]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/gpu/drm/i915/intel_dp.c
drm/i915: Refactor EDID fixed mode search
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/types.h>
32 #include <linux/notifier.h>
33 #include <linux/reboot.h>
34 #include <asm/byteorder.h>
35 #include <drm/drm_atomic_helper.h>
36 #include <drm/drm_crtc.h>
37 #include <drm/drm_dp_helper.h>
38 #include <drm/drm_edid.h>
39 #include <drm/drm_hdcp.h>
40 #include <drm/drm_probe_helper.h>
41 #include "intel_drv.h"
42 #include <drm/i915_drm.h>
43 #include "i915_drv.h"
44
45 #define DP_DPRX_ESI_LEN 14
46
47 /* DP DSC small joiner has 2 FIFOs each of 640 x 6 bytes */
48 #define DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER 61440
49 #define DP_DSC_MIN_SUPPORTED_BPC 8
50 #define DP_DSC_MAX_SUPPORTED_BPC 10
51
52 /* DP DSC throughput values used for slice count calculations KPixels/s */
53 #define DP_DSC_PEAK_PIXEL_RATE 2720000
54 #define DP_DSC_MAX_ENC_THROUGHPUT_0 340000
55 #define DP_DSC_MAX_ENC_THROUGHPUT_1 400000
56
57 /* DP DSC FEC Overhead factor = (100 - 2.4)/100 */
58 #define DP_DSC_FEC_OVERHEAD_FACTOR 976
59
60 /* Compliance test status bits */
61 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
62 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
63 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
64 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
65
66 struct dp_link_dpll {
67 int clock;
68 struct dpll dpll;
69 };
70
71 static const struct dp_link_dpll g4x_dpll[] = {
72 { 162000,
73 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
74 { 270000,
75 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
76 };
77
78 static const struct dp_link_dpll pch_dpll[] = {
79 { 162000,
80 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
81 { 270000,
82 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
83 };
84
85 static const struct dp_link_dpll vlv_dpll[] = {
86 { 162000,
87 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
88 { 270000,
89 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
90 };
91
92 /*
93 * CHV supports eDP 1.4 that have more link rates.
94 * Below only provides the fixed rate but exclude variable rate.
95 */
96 static const struct dp_link_dpll chv_dpll[] = {
97 /*
98 * CHV requires to program fractional division for m2.
99 * m2 is stored in fixed point format using formula below
100 * (m2_int << 22) | m2_fraction
101 */
102 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
103 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
104 { 270000, /* m2_int = 27, m2_fraction = 0 */
105 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
106 };
107
108 /* Constants for DP DSC configurations */
109 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
110
111 /* With Single pipe configuration, HW is capable of supporting maximum
112 * of 4 slices per line.
113 */
114 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
115
116 /**
117 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
118 * @intel_dp: DP struct
119 *
120 * If a CPU or PCH DP output is attached to an eDP panel, this function
121 * will return true, and false otherwise.
122 */
123 bool intel_dp_is_edp(struct intel_dp *intel_dp)
124 {
125 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
126
127 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
128 }
129
130 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
131 {
132 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
133 }
134
135 static void intel_dp_link_down(struct intel_encoder *encoder,
136 const struct intel_crtc_state *old_crtc_state);
137 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
138 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
139 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
140 const struct intel_crtc_state *crtc_state);
141 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
142 enum pipe pipe);
143 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
144
145 /* update sink rates from dpcd */
146 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
147 {
148 static const int dp_rates[] = {
149 162000, 270000, 540000, 810000
150 };
151 int i, max_rate;
152
153 max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
154
155 for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
156 if (dp_rates[i] > max_rate)
157 break;
158 intel_dp->sink_rates[i] = dp_rates[i];
159 }
160
161 intel_dp->num_sink_rates = i;
162 }
163
164 /* Get length of rates array potentially limited by max_rate. */
165 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
166 {
167 int i;
168
169 /* Limit results by potentially reduced max rate */
170 for (i = 0; i < len; i++) {
171 if (rates[len - i - 1] <= max_rate)
172 return len - i;
173 }
174
175 return 0;
176 }
177
178 /* Get length of common rates array potentially limited by max_rate. */
179 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
180 int max_rate)
181 {
182 return intel_dp_rate_limit_len(intel_dp->common_rates,
183 intel_dp->num_common_rates, max_rate);
184 }
185
186 /* Theoretical max between source and sink */
187 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
188 {
189 return intel_dp->common_rates[intel_dp->num_common_rates - 1];
190 }
191
192 static int intel_dp_get_fia_supported_lane_count(struct intel_dp *intel_dp)
193 {
194 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
195 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
196 enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
197 u32 lane_info;
198
199 if (tc_port == PORT_TC_NONE || dig_port->tc_type != TC_PORT_TYPEC)
200 return 4;
201
202 lane_info = (I915_READ(PORT_TX_DFLEXDPSP) &
203 DP_LANE_ASSIGNMENT_MASK(tc_port)) >>
204 DP_LANE_ASSIGNMENT_SHIFT(tc_port);
205
206 switch (lane_info) {
207 default:
208 MISSING_CASE(lane_info);
209 case 1:
210 case 2:
211 case 4:
212 case 8:
213 return 1;
214 case 3:
215 case 12:
216 return 2;
217 case 15:
218 return 4;
219 }
220 }
221
222 /* Theoretical max between source and sink */
223 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
224 {
225 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
226 int source_max = intel_dig_port->max_lanes;
227 int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
228 int fia_max = intel_dp_get_fia_supported_lane_count(intel_dp);
229
230 return min3(source_max, sink_max, fia_max);
231 }
232
233 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
234 {
235 return intel_dp->max_link_lane_count;
236 }
237
238 int
239 intel_dp_link_required(int pixel_clock, int bpp)
240 {
241 /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
242 return DIV_ROUND_UP(pixel_clock * bpp, 8);
243 }
244
245 int
246 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
247 {
248 /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
249 * link rate that is generally expressed in Gbps. Since, 8 bits of data
250 * is transmitted every LS_Clk per lane, there is no need to account for
251 * the channel encoding that is done in the PHY layer here.
252 */
253
254 return max_link_clock * max_lanes;
255 }
256
257 static int
258 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
259 {
260 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
261 struct intel_encoder *encoder = &intel_dig_port->base;
262 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
263 int max_dotclk = dev_priv->max_dotclk_freq;
264 int ds_max_dotclk;
265
266 int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
267
268 if (type != DP_DS_PORT_TYPE_VGA)
269 return max_dotclk;
270
271 ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
272 intel_dp->downstream_ports);
273
274 if (ds_max_dotclk != 0)
275 max_dotclk = min(max_dotclk, ds_max_dotclk);
276
277 return max_dotclk;
278 }
279
280 static int cnl_max_source_rate(struct intel_dp *intel_dp)
281 {
282 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
283 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
284 enum port port = dig_port->base.port;
285
286 u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
287
288 /* Low voltage SKUs are limited to max of 5.4G */
289 if (voltage == VOLTAGE_INFO_0_85V)
290 return 540000;
291
292 /* For this SKU 8.1G is supported in all ports */
293 if (IS_CNL_WITH_PORT_F(dev_priv))
294 return 810000;
295
296 /* For other SKUs, max rate on ports A and D is 5.4G */
297 if (port == PORT_A || port == PORT_D)
298 return 540000;
299
300 return 810000;
301 }
302
303 static int icl_max_source_rate(struct intel_dp *intel_dp)
304 {
305 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
306 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
307 enum port port = dig_port->base.port;
308
309 if (intel_port_is_combophy(dev_priv, port) &&
310 !intel_dp_is_edp(intel_dp))
311 return 540000;
312
313 return 810000;
314 }
315
316 static void
317 intel_dp_set_source_rates(struct intel_dp *intel_dp)
318 {
319 /* The values must be in increasing order */
320 static const int cnl_rates[] = {
321 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
322 };
323 static const int bxt_rates[] = {
324 162000, 216000, 243000, 270000, 324000, 432000, 540000
325 };
326 static const int skl_rates[] = {
327 162000, 216000, 270000, 324000, 432000, 540000
328 };
329 static const int hsw_rates[] = {
330 162000, 270000, 540000
331 };
332 static const int g4x_rates[] = {
333 162000, 270000
334 };
335 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
336 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
337 const struct ddi_vbt_port_info *info =
338 &dev_priv->vbt.ddi_port_info[dig_port->base.port];
339 const int *source_rates;
340 int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
341
342 /* This should only be done once */
343 WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);
344
345 if (INTEL_GEN(dev_priv) >= 10) {
346 source_rates = cnl_rates;
347 size = ARRAY_SIZE(cnl_rates);
348 if (IS_GEN(dev_priv, 10))
349 max_rate = cnl_max_source_rate(intel_dp);
350 else
351 max_rate = icl_max_source_rate(intel_dp);
352 } else if (IS_GEN9_LP(dev_priv)) {
353 source_rates = bxt_rates;
354 size = ARRAY_SIZE(bxt_rates);
355 } else if (IS_GEN9_BC(dev_priv)) {
356 source_rates = skl_rates;
357 size = ARRAY_SIZE(skl_rates);
358 } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
359 IS_BROADWELL(dev_priv)) {
360 source_rates = hsw_rates;
361 size = ARRAY_SIZE(hsw_rates);
362 } else {
363 source_rates = g4x_rates;
364 size = ARRAY_SIZE(g4x_rates);
365 }
366
367 if (max_rate && vbt_max_rate)
368 max_rate = min(max_rate, vbt_max_rate);
369 else if (vbt_max_rate)
370 max_rate = vbt_max_rate;
371
372 if (max_rate)
373 size = intel_dp_rate_limit_len(source_rates, size, max_rate);
374
375 intel_dp->source_rates = source_rates;
376 intel_dp->num_source_rates = size;
377 }
378
379 static int intersect_rates(const int *source_rates, int source_len,
380 const int *sink_rates, int sink_len,
381 int *common_rates)
382 {
383 int i = 0, j = 0, k = 0;
384
385 while (i < source_len && j < sink_len) {
386 if (source_rates[i] == sink_rates[j]) {
387 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
388 return k;
389 common_rates[k] = source_rates[i];
390 ++k;
391 ++i;
392 ++j;
393 } else if (source_rates[i] < sink_rates[j]) {
394 ++i;
395 } else {
396 ++j;
397 }
398 }
399 return k;
400 }
401
402 /* return index of rate in rates array, or -1 if not found */
403 static int intel_dp_rate_index(const int *rates, int len, int rate)
404 {
405 int i;
406
407 for (i = 0; i < len; i++)
408 if (rate == rates[i])
409 return i;
410
411 return -1;
412 }
413
414 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
415 {
416 WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
417
418 intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
419 intel_dp->num_source_rates,
420 intel_dp->sink_rates,
421 intel_dp->num_sink_rates,
422 intel_dp->common_rates);
423
424 /* Paranoia, there should always be something in common. */
425 if (WARN_ON(intel_dp->num_common_rates == 0)) {
426 intel_dp->common_rates[0] = 162000;
427 intel_dp->num_common_rates = 1;
428 }
429 }
430
431 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
432 u8 lane_count)
433 {
434 /*
435 * FIXME: we need to synchronize the current link parameters with
436 * hardware readout. Currently fast link training doesn't work on
437 * boot-up.
438 */
439 if (link_rate == 0 ||
440 link_rate > intel_dp->max_link_rate)
441 return false;
442
443 if (lane_count == 0 ||
444 lane_count > intel_dp_max_lane_count(intel_dp))
445 return false;
446
447 return true;
448 }
449
450 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
451 int link_rate,
452 u8 lane_count)
453 {
454 const struct drm_display_mode *fixed_mode =
455 intel_dp->attached_connector->panel.fixed_mode;
456 int mode_rate, max_rate;
457
458 mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
459 max_rate = intel_dp_max_data_rate(link_rate, lane_count);
460 if (mode_rate > max_rate)
461 return false;
462
463 return true;
464 }
465
466 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
467 int link_rate, u8 lane_count)
468 {
469 int index;
470
471 index = intel_dp_rate_index(intel_dp->common_rates,
472 intel_dp->num_common_rates,
473 link_rate);
474 if (index > 0) {
475 if (intel_dp_is_edp(intel_dp) &&
476 !intel_dp_can_link_train_fallback_for_edp(intel_dp,
477 intel_dp->common_rates[index - 1],
478 lane_count)) {
479 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
480 return 0;
481 }
482 intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
483 intel_dp->max_link_lane_count = lane_count;
484 } else if (lane_count > 1) {
485 if (intel_dp_is_edp(intel_dp) &&
486 !intel_dp_can_link_train_fallback_for_edp(intel_dp,
487 intel_dp_max_common_rate(intel_dp),
488 lane_count >> 1)) {
489 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
490 return 0;
491 }
492 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
493 intel_dp->max_link_lane_count = lane_count >> 1;
494 } else {
495 DRM_ERROR("Link Training Unsuccessful\n");
496 return -1;
497 }
498
499 return 0;
500 }
501
502 static enum drm_mode_status
503 intel_dp_mode_valid(struct drm_connector *connector,
504 struct drm_display_mode *mode)
505 {
506 struct intel_dp *intel_dp = intel_attached_dp(connector);
507 struct intel_connector *intel_connector = to_intel_connector(connector);
508 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
509 struct drm_i915_private *dev_priv = to_i915(connector->dev);
510 int target_clock = mode->clock;
511 int max_rate, mode_rate, max_lanes, max_link_clock;
512 int max_dotclk;
513 u16 dsc_max_output_bpp = 0;
514 u8 dsc_slice_count = 0;
515
516 if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
517 return MODE_NO_DBLESCAN;
518
519 max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
520
521 if (intel_dp_is_edp(intel_dp) && fixed_mode) {
522 if (mode->hdisplay > fixed_mode->hdisplay)
523 return MODE_PANEL;
524
525 if (mode->vdisplay > fixed_mode->vdisplay)
526 return MODE_PANEL;
527
528 target_clock = fixed_mode->clock;
529 }
530
531 max_link_clock = intel_dp_max_link_rate(intel_dp);
532 max_lanes = intel_dp_max_lane_count(intel_dp);
533
534 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
535 mode_rate = intel_dp_link_required(target_clock, 18);
536
537 /*
538 * Output bpp is stored in 6.4 format so right shift by 4 to get the
539 * integer value since we support only integer values of bpp.
540 */
541 if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
542 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
543 if (intel_dp_is_edp(intel_dp)) {
544 dsc_max_output_bpp =
545 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
546 dsc_slice_count =
547 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
548 true);
549 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
550 dsc_max_output_bpp =
551 intel_dp_dsc_get_output_bpp(max_link_clock,
552 max_lanes,
553 target_clock,
554 mode->hdisplay) >> 4;
555 dsc_slice_count =
556 intel_dp_dsc_get_slice_count(intel_dp,
557 target_clock,
558 mode->hdisplay);
559 }
560 }
561
562 if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
563 target_clock > max_dotclk)
564 return MODE_CLOCK_HIGH;
565
566 if (mode->clock < 10000)
567 return MODE_CLOCK_LOW;
568
569 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
570 return MODE_H_ILLEGAL;
571
572 return MODE_OK;
573 }
574
575 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
576 {
577 int i;
578 u32 v = 0;
579
580 if (src_bytes > 4)
581 src_bytes = 4;
582 for (i = 0; i < src_bytes; i++)
583 v |= ((u32)src[i]) << ((3 - i) * 8);
584 return v;
585 }
586
587 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
588 {
589 int i;
590 if (dst_bytes > 4)
591 dst_bytes = 4;
592 for (i = 0; i < dst_bytes; i++)
593 dst[i] = src >> ((3-i) * 8);
594 }
595
596 static void
597 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
598 static void
599 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
600 bool force_disable_vdd);
601 static void
602 intel_dp_pps_init(struct intel_dp *intel_dp);
603
604 static intel_wakeref_t
605 pps_lock(struct intel_dp *intel_dp)
606 {
607 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
608 intel_wakeref_t wakeref;
609
610 /*
611 * See intel_power_sequencer_reset() why we need
612 * a power domain reference here.
613 */
614 wakeref = intel_display_power_get(dev_priv,
615 intel_aux_power_domain(dp_to_dig_port(intel_dp)));
616
617 mutex_lock(&dev_priv->pps_mutex);
618
619 return wakeref;
620 }
621
622 static intel_wakeref_t
623 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
624 {
625 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
626
627 mutex_unlock(&dev_priv->pps_mutex);
628 intel_display_power_put(dev_priv,
629 intel_aux_power_domain(dp_to_dig_port(intel_dp)),
630 wakeref);
631 return 0;
632 }
633
634 #define with_pps_lock(dp, wf) \
635 for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
636
637 static void
638 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
639 {
640 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
641 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
642 enum pipe pipe = intel_dp->pps_pipe;
643 bool pll_enabled, release_cl_override = false;
644 enum dpio_phy phy = DPIO_PHY(pipe);
645 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
646 u32 DP;
647
648 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
649 "skipping pipe %c power sequencer kick due to port %c being active\n",
650 pipe_name(pipe), port_name(intel_dig_port->base.port)))
651 return;
652
653 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
654 pipe_name(pipe), port_name(intel_dig_port->base.port));
655
656 /* Preserve the BIOS-computed detected bit. This is
657 * supposed to be read-only.
658 */
659 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
660 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
661 DP |= DP_PORT_WIDTH(1);
662 DP |= DP_LINK_TRAIN_PAT_1;
663
664 if (IS_CHERRYVIEW(dev_priv))
665 DP |= DP_PIPE_SEL_CHV(pipe);
666 else
667 DP |= DP_PIPE_SEL(pipe);
668
669 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
670
671 /*
672 * The DPLL for the pipe must be enabled for this to work.
673 * So enable temporarily it if it's not already enabled.
674 */
675 if (!pll_enabled) {
676 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
677 !chv_phy_powergate_ch(dev_priv, phy, ch, true);
678
679 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
680 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
681 DRM_ERROR("Failed to force on pll for pipe %c!\n",
682 pipe_name(pipe));
683 return;
684 }
685 }
686
687 /*
688 * Similar magic as in intel_dp_enable_port().
689 * We _must_ do this port enable + disable trick
690 * to make this power sequencer lock onto the port.
691 * Otherwise even VDD force bit won't work.
692 */
693 I915_WRITE(intel_dp->output_reg, DP);
694 POSTING_READ(intel_dp->output_reg);
695
696 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
697 POSTING_READ(intel_dp->output_reg);
698
699 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
700 POSTING_READ(intel_dp->output_reg);
701
702 if (!pll_enabled) {
703 vlv_force_pll_off(dev_priv, pipe);
704
705 if (release_cl_override)
706 chv_phy_powergate_ch(dev_priv, phy, ch, false);
707 }
708 }
709
710 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
711 {
712 struct intel_encoder *encoder;
713 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
714
715 /*
716 * We don't have power sequencer currently.
717 * Pick one that's not used by other ports.
718 */
719 for_each_intel_dp(&dev_priv->drm, encoder) {
720 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
721
722 if (encoder->type == INTEL_OUTPUT_EDP) {
723 WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
724 intel_dp->active_pipe != intel_dp->pps_pipe);
725
726 if (intel_dp->pps_pipe != INVALID_PIPE)
727 pipes &= ~(1 << intel_dp->pps_pipe);
728 } else {
729 WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);
730
731 if (intel_dp->active_pipe != INVALID_PIPE)
732 pipes &= ~(1 << intel_dp->active_pipe);
733 }
734 }
735
736 if (pipes == 0)
737 return INVALID_PIPE;
738
739 return ffs(pipes) - 1;
740 }
741
742 static enum pipe
743 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
744 {
745 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
746 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
747 enum pipe pipe;
748
749 lockdep_assert_held(&dev_priv->pps_mutex);
750
751 /* We should never land here with regular DP ports */
752 WARN_ON(!intel_dp_is_edp(intel_dp));
753
754 WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
755 intel_dp->active_pipe != intel_dp->pps_pipe);
756
757 if (intel_dp->pps_pipe != INVALID_PIPE)
758 return intel_dp->pps_pipe;
759
760 pipe = vlv_find_free_pps(dev_priv);
761
762 /*
763 * Didn't find one. This should not happen since there
764 * are two power sequencers and up to two eDP ports.
765 */
766 if (WARN_ON(pipe == INVALID_PIPE))
767 pipe = PIPE_A;
768
769 vlv_steal_power_sequencer(dev_priv, pipe);
770 intel_dp->pps_pipe = pipe;
771
772 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
773 pipe_name(intel_dp->pps_pipe),
774 port_name(intel_dig_port->base.port));
775
776 /* init power sequencer on this pipe and port */
777 intel_dp_init_panel_power_sequencer(intel_dp);
778 intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
779
780 /*
781 * Even vdd force doesn't work until we've made
782 * the power sequencer lock in on the port.
783 */
784 vlv_power_sequencer_kick(intel_dp);
785
786 return intel_dp->pps_pipe;
787 }
788
789 static int
790 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
791 {
792 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
793 int backlight_controller = dev_priv->vbt.backlight.controller;
794
795 lockdep_assert_held(&dev_priv->pps_mutex);
796
797 /* We should never land here with regular DP ports */
798 WARN_ON(!intel_dp_is_edp(intel_dp));
799
800 if (!intel_dp->pps_reset)
801 return backlight_controller;
802
803 intel_dp->pps_reset = false;
804
805 /*
806 * Only the HW needs to be reprogrammed, the SW state is fixed and
807 * has been setup during connector init.
808 */
809 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
810
811 return backlight_controller;
812 }
813
814 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
815 enum pipe pipe);
816
817 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
818 enum pipe pipe)
819 {
820 return I915_READ(PP_STATUS(pipe)) & PP_ON;
821 }
822
823 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
824 enum pipe pipe)
825 {
826 return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
827 }
828
829 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
830 enum pipe pipe)
831 {
832 return true;
833 }
834
835 static enum pipe
836 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
837 enum port port,
838 vlv_pipe_check pipe_check)
839 {
840 enum pipe pipe;
841
842 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
843 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
844 PANEL_PORT_SELECT_MASK;
845
846 if (port_sel != PANEL_PORT_SELECT_VLV(port))
847 continue;
848
849 if (!pipe_check(dev_priv, pipe))
850 continue;
851
852 return pipe;
853 }
854
855 return INVALID_PIPE;
856 }
857
858 static void
859 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
860 {
861 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
862 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
863 enum port port = intel_dig_port->base.port;
864
865 lockdep_assert_held(&dev_priv->pps_mutex);
866
867 /* try to find a pipe with this port selected */
868 /* first pick one where the panel is on */
869 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
870 vlv_pipe_has_pp_on);
871 /* didn't find one? pick one where vdd is on */
872 if (intel_dp->pps_pipe == INVALID_PIPE)
873 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
874 vlv_pipe_has_vdd_on);
875 /* didn't find one? pick one with just the correct port */
876 if (intel_dp->pps_pipe == INVALID_PIPE)
877 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
878 vlv_pipe_any);
879
880 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
881 if (intel_dp->pps_pipe == INVALID_PIPE) {
882 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
883 port_name(port));
884 return;
885 }
886
887 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
888 port_name(port), pipe_name(intel_dp->pps_pipe));
889
890 intel_dp_init_panel_power_sequencer(intel_dp);
891 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
892 }
893
894 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
895 {
896 struct intel_encoder *encoder;
897
898 if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
899 !IS_GEN9_LP(dev_priv)))
900 return;
901
902 /*
903 * We can't grab pps_mutex here due to deadlock with power_domain
904 * mutex when power_domain functions are called while holding pps_mutex.
905 * That also means that in order to use pps_pipe the code needs to
906 * hold both a power domain reference and pps_mutex, and the power domain
907 * reference get/put must be done while _not_ holding pps_mutex.
908 * pps_{lock,unlock}() do these steps in the correct order, so one
909 * should use them always.
910 */
911
912 for_each_intel_dp(&dev_priv->drm, encoder) {
913 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
914
915 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
916
917 if (encoder->type != INTEL_OUTPUT_EDP)
918 continue;
919
920 if (IS_GEN9_LP(dev_priv))
921 intel_dp->pps_reset = true;
922 else
923 intel_dp->pps_pipe = INVALID_PIPE;
924 }
925 }
926
927 struct pps_registers {
928 i915_reg_t pp_ctrl;
929 i915_reg_t pp_stat;
930 i915_reg_t pp_on;
931 i915_reg_t pp_off;
932 i915_reg_t pp_div;
933 };
934
935 static void intel_pps_get_registers(struct intel_dp *intel_dp,
936 struct pps_registers *regs)
937 {
938 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
939 int pps_idx = 0;
940
941 memset(regs, 0, sizeof(*regs));
942
943 if (IS_GEN9_LP(dev_priv))
944 pps_idx = bxt_power_sequencer_idx(intel_dp);
945 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
946 pps_idx = vlv_power_sequencer_pipe(intel_dp);
947
948 regs->pp_ctrl = PP_CONTROL(pps_idx);
949 regs->pp_stat = PP_STATUS(pps_idx);
950 regs->pp_on = PP_ON_DELAYS(pps_idx);
951 regs->pp_off = PP_OFF_DELAYS(pps_idx);
952
953 /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
954 if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
955 regs->pp_div = INVALID_MMIO_REG;
956 else
957 regs->pp_div = PP_DIVISOR(pps_idx);
958 }
959
960 static i915_reg_t
961 _pp_ctrl_reg(struct intel_dp *intel_dp)
962 {
963 struct pps_registers regs;
964
965 intel_pps_get_registers(intel_dp, &regs);
966
967 return regs.pp_ctrl;
968 }
969
970 static i915_reg_t
971 _pp_stat_reg(struct intel_dp *intel_dp)
972 {
973 struct pps_registers regs;
974
975 intel_pps_get_registers(intel_dp, &regs);
976
977 return regs.pp_stat;
978 }
979
980 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
981 This function only applicable when panel PM state is not to be tracked */
982 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
983 void *unused)
984 {
985 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
986 edp_notifier);
987 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
988 intel_wakeref_t wakeref;
989
990 if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
991 return 0;
992
993 with_pps_lock(intel_dp, wakeref) {
994 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
995 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
996 i915_reg_t pp_ctrl_reg, pp_div_reg;
997 u32 pp_div;
998
999 pp_ctrl_reg = PP_CONTROL(pipe);
1000 pp_div_reg = PP_DIVISOR(pipe);
1001 pp_div = I915_READ(pp_div_reg);
1002 pp_div &= PP_REFERENCE_DIVIDER_MASK;
1003
1004 /* 0x1F write to PP_DIV_REG sets max cycle delay */
1005 I915_WRITE(pp_div_reg, pp_div | 0x1F);
1006 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS);
1007 msleep(intel_dp->panel_power_cycle_delay);
1008 }
1009 }
1010
1011 return 0;
1012 }
1013
1014 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1015 {
1016 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1017
1018 lockdep_assert_held(&dev_priv->pps_mutex);
1019
1020 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1021 intel_dp->pps_pipe == INVALID_PIPE)
1022 return false;
1023
1024 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
1025 }
1026
1027 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1028 {
1029 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1030
1031 lockdep_assert_held(&dev_priv->pps_mutex);
1032
1033 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1034 intel_dp->pps_pipe == INVALID_PIPE)
1035 return false;
1036
1037 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1038 }
1039
1040 static void
1041 intel_dp_check_edp(struct intel_dp *intel_dp)
1042 {
1043 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1044
1045 if (!intel_dp_is_edp(intel_dp))
1046 return;
1047
1048 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1049 WARN(1, "eDP powered off while attempting aux channel communication.\n");
1050 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1051 I915_READ(_pp_stat_reg(intel_dp)),
1052 I915_READ(_pp_ctrl_reg(intel_dp)));
1053 }
1054 }
1055
1056 static u32
1057 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1058 {
1059 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1060 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1061 u32 status;
1062 bool done;
1063
1064 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1065 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
1066 msecs_to_jiffies_timeout(10));
1067
1068 /* just trace the final value */
1069 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1070
1071 if (!done)
1072 DRM_ERROR("dp aux hw did not signal timeout!\n");
1073 #undef C
1074
1075 return status;
1076 }
1077
1078 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1079 {
1080 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1081
1082 if (index)
1083 return 0;
1084
1085 /*
1086 * The clock divider is based off the hrawclk, and would like to run at
1087 * 2MHz. So, take the hrawclk value and divide by 2000 and use that
1088 */
1089 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1090 }
1091
1092 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1093 {
1094 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1095 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1096
1097 if (index)
1098 return 0;
1099
1100 /*
1101 * The clock divider is based off the cdclk or PCH rawclk, and would
1102 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and
1103 * divide by 2000 and use that
1104 */
1105 if (dig_port->aux_ch == AUX_CH_A)
1106 return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1107 else
1108 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1109 }
1110
1111 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1112 {
1113 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1114 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1115
1116 if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1117 /* Workaround for non-ULT HSW */
1118 switch (index) {
1119 case 0: return 63;
1120 case 1: return 72;
1121 default: return 0;
1122 }
1123 }
1124
1125 return ilk_get_aux_clock_divider(intel_dp, index);
1126 }
1127
1128 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1129 {
1130 /*
1131 * SKL doesn't need us to program the AUX clock divider (Hardware will
1132 * derive the clock from CDCLK automatically). We still implement the
1133 * get_aux_clock_divider vfunc to plug-in into the existing code.
