]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_dp.c
drm/i915: make sink_crc return -EIO on aux read/write failure
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_crtc.h>
35 #include <drm/drm_crtc_helper.h>
36 #include <drm/drm_edid.h>
37 #include "intel_drv.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40
41 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
42
43 struct dp_link_dpll {
44 int link_bw;
45 struct dpll dpll;
46 };
47
48 static const struct dp_link_dpll gen4_dpll[] = {
49 { DP_LINK_BW_1_62,
50 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
51 { DP_LINK_BW_2_7,
52 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
53 };
54
55 static const struct dp_link_dpll pch_dpll[] = {
56 { DP_LINK_BW_1_62,
57 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
58 { DP_LINK_BW_2_7,
59 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
60 };
61
62 static const struct dp_link_dpll vlv_dpll[] = {
63 { DP_LINK_BW_1_62,
64 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
65 { DP_LINK_BW_2_7,
66 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
67 };
68
69 /*
70 * CHV supports eDP 1.4 that have more link rates.
71 * Below only provides the fixed rate but exclude variable rate.
72 */
73 static const struct dp_link_dpll chv_dpll[] = {
74 /*
75 * CHV requires to program fractional division for m2.
76 * m2 is stored in fixed point format using formula below
77 * (m2_int << 22) | m2_fraction
78 */
79 { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */
80 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
81 { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */
82 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
83 { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */
84 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
85 };
86
87 /**
88 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
89 * @intel_dp: DP struct
90 *
91 * If a CPU or PCH DP output is attached to an eDP panel, this function
92 * will return true, and false otherwise.
93 */
94 static bool is_edp(struct intel_dp *intel_dp)
95 {
96 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
97
98 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
99 }
100
101 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
102 {
103 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
104
105 return intel_dig_port->base.base.dev;
106 }
107
108 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
109 {
110 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
111 }
112
113 static void intel_dp_link_down(struct intel_dp *intel_dp);
114 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
115 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
116
117 int
118 intel_dp_max_link_bw(struct intel_dp *intel_dp)
119 {
120 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
121 struct drm_device *dev = intel_dp->attached_connector->base.dev;
122
123 switch (max_link_bw) {
124 case DP_LINK_BW_1_62:
125 case DP_LINK_BW_2_7:
126 break;
127 case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
128 if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
129 INTEL_INFO(dev)->gen >= 8) &&
130 intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
131 max_link_bw = DP_LINK_BW_5_4;
132 else
133 max_link_bw = DP_LINK_BW_2_7;
134 break;
135 default:
136 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
137 max_link_bw);
138 max_link_bw = DP_LINK_BW_1_62;
139 break;
140 }
141 return max_link_bw;
142 }
143
144 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
145 {
146 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
147 struct drm_device *dev = intel_dig_port->base.base.dev;
148 u8 source_max, sink_max;
149
150 source_max = 4;
151 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
152 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
153 source_max = 2;
154
155 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
156
157 return min(source_max, sink_max);
158 }
159
160 /*
161 * The units on the numbers in the next two are... bizarre. Examples will
162 * make it clearer; this one parallels an example in the eDP spec.
163 *
164 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
165 *
166 * 270000 * 1 * 8 / 10 == 216000
167 *
168 * The actual data capacity of that configuration is 2.16Gbit/s, so the
169 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
170 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
171 * 119000. At 18bpp that's 2142000 kilobits per second.
172 *
173 * Thus the strange-looking division by 10 in intel_dp_link_required, to
174 * get the result in decakilobits instead of kilobits.
