]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_dp.c
drm/i915/dp: add lane_count check in intel_dp_check_link_status
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 /* Compliance test status bits */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
46 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51 int clock;
52 struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56 { 162000,
57 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58 { 270000,
59 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63 { 162000,
64 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65 { 270000,
66 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70 { 162000,
71 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72 { 270000,
73 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77 * CHV supports eDP 1.4 that have more link rates.
78 * Below only provides the fixed rate but exclude variable rate.
79 */
80 static const struct dp_link_dpll chv_dpll[] = {
81 /*
82 * CHV requires to program fractional division for m2.
83 * m2 is stored in fixed point format using formula below
84 * (m2_int << 22) | m2_fraction
85 */
86 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
87 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88 { 270000, /* m2_int = 27, m2_fraction = 0 */
89 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90 { 540000, /* m2_int = 27, m2_fraction = 0 */
91 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95 324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97 324000, 432000, 540000 };
98 static const int default_rates[] = { 162000, 270000, 540000 };
99
100 /**
101 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
102 * @intel_dp: DP struct
103 *
104 * If a CPU or PCH DP output is attached to an eDP panel, this function
105 * will return true, and false otherwise.
106 */
107 static bool is_edp(struct intel_dp *intel_dp)
108 {
109 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
110
111 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 }
113
114 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115 {
116 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
117
118 return intel_dig_port->base.base.dev;
119 }
120
121 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
122 {
123 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 }
125
126 static void intel_dp_link_down(struct intel_dp *intel_dp);
127 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 static void vlv_steal_power_sequencer(struct drm_device *dev,
131 enum pipe pipe);
132 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
133
134 static int
135 intel_dp_max_link_bw(struct intel_dp *intel_dp)
136 {
137 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
138
139 switch (max_link_bw) {
140 case DP_LINK_BW_1_62:
141 case DP_LINK_BW_2_7:
142 case DP_LINK_BW_5_4:
143 break;
144 default:
145 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
146 max_link_bw);
147 max_link_bw = DP_LINK_BW_1_62;
148 break;
149 }
150 return max_link_bw;
151 }
152
153 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
154 {
155 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
156 u8 source_max, sink_max;
157
158 source_max = intel_dig_port->max_lanes;
159 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
160
161 return min(source_max, sink_max);
162 }
163
164 /*
165 * The units on the numbers in the next two are... bizarre. Examples will
166 * make it clearer; this one parallels an example in the eDP spec.
167 *
168 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
169 *
170 * 270000 * 1 * 8 / 10 == 216000
171 *
172 * The actual data capacity of that configuration is 2.16Gbit/s, so the
173 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
174 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
175 * 119000. At 18bpp that's 2142000 kilobits per second.
176 *
177 * Thus the strange-looking division by 10 in intel_dp_link_required, to
178 * get the result in decakilobits instead of kilobits.
179 */
180
181 static int
182 intel_dp_link_required(int pixel_clock, int bpp)
183 {
184 return (pixel_clock * bpp + 9) / 10;
185 }
186
187 static int
188 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
189 {
190 return (max_link_clock * max_lanes * 8) / 10;
191 }
192
193 static int
194 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
195 {
196 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
197 struct intel_encoder *encoder = &intel_dig_port->base;
198 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
199 int max_dotclk = dev_priv->max_dotclk_freq;
200 int ds_max_dotclk;
201
202 int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
203
204 if (type != DP_DS_PORT_TYPE_VGA)
205 return max_dotclk;
206
207 ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
208 intel_dp->downstream_ports);
209
210 if (ds_max_dotclk != 0)
211 max_dotclk = min(max_dotclk, ds_max_dotclk);
212
213 return max_dotclk;
214 }
215
216 static enum drm_mode_status
217 intel_dp_mode_valid(struct drm_connector *connector,
218 struct drm_display_mode *mode)
219 {
220 struct intel_dp *intel_dp = intel_attached_dp(connector);
221 struct intel_connector *intel_connector = to_intel_connector(connector);
222 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
223 int target_clock = mode->clock;
224 int max_rate, mode_rate, max_lanes, max_link_clock;
225 int max_dotclk;
226
227 max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
228
229 if (is_edp(intel_dp) && fixed_mode) {
230 if (mode->hdisplay > fixed_mode->hdisplay)
231 return MODE_PANEL;
232
233 if (mode->vdisplay > fixed_mode->vdisplay)
234 return MODE_PANEL;
235
236 target_clock = fixed_mode->clock;
237 }
238
239 max_link_clock = intel_dp_max_link_rate(intel_dp);
240 max_lanes = intel_dp_max_lane_count(intel_dp);
241
242 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
243 mode_rate = intel_dp_link_required(target_clock, 18);
244
245 if (mode_rate > max_rate || target_clock > max_dotclk)
246 return MODE_CLOCK_HIGH;
247
248 if (mode->clock < 10000)
249 return MODE_CLOCK_LOW;
250
251 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
252 return MODE_H_ILLEGAL;
253
254 return MODE_OK;
255 }
256
257 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
258 {
259 int i;
260 uint32_t v = 0;
261
262 if (src_bytes > 4)
263 src_bytes = 4;
264 for (i = 0; i < src_bytes; i++)
265 v |= ((uint32_t) src[i]) << ((3-i) * 8);
266 return v;
267 }
268
269 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
270 {
271 int i;
272 if (dst_bytes > 4)
273 dst_bytes = 4;
274 for (i = 0; i < dst_bytes; i++)
275 dst[i] = src >> ((3-i) * 8);
276 }
277
278 static void
279 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
280 struct intel_dp *intel_dp);
281 static void
282 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
283 struct intel_dp *intel_dp);
284 static void
285 intel_dp_pps_init(struct drm_device *dev, struct intel_dp *intel_dp);
286
287 static void pps_lock(struct intel_dp *intel_dp)
288 {
289 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
290 struct intel_encoder *encoder = &intel_dig_port->base;
291 struct drm_device *dev = encoder->base.dev;
292 struct drm_i915_private *dev_priv = to_i915(dev);
293 enum intel_display_power_domain power_domain;
294
295 /*
296 * See vlv_power_sequencer_reset() why we need
297 * a power domain reference here.
298 */
299 power_domain = intel_display_port_aux_power_domain(encoder);
300 intel_display_power_get(dev_priv, power_domain);
301
302 mutex_lock(&dev_priv->pps_mutex);
303 }
304
305 static void pps_unlock(struct intel_dp *intel_dp)
306 {
307 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
308 struct intel_encoder *encoder = &intel_dig_port->base;
309 struct drm_device *dev = encoder->base.dev;
310 struct drm_i915_private *dev_priv = to_i915(dev);
311 enum intel_display_power_domain power_domain;
312
313 mutex_unlock(&dev_priv->pps_mutex);
314
315 power_domain = intel_display_port_aux_power_domain(encoder);
316 intel_display_power_put(dev_priv, power_domain);
317 }
318
319 static void
320 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
321 {
322 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
323 struct drm_device *dev = intel_dig_port->base.base.dev;
324 struct drm_i915_private *dev_priv = to_i915(dev);
325 enum pipe pipe = intel_dp->pps_pipe;
326 bool pll_enabled, release_cl_override = false;
327 enum dpio_phy phy = DPIO_PHY(pipe);
328 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
329 uint32_t DP;
330
331 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
332 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
333 pipe_name(pipe), port_name(intel_dig_port->port)))
334 return;
335
336 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
337 pipe_name(pipe), port_name(intel_dig_port->port));
338
339 /* Preserve the BIOS-computed detected bit. This is
340 * supposed to be read-only.
341 */
342 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
343 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
344 DP |= DP_PORT_WIDTH(1);
345 DP |= DP_LINK_TRAIN_PAT_1;
346
347 if (IS_CHERRYVIEW(dev_priv))
348 DP |= DP_PIPE_SELECT_CHV(pipe);
349 else if (pipe == PIPE_B)
350 DP |= DP_PIPEB_SELECT;
351
352 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
353
354 /*
355 * The DPLL for the pipe must be enabled for this to work.
356 * So enable temporarily it if it's not already enabled.
357 */
358 if (!pll_enabled) {
359 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
360 !chv_phy_powergate_ch(dev_priv, phy, ch, true);
361
362 if (vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev_priv) ?
363 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
364 DRM_ERROR("Failed to force on pll for pipe %c!\n",
365 pipe_name(pipe));
366 return;
367 }
368 }
369
370 /*
371 * Similar magic as in intel_dp_enable_port().
372 * We _must_ do this port enable + disable trick
373 * to make this power seqeuencer lock onto the port.
374 * Otherwise even VDD force bit won't work.
375 */
376 I915_WRITE(intel_dp->output_reg, DP);
377 POSTING_READ(intel_dp->output_reg);
378
379 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
380 POSTING_READ(intel_dp->output_reg);
381
382 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
383 POSTING_READ(intel_dp->output_reg);
384
385 if (!pll_enabled) {
386 vlv_force_pll_off(dev, pipe);
387
388 if (release_cl_override)
389 chv_phy_powergate_ch(dev_priv, phy, ch, false);
390 }
391 }
392
393 static enum pipe
394 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
395 {
396 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
397 struct drm_device *dev = intel_dig_port->base.base.dev;
398 struct drm_i915_private *dev_priv = to_i915(dev);
399 struct intel_encoder *encoder;
400 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
401 enum pipe pipe;
402
403 lockdep_assert_held(&dev_priv->pps_mutex);
404
405 /* We should never land here with regular DP ports */
406 WARN_ON(!is_edp(intel_dp));
407
408 if (intel_dp->pps_pipe != INVALID_PIPE)
409 return intel_dp->pps_pipe;
410
411 /*
412 * We don't have power sequencer currently.
413 * Pick one that's not used by other ports.
414 */
415 for_each_intel_encoder(dev, encoder) {
416 struct intel_dp *tmp;
417
418 if (encoder->type != INTEL_OUTPUT_EDP)
419 continue;
420
421 tmp = enc_to_intel_dp(&encoder->base);
422
423 if (tmp->pps_pipe != INVALID_PIPE)
424 pipes &= ~(1 << tmp->pps_pipe);
425 }
426
427 /*
428 * Didn't find one. This should not happen since there
429 * are two power sequencers and up to two eDP ports.
430 */
431 if (WARN_ON(pipes == 0))
432 pipe = PIPE_A;
433 else
434 pipe = ffs(pipes) - 1;
435
436 vlv_steal_power_sequencer(dev, pipe);
437 intel_dp->pps_pipe = pipe;
438
439 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
440 pipe_name(intel_dp->pps_pipe),
441 port_name(intel_dig_port->port));
442
443 /* init power sequencer on this pipe and port */
444 intel_dp_init_panel_power_sequencer(dev, intel_dp);
445 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
446
447 /*
448 * Even vdd force doesn't work until we've made
449 * the power sequencer lock in on the port.
450 */
451 vlv_power_sequencer_kick(intel_dp);
452
453 return intel_dp->pps_pipe;
454 }
455
456 static int
457 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
458 {
459 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
460 struct drm_device *dev = intel_dig_port->base.base.dev;
461 struct drm_i915_private *dev_priv = to_i915(dev);
462
463 lockdep_assert_held(&dev_priv->pps_mutex);
464
465 /* We should never land here with regular DP ports */
466 WARN_ON(!is_edp(intel_dp));
467
468 /*
469 * TODO: BXT has 2 PPS instances. The correct port->PPS instance
470 * mapping needs to be retrieved from VBT, for now just hard-code to
471 * use instance #0 always.
472 */
473 if (!intel_dp->pps_reset)
474 return 0;
475
476 intel_dp->pps_reset = false;
477
478 /*
479 * Only the HW needs to be reprogrammed, the SW state is fixed and
480 * has been setup during connector init.
481 */
482 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
483
484 return 0;
485 }
486
487 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
488 enum pipe pipe);
489
490 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
491 enum pipe pipe)
492 {
493 return I915_READ(PP_STATUS(pipe)) & PP_ON;
494 }
495
496 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
497 enum pipe pipe)
498 {
499 return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
500 }
501
502 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
503 enum pipe pipe)
504 {
505 return true;
506 }
507
508 static enum pipe
509 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
510 enum port port,
511 vlv_pipe_check pipe_check)
512 {
513 enum pipe pipe;
514
515 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
516 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
517 PANEL_PORT_SELECT_MASK;
518
519 if (port_sel != PANEL_PORT_SELECT_VLV(port))
520 continue;
521
522 if (!pipe_check(dev_priv, pipe))
523 continue;
524
525 return pipe;
526 }
527
528 return INVALID_PIPE;
529 }
530
531 static void
532 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
533 {
534 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
535 struct drm_device *dev = intel_dig_port->base.base.dev;
536 struct drm_i915_private *dev_priv = to_i915(dev);
537 enum port port = intel_dig_port->port;
538
539 lockdep_assert_held(&dev_priv->pps_mutex);
540
541 /* try to find a pipe with this port selected */
542 /* first pick one where the panel is on */
543 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
544 vlv_pipe_has_pp_on);
545 /* didn't find one? pick one where vdd is on */
546 if (intel_dp->pps_pipe == INVALID_PIPE)
547 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
548 vlv_pipe_has_vdd_on);
549 /* didn't find one? pick one with just the correct port */
550 if (intel_dp->pps_pipe == INVALID_PIPE)
551 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
552 vlv_pipe_any);
553
554 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
555 if (intel_dp->pps_pipe == INVALID_PIPE) {
556 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
557 port_name(port));
558 return;
559 }
560
561 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
562 port_name(port), pipe_name(intel_dp->pps_pipe));
563
564 intel_dp_init_panel_power_sequencer(dev, intel_dp);
565 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
566 }
567
568 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
569 {
570 struct drm_device *dev = &dev_priv->drm;
571 struct intel_encoder *encoder;
572
573 if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
574 !IS_BROXTON(dev_priv)))
575 return;
576
577 /*
578 * We can't grab pps_mutex here due to deadlock with power_domain
579 * mutex when power_domain functions are called while holding pps_mutex.
580 * That also means that in order to use pps_pipe the code needs to
581 * hold both a power domain reference and pps_mutex, and the power domain
582 * reference get/put must be done while _not_ holding pps_mutex.
583 * pps_{lock,unlock}() do these steps in the correct order, so one
584 * should use them always.
585 */
586
587 for_each_intel_encoder(dev, encoder) {
588 struct intel_dp *intel_dp;
589
590 if (encoder->type != INTEL_OUTPUT_EDP)
591 continue;
592
593 intel_dp = enc_to_intel_dp(&encoder->base);
594 if (IS_BROXTON(dev_priv))
595 intel_dp->pps_reset = true;
596 else
597 intel_dp->pps_pipe = INVALID_PIPE;
598 }
599 }
600
601 struct pps_registers {
602 i915_reg_t pp_ctrl;
603 i915_reg_t pp_stat;
604 i915_reg_t pp_on;
605 i915_reg_t pp_off;
606 i915_reg_t pp_div;
607 };
608
609 static void intel_pps_get_registers(struct drm_i915_private *dev_priv,
610 struct intel_dp *intel_dp,
611 struct pps_registers *regs)
612 {
613 int pps_idx = 0;
614
615 memset(regs, 0, sizeof(*regs));
616
617 if (IS_BROXTON(dev_priv))
618 pps_idx = bxt_power_sequencer_idx(intel_dp);
619 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
620 pps_idx = vlv_power_sequencer_pipe(intel_dp);
621
622 regs->pp_ctrl = PP_CONTROL(pps_idx);
623 regs->pp_stat = PP_STATUS(pps_idx);
624 regs->pp_on = PP_ON_DELAYS(pps_idx);
625 regs->pp_off = PP_OFF_DELAYS(pps_idx);
626 if (!IS_BROXTON(dev_priv))
627 regs->pp_div = PP_DIVISOR(pps_idx);
628 }
629
630 static i915_reg_t
631 _pp_ctrl_reg(struct intel_dp *intel_dp)
632 {
633 struct pps_registers regs;
634
635 intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
636 &regs);
637
638 return regs.pp_ctrl;
639 }
640
641 static i915_reg_t
642 _pp_stat_reg(struct intel_dp *intel_dp)
643 {
644 struct pps_registers regs;
645
646 intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
647 &regs);
648
649 return regs.pp_stat;
650 }
651
652 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
653 This function only applicable when panel PM state is not to be tracked */
654 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
655 void *unused)
656 {
657 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
658 edp_notifier);
659 struct drm_device *dev = intel_dp_to_dev(intel_dp);
660 struct drm_i915_private *dev_priv = to_i915(dev);
661
662 if (!is_edp(intel_dp) || code != SYS_RESTART)
663 return 0;
664
665 pps_lock(intel_dp);
666
667 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
668 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
669 i915_reg_t pp_ctrl_reg, pp_div_reg;
670 u32 pp_div;
671
672 pp_ctrl_reg = PP_CONTROL(pipe);
673 pp_div_reg = PP_DIVISOR(pipe);
674 pp_div = I915_READ(pp_div_reg);
675 pp_div &= PP_REFERENCE_DIVIDER_MASK;
676
677 /* 0x1F write to PP_DIV_REG sets max cycle delay */
678 I915_WRITE(pp_div_reg, pp_div | 0x1F);
679 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
680 msleep(intel_dp->panel_power_cycle_delay);
681 }
682
683 pps_unlock(intel_dp);
684
685 return 0;
686 }
687
688 static bool edp_have_panel_power(struct intel_dp *intel_dp)
689 {
690 struct drm_device *dev = intel_dp_to_dev(intel_dp);
691 struct drm_i915_private *dev_priv = to_i915(dev);
692
693 lockdep_assert_held(&dev_priv->pps_mutex);
694
695 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
696 intel_dp->pps_pipe == INVALID_PIPE)
697 return false;
698
699 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
700 }
701
702 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
703 {
704 struct drm_device *dev = intel_dp_to_dev(intel_dp);
705 struct drm_i915_private *dev_priv = to_i915(dev);
706
707 lockdep_assert_held(&dev_priv->pps_mutex);
708
709 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
710 intel_dp->pps_pipe == INVALID_PIPE)
711 return false;
712
713 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
714 }
715
716 static void
717 intel_dp_check_edp(struct intel_dp *intel_dp)
718 {
719 struct drm_device *dev = intel_dp_to_dev(intel_dp);
720 struct drm_i915_private *dev_priv = to_i915(dev);
721
722 if (!is_edp(intel_dp))
723 return;
724
725 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
726 WARN(1, "eDP powered off while attempting aux channel communication.\n");
727 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
728 I915_READ(_pp_stat_reg(intel_dp)),
729 I915_READ(_pp_ctrl_reg(intel_dp)));
730 }
731 }
732
733 static uint32_t
734 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
735 {
736 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
737 struct drm_device *dev = intel_dig_port->base.base.dev;
738 struct drm_i915_private *dev_priv = to_i915(dev);
739 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
740 uint32_t status;
741 bool done;
742
743 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
744 if (has_aux_irq)
745 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
746 msecs_to_jiffies_timeout(10));
747 else
748 done = wait_for(C, 10) == 0;
749 if (!done)
750 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
751 has_aux_irq);
752 #undef C
753
754 return status;
755 }
756
757 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
758 {
759 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
760 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
761
762 if (index)
763 return 0;
764
765 /*
766 * The clock divider is based off the hrawclk, and would like to run at
767 * 2MHz. So, take the hrawclk value and divide by 2000 and use that
768 */
769 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
770 }
771
772 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
773 {
774 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
775 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
776
777 if (index)
778 return 0;
779
780 /*
781 * The clock divider is based off the cdclk or PCH rawclk, and would
782 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and
783 * divide by 2000 and use that
784 */
785 if (intel_dig_port->port == PORT_A)
786 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
787 else
788 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
789 }
790
791 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
792 {
793 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
794 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
795
796 if (intel_dig_port->port != PORT_A && HAS_PCH_LPT_H(dev_priv)) {
797 /* Workaround for non-ULT HSW */
798 switch (index) {
799 case 0: return 63;
800 case 1: return 72;
801 default: return 0;
802 }
803 }
804
805 return ilk_get_aux_clock_divider(intel_dp, index);
806 }
807
808 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
809 {
810 /*
811 * SKL doesn't need us to program the AUX clock divider (Hardware will
812 * derive the clock from CDCLK automatically). We still implement the
813 * get_aux_clock_divider vfunc to plug-in into the existing code.
