]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/gpu/drm/i915/intel_dp.c
Merge tag 'v3.16' into drm-next
[mirror_ubuntu-eoan-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_crtc.h>
35 #include <drm/drm_crtc_helper.h>
36 #include <drm/drm_edid.h>
37 #include "intel_drv.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40
41 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
42
43 struct dp_link_dpll {
44 int link_bw;
45 struct dpll dpll;
46 };
47
48 static const struct dp_link_dpll gen4_dpll[] = {
49 { DP_LINK_BW_1_62,
50 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
51 { DP_LINK_BW_2_7,
52 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
53 };
54
55 static const struct dp_link_dpll pch_dpll[] = {
56 { DP_LINK_BW_1_62,
57 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
58 { DP_LINK_BW_2_7,
59 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
60 };
61
62 static const struct dp_link_dpll vlv_dpll[] = {
63 { DP_LINK_BW_1_62,
64 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
65 { DP_LINK_BW_2_7,
66 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
67 };
68
69 /*
70 * CHV supports eDP 1.4 that have more link rates.
71 * Below only provides the fixed rate but exclude variable rate.
72 */
73 static const struct dp_link_dpll chv_dpll[] = {
74 /*
75 * CHV requires to program fractional division for m2.
76 * m2 is stored in fixed point format using formula below
77 * (m2_int << 22) | m2_fraction
78 */
79 { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */
80 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
81 { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */
82 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
83 { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */
84 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
85 };
86
87 /**
88 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
89 * @intel_dp: DP struct
90 *
91 * If a CPU or PCH DP output is attached to an eDP panel, this function
92 * will return true, and false otherwise.
93 */
94 static bool is_edp(struct intel_dp *intel_dp)
95 {
96 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
97
98 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
99 }
100
101 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
102 {
103 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
104
105 return intel_dig_port->base.base.dev;
106 }
107
108 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
109 {
110 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
111 }
112
113 static void intel_dp_link_down(struct intel_dp *intel_dp);
114 static bool _edp_panel_vdd_on(struct intel_dp *intel_dp);
115 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
116
117 int
118 intel_dp_max_link_bw(struct intel_dp *intel_dp)
119 {
120 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
121 struct drm_device *dev = intel_dp->attached_connector->base.dev;
122
123 switch (max_link_bw) {
124 case DP_LINK_BW_1_62:
125 case DP_LINK_BW_2_7:
126 break;
127 case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
128 if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
129 INTEL_INFO(dev)->gen >= 8) &&
130 intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
131 max_link_bw = DP_LINK_BW_5_4;
132 else
133 max_link_bw = DP_LINK_BW_2_7;
134 break;
135 default:
136 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
137 max_link_bw);
138 max_link_bw = DP_LINK_BW_1_62;
139 break;
140 }
141 return max_link_bw;
142 }
143
144 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
145 {
146 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
147 struct drm_device *dev = intel_dig_port->base.base.dev;
148 u8 source_max, sink_max;
149
150 source_max = 4;
151 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
152 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
153 source_max = 2;
154
155 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
156
157 return min(source_max, sink_max);
158 }
159
160 /*
161 * The units on the numbers in the next two are... bizarre. Examples will
162 * make it clearer; this one parallels an example in the eDP spec.
163 *
164 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
165 *
166 * 270000 * 1 * 8 / 10 == 216000
167 *
168 * The actual data capacity of that configuration is 2.16Gbit/s, so the
169 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
170 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
171 * 119000. At 18bpp that's 2142000 kilobits per second.
172 *
173 * Thus the strange-looking division by 10 in intel_dp_link_required, to
174 * get the result in decakilobits instead of kilobits.
175 */
176
177 static int
178 intel_dp_link_required(int pixel_clock, int bpp)
179 {
180 return (pixel_clock * bpp + 9) / 10;
181 }
182
183 static int
184 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
185 {
186 return (max_link_clock * max_lanes * 8) / 10;
187 }
188
189 static enum drm_mode_status
190 intel_dp_mode_valid(struct drm_connector *connector,
191 struct drm_display_mode *mode)
192 {
193 struct intel_dp *intel_dp = intel_attached_dp(connector);
194 struct intel_connector *intel_connector = to_intel_connector(connector);
195 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
196 int target_clock = mode->clock;
197 int max_rate, mode_rate, max_lanes, max_link_clock;
198
199 if (is_edp(intel_dp) && fixed_mode) {
200 if (mode->hdisplay > fixed_mode->hdisplay)
201 return MODE_PANEL;
202
203 if (mode->vdisplay > fixed_mode->vdisplay)
204 return MODE_PANEL;
205
206 target_clock = fixed_mode->clock;
207 }
208
209 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
210 max_lanes = intel_dp_max_lane_count(intel_dp);
211
212 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
213 mode_rate = intel_dp_link_required(target_clock, 18);
214
215 if (mode_rate > max_rate)
216 return MODE_CLOCK_HIGH;
217
218 if (mode->clock < 10000)
219 return MODE_CLOCK_LOW;
220
221 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
222 return MODE_H_ILLEGAL;
223
224 return MODE_OK;
225 }
226
227 static uint32_t
228 pack_aux(uint8_t *src, int src_bytes)
229 {
230 int i;
231 uint32_t v = 0;
232
233 if (src_bytes > 4)
234 src_bytes = 4;
235 for (i = 0; i < src_bytes; i++)
236 v |= ((uint32_t) src[i]) << ((3-i) * 8);
237 return v;
238 }
239
240 static void
241 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
242 {
243 int i;
244 if (dst_bytes > 4)
245 dst_bytes = 4;
246 for (i = 0; i < dst_bytes; i++)
247 dst[i] = src >> ((3-i) * 8);
248 }
249
250 /* hrawclock is 1/4 the FSB frequency */
251 static int
252 intel_hrawclk(struct drm_device *dev)
253 {
254 struct drm_i915_private *dev_priv = dev->dev_private;
255 uint32_t clkcfg;
256
257 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
258 if (IS_VALLEYVIEW(dev))
259 return 200;
260
261 clkcfg = I915_READ(CLKCFG);
262 switch (clkcfg & CLKCFG_FSB_MASK) {
263 case CLKCFG_FSB_400:
264 return 100;
265 case CLKCFG_FSB_533:
266 return 133;
267 case CLKCFG_FSB_667:
268 return 166;
269 case CLKCFG_FSB_800:
270 return 200;
271 case CLKCFG_FSB_1067:
272 return 266;
273 case CLKCFG_FSB_1333:
274 return 333;
275 /* these two are just a guess; one of them might be right */
276 case CLKCFG_FSB_1600:
277 case CLKCFG_FSB_1600_ALT:
278 return 400;
279 default:
280 return 133;
281 }
282 }
283
284 static void
285 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
286 struct intel_dp *intel_dp,
287 struct edp_power_seq *out);
288 static void
289 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
290 struct intel_dp *intel_dp,
291 struct edp_power_seq *out);
292
293 static enum pipe
294 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
295 {
296 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
297 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
298 struct drm_device *dev = intel_dig_port->base.base.dev;
299 struct drm_i915_private *dev_priv = dev->dev_private;
300 enum port port = intel_dig_port->port;
301 enum pipe pipe;
302
303 /* modeset should have pipe */
304 if (crtc)
305 return to_intel_crtc(crtc)->pipe;
306
307 /* init time, try to find a pipe with this port selected */
308 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
309 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
310 PANEL_PORT_SELECT_MASK;
311 if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
312 return pipe;
313 if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
314 return pipe;
315 }
316
317 /* shrug */
318 return PIPE_A;
319 }
320
321 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
322 {
323 struct drm_device *dev = intel_dp_to_dev(intel_dp);
324
325 if (HAS_PCH_SPLIT(dev))
326 return PCH_PP_CONTROL;
327 else
328 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
329 }
330
331 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
332 {
333 struct drm_device *dev = intel_dp_to_dev(intel_dp);
334
335 if (HAS_PCH_SPLIT(dev))
336 return PCH_PP_STATUS;
337 else
338 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
339 }
340
341 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
342 This function only applicable when panel PM state is not to be tracked */
343 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
344 void *unused)
345 {
346 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
347 edp_notifier);
348 struct drm_device *dev = intel_dp_to_dev(intel_dp);
349 struct drm_i915_private *dev_priv = dev->dev_private;
350 u32 pp_div;
351 u32 pp_ctrl_reg, pp_div_reg;
352 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
353
354 if (!is_edp(intel_dp) || code != SYS_RESTART)
355 return 0;
356
357 if (IS_VALLEYVIEW(dev)) {
358 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
359 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
360 pp_div = I915_READ(pp_div_reg);
361 pp_div &= PP_REFERENCE_DIVIDER_MASK;
362
363 /* 0x1F write to PP_DIV_REG sets max cycle delay */
364 I915_WRITE(pp_div_reg, pp_div | 0x1F);
365 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
366 msleep(intel_dp->panel_power_cycle_delay);
367 }
368
369 return 0;
370 }
371
372 static bool edp_have_panel_power(struct intel_dp *intel_dp)
373 {
374 struct drm_device *dev = intel_dp_to_dev(intel_dp);
375 struct drm_i915_private *dev_priv = dev->dev_private;
376
377 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
378 }
379
380 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
381 {
382 struct drm_device *dev = intel_dp_to_dev(intel_dp);
383 struct drm_i915_private *dev_priv = dev->dev_private;
384 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
385 struct intel_encoder *intel_encoder = &intel_dig_port->base;
386 enum intel_display_power_domain power_domain;
387
388 power_domain = intel_display_port_power_domain(intel_encoder);
389 return intel_display_power_enabled(dev_priv, power_domain) &&
390 (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
391 }
392
393 static void
394 intel_dp_check_edp(struct intel_dp *intel_dp)
395 {
396 struct drm_device *dev = intel_dp_to_dev(intel_dp);
397 struct drm_i915_private *dev_priv = dev->dev_private;
398
399 if (!is_edp(intel_dp))
400 return;
401
402 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
403 WARN(1, "eDP powered off while attempting aux channel communication.\n");
404 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
405 I915_READ(_pp_stat_reg(intel_dp)),
406 I915_READ(_pp_ctrl_reg(intel_dp)));
407 }
408 }
409
410 static uint32_t
411 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
412 {
413 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
414 struct drm_device *dev = intel_dig_port->base.base.dev;
415 struct drm_i915_private *dev_priv = dev->dev_private;
416 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
417 uint32_t status;
418 bool done;
419
420 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
421 if (has_aux_irq)
422 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
423 msecs_to_jiffies_timeout(10));
424 else
425 done = wait_for_atomic(C, 10) == 0;
426 if (!done)
427 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
428 has_aux_irq);
429 #undef C
430
431 return status;
432 }
433
434 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
435 {
436 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
437 struct drm_device *dev = intel_dig_port->base.base.dev;
438
439 /*
440 * The clock divider is based off the hrawclk, and would like to run at
441 * 2MHz. So, take the hrawclk value and divide by 2 and use that
442 */
443 return index ? 0 : intel_hrawclk(dev) / 2;
444 }
445
446 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
447 {
448 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
449 struct drm_device *dev = intel_dig_port->base.base.dev;
450
451 if (index)
452 return 0;
453
454 if (intel_dig_port->port == PORT_A) {
455 if (IS_GEN6(dev) || IS_GEN7(dev))
456 return 200; /* SNB & IVB eDP input clock at 400Mhz */
457 else
458 return 225; /* eDP input clock at 450Mhz */
459 } else {
460 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
461 }
462 }
463
464 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
465 {
466 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
467 struct drm_device *dev = intel_dig_port->base.base.dev;
468 struct drm_i915_private *dev_priv = dev->dev_private;
469
470 if (intel_dig_port->port == PORT_A) {
471 if (index)
472 return 0;
473 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
474 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
475 /* Workaround for non-ULT HSW */
476 switch (index) {
477 case 0: return 63;
478 case 1: return 72;
479 default: return 0;
480 }
481 } else {
482 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
483 }
484 }
485
486 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
487 {
488 return index ? 0 : 100;
489 }
490
491 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
492 bool has_aux_irq,
493 int send_bytes,
494 uint32_t aux_clock_divider)
495 {
496 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
497 struct drm_device *dev = intel_dig_port->base.base.dev;
498 uint32_t precharge, timeout;
499
500 if (IS_GEN6(dev))
501 precharge = 3;
502 else
503 precharge = 5;
504
505 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
506 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
507 else
508 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
509
510 return DP_AUX_CH_CTL_SEND_BUSY |
511 DP_AUX_CH_CTL_DONE |
512 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
513 DP_AUX_CH_CTL_TIME_OUT_ERROR |
514 timeout |
515 DP_AUX_CH_CTL_RECEIVE_ERROR |
516 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
517 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
518 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
519 }
520
521 static int
522 intel_dp_aux_ch(struct intel_dp *intel_dp,
523 uint8_t *send, int send_bytes,
524 uint8_t *recv, int recv_size)
525 {
526 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
527 struct drm_device *dev = intel_dig_port->base.base.dev;
528 struct drm_i915_private *dev_priv = dev->dev_private;
529 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
530 uint32_t ch_data = ch_ctl + 4;
531 uint32_t aux_clock_divider;
532 int i, ret, recv_bytes;
533 uint32_t status;
534 int try, clock = 0;
535 bool has_aux_irq = HAS_AUX_IRQ(dev);
536 bool vdd;
537
538 vdd = _edp_panel_vdd_on(intel_dp);
539
540 /* dp aux is extremely sensitive to irq latency, hence request the
541 * lowest possible wakeup latency and so prevent the cpu from going into
542 * deep sleep states.
543 */
544 pm_qos_update_request(&dev_priv->pm_qos, 0);
545
546 intel_dp_check_edp(intel_dp);
547
548 intel_aux_display_runtime_get(dev_priv);
549
550 /* Try to wait for any previous AUX channel activity */
551 for (try = 0; try < 3; try++) {
552 status = I915_READ_NOTRACE(ch_ctl);
553 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
554 break;
555 msleep(1);
556 }
557
558 if (try == 3) {
559 WARN(1, "dp_aux_ch not started status 0x%08x\n",
560 I915_READ(ch_ctl));
561 ret = -EBUSY;
562 goto out;
563 }
564
565 /* Only 5 data registers! */
566 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
567 ret = -E2BIG;
568 goto out;
569 }
570
571 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
572 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
573 has_aux_irq,
574 send_bytes,
575 aux_clock_divider);
576
577 /* Must try at least 3 times according to DP spec */
578 for (try = 0; try < 5; try++) {
579 /* Load the send data into the aux channel data registers */
580 for (i = 0; i < send_bytes; i += 4)
581 I915_WRITE(ch_data + i,
582 pack_aux(send + i, send_bytes - i));
583
584 /* Send the command and wait for it to complete */
585 I915_WRITE(ch_ctl, send_ctl);
586
587 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
588
589 /* Clear done status and any errors */
590 I915_WRITE(ch_ctl,
591 status |
592 DP_AUX_CH_CTL_DONE |
593 DP_AUX_CH_CTL_TIME_OUT_ERROR |
594 DP_AUX_CH_CTL_RECEIVE_ERROR);
595
596 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
597 DP_AUX_CH_CTL_RECEIVE_ERROR))
598 continue;
599 if (status & DP_AUX_CH_CTL_DONE)
600 break;
601 }
602 if (status & DP_AUX_CH_CTL_DONE)
603 break;
604 }
605
606 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
607 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
608 ret = -EBUSY;
609 goto out;
610 }
611
612 /* Check for timeout or receive error.
613 * Timeouts occur when the sink is not connected
614 */
615 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
616 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
617 ret = -EIO;
618 goto out;
619 }
620
621 /* Timeouts occur when the device isn't connected, so they're
622 * "normal" -- don't fill the kernel log with these */
623 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
624 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
625 ret = -ETIMEDOUT;
626 goto out;
627 }
628
629 /* Unload any bytes sent back from the other side */
630 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
631 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
632 if (recv_bytes > recv_size)
633 recv_bytes = recv_size;
634
635 for (i = 0; i < recv_bytes; i += 4)
636 unpack_aux(I915_READ(ch_data + i),
637 recv + i, recv_bytes - i);
638
639 ret = recv_bytes;
640 out:
641 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
642 intel_aux_display_runtime_put(dev_priv);
643
644 if (vdd)
645 edp_panel_vdd_off(intel_dp, false);
646
647 return ret;
648 }
649
650 #define BARE_ADDRESS_SIZE 3
651 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
652 static ssize_t
653 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
654 {
655 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
656 uint8_t txbuf[20], rxbuf[20];
657 size_t txsize, rxsize;
658 int ret;
659
660 txbuf[0] = msg->request << 4;
661 txbuf[1] = msg->address >> 8;
662 txbuf[2] = msg->address & 0xff;
663 txbuf[3] = msg->size - 1;
664
665 switch (msg->request & ~DP_AUX_I2C_MOT) {
666 case DP_AUX_NATIVE_WRITE:
667 case DP_AUX_I2C_WRITE:
668 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
669 rxsize = 1;
670
671 if (WARN_ON(txsize > 20))
672 return -E2BIG;
673
674 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
675
676 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
677 if (ret > 0) {
678 msg->reply = rxbuf[0] >> 4;
679
680 /* Return payload size. */
681 ret = msg->size;
682 }
683 break;
684
685 case DP_AUX_NATIVE_READ:
686 case DP_AUX_I2C_READ:
687 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
688 rxsize = msg->size + 1;
689
690 if (WARN_ON(rxsize > 20))
691 return -E2BIG;
692
693 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
694 if (ret > 0) {
695 msg->reply = rxbuf[0] >> 4;
696 /*
697 * Assume happy day, and copy the data. The caller is
698 * expected to check msg->reply before touching it.
