intel_dp == NULL) {
5409 DRM_DEBUG_KMS("DRRS not supported.\n");
5410 return;
5411 }
5412
5413 /*
5414 * FIXME: This needs proper synchronization with psr state for some
5415 * platforms that cannot have PSR and DRRS enabled at the same time.
5416 */
5417
5418 dig_port = dp_to_dig_port(intel_dp);
5419 encoder = &dig_port->base;
5420 intel_crtc = to_intel_crtc(encoder->base.crtc);
5421
5422 if (!intel_crtc) {
5423 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5424 return;
5425 }
5426
5427 config = intel_crtc->config;
5428
5429 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5430 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5431 return;
5432 }
5433
5434 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5435 refresh_rate)
5436 index = DRRS_LOW_RR;
5437
5438 if (index == dev_priv->drrs.refresh_rate_type) {
5439 DRM_DEBUG_KMS(
5440 "DRRS requested for previously set RR...ignoring\n");
5441 return;
5442 }
5443
5444 if (!intel_crtc->active) {
5445 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5446 return;
5447 }
5448
5449 if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
5450 switch (index) {
5451 case DRRS_HIGH_RR:
5452 intel_dp_set_m_n(intel_crtc, M1_N1);
5453 break;
5454 case DRRS_LOW_RR:
5455 intel_dp_set_m_n(intel_crtc, M2_N2);
5456 break;
5457 case DRRS_MAX_RR:
5458 default:
5459 DRM_ERROR("Unsupported refreshrate type\n");
5460 }
5461 } else if (INTEL_INFO(dev)->gen > 6) {
5462 u32 reg = PIPECONF(intel_crtc->config->cpu_transcoder);
5463 u32 val;
5464
5465 val = I915_READ(reg);
5466 if (index > DRRS_HIGH_RR) {
5467 if (IS_VALLEYVIEW(dev))
5468 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5469 else
5470 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5471 } else {
5472 if (IS_VALLEYVIEW(dev))
5473 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5474 else
5475 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5476 }
5477 I915_WRITE(reg, val);
5478 }
5479
5480 dev_priv->drrs.refresh_rate_type = index;
5481
5482 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5483 }
5484
5485 /**
5486 * intel_edp_drrs_enable - init drrs struct if supported
5487 * @intel_dp: DP struct
5488 *
5489 * Initializes frontbuffer_bits and drrs.dp
5490 */
5491 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5492 {
5493 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5494 struct drm_i915_private *dev_priv = dev->dev_private;
5495 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5496 struct drm_crtc *crtc = dig_port->base.base.crtc;
5497 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5498
5499 if (!intel_crtc->config->has_drrs) {
5500 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5501 return;
5502 }
5503
5504 mutex_lock(&dev_priv->drrs.mutex);
5505 if (WARN_ON(dev_priv->drrs.dp)) {
5506 DRM_ERROR("DRRS already enabled\n");
5507 goto unlock;
5508 }
5509
5510 dev_priv->drrs.busy_frontbuffer_bits = 0;
5511
5512 dev_priv->drrs.dp = intel_dp;
5513
5514 unlock:
5515 mutex_unlock(&dev_priv->drrs.mutex);
5516 }
5517
5518 /**
5519 * intel_edp_drrs_disable - Disable DRRS
5520 * @intel_dp: DP struct
5521 *
5522 */
5523 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5524 {
5525 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5526 struct drm_i915_private *dev_priv = dev->dev_private;
5527 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5528 struct drm_crtc *crtc = dig_port->base.base.crtc;
5529 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5530
5531 if (!intel_crtc->config->has_drrs)
5532 return;
5533
5534 mutex_lock(&dev_priv->drrs.mutex);
5535 if (!dev_priv->drrs.dp) {
5536 mutex_unlock(&dev_priv->drrs.mutex);
5537 return;
5538 }
5539
5540 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5541 intel_dp_set_drrs_state(dev_priv->dev,
5542 intel_dp->attached_connector->panel.