814 */
815 return index ? 0 : 1;
816 }
817
818 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
819 bool has_aux_irq,
820 int send_bytes,
821 uint32_t aux_clock_divider)
822 {
823 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
824 struct drm_i915_private *dev_priv =
825 to_i915(intel_dig_port->base.base.dev);
826 uint32_t precharge, timeout;
827
828 if (IS_GEN6(dev_priv))
829 precharge = 3;
830 else
831 precharge = 5;
832
833 if (IS_BROADWELL(dev_priv) && intel_dig_port->port == PORT_A)
834 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
835 else
836 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
837
838 return DP_AUX_CH_CTL_SEND_BUSY |
839 DP_AUX_CH_CTL_DONE |
840 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
841 DP_AUX_CH_CTL_TIME_OUT_ERROR |
842 timeout |
843 DP_AUX_CH_CTL_RECEIVE_ERROR |
844 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
845 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
846 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
847 }
848
849 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
850 bool has_aux_irq,
851 int send_bytes,
852 uint32_t unused)
853 {
854 return DP_AUX_CH_CTL_SEND_BUSY |
855 DP_AUX_CH_CTL_DONE |
856 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
857 DP_AUX_CH_CTL_TIME_OUT_ERROR |
858 DP_AUX_CH_CTL_TIME_OUT_1600us |
859 DP_AUX_CH_CTL_RECEIVE_ERROR |
860 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
861 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
862 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
863 }
864
865 static int
866 intel_dp_aux_ch(struct intel_dp *intel_dp,
867 const uint8_t *send, int send_bytes,
868 uint8_t *recv, int recv_size)
869 {
870 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
871 struct drm_device *dev = intel_dig_port->base.base.dev;
872 struct drm_i915_private *dev_priv = to_i915(dev);
873 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
874 uint32_t aux_clock_divider;
875 int i, ret, recv_bytes;
876 uint32_t status;
877 int try, clock = 0;
878 bool has_aux_irq = HAS_AUX_IRQ(dev);
879 bool vdd;
880
881 pps_lock(intel_dp);
882
883 /*
884 * We will be called with VDD already enabled for dpcd/edid/oui reads.
885 * In such cases we want to leave VDD enabled and it's up to upper layers
886 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
887 * ourselves.
888 */
889 vdd = edp_panel_vdd_on(intel_dp);
890
891 /* dp aux is extremely sensitive to irq latency, hence request the
892 * lowest possible wakeup latency and so prevent the cpu from going into
893 * deep sleep states.
894 */
895 pm_qos_update_request(&dev_priv->pm_qos, 0);
896
897 intel_dp_check_edp(intel_dp);
898
899 /* Try to wait for any previous AUX channel activity */
900 for (try = 0; try < 3; try++) {
901 status = I915_READ_NOTRACE(ch_ctl);
902 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
903 break;
904 msleep(1);
905 }
906
907 if (try == 3) {
908 static u32 last_status = -1;
909 const u32 status = I915_READ(ch_ctl);
910
911 if (status != last_status) {
912 WARN(1, "dp_aux_ch not started status 0x%08x\n",
913 status);
914 last_status = status;
915 }
916
917 ret = -EBUSY;
918 goto out;
919 }
920
921 /* Only 5 data registers! */
922 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
923 ret = -E2BIG;
924 goto out;
925 }
926
927 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
928 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
929 has_aux_irq,
930 send_bytes,
931 aux_clock_divider);
932
933 /* Must try at least 3 times according to DP spec */
934 for (try = 0; try < 5; try++) {
935 /* Load the send data into the aux channel data registers */
936 for (i = 0; i < send_bytes; i += 4)
937 I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
938 intel_dp_pack_aux(send + i,
939 send_bytes - i));
940
941 /* Send the command and wait for it to complete */
942 I915_WRITE(ch_ctl, send_ctl);
943
944 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
945
946 /* Clear done status and any errors */
947 I915_WRITE(ch_ctl,
948 status |
949 DP_AUX_CH_CTL_DONE |
950 DP_AUX_CH_CTL_TIME_OUT_ERROR |
951 DP_AUX_CH_CTL_RECEIVE_ERROR);
952
953 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
954 continue;
955
956 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
957 * 400us delay required for errors and timeouts
958 * Timeout errors from the HW already meet this
959 * requirement so skip to next iteration
960 */
961 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
962 usleep_range(400, 500);
963 continue;
964 }
965 if (status & DP_AUX_CH_CTL_DONE)
966 goto done;
967 }
968 }
969
970 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
971 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
972 ret = -EBUSY;
973 goto out;
974 }
975
976 done:
977 /* Check for timeout or receive error.
978 * Timeouts occur when the sink is not connected
979 */
980 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
981 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
982 ret = -EIO;
983 goto out;
984 }
985
986 /* Timeouts occur when the device isn't connected, so they're
987 * "normal" -- don't fill the kernel log with these */
988 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
989 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
990 ret = -ETIMEDOUT;
991 goto out;
992 }
993
994 /* Unload any bytes sent back from the other side */
995 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
996 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
997
998 /*
999 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1000 * We have no idea of what happened so we return -EBUSY so
1001 * drm layer takes care for the necessary retries.
1002 */
1003 if (recv_bytes == 0 || recv_bytes > 20) {
1004 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1005 recv_bytes);
1006 /*
1007 * FIXME: This patch was created on top of a series that
1008 * organize the retries at drm level. There EBUSY should
1009 * also take care for 1ms wait before retrying.
1010 * That aux retries re-org is still needed and after that is
1011 * merged we remove this sleep from here.
1012 */
1013 usleep_range(1000, 1500);
1014 ret = -EBUSY;
1015 goto out;
1016 }
1017
1018 if (recv_bytes > recv_size)
1019 recv_bytes = recv_size;
1020
1021 for (i = 0; i < recv_bytes; i += 4)
1022 intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
1023 recv + i, recv_bytes - i);
1024
1025 ret = recv_bytes;
1026 out:
1027 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
1028
1029 if (vdd)
1030 edp_panel_vdd_off(intel_dp, false);
1031
1032 pps_unlock(intel_dp);
1033
1034 return ret;
1035 }
1036
1037 #define BARE_ADDRESS_SIZE 3
1038 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
1039 static ssize_t
1040 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1041 {
1042 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1043 uint8_t txbuf[20], rxbuf[20];
1044 size_t txsize, rxsize;
1045 int ret;
1046
1047 txbuf[0] = (msg->request << 4) |
1048 ((msg->address >> 16) & 0xf);
1049 txbuf[1] = (msg->address >> 8) & 0xff;
1050 txbuf[2] = msg->address & 0xff;
1051 txbuf[3] = msg->size - 1;
1052
1053 switch (msg->request & ~DP_AUX_I2C_MOT) {
1054 case DP_AUX_NATIVE_WRITE:
1055 case DP_AUX_I2C_WRITE:
1056 case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1057 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1058 rxsize = 2; /* 0 or 1 data bytes */
1059
1060 if (WARN_ON(txsize > 20))
1061 return -E2BIG;
1062
1063 WARN_ON(!msg->buffer != !msg->size);
1064
1065 if (msg->buffer)
1066 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1067
1068 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1069 if (ret > 0) {
1070 msg->reply = rxbuf[0] >> 4;
1071
1072 if (ret > 1) {
1073 /* Number of bytes written in a short write. */
1074 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1075 } else {
1076 /* Return payload size. */
1077 ret = msg->size;
1078 }
1079 }
1080 break;
1081
1082 case DP_AUX_NATIVE_READ:
1083 case DP_AUX_I2C_READ:
1084 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1085 rxsize = msg->size + 1;
1086
1087 if (WARN_ON(rxsize > 20))
1088 return -E2BIG;
1089
1090 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1091 if (ret > 0) {
1092 msg->reply = rxbuf[0] >> 4;
1093 /*
1094 * Assume happy day, and copy the data. The caller is
1095 * expected to check msg->reply before touching it.
1096 *
1097 * Return payload size.
1098 */
1099 ret--;
1100 memcpy(msg->buffer, rxbuf + 1, ret);
1101 }
1102 break;
1103
1104 default:
1105 ret = -EINVAL;
1106 break;
1107 }
1108
1109 return ret;
1110 }
1111
1112 static enum port intel_aux_port(struct drm_i915_private *dev_priv,
1113 enum port port)
1114 {
1115 const struct ddi_vbt_port_info *info =
1116 &dev_priv->vbt.ddi_port_info[port];
1117 enum port aux_port;
1118
1119 if (!info->alternate_aux_channel) {
1120 DRM_DEBUG_KMS("using AUX %c for port %c (platform default)\n",
1121 port_name(port), port_name(port));
1122 return port;
1123 }
1124
1125 switch (info->alternate_aux_channel) {
1126 case DP_AUX_A:
1127 aux_port = PORT_A;
1128 break;
1129 case DP_AUX_B:
1130 aux_port = PORT_B;
1131 break;
1132 case DP_AUX_C:
1133 aux_port = PORT_C;
1134 break;
1135 case DP_AUX_D:
1136 aux_port = PORT_D;
1137 break;
1138 default:
1139 MISSING_CASE(info->alternate_aux_channel);
1140 aux_port = PORT_A;
1141 break;
1142 }
1143
1144 DRM_DEBUG_KMS("using AUX %c for port %c (VBT)\n",
1145 port_name(aux_port), port_name(port));
1146
1147 return aux_port;
1148 }
1149
1150 static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1151 enum port port)
1152 {
1153 switch (port) {
1154 case PORT_B:
1155 case PORT_C:
1156 case PORT_D:
1157 return DP_AUX_CH_CTL(port);
1158 default:
1159 MISSING_CASE(port);
1160 return DP_AUX_CH_CTL(PORT_B);
1161 }
1162 }
1163
1164 static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1165 enum port port, int index)
1166 {
1167 switch (port) {
1168 case PORT_B:
1169 case PORT_C:
1170 case PORT_D:
1171 return DP_AUX_CH_DATA(port, index);
1172 default:
1173 MISSING_CASE(port);
1174 return DP_AUX_CH_DATA(PORT_B, index);
1175 }
1176 }
1177
1178 static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1179 enum port port)
1180 {
1181 switch (port) {
1182 case PORT_A:
1183 return DP_AUX_CH_CTL(port);
1184 case PORT_B:
1185 case PORT_C:
1186 case PORT_D:
1187 return PCH_DP_AUX_CH_CTL(port);
1188 default:
1189 MISSING_CASE(port);
1190 return DP_AUX_CH_CTL(PORT_A);
1191 }
1192 }
1193
1194 static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1195 enum port port, int index)
1196 {
1197 switch (port) {
1198 case PORT_A:
1199 return DP_AUX_CH_DATA(port, index);
1200 case PORT_B:
1201 case PORT_C:
1202 case PORT_D:
1203 return PCH_DP_AUX_CH_DATA(port, index);
1204 default:
1205 MISSING_CASE(port);
1206 return DP_AUX_CH_DATA(PORT_A, index);
1207 }
1208 }
1209
1210 static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1211 enum port port)
1212 {
1213 switch (port) {
1214 case PORT_A:
1215 case PORT_B:
1216 case PORT_C:
1217 case PORT_D:
1218 return DP_AUX_CH_CTL(port);
1219 default:
1220 MISSING_CASE(port);
1221 return DP_AUX_CH_CTL(PORT_A);
1222 }
1223 }
1224
1225 static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1226 enum port port, int index)
1227 {
1228 switch (port) {
1229 case PORT_A:
1230 case PORT_B:
1231 case PORT_C:
1232 case PORT_D:
1233 return DP_AUX_CH_DATA(port, index);
1234 default:
1235 MISSING_CASE(port);
1236 return DP_AUX_CH_DATA(PORT_A, index);
1237 }
1238 }
1239
1240 static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1241 enum port port)
1242 {
1243 if (INTEL_INFO(dev_priv)->gen >= 9)
1244 return skl_aux_ctl_reg(dev_priv, port);
1245 else if (HAS_PCH_SPLIT(dev_priv))
1246 return ilk_aux_ctl_reg(dev_priv, port);
1247 else
1248 return g4x_aux_ctl_reg(dev_priv, port);
1249 }
1250
1251 static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1252 enum port port, int index)
1253 {
1254 if (INTEL_INFO(dev_priv)->gen >= 9)
1255 return skl_aux_data_reg(dev_priv, port, index);
1256 else if (HAS_PCH_SPLIT(dev_priv))
1257 return ilk_aux_data_reg(dev_priv, port, index);
1258 else
1259 return g4x_aux_data_reg(dev_priv, port, index);
1260 }
1261
1262 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1263 {
1264 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1265 enum port port = intel_aux_port(dev_priv,
1266 dp_to_dig_port(intel_dp)->port);
1267 int i;
1268
1269 intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1270 for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1271 intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1272 }
1273
1274 static void
1275 intel_dp_aux_fini(struct intel_dp *intel_dp)
1276 {
1277 kfree(intel_dp->aux.name);
1278 }
1279
1280 static void
1281 intel_dp_aux_init(struct intel_dp *intel_dp)
1282 {
1283 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1284 enum port port = intel_dig_port->port;
1285
1286 intel_aux_reg_init(intel_dp);
1287 drm_dp_aux_init(&intel_dp->aux);
1288
1289 /* Failure to allocate our preferred name is not critical */
1290 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1291 intel_dp->aux.transfer = intel_dp_aux_transfer;
1292 }
1293
1294 static int
1295 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1296 {
1297 if (intel_dp->num_sink_rates) {
1298 *sink_rates = intel_dp->sink_rates;
1299 return intel_dp->num_sink_rates;
1300 }
1301
1302 *sink_rates = default_rates;
1303
1304 return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1305 }
1306
1307 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1308 {
1309 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1310 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
1311
1312 if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
1313 IS_BROADWELL(dev_priv) || (INTEL_GEN(dev_priv) >= 9))
1314 return true;
1315 else
1316 return false;
1317 }
1318
1319 static int
1320 intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1321 {
1322 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1323 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
1324 int size;
1325
1326 if (IS_BROXTON(dev_priv)) {
1327 *source_rates = bxt_rates;
1328 size = ARRAY_SIZE(bxt_rates);
1329 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
1330 *source_rates = skl_rates;
1331 size = ARRAY_SIZE(skl_rates);
1332 } else {
1333 *source_rates = default_rates;
1334 size = ARRAY_SIZE(default_rates);
1335 }
1336
1337 /* This depends on the fact that 5.4 is last value in the array */
1338 if (!intel_dp_source_supports_hbr2(intel_dp))
1339 size--;
1340
1341 return size;
1342 }
1343
1344 static void
1345 intel_dp_set_clock(struct intel_encoder *encoder,
1346 struct intel_crtc_state *pipe_config)
1347 {
1348 struct drm_device *dev = encoder->base.dev;
1349 struct drm_i915_private *dev_priv = to_i915(dev);
1350 const struct dp_link_dpll *divisor = NULL;
1351 int i, count = 0;
1352
1353 if (IS_G4X(dev_priv)) {
1354 divisor = gen4_dpll;
1355 count = ARRAY_SIZE(gen4_dpll);
1356 } else if (HAS_PCH_SPLIT(dev_priv)) {
1357 divisor = pch_dpll;
1358 count = ARRAY_SIZE(pch_dpll);
1359 } else if (IS_CHERRYVIEW(dev_priv)) {
1360 divisor = chv_dpll;
1361 count = ARRAY_SIZE(chv_dpll);
1362 } else if (IS_VALLEYVIEW(dev_priv)) {
1363 divisor = vlv_dpll;
1364 count = ARRAY_SIZE(vlv_dpll);
1365 }
1366
1367 if (divisor && count) {
1368 for (i = 0; i < count; i++) {
1369 if (pipe_config->port_clock == divisor[i].clock) {
1370 pipe_config->dpll = divisor[i].dpll;
1371 pipe_config->clock_set = true;
1372 break;
1373 }
1374 }
1375 }
1376 }
1377
1378 static int intersect_rates(const int *source_rates, int source_len,
1379 const int *sink_rates, int sink_len,
1380 int *common_rates)
1381 {
1382 int i = 0, j = 0, k = 0;
1383
1384 while (i < source_len && j < sink_len) {
1385 if (source_rates[i] == sink_rates[j]) {
1386 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1387 return k;
1388 common_rates[k] = source_rates[i];
1389 ++k;
1390 ++i;
1391 ++j;
1392 } else if (source_rates[i] < sink_rates[j]) {
1393 ++i;
1394 } else {
1395 ++j;
1396 }
1397 }
1398 return k;
1399 }
1400
1401 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1402 int *common_rates)
1403 {
1404 const int *source_rates, *sink_rates;
1405 int source_len, sink_len;
1406
1407 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1408 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1409
1410 return intersect_rates(source_rates, source_len,
1411 sink_rates, sink_len,
1412 common_rates);
1413 }
1414
1415 static void snprintf_int_array(char *str, size_t len,
1416 const int *array, int nelem)
1417 {
1418 int i;
1419
1420 str[0] = '\0';
1421
1422 for (i = 0; i < nelem; i++) {
1423 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1424 if (r >= len)
1425 return;
1426 str += r;
1427 len -= r;
1428 }
1429 }
1430
1431 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1432 {
1433 const int *source_rates, *sink_rates;
1434 int source_len, sink_len, common_len;
1435 int common_rates[DP_MAX_SUPPORTED_RATES];
1436 char str[128]; /* FIXME: too big for stack? */
1437
1438 if ((drm_debug & DRM_UT_KMS) == 0)
1439 return;
1440
1441 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1442 snprintf_int_array(str, sizeof(str), source_rates, source_len);
1443 DRM_DEBUG_KMS("source rates: %s\n", str);
1444
1445 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1446 snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1447 DRM_DEBUG_KMS("sink rates: %s\n", str);
1448
1449 common_len = intel_dp_common_rates(intel_dp, common_rates);
1450 snprintf_int_array(str, sizeof(str), common_rates, common_len);
1451 DRM_DEBUG_KMS("common rates: %s\n", str);
1452 }
1453
1454 static void intel_dp_print_hw_revision(struct intel_dp *intel_dp)
1455 {
1456 uint8_t rev;
1457 int len;
1458
1459 if ((drm_debug & DRM_UT_KMS) == 0)
1460 return;
1461
1462 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1463 DP_DWN_STRM_PORT_PRESENT))
1464 return;
1465
1466 len = drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_HW_REV, &rev, 1);
1467 if (len < 0)
1468 return;
1469
1470 DRM_DEBUG_KMS("sink hw revision: %d.%d\n", (rev & 0xf0) >> 4, rev & 0xf);
1471 }
1472
1473 static void intel_dp_print_sw_revision(struct intel_dp *intel_dp)
1474 {
1475 uint8_t rev[2];
1476 int len;
1477
1478 if ((drm_debug & DRM_UT_KMS) == 0)
1479 return;
1480
1481 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1482 DP_DWN_STRM_PORT_PRESENT))
1483 return;
1484
1485 len = drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_SW_REV, &rev, 2);
1486 if (len < 0)
1487 return;
1488
1489 DRM_DEBUG_KMS("sink sw revision: %d.%d\n", rev[0], rev[1]);
1490 }
1491
1492 static int rate_to_index(int find, const int *rates)
1493 {
1494 int i = 0;
1495
1496 for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1497 if (find == rates[i])
1498 break;
1499
1500 return i;
1501 }
1502
1503 int
1504 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1505 {
1506 int rates[DP_MAX_SUPPORTED_RATES] = {};
1507 int len;
1508
1509 len = intel_dp_common_rates(intel_dp, rates);
1510 if (WARN_ON(len <= 0))
1511 return 162000;
1512
1513 return rates[len - 1];
1514 }
1515
1516 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1517 {
1518 return rate_to_index(rate, intel_dp->sink_rates);
1519 }
1520
1521 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1522 uint8_t *link_bw, uint8_t *rate_select)
1523 {
1524 if (intel_dp->num_sink_rates) {
1525 *link_bw = 0;
1526 *rate_select =
1527 intel_dp_rate_select(intel_dp, port_clock);
1528 } else {
1529 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1530 *rate_select = 0;
1531 }
1532 }
1533
1534 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1535 struct intel_crtc_state *pipe_config)
1536 {
1537 int bpp, bpc;
1538
1539 bpp = pipe_config->pipe_bpp;
1540 bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1541
1542 if (bpc > 0)
1543 bpp = min(bpp, 3*bpc);
1544
1545 return bpp;
1546 }
1547
1548 bool
1549 intel_dp_compute_config(struct intel_encoder *encoder,
1550 struct intel_crtc_state *pipe_config,
1551 struct drm_connector_state *conn_state)
1552 {
1553 struct drm_device *dev = encoder->base.dev;
1554 struct drm_i915_private *dev_priv = to_i915(dev);
1555 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1556 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1557 enum port port = dp_to_dig_port(intel_dp)->port;
1558 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1559 struct intel_connector *intel_connector = intel_dp->attached_connector;
1560 int lane_count, clock;
1561 int min_lane_count = 1;
1562 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1563 /* Conveniently, the link BW constants become indices with a shift...*/
1564 int min_clock = 0;
1565 int max_clock;
1566 int bpp, mode_rate;
1567 int link_avail, link_clock;
1568 int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1569 int common_len;
1570 uint8_t link_bw, rate_select;
1571
1572 common_len = intel_dp_common_rates(intel_dp, common_rates);
1573
1574 /* No common link rates between source and sink */
1575 WARN_ON(common_len <= 0);
1576
1577 max_clock = common_len - 1;
1578
1579 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
1580 pipe_config->has_pch_encoder = true;
1581
1582 pipe_config->has_drrs = false;
1583 pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1584
1585 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1586 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1587 adjusted_mode);
1588
1589 if (INTEL_INFO(dev)->gen >= 9) {
1590 int ret;
1591 ret = skl_update_scaler_crtc(pipe_config);
1592 if (ret)
1593 return ret;
1594 }
1595
1596 if (HAS_GMCH_DISPLAY(dev_priv))
1597 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1598 intel_connector->panel.fitting_mode);
1599 else
1600 intel_pch_panel_fitting(intel_crtc, pipe_config,
1601 intel_connector->panel.fitting_mode);
1602 }
1603
1604 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1605 return false;
1606
1607 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1608 "max bw %d pixel clock %iKHz\n",
1609 max_lane_count, common_rates[max_clock],
1610 adjusted_mode->crtc_clock);
1611
1612 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1613 * bpc in between. */
1614 bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
1615 if (is_edp(intel_dp)) {
1616
1617 /* Get bpp from vbt only for panels that dont have bpp in edid */
1618 if (intel_connector->base.display_info.bpc == 0 &&
1619 (dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
1620 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1621 dev_priv->vbt.edp.bpp);
1622 bpp = dev_priv->vbt.edp.bpp;
1623 }
1624
1625 /*
1626 * Use the maximum clock and number of lanes the eDP panel
1627 * advertizes being capable of. The panels are generally
1628 * designed to support only a single clock and lane
1629 * configuration, and typically these values correspond to the
1630 * native resolution of the panel.