1134 */
1135 return index ? 0 : 1;
1136 }
1137
1138 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1139 int send_bytes,
1140 u32 aux_clock_divider)
1141 {
1142 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1143 struct drm_i915_private *dev_priv =
1144 to_i915(intel_dig_port->base.base.dev);
1145 u32 precharge, timeout;
1146
1147 if (IS_GEN(dev_priv, 6))
1148 precharge = 3;
1149 else
1150 precharge = 5;
1151
1152 if (IS_BROADWELL(dev_priv))
1153 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1154 else
1155 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1156
1157 return DP_AUX_CH_CTL_SEND_BUSY |
1158 DP_AUX_CH_CTL_DONE |
1159 DP_AUX_CH_CTL_INTERRUPT |
1160 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1161 timeout |
1162 DP_AUX_CH_CTL_RECEIVE_ERROR |
1163 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1164 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1165 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1166 }
1167
1168 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1169 int send_bytes,
1170 u32 unused)
1171 {
1172 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1173 u32 ret;
1174
1175 ret = DP_AUX_CH_CTL_SEND_BUSY |
1176 DP_AUX_CH_CTL_DONE |
1177 DP_AUX_CH_CTL_INTERRUPT |
1178 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1179 DP_AUX_CH_CTL_TIME_OUT_MAX |
1180 DP_AUX_CH_CTL_RECEIVE_ERROR |
1181 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1182 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1183 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1184
1185 if (intel_dig_port->tc_type == TC_PORT_TBT)
1186 ret |= DP_AUX_CH_CTL_TBT_IO;
1187
1188 return ret;
1189 }
1190
1191 static int
1192 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1193 const u8 *send, int send_bytes,
1194 u8 *recv, int recv_size,
1195 u32 aux_send_ctl_flags)
1196 {
1197 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1198 struct drm_i915_private *dev_priv =
1199 to_i915(intel_dig_port->base.base.dev);
1200 i915_reg_t ch_ctl, ch_data[5];
1201 u32 aux_clock_divider;
1202 intel_wakeref_t wakeref;
1203 int i, ret, recv_bytes;
1204 int try, clock = 0;
1205 u32 status;
1206 bool vdd;
1207
1208 ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1209 for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1210 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1211
1212 wakeref = pps_lock(intel_dp);
1213
1214 /*
1215 * We will be called with VDD already enabled for dpcd/edid/oui reads.
1216 * In such cases we want to leave VDD enabled and it's up to upper layers
1217 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1218 * ourselves.
1219 */
1220 vdd = edp_panel_vdd_on(intel_dp);
1221
1222 /* dp aux is extremely sensitive to irq latency, hence request the
1223 * lowest possible wakeup latency and so prevent the cpu from going into
1224 * deep sleep states.
1225 */
1226 pm_qos_update_request(&dev_priv->pm_qos, 0);
1227
1228 intel_dp_check_edp(intel_dp);
1229
1230 /* Try to wait for any previous AUX channel activity */
1231 for (try = 0; try < 3; try++) {
1232 status = I915_READ_NOTRACE(ch_ctl);
1233 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1234 break;
1235 msleep(1);
1236 }
1237 /* just trace the final value */
1238 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1239
1240 if (try == 3) {
1241 static u32 last_status = -1;
1242 const u32 status = I915_READ(ch_ctl);
1243
1244 if (status != last_status) {
1245 WARN(1, "dp_aux_ch not started status 0x%08x\n",
1246 status);
1247 last_status = status;
1248 }
1249
1250 ret = -EBUSY;
1251 goto out;
1252 }
1253
1254 /* Only 5 data registers! */
1255 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
1256 ret = -E2BIG;
1257 goto out;
1258 }
1259
1260 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1261 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1262 send_bytes,
1263 aux_clock_divider);
1264
1265 send_ctl |= aux_send_ctl_flags;
1266
1267 /* Must try at least 3 times according to DP spec */
1268 for (try = 0; try < 5; try++) {
1269 /* Load the send data into the aux channel data registers */
1270 for (i = 0; i < send_bytes; i += 4)
1271 I915_WRITE(ch_data[i >> 2],
1272 intel_dp_pack_aux(send + i,
1273 send_bytes - i));
1274
1275 /* Send the command and wait for it to complete */
1276 I915_WRITE(ch_ctl, send_ctl);
1277
1278 status = intel_dp_aux_wait_done(intel_dp);
1279
1280 /* Clear done status and any errors */
1281 I915_WRITE(ch_ctl,
1282 status |
1283 DP_AUX_CH_CTL_DONE |
1284 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1285 DP_AUX_CH_CTL_RECEIVE_ERROR);
1286
1287 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1288 * 400us delay required for errors and timeouts
1289 * Timeout errors from the HW already meet this
1290 * requirement so skip to next iteration
1291 */
1292 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1293 continue;
1294
1295 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1296 usleep_range(400, 500);
1297 continue;
1298 }
1299 if (status & DP_AUX_CH_CTL_DONE)
1300 goto done;
1301 }
1302 }
1303
1304 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1305 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1306 ret = -EBUSY;
1307 goto out;
1308 }
1309
1310 done:
1311 /* Check for timeout or receive error.
1312 * Timeouts occur when the sink is not connected
1313 */
1314 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1315 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1316 ret = -EIO;
1317 goto out;
1318 }
1319
1320 /* Timeouts occur when the device isn't connected, so they're
1321 * "normal" -- don't fill the kernel log with these */
1322 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1323 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1324 ret = -ETIMEDOUT;
1325 goto out;
1326 }
1327
1328 /* Unload any bytes sent back from the other side */
1329 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1330 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1331
1332 /*
1333 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1334 * We have no idea of what happened so we return -EBUSY so
1335 * drm layer takes care for the necessary retries.
1336 */
1337 if (recv_bytes == 0 || recv_bytes > 20) {
1338 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1339 recv_bytes);
1340 ret = -EBUSY;
1341 goto out;
1342 }
1343
1344 if (recv_bytes > recv_size)
1345 recv_bytes = recv_size;
1346
1347 for (i = 0; i < recv_bytes; i += 4)
1348 intel_dp_unpack_aux(I915_READ(ch_data[i >> 2]),
1349 recv + i, recv_bytes - i);
1350
1351 ret = recv_bytes;
1352 out:
1353 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
1354
1355 if (vdd)
1356 edp_panel_vdd_off(intel_dp, false);
1357
1358 pps_unlock(intel_dp, wakeref);
1359
1360 return ret;
1361 }
1362
1363 #define BARE_ADDRESS_SIZE 3
1364 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
1365
1366 static void
1367 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1368 const struct drm_dp_aux_msg *msg)
1369 {
1370 txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1371 txbuf[1] = (msg->address >> 8) & 0xff;
1372 txbuf[2] = msg->address & 0xff;
1373 txbuf[3] = msg->size - 1;
1374 }
1375
1376 static ssize_t
1377 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1378 {
1379 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1380 u8 txbuf[20], rxbuf[20];
1381 size_t txsize, rxsize;
1382 int ret;
1383
1384 intel_dp_aux_header(txbuf, msg);
1385
1386 switch (msg->request & ~DP_AUX_I2C_MOT) {
1387 case DP_AUX_NATIVE_WRITE:
1388 case DP_AUX_I2C_WRITE:
1389 case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1390 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1391 rxsize = 2; /* 0 or 1 data bytes */
1392
1393 if (WARN_ON(txsize > 20))
1394 return -E2BIG;
1395
1396 WARN_ON(!msg->buffer != !msg->size);
1397
1398 if (msg->buffer)
1399 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1400
1401 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1402 rxbuf, rxsize, 0);
1403 if (ret > 0) {
1404 msg->reply = rxbuf[0] >> 4;
1405
1406 if (ret > 1) {
1407 /* Number of bytes written in a short write. */
1408 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1409 } else {
1410 /* Return payload size. */
1411 ret = msg->size;
1412 }
1413 }
1414 break;
1415
1416 case DP_AUX_NATIVE_READ:
1417 case DP_AUX_I2C_READ:
1418 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1419 rxsize = msg->size + 1;
1420
1421 if (WARN_ON(rxsize > 20))
1422 return -E2BIG;
1423
1424 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1425 rxbuf, rxsize, 0);
1426 if (ret > 0) {
1427 msg->reply = rxbuf[0] >> 4;
1428 /*
1429 * Assume happy day, and copy the data. The caller is
1430 * expected to check msg->reply before touching it.
1431 *
1432 * Return payload size.
1433 */
1434 ret--;
1435 memcpy(msg->buffer, rxbuf + 1, ret);
1436 }
1437 break;
1438
1439 default:
1440 ret = -EINVAL;
1441 break;
1442 }
1443
1444 return ret;
1445 }
1446
1447
1448 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1449 {
1450 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1451 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1452 enum aux_ch aux_ch = dig_port->aux_ch;
1453
1454 switch (aux_ch) {
1455 case AUX_CH_B:
1456 case AUX_CH_C:
1457 case AUX_CH_D:
1458 return DP_AUX_CH_CTL(aux_ch);
1459 default:
1460 MISSING_CASE(aux_ch);
1461 return DP_AUX_CH_CTL(AUX_CH_B);
1462 }
1463 }
1464
1465 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1466 {
1467 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1468 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1469 enum aux_ch aux_ch = dig_port->aux_ch;
1470
1471 switch (aux_ch) {
1472 case AUX_CH_B:
1473 case AUX_CH_C:
1474 case AUX_CH_D:
1475 return DP_AUX_CH_DATA(aux_ch, index);
1476 default:
1477 MISSING_CASE(aux_ch);
1478 return DP_AUX_CH_DATA(AUX_CH_B, index);
1479 }
1480 }
1481
1482 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1483 {
1484 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1485 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1486 enum aux_ch aux_ch = dig_port->aux_ch;
1487
1488 switch (aux_ch) {
1489 case AUX_CH_A:
1490 return DP_AUX_CH_CTL(aux_ch);
1491 case AUX_CH_B:
1492 case AUX_CH_C:
1493 case AUX_CH_D:
1494 return PCH_DP_AUX_CH_CTL(aux_ch);
1495 default:
1496 MISSING_CASE(aux_ch);
1497 return DP_AUX_CH_CTL(AUX_CH_A);
1498 }
1499 }
1500
1501 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1502 {
1503 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1504 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1505 enum aux_ch aux_ch = dig_port->aux_ch;
1506
1507 switch (aux_ch) {
1508 case AUX_CH_A:
1509 return DP_AUX_CH_DATA(aux_ch, index);
1510 case AUX_CH_B:
1511 case AUX_CH_C:
1512 case AUX_CH_D:
1513 return PCH_DP_AUX_CH_DATA(aux_ch, index);
1514 default:
1515 MISSING_CASE(aux_ch);
1516 return DP_AUX_CH_DATA(AUX_CH_A, index);
1517 }
1518 }
1519
1520 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1521 {
1522 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1523 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1524 enum aux_ch aux_ch = dig_port->aux_ch;
1525
1526 switch (aux_ch) {
1527 case AUX_CH_A:
1528 case AUX_CH_B:
1529 case AUX_CH_C:
1530 case AUX_CH_D:
1531 case AUX_CH_E:
1532 case AUX_CH_F:
1533 return DP_AUX_CH_CTL(aux_ch);
1534 default:
1535 MISSING_CASE(aux_ch);
1536 return DP_AUX_CH_CTL(AUX_CH_A);
1537 }
1538 }
1539
1540 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1541 {
1542 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1543 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1544 enum aux_ch aux_ch = dig_port->aux_ch;
1545
1546 switch (aux_ch) {
1547 case AUX_CH_A:
1548 case AUX_CH_B:
1549 case AUX_CH_C:
1550 case AUX_CH_D:
1551 case AUX_CH_E:
1552 case AUX_CH_F:
1553 return DP_AUX_CH_DATA(aux_ch, index);
1554 default:
1555 MISSING_CASE(aux_ch);
1556 return DP_AUX_CH_DATA(AUX_CH_A, index);
1557 }
1558 }
1559
1560 static void
1561 intel_dp_aux_fini(struct intel_dp *intel_dp)
1562 {
1563 kfree(intel_dp->aux.name);
1564 }
1565
1566 static void
1567 intel_dp_aux_init(struct intel_dp *intel_dp)
1568 {
1569 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1570 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1571 struct intel_encoder *encoder = &dig_port->base;
1572
1573 if (INTEL_GEN(dev_priv) >= 9) {
1574 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1575 intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1576 } else if (HAS_PCH_SPLIT(dev_priv)) {
1577 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1578 intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1579 } else {
1580 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1581 intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1582 }
1583
1584 if (INTEL_GEN(dev_priv) >= 9)
1585 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1586 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1587 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1588 else if (HAS_PCH_SPLIT(dev_priv))
1589 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1590 else
1591 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1592
1593 if (INTEL_GEN(dev_priv) >= 9)
1594 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1595 else
1596 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1597
1598 drm_dp_aux_init(&intel_dp->aux);
1599
1600 /* Failure to allocate our preferred name is not critical */
1601 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
1602 port_name(encoder->port));
1603 intel_dp->aux.transfer = intel_dp_aux_transfer;
1604 }
1605
1606 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1607 {
1608 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1609
1610 return max_rate >= 540000;
1611 }
1612
1613 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1614 {
1615 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1616
1617 return max_rate >= 810000;
1618 }
1619
1620 static void
1621 intel_dp_set_clock(struct intel_encoder *encoder,
1622 struct intel_crtc_state *pipe_config)
1623 {
1624 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1625 const struct dp_link_dpll *divisor = NULL;
1626 int i, count = 0;
1627
1628 if (IS_G4X(dev_priv)) {
1629 divisor = g4x_dpll;
1630 count = ARRAY_SIZE(g4x_dpll);
1631 } else if (HAS_PCH_SPLIT(dev_priv)) {
1632 divisor = pch_dpll;
1633 count = ARRAY_SIZE(pch_dpll);
1634 } else if (IS_CHERRYVIEW(dev_priv)) {
1635 divisor = chv_dpll;
1636 count = ARRAY_SIZE(chv_dpll);
1637 } else if (IS_VALLEYVIEW(dev_priv)) {
1638 divisor = vlv_dpll;
1639 count = ARRAY_SIZE(vlv_dpll);
1640 }
1641
1642 if (divisor && count) {
1643 for (i = 0; i < count; i++) {
1644 if (pipe_config->port_clock == divisor[i].clock) {
1645 pipe_config->dpll = divisor[i].dpll;
1646 pipe_config->clock_set = true;
1647 break;
1648 }
1649 }
1650 }
1651 }
1652
1653 static void snprintf_int_array(char *str, size_t len,
1654 const int *array, int nelem)
1655 {
1656 int i;
1657
1658 str[0] = '\0';
1659
1660 for (i = 0; i < nelem; i++) {
1661 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1662 if (r >= len)
1663 return;
1664 str += r;
1665 len -= r;
1666 }
1667 }
1668
1669 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1670 {
1671 char str[128]; /* FIXME: too big for stack? */
1672
1673 if ((drm_debug & DRM_UT_KMS) == 0)
1674 return;
1675
1676 snprintf_int_array(str, sizeof(str),
1677 intel_dp->source_rates, intel_dp->num_source_rates);
1678 DRM_DEBUG_KMS("source rates: %s\n", str);
1679
1680 snprintf_int_array(str, sizeof(str),
1681 intel_dp->sink_rates, intel_dp->num_sink_rates);
1682 DRM_DEBUG_KMS("sink rates: %s\n", str);
1683
1684 snprintf_int_array(str, sizeof(str),
1685 intel_dp->common_rates, intel_dp->num_common_rates);
1686 DRM_DEBUG_KMS("common rates: %s\n", str);
1687 }
1688
1689 int
1690 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1691 {
1692 int len;
1693
1694 len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1695 if (WARN_ON(len <= 0))
1696 return 162000;
1697
1698 return intel_dp->common_rates[len - 1];
1699 }
1700
1701 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1702 {
1703 int i = intel_dp_rate_index(intel_dp->sink_rates,
1704 intel_dp->num_sink_rates, rate);
1705
1706 if (WARN_ON(i < 0))
1707 i = 0;
1708
1709 return i;
1710 }
1711
1712 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1713 u8 *link_bw, u8 *rate_select)
1714 {
1715 /* eDP 1.4 rate select method. */
1716 if (intel_dp->use_rate_select) {
1717 *link_bw = 0;
1718 *rate_select =
1719 intel_dp_rate_select(intel_dp, port_clock);
1720 } else {
1721 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1722 *rate_select = 0;
1723 }
1724 }
1725
1726 struct link_config_limits {
1727 int min_clock, max_clock;
1728 int min_lane_count, max_lane_count;
1729 int min_bpp, max_bpp;
1730 };
1731
1732 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1733 const struct intel_crtc_state *pipe_config)
1734 {
1735 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1736
1737 return INTEL_GEN(dev_priv) >= 11 &&
1738 pipe_config->cpu_transcoder != TRANSCODER_A;
1739 }
1740
1741 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1742 const struct intel_crtc_state *pipe_config)
1743 {
1744 return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1745 drm_dp_sink_supports_fec(intel_dp->fec_capable);
1746 }
1747
1748 static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp,
1749 const struct intel_crtc_state *pipe_config)
1750 {
1751 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1752
1753 return INTEL_GEN(dev_priv) >= 10 &&
1754 pipe_config->cpu_transcoder != TRANSCODER_A;
1755 }
1756
1757 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1758 const struct intel_crtc_state *pipe_config)
1759 {
1760 if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable)
1761 return false;
1762
1763 return intel_dp_source_supports_dsc(intel_dp, pipe_config) &&
1764 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1765 }
1766
1767 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1768 struct intel_crtc_state *pipe_config)
1769 {
1770 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1771 struct intel_connector *intel_connector = intel_dp->attached_connector;
1772 int bpp, bpc;
1773
1774 bpp = pipe_config->pipe_bpp;
1775 bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1776
1777 if (bpc > 0)
1778 bpp = min(bpp, 3*bpc);
1779
1780 if (intel_dp_is_edp(intel_dp)) {
1781 /* Get bpp from vbt only for panels that dont have bpp in edid */
1782 if (intel_connector->base.display_info.bpc == 0 &&
1783 dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1784 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1785 dev_priv->vbt.edp.bpp);
1786 bpp = dev_priv->vbt.edp.bpp;
1787 }
1788 }
1789
1790 return bpp;
1791 }
1792
1793 /* Adjust link config limits based on compliance test requests. */
1794 static void
1795 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1796 struct intel_crtc_state *pipe_config,
1797 struct link_config_limits *limits)
1798 {
1799 /* For DP Compliance we override the computed bpp for the pipe */
1800 if (intel_dp->compliance.test_data.bpc != 0) {
1801 int bpp = 3 * intel_dp->compliance.test_data.bpc;
1802
1803 limits->min_bpp = limits->max_bpp = bpp;
1804 pipe_config->dither_force_disable = bpp == 6 * 3;
1805
1806 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
1807 }
1808
1809 /* Use values requested by Compliance Test Request */
1810 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1811 int index;
1812
1813 /* Validate the compliance test data since max values
1814 * might have changed due to link train fallback.
1815 */
1816 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1817 intel_dp->compliance.test_lane_count)) {
1818 index = intel_dp_rate_index(intel_dp->common_rates,
1819 intel_dp->num_common_rates,
1820 intel_dp->compliance.test_link_rate);
1821 if (index >= 0)
1822 limits->min_clock = limits->max_clock = index;
1823 limits->min_lane_count = limits->max_lane_count =
1824 intel_dp->compliance.test_lane_count;
1825 }
1826 }
1827 }
1828
1829 /* Optimize link config in order: max bpp, min clock, min lanes */
1830 static int
1831 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
1832 struct intel_crtc_state *pipe_config,
1833 const struct link_config_limits *limits)
1834 {
1835 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1836 int bpp, clock, lane_count;
1837 int mode_rate, link_clock, link_avail;
1838
1839 for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
1840 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1841 bpp);
1842
1843 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
1844 for (lane_count = limits->min_lane_count;
1845 lane_count <= limits->max_lane_count;
1846 lane_count <<= 1) {
1847 link_clock = intel_dp->common_rates[clock];
1848 link_avail = intel_dp_max_data_rate(link_clock,
1849 lane_count);
1850
1851 if (mode_rate <= link_avail) {
1852 pipe_config->lane_count = lane_count;
1853 pipe_config->pipe_bpp = bpp;
1854 pipe_config->port_clock = link_clock;
1855
1856 return 0;
1857 }
1858 }
1859 }
1860 }
1861
1862 return -EINVAL;
1863 }
1864
1865 /* Optimize link config in order: max bpp, min lanes, min clock */
1866 static int
1867 intel_dp_compute_link_config_fast(struct intel_dp *intel_dp,
1868 struct intel_crtc_state *pipe_config,
1869 const struct link_config_limits *limits)
1870 {
1871 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1872 int bpp, clock, lane_count;
1873 int mode_rate, link_clock, link_avail;
1874
1875 for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
1876 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1877 bpp);
1878
1879 for (lane_count = limits->min_lane_count;
1880 lane_count <= limits->max_lane_count;
1881 lane_count <<= 1) {
1882 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
1883 link_clock = intel_dp->common_rates[clock];
1884 link_avail = intel_dp_max_data_rate(link_clock,
1885 lane_count);
1886
1887 if (mode_rate <= link_avail) {
1888 pipe_config->lane_count = lane_count;
1889 pipe_config->pipe_bpp = bpp;
1890 pipe_config->port_clock = link_clock;
1891
1892 return 0;
1893 }
1894 }
1895 }
1896 }
1897
1898 return -EINVAL;
1899 }
1900
1901 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
1902 {
1903 int i, num_bpc;
1904 u8 dsc_bpc[3] = {0};
1905
1906 num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
1907 dsc_bpc);
1908 for (i = 0; i < num_bpc; i++) {
1909 if (dsc_max_bpc >= dsc_bpc[i])
1910 return dsc_bpc[i] * 3;
1911 }
1912
1913 return 0;
1914 }
1915
1916 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
1917 struct intel_crtc_state *pipe_config,
1918 struct drm_connector_state *conn_state,
1919 struct link_config_limits *limits)
1920 {
1921 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1922 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
1923 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1924 u8 dsc_max_bpc;
1925 int pipe_bpp;
1926 int ret;
1927
1928 if (!intel_dp_supports_dsc(intel_dp, pipe_config))
1929 return -EINVAL;
1930
1931 dsc_max_bpc = min_t(u8, DP_DSC_MAX_SUPPORTED_BPC,
1932 conn_state->max_requested_bpc);
1933
1934 pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
1935 if (pipe_bpp < DP_DSC_MIN_SUPPORTED_BPC * 3) {
1936 DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
1937 return -EINVAL;
1938 }
1939
1940 /*
1941 * For now enable DSC for max bpp, max link rate, max lane count.
1942 * Optimize this later for the minimum possible link rate/lane count
1943 * with DSC enabled for the requested mode.
1944 */
1945 pipe_config->pipe_bpp = pipe_bpp;
1946 pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
1947 pipe_config->lane_count = limits->max_lane_count;
1948
1949 if (intel_dp_is_edp(intel_dp)) {
1950 pipe_config->dsc_params.compressed_bpp =
1951 min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
1952 pipe_config->pipe_bpp);
1953 pipe_config->dsc_params.slice_count =
1954 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
1955 true);
1956 } else {
1957 u16 dsc_max_output_bpp;
1958 u8 dsc_dp_slice_count;
1959
1960 dsc_max_output_bpp =
1961 intel_dp_dsc_get_output_bpp(pipe_config->port_clock,
1962 pipe_config->lane_count,
1963 adjusted_mode->crtc_clock,
1964 adjusted_mode->crtc_hdisplay);
1965 dsc_dp_slice_count =
1966 intel_dp_dsc_get_slice_count(intel_dp,
1967 adjusted_mode->crtc_clock,
1968 adjusted_mode->crtc_hdisplay);
1969 if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
1970 DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
1971 return -EINVAL;
1972 }
1973 pipe_config->dsc_params.compressed_bpp = min_t(u16,
1974 dsc_max_output_bpp >> 4,
1975 pipe_config->pipe_bpp);
1976 pipe_config->dsc_params.slice_count = dsc_dp_slice_count;
1977 }
1978 /*
1979 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
1980 * is greater than the maximum Cdclock and if slice count is even
1981 * then we need to use 2 VDSC instances.