5543 fixed_mode->vrefresh);
5544
5545 dev_priv->drrs.dp = NULL;
5546 mutex_unlock(&dev_priv->drrs.mutex);
5547
5548 cancel_delayed_work_sync(&dev_priv->drrs.work);
5549 }
5550
5551 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5552 {
5553 struct drm_i915_private *dev_priv =
5554 container_of(work, typeof(*dev_priv), drrs.work.work);
5555 struct intel_dp *intel_dp;
5556
5557 mutex_lock(&dev_priv->drrs.mutex);
5558
5559 intel_dp = dev_priv->drrs.dp;
5560
5561 if (!intel_dp)
5562 goto unlock;
5563
5564 /*
5565 * The delayed work can race with an invalidate hence we need to
5566 * recheck.
5567 */
5568
5569 if (dev_priv->drrs.busy_frontbuffer_bits)
5570 goto unlock;
5571
5572 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5573 intel_dp_set_drrs_state(dev_priv->dev,
5574 intel_dp->attached_connector->panel.
5575 downclock_mode->vrefresh);
5576
5577 unlock:
5578 mutex_unlock(&dev_priv->drrs.mutex);
5579 }
5580
5581 /**
5582 * intel_edp_drrs_invalidate - Disable Idleness DRRS
5583 * @dev: DRM device
5584 * @frontbuffer_bits: frontbuffer plane tracking bits
5585 *
5586 * This function gets called everytime rendering on the given planes start.
5587 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5588 *
5589 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5590 */
5591 void intel_edp_drrs_invalidate(struct drm_device *dev,
5592 unsigned frontbuffer_bits)
5593 {
5594 struct drm_i915_private *dev_priv = dev->dev_private;
5595 struct drm_crtc *crtc;
5596 enum pipe pipe;
5597
5598 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5599 return;
5600
5601 cancel_delayed_work(&dev_priv->drrs.work);
5602
5603 mutex_lock(&dev_priv->drrs.mutex);
5604 if (!dev_priv->drrs.dp) {
5605 mutex_unlock(&dev_priv->drrs.mutex);
5606 return;
5607 }
5608
5609 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5610 pipe = to_intel_crtc(crtc)->pipe;
5611
5612 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5613 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5614
5615 /* invalidate means busy screen hence upclock */
5616 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5617 intel_dp_set_drrs_state(dev_priv->dev,
5618 dev_priv->drrs.dp->attached_connector->panel.
5619 fixed_mode->vrefresh);
5620
5621 mutex_unlock(&dev_priv->drrs.mutex);
5622 }
5623
5624 /**
5625 * intel_edp_drrs_flush - Restart Idleness DRRS
5626 * @dev: DRM device
5627 * @frontbuffer_bits: frontbuffer plane tracking bits
5628 *
5629 * This function gets called every time rendering on the given planes has
5630 * completed or flip on a crtc is completed. So DRRS should be upclocked
5631 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5632 * if no other planes are dirty.
5633 *
5634 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5635 */
5636 void intel_edp_drrs_flush(struct drm_device *dev,
5637 unsigned frontbuffer_bits)
5638 {
5639 struct drm_i915_private *dev_priv = dev->dev_private;
5640 struct drm_crtc *crtc;
5641 enum pipe pipe;
5642
5643 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5644 return;
5645
5646 cancel_delayed_work(&dev_priv->drrs.work);
5647
5648 mutex_lock(&dev_priv->drrs.mutex);
5649 if (!dev_priv->drrs.dp) {
5650 mutex_unlock(&dev_priv->drrs.mutex);
5651 return;
5652 }
5653
5654 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5655 pipe = to_intel_crtc(crtc)->pipe;
5656
5657 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5658 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5659
5660 /* flush means busy screen hence upclock */
5661 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5662 intel_dp_set_drrs_state(dev_priv->dev,
5663 dev_priv->drrs.dp->attached_connector->panel.