699 *
700 * Return payload size.
701 */
702 ret--;
703 memcpy(msg->buffer, rxbuf + 1, ret);
704 }
705 break;
706
707 default:
708 ret = -EINVAL;
709 break;
710 }
711
712 return ret;
713 }
714
715 static void
716 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
717 {
718 struct drm_device *dev = intel_dp_to_dev(intel_dp);
719 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
720 enum port port = intel_dig_port->port;
721 const char *name = NULL;
722 int ret;
723
724 switch (port) {
725 case PORT_A:
726 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
727 name = "DPDDC-A";
728 break;
729 case PORT_B:
730 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
731 name = "DPDDC-B";
732 break;
733 case PORT_C:
734 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
735 name = "DPDDC-C";
736 break;
737 case PORT_D:
738 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
739 name = "DPDDC-D";
740 break;
741 default:
742 BUG();
743 }
744
745 if (!HAS_DDI(dev))
746 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
747
748 intel_dp->aux.name = name;
749 intel_dp->aux.dev = dev->dev;
750 intel_dp->aux.transfer = intel_dp_aux_transfer;
751
752 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
753 connector->base.kdev->kobj.name);
754
755 ret = drm_dp_aux_register(&intel_dp->aux);
756 if (ret < 0) {
757 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
758 name, ret);
759 return;
760 }
761
762 ret = sysfs_create_link(&connector->base.kdev->kobj,
763 &intel_dp->aux.ddc.dev.kobj,
764 intel_dp->aux.ddc.dev.kobj.name);
765 if (ret < 0) {
766 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
767 drm_dp_aux_unregister(&intel_dp->aux);
768 }
769 }
770
771 static void
772 intel_dp_connector_unregister(struct intel_connector *intel_connector)
773 {
774 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
775
776 if (!intel_connector->mst_port)
777 sysfs_remove_link(&intel_connector->base.kdev->kobj,
778 intel_dp->aux.ddc.dev.kobj.name);
779 intel_connector_unregister(intel_connector);
780 }
781
782 static void
783 hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw)
784 {
785 switch (link_bw) {
786 case DP_LINK_BW_1_62:
787 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
788 break;
789 case DP_LINK_BW_2_7:
790 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
791 break;
792 case DP_LINK_BW_5_4:
793 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
794 break;
795 }
796 }
797
798 static void
799 intel_dp_set_clock(struct intel_encoder *encoder,
800 struct intel_crtc_config *pipe_config, int link_bw)
801 {
802 struct drm_device *dev = encoder->base.dev;
803 const struct dp_link_dpll *divisor = NULL;
804 int i, count = 0;
805
806 if (IS_G4X(dev)) {
807 divisor = gen4_dpll;
808 count = ARRAY_SIZE(gen4_dpll);
809 } else if (HAS_PCH_SPLIT(dev)) {
810 divisor = pch_dpll;
811 count = ARRAY_SIZE(pch_dpll);
812 } else if (IS_CHERRYVIEW(dev)) {
813 divisor = chv_dpll;
814 count = ARRAY_SIZE(chv_dpll);
815 } else if (IS_VALLEYVIEW(dev)) {
816 divisor = vlv_dpll;
817 count = ARRAY_SIZE(vlv_dpll);
818 }
819
820 if (divisor && count) {
821 for (i = 0; i < count; i++) {
822 if (link_bw == divisor[i].link_bw) {
823 pipe_config->dpll = divisor[i].dpll;
824 pipe_config->clock_set = true;
825 break;
826 }
827 }
828 }
829 }
830
831 static void
832 intel_dp_set_m2_n2(struct intel_crtc *crtc, struct intel_link_m_n *m_n)
833 {
834 struct drm_device *dev = crtc->base.dev;
835 struct drm_i915_private *dev_priv = dev->dev_private;
836 enum transcoder transcoder = crtc->config.cpu_transcoder;
837
838 I915_WRITE(PIPE_DATA_M2(transcoder),
839 TU_SIZE(m_n->tu) | m_n->gmch_m);
840 I915_WRITE(PIPE_DATA_N2(transcoder), m_n->gmch_n);
841 I915_WRITE(PIPE_LINK_M2(transcoder), m_n->link_m);
842 I915_WRITE(PIPE_LINK_N2(transcoder), m_n->link_n);
843 }
844
845 bool
846 intel_dp_compute_config(struct intel_encoder *encoder,
847 struct intel_crtc_config *pipe_config)
848 {
849 struct drm_device *dev = encoder->base.dev;
850 struct drm_i915_private *dev_priv = dev->dev_private;
851 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
852 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
853 enum port port = dp_to_dig_port(intel_dp)->port;
854 struct intel_crtc *intel_crtc = encoder->new_crtc;
855 struct intel_connector *intel_connector = intel_dp->attached_connector;
856 int lane_count, clock;
857 int min_lane_count = 1;
858 int max_lane_count = intel_dp_max_lane_count(intel_dp);
859 /* Conveniently, the link BW constants become indices with a shift...*/
860 int min_clock = 0;
861 int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
862 int bpp, mode_rate;
863 static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
864 int link_avail, link_clock;
865
866 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
867 pipe_config->has_pch_encoder = true;
868
869 pipe_config->has_dp_encoder = true;
870 pipe_config->has_audio = intel_dp->has_audio;
871
872 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
873 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
874 adjusted_mode);
875 if (!HAS_PCH_SPLIT(dev))
876 intel_gmch_panel_fitting(intel_crtc, pipe_config,
877 intel_connector->panel.fitting_mode);
878 else
879 intel_pch_panel_fitting(intel_crtc, pipe_config,
880 intel_connector->panel.fitting_mode);
881 }
882
883 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
884 return false;
885
886 DRM_DEBUG_KMS("DP link computation with max lane count %i "
887 "max bw %02x pixel clock %iKHz\n",
888 max_lane_count, bws[max_clock],
889 adjusted_mode->crtc_clock);
890
891 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
892 * bpc in between. */
893 bpp = pipe_config->pipe_bpp;
894 if (is_edp(intel_dp)) {
895 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
896 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
897 dev_priv->vbt.edp_bpp);
898 bpp = dev_priv->vbt.edp_bpp;
899 }
900
901 if (IS_BROADWELL(dev)) {
902 /* Yes, it's an ugly hack. */
903 min_lane_count = max_lane_count;
904 DRM_DEBUG_KMS("forcing lane count to max (%u) on BDW\n",
905 min_lane_count);
906 } else if (dev_priv->vbt.edp_lanes) {
907 min_lane_count = min(dev_priv->vbt.edp_lanes,
908 max_lane_count);
909 DRM_DEBUG_KMS("using min %u lanes per VBT\n",
910 min_lane_count);
911 }
912
913 if (dev_priv->vbt.edp_rate) {
914 min_clock = min(dev_priv->vbt.edp_rate >> 3, max_clock);
915 DRM_DEBUG_KMS("using min %02x link bw per VBT\n",
916 bws[min_clock]);
917 }
918 }
919
920 for (; bpp >= 6*3; bpp -= 2*3) {
921 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
922 bpp);
923
924 for (clock = min_clock; clock <= max_clock; clock++) {
925 for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
926 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
927 link_avail = intel_dp_max_data_rate(link_clock,
928 lane_count);
929
930 if (mode_rate <= link_avail) {
931 goto found;
932 }
933 }
934 }
935 }
936
937 return false;
938
939 found:
940 if (intel_dp->color_range_auto) {
941 /*
942 * See:
943 * CEA-861-E - 5.1 Default Encoding Parameters
944 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
945 */
946 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
947 intel_dp->color_range = DP_COLOR_RANGE_16_235;
948 else
949 intel_dp->color_range = 0;
950 }
951
952 if (intel_dp->color_range)
953 pipe_config->limited_color_range = true;
954
955 intel_dp->link_bw = bws[clock];
956 intel_dp->lane_count = lane_count;
957 pipe_config->pipe_bpp = bpp;
958 pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
959
960 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
961 intel_dp->link_bw, intel_dp->lane_count,
962 pipe_config->port_clock, bpp);
963 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
964 mode_rate, link_avail);
965
966 intel_link_compute_m_n(bpp, lane_count,
967 adjusted_mode->crtc_clock,
968 pipe_config->port_clock,
969 &pipe_config->dp_m_n);
970
971 if (intel_connector->panel.downclock_mode != NULL &&
972 intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
973 intel_link_compute_m_n(bpp, lane_count,
974 intel_connector->panel.downclock_mode->clock,
975 pipe_config->port_clock,
976 &pipe_config->dp_m2_n2);
977 }
978
979 if (HAS_DDI(dev))
980 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
981 else
982 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
983
984 return true;
985 }
986
987 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
988 {
989 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
990 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
991 struct drm_device *dev = crtc->base.dev;
992 struct drm_i915_private *dev_priv = dev->dev_private;
993 u32 dpa_ctl;
994
995 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
996 dpa_ctl = I915_READ(DP_A);
997 dpa_ctl &= ~DP_PLL_FREQ_MASK;
998
999 if (crtc->config.port_clock == 162000) {
1000 /* For a long time we've carried around a ILK-DevA w/a for the
1001 * 160MHz clock. If we're really unlucky, it's still required.
1002 */
1003 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1004 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1005 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1006 } else {
1007 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1008 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1009 }
1010
1011 I915_WRITE(DP_A, dpa_ctl);
1012
1013 POSTING_READ(DP_A);
1014 udelay(500);
1015 }
1016
1017 static void intel_dp_prepare(struct intel_encoder *encoder)
1018 {
1019 struct drm_device *dev = encoder->base.dev;
1020 struct drm_i915_private *dev_priv = dev->dev_private;
1021 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1022 enum port port = dp_to_dig_port(intel_dp)->port;
1023 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1024 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
1025
1026 /*
1027 * There are four kinds of DP registers:
1028 *
1029 * IBX PCH
1030 * SNB CPU
1031 * IVB CPU
1032 * CPT PCH
1033 *
1034 * IBX PCH and CPU are the same for almost everything,
1035 * except that the CPU DP PLL is configured in this
1036 * register
1037 *
1038 * CPT PCH is quite different, having many bits moved
1039 * to the TRANS_DP_CTL register instead. That
1040 * configuration happens (oddly) in ironlake_pch_enable
1041 */
1042
1043 /* Preserve the BIOS-computed detected bit. This is
1044 * supposed to be read-only.
1045 */
1046 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1047
1048 /* Handle DP bits in common between all three register formats */
1049 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1050 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1051
1052 if (crtc->config.has_audio) {
1053 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1054 pipe_name(crtc->pipe));
1055 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1056 intel_write_eld(&encoder->base, adjusted_mode);
1057 }
1058
1059 /* Split out the IBX/CPU vs CPT settings */
1060
1061 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1062 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1063 intel_dp->DP |= DP_SYNC_HS_HIGH;
1064 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1065 intel_dp->DP |= DP_SYNC_VS_HIGH;
1066 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1067
1068 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1069 intel_dp->DP |= DP_ENHANCED_FRAMING;
1070
1071 intel_dp->DP |= crtc->pipe << 29;
1072 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1073 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1074 intel_dp->DP |= intel_dp->color_range;
1075
1076 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1077 intel_dp->DP |= DP_SYNC_HS_HIGH;
1078 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1079 intel_dp->DP |= DP_SYNC_VS_HIGH;
1080 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1081
1082 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1083 intel_dp->DP |= DP_ENHANCED_FRAMING;
1084
1085 if (!IS_CHERRYVIEW(dev)) {
1086 if (crtc->pipe == 1)
1087 intel_dp->DP |= DP_PIPEB_SELECT;
1088 } else {
1089 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1090 }
1091 } else {
1092 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1093 }
1094 }
1095
1096 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1097 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1098
1099 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1100 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1101
1102 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1103 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1104
1105 static void wait_panel_status(struct intel_dp *intel_dp,
1106 u32 mask,
1107 u32 value)
1108 {
1109 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1110 struct drm_i915_private *dev_priv = dev->dev_private;
1111 u32 pp_stat_reg, pp_ctrl_reg;
1112
1113 pp_stat_reg = _pp_stat_reg(intel_dp);
1114 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1115
1116 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1117 mask, value,
1118 I915_READ(pp_stat_reg),
1119 I915_READ(pp_ctrl_reg));
1120
1121 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1122 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1123 I915_READ(pp_stat_reg),
1124 I915_READ(pp_ctrl_reg));
1125 }
1126
1127 DRM_DEBUG_KMS("Wait complete\n");
1128 }
1129
1130 static void wait_panel_on(struct intel_dp *intel_dp)
1131 {
1132 DRM_DEBUG_KMS("Wait for panel power on\n");
1133 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1134 }
1135
1136 static void wait_panel_off(struct intel_dp *intel_dp)
1137 {
1138 DRM_DEBUG_KMS("Wait for panel power off time\n");
1139 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1140 }
1141
1142 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1143 {
1144 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1145
1146 /* When we disable the VDD override bit last we have to do the manual
1147 * wait. */
1148 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1149 intel_dp->panel_power_cycle_delay);
1150
1151 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1152 }
1153
1154 static void wait_backlight_on(struct intel_dp *intel_dp)
1155 {
1156 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1157 intel_dp->backlight_on_delay);
1158 }
1159
1160 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1161 {
1162 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1163 intel_dp->backlight_off_delay);
1164 }
1165
1166 /* Read the current pp_control value, unlocking the register if it
1167 * is locked
1168 */
1169
1170 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1171 {
1172 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1173 struct drm_i915_private *dev_priv = dev->dev_private;
1174 u32 control;
1175
1176 control = I915_READ(_pp_ctrl_reg(intel_dp));
1177 control &= ~PANEL_UNLOCK_MASK;
1178 control |= PANEL_UNLOCK_REGS;
1179 return control;
1180 }
1181
1182 static bool _edp_panel_vdd_on(struct intel_dp *intel_dp)
1183 {
1184 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1185 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1186 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1187 struct drm_i915_private *dev_priv = dev->dev_private;
1188 enum intel_display_power_domain power_domain;
1189 u32 pp;
1190 u32 pp_stat_reg, pp_ctrl_reg;
1191 bool need_to_disable = !intel_dp->want_panel_vdd;
1192
1193 if (!is_edp(intel_dp))
1194 return false;
1195
1196 intel_dp->want_panel_vdd = true;
1197
1198 if (edp_have_panel_vdd(intel_dp))
1199 return need_to_disable;
1200
1201 power_domain = intel_display_port_power_domain(intel_encoder);
1202 intel_display_power_get(dev_priv, power_domain);
1203
1204 DRM_DEBUG_KMS("Turning eDP VDD on\n");
1205
1206 if (!edp_have_panel_power(intel_dp))
1207 wait_panel_power_cycle(intel_dp);
1208
1209 pp = ironlake_get_pp_control(intel_dp);
1210 pp |= EDP_FORCE_VDD;
1211
1212 pp_stat_reg = _pp_stat_reg(intel_dp);
1213 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1214
1215 I915_WRITE(pp_ctrl_reg, pp);
1216 POSTING_READ(pp_ctrl_reg);
1217 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1218 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1219 /*
1220 * If the panel wasn't on, delay before accessing aux channel
1221 */
1222 if (!edp_have_panel_power(intel_dp)) {
1223 DRM_DEBUG_KMS("eDP was not running\n");
1224 msleep(intel_dp->panel_power_up_delay);
1225 }
1226
1227 return need_to_disable;
1228 }
1229
1230 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1231 {
1232 if (is_edp(intel_dp)) {
1233 bool vdd = _edp_panel_vdd_on(intel_dp);
1234
1235 WARN(!vdd, "eDP VDD already requested on\n");
1236 }
1237 }
1238
1239 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1240 {
1241 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1242 struct drm_i915_private *dev_priv = dev->dev_private;
1243 u32 pp;
1244 u32 pp_stat_reg, pp_ctrl_reg;
1245
1246 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1247
1248 if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1249 struct intel_digital_port *intel_dig_port =
1250 dp_to_dig_port(intel_dp);
1251 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1252 enum intel_display_power_domain power_domain;
1253
1254 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1255
1256 pp = ironlake_get_pp_control(intel_dp);
1257 pp &= ~EDP_FORCE_VDD;
1258
1259 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1260 pp_stat_reg = _pp_stat_reg(intel_dp);
1261
1262 I915_WRITE(pp_ctrl_reg, pp);
1263 POSTING_READ(pp_ctrl_reg);
1264
1265 /* Make sure sequencer is idle before allowing subsequent activity */
1266 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1267 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1268
1269 if ((pp & POWER_TARGET_ON) == 0)
1270 intel_dp->last_power_cycle = jiffies;
1271
1272 power_domain = intel_display_port_power_domain(intel_encoder);
1273 intel_display_power_put(dev_priv, power_domain);
1274 }
1275 }
1276
1277 static void edp_panel_vdd_work(struct work_struct *__work)
1278 {
1279 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1280 struct intel_dp, panel_vdd_work);
1281 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1282
1283 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
1284 edp_panel_vdd_off_sync(intel_dp);
1285 drm_modeset_unlock(&dev->mode_config.connection_mutex);
1286 }
1287
1288 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1289 {
1290 if (!is_edp(intel_dp))
1291 return;
1292
1293 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1294
1295 intel_dp->want_panel_vdd = false;
1296
1297 if (sync) {
1298 edp_panel_vdd_off_sync(intel_dp);
1299 } else {
1300 /*
1301 * Queue the timer to fire a long
1302 * time from now (relative to the power down delay)
1303 * to keep the panel power up across a sequence of operations
1304 */
1305 schedule_delayed_work(&intel_dp->panel_vdd_work,
1306 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1307 }
1308 }
1309
1310 void intel_edp_panel_on(struct intel_dp *intel_dp)
1311 {
1312 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1313 struct drm_i915_private *dev_priv = dev->dev_private;
1314 u32 pp;
1315 u32 pp_ctrl_reg;
1316
1317 if (!is_edp(intel_dp))
1318 return;
1319
1320 DRM_DEBUG_KMS("Turn eDP power on\n");
1321
1322 if (edp_have_panel_power(intel_dp)) {
1323 DRM_DEBUG_KMS("eDP power already on\n");
1324 return;
1325 }
1326
1327 wait_panel_power_cycle(intel_dp);
1328
1329 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1330 pp = ironlake_get_pp_control(intel_dp);
1331 if (IS_GEN5(dev)) {
1332 /* ILK workaround: disable reset around power sequence */
1333 pp &= ~PANEL_POWER_RESET;
1334 I915_WRITE(pp_ctrl_reg, pp);
1335 POSTING_READ(pp_ctrl_reg);
1336 }
1337
1338 pp |= POWER_TARGET_ON;
1339 if (!IS_GEN5(dev))
1340 pp |= PANEL_POWER_RESET;
1341
1342 I915_WRITE(pp_ctrl_reg, pp);
1343 POSTING_READ(pp_ctrl_reg);
1344
1345 wait_panel_on(intel_dp);
1346 intel_dp->last_power_on = jiffies;
1347
1348 if (IS_GEN5(dev)) {
1349 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1350 I915_WRITE(pp_ctrl_reg, pp);
1351 POSTING_READ(pp_ctrl_reg);
1352 }
1353 }
1354
1355 void intel_edp_panel_off(struct intel_dp *intel_dp)
1356 {
1357 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1358 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1359 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1360 struct drm_i915_private *dev_priv = dev->dev_private;
1361 enum intel_display_power_domain power_domain;
1362 u32 pp;
1363 u32 pp_ctrl_reg;
1364
1365 if (!is_edp(intel_dp))
1366 return;
1367
1368 DRM_DEBUG_KMS("Turn eDP power off\n");
1369
1370 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1371
1372 pp = ironlake_get_pp_control(intel_dp);
1373 /* We need to switch off panel power _and_ force vdd, for otherwise some
1374 * panels get very unhappy and cease to work. */
1375 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1376 EDP_BLC_ENABLE);
1377
1378 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1379
1380 intel_dp->want_panel_vdd = false;
1381
1382 I915_WRITE(pp_ctrl_reg, pp);
1383 POSTING_READ(pp_ctrl_reg);
1384
1385 intel_dp->last_power_cycle = jiffies;
1386 wait_panel_off(intel_dp);
1387
1388 /* We got a reference when we enabled the VDD. */
1389 power_domain = intel_display_port_power_domain(intel_encoder);
1390 intel_display_power_put(dev_priv, power_domain);
1391 }
1392
1393 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1394 {
1395 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1396 struct drm_device *dev = intel_dig_port->base.base.dev;
1397 struct drm_i915_private *dev_priv = dev->dev_private;
1398 u32 pp;
1399 u32 pp_ctrl_reg;
1400
1401 if (!is_edp(intel_dp))
1402 return;
1403
1404 DRM_DEBUG_KMS("\n");
1405
1406 intel_panel_enable_backlight(intel_dp->attached_connector);
1407
1408 /*
1409 * If we enable the backlight right away following a panel power
1410 * on, we may see slight flicker as the panel syncs with the eDP
1411 * link. So delay a bit to make sure the image is solid before
1412 * allowing it to appear.
