]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/intel_dp.c
Merge git://git.infradead.org/intel-iommu
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 /* Compliance test status bits */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
46 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51 int clock;
52 struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56 { 162000,
57 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58 { 270000,
59 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63 { 162000,
64 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65 { 270000,
66 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70 { 162000,
71 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72 { 270000,
73 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77 * CHV supports eDP 1.4 that have more link rates.
78 * Below only provides the fixed rate but exclude variable rate.
79 */
80 static const struct dp_link_dpll chv_dpll[] = {
81 /*
82 * CHV requires to program fractional division for m2.
83 * m2 is stored in fixed point format using formula below
84 * (m2_int << 22) | m2_fraction
85 */
86 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
87 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88 { 270000, /* m2_int = 27, m2_fraction = 0 */
89 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90 { 540000, /* m2_int = 27, m2_fraction = 0 */
91 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95 324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97 324000, 432000, 540000 };
98 static const int default_rates[] = { 162000, 270000, 540000 };
99
100 /**
101 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
102 * @intel_dp: DP struct
103 *
104 * If a CPU or PCH DP output is attached to an eDP panel, this function
105 * will return true, and false otherwise.
106 */
107 static bool is_edp(struct intel_dp *intel_dp)
108 {
109 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
110
111 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 }
113
114 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115 {
116 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
117
118 return intel_dig_port->base.base.dev;
119 }
120
121 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
122 {
123 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 }
125
126 static void intel_dp_link_down(struct intel_dp *intel_dp);
127 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 static void vlv_steal_power_sequencer(struct drm_device *dev,
131 enum pipe pipe);
132 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
133
134 static int
135 intel_dp_max_link_bw(struct intel_dp *intel_dp)
136 {
137 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
138
139 switch (max_link_bw) {
140 case DP_LINK_BW_1_62:
141 case DP_LINK_BW_2_7:
142 case DP_LINK_BW_5_4:
143 break;
144 default:
145 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
146 max_link_bw);
147 max_link_bw = DP_LINK_BW_1_62;
148 break;
149 }
150 return max_link_bw;
151 }
152
153 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
154 {
155 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
156 u8 source_max, sink_max;
157
158 source_max = intel_dig_port->max_lanes;
159 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
160
161 return min(source_max, sink_max);
162 }
163
164 /*
165 * The units on the numbers in the next two are... bizarre. Examples will
166 * make it clearer; this one parallels an example in the eDP spec.
167 *
168 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
169 *
170 * 270000 * 1 * 8 / 10 == 216000
171 *
172 * The actual data capacity of that configuration is 2.16Gbit/s, so the
173 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
174 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
175 * 119000. At 18bpp that's 2142000 kilobits per second.
176 *
177 * Thus the strange-looking division by 10 in intel_dp_link_required, to
178 * get the result in decakilobits instead of kilobits.
179 */
180
181 static int
182 intel_dp_link_required(int pixel_clock, int bpp)
183 {
184 return (pixel_clock * bpp + 9) / 10;
185 }
186
187 static int
188 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
189 {
190 return (max_link_clock * max_lanes * 8) / 10;
191 }
192
193 static int
194 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
195 {
196 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
197 struct intel_encoder *encoder = &intel_dig_port->base;
198 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
199 int max_dotclk = dev_priv->max_dotclk_freq;
200 int ds_max_dotclk;
201
202 int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
203
204 if (type != DP_DS_PORT_TYPE_VGA)
205 return max_dotclk;
206
207 ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
208 intel_dp->downstream_ports);
209
210 if (ds_max_dotclk != 0)
211 max_dotclk = min(max_dotclk, ds_max_dotclk);
212
213 return max_dotclk;
214 }
215
216 static enum drm_mode_status
217 intel_dp_mode_valid(struct drm_connector *connector,
218 struct drm_display_mode *mode)
219 {
220 struct intel_dp *intel_dp = intel_attached_dp(connector);
221 struct intel_connector *intel_connector = to_intel_connector(connector);
222 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
223 int target_clock = mode->clock;
224 int max_rate, mode_rate, max_lanes, max_link_clock;
225 int max_dotclk;
226
227 max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
228
229 if (is_edp(intel_dp) && fixed_mode) {
230 if (mode->hdisplay > fixed_mode->hdisplay)
231 return MODE_PANEL;
232
233 if (mode->vdisplay > fixed_mode->vdisplay)
234 return MODE_PANEL;
235
236 target_clock = fixed_mode->clock;
237 }
238
239 max_link_clock = intel_dp_max_link_rate(intel_dp);
240 max_lanes = intel_dp_max_lane_count(intel_dp);
241
242 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
243 mode_rate = intel_dp_link_required(target_clock, 18);
244
245 if (mode_rate > max_rate || target_clock > max_dotclk)
246 return MODE_CLOCK_HIGH;
247
248 if (mode->clock < 10000)
249 return MODE_CLOCK_LOW;
250
251 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
252 return MODE_H_ILLEGAL;
253
254 return MODE_OK;
255 }
256
257 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
258 {
259 int i;
260 uint32_t v = 0;
261
262 if (src_bytes > 4)
263 src_bytes = 4;
264 for (i = 0; i < src_bytes; i++)
265 v |= ((uint32_t) src[i]) << ((3-i) * 8);
266 return v;
267 }
268
269 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
270 {
271 int i;
272 if (dst_bytes > 4)
273 dst_bytes = 4;
274 for (i = 0; i < dst_bytes; i++)
275 dst[i] = src >> ((3-i) * 8);
276 }
277
278 static void
279 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
280 struct intel_dp *intel_dp);
281 static void
282 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
283 struct intel_dp *intel_dp);
284 static void
285 intel_dp_pps_init(struct drm_device *dev, struct intel_dp *intel_dp);
286
287 static void pps_lock(struct intel_dp *intel_dp)
288 {
289 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
290 struct intel_encoder *encoder = &intel_dig_port->base;
291 struct drm_device *dev = encoder->base.dev;
292 struct drm_i915_private *dev_priv = to_i915(dev);
293 enum intel_display_power_domain power_domain;
294
295 /*
296 * See vlv_power_sequencer_reset() why we need
297 * a power domain reference here.
298 */
299 power_domain = intel_display_port_aux_power_domain(encoder);
300 intel_display_power_get(dev_priv, power_domain);
301
302 mutex_lock(&dev_priv->pps_mutex);
303 }
304
305 static void pps_unlock(struct intel_dp *intel_dp)
306 {
307 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
308 struct intel_encoder *encoder = &intel_dig_port->base;
309 struct drm_device *dev = encoder->base.dev;
310 struct drm_i915_private *dev_priv = to_i915(dev);
311 enum intel_display_power_domain power_domain;
312
313 mutex_unlock(&dev_priv->pps_mutex);
314
315 power_domain = intel_display_port_aux_power_domain(encoder);
316 intel_display_power_put(dev_priv, power_domain);
317 }
318
319 static void
320 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
321 {
322 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
323 struct drm_device *dev = intel_dig_port->base.base.dev;
324 struct drm_i915_private *dev_priv = to_i915(dev);
325 enum pipe pipe = intel_dp->pps_pipe;
326 bool pll_enabled, release_cl_override = false;
327 enum dpio_phy phy = DPIO_PHY(pipe);
328 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
329 uint32_t DP;
330
331 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
332 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
333 pipe_name(pipe), port_name(intel_dig_port->port)))
334 return;
335
336 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
337 pipe_name(pipe), port_name(intel_dig_port->port));
338
339 /* Preserve the BIOS-computed detected bit. This is
340 * supposed to be read-only.
341 */
342 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
343 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
344 DP |= DP_PORT_WIDTH(1);
345 DP |= DP_LINK_TRAIN_PAT_1;
346
347 if (IS_CHERRYVIEW(dev))
348 DP |= DP_PIPE_SELECT_CHV(pipe);
349 else if (pipe == PIPE_B)
350 DP |= DP_PIPEB_SELECT;
351
352 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
353
354 /*
355 * The DPLL for the pipe must be enabled for this to work.
356 * So enable temporarily it if it's not already enabled.
357 */
358 if (!pll_enabled) {
359 release_cl_override = IS_CHERRYVIEW(dev) &&
360 !chv_phy_powergate_ch(dev_priv, phy, ch, true);
361
362 if (vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
363 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
364 DRM_ERROR("Failed to force on pll for pipe %c!\n",
365 pipe_name(pipe));
366 return;
367 }
368 }
369
370 /*
371 * Similar magic as in intel_dp_enable_port().
372 * We _must_ do this port enable + disable trick
373 * to make this power seqeuencer lock onto the port.
374 * Otherwise even VDD force bit won't work.
375 */
376 I915_WRITE(intel_dp->output_reg, DP);
377 POSTING_READ(intel_dp->output_reg);
378
379 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
380 POSTING_READ(intel_dp->output_reg);
381
382 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
383 POSTING_READ(intel_dp->output_reg);
384
385 if (!pll_enabled) {
386 vlv_force_pll_off(dev, pipe);
387
388 if (release_cl_override)
389 chv_phy_powergate_ch(dev_priv, phy, ch, false);
390 }
391 }
392
393 static enum pipe
394 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
395 {
396 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
397 struct drm_device *dev = intel_dig_port->base.base.dev;
398 struct drm_i915_private *dev_priv = to_i915(dev);
399 struct intel_encoder *encoder;
400 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
401 enum pipe pipe;
402
403 lockdep_assert_held(&dev_priv->pps_mutex);
404
405 /* We should never land here with regular DP ports */
406 WARN_ON(!is_edp(intel_dp));
407
408 if (intel_dp->pps_pipe != INVALID_PIPE)
409 return intel_dp->pps_pipe;
410
411 /*
412 * We don't have power sequencer currently.
413 * Pick one that's not used by other ports.
414 */
415 for_each_intel_encoder(dev, encoder) {
416 struct intel_dp *tmp;
417
418 if (encoder->type != INTEL_OUTPUT_EDP)
419 continue;
420
421 tmp = enc_to_intel_dp(&encoder->base);
422
423 if (tmp->pps_pipe != INVALID_PIPE)
424 pipes &= ~(1 << tmp->pps_pipe);
425 }
426
427 /*
428 * Didn't find one. This should not happen since there
429 * are two power sequencers and up to two eDP ports.
430 */
431 if (WARN_ON(pipes == 0))
432 pipe = PIPE_A;
433 else
434 pipe = ffs(pipes) - 1;
435
436 vlv_steal_power_sequencer(dev, pipe);
437 intel_dp->pps_pipe = pipe;
438
439 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
440 pipe_name(intel_dp->pps_pipe),
441 port_name(intel_dig_port->port));
442
443 /* init power sequencer on this pipe and port */
444 intel_dp_init_panel_power_sequencer(dev, intel_dp);
445 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
446
447 /*
448 * Even vdd force doesn't work until we've made
449 * the power sequencer lock in on the port.
450 */
451 vlv_power_sequencer_kick(intel_dp);
452
453 return intel_dp->pps_pipe;
454 }
455
456 static int
457 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
458 {
459 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
460 struct drm_device *dev = intel_dig_port->base.base.dev;
461 struct drm_i915_private *dev_priv = to_i915(dev);
462
463 lockdep_assert_held(&dev_priv->pps_mutex);
464
465 /* We should never land here with regular DP ports */
466 WARN_ON(!is_edp(intel_dp));
467
468 /*
469 * TODO: BXT has 2 PPS instances. The correct port->PPS instance
470 * mapping needs to be retrieved from VBT, for now just hard-code to
471 * use instance #0 always.
472 */
473 if (!intel_dp->pps_reset)
474 return 0;
475
476 intel_dp->pps_reset = false;
477
478 /*
479 * Only the HW needs to be reprogrammed, the SW state is fixed and
480 * has been setup during connector init.
481 */
482 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
483
484 return 0;
485 }
486
487 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
488 enum pipe pipe);
489
490 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
491 enum pipe pipe)
492 {
493 return I915_READ(PP_STATUS(pipe)) & PP_ON;
494 }
495
496 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
497 enum pipe pipe)
498 {
499 return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
500 }
501
502 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
503 enum pipe pipe)
504 {
505 return true;
506 }
507
508 static enum pipe
509 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
510 enum port port,
511 vlv_pipe_check pipe_check)
512 {
513 enum pipe pipe;
514
515 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
516 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
517 PANEL_PORT_SELECT_MASK;
518
519 if (port_sel != PANEL_PORT_SELECT_VLV(port))
520 continue;
521
522 if (!pipe_check(dev_priv, pipe))
523 continue;
524
525 return pipe;
526 }
527
528 return INVALID_PIPE;
529 }
530
531 static void
532 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
533 {
534 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
535 struct drm_device *dev = intel_dig_port->base.base.dev;
536 struct drm_i915_private *dev_priv = to_i915(dev);
537 enum port port = intel_dig_port->port;
538
539 lockdep_assert_held(&dev_priv->pps_mutex);
540
541 /* try to find a pipe with this port selected */
542 /* first pick one where the panel is on */
543 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
544 vlv_pipe_has_pp_on);
545 /* didn't find one? pick one where vdd is on */
546 if (intel_dp->pps_pipe == INVALID_PIPE)
547 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
548 vlv_pipe_has_vdd_on);
549 /* didn't find one? pick one with just the correct port */
550 if (intel_dp->pps_pipe == INVALID_PIPE)
551 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
552 vlv_pipe_any);
553
554 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
555 if (intel_dp->pps_pipe == INVALID_PIPE) {
556 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
557 port_name(port));
558 return;
559 }
560
561 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
562 port_name(port), pipe_name(intel_dp->pps_pipe));
563
564 intel_dp_init_panel_power_sequencer(dev, intel_dp);
565 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
566 }
567
568 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
569 {
570 struct drm_device *dev = &dev_priv->drm;
571 struct intel_encoder *encoder;
572
573 if (WARN_ON(!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
574 !IS_BROXTON(dev)))
575 return;
576
577 /*
578 * We can't grab pps_mutex here due to deadlock with power_domain
579 * mutex when power_domain functions are called while holding pps_mutex.
580 * That also means that in order to use pps_pipe the code needs to
581 * hold both a power domain reference and pps_mutex, and the power domain
582 * reference get/put must be done while _not_ holding pps_mutex.
583 * pps_{lock,unlock}() do these steps in the correct order, so one
584 * should use them always.
585 */
586
587 for_each_intel_encoder(dev, encoder) {
588 struct intel_dp *intel_dp;
589
590 if (encoder->type != INTEL_OUTPUT_EDP)
591 continue;
592
593 intel_dp = enc_to_intel_dp(&encoder->base);
594 if (IS_BROXTON(dev))
595 intel_dp->pps_reset = true;
596 else
597 intel_dp->pps_pipe = INVALID_PIPE;
598 }
599 }
600
601 struct pps_registers {
602 i915_reg_t pp_ctrl;
603 i915_reg_t pp_stat;
604 i915_reg_t pp_on;
605 i915_reg_t pp_off;
606 i915_reg_t pp_div;
607 };
608
609 static void intel_pps_get_registers(struct drm_i915_private *dev_priv,
610 struct intel_dp *intel_dp,
611 struct pps_registers *regs)
612 {
613 int pps_idx = 0;
614
615 memset(regs, 0, sizeof(*regs));
616
617 if (IS_BROXTON(dev_priv))
618 pps_idx = bxt_power_sequencer_idx(intel_dp);
619 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
620 pps_idx = vlv_power_sequencer_pipe(intel_dp);
621
622 regs->pp_ctrl = PP_CONTROL(pps_idx);
623 regs->pp_stat = PP_STATUS(pps_idx);
624 regs->pp_on = PP_ON_DELAYS(pps_idx);
625 regs->pp_off = PP_OFF_DELAYS(pps_idx);
626 if (!IS_BROXTON(dev_priv))
627 regs->pp_div = PP_DIVISOR(pps_idx);
628 }
629
630 static i915_reg_t
631 _pp_ctrl_reg(struct intel_dp *intel_dp)
632 {
633 struct pps_registers regs;
634
635 intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
636 &regs);
637
638 return regs.pp_ctrl;
639 }
640
641 static i915_reg_t
642 _pp_stat_reg(struct intel_dp *intel_dp)
643 {
644 struct pps_registers regs;
645
646 intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
647 &regs);
648
649 return regs.pp_stat;
650 }
651
652 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
653 This function only applicable when panel PM state is not to be tracked */
654 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
655 void *unused)
656 {
657 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
658 edp_notifier);
659 struct drm_device *dev = intel_dp_to_dev(intel_dp);
660 struct drm_i915_private *dev_priv = to_i915(dev);
661
662 if (!is_edp(intel_dp) || code != SYS_RESTART)
663 return 0;
664
665 pps_lock(intel_dp);
666
667 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
668 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
669 i915_reg_t pp_ctrl_reg, pp_div_reg;
670 u32 pp_div;
671
672 pp_ctrl_reg = PP_CONTROL(pipe);
673 pp_div_reg = PP_DIVISOR(pipe);
674 pp_div = I915_READ(pp_div_reg);
675 pp_div &= PP_REFERENCE_DIVIDER_MASK;
676
677 /* 0x1F write to PP_DIV_REG sets max cycle delay */
678 I915_WRITE(pp_div_reg, pp_div | 0x1F);
679 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
680 msleep(intel_dp->panel_power_cycle_delay);
681 }
682
683 pps_unlock(intel_dp);
684
685 return 0;
686 }
687
688 static bool edp_have_panel_power(struct intel_dp *intel_dp)
689 {
690 struct drm_device *dev = intel_dp_to_dev(intel_dp);
691 struct drm_i915_private *dev_priv = to_i915(dev);
692
693 lockdep_assert_held(&dev_priv->pps_mutex);
694
695 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
696 intel_dp->pps_pipe == INVALID_PIPE)
697 return false;
698
699 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
700 }
701
702 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
703 {
704 struct drm_device *dev = intel_dp_to_dev(intel_dp);
705 struct drm_i915_private *dev_priv = to_i915(dev);
706
707 lockdep_assert_held(&dev_priv->pps_mutex);
708
709 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
710 intel_dp->pps_pipe == INVALID_PIPE)
711 return false;
712
713 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
714 }
715
716 static void
717 intel_dp_check_edp(struct intel_dp *intel_dp)
718 {
719 struct drm_device *dev = intel_dp_to_dev(intel_dp);
720 struct drm_i915_private *dev_priv = to_i915(dev);
721
722 if (!is_edp(intel_dp))
723 return;
724
725 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
726 WARN(1, "eDP powered off while attempting aux channel communication.\n");
727 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
728 I915_READ(_pp_stat_reg(intel_dp)),
729 I915_READ(_pp_ctrl_reg(intel_dp)));
730 }
731 }
732
733 static uint32_t
734 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
735 {
736 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
737 struct drm_device *dev = intel_dig_port->base.base.dev;
738 struct drm_i915_private *dev_priv = to_i915(dev);
739 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
740 uint32_t status;
741 bool done;
742
743 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
744 if (has_aux_irq)
745 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
746 msecs_to_jiffies_timeout(10));
747 else
748 done = wait_for(C, 10) == 0;
749 if (!done)
750 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
751 has_aux_irq);
752 #undef C
753
754 return status;
755 }
756
757 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
758 {
759 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
760 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
761
762 if (index)
763 return 0;
764
765 /*
766 * The clock divider is based off the hrawclk, and would like to run at
767 * 2MHz. So, take the hrawclk value and divide by 2000 and use that
768 */
769 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
770 }
771
772 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
773 {
774 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
775 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
776
777 if (index)
778 return 0;
779
780 /*
781 * The clock divider is based off the cdclk or PCH rawclk, and would
782 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and
783 * divide by 2000 and use that
784 */
785 if (intel_dig_port->port == PORT_A)
786 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
787 else
788 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
789 }
790
791 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
792 {
793 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
794 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
795
796 if (intel_dig_port->port != PORT_A && HAS_PCH_LPT_H(dev_priv)) {
797 /* Workaround for non-ULT HSW */
798 switch (index) {
799 case 0: return 63;
800 case 1: return 72;
801 default: return 0;
802 }
803 }
804
805 return ilk_get_aux_clock_divider(intel_dp, index);
806 }
807
808 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
809 {
810 /*
811 * SKL doesn't need us to program the AUX clock divider (Hardware will
812 * derive the clock from CDCLK automatically). We still implement the
813 * get_aux_clock_divider vfunc to plug-in into the existing code.