175 */
176
177 static int
178 intel_dp_link_required(int pixel_clock, int bpp)
179 {
180 return (pixel_clock * bpp + 9) / 10;
181 }
182
183 static int
184 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
185 {
186 return (max_link_clock * max_lanes * 8) / 10;
187 }
188
189 static enum drm_mode_status
190 intel_dp_mode_valid(struct drm_connector *connector,
191 struct drm_display_mode *mode)
192 {
193 struct intel_dp *intel_dp = intel_attached_dp(connector);
194 struct intel_connector *intel_connector = to_intel_connector(connector);
195 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
196 int target_clock = mode->clock;
197 int max_rate, mode_rate, max_lanes, max_link_clock;
198
199 if (is_edp(intel_dp) && fixed_mode) {
200 if (mode->hdisplay > fixed_mode->hdisplay)
201 return MODE_PANEL;
202
203 if (mode->vdisplay > fixed_mode->vdisplay)
204 return MODE_PANEL;
205
206 target_clock = fixed_mode->clock;
207 }
208
209 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
210 max_lanes = intel_dp_max_lane_count(intel_dp);
211
212 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
213 mode_rate = intel_dp_link_required(target_clock, 18);
214
215 if (mode_rate > max_rate)
216 return MODE_CLOCK_HIGH;
217
218 if (mode->clock < 10000)
219 return MODE_CLOCK_LOW;
220
221 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
222 return MODE_H_ILLEGAL;
223
224 return MODE_OK;
225 }
226
227 static uint32_t
228 pack_aux(const uint8_t *src, int src_bytes)
229 {
230 int i;
231 uint32_t v = 0;
232
233 if (src_bytes > 4)
234 src_bytes = 4;
235 for (i = 0; i < src_bytes; i++)
236 v |= ((uint32_t) src[i]) << ((3-i) * 8);
237 return v;
238 }
239
240 static void
241 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
242 {
243 int i;
244 if (dst_bytes > 4)
245 dst_bytes = 4;
246 for (i = 0; i < dst_bytes; i++)
247 dst[i] = src >> ((3-i) * 8);
248 }
249
250 /* hrawclock is 1/4 the FSB frequency */
251 static int
252 intel_hrawclk(struct drm_device *dev)
253 {
254 struct drm_i915_private *dev_priv = dev->dev_private;
255 uint32_t clkcfg;
256
257 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
258 if (IS_VALLEYVIEW(dev))
259 return 200;
260
261 clkcfg = I915_READ(CLKCFG);
262 switch (clkcfg & CLKCFG_FSB_MASK) {
263 case CLKCFG_FSB_400:
264 return 100;
265 case CLKCFG_FSB_533:
266 return 133;
267 case CLKCFG_FSB_667:
268 return 166;
269 case CLKCFG_FSB_800:
270 return 200;
271 case CLKCFG_FSB_1067:
272 return 266;
273 case CLKCFG_FSB_1333:
274 return 333;
275 /* these two are just a guess; one of them might be right */
276 case CLKCFG_FSB_1600:
277 case CLKCFG_FSB_1600_ALT:
278 return 400;
279 default:
280 return 133;
281 }
282 }
283
284 static void
285 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
286 struct intel_dp *intel_dp,
287 struct edp_power_seq *out);
288 static void
289 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
290 struct intel_dp *intel_dp,
291 struct edp_power_seq *out);
292
293 static void pps_lock(struct intel_dp *intel_dp)
294 {
295 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
296 struct intel_encoder *encoder = &intel_dig_port->base;
297 struct drm_device *dev = encoder->base.dev;
298 struct drm_i915_private *dev_priv = dev->dev_private;
299 enum intel_display_power_domain power_domain;
300
301 /*
302 * See vlv_power_sequencer_reset() why we need
303 * a power domain reference here.
304 */
305 power_domain = intel_display_port_power_domain(encoder);
306 intel_display_power_get(dev_priv, power_domain);
307
308 mutex_lock(&dev_priv->pps_mutex);
309 }
310
311 static void pps_unlock(struct intel_dp *intel_dp)
312 {
313 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
314 struct intel_encoder *encoder = &intel_dig_port->base;
315 struct drm_device *dev = encoder->base.dev;
316 struct drm_i915_private *dev_priv = dev->dev_private;
317 enum intel_display_power_domain power_domain;
318
319 mutex_unlock(&dev_priv->pps_mutex);
320
321 power_domain = intel_display_port_power_domain(encoder);
322 intel_display_power_put(dev_priv, power_domain);
323 }
324
325 static enum pipe
326 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
327 {
328 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
329 struct drm_device *dev = intel_dig_port->base.base.dev;
330 struct drm_i915_private *dev_priv = dev->dev_private;
331 struct intel_encoder *encoder;
332 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
333 struct edp_power_seq power_seq;
334
335 lockdep_assert_held(&dev_priv->pps_mutex);
336
337 if (intel_dp->pps_pipe != INVALID_PIPE)
338 return intel_dp->pps_pipe;
339
340 /*
341 * We don't have power sequencer currently.
342 * Pick one that's not used by other ports.
343 */
344 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
345 base.head) {
346 struct intel_dp *tmp;
347
348 if (encoder->type != INTEL_OUTPUT_EDP)
349 continue;
350
351 tmp = enc_to_intel_dp(&encoder->base);
352
353 if (tmp->pps_pipe != INVALID_PIPE)
354 pipes &= ~(1 << tmp->pps_pipe);
355 }
356
357 /*
358 * Didn't find one. This should not happen since there
359 * are two power sequencers and up to two eDP ports.