1413 */
1414 wait_backlight_on(intel_dp);
1415 pp = ironlake_get_pp_control(intel_dp);
1416 pp |= EDP_BLC_ENABLE;
1417
1418 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1419
1420 I915_WRITE(pp_ctrl_reg, pp);
1421 POSTING_READ(pp_ctrl_reg);
1422 }
1423
1424 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1425 {
1426 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1427 struct drm_i915_private *dev_priv = dev->dev_private;
1428 u32 pp;
1429 u32 pp_ctrl_reg;
1430
1431 if (!is_edp(intel_dp))
1432 return;
1433
1434 DRM_DEBUG_KMS("\n");
1435 pp = ironlake_get_pp_control(intel_dp);
1436 pp &= ~EDP_BLC_ENABLE;
1437
1438 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1439
1440 I915_WRITE(pp_ctrl_reg, pp);
1441 POSTING_READ(pp_ctrl_reg);
1442 intel_dp->last_backlight_off = jiffies;
1443
1444 edp_wait_backlight_off(intel_dp);
1445
1446 intel_panel_disable_backlight(intel_dp->attached_connector);
1447 }
1448
1449 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1450 {
1451 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1452 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1453 struct drm_device *dev = crtc->dev;
1454 struct drm_i915_private *dev_priv = dev->dev_private;
1455 u32 dpa_ctl;
1456
1457 assert_pipe_disabled(dev_priv,
1458 to_intel_crtc(crtc)->pipe);
1459
1460 DRM_DEBUG_KMS("\n");
1461 dpa_ctl = I915_READ(DP_A);
1462 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1463 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1464
1465 /* We don't adjust intel_dp->DP while tearing down the link, to
1466 * facilitate link retraining (e.g. after hotplug). Hence clear all
1467 * enable bits here to ensure that we don't enable too much. */
1468 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1469 intel_dp->DP |= DP_PLL_ENABLE;
1470 I915_WRITE(DP_A, intel_dp->DP);
1471 POSTING_READ(DP_A);
1472 udelay(200);
1473 }
1474
1475 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1476 {
1477 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1478 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1479 struct drm_device *dev = crtc->dev;
1480 struct drm_i915_private *dev_priv = dev->dev_private;
1481 u32 dpa_ctl;
1482
1483 assert_pipe_disabled(dev_priv,
1484 to_intel_crtc(crtc)->pipe);
1485
1486 dpa_ctl = I915_READ(DP_A);
1487 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1488 "dp pll off, should be on\n");
1489 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1490
1491 /* We can't rely on the value tracked for the DP register in
1492 * intel_dp->DP because link_down must not change that (otherwise link
1493 * re-training will fail. */
1494 dpa_ctl &= ~DP_PLL_ENABLE;
1495 I915_WRITE(DP_A, dpa_ctl);
1496 POSTING_READ(DP_A);
1497 udelay(200);
1498 }
1499
1500 /* If the sink supports it, try to set the power state appropriately */
1501 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1502 {
1503 int ret, i;
1504
1505 /* Should have a valid DPCD by this point */
1506 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1507 return;
1508
1509 if (mode != DRM_MODE_DPMS_ON) {
1510 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1511 DP_SET_POWER_D3);
1512 if (ret != 1)
1513 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1514 } else {
1515 /*
1516 * When turning on, we need to retry for 1ms to give the sink
1517 * time to wake up.
1518 */
1519 for (i = 0; i < 3; i++) {
1520 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1521 DP_SET_POWER_D0);
1522 if (ret == 1)
1523 break;
1524 msleep(1);
1525 }
1526 }
1527 }
1528
1529 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1530 enum pipe *pipe)
1531 {
1532 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1533 enum port port = dp_to_dig_port(intel_dp)->port;
1534 struct drm_device *dev = encoder->base.dev;
1535 struct drm_i915_private *dev_priv = dev->dev_private;
1536 enum intel_display_power_domain power_domain;
1537 u32 tmp;
1538
1539 power_domain = intel_display_port_power_domain(encoder);
1540 if (!intel_display_power_enabled(dev_priv, power_domain))
1541 return false;
1542
1543 tmp = I915_READ(intel_dp->output_reg);
1544
1545 if (!(tmp & DP_PORT_EN))
1546 return false;
1547
1548 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1549 *pipe = PORT_TO_PIPE_CPT(tmp);
1550 } else if (IS_CHERRYVIEW(dev)) {
1551 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
1552 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1553 *pipe = PORT_TO_PIPE(tmp);
1554 } else {
1555 u32 trans_sel;
1556 u32 trans_dp;
1557 int i;
1558
1559 switch (intel_dp->output_reg) {
1560 case PCH_DP_B:
1561 trans_sel = TRANS_DP_PORT_SEL_B;
1562 break;
1563 case PCH_DP_C:
1564 trans_sel = TRANS_DP_PORT_SEL_C;
1565 break;
1566 case PCH_DP_D:
1567 trans_sel = TRANS_DP_PORT_SEL_D;
1568 break;
1569 default:
1570 return true;
1571 }
1572
1573 for_each_pipe(i) {
1574 trans_dp = I915_READ(TRANS_DP_CTL(i));
1575 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1576 *pipe = i;
1577 return true;
1578 }
1579 }
1580
1581 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1582 intel_dp->output_reg);
1583 }
1584
1585 return true;
1586 }
1587
1588 static void intel_dp_get_config(struct intel_encoder *encoder,
1589 struct intel_crtc_config *pipe_config)
1590 {
1591 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1592 u32 tmp, flags = 0;
1593 struct drm_device *dev = encoder->base.dev;
1594 struct drm_i915_private *dev_priv = dev->dev_private;
1595 enum port port = dp_to_dig_port(intel_dp)->port;
1596 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1597 int dotclock;
1598
1599 tmp = I915_READ(intel_dp->output_reg);
1600 if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1601 pipe_config->has_audio = true;
1602
1603 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1604 if (tmp & DP_SYNC_HS_HIGH)
1605 flags |= DRM_MODE_FLAG_PHSYNC;
1606 else
1607 flags |= DRM_MODE_FLAG_NHSYNC;
1608
1609 if (tmp & DP_SYNC_VS_HIGH)
1610 flags |= DRM_MODE_FLAG_PVSYNC;
1611 else
1612 flags |= DRM_MODE_FLAG_NVSYNC;
1613 } else {
1614 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1615 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1616 flags |= DRM_MODE_FLAG_PHSYNC;
1617 else
1618 flags |= DRM_MODE_FLAG_NHSYNC;
1619
1620 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1621 flags |= DRM_MODE_FLAG_PVSYNC;
1622 else
1623 flags |= DRM_MODE_FLAG_NVSYNC;
1624 }
1625
1626 pipe_config->adjusted_mode.flags |= flags;
1627
1628 pipe_config->has_dp_encoder = true;
1629
1630 intel_dp_get_m_n(crtc, pipe_config);
1631
1632 if (port == PORT_A) {
1633 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1634 pipe_config->port_clock = 162000;
1635 else
1636 pipe_config->port_clock = 270000;
1637 }
1638
1639 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1640 &pipe_config->dp_m_n);
1641
1642 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1643 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1644
1645 pipe_config->adjusted_mode.crtc_clock = dotclock;
1646
1647 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1648 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1649 /*
1650 * This is a big fat ugly hack.
1651 *
1652 * Some machines in UEFI boot mode provide us a VBT that has 18
1653 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1654 * unknown we fail to light up. Yet the same BIOS boots up with
1655 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1656 * max, not what it tells us to use.
1657 *
1658 * Note: This will still be broken if the eDP panel is not lit
1659 * up by the BIOS, and thus we can't get the mode at module
1660 * load.
1661 */
1662 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1663 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1664 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1665 }
1666 }
1667
1668 static bool is_edp_psr(struct intel_dp *intel_dp)
1669 {
1670 return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
1671 }
1672
1673 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1674 {
1675 struct drm_i915_private *dev_priv = dev->dev_private;
1676
1677 if (!HAS_PSR(dev))
1678 return false;
1679
1680 return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1681 }
1682
1683 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1684 struct edp_vsc_psr *vsc_psr)
1685 {
1686 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1687 struct drm_device *dev = dig_port->base.base.dev;
1688 struct drm_i915_private *dev_priv = dev->dev_private;
1689 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1690 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1691 u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1692 uint32_t *data = (uint32_t *) vsc_psr;
1693 unsigned int i;
1694
1695 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1696 the video DIP being updated before program video DIP data buffer
1697 registers for DIP being updated. */
1698 I915_WRITE(ctl_reg, 0);
1699 POSTING_READ(ctl_reg);
1700
1701 for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1702 if (i < sizeof(struct edp_vsc_psr))
1703 I915_WRITE(data_reg + i, *data++);
1704 else
1705 I915_WRITE(data_reg + i, 0);
1706 }
1707
1708 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1709 POSTING_READ(ctl_reg);
1710 }
1711
1712 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1713 {
1714 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1715 struct drm_i915_private *dev_priv = dev->dev_private;
1716 struct edp_vsc_psr psr_vsc;
1717
1718 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1719 memset(&psr_vsc, 0, sizeof(psr_vsc));
1720 psr_vsc.sdp_header.HB0 = 0;
1721 psr_vsc.sdp_header.HB1 = 0x7;
1722 psr_vsc.sdp_header.HB2 = 0x2;
1723 psr_vsc.sdp_header.HB3 = 0x8;
1724 intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1725
1726 /* Avoid continuous PSR exit by masking memup and hpd */
1727 I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1728 EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1729 }
1730
1731 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1732 {
1733 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1734 struct drm_device *dev = dig_port->base.base.dev;
1735 struct drm_i915_private *dev_priv = dev->dev_private;
1736 uint32_t aux_clock_divider;
1737 int precharge = 0x3;
1738 int msg_size = 5; /* Header(4) + Message(1) */
1739 bool only_standby = false;
1740
1741 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1742
1743 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1744 only_standby = true;
1745
1746 /* Enable PSR in sink */
1747 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
1748 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1749 DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
1750 else
1751 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1752 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
1753
1754 /* Setup AUX registers */
1755 I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1756 I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1757 I915_WRITE(EDP_PSR_AUX_CTL(dev),
1758 DP_AUX_CH_CTL_TIME_OUT_400us |
1759 (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1760 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1761 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1762 }
1763
1764 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1765 {
1766 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1767 struct drm_device *dev = dig_port->base.base.dev;
1768 struct drm_i915_private *dev_priv = dev->dev_private;
1769 uint32_t max_sleep_time = 0x1f;
1770 uint32_t idle_frames = 1;
1771 uint32_t val = 0x0;
1772 const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1773 bool only_standby = false;
1774
1775 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1776 only_standby = true;
1777
1778 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
1779 val |= EDP_PSR_LINK_STANDBY;
1780 val |= EDP_PSR_TP2_TP3_TIME_0us;
1781 val |= EDP_PSR_TP1_TIME_0us;
1782 val |= EDP_PSR_SKIP_AUX_EXIT;
1783 val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
1784 } else
1785 val |= EDP_PSR_LINK_DISABLE;
1786
1787 I915_WRITE(EDP_PSR_CTL(dev), val |
1788 (IS_BROADWELL(dev) ? 0 : link_entry_time) |
1789 max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1790 idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1791 EDP_PSR_ENABLE);
1792 }
1793
1794 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1795 {
1796 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1797 struct drm_device *dev = dig_port->base.base.dev;
1798 struct drm_i915_private *dev_priv = dev->dev_private;
1799 struct drm_crtc *crtc = dig_port->base.base.crtc;
1800 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1801
1802 lockdep_assert_held(&dev_priv->psr.lock);
1803 lockdep_assert_held(&dev->struct_mutex);
1804 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1805 WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
1806
1807 dev_priv->psr.source_ok = false;
1808
1809 if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
1810 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1811 return false;
1812 }
1813
1814 if (!i915.enable_psr) {
1815 DRM_DEBUG_KMS("PSR disable by flag\n");
1816 return false;
1817 }
1818
1819 /* Below limitations aren't valid for Broadwell */
1820 if (IS_BROADWELL(dev))
1821 goto out;
1822
1823 if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1824 S3D_ENABLE) {
1825 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1826 return false;
1827 }
1828
1829 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1830 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1831 return false;
1832 }
1833
1834 out:
1835 dev_priv->psr.source_ok = true;
1836 return true;
1837 }
1838
1839 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1840 {
1841 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1842 struct drm_device *dev = intel_dig_port->base.base.dev;
1843 struct drm_i915_private *dev_priv = dev->dev_private;
1844
1845 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
1846 WARN_ON(dev_priv->psr.active);
1847 lockdep_assert_held(&dev_priv->psr.lock);
1848
1849 /* Enable PSR on the panel */
1850 intel_edp_psr_enable_sink(intel_dp);
1851
1852 /* Enable PSR on the host */
1853 intel_edp_psr_enable_source(intel_dp);
1854
1855 dev_priv->psr.active = true;
1856 }
1857
1858 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1859 {
1860 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1861 struct drm_i915_private *dev_priv = dev->dev_private;
1862
1863 if (!HAS_PSR(dev)) {
1864 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1865 return;
1866 }
1867
1868 if (!is_edp_psr(intel_dp)) {
1869 DRM_DEBUG_KMS("PSR not supported by this panel\n");
1870 return;
1871 }
1872
1873 mutex_lock(&dev_priv->psr.lock);
1874 if (dev_priv->psr.enabled) {
1875 DRM_DEBUG_KMS("PSR already in use\n");
1876 mutex_unlock(&dev_priv->psr.lock);
1877 return;
1878 }
1879
1880 dev_priv->psr.busy_frontbuffer_bits = 0;
1881
1882 /* Setup PSR once */
1883 intel_edp_psr_setup(intel_dp);
1884
1885 if (intel_edp_psr_match_conditions(intel_dp))
1886 dev_priv->psr.enabled = intel_dp;
1887 mutex_unlock(&dev_priv->psr.lock);
1888 }
1889
1890 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1891 {
1892 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1893 struct drm_i915_private *dev_priv = dev->dev_private;
1894
1895 mutex_lock(&dev_priv->psr.lock);
1896 if (!dev_priv->psr.enabled) {
1897 mutex_unlock(&dev_priv->psr.lock);
1898 return;
1899 }
1900
1901 if (dev_priv->psr.active) {
1902 I915_WRITE(EDP_PSR_CTL(dev),
1903 I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1904
1905 /* Wait till PSR is idle */
1906 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1907 EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1908 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1909
1910 dev_priv->psr.active = false;
1911 } else {
1912 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
1913 }
1914
1915 dev_priv->psr.enabled = NULL;
1916 mutex_unlock(&dev_priv->psr.lock);
1917
1918 cancel_delayed_work_sync(&dev_priv->psr.work);
1919 }
1920
1921 static void intel_edp_psr_work(struct work_struct *work)
1922 {
1923 struct drm_i915_private *dev_priv =
1924 container_of(work, typeof(*dev_priv), psr.work.work);
1925 struct intel_dp *intel_dp = dev_priv->psr.enabled;
1926
1927 mutex_lock(&dev_priv->psr.lock);
1928 intel_dp = dev_priv->psr.enabled;
1929
1930 if (!intel_dp)
1931 goto unlock;
1932
1933 /*
1934 * The delayed work can race with an invalidate hence we need to
1935 * recheck. Since psr_flush first clears this and then reschedules we
1936 * won't ever miss a flush when bailing out here.