5664 fixed_mode->vrefresh);
5665
5666 /*
5667 * flush also means no more activity hence schedule downclock, if all
5668 * other fbs are quiescent too
5669 */
5670 if (!dev_priv->drrs.busy_frontbuffer_bits)
5671 schedule_delayed_work(&dev_priv->drrs.work,
5672 msecs_to_jiffies(1000));
5673 mutex_unlock(&dev_priv->drrs.mutex);
5674 }
5675
5676 /**
5677 * DOC: Display Refresh Rate Switching (DRRS)
5678 *
5679 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5680 * which enables swtching between low and high refresh rates,
5681 * dynamically, based on the usage scenario. This feature is applicable
5682 * for internal panels.
5683 *
5684 * Indication that the panel supports DRRS is given by the panel EDID, which
5685 * would list multiple refresh rates for one resolution.
5686 *
5687 * DRRS is of 2 types - static and seamless.
5688 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5689 * (may appear as a blink on screen) and is used in dock-undock scenario.
5690 * Seamless DRRS involves changing RR without any visual effect to the user
5691 * and can be used during normal system usage. This is done by programming
5692 * certain registers.
5693 *
5694 * Support for static/seamless DRRS may be indicated in the VBT based on
5695 * inputs from the panel spec.
5696 *
5697 * DRRS saves power by switching to low RR based on usage scenarios.
5698 *
5699 * eDP DRRS:-
5700 * The implementation is based on frontbuffer tracking implementation.
5701 * When there is a disturbance on the screen triggered by user activity or a
5702 * periodic system activity, DRRS is disabled (RR is changed to high RR).
5703 * When there is no movement on screen, after a timeout of 1 second, a switch
5704 * to low RR is made.
5705 * For integration with frontbuffer tracking code,
5706 * intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called.
5707 *
5708 * DRRS can be further extended to support other internal panels and also
5709 * the scenario of video playback wherein RR is set based on the rate
5710 * requested by userspace.
5711 */
5712
5713 /**
5714 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5715 * @intel_connector: eDP connector
5716 * @fixed_mode: preferred mode of panel
5717 *
5718 * This function is called only once at driver load to initialize basic
5719 * DRRS stuff.
5720 *
5721 * Returns:
5722 * Downclock mode if panel supports it, else return NULL.
5723 * DRRS support is determined by the presence of downclock mode (apart
5724 * from VBT setting).
5725 */
5726 static struct drm_display_mode *
5727 intel_dp_drrs_init(struct intel_connector *intel_connector,
5728 struct drm_display_mode *fixed_mode)
5729 {
5730 struct drm_connector *connector = &intel_connector->base;
5731 struct drm_device *dev = connector->dev;
5732 struct drm_i915_private *dev_priv = dev->dev_private;
5733 struct drm_display_mode *downclock_mode = NULL;
5734
5735 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5736 mutex_init(&dev_priv->drrs.mutex);
5737
5738 if (INTEL_INFO(dev)->gen <= 6) {
5739 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5740 return NULL;
5741 }
5742
5743 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5744 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5745 return NULL;
5746 }
5747
5748 downclock_mode = intel_find_panel_downclock
5749 (dev, fixed_mode, connector);
5750
5751 if (!downclock_mode) {
5752 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5753 return NULL;
5754 }
5755
5756 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5757
5758 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5759 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5760 return downclock_mode;
5761 }
5762
5763 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5764 struct intel_connector *intel_connector)
5765 {
5766 struct drm_connector *connector = &intel_connector->base;
5767 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5768 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5769 struct drm_device *dev = intel_encoder->base.dev;