814 */
815 return index ? 0 : 1;
816 }
817
818 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
819 bool has_aux_irq,
820 int send_bytes,
821 uint32_t aux_clock_divider)
822 {
823 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
824 struct drm_device *dev = intel_dig_port->base.base.dev;
825 uint32_t precharge, timeout;
826
827 if (IS_GEN6(dev))
828 precharge = 3;
829 else
830 precharge = 5;
831
832 if (IS_BROADWELL(dev) && intel_dig_port->port == PORT_A)
833 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
834 else
835 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
836
837 return DP_AUX_CH_CTL_SEND_BUSY |
838 DP_AUX_CH_CTL_DONE |
839 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
840 DP_AUX_CH_CTL_TIME_OUT_ERROR |
841 timeout |
842 DP_AUX_CH_CTL_RECEIVE_ERROR |
843 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
844 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
845 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
846 }
847
848 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
849 bool has_aux_irq,
850 int send_bytes,
851 uint32_t unused)
852 {
853 return DP_AUX_CH_CTL_SEND_BUSY |
854 DP_AUX_CH_CTL_DONE |
855 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
856 DP_AUX_CH_CTL_TIME_OUT_ERROR |
857 DP_AUX_CH_CTL_TIME_OUT_1600us |
858 DP_AUX_CH_CTL_RECEIVE_ERROR |
859 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
860 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
861 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
862 }
863
864 static int
865 intel_dp_aux_ch(struct intel_dp *intel_dp,
866 const uint8_t *send, int send_bytes,
867 uint8_t *recv, int recv_size)
868 {
869 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
870 struct drm_device *dev = intel_dig_port->base.base.dev;
871 struct drm_i915_private *dev_priv = to_i915(dev);
872 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
873 uint32_t aux_clock_divider;
874 int i, ret, recv_bytes;
875 uint32_t status;
876 int try, clock = 0;
877 bool has_aux_irq = HAS_AUX_IRQ(dev);
878 bool vdd;
879
880 pps_lock(intel_dp);
881
882 /*
883 * We will be called with VDD already enabled for dpcd/edid/oui reads.
884 * In such cases we want to leave VDD enabled and it's up to upper layers
885 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
886 * ourselves.
887 */
888 vdd = edp_panel_vdd_on(intel_dp);
889
890 /* dp aux is extremely sensitive to irq latency, hence request the
891 * lowest possible wakeup latency and so prevent the cpu from going into
892 * deep sleep states.
893 */
894 pm_qos_update_request(&dev_priv->pm_qos, 0);
895
896 intel_dp_check_edp(intel_dp);
897
898 /* Try to wait for any previous AUX channel activity */
899 for (try = 0; try < 3; try++) {
900 status = I915_READ_NOTRACE(ch_ctl);
901 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
902 break;
903 msleep(1);
904 }
905
906 if (try == 3) {
907 static u32 last_status = -1;
908 const u32 status = I915_READ(ch_ctl);
909
910 if (status != last_status) {
911 WARN(1, "dp_aux_ch not started status 0x%08x\n",
912 status);
913 last_status = status;
914 }
915
916 ret = -EBUSY;
917 goto out;
918 }
919
920 /* Only 5 data registers! */
921 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
922 ret = -E2BIG;
923 goto out;
924 }
925
926 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
927 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
928 has_aux_irq,
929 send_bytes,
930 aux_clock_divider);
931
932 /* Must try at least 3 times according to DP spec */
933 for (try = 0; try < 5; try++) {
934 /* Load the send data into the aux channel data registers */
935 for (i = 0; i < send_bytes; i += 4)
936 I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
937 intel_dp_pack_aux(send + i,
938 send_bytes - i));
939
940 /* Send the command and wait for it to complete */
941 I915_WRITE(ch_ctl, send_ctl);
942
943 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
944
945 /* Clear done status and any errors */
946 I915_WRITE(ch_ctl,
947 status |
948 DP_AUX_CH_CTL_DONE |
949 DP_AUX_CH_CTL_TIME_OUT_ERROR |
950 DP_AUX_CH_CTL_RECEIVE_ERROR);
951
952 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
953 continue;
954
955 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
956 * 400us delay required for errors and timeouts
957 * Timeout errors from the HW already meet this
958 * requirement so skip to next iteration
959 */
960 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
961 usleep_range(400, 500);
962 continue;
963 }
964 if (status & DP_AUX_CH_CTL_DONE)
965 goto done;
966 }
967 }
968
969 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
970 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
971 ret = -EBUSY;
972 goto out;
973 }
974
975 done:
976 /* Check for timeout or receive error.
977 * Timeouts occur when the sink is not connected
978 */
979 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
980 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
981 ret = -EIO;
982 goto out;
983 }
984
985 /* Timeouts occur when the device isn't connected, so they're
986 * "normal" -- don't fill the kernel log with these */
987 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
988 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
989 ret = -ETIMEDOUT;
990 goto out;
991 }
992
993 /* Unload any bytes sent back from the other side */
994 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
995 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
996
997 /*
998 * By BSpec: "Message sizes of 0 or >20 are not allowed."
999 * We have no idea of what happened so we return -EBUSY so
1000 * drm layer takes care for the necessary retries.
1001 */
1002 if (recv_bytes == 0 || recv_bytes > 20) {
1003 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1004 recv_bytes);
1005 /*
1006 * FIXME: This patch was created on top of a series that
1007 * organize the retries at drm level. There EBUSY should
1008 * also take care for 1ms wait before retrying.
1009 * That aux retries re-org is still needed and after that is
1010 * merged we remove this sleep from here.
1011 */
1012 usleep_range(1000, 1500);
1013 ret = -EBUSY;
1014 goto out;
1015 }
1016
1017 if (recv_bytes > recv_size)
1018 recv_bytes = recv_size;
1019
1020 for (i = 0; i < recv_bytes; i += 4)
1021 intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
1022 recv + i, recv_bytes - i);
1023
1024 ret = recv_bytes;
1025 out:
1026 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
1027
1028 if (vdd)
1029 edp_panel_vdd_off(intel_dp, false);
1030
1031 pps_unlock(intel_dp);
1032
1033 return ret;
1034 }
1035
1036 #define BARE_ADDRESS_SIZE 3
1037 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
1038 static ssize_t
1039 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1040 {
1041 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1042 uint8_t txbuf[20], rxbuf[20];
1043 size_t txsize, rxsize;
1044 int ret;
1045
1046 txbuf[0] = (msg->request << 4) |
1047 ((msg->address >> 16) & 0xf);
1048 txbuf[1] = (msg->address >> 8) & 0xff;
1049 txbuf[2] = msg->address & 0xff;
1050 txbuf[3] = msg->size - 1;
1051
1052 switch (msg->request & ~DP_AUX_I2C_MOT) {
1053 case DP_AUX_NATIVE_WRITE:
1054 case DP_AUX_I2C_WRITE:
1055 case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1056 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1057 rxsize = 2; /* 0 or 1 data bytes */
1058
1059 if (WARN_ON(txsize > 20))
1060 return -E2BIG;
1061
1062 WARN_ON(!msg->buffer != !msg->size);
1063
1064 if (msg->buffer)
1065 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1066
1067 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1068 if (ret > 0) {
1069 msg->reply = rxbuf[0] >> 4;
1070
1071 if (ret > 1) {
1072 /* Number of bytes written in a short write. */
1073 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1074 } else {
1075 /* Return payload size. */
1076 ret = msg->size;
1077 }
1078 }
1079 break;
1080
1081 case DP_AUX_NATIVE_READ:
1082 case DP_AUX_I2C_READ:
1083 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1084 rxsize = msg->size + 1;
1085
1086 if (WARN_ON(rxsize > 20))
1087 return -E2BIG;
1088
1089 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1090 if (ret > 0) {
1091 msg->reply = rxbuf[0] >> 4;
1092 /*
1093 * Assume happy day, and copy the data. The caller is
1094 * expected to check msg->reply before touching it.
1095 *
1096 * Return payload size.
1097 */
1098 ret--;
1099 memcpy(msg->buffer, rxbuf + 1, ret);
1100 }
1101 break;
1102
1103 default:
1104 ret = -EINVAL;
1105 break;
1106 }
1107
1108 return ret;
1109 }
1110
1111 static enum port intel_aux_port(struct drm_i915_private *dev_priv,
1112 enum port port)
1113 {
1114 const struct ddi_vbt_port_info *info =
1115 &dev_priv->vbt.ddi_port_info[port];
1116 enum port aux_port;
1117
1118 if (!info->alternate_aux_channel) {
1119 DRM_DEBUG_KMS("using AUX %c for port %c (platform default)\n",
1120 port_name(port), port_name(port));
1121 return port;
1122 }
1123
1124 switch (info->alternate_aux_channel) {
1125 case DP_AUX_A:
1126 aux_port = PORT_A;
1127 break;
1128 case DP_AUX_B:
1129 aux_port = PORT_B;
1130 break;
1131 case DP_AUX_C:
1132 aux_port = PORT_C;
1133 break;
1134 case DP_AUX_D:
1135 aux_port = PORT_D;
1136 break;
1137 default:
1138 MISSING_CASE(info->alternate_aux_channel);
1139 aux_port = PORT_A;
1140 break;
1141 }
1142
1143 DRM_DEBUG_KMS("using AUX %c for port %c (VBT)\n",
1144 port_name(aux_port), port_name(port));
1145
1146 return aux_port;
1147 }
1148
1149 static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1150 enum port port)
1151 {
1152 switch (port) {
1153 case PORT_B:
1154 case PORT_C:
1155 case PORT_D:
1156 return DP_AUX_CH_CTL(port);
1157 default:
1158 MISSING_CASE(port);
1159 return DP_AUX_CH_CTL(PORT_B);
1160 }
1161 }
1162
1163 static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1164 enum port port, int index)
1165 {
1166 switch (port) {
1167 case PORT_B:
1168 case PORT_C:
1169 case PORT_D:
1170 return DP_AUX_CH_DATA(port, index);
1171 default:
1172 MISSING_CASE(port);
1173 return DP_AUX_CH_DATA(PORT_B, index);
1174 }
1175 }
1176
1177 static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1178 enum port port)
1179 {
1180 switch (port) {
1181 case PORT_A:
1182 return DP_AUX_CH_CTL(port);
1183 case PORT_B:
1184 case PORT_C:
1185 case PORT_D:
1186 return PCH_DP_AUX_CH_CTL(port);
1187 default:
1188 MISSING_CASE(port);
1189 return DP_AUX_CH_CTL(PORT_A);
1190 }
1191 }
1192
1193 static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1194 enum port port, int index)
1195 {
1196 switch (port) {
1197 case PORT_A:
1198 return DP_AUX_CH_DATA(port, index);
1199 case PORT_B:
1200 case PORT_C:
1201 case PORT_D:
1202 return PCH_DP_AUX_CH_DATA(port, index);
1203 default:
1204 MISSING_CASE(port);
1205 return DP_AUX_CH_DATA(PORT_A, index);
1206 }
1207 }
1208
1209 static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1210 enum port port)
1211 {
1212 switch (port) {
1213 case PORT_A:
1214 case PORT_B:
1215 case PORT_C:
1216 case PORT_D:
1217 return DP_AUX_CH_CTL(port);
1218 default:
1219 MISSING_CASE(port);
1220 return DP_AUX_CH_CTL(PORT_A);
1221 }
1222 }
1223
1224 static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1225 enum port port, int index)
1226 {
1227 switch (port) {
1228 case PORT_A:
1229 case PORT_B:
1230 case PORT_C:
1231 case PORT_D:
1232 return DP_AUX_CH_DATA(port, index);
1233 default:
1234 MISSING_CASE(port);
1235 return DP_AUX_CH_DATA(PORT_A, index);
1236 }
1237 }
1238
1239 static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1240 enum port port)
1241 {
1242 if (INTEL_INFO(dev_priv)->gen >= 9)
1243 return skl_aux_ctl_reg(dev_priv, port);
1244 else if (HAS_PCH_SPLIT(dev_priv))
1245 return ilk_aux_ctl_reg(dev_priv, port);
1246 else
1247 return g4x_aux_ctl_reg(dev_priv, port);
1248 }
1249
1250 static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1251 enum port port, int index)
1252 {
1253 if (INTEL_INFO(dev_priv)->gen >= 9)
1254 return skl_aux_data_reg(dev_priv, port, index);
1255 else if (HAS_PCH_SPLIT(dev_priv))
1256 return ilk_aux_data_reg(dev_priv, port, index);
1257 else
1258 return g4x_aux_data_reg(dev_priv, port, index);
1259 }
1260
1261 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1262 {
1263 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1264 enum port port = intel_aux_port(dev_priv,
1265 dp_to_dig_port(intel_dp)->port);
1266 int i;
1267
1268 intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1269 for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1270 intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1271 }
1272
1273 static void
1274 intel_dp_aux_fini(struct intel_dp *intel_dp)
1275 {
1276 kfree(intel_dp->aux.name);
1277 }
1278
1279 static void
1280 intel_dp_aux_init(struct intel_dp *intel_dp)
1281 {
1282 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1283 enum port port = intel_dig_port->port;
1284
1285 intel_aux_reg_init(intel_dp);
1286 drm_dp_aux_init(&intel_dp->aux);
1287
1288 /* Failure to allocate our preferred name is not critical */
1289 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1290 intel_dp->aux.transfer = intel_dp_aux_transfer;
1291 }
1292
1293 static int
1294 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1295 {
1296 if (intel_dp->num_sink_rates) {
1297 *sink_rates = intel_dp->sink_rates;
1298 return intel_dp->num_sink_rates;
1299 }
1300
1301 *sink_rates = default_rates;
1302
1303 return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1304 }
1305
1306 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1307 {
1308 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1309 struct drm_device *dev = dig_port->base.base.dev;
1310
1311 /* WaDisableHBR2:skl */
1312 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0))
1313 return false;
1314
1315 if ((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || IS_BROADWELL(dev) ||
1316 (INTEL_INFO(dev)->gen >= 9))
1317 return true;
1318 else
1319 return false;
1320 }
1321
1322 static int
1323 intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1324 {
1325 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1326 struct drm_device *dev = dig_port->base.base.dev;
1327 int size;
1328
1329 if (IS_BROXTON(dev)) {
1330 *source_rates = bxt_rates;
1331 size = ARRAY_SIZE(bxt_rates);
1332 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1333 *source_rates = skl_rates;
1334 size = ARRAY_SIZE(skl_rates);
1335 } else {
1336 *source_rates = default_rates;
1337 size = ARRAY_SIZE(default_rates);
1338 }
1339
1340 /* This depends on the fact that 5.4 is last value in the array */
1341 if (!intel_dp_source_supports_hbr2(intel_dp))
1342 size--;
1343
1344 return size;
1345 }
1346
1347 static void
1348 intel_dp_set_clock(struct intel_encoder *encoder,
1349 struct intel_crtc_state *pipe_config)
1350 {
1351 struct drm_device *dev = encoder->base.dev;
1352 const struct dp_link_dpll *divisor = NULL;
1353 int i, count = 0;
1354
1355 if (IS_G4X(dev)) {
1356 divisor = gen4_dpll;
1357 count = ARRAY_SIZE(gen4_dpll);
1358 } else if (HAS_PCH_SPLIT(dev)) {
1359 divisor = pch_dpll;
1360 count = ARRAY_SIZE(pch_dpll);
1361 } else if (IS_CHERRYVIEW(dev)) {
1362 divisor = chv_dpll;
1363 count = ARRAY_SIZE(chv_dpll);
1364 } else if (IS_VALLEYVIEW(dev)) {
1365 divisor = vlv_dpll;
1366 count = ARRAY_SIZE(vlv_dpll);
1367 }
1368
1369 if (divisor && count) {
1370 for (i = 0; i < count; i++) {
1371 if (pipe_config->port_clock == divisor[i].clock) {
1372 pipe_config->dpll = divisor[i].dpll;
1373 pipe_config->clock_set = true;
1374 break;
1375 }
1376 }
1377 }
1378 }
1379
1380 static int intersect_rates(const int *source_rates, int source_len,
1381 const int *sink_rates, int sink_len,
1382 int *common_rates)
1383 {
1384 int i = 0, j = 0, k = 0;
1385
1386 while (i < source_len && j < sink_len) {
1387 if (source_rates[i] == sink_rates[j]) {
1388 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1389 return k;
1390 common_rates[k] = source_rates[i];
1391 ++k;
1392 ++i;
1393 ++j;
1394 } else if (source_rates[i] < sink_rates[j]) {
1395 ++i;
1396 } else {
1397 ++j;
1398 }
1399 }
1400 return k;
1401 }
1402
1403 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1404 int *common_rates)
1405 {
1406 const int *source_rates, *sink_rates;
1407 int source_len, sink_len;
1408
1409 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1410 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1411
1412 return intersect_rates(source_rates, source_len,
1413 sink_rates, sink_len,
1414 common_rates);
1415 }
1416
1417 static void snprintf_int_array(char *str, size_t len,
1418 const int *array, int nelem)
1419 {
1420 int i;
1421
1422 str[0] = '\0';
1423
1424 for (i = 0; i < nelem; i++) {
1425 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1426 if (r >= len)
1427 return;
1428 str += r;
1429 len -= r;
1430 }
1431 }
1432
1433 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1434 {
1435 const int *source_rates, *sink_rates;
1436 int source_len, sink_len, common_len;
1437 int common_rates[DP_MAX_SUPPORTED_RATES];
1438 char str[128]; /* FIXME: too big for stack? */
1439
1440 if ((drm_debug & DRM_UT_KMS) == 0)
1441 return;
1442
1443 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1444 snprintf_int_array(str, sizeof(str), source_rates, source_len);
1445 DRM_DEBUG_KMS("source rates: %s\n", str);
1446
1447 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1448 snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1449 DRM_DEBUG_KMS("sink rates: %s\n", str);
1450
1451 common_len = intel_dp_common_rates(intel_dp, common_rates);
1452 snprintf_int_array(str, sizeof(str), common_rates, common_len);
1453 DRM_DEBUG_KMS("common rates: %s\n", str);
1454 }
1455
1456 static void intel_dp_print_hw_revision(struct intel_dp *intel_dp)
1457 {
1458 uint8_t rev;
1459 int len;
1460
1461 if ((drm_debug & DRM_UT_KMS) == 0)
1462 return;
1463
1464 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1465 DP_DWN_STRM_PORT_PRESENT))
1466 return;
1467
1468 len = drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_HW_REV, &rev, 1);
1469 if (len < 0)
1470 return;
1471
1472 DRM_DEBUG_KMS("sink hw revision: %d.%d\n", (rev & 0xf0) >> 4, rev & 0xf);
1473 }
1474
1475 static void intel_dp_print_sw_revision(struct intel_dp *intel_dp)
1476 {
1477 uint8_t rev[2];
1478 int len;
1479
1480 if ((drm_debug & DRM_UT_KMS) == 0)
1481 return;
1482
1483 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1484 DP_DWN_STRM_PORT_PRESENT))
1485 return;
1486
1487 len = drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_SW_REV, &rev, 2);
1488 if (len < 0)
1489 return;
1490
1491 DRM_DEBUG_KMS("sink sw revision: %d.%d\n", rev[0], rev[1]);
1492 }
1493
1494 static int rate_to_index(int find, const int *rates)
1495 {
1496 int i = 0;
1497
1498 for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1499 if (find == rates[i])
1500 break;
1501
1502 return i;
1503 }
1504
1505 int
1506 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1507 {
1508 int rates[DP_MAX_SUPPORTED_RATES] = {};
1509 int len;
1510
1511 len = intel_dp_common_rates(intel_dp, rates);
1512 if (WARN_ON(len <= 0))
1513 return 162000;
1514
1515 return rates[len - 1];
1516 }
1517
1518 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1519 {
1520 return rate_to_index(rate, intel_dp->sink_rates);
1521 }
1522
1523 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1524 uint8_t *link_bw, uint8_t *rate_select)
1525 {
1526 if (intel_dp->num_sink_rates) {
1527 *link_bw = 0;
1528 *rate_select =
1529 intel_dp_rate_select(intel_dp, port_clock);
1530 } else {
1531 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1532 *rate_select = 0;
1533 }
1534 }
1535
1536 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1537 struct intel_crtc_state *pipe_config)
1538 {
1539 int bpp, bpc;
1540
1541 bpp = pipe_config->pipe_bpp;
1542 bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1543
1544 if (bpc > 0)
1545 bpp = min(bpp, 3*bpc);
1546
1547 return bpp;
1548 }
1549
1550 bool
1551 intel_dp_compute_config(struct intel_encoder *encoder,
1552 struct intel_crtc_state *pipe_config,
1553 struct drm_connector_state *conn_state)
1554 {
1555 struct drm_device *dev = encoder->base.dev;
1556 struct drm_i915_private *dev_priv = to_i915(dev);
1557 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1558 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1559 enum port port = dp_to_dig_port(intel_dp)->port;
1560 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1561 struct intel_connector *intel_connector = intel_dp->attached_connector;
1562 int lane_count, clock;
1563 int min_lane_count = 1;
1564 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1565 /* Conveniently, the link BW constants become indices with a shift...*/
1566 int min_clock = 0;
1567 int max_clock;
1568 int bpp, mode_rate;
1569 int link_avail, link_clock;
1570 int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1571 int common_len;
1572 uint8_t link_bw, rate_select;
1573
1574 common_len = intel_dp_common_rates(intel_dp, common_rates);
1575
1576 /* No common link rates between source and sink */
1577 WARN_ON(common_len <= 0);
1578
1579 max_clock = common_len - 1;
1580
1581 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1582 pipe_config->has_pch_encoder = true;
1583
1584 pipe_config->has_drrs = false;
1585 pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1586
1587 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1588 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1589 adjusted_mode);
1590
1591 if (INTEL_INFO(dev)->gen >= 9) {
1592 int ret;
1593 ret = skl_update_scaler_crtc(pipe_config);
1594 if (ret)
1595 return ret;
1596 }
1597
1598 if (HAS_GMCH_DISPLAY(dev))
1599 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1600 intel_connector->panel.fitting_mode);
1601 else
1602 intel_pch_panel_fitting(intel_crtc, pipe_config,
1603 intel_connector->panel.fitting_mode);
1604 }
1605
1606 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1607 return false;
1608
1609 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1610 "max bw %d pixel clock %iKHz\n",
1611 max_lane_count, common_rates[max_clock],
1612 adjusted_mode->crtc_clock);
1613
1614 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1615 * bpc in between. */
1616 bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
1617 if (is_edp(intel_dp)) {
1618
1619 /* Get bpp from vbt only for panels that dont have bpp in edid */
1620 if (intel_connector->base.display_info.bpc == 0 &&
1621 (dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
1622 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1623 dev_priv->vbt.edp.bpp);
1624 bpp = dev_priv->vbt.edp.bpp;
1625 }
1626
1627 /*
1628 * Use the maximum clock and number of lanes the eDP panel
1629 * advertizes being capable of. The panels are generally
1630 * designed to support only a single clock and lane
1631 * configuration, and typically these values correspond to the
1632 * native resolution of the panel.