1937 */
1938 if (dev_priv->psr.busy_frontbuffer_bits)
1939 goto unlock;
1940
1941 intel_edp_psr_do_enable(intel_dp);
1942 unlock:
1943 mutex_unlock(&dev_priv->psr.lock);
1944 }
1945
1946 static void intel_edp_psr_do_exit(struct drm_device *dev)
1947 {
1948 struct drm_i915_private *dev_priv = dev->dev_private;
1949
1950 if (dev_priv->psr.active) {
1951 u32 val = I915_READ(EDP_PSR_CTL(dev));
1952
1953 WARN_ON(!(val & EDP_PSR_ENABLE));
1954
1955 I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
1956
1957 dev_priv->psr.active = false;
1958 }
1959
1960 }
1961
1962 void intel_edp_psr_invalidate(struct drm_device *dev,
1963 unsigned frontbuffer_bits)
1964 {
1965 struct drm_i915_private *dev_priv = dev->dev_private;
1966 struct drm_crtc *crtc;
1967 enum pipe pipe;
1968
1969 mutex_lock(&dev_priv->psr.lock);
1970 if (!dev_priv->psr.enabled) {
1971 mutex_unlock(&dev_priv->psr.lock);
1972 return;
1973 }
1974
1975 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
1976 pipe = to_intel_crtc(crtc)->pipe;
1977
1978 intel_edp_psr_do_exit(dev);
1979
1980 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
1981
1982 dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
1983 mutex_unlock(&dev_priv->psr.lock);
1984 }
1985
1986 void intel_edp_psr_flush(struct drm_device *dev,
1987 unsigned frontbuffer_bits)
1988 {
1989 struct drm_i915_private *dev_priv = dev->dev_private;
1990 struct drm_crtc *crtc;
1991 enum pipe pipe;
1992
1993 mutex_lock(&dev_priv->psr.lock);
1994 if (!dev_priv->psr.enabled) {
1995 mutex_unlock(&dev_priv->psr.lock);
1996 return;
1997 }
1998
1999 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2000 pipe = to_intel_crtc(crtc)->pipe;
2001 dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
2002
2003 /*
2004 * On Haswell sprite plane updates don't result in a psr invalidating
2005 * signal in the hardware. Which means we need to manually fake this in
2006 * software for all flushes, not just when we've seen a preceding
2007 * invalidation through frontbuffer rendering.
2008 */
2009 if (IS_HASWELL(dev) &&
2010 (frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe)))
2011 intel_edp_psr_do_exit(dev);
2012
2013 if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
2014 schedule_delayed_work(&dev_priv->psr.work,
2015 msecs_to_jiffies(100));
2016 mutex_unlock(&dev_priv->psr.lock);
2017 }
2018
2019 void intel_edp_psr_init(struct drm_device *dev)
2020 {
2021 struct drm_i915_private *dev_priv = dev->dev_private;
2022
2023 INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work);
2024 mutex_init(&dev_priv->psr.lock);
2025 }
2026
2027 static void intel_disable_dp(struct intel_encoder *encoder)
2028 {
2029 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2030 enum port port = dp_to_dig_port(intel_dp)->port;
2031 struct drm_device *dev = encoder->base.dev;
2032
2033 /* Make sure the panel is off before trying to change the mode. But also
2034 * ensure that we have vdd while we switch off the panel. */
2035 intel_edp_panel_vdd_on(intel_dp);
2036 intel_edp_backlight_off(intel_dp);
2037 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2038 intel_edp_panel_off(intel_dp);
2039
2040 /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
2041 if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
2042 intel_dp_link_down(intel_dp);
2043 }
2044
2045 static void g4x_post_disable_dp(struct intel_encoder *encoder)
2046 {
2047 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2048 enum port port = dp_to_dig_port(intel_dp)->port;
2049
2050 if (port != PORT_A)
2051 return;
2052
2053 intel_dp_link_down(intel_dp);
2054 ironlake_edp_pll_off(intel_dp);
2055 }
2056
2057 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2058 {
2059 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2060
2061 intel_dp_link_down(intel_dp);
2062 }
2063
2064 static void chv_post_disable_dp(struct intel_encoder *encoder)
2065 {
2066 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2067 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2068 struct drm_device *dev = encoder->base.dev;
2069 struct drm_i915_private *dev_priv = dev->dev_private;
2070 struct intel_crtc *intel_crtc =
2071 to_intel_crtc(encoder->base.crtc);
2072 enum dpio_channel ch = vlv_dport_to_channel(dport);
2073 enum pipe pipe = intel_crtc->pipe;
2074 u32 val;
2075
2076 intel_dp_link_down(intel_dp);
2077
2078 mutex_lock(&dev_priv->dpio_lock);
2079
2080 /* Propagate soft reset to data lane reset */
2081 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2082 val |= CHV_PCS_REQ_SOFTRESET_EN;
2083 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2084
2085 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2086 val |= CHV_PCS_REQ_SOFTRESET_EN;
2087 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2088
2089 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2090 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2091 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2092
2093 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2094 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2095 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2096
2097 mutex_unlock(&dev_priv->dpio_lock);
2098 }
2099
2100 static void intel_enable_dp(struct intel_encoder *encoder)
2101 {
2102 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2103 struct drm_device *dev = encoder->base.dev;
2104 struct drm_i915_private *dev_priv = dev->dev_private;
2105 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2106
2107 if (WARN_ON(dp_reg & DP_PORT_EN))
2108 return;
2109
2110 intel_edp_panel_vdd_on(intel_dp);
2111 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2112 intel_dp_start_link_train(intel_dp);
2113 intel_edp_panel_on(intel_dp);
2114 edp_panel_vdd_off(intel_dp, true);
2115 intel_dp_complete_link_train(intel_dp);
2116 intel_dp_stop_link_train(intel_dp);
2117 }
2118
2119 static void g4x_enable_dp(struct intel_encoder *encoder)
2120 {
2121 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2122
2123 intel_enable_dp(encoder);
2124 intel_edp_backlight_on(intel_dp);
2125 }
2126
2127 static void vlv_enable_dp(struct intel_encoder *encoder)
2128 {
2129 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2130
2131 intel_edp_backlight_on(intel_dp);
2132 }
2133
2134 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2135 {
2136 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2137 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2138
2139 intel_dp_prepare(encoder);
2140
2141 /* Only ilk+ has port A */
2142 if (dport->port == PORT_A) {
2143 ironlake_set_pll_cpu_edp(intel_dp);
2144 ironlake_edp_pll_on(intel_dp);
2145 }
2146 }
2147
2148 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2149 {
2150 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2151 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2152 struct drm_device *dev = encoder->base.dev;
2153 struct drm_i915_private *dev_priv = dev->dev_private;
2154 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2155 enum dpio_channel port = vlv_dport_to_channel(dport);
2156 int pipe = intel_crtc->pipe;
2157 struct edp_power_seq power_seq;
2158 u32 val;
2159
2160 mutex_lock(&dev_priv->dpio_lock);
2161
2162 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2163 val = 0;
2164 if (pipe)
2165 val |= (1<<21);
2166 else
2167 val &= ~(1<<21);
2168 val |= 0x001000c4;
2169 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2170 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2171 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2172
2173 mutex_unlock(&dev_priv->dpio_lock);
2174
2175 if (is_edp(intel_dp)) {
2176 /* init power sequencer on this pipe and port */
2177 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2178 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2179 &power_seq);
2180 }
2181
2182 intel_enable_dp(encoder);
2183
2184 vlv_wait_port_ready(dev_priv, dport);
2185 }
2186
2187 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2188 {
2189 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2190 struct drm_device *dev = encoder->base.dev;
2191 struct drm_i915_private *dev_priv = dev->dev_private;
2192 struct intel_crtc *intel_crtc =
2193 to_intel_crtc(encoder->base.crtc);
2194 enum dpio_channel port = vlv_dport_to_channel(dport);
2195 int pipe = intel_crtc->pipe;
2196
2197 intel_dp_prepare(encoder);
2198
2199 /* Program Tx lane resets to default */
2200 mutex_lock(&dev_priv->dpio_lock);
2201 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2202 DPIO_PCS_TX_LANE2_RESET |
2203 DPIO_PCS_TX_LANE1_RESET);
2204 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2205 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2206 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2207 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2208 DPIO_PCS_CLK_SOFT_RESET);
2209
2210 /* Fix up inter-pair skew failure */
2211 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2212 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2213 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2214 mutex_unlock(&dev_priv->dpio_lock);
2215 }
2216
2217 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2218 {
2219 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2220 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2221 struct drm_device *dev = encoder->base.dev;
2222 struct drm_i915_private *dev_priv = dev->dev_private;
2223 struct edp_power_seq power_seq;
2224 struct intel_crtc *intel_crtc =
2225 to_intel_crtc(encoder->base.crtc);
2226 enum dpio_channel ch = vlv_dport_to_channel(dport);
2227 int pipe = intel_crtc->pipe;
2228 int data, i;
2229 u32 val;
2230
2231 mutex_lock(&dev_priv->dpio_lock);
2232
2233 /* Deassert soft data lane reset*/
2234 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2235 val |= CHV_PCS_REQ_SOFTRESET_EN;
2236 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2237
2238 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2239 val |= CHV_PCS_REQ_SOFTRESET_EN;
2240 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2241
2242 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2243 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2244 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2245
2246 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2247 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2248 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2249
2250 /* Program Tx lane latency optimal setting*/
2251 for (i = 0; i < 4; i++) {
2252 /* Set the latency optimal bit */
2253 data = (i == 1) ? 0x0 : 0x6;
2254 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2255 data << DPIO_FRC_LATENCY_SHFIT);
2256
2257 /* Set the upar bit */
2258 data = (i == 1) ? 0x0 : 0x1;
2259 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2260 data << DPIO_UPAR_SHIFT);
2261 }
2262
2263 /* Data lane stagger programming */
2264 /* FIXME: Fix up value only after power analysis */
2265
2266 mutex_unlock(&dev_priv->dpio_lock);
2267
2268 if (is_edp(intel_dp)) {
2269 /* init power sequencer on this pipe and port */
2270 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2271 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2272 &power_seq);
2273 }
2274
2275 intel_enable_dp(encoder);
2276
2277 vlv_wait_port_ready(dev_priv, dport);
2278 }
2279
2280 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2281 {
2282 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2283 struct drm_device *dev = encoder->base.dev;
2284 struct drm_i915_private *dev_priv = dev->dev_private;
2285 struct intel_crtc *intel_crtc =
2286 to_intel_crtc(encoder->base.crtc);
2287 enum dpio_channel ch = vlv_dport_to_channel(dport);
2288 enum pipe pipe = intel_crtc->pipe;
2289 u32 val;
2290
2291 mutex_lock(&dev_priv->dpio_lock);
2292
2293 /* program left/right clock distribution */
2294 if (pipe != PIPE_B) {
2295 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2296 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2297 if (ch == DPIO_CH0)
2298 val |= CHV_BUFLEFTENA1_FORCE;
2299 if (ch == DPIO_CH1)
2300 val |= CHV_BUFRIGHTENA1_FORCE;
2301 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2302 } else {
2303 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2304 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2305 if (ch == DPIO_CH0)
2306 val |= CHV_BUFLEFTENA2_FORCE;
2307 if (ch == DPIO_CH1)
2308 val |= CHV_BUFRIGHTENA2_FORCE;
2309 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2310 }
2311
2312 /* program clock channel usage */
2313 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2314 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2315 if (pipe != PIPE_B)
2316 val &= ~CHV_PCS_USEDCLKCHANNEL;
2317 else
2318 val |= CHV_PCS_USEDCLKCHANNEL;
2319 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2320
2321 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2322 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2323 if (pipe != PIPE_B)
2324 val &= ~CHV_PCS_USEDCLKCHANNEL;
2325 else
2326 val |= CHV_PCS_USEDCLKCHANNEL;
2327 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2328
2329 /*
2330 * This a a bit weird since generally CL
2331 * matches the pipe, but here we need to
2332 * pick the CL based on the port.
2333 */
2334 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2335 if (pipe != PIPE_B)
2336 val &= ~CHV_CMN_USEDCLKCHANNEL;
2337 else
2338 val |= CHV_CMN_USEDCLKCHANNEL;
2339 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2340
2341 mutex_unlock(&dev_priv->dpio_lock);
2342 }
2343
2344 /*
2345 * Native read with retry for link status and receiver capability reads for
2346 * cases where the sink may still be asleep.
2347 *
2348 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2349 * supposed to retry 3 times per the spec.