1631 */
1632 min_lane_count = max_lane_count;
1633 min_clock = max_clock;
1634 }
1635
1636 for (; bpp >= 6*3; bpp -= 2*3) {
1637 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1638 bpp);
1639
1640 for (clock = min_clock; clock <= max_clock; clock++) {
1641 for (lane_count = min_lane_count;
1642 lane_count <= max_lane_count;
1643 lane_count <<= 1) {
1644
1645 link_clock = common_rates[clock];
1646 link_avail = intel_dp_max_data_rate(link_clock,
1647 lane_count);
1648
1649 if (mode_rate <= link_avail) {
1650 goto found;
1651 }
1652 }
1653 }
1654 }
1655
1656 return false;
1657
1658 found:
1659 if (intel_dp->color_range_auto) {
1660 /*
1661 * See:
1662 * CEA-861-E - 5.1 Default Encoding Parameters
1663 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1664 */
1665 pipe_config->limited_color_range =
1666 bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1667 } else {
1668 pipe_config->limited_color_range =
1669 intel_dp->limited_color_range;
1670 }
1671
1672 pipe_config->lane_count = lane_count;
1673
1674 pipe_config->pipe_bpp = bpp;
1675 pipe_config->port_clock = common_rates[clock];
1676
1677 intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1678 &link_bw, &rate_select);
1679
1680 DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1681 link_bw, rate_select, pipe_config->lane_count,
1682 pipe_config->port_clock, bpp);
1683 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1684 mode_rate, link_avail);
1685
1686 intel_link_compute_m_n(bpp, lane_count,
1687 adjusted_mode->crtc_clock,
1688 pipe_config->port_clock,
1689 &pipe_config->dp_m_n);
1690
1691 if (intel_connector->panel.downclock_mode != NULL &&
1692 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1693 pipe_config->has_drrs = true;
1694 intel_link_compute_m_n(bpp, lane_count,
1695 intel_connector->panel.downclock_mode->clock,
1696 pipe_config->port_clock,
1697 &pipe_config->dp_m2_n2);
1698 }
1699
1700 /*
1701 * DPLL0 VCO may need to be adjusted to get the correct
1702 * clock for eDP. This will affect cdclk as well.
1703 */
1704 if (is_edp(intel_dp) &&
1705 (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))) {
1706 int vco;
1707
1708 switch (pipe_config->port_clock / 2) {
1709 case 108000:
1710 case 216000:
1711 vco = 8640000;
1712 break;
1713 default:
1714 vco = 8100000;
1715 break;
1716 }
1717
1718 to_intel_atomic_state(pipe_config->base.state)->cdclk_pll_vco = vco;
1719 }
1720
1721 if (!HAS_DDI(dev_priv))
1722 intel_dp_set_clock(encoder, pipe_config);
1723
1724 return true;
1725 }
1726
1727 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1728 int link_rate, uint8_t lane_count,
1729 bool link_mst)
1730 {
1731 intel_dp->link_rate = link_rate;
1732 intel_dp->lane_count = lane_count;
1733 intel_dp->link_mst = link_mst;
1734 }
1735
1736 static void intel_dp_prepare(struct intel_encoder *encoder,
1737 struct intel_crtc_state *pipe_config)
1738 {
1739 struct drm_device *dev = encoder->base.dev;
1740 struct drm_i915_private *dev_priv = to_i915(dev);
1741 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1742 enum port port = dp_to_dig_port(intel_dp)->port;
1743 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1744 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1745
1746 intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
1747 pipe_config->lane_count,
1748 intel_crtc_has_type(pipe_config,
1749 INTEL_OUTPUT_DP_MST));
1750
1751 /*
1752 * There are four kinds of DP registers:
1753 *
1754 * IBX PCH
1755 * SNB CPU
1756 * IVB CPU
1757 * CPT PCH
1758 *
1759 * IBX PCH and CPU are the same for almost everything,
1760 * except that the CPU DP PLL is configured in this
1761 * register
1762 *
1763 * CPT PCH is quite different, having many bits moved
1764 * to the TRANS_DP_CTL register instead. That
1765 * configuration happens (oddly) in ironlake_pch_enable
1766 */
1767
1768 /* Preserve the BIOS-computed detected bit. This is
1769 * supposed to be read-only.
1770 */
1771 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1772
1773 /* Handle DP bits in common between all three register formats */
1774 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1775 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
1776
1777 /* Split out the IBX/CPU vs CPT settings */
1778
1779 if (IS_GEN7(dev_priv) && port == PORT_A) {
1780 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1781 intel_dp->DP |= DP_SYNC_HS_HIGH;
1782 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1783 intel_dp->DP |= DP_SYNC_VS_HIGH;
1784 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1785
1786 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1787 intel_dp->DP |= DP_ENHANCED_FRAMING;
1788
1789 intel_dp->DP |= crtc->pipe << 29;
1790 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
1791 u32 trans_dp;
1792
1793 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1794
1795 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1796 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1797 trans_dp |= TRANS_DP_ENH_FRAMING;
1798 else
1799 trans_dp &= ~TRANS_DP_ENH_FRAMING;
1800 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1801 } else {
1802 if (!HAS_PCH_SPLIT(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
1803 !IS_CHERRYVIEW(dev_priv) &&
1804 pipe_config->limited_color_range)
1805 intel_dp->DP |= DP_COLOR_RANGE_16_235;
1806
1807 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1808 intel_dp->DP |= DP_SYNC_HS_HIGH;
1809 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1810 intel_dp->DP |= DP_SYNC_VS_HIGH;
1811 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1812
1813 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1814 intel_dp->DP |= DP_ENHANCED_FRAMING;
1815
1816 if (IS_CHERRYVIEW(dev_priv))
1817 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1818 else if (crtc->pipe == PIPE_B)
1819 intel_dp->DP |= DP_PIPEB_SELECT;
1820 }
1821 }
1822
1823 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1824 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1825
1826 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1827 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1828
1829 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1830 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1831
1832 static void intel_pps_verify_state(struct drm_i915_private *dev_priv,
1833 struct intel_dp *intel_dp);
1834
1835 static void wait_panel_status(struct intel_dp *intel_dp,
1836 u32 mask,
1837 u32 value)
1838 {
1839 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1840 struct drm_i915_private *dev_priv = to_i915(dev);
1841 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1842
1843 lockdep_assert_held(&dev_priv->pps_mutex);
1844
1845 intel_pps_verify_state(dev_priv, intel_dp);
1846
1847 pp_stat_reg = _pp_stat_reg(intel_dp);
1848 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1849
1850 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1851 mask, value,
1852 I915_READ(pp_stat_reg),
1853 I915_READ(pp_ctrl_reg));
1854
1855 if (intel_wait_for_register(dev_priv,
1856 pp_stat_reg, mask, value,
1857 5000))
1858 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1859 I915_READ(pp_stat_reg),
1860 I915_READ(pp_ctrl_reg));
1861
1862 DRM_DEBUG_KMS("Wait complete\n");
1863 }
1864
1865 static void wait_panel_on(struct intel_dp *intel_dp)
1866 {
1867 DRM_DEBUG_KMS("Wait for panel power on\n");
1868 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1869 }
1870
1871 static void wait_panel_off(struct intel_dp *intel_dp)
1872 {
1873 DRM_DEBUG_KMS("Wait for panel power off time\n");
1874 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1875 }
1876
1877 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1878 {
1879 ktime_t panel_power_on_time;
1880 s64 panel_power_off_duration;
1881
1882 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1883
1884 /* take the difference of currrent time and panel power off time
1885 * and then make panel wait for t11_t12 if needed. */
1886 panel_power_on_time = ktime_get_boottime();
1887 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
1888
1889 /* When we disable the VDD override bit last we have to do the manual
1890 * wait. */
1891 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
1892 wait_remaining_ms_from_jiffies(jiffies,
1893 intel_dp->panel_power_cycle_delay - panel_power_off_duration);
1894
1895 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1896 }
1897
1898 static void wait_backlight_on(struct intel_dp *intel_dp)
1899 {
1900 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1901 intel_dp->backlight_on_delay);
1902 }
1903
1904 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1905 {
1906 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1907 intel_dp->backlight_off_delay);
1908 }
1909
1910 /* Read the current pp_control value, unlocking the register if it
1911 * is locked
1912 */
1913
1914 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1915 {
1916 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1917 struct drm_i915_private *dev_priv = to_i915(dev);
1918 u32 control;
1919
1920 lockdep_assert_held(&dev_priv->pps_mutex);
1921
1922 control = I915_READ(_pp_ctrl_reg(intel_dp));
1923 if (WARN_ON(!HAS_DDI(dev_priv) &&
1924 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
1925 control &= ~PANEL_UNLOCK_MASK;
1926 control |= PANEL_UNLOCK_REGS;
1927 }
1928 return control;
1929 }
1930
1931 /*
1932 * Must be paired with edp_panel_vdd_off().
1933 * Must hold pps_mutex around the whole on/off sequence.
1934 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1935 */
1936 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1937 {
1938 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1939 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1940 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1941 struct drm_i915_private *dev_priv = to_i915(dev);
1942 enum intel_display_power_domain power_domain;
1943 u32 pp;
1944 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1945 bool need_to_disable = !intel_dp->want_panel_vdd;
1946
1947 lockdep_assert_held(&dev_priv->pps_mutex);
1948
1949 if (!is_edp(intel_dp))
1950 return false;
1951
1952 cancel_delayed_work(&intel_dp->panel_vdd_work);
1953 intel_dp->want_panel_vdd = true;
1954
1955 if (edp_have_panel_vdd(intel_dp))
1956 return need_to_disable;
1957
1958 power_domain = intel_display_port_aux_power_domain(intel_encoder);
1959 intel_display_power_get(dev_priv, power_domain);
1960
1961 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1962 port_name(intel_dig_port->port));
1963
1964 if (!edp_have_panel_power(intel_dp))
1965 wait_panel_power_cycle(intel_dp);
1966
1967 pp = ironlake_get_pp_control(intel_dp);
1968 pp |= EDP_FORCE_VDD;
1969
1970 pp_stat_reg = _pp_stat_reg(intel_dp);
1971 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1972
1973 I915_WRITE(pp_ctrl_reg, pp);
1974 POSTING_READ(pp_ctrl_reg);
1975 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1976 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1977 /*
1978 * If the panel wasn't on, delay before accessing aux channel
1979 */
1980 if (!edp_have_panel_power(intel_dp)) {
1981 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1982 port_name(intel_dig_port->port));
1983 msleep(intel_dp->panel_power_up_delay);
1984 }
1985
1986 return need_to_disable;
1987 }
1988
1989 /*
1990 * Must be paired with intel_edp_panel_vdd_off() or
1991 * intel_edp_panel_off().
1992 * Nested calls to these functions are not allowed since
1993 * we drop the lock. Caller must use some higher level
1994 * locking to prevent nested calls from other threads.
1995 */
1996 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1997 {
1998 bool vdd;
1999
2000 if (!is_edp(intel_dp))
2001 return;
2002
2003 pps_lock(intel_dp);
2004 vdd = edp_panel_vdd_on(intel_dp);
2005 pps_unlock(intel_dp);
2006
2007 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2008 port_name(dp_to_dig_port(intel_dp)->port));
2009 }
2010
2011 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2012 {
2013 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2014 struct drm_i915_private *dev_priv = to_i915(dev);
2015 struct intel_digital_port *intel_dig_port =
2016 dp_to_dig_port(intel_dp);
2017 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2018 enum intel_display_power_domain power_domain;
2019 u32 pp;
2020 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2021
2022 lockdep_assert_held(&dev_priv->pps_mutex);
2023
2024 WARN_ON(intel_dp->want_panel_vdd);
2025
2026 if (!edp_have_panel_vdd(intel_dp))
2027 return;
2028
2029 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2030 port_name(intel_dig_port->port));
2031
2032 pp = ironlake_get_pp_control(intel_dp);
2033 pp &= ~EDP_FORCE_VDD;
2034
2035 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2036 pp_stat_reg = _pp_stat_reg(intel_dp);
2037
2038 I915_WRITE(pp_ctrl_reg, pp);
2039 POSTING_READ(pp_ctrl_reg);
2040
2041 /* Make sure sequencer is idle before allowing subsequent activity */
2042 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2043 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2044
2045 if ((pp & PANEL_POWER_ON) == 0)
2046 intel_dp->panel_power_off_time = ktime_get_boottime();
2047
2048 power_domain = intel_display_port_aux_power_domain(intel_encoder);
2049 intel_display_power_put(dev_priv, power_domain);
2050 }
2051
2052 static void edp_panel_vdd_work(struct work_struct *__work)
2053 {
2054 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
2055 struct intel_dp, panel_vdd_work);
2056
2057 pps_lock(intel_dp);
2058 if (!intel_dp->want_panel_vdd)
2059 edp_panel_vdd_off_sync(intel_dp);
2060 pps_unlock(intel_dp);
2061 }
2062
2063 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2064 {
2065 unsigned long delay;
2066
2067 /*
2068 * Queue the timer to fire a long time from now (relative to the power
2069 * down delay) to keep the panel power up across a sequence of
2070 * operations.
2071 */
2072 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2073 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2074 }
2075
2076 /*
2077 * Must be paired with edp_panel_vdd_on().
2078 * Must hold pps_mutex around the whole on/off sequence.
2079 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2080 */
2081 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2082 {
2083 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2084
2085 lockdep_assert_held(&dev_priv->pps_mutex);
2086
2087 if (!is_edp(intel_dp))
2088 return;
2089
2090 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2091 port_name(dp_to_dig_port(intel_dp)->port));
2092
2093 intel_dp->want_panel_vdd = false;
2094
2095 if (sync)
2096 edp_panel_vdd_off_sync(intel_dp);
2097 else
2098 edp_panel_vdd_schedule_off(intel_dp);
2099 }
2100
2101 static void edp_panel_on(struct intel_dp *intel_dp)
2102 {
2103 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2104 struct drm_i915_private *dev_priv = to_i915(dev);
2105 u32 pp;
2106 i915_reg_t pp_ctrl_reg;
2107
2108 lockdep_assert_held(&dev_priv->pps_mutex);
2109
2110 if (!is_edp(intel_dp))
2111 return;
2112
2113 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2114 port_name(dp_to_dig_port(intel_dp)->port));
2115
2116 if (WARN(edp_have_panel_power(intel_dp),
2117 "eDP port %c panel power already on\n",
2118 port_name(dp_to_dig_port(intel_dp)->port)))
2119 return;
2120
2121 wait_panel_power_cycle(intel_dp);
2122
2123 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2124 pp = ironlake_get_pp_control(intel_dp);
2125 if (IS_GEN5(dev_priv)) {
2126 /* ILK workaround: disable reset around power sequence */
2127 pp &= ~PANEL_POWER_RESET;
2128 I915_WRITE(pp_ctrl_reg, pp);
2129 POSTING_READ(pp_ctrl_reg);
2130 }
2131
2132 pp |= PANEL_POWER_ON;
2133 if (!IS_GEN5(dev_priv))
2134 pp |= PANEL_POWER_RESET;
2135
2136 I915_WRITE(pp_ctrl_reg, pp);
2137 POSTING_READ(pp_ctrl_reg);
2138
2139 wait_panel_on(intel_dp);
2140 intel_dp->last_power_on = jiffies;
2141
2142 if (IS_GEN5(dev_priv)) {
2143 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2144 I915_WRITE(pp_ctrl_reg, pp);
2145 POSTING_READ(pp_ctrl_reg);
2146 }
2147 }
2148
2149 void intel_edp_panel_on(struct intel_dp *intel_dp)
2150 {
2151 if (!is_edp(intel_dp))
2152 return;
2153
2154 pps_lock(intel_dp);
2155 edp_panel_on(intel_dp);
2156 pps_unlock(intel_dp);
2157 }
2158
2159
2160 static void edp_panel_off(struct intel_dp *intel_dp)
2161 {
2162 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2163 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2164 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2165 struct drm_i915_private *dev_priv = to_i915(dev);
2166 enum intel_display_power_domain power_domain;
2167 u32 pp;
2168 i915_reg_t pp_ctrl_reg;
2169
2170 lockdep_assert_held(&dev_priv->pps_mutex);
2171
2172 if (!is_edp(intel_dp))
2173 return;
2174
2175 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2176 port_name(dp_to_dig_port(intel_dp)->port));
2177
2178 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2179 port_name(dp_to_dig_port(intel_dp)->port));
2180
2181 pp = ironlake_get_pp_control(intel_dp);
2182 /* We need to switch off panel power _and_ force vdd, for otherwise some
2183 * panels get very unhappy and cease to work. */
2184 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2185 EDP_BLC_ENABLE);
2186
2187 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2188
2189 intel_dp->want_panel_vdd = false;
2190
2191 I915_WRITE(pp_ctrl_reg, pp);
2192 POSTING_READ(pp_ctrl_reg);
2193
2194 intel_dp->panel_power_off_time = ktime_get_boottime();
2195 wait_panel_off(intel_dp);
2196
2197 /* We got a reference when we enabled the VDD. */
2198 power_domain = intel_display_port_aux_power_domain(intel_encoder);
2199 intel_display_power_put(dev_priv, power_domain);
2200 }
2201
2202 void intel_edp_panel_off(struct intel_dp *intel_dp)
2203 {
2204 if (!is_edp(intel_dp))
2205 return;
2206
2207 pps_lock(intel_dp);
2208 edp_panel_off(intel_dp);
2209 pps_unlock(intel_dp);
2210 }
2211
2212 /* Enable backlight in the panel power control. */
2213 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2214 {
2215 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2216 struct drm_device *dev = intel_dig_port->base.base.dev;
2217 struct drm_i915_private *dev_priv = to_i915(dev);
2218 u32 pp;
2219 i915_reg_t pp_ctrl_reg;
2220
2221 /*
2222 * If we enable the backlight right away following a panel power
2223 * on, we may see slight flicker as the panel syncs with the eDP
2224 * link. So delay a bit to make sure the image is solid before
2225 * allowing it to appear.
2226 */
2227 wait_backlight_on(intel_dp);
2228
2229 pps_lock(intel_dp);
2230
2231 pp = ironlake_get_pp_control(intel_dp);
2232 pp |= EDP_BLC_ENABLE;
2233
2234 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2235
2236 I915_WRITE(pp_ctrl_reg, pp);
2237 POSTING_READ(pp_ctrl_reg);
2238
2239 pps_unlock(intel_dp);
2240 }
2241
2242 /* Enable backlight PWM and backlight PP control. */
2243 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2244 {
2245 if (!is_edp(intel_dp))
2246 return;
2247
2248 DRM_DEBUG_KMS("\n");
2249
2250 intel_panel_enable_backlight(intel_dp->attached_connector);
2251 _intel_edp_backlight_on(intel_dp);
2252 }
2253
2254 /* Disable backlight in the panel power control. */
2255 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2256 {
2257 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2258 struct drm_i915_private *dev_priv = to_i915(dev);
2259 u32 pp;
2260 i915_reg_t pp_ctrl_reg;
2261
2262 if (!is_edp(intel_dp))
2263 return;
2264
2265 pps_lock(intel_dp);
2266
2267 pp = ironlake_get_pp_control(intel_dp);
2268 pp &= ~EDP_BLC_ENABLE;
2269
2270 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2271
2272 I915_WRITE(pp_ctrl_reg, pp);
2273 POSTING_READ(pp_ctrl_reg);
2274
2275 pps_unlock(intel_dp);
2276
2277 intel_dp->last_backlight_off = jiffies;
2278 edp_wait_backlight_off(intel_dp);
2279 }
2280
2281 /* Disable backlight PP control and backlight PWM. */
2282 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2283 {
2284 if (!is_edp(intel_dp))
2285 return;
2286
2287 DRM_DEBUG_KMS("\n");
2288
2289 _intel_edp_backlight_off(intel_dp);
2290 intel_panel_disable_backlight(intel_dp->attached_connector);
2291 }
2292
2293 /*
2294 * Hook for controlling the panel power control backlight through the bl_power
2295 * sysfs attribute. Take care to handle multiple calls.