1633 */
1634 min_lane_count = max_lane_count;
1635 min_clock = max_clock;
1636 }
1637
1638 for (; bpp >= 6*3; bpp -= 2*3) {
1639 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1640 bpp);
1641
1642 for (clock = min_clock; clock <= max_clock; clock++) {
1643 for (lane_count = min_lane_count;
1644 lane_count <= max_lane_count;
1645 lane_count <<= 1) {
1646
1647 link_clock = common_rates[clock];
1648 link_avail = intel_dp_max_data_rate(link_clock,
1649 lane_count);
1650
1651 if (mode_rate <= link_avail) {
1652 goto found;
1653 }
1654 }
1655 }
1656 }
1657
1658 return false;
1659
1660 found:
1661 if (intel_dp->color_range_auto) {
1662 /*
1663 * See:
1664 * CEA-861-E - 5.1 Default Encoding Parameters
1665 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1666 */
1667 pipe_config->limited_color_range =
1668 bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1669 } else {
1670 pipe_config->limited_color_range =
1671 intel_dp->limited_color_range;
1672 }
1673
1674 pipe_config->lane_count = lane_count;
1675
1676 pipe_config->pipe_bpp = bpp;
1677 pipe_config->port_clock = common_rates[clock];
1678
1679 intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1680 &link_bw, &rate_select);
1681
1682 DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1683 link_bw, rate_select, pipe_config->lane_count,
1684 pipe_config->port_clock, bpp);
1685 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1686 mode_rate, link_avail);
1687
1688 intel_link_compute_m_n(bpp, lane_count,
1689 adjusted_mode->crtc_clock,
1690 pipe_config->port_clock,
1691 &pipe_config->dp_m_n);
1692
1693 if (intel_connector->panel.downclock_mode != NULL &&
1694 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1695 pipe_config->has_drrs = true;
1696 intel_link_compute_m_n(bpp, lane_count,
1697 intel_connector->panel.downclock_mode->clock,
1698 pipe_config->port_clock,
1699 &pipe_config->dp_m2_n2);
1700 }
1701
1702 /*
1703 * DPLL0 VCO may need to be adjusted to get the correct
1704 * clock for eDP. This will affect cdclk as well.
1705 */
1706 if (is_edp(intel_dp) &&
1707 (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))) {
1708 int vco;
1709
1710 switch (pipe_config->port_clock / 2) {
1711 case 108000:
1712 case 216000:
1713 vco = 8640000;
1714 break;
1715 default:
1716 vco = 8100000;
1717 break;
1718 }
1719
1720 to_intel_atomic_state(pipe_config->base.state)->cdclk_pll_vco = vco;
1721 }
1722
1723 if (!HAS_DDI(dev))
1724 intel_dp_set_clock(encoder, pipe_config);
1725
1726 return true;
1727 }
1728
1729 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1730 int link_rate, uint8_t lane_count,
1731 bool link_mst)
1732 {
1733 intel_dp->link_rate = link_rate;
1734 intel_dp->lane_count = lane_count;
1735 intel_dp->link_mst = link_mst;
1736 }
1737
1738 static void intel_dp_prepare(struct intel_encoder *encoder,
1739 struct intel_crtc_state *pipe_config)
1740 {
1741 struct drm_device *dev = encoder->base.dev;
1742 struct drm_i915_private *dev_priv = to_i915(dev);
1743 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1744 enum port port = dp_to_dig_port(intel_dp)->port;
1745 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1746 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1747
1748 intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
1749 pipe_config->lane_count,
1750 intel_crtc_has_type(pipe_config,
1751 INTEL_OUTPUT_DP_MST));
1752
1753 /*
1754 * There are four kinds of DP registers:
1755 *
1756 * IBX PCH
1757 * SNB CPU
1758 * IVB CPU
1759 * CPT PCH
1760 *
1761 * IBX PCH and CPU are the same for almost everything,
1762 * except that the CPU DP PLL is configured in this
1763 * register
1764 *
1765 * CPT PCH is quite different, having many bits moved
1766 * to the TRANS_DP_CTL register instead. That
1767 * configuration happens (oddly) in ironlake_pch_enable
1768 */
1769
1770 /* Preserve the BIOS-computed detected bit. This is
1771 * supposed to be read-only.
1772 */
1773 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1774
1775 /* Handle DP bits in common between all three register formats */
1776 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1777 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
1778
1779 /* Split out the IBX/CPU vs CPT settings */
1780
1781 if (IS_GEN7(dev) && port == PORT_A) {
1782 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1783 intel_dp->DP |= DP_SYNC_HS_HIGH;
1784 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1785 intel_dp->DP |= DP_SYNC_VS_HIGH;
1786 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1787
1788 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1789 intel_dp->DP |= DP_ENHANCED_FRAMING;
1790
1791 intel_dp->DP |= crtc->pipe << 29;
1792 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1793 u32 trans_dp;
1794
1795 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1796
1797 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1798 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1799 trans_dp |= TRANS_DP_ENH_FRAMING;
1800 else
1801 trans_dp &= ~TRANS_DP_ENH_FRAMING;
1802 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1803 } else {
1804 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1805 !IS_CHERRYVIEW(dev) && pipe_config->limited_color_range)
1806 intel_dp->DP |= DP_COLOR_RANGE_16_235;
1807
1808 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1809 intel_dp->DP |= DP_SYNC_HS_HIGH;
1810 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1811 intel_dp->DP |= DP_SYNC_VS_HIGH;
1812 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1813
1814 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1815 intel_dp->DP |= DP_ENHANCED_FRAMING;
1816
1817 if (IS_CHERRYVIEW(dev))
1818 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1819 else if (crtc->pipe == PIPE_B)
1820 intel_dp->DP |= DP_PIPEB_SELECT;
1821 }
1822 }
1823
1824 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1825 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1826
1827 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1828 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1829
1830 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1831 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1832
1833 static void intel_pps_verify_state(struct drm_i915_private *dev_priv,
1834 struct intel_dp *intel_dp);
1835
1836 static void wait_panel_status(struct intel_dp *intel_dp,
1837 u32 mask,
1838 u32 value)
1839 {
1840 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1841 struct drm_i915_private *dev_priv = to_i915(dev);
1842 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1843
1844 lockdep_assert_held(&dev_priv->pps_mutex);
1845
1846 intel_pps_verify_state(dev_priv, intel_dp);
1847
1848 pp_stat_reg = _pp_stat_reg(intel_dp);
1849 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1850
1851 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1852 mask, value,
1853 I915_READ(pp_stat_reg),
1854 I915_READ(pp_ctrl_reg));
1855
1856 if (intel_wait_for_register(dev_priv,
1857 pp_stat_reg, mask, value,
1858 5000))
1859 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1860 I915_READ(pp_stat_reg),
1861 I915_READ(pp_ctrl_reg));
1862
1863 DRM_DEBUG_KMS("Wait complete\n");
1864 }
1865
1866 static void wait_panel_on(struct intel_dp *intel_dp)
1867 {
1868 DRM_DEBUG_KMS("Wait for panel power on\n");
1869 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1870 }
1871
1872 static void wait_panel_off(struct intel_dp *intel_dp)
1873 {
1874 DRM_DEBUG_KMS("Wait for panel power off time\n");
1875 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1876 }
1877
1878 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1879 {
1880 ktime_t panel_power_on_time;
1881 s64 panel_power_off_duration;
1882
1883 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1884
1885 /* take the difference of currrent time and panel power off time
1886 * and then make panel wait for t11_t12 if needed. */
1887 panel_power_on_time = ktime_get_boottime();
1888 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
1889
1890 /* When we disable the VDD override bit last we have to do the manual
1891 * wait. */
1892 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
1893 wait_remaining_ms_from_jiffies(jiffies,
1894 intel_dp->panel_power_cycle_delay - panel_power_off_duration);
1895
1896 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1897 }
1898
1899 static void wait_backlight_on(struct intel_dp *intel_dp)
1900 {
1901 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1902 intel_dp->backlight_on_delay);
1903 }
1904
1905 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1906 {
1907 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1908 intel_dp->backlight_off_delay);
1909 }
1910
1911 /* Read the current pp_control value, unlocking the register if it
1912 * is locked
1913 */
1914
1915 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1916 {
1917 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1918 struct drm_i915_private *dev_priv = to_i915(dev);
1919 u32 control;
1920
1921 lockdep_assert_held(&dev_priv->pps_mutex);
1922
1923 control = I915_READ(_pp_ctrl_reg(intel_dp));
1924 if (WARN_ON(!HAS_DDI(dev_priv) &&
1925 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
1926 control &= ~PANEL_UNLOCK_MASK;
1927 control |= PANEL_UNLOCK_REGS;
1928 }
1929 return control;
1930 }
1931
1932 /*
1933 * Must be paired with edp_panel_vdd_off().
1934 * Must hold pps_mutex around the whole on/off sequence.
1935 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1936 */
1937 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1938 {
1939 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1940 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1941 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1942 struct drm_i915_private *dev_priv = to_i915(dev);
1943 enum intel_display_power_domain power_domain;
1944 u32 pp;
1945 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1946 bool need_to_disable = !intel_dp->want_panel_vdd;
1947
1948 lockdep_assert_held(&dev_priv->pps_mutex);
1949
1950 if (!is_edp(intel_dp))
1951 return false;
1952
1953 cancel_delayed_work(&intel_dp->panel_vdd_work);
1954 intel_dp->want_panel_vdd = true;
1955
1956 if (edp_have_panel_vdd(intel_dp))
1957 return need_to_disable;
1958
1959 power_domain = intel_display_port_aux_power_domain(intel_encoder);
1960 intel_display_power_get(dev_priv, power_domain);
1961
1962 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1963 port_name(intel_dig_port->port));
1964
1965 if (!edp_have_panel_power(intel_dp))
1966 wait_panel_power_cycle(intel_dp);
1967
1968 pp = ironlake_get_pp_control(intel_dp);
1969 pp |= EDP_FORCE_VDD;
1970
1971 pp_stat_reg = _pp_stat_reg(intel_dp);
1972 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1973
1974 I915_WRITE(pp_ctrl_reg, pp);
1975 POSTING_READ(pp_ctrl_reg);
1976 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1977 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1978 /*
1979 * If the panel wasn't on, delay before accessing aux channel
1980 */
1981 if (!edp_have_panel_power(intel_dp)) {
1982 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1983 port_name(intel_dig_port->port));
1984 msleep(intel_dp->panel_power_up_delay);
1985 }
1986
1987 return need_to_disable;
1988 }
1989
1990 /*
1991 * Must be paired with intel_edp_panel_vdd_off() or
1992 * intel_edp_panel_off().
1993 * Nested calls to these functions are not allowed since
1994 * we drop the lock. Caller must use some higher level
1995 * locking to prevent nested calls from other threads.
1996 */
1997 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1998 {
1999 bool vdd;
2000
2001 if (!is_edp(intel_dp))
2002 return;
2003
2004 pps_lock(intel_dp);
2005 vdd = edp_panel_vdd_on(intel_dp);
2006 pps_unlock(intel_dp);
2007
2008 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2009 port_name(dp_to_dig_port(intel_dp)->port));
2010 }
2011
2012 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2013 {
2014 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2015 struct drm_i915_private *dev_priv = to_i915(dev);
2016 struct intel_digital_port *intel_dig_port =
2017 dp_to_dig_port(intel_dp);
2018 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2019 enum intel_display_power_domain power_domain;
2020 u32 pp;
2021 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2022
2023 lockdep_assert_held(&dev_priv->pps_mutex);
2024
2025 WARN_ON(intel_dp->want_panel_vdd);
2026
2027 if (!edp_have_panel_vdd(intel_dp))
2028 return;
2029
2030 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2031 port_name(intel_dig_port->port));
2032
2033 pp = ironlake_get_pp_control(intel_dp);
2034 pp &= ~EDP_FORCE_VDD;
2035
2036 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2037 pp_stat_reg = _pp_stat_reg(intel_dp);
2038
2039 I915_WRITE(pp_ctrl_reg, pp);
2040 POSTING_READ(pp_ctrl_reg);
2041
2042 /* Make sure sequencer is idle before allowing subsequent activity */
2043 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2044 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2045
2046 if ((pp & PANEL_POWER_ON) == 0)
2047 intel_dp->panel_power_off_time = ktime_get_boottime();
2048
2049 power_domain = intel_display_port_aux_power_domain(intel_encoder);
2050 intel_display_power_put(dev_priv, power_domain);
2051 }
2052
2053 static void edp_panel_vdd_work(struct work_struct *__work)
2054 {
2055 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
2056 struct intel_dp, panel_vdd_work);
2057
2058 pps_lock(intel_dp);
2059 if (!intel_dp->want_panel_vdd)
2060 edp_panel_vdd_off_sync(intel_dp);
2061 pps_unlock(intel_dp);
2062 }
2063
2064 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2065 {
2066 unsigned long delay;
2067
2068 /*
2069 * Queue the timer to fire a long time from now (relative to the power
2070 * down delay) to keep the panel power up across a sequence of
2071 * operations.
2072 */
2073 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2074 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2075 }
2076
2077 /*
2078 * Must be paired with edp_panel_vdd_on().
2079 * Must hold pps_mutex around the whole on/off sequence.
2080 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2081 */
2082 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2083 {
2084 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
2085
2086 lockdep_assert_held(&dev_priv->pps_mutex);
2087
2088 if (!is_edp(intel_dp))
2089 return;
2090
2091 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2092 port_name(dp_to_dig_port(intel_dp)->port));
2093
2094 intel_dp->want_panel_vdd = false;
2095
2096 if (sync)
2097 edp_panel_vdd_off_sync(intel_dp);
2098 else
2099 edp_panel_vdd_schedule_off(intel_dp);
2100 }
2101
2102 static void edp_panel_on(struct intel_dp *intel_dp)
2103 {
2104 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2105 struct drm_i915_private *dev_priv = to_i915(dev);
2106 u32 pp;
2107 i915_reg_t pp_ctrl_reg;
2108
2109 lockdep_assert_held(&dev_priv->pps_mutex);
2110
2111 if (!is_edp(intel_dp))
2112 return;
2113
2114 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2115 port_name(dp_to_dig_port(intel_dp)->port));
2116
2117 if (WARN(edp_have_panel_power(intel_dp),
2118 "eDP port %c panel power already on\n",
2119 port_name(dp_to_dig_port(intel_dp)->port)))
2120 return;
2121
2122 wait_panel_power_cycle(intel_dp);
2123
2124 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2125 pp = ironlake_get_pp_control(intel_dp);
2126 if (IS_GEN5(dev)) {
2127 /* ILK workaround: disable reset around power sequence */
2128 pp &= ~PANEL_POWER_RESET;
2129 I915_WRITE(pp_ctrl_reg, pp);
2130 POSTING_READ(pp_ctrl_reg);
2131 }
2132
2133 pp |= PANEL_POWER_ON;
2134 if (!IS_GEN5(dev))
2135 pp |= PANEL_POWER_RESET;
2136
2137 I915_WRITE(pp_ctrl_reg, pp);
2138 POSTING_READ(pp_ctrl_reg);
2139
2140 wait_panel_on(intel_dp);
2141 intel_dp->last_power_on = jiffies;
2142
2143 if (IS_GEN5(dev)) {
2144 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2145 I915_WRITE(pp_ctrl_reg, pp);
2146 POSTING_READ(pp_ctrl_reg);
2147 }
2148 }
2149
2150 void intel_edp_panel_on(struct intel_dp *intel_dp)
2151 {
2152 if (!is_edp(intel_dp))
2153 return;
2154
2155 pps_lock(intel_dp);
2156 edp_panel_on(intel_dp);
2157 pps_unlock(intel_dp);
2158 }
2159
2160
2161 static void edp_panel_off(struct intel_dp *intel_dp)
2162 {
2163 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2164 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2165 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2166 struct drm_i915_private *dev_priv = to_i915(dev);
2167 enum intel_display_power_domain power_domain;
2168 u32 pp;
2169 i915_reg_t pp_ctrl_reg;
2170
2171 lockdep_assert_held(&dev_priv->pps_mutex);
2172
2173 if (!is_edp(intel_dp))
2174 return;
2175
2176 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2177 port_name(dp_to_dig_port(intel_dp)->port));
2178
2179 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2180 port_name(dp_to_dig_port(intel_dp)->port));
2181
2182 pp = ironlake_get_pp_control(intel_dp);
2183 /* We need to switch off panel power _and_ force vdd, for otherwise some
2184 * panels get very unhappy and cease to work. */
2185 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2186 EDP_BLC_ENABLE);
2187
2188 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2189
2190 intel_dp->want_panel_vdd = false;
2191
2192 I915_WRITE(pp_ctrl_reg, pp);
2193 POSTING_READ(pp_ctrl_reg);
2194
2195 intel_dp->panel_power_off_time = ktime_get_boottime();
2196 wait_panel_off(intel_dp);
2197
2198 /* We got a reference when we enabled the VDD. */
2199 power_domain = intel_display_port_aux_power_domain(intel_encoder);
2200 intel_display_power_put(dev_priv, power_domain);
2201 }
2202
2203 void intel_edp_panel_off(struct intel_dp *intel_dp)
2204 {
2205 if (!is_edp(intel_dp))
2206 return;
2207
2208 pps_lock(intel_dp);
2209 edp_panel_off(intel_dp);
2210 pps_unlock(intel_dp);
2211 }
2212
2213 /* Enable backlight in the panel power control. */
2214 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2215 {
2216 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2217 struct drm_device *dev = intel_dig_port->base.base.dev;
2218 struct drm_i915_private *dev_priv = to_i915(dev);
2219 u32 pp;
2220 i915_reg_t pp_ctrl_reg;
2221
2222 /*
2223 * If we enable the backlight right away following a panel power
2224 * on, we may see slight flicker as the panel syncs with the eDP
2225 * link. So delay a bit to make sure the image is solid before
2226 * allowing it to appear.
2227 */
2228 wait_backlight_on(intel_dp);
2229
2230 pps_lock(intel_dp);
2231
2232 pp = ironlake_get_pp_control(intel_dp);
2233 pp |= EDP_BLC_ENABLE;
2234
2235 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2236
2237 I915_WRITE(pp_ctrl_reg, pp);
2238 POSTING_READ(pp_ctrl_reg);
2239
2240 pps_unlock(intel_dp);
2241 }
2242
2243 /* Enable backlight PWM and backlight PP control. */
2244 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2245 {
2246 if (!is_edp(intel_dp))
2247 return;
2248
2249 DRM_DEBUG_KMS("\n");
2250
2251 intel_panel_enable_backlight(intel_dp->attached_connector);
2252 _intel_edp_backlight_on(intel_dp);
2253 }
2254
2255 /* Disable backlight in the panel power control. */
2256 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2257 {
2258 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2259 struct drm_i915_private *dev_priv = to_i915(dev);
2260 u32 pp;
2261 i915_reg_t pp_ctrl_reg;
2262
2263 if (!is_edp(intel_dp))
2264 return;
2265
2266 pps_lock(intel_dp);
2267
2268 pp = ironlake_get_pp_control(intel_dp);
2269 pp &= ~EDP_BLC_ENABLE;
2270
2271 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2272
2273 I915_WRITE(pp_ctrl_reg, pp);
2274 POSTING_READ(pp_ctrl_reg);
2275
2276 pps_unlock(intel_dp);
2277
2278 intel_dp->last_backlight_off = jiffies;
2279 edp_wait_backlight_off(intel_dp);
2280 }
2281
2282 /* Disable backlight PP control and backlight PWM. */
2283 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2284 {
2285 if (!is_edp(intel_dp))
2286 return;
2287
2288 DRM_DEBUG_KMS("\n");
2289
2290 _intel_edp_backlight_off(intel_dp);
2291 intel_panel_disable_backlight(intel_dp->attached_connector);
2292 }
2293
2294 /*
2295 * Hook for controlling the panel power control backlight through the bl_power
2296 * sysfs attribute. Take care to handle multiple calls.