2350 */
2351 static ssize_t
2352 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2353 void *buffer, size_t size)
2354 {
2355 ssize_t ret;
2356 int i;
2357
2358 for (i = 0; i < 3; i++) {
2359 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2360 if (ret == size)
2361 return ret;
2362 msleep(1);
2363 }
2364
2365 return ret;
2366 }
2367
2368 /*
2369 * Fetch AUX CH registers 0x202 - 0x207 which contain
2370 * link status information
2371 */
2372 static bool
2373 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2374 {
2375 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2376 DP_LANE0_1_STATUS,
2377 link_status,
2378 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2379 }
2380
2381 /* These are source-specific values. */
2382 static uint8_t
2383 intel_dp_voltage_max(struct intel_dp *intel_dp)
2384 {
2385 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2386 enum port port = dp_to_dig_port(intel_dp)->port;
2387
2388 if (IS_VALLEYVIEW(dev))
2389 return DP_TRAIN_VOLTAGE_SWING_1200;
2390 else if (IS_GEN7(dev) && port == PORT_A)
2391 return DP_TRAIN_VOLTAGE_SWING_800;
2392 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2393 return DP_TRAIN_VOLTAGE_SWING_1200;
2394 else
2395 return DP_TRAIN_VOLTAGE_SWING_800;
2396 }
2397
2398 static uint8_t
2399 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2400 {
2401 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2402 enum port port = dp_to_dig_port(intel_dp)->port;
2403
2404 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2405 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2406 case DP_TRAIN_VOLTAGE_SWING_400:
2407 return DP_TRAIN_PRE_EMPHASIS_9_5;
2408 case DP_TRAIN_VOLTAGE_SWING_600:
2409 return DP_TRAIN_PRE_EMPHASIS_6;
2410 case DP_TRAIN_VOLTAGE_SWING_800:
2411 return DP_TRAIN_PRE_EMPHASIS_3_5;
2412 case DP_TRAIN_VOLTAGE_SWING_1200:
2413 default:
2414 return DP_TRAIN_PRE_EMPHASIS_0;
2415 }
2416 } else if (IS_VALLEYVIEW(dev)) {
2417 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2418 case DP_TRAIN_VOLTAGE_SWING_400:
2419 return DP_TRAIN_PRE_EMPHASIS_9_5;
2420 case DP_TRAIN_VOLTAGE_SWING_600:
2421 return DP_TRAIN_PRE_EMPHASIS_6;
2422 case DP_TRAIN_VOLTAGE_SWING_800:
2423 return DP_TRAIN_PRE_EMPHASIS_3_5;
2424 case DP_TRAIN_VOLTAGE_SWING_1200:
2425 default:
2426 return DP_TRAIN_PRE_EMPHASIS_0;
2427 }
2428 } else if (IS_GEN7(dev) && port == PORT_A) {
2429 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2430 case DP_TRAIN_VOLTAGE_SWING_400:
2431 return DP_TRAIN_PRE_EMPHASIS_6;
2432 case DP_TRAIN_VOLTAGE_SWING_600:
2433 case DP_TRAIN_VOLTAGE_SWING_800:
2434 return DP_TRAIN_PRE_EMPHASIS_3_5;
2435 default:
2436 return DP_TRAIN_PRE_EMPHASIS_0;
2437 }
2438 } else {
2439 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2440 case DP_TRAIN_VOLTAGE_SWING_400:
2441 return DP_TRAIN_PRE_EMPHASIS_6;
2442 case DP_TRAIN_VOLTAGE_SWING_600:
2443 return DP_TRAIN_PRE_EMPHASIS_6;
2444 case DP_TRAIN_VOLTAGE_SWING_800:
2445 return DP_TRAIN_PRE_EMPHASIS_3_5;
2446 case DP_TRAIN_VOLTAGE_SWING_1200:
2447 default:
2448 return DP_TRAIN_PRE_EMPHASIS_0;
2449 }
2450 }
2451 }
2452
2453 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2454 {
2455 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2456 struct drm_i915_private *dev_priv = dev->dev_private;
2457 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2458 struct intel_crtc *intel_crtc =
2459 to_intel_crtc(dport->base.base.crtc);
2460 unsigned long demph_reg_value, preemph_reg_value,
2461 uniqtranscale_reg_value;
2462 uint8_t train_set = intel_dp->train_set[0];
2463 enum dpio_channel port = vlv_dport_to_channel(dport);
2464 int pipe = intel_crtc->pipe;
2465
2466 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2467 case DP_TRAIN_PRE_EMPHASIS_0:
2468 preemph_reg_value = 0x0004000;
2469 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2470 case DP_TRAIN_VOLTAGE_SWING_400:
2471 demph_reg_value = 0x2B405555;
2472 uniqtranscale_reg_value = 0x552AB83A;
2473 break;
2474 case DP_TRAIN_VOLTAGE_SWING_600:
2475 demph_reg_value = 0x2B404040;
2476 uniqtranscale_reg_value = 0x5548B83A;
2477 break;
2478 case DP_TRAIN_VOLTAGE_SWING_800:
2479 demph_reg_value = 0x2B245555;
2480 uniqtranscale_reg_value = 0x5560B83A;
2481 break;
2482 case DP_TRAIN_VOLTAGE_SWING_1200:
2483 demph_reg_value = 0x2B405555;
2484 uniqtranscale_reg_value = 0x5598DA3A;
2485 break;
2486 default:
2487 return 0;
2488 }
2489 break;
2490 case DP_TRAIN_PRE_EMPHASIS_3_5:
2491 preemph_reg_value = 0x0002000;
2492 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2493 case DP_TRAIN_VOLTAGE_SWING_400:
2494 demph_reg_value = 0x2B404040;
2495 uniqtranscale_reg_value = 0x5552B83A;
2496 break;
2497 case DP_TRAIN_VOLTAGE_SWING_600:
2498 demph_reg_value = 0x2B404848;
2499 uniqtranscale_reg_value = 0x5580B83A;
2500 break;
2501 case DP_TRAIN_VOLTAGE_SWING_800:
2502 demph_reg_value = 0x2B404040;
2503 uniqtranscale_reg_value = 0x55ADDA3A;
2504 break;
2505 default:
2506 return 0;
2507 }
2508 break;
2509 case DP_TRAIN_PRE_EMPHASIS_6:
2510 preemph_reg_value = 0x0000000;
2511 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2512 case DP_TRAIN_VOLTAGE_SWING_400:
2513 demph_reg_value = 0x2B305555;
2514 uniqtranscale_reg_value = 0x5570B83A;
2515 break;
2516 case DP_TRAIN_VOLTAGE_SWING_600:
2517 demph_reg_value = 0x2B2B4040;
2518 uniqtranscale_reg_value = 0x55ADDA3A;
2519 break;
2520 default:
2521 return 0;
2522 }
2523 break;
2524 case DP_TRAIN_PRE_EMPHASIS_9_5:
2525 preemph_reg_value = 0x0006000;
2526 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2527 case DP_TRAIN_VOLTAGE_SWING_400:
2528 demph_reg_value = 0x1B405555;
2529 uniqtranscale_reg_value = 0x55ADDA3A;
2530 break;
2531 default:
2532 return 0;
2533 }
2534 break;
2535 default:
2536 return 0;
2537 }
2538
2539 mutex_lock(&dev_priv->dpio_lock);
2540 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2541 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2542 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2543 uniqtranscale_reg_value);
2544 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2545 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2546 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2547 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2548 mutex_unlock(&dev_priv->dpio_lock);
2549
2550 return 0;
2551 }
2552
2553 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
2554 {
2555 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2556 struct drm_i915_private *dev_priv = dev->dev_private;
2557 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2558 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
2559 u32 deemph_reg_value, margin_reg_value, val;
2560 uint8_t train_set = intel_dp->train_set[0];
2561 enum dpio_channel ch = vlv_dport_to_channel(dport);
2562 enum pipe pipe = intel_crtc->pipe;
2563 int i;
2564
2565 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2566 case DP_TRAIN_PRE_EMPHASIS_0:
2567 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2568 case DP_TRAIN_VOLTAGE_SWING_400:
2569 deemph_reg_value = 128;
2570 margin_reg_value = 52;
2571 break;
2572 case DP_TRAIN_VOLTAGE_SWING_600:
2573 deemph_reg_value = 128;
2574 margin_reg_value = 77;
2575 break;
2576 case DP_TRAIN_VOLTAGE_SWING_800:
2577 deemph_reg_value = 128;
2578 margin_reg_value = 102;
2579 break;
2580 case DP_TRAIN_VOLTAGE_SWING_1200:
2581 deemph_reg_value = 128;
2582 margin_reg_value = 154;
2583 /* FIXME extra to set for 1200 */
2584 break;
2585 default:
2586 return 0;
2587 }
2588 break;
2589 case DP_TRAIN_PRE_EMPHASIS_3_5:
2590 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2591 case DP_TRAIN_VOLTAGE_SWING_400:
2592 deemph_reg_value = 85;
2593 margin_reg_value = 78;
2594 break;
2595 case DP_TRAIN_VOLTAGE_SWING_600:
2596 deemph_reg_value = 85;
2597 margin_reg_value = 116;
2598 break;
2599 case DP_TRAIN_VOLTAGE_SWING_800:
2600 deemph_reg_value = 85;
2601 margin_reg_value = 154;
2602 break;
2603 default:
2604 return 0;
2605 }
2606 break;
2607 case DP_TRAIN_PRE_EMPHASIS_6:
2608 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2609 case DP_TRAIN_VOLTAGE_SWING_400:
2610 deemph_reg_value = 64;
2611 margin_reg_value = 104;
2612 break;
2613 case DP_TRAIN_VOLTAGE_SWING_600:
2614 deemph_reg_value = 64;
2615 margin_reg_value = 154;
2616 break;
2617 default:
2618 return 0;
2619 }
2620 break;
2621 case DP_TRAIN_PRE_EMPHASIS_9_5:
2622 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2623 case DP_TRAIN_VOLTAGE_SWING_400:
2624 deemph_reg_value = 43;
2625 margin_reg_value = 154;
2626 break;
2627 default:
2628 return 0;
2629 }
2630 break;
2631 default:
2632 return 0;
2633 }
2634
2635 mutex_lock(&dev_priv->dpio_lock);
2636
2637 /* Clear calc init */
2638 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2639 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2640 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2641
2642 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2643 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2644 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2645
2646 /* Program swing deemph */
2647 for (i = 0; i < 4; i++) {
2648 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
2649 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
2650 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
2651 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
2652 }
2653
2654 /* Program swing margin */
2655 for (i = 0; i < 4; i++) {
2656 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2657 val &= ~DPIO_SWING_MARGIN_MASK;
2658 val |= margin_reg_value << DPIO_SWING_MARGIN_SHIFT;
2659 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2660 }
2661
2662 /* Disable unique transition scale */
2663 for (i = 0; i < 4; i++) {
2664 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2665 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
2666 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2667 }
2668
2669 if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
2670 == DP_TRAIN_PRE_EMPHASIS_0) &&
2671 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
2672 == DP_TRAIN_VOLTAGE_SWING_1200)) {
2673
2674 /*
2675 * The document said it needs to set bit 27 for ch0 and bit 26
2676 * for ch1. Might be a typo in the doc.
2677 * For now, for this unique transition scale selection, set bit
2678 * 27 for ch0 and ch1.
2679 */
2680 for (i = 0; i < 4; i++) {
2681 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2682 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
2683 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2684 }
2685
2686 for (i = 0; i < 4; i++) {
2687 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2688 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2689 val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2690 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2691 }
2692 }
2693
2694 /* Start swing calculation */
2695 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2696 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2697 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2698
2699 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2700 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2701 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2702
2703 /* LRC Bypass */
2704 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
2705 val |= DPIO_LRC_BYPASS;
2706 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
2707
2708 mutex_unlock(&dev_priv->dpio_lock);
2709
2710 return 0;
2711 }
2712
2713 static void
2714 intel_get_adjust_train(struct intel_dp *intel_dp,
2715 const uint8_t link_status[DP_LINK_STATUS_SIZE])
2716 {
2717 uint8_t v = 0;
2718 uint8_t p = 0;
2719 int lane;
2720 uint8_t voltage_max;
2721 uint8_t preemph_max;
2722
2723 for (lane = 0; lane < intel_dp->lane_count; lane++) {
2724 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2725 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2726
2727 if (this_v > v)
2728 v = this_v;
2729 if (this_p > p)
2730 p = this_p;
2731 }
2732
2733 voltage_max = intel_dp_voltage_max(intel_dp);
2734 if (v >= voltage_max)
2735 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2736
2737 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2738 if (p >= preemph_max)
2739 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2740
2741 for (lane = 0; lane < 4; lane++)
2742 intel_dp->train_set[lane] = v | p;
2743 }
2744
2745 static uint32_t
2746 intel_gen4_signal_levels(uint8_t train_set)
2747 {
2748 uint32_t signal_levels = 0;
2749
2750 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2751 case DP_TRAIN_VOLTAGE_SWING_400:
2752 default:
2753 signal_levels |= DP_VOLTAGE_0_4;
2754 break;
2755 case DP_TRAIN_VOLTAGE_SWING_600:
2756 signal_levels |= DP_VOLTAGE_0_6;
2757 break;
2758 case DP_TRAIN_VOLTAGE_SWING_800:
2759 signal_levels |= DP_VOLTAGE_0_8;
2760 break;
2761 case DP_TRAIN_VOLTAGE_SWING_1200:
2762 signal_levels |= DP_VOLTAGE_1_2;
2763 break;
2764 }
2765 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2766 case DP_TRAIN_PRE_EMPHASIS_0:
2767 default:
2768 signal_levels |= DP_PRE_EMPHASIS_0;
2769 break;
2770 case DP_TRAIN_PRE_EMPHASIS_3_5:
2771 signal_levels |= DP_PRE_EMPHASIS_3_5;
2772 break;
2773 case DP_TRAIN_PRE_EMPHASIS_6:
2774 signal_levels |= DP_PRE_EMPHASIS_6;
2775 break;
2776 case DP_TRAIN_PRE_EMPHASIS_9_5:
2777 signal_levels |= DP_PRE_EMPHASIS_9_5;
2778 break;
2779 }
2780 return signal_levels;
2781 }
2782
2783 /* Gen6's DP voltage swing and pre-emphasis control */
2784 static uint32_t
2785 intel_gen6_edp_signal_levels(uint8_t train_set)
2786 {
2787 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2788 DP_TRAIN_PRE_EMPHASIS_MASK);
2789 switch (signal_levels) {
2790 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2791 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2792 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2793 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2794 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2795 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2796 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2797 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2798 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2799 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2800 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2801 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2802 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2803 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2804 default:
2805 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2806 "0x%x\n", signal_levels);
2807 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2808 }
2809 }
2810
2811 /* Gen7's DP voltage swing and pre-emphasis control */
2812 static uint32_t
2813 intel_gen7_edp_signal_levels(uint8_t train_set)
2814 {
2815 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2816 DP_TRAIN_PRE_EMPHASIS_MASK);
2817 switch (signal_levels) {
2818 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2819 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2820 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2821 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2822 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2823 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2824
2825 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2826 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2827 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2828 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2829
2830 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2831 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2832 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2833 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2834
2835 default:
2836 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2837 "0x%x\n", signal_levels);
2838 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2839 }
2840 }
2841
2842 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2843 static uint32_t
2844 intel_hsw_signal_levels(uint8_t train_set)
2845 {
2846 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2847 DP_TRAIN_PRE_EMPHASIS_MASK);
2848 switch (signal_levels) {
2849 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2850 return DDI_BUF_EMP_400MV_0DB_HSW;
2851 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2852 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2853 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2854 return DDI_BUF_EMP_400MV_6DB_HSW;
2855 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2856 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2857
2858 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2859 return DDI_BUF_EMP_600MV_0DB_HSW;
2860 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2861 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2862 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2863 return DDI_BUF_EMP_600MV_6DB_HSW;
2864
2865 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2866 return DDI_BUF_EMP_800MV_0DB_HSW;
2867 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2868 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2869 default:
2870 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2871 "0x%x\n", signal_levels);
2872 return DDI_BUF_EMP_400MV_0DB_HSW;
2873 }
2874 }
2875
2876 /* Properly updates "DP" with the correct signal levels. */
2877 static void
2878 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2879 {
2880 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2881 enum port port = intel_dig_port->port;
2882 struct drm_device *dev = intel_dig_port->base.base.dev;
2883 uint32_t signal_levels, mask;
2884 uint8_t train_set = intel_dp->train_set[0];
2885
2886 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2887 signal_levels = intel_hsw_signal_levels(train_set);
2888 mask = DDI_BUF_EMP_MASK;
2889 } else if (IS_CHERRYVIEW(dev)) {
2890 signal_levels = intel_chv_signal_levels(intel_dp);
2891 mask = 0;
2892 } else if (IS_VALLEYVIEW(dev)) {
2893 signal_levels = intel_vlv_signal_levels(intel_dp);
2894 mask = 0;
2895 } else if (IS_GEN7(dev) && port == PORT_A) {
2896 signal_levels = intel_gen7_edp_signal_levels(train_set);
2897 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2898 } else if (IS_GEN6(dev) && port == PORT_A) {
2899 signal_levels = intel_gen6_edp_signal_levels(train_set);
2900 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2901 } else {
2902 signal_levels = intel_gen4_signal_levels(train_set);
2903 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2904 }
2905
2906 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2907
2908 *DP = (*DP & ~mask) | signal_levels;
2909 }
2910
2911 static bool
2912 intel_dp_set_link_train(struct intel_dp *intel_dp,
2913 uint32_t *DP,
2914 uint8_t dp_train_pat)
2915 {
2916 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2917 struct drm_device *dev = intel_dig_port->base.base.dev;
2918 struct drm_i915_private *dev_priv = dev->dev_private;
2919 enum port port = intel_dig_port->port;
2920 uint8_t buf[sizeof(intel_dp->train_set) + 1];
2921 int ret, len;
2922
2923 if (HAS_DDI(dev)) {
2924 uint32_t temp = I915_READ(DP_TP_CTL(port));
2925
2926 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2927 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2928 else
2929 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2930
2931 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2932 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2933 case DP_TRAINING_PATTERN_DISABLE:
2934 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2935
2936 break;
2937 case DP_TRAINING_PATTERN_1:
2938 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2939 break;
2940 case DP_TRAINING_PATTERN_2:
2941 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2942 break;
2943 case DP_TRAINING_PATTERN_3:
2944 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2945 break;
2946 }
2947 I915_WRITE(DP_TP_CTL(port), temp);
2948
2949 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2950 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2951
2952 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2953 case DP_TRAINING_PATTERN_DISABLE:
2954 *DP |= DP_LINK_TRAIN_OFF_CPT;
2955 break;
2956 case DP_TRAINING_PATTERN_1:
2957 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2958 break;
2959 case DP_TRAINING_PATTERN_2:
2960 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2961 break;
2962 case DP_TRAINING_PATTERN_3:
2963 DRM_ERROR("DP training pattern 3 not supported\n");
2964 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2965 break;
2966 }
2967
2968 } else {
2969 *DP &= ~DP_LINK_TRAIN_MASK;
2970
2971 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2972 case DP_TRAINING_PATTERN_DISABLE:
2973 *DP |= DP_LINK_TRAIN_OFF;
2974 break;
2975 case DP_TRAINING_PATTERN_1:
2976 *DP |= DP_LINK_TRAIN_PAT_1;
2977 break;
2978 case DP_TRAINING_PATTERN_2:
2979 *DP |= DP_LINK_TRAIN_PAT_2;
2980 break;
2981 case DP_TRAINING_PATTERN_3:
2982 DRM_ERROR("DP training pattern 3 not supported\n");
2983 *DP |= DP_LINK_TRAIN_PAT_2;
2984 break;
2985 }
2986 }
2987
2988 I915_WRITE(intel_dp->output_reg, *DP);
2989 POSTING_READ(intel_dp->output_reg);
2990
2991 buf[0] = dp_train_pat;
2992 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2993 DP_TRAINING_PATTERN_DISABLE) {
2994 /* don't write DP_TRAINING_LANEx_SET on disable */
2995 len = 1;
2996 } else {
2997 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2998 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2999 len = intel_dp->lane_count + 1;
3000 }
3001
3002 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3003 buf, len);
3004
3005 return ret == len;
3006 }
3007
3008 static bool
3009 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3010 uint8_t dp_train_pat)
3011 {
3012 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3013 intel_dp_set_signal_levels(intel_dp, DP);
3014 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3015 }
3016
3017 static bool
3018 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3019 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3020 {
3021 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3022 struct drm_device *dev = intel_dig_port->base.base.dev;
3023 struct drm_i915_private *dev_priv = dev->dev_private;
3024 int ret;
3025
3026 intel_get_adjust_train(intel_dp, link_status);
3027 intel_dp_set_signal_levels(intel_dp, DP);
3028
3029 I915_WRITE(intel_dp->output_reg, *DP);
3030 POSTING_READ(intel_dp->output_reg);
3031
3032 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3033 intel_dp->train_set, intel_dp->lane_count);
3034
3035 return ret == intel_dp->lane_count;
3036 }
3037
3038 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3039 {
3040 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3041 struct drm_device *dev = intel_dig_port->base.base.dev;
3042 struct drm_i915_private *dev_priv = dev->dev_private;
3043 enum port port = intel_dig_port->port;
3044 uint32_t val;
3045
3046 if (!HAS_DDI(dev))
3047 return;
3048
3049 val = I915_READ(DP_TP_CTL(port));
3050 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3051 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3052 I915_WRITE(DP_TP_CTL(port), val);
3053
3054 /*
3055 * On PORT_A we can have only eDP in SST mode. There the only reason
3056 * we need to set idle transmission mode is to work around a HW issue
3057 * where we enable the pipe while not in idle link-training mode.