5770 struct drm_i915_private *dev_priv = dev->dev_private;
5771 struct drm_display_mode *fixed_mode = NULL;
5772 struct drm_display_mode *downclock_mode = NULL;
5773 bool has_dpcd;
5774 struct drm_display_mode *scan;
5775 struct edid *edid;
5776 enum pipe pipe = INVALID_PIPE;
5777
5778 if (!is_edp(intel_dp))
5779 return true;
5780
5781 pps_lock(intel_dp);
5782 intel_edp_panel_vdd_sanitize(intel_dp);
5783 pps_unlock(intel_dp);
5784
5785 /* Cache DPCD and EDID for edp. */
5786 has_dpcd = intel_dp_get_dpcd(intel_dp);
5787
5788 if (has_dpcd) {
5789 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5790 dev_priv->no_aux_handshake =
5791 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5792 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5793 } else {
5794 /* if this fails, presume the device is a ghost */
5795 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5796 return false;
5797 }
5798
5799 /* We now know it's not a ghost, init power sequence regs. */
5800 pps_lock(intel_dp);
5801 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5802 pps_unlock(intel_dp);
5803
5804 mutex_lock(&dev->mode_config.mutex);
5805 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5806 if (edid) {
5807 if (drm_add_edid_modes(connector, edid)) {
5808 drm_mode_connector_update_edid_property(connector,
5809 edid);
5810 drm_edid_to_eld(connector, edid);
5811 } else {
5812 kfree(edid);
5813 edid = ERR_PTR(-EINVAL);
5814 }
5815 } else {
5816 edid = ERR_PTR(-ENOENT);
5817 }
5818 intel_connector->edid = edid;
5819
5820 /* prefer fixed mode from EDID if available */
5821 list_for_each_entry(scan, &connector->probed_modes, head) {
5822 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5823 fixed_mode = drm_mode_duplicate(dev, scan);
5824 downclock_mode = intel_dp_drrs_init(
5825 intel_connector, fixed_mode);
5826 break;
5827 }
5828 }
5829
5830 /* fallback to VBT if available for eDP */
5831 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5832 fixed_mode = drm_mode_duplicate(dev,
5833 dev_priv->vbt.lfp_lvds_vbt_mode);
5834 if (fixed_mode)
5835 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5836 }
5837 mutex_unlock(&dev->mode_config.mutex);
5838
5839 if (IS_VALLEYVIEW(dev)) {
5840 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5841 register_reboot_notifier(&intel_dp->edp_notifier);
5842
5843 /*
5844 * Figure out the current pipe for the initial backlight setup.
5845 * If the current pipe isn't valid, try the PPS pipe, and if that
5846 * fails just assume pipe A.
5847 */
5848 if (IS_CHERRYVIEW(dev))
5849 pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5850 else
5851 pipe = PORT_TO_PIPE(intel_dp->DP);
5852
5853 if (pipe != PIPE_A && pipe != PIPE_B)
5854 pipe = intel_dp->pps_pipe;
5855
5856 if (pipe != PIPE_A && pipe != PIPE_B)
5857 pipe = PIPE_A;
5858
5859 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5860 pipe_name(pipe));
5861 }
5862
5863 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5864 intel_connector->panel.backlight.power = intel_edp_backlight_power;
5865 intel_panel_setup_backlight(connector, pipe);
5866
5867 return true;
5868 }
5869
5870 bool
5871 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5872 struct intel_connector *intel_connector)
5873 {
5874 struct drm_connector *connector = &intel_connector->base;
5875 struct intel_dp *intel_dp = &intel_dig_port->dp;
5876 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5877 struct drm_device *dev = intel_encoder->base.dev;
5878 struct drm_i915_private *dev_priv = dev->dev_private;
5879 enum port port = intel_dig_port->port;
5880 int type, ret;
5881
5882 intel_dp->pps_pipe = INVALID_PIPE;
5883
5884 /* intel_dp vfuncs */
5885 if (INTEL_INFO(dev)->gen >= 9)
5886 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5887 else if (IS_VALLEYVIEW(dev))
5888 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5889 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5890 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5891 else if (HAS_PCH_SPLIT(dev))