2297 */
2298 static void intel_edp_backlight_power(struct intel_connector *connector,
2299 bool enable)
2300 {
2301 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2302 bool is_enabled;
2303
2304 pps_lock(intel_dp);
2305 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2306 pps_unlock(intel_dp);
2307
2308 if (is_enabled == enable)
2309 return;
2310
2311 DRM_DEBUG_KMS("panel power control backlight %s\n",
2312 enable ? "enable" : "disable");
2313
2314 if (enable)
2315 _intel_edp_backlight_on(intel_dp);
2316 else
2317 _intel_edp_backlight_off(intel_dp);
2318 }
2319
2320 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2321 {
2322 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2323 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2324 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2325
2326 I915_STATE_WARN(cur_state != state,
2327 "DP port %c state assertion failure (expected %s, current %s)\n",
2328 port_name(dig_port->port),
2329 onoff(state), onoff(cur_state));
2330 }
2331 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2332
2333 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2334 {
2335 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2336
2337 I915_STATE_WARN(cur_state != state,
2338 "eDP PLL state assertion failure (expected %s, current %s)\n",
2339 onoff(state), onoff(cur_state));
2340 }
2341 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2342 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2343
2344 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2345 struct intel_crtc_state *pipe_config)
2346 {
2347 struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2348 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2349
2350 assert_pipe_disabled(dev_priv, crtc->pipe);
2351 assert_dp_port_disabled(intel_dp);
2352 assert_edp_pll_disabled(dev_priv);
2353
2354 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2355 pipe_config->port_clock);
2356
2357 intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2358
2359 if (pipe_config->port_clock == 162000)
2360 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2361 else
2362 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2363
2364 I915_WRITE(DP_A, intel_dp->DP);
2365 POSTING_READ(DP_A);
2366 udelay(500);
2367
2368 /*
2369 * [DevILK] Work around required when enabling DP PLL
2370 * while a pipe is enabled going to FDI:
2371 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2372 * 2. Program DP PLL enable
2373 */
2374 if (IS_GEN5(dev_priv))
2375 intel_wait_for_vblank_if_active(&dev_priv->drm, !crtc->pipe);
2376
2377 intel_dp->DP |= DP_PLL_ENABLE;
2378
2379 I915_WRITE(DP_A, intel_dp->DP);
2380 POSTING_READ(DP_A);
2381 udelay(200);
2382 }
2383
2384 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2385 {
2386 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2387 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2388 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2389
2390 assert_pipe_disabled(dev_priv, crtc->pipe);
2391 assert_dp_port_disabled(intel_dp);
2392 assert_edp_pll_enabled(dev_priv);
2393
2394 DRM_DEBUG_KMS("disabling eDP PLL\n");
2395
2396 intel_dp->DP &= ~DP_PLL_ENABLE;
2397
2398 I915_WRITE(DP_A, intel_dp->DP);
2399 POSTING_READ(DP_A);
2400 udelay(200);
2401 }
2402
2403 /* If the sink supports it, try to set the power state appropriately */
2404 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2405 {
2406 int ret, i;
2407
2408 /* Should have a valid DPCD by this point */
2409 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2410 return;
2411
2412 if (mode != DRM_MODE_DPMS_ON) {
2413 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2414 DP_SET_POWER_D3);
2415 } else {
2416 /*
2417 * When turning on, we need to retry for 1ms to give the sink
2418 * time to wake up.
2419 */
2420 for (i = 0; i < 3; i++) {
2421 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2422 DP_SET_POWER_D0);
2423 if (ret == 1)
2424 break;
2425 msleep(1);
2426 }
2427 }
2428
2429 if (ret != 1)
2430 DRM_DEBUG_KMS("failed to %s sink power state\n",
2431 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2432 }
2433
2434 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2435 enum pipe *pipe)
2436 {
2437 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2438 enum port port = dp_to_dig_port(intel_dp)->port;
2439 struct drm_device *dev = encoder->base.dev;
2440 struct drm_i915_private *dev_priv = to_i915(dev);
2441 enum intel_display_power_domain power_domain;
2442 u32 tmp;
2443 bool ret;
2444
2445 power_domain = intel_display_port_power_domain(encoder);
2446 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2447 return false;
2448
2449 ret = false;
2450
2451 tmp = I915_READ(intel_dp->output_reg);
2452
2453 if (!(tmp & DP_PORT_EN))
2454 goto out;
2455
2456 if (IS_GEN7(dev) && port == PORT_A) {
2457 *pipe = PORT_TO_PIPE_CPT(tmp);
2458 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2459 enum pipe p;
2460
2461 for_each_pipe(dev_priv, p) {
2462 u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2463 if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2464 *pipe = p;
2465 ret = true;
2466
2467 goto out;
2468 }
2469 }
2470
2471 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2472 i915_mmio_reg_offset(intel_dp->output_reg));
2473 } else if (IS_CHERRYVIEW(dev)) {
2474 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2475 } else {
2476 *pipe = PORT_TO_PIPE(tmp);
2477 }
2478
2479 ret = true;
2480
2481 out:
2482 intel_display_power_put(dev_priv, power_domain);
2483
2484 return ret;
2485 }
2486
2487 static void intel_dp_get_config(struct intel_encoder *encoder,
2488 struct intel_crtc_state *pipe_config)
2489 {
2490 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2491 u32 tmp, flags = 0;
2492 struct drm_device *dev = encoder->base.dev;
2493 struct drm_i915_private *dev_priv = to_i915(dev);
2494 enum port port = dp_to_dig_port(intel_dp)->port;
2495 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2496
2497 tmp = I915_READ(intel_dp->output_reg);
2498
2499 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2500
2501 if (HAS_PCH_CPT(dev) && port != PORT_A) {
2502 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2503
2504 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2505 flags |= DRM_MODE_FLAG_PHSYNC;
2506 else
2507 flags |= DRM_MODE_FLAG_NHSYNC;
2508
2509 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2510 flags |= DRM_MODE_FLAG_PVSYNC;
2511 else
2512 flags |= DRM_MODE_FLAG_NVSYNC;
2513 } else {
2514 if (tmp & DP_SYNC_HS_HIGH)
2515 flags |= DRM_MODE_FLAG_PHSYNC;
2516 else
2517 flags |= DRM_MODE_FLAG_NHSYNC;
2518
2519 if (tmp & DP_SYNC_VS_HIGH)
2520 flags |= DRM_MODE_FLAG_PVSYNC;
2521 else
2522 flags |= DRM_MODE_FLAG_NVSYNC;
2523 }
2524
2525 pipe_config->base.adjusted_mode.flags |= flags;
2526
2527 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2528 !IS_CHERRYVIEW(dev) && tmp & DP_COLOR_RANGE_16_235)
2529 pipe_config->limited_color_range = true;
2530
2531 pipe_config->lane_count =
2532 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2533
2534 intel_dp_get_m_n(crtc, pipe_config);
2535
2536 if (port == PORT_A) {
2537 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2538 pipe_config->port_clock = 162000;
2539 else
2540 pipe_config->port_clock = 270000;
2541 }
2542
2543 pipe_config->base.adjusted_mode.crtc_clock =
2544 intel_dotclock_calculate(pipe_config->port_clock,
2545 &pipe_config->dp_m_n);
2546
2547 if (is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2548 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2549 /*
2550 * This is a big fat ugly hack.
2551 *
2552 * Some machines in UEFI boot mode provide us a VBT that has 18
2553 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2554 * unknown we fail to light up. Yet the same BIOS boots up with
2555 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2556 * max, not what it tells us to use.
2557 *
2558 * Note: This will still be broken if the eDP panel is not lit
2559 * up by the BIOS, and thus we can't get the mode at module
2560 * load.
2561 */
2562 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2563 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2564 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2565 }
2566 }
2567
2568 static void intel_disable_dp(struct intel_encoder *encoder,
2569 struct intel_crtc_state *old_crtc_state,
2570 struct drm_connector_state *old_conn_state)
2571 {
2572 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2573 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2574
2575 if (old_crtc_state->has_audio)
2576 intel_audio_codec_disable(encoder);
2577
2578 if (HAS_PSR(dev_priv) && !HAS_DDI(dev_priv))
2579 intel_psr_disable(intel_dp);
2580
2581 /* Make sure the panel is off before trying to change the mode. But also
2582 * ensure that we have vdd while we switch off the panel. */
2583 intel_edp_panel_vdd_on(intel_dp);
2584 intel_edp_backlight_off(intel_dp);
2585 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2586 intel_edp_panel_off(intel_dp);
2587
2588 /* disable the port before the pipe on g4x */
2589 if (INTEL_GEN(dev_priv) < 5)
2590 intel_dp_link_down(intel_dp);
2591 }
2592
2593 static void ilk_post_disable_dp(struct intel_encoder *encoder,
2594 struct intel_crtc_state *old_crtc_state,
2595 struct drm_connector_state *old_conn_state)
2596 {
2597 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2598 enum port port = dp_to_dig_port(intel_dp)->port;
2599
2600 intel_dp_link_down(intel_dp);
2601
2602 /* Only ilk+ has port A */
2603 if (port == PORT_A)
2604 ironlake_edp_pll_off(intel_dp);
2605 }
2606
2607 static void vlv_post_disable_dp(struct intel_encoder *encoder,
2608 struct intel_crtc_state *old_crtc_state,
2609 struct drm_connector_state *old_conn_state)
2610 {
2611 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2612
2613 intel_dp_link_down(intel_dp);
2614 }
2615
2616 static void chv_post_disable_dp(struct intel_encoder *encoder,
2617 struct intel_crtc_state *old_crtc_state,
2618 struct drm_connector_state *old_conn_state)
2619 {
2620 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2621 struct drm_device *dev = encoder->base.dev;
2622 struct drm_i915_private *dev_priv = to_i915(dev);
2623
2624 intel_dp_link_down(intel_dp);
2625
2626 mutex_lock(&dev_priv->sb_lock);
2627
2628 /* Assert data lane reset */
2629 chv_data_lane_soft_reset(encoder, true);
2630
2631 mutex_unlock(&dev_priv->sb_lock);
2632 }
2633
2634 static void
2635 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2636 uint32_t *DP,
2637 uint8_t dp_train_pat)
2638 {
2639 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2640 struct drm_device *dev = intel_dig_port->base.base.dev;
2641 struct drm_i915_private *dev_priv = to_i915(dev);
2642 enum port port = intel_dig_port->port;
2643
2644 if (dp_train_pat & DP_TRAINING_PATTERN_MASK)
2645 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
2646 dp_train_pat & DP_TRAINING_PATTERN_MASK);
2647
2648 if (HAS_DDI(dev)) {
2649 uint32_t temp = I915_READ(DP_TP_CTL(port));
2650
2651 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2652 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2653 else
2654 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2655
2656 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2657 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2658 case DP_TRAINING_PATTERN_DISABLE:
2659 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2660
2661 break;
2662 case DP_TRAINING_PATTERN_1:
2663 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2664 break;
2665 case DP_TRAINING_PATTERN_2:
2666 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2667 break;
2668 case DP_TRAINING_PATTERN_3:
2669 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2670 break;
2671 }
2672 I915_WRITE(DP_TP_CTL(port), temp);
2673
2674 } else if ((IS_GEN7(dev) && port == PORT_A) ||
2675 (HAS_PCH_CPT(dev) && port != PORT_A)) {
2676 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2677
2678 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2679 case DP_TRAINING_PATTERN_DISABLE:
2680 *DP |= DP_LINK_TRAIN_OFF_CPT;
2681 break;
2682 case DP_TRAINING_PATTERN_1:
2683 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2684 break;
2685 case DP_TRAINING_PATTERN_2:
2686 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2687 break;
2688 case DP_TRAINING_PATTERN_3:
2689 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2690 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2691 break;
2692 }
2693
2694 } else {
2695 if (IS_CHERRYVIEW(dev))
2696 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2697 else
2698 *DP &= ~DP_LINK_TRAIN_MASK;
2699
2700 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2701 case DP_TRAINING_PATTERN_DISABLE:
2702 *DP |= DP_LINK_TRAIN_OFF;
2703 break;
2704 case DP_TRAINING_PATTERN_1:
2705 *DP |= DP_LINK_TRAIN_PAT_1;
2706 break;
2707 case DP_TRAINING_PATTERN_2:
2708 *DP |= DP_LINK_TRAIN_PAT_2;
2709 break;
2710 case DP_TRAINING_PATTERN_3:
2711 if (IS_CHERRYVIEW(dev)) {
2712 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2713 } else {
2714 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
2715 *DP |= DP_LINK_TRAIN_PAT_2;
2716 }
2717 break;
2718 }
2719 }
2720 }
2721
2722 static void intel_dp_enable_port(struct intel_dp *intel_dp,
2723 struct intel_crtc_state *old_crtc_state)
2724 {
2725 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2726 struct drm_i915_private *dev_priv = to_i915(dev);
2727
2728 /* enable with pattern 1 (as per spec) */
2729
2730 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
2731
2732 /*
2733 * Magic for VLV/CHV. We _must_ first set up the register
2734 * without actually enabling the port, and then do another
2735 * write to enable the port. Otherwise link training will
2736 * fail when the power sequencer is freshly used for this port.
2737 */
2738 intel_dp->DP |= DP_PORT_EN;
2739 if (old_crtc_state->has_audio)
2740 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2741
2742 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2743 POSTING_READ(intel_dp->output_reg);
2744 }
2745
2746 static void intel_enable_dp(struct intel_encoder *encoder,
2747 struct intel_crtc_state *pipe_config)
2748 {
2749 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2750 struct drm_device *dev = encoder->base.dev;
2751 struct drm_i915_private *dev_priv = to_i915(dev);
2752 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2753 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2754 enum pipe pipe = crtc->pipe;
2755
2756 if (WARN_ON(dp_reg & DP_PORT_EN))
2757 return;
2758
2759 pps_lock(intel_dp);
2760
2761 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2762 vlv_init_panel_power_sequencer(intel_dp);
2763
2764 intel_dp_enable_port(intel_dp, pipe_config);
2765
2766 edp_panel_vdd_on(intel_dp);
2767 edp_panel_on(intel_dp);
2768 edp_panel_vdd_off(intel_dp, true);
2769
2770 pps_unlock(intel_dp);
2771
2772 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
2773 unsigned int lane_mask = 0x0;
2774
2775 if (IS_CHERRYVIEW(dev))
2776 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
2777
2778 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2779 lane_mask);
2780 }
2781
2782 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2783 intel_dp_start_link_train(intel_dp);
2784 intel_dp_stop_link_train(intel_dp);
2785
2786 if (pipe_config->has_audio) {
2787 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2788 pipe_name(pipe));
2789 intel_audio_codec_enable(encoder);
2790 }
2791 }
2792
2793 static void g4x_enable_dp(struct intel_encoder *encoder,
2794 struct intel_crtc_state *pipe_config,
2795 struct drm_connector_state *conn_state)
2796 {
2797 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2798
2799 intel_enable_dp(encoder, pipe_config);
2800 intel_edp_backlight_on(intel_dp);
2801 }
2802
2803 static void vlv_enable_dp(struct intel_encoder *encoder,
2804 struct intel_crtc_state *pipe_config,
2805 struct drm_connector_state *conn_state)
2806 {
2807 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2808
2809 intel_edp_backlight_on(intel_dp);
2810 intel_psr_enable(intel_dp);
2811 }
2812
2813 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
2814 struct intel_crtc_state *pipe_config,
2815 struct drm_connector_state *conn_state)
2816 {
2817 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2818 enum port port = dp_to_dig_port(intel_dp)->port;
2819
2820 intel_dp_prepare(encoder, pipe_config);
2821
2822 /* Only ilk+ has port A */
2823 if (port == PORT_A)
2824 ironlake_edp_pll_on(intel_dp, pipe_config);
2825 }
2826
2827 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2828 {
2829 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2830 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
2831 enum pipe pipe = intel_dp->pps_pipe;
2832 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
2833
2834 edp_panel_vdd_off_sync(intel_dp);
2835
2836 /*
2837 * VLV seems to get confused when multiple power seqeuencers
2838 * have the same port selected (even if only one has power/vdd
2839 * enabled). The failure manifests as vlv_wait_port_ready() failing
2840 * CHV on the other hand doesn't seem to mind having the same port
2841 * selected in multiple power seqeuencers, but let's clear the
2842 * port select always when logically disconnecting a power sequencer
2843 * from a port.
2844 */
2845 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2846 pipe_name(pipe), port_name(intel_dig_port->port));
2847 I915_WRITE(pp_on_reg, 0);
2848 POSTING_READ(pp_on_reg);
2849
2850 intel_dp->pps_pipe = INVALID_PIPE;
2851 }
2852
2853 static void vlv_steal_power_sequencer(struct drm_device *dev,
2854 enum pipe pipe)
2855 {
2856 struct drm_i915_private *dev_priv = to_i915(dev);
2857 struct intel_encoder *encoder;
2858
2859 lockdep_assert_held(&dev_priv->pps_mutex);
2860
2861 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2862 return;
2863
2864 for_each_intel_encoder(dev, encoder) {
2865 struct intel_dp *intel_dp;
2866 enum port port;
2867
2868 if (encoder->type != INTEL_OUTPUT_EDP)
2869 continue;
2870
2871 intel_dp = enc_to_intel_dp(&encoder->base);
2872 port = dp_to_dig_port(intel_dp)->port;
2873
2874 if (intel_dp->pps_pipe != pipe)
2875 continue;
2876
2877 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2878 pipe_name(pipe), port_name(port));
2879
2880 WARN(encoder->base.crtc,
2881 "stealing pipe %c power sequencer from active eDP port %c\n",
2882 pipe_name(pipe), port_name(port));
2883
2884 /* make sure vdd is off before we steal it */
2885 vlv_detach_power_sequencer(intel_dp);
2886 }
2887 }
2888
2889 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2890 {
2891 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2892 struct intel_encoder *encoder = &intel_dig_port->base;
2893 struct drm_device *dev = encoder->base.dev;
2894 struct drm_i915_private *dev_priv = to_i915(dev);
2895 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2896
2897 lockdep_assert_held(&dev_priv->pps_mutex);
2898
2899 if (!is_edp(intel_dp))
2900 return;
2901
2902 if (intel_dp->pps_pipe == crtc->pipe)
2903 return;
2904
2905 /*
2906 * If another power sequencer was being used on this
2907 * port previously make sure to turn off vdd there while
2908 * we still have control of it.
2909 */
2910 if (intel_dp->pps_pipe != INVALID_PIPE)
2911 vlv_detach_power_sequencer(intel_dp);
2912
2913 /*
2914 * We may be stealing the power
2915 * sequencer from another port.