3058 * In this case there is requirement to wait for a minimum number of
3059 * idle patterns to be sent.
3060 */
3061 if (port == PORT_A)
3062 return;
3063
3064 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3065 1))
3066 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3067 }
3068
3069 /* Enable corresponding port and start training pattern 1 */
3070 void
3071 intel_dp_start_link_train(struct intel_dp *intel_dp)
3072 {
3073 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3074 struct drm_device *dev = encoder->dev;
3075 int i;
3076 uint8_t voltage;
3077 int voltage_tries, loop_tries;
3078 uint32_t DP = intel_dp->DP;
3079 uint8_t link_config[2];
3080
3081 if (HAS_DDI(dev))
3082 intel_ddi_prepare_link_retrain(encoder);
3083
3084 /* Write the link configuration data */
3085 link_config[0] = intel_dp->link_bw;
3086 link_config[1] = intel_dp->lane_count;
3087 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3088 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3089 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3090
3091 link_config[0] = 0;
3092 link_config[1] = DP_SET_ANSI_8B10B;
3093 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3094
3095 DP |= DP_PORT_EN;
3096
3097 /* clock recovery */
3098 if (!intel_dp_reset_link_train(intel_dp, &DP,
3099 DP_TRAINING_PATTERN_1 |
3100 DP_LINK_SCRAMBLING_DISABLE)) {
3101 DRM_ERROR("failed to enable link training\n");
3102 return;
3103 }
3104
3105 voltage = 0xff;
3106 voltage_tries = 0;
3107 loop_tries = 0;
3108 for (;;) {
3109 uint8_t link_status[DP_LINK_STATUS_SIZE];
3110
3111 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3112 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3113 DRM_ERROR("failed to get link status\n");
3114 break;
3115 }
3116
3117 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3118 DRM_DEBUG_KMS("clock recovery OK\n");
3119 break;
3120 }
3121
3122 /* Check to see if we've tried the max voltage */
3123 for (i = 0; i < intel_dp->lane_count; i++)
3124 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3125 break;
3126 if (i == intel_dp->lane_count) {
3127 ++loop_tries;
3128 if (loop_tries == 5) {
3129 DRM_ERROR("too many full retries, give up\n");
3130 break;
3131 }
3132 intel_dp_reset_link_train(intel_dp, &DP,
3133 DP_TRAINING_PATTERN_1 |
3134 DP_LINK_SCRAMBLING_DISABLE);
3135 voltage_tries = 0;
3136 continue;
3137 }
3138
3139 /* Check to see if we've tried the same voltage 5 times */
3140 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3141 ++voltage_tries;
3142 if (voltage_tries == 5) {
3143 DRM_ERROR("too many voltage retries, give up\n");
3144 break;
3145 }
3146 } else
3147 voltage_tries = 0;
3148 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3149
3150 /* Update training set as requested by target */
3151 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3152 DRM_ERROR("failed to update link training\n");
3153 break;
3154 }
3155 }
3156
3157 intel_dp->DP = DP;
3158 }
3159
3160 void
3161 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3162 {
3163 bool channel_eq = false;
3164 int tries, cr_tries;
3165 uint32_t DP = intel_dp->DP;
3166 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3167
3168 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3169 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3170 training_pattern = DP_TRAINING_PATTERN_3;
3171
3172 /* channel equalization */
3173 if (!intel_dp_set_link_train(intel_dp, &DP,
3174 training_pattern |
3175 DP_LINK_SCRAMBLING_DISABLE)) {
3176 DRM_ERROR("failed to start channel equalization\n");
3177 return;
3178 }
3179
3180 tries = 0;
3181 cr_tries = 0;
3182 channel_eq = false;
3183 for (;;) {
3184 uint8_t link_status[DP_LINK_STATUS_SIZE];
3185
3186 if (cr_tries > 5) {
3187 DRM_ERROR("failed to train DP, aborting\n");
3188 break;
3189 }
3190
3191 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3192 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3193 DRM_ERROR("failed to get link status\n");
3194 break;
3195 }
3196
3197 /* Make sure clock is still ok */
3198 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3199 intel_dp_start_link_train(intel_dp);
3200 intel_dp_set_link_train(intel_dp, &DP,
3201 training_pattern |
3202 DP_LINK_SCRAMBLING_DISABLE);
3203 cr_tries++;
3204 continue;
3205 }
3206
3207 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3208 channel_eq = true;
3209 break;
3210 }
3211
3212 /* Try 5 times, then try clock recovery if that fails */
3213 if (tries > 5) {
3214 intel_dp_link_down(intel_dp);
3215 intel_dp_start_link_train(intel_dp);
3216 intel_dp_set_link_train(intel_dp, &DP,
3217 training_pattern |
3218 DP_LINK_SCRAMBLING_DISABLE);
3219 tries = 0;
3220 cr_tries++;
3221 continue;
3222 }
3223
3224 /* Update training set as requested by target */
3225 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3226 DRM_ERROR("failed to update link training\n");
3227 break;
3228 }
3229 ++tries;
3230 }
3231
3232 intel_dp_set_idle_link_train(intel_dp);
3233
3234 intel_dp->DP = DP;
3235
3236 if (channel_eq)
3237 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3238
3239 }
3240
3241 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3242 {
3243 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3244 DP_TRAINING_PATTERN_DISABLE);
3245 }
3246
3247 static void
3248 intel_dp_link_down(struct intel_dp *intel_dp)
3249 {
3250 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3251 enum port port = intel_dig_port->port;
3252 struct drm_device *dev = intel_dig_port->base.base.dev;
3253 struct drm_i915_private *dev_priv = dev->dev_private;
3254 struct intel_crtc *intel_crtc =
3255 to_intel_crtc(intel_dig_port->base.base.crtc);
3256 uint32_t DP = intel_dp->DP;
3257
3258 if (WARN_ON(HAS_DDI(dev)))
3259 return;
3260
3261 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3262 return;
3263
3264 DRM_DEBUG_KMS("\n");
3265
3266 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3267 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3268 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3269 } else {
3270 DP &= ~DP_LINK_TRAIN_MASK;
3271 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3272 }
3273 POSTING_READ(intel_dp->output_reg);
3274
3275 if (HAS_PCH_IBX(dev) &&
3276 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3277 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3278
3279 /* Hardware workaround: leaving our transcoder select
3280 * set to transcoder B while it's off will prevent the
3281 * corresponding HDMI output on transcoder A.
3282 *
3283 * Combine this with another hardware workaround:
3284 * transcoder select bit can only be cleared while the
3285 * port is enabled.
3286 */
3287 DP &= ~DP_PIPEB_SELECT;
3288 I915_WRITE(intel_dp->output_reg, DP);
3289
3290 /* Changes to enable or select take place the vblank
3291 * after being written.
3292 */
3293 if (WARN_ON(crtc == NULL)) {
3294 /* We should never try to disable a port without a crtc
3295 * attached. For paranoia keep the code around for a
3296 * bit. */
3297 POSTING_READ(intel_dp->output_reg);
3298 msleep(50);
3299 } else
3300 intel_wait_for_vblank(dev, intel_crtc->pipe);
3301 }
3302
3303 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3304 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3305 POSTING_READ(intel_dp->output_reg);
3306 msleep(intel_dp->panel_power_down_delay);
3307 }
3308
3309 static bool
3310 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3311 {
3312 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3313 struct drm_device *dev = dig_port->base.base.dev;
3314 struct drm_i915_private *dev_priv = dev->dev_private;
3315
3316 char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
3317
3318 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3319 sizeof(intel_dp->dpcd)) < 0)
3320 return false; /* aux transfer failed */
3321
3322 hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
3323 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
3324 DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
3325
3326 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3327 return false; /* DPCD not present */
3328
3329 /* Check if the panel supports PSR */
3330 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3331 if (is_edp(intel_dp)) {
3332 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3333 intel_dp->psr_dpcd,
3334 sizeof(intel_dp->psr_dpcd));
3335 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3336 dev_priv->psr.sink_support = true;
3337 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3338 }
3339 }
3340
3341 /* Training Pattern 3 support */
3342 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3343 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3344 intel_dp->use_tps3 = true;
3345 DRM_DEBUG_KMS("Displayport TPS3 supported");
3346 } else
3347 intel_dp->use_tps3 = false;
3348
3349 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3350 DP_DWN_STRM_PORT_PRESENT))
3351 return true; /* native DP sink */
3352
3353 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3354 return true; /* no per-port downstream info */
3355
3356 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3357 intel_dp->downstream_ports,
3358 DP_MAX_DOWNSTREAM_PORTS) < 0)
3359 return false; /* downstream port status fetch failed */
3360
3361 return true;
3362 }
3363
3364 static void
3365 intel_dp_probe_oui(struct intel_dp *intel_dp)
3366 {
3367 u8 buf[3];
3368
3369 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3370 return;
3371
3372 intel_edp_panel_vdd_on(intel_dp);
3373
3374 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3375 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3376 buf[0], buf[1], buf[2]);
3377
3378 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3379 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3380 buf[0], buf[1], buf[2]);
3381
3382 edp_panel_vdd_off(intel_dp, false);
3383 }
3384
3385 static bool
3386 intel_dp_probe_mst(struct intel_dp *intel_dp)
3387 {
3388 u8 buf[1];
3389
3390 if (!intel_dp->can_mst)
3391 return false;
3392
3393 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3394 return false;
3395
3396 _edp_panel_vdd_on(intel_dp);
3397 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3398 if (buf[0] & DP_MST_CAP) {
3399 DRM_DEBUG_KMS("Sink is MST capable\n");
3400 intel_dp->is_mst = true;
3401 } else {
3402 DRM_DEBUG_KMS("Sink is not MST capable\n");
3403 intel_dp->is_mst = false;
3404 }
3405 }
3406 edp_panel_vdd_off(intel_dp, false);
3407
3408 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3409 return intel_dp->is_mst;
3410 }
3411
3412 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3413 {
3414 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3415 struct drm_device *dev = intel_dig_port->base.base.dev;
3416 struct intel_crtc *intel_crtc =
3417 to_intel_crtc(intel_dig_port->base.base.crtc);
3418 u8 buf[1];
3419
3420 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
3421 return -EAGAIN;
3422
3423 if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
3424 return -ENOTTY;
3425
3426 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3427 DP_TEST_SINK_START) < 0)
3428 return -EAGAIN;
3429
3430 /* Wait 2 vblanks to be sure we will have the correct CRC value */
3431 intel_wait_for_vblank(dev, intel_crtc->pipe);
3432 intel_wait_for_vblank(dev, intel_crtc->pipe);
3433
3434 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3435 return -EAGAIN;
3436
3437 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
3438 return 0;
3439 }
3440
3441 static bool
3442 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3443 {
3444 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3445 DP_DEVICE_SERVICE_IRQ_VECTOR,
3446 sink_irq_vector, 1) == 1;
3447 }
3448
3449 static bool
3450 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3451 {
3452 int ret;
3453
3454 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
3455 DP_SINK_COUNT_ESI,
3456 sink_irq_vector, 14);
3457 if (ret != 14)
3458 return false;
3459
3460 return true;
3461 }
3462
3463 static void
3464 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3465 {
3466 /* NAK by default */
3467 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3468 }
3469
3470 static int
3471 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3472 {
3473 bool bret;
3474
3475 if (intel_dp->is_mst) {
3476 u8 esi[16] = { 0 };
3477 int ret = 0;
3478 int retry;
3479 bool handled;
3480 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3481 go_again:
3482 if (bret == true) {
3483
3484 /* check link status - esi[10] = 0x200c */
3485 if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3486 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3487 intel_dp_start_link_train(intel_dp);
3488 intel_dp_complete_link_train(intel_dp);
3489 intel_dp_stop_link_train(intel_dp);
3490 }
3491
3492 DRM_DEBUG_KMS("got esi %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3493 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3494
3495 if (handled) {
3496 for (retry = 0; retry < 3; retry++) {
3497 int wret;
3498 wret = drm_dp_dpcd_write(&intel_dp->aux,
3499 DP_SINK_COUNT_ESI+1,
3500 &esi[1], 3);
3501 if (wret == 3) {
3502 break;
3503 }
3504 }
3505
3506 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3507 if (bret == true) {
3508 DRM_DEBUG_KMS("got esi2 %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3509 goto go_again;
3510 }
3511 } else
3512 ret = 0;
3513
3514 return ret;
3515 } else {
3516 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3517 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3518 intel_dp->is_mst = false;
3519 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3520 /* send a hotplug event */
3521 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3522 }
3523 }
3524 return -EINVAL;
3525 }
3526
3527 /*
3528 * According to DP spec
3529 * 5.1.2:
3530 * 1. Read DPCD
3531 * 2. Configure link according to Receiver Capabilities
3532 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
3533 * 4. Check link status on receipt of hot-plug interrupt
3534 */
3535 void
3536 intel_dp_check_link_status(struct intel_dp *intel_dp)
3537 {
3538 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3539 u8 sink_irq_vector;
3540 u8 link_status[DP_LINK_STATUS_SIZE];
3541
3542 /* FIXME: This access isn't protected by any locks. */
3543 if (!intel_encoder->connectors_active)
3544 return;
3545
3546 if (WARN_ON(!intel_encoder->base.crtc))
3547 return;
3548
3549 /* Try to read receiver status if the link appears to be up */
3550 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3551 return;
3552 }
3553
3554 /* Now read the DPCD to see if it's actually running */
3555 if (!intel_dp_get_dpcd(intel_dp)) {
3556 return;
3557 }
3558
3559 /* Try to read the source of the interrupt */
3560 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3561 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3562 /* Clear interrupt source */
3563 drm_dp_dpcd_writeb(&intel_dp->aux,
3564 DP_DEVICE_SERVICE_IRQ_VECTOR,
3565 sink_irq_vector);
3566
3567 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3568 intel_dp_handle_test_request(intel_dp);
3569 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3570 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3571 }
3572
3573 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3574 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3575 intel_encoder->base.name);
3576 intel_dp_start_link_train(intel_dp);
3577 intel_dp_complete_link_train(intel_dp);
3578 intel_dp_stop_link_train(intel_dp);
3579 }
3580 }
3581
3582 /* XXX this is probably wrong for multiple downstream ports */
3583 static enum drm_connector_status
3584 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3585 {
3586 uint8_t *dpcd = intel_dp->dpcd;
3587 uint8_t type;
3588
3589 if (!intel_dp_get_dpcd(intel_dp))
3590 return connector_status_disconnected;
3591
3592 /* if there's no downstream port, we're done */
3593 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3594 return connector_status_connected;
3595
3596 /* If we're HPD-aware, SINK_COUNT changes dynamically */
3597 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3598 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3599 uint8_t reg;
3600
3601 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3602 &reg, 1) < 0)
3603 return connector_status_unknown;
3604
3605 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3606 : connector_status_disconnected;
3607 }
3608
3609 /* If no HPD, poke DDC gently */
3610 if (drm_probe_ddc(&intel_dp->aux.ddc))
3611 return connector_status_connected;
3612
3613 /* Well we tried, say unknown for unreliable port types */
3614 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3615 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3616 if (type == DP_DS_PORT_TYPE_VGA ||
3617 type == DP_DS_PORT_TYPE_NON_EDID)
3618 return connector_status_unknown;
3619 } else {
3620 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3621 DP_DWN_STRM_PORT_TYPE_MASK;
3622 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3623 type == DP_DWN_STRM_PORT_TYPE_OTHER)
3624 return connector_status_unknown;
3625 }
3626
3627 /* Anything else is out of spec, warn and ignore */
3628 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3629 return connector_status_disconnected;
3630 }
3631
3632 static enum drm_connector_status
3633 ironlake_dp_detect(struct intel_dp *intel_dp)
3634 {
3635 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3636 struct drm_i915_private *dev_priv = dev->dev_private;
3637 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3638 enum drm_connector_status status;
3639
3640 /* Can't disconnect eDP, but you can close the lid... */
3641 if (is_edp(intel_dp)) {
3642 status = intel_panel_detect(dev);
3643 if (status == connector_status_unknown)
3644 status = connector_status_connected;
3645 return status;
3646 }
3647
3648 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3649 return connector_status_disconnected;
3650
3651 return intel_dp_detect_dpcd(intel_dp);
3652 }
3653
3654 static enum drm_connector_status
3655 g4x_dp_detect(struct intel_dp *intel_dp)
3656 {
3657 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3658 struct drm_i915_private *dev_priv = dev->dev_private;
3659 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3660 uint32_t bit;
3661
3662 /* Can't disconnect eDP, but you can close the lid... */
3663 if (is_edp(intel_dp)) {
3664 enum drm_connector_status status;
3665
3666 status = intel_panel_detect(dev);
3667 if (status == connector_status_unknown)
3668 status = connector_status_connected;
3669 return status;
3670 }
3671
3672 if (IS_VALLEYVIEW(dev)) {
3673 switch (intel_dig_port->port) {
3674 case PORT_B:
3675 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3676 break;
3677 case PORT_C:
3678 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3679 break;