1982 */
1983 if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
1984 if (pipe_config->dsc_params.slice_count > 1) {
1985 pipe_config->dsc_params.dsc_split = true;
1986 } else {
1987 DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
1988 return -EINVAL;
1989 }
1990 }
1991
1992 ret = intel_dp_compute_dsc_params(intel_dp, pipe_config);
1993 if (ret < 0) {
1994 DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
1995 "Compressed BPP = %d\n",
1996 pipe_config->pipe_bpp,
1997 pipe_config->dsc_params.compressed_bpp);
1998 return ret;
1999 }
2000
2001 pipe_config->dsc_params.compression_enable = true;
2002 DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
2003 "Compressed Bpp = %d Slice Count = %d\n",
2004 pipe_config->pipe_bpp,
2005 pipe_config->dsc_params.compressed_bpp,
2006 pipe_config->dsc_params.slice_count);
2007
2008 return 0;
2009 }
2010
2011 static int
2012 intel_dp_compute_link_config(struct intel_encoder *encoder,
2013 struct intel_crtc_state *pipe_config,
2014 struct drm_connector_state *conn_state)
2015 {
2016 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2017 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2018 struct link_config_limits limits;
2019 int common_len;
2020 int ret;
2021
2022 common_len = intel_dp_common_len_rate_limit(intel_dp,
2023 intel_dp->max_link_rate);
2024
2025 /* No common link rates between source and sink */
2026 WARN_ON(common_len <= 0);
2027
2028 limits.min_clock = 0;
2029 limits.max_clock = common_len - 1;
2030
2031 limits.min_lane_count = 1;
2032 limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2033
2034 limits.min_bpp = 6 * 3;
2035 limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2036
2037 if (intel_dp_is_edp(intel_dp) && intel_dp->edp_dpcd[0] < DP_EDP_14) {
2038 /*
2039 * Use the maximum clock and number of lanes the eDP panel
2040 * advertizes being capable of. The eDP 1.3 and earlier panels
2041 * are generally designed to support only a single clock and
2042 * lane configuration, and typically these values correspond to
2043 * the native resolution of the panel. With eDP 1.4 rate select
2044 * and DSC, this is decreasingly the case, and we need to be
2045 * able to select less than maximum link config.
2046 */
2047 limits.min_lane_count = limits.max_lane_count;
2048 limits.min_clock = limits.max_clock;
2049 }
2050
2051 intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2052
2053 DRM_DEBUG_KMS("DP link computation with max lane count %i "
2054 "max rate %d max bpp %d pixel clock %iKHz\n",
2055 limits.max_lane_count,
2056 intel_dp->common_rates[limits.max_clock],
2057 limits.max_bpp, adjusted_mode->crtc_clock);
2058
2059 if (intel_dp_is_edp(intel_dp))
2060 /*
2061 * Optimize for fast and narrow. eDP 1.3 section 3.3 and eDP 1.4
2062 * section A.1: "It is recommended that the minimum number of
2063 * lanes be used, using the minimum link rate allowed for that
2064 * lane configuration."
2065 *
2066 * Note that we use the max clock and lane count for eDP 1.3 and
2067 * earlier, and fast vs. wide is irrelevant.
2068 */
2069 ret = intel_dp_compute_link_config_fast(intel_dp, pipe_config,
2070 &limits);
2071 else
2072 /* Optimize for slow and wide. */
2073 ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config,
2074 &limits);
2075
2076 /* enable compression if the mode doesn't fit available BW */
2077 DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2078 if (ret || intel_dp->force_dsc_en) {
2079 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2080 conn_state, &limits);
2081 if (ret < 0)
2082 return ret;
2083 }
2084
2085 if (pipe_config->dsc_params.compression_enable) {
2086 DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2087 pipe_config->lane_count, pipe_config->port_clock,
2088 pipe_config->pipe_bpp,
2089 pipe_config->dsc_params.compressed_bpp);
2090
2091 DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2092 intel_dp_link_required(adjusted_mode->crtc_clock,
2093 pipe_config->dsc_params.compressed_bpp),
2094 intel_dp_max_data_rate(pipe_config->port_clock,
2095 pipe_config->lane_count));
2096 } else {
2097 DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
2098 pipe_config->lane_count, pipe_config->port_clock,
2099 pipe_config->pipe_bpp);
2100
2101 DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2102 intel_dp_link_required(adjusted_mode->crtc_clock,
2103 pipe_config->pipe_bpp),
2104 intel_dp_max_data_rate(pipe_config->port_clock,
2105 pipe_config->lane_count));
2106 }
2107 return 0;
2108 }
2109
2110 int
2111 intel_dp_compute_config(struct intel_encoder *encoder,
2112 struct intel_crtc_state *pipe_config,
2113 struct drm_connector_state *conn_state)
2114 {
2115 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2116 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2117 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2118 struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base);
2119 enum port port = encoder->port;
2120 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
2121 struct intel_connector *intel_connector = intel_dp->attached_connector;
2122 struct intel_digital_connector_state *intel_conn_state =
2123 to_intel_digital_connector_state(conn_state);
2124 bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
2125 DP_DPCD_QUIRK_CONSTANT_N);
2126 int ret;
2127
2128 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2129 pipe_config->has_pch_encoder = true;
2130
2131 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2132 if (lspcon->active)
2133 lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2134
2135 pipe_config->has_drrs = false;
2136 if (IS_G4X(dev_priv) || port == PORT_A)
2137 pipe_config->has_audio = false;
2138 else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2139 pipe_config->has_audio = intel_dp->has_audio;
2140 else
2141 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2142
2143 if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2144 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2145 adjusted_mode);
2146
2147 if (INTEL_GEN(dev_priv) >= 9) {
2148 ret = skl_update_scaler_crtc(pipe_config);
2149 if (ret)
2150 return ret;
2151 }
2152
2153 if (HAS_GMCH(dev_priv))
2154 intel_gmch_panel_fitting(intel_crtc, pipe_config,
2155 conn_state->scaling_mode);
2156 else
2157 intel_pch_panel_fitting(intel_crtc, pipe_config,
2158 conn_state->scaling_mode);
2159 }
2160
2161 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2162 return -EINVAL;
2163
2164 if (HAS_GMCH(dev_priv) &&
2165 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2166 return -EINVAL;
2167
2168 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2169 return -EINVAL;
2170
2171 pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2172 intel_dp_supports_fec(intel_dp, pipe_config);
2173
2174 ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2175 if (ret < 0)
2176 return ret;
2177
2178 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2179 /*
2180 * See:
2181 * CEA-861-E - 5.1 Default Encoding Parameters
2182 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2183 */
2184 pipe_config->limited_color_range =
2185 pipe_config->pipe_bpp != 18 &&
2186 drm_default_rgb_quant_range(adjusted_mode) ==
2187 HDMI_QUANTIZATION_RANGE_LIMITED;
2188 } else {
2189 pipe_config->limited_color_range =
2190 intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2191 }
2192
2193 if (!pipe_config->dsc_params.compression_enable)
2194 intel_link_compute_m_n(pipe_config->pipe_bpp,
2195 pipe_config->lane_count,
2196 adjusted_mode->crtc_clock,
2197 pipe_config->port_clock,
2198 &pipe_config->dp_m_n,
2199 constant_n);
2200 else
2201 intel_link_compute_m_n(pipe_config->dsc_params.compressed_bpp,
2202 pipe_config->lane_count,
2203 adjusted_mode->crtc_clock,
2204 pipe_config->port_clock,
2205 &pipe_config->dp_m_n,
2206 constant_n);
2207
2208 if (intel_connector->panel.downclock_mode != NULL &&
2209 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2210 pipe_config->has_drrs = true;
2211 intel_link_compute_m_n(pipe_config->pipe_bpp,
2212 pipe_config->lane_count,
2213 intel_connector->panel.downclock_mode->clock,
2214 pipe_config->port_clock,
2215 &pipe_config->dp_m2_n2,
2216 constant_n);
2217 }
2218
2219 if (!HAS_DDI(dev_priv))
2220 intel_dp_set_clock(encoder, pipe_config);
2221
2222 intel_psr_compute_config(intel_dp, pipe_config);
2223
2224 return 0;
2225 }
2226
2227 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2228 int link_rate, u8 lane_count,
2229 bool link_mst)
2230 {
2231 intel_dp->link_trained = false;
2232 intel_dp->link_rate = link_rate;
2233 intel_dp->lane_count = lane_count;
2234 intel_dp->link_mst = link_mst;
2235 }
2236
2237 static void intel_dp_prepare(struct intel_encoder *encoder,
2238 const struct intel_crtc_state *pipe_config)
2239 {
2240 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2241 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2242 enum port port = encoder->port;
2243 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2244 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2245
2246 intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2247 pipe_config->lane_count,
2248 intel_crtc_has_type(pipe_config,
2249 INTEL_OUTPUT_DP_MST));
2250
2251 /*
2252 * There are four kinds of DP registers:
2253 *
2254 * IBX PCH
2255 * SNB CPU
2256 * IVB CPU
2257 * CPT PCH
2258 *
2259 * IBX PCH and CPU are the same for almost everything,
2260 * except that the CPU DP PLL is configured in this
2261 * register
2262 *
2263 * CPT PCH is quite different, having many bits moved
2264 * to the TRANS_DP_CTL register instead. That
2265 * configuration happens (oddly) in ironlake_pch_enable
2266 */
2267
2268 /* Preserve the BIOS-computed detected bit. This is
2269 * supposed to be read-only.
2270 */
2271 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2272
2273 /* Handle DP bits in common between all three register formats */
2274 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2275 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2276
2277 /* Split out the IBX/CPU vs CPT settings */
2278
2279 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2280 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2281 intel_dp->DP |= DP_SYNC_HS_HIGH;
2282 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2283 intel_dp->DP |= DP_SYNC_VS_HIGH;
2284 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2285
2286 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2287 intel_dp->DP |= DP_ENHANCED_FRAMING;
2288
2289 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2290 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2291 u32 trans_dp;
2292
2293 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2294
2295 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2296 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2297 trans_dp |= TRANS_DP_ENH_FRAMING;
2298 else
2299 trans_dp &= ~TRANS_DP_ENH_FRAMING;
2300 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2301 } else {
2302 if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2303 intel_dp->DP |= DP_COLOR_RANGE_16_235;
2304
2305 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2306 intel_dp->DP |= DP_SYNC_HS_HIGH;
2307 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2308 intel_dp->DP |= DP_SYNC_VS_HIGH;
2309 intel_dp->DP |= DP_LINK_TRAIN_OFF;
2310
2311 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2312 intel_dp->DP |= DP_ENHANCED_FRAMING;
2313
2314 if (IS_CHERRYVIEW(dev_priv))
2315 intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2316 else
2317 intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2318 }
2319 }
2320
2321 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
2322 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
2323
2324 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
2325 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
2326
2327 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2328 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
2329
2330 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2331
2332 static void wait_panel_status(struct intel_dp *intel_dp,
2333 u32 mask,
2334 u32 value)
2335 {
2336 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2337 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2338
2339 lockdep_assert_held(&dev_priv->pps_mutex);
2340
2341 intel_pps_verify_state(intel_dp);
2342
2343 pp_stat_reg = _pp_stat_reg(intel_dp);
2344 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2345
2346 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2347 mask, value,
2348 I915_READ(pp_stat_reg),
2349 I915_READ(pp_ctrl_reg));
2350
2351 if (intel_wait_for_register(dev_priv,
2352 pp_stat_reg, mask, value,
2353 5000))
2354 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2355 I915_READ(pp_stat_reg),
2356 I915_READ(pp_ctrl_reg));
2357
2358 DRM_DEBUG_KMS("Wait complete\n");
2359 }
2360
2361 static void wait_panel_on(struct intel_dp *intel_dp)
2362 {
2363 DRM_DEBUG_KMS("Wait for panel power on\n");
2364 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2365 }
2366
2367 static void wait_panel_off(struct intel_dp *intel_dp)
2368 {
2369 DRM_DEBUG_KMS("Wait for panel power off time\n");
2370 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2371 }
2372
2373 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2374 {
2375 ktime_t panel_power_on_time;
2376 s64 panel_power_off_duration;
2377
2378 DRM_DEBUG_KMS("Wait for panel power cycle\n");
2379
2380 /* take the difference of currrent time and panel power off time
2381 * and then make panel wait for t11_t12 if needed. */
2382 panel_power_on_time = ktime_get_boottime();
2383 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2384
2385 /* When we disable the VDD override bit last we have to do the manual
2386 * wait. */
2387 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2388 wait_remaining_ms_from_jiffies(jiffies,
2389 intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2390
2391 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2392 }
2393
2394 static void wait_backlight_on(struct intel_dp *intel_dp)
2395 {
2396 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2397 intel_dp->backlight_on_delay);
2398 }
2399
2400 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2401 {
2402 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2403 intel_dp->backlight_off_delay);
2404 }
2405
2406 /* Read the current pp_control value, unlocking the register if it
2407 * is locked
2408 */
2409
2410 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2411 {
2412 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2413 u32 control;
2414
2415 lockdep_assert_held(&dev_priv->pps_mutex);
2416
2417 control = I915_READ(_pp_ctrl_reg(intel_dp));
2418 if (WARN_ON(!HAS_DDI(dev_priv) &&
2419 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2420 control &= ~PANEL_UNLOCK_MASK;
2421 control |= PANEL_UNLOCK_REGS;
2422 }
2423 return control;
2424 }
2425
2426 /*
2427 * Must be paired with edp_panel_vdd_off().
2428 * Must hold pps_mutex around the whole on/off sequence.
2429 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2430 */
2431 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2432 {
2433 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2434 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2435 u32 pp;
2436 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2437 bool need_to_disable = !intel_dp->want_panel_vdd;
2438
2439 lockdep_assert_held(&dev_priv->pps_mutex);
2440
2441 if (!intel_dp_is_edp(intel_dp))
2442 return false;
2443
2444 cancel_delayed_work(&intel_dp->panel_vdd_work);
2445 intel_dp->want_panel_vdd = true;
2446
2447 if (edp_have_panel_vdd(intel_dp))
2448 return need_to_disable;
2449
2450 intel_display_power_get(dev_priv,
2451 intel_aux_power_domain(intel_dig_port));
2452
2453 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
2454 port_name(intel_dig_port->base.port));
2455
2456 if (!edp_have_panel_power(intel_dp))
2457 wait_panel_power_cycle(intel_dp);
2458
2459 pp = ironlake_get_pp_control(intel_dp);
2460 pp |= EDP_FORCE_VDD;
2461
2462 pp_stat_reg = _pp_stat_reg(intel_dp);
2463 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2464
2465 I915_WRITE(pp_ctrl_reg, pp);
2466 POSTING_READ(pp_ctrl_reg);
2467 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2468 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2469 /*
2470 * If the panel wasn't on, delay before accessing aux channel
2471 */
2472 if (!edp_have_panel_power(intel_dp)) {
2473 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
2474 port_name(intel_dig_port->base.port));
2475 msleep(intel_dp->panel_power_up_delay);
2476 }
2477
2478 return need_to_disable;
2479 }
2480
2481 /*
2482 * Must be paired with intel_edp_panel_vdd_off() or
2483 * intel_edp_panel_off().
2484 * Nested calls to these functions are not allowed since
2485 * we drop the lock. Caller must use some higher level
2486 * locking to prevent nested calls from other threads.
2487 */
2488 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2489 {
2490 intel_wakeref_t wakeref;
2491 bool vdd;
2492
2493 if (!intel_dp_is_edp(intel_dp))
2494 return;
2495
2496 vdd = false;
2497 with_pps_lock(intel_dp, wakeref)
2498 vdd = edp_panel_vdd_on(intel_dp);
2499 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2500 port_name(dp_to_dig_port(intel_dp)->base.port));
2501 }
2502
2503 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2504 {
2505 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2506 struct intel_digital_port *intel_dig_port =
2507 dp_to_dig_port(intel_dp);
2508 u32 pp;
2509 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2510
2511 lockdep_assert_held(&dev_priv->pps_mutex);
2512
2513 WARN_ON(intel_dp->want_panel_vdd);
2514
2515 if (!edp_have_panel_vdd(intel_dp))
2516 return;
2517
2518 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2519 port_name(intel_dig_port->base.port));
2520
2521 pp = ironlake_get_pp_control(intel_dp);
2522 pp &= ~EDP_FORCE_VDD;
2523
2524 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2525 pp_stat_reg = _pp_stat_reg(intel_dp);
2526
2527 I915_WRITE(pp_ctrl_reg, pp);
2528 POSTING_READ(pp_ctrl_reg);
2529
2530 /* Make sure sequencer is idle before allowing subsequent activity */
2531 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2532 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2533
2534 if ((pp & PANEL_POWER_ON) == 0)
2535 intel_dp->panel_power_off_time = ktime_get_boottime();
2536
2537 intel_display_power_put_unchecked(dev_priv,
2538 intel_aux_power_domain(intel_dig_port));
2539 }
2540
2541 static void edp_panel_vdd_work(struct work_struct *__work)
2542 {
2543 struct intel_dp *intel_dp =
2544 container_of(to_delayed_work(__work),
2545 struct intel_dp, panel_vdd_work);
2546 intel_wakeref_t wakeref;
2547
2548 with_pps_lock(intel_dp, wakeref) {
2549 if (!intel_dp->want_panel_vdd)
2550 edp_panel_vdd_off_sync(intel_dp);
2551 }
2552 }
2553
2554 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2555 {
2556 unsigned long delay;
2557
2558 /*
2559 * Queue the timer to fire a long time from now (relative to the power
2560 * down delay) to keep the panel power up across a sequence of
2561 * operations.
2562 */
2563 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2564 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2565 }
2566
2567 /*
2568 * Must be paired with edp_panel_vdd_on().
2569 * Must hold pps_mutex around the whole on/off sequence.
2570 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2571 */
2572 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2573 {
2574 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2575
2576 lockdep_assert_held(&dev_priv->pps_mutex);
2577
2578 if (!intel_dp_is_edp(intel_dp))
2579 return;
2580
2581 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2582 port_name(dp_to_dig_port(intel_dp)->base.port));
2583
2584 intel_dp->want_panel_vdd = false;
2585
2586 if (sync)
2587 edp_panel_vdd_off_sync(intel_dp);
2588 else
2589 edp_panel_vdd_schedule_off(intel_dp);
2590 }
2591
2592 static void edp_panel_on(struct intel_dp *intel_dp)
2593 {
2594 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2595 u32 pp;
2596 i915_reg_t pp_ctrl_reg;
2597
2598 lockdep_assert_held(&dev_priv->pps_mutex);
2599
2600 if (!intel_dp_is_edp(intel_dp))
2601 return;
2602
2603 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2604 port_name(dp_to_dig_port(intel_dp)->base.port));
2605
2606 if (WARN(edp_have_panel_power(intel_dp),
2607 "eDP port %c panel power already on\n",
2608 port_name(dp_to_dig_port(intel_dp)->base.port)))
2609 return;
2610
2611 wait_panel_power_cycle(intel_dp);
2612
2613 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2614 pp = ironlake_get_pp_control(intel_dp);
2615 if (IS_GEN(dev_priv, 5)) {
2616 /* ILK workaround: disable reset around power sequence */
2617 pp &= ~PANEL_POWER_RESET;
2618 I915_WRITE(pp_ctrl_reg, pp);
2619 POSTING_READ(pp_ctrl_reg);
2620 }
2621
2622 pp |= PANEL_POWER_ON;
2623 if (!IS_GEN(dev_priv, 5))
2624 pp |= PANEL_POWER_RESET;
2625
2626 I915_WRITE(pp_ctrl_reg, pp);
2627 POSTING_READ(pp_ctrl_reg);
2628
2629 wait_panel_on(intel_dp);
2630 intel_dp->last_power_on = jiffies;
2631
2632 if (IS_GEN(dev_priv, 5)) {
2633 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2634 I915_WRITE(pp_ctrl_reg, pp);
2635 POSTING_READ(pp_ctrl_reg);
2636 }
2637 }
2638
2639 void intel_edp_panel_on(struct intel_dp *intel_dp)
2640 {
2641 intel_wakeref_t wakeref;
2642
2643 if (!intel_dp_is_edp(intel_dp))
2644 return;
2645
2646 with_pps_lock(intel_dp, wakeref)
2647 edp_panel_on(intel_dp);
2648 }
2649
2650
2651 static void edp_panel_off(struct intel_dp *intel_dp)
2652 {
2653 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2654 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2655 u32 pp;
2656 i915_reg_t pp_ctrl_reg;
2657
2658 lockdep_assert_held(&dev_priv->pps_mutex);
2659
2660 if (!intel_dp_is_edp(intel_dp))
2661 return;
2662
2663 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2664 port_name(dig_port->base.port));
2665
2666 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2667 port_name(dig_port->base.port));
2668
2669 pp = ironlake_get_pp_control(intel_dp);
2670 /* We need to switch off panel power _and_ force vdd, for otherwise some
2671 * panels get very unhappy and cease to work. */
2672 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2673 EDP_BLC_ENABLE);
2674
2675 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2676
2677 intel_dp->want_panel_vdd = false;
2678
2679 I915_WRITE(pp_ctrl_reg, pp);
2680 POSTING_READ(pp_ctrl_reg);
2681
2682 wait_panel_off(intel_dp);
2683 intel_dp->panel_power_off_time = ktime_get_boottime();
2684
2685 /* We got a reference when we enabled the VDD. */
2686 intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2687 }
2688
2689 void intel_edp_panel_off(struct intel_dp *intel_dp)
2690 {
2691 intel_wakeref_t wakeref;
2692
2693 if (!intel_dp_is_edp(intel_dp))
2694 return;
2695
2696 with_pps_lock(intel_dp, wakeref)
2697 edp_panel_off(intel_dp);
2698 }
2699
2700 /* Enable backlight in the panel power control. */
2701 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2702 {
2703 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2704 intel_wakeref_t wakeref;
2705
2706 /*
2707 * If we enable the backlight right away following a panel power
2708 * on, we may see slight flicker as the panel syncs with the eDP
2709 * link. So delay a bit to make sure the image is solid before
2710 * allowing it to appear.
2711 */
2712 wait_backlight_on(intel_dp);
2713
2714 with_pps_lock(intel_dp, wakeref) {
2715 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2716 u32 pp;
2717
2718 pp = ironlake_get_pp_control(intel_dp);
2719 pp |= EDP_BLC_ENABLE;
2720
2721 I915_WRITE(pp_ctrl_reg, pp);
2722 POSTING_READ(pp_ctrl_reg);
2723 }
2724 }
2725
2726 /* Enable backlight PWM and backlight PP control. */
2727 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
2728 const struct drm_connector_state *conn_state)
2729 {
2730 struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);
2731
2732 if (!intel_dp_is_edp(intel_dp))
2733 return;
2734
2735 DRM_DEBUG_KMS("\n");
2736
2737 intel_panel_enable_backlight(crtc_state, conn_state);
2738 _intel_edp_backlight_on(intel_dp);
2739 }
2740
2741 /* Disable backlight in the panel power control. */
2742 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2743 {
2744 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2745 intel_wakeref_t wakeref;
2746
2747 if (!intel_dp_is_edp(intel_dp))
2748 return;
2749
2750 with_pps_lock(intel_dp, wakeref) {
2751 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2752 u32 pp;
2753
2754 pp = ironlake_get_pp_control(intel_dp);
2755 pp &= ~EDP_BLC_ENABLE;
2756
2757 I915_WRITE(pp_ctrl_reg, pp);
2758 POSTING_READ(pp_ctrl_reg);
2759 }
2760
2761 intel_dp->last_backlight_off = jiffies;
2762 edp_wait_backlight_off(intel_dp);
2763 }
2764
2765 /* Disable backlight PP control and backlight PWM. */
2766 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2767 {
2768 struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);
2769
2770 if (!intel_dp_is_edp(intel_dp))
2771 return;
2772
2773 DRM_DEBUG_KMS("\n");
2774
2775 _intel_edp_backlight_off(intel_dp);
2776 intel_panel_disable_backlight(old_conn_state);
2777 }
2778
2779 /*
2780 * Hook for controlling the panel power control backlight through the bl_power
2781 * sysfs attribute. Take care to handle multiple calls.
2782 */
2783 static void intel_edp_backlight_power(struct intel_connector *connector,
2784 bool enable)
2785 {
2786 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2787 intel_wakeref_t wakeref;
2788 bool is_enabled;
2789
2790 is_enabled = false;
2791 with_pps_lock(intel_dp, wakeref)
2792 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2793 if (is_enabled == enable)
2794 return;
2795
2796 DRM_DEBUG_KMS("panel power control backlight %s\n",
2797 enable ? "enable" : "disable");
2798
2799 if (enable)
2800 _intel_edp_backlight_on(intel_dp);
2801 else
2802 _intel_edp_backlight_off(intel_dp);
2803 }
2804
2805 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2806 {
2807 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2808 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2809 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2810
2811 I915_STATE_WARN(cur_state != state,
2812 "DP port %c state assertion failure (expected %s, current %s)\n",
2813 port_name(dig_port->base.port),
2814 onoff(state), onoff(cur_state));
2815 }
2816 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2817
2818 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2819 {
2820 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2821
2822 I915_STATE_WARN(cur_state != state,
2823 "eDP PLL state assertion failure (expected %s, current %s)\n",
2824 onoff(state), onoff(cur_state));
2825 }
2826 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2827 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2828
2829 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2830 const struct intel_crtc_state *pipe_config)
2831 {
2832 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2833 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2834
2835 assert_pipe_disabled(dev_priv, crtc->pipe);
2836 assert_dp_port_disabled(intel_dp);
2837 assert_edp_pll_disabled(dev_priv);
2838
2839 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2840 pipe_config->port_clock);
2841
2842 intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2843
2844 if (pipe_config->port_clock == 162000)
2845 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2846 else
2847 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2848
2849 I915_WRITE(DP_A, intel_dp->DP);
2850 POSTING_READ(DP_A);
2851 udelay(500);
2852
2853 /*
2854 * [DevILK] Work around required when enabling DP PLL
2855 * while a pipe is enabled going to FDI:
2856 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2857 * 2. Program DP PLL enable
2858 */
2859 if (IS_GEN(dev_priv, 5))
2860 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
2861
2862 intel_dp->DP |= DP_PLL_ENABLE;
2863
2864 I915_WRITE(DP_A, intel_dp->DP);
2865 POSTING_READ(DP_A);
2866 udelay(200);
2867 }
2868
2869 static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
2870 const struct intel_crtc_state *old_crtc_state)
2871 {
2872 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
2873 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2874
2875 assert_pipe_disabled(dev_priv, crtc->pipe);
2876 assert_dp_port_disabled(intel_dp);
2877 assert_edp_pll_enabled(dev_priv);
2878
2879 DRM_DEBUG_KMS("disabling eDP PLL\n");
2880
2881 intel_dp->DP &= ~DP_PLL_ENABLE;
2882
2883 I915_WRITE(DP_A, intel_dp->DP);
2884 POSTING_READ(DP_A);
2885 udelay(200);
2886 }
2887
2888 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
2889 {
2890 /*
2891 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
2892 * be capable of signalling downstream hpd with a long pulse.