2916 */
2917 vlv_steal_power_sequencer(dev, crtc->pipe);
2918
2919 /* now it's all ours */
2920 intel_dp->pps_pipe = crtc->pipe;
2921
2922 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2923 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2924
2925 /* init power sequencer on this pipe and port */
2926 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2927 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2928 }
2929
2930 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
2931 struct intel_crtc_state *pipe_config,
2932 struct drm_connector_state *conn_state)
2933 {
2934 vlv_phy_pre_encoder_enable(encoder);
2935
2936 intel_enable_dp(encoder, pipe_config);
2937 }
2938
2939 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
2940 struct intel_crtc_state *pipe_config,
2941 struct drm_connector_state *conn_state)
2942 {
2943 intel_dp_prepare(encoder, pipe_config);
2944
2945 vlv_phy_pre_pll_enable(encoder);
2946 }
2947
2948 static void chv_pre_enable_dp(struct intel_encoder *encoder,
2949 struct intel_crtc_state *pipe_config,
2950 struct drm_connector_state *conn_state)
2951 {
2952 chv_phy_pre_encoder_enable(encoder);
2953
2954 intel_enable_dp(encoder, pipe_config);
2955
2956 /* Second common lane will stay alive on its own now */
2957 chv_phy_release_cl2_override(encoder);
2958 }
2959
2960 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
2961 struct intel_crtc_state *pipe_config,
2962 struct drm_connector_state *conn_state)
2963 {
2964 intel_dp_prepare(encoder, pipe_config);
2965
2966 chv_phy_pre_pll_enable(encoder);
2967 }
2968
2969 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
2970 struct intel_crtc_state *pipe_config,
2971 struct drm_connector_state *conn_state)
2972 {
2973 chv_phy_post_pll_disable(encoder);
2974 }
2975
2976 /*
2977 * Fetch AUX CH registers 0x202 - 0x207 which contain
2978 * link status information
2979 */
2980 bool
2981 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2982 {
2983 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
2984 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2985 }
2986
2987 /* These are source-specific values. */
2988 uint8_t
2989 intel_dp_voltage_max(struct intel_dp *intel_dp)
2990 {
2991 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2992 struct drm_i915_private *dev_priv = to_i915(dev);
2993 enum port port = dp_to_dig_port(intel_dp)->port;
2994
2995 if (IS_BROXTON(dev))
2996 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2997 else if (INTEL_INFO(dev)->gen >= 9) {
2998 if (dev_priv->vbt.edp.low_vswing && port == PORT_A)
2999 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3000 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3001 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
3002 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3003 else if (IS_GEN7(dev) && port == PORT_A)
3004 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3005 else if (HAS_PCH_CPT(dev) && port != PORT_A)
3006 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3007 else
3008 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3009 }
3010
3011 uint8_t
3012 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3013 {
3014 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3015 enum port port = dp_to_dig_port(intel_dp)->port;
3016
3017 if (INTEL_INFO(dev)->gen >= 9) {
3018 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3019 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3020 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3021 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3022 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3023 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3024 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3025 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3026 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3027 default:
3028 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3029 }
3030 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3031 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3032 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3033 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3034 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3035 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3036 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3037 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3038 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3039 default:
3040 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3041 }
3042 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
3043 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3044 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3045 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3046 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3047 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3048 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3049 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3050 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3051 default:
3052 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3053 }
3054 } else if (IS_GEN7(dev) && port == PORT_A) {
3055 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3056 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3057 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3058 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3059 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3060 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3061 default:
3062 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3063 }
3064 } else {
3065 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3066 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3067 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3068 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3069 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3070 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3071 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3072 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3073 default:
3074 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3075 }
3076 }
3077 }
3078
3079 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3080 {
3081 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3082 unsigned long demph_reg_value, preemph_reg_value,
3083 uniqtranscale_reg_value;
3084 uint8_t train_set = intel_dp->train_set[0];
3085
3086 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3087 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3088 preemph_reg_value = 0x0004000;
3089 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3090 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3091 demph_reg_value = 0x2B405555;
3092 uniqtranscale_reg_value = 0x552AB83A;
3093 break;
3094 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3095 demph_reg_value = 0x2B404040;
3096 uniqtranscale_reg_value = 0x5548B83A;
3097 break;
3098 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3099 demph_reg_value = 0x2B245555;
3100 uniqtranscale_reg_value = 0x5560B83A;
3101 break;
3102 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3103 demph_reg_value = 0x2B405555;
3104 uniqtranscale_reg_value = 0x5598DA3A;
3105 break;
3106 default:
3107 return 0;
3108 }
3109 break;
3110 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3111 preemph_reg_value = 0x0002000;
3112 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3113 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3114 demph_reg_value = 0x2B404040;
3115 uniqtranscale_reg_value = 0x5552B83A;
3116 break;
3117 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3118 demph_reg_value = 0x2B404848;
3119 uniqtranscale_reg_value = 0x5580B83A;
3120 break;
3121 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3122 demph_reg_value = 0x2B404040;
3123 uniqtranscale_reg_value = 0x55ADDA3A;
3124 break;
3125 default:
3126 return 0;
3127 }
3128 break;
3129 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3130 preemph_reg_value = 0x0000000;
3131 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3132 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3133 demph_reg_value = 0x2B305555;
3134 uniqtranscale_reg_value = 0x5570B83A;
3135 break;
3136 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3137 demph_reg_value = 0x2B2B4040;
3138 uniqtranscale_reg_value = 0x55ADDA3A;
3139 break;
3140 default:
3141 return 0;
3142 }
3143 break;
3144 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3145 preemph_reg_value = 0x0006000;
3146 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3147 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3148 demph_reg_value = 0x1B405555;
3149 uniqtranscale_reg_value = 0x55ADDA3A;
3150 break;
3151 default:
3152 return 0;
3153 }
3154 break;
3155 default:
3156 return 0;
3157 }
3158
3159 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3160 uniqtranscale_reg_value, 0);
3161
3162 return 0;
3163 }
3164
3165 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3166 {
3167 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3168 u32 deemph_reg_value, margin_reg_value;
3169 bool uniq_trans_scale = false;
3170 uint8_t train_set = intel_dp->train_set[0];
3171
3172 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3173 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3174 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3175 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3176 deemph_reg_value = 128;
3177 margin_reg_value = 52;
3178 break;
3179 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3180 deemph_reg_value = 128;
3181 margin_reg_value = 77;
3182 break;
3183 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3184 deemph_reg_value = 128;
3185 margin_reg_value = 102;
3186 break;
3187 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3188 deemph_reg_value = 128;
3189 margin_reg_value = 154;
3190 uniq_trans_scale = true;
3191 break;
3192 default:
3193 return 0;
3194 }
3195 break;
3196 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3197 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3198 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3199 deemph_reg_value = 85;
3200 margin_reg_value = 78;
3201 break;
3202 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3203 deemph_reg_value = 85;
3204 margin_reg_value = 116;
3205 break;
3206 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3207 deemph_reg_value = 85;
3208 margin_reg_value = 154;
3209 break;
3210 default:
3211 return 0;
3212 }
3213 break;
3214 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3215 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3216 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3217 deemph_reg_value = 64;
3218 margin_reg_value = 104;
3219 break;
3220 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3221 deemph_reg_value = 64;
3222 margin_reg_value = 154;
3223 break;
3224 default:
3225 return 0;
3226 }
3227 break;
3228 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3229 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3230 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3231 deemph_reg_value = 43;
3232 margin_reg_value = 154;
3233 break;
3234 default:
3235 return 0;
3236 }
3237 break;
3238 default:
3239 return 0;
3240 }
3241
3242 chv_set_phy_signal_level(encoder, deemph_reg_value,
3243 margin_reg_value, uniq_trans_scale);
3244
3245 return 0;
3246 }
3247
3248 static uint32_t
3249 gen4_signal_levels(uint8_t train_set)
3250 {
3251 uint32_t signal_levels = 0;
3252
3253 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3254 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3255 default:
3256 signal_levels |= DP_VOLTAGE_0_4;
3257 break;
3258 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3259 signal_levels |= DP_VOLTAGE_0_6;
3260 break;
3261 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3262 signal_levels |= DP_VOLTAGE_0_8;
3263 break;
3264 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3265 signal_levels |= DP_VOLTAGE_1_2;
3266 break;
3267 }
3268 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3269 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3270 default:
3271 signal_levels |= DP_PRE_EMPHASIS_0;
3272 break;
3273 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3274 signal_levels |= DP_PRE_EMPHASIS_3_5;
3275 break;
3276 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3277 signal_levels |= DP_PRE_EMPHASIS_6;
3278 break;
3279 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3280 signal_levels |= DP_PRE_EMPHASIS_9_5;
3281 break;
3282 }
3283 return signal_levels;
3284 }
3285
3286 /* Gen6's DP voltage swing and pre-emphasis control */
3287 static uint32_t
3288 gen6_edp_signal_levels(uint8_t train_set)
3289 {
3290 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3291 DP_TRAIN_PRE_EMPHASIS_MASK);
3292 switch (signal_levels) {
3293 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3294 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3295 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3296 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3297 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3298 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3299 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3300 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3301 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3302 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3303 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3304 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3305 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3306 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3307 default:
3308 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3309 "0x%x\n", signal_levels);
3310 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3311 }
3312 }
3313
3314 /* Gen7's DP voltage swing and pre-emphasis control */
3315 static uint32_t
3316 gen7_edp_signal_levels(uint8_t train_set)
3317 {
3318 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3319 DP_TRAIN_PRE_EMPHASIS_MASK);
3320 switch (signal_levels) {
3321 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3322 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3323 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3324 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3325 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3326 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3327
3328 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3329 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3330 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3331 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3332
3333 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3334 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3335 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3336 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3337
3338 default:
3339 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3340 "0x%x\n", signal_levels);
3341 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3342 }
3343 }
3344
3345 void
3346 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3347 {
3348 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3349 enum port port = intel_dig_port->port;
3350 struct drm_device *dev = intel_dig_port->base.base.dev;
3351 struct drm_i915_private *dev_priv = to_i915(dev);
3352 uint32_t signal_levels, mask = 0;
3353 uint8_t train_set = intel_dp->train_set[0];
3354
3355 if (HAS_DDI(dev)) {
3356 signal_levels = ddi_signal_levels(intel_dp);
3357
3358 if (IS_BROXTON(dev))
3359 signal_levels = 0;
3360 else
3361 mask = DDI_BUF_EMP_MASK;
3362 } else if (IS_CHERRYVIEW(dev)) {
3363 signal_levels = chv_signal_levels(intel_dp);
3364 } else if (IS_VALLEYVIEW(dev)) {
3365 signal_levels = vlv_signal_levels(intel_dp);
3366 } else if (IS_GEN7(dev) && port == PORT_A) {
3367 signal_levels = gen7_edp_signal_levels(train_set);
3368 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3369 } else if (IS_GEN6(dev) && port == PORT_A) {
3370 signal_levels = gen6_edp_signal_levels(train_set);
3371 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3372 } else {
3373 signal_levels = gen4_signal_levels(train_set);
3374 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3375 }
3376
3377 if (mask)
3378 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3379
3380 DRM_DEBUG_KMS("Using vswing level %d\n",
3381 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3382 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3383 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3384 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3385
3386 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3387
3388 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3389 POSTING_READ(intel_dp->output_reg);
3390 }
3391
3392 void
3393 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3394 uint8_t dp_train_pat)
3395 {
3396 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3397 struct drm_i915_private *dev_priv =
3398 to_i915(intel_dig_port->base.base.dev);
3399
3400 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3401
3402 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3403 POSTING_READ(intel_dp->output_reg);
3404 }
3405
3406 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3407 {
3408 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3409 struct drm_device *dev = intel_dig_port->base.base.dev;
3410 struct drm_i915_private *dev_priv = to_i915(dev);
3411 enum port port = intel_dig_port->port;
3412 uint32_t val;
3413
3414 if (!HAS_DDI(dev))
3415 return;
3416
3417 val = I915_READ(DP_TP_CTL(port));
3418 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3419 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3420 I915_WRITE(DP_TP_CTL(port), val);
3421
3422 /*
3423 * On PORT_A we can have only eDP in SST mode. There the only reason
3424 * we need to set idle transmission mode is to work around a HW issue
3425 * where we enable the pipe while not in idle link-training mode.
3426 * In this case there is requirement to wait for a minimum number of
3427 * idle patterns to be sent.
3428 */
3429 if (port == PORT_A)
3430 return;
3431
3432 if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
3433 DP_TP_STATUS_IDLE_DONE,
3434 DP_TP_STATUS_IDLE_DONE,
3435 1))
3436 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3437 }
3438
3439 static void
3440 intel_dp_link_down(struct intel_dp *intel_dp)
3441 {
3442 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3443 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3444 enum port port = intel_dig_port->port;
3445 struct drm_device *dev = intel_dig_port->base.base.dev;
3446 struct drm_i915_private *dev_priv = to_i915(dev);
3447 uint32_t DP = intel_dp->DP;
3448
3449 if (WARN_ON(HAS_DDI(dev)))
3450 return;
3451
3452 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3453 return;
3454
3455 DRM_DEBUG_KMS("\n");
3456
3457 if ((IS_GEN7(dev) && port == PORT_A) ||
3458 (HAS_PCH_CPT(dev) && port != PORT_A)) {
3459 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3460 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3461 } else {
3462 if (IS_CHERRYVIEW(dev))
3463 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3464 else
3465 DP &= ~DP_LINK_TRAIN_MASK;
3466 DP |= DP_LINK_TRAIN_PAT_IDLE;
3467 }
3468 I915_WRITE(intel_dp->output_reg, DP);
3469 POSTING_READ(intel_dp->output_reg);
3470
3471 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3472 I915_WRITE(intel_dp->output_reg, DP);
3473 POSTING_READ(intel_dp->output_reg);
3474
3475 /*
3476 * HW workaround for IBX, we need to move the port
3477 * to transcoder A after disabling it to allow the
3478 * matching HDMI port to be enabled on transcoder A.
3479 */
3480 if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3481 /*
3482 * We get CPU/PCH FIFO underruns on the other pipe when
3483 * doing the workaround. Sweep them under the rug.
3484 */
3485 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3486 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3487
3488 /* always enable with pattern 1 (as per spec) */
3489 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3490 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3491 I915_WRITE(intel_dp->output_reg, DP);
3492 POSTING_READ(intel_dp->output_reg);
3493
3494 DP &= ~DP_PORT_EN;
3495 I915_WRITE(intel_dp->output_reg, DP);
3496 POSTING_READ(intel_dp->output_reg);
3497
3498 intel_wait_for_vblank_if_active(&dev_priv->drm, PIPE_A);
3499 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3500 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3501 }
3502
3503 msleep(intel_dp->panel_power_down_delay);
3504
3505 intel_dp->DP = DP;
3506 }
3507
3508 static bool
3509 intel_dp_read_dpcd(struct intel_dp *intel_dp)
3510 {
3511 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
3512 sizeof(intel_dp->dpcd)) < 0)
3513 return false; /* aux transfer failed */
3514
3515 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3516
3517 return intel_dp->dpcd[DP_DPCD_REV] != 0;
3518 }
3519
3520 static bool
3521 intel_edp_init_dpcd(struct intel_dp *intel_dp)
3522 {
3523 struct drm_i915_private *dev_priv =
3524 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
3525
3526 /* this function is meant to be called only once */
3527 WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
3528
3529 if (!intel_dp_read_dpcd(intel_dp))
3530 return false;
3531
3532 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3533 dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3534 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3535
3536 /* Check if the panel supports PSR */
3537 drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT,
3538 intel_dp->psr_dpcd,
3539 sizeof(intel_dp->psr_dpcd));
3540 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3541 dev_priv->psr.sink_support = true;
3542 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3543 }
3544
3545 if (INTEL_GEN(dev_priv) >= 9 &&
3546 (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3547 uint8_t frame_sync_cap;
3548
3549 dev_priv->psr.sink_support = true;
3550 drm_dp_dpcd_read(&intel_dp->aux,
3551 DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3552 &frame_sync_cap, 1);
3553 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3554 /* PSR2 needs frame sync as well */
3555 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3556 DRM_DEBUG_KMS("PSR2 %s on sink",
3557 dev_priv->psr.psr2_support ? "supported" : "not supported");
3558 }
3559
3560 /* Read the eDP Display control capabilities registers */
3561 if ((intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3562 drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
3563 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
3564 sizeof(intel_dp->edp_dpcd))
3565 DRM_DEBUG_KMS("EDP DPCD : %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
3566 intel_dp->edp_dpcd);
3567
3568 /* Intermediate frequency support */
3569 if (intel_dp->edp_dpcd[0] >= 0x03) { /* eDp v1.4 or higher */
3570 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3571 int i;
3572
3573 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
3574 sink_rates, sizeof(sink_rates));
3575
3576 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3577 int val = le16_to_cpu(sink_rates[i]);
3578
3579 if (val == 0)
3580 break;
3581
3582 /* Value read is in kHz while drm clock is saved in deca-kHz */
3583 intel_dp->sink_rates[i] = (val * 200) / 10;
3584 }
3585 intel_dp->num_sink_rates = i;
3586 }
3587
3588 return true;
3589 }
3590
3591
3592 static bool
3593 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3594 {
3595 if (!intel_dp_read_dpcd(intel_dp))
3596 return false;
3597
3598 if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT,
3599 &intel_dp->sink_count, 1) < 0)
3600 return false;
3601
3602 /*
3603 * Sink count can change between short pulse hpd hence
3604 * a member variable in intel_dp will track any changes
3605 * between short pulse interrupts.
3606 */
3607 intel_dp->sink_count = DP_GET_SINK_COUNT(intel_dp->sink_count);
3608
3609 /*
3610 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3611 * a dongle is present but no display. Unless we require to know
3612 * if a dongle is present or not, we don't need to update
3613 * downstream port information. So, an early return here saves
3614 * time from performing other operations which are not required.