2296 */
2297 static void intel_edp_backlight_power(struct intel_connector *connector,
2298 bool enable)
2299 {
2300 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2301 bool is_enabled;
2302
2303 pps_lock(intel_dp);
2304 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2305 pps_unlock(intel_dp);
2306
2307 if (is_enabled == enable)
2308 return;
2309
2310 DRM_DEBUG_KMS("panel power control backlight %s\n",
2311 enable ? "enable" : "disable");
2312
2313 if (enable)
2314 _intel_edp_backlight_on(intel_dp);
2315 else
2316 _intel_edp_backlight_off(intel_dp);
2317 }
2318
2319 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2320 {
2321 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2322 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2323 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2324
2325 I915_STATE_WARN(cur_state != state,
2326 "DP port %c state assertion failure (expected %s, current %s)\n",
2327 port_name(dig_port->port),
2328 onoff(state), onoff(cur_state));
2329 }
2330 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2331
2332 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2333 {
2334 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2335
2336 I915_STATE_WARN(cur_state != state,
2337 "eDP PLL state assertion failure (expected %s, current %s)\n",
2338 onoff(state), onoff(cur_state));
2339 }
2340 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2341 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2342
2343 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2344 struct intel_crtc_state *pipe_config)
2345 {
2346 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2347 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2348
2349 assert_pipe_disabled(dev_priv, crtc->pipe);
2350 assert_dp_port_disabled(intel_dp);
2351 assert_edp_pll_disabled(dev_priv);
2352
2353 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2354 pipe_config->port_clock);
2355
2356 intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2357
2358 if (pipe_config->port_clock == 162000)
2359 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2360 else
2361 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2362
2363 I915_WRITE(DP_A, intel_dp->DP);
2364 POSTING_READ(DP_A);
2365 udelay(500);
2366
2367 /*
2368 * [DevILK] Work around required when enabling DP PLL
2369 * while a pipe is enabled going to FDI:
2370 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2371 * 2. Program DP PLL enable
2372 */
2373 if (IS_GEN5(dev_priv))
2374 intel_wait_for_vblank_if_active(&dev_priv->drm, !crtc->pipe);
2375
2376 intel_dp->DP |= DP_PLL_ENABLE;
2377
2378 I915_WRITE(DP_A, intel_dp->DP);
2379 POSTING_READ(DP_A);
2380 udelay(200);
2381 }
2382
2383 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2384 {
2385 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2386 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2387 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2388
2389 assert_pipe_disabled(dev_priv, crtc->pipe);
2390 assert_dp_port_disabled(intel_dp);
2391 assert_edp_pll_enabled(dev_priv);
2392
2393 DRM_DEBUG_KMS("disabling eDP PLL\n");
2394
2395 intel_dp->DP &= ~DP_PLL_ENABLE;
2396
2397 I915_WRITE(DP_A, intel_dp->DP);
2398 POSTING_READ(DP_A);
2399 udelay(200);
2400 }
2401
2402 /* If the sink supports it, try to set the power state appropriately */
2403 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2404 {
2405 int ret, i;
2406
2407 /* Should have a valid DPCD by this point */
2408 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2409 return;
2410
2411 if (mode != DRM_MODE_DPMS_ON) {
2412 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2413 DP_SET_POWER_D3);
2414 } else {
2415 /*
2416 * When turning on, we need to retry for 1ms to give the sink
2417 * time to wake up.
2418 */
2419 for (i = 0; i < 3; i++) {
2420 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2421 DP_SET_POWER_D0);
2422 if (ret == 1)
2423 break;
2424 msleep(1);
2425 }
2426 }
2427
2428 if (ret != 1)
2429 DRM_DEBUG_KMS("failed to %s sink power state\n",
2430 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2431 }
2432
2433 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2434 enum pipe *pipe)
2435 {
2436 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2437 enum port port = dp_to_dig_port(intel_dp)->port;
2438 struct drm_device *dev = encoder->base.dev;
2439 struct drm_i915_private *dev_priv = to_i915(dev);
2440 enum intel_display_power_domain power_domain;
2441 u32 tmp;
2442 bool ret;
2443
2444 power_domain = intel_display_port_power_domain(encoder);
2445 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2446 return false;
2447
2448 ret = false;
2449
2450 tmp = I915_READ(intel_dp->output_reg);
2451
2452 if (!(tmp & DP_PORT_EN))
2453 goto out;
2454
2455 if (IS_GEN7(dev_priv) && port == PORT_A) {
2456 *pipe = PORT_TO_PIPE_CPT(tmp);
2457 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2458 enum pipe p;
2459
2460 for_each_pipe(dev_priv, p) {
2461 u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2462 if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2463 *pipe = p;
2464 ret = true;
2465
2466 goto out;
2467 }
2468 }
2469
2470 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2471 i915_mmio_reg_offset(intel_dp->output_reg));
2472 } else if (IS_CHERRYVIEW(dev_priv)) {
2473 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2474 } else {
2475 *pipe = PORT_TO_PIPE(tmp);
2476 }
2477
2478 ret = true;
2479
2480 out:
2481 intel_display_power_put(dev_priv, power_domain);
2482
2483 return ret;
2484 }
2485
2486 static void intel_dp_get_config(struct intel_encoder *encoder,
2487 struct intel_crtc_state *pipe_config)
2488 {
2489 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2490 u32 tmp, flags = 0;
2491 struct drm_device *dev = encoder->base.dev;
2492 struct drm_i915_private *dev_priv = to_i915(dev);
2493 enum port port = dp_to_dig_port(intel_dp)->port;
2494 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2495
2496 tmp = I915_READ(intel_dp->output_reg);
2497
2498 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2499
2500 if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2501 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2502
2503 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2504 flags |= DRM_MODE_FLAG_PHSYNC;
2505 else
2506 flags |= DRM_MODE_FLAG_NHSYNC;
2507
2508 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2509 flags |= DRM_MODE_FLAG_PVSYNC;
2510 else
2511 flags |= DRM_MODE_FLAG_NVSYNC;
2512 } else {
2513 if (tmp & DP_SYNC_HS_HIGH)
2514 flags |= DRM_MODE_FLAG_PHSYNC;
2515 else
2516 flags |= DRM_MODE_FLAG_NHSYNC;
2517
2518 if (tmp & DP_SYNC_VS_HIGH)
2519 flags |= DRM_MODE_FLAG_PVSYNC;
2520 else
2521 flags |= DRM_MODE_FLAG_NVSYNC;
2522 }
2523
2524 pipe_config->base.adjusted_mode.flags |= flags;
2525
2526 if (!HAS_PCH_SPLIT(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
2527 !IS_CHERRYVIEW(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
2528 pipe_config->limited_color_range = true;
2529
2530 pipe_config->lane_count =
2531 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2532
2533 intel_dp_get_m_n(crtc, pipe_config);
2534
2535 if (port == PORT_A) {
2536 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2537 pipe_config->port_clock = 162000;
2538 else
2539 pipe_config->port_clock = 270000;
2540 }
2541
2542 pipe_config->base.adjusted_mode.crtc_clock =
2543 intel_dotclock_calculate(pipe_config->port_clock,
2544 &pipe_config->dp_m_n);
2545
2546 if (is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2547 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2548 /*
2549 * This is a big fat ugly hack.
2550 *
2551 * Some machines in UEFI boot mode provide us a VBT that has 18
2552 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2553 * unknown we fail to light up. Yet the same BIOS boots up with
2554 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2555 * max, not what it tells us to use.
2556 *
2557 * Note: This will still be broken if the eDP panel is not lit
2558 * up by the BIOS, and thus we can't get the mode at module
2559 * load.
2560 */
2561 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2562 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2563 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2564 }
2565 }
2566
2567 static void intel_disable_dp(struct intel_encoder *encoder,
2568 struct intel_crtc_state *old_crtc_state,
2569 struct drm_connector_state *old_conn_state)
2570 {
2571 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2572 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2573
2574 if (old_crtc_state->has_audio)
2575 intel_audio_codec_disable(encoder);
2576
2577 if (HAS_PSR(dev_priv) && !HAS_DDI(dev_priv))
2578 intel_psr_disable(intel_dp);
2579
2580 /* Make sure the panel is off before trying to change the mode. But also
2581 * ensure that we have vdd while we switch off the panel. */
2582 intel_edp_panel_vdd_on(intel_dp);
2583 intel_edp_backlight_off(intel_dp);
2584 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2585 intel_edp_panel_off(intel_dp);
2586
2587 /* disable the port before the pipe on g4x */
2588 if (INTEL_GEN(dev_priv) < 5)
2589 intel_dp_link_down(intel_dp);
2590 }
2591
2592 static void ilk_post_disable_dp(struct intel_encoder *encoder,
2593 struct intel_crtc_state *old_crtc_state,
2594 struct drm_connector_state *old_conn_state)
2595 {
2596 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2597 enum port port = dp_to_dig_port(intel_dp)->port;
2598
2599 intel_dp_link_down(intel_dp);
2600
2601 /* Only ilk+ has port A */
2602 if (port == PORT_A)
2603 ironlake_edp_pll_off(intel_dp);
2604 }
2605
2606 static void vlv_post_disable_dp(struct intel_encoder *encoder,
2607 struct intel_crtc_state *old_crtc_state,
2608 struct drm_connector_state *old_conn_state)
2609 {
2610 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2611
2612 intel_dp_link_down(intel_dp);
2613 }
2614
2615 static void chv_post_disable_dp(struct intel_encoder *encoder,
2616 struct intel_crtc_state *old_crtc_state,
2617 struct drm_connector_state *old_conn_state)
2618 {
2619 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2620 struct drm_device *dev = encoder->base.dev;
2621 struct drm_i915_private *dev_priv = to_i915(dev);
2622
2623 intel_dp_link_down(intel_dp);
2624
2625 mutex_lock(&dev_priv->sb_lock);
2626
2627 /* Assert data lane reset */
2628 chv_data_lane_soft_reset(encoder, true);
2629
2630 mutex_unlock(&dev_priv->sb_lock);
2631 }
2632
2633 static void
2634 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2635 uint32_t *DP,
2636 uint8_t dp_train_pat)
2637 {
2638 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2639 struct drm_device *dev = intel_dig_port->base.base.dev;
2640 struct drm_i915_private *dev_priv = to_i915(dev);
2641 enum port port = intel_dig_port->port;
2642
2643 if (dp_train_pat & DP_TRAINING_PATTERN_MASK)
2644 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
2645 dp_train_pat & DP_TRAINING_PATTERN_MASK);
2646
2647 if (HAS_DDI(dev_priv)) {
2648 uint32_t temp = I915_READ(DP_TP_CTL(port));
2649
2650 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2651 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2652 else
2653 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2654
2655 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2656 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2657 case DP_TRAINING_PATTERN_DISABLE:
2658 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2659
2660 break;
2661 case DP_TRAINING_PATTERN_1:
2662 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2663 break;
2664 case DP_TRAINING_PATTERN_2:
2665 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2666 break;
2667 case DP_TRAINING_PATTERN_3:
2668 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2669 break;
2670 }
2671 I915_WRITE(DP_TP_CTL(port), temp);
2672
2673 } else if ((IS_GEN7(dev_priv) && port == PORT_A) ||
2674 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
2675 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2676
2677 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2678 case DP_TRAINING_PATTERN_DISABLE:
2679 *DP |= DP_LINK_TRAIN_OFF_CPT;
2680 break;
2681 case DP_TRAINING_PATTERN_1:
2682 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2683 break;
2684 case DP_TRAINING_PATTERN_2:
2685 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2686 break;
2687 case DP_TRAINING_PATTERN_3:
2688 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2689 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2690 break;
2691 }
2692
2693 } else {
2694 if (IS_CHERRYVIEW(dev_priv))
2695 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2696 else
2697 *DP &= ~DP_LINK_TRAIN_MASK;
2698
2699 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2700 case DP_TRAINING_PATTERN_DISABLE:
2701 *DP |= DP_LINK_TRAIN_OFF;
2702 break;
2703 case DP_TRAINING_PATTERN_1:
2704 *DP |= DP_LINK_TRAIN_PAT_1;
2705 break;
2706 case DP_TRAINING_PATTERN_2:
2707 *DP |= DP_LINK_TRAIN_PAT_2;
2708 break;
2709 case DP_TRAINING_PATTERN_3:
2710 if (IS_CHERRYVIEW(dev_priv)) {
2711 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2712 } else {
2713 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2714 *DP |= DP_LINK_TRAIN_PAT_2;
2715 }
2716 break;
2717 }
2718 }
2719 }
2720
2721 static void intel_dp_enable_port(struct intel_dp *intel_dp,
2722 struct intel_crtc_state *old_crtc_state)
2723 {
2724 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2725 struct drm_i915_private *dev_priv = to_i915(dev);
2726
2727 /* enable with pattern 1 (as per spec) */
2728
2729 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
2730
2731 /*
2732 * Magic for VLV/CHV. We _must_ first set up the register
2733 * without actually enabling the port, and then do another
2734 * write to enable the port. Otherwise link training will
2735 * fail when the power sequencer is freshly used for this port.
2736 */
2737 intel_dp->DP |= DP_PORT_EN;
2738 if (old_crtc_state->has_audio)
2739 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2740
2741 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2742 POSTING_READ(intel_dp->output_reg);
2743 }
2744
2745 static void intel_enable_dp(struct intel_encoder *encoder,
2746 struct intel_crtc_state *pipe_config)
2747 {
2748 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2749 struct drm_device *dev = encoder->base.dev;
2750 struct drm_i915_private *dev_priv = to_i915(dev);
2751 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2752 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2753 enum pipe pipe = crtc->pipe;
2754
2755 if (WARN_ON(dp_reg & DP_PORT_EN))
2756 return;
2757
2758 pps_lock(intel_dp);
2759
2760 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2761 vlv_init_panel_power_sequencer(intel_dp);
2762
2763 intel_dp_enable_port(intel_dp, pipe_config);
2764
2765 edp_panel_vdd_on(intel_dp);
2766 edp_panel_on(intel_dp);
2767 edp_panel_vdd_off(intel_dp, true);
2768
2769 pps_unlock(intel_dp);
2770
2771 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2772 unsigned int lane_mask = 0x0;
2773
2774 if (IS_CHERRYVIEW(dev_priv))
2775 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
2776
2777 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2778 lane_mask);
2779 }
2780
2781 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2782 intel_dp_start_link_train(intel_dp);
2783 intel_dp_stop_link_train(intel_dp);
2784
2785 if (pipe_config->has_audio) {
2786 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2787 pipe_name(pipe));
2788 intel_audio_codec_enable(encoder);
2789 }
2790 }
2791
2792 static void g4x_enable_dp(struct intel_encoder *encoder,
2793 struct intel_crtc_state *pipe_config,
2794 struct drm_connector_state *conn_state)
2795 {
2796 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2797
2798 intel_enable_dp(encoder, pipe_config);
2799 intel_edp_backlight_on(intel_dp);
2800 }
2801
2802 static void vlv_enable_dp(struct intel_encoder *encoder,
2803 struct intel_crtc_state *pipe_config,
2804 struct drm_connector_state *conn_state)
2805 {
2806 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2807
2808 intel_edp_backlight_on(intel_dp);
2809 intel_psr_enable(intel_dp);
2810 }
2811
2812 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
2813 struct intel_crtc_state *pipe_config,
2814 struct drm_connector_state *conn_state)
2815 {
2816 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2817 enum port port = dp_to_dig_port(intel_dp)->port;
2818
2819 intel_dp_prepare(encoder, pipe_config);
2820
2821 /* Only ilk+ has port A */
2822 if (port == PORT_A)
2823 ironlake_edp_pll_on(intel_dp, pipe_config);
2824 }
2825
2826 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2827 {
2828 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2829 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
2830 enum pipe pipe = intel_dp->pps_pipe;
2831 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
2832
2833 edp_panel_vdd_off_sync(intel_dp);
2834
2835 /*
2836 * VLV seems to get confused when multiple power seqeuencers
2837 * have the same port selected (even if only one has power/vdd
2838 * enabled). The failure manifests as vlv_wait_port_ready() failing
2839 * CHV on the other hand doesn't seem to mind having the same port
2840 * selected in multiple power seqeuencers, but let's clear the
2841 * port select always when logically disconnecting a power sequencer
2842 * from a port.
2843 */
2844 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2845 pipe_name(pipe), port_name(intel_dig_port->port));
2846 I915_WRITE(pp_on_reg, 0);
2847 POSTING_READ(pp_on_reg);
2848
2849 intel_dp->pps_pipe = INVALID_PIPE;
2850 }
2851
2852 static void vlv_steal_power_sequencer(struct drm_device *dev,
2853 enum pipe pipe)
2854 {
2855 struct drm_i915_private *dev_priv = to_i915(dev);
2856 struct intel_encoder *encoder;
2857
2858 lockdep_assert_held(&dev_priv->pps_mutex);
2859
2860 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2861 return;
2862
2863 for_each_intel_encoder(dev, encoder) {
2864 struct intel_dp *intel_dp;
2865 enum port port;
2866
2867 if (encoder->type != INTEL_OUTPUT_EDP)
2868 continue;
2869
2870 intel_dp = enc_to_intel_dp(&encoder->base);
2871 port = dp_to_dig_port(intel_dp)->port;
2872
2873 if (intel_dp->pps_pipe != pipe)
2874 continue;
2875
2876 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2877 pipe_name(pipe), port_name(port));
2878
2879 WARN(encoder->base.crtc,
2880 "stealing pipe %c power sequencer from active eDP port %c\n",
2881 pipe_name(pipe), port_name(port));
2882
2883 /* make sure vdd is off before we steal it */
2884 vlv_detach_power_sequencer(intel_dp);
2885 }
2886 }
2887
2888 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2889 {
2890 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2891 struct intel_encoder *encoder = &intel_dig_port->base;
2892 struct drm_device *dev = encoder->base.dev;
2893 struct drm_i915_private *dev_priv = to_i915(dev);
2894 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2895
2896 lockdep_assert_held(&dev_priv->pps_mutex);
2897
2898 if (!is_edp(intel_dp))
2899 return;
2900
2901 if (intel_dp->pps_pipe == crtc->pipe)
2902 return;
2903
2904 /*
2905 * If another power sequencer was being used on this
2906 * port previously make sure to turn off vdd there while
2907 * we still have control of it.
2908 */
2909 if (intel_dp->pps_pipe != INVALID_PIPE)
2910 vlv_detach_power_sequencer(intel_dp);
2911
2912 /*
2913 * We may be stealing the power
2914 * sequencer from another port.