3680 case PORT_D:
3681 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3682 break;
3683 default:
3684 return connector_status_unknown;
3685 }
3686 } else {
3687 switch (intel_dig_port->port) {
3688 case PORT_B:
3689 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3690 break;
3691 case PORT_C:
3692 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3693 break;
3694 case PORT_D:
3695 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3696 break;
3697 default:
3698 return connector_status_unknown;
3699 }
3700 }
3701
3702 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3703 return connector_status_disconnected;
3704
3705 return intel_dp_detect_dpcd(intel_dp);
3706 }
3707
3708 static struct edid *
3709 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3710 {
3711 struct intel_connector *intel_connector = to_intel_connector(connector);
3712
3713 /* use cached edid if we have one */
3714 if (intel_connector->edid) {
3715 /* invalid edid */
3716 if (IS_ERR(intel_connector->edid))
3717 return NULL;
3718
3719 return drm_edid_duplicate(intel_connector->edid);
3720 }
3721
3722 return drm_get_edid(connector, adapter);
3723 }
3724
3725 static int
3726 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3727 {
3728 struct intel_connector *intel_connector = to_intel_connector(connector);
3729
3730 /* use cached edid if we have one */
3731 if (intel_connector->edid) {
3732 /* invalid edid */
3733 if (IS_ERR(intel_connector->edid))
3734 return 0;
3735
3736 return intel_connector_update_modes(connector,
3737 intel_connector->edid);
3738 }
3739
3740 return intel_ddc_get_modes(connector, adapter);
3741 }
3742
3743 static enum drm_connector_status
3744 intel_dp_detect(struct drm_connector *connector, bool force)
3745 {
3746 struct intel_dp *intel_dp = intel_attached_dp(connector);
3747 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3748 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3749 struct drm_device *dev = connector->dev;
3750 struct drm_i915_private *dev_priv = dev->dev_private;
3751 enum drm_connector_status status;
3752 enum intel_display_power_domain power_domain;
3753 struct edid *edid = NULL;
3754 bool ret;
3755
3756 power_domain = intel_display_port_power_domain(intel_encoder);
3757 intel_display_power_get(dev_priv, power_domain);
3758
3759 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3760 connector->base.id, connector->name);
3761
3762 if (intel_dp->is_mst) {
3763 /* MST devices are disconnected from a monitor POV */
3764 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3765 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3766 status = connector_status_disconnected;
3767 goto out;
3768 }
3769
3770 intel_dp->has_audio = false;
3771
3772 if (HAS_PCH_SPLIT(dev))
3773 status = ironlake_dp_detect(intel_dp);
3774 else
3775 status = g4x_dp_detect(intel_dp);
3776
3777 if (status != connector_status_connected)
3778 goto out;
3779
3780 intel_dp_probe_oui(intel_dp);
3781
3782 ret = intel_dp_probe_mst(intel_dp);
3783 if (ret) {
3784 /* if we are in MST mode then this connector
3785 won't appear connected or have anything with EDID on it */
3786 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3787 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3788 status = connector_status_disconnected;
3789 goto out;
3790 }
3791
3792 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3793 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3794 } else {
3795 edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3796 if (edid) {
3797 intel_dp->has_audio = drm_detect_monitor_audio(edid);
3798 kfree(edid);
3799 }
3800 }
3801
3802 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3803 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3804 status = connector_status_connected;
3805
3806 out:
3807 intel_display_power_put(dev_priv, power_domain);
3808 return status;
3809 }
3810
3811 static int intel_dp_get_modes(struct drm_connector *connector)
3812 {
3813 struct intel_dp *intel_dp = intel_attached_dp(connector);
3814 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3815 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3816 struct intel_connector *intel_connector = to_intel_connector(connector);
3817 struct drm_device *dev = connector->dev;
3818 struct drm_i915_private *dev_priv = dev->dev_private;
3819 enum intel_display_power_domain power_domain;
3820 int ret;
3821
3822 /* We should parse the EDID data and find out if it has an audio sink
3823 */
3824
3825 power_domain = intel_display_port_power_domain(intel_encoder);
3826 intel_display_power_get(dev_priv, power_domain);
3827
3828 ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
3829 intel_display_power_put(dev_priv, power_domain);
3830 if (ret)
3831 return ret;
3832
3833 /* if eDP has no EDID, fall back to fixed mode */
3834 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3835 struct drm_display_mode *mode;
3836 mode = drm_mode_duplicate(dev,
3837 intel_connector->panel.fixed_mode);
3838 if (mode) {
3839 drm_mode_probed_add(connector, mode);
3840 return 1;
3841 }
3842 }
3843 return 0;
3844 }
3845
3846 static bool
3847 intel_dp_detect_audio(struct drm_connector *connector)
3848 {
3849 struct intel_dp *intel_dp = intel_attached_dp(connector);
3850 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3851 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3852 struct drm_device *dev = connector->dev;
3853 struct drm_i915_private *dev_priv = dev->dev_private;
3854 enum intel_display_power_domain power_domain;
3855 struct edid *edid;
3856 bool has_audio = false;
3857
3858 power_domain = intel_display_port_power_domain(intel_encoder);
3859 intel_display_power_get(dev_priv, power_domain);
3860
3861 edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3862 if (edid) {
3863 has_audio = drm_detect_monitor_audio(edid);
3864 kfree(edid);
3865 }
3866
3867 intel_display_power_put(dev_priv, power_domain);
3868
3869 return has_audio;
3870 }
3871
3872 static int
3873 intel_dp_set_property(struct drm_connector *connector,
3874 struct drm_property *property,
3875 uint64_t val)
3876 {
3877 struct drm_i915_private *dev_priv = connector->dev->dev_private;
3878 struct intel_connector *intel_connector = to_intel_connector(connector);
3879 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3880 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3881 int ret;
3882
3883 ret = drm_object_property_set_value(&connector->base, property, val);
3884 if (ret)
3885 return ret;
3886
3887 if (property == dev_priv->force_audio_property) {
3888 int i = val;
3889 bool has_audio;
3890
3891 if (i == intel_dp->force_audio)
3892 return 0;
3893
3894 intel_dp->force_audio = i;
3895
3896 if (i == HDMI_AUDIO_AUTO)
3897 has_audio = intel_dp_detect_audio(connector);
3898 else
3899 has_audio = (i == HDMI_AUDIO_ON);
3900
3901 if (has_audio == intel_dp->has_audio)
3902 return 0;
3903
3904 intel_dp->has_audio = has_audio;
3905 goto done;
3906 }
3907
3908 if (property == dev_priv->broadcast_rgb_property) {
3909 bool old_auto = intel_dp->color_range_auto;
3910 uint32_t old_range = intel_dp->color_range;
3911
3912 switch (val) {
3913 case INTEL_BROADCAST_RGB_AUTO:
3914 intel_dp->color_range_auto = true;
3915 break;
3916 case INTEL_BROADCAST_RGB_FULL:
3917 intel_dp->color_range_auto = false;
3918 intel_dp->color_range = 0;
3919 break;
3920 case INTEL_BROADCAST_RGB_LIMITED:
3921 intel_dp->color_range_auto = false;
3922 intel_dp->color_range = DP_COLOR_RANGE_16_235;
3923 break;
3924 default:
3925 return -EINVAL;
3926 }
3927
3928 if (old_auto == intel_dp->color_range_auto &&
3929 old_range == intel_dp->color_range)
3930 return 0;
3931
3932 goto done;
3933 }
3934
3935 if (is_edp(intel_dp) &&
3936 property == connector->dev->mode_config.scaling_mode_property) {
3937 if (val == DRM_MODE_SCALE_NONE) {
3938 DRM_DEBUG_KMS("no scaling not supported\n");
3939 return -EINVAL;
3940 }
3941
3942 if (intel_connector->panel.fitting_mode == val) {
3943 /* the eDP scaling property is not changed */
3944 return 0;
3945 }
3946 intel_connector->panel.fitting_mode = val;
3947
3948 goto done;
3949 }
3950
3951 return -EINVAL;
3952
3953 done:
3954 if (intel_encoder->base.crtc)
3955 intel_crtc_restore_mode(intel_encoder->base.crtc);
3956
3957 return 0;
3958 }
3959
3960 static void
3961 intel_dp_connector_destroy(struct drm_connector *connector)
3962 {
3963 struct intel_connector *intel_connector = to_intel_connector(connector);
3964
3965 if (!IS_ERR_OR_NULL(intel_connector->edid))
3966 kfree(intel_connector->edid);
3967
3968 /* Can't call is_edp() since the encoder may have been destroyed
3969 * already. */
3970 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3971 intel_panel_fini(&intel_connector->panel);
3972
3973 drm_connector_cleanup(connector);
3974 kfree(connector);
3975 }
3976
3977 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3978 {
3979 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3980 struct intel_dp *intel_dp = &intel_dig_port->dp;
3981 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3982
3983 drm_dp_aux_unregister(&intel_dp->aux);
3984 intel_dp_mst_encoder_cleanup(intel_dig_port);
3985 drm_encoder_cleanup(encoder);
3986 if (is_edp(intel_dp)) {
3987 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3988 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
3989 edp_panel_vdd_off_sync(intel_dp);
3990 drm_modeset_unlock(&dev->mode_config.connection_mutex);
3991 if (intel_dp->edp_notifier.notifier_call) {
3992 unregister_reboot_notifier(&intel_dp->edp_notifier);
3993 intel_dp->edp_notifier.notifier_call = NULL;
3994 }
3995 }
3996 kfree(intel_dig_port);
3997 }
3998
3999 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4000 .dpms = intel_connector_dpms,
4001 .detect = intel_dp_detect,
4002 .fill_modes = drm_helper_probe_single_connector_modes,
4003 .set_property = intel_dp_set_property,
4004 .destroy = intel_dp_connector_destroy,
4005 };
4006
4007 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4008 .get_modes = intel_dp_get_modes,
4009 .mode_valid = intel_dp_mode_valid,
4010 .best_encoder = intel_best_encoder,
4011 };
4012
4013 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4014 .destroy = intel_dp_encoder_destroy,
4015 };
4016
4017 void
4018 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4019 {
4020 return;
4021 }
4022
4023 bool
4024 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4025 {
4026 struct intel_dp *intel_dp = &intel_dig_port->dp;
4027 struct drm_device *dev = intel_dig_port->base.base.dev;
4028 struct drm_i915_private *dev_priv = dev->dev_private;
4029 int ret;
4030 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4031 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4032
4033 DRM_DEBUG_KMS("got hpd irq on port %d - %s\n", intel_dig_port->port,
4034 long_hpd ? "long" : "short");
4035
4036 if (long_hpd) {
4037 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4038 goto mst_fail;
4039
4040 if (!intel_dp_get_dpcd(intel_dp)) {
4041 goto mst_fail;
4042 }
4043
4044 intel_dp_probe_oui(intel_dp);
4045
4046 if (!intel_dp_probe_mst(intel_dp))
4047 goto mst_fail;
4048
4049 } else {
4050 if (intel_dp->is_mst) {
4051 ret = intel_dp_check_mst_status(intel_dp);
4052 if (ret == -EINVAL)
4053 goto mst_fail;
4054 }
4055
4056 if (!intel_dp->is_mst) {
4057 /*
4058 * we'll check the link status via the normal hot plug path later -
4059 * but for short hpds we should check it now
4060 */
4061 intel_dp_check_link_status(intel_dp);
4062 }
4063 }
4064 return false;
4065 mst_fail:
4066 /* if we were in MST mode, and device is not there get out of MST mode */
4067 if (intel_dp->is_mst) {
4068 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4069 intel_dp->is_mst = false;
4070 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4071 }
4072 return true;
4073 }
4074
4075 /* Return which DP Port should be selected for Transcoder DP control */
4076 int
4077 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4078 {
4079 struct drm_device *dev = crtc->dev;
4080 struct intel_encoder *intel_encoder;
4081 struct intel_dp *intel_dp;
4082
4083 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4084 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4085
4086 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4087 intel_encoder->type == INTEL_OUTPUT_EDP)
4088 return intel_dp->output_reg;
4089 }
4090
4091 return -1;
4092 }
4093
4094 /* check the VBT to see whether the eDP is on DP-D port */
4095 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4096 {
4097 struct drm_i915_private *dev_priv = dev->dev_private;
4098 union child_device_config *p_child;
4099 int i;
4100 static const short port_mapping[] = {
4101 [PORT_B] = PORT_IDPB,
4102 [PORT_C] = PORT_IDPC,
4103 [PORT_D] = PORT_IDPD,
4104 };
4105
4106 if (port == PORT_A)
4107 return true;
4108
4109 if (!dev_priv->vbt.child_dev_num)
4110 return false;
4111
4112 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4113 p_child = dev_priv->vbt.child_dev + i;
4114
4115 if (p_child->common.dvo_port == port_mapping[port] &&
4116 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4117 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
4118 return true;
4119 }
4120 return false;
4121 }
4122
4123 void
4124 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4125 {
4126 struct intel_connector *intel_connector = to_intel_connector(connector);
4127
4128 intel_attach_force_audio_property(connector);
4129 intel_attach_broadcast_rgb_property(connector);
4130 intel_dp->color_range_auto = true;
4131
4132 if (is_edp(intel_dp)) {
4133 drm_mode_create_scaling_mode_property(connector->dev);
4134 drm_object_attach_property(
4135 &connector->base,
4136 connector->dev->mode_config.scaling_mode_property,
4137 DRM_MODE_SCALE_ASPECT);
4138 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4139 }
4140 }
4141
4142 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4143 {
4144 intel_dp->last_power_cycle = jiffies;
4145 intel_dp->last_power_on = jiffies;
4146 intel_dp->last_backlight_off = jiffies;
4147 }
4148
4149 static void
4150 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4151 struct intel_dp *intel_dp,
4152 struct edp_power_seq *out)
4153 {
4154 struct drm_i915_private *dev_priv = dev->dev_private;
4155 struct edp_power_seq cur, vbt, spec, final;
4156 u32 pp_on, pp_off, pp_div, pp;
4157 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4158
4159 if (HAS_PCH_SPLIT(dev)) {
4160 pp_ctrl_reg = PCH_PP_CONTROL;
4161 pp_on_reg = PCH_PP_ON_DELAYS;
4162 pp_off_reg = PCH_PP_OFF_DELAYS;
4163 pp_div_reg = PCH_PP_DIVISOR;
4164 } else {
4165 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4166
4167 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4168 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4169 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4170 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4171 }
4172
4173 /* Workaround: Need to write PP_CONTROL with the unlock key as
4174 * the very first thing. */
4175 pp = ironlake_get_pp_control(intel_dp);
4176 I915_WRITE(pp_ctrl_reg, pp);
4177
4178 pp_on = I915_READ(pp_on_reg);
4179 pp_off = I915_READ(pp_off_reg);
4180 pp_div = I915_READ(pp_div_reg);
4181
4182 /* Pull timing values out of registers */
4183 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4184 PANEL_POWER_UP_DELAY_SHIFT;
4185
4186 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4187 PANEL_LIGHT_ON_DELAY_SHIFT;
4188
4189 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4190 PANEL_LIGHT_OFF_DELAY_SHIFT;
4191
4192 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4193 PANEL_POWER_DOWN_DELAY_SHIFT;
4194
4195 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4196 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4197
4198 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4199 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4200
4201 vbt = dev_priv->vbt.edp_pps;
4202
4203 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4204 * our hw here, which are all in 100usec. */
4205 spec.t1_t3 = 210 * 10;
4206 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4207 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4208 spec.t10 = 500 * 10;
4209 /* This one is special and actually in units of 100ms, but zero
4210 * based in the hw (so we need to add 100 ms). But the sw vbt
4211 * table multiplies it with 1000 to make it in units of 100usec,
4212 * too. */
4213 spec.t11_t12 = (510 + 100) * 10;
4214
4215 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4216 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4217
4218 /* Use the max of the register settings and vbt. If both are
4219 * unset, fall back to the spec limits. */
4220 #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
4221 spec.field : \
4222 max(cur.field, vbt.field))
4223 assign_final(t1_t3);
4224 assign_final(t8);
4225 assign_final(t9);
4226 assign_final(t10);
4227 assign_final(t11_t12);
4228 #undef assign_final
4229
4230 #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
4231 intel_dp->panel_power_up_delay = get_delay(t1_t3);
4232 intel_dp->backlight_on_delay = get_delay(t8);
4233 intel_dp->backlight_off_delay = get_delay(t9);
4234 intel_dp->panel_power_down_delay = get_delay(t10);
4235 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4236 #undef get_delay
4237
4238 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4239 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4240 intel_dp->panel_power_cycle_delay);
4241
4242 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4243 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4244
4245 if (out)
4246 *out = final;
4247 }
4248
4249 static void
4250 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4251 struct intel_dp *intel_dp,
4252 struct edp_power_seq *seq)
4253 {
4254 struct drm_i915_private *dev_priv = dev->dev_private;
4255 u32 pp_on, pp_off, pp_div, port_sel = 0;
4256 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4257 int pp_on_reg, pp_off_reg, pp_div_reg;
4258
4259 if (HAS_PCH_SPLIT(dev)) {
4260 pp_on_reg = PCH_PP_ON_DELAYS;
4261 pp_off_reg = PCH_PP_OFF_DELAYS;
4262 pp_div_reg = PCH_PP_DIVISOR;
4263 } else {
4264 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4265
4266 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4267 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4268 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4269 }
4270
4271 /*
4272 * And finally store the new values in the power sequencer. The
4273 * backlight delays are set to 1 because we do manual waits on them. For
4274 * T8, even BSpec recommends doing it. For T9, if we don't do this,
4275 * we'll end up waiting for the backlight off delay twice: once when we
4276 * do the manual sleep, and once when we disable the panel and wait for
4277 * the PP_STATUS bit to become zero.