3615 */
3616 if (!is_edp(intel_dp) && !intel_dp->sink_count)
3617 return false;
3618
3619 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3620 DP_DWN_STRM_PORT_PRESENT))
3621 return true; /* native DP sink */
3622
3623 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3624 return true; /* no per-port downstream info */
3625
3626 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3627 intel_dp->downstream_ports,
3628 DP_MAX_DOWNSTREAM_PORTS) < 0)
3629 return false; /* downstream port status fetch failed */
3630
3631 return true;
3632 }
3633
3634 static void
3635 intel_dp_probe_oui(struct intel_dp *intel_dp)
3636 {
3637 u8 buf[3];
3638
3639 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3640 return;
3641
3642 if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3643 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3644 buf[0], buf[1], buf[2]);
3645
3646 if (drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3647 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3648 buf[0], buf[1], buf[2]);
3649 }
3650
3651 static bool
3652 intel_dp_can_mst(struct intel_dp *intel_dp)
3653 {
3654 u8 buf[1];
3655
3656 if (!i915.enable_dp_mst)
3657 return false;
3658
3659 if (!intel_dp->can_mst)
3660 return false;
3661
3662 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3663 return false;
3664
3665 if (drm_dp_dpcd_read(&intel_dp->aux, DP_MSTM_CAP, buf, 1) != 1)
3666 return false;
3667
3668 return buf[0] & DP_MST_CAP;
3669 }
3670
3671 static void
3672 intel_dp_configure_mst(struct intel_dp *intel_dp)
3673 {
3674 if (!i915.enable_dp_mst)
3675 return;
3676
3677 if (!intel_dp->can_mst)
3678 return;
3679
3680 intel_dp->is_mst = intel_dp_can_mst(intel_dp);
3681
3682 if (intel_dp->is_mst)
3683 DRM_DEBUG_KMS("Sink is MST capable\n");
3684 else
3685 DRM_DEBUG_KMS("Sink is not MST capable\n");
3686
3687 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
3688 intel_dp->is_mst);
3689 }
3690
3691 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3692 {
3693 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3694 struct drm_device *dev = dig_port->base.base.dev;
3695 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3696 u8 buf;
3697 int ret = 0;
3698 int count = 0;
3699 int attempts = 10;
3700
3701 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3702 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3703 ret = -EIO;
3704 goto out;
3705 }
3706
3707 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3708 buf & ~DP_TEST_SINK_START) < 0) {
3709 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3710 ret = -EIO;
3711 goto out;
3712 }
3713
3714 do {
3715 intel_wait_for_vblank(dev, intel_crtc->pipe);
3716
3717 if (drm_dp_dpcd_readb(&intel_dp->aux,
3718 DP_TEST_SINK_MISC, &buf) < 0) {
3719 ret = -EIO;
3720 goto out;
3721 }
3722 count = buf & DP_TEST_COUNT_MASK;
3723 } while (--attempts && count);
3724
3725 if (attempts == 0) {
3726 DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
3727 ret = -ETIMEDOUT;
3728 }
3729
3730 out:
3731 hsw_enable_ips(intel_crtc);
3732 return ret;
3733 }
3734
3735 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
3736 {
3737 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3738 struct drm_device *dev = dig_port->base.base.dev;
3739 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3740 u8 buf;
3741 int ret;
3742
3743 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3744 return -EIO;
3745
3746 if (!(buf & DP_TEST_CRC_SUPPORTED))
3747 return -ENOTTY;
3748
3749 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3750 return -EIO;
3751
3752 if (buf & DP_TEST_SINK_START) {
3753 ret = intel_dp_sink_crc_stop(intel_dp);
3754 if (ret)
3755 return ret;
3756 }
3757
3758 hsw_disable_ips(intel_crtc);
3759
3760 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3761 buf | DP_TEST_SINK_START) < 0) {
3762 hsw_enable_ips(intel_crtc);
3763 return -EIO;
3764 }
3765
3766 intel_wait_for_vblank(dev, intel_crtc->pipe);
3767 return 0;
3768 }
3769
3770 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3771 {
3772 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3773 struct drm_device *dev = dig_port->base.base.dev;
3774 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3775 u8 buf;
3776 int count, ret;
3777 int attempts = 6;
3778
3779 ret = intel_dp_sink_crc_start(intel_dp);
3780 if (ret)
3781 return ret;
3782
3783 do {
3784 intel_wait_for_vblank(dev, intel_crtc->pipe);
3785
3786 if (drm_dp_dpcd_readb(&intel_dp->aux,
3787 DP_TEST_SINK_MISC, &buf) < 0) {
3788 ret = -EIO;
3789 goto stop;
3790 }
3791 count = buf & DP_TEST_COUNT_MASK;
3792
3793 } while (--attempts && count == 0);
3794
3795 if (attempts == 0) {
3796 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
3797 ret = -ETIMEDOUT;
3798 goto stop;
3799 }
3800
3801 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
3802 ret = -EIO;
3803 goto stop;
3804 }
3805
3806 stop:
3807 intel_dp_sink_crc_stop(intel_dp);
3808 return ret;
3809 }
3810
3811 static bool
3812 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3813 {
3814 return drm_dp_dpcd_read(&intel_dp->aux,
3815 DP_DEVICE_SERVICE_IRQ_VECTOR,
3816 sink_irq_vector, 1) == 1;
3817 }
3818
3819 static bool
3820 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3821 {
3822 int ret;
3823
3824 ret = drm_dp_dpcd_read(&intel_dp->aux,
3825 DP_SINK_COUNT_ESI,
3826 sink_irq_vector, 14);
3827 if (ret != 14)
3828 return false;
3829
3830 return true;
3831 }
3832
3833 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
3834 {
3835 uint8_t test_result = DP_TEST_ACK;
3836 return test_result;
3837 }
3838
3839 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
3840 {
3841 uint8_t test_result = DP_TEST_NAK;
3842 return test_result;
3843 }
3844
3845 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
3846 {
3847 uint8_t test_result = DP_TEST_NAK;
3848 struct intel_connector *intel_connector = intel_dp->attached_connector;
3849 struct drm_connector *connector = &intel_connector->base;
3850
3851 if (intel_connector->detect_edid == NULL ||
3852 connector->edid_corrupt ||
3853 intel_dp->aux.i2c_defer_count > 6) {
3854 /* Check EDID read for NACKs, DEFERs and corruption
3855 * (DP CTS 1.2 Core r1.1)
3856 * 4.2.2.4 : Failed EDID read, I2C_NAK
3857 * 4.2.2.5 : Failed EDID read, I2C_DEFER
3858 * 4.2.2.6 : EDID corruption detected
3859 * Use failsafe mode for all cases
3860 */
3861 if (intel_dp->aux.i2c_nack_count > 0 ||
3862 intel_dp->aux.i2c_defer_count > 0)
3863 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
3864 intel_dp->aux.i2c_nack_count,
3865 intel_dp->aux.i2c_defer_count);
3866 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
3867 } else {
3868 struct edid *block = intel_connector->detect_edid;
3869
3870 /* We have to write the checksum
3871 * of the last block read
3872 */
3873 block += intel_connector->detect_edid->extensions;
3874
3875 if (!drm_dp_dpcd_write(&intel_dp->aux,
3876 DP_TEST_EDID_CHECKSUM,
3877 &block->checksum,
3878 1))
3879 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
3880
3881 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
3882 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
3883 }
3884
3885 /* Set test active flag here so userspace doesn't interrupt things */
3886 intel_dp->compliance_test_active = 1;
3887
3888 return test_result;
3889 }
3890
3891 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
3892 {
3893 uint8_t test_result = DP_TEST_NAK;
3894 return test_result;
3895 }
3896
3897 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
3898 {
3899 uint8_t response = DP_TEST_NAK;
3900 uint8_t rxdata = 0;
3901 int status = 0;
3902
3903 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
3904 if (status <= 0) {
3905 DRM_DEBUG_KMS("Could not read test request from sink\n");
3906 goto update_status;
3907 }
3908
3909 switch (rxdata) {
3910 case DP_TEST_LINK_TRAINING:
3911 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
3912 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
3913 response = intel_dp_autotest_link_training(intel_dp);
3914 break;
3915 case DP_TEST_LINK_VIDEO_PATTERN:
3916 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
3917 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
3918 response = intel_dp_autotest_video_pattern(intel_dp);
3919 break;
3920 case DP_TEST_LINK_EDID_READ:
3921 DRM_DEBUG_KMS("EDID test requested\n");
3922 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
3923 response = intel_dp_autotest_edid(intel_dp);
3924 break;
3925 case DP_TEST_LINK_PHY_TEST_PATTERN:
3926 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
3927 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
3928 response = intel_dp_autotest_phy_pattern(intel_dp);
3929 break;
3930 default:
3931 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
3932 break;
3933 }
3934
3935 update_status:
3936 status = drm_dp_dpcd_write(&intel_dp->aux,
3937 DP_TEST_RESPONSE,
3938 &response, 1);
3939 if (status <= 0)
3940 DRM_DEBUG_KMS("Could not write test response to sink\n");
3941 }
3942
3943 static int
3944 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3945 {
3946 bool bret;
3947
3948 if (intel_dp->is_mst) {
3949 u8 esi[16] = { 0 };
3950 int ret = 0;
3951 int retry;
3952 bool handled;
3953 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3954 go_again:
3955 if (bret == true) {
3956
3957 /* check link status - esi[10] = 0x200c */
3958 if (intel_dp->active_mst_links &&
3959 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3960 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3961 intel_dp_start_link_train(intel_dp);
3962 intel_dp_stop_link_train(intel_dp);
3963 }
3964
3965 DRM_DEBUG_KMS("got esi %3ph\n", esi);
3966 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3967
3968 if (handled) {
3969 for (retry = 0; retry < 3; retry++) {
3970 int wret;
3971 wret = drm_dp_dpcd_write(&intel_dp->aux,
3972 DP_SINK_COUNT_ESI+1,
3973 &esi[1], 3);
3974 if (wret == 3) {
3975 break;
3976 }
3977 }
3978
3979 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3980 if (bret == true) {
3981 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
3982 goto go_again;
3983 }
3984 } else
3985 ret = 0;
3986
3987 return ret;
3988 } else {
3989 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3990 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3991 intel_dp->is_mst = false;
3992 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3993 /* send a hotplug event */
3994 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3995 }
3996 }
3997 return -EINVAL;
3998 }
3999
4000 static void
4001 intel_dp_check_link_status(struct intel_dp *intel_dp)
4002 {
4003 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4004 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4005 u8 link_status[DP_LINK_STATUS_SIZE];
4006
4007 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4008
4009 if (!intel_dp_get_link_status(intel_dp, link_status)) {
4010 DRM_ERROR("Failed to get link status\n");
4011 return;
4012 }
4013
4014 if (!intel_encoder->base.crtc)
4015 return;
4016
4017 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4018 return;
4019
4020 /* if link training is requested we should perform it always */
4021 if ((intel_dp->compliance_test_type == DP_TEST_LINK_TRAINING) ||
4022 (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count))) {
4023 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4024 intel_encoder->base.name);
4025 intel_dp_start_link_train(intel_dp);
4026 intel_dp_stop_link_train(intel_dp);
4027 }
4028 }
4029
4030 /*
4031 * According to DP spec
4032 * 5.1.2:
4033 * 1. Read DPCD
4034 * 2. Configure link according to Receiver Capabilities
4035 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4036 * 4. Check link status on receipt of hot-plug interrupt
4037 *
4038 * intel_dp_short_pulse - handles short pulse interrupts
4039 * when full detection is not required.
4040 * Returns %true if short pulse is handled and full detection
4041 * is NOT required and %false otherwise.
4042 */
4043 static bool
4044 intel_dp_short_pulse(struct intel_dp *intel_dp)
4045 {
4046 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4047 u8 sink_irq_vector = 0;
4048 u8 old_sink_count = intel_dp->sink_count;
4049 bool ret;
4050
4051 /*
4052 * Clearing compliance test variables to allow capturing
4053 * of values for next automated test request.
4054 */
4055 intel_dp->compliance_test_active = 0;
4056 intel_dp->compliance_test_type = 0;
4057 intel_dp->compliance_test_data = 0;
4058
4059 /*
4060 * Now read the DPCD to see if it's actually running
4061 * If the current value of sink count doesn't match with
4062 * the value that was stored earlier or dpcd read failed
4063 * we need to do full detection
4064 */
4065 ret = intel_dp_get_dpcd(intel_dp);
4066
4067 if ((old_sink_count != intel_dp->sink_count) || !ret) {
4068 /* No need to proceed if we are going to do full detect */
4069 return false;
4070 }
4071
4072 /* Try to read the source of the interrupt */
4073 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4074 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4075 sink_irq_vector != 0) {
4076 /* Clear interrupt source */
4077 drm_dp_dpcd_writeb(&intel_dp->aux,
4078 DP_DEVICE_SERVICE_IRQ_VECTOR,
4079 sink_irq_vector);
4080
4081 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4082 DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4083 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4084 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4085 }
4086
4087 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4088 intel_dp_check_link_status(intel_dp);
4089 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4090
4091 return true;
4092 }
4093
4094 /* XXX this is probably wrong for multiple downstream ports */
4095 static enum drm_connector_status
4096 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4097 {
4098 uint8_t *dpcd = intel_dp->dpcd;
4099 uint8_t type;
4100
4101 if (!intel_dp_get_dpcd(intel_dp))
4102 return connector_status_disconnected;
4103
4104 if (is_edp(intel_dp))
4105 return connector_status_connected;
4106
4107 /* if there's no downstream port, we're done */
4108 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4109 return connector_status_connected;
4110
4111 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4112 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4113 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4114
4115 return intel_dp->sink_count ?
4116 connector_status_connected : connector_status_disconnected;
4117 }
4118
4119 if (intel_dp_can_mst(intel_dp))
4120 return connector_status_connected;
4121
4122 /* If no HPD, poke DDC gently */
4123 if (drm_probe_ddc(&intel_dp->aux.ddc))
4124 return connector_status_connected;
4125
4126 /* Well we tried, say unknown for unreliable port types */
4127 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4128 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4129 if (type == DP_DS_PORT_TYPE_VGA ||
4130 type == DP_DS_PORT_TYPE_NON_EDID)
4131 return connector_status_unknown;
4132 } else {
4133 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4134 DP_DWN_STRM_PORT_TYPE_MASK;
4135 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4136 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4137 return connector_status_unknown;
4138 }
4139
4140 /* Anything else is out of spec, warn and ignore */
4141 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4142 return connector_status_disconnected;
4143 }
4144
4145 static enum drm_connector_status
4146 edp_detect(struct intel_dp *intel_dp)
4147 {
4148 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4149 enum drm_connector_status status;
4150
4151 status = intel_panel_detect(dev);
4152 if (status == connector_status_unknown)
4153 status = connector_status_connected;
4154
4155 return status;
4156 }
4157
4158 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4159 struct intel_digital_port *port)
4160 {
4161 u32 bit;
4162
4163 switch (port->port) {
4164 case PORT_A:
4165 return true;
4166 case PORT_B:
4167 bit = SDE_PORTB_HOTPLUG;
4168 break;
4169 case PORT_C:
4170 bit = SDE_PORTC_HOTPLUG;
4171 break;
4172 case PORT_D:
4173 bit = SDE_PORTD_HOTPLUG;
4174 break;
4175 default:
4176 MISSING_CASE(port->port);
4177 return false;
4178 }
4179
4180 return I915_READ(SDEISR) & bit;
4181 }
4182
4183 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4184 struct intel_digital_port *port)
4185 {
4186 u32 bit;
4187
4188 switch (port->port) {
4189 case PORT_A:
4190 return true;
4191 case PORT_B:
4192 bit = SDE_PORTB_HOTPLUG_CPT;
4193 break;
4194 case PORT_C:
4195 bit = SDE_PORTC_HOTPLUG_CPT;
4196 break;
4197 case PORT_D:
4198 bit = SDE_PORTD_HOTPLUG_CPT;
4199 break;
4200 case PORT_E:
4201 bit = SDE_PORTE_HOTPLUG_SPT;
4202 break;
4203 default:
4204 MISSING_CASE(port->port);
4205 return false;
4206 }
4207
4208 return I915_READ(SDEISR) & bit;
4209 }
4210
4211 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4212 struct intel_digital_port *port)
4213 {
4214 u32 bit;
4215
4216 switch (port->port) {
4217 case PORT_B:
4218 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4219 break;
4220 case PORT_C:
4221 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4222 break;
4223 case PORT_D:
4224 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4225 break;
4226 default:
4227 MISSING_CASE(port->port);
4228 return false;
4229 }
4230
4231 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4232 }
4233
4234 static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
4235 struct intel_digital_port *port)
4236 {
4237 u32 bit;
4238
4239 switch (port->port) {
4240 case PORT_B:
4241 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4242 break;
4243 case PORT_C:
4244 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4245 break;
4246 case PORT_D:
4247 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4248 break;
4249 default:
4250 MISSING_CASE(port->port);
4251 return false;
4252 }
4253
4254 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4255 }
4256
4257 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4258 struct intel_digital_port *intel_dig_port)
4259 {
4260 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4261 enum port port;
4262 u32 bit;
4263
4264 intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4265 switch (port) {
4266 case PORT_A:
4267 bit = BXT_DE_PORT_HP_DDIA;
4268 break;
4269 case PORT_B:
4270 bit = BXT_DE_PORT_HP_DDIB;
4271 break;
4272 case PORT_C:
4273 bit = BXT_DE_PORT_HP_DDIC;
4274 break;
4275 default:
4276 MISSING_CASE(port);
4277 return false;
4278 }
4279
4280 return I915_READ(GEN8_DE_PORT_ISR) & bit;
4281 }
4282
4283 /*
4284 * intel_digital_port_connected - is the specified port connected?
4285 * @dev_priv: i915 private structure
4286 * @port: the port to test
4287 *
4288 * Return %true if @port is connected, %false otherwise.
4289 */
4290 static bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4291 struct intel_digital_port *port)
4292 {
4293 if (HAS_PCH_IBX(dev_priv))
4294 return ibx_digital_port_connected(dev_priv, port);
4295 else if (HAS_PCH_SPLIT(dev_priv))
4296 return cpt_digital_port_connected(dev_priv, port);
4297 else if (IS_BROXTON(dev_priv))
4298 return bxt_digital_port_connected(dev_priv, port);
4299 else if (IS_GM45(dev_priv))
4300 return gm45_digital_port_connected(dev_priv, port);
4301 else
4302 return g4x_digital_port_connected(dev_priv, port);
4303 }
4304
4305 static struct edid *
4306 intel_dp_get_edid(struct intel_dp *intel_dp)
4307 {
4308 struct intel_connector *intel_connector = intel_dp->attached_connector;
4309
4310 /* use cached edid if we have one */
4311 if (intel_connector->edid) {
4312 /* invalid edid */
4313 if (IS_ERR(intel_connector->edid))
4314 return NULL;
4315
4316 return drm_edid_duplicate(intel_connector->edid);
4317 } else
4318 return drm_get_edid(&intel_connector->base,
4319 &intel_dp->aux.ddc);
4320 }
4321
4322 static void
4323 intel_dp_set_edid(struct intel_dp *intel_dp)
4324 {
4325 struct intel_connector *intel_connector = intel_dp->attached_connector;
4326 struct edid *edid;
4327
4328 intel_dp_unset_edid(intel_dp);
4329 edid = intel_dp_get_edid(intel_dp);
4330 intel_connector->detect_edid = edid;
4331
4332 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4333 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4334 else
4335 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4336 }
4337
4338 static void
4339 intel_dp_unset_edid(struct intel_dp *intel_dp)
4340 {
4341 struct intel_connector *intel_connector = intel_dp->attached_connector;
4342
4343 kfree(intel_connector->detect_edid);
4344 intel_connector->detect_edid = NULL;
4345
4346 intel_dp->has_audio = false;
4347 }
4348
4349 static enum drm_connector_status
4350 intel_dp_long_pulse(struct intel_connector *intel_connector)
4351 {
4352 struct drm_connector *connector = &intel_connector->base;
4353 struct intel_dp *intel_dp = intel_attached_dp(connector);
4354 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4355 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4356 struct drm_device *dev = connector->dev;
4357 enum drm_connector_status status;
4358 enum intel_display_power_domain power_domain;
4359 u8 sink_irq_vector = 0;
4360
4361 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4362 intel_display_power_get(to_i915(dev), power_domain);
4363
4364 /* Can't disconnect eDP, but you can close the lid... */
4365 if (is_edp(intel_dp))
4366 status = edp_detect(intel_dp);
4367 else if (intel_digital_port_connected(to_i915(dev),
4368 dp_to_dig_port(intel_dp)))
4369 status = intel_dp_detect_dpcd(intel_dp);
4370 else
4371 status = connector_status_disconnected;
4372
4373 if (status == connector_status_disconnected) {
4374 intel_dp->compliance_test_active = 0;
4375 intel_dp->compliance_test_type = 0;
4376 intel_dp->compliance_test_data = 0;
4377
4378 if (intel_dp->is_mst) {
4379 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4380 intel_dp->is_mst,
4381 intel_dp->mst_mgr.mst_state);
4382 intel_dp->is_mst = false;
4383 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4384 intel_dp->is_mst);
4385 }
4386
4387 goto out;
4388 }
4389
4390 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4391 intel_encoder->type = INTEL_OUTPUT_DP;
4392
4393 DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
4394 yesno(intel_dp_source_supports_hbr2(intel_dp)),
4395 yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
4396
4397 intel_dp_print_rates(intel_dp);
4398
4399 intel_dp_probe_oui(intel_dp);
4400
4401 intel_dp_print_hw_revision(intel_dp);
4402 intel_dp_print_sw_revision(intel_dp);
4403
4404 intel_dp_configure_mst(intel_dp);
4405
4406 if (intel_dp->is_mst) {
4407 /*
4408 * If we are in MST mode then this connector
4409 * won't appear connected or have anything
4410 * with EDID on it
4411 */
4412 status = connector_status_disconnected;
4413 goto out;
4414 } else if (connector->status == connector_status_connected) {
4415 /*
4416 * If display was connected already and is still connected
4417 * check links status, there has been known issues of
4418 * link loss triggerring long pulse!!!!