2915 */
2916 vlv_steal_power_sequencer(dev, crtc->pipe);
2917
2918 /* now it's all ours */
2919 intel_dp->pps_pipe = crtc->pipe;
2920
2921 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2922 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2923
2924 /* init power sequencer on this pipe and port */
2925 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2926 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2927 }
2928
2929 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
2930 struct intel_crtc_state *pipe_config,
2931 struct drm_connector_state *conn_state)
2932 {
2933 vlv_phy_pre_encoder_enable(encoder);
2934
2935 intel_enable_dp(encoder, pipe_config);
2936 }
2937
2938 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
2939 struct intel_crtc_state *pipe_config,
2940 struct drm_connector_state *conn_state)
2941 {
2942 intel_dp_prepare(encoder, pipe_config);
2943
2944 vlv_phy_pre_pll_enable(encoder);
2945 }
2946
2947 static void chv_pre_enable_dp(struct intel_encoder *encoder,
2948 struct intel_crtc_state *pipe_config,
2949 struct drm_connector_state *conn_state)
2950 {
2951 chv_phy_pre_encoder_enable(encoder);
2952
2953 intel_enable_dp(encoder, pipe_config);
2954
2955 /* Second common lane will stay alive on its own now */
2956 chv_phy_release_cl2_override(encoder);
2957 }
2958
2959 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
2960 struct intel_crtc_state *pipe_config,
2961 struct drm_connector_state *conn_state)
2962 {
2963 intel_dp_prepare(encoder, pipe_config);
2964
2965 chv_phy_pre_pll_enable(encoder);
2966 }
2967
2968 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
2969 struct intel_crtc_state *pipe_config,
2970 struct drm_connector_state *conn_state)
2971 {
2972 chv_phy_post_pll_disable(encoder);
2973 }
2974
2975 /*
2976 * Fetch AUX CH registers 0x202 - 0x207 which contain
2977 * link status information
2978 */
2979 bool
2980 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2981 {
2982 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
2983 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2984 }
2985
2986 /* These are source-specific values. */
2987 uint8_t
2988 intel_dp_voltage_max(struct intel_dp *intel_dp)
2989 {
2990 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2991 struct drm_i915_private *dev_priv = to_i915(dev);
2992 enum port port = dp_to_dig_port(intel_dp)->port;
2993
2994 if (IS_BROXTON(dev_priv))
2995 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2996 else if (INTEL_INFO(dev)->gen >= 9) {
2997 if (dev_priv->vbt.edp.low_vswing && port == PORT_A)
2998 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2999 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3000 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3001 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3002 else if (IS_GEN7(dev_priv) && port == PORT_A)
3003 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3004 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3005 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3006 else
3007 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3008 }
3009
3010 uint8_t
3011 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3012 {
3013 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
3014 enum port port = dp_to_dig_port(intel_dp)->port;
3015
3016 if (INTEL_GEN(dev_priv) >= 9) {
3017 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3018 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3019 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3020 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3021 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3022 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3023 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3024 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3025 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3026 default:
3027 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3028 }
3029 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3030 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3031 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3032 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3033 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3034 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3035 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3036 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3037 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3038 default:
3039 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3040 }
3041 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3042 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3043 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3044 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3045 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3046 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3047 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3048 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3049 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3050 default:
3051 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3052 }
3053 } else if (IS_GEN7(dev_priv) && port == PORT_A) {
3054 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3055 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3056 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3057 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3058 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3059 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3060 default:
3061 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3062 }
3063 } else {
3064 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3065 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3066 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3067 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3068 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3069 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3070 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3071 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3072 default:
3073 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3074 }
3075 }
3076 }
3077
3078 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3079 {
3080 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3081 unsigned long demph_reg_value, preemph_reg_value,
3082 uniqtranscale_reg_value;
3083 uint8_t train_set = intel_dp->train_set[0];
3084
3085 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3086 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3087 preemph_reg_value = 0x0004000;
3088 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3089 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3090 demph_reg_value = 0x2B405555;
3091 uniqtranscale_reg_value = 0x552AB83A;
3092 break;
3093 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3094 demph_reg_value = 0x2B404040;
3095 uniqtranscale_reg_value = 0x5548B83A;
3096 break;
3097 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3098 demph_reg_value = 0x2B245555;
3099 uniqtranscale_reg_value = 0x5560B83A;
3100 break;
3101 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3102 demph_reg_value = 0x2B405555;
3103 uniqtranscale_reg_value = 0x5598DA3A;
3104 break;
3105 default:
3106 return 0;
3107 }
3108 break;
3109 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3110 preemph_reg_value = 0x0002000;
3111 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3112 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3113 demph_reg_value = 0x2B404040;
3114 uniqtranscale_reg_value = 0x5552B83A;
3115 break;
3116 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3117 demph_reg_value = 0x2B404848;
3118 uniqtranscale_reg_value = 0x5580B83A;
3119 break;
3120 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3121 demph_reg_value = 0x2B404040;
3122 uniqtranscale_reg_value = 0x55ADDA3A;
3123 break;
3124 default:
3125 return 0;
3126 }
3127 break;
3128 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3129 preemph_reg_value = 0x0000000;
3130 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3131 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3132 demph_reg_value = 0x2B305555;
3133 uniqtranscale_reg_value = 0x5570B83A;
3134 break;
3135 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3136 demph_reg_value = 0x2B2B4040;
3137 uniqtranscale_reg_value = 0x55ADDA3A;
3138 break;
3139 default:
3140 return 0;
3141 }
3142 break;
3143 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3144 preemph_reg_value = 0x0006000;
3145 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3146 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3147 demph_reg_value = 0x1B405555;
3148 uniqtranscale_reg_value = 0x55ADDA3A;
3149 break;
3150 default:
3151 return 0;
3152 }
3153 break;
3154 default:
3155 return 0;
3156 }
3157
3158 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3159 uniqtranscale_reg_value, 0);
3160
3161 return 0;
3162 }
3163
3164 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3165 {
3166 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3167 u32 deemph_reg_value, margin_reg_value;
3168 bool uniq_trans_scale = false;
3169 uint8_t train_set = intel_dp->train_set[0];
3170
3171 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3172 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3173 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3174 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3175 deemph_reg_value = 128;
3176 margin_reg_value = 52;
3177 break;
3178 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3179 deemph_reg_value = 128;
3180 margin_reg_value = 77;
3181 break;
3182 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3183 deemph_reg_value = 128;
3184 margin_reg_value = 102;
3185 break;
3186 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3187 deemph_reg_value = 128;
3188 margin_reg_value = 154;
3189 uniq_trans_scale = true;
3190 break;
3191 default:
3192 return 0;
3193 }
3194 break;
3195 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3196 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3197 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3198 deemph_reg_value = 85;
3199 margin_reg_value = 78;
3200 break;
3201 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3202 deemph_reg_value = 85;
3203 margin_reg_value = 116;
3204 break;
3205 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3206 deemph_reg_value = 85;
3207 margin_reg_value = 154;
3208 break;
3209 default:
3210 return 0;
3211 }
3212 break;
3213 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3214 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3215 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3216 deemph_reg_value = 64;
3217 margin_reg_value = 104;
3218 break;
3219 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3220 deemph_reg_value = 64;
3221 margin_reg_value = 154;
3222 break;
3223 default:
3224 return 0;
3225 }
3226 break;
3227 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3228 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3229 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3230 deemph_reg_value = 43;
3231 margin_reg_value = 154;
3232 break;
3233 default:
3234 return 0;
3235 }
3236 break;
3237 default:
3238 return 0;
3239 }
3240
3241 chv_set_phy_signal_level(encoder, deemph_reg_value,
3242 margin_reg_value, uniq_trans_scale);
3243
3244 return 0;
3245 }
3246
3247 static uint32_t
3248 gen4_signal_levels(uint8_t train_set)
3249 {
3250 uint32_t signal_levels = 0;
3251
3252 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3253 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3254 default:
3255 signal_levels |= DP_VOLTAGE_0_4;
3256 break;
3257 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3258 signal_levels |= DP_VOLTAGE_0_6;
3259 break;
3260 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3261 signal_levels |= DP_VOLTAGE_0_8;
3262 break;
3263 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3264 signal_levels |= DP_VOLTAGE_1_2;
3265 break;
3266 }
3267 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3268 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3269 default:
3270 signal_levels |= DP_PRE_EMPHASIS_0;
3271 break;
3272 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3273 signal_levels |= DP_PRE_EMPHASIS_3_5;
3274 break;
3275 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3276 signal_levels |= DP_PRE_EMPHASIS_6;
3277 break;
3278 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3279 signal_levels |= DP_PRE_EMPHASIS_9_5;
3280 break;
3281 }
3282 return signal_levels;
3283 }
3284
3285 /* Gen6's DP voltage swing and pre-emphasis control */
3286 static uint32_t
3287 gen6_edp_signal_levels(uint8_t train_set)
3288 {
3289 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3290 DP_TRAIN_PRE_EMPHASIS_MASK);
3291 switch (signal_levels) {
3292 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3293 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3294 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3295 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3296 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3297 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3298 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3299 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3300 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3301 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3302 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3303 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3304 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3305 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3306 default:
3307 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3308 "0x%x\n", signal_levels);
3309 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3310 }
3311 }
3312
3313 /* Gen7's DP voltage swing and pre-emphasis control */
3314 static uint32_t
3315 gen7_edp_signal_levels(uint8_t train_set)
3316 {
3317 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3318 DP_TRAIN_PRE_EMPHASIS_MASK);
3319 switch (signal_levels) {
3320 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3321 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3322 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3323 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3324 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3325 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3326
3327 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3328 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3329 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3330 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3331
3332 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3333 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3334 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3335 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3336
3337 default:
3338 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3339 "0x%x\n", signal_levels);
3340 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3341 }
3342 }
3343
3344 void
3345 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3346 {
3347 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3348 enum port port = intel_dig_port->port;
3349 struct drm_device *dev = intel_dig_port->base.base.dev;
3350 struct drm_i915_private *dev_priv = to_i915(dev);
3351 uint32_t signal_levels, mask = 0;
3352 uint8_t train_set = intel_dp->train_set[0];
3353
3354 if (HAS_DDI(dev_priv)) {
3355 signal_levels = ddi_signal_levels(intel_dp);
3356
3357 if (IS_BROXTON(dev_priv))
3358 signal_levels = 0;
3359 else
3360 mask = DDI_BUF_EMP_MASK;
3361 } else if (IS_CHERRYVIEW(dev_priv)) {
3362 signal_levels = chv_signal_levels(intel_dp);
3363 } else if (IS_VALLEYVIEW(dev_priv)) {
3364 signal_levels = vlv_signal_levels(intel_dp);
3365 } else if (IS_GEN7(dev_priv) && port == PORT_A) {
3366 signal_levels = gen7_edp_signal_levels(train_set);
3367 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3368 } else if (IS_GEN6(dev_priv) && port == PORT_A) {
3369 signal_levels = gen6_edp_signal_levels(train_set);
3370 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3371 } else {
3372 signal_levels = gen4_signal_levels(train_set);
3373 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3374 }
3375
3376 if (mask)
3377 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3378
3379 DRM_DEBUG_KMS("Using vswing level %d\n",
3380 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3381 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3382 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3383 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3384
3385 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3386
3387 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3388 POSTING_READ(intel_dp->output_reg);
3389 }
3390
3391 void
3392 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3393 uint8_t dp_train_pat)
3394 {
3395 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3396 struct drm_i915_private *dev_priv =
3397 to_i915(intel_dig_port->base.base.dev);
3398
3399 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3400
3401 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3402 POSTING_READ(intel_dp->output_reg);
3403 }
3404
3405 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3406 {
3407 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3408 struct drm_device *dev = intel_dig_port->base.base.dev;
3409 struct drm_i915_private *dev_priv = to_i915(dev);
3410 enum port port = intel_dig_port->port;
3411 uint32_t val;
3412
3413 if (!HAS_DDI(dev_priv))
3414 return;
3415
3416 val = I915_READ(DP_TP_CTL(port));
3417 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3418 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3419 I915_WRITE(DP_TP_CTL(port), val);
3420
3421 /*
3422 * On PORT_A we can have only eDP in SST mode. There the only reason
3423 * we need to set idle transmission mode is to work around a HW issue
3424 * where we enable the pipe while not in idle link-training mode.
3425 * In this case there is requirement to wait for a minimum number of
3426 * idle patterns to be sent.
3427 */
3428 if (port == PORT_A)
3429 return;
3430
3431 if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
3432 DP_TP_STATUS_IDLE_DONE,
3433 DP_TP_STATUS_IDLE_DONE,
3434 1))
3435 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3436 }
3437
3438 static void
3439 intel_dp_link_down(struct intel_dp *intel_dp)
3440 {
3441 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3442 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3443 enum port port = intel_dig_port->port;
3444 struct drm_device *dev = intel_dig_port->base.base.dev;
3445 struct drm_i915_private *dev_priv = to_i915(dev);
3446 uint32_t DP = intel_dp->DP;
3447
3448 if (WARN_ON(HAS_DDI(dev_priv)))
3449 return;
3450
3451 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3452 return;
3453
3454 DRM_DEBUG_KMS("\n");
3455
3456 if ((IS_GEN7(dev_priv) && port == PORT_A) ||
3457 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3458 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3459 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3460 } else {
3461 if (IS_CHERRYVIEW(dev_priv))
3462 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3463 else
3464 DP &= ~DP_LINK_TRAIN_MASK;
3465 DP |= DP_LINK_TRAIN_PAT_IDLE;
3466 }
3467 I915_WRITE(intel_dp->output_reg, DP);
3468 POSTING_READ(intel_dp->output_reg);
3469
3470 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3471 I915_WRITE(intel_dp->output_reg, DP);
3472 POSTING_READ(intel_dp->output_reg);
3473
3474 /*
3475 * HW workaround for IBX, we need to move the port
3476 * to transcoder A after disabling it to allow the
3477 * matching HDMI port to be enabled on transcoder A.
3478 */
3479 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
3480 /*
3481 * We get CPU/PCH FIFO underruns on the other pipe when
3482 * doing the workaround. Sweep them under the rug.
3483 */
3484 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3485 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3486
3487 /* always enable with pattern 1 (as per spec) */
3488 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3489 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3490 I915_WRITE(intel_dp->output_reg, DP);
3491 POSTING_READ(intel_dp->output_reg);
3492
3493 DP &= ~DP_PORT_EN;
3494 I915_WRITE(intel_dp->output_reg, DP);
3495 POSTING_READ(intel_dp->output_reg);
3496
3497 intel_wait_for_vblank_if_active(&dev_priv->drm, PIPE_A);
3498 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3499 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3500 }
3501
3502 msleep(intel_dp->panel_power_down_delay);
3503
3504 intel_dp->DP = DP;
3505 }
3506
3507 static bool
3508 intel_dp_read_dpcd(struct intel_dp *intel_dp)
3509 {
3510 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
3511 sizeof(intel_dp->dpcd)) < 0)
3512 return false; /* aux transfer failed */
3513
3514 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3515
3516 return intel_dp->dpcd[DP_DPCD_REV] != 0;
3517 }
3518
3519 static bool
3520 intel_edp_init_dpcd(struct intel_dp *intel_dp)
3521 {
3522 struct drm_i915_private *dev_priv =
3523 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
3524
3525 /* this function is meant to be called only once */
3526 WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
3527
3528 if (!intel_dp_read_dpcd(intel_dp))
3529 return false;
3530
3531 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3532 dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3533 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3534
3535 /* Check if the panel supports PSR */
3536 drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT,
3537 intel_dp->psr_dpcd,
3538 sizeof(intel_dp->psr_dpcd));
3539 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3540 dev_priv->psr.sink_support = true;
3541 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3542 }
3543
3544 if (INTEL_GEN(dev_priv) >= 9 &&
3545 (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3546 uint8_t frame_sync_cap;
3547
3548 dev_priv->psr.sink_support = true;
3549 drm_dp_dpcd_read(&intel_dp->aux,
3550 DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3551 &frame_sync_cap, 1);
3552 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3553 /* PSR2 needs frame sync as well */
3554 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3555 DRM_DEBUG_KMS("PSR2 %s on sink",
3556 dev_priv->psr.psr2_support ? "supported" : "not supported");
3557 }
3558
3559 /* Read the eDP Display control capabilities registers */
3560 if ((intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3561 drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
3562 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
3563 sizeof(intel_dp->edp_dpcd))
3564 DRM_DEBUG_KMS("EDP DPCD : %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
3565 intel_dp->edp_dpcd);
3566
3567 /* Intermediate frequency support */
3568 if (intel_dp->edp_dpcd[0] >= 0x03) { /* eDp v1.4 or higher */
3569 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3570 int i;
3571
3572 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
3573 sink_rates, sizeof(sink_rates));
3574
3575 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3576 int val = le16_to_cpu(sink_rates[i]);
3577
3578 if (val == 0)
3579 break;
3580
3581 /* Value read is in kHz while drm clock is saved in deca-kHz */
3582 intel_dp->sink_rates[i] = (val * 200) / 10;
3583 }
3584 intel_dp->num_sink_rates = i;
3585 }
3586
3587 return true;
3588 }
3589
3590
3591 static bool
3592 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3593 {
3594 if (!intel_dp_read_dpcd(intel_dp))
3595 return false;
3596
3597 if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT,
3598 &intel_dp->sink_count, 1) < 0)
3599 return false;
3600
3601 /*
3602 * Sink count can change between short pulse hpd hence
3603 * a member variable in intel_dp will track any changes
3604 * between short pulse interrupts.
3605 */
3606 intel_dp->sink_count = DP_GET_SINK_COUNT(intel_dp->sink_count);
3607
3608 /*
3609 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3610 * a dongle is present but no display. Unless we require to know
3611 * if a dongle is present or not, we don't need to update
3612 * downstream port information. So, an early return here saves
3613 * time from performing other operations which are not required.