2893 * Whether or not that means D3 is safe to use is not clear,
2894 * but let's assume so until proven otherwise.
2895 *
2896 * FIXME should really check all downstream ports...
2897 */
2898 return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
2899 intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
2900 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
2901 }
2902
2903 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
2904 const struct intel_crtc_state *crtc_state,
2905 bool enable)
2906 {
2907 int ret;
2908
2909 if (!crtc_state->dsc_params.compression_enable)
2910 return;
2911
2912 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
2913 enable ? DP_DECOMPRESSION_EN : 0);
2914 if (ret < 0)
2915 DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
2916 enable ? "enable" : "disable");
2917 }
2918
2919 /* If the sink supports it, try to set the power state appropriately */
2920 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2921 {
2922 int ret, i;
2923
2924 /* Should have a valid DPCD by this point */
2925 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2926 return;
2927
2928 if (mode != DRM_MODE_DPMS_ON) {
2929 if (downstream_hpd_needs_d0(intel_dp))
2930 return;
2931
2932 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2933 DP_SET_POWER_D3);
2934 } else {
2935 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
2936
2937 /*
2938 * When turning on, we need to retry for 1ms to give the sink
2939 * time to wake up.
2940 */
2941 for (i = 0; i < 3; i++) {
2942 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2943 DP_SET_POWER_D0);
2944 if (ret == 1)
2945 break;
2946 msleep(1);
2947 }
2948
2949 if (ret == 1 && lspcon->active)
2950 lspcon_wait_pcon_mode(lspcon);
2951 }
2952
2953 if (ret != 1)
2954 DRM_DEBUG_KMS("failed to %s sink power state\n",
2955 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2956 }
2957
2958 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
2959 enum port port, enum pipe *pipe)
2960 {
2961 enum pipe p;
2962
2963 for_each_pipe(dev_priv, p) {
2964 u32 val = I915_READ(TRANS_DP_CTL(p));
2965
2966 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
2967 *pipe = p;
2968 return true;
2969 }
2970 }
2971
2972 DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));
2973
2974 /* must initialize pipe to something for the asserts */
2975 *pipe = PIPE_A;
2976
2977 return false;
2978 }
2979
2980 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
2981 i915_reg_t dp_reg, enum port port,
2982 enum pipe *pipe)
2983 {
2984 bool ret;
2985 u32 val;
2986
2987 val = I915_READ(dp_reg);
2988
2989 ret = val & DP_PORT_EN;
2990
2991 /* asserts want to know the pipe even if the port is disabled */
2992 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
2993 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
2994 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
2995 ret &= cpt_dp_port_selected(dev_priv, port, pipe);
2996 else if (IS_CHERRYVIEW(dev_priv))
2997 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
2998 else
2999 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3000
3001 return ret;
3002 }
3003
3004 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3005 enum pipe *pipe)
3006 {
3007 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3008 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3009 intel_wakeref_t wakeref;
3010 bool ret;
3011
3012 wakeref = intel_display_power_get_if_enabled(dev_priv,
3013 encoder->power_domain);
3014 if (!wakeref)
3015 return false;
3016
3017 ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3018 encoder->port, pipe);
3019
3020 intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3021
3022 return ret;
3023 }
3024
3025 static void intel_dp_get_config(struct intel_encoder *encoder,
3026 struct intel_crtc_state *pipe_config)
3027 {
3028 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3029 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3030 u32 tmp, flags = 0;
3031 enum port port = encoder->port;
3032 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3033
3034 if (encoder->type == INTEL_OUTPUT_EDP)
3035 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3036 else
3037 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3038
3039 tmp = I915_READ(intel_dp->output_reg);
3040
3041 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3042
3043 if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3044 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
3045
3046 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3047 flags |= DRM_MODE_FLAG_PHSYNC;
3048 else
3049 flags |= DRM_MODE_FLAG_NHSYNC;
3050
3051 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3052 flags |= DRM_MODE_FLAG_PVSYNC;
3053 else
3054 flags |= DRM_MODE_FLAG_NVSYNC;
3055 } else {
3056 if (tmp & DP_SYNC_HS_HIGH)
3057 flags |= DRM_MODE_FLAG_PHSYNC;
3058 else
3059 flags |= DRM_MODE_FLAG_NHSYNC;
3060
3061 if (tmp & DP_SYNC_VS_HIGH)
3062 flags |= DRM_MODE_FLAG_PVSYNC;
3063 else
3064 flags |= DRM_MODE_FLAG_NVSYNC;
3065 }
3066
3067 pipe_config->base.adjusted_mode.flags |= flags;
3068
3069 if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3070 pipe_config->limited_color_range = true;
3071
3072 pipe_config->lane_count =
3073 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3074
3075 intel_dp_get_m_n(crtc, pipe_config);
3076
3077 if (port == PORT_A) {
3078 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3079 pipe_config->port_clock = 162000;
3080 else
3081 pipe_config->port_clock = 270000;
3082 }
3083
3084 pipe_config->base.adjusted_mode.crtc_clock =
3085 intel_dotclock_calculate(pipe_config->port_clock,
3086 &pipe_config->dp_m_n);
3087
3088 if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3089 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3090 /*
3091 * This is a big fat ugly hack.
3092 *
3093 * Some machines in UEFI boot mode provide us a VBT that has 18
3094 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3095 * unknown we fail to light up. Yet the same BIOS boots up with
3096 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3097 * max, not what it tells us to use.
3098 *
3099 * Note: This will still be broken if the eDP panel is not lit
3100 * up by the BIOS, and thus we can't get the mode at module
3101 * load.
3102 */
3103 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3104 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3105 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3106 }
3107 }
3108
3109 static void intel_disable_dp(struct intel_encoder *encoder,
3110 const struct intel_crtc_state *old_crtc_state,
3111 const struct drm_connector_state *old_conn_state)
3112 {
3113 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3114
3115 intel_dp->link_trained = false;
3116
3117 if (old_crtc_state->has_audio)
3118 intel_audio_codec_disable(encoder,
3119 old_crtc_state, old_conn_state);
3120
3121 /* Make sure the panel is off before trying to change the mode. But also
3122 * ensure that we have vdd while we switch off the panel. */
3123 intel_edp_panel_vdd_on(intel_dp);
3124 intel_edp_backlight_off(old_conn_state);
3125 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3126 intel_edp_panel_off(intel_dp);
3127 }
3128
3129 static void g4x_disable_dp(struct intel_encoder *encoder,
3130 const struct intel_crtc_state *old_crtc_state,
3131 const struct drm_connector_state *old_conn_state)
3132 {
3133 intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3134 }
3135
3136 static void vlv_disable_dp(struct intel_encoder *encoder,
3137 const struct intel_crtc_state *old_crtc_state,
3138 const struct drm_connector_state *old_conn_state)
3139 {
3140 intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3141 }
3142
3143 static void g4x_post_disable_dp(struct intel_encoder *encoder,
3144 const struct intel_crtc_state *old_crtc_state,
3145 const struct drm_connector_state *old_conn_state)
3146 {
3147 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3148 enum port port = encoder->port;
3149
3150 /*
3151 * Bspec does not list a specific disable sequence for g4x DP.
3152 * Follow the ilk+ sequence (disable pipe before the port) for
3153 * g4x DP as it does not suffer from underruns like the normal
3154 * g4x modeset sequence (disable pipe after the port).
3155 */
3156 intel_dp_link_down(encoder, old_crtc_state);
3157
3158 /* Only ilk+ has port A */
3159 if (port == PORT_A)
3160 ironlake_edp_pll_off(intel_dp, old_crtc_state);
3161 }
3162
3163 static void vlv_post_disable_dp(struct intel_encoder *encoder,
3164 const struct intel_crtc_state *old_crtc_state,
3165 const struct drm_connector_state *old_conn_state)
3166 {
3167 intel_dp_link_down(encoder, old_crtc_state);
3168 }
3169
3170 static void chv_post_disable_dp(struct intel_encoder *encoder,
3171 const struct intel_crtc_state *old_crtc_state,
3172 const struct drm_connector_state *old_conn_state)
3173 {
3174 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3175
3176 intel_dp_link_down(encoder, old_crtc_state);
3177
3178 mutex_lock(&dev_priv->sb_lock);
3179
3180 /* Assert data lane reset */
3181 chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3182
3183 mutex_unlock(&dev_priv->sb_lock);
3184 }
3185
3186 static void
3187 _intel_dp_set_link_train(struct intel_dp *intel_dp,
3188 u32 *DP,
3189 u8 dp_train_pat)
3190 {
3191 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3192 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3193 enum port port = intel_dig_port->base.port;
3194 u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3195
3196 if (dp_train_pat & train_pat_mask)
3197 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3198 dp_train_pat & train_pat_mask);
3199
3200 if (HAS_DDI(dev_priv)) {
3201 u32 temp = I915_READ(DP_TP_CTL(port));
3202
3203 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
3204 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
3205 else
3206 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
3207
3208 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3209 switch (dp_train_pat & train_pat_mask) {
3210 case DP_TRAINING_PATTERN_DISABLE:
3211 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
3212
3213 break;
3214 case DP_TRAINING_PATTERN_1:
3215 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
3216 break;
3217 case DP_TRAINING_PATTERN_2:
3218 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
3219 break;
3220 case DP_TRAINING_PATTERN_3:
3221 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
3222 break;
3223 case DP_TRAINING_PATTERN_4:
3224 temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
3225 break;
3226 }
3227 I915_WRITE(DP_TP_CTL(port), temp);
3228
3229 } else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3230 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3231 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
3232
3233 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3234 case DP_TRAINING_PATTERN_DISABLE:
3235 *DP |= DP_LINK_TRAIN_OFF_CPT;
3236 break;
3237 case DP_TRAINING_PATTERN_1:
3238 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
3239 break;
3240 case DP_TRAINING_PATTERN_2:
3241 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3242 break;
3243 case DP_TRAINING_PATTERN_3:
3244 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3245 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3246 break;
3247 }
3248
3249 } else {
3250 *DP &= ~DP_LINK_TRAIN_MASK;
3251
3252 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3253 case DP_TRAINING_PATTERN_DISABLE:
3254 *DP |= DP_LINK_TRAIN_OFF;
3255 break;
3256 case DP_TRAINING_PATTERN_1:
3257 *DP |= DP_LINK_TRAIN_PAT_1;
3258 break;
3259 case DP_TRAINING_PATTERN_2:
3260 *DP |= DP_LINK_TRAIN_PAT_2;
3261 break;
3262 case DP_TRAINING_PATTERN_3:
3263 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3264 *DP |= DP_LINK_TRAIN_PAT_2;
3265 break;
3266 }
3267 }
3268 }
3269
3270 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3271 const struct intel_crtc_state *old_crtc_state)
3272 {
3273 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3274
3275 /* enable with pattern 1 (as per spec) */
3276
3277 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3278
3279 /*
3280 * Magic for VLV/CHV. We _must_ first set up the register
3281 * without actually enabling the port, and then do another
3282 * write to enable the port. Otherwise link training will
3283 * fail when the power sequencer is freshly used for this port.
3284 */
3285 intel_dp->DP |= DP_PORT_EN;
3286 if (old_crtc_state->has_audio)
3287 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3288
3289 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3290 POSTING_READ(intel_dp->output_reg);
3291 }
3292
3293 static void intel_enable_dp(struct intel_encoder *encoder,
3294 const struct intel_crtc_state *pipe_config,
3295 const struct drm_connector_state *conn_state)
3296 {
3297 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3298 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3299 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3300 u32 dp_reg = I915_READ(intel_dp->output_reg);
3301 enum pipe pipe = crtc->pipe;
3302 intel_wakeref_t wakeref;
3303
3304 if (WARN_ON(dp_reg & DP_PORT_EN))
3305 return;
3306
3307 with_pps_lock(intel_dp, wakeref) {
3308 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3309 vlv_init_panel_power_sequencer(encoder, pipe_config);
3310
3311 intel_dp_enable_port(intel_dp, pipe_config);
3312
3313 edp_panel_vdd_on(intel_dp);
3314 edp_panel_on(intel_dp);
3315 edp_panel_vdd_off(intel_dp, true);
3316 }
3317
3318 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3319 unsigned int lane_mask = 0x0;
3320
3321 if (IS_CHERRYVIEW(dev_priv))
3322 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3323
3324 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3325 lane_mask);
3326 }
3327
3328 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3329 intel_dp_start_link_train(intel_dp);
3330 intel_dp_stop_link_train(intel_dp);
3331
3332 if (pipe_config->has_audio) {
3333 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3334 pipe_name(pipe));
3335 intel_audio_codec_enable(encoder, pipe_config, conn_state);
3336 }
3337 }
3338
3339 static void g4x_enable_dp(struct intel_encoder *encoder,
3340 const struct intel_crtc_state *pipe_config,
3341 const struct drm_connector_state *conn_state)
3342 {
3343 intel_enable_dp(encoder, pipe_config, conn_state);
3344 intel_edp_backlight_on(pipe_config, conn_state);
3345 }
3346
3347 static void vlv_enable_dp(struct intel_encoder *encoder,
3348 const struct intel_crtc_state *pipe_config,
3349 const struct drm_connector_state *conn_state)
3350 {
3351 intel_edp_backlight_on(pipe_config, conn_state);
3352 }
3353
3354 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3355 const struct intel_crtc_state *pipe_config,
3356 const struct drm_connector_state *conn_state)
3357 {
3358 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3359 enum port port = encoder->port;
3360
3361 intel_dp_prepare(encoder, pipe_config);
3362
3363 /* Only ilk+ has port A */
3364 if (port == PORT_A)
3365 ironlake_edp_pll_on(intel_dp, pipe_config);
3366 }
3367
3368 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3369 {
3370 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3371 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3372 enum pipe pipe = intel_dp->pps_pipe;
3373 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3374
3375 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3376
3377 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
3378 return;
3379
3380 edp_panel_vdd_off_sync(intel_dp);
3381
3382 /*
3383 * VLV seems to get confused when multiple power sequencers
3384 * have the same port selected (even if only one has power/vdd
3385 * enabled). The failure manifests as vlv_wait_port_ready() failing
3386 * CHV on the other hand doesn't seem to mind having the same port
3387 * selected in multiple power sequencers, but let's clear the
3388 * port select always when logically disconnecting a power sequencer
3389 * from a port.
3390 */
3391 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
3392 pipe_name(pipe), port_name(intel_dig_port->base.port));
3393 I915_WRITE(pp_on_reg, 0);
3394 POSTING_READ(pp_on_reg);
3395
3396 intel_dp->pps_pipe = INVALID_PIPE;
3397 }
3398
3399 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3400 enum pipe pipe)
3401 {
3402 struct intel_encoder *encoder;
3403
3404 lockdep_assert_held(&dev_priv->pps_mutex);
3405
3406 for_each_intel_dp(&dev_priv->drm, encoder) {
3407 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3408 enum port port = encoder->port;
3409
3410 WARN(intel_dp->active_pipe == pipe,
3411 "stealing pipe %c power sequencer from active (e)DP port %c\n",
3412 pipe_name(pipe), port_name(port));
3413
3414 if (intel_dp->pps_pipe != pipe)
3415 continue;
3416
3417 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
3418 pipe_name(pipe), port_name(port));
3419
3420 /* make sure vdd is off before we steal it */
3421 vlv_detach_power_sequencer(intel_dp);
3422 }
3423 }
3424
3425 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3426 const struct intel_crtc_state *crtc_state)
3427 {
3428 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3429 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3430 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3431
3432 lockdep_assert_held(&dev_priv->pps_mutex);
3433
3434 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3435
3436 if (intel_dp->pps_pipe != INVALID_PIPE &&
3437 intel_dp->pps_pipe != crtc->pipe) {
3438 /*
3439 * If another power sequencer was being used on this
3440 * port previously make sure to turn off vdd there while
3441 * we still have control of it.
3442 */
3443 vlv_detach_power_sequencer(intel_dp);
3444 }
3445
3446 /*
3447 * We may be stealing the power
3448 * sequencer from another port.
3449 */
3450 vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3451
3452 intel_dp->active_pipe = crtc->pipe;
3453
3454 if (!intel_dp_is_edp(intel_dp))
3455 return;
3456
3457 /* now it's all ours */
3458 intel_dp->pps_pipe = crtc->pipe;
3459
3460 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
3461 pipe_name(intel_dp->pps_pipe), port_name(encoder->port));
3462
3463 /* init power sequencer on this pipe and port */
3464 intel_dp_init_panel_power_sequencer(intel_dp);
3465 intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3466 }
3467
3468 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3469 const struct intel_crtc_state *pipe_config,
3470 const struct drm_connector_state *conn_state)
3471 {
3472 vlv_phy_pre_encoder_enable(encoder, pipe_config);
3473
3474 intel_enable_dp(encoder, pipe_config, conn_state);
3475 }
3476
3477 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3478 const struct intel_crtc_state *pipe_config,
3479 const struct drm_connector_state *conn_state)
3480 {
3481 intel_dp_prepare(encoder, pipe_config);
3482
3483 vlv_phy_pre_pll_enable(encoder, pipe_config);
3484 }
3485
3486 static void chv_pre_enable_dp(struct intel_encoder *encoder,
3487 const struct intel_crtc_state *pipe_config,
3488 const struct drm_connector_state *conn_state)
3489 {
3490 chv_phy_pre_encoder_enable(encoder, pipe_config);
3491
3492 intel_enable_dp(encoder, pipe_config, conn_state);
3493
3494 /* Second common lane will stay alive on its own now */
3495 chv_phy_release_cl2_override(encoder);
3496 }
3497
3498 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3499 const struct intel_crtc_state *pipe_config,
3500 const struct drm_connector_state *conn_state)
3501 {
3502 intel_dp_prepare(encoder, pipe_config);
3503
3504 chv_phy_pre_pll_enable(encoder, pipe_config);
3505 }
3506
3507 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3508 const struct intel_crtc_state *old_crtc_state,
3509 const struct drm_connector_state *old_conn_state)
3510 {
3511 chv_phy_post_pll_disable(encoder, old_crtc_state);
3512 }
3513
3514 /*
3515 * Fetch AUX CH registers 0x202 - 0x207 which contain
3516 * link status information
3517 */
3518 bool
3519 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3520 {
3521 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3522 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3523 }
3524
3525 /* These are source-specific values. */
3526 u8
3527 intel_dp_voltage_max(struct intel_dp *intel_dp)
3528 {
3529 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3530 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3531 enum port port = encoder->port;
3532
3533 if (HAS_DDI(dev_priv))
3534 return intel_ddi_dp_voltage_max(encoder);
3535 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3536 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3537 else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3538 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3539 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3540 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3541 else
3542 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3543 }
3544
3545 u8
3546 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
3547 {
3548 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3549 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3550 enum port port = encoder->port;
3551
3552 if (HAS_DDI(dev_priv)) {
3553 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3554 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3555 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3556 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3557 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3558 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3559 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3560 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3561 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3562 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3563 default:
3564 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3565 }
3566 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3567 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3568 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3569 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3570 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3571 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3572 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3573 default:
3574 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3575 }
3576 } else {
3577 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3578 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3579 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3580 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3581 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3582 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3583 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3584 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3585 default:
3586 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3587 }
3588 }
3589 }
3590
3591 static u32 vlv_signal_levels(struct intel_dp *intel_dp)
3592 {
3593 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3594 unsigned long demph_reg_value, preemph_reg_value,
3595 uniqtranscale_reg_value;
3596 u8 train_set = intel_dp->train_set[0];
3597
3598 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3599 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3600 preemph_reg_value = 0x0004000;
3601 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3602 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3603 demph_reg_value = 0x2B405555;
3604 uniqtranscale_reg_value = 0x552AB83A;
3605 break;
3606 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3607 demph_reg_value = 0x2B404040;
3608 uniqtranscale_reg_value = 0x5548B83A;
3609 break;
3610 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3611 demph_reg_value = 0x2B245555;
3612 uniqtranscale_reg_value = 0x5560B83A;
3613 break;
3614 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3615 demph_reg_value = 0x2B405555;
3616 uniqtranscale_reg_value = 0x5598DA3A;
3617 break;
3618 default:
3619 return 0;
3620 }
3621 break;
3622 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3623 preemph_reg_value = 0x0002000;
3624 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3625 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3626 demph_reg_value = 0x2B404040;
3627 uniqtranscale_reg_value = 0x5552B83A;
3628 break;
3629 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3630 demph_reg_value = 0x2B404848;
3631 uniqtranscale_reg_value = 0x5580B83A;
3632 break;
3633 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3634 demph_reg_value = 0x2B404040;
3635 uniqtranscale_reg_value = 0x55ADDA3A;
3636 break;
3637 default:
3638 return 0;
3639 }
3640 break;
3641 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3642 preemph_reg_value = 0x0000000;
3643 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3644 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3645 demph_reg_value = 0x2B305555;
3646 uniqtranscale_reg_value = 0x5570B83A;
3647 break;
3648 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3649 demph_reg_value = 0x2B2B4040;
3650 uniqtranscale_reg_value = 0x55ADDA3A;
3651 break;
3652 default:
3653 return 0;
3654 }
3655 break;
3656 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3657 preemph_reg_value = 0x0006000;
3658 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3659 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3660 demph_reg_value = 0x1B405555;
3661 uniqtranscale_reg_value = 0x55ADDA3A;
3662 break;
3663 default:
3664 return 0;
3665 }
3666 break;
3667 default:
3668 return 0;
3669 }
3670
3671 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3672 uniqtranscale_reg_value, 0);
3673
3674 return 0;
3675 }
3676
3677 static u32 chv_signal_levels(struct intel_dp *intel_dp)
3678 {
3679 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3680 u32 deemph_reg_value, margin_reg_value;
3681 bool uniq_trans_scale = false;
3682 u8 train_set = intel_dp->train_set[0];
3683
3684 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3685 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3686 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3687 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3688 deemph_reg_value = 128;
3689 margin_reg_value = 52;
3690 break;
3691 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3692 deemph_reg_value = 128;
3693 margin_reg_value = 77;
3694 break;
3695 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3696 deemph_reg_value = 128;
3697 margin_reg_value = 102;
3698 break;
3699 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3700 deemph_reg_value = 128;
3701 margin_reg_value = 154;
3702 uniq_trans_scale = true;
3703 break;
3704 default:
3705 return 0;
3706 }
3707 break;
3708 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3709 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3710 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3711 deemph_reg_value = 85;
3712 margin_reg_value = 78;
3713 break;
3714 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3715 deemph_reg_value = 85;
3716 margin_reg_value = 116;
3717 break;
3718 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3719 deemph_reg_value = 85;
3720 margin_reg_value = 154;
3721 break;
3722 default:
3723 return 0;
3724 }
3725 break;
3726 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3727 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3728 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3729 deemph_reg_value = 64;
3730 margin_reg_value = 104;
3731 break;
3732 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3733 deemph_reg_value = 64;
3734 margin_reg_value = 154;
3735 break;
3736 default:
3737 return 0;
3738 }
3739 break;
3740 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3741 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3742 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3743 deemph_reg_value = 43;
3744 margin_reg_value = 154;
3745 break;
3746 default:
3747 return 0;
3748 }
3749 break;
3750 default:
3751 return 0;
3752 }
3753
3754 chv_set_phy_signal_level(encoder, deemph_reg_value,
3755 margin_reg_value, uniq_trans_scale);
3756
3757 return 0;
3758 }
3759
3760 static u32
3761 g4x_signal_levels(u8 train_set)
3762 {
3763 u32 signal_levels = 0;
3764
3765 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3766 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3767 default:
3768 signal_levels |= DP_VOLTAGE_0_4;
3769 break;
3770 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3771 signal_levels |= DP_VOLTAGE_0_6;
3772 break;
3773 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3774 signal_levels |= DP_VOLTAGE_0_8;
3775 break;
3776 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3777 signal_levels |= DP_VOLTAGE_1_2;
3778 break;
3779 }
3780 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3781 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3782 default:
3783 signal_levels |= DP_PRE_EMPHASIS_0;
3784 break;
3785 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3786 signal_levels |= DP_PRE_EMPHASIS_3_5;
3787 break;
3788 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3789 signal_levels |= DP_PRE_EMPHASIS_6;
3790 break;
3791 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3792 signal_levels |= DP_PRE_EMPHASIS_9_5;
3793 break;
3794 }
3795 return signal_levels;
3796 }
3797
3798 /* SNB CPU eDP voltage swing and pre-emphasis control */
3799 static u32
3800 snb_cpu_edp_signal_levels(u8 train_set)
3801 {
3802 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3803 DP_TRAIN_PRE_EMPHASIS_MASK);
3804 switch (signal_levels) {
3805 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3806 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3807 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3808 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3809 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3810 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3811 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3812 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3813 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3814 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3815 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3816 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3817 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3818 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3819 default:
3820 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3821 "0x%x\n", signal_levels);
3822 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3823 }
3824 }
3825
3826 /* IVB CPU eDP voltage swing and pre-emphasis control */
3827 static u32
3828 ivb_cpu_edp_signal_levels(u8 train_set)
3829 {
3830 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3831 DP_TRAIN_PRE_EMPHASIS_MASK);
3832 switch (signal_levels) {
3833 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3834 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3835 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3836 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3837 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3838 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3839
3840 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3841 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3842 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3843 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3844
3845 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3846 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3847 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3848 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3849
3850 default:
3851 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3852 "0x%x\n", signal_levels);
3853 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3854 }
3855 }
3856
3857 void
3858 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3859 {
3860 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3861 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3862 enum port port = intel_dig_port->base.port;
3863 u32 signal_levels, mask = 0;
3864 u8 train_set = intel_dp->train_set[0];
3865
3866 if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
3867 signal_levels = bxt_signal_levels(intel_dp);
3868 } else if (HAS_DDI(dev_priv)) {
3869 signal_levels = ddi_signal_levels(intel_dp);
3870 mask = DDI_BUF_EMP_MASK;
3871 } else if (IS_CHERRYVIEW(dev_priv)) {
3872 signal_levels = chv_signal_levels(intel_dp);
3873 } else if (IS_VALLEYVIEW(dev_priv)) {
3874 signal_levels = vlv_signal_levels(intel_dp);
3875 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3876 signal_levels = ivb_cpu_edp_signal_levels(train_set);
3877 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3878 } else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
3879 signal_levels = snb_cpu_edp_signal_levels(train_set);
3880 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3881 } else {
3882 signal_levels = g4x_signal_levels(train_set);
3883 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3884 }
3885
3886 if (mask)
3887 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3888
3889 DRM_DEBUG_KMS("Using vswing level %d\n",
3890 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3891 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3892 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3893 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3894
3895 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3896
3897 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3898 POSTING_READ(intel_dp->output_reg);
3899 }
3900
3901 void
3902 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3903 u8 dp_train_pat)
3904 {
3905 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3906 struct drm_i915_private *dev_priv =
3907 to_i915(intel_dig_port->base.base.dev);
3908
3909 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3910
3911 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3912 POSTING_READ(intel_dp->output_reg);
3913 }
3914
3915 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3916 {
3917 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3918 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3919 enum port port = intel_dig_port->base.port;
3920 u32 val;
3921
3922 if (!HAS_DDI(dev_priv))
3923 return;
3924
3925 val = I915_READ(DP_TP_CTL(port));
3926 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3927 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3928 I915_WRITE(DP_TP_CTL(port), val);
3929
3930 /*
3931 * On PORT_A we can have only eDP in SST mode. There the only reason
3932 * we need to set idle transmission mode is to work around a HW issue
3933 * where we enable the pipe while not in idle link-training mode.