5892 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5893 else
5894 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5895
5896 if (INTEL_INFO(dev)->gen >= 9)
5897 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5898 else
5899 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5900
5901 if (HAS_DDI(dev))
5902 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
5903
5904 /* Preserve the current hw state. */
5905 intel_dp->DP = I915_READ(intel_dp->output_reg);
5906 intel_dp->attached_connector = intel_connector;
5907
5908 if (intel_dp_is_edp(dev, port))
5909 type = DRM_MODE_CONNECTOR_eDP;
5910 else
5911 type = DRM_MODE_CONNECTOR_DisplayPort;
5912
5913 /*
5914 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5915 * for DP the encoder type can be set by the caller to
5916 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5917 */
5918 if (type == DRM_MODE_CONNECTOR_eDP)
5919 intel_encoder->type = INTEL_OUTPUT_EDP;
5920
5921 /* eDP only on port B and/or C on vlv/chv */
5922 if (WARN_ON(IS_VALLEYVIEW(dev) && is_edp(intel_dp) &&
5923 port != PORT_B && port != PORT_C))
5924 return false;
5925
5926 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5927 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5928 port_name(port));
5929
5930 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5931 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5932
5933 connector->interlace_allowed = true;
5934 connector->doublescan_allowed = 0;
5935
5936 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5937 edp_panel_vdd_work);
5938
5939 intel_connector_attach_encoder(intel_connector, intel_encoder);
5940 drm_connector_register(connector);
5941
5942 if (HAS_DDI(dev))
5943 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5944 else
5945 intel_connector->get_hw_state = intel_connector_get_hw_state;
5946 intel_connector->unregister = intel_dp_connector_unregister;
5947
5948 /* Set up the hotplug pin. */
5949 switch (port) {
5950 case PORT_A:
5951 intel_encoder->hpd_pin = HPD_PORT_A;
5952 break;
5953 case PORT_B:
5954 intel_encoder->hpd_pin = HPD_PORT_B;
5955 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
5956 intel_encoder->hpd_pin = HPD_PORT_A;
5957 break;
5958 case PORT_C:
5959 intel_encoder->hpd_pin = HPD_PORT_C;
5960 break;
5961 case PORT_D:
5962 intel_encoder->hpd_pin = HPD_PORT_D;
5963 break;
5964 case PORT_E:
5965 intel_encoder->hpd_pin = HPD_PORT_E;
5966 break;
5967 default:
5968 BUG();
5969 }
5970
5971 if (is_edp(intel_dp)) {
5972 pps_lock(intel_dp);
5973 intel_dp_init_panel_power_timestamps(intel_dp);
5974 if (IS_VALLEYVIEW(dev))
5975 vlv_initial_power_sequencer_setup(intel_dp);
5976 else
5977 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5978 pps_unlock(intel_dp);
5979 }
5980
5981 ret = intel_dp_aux_init(intel_dp, intel_connector);
5982 if (ret)
5983 goto fail;
5984
5985 /* init MST on ports that can support it */
5986 if (HAS_DP_MST(dev) &&
5987 (port == PORT_B || port == PORT_C || port == PORT_D))
5988 intel_dp_mst_encoder_init(intel_dig_port,
5989 intel_connector->base.base.id);
5990
5991 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5992 intel_dp_aux_fini(intel_dp);
5993 intel_dp_mst_encoder_cleanup(intel_dig_port);
5994 goto fail;
5995 }
5996
5997 intel_dp_add_properties(intel_dp, connector);
5998
5999 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
6000 * 0xd. Failure to do so will result in spurious interrupts being
6001 * generated on the port when a cable is not attached.
6002 */
6003 if (IS_G4X(dev) && !IS_GM45(dev)) {
6004 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
6005 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
6006 }
6007
6008 i915_debugfs_connector_add(connector);
6009
6010 return true;
6011
6012 fail:
6013 if (is_edp(intel_dp)) {
6014 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6015 /*
6016 * vdd might still be enabled do to the delayed vdd off.
6017 * Make sure vdd is actually turned off here.