3614 */
3615 if (!is_edp(intel_dp) && !intel_dp->sink_count)
3616 return false;
3617
3618 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3619 DP_DWN_STRM_PORT_PRESENT))
3620 return true; /* native DP sink */
3621
3622 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3623 return true; /* no per-port downstream info */
3624
3625 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3626 intel_dp->downstream_ports,
3627 DP_MAX_DOWNSTREAM_PORTS) < 0)
3628 return false; /* downstream port status fetch failed */
3629
3630 return true;
3631 }
3632
3633 static void
3634 intel_dp_probe_oui(struct intel_dp *intel_dp)
3635 {
3636 u8 buf[3];
3637
3638 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3639 return;
3640
3641 if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3642 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3643 buf[0], buf[1], buf[2]);
3644
3645 if (drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3646 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3647 buf[0], buf[1], buf[2]);
3648 }
3649
3650 static bool
3651 intel_dp_can_mst(struct intel_dp *intel_dp)
3652 {
3653 u8 buf[1];
3654
3655 if (!i915.enable_dp_mst)
3656 return false;
3657
3658 if (!intel_dp->can_mst)
3659 return false;
3660
3661 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3662 return false;
3663
3664 if (drm_dp_dpcd_read(&intel_dp->aux, DP_MSTM_CAP, buf, 1) != 1)
3665 return false;
3666
3667 return buf[0] & DP_MST_CAP;
3668 }
3669
3670 static void
3671 intel_dp_configure_mst(struct intel_dp *intel_dp)
3672 {
3673 if (!i915.enable_dp_mst)
3674 return;
3675
3676 if (!intel_dp->can_mst)
3677 return;
3678
3679 intel_dp->is_mst = intel_dp_can_mst(intel_dp);
3680
3681 if (intel_dp->is_mst)
3682 DRM_DEBUG_KMS("Sink is MST capable\n");
3683 else
3684 DRM_DEBUG_KMS("Sink is not MST capable\n");
3685
3686 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
3687 intel_dp->is_mst);
3688 }
3689
3690 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3691 {
3692 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3693 struct drm_device *dev = dig_port->base.base.dev;
3694 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3695 u8 buf;
3696 int ret = 0;
3697 int count = 0;
3698 int attempts = 10;
3699
3700 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3701 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3702 ret = -EIO;
3703 goto out;
3704 }
3705
3706 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3707 buf & ~DP_TEST_SINK_START) < 0) {
3708 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3709 ret = -EIO;
3710 goto out;
3711 }
3712
3713 do {
3714 intel_wait_for_vblank(dev, intel_crtc->pipe);
3715
3716 if (drm_dp_dpcd_readb(&intel_dp->aux,
3717 DP_TEST_SINK_MISC, &buf) < 0) {
3718 ret = -EIO;
3719 goto out;
3720 }
3721 count = buf & DP_TEST_COUNT_MASK;
3722 } while (--attempts && count);
3723
3724 if (attempts == 0) {
3725 DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
3726 ret = -ETIMEDOUT;
3727 }
3728
3729 out:
3730 hsw_enable_ips(intel_crtc);
3731 return ret;
3732 }
3733
3734 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
3735 {
3736 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3737 struct drm_device *dev = dig_port->base.base.dev;
3738 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3739 u8 buf;
3740 int ret;
3741
3742 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3743 return -EIO;
3744
3745 if (!(buf & DP_TEST_CRC_SUPPORTED))
3746 return -ENOTTY;
3747
3748 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3749 return -EIO;
3750
3751 if (buf & DP_TEST_SINK_START) {
3752 ret = intel_dp_sink_crc_stop(intel_dp);
3753 if (ret)
3754 return ret;
3755 }
3756
3757 hsw_disable_ips(intel_crtc);
3758
3759 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3760 buf | DP_TEST_SINK_START) < 0) {
3761 hsw_enable_ips(intel_crtc);
3762 return -EIO;
3763 }
3764
3765 intel_wait_for_vblank(dev, intel_crtc->pipe);
3766 return 0;
3767 }
3768
3769 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3770 {
3771 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3772 struct drm_device *dev = dig_port->base.base.dev;
3773 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3774 u8 buf;
3775 int count, ret;
3776 int attempts = 6;
3777
3778 ret = intel_dp_sink_crc_start(intel_dp);
3779 if (ret)
3780 return ret;
3781
3782 do {
3783 intel_wait_for_vblank(dev, intel_crtc->pipe);
3784
3785 if (drm_dp_dpcd_readb(&intel_dp->aux,
3786 DP_TEST_SINK_MISC, &buf) < 0) {
3787 ret = -EIO;
3788 goto stop;
3789 }
3790 count = buf & DP_TEST_COUNT_MASK;
3791
3792 } while (--attempts && count == 0);
3793
3794 if (attempts == 0) {
3795 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
3796 ret = -ETIMEDOUT;
3797 goto stop;
3798 }
3799
3800 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
3801 ret = -EIO;
3802 goto stop;
3803 }
3804
3805 stop:
3806 intel_dp_sink_crc_stop(intel_dp);
3807 return ret;
3808 }
3809
3810 static bool
3811 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3812 {
3813 return drm_dp_dpcd_read(&intel_dp->aux,
3814 DP_DEVICE_SERVICE_IRQ_VECTOR,
3815 sink_irq_vector, 1) == 1;
3816 }
3817
3818 static bool
3819 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3820 {
3821 int ret;
3822
3823 ret = drm_dp_dpcd_read(&intel_dp->aux,
3824 DP_SINK_COUNT_ESI,
3825 sink_irq_vector, 14);
3826 if (ret != 14)
3827 return false;
3828
3829 return true;
3830 }
3831
3832 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
3833 {
3834 uint8_t test_result = DP_TEST_ACK;
3835 return test_result;
3836 }
3837
3838 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
3839 {
3840 uint8_t test_result = DP_TEST_NAK;
3841 return test_result;
3842 }
3843
3844 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
3845 {
3846 uint8_t test_result = DP_TEST_NAK;
3847 struct intel_connector *intel_connector = intel_dp->attached_connector;
3848 struct drm_connector *connector = &intel_connector->base;
3849
3850 if (intel_connector->detect_edid == NULL ||
3851 connector->edid_corrupt ||
3852 intel_dp->aux.i2c_defer_count > 6) {
3853 /* Check EDID read for NACKs, DEFERs and corruption
3854 * (DP CTS 1.2 Core r1.1)
3855 * 4.2.2.4 : Failed EDID read, I2C_NAK
3856 * 4.2.2.5 : Failed EDID read, I2C_DEFER
3857 * 4.2.2.6 : EDID corruption detected
3858 * Use failsafe mode for all cases
3859 */
3860 if (intel_dp->aux.i2c_nack_count > 0 ||
3861 intel_dp->aux.i2c_defer_count > 0)
3862 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
3863 intel_dp->aux.i2c_nack_count,
3864 intel_dp->aux.i2c_defer_count);
3865 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
3866 } else {
3867 struct edid *block = intel_connector->detect_edid;
3868
3869 /* We have to write the checksum
3870 * of the last block read
3871 */
3872 block += intel_connector->detect_edid->extensions;
3873
3874 if (!drm_dp_dpcd_write(&intel_dp->aux,
3875 DP_TEST_EDID_CHECKSUM,
3876 &block->checksum,
3877 1))
3878 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
3879
3880 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
3881 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
3882 }
3883
3884 /* Set test active flag here so userspace doesn't interrupt things */
3885 intel_dp->compliance_test_active = 1;
3886
3887 return test_result;
3888 }
3889
3890 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
3891 {
3892 uint8_t test_result = DP_TEST_NAK;
3893 return test_result;
3894 }
3895
3896 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
3897 {
3898 uint8_t response = DP_TEST_NAK;
3899 uint8_t rxdata = 0;
3900 int status = 0;
3901
3902 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
3903 if (status <= 0) {
3904 DRM_DEBUG_KMS("Could not read test request from sink\n");
3905 goto update_status;
3906 }
3907
3908 switch (rxdata) {
3909 case DP_TEST_LINK_TRAINING:
3910 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
3911 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
3912 response = intel_dp_autotest_link_training(intel_dp);
3913 break;
3914 case DP_TEST_LINK_VIDEO_PATTERN:
3915 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
3916 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
3917 response = intel_dp_autotest_video_pattern(intel_dp);
3918 break;
3919 case DP_TEST_LINK_EDID_READ:
3920 DRM_DEBUG_KMS("EDID test requested\n");
3921 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
3922 response = intel_dp_autotest_edid(intel_dp);
3923 break;
3924 case DP_TEST_LINK_PHY_TEST_PATTERN:
3925 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
3926 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
3927 response = intel_dp_autotest_phy_pattern(intel_dp);
3928 break;
3929 default:
3930 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
3931 break;
3932 }
3933
3934 update_status:
3935 status = drm_dp_dpcd_write(&intel_dp->aux,
3936 DP_TEST_RESPONSE,
3937 &response, 1);
3938 if (status <= 0)
3939 DRM_DEBUG_KMS("Could not write test response to sink\n");
3940 }
3941
3942 static int
3943 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3944 {
3945 bool bret;
3946
3947 if (intel_dp->is_mst) {
3948 u8 esi[16] = { 0 };
3949 int ret = 0;
3950 int retry;
3951 bool handled;
3952 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3953 go_again:
3954 if (bret == true) {
3955
3956 /* check link status - esi[10] = 0x200c */
3957 if (intel_dp->active_mst_links &&
3958 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3959 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3960 intel_dp_start_link_train(intel_dp);
3961 intel_dp_stop_link_train(intel_dp);
3962 }
3963
3964 DRM_DEBUG_KMS("got esi %3ph\n", esi);
3965 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3966
3967 if (handled) {
3968 for (retry = 0; retry < 3; retry++) {
3969 int wret;
3970 wret = drm_dp_dpcd_write(&intel_dp->aux,
3971 DP_SINK_COUNT_ESI+1,
3972 &esi[1], 3);
3973 if (wret == 3) {
3974 break;
3975 }
3976 }
3977
3978 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3979 if (bret == true) {
3980 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
3981 goto go_again;
3982 }
3983 } else
3984 ret = 0;
3985
3986 return ret;
3987 } else {
3988 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3989 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3990 intel_dp->is_mst = false;
3991 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3992 /* send a hotplug event */
3993 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3994 }
3995 }
3996 return -EINVAL;
3997 }
3998
3999 static void
4000 intel_dp_retrain_link(struct intel_dp *intel_dp)
4001 {
4002 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4003 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4004 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
4005
4006 /* Suppress underruns caused by re-training */
4007 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
4008 if (crtc->config->has_pch_encoder)
4009 intel_set_pch_fifo_underrun_reporting(dev_priv,
4010 intel_crtc_pch_transcoder(crtc), false);
4011
4012 intel_dp_start_link_train(intel_dp);
4013 intel_dp_stop_link_train(intel_dp);
4014
4015 /* Keep underrun reporting disabled until things are stable */
4016 intel_wait_for_vblank(&dev_priv->drm, crtc->pipe);
4017
4018 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
4019 if (crtc->config->has_pch_encoder)
4020 intel_set_pch_fifo_underrun_reporting(dev_priv,
4021 intel_crtc_pch_transcoder(crtc), true);
4022 }
4023
4024 static void
4025 intel_dp_check_link_status(struct intel_dp *intel_dp)
4026 {
4027 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4028 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4029 u8 link_status[DP_LINK_STATUS_SIZE];
4030
4031 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4032
4033 if (!intel_dp_get_link_status(intel_dp, link_status)) {
4034 DRM_ERROR("Failed to get link status\n");
4035 return;
4036 }
4037
4038 if (!intel_encoder->base.crtc)
4039 return;
4040
4041 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4042 return;
4043
4044 /* FIXME: we need to synchronize this sort of stuff with hardware
4045 * readout */
4046 if (WARN_ON_ONCE(!intel_dp->lane_count))
4047 return;
4048
4049 /* if link training is requested we should perform it always */
4050 if ((intel_dp->compliance_test_type == DP_TEST_LINK_TRAINING) ||
4051 (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count))) {
4052 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4053 intel_encoder->base.name);
4054
4055 intel_dp_retrain_link(intel_dp);
4056 }
4057 }
4058
4059 /*
4060 * According to DP spec
4061 * 5.1.2:
4062 * 1. Read DPCD
4063 * 2. Configure link according to Receiver Capabilities
4064 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4065 * 4. Check link status on receipt of hot-plug interrupt
4066 *
4067 * intel_dp_short_pulse - handles short pulse interrupts
4068 * when full detection is not required.
4069 * Returns %true if short pulse is handled and full detection
4070 * is NOT required and %false otherwise.
4071 */
4072 static bool
4073 intel_dp_short_pulse(struct intel_dp *intel_dp)
4074 {
4075 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4076 u8 sink_irq_vector = 0;
4077 u8 old_sink_count = intel_dp->sink_count;
4078 bool ret;
4079
4080 /*
4081 * Clearing compliance test variables to allow capturing
4082 * of values for next automated test request.
4083 */
4084 intel_dp->compliance_test_active = 0;
4085 intel_dp->compliance_test_type = 0;
4086 intel_dp->compliance_test_data = 0;
4087
4088 /*
4089 * Now read the DPCD to see if it's actually running
4090 * If the current value of sink count doesn't match with
4091 * the value that was stored earlier or dpcd read failed
4092 * we need to do full detection
4093 */
4094 ret = intel_dp_get_dpcd(intel_dp);
4095
4096 if ((old_sink_count != intel_dp->sink_count) || !ret) {
4097 /* No need to proceed if we are going to do full detect */
4098 return false;
4099 }
4100
4101 /* Try to read the source of the interrupt */
4102 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4103 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4104 sink_irq_vector != 0) {
4105 /* Clear interrupt source */
4106 drm_dp_dpcd_writeb(&intel_dp->aux,
4107 DP_DEVICE_SERVICE_IRQ_VECTOR,
4108 sink_irq_vector);
4109
4110 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4111 DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4112 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4113 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4114 }
4115
4116 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4117 intel_dp_check_link_status(intel_dp);
4118 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4119
4120 return true;
4121 }
4122
4123 /* XXX this is probably wrong for multiple downstream ports */
4124 static enum drm_connector_status
4125 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4126 {
4127 uint8_t *dpcd = intel_dp->dpcd;
4128 uint8_t type;
4129
4130 if (!intel_dp_get_dpcd(intel_dp))
4131 return connector_status_disconnected;
4132
4133 if (is_edp(intel_dp))
4134 return connector_status_connected;
4135
4136 /* if there's no downstream port, we're done */
4137 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4138 return connector_status_connected;
4139
4140 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4141 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4142 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4143
4144 return intel_dp->sink_count ?
4145 connector_status_connected : connector_status_disconnected;
4146 }
4147
4148 if (intel_dp_can_mst(intel_dp))
4149 return connector_status_connected;
4150
4151 /* If no HPD, poke DDC gently */
4152 if (drm_probe_ddc(&intel_dp->aux.ddc))
4153 return connector_status_connected;
4154
4155 /* Well we tried, say unknown for unreliable port types */
4156 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4157 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4158 if (type == DP_DS_PORT_TYPE_VGA ||
4159 type == DP_DS_PORT_TYPE_NON_EDID)
4160 return connector_status_unknown;
4161 } else {
4162 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4163 DP_DWN_STRM_PORT_TYPE_MASK;
4164 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4165 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4166 return connector_status_unknown;
4167 }
4168
4169 /* Anything else is out of spec, warn and ignore */
4170 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4171 return connector_status_disconnected;
4172 }
4173
4174 static enum drm_connector_status
4175 edp_detect(struct intel_dp *intel_dp)
4176 {
4177 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4178 enum drm_connector_status status;
4179
4180 status = intel_panel_detect(dev);
4181 if (status == connector_status_unknown)
4182 status = connector_status_connected;
4183
4184 return status;
4185 }
4186
4187 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4188 struct intel_digital_port *port)
4189 {
4190 u32 bit;
4191
4192 switch (port->port) {
4193 case PORT_A:
4194 return true;
4195 case PORT_B:
4196 bit = SDE_PORTB_HOTPLUG;
4197 break;
4198 case PORT_C:
4199 bit = SDE_PORTC_HOTPLUG;
4200 break;
4201 case PORT_D:
4202 bit = SDE_PORTD_HOTPLUG;
4203 break;
4204 default:
4205 MISSING_CASE(port->port);
4206 return false;
4207 }
4208
4209 return I915_READ(SDEISR) & bit;
4210 }
4211
4212 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4213 struct intel_digital_port *port)
4214 {
4215 u32 bit;
4216
4217 switch (port->port) {
4218 case PORT_A:
4219 return true;
4220 case PORT_B:
4221 bit = SDE_PORTB_HOTPLUG_CPT;
4222 break;
4223 case PORT_C:
4224 bit = SDE_PORTC_HOTPLUG_CPT;
4225 break;
4226 case PORT_D:
4227 bit = SDE_PORTD_HOTPLUG_CPT;
4228 break;
4229 case PORT_E:
4230 bit = SDE_PORTE_HOTPLUG_SPT;
4231 break;
4232 default:
4233 MISSING_CASE(port->port);
4234 return false;
4235 }
4236
4237 return I915_READ(SDEISR) & bit;
4238 }
4239
4240 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4241 struct intel_digital_port *port)
4242 {
4243 u32 bit;
4244
4245 switch (port->port) {
4246 case PORT_B:
4247 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4248 break;
4249 case PORT_C:
4250 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4251 break;
4252 case PORT_D:
4253 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4254 break;
4255 default:
4256 MISSING_CASE(port->port);
4257 return false;
4258 }
4259
4260 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4261 }
4262
4263 static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
4264 struct intel_digital_port *port)
4265 {
4266 u32 bit;
4267
4268 switch (port->port) {
4269 case PORT_B:
4270 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4271 break;
4272 case PORT_C:
4273 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4274 break;
4275 case PORT_D:
4276 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4277 break;
4278 default:
4279 MISSING_CASE(port->port);
4280 return false;
4281 }
4282
4283 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4284 }
4285
4286 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4287 struct intel_digital_port *intel_dig_port)
4288 {
4289 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4290 enum port port;
4291 u32 bit;
4292
4293 intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4294 switch (port) {
4295 case PORT_A:
4296 bit = BXT_DE_PORT_HP_DDIA;
4297 break;
4298 case PORT_B:
4299 bit = BXT_DE_PORT_HP_DDIB;
4300 break;
4301 case PORT_C:
4302 bit = BXT_DE_PORT_HP_DDIC;
4303 break;
4304 default:
4305 MISSING_CASE(port);
4306 return false;
4307 }
4308
4309 return I915_READ(GEN8_DE_PORT_ISR) & bit;
4310 }
4311
4312 /*
4313 * intel_digital_port_connected - is the specified port connected?
4314 * @dev_priv: i915 private structure
4315 * @port: the port to test
4316 *
4317 * Return %true if @port is connected, %false otherwise.
4318 */
4319 static bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4320 struct intel_digital_port *port)
4321 {
4322 if (HAS_PCH_IBX(dev_priv))
4323 return ibx_digital_port_connected(dev_priv, port);
4324 else if (HAS_PCH_SPLIT(dev_priv))
4325 return cpt_digital_port_connected(dev_priv, port);
4326 else if (IS_BROXTON(dev_priv))
4327 return bxt_digital_port_connected(dev_priv, port);
4328 else if (IS_GM45(dev_priv))
4329 return gm45_digital_port_connected(dev_priv, port);
4330 else
4331 return g4x_digital_port_connected(dev_priv, port);
4332 }
4333
4334 static struct edid *
4335 intel_dp_get_edid(struct intel_dp *intel_dp)
4336 {
4337 struct intel_connector *intel_connector = intel_dp->attached_connector;
4338
4339 /* use cached edid if we have one */
4340 if (intel_connector->edid) {
4341 /* invalid edid */
4342 if (IS_ERR(intel_connector->edid))
4343 return NULL;
4344
4345 return drm_edid_duplicate(intel_connector->edid);
4346 } else
4347 return drm_get_edid(&intel_connector->base,
4348 &intel_dp->aux.ddc);
4349 }
4350
4351 static void
4352 intel_dp_set_edid(struct intel_dp *intel_dp)
4353 {
4354 struct intel_connector *intel_connector = intel_dp->attached_connector;
4355 struct edid *edid;
4356
4357 intel_dp_unset_edid(intel_dp);
4358 edid = intel_dp_get_edid(intel_dp);
4359 intel_connector->detect_edid = edid;
4360
4361 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4362 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4363 else
4364 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4365 }
4366
4367 static void
4368 intel_dp_unset_edid(struct intel_dp *intel_dp)
4369 {
4370 struct intel_connector *intel_connector = intel_dp->attached_connector;
4371
4372 kfree(intel_connector->detect_edid);
4373 intel_connector->detect_edid = NULL;
4374
4375 intel_dp->has_audio = false;
4376 }
4377
4378 static enum drm_connector_status
4379 intel_dp_long_pulse(struct intel_connector *intel_connector)
4380 {
4381 struct drm_connector *connector = &intel_connector->base;
4382 struct intel_dp *intel_dp = intel_attached_dp(connector);
4383 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4384 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4385 struct drm_device *dev = connector->dev;
4386 enum drm_connector_status status;
4387 enum intel_display_power_domain power_domain;
4388 u8 sink_irq_vector = 0;
4389
4390 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4391 intel_display_power_get(to_i915(dev), power_domain);
4392
4393 /* Can't disconnect eDP, but you can close the lid... */
4394 if (is_edp(intel_dp))
4395 status = edp_detect(intel_dp);
4396 else if (intel_digital_port_connected(to_i915(dev),
4397 dp_to_dig_port(intel_dp)))
4398 status = intel_dp_detect_dpcd(intel_dp);
4399 else
4400 status = connector_status_disconnected;
4401
4402 if (status == connector_status_disconnected) {
4403 intel_dp->compliance_test_active = 0;
4404 intel_dp->compliance_test_type = 0;
4405 intel_dp->compliance_test_data = 0;
4406
4407 if (intel_dp->is_mst) {
4408 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4409 intel_dp->is_mst,
4410 intel_dp->mst_mgr.mst_state);
4411 intel_dp->is_mst = false;
4412 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4413 intel_dp->is_mst);
4414 }
4415
4416 goto out;
4417 }
4418
4419 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4420 intel_encoder->type = INTEL_OUTPUT_DP;
4421
4422 DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
4423 yesno(intel_dp_source_supports_hbr2(intel_dp)),
4424 yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
4425
4426 intel_dp_print_rates(intel_dp);
4427
4428 intel_dp_probe_oui(intel_dp);
4429
4430 intel_dp_print_hw_revision(intel_dp);
4431 intel_dp_print_sw_revision(intel_dp);
4432
4433 intel_dp_configure_mst(intel_dp);
4434
4435 if (intel_dp->is_mst) {
4436 /*
4437 * If we are in MST mode then this connector
4438 * won't appear connected or have anything
4439 * with EDID on it
4440 */
4441 status = connector_status_disconnected;
4442 goto out;
4443 } else if (connector->status == connector_status_connected) {
4444 /*
4445 * If display was connected already and is still connected
4446 * check links status, there has been known issues of
4447 * link loss triggerring long pulse!!!!