4278 */
4279 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4280 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4281 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4282 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4283 /* Compute the divisor for the pp clock, simply match the Bspec
4284 * formula. */
4285 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4286 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4287 << PANEL_POWER_CYCLE_DELAY_SHIFT);
4288
4289 /* Haswell doesn't have any port selection bits for the panel
4290 * power sequencer any more. */
4291 if (IS_VALLEYVIEW(dev)) {
4292 if (dp_to_dig_port(intel_dp)->port == PORT_B)
4293 port_sel = PANEL_PORT_SELECT_DPB_VLV;
4294 else
4295 port_sel = PANEL_PORT_SELECT_DPC_VLV;
4296 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4297 if (dp_to_dig_port(intel_dp)->port == PORT_A)
4298 port_sel = PANEL_PORT_SELECT_DPA;
4299 else
4300 port_sel = PANEL_PORT_SELECT_DPD;
4301 }
4302
4303 pp_on |= port_sel;
4304
4305 I915_WRITE(pp_on_reg, pp_on);
4306 I915_WRITE(pp_off_reg, pp_off);
4307 I915_WRITE(pp_div_reg, pp_div);
4308
4309 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4310 I915_READ(pp_on_reg),
4311 I915_READ(pp_off_reg),
4312 I915_READ(pp_div_reg));
4313 }
4314
4315 void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4316 {
4317 struct drm_i915_private *dev_priv = dev->dev_private;
4318 struct intel_encoder *encoder;
4319 struct intel_dp *intel_dp = NULL;
4320 struct intel_crtc_config *config = NULL;
4321 struct intel_crtc *intel_crtc = NULL;
4322 struct intel_connector *intel_connector = dev_priv->drrs.connector;
4323 u32 reg, val;
4324 enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
4325
4326 if (refresh_rate <= 0) {
4327 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4328 return;
4329 }
4330
4331 if (intel_connector == NULL) {
4332 DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
4333 return;
4334 }
4335
4336 /*
4337 * FIXME: This needs proper synchronization with psr state. But really
4338 * hard to tell without seeing the user of this function of this code.
4339 * Check locking and ordering once that lands.
4340 */
4341 if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
4342 DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
4343 return;
4344 }
4345
4346 encoder = intel_attached_encoder(&intel_connector->base);
4347 intel_dp = enc_to_intel_dp(&encoder->base);
4348 intel_crtc = encoder->new_crtc;
4349
4350 if (!intel_crtc) {
4351 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4352 return;
4353 }
4354
4355 config = &intel_crtc->config;
4356
4357 if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
4358 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4359 return;
4360 }
4361
4362 if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
4363 index = DRRS_LOW_RR;
4364
4365 if (index == intel_dp->drrs_state.refresh_rate_type) {
4366 DRM_DEBUG_KMS(
4367 "DRRS requested for previously set RR...ignoring\n");
4368 return;
4369 }
4370
4371 if (!intel_crtc->active) {
4372 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4373 return;
4374 }
4375
4376 if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
4377 reg = PIPECONF(intel_crtc->config.cpu_transcoder);
4378 val = I915_READ(reg);
4379 if (index > DRRS_HIGH_RR) {
4380 val |= PIPECONF_EDP_RR_MODE_SWITCH;
4381 intel_dp_set_m2_n2(intel_crtc, &config->dp_m2_n2);
4382 } else {
4383 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4384 }
4385 I915_WRITE(reg, val);
4386 }
4387
4388 /*
4389 * mutex taken to ensure that there is no race between differnt
4390 * drrs calls trying to update refresh rate. This scenario may occur
4391 * in future when idleness detection based DRRS in kernel and
4392 * possible calls from user space to set differnt RR are made.
4393 */
4394
4395 mutex_lock(&intel_dp->drrs_state.mutex);
4396
4397 intel_dp->drrs_state.refresh_rate_type = index;
4398
4399 mutex_unlock(&intel_dp->drrs_state.mutex);
4400
4401 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4402 }
4403
4404 static struct drm_display_mode *
4405 intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4406 struct intel_connector *intel_connector,
4407 struct drm_display_mode *fixed_mode)
4408 {
4409 struct drm_connector *connector = &intel_connector->base;
4410 struct intel_dp *intel_dp = &intel_dig_port->dp;
4411 struct drm_device *dev = intel_dig_port->base.base.dev;
4412 struct drm_i915_private *dev_priv = dev->dev_private;
4413 struct drm_display_mode *downclock_mode = NULL;
4414
4415 if (INTEL_INFO(dev)->gen <= 6) {
4416 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4417 return NULL;
4418 }
4419
4420 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4421 DRM_INFO("VBT doesn't support DRRS\n");
4422 return NULL;
4423 }
4424
4425 downclock_mode = intel_find_panel_downclock
4426 (dev, fixed_mode, connector);
4427
4428 if (!downclock_mode) {
4429 DRM_INFO("DRRS not supported\n");
4430 return NULL;
4431 }
4432
4433 dev_priv->drrs.connector = intel_connector;
4434
4435 mutex_init(&intel_dp->drrs_state.mutex);
4436
4437 intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
4438
4439 intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
4440 DRM_INFO("seamless DRRS supported for eDP panel.\n");
4441 return downclock_mode;
4442 }
4443
4444 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
4445 struct intel_connector *intel_connector,
4446 struct edp_power_seq *power_seq)
4447 {
4448 struct drm_connector *connector = &intel_connector->base;
4449 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4450 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4451 struct drm_device *dev = intel_encoder->base.dev;
4452 struct drm_i915_private *dev_priv = dev->dev_private;
4453 struct drm_display_mode *fixed_mode = NULL;
4454 struct drm_display_mode *downclock_mode = NULL;
4455 bool has_dpcd;
4456 struct drm_display_mode *scan;
4457 struct edid *edid;
4458
4459 intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
4460
4461 if (!is_edp(intel_dp))
4462 return true;
4463
4464 /* The VDD bit needs a power domain reference, so if the bit is already
4465 * enabled when we boot, grab this reference. */
4466 if (edp_have_panel_vdd(intel_dp)) {
4467 enum intel_display_power_domain power_domain;
4468 power_domain = intel_display_port_power_domain(intel_encoder);
4469 intel_display_power_get(dev_priv, power_domain);
4470 }
4471
4472 /* Cache DPCD and EDID for edp. */
4473 intel_edp_panel_vdd_on(intel_dp);
4474 has_dpcd = intel_dp_get_dpcd(intel_dp);
4475 edp_panel_vdd_off(intel_dp, false);
4476
4477 if (has_dpcd) {
4478 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4479 dev_priv->no_aux_handshake =
4480 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4481 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4482 } else {
4483 /* if this fails, presume the device is a ghost */
4484 DRM_INFO("failed to retrieve link info, disabling eDP\n");
4485 return false;
4486 }
4487
4488 /* We now know it's not a ghost, init power sequence regs. */
4489 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
4490
4491 mutex_lock(&dev->mode_config.mutex);
4492 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
4493 if (edid) {
4494 if (drm_add_edid_modes(connector, edid)) {
4495 drm_mode_connector_update_edid_property(connector,
4496 edid);
4497 drm_edid_to_eld(connector, edid);
4498 } else {
4499 kfree(edid);
4500 edid = ERR_PTR(-EINVAL);
4501 }
4502 } else {
4503 edid = ERR_PTR(-ENOENT);
4504 }
4505 intel_connector->edid = edid;
4506
4507 /* prefer fixed mode from EDID if available */
4508 list_for_each_entry(scan, &connector->probed_modes, head) {
4509 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
4510 fixed_mode = drm_mode_duplicate(dev, scan);
4511 downclock_mode = intel_dp_drrs_init(
4512 intel_dig_port,
4513 intel_connector, fixed_mode);
4514 break;
4515 }
4516 }
4517
4518 /* fallback to VBT if available for eDP */
4519 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
4520 fixed_mode = drm_mode_duplicate(dev,
4521 dev_priv->vbt.lfp_lvds_vbt_mode);
4522 if (fixed_mode)
4523 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
4524 }
4525 mutex_unlock(&dev->mode_config.mutex);
4526
4527 if (IS_VALLEYVIEW(dev)) {
4528 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
4529 register_reboot_notifier(&intel_dp->edp_notifier);
4530 }
4531
4532 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
4533 intel_panel_setup_backlight(connector);
4534
4535 return true;
4536 }
4537
4538 bool
4539 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
4540 struct intel_connector *intel_connector)
4541 {
4542 struct drm_connector *connector = &intel_connector->base;
4543 struct intel_dp *intel_dp = &intel_dig_port->dp;
4544 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4545 struct drm_device *dev = intel_encoder->base.dev;
4546 struct drm_i915_private *dev_priv = dev->dev_private;
4547 enum port port = intel_dig_port->port;
4548 struct edp_power_seq power_seq = { 0 };
4549 int type;
4550
4551 /* intel_dp vfuncs */
4552 if (IS_VALLEYVIEW(dev))
4553 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
4554 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4555 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
4556 else if (HAS_PCH_SPLIT(dev))
4557 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
4558 else
4559 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
4560
4561 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
4562
4563 /* Preserve the current hw state. */
4564 intel_dp->DP = I915_READ(intel_dp->output_reg);
4565 intel_dp->attached_connector = intel_connector;
4566
4567 if (intel_dp_is_edp(dev, port))
4568 type = DRM_MODE_CONNECTOR_eDP;
4569 else
4570 type = DRM_MODE_CONNECTOR_DisplayPort;
4571
4572 /*
4573 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
4574 * for DP the encoder type can be set by the caller to
4575 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
4576 */
4577 if (type == DRM_MODE_CONNECTOR_eDP)
4578 intel_encoder->type = INTEL_OUTPUT_EDP;
4579
4580 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
4581 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
4582 port_name(port));
4583
4584 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
4585 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
4586
4587 connector->interlace_allowed = true;
4588 connector->doublescan_allowed = 0;
4589
4590 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
4591 edp_panel_vdd_work);
4592
4593 intel_connector_attach_encoder(intel_connector, intel_encoder);
4594 drm_connector_register(connector);
4595
4596 if (HAS_DDI(dev))
4597 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
4598 else
4599 intel_connector->get_hw_state = intel_connector_get_hw_state;
4600 intel_connector->unregister = intel_dp_connector_unregister;
4601
4602 /* Set up the hotplug pin. */
4603 switch (port) {
4604 case PORT_A:
4605 intel_encoder->hpd_pin = HPD_PORT_A;
4606 break;
4607 case PORT_B:
4608 intel_encoder->hpd_pin = HPD_PORT_B;
4609 break;
4610 case PORT_C:
4611 intel_encoder->hpd_pin = HPD_PORT_C;
4612 break;
4613 case PORT_D:
4614 intel_encoder->hpd_pin = HPD_PORT_D;
4615 break;
4616 default:
4617 BUG();
4618 }
4619
4620 if (is_edp(intel_dp)) {
4621 intel_dp_init_panel_power_timestamps(intel_dp);
4622 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
4623 }
4624
4625 intel_dp_aux_init(intel_dp, intel_connector);
4626
4627 /* init MST on ports that can support it */
4628 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4629 if (port == PORT_B || port == PORT_C || port == PORT_D) {
4630 intel_dp_mst_encoder_init(intel_dig_port, intel_connector->base.base.id);
4631 }
4632 }
4633
4634 if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
4635 drm_dp_aux_unregister(&intel_dp->aux);
4636 if (is_edp(intel_dp)) {
4637 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4638 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4639 edp_panel_vdd_off_sync(intel_dp);
4640 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4641 }
4642 drm_connector_unregister(connector);
4643 drm_connector_cleanup(connector);
4644 return false;
4645 }
4646
4647 intel_dp_add_properties(intel_dp, connector);
4648
4649 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
4650 * 0xd. Failure to do so will result in spurious interrupts being
4651 * generated on the port when a cable is not attached.
4652 */
4653 if (IS_G4X(dev) && !IS_GM45(dev)) {
4654 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
4655 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
4656 }
4657
4658 return true;
4659 }
4660
4661 void
4662 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
4663 {
4664 struct drm_i915_private *dev_priv = dev->dev_private;
4665 struct intel_digital_port *intel_dig_port;
4666 struct intel_encoder *intel_encoder;
4667 struct drm_encoder *encoder;
4668 struct intel_connector *intel_connector;
4669
4670 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
4671 if (!intel_dig_port)
4672 return;
4673
4674 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
4675 if (!intel_connector) {
4676 kfree(intel_dig_port);
4677 return;
4678 }
4679
4680 intel_encoder = &intel_dig_port->base;
4681 encoder = &intel_encoder->base;
4682
4683 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
4684 DRM_MODE_ENCODER_TMDS);
4685
4686 intel_encoder->compute_config = intel_dp_compute_config;
4687 intel_encoder->disable = intel_disable_dp;
4688 intel_encoder->get_hw_state = intel_dp_get_hw_state;
4689 intel_encoder->get_config = intel_dp_get_config;
4690 if (IS_CHERRYVIEW(dev)) {
4691 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
4692 intel_encoder->pre_enable = chv_pre_enable_dp;
4693 intel_encoder->enable = vlv_enable_dp;
4694 intel_encoder->post_disable = chv_post_disable_dp;
4695 } else if (IS_VALLEYVIEW(dev)) {
4696 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
4697 intel_encoder->pre_enable = vlv_pre_enable_dp;
4698 intel_encoder->enable = vlv_enable_dp;
4699 intel_encoder->post_disable = vlv_post_disable_dp;
4700 } else {
4701 intel_encoder->pre_enable = g4x_pre_enable_dp;
4702 intel_encoder->enable = g4x_enable_dp;
4703 intel_encoder->post_disable = g4x_post_disable_dp;
4704 }
4705
4706 intel_dig_port->port = port;
4707 intel_dig_port->dp.output_reg = output_reg;
4708
4709 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4710 if (IS_CHERRYVIEW(dev)) {
4711 if (port == PORT_D)
4712 intel_encoder->crtc_mask = 1 << 2;
4713 else
4714 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
4715 } else {
4716 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
4717 }
4718 intel_encoder->cloneable = 0;
4719 intel_encoder->hot_plug = intel_dp_hot_plug;
4720
4721 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
4722 dev_priv->hpd_irq_port[port] = intel_dig_port;
4723
4724 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
4725 drm_encoder_cleanup(encoder);
4726 kfree(intel_dig_port);
4727 kfree(intel_connector);
4728 }
4729 }
4730
4731 void intel_dp_mst_suspend(struct drm_device *dev)
4732 {
4733 struct drm_i915_private *dev_priv = dev->dev_private;
4734 int i;
4735
4736 /* disable MST */
4737 for (i = 0; i < I915_MAX_PORTS; i++) {
4738 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
4739 if (!intel_dig_port)
4740 continue;
4741
4742 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
4743 if (!intel_dig_port->dp.can_mst)
4744 continue;
4745 if (intel_dig_port->dp.is_mst)
4746 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
4747 }
4748 }
4749 }
4750
4751 void intel_dp_mst_resume(struct drm_device *dev)
4752 {
4753 struct drm_i915_private *dev_priv = dev->dev_private;
4754 int i;
4755
4756 for (i = 0; i < I915_MAX_PORTS; i++) {
4757 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
4758 if (!intel_dig_port)
4759 continue;
4760 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
4761 int ret;
4762
4763 if (!intel_dig_port->dp.can_mst)
4764 continue;
4765
4766 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
4767 if (ret != 0) {
4768 intel_dp_check_mst_status(&intel_dig_port->dp);
4769 }
4770 }
4771 }
4772 }