3934 * In this case there is requirement to wait for a minimum number of
3935 * idle patterns to be sent.
3936 */
3937 if (port == PORT_A)
3938 return;
3939
3940 if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
3941 DP_TP_STATUS_IDLE_DONE,
3942 DP_TP_STATUS_IDLE_DONE,
3943 1))
3944 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3945 }
3946
3947 static void
3948 intel_dp_link_down(struct intel_encoder *encoder,
3949 const struct intel_crtc_state *old_crtc_state)
3950 {
3951 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3952 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3953 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
3954 enum port port = encoder->port;
3955 u32 DP = intel_dp->DP;
3956
3957 if (WARN_ON(HAS_DDI(dev_priv)))
3958 return;
3959
3960 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3961 return;
3962
3963 DRM_DEBUG_KMS("\n");
3964
3965 if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3966 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3967 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3968 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3969 } else {
3970 DP &= ~DP_LINK_TRAIN_MASK;
3971 DP |= DP_LINK_TRAIN_PAT_IDLE;
3972 }
3973 I915_WRITE(intel_dp->output_reg, DP);
3974 POSTING_READ(intel_dp->output_reg);
3975
3976 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3977 I915_WRITE(intel_dp->output_reg, DP);
3978 POSTING_READ(intel_dp->output_reg);
3979
3980 /*
3981 * HW workaround for IBX, we need to move the port
3982 * to transcoder A after disabling it to allow the
3983 * matching HDMI port to be enabled on transcoder A.
3984 */
3985 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
3986 /*
3987 * We get CPU/PCH FIFO underruns on the other pipe when
3988 * doing the workaround. Sweep them under the rug.
3989 */
3990 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3991 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3992
3993 /* always enable with pattern 1 (as per spec) */
3994 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
3995 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
3996 DP_LINK_TRAIN_PAT_1;
3997 I915_WRITE(intel_dp->output_reg, DP);
3998 POSTING_READ(intel_dp->output_reg);
3999
4000 DP &= ~DP_PORT_EN;
4001 I915_WRITE(intel_dp->output_reg, DP);
4002 POSTING_READ(intel_dp->output_reg);
4003
4004 intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4005 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4006 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4007 }
4008
4009 msleep(intel_dp->panel_power_down_delay);
4010
4011 intel_dp->DP = DP;
4012
4013 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4014 intel_wakeref_t wakeref;
4015
4016 with_pps_lock(intel_dp, wakeref)
4017 intel_dp->active_pipe = INVALID_PIPE;
4018 }
4019 }
4020
4021 static void
4022 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
4023 {
4024 u8 dpcd_ext[6];
4025
4026 /*
4027 * Prior to DP1.3 the bit represented by
4028 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
4029 * if it is set DP_DPCD_REV at 0000h could be at a value less than
4030 * the true capability of the panel. The only way to check is to
4031 * then compare 0000h and 2200h.
4032 */
4033 if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
4034 DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
4035 return;
4036
4037 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
4038 &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
4039 DRM_ERROR("DPCD failed read at extended capabilities\n");
4040 return;
4041 }
4042
4043 if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
4044 DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
4045 return;
4046 }
4047
4048 if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
4049 return;
4050
4051 DRM_DEBUG_KMS("Base DPCD: %*ph\n",
4052 (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4053
4054 memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
4055 }
4056
4057 bool
4058 intel_dp_read_dpcd(struct intel_dp *intel_dp)
4059 {
4060 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
4061 sizeof(intel_dp->dpcd)) < 0)
4062 return false; /* aux transfer failed */
4063
4064 intel_dp_extended_receiver_capabilities(intel_dp);
4065
4066 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4067
4068 return intel_dp->dpcd[DP_DPCD_REV] != 0;
4069 }
4070
4071 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4072 {
4073 /*
4074 * Clear the cached register set to avoid using stale values
4075 * for the sinks that do not support DSC.
4076 */
4077 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4078
4079 /* Clear fec_capable to avoid using stale values */
4080 intel_dp->fec_capable = 0;
4081
4082 /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4083 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4084 intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4085 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4086 intel_dp->dsc_dpcd,
4087 sizeof(intel_dp->dsc_dpcd)) < 0)
4088 DRM_ERROR("Failed to read DPCD register 0x%x\n",
4089 DP_DSC_SUPPORT);
4090
4091 DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
4092 (int)sizeof(intel_dp->dsc_dpcd),
4093 intel_dp->dsc_dpcd);
4094
4095 /* FEC is supported only on DP 1.4 */
4096 if (!intel_dp_is_edp(intel_dp) &&
4097 drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4098 &intel_dp->fec_capable) < 0)
4099 DRM_ERROR("Failed to read FEC DPCD register\n");
4100
4101 DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4102 }
4103 }
4104
4105 static bool
4106 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4107 {
4108 struct drm_i915_private *dev_priv =
4109 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4110
4111 /* this function is meant to be called only once */
4112 WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
4113
4114 if (!intel_dp_read_dpcd(intel_dp))
4115 return false;
4116
4117 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4118 drm_dp_is_branch(intel_dp->dpcd));
4119
4120 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4121 dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4122 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4123
4124 /*
4125 * Read the eDP display control registers.
4126 *
4127 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4128 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4129 * set, but require eDP 1.4+ detection (e.g. for supported link rates
4130 * method). The display control registers should read zero if they're
4131 * not supported anyway.
4132 */
4133 if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4134 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4135 sizeof(intel_dp->edp_dpcd))
4136 DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
4137 intel_dp->edp_dpcd);
4138
4139 /*
4140 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4141 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4142 */
4143 intel_psr_init_dpcd(intel_dp);
4144
4145 /* Read the eDP 1.4+ supported link rates. */
4146 if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4147 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4148 int i;
4149
4150 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4151 sink_rates, sizeof(sink_rates));
4152
4153 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4154 int val = le16_to_cpu(sink_rates[i]);
4155
4156 if (val == 0)
4157 break;
4158
4159 /* Value read multiplied by 200kHz gives the per-lane
4160 * link rate in kHz. The source rates are, however,
4161 * stored in terms of LS_Clk kHz. The full conversion
4162 * back to symbols is
4163 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4164 */
4165 intel_dp->sink_rates[i] = (val * 200) / 10;
4166 }
4167 intel_dp->num_sink_rates = i;
4168 }
4169
4170 /*
4171 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4172 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4173 */
4174 if (intel_dp->num_sink_rates)
4175 intel_dp->use_rate_select = true;
4176 else
4177 intel_dp_set_sink_rates(intel_dp);
4178
4179 intel_dp_set_common_rates(intel_dp);
4180
4181 /* Read the eDP DSC DPCD registers */
4182 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4183 intel_dp_get_dsc_sink_cap(intel_dp);
4184
4185 return true;
4186 }
4187
4188
4189 static bool
4190 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4191 {
4192 if (!intel_dp_read_dpcd(intel_dp))
4193 return false;
4194
4195 /* Don't clobber cached eDP rates. */
4196 if (!intel_dp_is_edp(intel_dp)) {
4197 intel_dp_set_sink_rates(intel_dp);
4198 intel_dp_set_common_rates(intel_dp);
4199 }
4200
4201 /*
4202 * Some eDP panels do not set a valid value for sink count, that is why
4203 * it don't care about read it here and in intel_edp_init_dpcd().
4204 */
4205 if (!intel_dp_is_edp(intel_dp)) {
4206 u8 count;
4207 ssize_t r;
4208
4209 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
4210 if (r < 1)
4211 return false;
4212
4213 /*
4214 * Sink count can change between short pulse hpd hence
4215 * a member variable in intel_dp will track any changes
4216 * between short pulse interrupts.
4217 */
4218 intel_dp->sink_count = DP_GET_SINK_COUNT(count);
4219
4220 /*
4221 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4222 * a dongle is present but no display. Unless we require to know
4223 * if a dongle is present or not, we don't need to update
4224 * downstream port information. So, an early return here saves
4225 * time from performing other operations which are not required.
4226 */
4227 if (!intel_dp->sink_count)
4228 return false;
4229 }
4230
4231 if (!drm_dp_is_branch(intel_dp->dpcd))
4232 return true; /* native DP sink */
4233
4234 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4235 return true; /* no per-port downstream info */
4236
4237 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4238 intel_dp->downstream_ports,
4239 DP_MAX_DOWNSTREAM_PORTS) < 0)
4240 return false; /* downstream port status fetch failed */
4241
4242 return true;
4243 }
4244
4245 static bool
4246 intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4247 {
4248 u8 mstm_cap;
4249
4250 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4251 return false;
4252
4253 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4254 return false;
4255
4256 return mstm_cap & DP_MST_CAP;
4257 }
4258
4259 static bool
4260 intel_dp_can_mst(struct intel_dp *intel_dp)
4261 {
4262 return i915_modparams.enable_dp_mst &&
4263 intel_dp->can_mst &&
4264 intel_dp_sink_can_mst(intel_dp);
4265 }
4266
4267 static void
4268 intel_dp_configure_mst(struct intel_dp *intel_dp)
4269 {
4270 struct intel_encoder *encoder =
4271 &dp_to_dig_port(intel_dp)->base;
4272 bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
4273
4274 DRM_DEBUG_KMS("MST support? port %c: %s, sink: %s, modparam: %s\n",
4275 port_name(encoder->port), yesno(intel_dp->can_mst),
4276 yesno(sink_can_mst), yesno(i915_modparams.enable_dp_mst));
4277
4278 if (!intel_dp->can_mst)
4279 return;
4280
4281 intel_dp->is_mst = sink_can_mst &&
4282 i915_modparams.enable_dp_mst;
4283
4284 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4285 intel_dp->is_mst);
4286 }
4287
4288 static bool
4289 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4290 {
4291 return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4292 sink_irq_vector, DP_DPRX_ESI_LEN) ==
4293 DP_DPRX_ESI_LEN;
4294 }
4295
4296 u16 intel_dp_dsc_get_output_bpp(int link_clock, u8 lane_count,
4297 int mode_clock, int mode_hdisplay)
4298 {
4299 u16 bits_per_pixel, max_bpp_small_joiner_ram;
4300 int i;
4301
4302 /*
4303 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
4304 * (LinkSymbolClock)* 8 * ((100-FECOverhead)/100)*(TimeSlotsPerMTP)
4305 * FECOverhead = 2.4%, for SST -> TimeSlotsPerMTP is 1,
4306 * for MST -> TimeSlotsPerMTP has to be calculated
4307 */
4308 bits_per_pixel = (link_clock * lane_count * 8 *
4309 DP_DSC_FEC_OVERHEAD_FACTOR) /
4310 mode_clock;
4311
4312 /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
4313 max_bpp_small_joiner_ram = DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER /
4314 mode_hdisplay;
4315
4316 /*
4317 * Greatest allowed DSC BPP = MIN (output BPP from avaialble Link BW
4318 * check, output bpp from small joiner RAM check)
4319 */
4320 bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
4321
4322 /* Error out if the max bpp is less than smallest allowed valid bpp */
4323 if (bits_per_pixel < valid_dsc_bpp[0]) {
4324 DRM_DEBUG_KMS("Unsupported BPP %d\n", bits_per_pixel);
4325 return 0;
4326 }
4327
4328 /* Find the nearest match in the array of known BPPs from VESA */
4329 for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
4330 if (bits_per_pixel < valid_dsc_bpp[i + 1])
4331 break;
4332 }
4333 bits_per_pixel = valid_dsc_bpp[i];
4334
4335 /*
4336 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
4337 * fractional part is 0
4338 */
4339 return bits_per_pixel << 4;
4340 }
4341
4342 u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
4343 int mode_clock,
4344 int mode_hdisplay)
4345 {
4346 u8 min_slice_count, i;
4347 int max_slice_width;
4348
4349 if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
4350 min_slice_count = DIV_ROUND_UP(mode_clock,
4351 DP_DSC_MAX_ENC_THROUGHPUT_0);
4352 else
4353 min_slice_count = DIV_ROUND_UP(mode_clock,
4354 DP_DSC_MAX_ENC_THROUGHPUT_1);
4355
4356 max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
4357 if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
4358 DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
4359 max_slice_width);
4360 return 0;
4361 }
4362 /* Also take into account max slice width */
4363 min_slice_count = min_t(u8, min_slice_count,
4364 DIV_ROUND_UP(mode_hdisplay,
4365 max_slice_width));
4366
4367 /* Find the closest match to the valid slice count values */
4368 for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
4369 if (valid_dsc_slicecount[i] >
4370 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
4371 false))
4372 break;
4373 if (min_slice_count <= valid_dsc_slicecount[i])
4374 return valid_dsc_slicecount[i];
4375 }
4376
4377 DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
4378 return 0;
4379 }
4380
4381 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4382 {
4383 int status = 0;
4384 int test_link_rate;
4385 u8 test_lane_count, test_link_bw;
4386 /* (DP CTS 1.2)
4387 * 4.3.1.11
4388 */
4389 /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
4390 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
4391 &test_lane_count);
4392
4393 if (status <= 0) {
4394 DRM_DEBUG_KMS("Lane count read failed\n");
4395 return DP_TEST_NAK;
4396 }
4397 test_lane_count &= DP_MAX_LANE_COUNT_MASK;
4398
4399 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
4400 &test_link_bw);
4401 if (status <= 0) {
4402 DRM_DEBUG_KMS("Link Rate read failed\n");
4403 return DP_TEST_NAK;
4404 }
4405 test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4406
4407 /* Validate the requested link rate and lane count */
4408 if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
4409 test_lane_count))
4410 return DP_TEST_NAK;
4411
4412 intel_dp->compliance.test_lane_count = test_lane_count;
4413 intel_dp->compliance.test_link_rate = test_link_rate;
4414
4415 return DP_TEST_ACK;
4416 }
4417
4418 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4419 {
4420 u8 test_pattern;
4421 u8 test_misc;
4422 __be16 h_width, v_height;
4423 int status = 0;
4424
4425 /* Read the TEST_PATTERN (DP CTS 3.1.5) */
4426 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
4427 &test_pattern);
4428 if (status <= 0) {
4429 DRM_DEBUG_KMS("Test pattern read failed\n");
4430 return DP_TEST_NAK;
4431 }
4432 if (test_pattern != DP_COLOR_RAMP)
4433 return DP_TEST_NAK;
4434
4435 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
4436 &h_width, 2);
4437 if (status <= 0) {
4438 DRM_DEBUG_KMS("H Width read failed\n");
4439 return DP_TEST_NAK;
4440 }
4441
4442 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
4443 &v_height, 2);
4444 if (status <= 0) {
4445 DRM_DEBUG_KMS("V Height read failed\n");
4446 return DP_TEST_NAK;
4447 }
4448
4449 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
4450 &test_misc);
4451 if (status <= 0) {
4452 DRM_DEBUG_KMS("TEST MISC read failed\n");
4453 return DP_TEST_NAK;
4454 }
4455 if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
4456 return DP_TEST_NAK;
4457 if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
4458 return DP_TEST_NAK;
4459 switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
4460 case DP_TEST_BIT_DEPTH_6:
4461 intel_dp->compliance.test_data.bpc = 6;
4462 break;
4463 case DP_TEST_BIT_DEPTH_8:
4464 intel_dp->compliance.test_data.bpc = 8;
4465 break;
4466 default:
4467 return DP_TEST_NAK;
4468 }
4469
4470 intel_dp->compliance.test_data.video_pattern = test_pattern;
4471 intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
4472 intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
4473 /* Set test active flag here so userspace doesn't interrupt things */
4474 intel_dp->compliance.test_active = 1;
4475
4476 return DP_TEST_ACK;
4477 }
4478
4479 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
4480 {
4481 u8 test_result = DP_TEST_ACK;
4482 struct intel_connector *intel_connector = intel_dp->attached_connector;
4483 struct drm_connector *connector = &intel_connector->base;
4484
4485 if (intel_connector->detect_edid == NULL ||
4486 connector->edid_corrupt ||
4487 intel_dp->aux.i2c_defer_count > 6) {
4488 /* Check EDID read for NACKs, DEFERs and corruption
4489 * (DP CTS 1.2 Core r1.1)
4490 * 4.2.2.4 : Failed EDID read, I2C_NAK
4491 * 4.2.2.5 : Failed EDID read, I2C_DEFER
4492 * 4.2.2.6 : EDID corruption detected
4493 * Use failsafe mode for all cases
4494 */
4495 if (intel_dp->aux.i2c_nack_count > 0 ||
4496 intel_dp->aux.i2c_defer_count > 0)
4497 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4498 intel_dp->aux.i2c_nack_count,
4499 intel_dp->aux.i2c_defer_count);
4500 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4501 } else {
4502 struct edid *block = intel_connector->detect_edid;
4503
4504 /* We have to write the checksum
4505 * of the last block read
4506 */
4507 block += intel_connector->detect_edid->extensions;
4508
4509 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
4510 block->checksum) <= 0)
4511 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4512
4513 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4514 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4515 }
4516
4517 /* Set test active flag here so userspace doesn't interrupt things */
4518 intel_dp->compliance.test_active = 1;
4519
4520 return test_result;
4521 }
4522
4523 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4524 {
4525 u8 test_result = DP_TEST_NAK;
4526 return test_result;
4527 }
4528
4529 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4530 {
4531 u8 response = DP_TEST_NAK;
4532 u8 request = 0;
4533 int status;
4534
4535 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4536 if (status <= 0) {
4537 DRM_DEBUG_KMS("Could not read test request from sink\n");
4538 goto update_status;
4539 }
4540
4541 switch (request) {
4542 case DP_TEST_LINK_TRAINING:
4543 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4544 response = intel_dp_autotest_link_training(intel_dp);
4545 break;
4546 case DP_TEST_LINK_VIDEO_PATTERN:
4547 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4548 response = intel_dp_autotest_video_pattern(intel_dp);
4549 break;
4550 case DP_TEST_LINK_EDID_READ:
4551 DRM_DEBUG_KMS("EDID test requested\n");
4552 response = intel_dp_autotest_edid(intel_dp);
4553 break;
4554 case DP_TEST_LINK_PHY_TEST_PATTERN:
4555 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4556 response = intel_dp_autotest_phy_pattern(intel_dp);
4557 break;
4558 default:
4559 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4560 break;
4561 }
4562
4563 if (response & DP_TEST_ACK)
4564 intel_dp->compliance.test_type = request;
4565
4566 update_status:
4567 status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4568 if (status <= 0)
4569 DRM_DEBUG_KMS("Could not write test response to sink\n");
4570 }
4571
4572 static int
4573 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4574 {
4575 bool bret;
4576
4577 if (intel_dp->is_mst) {
4578 u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4579 int ret = 0;
4580 int retry;
4581 bool handled;
4582
4583 WARN_ON_ONCE(intel_dp->active_mst_links < 0);
4584 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4585 go_again:
4586 if (bret == true) {
4587
4588 /* check link status - esi[10] = 0x200c */
4589 if (intel_dp->active_mst_links > 0 &&
4590 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4591 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4592 intel_dp_start_link_train(intel_dp);
4593 intel_dp_stop_link_train(intel_dp);
4594 }
4595
4596 DRM_DEBUG_KMS("got esi %3ph\n", esi);
4597 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4598
4599 if (handled) {
4600 for (retry = 0; retry < 3; retry++) {
4601 int wret;
4602 wret = drm_dp_dpcd_write(&intel_dp->aux,
4603 DP_SINK_COUNT_ESI+1,
4604 &esi[1], 3);
4605 if (wret == 3) {
4606 break;
4607 }
4608 }
4609
4610 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4611 if (bret == true) {
4612 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4613 goto go_again;
4614 }
4615 } else
4616 ret = 0;
4617
4618 return ret;
4619 } else {
4620 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4621 intel_dp->is_mst = false;
4622 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4623 intel_dp->is_mst);
4624 }
4625 }
4626 return -EINVAL;
4627 }
4628
4629 static bool
4630 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
4631 {
4632 u8 link_status[DP_LINK_STATUS_SIZE];
4633
4634 if (!intel_dp->link_trained)
4635 return false;
4636
4637 /*
4638 * While PSR source HW is enabled, it will control main-link sending
4639 * frames, enabling and disabling it so trying to do a retrain will fail
4640 * as the link would or not be on or it could mix training patterns
4641 * and frame data at the same time causing retrain to fail.
4642 * Also when exiting PSR, HW will retrain the link anyways fixing
4643 * any link status error.
4644 */
4645 if (intel_psr_enabled(intel_dp))
4646 return false;
4647
4648 if (!intel_dp_get_link_status(intel_dp, link_status))
4649 return false;
4650
4651 /*
4652 * Validate the cached values of intel_dp->link_rate and
4653 * intel_dp->lane_count before attempting to retrain.
4654 */
4655 if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
4656 intel_dp->lane_count))
4657 return false;
4658
4659 /* Retrain if Channel EQ or CR not ok */
4660 return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
4661 }
4662
4663 int intel_dp_retrain_link(struct intel_encoder *encoder,
4664 struct drm_modeset_acquire_ctx *ctx)
4665 {
4666 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4667 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4668 struct intel_connector *connector = intel_dp->attached_connector;
4669 struct drm_connector_state *conn_state;
4670 struct intel_crtc_state *crtc_state;
4671 struct intel_crtc *crtc;
4672 int ret;
4673
4674 /* FIXME handle the MST connectors as well */
4675
4676 if (!connector || connector->base.status != connector_status_connected)
4677 return 0;
4678
4679 ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
4680 ctx);
4681 if (ret)
4682 return ret;
4683
4684 conn_state = connector->base.state;
4685
4686 crtc = to_intel_crtc(conn_state->crtc);
4687 if (!crtc)
4688 return 0;
4689
4690 ret = drm_modeset_lock(&crtc->base.mutex, ctx);
4691 if (ret)
4692 return ret;
4693
4694 crtc_state = to_intel_crtc_state(crtc->base.state);
4695
4696 WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));
4697
4698 if (!crtc_state->base.active)
4699 return 0;
4700
4701 if (conn_state->commit &&
4702 !try_wait_for_completion(&conn_state->commit->hw_done))
4703 return 0;
4704
4705 if (!intel_dp_needs_link_retrain(intel_dp))
4706 return 0;
4707
4708 /* Suppress underruns caused by re-training */
4709 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
4710 if (crtc_state->has_pch_encoder)
4711 intel_set_pch_fifo_underrun_reporting(dev_priv,
4712 intel_crtc_pch_transcoder(crtc), false);
4713
4714 intel_dp_start_link_train(intel_dp);
4715 intel_dp_stop_link_train(intel_dp);
4716
4717 /* Keep underrun reporting disabled until things are stable */
4718 intel_wait_for_vblank(dev_priv, crtc->pipe);
4719
4720 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
4721 if (crtc_state->has_pch_encoder)
4722 intel_set_pch_fifo_underrun_reporting(dev_priv,
4723 intel_crtc_pch_transcoder(crtc), true);
4724
4725 return 0;
4726 }
4727
4728 /*
4729 * If display is now connected check links status,
4730 * there has been known issues of link loss triggering
4731 * long pulse.
4732 *
4733 * Some sinks (eg. ASUS PB287Q) seem to perform some
4734 * weird HPD ping pong during modesets. So we can apparently
4735 * end up with HPD going low during a modeset, and then
4736 * going back up soon after. And once that happens we must
4737 * retrain the link to get a picture. That's in case no
4738 * userspace component reacted to intermittent HPD dip.
4739 */
4740 static bool intel_dp_hotplug(struct intel_encoder *encoder,
4741 struct intel_connector *connector)
4742 {
4743 struct drm_modeset_acquire_ctx ctx;
4744 bool changed;
4745 int ret;
4746
4747 changed = intel_encoder_hotplug(encoder, connector);
4748
4749 drm_modeset_acquire_init(&ctx, 0);
4750
4751 for (;;) {
4752 ret = intel_dp_retrain_link(encoder, &ctx);
4753
4754 if (ret == -EDEADLK) {
4755 drm_modeset_backoff(&ctx);
4756 continue;
4757 }
4758
4759 break;
4760 }
4761
4762 drm_modeset_drop_locks(&ctx);
4763 drm_modeset_acquire_fini(&ctx);
4764 WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
4765
4766 return changed;
4767 }
4768
4769 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
4770 {
4771 u8 val;
4772
4773 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
4774 return;
4775
4776 if (drm_dp_dpcd_readb(&intel_dp->aux,
4777 DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
4778 return;
4779
4780 drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
4781
4782 if (val & DP_AUTOMATED_TEST_REQUEST)
4783 intel_dp_handle_test_request(intel_dp);
4784
4785 if (val & DP_CP_IRQ)
4786 intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
4787
4788 if (val & DP_SINK_SPECIFIC_IRQ)
4789 DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
4790 }
4791
4792 /*
4793 * According to DP spec
4794 * 5.1.2:
4795 * 1. Read DPCD
4796 * 2. Configure link according to Receiver Capabilities
4797 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4798 * 4. Check link status on receipt of hot-plug interrupt
4799 *
4800 * intel_dp_short_pulse - handles short pulse interrupts
4801 * when full detection is not required.