6018 */
6019 pps_lock(intel_dp);
6020 edp_panel_vdd_off_sync(intel_dp);
6021 pps_unlock(intel_dp);
6022 }
6023 drm_connector_unregister(connector);
6024 drm_connector_cleanup(connector);
6025
6026 return false;
6027 }
6028
6029 void
6030 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
6031 {
6032 struct drm_i915_private *dev_priv = dev->dev_private;
6033 struct intel_digital_port *intel_dig_port;
6034 struct intel_encoder *intel_encoder;
6035 struct drm_encoder *encoder;
6036 struct intel_connector *intel_connector;
6037
6038 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
6039 if (!intel_dig_port)
6040 return;
6041
6042 intel_connector = intel_connector_alloc();
6043 if (!intel_connector)
6044 goto err_connector_alloc;
6045
6046 intel_encoder = &intel_dig_port->base;
6047 encoder = &intel_encoder->base;
6048
6049 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
6050 DRM_MODE_ENCODER_TMDS);
6051
6052 intel_encoder->compute_config = intel_dp_compute_config;
6053 intel_encoder->disable = intel_disable_dp;
6054 intel_encoder->get_hw_state = intel_dp_get_hw_state;
6055 intel_encoder->get_config = intel_dp_get_config;
6056 intel_encoder->suspend = intel_dp_encoder_suspend;
6057 if (IS_CHERRYVIEW(dev)) {
6058 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
6059 intel_encoder->pre_enable = chv_pre_enable_dp;
6060 intel_encoder->enable = vlv_enable_dp;
6061 intel_encoder->post_disable = chv_post_disable_dp;
6062 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
6063 } else if (IS_VALLEYVIEW(dev)) {
6064 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
6065 intel_encoder->pre_enable = vlv_pre_enable_dp;
6066 intel_encoder->enable = vlv_enable_dp;
6067 intel_encoder->post_disable = vlv_post_disable_dp;
6068 } else {
6069 intel_encoder->pre_enable = g4x_pre_enable_dp;
6070 intel_encoder->enable = g4x_enable_dp;
6071 if (INTEL_INFO(dev)->gen >= 5)
6072 intel_encoder->post_disable = ilk_post_disable_dp;
6073 }
6074
6075 intel_dig_port->port = port;
6076 intel_dig_port->dp.output_reg = output_reg;
6077
6078 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
6079 if (IS_CHERRYVIEW(dev)) {
6080 if (port == PORT_D)
6081 intel_encoder->crtc_mask = 1 << 2;
6082 else
6083 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
6084 } else {
6085 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
6086 }
6087 intel_encoder->cloneable = 0;
6088
6089 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
6090 dev_priv->hotplug.irq_port[port] = intel_dig_port;
6091
6092 if (!intel_dp_init_connector(intel_dig_port, intel_connector))
6093 goto err_init_connector;
6094
6095 return;
6096
6097 err_init_connector:
6098 drm_encoder_cleanup(encoder);
6099 kfree(intel_connector);
6100 err_connector_alloc:
6101 kfree(intel_dig_port);
6102
6103 return;
6104 }
6105
6106 void intel_dp_mst_suspend(struct drm_device *dev)
6107 {
6108 struct drm_i915_private *dev_priv = dev->dev_private;
6109 int i;
6110
6111 /* disable MST */
6112 for (i = 0; i < I915_MAX_PORTS; i++) {
6113 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6114 if (!intel_dig_port)
6115 continue;
6116
6117 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6118 if (!intel_dig_port->dp.can_mst)
6119 continue;
6120 if (intel_dig_port->dp.is_mst)
6121 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
6122 }
6123 }
6124 }
6125
6126 void intel_dp_mst_resume(struct drm_device *dev)
6127 {
6128 struct drm_i915_private *dev_priv = dev->dev_private;
6129 int i;
6130
6131 for (i = 0; i < I915_MAX_PORTS; i++) {
6132 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6133 if (!intel_dig_port)
6134 continue;
6135 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6136 int ret;
6137
6138 if (!intel_dig_port->dp.can_mst)
6139 continue;
6140
6141 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
6142 if (ret != 0) {
6143 intel_dp_check_mst_status(&intel_dig_port->dp);
6144 }
6145 }
6146 }
6147 }