360 */
361 if (WARN_ON(pipes == 0))
362 return PIPE_A;
363
364 intel_dp->pps_pipe = ffs(pipes) - 1;
365
366 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
367 pipe_name(intel_dp->pps_pipe),
368 port_name(intel_dig_port->port));
369
370 /* init power sequencer on this pipe and port */
371 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
372 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
373 &power_seq);
374
375 return intel_dp->pps_pipe;
376 }
377
378 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
379 enum pipe pipe);
380
381 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
382 enum pipe pipe)
383 {
384 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
385 }
386
387 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
388 enum pipe pipe)
389 {
390 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
391 }
392
393 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
394 enum pipe pipe)
395 {
396 return true;
397 }
398
399 static enum pipe
400 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
401 enum port port,
402 vlv_pipe_check pipe_check)
403 {
404 enum pipe pipe;
405
406 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
407 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
408 PANEL_PORT_SELECT_MASK;
409
410 if (port_sel != PANEL_PORT_SELECT_VLV(port))
411 continue;
412
413 if (!pipe_check(dev_priv, pipe))
414 continue;
415
416 return pipe;
417 }
418
419 return INVALID_PIPE;
420 }
421
422 static void
423 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
424 {
425 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
426 struct drm_device *dev = intel_dig_port->base.base.dev;
427 struct drm_i915_private *dev_priv = dev->dev_private;
428 struct edp_power_seq power_seq;
429 enum port port = intel_dig_port->port;
430
431 lockdep_assert_held(&dev_priv->pps_mutex);
432
433 /* try to find a pipe with this port selected */
434 /* first pick one where the panel is on */
435 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
436 vlv_pipe_has_pp_on);
437 /* didn't find one? pick one where vdd is on */
438 if (intel_dp->pps_pipe == INVALID_PIPE)
439 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
440 vlv_pipe_has_vdd_on);
441 /* didn't find one? pick one with just the correct port */
442 if (intel_dp->pps_pipe == INVALID_PIPE)
443 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
444 vlv_pipe_any);
445
446 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
447 if (intel_dp->pps_pipe == INVALID_PIPE) {
448 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
449 port_name(port));
450 return;
451 }
452
453 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
454 port_name(port), pipe_name(intel_dp->pps_pipe));
455
456 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
457 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
458 &power_seq);
459 }
460
461 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
462 {
463 struct drm_device *dev = dev_priv->dev;
464 struct intel_encoder *encoder;
465
466 if (WARN_ON(!IS_VALLEYVIEW(dev)))
467 return;
468
469 /*
470 * We can't grab pps_mutex here due to deadlock with power_domain
471 * mutex when power_domain functions are called while holding pps_mutex.
472 * That also means that in order to use pps_pipe the code needs to
473 * hold both a power domain reference and pps_mutex, and the power domain
474 * reference get/put must be done while _not_ holding pps_mutex.
475 * pps_{lock,unlock}() do these steps in the correct order, so one
476 * should use them always.
477 */
478
479 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
480 struct intel_dp *intel_dp;
481
482 if (encoder->type != INTEL_OUTPUT_EDP)
483 continue;
484
485 intel_dp = enc_to_intel_dp(&encoder->base);
486 intel_dp->pps_pipe = INVALID_PIPE;
487 }
488 }
489
490 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
491 {
492 struct drm_device *dev = intel_dp_to_dev(intel_dp);
493
494 if (HAS_PCH_SPLIT(dev))
495 return PCH_PP_CONTROL;
496 else
497 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
498 }
499
500 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
501 {
502 struct drm_device *dev = intel_dp_to_dev(intel_dp);
503
504 if (HAS_PCH_SPLIT(dev))
505 return PCH_PP_STATUS;
506 else
507 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
508 }
509
510 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
511 This function only applicable when panel PM state is not to be tracked */
512 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
513 void *unused)
514 {
515 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
516 edp_notifier);
517 struct drm_device *dev = intel_dp_to_dev(intel_dp);
518 struct drm_i915_private *dev_priv = dev->dev_private;
519 u32 pp_div;
520 u32 pp_ctrl_reg, pp_div_reg;
521
522 if (!is_edp(intel_dp) || code != SYS_RESTART)
523 return 0;
524
525 pps_lock(intel_dp);
526
527 if (IS_VALLEYVIEW(dev)) {
528 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
529
530 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
531 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
532 pp_div = I915_READ(pp_div_reg);