4802 * Returns %true if short pulse is handled and full detection
4803 * is NOT required and %false otherwise.
4804 */
4805 static bool
4806 intel_dp_short_pulse(struct intel_dp *intel_dp)
4807 {
4808 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4809 u8 old_sink_count = intel_dp->sink_count;
4810 bool ret;
4811
4812 /*
4813 * Clearing compliance test variables to allow capturing
4814 * of values for next automated test request.
4815 */
4816 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4817
4818 /*
4819 * Now read the DPCD to see if it's actually running
4820 * If the current value of sink count doesn't match with
4821 * the value that was stored earlier or dpcd read failed
4822 * we need to do full detection
4823 */
4824 ret = intel_dp_get_dpcd(intel_dp);
4825
4826 if ((old_sink_count != intel_dp->sink_count) || !ret) {
4827 /* No need to proceed if we are going to do full detect */
4828 return false;
4829 }
4830
4831 intel_dp_check_service_irq(intel_dp);
4832
4833 /* Handle CEC interrupts, if any */
4834 drm_dp_cec_irq(&intel_dp->aux);
4835
4836 /* defer to the hotplug work for link retraining if needed */
4837 if (intel_dp_needs_link_retrain(intel_dp))
4838 return false;
4839
4840 intel_psr_short_pulse(intel_dp);
4841
4842 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
4843 DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
4844 /* Send a Hotplug Uevent to userspace to start modeset */
4845 drm_kms_helper_hotplug_event(&dev_priv->drm);
4846 }
4847
4848 return true;
4849 }
4850
4851 /* XXX this is probably wrong for multiple downstream ports */
4852 static enum drm_connector_status
4853 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4854 {
4855 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4856 u8 *dpcd = intel_dp->dpcd;
4857 u8 type;
4858
4859 if (lspcon->active)
4860 lspcon_resume(lspcon);
4861
4862 if (!intel_dp_get_dpcd(intel_dp))
4863 return connector_status_disconnected;
4864
4865 if (intel_dp_is_edp(intel_dp))
4866 return connector_status_connected;
4867
4868 /* if there's no downstream port, we're done */
4869 if (!drm_dp_is_branch(dpcd))
4870 return connector_status_connected;
4871
4872 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4873 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4874 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4875
4876 return intel_dp->sink_count ?
4877 connector_status_connected : connector_status_disconnected;
4878 }
4879
4880 if (intel_dp_can_mst(intel_dp))
4881 return connector_status_connected;
4882
4883 /* If no HPD, poke DDC gently */
4884 if (drm_probe_ddc(&intel_dp->aux.ddc))
4885 return connector_status_connected;
4886
4887 /* Well we tried, say unknown for unreliable port types */
4888 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4889 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4890 if (type == DP_DS_PORT_TYPE_VGA ||
4891 type == DP_DS_PORT_TYPE_NON_EDID)
4892 return connector_status_unknown;
4893 } else {
4894 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4895 DP_DWN_STRM_PORT_TYPE_MASK;
4896 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4897 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4898 return connector_status_unknown;
4899 }
4900
4901 /* Anything else is out of spec, warn and ignore */
4902 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4903 return connector_status_disconnected;
4904 }
4905
4906 static enum drm_connector_status
4907 edp_detect(struct intel_dp *intel_dp)
4908 {
4909 return connector_status_connected;
4910 }
4911
4912 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
4913 {
4914 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4915 u32 bit;
4916
4917 switch (encoder->hpd_pin) {
4918 case HPD_PORT_B:
4919 bit = SDE_PORTB_HOTPLUG;
4920 break;
4921 case HPD_PORT_C:
4922 bit = SDE_PORTC_HOTPLUG;
4923 break;
4924 case HPD_PORT_D:
4925 bit = SDE_PORTD_HOTPLUG;
4926 break;
4927 default:
4928 MISSING_CASE(encoder->hpd_pin);
4929 return false;
4930 }
4931
4932 return I915_READ(SDEISR) & bit;
4933 }
4934
4935 static bool cpt_digital_port_connected(struct intel_encoder *encoder)
4936 {
4937 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4938 u32 bit;
4939
4940 switch (encoder->hpd_pin) {
4941 case HPD_PORT_B:
4942 bit = SDE_PORTB_HOTPLUG_CPT;
4943 break;
4944 case HPD_PORT_C:
4945 bit = SDE_PORTC_HOTPLUG_CPT;
4946 break;
4947 case HPD_PORT_D:
4948 bit = SDE_PORTD_HOTPLUG_CPT;
4949 break;
4950 default:
4951 MISSING_CASE(encoder->hpd_pin);
4952 return false;
4953 }
4954
4955 return I915_READ(SDEISR) & bit;
4956 }
4957
4958 static bool spt_digital_port_connected(struct intel_encoder *encoder)
4959 {
4960 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4961 u32 bit;
4962
4963 switch (encoder->hpd_pin) {
4964 case HPD_PORT_A:
4965 bit = SDE_PORTA_HOTPLUG_SPT;
4966 break;
4967 case HPD_PORT_E:
4968 bit = SDE_PORTE_HOTPLUG_SPT;
4969 break;
4970 default:
4971 return cpt_digital_port_connected(encoder);
4972 }
4973
4974 return I915_READ(SDEISR) & bit;
4975 }
4976
4977 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
4978 {
4979 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4980 u32 bit;
4981
4982 switch (encoder->hpd_pin) {
4983 case HPD_PORT_B:
4984 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4985 break;
4986 case HPD_PORT_C:
4987 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4988 break;
4989 case HPD_PORT_D:
4990 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4991 break;
4992 default:
4993 MISSING_CASE(encoder->hpd_pin);
4994 return false;
4995 }
4996
4997 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4998 }
4999
5000 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
5001 {
5002 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5003 u32 bit;
5004
5005 switch (encoder->hpd_pin) {
5006 case HPD_PORT_B:
5007 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
5008 break;
5009 case HPD_PORT_C:
5010 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
5011 break;
5012 case HPD_PORT_D:
5013 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
5014 break;
5015 default:
5016 MISSING_CASE(encoder->hpd_pin);
5017 return false;
5018 }
5019
5020 return I915_READ(PORT_HOTPLUG_STAT) & bit;
5021 }
5022
5023 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5024 {
5025 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5026
5027 if (encoder->hpd_pin == HPD_PORT_A)
5028 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5029 else
5030 return ibx_digital_port_connected(encoder);
5031 }
5032
5033 static bool snb_digital_port_connected(struct intel_encoder *encoder)
5034 {
5035 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5036
5037 if (encoder->hpd_pin == HPD_PORT_A)
5038 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5039 else
5040 return cpt_digital_port_connected(encoder);
5041 }
5042
5043 static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5044 {
5045 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5046
5047 if (encoder->hpd_pin == HPD_PORT_A)
5048 return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
5049 else
5050 return cpt_digital_port_connected(encoder);
5051 }
5052
5053 static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5054 {
5055 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5056
5057 if (encoder->hpd_pin == HPD_PORT_A)
5058 return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
5059 else
5060 return cpt_digital_port_connected(encoder);
5061 }
5062
5063 static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5064 {
5065 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5066 u32 bit;
5067
5068 switch (encoder->hpd_pin) {
5069 case HPD_PORT_A:
5070 bit = BXT_DE_PORT_HP_DDIA;
5071 break;
5072 case HPD_PORT_B:
5073 bit = BXT_DE_PORT_HP_DDIB;
5074 break;
5075 case HPD_PORT_C:
5076 bit = BXT_DE_PORT_HP_DDIC;
5077 break;
5078 default:
5079 MISSING_CASE(encoder->hpd_pin);
5080 return false;
5081 }
5082
5083 return I915_READ(GEN8_DE_PORT_ISR) & bit;
5084 }
5085
5086 static bool icl_combo_port_connected(struct drm_i915_private *dev_priv,
5087 struct intel_digital_port *intel_dig_port)
5088 {
5089 enum port port = intel_dig_port->base.port;
5090
5091 return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port);
5092 }
5093
5094 static const char *tc_type_name(enum tc_port_type type)
5095 {
5096 static const char * const names[] = {
5097 [TC_PORT_UNKNOWN] = "unknown",
5098 [TC_PORT_LEGACY] = "legacy",
5099 [TC_PORT_TYPEC] = "typec",
5100 [TC_PORT_TBT] = "tbt",
5101 };
5102
5103 if (WARN_ON(type >= ARRAY_SIZE(names)))
5104 type = TC_PORT_UNKNOWN;
5105
5106 return names[type];
5107 }
5108
5109 static void icl_update_tc_port_type(struct drm_i915_private *dev_priv,
5110 struct intel_digital_port *intel_dig_port,
5111 bool is_legacy, bool is_typec, bool is_tbt)
5112 {
5113 enum port port = intel_dig_port->base.port;
5114 enum tc_port_type old_type = intel_dig_port->tc_type;
5115
5116 WARN_ON(is_legacy + is_typec + is_tbt != 1);
5117
5118 if (is_legacy)
5119 intel_dig_port->tc_type = TC_PORT_LEGACY;
5120 else if (is_typec)
5121 intel_dig_port->tc_type = TC_PORT_TYPEC;
5122 else if (is_tbt)
5123 intel_dig_port->tc_type = TC_PORT_TBT;
5124 else
5125 return;
5126
5127 /* Types are not supposed to be changed at runtime. */
5128 WARN_ON(old_type != TC_PORT_UNKNOWN &&
5129 old_type != intel_dig_port->tc_type);
5130
5131 if (old_type != intel_dig_port->tc_type)
5132 DRM_DEBUG_KMS("Port %c has TC type %s\n", port_name(port),
5133 tc_type_name(intel_dig_port->tc_type));
5134 }
5135
5136 /*
5137 * This function implements the first part of the Connect Flow described by our
5138 * specification, Gen11 TypeC Programming chapter. The rest of the flow (reading
5139 * lanes, EDID, etc) is done as needed in the typical places.
5140 *
5141 * Unlike the other ports, type-C ports are not available to use as soon as we
5142 * get a hotplug. The type-C PHYs can be shared between multiple controllers:
5143 * display, USB, etc. As a result, handshaking through FIA is required around
5144 * connect and disconnect to cleanly transfer ownership with the controller and
5145 * set the type-C power state.
5146 *
5147 * We could opt to only do the connect flow when we actually try to use the AUX
5148 * channels or do a modeset, then immediately run the disconnect flow after
5149 * usage, but there are some implications on this for a dynamic environment:
5150 * things may go away or change behind our backs. So for now our driver is
5151 * always trying to acquire ownership of the controller as soon as it gets an
5152 * interrupt (or polls state and sees a port is connected) and only gives it
5153 * back when it sees a disconnect. Implementation of a more fine-grained model
5154 * will require a lot of coordination with user space and thorough testing for
5155 * the extra possible cases.
5156 */
5157 static bool icl_tc_phy_connect(struct drm_i915_private *dev_priv,
5158 struct intel_digital_port *dig_port)
5159 {
5160 enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
5161 u32 val;
5162
5163 if (dig_port->tc_type != TC_PORT_LEGACY &&
5164 dig_port->tc_type != TC_PORT_TYPEC)
5165 return true;
5166
5167 val = I915_READ(PORT_TX_DFLEXDPPMS);
5168 if (!(val & DP_PHY_MODE_STATUS_COMPLETED(tc_port))) {
5169 DRM_DEBUG_KMS("DP PHY for TC port %d not ready\n", tc_port);
5170 WARN_ON(dig_port->tc_legacy_port);
5171 return false;
5172 }
5173
5174 /*
5175 * This function may be called many times in a row without an HPD event
5176 * in between, so try to avoid the write when we can.
5177 */
5178 val = I915_READ(PORT_TX_DFLEXDPCSSS);
5179 if (!(val & DP_PHY_MODE_STATUS_NOT_SAFE(tc_port))) {
5180 val |= DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
5181 I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
5182 }
5183
5184 /*
5185 * Now we have to re-check the live state, in case the port recently
5186 * became disconnected. Not necessary for legacy mode.
5187 */
5188 if (dig_port->tc_type == TC_PORT_TYPEC &&
5189 !(I915_READ(PORT_TX_DFLEXDPSP) & TC_LIVE_STATE_TC(tc_port))) {
5190 DRM_DEBUG_KMS("TC PHY %d sudden disconnect.\n", tc_port);
5191 icl_tc_phy_disconnect(dev_priv, dig_port);
5192 return false;
5193 }
5194
5195 return true;
5196 }
5197
5198 /*
5199 * See the comment at the connect function. This implements the Disconnect
5200 * Flow.
5201 */
5202 void icl_tc_phy_disconnect(struct drm_i915_private *dev_priv,
5203 struct intel_digital_port *dig_port)
5204 {
5205 enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
5206
5207 if (dig_port->tc_type == TC_PORT_UNKNOWN)
5208 return;
5209
5210 /*
5211 * TBT disconnection flow is read the live status, what was done in
5212 * caller.
5213 */
5214 if (dig_port->tc_type == TC_PORT_TYPEC ||
5215 dig_port->tc_type == TC_PORT_LEGACY) {
5216 u32 val;
5217
5218 val = I915_READ(PORT_TX_DFLEXDPCSSS);
5219 val &= ~DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
5220 I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
5221 }
5222
5223 DRM_DEBUG_KMS("Port %c TC type %s disconnected\n",
5224 port_name(dig_port->base.port),
5225 tc_type_name(dig_port->tc_type));
5226
5227 dig_port->tc_type = TC_PORT_UNKNOWN;
5228 }
5229
5230 /*
5231 * The type-C ports are different because even when they are connected, they may
5232 * not be available/usable by the graphics driver: see the comment on
5233 * icl_tc_phy_connect(). So in our driver instead of adding the additional
5234 * concept of "usable" and make everything check for "connected and usable" we
5235 * define a port as "connected" when it is not only connected, but also when it
5236 * is usable by the rest of the driver. That maintains the old assumption that
5237 * connected ports are usable, and avoids exposing to the users objects they
5238 * can't really use.
5239 */
5240 static bool icl_tc_port_connected(struct drm_i915_private *dev_priv,
5241 struct intel_digital_port *intel_dig_port)
5242 {
5243 enum port port = intel_dig_port->base.port;
5244 enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
5245 bool is_legacy, is_typec, is_tbt;
5246 u32 dpsp;
5247
5248 /*
5249 * WARN if we got a legacy port HPD, but VBT didn't mark the port as
5250 * legacy. Treat the port as legacy from now on.
5251 */
5252 if (WARN_ON(!intel_dig_port->tc_legacy_port &&
5253 I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(tc_port)))
5254 intel_dig_port->tc_legacy_port = true;
5255 is_legacy = intel_dig_port->tc_legacy_port;
5256
5257 /*
5258 * The spec says we shouldn't be using the ISR bits for detecting
5259 * between TC and TBT. We should use DFLEXDPSP.
5260 */
5261 dpsp = I915_READ(PORT_TX_DFLEXDPSP);
5262 is_typec = dpsp & TC_LIVE_STATE_TC(tc_port);
5263 is_tbt = dpsp & TC_LIVE_STATE_TBT(tc_port);
5264
5265 if (!is_legacy && !is_typec && !is_tbt) {
5266 icl_tc_phy_disconnect(dev_priv, intel_dig_port);
5267
5268 return false;
5269 }
5270
5271 icl_update_tc_port_type(dev_priv, intel_dig_port, is_legacy, is_typec,
5272 is_tbt);
5273
5274 if (!icl_tc_phy_connect(dev_priv, intel_dig_port))
5275 return false;
5276
5277 return true;
5278 }
5279
5280 static bool icl_digital_port_connected(struct intel_encoder *encoder)
5281 {
5282 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5283 struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
5284
5285 if (intel_port_is_combophy(dev_priv, encoder->port))
5286 return icl_combo_port_connected(dev_priv, dig_port);
5287 else if (intel_port_is_tc(dev_priv, encoder->port))
5288 return icl_tc_port_connected(dev_priv, dig_port);
5289 else
5290 MISSING_CASE(encoder->hpd_pin);
5291
5292 return false;
5293 }
5294
5295 /*
5296 * intel_digital_port_connected - is the specified port connected?
5297 * @encoder: intel_encoder
5298 *
5299 * In cases where there's a connector physically connected but it can't be used
5300 * by our hardware we also return false, since the rest of the driver should
5301 * pretty much treat the port as disconnected. This is relevant for type-C
5302 * (starting on ICL) where there's ownership involved.
5303 *
5304 * Return %true if port is connected, %false otherwise.
5305 */
5306 bool intel_digital_port_connected(struct intel_encoder *encoder)
5307 {
5308 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5309
5310 if (HAS_GMCH(dev_priv)) {
5311 if (IS_GM45(dev_priv))
5312 return gm45_digital_port_connected(encoder);
5313 else
5314 return g4x_digital_port_connected(encoder);
5315 }
5316
5317 if (INTEL_GEN(dev_priv) >= 11)
5318 return icl_digital_port_connected(encoder);
5319 else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv))
5320 return spt_digital_port_connected(encoder);
5321 else if (IS_GEN9_LP(dev_priv))
5322 return bxt_digital_port_connected(encoder);
5323 else if (IS_GEN(dev_priv, 8))
5324 return bdw_digital_port_connected(encoder);
5325 else if (IS_GEN(dev_priv, 7))
5326 return ivb_digital_port_connected(encoder);
5327 else if (IS_GEN(dev_priv, 6))
5328 return snb_digital_port_connected(encoder);
5329 else if (IS_GEN(dev_priv, 5))
5330 return ilk_digital_port_connected(encoder);
5331
5332 MISSING_CASE(INTEL_GEN(dev_priv));
5333 return false;
5334 }
5335
5336 static struct edid *
5337 intel_dp_get_edid(struct intel_dp *intel_dp)
5338 {
5339 struct intel_connector *intel_connector = intel_dp->attached_connector;
5340
5341 /* use cached edid if we have one */
5342 if (intel_connector->edid) {
5343 /* invalid edid */
5344 if (IS_ERR(intel_connector->edid))
5345 return NULL;
5346
5347 return drm_edid_duplicate(intel_connector->edid);
5348 } else
5349 return drm_get_edid(&intel_connector->base,
5350 &intel_dp->aux.ddc);
5351 }
5352
5353 static void
5354 intel_dp_set_edid(struct intel_dp *intel_dp)
5355 {
5356 struct intel_connector *intel_connector = intel_dp->attached_connector;
5357 struct edid *edid;
5358
5359 intel_dp_unset_edid(intel_dp);
5360 edid = intel_dp_get_edid(intel_dp);
5361 intel_connector->detect_edid = edid;
5362
5363 intel_dp->has_audio = drm_detect_monitor_audio(edid);
5364 drm_dp_cec_set_edid(&intel_dp->aux, edid);
5365 }
5366
5367 static void
5368 intel_dp_unset_edid(struct intel_dp *intel_dp)
5369 {
5370 struct intel_connector *intel_connector = intel_dp->attached_connector;
5371
5372 drm_dp_cec_unset_edid(&intel_dp->aux);
5373 kfree(intel_connector->detect_edid);
5374 intel_connector->detect_edid = NULL;
5375
5376 intel_dp->has_audio = false;
5377 }
5378
5379 static int
5380 intel_dp_detect(struct drm_connector *connector,
5381 struct drm_modeset_acquire_ctx *ctx,
5382 bool force)
5383 {
5384 struct drm_i915_private *dev_priv = to_i915(connector->dev);
5385 struct intel_dp *intel_dp = intel_attached_dp(connector);
5386 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5387 struct intel_encoder *encoder = &dig_port->base;
5388 enum drm_connector_status status;
5389 enum intel_display_power_domain aux_domain =
5390 intel_aux_power_domain(dig_port);
5391 intel_wakeref_t wakeref;
5392
5393 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5394 connector->base.id, connector->name);
5395 WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5396
5397 wakeref = intel_display_power_get(dev_priv, aux_domain);
5398
5399 /* Can't disconnect eDP */
5400 if (intel_dp_is_edp(intel_dp))
5401 status = edp_detect(intel_dp);
5402 else if (intel_digital_port_connected(encoder))
5403 status = intel_dp_detect_dpcd(intel_dp);
5404 else
5405 status = connector_status_disconnected;
5406
5407 if (status == connector_status_disconnected) {
5408 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5409 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5410
5411 if (intel_dp->is_mst) {
5412 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5413 intel_dp->is_mst,
5414 intel_dp->mst_mgr.mst_state);
5415 intel_dp->is_mst = false;
5416 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5417 intel_dp->is_mst);
5418 }
5419
5420 goto out;
5421 }
5422
5423 if (intel_dp->reset_link_params) {
5424 /* Initial max link lane count */
5425 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5426
5427 /* Initial max link rate */
5428 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5429
5430 intel_dp->reset_link_params = false;
5431 }
5432
5433 intel_dp_print_rates(intel_dp);
5434
5435 /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
5436 if (INTEL_GEN(dev_priv) >= 11)
5437 intel_dp_get_dsc_sink_cap(intel_dp);
5438
5439 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
5440 drm_dp_is_branch(intel_dp->dpcd));
5441
5442 intel_dp_configure_mst(intel_dp);
5443
5444 if (intel_dp->is_mst) {
5445 /*
5446 * If we are in MST mode then this connector
5447 * won't appear connected or have anything
5448 * with EDID on it
5449 */
5450 status = connector_status_disconnected;
5451 goto out;
5452 }
5453
5454 /*
5455 * Some external monitors do not signal loss of link synchronization
5456 * with an IRQ_HPD, so force a link status check.
5457 */
5458 if (!intel_dp_is_edp(intel_dp)) {
5459 int ret;
5460
5461 ret = intel_dp_retrain_link(encoder, ctx);
5462 if (ret) {
5463 intel_display_power_put(dev_priv, aux_domain, wakeref);
5464 return ret;
5465 }
5466 }
5467
5468 /*
5469 * Clearing NACK and defer counts to get their exact values
5470 * while reading EDID which are required by Compliance tests
5471 * 4.2.2.4 and 4.2.2.5
5472 */
5473 intel_dp->aux.i2c_nack_count = 0;
5474 intel_dp->aux.i2c_defer_count = 0;
5475
5476 intel_dp_set_edid(intel_dp);
5477 if (intel_dp_is_edp(intel_dp) ||
5478 to_intel_connector(connector)->detect_edid)
5479 status = connector_status_connected;
5480
5481 intel_dp_check_service_irq(intel_dp);
5482
5483 out:
5484 if (status != connector_status_connected && !intel_dp->is_mst)
5485 intel_dp_unset_edid(intel_dp);
5486
5487 intel_display_power_put(dev_priv, aux_domain, wakeref);
5488 return status;
5489 }
5490
5491 static void
5492 intel_dp_force(struct drm_connector *connector)
5493 {
5494 struct intel_dp *intel_dp = intel_attached_dp(connector);
5495 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5496 struct intel_encoder *intel_encoder = &dig_port->base;
5497 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5498 enum intel_display_power_domain aux_domain =
5499 intel_aux_power_domain(dig_port);
5500 intel_wakeref_t wakeref;
5501
5502 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5503 connector->base.id, connector->name);
5504 intel_dp_unset_edid(intel_dp);
5505
5506 if (connector->status != connector_status_connected)
5507 return;
5508
5509 wakeref = intel_display_power_get(dev_priv, aux_domain);
5510
5511 intel_dp_set_edid(intel_dp);
5512
5513 intel_display_power_put(dev_priv, aux_domain, wakeref);
5514 }
5515
5516 static int intel_dp_get_modes(struct drm_connector *connector)
5517 {
5518 struct intel_connector *intel_connector = to_intel_connector(connector);
5519 struct edid *edid;
5520
5521 edid = intel_connector->detect_edid;
5522 if (edid) {
5523 int ret = intel_connector_update_modes(connector, edid);
5524 if (ret)
5525 return ret;
5526 }
5527
5528 /* if eDP has no EDID, fall back to fixed mode */
5529 if (intel_dp_is_edp(intel_attached_dp(connector)) &&
5530 intel_connector->panel.fixed_mode) {
5531 struct drm_display_mode *mode;
5532
5533 mode = drm_mode_duplicate(connector->dev,
5534 intel_connector->panel.fixed_mode);
5535 if (mode) {
5536 drm_mode_probed_add(connector, mode);
5537 return 1;
5538 }
5539 }
5540
5541 return 0;
5542 }
5543
5544 static int
5545 intel_dp_connector_register(struct drm_connector *connector)
5546 {
5547 struct intel_dp *intel_dp = intel_attached_dp(connector);
5548 struct drm_device *dev = connector->dev;
5549 int ret;
5550
5551 ret = intel_connector_register(connector);
5552 if (ret)
5553 return ret;
5554
5555 i915_debugfs_connector_add(connector);
5556
5557 DRM_DEBUG_KMS("registering %s bus for %s\n",
5558 intel_dp->aux.name, connector->kdev->kobj.name);
5559
5560 intel_dp->aux.dev = connector->kdev;
5561 ret = drm_dp_aux_register(&intel_dp->aux);
5562 if (!ret)
5563 drm_dp_cec_register_connector(&intel_dp->aux,
5564 connector->name, dev->dev);
5565 return ret;
5566 }
5567
5568 static void
5569 intel_dp_connector_unregister(struct drm_connector *connector)
5570 {
5571 struct intel_dp *intel_dp = intel_attached_dp(connector);
5572
5573 drm_dp_cec_unregister_connector(&intel_dp->aux);
5574 drm_dp_aux_unregister(&intel_dp->aux);
5575 intel_connector_unregister(connector);
5576 }
5577
5578 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5579 {
5580 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
5581 struct intel_dp *intel_dp = &intel_dig_port->dp;
5582
5583 intel_dp_mst_encoder_cleanup(intel_dig_port);
5584 if (intel_dp_is_edp(intel_dp)) {
5585 intel_wakeref_t wakeref;
5586
5587 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5588 /*
5589 * vdd might still be enabled do to the delayed vdd off.
5590 * Make sure vdd is actually turned off here.
5591 */
5592 with_pps_lock(intel_dp, wakeref)
5593 edp_panel_vdd_off_sync(intel_dp);
5594
5595 if (intel_dp->edp_notifier.notifier_call) {
5596 unregister_reboot_notifier(&intel_dp->edp_notifier);
5597 intel_dp->edp_notifier.notifier_call = NULL;
5598 }
5599 }
5600
5601 intel_dp_aux_fini(intel_dp);
5602 }
5603
5604 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
5605 {
5606 intel_dp_encoder_flush_work(encoder);
5607
5608 drm_encoder_cleanup(encoder);
5609 kfree(enc_to_dig_port(encoder));
5610 }
5611
5612 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5613 {
5614 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
5615 intel_wakeref_t wakeref;
5616
5617 if (!intel_dp_is_edp(intel_dp))
5618 return;
5619
5620 /*
5621 * vdd might still be enabled do to the delayed vdd off.