4419 */
4420 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4421 intel_dp_check_link_status(intel_dp);
4422 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4423 goto out;
4424 }
4425
4426 /*
4427 * Clearing NACK and defer counts to get their exact values
4428 * while reading EDID which are required by Compliance tests
4429 * 4.2.2.4 and 4.2.2.5
4430 */
4431 intel_dp->aux.i2c_nack_count = 0;
4432 intel_dp->aux.i2c_defer_count = 0;
4433
4434 intel_dp_set_edid(intel_dp);
4435 if (is_edp(intel_dp) || intel_connector->detect_edid)
4436 status = connector_status_connected;
4437 intel_dp->detect_done = true;
4438
4439 /* Try to read the source of the interrupt */
4440 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4441 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) &&
4442 sink_irq_vector != 0) {
4443 /* Clear interrupt source */
4444 drm_dp_dpcd_writeb(&intel_dp->aux,
4445 DP_DEVICE_SERVICE_IRQ_VECTOR,
4446 sink_irq_vector);
4447
4448 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4449 intel_dp_handle_test_request(intel_dp);
4450 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4451 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4452 }
4453
4454 out:
4455 if (status != connector_status_connected && !intel_dp->is_mst)
4456 intel_dp_unset_edid(intel_dp);
4457
4458 intel_display_power_put(to_i915(dev), power_domain);
4459 return status;
4460 }
4461
4462 static enum drm_connector_status
4463 intel_dp_detect(struct drm_connector *connector, bool force)
4464 {
4465 struct intel_dp *intel_dp = intel_attached_dp(connector);
4466 enum drm_connector_status status = connector->status;
4467
4468 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4469 connector->base.id, connector->name);
4470
4471 /* If full detect is not performed yet, do a full detect */
4472 if (!intel_dp->detect_done)
4473 status = intel_dp_long_pulse(intel_dp->attached_connector);
4474
4475 intel_dp->detect_done = false;
4476
4477 return status;
4478 }
4479
4480 static void
4481 intel_dp_force(struct drm_connector *connector)
4482 {
4483 struct intel_dp *intel_dp = intel_attached_dp(connector);
4484 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4485 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4486 enum intel_display_power_domain power_domain;
4487
4488 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4489 connector->base.id, connector->name);
4490 intel_dp_unset_edid(intel_dp);
4491
4492 if (connector->status != connector_status_connected)
4493 return;
4494
4495 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4496 intel_display_power_get(dev_priv, power_domain);
4497
4498 intel_dp_set_edid(intel_dp);
4499
4500 intel_display_power_put(dev_priv, power_domain);
4501
4502 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4503 intel_encoder->type = INTEL_OUTPUT_DP;
4504 }
4505
4506 static int intel_dp_get_modes(struct drm_connector *connector)
4507 {
4508 struct intel_connector *intel_connector = to_intel_connector(connector);
4509 struct edid *edid;
4510
4511 edid = intel_connector->detect_edid;
4512 if (edid) {
4513 int ret = intel_connector_update_modes(connector, edid);
4514 if (ret)
4515 return ret;
4516 }
4517
4518 /* if eDP has no EDID, fall back to fixed mode */
4519 if (is_edp(intel_attached_dp(connector)) &&
4520 intel_connector->panel.fixed_mode) {
4521 struct drm_display_mode *mode;
4522
4523 mode = drm_mode_duplicate(connector->dev,
4524 intel_connector->panel.fixed_mode);
4525 if (mode) {
4526 drm_mode_probed_add(connector, mode);
4527 return 1;
4528 }
4529 }
4530
4531 return 0;
4532 }
4533
4534 static bool
4535 intel_dp_detect_audio(struct drm_connector *connector)
4536 {
4537 bool has_audio = false;
4538 struct edid *edid;
4539
4540 edid = to_intel_connector(connector)->detect_edid;
4541 if (edid)
4542 has_audio = drm_detect_monitor_audio(edid);
4543
4544 return has_audio;
4545 }
4546
4547 static int
4548 intel_dp_set_property(struct drm_connector *connector,
4549 struct drm_property *property,
4550 uint64_t val)
4551 {
4552 struct drm_i915_private *dev_priv = to_i915(connector->dev);
4553 struct intel_connector *intel_connector = to_intel_connector(connector);
4554 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4555 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4556 int ret;
4557
4558 ret = drm_object_property_set_value(&connector->base, property, val);
4559 if (ret)
4560 return ret;
4561
4562 if (property == dev_priv->force_audio_property) {
4563 int i = val;
4564 bool has_audio;
4565
4566 if (i == intel_dp->force_audio)
4567 return 0;
4568
4569 intel_dp->force_audio = i;
4570
4571 if (i == HDMI_AUDIO_AUTO)
4572 has_audio = intel_dp_detect_audio(connector);
4573 else
4574 has_audio = (i == HDMI_AUDIO_ON);
4575
4576 if (has_audio == intel_dp->has_audio)
4577 return 0;
4578
4579 intel_dp->has_audio = has_audio;
4580 goto done;
4581 }
4582
4583 if (property == dev_priv->broadcast_rgb_property) {
4584 bool old_auto = intel_dp->color_range_auto;
4585 bool old_range = intel_dp->limited_color_range;
4586
4587 switch (val) {
4588 case INTEL_BROADCAST_RGB_AUTO:
4589 intel_dp->color_range_auto = true;
4590 break;
4591 case INTEL_BROADCAST_RGB_FULL:
4592 intel_dp->color_range_auto = false;
4593 intel_dp->limited_color_range = false;
4594 break;
4595 case INTEL_BROADCAST_RGB_LIMITED:
4596 intel_dp->color_range_auto = false;
4597 intel_dp->limited_color_range = true;
4598 break;
4599 default:
4600 return -EINVAL;
4601 }
4602
4603 if (old_auto == intel_dp->color_range_auto &&
4604 old_range == intel_dp->limited_color_range)
4605 return 0;
4606
4607 goto done;
4608 }
4609
4610 if (is_edp(intel_dp) &&
4611 property == connector->dev->mode_config.scaling_mode_property) {
4612 if (val == DRM_MODE_SCALE_NONE) {
4613 DRM_DEBUG_KMS("no scaling not supported\n");
4614 return -EINVAL;
4615 }
4616 if (HAS_GMCH_DISPLAY(dev_priv) &&
4617 val == DRM_MODE_SCALE_CENTER) {
4618 DRM_DEBUG_KMS("centering not supported\n");
4619 return -EINVAL;
4620 }
4621
4622 if (intel_connector->panel.fitting_mode == val) {
4623 /* the eDP scaling property is not changed */
4624 return 0;
4625 }
4626 intel_connector->panel.fitting_mode = val;
4627
4628 goto done;
4629 }
4630
4631 return -EINVAL;
4632
4633 done:
4634 if (intel_encoder->base.crtc)
4635 intel_crtc_restore_mode(intel_encoder->base.crtc);
4636
4637 return 0;
4638 }
4639
4640 static int
4641 intel_dp_connector_register(struct drm_connector *connector)
4642 {
4643 struct intel_dp *intel_dp = intel_attached_dp(connector);
4644 int ret;
4645
4646 ret = intel_connector_register(connector);
4647 if (ret)
4648 return ret;
4649
4650 i915_debugfs_connector_add(connector);
4651
4652 DRM_DEBUG_KMS("registering %s bus for %s\n",
4653 intel_dp->aux.name, connector->kdev->kobj.name);
4654
4655 intel_dp->aux.dev = connector->kdev;
4656 return drm_dp_aux_register(&intel_dp->aux);
4657 }
4658
4659 static void
4660 intel_dp_connector_unregister(struct drm_connector *connector)
4661 {
4662 drm_dp_aux_unregister(&intel_attached_dp(connector)->aux);
4663 intel_connector_unregister(connector);
4664 }
4665
4666 static void
4667 intel_dp_connector_destroy(struct drm_connector *connector)
4668 {
4669 struct intel_connector *intel_connector = to_intel_connector(connector);
4670
4671 kfree(intel_connector->detect_edid);
4672
4673 if (!IS_ERR_OR_NULL(intel_connector->edid))
4674 kfree(intel_connector->edid);
4675
4676 /* Can't call is_edp() since the encoder may have been destroyed
4677 * already. */
4678 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4679 intel_panel_fini(&intel_connector->panel);
4680
4681 drm_connector_cleanup(connector);
4682 kfree(connector);
4683 }
4684
4685 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4686 {
4687 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4688 struct intel_dp *intel_dp = &intel_dig_port->dp;
4689
4690 intel_dp_mst_encoder_cleanup(intel_dig_port);
4691 if (is_edp(intel_dp)) {
4692 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4693 /*
4694 * vdd might still be enabled do to the delayed vdd off.
4695 * Make sure vdd is actually turned off here.
4696 */
4697 pps_lock(intel_dp);
4698 edp_panel_vdd_off_sync(intel_dp);
4699 pps_unlock(intel_dp);
4700
4701 if (intel_dp->edp_notifier.notifier_call) {
4702 unregister_reboot_notifier(&intel_dp->edp_notifier);
4703 intel_dp->edp_notifier.notifier_call = NULL;
4704 }
4705 }
4706
4707 intel_dp_aux_fini(intel_dp);
4708
4709 drm_encoder_cleanup(encoder);
4710 kfree(intel_dig_port);
4711 }
4712
4713 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4714 {
4715 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4716
4717 if (!is_edp(intel_dp))
4718 return;
4719
4720 /*
4721 * vdd might still be enabled do to the delayed vdd off.
4722 * Make sure vdd is actually turned off here.
4723 */
4724 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4725 pps_lock(intel_dp);
4726 edp_panel_vdd_off_sync(intel_dp);
4727 pps_unlock(intel_dp);
4728 }
4729
4730 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4731 {
4732 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4733 struct drm_device *dev = intel_dig_port->base.base.dev;
4734 struct drm_i915_private *dev_priv = to_i915(dev);
4735 enum intel_display_power_domain power_domain;
4736
4737 lockdep_assert_held(&dev_priv->pps_mutex);
4738
4739 if (!edp_have_panel_vdd(intel_dp))
4740 return;
4741
4742 /*
4743 * The VDD bit needs a power domain reference, so if the bit is
4744 * already enabled when we boot or resume, grab this reference and
4745 * schedule a vdd off, so we don't hold on to the reference
4746 * indefinitely.
4747 */
4748 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4749 power_domain = intel_display_port_aux_power_domain(&intel_dig_port->base);
4750 intel_display_power_get(dev_priv, power_domain);
4751
4752 edp_panel_vdd_schedule_off(intel_dp);
4753 }
4754
4755 void intel_dp_encoder_reset(struct drm_encoder *encoder)
4756 {
4757 struct drm_i915_private *dev_priv = to_i915(encoder->dev);
4758 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4759
4760 if (!HAS_DDI(dev_priv))
4761 intel_dp->DP = I915_READ(intel_dp->output_reg);
4762
4763 if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4764 return;
4765
4766 pps_lock(intel_dp);
4767
4768 /* Reinit the power sequencer, in case BIOS did something with it. */
4769 intel_dp_pps_init(encoder->dev, intel_dp);
4770 intel_edp_panel_vdd_sanitize(intel_dp);
4771
4772 pps_unlock(intel_dp);
4773 }
4774
4775 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4776 .dpms = drm_atomic_helper_connector_dpms,
4777 .detect = intel_dp_detect,
4778 .force = intel_dp_force,
4779 .fill_modes = drm_helper_probe_single_connector_modes,
4780 .set_property = intel_dp_set_property,
4781 .atomic_get_property = intel_connector_atomic_get_property,
4782 .late_register = intel_dp_connector_register,
4783 .early_unregister = intel_dp_connector_unregister,
4784 .destroy = intel_dp_connector_destroy,
4785 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4786 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4787 };
4788
4789 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4790 .get_modes = intel_dp_get_modes,
4791 .mode_valid = intel_dp_mode_valid,
4792 };
4793
4794 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4795 .reset = intel_dp_encoder_reset,
4796 .destroy = intel_dp_encoder_destroy,
4797 };
4798
4799 enum irqreturn
4800 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4801 {
4802 struct intel_dp *intel_dp = &intel_dig_port->dp;
4803 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4804 struct drm_device *dev = intel_dig_port->base.base.dev;
4805 struct drm_i915_private *dev_priv = to_i915(dev);
4806 enum intel_display_power_domain power_domain;
4807 enum irqreturn ret = IRQ_NONE;
4808
4809 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
4810 intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
4811 intel_dig_port->base.type = INTEL_OUTPUT_DP;
4812
4813 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4814 /*
4815 * vdd off can generate a long pulse on eDP which
4816 * would require vdd on to handle it, and thus we
4817 * would end up in an endless cycle of
4818 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4819 */
4820 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4821 port_name(intel_dig_port->port));
4822 return IRQ_HANDLED;
4823 }
4824
4825 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4826 port_name(intel_dig_port->port),
4827 long_hpd ? "long" : "short");
4828
4829 if (long_hpd) {
4830 intel_dp->detect_done = false;
4831 return IRQ_NONE;
4832 }
4833
4834 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4835 intel_display_power_get(dev_priv, power_domain);
4836
4837 if (intel_dp->is_mst) {
4838 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
4839 /*
4840 * If we were in MST mode, and device is not
4841 * there, get out of MST mode
4842 */
4843 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4844 intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4845 intel_dp->is_mst = false;
4846 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4847 intel_dp->is_mst);
4848 intel_dp->detect_done = false;
4849 goto put_power;
4850 }
4851 }
4852
4853 if (!intel_dp->is_mst) {
4854 if (!intel_dp_short_pulse(intel_dp)) {
4855 intel_dp->detect_done = false;
4856 goto put_power;
4857 }
4858 }
4859
4860 ret = IRQ_HANDLED;
4861
4862 put_power:
4863 intel_display_power_put(dev_priv, power_domain);
4864
4865 return ret;
4866 }
4867
4868 /* check the VBT to see whether the eDP is on another port */
4869 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4870 {
4871 struct drm_i915_private *dev_priv = to_i915(dev);
4872
4873 /*
4874 * eDP not supported on g4x. so bail out early just
4875 * for a bit extra safety in case the VBT is bonkers.
4876 */
4877 if (INTEL_INFO(dev)->gen < 5)
4878 return false;
4879
4880 if (port == PORT_A)
4881 return true;
4882
4883 return intel_bios_is_port_edp(dev_priv, port);
4884 }
4885
4886 void
4887 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4888 {
4889 struct intel_connector *intel_connector = to_intel_connector(connector);
4890
4891 intel_attach_force_audio_property(connector);
4892 intel_attach_broadcast_rgb_property(connector);
4893 intel_dp->color_range_auto = true;
4894
4895 if (is_edp(intel_dp)) {
4896 drm_mode_create_scaling_mode_property(connector->dev);
4897 drm_object_attach_property(
4898 &connector->base,
4899 connector->dev->mode_config.scaling_mode_property,
4900 DRM_MODE_SCALE_ASPECT);
4901 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4902 }
4903 }
4904
4905 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4906 {
4907 intel_dp->panel_power_off_time = ktime_get_boottime();
4908 intel_dp->last_power_on = jiffies;
4909 intel_dp->last_backlight_off = jiffies;
4910 }
4911
4912 static void
4913 intel_pps_readout_hw_state(struct drm_i915_private *dev_priv,
4914 struct intel_dp *intel_dp, struct edp_power_seq *seq)
4915 {
4916 u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
4917 struct pps_registers regs;
4918
4919 intel_pps_get_registers(dev_priv, intel_dp, &regs);
4920
4921 /* Workaround: Need to write PP_CONTROL with the unlock key as
4922 * the very first thing. */
4923 pp_ctl = ironlake_get_pp_control(intel_dp);
4924
4925 pp_on = I915_READ(regs.pp_on);
4926 pp_off = I915_READ(regs.pp_off);
4927 if (!IS_BROXTON(dev_priv)) {
4928 I915_WRITE(regs.pp_ctrl, pp_ctl);
4929 pp_div = I915_READ(regs.pp_div);
4930 }
4931
4932 /* Pull timing values out of registers */
4933 seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4934 PANEL_POWER_UP_DELAY_SHIFT;
4935
4936 seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4937 PANEL_LIGHT_ON_DELAY_SHIFT;
4938
4939 seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4940 PANEL_LIGHT_OFF_DELAY_SHIFT;
4941
4942 seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4943 PANEL_POWER_DOWN_DELAY_SHIFT;
4944
4945 if (IS_BROXTON(dev_priv)) {
4946 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
4947 BXT_POWER_CYCLE_DELAY_SHIFT;
4948 if (tmp > 0)
4949 seq->t11_t12 = (tmp - 1) * 1000;
4950 else
4951 seq->t11_t12 = 0;
4952 } else {
4953 seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4954 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4955 }
4956 }
4957
4958 static void
4959 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
4960 {
4961 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4962 state_name,
4963 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
4964 }
4965
4966 static void
4967 intel_pps_verify_state(struct drm_i915_private *dev_priv,
4968 struct intel_dp *intel_dp)
4969 {
4970 struct edp_power_seq hw;
4971 struct edp_power_seq *sw = &intel_dp->pps_delays;
4972
4973 intel_pps_readout_hw_state(dev_priv, intel_dp, &hw);
4974
4975 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
4976 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
4977 DRM_ERROR("PPS state mismatch\n");
4978 intel_pps_dump_state("sw", sw);
4979 intel_pps_dump_state("hw", &hw);
4980 }
4981 }
4982
4983 static void
4984 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4985 struct intel_dp *intel_dp)
4986 {
4987 struct drm_i915_private *dev_priv = to_i915(dev);
4988 struct edp_power_seq cur, vbt, spec,
4989 *final = &intel_dp->pps_delays;
4990
4991 lockdep_assert_held(&dev_priv->pps_mutex);
4992
4993 /* already initialized? */
4994 if (final->t11_t12 != 0)
4995 return;
4996
4997 intel_pps_readout_hw_state(dev_priv, intel_dp, &cur);
4998
4999 intel_pps_dump_state("cur", &cur);
5000
5001 vbt = dev_priv->vbt.edp.pps;
5002
5003 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5004 * our hw here, which are all in 100usec. */
5005 spec.t1_t3 = 210 * 10;
5006 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5007 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5008 spec.t10 = 500 * 10;
5009 /* This one is special and actually in units of 100ms, but zero
5010 * based in the hw (so we need to add 100 ms). But the sw vbt
5011 * table multiplies it with 1000 to make it in units of 100usec,
5012 * too. */
5013 spec.t11_t12 = (510 + 100) * 10;
5014
5015 intel_pps_dump_state("vbt", &vbt);
5016
5017 /* Use the max of the register settings and vbt. If both are
5018 * unset, fall back to the spec limits. */
5019 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
5020 spec.field : \
5021 max(cur.field, vbt.field))
5022 assign_final(t1_t3);
5023 assign_final(t8);
5024 assign_final(t9);
5025 assign_final(t10);
5026 assign_final(t11_t12);
5027 #undef assign_final
5028
5029 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
5030 intel_dp->panel_power_up_delay = get_delay(t1_t3);
5031 intel_dp->backlight_on_delay = get_delay(t8);
5032 intel_dp->backlight_off_delay = get_delay(t9);
5033 intel_dp->panel_power_down_delay = get_delay(t10);
5034 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5035 #undef get_delay
5036
5037 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5038 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5039 intel_dp->panel_power_cycle_delay);
5040
5041 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5042 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5043
5044 /*
5045 * We override the HW backlight delays to 1 because we do manual waits
5046 * on them. For T8, even BSpec recommends doing it. For T9, if we
5047 * don't do this, we'll end up waiting for the backlight off delay
5048 * twice: once when we do the manual sleep, and once when we disable
5049 * the panel and wait for the PP_STATUS bit to become zero.
5050 */
5051 final->t8 = 1;
5052 final->t9 = 1;
5053 }
5054
5055 static void
5056 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5057 struct intel_dp *intel_dp)
5058 {
5059 struct drm_i915_private *dev_priv = to_i915(dev);
5060 u32 pp_on, pp_off, pp_div, port_sel = 0;
5061 int div = dev_priv->rawclk_freq / 1000;
5062 struct pps_registers regs;
5063 enum port port = dp_to_dig_port(intel_dp)->port;
5064 const struct edp_power_seq *seq = &intel_dp->pps_delays;
5065
5066 lockdep_assert_held(&dev_priv->pps_mutex);
5067
5068 intel_pps_get_registers(dev_priv, intel_dp, &regs);
5069
5070 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5071 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
5072 pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5073 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5074 /* Compute the divisor for the pp clock, simply match the Bspec
5075 * formula. */
5076 if (IS_BROXTON(dev)) {
5077 pp_div = I915_READ(regs.pp_ctrl);
5078 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5079 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
5080 << BXT_POWER_CYCLE_DELAY_SHIFT);
5081 } else {
5082 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5083 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5084 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5085 }
5086
5087 /* Haswell doesn't have any port selection bits for the panel
5088 * power sequencer any more. */
5089 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5090 port_sel = PANEL_PORT_SELECT_VLV(port);
5091 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5092 if (port == PORT_A)
5093 port_sel = PANEL_PORT_SELECT_DPA;
5094 else
5095 port_sel = PANEL_PORT_SELECT_DPD;
5096 }
5097
5098 pp_on |= port_sel;
5099
5100 I915_WRITE(regs.pp_on, pp_on);
5101 I915_WRITE(regs.pp_off, pp_off);
5102 if (IS_BROXTON(dev))
5103 I915_WRITE(regs.pp_ctrl, pp_div);
5104 else
5105 I915_WRITE(regs.pp_div, pp_div);
5106
5107 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5108 I915_READ(regs.pp_on),
5109 I915_READ(regs.pp_off),
5110 IS_BROXTON(dev) ?
5111 (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
5112 I915_READ(regs.pp_div));
5113 }
5114
5115 static void intel_dp_pps_init(struct drm_device *dev,
5116 struct intel_dp *intel_dp)
5117 {
5118 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5119 vlv_initial_power_sequencer_setup(intel_dp);
5120 } else {
5121 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5122 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5123 }
5124 }
5125
5126 /**
5127 * intel_dp_set_drrs_state - program registers for RR switch to take effect
5128 * @dev_priv: i915 device
5129 * @crtc_state: a pointer to the active intel_crtc_state
5130 * @refresh_rate: RR to be programmed
5131 *
5132 * This function gets called when refresh rate (RR) has to be changed from
5133 * one frequency to another. Switches can be between high and low RR
5134 * supported by the panel or to any other RR based on media playback (in
5135 * this case, RR value needs to be passed from user space).
5136 *
5137 * The caller of this function needs to take a lock on dev_priv->drrs.
5138 */
5139 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
5140 struct intel_crtc_state *crtc_state,
5141 int refresh_rate)
5142 {
5143 struct intel_encoder *encoder;
5144 struct intel_digital_port *dig_port = NULL;
5145 struct intel_dp *intel_dp = dev_priv->drrs.dp;
5146 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
5147 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5148
5149 if (refresh_rate <= 0) {
5150 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5151 return;
5152 }
5153
5154 if (intel_dp == NULL) {
5155 DRM_DEBUG_KMS("DRRS not supported.\n");
5156 return;
5157 }
5158
5159 /*
5160 * FIXME: This needs proper synchronization with psr state for some
5161 * platforms that cannot have PSR and DRRS enabled at the same time.
5162 */
5163
5164 dig_port = dp_to_dig_port(intel_dp);
5165 encoder = &dig_port->base;
5166 intel_crtc = to_intel_crtc(encoder->base.crtc);
5167
5168 if (!intel_crtc) {
5169 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5170 return;
5171 }
5172
5173 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5174 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5175 return;
5176 }
5177
5178 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5179 refresh_rate)
5180 index = DRRS_LOW_RR;
5181
5182 if (index == dev_priv->drrs.refresh_rate_type) {
5183 DRM_DEBUG_KMS(
5184 "DRRS requested for previously set RR...ignoring\n");
5185 return;
5186 }
5187
5188 if (!crtc_state->base.active) {
5189 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5190 return;
5191 }
5192
5193 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
5194 switch (index) {
5195 case DRRS_HIGH_RR:
5196 intel_dp_set_m_n(intel_crtc, M1_N1);
5197 break;
5198 case DRRS_LOW_RR:
5199 intel_dp_set_m_n(intel_crtc, M2_N2);
5200 break;
5201 case DRRS_MAX_RR:
5202 default:
5203 DRM_ERROR("Unsupported refreshrate type\n");
5204 }
5205 } else if (INTEL_GEN(dev_priv) > 6) {
5206 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
5207 u32 val;
5208
5209 val = I915_READ(reg);
5210 if (index > DRRS_HIGH_RR) {
5211 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5212 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5213 else
5214 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5215 } else {
5216 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5217 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5218 else
5219 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5220 }
5221 I915_WRITE(reg, val);
5222 }
5223
5224 dev_priv->drrs.refresh_rate_type = index;
5225
5226 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5227 }
5228
5229 /**
5230 * intel_edp_drrs_enable - init drrs struct if supported
5231 * @intel_dp: DP struct
5232 * @crtc_state: A pointer to the active crtc state.