4448 */
4449 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4450 intel_dp_check_link_status(intel_dp);
4451 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4452 goto out;
4453 }
4454
4455 /*
4456 * Clearing NACK and defer counts to get their exact values
4457 * while reading EDID which are required by Compliance tests
4458 * 4.2.2.4 and 4.2.2.5
4459 */
4460 intel_dp->aux.i2c_nack_count = 0;
4461 intel_dp->aux.i2c_defer_count = 0;
4462
4463 intel_dp_set_edid(intel_dp);
4464 if (is_edp(intel_dp) || intel_connector->detect_edid)
4465 status = connector_status_connected;
4466 intel_dp->detect_done = true;
4467
4468 /* Try to read the source of the interrupt */
4469 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4470 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4471 sink_irq_vector != 0) {
4472 /* Clear interrupt source */
4473 drm_dp_dpcd_writeb(&intel_dp->aux,
4474 DP_DEVICE_SERVICE_IRQ_VECTOR,
4475 sink_irq_vector);
4476
4477 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4478 intel_dp_handle_test_request(intel_dp);
4479 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4480 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4481 }
4482
4483 out:
4484 if (status != connector_status_connected && !intel_dp->is_mst)
4485 intel_dp_unset_edid(intel_dp);
4486
4487 intel_display_power_put(to_i915(dev), power_domain);
4488 return status;
4489 }
4490
4491 static enum drm_connector_status
4492 intel_dp_detect(struct drm_connector *connector, bool force)
4493 {
4494 struct intel_dp *intel_dp = intel_attached_dp(connector);
4495 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4496 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4497 enum drm_connector_status status = connector->status;
4498
4499 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4500 connector->base.id, connector->name);
4501
4502 if (intel_dp->is_mst) {
4503 /* MST devices are disconnected from a monitor POV */
4504 intel_dp_unset_edid(intel_dp);
4505 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4506 intel_encoder->type = INTEL_OUTPUT_DP;
4507 return connector_status_disconnected;
4508 }
4509
4510 /* If full detect is not performed yet, do a full detect */
4511 if (!intel_dp->detect_done)
4512 status = intel_dp_long_pulse(intel_dp->attached_connector);
4513
4514 intel_dp->detect_done = false;
4515
4516 return status;
4517 }
4518
4519 static void
4520 intel_dp_force(struct drm_connector *connector)
4521 {
4522 struct intel_dp *intel_dp = intel_attached_dp(connector);
4523 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4524 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4525 enum intel_display_power_domain power_domain;
4526
4527 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4528 connector->base.id, connector->name);
4529 intel_dp_unset_edid(intel_dp);
4530
4531 if (connector->status != connector_status_connected)
4532 return;
4533
4534 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4535 intel_display_power_get(dev_priv, power_domain);
4536
4537 intel_dp_set_edid(intel_dp);
4538
4539 intel_display_power_put(dev_priv, power_domain);
4540
4541 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4542 intel_encoder->type = INTEL_OUTPUT_DP;
4543 }
4544
4545 static int intel_dp_get_modes(struct drm_connector *connector)
4546 {
4547 struct intel_connector *intel_connector = to_intel_connector(connector);
4548 struct edid *edid;
4549
4550 edid = intel_connector->detect_edid;
4551 if (edid) {
4552 int ret = intel_connector_update_modes(connector, edid);
4553 if (ret)
4554 return ret;
4555 }
4556
4557 /* if eDP has no EDID, fall back to fixed mode */
4558 if (is_edp(intel_attached_dp(connector)) &&
4559 intel_connector->panel.fixed_mode) {
4560 struct drm_display_mode *mode;
4561
4562 mode = drm_mode_duplicate(connector->dev,
4563 intel_connector->panel.fixed_mode);
4564 if (mode) {
4565 drm_mode_probed_add(connector, mode);
4566 return 1;
4567 }
4568 }
4569
4570 return 0;
4571 }
4572
4573 static bool
4574 intel_dp_detect_audio(struct drm_connector *connector)
4575 {
4576 bool has_audio = false;
4577 struct edid *edid;
4578
4579 edid = to_intel_connector(connector)->detect_edid;
4580 if (edid)
4581 has_audio = drm_detect_monitor_audio(edid);
4582
4583 return has_audio;
4584 }
4585
4586 static int
4587 intel_dp_set_property(struct drm_connector *connector,
4588 struct drm_property *property,
4589 uint64_t val)
4590 {
4591 struct drm_i915_private *dev_priv = to_i915(connector->dev);
4592 struct intel_connector *intel_connector = to_intel_connector(connector);
4593 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4594 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4595 int ret;
4596
4597 ret = drm_object_property_set_value(&connector->base, property, val);
4598 if (ret)
4599 return ret;
4600
4601 if (property == dev_priv->force_audio_property) {
4602 int i = val;
4603 bool has_audio;
4604
4605 if (i == intel_dp->force_audio)
4606 return 0;
4607
4608 intel_dp->force_audio = i;
4609
4610 if (i == HDMI_AUDIO_AUTO)
4611 has_audio = intel_dp_detect_audio(connector);
4612 else
4613 has_audio = (i == HDMI_AUDIO_ON);
4614
4615 if (has_audio == intel_dp->has_audio)
4616 return 0;
4617
4618 intel_dp->has_audio = has_audio;
4619 goto done;
4620 }
4621
4622 if (property == dev_priv->broadcast_rgb_property) {
4623 bool old_auto = intel_dp->color_range_auto;
4624 bool old_range = intel_dp->limited_color_range;
4625
4626 switch (val) {
4627 case INTEL_BROADCAST_RGB_AUTO:
4628 intel_dp->color_range_auto = true;
4629 break;
4630 case INTEL_BROADCAST_RGB_FULL:
4631 intel_dp->color_range_auto = false;
4632 intel_dp->limited_color_range = false;
4633 break;
4634 case INTEL_BROADCAST_RGB_LIMITED:
4635 intel_dp->color_range_auto = false;
4636 intel_dp->limited_color_range = true;
4637 break;
4638 default:
4639 return -EINVAL;
4640 }
4641
4642 if (old_auto == intel_dp->color_range_auto &&
4643 old_range == intel_dp->limited_color_range)
4644 return 0;
4645
4646 goto done;
4647 }
4648
4649 if (is_edp(intel_dp) &&
4650 property == connector->dev->mode_config.scaling_mode_property) {
4651 if (val == DRM_MODE_SCALE_NONE) {
4652 DRM_DEBUG_KMS("no scaling not supported\n");
4653 return -EINVAL;
4654 }
4655 if (HAS_GMCH_DISPLAY(dev_priv) &&
4656 val == DRM_MODE_SCALE_CENTER) {
4657 DRM_DEBUG_KMS("centering not supported\n");
4658 return -EINVAL;
4659 }
4660
4661 if (intel_connector->panel.fitting_mode == val) {
4662 /* the eDP scaling property is not changed */
4663 return 0;
4664 }
4665 intel_connector->panel.fitting_mode = val;
4666
4667 goto done;
4668 }
4669
4670 return -EINVAL;
4671
4672 done:
4673 if (intel_encoder->base.crtc)
4674 intel_crtc_restore_mode(intel_encoder->base.crtc);
4675
4676 return 0;
4677 }
4678
4679 static int
4680 intel_dp_connector_register(struct drm_connector *connector)
4681 {
4682 struct intel_dp *intel_dp = intel_attached_dp(connector);
4683 int ret;
4684
4685 ret = intel_connector_register(connector);
4686 if (ret)
4687 return ret;
4688
4689 i915_debugfs_connector_add(connector);
4690
4691 DRM_DEBUG_KMS("registering %s bus for %s\n",
4692 intel_dp->aux.name, connector->kdev->kobj.name);
4693
4694 intel_dp->aux.dev = connector->kdev;
4695 return drm_dp_aux_register(&intel_dp->aux);
4696 }
4697
4698 static void
4699 intel_dp_connector_unregister(struct drm_connector *connector)
4700 {
4701 drm_dp_aux_unregister(&intel_attached_dp(connector)->aux);
4702 intel_connector_unregister(connector);
4703 }
4704
4705 static void
4706 intel_dp_connector_destroy(struct drm_connector *connector)
4707 {
4708 struct intel_connector *intel_connector = to_intel_connector(connector);
4709
4710 kfree(intel_connector->detect_edid);
4711
4712 if (!IS_ERR_OR_NULL(intel_connector->edid))
4713 kfree(intel_connector->edid);
4714
4715 /* Can't call is_edp() since the encoder may have been destroyed
4716 * already. */
4717 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4718 intel_panel_fini(&intel_connector->panel);
4719
4720 drm_connector_cleanup(connector);
4721 kfree(connector);
4722 }
4723
4724 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4725 {
4726 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4727 struct intel_dp *intel_dp = &intel_dig_port->dp;
4728
4729 intel_dp_mst_encoder_cleanup(intel_dig_port);
4730 if (is_edp(intel_dp)) {
4731 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4732 /*
4733 * vdd might still be enabled do to the delayed vdd off.
4734 * Make sure vdd is actually turned off here.
4735 */
4736 pps_lock(intel_dp);
4737 edp_panel_vdd_off_sync(intel_dp);
4738 pps_unlock(intel_dp);
4739
4740 if (intel_dp->edp_notifier.notifier_call) {
4741 unregister_reboot_notifier(&intel_dp->edp_notifier);
4742 intel_dp->edp_notifier.notifier_call = NULL;
4743 }
4744 }
4745
4746 intel_dp_aux_fini(intel_dp);
4747
4748 drm_encoder_cleanup(encoder);
4749 kfree(intel_dig_port);
4750 }
4751
4752 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4753 {
4754 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4755
4756 if (!is_edp(intel_dp))
4757 return;
4758
4759 /*
4760 * vdd might still be enabled do to the delayed vdd off.
4761 * Make sure vdd is actually turned off here.
4762 */
4763 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4764 pps_lock(intel_dp);
4765 edp_panel_vdd_off_sync(intel_dp);
4766 pps_unlock(intel_dp);
4767 }
4768
4769 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4770 {
4771 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4772 struct drm_device *dev = intel_dig_port->base.base.dev;
4773 struct drm_i915_private *dev_priv = to_i915(dev);
4774 enum intel_display_power_domain power_domain;
4775
4776 lockdep_assert_held(&dev_priv->pps_mutex);
4777
4778 if (!edp_have_panel_vdd(intel_dp))
4779 return;
4780
4781 /*
4782 * The VDD bit needs a power domain reference, so if the bit is
4783 * already enabled when we boot or resume, grab this reference and
4784 * schedule a vdd off, so we don't hold on to the reference
4785 * indefinitely.
4786 */
4787 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4788 power_domain = intel_display_port_aux_power_domain(&intel_dig_port->base);
4789 intel_display_power_get(dev_priv, power_domain);
4790
4791 edp_panel_vdd_schedule_off(intel_dp);
4792 }
4793
4794 void intel_dp_encoder_reset(struct drm_encoder *encoder)
4795 {
4796 struct drm_i915_private *dev_priv = to_i915(encoder->dev);
4797 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4798 struct intel_lspcon *lspcon = &intel_dig_port->lspcon;
4799 struct intel_dp *intel_dp = &intel_dig_port->dp;
4800
4801 if (!HAS_DDI(dev_priv))
4802 intel_dp->DP = I915_READ(intel_dp->output_reg);
4803
4804 if (IS_GEN9(dev_priv) && lspcon->active)
4805 lspcon_resume(lspcon);
4806
4807 if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4808 return;
4809
4810 pps_lock(intel_dp);
4811
4812 /* Reinit the power sequencer, in case BIOS did something with it. */
4813 intel_dp_pps_init(encoder->dev, intel_dp);
4814 intel_edp_panel_vdd_sanitize(intel_dp);
4815
4816 pps_unlock(intel_dp);
4817 }
4818
4819 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4820 .dpms = drm_atomic_helper_connector_dpms,
4821 .detect = intel_dp_detect,
4822 .force = intel_dp_force,
4823 .fill_modes = drm_helper_probe_single_connector_modes,
4824 .set_property = intel_dp_set_property,
4825 .atomic_get_property = intel_connector_atomic_get_property,
4826 .late_register = intel_dp_connector_register,
4827 .early_unregister = intel_dp_connector_unregister,
4828 .destroy = intel_dp_connector_destroy,
4829 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4830 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4831 };
4832
4833 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4834 .get_modes = intel_dp_get_modes,
4835 .mode_valid = intel_dp_mode_valid,
4836 };
4837
4838 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4839 .reset = intel_dp_encoder_reset,
4840 .destroy = intel_dp_encoder_destroy,
4841 };
4842
4843 enum irqreturn
4844 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4845 {
4846 struct intel_dp *intel_dp = &intel_dig_port->dp;
4847 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4848 struct drm_device *dev = intel_dig_port->base.base.dev;
4849 struct drm_i915_private *dev_priv = to_i915(dev);
4850 enum intel_display_power_domain power_domain;
4851 enum irqreturn ret = IRQ_NONE;
4852
4853 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
4854 intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
4855 intel_dig_port->base.type = INTEL_OUTPUT_DP;
4856
4857 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4858 /*
4859 * vdd off can generate a long pulse on eDP which
4860 * would require vdd on to handle it, and thus we
4861 * would end up in an endless cycle of
4862 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4863 */
4864 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4865 port_name(intel_dig_port->port));
4866 return IRQ_HANDLED;
4867 }
4868
4869 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4870 port_name(intel_dig_port->port),
4871 long_hpd ? "long" : "short");
4872
4873 if (long_hpd) {
4874 intel_dp->detect_done = false;
4875 return IRQ_NONE;
4876 }
4877
4878 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4879 intel_display_power_get(dev_priv, power_domain);
4880
4881 if (intel_dp->is_mst) {
4882 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
4883 /*
4884 * If we were in MST mode, and device is not
4885 * there, get out of MST mode
4886 */
4887 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4888 intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4889 intel_dp->is_mst = false;
4890 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4891 intel_dp->is_mst);
4892 intel_dp->detect_done = false;
4893 goto put_power;
4894 }
4895 }
4896
4897 if (!intel_dp->is_mst) {
4898 if (!intel_dp_short_pulse(intel_dp)) {
4899 intel_dp->detect_done = false;
4900 goto put_power;
4901 }
4902 }
4903
4904 ret = IRQ_HANDLED;
4905
4906 put_power:
4907 intel_display_power_put(dev_priv, power_domain);
4908
4909 return ret;
4910 }
4911
4912 /* check the VBT to see whether the eDP is on another port */
4913 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4914 {
4915 struct drm_i915_private *dev_priv = to_i915(dev);
4916
4917 /*
4918 * eDP not supported on g4x. so bail out early just
4919 * for a bit extra safety in case the VBT is bonkers.
4920 */
4921 if (INTEL_INFO(dev)->gen < 5)
4922 return false;
4923
4924 if (port == PORT_A)
4925 return true;
4926
4927 return intel_bios_is_port_edp(dev_priv, port);
4928 }
4929
4930 void
4931 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4932 {
4933 struct intel_connector *intel_connector = to_intel_connector(connector);
4934
4935 intel_attach_force_audio_property(connector);
4936 intel_attach_broadcast_rgb_property(connector);
4937 intel_dp->color_range_auto = true;
4938
4939 if (is_edp(intel_dp)) {
4940 drm_mode_create_scaling_mode_property(connector->dev);
4941 drm_object_attach_property(
4942 &connector->base,
4943 connector->dev->mode_config.scaling_mode_property,
4944 DRM_MODE_SCALE_ASPECT);
4945 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4946 }
4947 }
4948
4949 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4950 {
4951 intel_dp->panel_power_off_time = ktime_get_boottime();
4952 intel_dp->last_power_on = jiffies;
4953 intel_dp->last_backlight_off = jiffies;
4954 }
4955
4956 static void
4957 intel_pps_readout_hw_state(struct drm_i915_private *dev_priv,
4958 struct intel_dp *intel_dp, struct edp_power_seq *seq)
4959 {
4960 u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
4961 struct pps_registers regs;
4962
4963 intel_pps_get_registers(dev_priv, intel_dp, &regs);
4964
4965 /* Workaround: Need to write PP_CONTROL with the unlock key as
4966 * the very first thing. */
4967 pp_ctl = ironlake_get_pp_control(intel_dp);
4968
4969 pp_on = I915_READ(regs.pp_on);
4970 pp_off = I915_READ(regs.pp_off);
4971 if (!IS_BROXTON(dev_priv)) {
4972 I915_WRITE(regs.pp_ctrl, pp_ctl);
4973 pp_div = I915_READ(regs.pp_div);
4974 }
4975
4976 /* Pull timing values out of registers */
4977 seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4978 PANEL_POWER_UP_DELAY_SHIFT;
4979
4980 seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4981 PANEL_LIGHT_ON_DELAY_SHIFT;
4982
4983 seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4984 PANEL_LIGHT_OFF_DELAY_SHIFT;
4985
4986 seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4987 PANEL_POWER_DOWN_DELAY_SHIFT;
4988
4989 if (IS_BROXTON(dev_priv)) {
4990 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
4991 BXT_POWER_CYCLE_DELAY_SHIFT;
4992 if (tmp > 0)
4993 seq->t11_t12 = (tmp - 1) * 1000;
4994 else
4995 seq->t11_t12 = 0;
4996 } else {
4997 seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4998 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4999 }
5000 }
5001
5002 static void
5003 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
5004 {
5005 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5006 state_name,
5007 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
5008 }
5009
5010 static void
5011 intel_pps_verify_state(struct drm_i915_private *dev_priv,
5012 struct intel_dp *intel_dp)
5013 {
5014 struct edp_power_seq hw;
5015 struct edp_power_seq *sw = &intel_dp->pps_delays;
5016
5017 intel_pps_readout_hw_state(dev_priv, intel_dp, &hw);
5018
5019 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
5020 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
5021 DRM_ERROR("PPS state mismatch\n");
5022 intel_pps_dump_state("sw", sw);
5023 intel_pps_dump_state("hw", &hw);
5024 }
5025 }
5026
5027 static void
5028 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
5029 struct intel_dp *intel_dp)
5030 {
5031 struct drm_i915_private *dev_priv = to_i915(dev);
5032 struct edp_power_seq cur, vbt, spec,
5033 *final = &intel_dp->pps_delays;
5034
5035 lockdep_assert_held(&dev_priv->pps_mutex);
5036
5037 /* already initialized? */
5038 if (final->t11_t12 != 0)
5039 return;
5040
5041 intel_pps_readout_hw_state(dev_priv, intel_dp, &cur);
5042
5043 intel_pps_dump_state("cur", &cur);
5044
5045 vbt = dev_priv->vbt.edp.pps;
5046
5047 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5048 * our hw here, which are all in 100usec. */
5049 spec.t1_t3 = 210 * 10;
5050 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5051 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5052 spec.t10 = 500 * 10;
5053 /* This one is special and actually in units of 100ms, but zero
5054 * based in the hw (so we need to add 100 ms). But the sw vbt
5055 * table multiplies it with 1000 to make it in units of 100usec,
5056 * too. */
5057 spec.t11_t12 = (510 + 100) * 10;
5058
5059 intel_pps_dump_state("vbt", &vbt);
5060
5061 /* Use the max of the register settings and vbt. If both are
5062 * unset, fall back to the spec limits. */
5063 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
5064 spec.field : \
5065 max(cur.field, vbt.field))
5066 assign_final(t1_t3);
5067 assign_final(t8);
5068 assign_final(t9);
5069 assign_final(t10);
5070 assign_final(t11_t12);
5071 #undef assign_final
5072
5073 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
5074 intel_dp->panel_power_up_delay = get_delay(t1_t3);
5075 intel_dp->backlight_on_delay = get_delay(t8);
5076 intel_dp->backlight_off_delay = get_delay(t9);
5077 intel_dp->panel_power_down_delay = get_delay(t10);
5078 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5079 #undef get_delay
5080
5081 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5082 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5083 intel_dp->panel_power_cycle_delay);
5084
5085 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5086 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5087
5088 /*
5089 * We override the HW backlight delays to 1 because we do manual waits
5090 * on them. For T8, even BSpec recommends doing it. For T9, if we
5091 * don't do this, we'll end up waiting for the backlight off delay
5092 * twice: once when we do the manual sleep, and once when we disable
5093 * the panel and wait for the PP_STATUS bit to become zero.
5094 */
5095 final->t8 = 1;
5096 final->t9 = 1;
5097 }
5098
5099 static void
5100 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5101 struct intel_dp *intel_dp)
5102 {
5103 struct drm_i915_private *dev_priv = to_i915(dev);
5104 u32 pp_on, pp_off, pp_div, port_sel = 0;
5105 int div = dev_priv->rawclk_freq / 1000;
5106 struct pps_registers regs;
5107 enum port port = dp_to_dig_port(intel_dp)->port;
5108 const struct edp_power_seq *seq = &intel_dp->pps_delays;
5109
5110 lockdep_assert_held(&dev_priv->pps_mutex);
5111
5112 intel_pps_get_registers(dev_priv, intel_dp, &regs);
5113
5114 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5115 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
5116 pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5117 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5118 /* Compute the divisor for the pp clock, simply match the Bspec
5119 * formula. */
5120 if (IS_BROXTON(dev_priv)) {
5121 pp_div = I915_READ(regs.pp_ctrl);
5122 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5123 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
5124 << BXT_POWER_CYCLE_DELAY_SHIFT);
5125 } else {
5126 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5127 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5128 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5129 }
5130
5131 /* Haswell doesn't have any port selection bits for the panel
5132 * power sequencer any more. */
5133 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5134 port_sel = PANEL_PORT_SELECT_VLV(port);
5135 } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
5136 if (port == PORT_A)
5137 port_sel = PANEL_PORT_SELECT_DPA;
5138 else
5139 port_sel = PANEL_PORT_SELECT_DPD;
5140 }
5141
5142 pp_on |= port_sel;
5143
5144 I915_WRITE(regs.pp_on, pp_on);
5145 I915_WRITE(regs.pp_off, pp_off);
5146 if (IS_BROXTON(dev_priv))
5147 I915_WRITE(regs.pp_ctrl, pp_div);
5148 else
5149 I915_WRITE(regs.pp_div, pp_div);
5150
5151 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5152 I915_READ(regs.pp_on),
5153 I915_READ(regs.pp_off),
5154 IS_BROXTON(dev_priv) ?
5155 (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
5156 I915_READ(regs.pp_div));
5157 }
5158
5159 static void intel_dp_pps_init(struct drm_device *dev,
5160 struct intel_dp *intel_dp)
5161 {
5162 struct drm_i915_private *dev_priv = to_i915(dev);
5163
5164 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5165 vlv_initial_power_sequencer_setup(intel_dp);
5166 } else {
5167 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5168 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5169 }
5170 }
5171
5172 /**
5173 * intel_dp_set_drrs_state - program registers for RR switch to take effect
5174 * @dev_priv: i915 device
5175 * @crtc_state: a pointer to the active intel_crtc_state
5176 * @refresh_rate: RR to be programmed
5177 *
5178 * This function gets called when refresh rate (RR) has to be changed from
5179 * one frequency to another. Switches can be between high and low RR
5180 * supported by the panel or to any other RR based on media playback (in
5181 * this case, RR value needs to be passed from user space).
5182 *
5183 * The caller of this function needs to take a lock on dev_priv->drrs.
5184 */
5185 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
5186 struct intel_crtc_state *crtc_state,
5187 int refresh_rate)
5188 {
5189 struct intel_encoder *encoder;
5190 struct intel_digital_port *dig_port = NULL;
5191 struct intel_dp *intel_dp = dev_priv->drrs.dp;
5192 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
5193 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5194
5195 if (refresh_rate <= 0) {
5196 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5197 return;
5198 }
5199
5200 if (intel_dp == NULL) {
5201 DRM_DEBUG_KMS("DRRS not supported.\n");
5202 return;
5203 }
5204
5205 /*
5206 * FIXME: This needs proper synchronization with psr state for some
5207 * platforms that cannot have PSR and DRRS enabled at the same time.
5208 */
5209
5210 dig_port = dp_to_dig_port(intel_dp);
5211 encoder = &dig_port->base;
5212 intel_crtc = to_intel_crtc(encoder->base.crtc);
5213
5214 if (!intel_crtc) {
5215 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5216 return;
5217 }
5218
5219 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5220 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5221 return;
5222 }
5223
5224 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5225 refresh_rate)
5226 index = DRRS_LOW_RR;
5227
5228 if (index == dev_priv->drrs.refresh_rate_type) {
5229 DRM_DEBUG_KMS(
5230 "DRRS requested for previously set RR...ignoring\n");
5231 return;
5232 }
5233
5234 if (!crtc_state->base.active) {
5235 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5236 return;
5237 }
5238
5239 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
5240 switch (index) {
5241 case DRRS_HIGH_RR:
5242 intel_dp_set_m_n(intel_crtc, M1_N1);
5243 break;
5244 case DRRS_LOW_RR:
5245 intel_dp_set_m_n(intel_crtc, M2_N2);
5246 break;
5247 case DRRS_MAX_RR:
5248 default:
5249 DRM_ERROR("Unsupported refreshrate type\n");
5250 }
5251 } else if (INTEL_GEN(dev_priv) > 6) {
5252 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
5253 u32 val;
5254
5255 val = I915_READ(reg);
5256 if (index > DRRS_HIGH_RR) {
5257 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5258 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5259 else
5260 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5261 } else {
5262 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5263 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5264 else
5265 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5266 }
5267 I915_WRITE(reg, val);
5268 }
5269
5270 dev_priv->drrs.refresh_rate_type = index;
5271
5272 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5273 }
5274
5275 /**
5276 * intel_edp_drrs_enable - init drrs struct if supported
5277 * @intel_dp: DP struct
5278 * @crtc_state: A pointer to the active crtc state.