5622 * Make sure vdd is actually turned off here.
5623 */
5624 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5625 with_pps_lock(intel_dp, wakeref)
5626 edp_panel_vdd_off_sync(intel_dp);
5627 }
5628
5629 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
5630 {
5631 long ret;
5632
5633 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
5634 ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
5635 msecs_to_jiffies(timeout));
5636
5637 if (!ret)
5638 DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
5639 }
5640
5641 static
5642 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
5643 u8 *an)
5644 {
5645 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
5646 static const struct drm_dp_aux_msg msg = {
5647 .request = DP_AUX_NATIVE_WRITE,
5648 .address = DP_AUX_HDCP_AKSV,
5649 .size = DRM_HDCP_KSV_LEN,
5650 };
5651 u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5652 ssize_t dpcd_ret;
5653 int ret;
5654
5655 /* Output An first, that's easy */
5656 dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
5657 an, DRM_HDCP_AN_LEN);
5658 if (dpcd_ret != DRM_HDCP_AN_LEN) {
5659 DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
5660 dpcd_ret);
5661 return dpcd_ret >= 0 ? -EIO : dpcd_ret;
5662 }
5663
5664 /*
5665 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
5666 * order to get it on the wire, we need to create the AUX header as if
5667 * we were writing the data, and then tickle the hardware to output the
5668 * data once the header is sent out.
5669 */
5670 intel_dp_aux_header(txbuf, &msg);
5671
5672 ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5673 rxbuf, sizeof(rxbuf),
5674 DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5675 if (ret < 0) {
5676 DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5677 return ret;
5678 } else if (ret == 0) {
5679 DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5680 return -EIO;
5681 }
5682
5683 reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5684 if (reply != DP_AUX_NATIVE_REPLY_ACK) {
5685 DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
5686 reply);
5687 return -EIO;
5688 }
5689 return 0;
5690 }
5691
5692 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
5693 u8 *bksv)
5694 {
5695 ssize_t ret;
5696 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
5697 DRM_HDCP_KSV_LEN);
5698 if (ret != DRM_HDCP_KSV_LEN) {
5699 DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
5700 return ret >= 0 ? -EIO : ret;
5701 }
5702 return 0;
5703 }
5704
5705 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
5706 u8 *bstatus)
5707 {
5708 ssize_t ret;
5709 /*
5710 * For some reason the HDMI and DP HDCP specs call this register
5711 * definition by different names. In the HDMI spec, it's called BSTATUS,
5712 * but in DP it's called BINFO.
5713 */
5714 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
5715 bstatus, DRM_HDCP_BSTATUS_LEN);
5716 if (ret != DRM_HDCP_BSTATUS_LEN) {
5717 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5718 return ret >= 0 ? -EIO : ret;
5719 }
5720 return 0;
5721 }
5722
5723 static
5724 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
5725 u8 *bcaps)
5726 {
5727 ssize_t ret;
5728
5729 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5730 bcaps, 1);
5731 if (ret != 1) {
5732 DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
5733 return ret >= 0 ? -EIO : ret;
5734 }
5735
5736 return 0;
5737 }
5738
5739 static
5740 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
5741 bool *repeater_present)
5742 {
5743 ssize_t ret;
5744 u8 bcaps;
5745
5746 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
5747 if (ret)
5748 return ret;
5749
5750 *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
5751 return 0;
5752 }
5753
5754 static
5755 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
5756 u8 *ri_prime)
5757 {
5758 ssize_t ret;
5759 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
5760 ri_prime, DRM_HDCP_RI_LEN);
5761 if (ret != DRM_HDCP_RI_LEN) {
5762 DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
5763 return ret >= 0 ? -EIO : ret;
5764 }
5765 return 0;
5766 }
5767
5768 static
5769 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
5770 bool *ksv_ready)
5771 {
5772 ssize_t ret;
5773 u8 bstatus;
5774 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
5775 &bstatus, 1);
5776 if (ret != 1) {
5777 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5778 return ret >= 0 ? -EIO : ret;
5779 }
5780 *ksv_ready = bstatus & DP_BSTATUS_READY;
5781 return 0;
5782 }
5783
5784 static
5785 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
5786 int num_downstream, u8 *ksv_fifo)
5787 {
5788 ssize_t ret;
5789 int i;
5790
5791 /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
5792 for (i = 0; i < num_downstream; i += 3) {
5793 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
5794 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
5795 DP_AUX_HDCP_KSV_FIFO,
5796 ksv_fifo + i * DRM_HDCP_KSV_LEN,
5797 len);
5798 if (ret != len) {
5799 DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
5800 i, ret);
5801 return ret >= 0 ? -EIO : ret;
5802 }
5803 }
5804 return 0;
5805 }
5806
5807 static
5808 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
5809 int i, u32 *part)
5810 {
5811 ssize_t ret;
5812
5813 if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
5814 return -EINVAL;
5815
5816 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
5817 DP_AUX_HDCP_V_PRIME(i), part,
5818 DRM_HDCP_V_PRIME_PART_LEN);
5819 if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
5820 DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
5821 return ret >= 0 ? -EIO : ret;
5822 }
5823 return 0;
5824 }
5825
5826 static
5827 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
5828 bool enable)
5829 {
5830 /* Not used for single stream DisplayPort setups */
5831 return 0;
5832 }
5833
5834 static
5835 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
5836 {
5837 ssize_t ret;
5838 u8 bstatus;
5839
5840 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
5841 &bstatus, 1);
5842 if (ret != 1) {
5843 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5844 return false;
5845 }
5846
5847 return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
5848 }
5849
5850 static
5851 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
5852 bool *hdcp_capable)
5853 {
5854 ssize_t ret;
5855 u8 bcaps;
5856
5857 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
5858 if (ret)
5859 return ret;
5860
5861 *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
5862 return 0;
5863 }
5864
5865 struct hdcp2_dp_errata_stream_type {
5866 u8 msg_id;
5867 u8 stream_type;
5868 } __packed;
5869
5870 static struct hdcp2_dp_msg_data {
5871 u8 msg_id;
5872 u32 offset;
5873 bool msg_detectable;
5874 u32 timeout;
5875 u32 timeout2; /* Added for non_paired situation */
5876 } hdcp2_msg_data[] = {
5877 {HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0},
5878 {HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
5879 false, HDCP_2_2_CERT_TIMEOUT_MS, 0},
5880 {HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
5881 false, 0, 0},
5882 {HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
5883 false, 0, 0},
5884 {HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
5885 true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
5886 HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS},
5887 {HDCP_2_2_AKE_SEND_PAIRING_INFO,
5888 DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
5889 HDCP_2_2_PAIRING_TIMEOUT_MS, 0},
5890 {HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0},
5891 {HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
5892 false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0},
5893 {HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
5894 0, 0},
5895 {HDCP_2_2_REP_SEND_RECVID_LIST,
5896 DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
5897 HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0},
5898 {HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
5899 0, 0},
5900 {HDCP_2_2_REP_STREAM_MANAGE,
5901 DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
5902 0, 0},
5903 {HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
5904 false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0},
5905 /* local define to shovel this through the write_2_2 interface */
5906 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE 50
5907 {HDCP_2_2_ERRATA_DP_STREAM_TYPE,
5908 DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
5909 0, 0},
5910 };
5911
5912 static inline
5913 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
5914 u8 *rx_status)
5915 {
5916 ssize_t ret;
5917
5918 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
5919 DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
5920 HDCP_2_2_DP_RXSTATUS_LEN);
5921 if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
5922 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5923 return ret >= 0 ? -EIO : ret;
5924 }
5925
5926 return 0;
5927 }
5928
5929 static
5930 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
5931 u8 msg_id, bool *msg_ready)
5932 {
5933 u8 rx_status;
5934 int ret;
5935
5936 *msg_ready = false;
5937 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
5938 if (ret < 0)
5939 return ret;
5940
5941 switch (msg_id) {
5942 case HDCP_2_2_AKE_SEND_HPRIME:
5943 if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
5944 *msg_ready = true;
5945 break;
5946 case HDCP_2_2_AKE_SEND_PAIRING_INFO:
5947 if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
5948 *msg_ready = true;
5949 break;
5950 case HDCP_2_2_REP_SEND_RECVID_LIST:
5951 if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
5952 *msg_ready = true;
5953 break;
5954 default:
5955 DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
5956 return -EINVAL;
5957 }
5958
5959 return 0;
5960 }
5961
5962 static ssize_t
5963 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
5964 struct hdcp2_dp_msg_data *hdcp2_msg_data)
5965 {
5966 struct intel_dp *dp = &intel_dig_port->dp;
5967 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
5968 u8 msg_id = hdcp2_msg_data->msg_id;
5969 int ret, timeout;
5970 bool msg_ready = false;
5971
5972 if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
5973 timeout = hdcp2_msg_data->timeout2;
5974 else
5975 timeout = hdcp2_msg_data->timeout;
5976
5977 /*
5978 * There is no way to detect the CERT, LPRIME and STREAM_READY
5979 * availability. So Wait for timeout and read the msg.
5980 */
5981 if (!hdcp2_msg_data->msg_detectable) {
5982 mdelay(timeout);
5983 ret = 0;
5984 } else {
5985 /*
5986 * As we want to check the msg availability at timeout, Ignoring
5987 * the timeout at wait for CP_IRQ.
5988 */
5989 intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
5990 ret = hdcp2_detect_msg_availability(intel_dig_port,
5991 msg_id, &msg_ready);
5992 if (!msg_ready)
5993 ret = -ETIMEDOUT;
5994 }
5995
5996 if (ret)
5997 DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
5998 hdcp2_msg_data->msg_id, ret, timeout);
5999
6000 return ret;
6001 }
6002
6003 static struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6004 {
6005 int i;
6006
6007 for (i = 0; i < ARRAY_SIZE(hdcp2_msg_data); i++)
6008 if (hdcp2_msg_data[i].msg_id == msg_id)
6009 return &hdcp2_msg_data[i];
6010
6011 return NULL;
6012 }
6013
6014 static
6015 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
6016 void *buf, size_t size)
6017 {
6018 struct intel_dp *dp = &intel_dig_port->dp;
6019 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6020 unsigned int offset;
6021 u8 *byte = buf;
6022 ssize_t ret, bytes_to_write, len;
6023 struct hdcp2_dp_msg_data *hdcp2_msg_data;
6024
6025 hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
6026 if (!hdcp2_msg_data)
6027 return -EINVAL;
6028
6029 offset = hdcp2_msg_data->offset;
6030
6031 /* No msg_id in DP HDCP2.2 msgs */
6032 bytes_to_write = size - 1;
6033 byte++;
6034
6035 hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
6036
6037 while (bytes_to_write) {
6038 len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
6039 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
6040
6041 ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
6042 offset, (void *)byte, len);
6043 if (ret < 0)
6044 return ret;
6045
6046 bytes_to_write -= ret;
6047 byte += ret;
6048 offset += ret;
6049 }
6050
6051 return size;
6052 }
6053
6054 static
6055 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
6056 {
6057 u8 rx_info[HDCP_2_2_RXINFO_LEN];
6058 u32 dev_cnt;
6059 ssize_t ret;
6060
6061 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6062 DP_HDCP_2_2_REG_RXINFO_OFFSET,
6063 (void *)rx_info, HDCP_2_2_RXINFO_LEN);
6064 if (ret != HDCP_2_2_RXINFO_LEN)
6065 return ret >= 0 ? -EIO : ret;
6066
6067 dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
6068 HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
6069
6070 if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
6071 dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
6072
6073 ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
6074 HDCP_2_2_RECEIVER_IDS_MAX_LEN +
6075 (dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
6076
6077 return ret;
6078 }
6079
6080 static
6081 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
6082 u8 msg_id, void *buf, size_t size)
6083 {
6084 unsigned int offset;
6085 u8 *byte = buf;
6086 ssize_t ret, bytes_to_recv, len;
6087 struct hdcp2_dp_msg_data *hdcp2_msg_data;
6088
6089 hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
6090 if (!hdcp2_msg_data)
6091 return -EINVAL;
6092 offset = hdcp2_msg_data->offset;
6093
6094 ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
6095 if (ret < 0)
6096 return ret;
6097
6098 if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
6099 ret = get_receiver_id_list_size(intel_dig_port);
6100 if (ret < 0)
6101 return ret;
6102
6103 size = ret;
6104 }
6105 bytes_to_recv = size - 1;
6106
6107 /* DP adaptation msgs has no msg_id */
6108 byte++;
6109
6110 while (bytes_to_recv) {
6111 len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
6112 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
6113
6114 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
6115 (void *)byte, len);
6116 if (ret < 0) {
6117 DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
6118 return ret;
6119 }
6120
6121 bytes_to_recv -= ret;
6122 byte += ret;
6123 offset += ret;
6124 }
6125 byte = buf;
6126 *byte = msg_id;
6127
6128 return size;
6129 }
6130
6131 static
6132 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
6133 bool is_repeater, u8 content_type)
6134 {
6135 struct hdcp2_dp_errata_stream_type stream_type_msg;
6136
6137 if (is_repeater)
6138 return 0;
6139
6140 /*
6141 * Errata for DP: As Stream type is used for encryption, Receiver
6142 * should be communicated with stream type for the decryption of the
6143 * content.
6144 * Repeater will be communicated with stream type as a part of it's
6145 * auth later in time.
6146 */
6147 stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
6148 stream_type_msg.stream_type = content_type;
6149
6150 return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
6151 sizeof(stream_type_msg));
6152 }
6153
6154 static
6155 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
6156 {
6157 u8 rx_status;
6158 int ret;
6159
6160 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6161 if (ret)
6162 return ret;
6163
6164 if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
6165 ret = HDCP_REAUTH_REQUEST;
6166 else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
6167 ret = HDCP_LINK_INTEGRITY_FAILURE;
6168 else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6169 ret = HDCP_TOPOLOGY_CHANGE;
6170
6171 return ret;
6172 }
6173
6174 static
6175 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
6176 bool *capable)
6177 {
6178 u8 rx_caps[3];
6179 int ret;
6180
6181 *capable = false;
6182 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6183 DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
6184 rx_caps, HDCP_2_2_RXCAPS_LEN);
6185 if (ret != HDCP_2_2_RXCAPS_LEN)
6186 return ret >= 0 ? -EIO : ret;
6187
6188 if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
6189 HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
6190 *capable = true;
6191
6192 return 0;
6193 }
6194
6195 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
6196 .write_an_aksv = intel_dp_hdcp_write_an_aksv,
6197 .read_bksv = intel_dp_hdcp_read_bksv,
6198 .read_bstatus = intel_dp_hdcp_read_bstatus,
6199 .repeater_present = intel_dp_hdcp_repeater_present,
6200 .read_ri_prime = intel_dp_hdcp_read_ri_prime,
6201 .read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
6202 .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
6203 .read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
6204 .toggle_signalling = intel_dp_hdcp_toggle_signalling,
6205 .check_link = intel_dp_hdcp_check_link,
6206 .hdcp_capable = intel_dp_hdcp_capable,
6207 .write_2_2_msg = intel_dp_hdcp2_write_msg,
6208 .read_2_2_msg = intel_dp_hdcp2_read_msg,
6209 .config_stream_type = intel_dp_hdcp2_config_stream_type,
6210 .check_2_2_link = intel_dp_hdcp2_check_link,
6211 .hdcp_2_2_capable = intel_dp_hdcp2_capable,
6212 .protocol = HDCP_PROTOCOL_DP,
6213 };
6214
6215 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
6216 {
6217 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6218 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6219
6220 lockdep_assert_held(&dev_priv->pps_mutex);
6221
6222 if (!edp_have_panel_vdd(intel_dp))
6223 return;
6224
6225 /*
6226 * The VDD bit needs a power domain reference, so if the bit is
6227 * already enabled when we boot or resume, grab this reference and
6228 * schedule a vdd off, so we don't hold on to the reference
6229 * indefinitely.
6230 */
6231 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
6232 intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6233
6234 edp_panel_vdd_schedule_off(intel_dp);
6235 }
6236
6237 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
6238 {
6239 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6240 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
6241 enum pipe pipe;
6242
6243 if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
6244 encoder->port, &pipe))
6245 return pipe;
6246
6247 return INVALID_PIPE;
6248 }
6249
6250 void intel_dp_encoder_reset(struct drm_encoder *encoder)
6251 {
6252 struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6253 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
6254 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6255 intel_wakeref_t wakeref;
6256
6257 if (!HAS_DDI(dev_priv))
6258 intel_dp->DP = I915_READ(intel_dp->output_reg);
6259
6260 if (lspcon->active)
6261 lspcon_resume(lspcon);
6262
6263 intel_dp->reset_link_params = true;
6264
6265 with_pps_lock(intel_dp, wakeref) {
6266 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6267 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6268
6269 if (intel_dp_is_edp(intel_dp)) {
6270 /*
6271 * Reinit the power sequencer, in case BIOS did
6272 * something nasty with it.
6273 */
6274 intel_dp_pps_init(intel_dp);
6275 intel_edp_panel_vdd_sanitize(intel_dp);
6276 }
6277 }
6278 }
6279
6280 static const struct drm_connector_funcs intel_dp_connector_funcs = {
6281 .force = intel_dp_force,
6282 .fill_modes = drm_helper_probe_single_connector_modes,
6283 .atomic_get_property = intel_digital_connector_atomic_get_property,
6284 .atomic_set_property = intel_digital_connector_atomic_set_property,
6285 .late_register = intel_dp_connector_register,
6286 .early_unregister = intel_dp_connector_unregister,
6287 .destroy = intel_connector_destroy,
6288 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6289 .atomic_duplicate_state = intel_digital_connector_duplicate_state,
6290 };
6291
6292 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6293 .detect_ctx = intel_dp_detect,
6294 .get_modes = intel_dp_get_modes,
6295 .mode_valid = intel_dp_mode_valid,
6296 .atomic_check = intel_digital_connector_atomic_check,
6297 };
6298
6299 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6300 .reset = intel_dp_encoder_reset,
6301 .destroy = intel_dp_encoder_destroy,
6302 };
6303
6304 enum irqreturn
6305 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
6306 {
6307 struct intel_dp *intel_dp = &intel_dig_port->dp;
6308 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6309 enum irqreturn ret = IRQ_NONE;
6310 intel_wakeref_t wakeref;
6311
6312 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
6313 /*
6314 * vdd off can generate a long pulse on eDP which
6315 * would require vdd on to handle it, and thus we
6316 * would end up in an endless cycle of
6317 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
6318 */
6319 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
6320 port_name(intel_dig_port->base.port));
6321 return IRQ_HANDLED;
6322 }
6323
6324 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
6325 port_name(intel_dig_port->base.port),
6326 long_hpd ? "long" : "short");
6327
6328 if (long_hpd) {
6329 intel_dp->reset_link_params = true;
6330 return IRQ_NONE;
6331 }
6332
6333 wakeref = intel_display_power_get(dev_priv,
6334 intel_aux_power_domain(intel_dig_port));
6335
6336 if (intel_dp->is_mst) {
6337 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
6338 /*
6339 * If we were in MST mode, and device is not
6340 * there, get out of MST mode
6341 */
6342 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
6343 intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
6344 intel_dp->is_mst = false;
6345 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6346 intel_dp->is_mst);
6347 goto put_power;
6348 }
6349 }
6350
6351 if (!intel_dp->is_mst) {
6352 bool handled;
6353
6354 handled = intel_dp_short_pulse(intel_dp);
6355
6356 if (!handled)
6357 goto put_power;
6358 }
6359
6360 ret = IRQ_HANDLED;
6361
6362 put_power:
6363 intel_display_power_put(dev_priv,
6364 intel_aux_power_domain(intel_dig_port),
6365 wakeref);
6366
6367 return ret;
6368 }
6369
6370 /* check the VBT to see whether the eDP is on another port */
6371 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6372 {
6373 /*
6374 * eDP not supported on g4x. so bail out early just
6375 * for a bit extra safety in case the VBT is bonkers.
6376 */
6377 if (INTEL_GEN(dev_priv) < 5)
6378 return false;
6379
6380 if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6381 return true;
6382
6383 return intel_bios_is_port_edp(dev_priv, port);
6384 }
6385
6386 static void
6387 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
6388 {
6389 struct drm_i915_private *dev_priv = to_i915(connector->dev);
6390 enum port port = dp_to_dig_port(intel_dp)->base.port;
6391
6392 if (!IS_G4X(dev_priv) && port != PORT_A)
6393 intel_attach_force_audio_property(connector);
6394
6395 intel_attach_broadcast_rgb_property(connector);
6396 if (HAS_GMCH(dev_priv))
6397 drm_connector_attach_max_bpc_property(connector, 6, 10);
6398 else if (INTEL_GEN(dev_priv) >= 5)
6399 drm_connector_attach_max_bpc_property(connector, 6, 12);
6400
6401 if (intel_dp_is_edp(intel_dp)) {
6402 u32 allowed_scalers;
6403
6404 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
6405 if (!HAS_GMCH(dev_priv))
6406 allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
6407
6408 drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
6409
6410 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6411
6412 }
6413 }
6414
6415 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
6416 {
6417 intel_dp->panel_power_off_time = ktime_get_boottime();
6418 intel_dp->last_power_on = jiffies;
6419 intel_dp->last_backlight_off = jiffies;
6420 }
6421
6422 static void
6423 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6424 {
6425 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6426 u32 pp_on, pp_off, pp_ctl;
6427 struct pps_registers regs;
6428
6429 intel_pps_get_registers(intel_dp, &regs);
6430
6431 pp_ctl = ironlake_get_pp_control(intel_dp);
6432
6433 /* Ensure PPS is unlocked */
6434 if (!HAS_DDI(dev_priv))
6435 I915_WRITE(regs.pp_ctrl, pp_ctl);
6436
6437 pp_on = I915_READ(regs.pp_on);
6438 pp_off = I915_READ(regs.pp_off);
6439
6440 /* Pull timing values out of registers */
6441 seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
6442 seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
6443 seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
6444 seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6445
6446 if (i915_mmio_reg_valid(regs.pp_div)) {
6447 u32 pp_div;
6448
6449 pp_div = I915_READ(regs.pp_div);
6450
6451 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6452 } else {
6453 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6454 }
6455 }
6456
6457 static void
6458 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
6459 {
6460 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
6461 state_name,
6462 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
6463 }
6464
6465 static void
6466 intel_pps_verify_state(struct intel_dp *intel_dp)
6467 {
6468 struct edp_power_seq hw;
6469 struct edp_power_seq *sw = &intel_dp->pps_delays;
6470
6471 intel_pps_readout_hw_state(intel_dp, &hw);
6472
6473 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
6474 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
6475 DRM_ERROR("PPS state mismatch\n");
6476 intel_pps_dump_state("sw", sw);
6477 intel_pps_dump_state("hw", &hw);
6478 }
6479 }
6480
6481 static void
6482 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6483 {
6484 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6485 struct edp_power_seq cur, vbt, spec,
6486 *final = &intel_dp->pps_delays;
6487
6488 lockdep_assert_held(&dev_priv->pps_mutex);
6489
6490 /* already initialized? */
6491 if (final->t11_t12 != 0)
6492 return;
6493
6494 intel_pps_readout_hw_state(intel_dp, &cur);
6495
6496 intel_pps_dump_state("cur", &cur);
6497
6498 vbt = dev_priv->vbt.edp.pps;
6499 /* On Toshiba Satellite P50-C-18C system the VBT T12 delay
6500 * of 500ms appears to be too short. Ocassionally the panel
6501 * just fails to power back on. Increasing the delay to 800ms
6502 * seems sufficient to avoid this problem.
6503 */
6504 if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6505 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6506 DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
6507 vbt.t11_t12);
6508 }
6509 /* T11_T12 delay is special and actually in units of 100ms, but zero
6510 * based in the hw (so we need to add 100 ms). But the sw vbt
6511 * table multiplies it with 1000 to make it in units of 100usec,
6512 * too. */
6513 vbt.t11_t12 += 100 * 10;
6514
6515 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
6516 * our hw here, which are all in 100usec. */
6517 spec.t1_t3 = 210 * 10;
6518 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
6519 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
6520 spec.t10 = 500 * 10;
6521 /* This one is special and actually in units of 100ms, but zero
6522 * based in the hw (so we need to add 100 ms). But the sw vbt
6523 * table multiplies it with 1000 to make it in units of 100usec,
6524 * too. */
6525 spec.t11_t12 = (510 + 100) * 10;
6526
6527 intel_pps_dump_state("vbt", &vbt);
6528
6529 /* Use the max of the register settings and vbt. If both are
6530 * unset, fall back to the spec limits. */
6531 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
6532 spec.field : \
6533 max(cur.field, vbt.field))
6534 assign_final(t1_t3);
6535 assign_final(t8);
6536 assign_final(t9);
6537 assign_final(t10);
6538 assign_final(t11_t12);
6539 #undef assign_final
6540
6541 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
6542 intel_dp->panel_power_up_delay = get_delay(t1_t3);
6543 intel_dp->backlight_on_delay = get_delay(t8);
6544 intel_dp->backlight_off_delay = get_delay(t9);
6545 intel_dp->panel_power_down_delay = get_delay(t10);
6546 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
6547 #undef get_delay
6548
6549 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
6550 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
6551 intel_dp->panel_power_cycle_delay);
6552
6553 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
6554 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
6555
6556 /*
6557 * We override the HW backlight delays to 1 because we do manual waits
6558 * on them. For T8, even BSpec recommends doing it. For T9, if we
6559 * don't do this, we'll end up waiting for the backlight off delay
6560 * twice: once when we do the manual sleep, and once when we disable
6561 * the panel and wait for the PP_STATUS bit to become zero.
6562 */
6563 final->t8 = 1;
6564 final->t9 = 1;
6565
6566 /*
6567 * HW has only a 100msec granularity for t11_t12 so round it up
6568 * accordingly.
6569 */
6570 final->t11_t12 = roundup(final->t11_t12, 100 * 10);
6571 }
6572
6573 static void
6574 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
6575 bool force_disable_vdd)
6576 {
6577 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6578 u32 pp_on, pp_off, port_sel = 0;
6579 int div = dev_priv->rawclk_freq / 1000;
6580 struct pps_registers regs;
6581 enum port port = dp_to_dig_port(intel_dp)->base.port;
6582 const struct edp_power_seq *seq = &intel_dp->pps_delays;
6583
6584 lockdep_assert_held(&dev_priv->pps_mutex);
6585
6586 intel_pps_get_registers(intel_dp, &regs);
6587
6588 /*
6589 * On some VLV machines the BIOS can leave the VDD
6590 * enabled even on power sequencers which aren't
6591 * hooked up to any port. This would mess up the
6592 * power domain tracking the first time we pick
6593 * one of these power sequencers for use since
6594 * edp_panel_vdd_on() would notice that the VDD was
6595 * already on and therefore wouldn't grab the power
6596 * domain reference. Disable VDD first to avoid this.