5233 *
5234 * Initializes frontbuffer_bits and drrs.dp
5235 */
5236 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
5237 struct intel_crtc_state *crtc_state)
5238 {
5239 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5240 struct drm_i915_private *dev_priv = to_i915(dev);
5241
5242 if (!crtc_state->has_drrs) {
5243 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5244 return;
5245 }
5246
5247 mutex_lock(&dev_priv->drrs.mutex);
5248 if (WARN_ON(dev_priv->drrs.dp)) {
5249 DRM_ERROR("DRRS already enabled\n");
5250 goto unlock;
5251 }
5252
5253 dev_priv->drrs.busy_frontbuffer_bits = 0;
5254
5255 dev_priv->drrs.dp = intel_dp;
5256
5257 unlock:
5258 mutex_unlock(&dev_priv->drrs.mutex);
5259 }
5260
5261 /**
5262 * intel_edp_drrs_disable - Disable DRRS
5263 * @intel_dp: DP struct
5264 * @old_crtc_state: Pointer to old crtc_state.
5265 *
5266 */
5267 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
5268 struct intel_crtc_state *old_crtc_state)
5269 {
5270 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5271 struct drm_i915_private *dev_priv = to_i915(dev);
5272
5273 if (!old_crtc_state->has_drrs)
5274 return;
5275
5276 mutex_lock(&dev_priv->drrs.mutex);
5277 if (!dev_priv->drrs.dp) {
5278 mutex_unlock(&dev_priv->drrs.mutex);
5279 return;
5280 }
5281
5282 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5283 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
5284 intel_dp->attached_connector->panel.fixed_mode->vrefresh);
5285
5286 dev_priv->drrs.dp = NULL;
5287 mutex_unlock(&dev_priv->drrs.mutex);
5288
5289 cancel_delayed_work_sync(&dev_priv->drrs.work);
5290 }
5291
5292 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5293 {
5294 struct drm_i915_private *dev_priv =
5295 container_of(work, typeof(*dev_priv), drrs.work.work);
5296 struct intel_dp *intel_dp;
5297
5298 mutex_lock(&dev_priv->drrs.mutex);
5299
5300 intel_dp = dev_priv->drrs.dp;
5301
5302 if (!intel_dp)
5303 goto unlock;
5304
5305 /*
5306 * The delayed work can race with an invalidate hence we need to
5307 * recheck.
5308 */
5309
5310 if (dev_priv->drrs.busy_frontbuffer_bits)
5311 goto unlock;
5312
5313 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
5314 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
5315
5316 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5317 intel_dp->attached_connector->panel.downclock_mode->vrefresh);
5318 }
5319
5320 unlock:
5321 mutex_unlock(&dev_priv->drrs.mutex);
5322 }
5323
5324 /**
5325 * intel_edp_drrs_invalidate - Disable Idleness DRRS
5326 * @dev_priv: i915 device
5327 * @frontbuffer_bits: frontbuffer plane tracking bits
5328 *
5329 * This function gets called everytime rendering on the given planes start.
5330 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5331 *
5332 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5333 */
5334 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
5335 unsigned int frontbuffer_bits)
5336 {
5337 struct drm_crtc *crtc;
5338 enum pipe pipe;
5339
5340 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5341 return;
5342
5343 cancel_delayed_work(&dev_priv->drrs.work);
5344
5345 mutex_lock(&dev_priv->drrs.mutex);
5346 if (!dev_priv->drrs.dp) {
5347 mutex_unlock(&dev_priv->drrs.mutex);
5348 return;
5349 }
5350
5351 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5352 pipe = to_intel_crtc(crtc)->pipe;
5353
5354 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5355 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5356
5357 /* invalidate means busy screen hence upclock */
5358 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5359 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5360 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5361
5362 mutex_unlock(&dev_priv->drrs.mutex);
5363 }
5364
5365 /**
5366 * intel_edp_drrs_flush - Restart Idleness DRRS
5367 * @dev_priv: i915 device
5368 * @frontbuffer_bits: frontbuffer plane tracking bits
5369 *
5370 * This function gets called every time rendering on the given planes has
5371 * completed or flip on a crtc is completed. So DRRS should be upclocked
5372 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5373 * if no other planes are dirty.
5374 *
5375 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5376 */
5377 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
5378 unsigned int frontbuffer_bits)
5379 {
5380 struct drm_crtc *crtc;
5381 enum pipe pipe;
5382
5383 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5384 return;
5385
5386 cancel_delayed_work(&dev_priv->drrs.work);
5387
5388 mutex_lock(&dev_priv->drrs.mutex);
5389 if (!dev_priv->drrs.dp) {
5390 mutex_unlock(&dev_priv->drrs.mutex);
5391 return;
5392 }
5393
5394 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5395 pipe = to_intel_crtc(crtc)->pipe;
5396
5397 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5398 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5399
5400 /* flush means busy screen hence upclock */
5401 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5402 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
5403 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
5404
5405 /*
5406 * flush also means no more activity hence schedule downclock, if all
5407 * other fbs are quiescent too
5408 */
5409 if (!dev_priv->drrs.busy_frontbuffer_bits)
5410 schedule_delayed_work(&dev_priv->drrs.work,
5411 msecs_to_jiffies(1000));
5412 mutex_unlock(&dev_priv->drrs.mutex);
5413 }
5414
5415 /**
5416 * DOC: Display Refresh Rate Switching (DRRS)
5417 *
5418 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5419 * which enables swtching between low and high refresh rates,
5420 * dynamically, based on the usage scenario. This feature is applicable
5421 * for internal panels.
5422 *
5423 * Indication that the panel supports DRRS is given by the panel EDID, which
5424 * would list multiple refresh rates for one resolution.
5425 *
5426 * DRRS is of 2 types - static and seamless.
5427 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5428 * (may appear as a blink on screen) and is used in dock-undock scenario.
5429 * Seamless DRRS involves changing RR without any visual effect to the user
5430 * and can be used during normal system usage. This is done by programming
5431 * certain registers.
5432 *
5433 * Support for static/seamless DRRS may be indicated in the VBT based on
5434 * inputs from the panel spec.
5435 *
5436 * DRRS saves power by switching to low RR based on usage scenarios.
5437 *
5438 * The implementation is based on frontbuffer tracking implementation. When
5439 * there is a disturbance on the screen triggered by user activity or a periodic
5440 * system activity, DRRS is disabled (RR is changed to high RR). When there is
5441 * no movement on screen, after a timeout of 1 second, a switch to low RR is
5442 * made.
5443 *
5444 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
5445 * and intel_edp_drrs_flush() are called.
5446 *
5447 * DRRS can be further extended to support other internal panels and also
5448 * the scenario of video playback wherein RR is set based on the rate
5449 * requested by userspace.
5450 */
5451
5452 /**
5453 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5454 * @intel_connector: eDP connector
5455 * @fixed_mode: preferred mode of panel
5456 *
5457 * This function is called only once at driver load to initialize basic
5458 * DRRS stuff.
5459 *
5460 * Returns:
5461 * Downclock mode if panel supports it, else return NULL.
5462 * DRRS support is determined by the presence of downclock mode (apart
5463 * from VBT setting).
5464 */
5465 static struct drm_display_mode *
5466 intel_dp_drrs_init(struct intel_connector *intel_connector,
5467 struct drm_display_mode *fixed_mode)
5468 {
5469 struct drm_connector *connector = &intel_connector->base;
5470 struct drm_device *dev = connector->dev;
5471 struct drm_i915_private *dev_priv = to_i915(dev);
5472 struct drm_display_mode *downclock_mode = NULL;
5473
5474 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5475 mutex_init(&dev_priv->drrs.mutex);
5476
5477 if (INTEL_INFO(dev)->gen <= 6) {
5478 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5479 return NULL;
5480 }
5481
5482 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5483 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5484 return NULL;
5485 }
5486
5487 downclock_mode = intel_find_panel_downclock
5488 (dev, fixed_mode, connector);
5489
5490 if (!downclock_mode) {
5491 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5492 return NULL;
5493 }
5494
5495 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5496
5497 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5498 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5499 return downclock_mode;
5500 }
5501
5502 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5503 struct intel_connector *intel_connector)
5504 {
5505 struct drm_connector *connector = &intel_connector->base;
5506 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5507 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5508 struct drm_device *dev = intel_encoder->base.dev;
5509 struct drm_i915_private *dev_priv = to_i915(dev);
5510 struct drm_display_mode *fixed_mode = NULL;
5511 struct drm_display_mode *downclock_mode = NULL;
5512 bool has_dpcd;
5513 struct drm_display_mode *scan;
5514 struct edid *edid;
5515 enum pipe pipe = INVALID_PIPE;
5516
5517 if (!is_edp(intel_dp))
5518 return true;
5519
5520 /*
5521 * On IBX/CPT we may get here with LVDS already registered. Since the
5522 * driver uses the only internal power sequencer available for both
5523 * eDP and LVDS bail out early in this case to prevent interfering
5524 * with an already powered-on LVDS power sequencer.
5525 */
5526 if (intel_get_lvds_encoder(dev)) {
5527 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
5528 DRM_INFO("LVDS was detected, not registering eDP\n");
5529
5530 return false;
5531 }
5532
5533 pps_lock(intel_dp);
5534
5535 intel_dp_init_panel_power_timestamps(intel_dp);
5536 intel_dp_pps_init(dev, intel_dp);
5537 intel_edp_panel_vdd_sanitize(intel_dp);
5538
5539 pps_unlock(intel_dp);
5540
5541 /* Cache DPCD and EDID for edp. */
5542 has_dpcd = intel_edp_init_dpcd(intel_dp);
5543
5544 if (!has_dpcd) {
5545 /* if this fails, presume the device is a ghost */
5546 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5547 goto out_vdd_off;
5548 }
5549
5550 mutex_lock(&dev->mode_config.mutex);
5551 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5552 if (edid) {
5553 if (drm_add_edid_modes(connector, edid)) {
5554 drm_mode_connector_update_edid_property(connector,
5555 edid);
5556 drm_edid_to_eld(connector, edid);
5557 } else {
5558 kfree(edid);
5559 edid = ERR_PTR(-EINVAL);
5560 }
5561 } else {
5562 edid = ERR_PTR(-ENOENT);
5563 }
5564 intel_connector->edid = edid;
5565
5566 /* prefer fixed mode from EDID if available */
5567 list_for_each_entry(scan, &connector->probed_modes, head) {
5568 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5569 fixed_mode = drm_mode_duplicate(dev, scan);
5570 downclock_mode = intel_dp_drrs_init(
5571 intel_connector, fixed_mode);
5572 break;
5573 }
5574 }
5575
5576 /* fallback to VBT if available for eDP */
5577 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5578 fixed_mode = drm_mode_duplicate(dev,
5579 dev_priv->vbt.lfp_lvds_vbt_mode);
5580 if (fixed_mode) {
5581 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5582 connector->display_info.width_mm = fixed_mode->width_mm;
5583 connector->display_info.height_mm = fixed_mode->height_mm;
5584 }
5585 }
5586 mutex_unlock(&dev->mode_config.mutex);
5587
5588 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5589 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5590 register_reboot_notifier(&intel_dp->edp_notifier);
5591
5592 /*
5593 * Figure out the current pipe for the initial backlight setup.
5594 * If the current pipe isn't valid, try the PPS pipe, and if that
5595 * fails just assume pipe A.
5596 */
5597 if (IS_CHERRYVIEW(dev))
5598 pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5599 else
5600 pipe = PORT_TO_PIPE(intel_dp->DP);
5601
5602 if (pipe != PIPE_A && pipe != PIPE_B)
5603 pipe = intel_dp->pps_pipe;
5604
5605 if (pipe != PIPE_A && pipe != PIPE_B)
5606 pipe = PIPE_A;
5607
5608 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5609 pipe_name(pipe));
5610 }
5611
5612 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5613 intel_connector->panel.backlight.power = intel_edp_backlight_power;
5614 intel_panel_setup_backlight(connector, pipe);
5615
5616 return true;
5617
5618 out_vdd_off:
5619 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5620 /*
5621 * vdd might still be enabled do to the delayed vdd off.
5622 * Make sure vdd is actually turned off here.
5623 */
5624 pps_lock(intel_dp);
5625 edp_panel_vdd_off_sync(intel_dp);
5626 pps_unlock(intel_dp);
5627
5628 return false;
5629 }
5630
5631 bool
5632 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5633 struct intel_connector *intel_connector)
5634 {
5635 struct drm_connector *connector = &intel_connector->base;
5636 struct intel_dp *intel_dp = &intel_dig_port->dp;
5637 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5638 struct drm_device *dev = intel_encoder->base.dev;
5639 struct drm_i915_private *dev_priv = to_i915(dev);
5640 enum port port = intel_dig_port->port;
5641 int type;
5642
5643 if (WARN(intel_dig_port->max_lanes < 1,
5644 "Not enough lanes (%d) for DP on port %c\n",
5645 intel_dig_port->max_lanes, port_name(port)))
5646 return false;
5647
5648 intel_dp->pps_pipe = INVALID_PIPE;
5649
5650 /* intel_dp vfuncs */
5651 if (INTEL_INFO(dev)->gen >= 9)
5652 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5653 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5654 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5655 else if (HAS_PCH_SPLIT(dev))
5656 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5657 else
5658 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
5659
5660 if (INTEL_INFO(dev)->gen >= 9)
5661 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5662 else
5663 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
5664
5665 if (HAS_DDI(dev))
5666 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
5667
5668 /* Preserve the current hw state. */
5669 intel_dp->DP = I915_READ(intel_dp->output_reg);
5670 intel_dp->attached_connector = intel_connector;
5671
5672 if (intel_dp_is_edp(dev, port))
5673 type = DRM_MODE_CONNECTOR_eDP;
5674 else
5675 type = DRM_MODE_CONNECTOR_DisplayPort;
5676
5677 /*
5678 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5679 * for DP the encoder type can be set by the caller to
5680 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5681 */
5682 if (type == DRM_MODE_CONNECTOR_eDP)
5683 intel_encoder->type = INTEL_OUTPUT_EDP;
5684
5685 /* eDP only on port B and/or C on vlv/chv */
5686 if (WARN_ON((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
5687 is_edp(intel_dp) && port != PORT_B && port != PORT_C))
5688 return false;
5689
5690 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5691 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5692 port_name(port));
5693
5694 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5695 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5696
5697 connector->interlace_allowed = true;
5698 connector->doublescan_allowed = 0;
5699
5700 intel_dp_aux_init(intel_dp);
5701
5702 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5703 edp_panel_vdd_work);
5704
5705 intel_connector_attach_encoder(intel_connector, intel_encoder);
5706
5707 if (HAS_DDI(dev))
5708 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5709 else
5710 intel_connector->get_hw_state = intel_connector_get_hw_state;
5711
5712 /* Set up the hotplug pin. */
5713 switch (port) {
5714 case PORT_A:
5715 intel_encoder->hpd_pin = HPD_PORT_A;
5716 break;
5717 case PORT_B:
5718 intel_encoder->hpd_pin = HPD_PORT_B;
5719 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
5720 intel_encoder->hpd_pin = HPD_PORT_A;
5721 break;
5722 case PORT_C:
5723 intel_encoder->hpd_pin = HPD_PORT_C;
5724 break;
5725 case PORT_D:
5726 intel_encoder->hpd_pin = HPD_PORT_D;
5727 break;
5728 case PORT_E:
5729 intel_encoder->hpd_pin = HPD_PORT_E;
5730 break;
5731 default:
5732 BUG();
5733 }
5734
5735 /* init MST on ports that can support it */
5736 if (HAS_DP_MST(dev) && !is_edp(intel_dp) &&
5737 (port == PORT_B || port == PORT_C || port == PORT_D))
5738 intel_dp_mst_encoder_init(intel_dig_port,
5739 intel_connector->base.base.id);
5740
5741 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5742 intel_dp_aux_fini(intel_dp);
5743 intel_dp_mst_encoder_cleanup(intel_dig_port);
5744 goto fail;
5745 }
5746
5747 intel_dp_add_properties(intel_dp, connector);
5748
5749 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5750 * 0xd. Failure to do so will result in spurious interrupts being
5751 * generated on the port when a cable is not attached.
5752 */
5753 if (IS_G4X(dev) && !IS_GM45(dev)) {
5754 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5755 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5756 }
5757
5758 return true;
5759
5760 fail:
5761 drm_connector_cleanup(connector);
5762
5763 return false;
5764 }
5765
5766 bool intel_dp_init(struct drm_device *dev,
5767 i915_reg_t output_reg,
5768 enum port port)
5769 {
5770 struct drm_i915_private *dev_priv = to_i915(dev);
5771 struct intel_digital_port *intel_dig_port;
5772 struct intel_encoder *intel_encoder;
5773 struct drm_encoder *encoder;
5774 struct intel_connector *intel_connector;
5775
5776 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5777 if (!intel_dig_port)
5778 return false;
5779
5780 intel_connector = intel_connector_alloc();
5781 if (!intel_connector)
5782 goto err_connector_alloc;
5783
5784 intel_encoder = &intel_dig_port->base;
5785 encoder = &intel_encoder->base;
5786
5787 if (drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5788 DRM_MODE_ENCODER_TMDS, "DP %c", port_name(port)))
5789 goto err_encoder_init;
5790
5791 intel_encoder->compute_config = intel_dp_compute_config;
5792 intel_encoder->disable = intel_disable_dp;
5793 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5794 intel_encoder->get_config = intel_dp_get_config;
5795 intel_encoder->suspend = intel_dp_encoder_suspend;
5796 if (IS_CHERRYVIEW(dev)) {
5797 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5798 intel_encoder->pre_enable = chv_pre_enable_dp;
5799 intel_encoder->enable = vlv_enable_dp;
5800 intel_encoder->post_disable = chv_post_disable_dp;
5801 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
5802 } else if (IS_VALLEYVIEW(dev)) {
5803 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5804 intel_encoder->pre_enable = vlv_pre_enable_dp;
5805 intel_encoder->enable = vlv_enable_dp;
5806 intel_encoder->post_disable = vlv_post_disable_dp;
5807 } else {
5808 intel_encoder->pre_enable = g4x_pre_enable_dp;
5809 intel_encoder->enable = g4x_enable_dp;
5810 if (INTEL_INFO(dev)->gen >= 5)
5811 intel_encoder->post_disable = ilk_post_disable_dp;
5812 }
5813
5814 intel_dig_port->port = port;
5815 intel_dig_port->dp.output_reg = output_reg;
5816 intel_dig_port->max_lanes = 4;
5817
5818 intel_encoder->type = INTEL_OUTPUT_DP;
5819 if (IS_CHERRYVIEW(dev)) {
5820 if (port == PORT_D)
5821 intel_encoder->crtc_mask = 1 << 2;
5822 else
5823 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5824 } else {
5825 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5826 }
5827 intel_encoder->cloneable = 0;
5828
5829 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5830 dev_priv->hotplug.irq_port[port] = intel_dig_port;
5831
5832 if (!intel_dp_init_connector(intel_dig_port, intel_connector))
5833 goto err_init_connector;
5834
5835 return true;
5836
5837 err_init_connector:
5838 drm_encoder_cleanup(encoder);
5839 err_encoder_init:
5840 kfree(intel_connector);
5841 err_connector_alloc:
5842 kfree(intel_dig_port);
5843 return false;
5844 }
5845
5846 void intel_dp_mst_suspend(struct drm_device *dev)
5847 {
5848 struct drm_i915_private *dev_priv = to_i915(dev);
5849 int i;
5850
5851 /* disable MST */
5852 for (i = 0; i < I915_MAX_PORTS; i++) {
5853 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5854
5855 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
5856 continue;
5857
5858 if (intel_dig_port->dp.is_mst)
5859 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5860 }
5861 }
5862
5863 void intel_dp_mst_resume(struct drm_device *dev)
5864 {
5865 struct drm_i915_private *dev_priv = to_i915(dev);
5866 int i;
5867
5868 for (i = 0; i < I915_MAX_PORTS; i++) {
5869 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5870 int ret;
5871
5872 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
5873 continue;
5874
5875 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5876 if (ret)
5877 intel_dp_check_mst_status(&intel_dig_port->dp);
5878 }
5879 }