5279 *
5280 * Initializes frontbuffer_bits and drrs.dp
5281 */
5282 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
5283 struct intel_crtc_state *crtc_state)
5284 {
5285 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5286 struct drm_i915_private *dev_priv = to_i915(dev);
5287
5288 if (!crtc_state->has_drrs) {
5289 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5290 return;
5291 }
5292
5293 mutex_lock(&dev_priv->drrs.mutex);
5294 if (WARN_ON(dev_priv->drrs.dp)) {
5295 DRM_ERROR("DRRS already enabled\n");
5296 goto unlock;
5297 }
5298
5299 dev_priv->drrs.busy_frontbuffer_bits = 0;
5300
5301 dev_priv->drrs.dp = intel_dp;
5302
5303 unlock:
5304 mutex_unlock(&dev_priv->drrs.mutex);
5305 }
5306
5307 /**
5308 * intel_edp_drrs_disable - Disable DRRS
5309 * @intel_dp: DP struct
5310 * @old_crtc_state: Pointer to old crtc_state.
5311 *
5312 */
5313 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
5314 struct intel_crtc_state *old_crtc_state)
5315 {
5316 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5317 struct drm_i915_private *dev_priv = to_i915(dev);
5318
5319 if (!old_crtc_state->has_drrs)
5320 return;
5321
5322 mutex_lock(&dev_priv->drrs.mutex);
5323 if (!dev_priv->drrs.dp) {
5324 mutex_unlock(&dev_priv->drrs.mutex);
5325 return;
5326 }
5327
5328 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5329 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
5330 intel_dp->attached_connector->panel.fixed_mode->vrefresh);
5331
5332 dev_priv->drrs.dp = NULL;
5333 mutex_unlock(&dev_priv->drrs.mutex);
5334
5335 cancel_delayed_work_sync(&dev_priv->drrs.work);
5336 }
5337
5338 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5339 {
5340 struct drm_i915_private *dev_priv =
5341 container_of(work, typeof(*dev_priv), drrs.work.work);
5342 struct intel_dp *intel_dp;
5343
5344 mutex_lock(&dev_priv->drrs.mutex);
5345
5346 intel_dp = dev_priv->drrs.dp;
5347
5348 if (!intel_dp)
5349 goto unlock;
5350
5351 /*
5352 * The delayed work can race with an invalidate hence we need to
5353 * recheck.
5354 */
5355
5356 if (dev_priv->drrs.busy_frontbuffer_bits)
5357 goto unlock;
5358
5359 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
5360 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
5361
5362 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5363 intel_dp->attached_connector->panel.downclock_mode->vrefresh);
5364 }
5365
5366 unlock:
5367 mutex_unlock(&dev_priv->drrs.mutex);
5368 }
5369
5370 /**
5371 * intel_edp_drrs_invalidate - Disable Idleness DRRS
5372 * @dev_priv: i915 device
5373 * @frontbuffer_bits: frontbuffer plane tracking bits
5374 *
5375 * This function gets called everytime rendering on the given planes start.
5376 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5377 *
5378 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5379 */
5380 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
5381 unsigned int frontbuffer_bits)
5382 {
5383 struct drm_crtc *crtc;
5384 enum pipe pipe;
5385
5386 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5387 return;
5388
5389 cancel_delayed_work(&dev_priv->drrs.work);
5390
5391 mutex_lock(&dev_priv->drrs.mutex);
5392 if (!dev_priv->drrs.dp) {
5393 mutex_unlock(&dev_priv->drrs.mutex);
5394 return;
5395 }
5396
5397 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5398 pipe = to_intel_crtc(crtc)->pipe;
5399
5400 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5401 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5402
5403 /* invalidate means busy screen hence upclock */
5404 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5405 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5406 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5407
5408 mutex_unlock(&dev_priv->drrs.mutex);
5409 }
5410
5411 /**
5412 * intel_edp_drrs_flush - Restart Idleness DRRS
5413 * @dev_priv: i915 device
5414 * @frontbuffer_bits: frontbuffer plane tracking bits
5415 *
5416 * This function gets called every time rendering on the given planes has
5417 * completed or flip on a crtc is completed. So DRRS should be upclocked
5418 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5419 * if no other planes are dirty.
5420 *
5421 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5422 */
5423 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
5424 unsigned int frontbuffer_bits)
5425 {
5426 struct drm_crtc *crtc;
5427 enum pipe pipe;
5428
5429 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5430 return;
5431
5432 cancel_delayed_work(&dev_priv->drrs.work);
5433
5434 mutex_lock(&dev_priv->drrs.mutex);
5435 if (!dev_priv->drrs.dp) {
5436 mutex_unlock(&dev_priv->drrs.mutex);
5437 return;
5438 }
5439
5440 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5441 pipe = to_intel_crtc(crtc)->pipe;
5442
5443 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5444 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5445
5446 /* flush means busy screen hence upclock */
5447 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5448 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5449 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5450
5451 /*
5452 * flush also means no more activity hence schedule downclock, if all
5453 * other fbs are quiescent too
5454 */
5455 if (!dev_priv->drrs.busy_frontbuffer_bits)
5456 schedule_delayed_work(&dev_priv->drrs.work,
5457 msecs_to_jiffies(1000));
5458 mutex_unlock(&dev_priv->drrs.mutex);
5459 }
5460
5461 /**
5462 * DOC: Display Refresh Rate Switching (DRRS)
5463 *
5464 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5465 * which enables swtching between low and high refresh rates,
5466 * dynamically, based on the usage scenario. This feature is applicable
5467 * for internal panels.
5468 *
5469 * Indication that the panel supports DRRS is given by the panel EDID, which
5470 * would list multiple refresh rates for one resolution.
5471 *
5472 * DRRS is of 2 types - static and seamless.
5473 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5474 * (may appear as a blink on screen) and is used in dock-undock scenario.
5475 * Seamless DRRS involves changing RR without any visual effect to the user
5476 * and can be used during normal system usage. This is done by programming
5477 * certain registers.
5478 *
5479 * Support for static/seamless DRRS may be indicated in the VBT based on
5480 * inputs from the panel spec.
5481 *
5482 * DRRS saves power by switching to low RR based on usage scenarios.
5483 *
5484 * The implementation is based on frontbuffer tracking implementation. When
5485 * there is a disturbance on the screen triggered by user activity or a periodic
5486 * system activity, DRRS is disabled (RR is changed to high RR). When there is
5487 * no movement on screen, after a timeout of 1 second, a switch to low RR is
5488 * made.
5489 *
5490 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
5491 * and intel_edp_drrs_flush() are called.
5492 *
5493 * DRRS can be further extended to support other internal panels and also
5494 * the scenario of video playback wherein RR is set based on the rate
5495 * requested by userspace.
5496 */
5497
5498 /**
5499 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5500 * @intel_connector: eDP connector
5501 * @fixed_mode: preferred mode of panel
5502 *
5503 * This function is called only once at driver load to initialize basic
5504 * DRRS stuff.
5505 *
5506 * Returns:
5507 * Downclock mode if panel supports it, else return NULL.
5508 * DRRS support is determined by the presence of downclock mode (apart
5509 * from VBT setting).
5510 */
5511 static struct drm_display_mode *
5512 intel_dp_drrs_init(struct intel_connector *intel_connector,
5513 struct drm_display_mode *fixed_mode)
5514 {
5515 struct drm_connector *connector = &intel_connector->base;
5516 struct drm_device *dev = connector->dev;
5517 struct drm_i915_private *dev_priv = to_i915(dev);
5518 struct drm_display_mode *downclock_mode = NULL;
5519
5520 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5521 mutex_init(&dev_priv->drrs.mutex);
5522
5523 if (INTEL_INFO(dev)->gen <= 6) {
5524 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5525 return NULL;
5526 }
5527
5528 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5529 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5530 return NULL;
5531 }
5532
5533 downclock_mode = intel_find_panel_downclock
5534 (dev, fixed_mode, connector);
5535
5536 if (!downclock_mode) {
5537 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5538 return NULL;
5539 }
5540
5541 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5542
5543 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5544 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5545 return downclock_mode;
5546 }
5547
5548 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5549 struct intel_connector *intel_connector)
5550 {
5551 struct drm_connector *connector = &intel_connector->base;
5552 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5553 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5554 struct drm_device *dev = intel_encoder->base.dev;
5555 struct drm_i915_private *dev_priv = to_i915(dev);
5556 struct drm_display_mode *fixed_mode = NULL;
5557 struct drm_display_mode *downclock_mode = NULL;
5558 bool has_dpcd;
5559 struct drm_display_mode *scan;
5560 struct edid *edid;
5561 enum pipe pipe = INVALID_PIPE;
5562
5563 if (!is_edp(intel_dp))
5564 return true;
5565
5566 /*
5567 * On IBX/CPT we may get here with LVDS already registered. Since the
5568 * driver uses the only internal power sequencer available for both
5569 * eDP and LVDS bail out early in this case to prevent interfering
5570 * with an already powered-on LVDS power sequencer.
5571 */
5572 if (intel_get_lvds_encoder(dev)) {
5573 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
5574 DRM_INFO("LVDS was detected, not registering eDP\n");
5575
5576 return false;
5577 }
5578
5579 pps_lock(intel_dp);
5580
5581 intel_dp_init_panel_power_timestamps(intel_dp);
5582 intel_dp_pps_init(dev, intel_dp);
5583 intel_edp_panel_vdd_sanitize(intel_dp);
5584
5585 pps_unlock(intel_dp);
5586
5587 /* Cache DPCD and EDID for edp. */
5588 has_dpcd = intel_edp_init_dpcd(intel_dp);
5589
5590 if (!has_dpcd) {
5591 /* if this fails, presume the device is a ghost */
5592 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5593 goto out_vdd_off;
5594 }
5595
5596 mutex_lock(&dev->mode_config.mutex);
5597 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5598 if (edid) {
5599 if (drm_add_edid_modes(connector, edid)) {
5600 drm_mode_connector_update_edid_property(connector,
5601 edid);
5602 drm_edid_to_eld(connector, edid);
5603 } else {
5604 kfree(edid);
5605 edid = ERR_PTR(-EINVAL);
5606 }
5607 } else {
5608 edid = ERR_PTR(-ENOENT);
5609 }
5610 intel_connector->edid = edid;
5611
5612 /* prefer fixed mode from EDID if available */
5613 list_for_each_entry(scan, &connector->probed_modes, head) {
5614 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5615 fixed_mode = drm_mode_duplicate(dev, scan);
5616 downclock_mode = intel_dp_drrs_init(
5617 intel_connector, fixed_mode);
5618 break;
5619 }
5620 }
5621
5622 /* fallback to VBT if available for eDP */
5623 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5624 fixed_mode = drm_mode_duplicate(dev,
5625 dev_priv->vbt.lfp_lvds_vbt_mode);
5626 if (fixed_mode) {
5627 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5628 connector->display_info.width_mm = fixed_mode->width_mm;
5629 connector->display_info.height_mm = fixed_mode->height_mm;
5630 }
5631 }
5632 mutex_unlock(&dev->mode_config.mutex);
5633
5634 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5635 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5636 register_reboot_notifier(&intel_dp->edp_notifier);
5637
5638 /*
5639 * Figure out the current pipe for the initial backlight setup.
5640 * If the current pipe isn't valid, try the PPS pipe, and if that
5641 * fails just assume pipe A.
5642 */
5643 if (IS_CHERRYVIEW(dev_priv))
5644 pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5645 else
5646 pipe = PORT_TO_PIPE(intel_dp->DP);
5647
5648 if (pipe != PIPE_A && pipe != PIPE_B)
5649 pipe = intel_dp->pps_pipe;
5650
5651 if (pipe != PIPE_A && pipe != PIPE_B)
5652 pipe = PIPE_A;
5653
5654 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5655 pipe_name(pipe));
5656 }
5657
5658 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5659 intel_connector->panel.backlight.power = intel_edp_backlight_power;
5660 intel_panel_setup_backlight(connector, pipe);
5661
5662 return true;
5663
5664 out_vdd_off:
5665 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5666 /*
5667 * vdd might still be enabled do to the delayed vdd off.
5668 * Make sure vdd is actually turned off here.
5669 */
5670 pps_lock(intel_dp);
5671 edp_panel_vdd_off_sync(intel_dp);
5672 pps_unlock(intel_dp);
5673
5674 return false;
5675 }
5676
5677 bool
5678 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5679 struct intel_connector *intel_connector)
5680 {
5681 struct drm_connector *connector = &intel_connector->base;
5682 struct intel_dp *intel_dp = &intel_dig_port->dp;
5683 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5684 struct drm_device *dev = intel_encoder->base.dev;
5685 struct drm_i915_private *dev_priv = to_i915(dev);
5686 enum port port = intel_dig_port->port;
5687 int type;
5688
5689 if (WARN(intel_dig_port->max_lanes < 1,
5690 "Not enough lanes (%d) for DP on port %c\n",
5691 intel_dig_port->max_lanes, port_name(port)))
5692 return false;
5693
5694 intel_dp->pps_pipe = INVALID_PIPE;
5695
5696 /* intel_dp vfuncs */
5697 if (INTEL_INFO(dev)->gen >= 9)
5698 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5699 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5700 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5701 else if (HAS_PCH_SPLIT(dev_priv))
5702 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5703 else
5704 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
5705
5706 if (INTEL_INFO(dev)->gen >= 9)
5707 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5708 else
5709 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
5710
5711 if (HAS_DDI(dev_priv))
5712 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
5713
5714 /* Preserve the current hw state. */
5715 intel_dp->DP = I915_READ(intel_dp->output_reg);
5716 intel_dp->attached_connector = intel_connector;
5717
5718 if (intel_dp_is_edp(dev, port))
5719 type = DRM_MODE_CONNECTOR_eDP;
5720 else
5721 type = DRM_MODE_CONNECTOR_DisplayPort;
5722
5723 /*
5724 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5725 * for DP the encoder type can be set by the caller to
5726 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5727 */
5728 if (type == DRM_MODE_CONNECTOR_eDP)
5729 intel_encoder->type = INTEL_OUTPUT_EDP;
5730
5731 /* eDP only on port B and/or C on vlv/chv */
5732 if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
5733 is_edp(intel_dp) && port != PORT_B && port != PORT_C))
5734 return false;
5735
5736 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5737 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5738 port_name(port));
5739
5740 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5741 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5742
5743 connector->interlace_allowed = true;
5744 connector->doublescan_allowed = 0;
5745
5746 intel_dp_aux_init(intel_dp);
5747
5748 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5749 edp_panel_vdd_work);
5750
5751 intel_connector_attach_encoder(intel_connector, intel_encoder);
5752
5753 if (HAS_DDI(dev_priv))
5754 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5755 else
5756 intel_connector->get_hw_state = intel_connector_get_hw_state;
5757
5758 /* Set up the hotplug pin. */
5759 switch (port) {
5760 case PORT_A:
5761 intel_encoder->hpd_pin = HPD_PORT_A;
5762 break;
5763 case PORT_B:
5764 intel_encoder->hpd_pin = HPD_PORT_B;
5765 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
5766 intel_encoder->hpd_pin = HPD_PORT_A;
5767 break;
5768 case PORT_C:
5769 intel_encoder->hpd_pin = HPD_PORT_C;
5770 break;
5771 case PORT_D:
5772 intel_encoder->hpd_pin = HPD_PORT_D;
5773 break;
5774 case PORT_E:
5775 intel_encoder->hpd_pin = HPD_PORT_E;
5776 break;
5777 default:
5778 BUG();
5779 }
5780
5781 /* init MST on ports that can support it */
5782 if (HAS_DP_MST(dev) && !is_edp(intel_dp) &&
5783 (port == PORT_B || port == PORT_C || port == PORT_D))
5784 intel_dp_mst_encoder_init(intel_dig_port,
5785 intel_connector->base.base.id);
5786
5787 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5788 intel_dp_aux_fini(intel_dp);
5789 intel_dp_mst_encoder_cleanup(intel_dig_port);
5790 goto fail;
5791 }
5792
5793 intel_dp_add_properties(intel_dp, connector);
5794
5795 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5796 * 0xd. Failure to do so will result in spurious interrupts being
5797 * generated on the port when a cable is not attached.
5798 */
5799 if (IS_G4X(dev_priv) && !IS_GM45(dev_priv)) {
5800 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5801 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5802 }
5803
5804 return true;
5805
5806 fail:
5807 drm_connector_cleanup(connector);
5808
5809 return false;
5810 }
5811
5812 bool intel_dp_init(struct drm_device *dev,
5813 i915_reg_t output_reg,
5814 enum port port)
5815 {
5816 struct drm_i915_private *dev_priv = to_i915(dev);
5817 struct intel_digital_port *intel_dig_port;
5818 struct intel_encoder *intel_encoder;
5819 struct drm_encoder *encoder;
5820 struct intel_connector *intel_connector;
5821
5822 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5823 if (!intel_dig_port)
5824 return false;
5825
5826 intel_connector = intel_connector_alloc();
5827 if (!intel_connector)
5828 goto err_connector_alloc;
5829
5830 intel_encoder = &intel_dig_port->base;
5831 encoder = &intel_encoder->base;
5832
5833 if (drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5834 DRM_MODE_ENCODER_TMDS, "DP %c", port_name(port)))
5835 goto err_encoder_init;
5836
5837 intel_encoder->compute_config = intel_dp_compute_config;
5838 intel_encoder->disable = intel_disable_dp;
5839 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5840 intel_encoder->get_config = intel_dp_get_config;
5841 intel_encoder->suspend = intel_dp_encoder_suspend;
5842 if (IS_CHERRYVIEW(dev_priv)) {
5843 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5844 intel_encoder->pre_enable = chv_pre_enable_dp;
5845 intel_encoder->enable = vlv_enable_dp;
5846 intel_encoder->post_disable = chv_post_disable_dp;
5847 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
5848 } else if (IS_VALLEYVIEW(dev_priv)) {
5849 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5850 intel_encoder->pre_enable = vlv_pre_enable_dp;
5851 intel_encoder->enable = vlv_enable_dp;
5852 intel_encoder->post_disable = vlv_post_disable_dp;
5853 } else {
5854 intel_encoder->pre_enable = g4x_pre_enable_dp;
5855 intel_encoder->enable = g4x_enable_dp;
5856 if (INTEL_INFO(dev)->gen >= 5)
5857 intel_encoder->post_disable = ilk_post_disable_dp;
5858 }
5859
5860 intel_dig_port->port = port;
5861 intel_dig_port->dp.output_reg = output_reg;
5862 intel_dig_port->max_lanes = 4;
5863
5864 intel_encoder->type = INTEL_OUTPUT_DP;
5865 if (IS_CHERRYVIEW(dev_priv)) {
5866 if (port == PORT_D)
5867 intel_encoder->crtc_mask = 1 << 2;
5868 else
5869 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5870 } else {
5871 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5872 }
5873 intel_encoder->cloneable = 0;
5874 intel_encoder->port = port;
5875
5876 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5877 dev_priv->hotplug.irq_port[port] = intel_dig_port;
5878
5879 if (!intel_dp_init_connector(intel_dig_port, intel_connector))
5880 goto err_init_connector;
5881
5882 return true;
5883
5884 err_init_connector:
5885 drm_encoder_cleanup(encoder);
5886 err_encoder_init:
5887 kfree(intel_connector);
5888 err_connector_alloc:
5889 kfree(intel_dig_port);
5890 return false;
5891 }
5892
5893 void intel_dp_mst_suspend(struct drm_device *dev)
5894 {
5895 struct drm_i915_private *dev_priv = to_i915(dev);
5896 int i;
5897
5898 /* disable MST */
5899 for (i = 0; i < I915_MAX_PORTS; i++) {
5900 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5901
5902 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
5903 continue;
5904
5905 if (intel_dig_port->dp.is_mst)
5906 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5907 }
5908 }
5909
5910 void intel_dp_mst_resume(struct drm_device *dev)
5911 {
5912 struct drm_i915_private *dev_priv = to_i915(dev);
5913 int i;
5914
5915 for (i = 0; i < I915_MAX_PORTS; i++) {
5916 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5917 int ret;
5918
5919 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
5920 continue;
5921
5922 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5923 if (ret)
5924 intel_dp_check_mst_status(&intel_dig_port->dp);
5925 }
5926 }