6597 * This also avoids spuriously turning the VDD on as
6598 * soon as the new power sequencer gets initialized.
6599 */
6600 if (force_disable_vdd) {
6601 u32 pp = ironlake_get_pp_control(intel_dp);
6602
6603 WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
6604
6605 if (pp & EDP_FORCE_VDD)
6606 DRM_DEBUG_KMS("VDD already on, disabling first\n");
6607
6608 pp &= ~EDP_FORCE_VDD;
6609
6610 I915_WRITE(regs.pp_ctrl, pp);
6611 }
6612
6613 pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
6614 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
6615 pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
6616 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
6617
6618 /* Haswell doesn't have any port selection bits for the panel
6619 * power sequencer any more. */
6620 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6621 port_sel = PANEL_PORT_SELECT_VLV(port);
6622 } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
6623 switch (port) {
6624 case PORT_A:
6625 port_sel = PANEL_PORT_SELECT_DPA;
6626 break;
6627 case PORT_C:
6628 port_sel = PANEL_PORT_SELECT_DPC;
6629 break;
6630 case PORT_D:
6631 port_sel = PANEL_PORT_SELECT_DPD;
6632 break;
6633 default:
6634 MISSING_CASE(port);
6635 break;
6636 }
6637 }
6638
6639 pp_on |= port_sel;
6640
6641 I915_WRITE(regs.pp_on, pp_on);
6642 I915_WRITE(regs.pp_off, pp_off);
6643
6644 /*
6645 * Compute the divisor for the pp clock, simply match the Bspec formula.
6646 */
6647 if (i915_mmio_reg_valid(regs.pp_div)) {
6648 I915_WRITE(regs.pp_div,
6649 REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) |
6650 REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
6651 } else {
6652 u32 pp_ctl;
6653
6654 pp_ctl = I915_READ(regs.pp_ctrl);
6655 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
6656 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
6657 I915_WRITE(regs.pp_ctrl, pp_ctl);
6658 }
6659
6660 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
6661 I915_READ(regs.pp_on),
6662 I915_READ(regs.pp_off),
6663 i915_mmio_reg_valid(regs.pp_div) ?
6664 I915_READ(regs.pp_div) :
6665 (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
6666 }
6667
6668 static void intel_dp_pps_init(struct intel_dp *intel_dp)
6669 {
6670 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6671
6672 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6673 vlv_initial_power_sequencer_setup(intel_dp);
6674 } else {
6675 intel_dp_init_panel_power_sequencer(intel_dp);
6676 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
6677 }
6678 }
6679
6680 /**
6681 * intel_dp_set_drrs_state - program registers for RR switch to take effect
6682 * @dev_priv: i915 device
6683 * @crtc_state: a pointer to the active intel_crtc_state
6684 * @refresh_rate: RR to be programmed
6685 *
6686 * This function gets called when refresh rate (RR) has to be changed from
6687 * one frequency to another. Switches can be between high and low RR
6688 * supported by the panel or to any other RR based on media playback (in
6689 * this case, RR value needs to be passed from user space).
6690 *
6691 * The caller of this function needs to take a lock on dev_priv->drrs.
6692 */
6693 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
6694 const struct intel_crtc_state *crtc_state,
6695 int refresh_rate)
6696 {
6697 struct intel_encoder *encoder;
6698 struct intel_digital_port *dig_port = NULL;
6699 struct intel_dp *intel_dp = dev_priv->drrs.dp;
6700 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
6701 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
6702
6703 if (refresh_rate <= 0) {
6704 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
6705 return;
6706 }
6707
6708 if (intel_dp == NULL) {
6709 DRM_DEBUG_KMS("DRRS not supported.\n");
6710 return;
6711 }
6712
6713 dig_port = dp_to_dig_port(intel_dp);
6714 encoder = &dig_port->base;
6715
6716 if (!intel_crtc) {
6717 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
6718 return;
6719 }
6720
6721 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
6722 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
6723 return;
6724 }
6725
6726 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
6727 refresh_rate)
6728 index = DRRS_LOW_RR;
6729
6730 if (index == dev_priv->drrs.refresh_rate_type) {
6731 DRM_DEBUG_KMS(
6732 "DRRS requested for previously set RR...ignoring\n");
6733 return;
6734 }
6735
6736 if (!crtc_state->base.active) {
6737 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
6738 return;
6739 }
6740
6741 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
6742 switch (index) {
6743 case DRRS_HIGH_RR:
6744 intel_dp_set_m_n(crtc_state, M1_N1);
6745 break;
6746 case DRRS_LOW_RR:
6747 intel_dp_set_m_n(crtc_state, M2_N2);
6748 break;
6749 case DRRS_MAX_RR:
6750 default:
6751 DRM_ERROR("Unsupported refreshrate type\n");
6752 }
6753 } else if (INTEL_GEN(dev_priv) > 6) {
6754 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
6755 u32 val;
6756
6757 val = I915_READ(reg);
6758 if (index > DRRS_HIGH_RR) {
6759 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6760 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
6761 else
6762 val |= PIPECONF_EDP_RR_MODE_SWITCH;
6763 } else {
6764 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6765 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
6766 else
6767 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
6768 }
6769 I915_WRITE(reg, val);
6770 }
6771
6772 dev_priv->drrs.refresh_rate_type = index;
6773
6774 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
6775 }
6776
6777 /**
6778 * intel_edp_drrs_enable - init drrs struct if supported
6779 * @intel_dp: DP struct
6780 * @crtc_state: A pointer to the active crtc state.
6781 *
6782 * Initializes frontbuffer_bits and drrs.dp
6783 */
6784 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
6785 const struct intel_crtc_state *crtc_state)
6786 {
6787 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6788
6789 if (!crtc_state->has_drrs) {
6790 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
6791 return;
6792 }
6793
6794 if (dev_priv->psr.enabled) {
6795 DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
6796 return;
6797 }
6798
6799 mutex_lock(&dev_priv->drrs.mutex);
6800 if (dev_priv->drrs.dp) {
6801 DRM_DEBUG_KMS("DRRS already enabled\n");
6802 goto unlock;
6803 }
6804
6805 dev_priv->drrs.busy_frontbuffer_bits = 0;
6806
6807 dev_priv->drrs.dp = intel_dp;
6808
6809 unlock:
6810 mutex_unlock(&dev_priv->drrs.mutex);
6811 }
6812
6813 /**
6814 * intel_edp_drrs_disable - Disable DRRS
6815 * @intel_dp: DP struct
6816 * @old_crtc_state: Pointer to old crtc_state.
6817 *
6818 */
6819 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
6820 const struct intel_crtc_state *old_crtc_state)
6821 {
6822 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6823
6824 if (!old_crtc_state->has_drrs)
6825 return;
6826
6827 mutex_lock(&dev_priv->drrs.mutex);
6828 if (!dev_priv->drrs.dp) {
6829 mutex_unlock(&dev_priv->drrs.mutex);
6830 return;
6831 }
6832
6833 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6834 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
6835 intel_dp->attached_connector->panel.fixed_mode->vrefresh);
6836
6837 dev_priv->drrs.dp = NULL;
6838 mutex_unlock(&dev_priv->drrs.mutex);
6839
6840 cancel_delayed_work_sync(&dev_priv->drrs.work);
6841 }
6842
6843 static void intel_edp_drrs_downclock_work(struct work_struct *work)
6844 {
6845 struct drm_i915_private *dev_priv =
6846 container_of(work, typeof(*dev_priv), drrs.work.work);
6847 struct intel_dp *intel_dp;
6848
6849 mutex_lock(&dev_priv->drrs.mutex);
6850
6851 intel_dp = dev_priv->drrs.dp;
6852
6853 if (!intel_dp)
6854 goto unlock;
6855
6856 /*
6857 * The delayed work can race with an invalidate hence we need to
6858 * recheck.
6859 */
6860
6861 if (dev_priv->drrs.busy_frontbuffer_bits)
6862 goto unlock;
6863
6864 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
6865 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
6866
6867 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
6868 intel_dp->attached_connector->panel.downclock_mode->vrefresh);
6869 }
6870
6871 unlock:
6872 mutex_unlock(&dev_priv->drrs.mutex);
6873 }
6874
6875 /**
6876 * intel_edp_drrs_invalidate - Disable Idleness DRRS
6877 * @dev_priv: i915 device
6878 * @frontbuffer_bits: frontbuffer plane tracking bits
6879 *
6880 * This function gets called everytime rendering on the given planes start.
6881 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
6882 *
6883 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
6884 */
6885 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
6886 unsigned int frontbuffer_bits)
6887 {
6888 struct drm_crtc *crtc;
6889 enum pipe pipe;
6890
6891 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6892 return;
6893
6894 cancel_delayed_work(&dev_priv->drrs.work);
6895
6896 mutex_lock(&dev_priv->drrs.mutex);
6897 if (!dev_priv->drrs.dp) {
6898 mutex_unlock(&dev_priv->drrs.mutex);
6899 return;
6900 }
6901
6902 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
6903 pipe = to_intel_crtc(crtc)->pipe;
6904
6905 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
6906 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
6907
6908 /* invalidate means busy screen hence upclock */
6909 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6910 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
6911 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6912
6913 mutex_unlock(&dev_priv->drrs.mutex);
6914 }
6915
6916 /**
6917 * intel_edp_drrs_flush - Restart Idleness DRRS
6918 * @dev_priv: i915 device
6919 * @frontbuffer_bits: frontbuffer plane tracking bits
6920 *
6921 * This function gets called every time rendering on the given planes has
6922 * completed or flip on a crtc is completed. So DRRS should be upclocked
6923 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
6924 * if no other planes are dirty.
6925 *
6926 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
6927 */
6928 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
6929 unsigned int frontbuffer_bits)
6930 {
6931 struct drm_crtc *crtc;
6932 enum pipe pipe;
6933
6934 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6935 return;
6936
6937 cancel_delayed_work(&dev_priv->drrs.work);
6938
6939 mutex_lock(&dev_priv->drrs.mutex);
6940 if (!dev_priv->drrs.dp) {
6941 mutex_unlock(&dev_priv->drrs.mutex);
6942 return;
6943 }
6944
6945 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
6946 pipe = to_intel_crtc(crtc)->pipe;
6947
6948 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
6949 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
6950
6951 /* flush means busy screen hence upclock */
6952 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6953 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
6954 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6955
6956 /*
6957 * flush also means no more activity hence schedule downclock, if all
6958 * other fbs are quiescent too
6959 */
6960 if (!dev_priv->drrs.busy_frontbuffer_bits)
6961 schedule_delayed_work(&dev_priv->drrs.work,
6962 msecs_to_jiffies(1000));
6963 mutex_unlock(&dev_priv->drrs.mutex);
6964 }
6965
6966 /**
6967 * DOC: Display Refresh Rate Switching (DRRS)
6968 *
6969 * Display Refresh Rate Switching (DRRS) is a power conservation feature
6970 * which enables swtching between low and high refresh rates,
6971 * dynamically, based on the usage scenario. This feature is applicable
6972 * for internal panels.
6973 *
6974 * Indication that the panel supports DRRS is given by the panel EDID, which
6975 * would list multiple refresh rates for one resolution.
6976 *
6977 * DRRS is of 2 types - static and seamless.
6978 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
6979 * (may appear as a blink on screen) and is used in dock-undock scenario.
6980 * Seamless DRRS involves changing RR without any visual effect to the user
6981 * and can be used during normal system usage. This is done by programming
6982 * certain registers.
6983 *
6984 * Support for static/seamless DRRS may be indicated in the VBT based on
6985 * inputs from the panel spec.
6986 *
6987 * DRRS saves power by switching to low RR based on usage scenarios.
6988 *
6989 * The implementation is based on frontbuffer tracking implementation. When
6990 * there is a disturbance on the screen triggered by user activity or a periodic
6991 * system activity, DRRS is disabled (RR is changed to high RR). When there is
6992 * no movement on screen, after a timeout of 1 second, a switch to low RR is
6993 * made.
6994 *
6995 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
6996 * and intel_edp_drrs_flush() are called.
6997 *
6998 * DRRS can be further extended to support other internal panels and also
6999 * the scenario of video playback wherein RR is set based on the rate
7000 * requested by userspace.
7001 */
7002
7003 /**
7004 * intel_dp_drrs_init - Init basic DRRS work and mutex.
7005 * @connector: eDP connector
7006 * @fixed_mode: preferred mode of panel
7007 *
7008 * This function is called only once at driver load to initialize basic
7009 * DRRS stuff.
7010 *
7011 * Returns:
7012 * Downclock mode if panel supports it, else return NULL.
7013 * DRRS support is determined by the presence of downclock mode (apart
7014 * from VBT setting).
7015 */
7016 static struct drm_display_mode *
7017 intel_dp_drrs_init(struct intel_connector *connector,
7018 struct drm_display_mode *fixed_mode)
7019 {
7020 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7021 struct drm_display_mode *downclock_mode = NULL;
7022
7023 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
7024 mutex_init(&dev_priv->drrs.mutex);
7025
7026 if (INTEL_GEN(dev_priv) <= 6) {
7027 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
7028 return NULL;
7029 }
7030
7031 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7032 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
7033 return NULL;
7034 }
7035
7036 downclock_mode = intel_find_panel_downclock(dev_priv, fixed_mode,
7037 &connector->base);
7038
7039 if (!downclock_mode) {
7040 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
7041 return NULL;
7042 }
7043
7044 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7045
7046 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7047 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
7048 return downclock_mode;
7049 }
7050
7051 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7052 struct intel_connector *intel_connector)
7053 {
7054 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7055 struct drm_device *dev = &dev_priv->drm;
7056 struct drm_connector *connector = &intel_connector->base;
7057 struct drm_display_mode *fixed_mode = NULL;
7058 struct drm_display_mode *downclock_mode = NULL;
7059 bool has_dpcd;
7060 enum pipe pipe = INVALID_PIPE;
7061 intel_wakeref_t wakeref;
7062 struct edid *edid;
7063
7064 if (!intel_dp_is_edp(intel_dp))
7065 return true;
7066
7067 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
7068
7069 /*
7070 * On IBX/CPT we may get here with LVDS already registered. Since the
7071 * driver uses the only internal power sequencer available for both
7072 * eDP and LVDS bail out early in this case to prevent interfering
7073 * with an already powered-on LVDS power sequencer.
7074 */
7075 if (intel_get_lvds_encoder(dev_priv)) {
7076 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
7077 DRM_INFO("LVDS was detected, not registering eDP\n");
7078
7079 return false;
7080 }
7081
7082 with_pps_lock(intel_dp, wakeref) {
7083 intel_dp_init_panel_power_timestamps(intel_dp);
7084 intel_dp_pps_init(intel_dp);
7085 intel_edp_panel_vdd_sanitize(intel_dp);
7086 }
7087
7088 /* Cache DPCD and EDID for edp. */
7089 has_dpcd = intel_edp_init_dpcd(intel_dp);
7090
7091 if (!has_dpcd) {
7092 /* if this fails, presume the device is a ghost */
7093 DRM_INFO("failed to retrieve link info, disabling eDP\n");
7094 goto out_vdd_off;
7095 }
7096
7097 mutex_lock(&dev->mode_config.mutex);
7098 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7099 if (edid) {
7100 if (drm_add_edid_modes(connector, edid)) {
7101 drm_connector_update_edid_property(connector,
7102 edid);
7103 } else {
7104 kfree(edid);
7105 edid = ERR_PTR(-EINVAL);
7106 }
7107 } else {
7108 edid = ERR_PTR(-ENOENT);
7109 }
7110 intel_connector->edid = edid;
7111
7112 fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
7113 if (fixed_mode)
7114 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7115
7116 /* fallback to VBT if available for eDP */
7117 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
7118 fixed_mode = drm_mode_duplicate(dev,
7119 dev_priv->vbt.lfp_lvds_vbt_mode);
7120 if (fixed_mode) {
7121 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
7122 connector->display_info.width_mm = fixed_mode->width_mm;
7123 connector->display_info.height_mm = fixed_mode->height_mm;
7124 }
7125 }
7126 mutex_unlock(&dev->mode_config.mutex);
7127
7128 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7129 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
7130 register_reboot_notifier(&intel_dp->edp_notifier);
7131
7132 /*
7133 * Figure out the current pipe for the initial backlight setup.
7134 * If the current pipe isn't valid, try the PPS pipe, and if that
7135 * fails just assume pipe A.
7136 */
7137 pipe = vlv_active_pipe(intel_dp);
7138
7139 if (pipe != PIPE_A && pipe != PIPE_B)
7140 pipe = intel_dp->pps_pipe;
7141
7142 if (pipe != PIPE_A && pipe != PIPE_B)
7143 pipe = PIPE_A;
7144
7145 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
7146 pipe_name(pipe));
7147 }
7148
7149 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7150 intel_connector->panel.backlight.power = intel_edp_backlight_power;
7151 intel_panel_setup_backlight(connector, pipe);
7152
7153 if (fixed_mode)
7154 drm_connector_init_panel_orientation_property(
7155 connector, fixed_mode->hdisplay, fixed_mode->vdisplay);
7156
7157 return true;
7158
7159 out_vdd_off:
7160 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
7161 /*
7162 * vdd might still be enabled do to the delayed vdd off.
7163 * Make sure vdd is actually turned off here.
7164 */
7165 with_pps_lock(intel_dp, wakeref)
7166 edp_panel_vdd_off_sync(intel_dp);
7167
7168 return false;
7169 }
7170
7171 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
7172 {
7173 struct intel_connector *intel_connector;
7174 struct drm_connector *connector;
7175
7176 intel_connector = container_of(work, typeof(*intel_connector),
7177 modeset_retry_work);
7178 connector = &intel_connector->base;
7179 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
7180 connector->name);
7181
7182 /* Grab the locks before changing connector property*/
7183 mutex_lock(&connector->dev->mode_config.mutex);
7184 /* Set connector link status to BAD and send a Uevent to notify
7185 * userspace to do a modeset.
7186 */
7187 drm_connector_set_link_status_property(connector,
7188 DRM_MODE_LINK_STATUS_BAD);
7189 mutex_unlock(&connector->dev->mode_config.mutex);
7190 /* Send Hotplug uevent so userspace can reprobe */
7191 drm_kms_helper_hotplug_event(connector->dev);
7192 }
7193
7194 bool
7195 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
7196 struct intel_connector *intel_connector)
7197 {
7198 struct drm_connector *connector = &intel_connector->base;
7199 struct intel_dp *intel_dp = &intel_dig_port->dp;
7200 struct intel_encoder *intel_encoder = &intel_dig_port->base;
7201 struct drm_device *dev = intel_encoder->base.dev;
7202 struct drm_i915_private *dev_priv = to_i915(dev);
7203 enum port port = intel_encoder->port;
7204 int type;
7205
7206 /* Initialize the work for modeset in case of link train failure */
7207 INIT_WORK(&intel_connector->modeset_retry_work,
7208 intel_dp_modeset_retry_work_fn);
7209
7210 if (WARN(intel_dig_port->max_lanes < 1,
7211 "Not enough lanes (%d) for DP on port %c\n",
7212 intel_dig_port->max_lanes, port_name(port)))
7213 return false;
7214
7215 intel_dp_set_source_rates(intel_dp);
7216
7217 intel_dp->reset_link_params = true;
7218 intel_dp->pps_pipe = INVALID_PIPE;
7219 intel_dp->active_pipe = INVALID_PIPE;
7220
7221 /* intel_dp vfuncs */
7222 if (HAS_DDI(dev_priv))
7223 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
7224
7225 /* Preserve the current hw state. */
7226 intel_dp->DP = I915_READ(intel_dp->output_reg);
7227 intel_dp->attached_connector = intel_connector;
7228
7229 if (intel_dp_is_port_edp(dev_priv, port))
7230 type = DRM_MODE_CONNECTOR_eDP;
7231 else
7232 type = DRM_MODE_CONNECTOR_DisplayPort;
7233
7234 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7235 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7236
7237 /*
7238 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
7239 * for DP the encoder type can be set by the caller to
7240 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
7241 */
7242 if (type == DRM_MODE_CONNECTOR_eDP)
7243 intel_encoder->type = INTEL_OUTPUT_EDP;
7244
7245 /* eDP only on port B and/or C on vlv/chv */
7246 if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7247 intel_dp_is_edp(intel_dp) &&
7248 port != PORT_B && port != PORT_C))
7249 return false;
7250
7251 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
7252 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
7253 port_name(port));
7254
7255 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7256 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
7257
7258 if (!HAS_GMCH(dev_priv))
7259 connector->interlace_allowed = true;
7260 connector->doublescan_allowed = 0;
7261
7262 intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7263
7264 intel_dp_aux_init(intel_dp);
7265
7266 intel_connector_attach_encoder(intel_connector, intel_encoder);
7267
7268 if (HAS_DDI(dev_priv))
7269 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
7270 else
7271 intel_connector->get_hw_state = intel_connector_get_hw_state;
7272
7273 /* init MST on ports that can support it */
7274 if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
7275 (port == PORT_B || port == PORT_C ||
7276 port == PORT_D || port == PORT_F))
7277 intel_dp_mst_encoder_init(intel_dig_port,
7278 intel_connector->base.base.id);
7279
7280 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7281 intel_dp_aux_fini(intel_dp);
7282 intel_dp_mst_encoder_cleanup(intel_dig_port);
7283 goto fail;
7284 }
7285
7286 intel_dp_add_properties(intel_dp, connector);
7287
7288 if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7289 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
7290 if (ret)
7291 DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
7292 }
7293
7294 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
7295 * 0xd. Failure to do so will result in spurious interrupts being
7296 * generated on the port when a cable is not attached.
7297 */
7298 if (IS_G45(dev_priv)) {
7299 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
7300 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
7301 }
7302
7303 return true;
7304
7305 fail:
7306 drm_connector_cleanup(connector);
7307
7308 return false;
7309 }
7310
7311 bool intel_dp_init(struct drm_i915_private *dev_priv,
7312 i915_reg_t output_reg,
7313 enum port port)
7314 {
7315 struct intel_digital_port *intel_dig_port;
7316 struct intel_encoder *intel_encoder;
7317 struct drm_encoder *encoder;
7318 struct intel_connector *intel_connector;
7319
7320 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
7321 if (!intel_dig_port)
7322 return false;
7323
7324 intel_connector = intel_connector_alloc();
7325 if (!intel_connector)
7326 goto err_connector_alloc;
7327
7328 intel_encoder = &intel_dig_port->base;
7329 encoder = &intel_encoder->base;
7330
7331 if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
7332 &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
7333 "DP %c", port_name(port)))
7334 goto err_encoder_init;
7335
7336 intel_encoder->hotplug = intel_dp_hotplug;
7337 intel_encoder->compute_config = intel_dp_compute_config;
7338 intel_encoder->get_hw_state = intel_dp_get_hw_state;
7339 intel_encoder->get_config = intel_dp_get_config;
7340 intel_encoder->update_pipe = intel_panel_update_backlight;
7341 intel_encoder->suspend = intel_dp_encoder_suspend;
7342 if (IS_CHERRYVIEW(dev_priv)) {
7343 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7344 intel_encoder->pre_enable = chv_pre_enable_dp;
7345 intel_encoder->enable = vlv_enable_dp;
7346 intel_encoder->disable = vlv_disable_dp;
7347 intel_encoder->post_disable = chv_post_disable_dp;
7348 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7349 } else if (IS_VALLEYVIEW(dev_priv)) {
7350 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7351 intel_encoder->pre_enable = vlv_pre_enable_dp;
7352 intel_encoder->enable = vlv_enable_dp;
7353 intel_encoder->disable = vlv_disable_dp;
7354 intel_encoder->post_disable = vlv_post_disable_dp;
7355 } else {
7356 intel_encoder->pre_enable = g4x_pre_enable_dp;
7357 intel_encoder->enable = g4x_enable_dp;
7358 intel_encoder->disable = g4x_disable_dp;
7359 intel_encoder->post_disable = g4x_post_disable_dp;
7360 }
7361
7362 intel_dig_port->dp.output_reg = output_reg;
7363 intel_dig_port->max_lanes = 4;
7364
7365 intel_encoder->type = INTEL_OUTPUT_DP;
7366 intel_encoder->power_domain = intel_port_to_power_domain(port);
7367 if (IS_CHERRYVIEW(dev_priv)) {
7368 if (port == PORT_D)
7369 intel_encoder->crtc_mask = 1 << 2;
7370 else
7371 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
7372 } else {
7373 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
7374 }
7375 intel_encoder->cloneable = 0;
7376 intel_encoder->port = port;
7377
7378 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
7379
7380 if (port != PORT_A)
7381 intel_infoframe_init(intel_dig_port);
7382
7383 intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
7384 if (!intel_dp_init_connector(intel_dig_port, intel_connector))
7385 goto err_init_connector;
7386
7387 return true;
7388
7389 err_init_connector:
7390 drm_encoder_cleanup(encoder);
7391 err_encoder_init:
7392 kfree(intel_connector);
7393 err_connector_alloc:
7394 kfree(intel_dig_port);
7395 return false;
7396 }
7397
7398 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7399 {
7400 struct intel_encoder *encoder;
7401
7402 for_each_intel_encoder(&dev_priv->drm, encoder) {
7403 struct intel_dp *intel_dp;
7404
7405 if (encoder->type != INTEL_OUTPUT_DDI)
7406 continue;
7407
7408 intel_dp = enc_to_intel_dp(&encoder->base);
7409
7410 if (!intel_dp->can_mst)
7411 continue;
7412
7413 if (intel_dp->is_mst)
7414 drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7415 }
7416 }
7417
7418 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7419 {
7420 struct intel_encoder *encoder;
7421
7422 for_each_intel_encoder(&dev_priv->drm, encoder) {
7423 struct intel_dp *intel_dp;
7424 int ret;
7425
7426 if (encoder->type != INTEL_OUTPUT_DDI)
7427 continue;
7428
7429 intel_dp = enc_to_intel_dp(&encoder->base);
7430
7431 if (!intel_dp->can_mst)
7432 continue;
7433
7434 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr);
7435 if (ret) {
7436 intel_dp->is_mst = false;
7437 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
7438 false);
7439 }
7440 }
7441 }