533 pp_div &= PP_REFERENCE_DIVIDER_MASK;
534
535 /* 0x1F write to PP_DIV_REG sets max cycle delay */
536 I915_WRITE(pp_div_reg, pp_div | 0x1F);
537 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
538 msleep(intel_dp->panel_power_cycle_delay);
539 }
540
541 pps_unlock(intel_dp);
542
543 return 0;
544 }
545
546 static bool edp_have_panel_power(struct intel_dp *intel_dp)
547 {
548 struct drm_device *dev = intel_dp_to_dev(intel_dp);
549 struct drm_i915_private *dev_priv = dev->dev_private;
550
551 lockdep_assert_held(&dev_priv->pps_mutex);
552
553 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
554 }
555
556 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
557 {
558 struct drm_device *dev = intel_dp_to_dev(intel_dp);
559 struct drm_i915_private *dev_priv = dev->dev_private;
560
561 lockdep_assert_held(&dev_priv->pps_mutex);
562
563 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
564 }
565
566 static void
567 intel_dp_check_edp(struct intel_dp *intel_dp)
568 {
569 struct drm_device *dev = intel_dp_to_dev(intel_dp);
570 struct drm_i915_private *dev_priv = dev->dev_private;
571
572 if (!is_edp(intel_dp))
573 return;
574
575 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
576 WARN(1, "eDP powered off while attempting aux channel communication.\n");
577 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
578 I915_READ(_pp_stat_reg(intel_dp)),
579 I915_READ(_pp_ctrl_reg(intel_dp)));
580 }
581 }
582
583 static uint32_t
584 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
585 {
586 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
587 struct drm_device *dev = intel_dig_port->base.base.dev;
588 struct drm_i915_private *dev_priv = dev->dev_private;
589 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
590 uint32_t status;
591 bool done;
592
593 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
594 if (has_aux_irq)
595 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
596 msecs_to_jiffies_timeout(10));
597 else
598 done = wait_for_atomic(C, 10) == 0;
599 if (!done)
600 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
601 has_aux_irq);
602 #undef C
603
604 return status;
605 }
606
607 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
608 {
609 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
610 struct drm_device *dev = intel_dig_port->base.base.dev;
611
612 /*
613 * The clock divider is based off the hrawclk, and would like to run at
614 * 2MHz. So, take the hrawclk value and divide by 2 and use that
615 */
616 return index ? 0 : intel_hrawclk(dev) / 2;
617 }
618
619 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
620 {
621 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
622 struct drm_device *dev = intel_dig_port->base.base.dev;
623
624 if (index)
625 return 0;
626
627 if (intel_dig_port->port == PORT_A) {
628 if (IS_GEN6(dev) || IS_GEN7(dev))
629 return 200; /* SNB & IVB eDP input clock at 400Mhz */
630 else
631 return 225; /* eDP input clock at 450Mhz */
632 } else {
633 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
634 }
635 }
636
637 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
638 {
639 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
640 struct drm_device *dev = intel_dig_port->base.base.dev;
641 struct drm_i915_private *dev_priv = dev->dev_private;
642
643 if (intel_dig_port->port == PORT_A) {
644 if (index)
645 return 0;
646 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
647 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
648 /* Workaround for non-ULT HSW */
649 switch (index) {
650 case 0: return 63;
651 case 1: return 72;
652 default: return 0;
653 }
654 } else {
655 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
656 }
657 }
658
659 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
660 {
661 return index ? 0 : 100;
662 }
663
664 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
665 {
666 /*
667 * SKL doesn't need us to program the AUX clock divider (Hardware will
668 * derive the clock from CDCLK automatically). We still implement the
669 * get_aux_clock_divider vfunc to plug-in into the existing code.
670 */
671 return index ? 0 : 1;
672 }
673
674 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
675 bool has_aux_irq,
676 int send_bytes,
677 uint32_t aux_clock_divider)
678 {
679 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
680 struct drm_device *dev = intel_dig_port->base.base.dev;
681 uint32_t precharge, timeout;
682
683 if (IS_GEN6(dev))
684 precharge = 3;
685 else
686 precharge = 5;
687
688 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
689 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
690 else
691 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
692
693 return DP_AUX_CH_CTL_SEND_BUSY |
694 DP_AUX_CH_CTL_DONE |
695 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
696 DP_AUX_CH_CTL_TIME_OUT_ERROR |
697 timeout |
698 DP_AUX_CH_CTL_RECEIVE_ERROR |
699 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
700 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
701 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
702 }
703
704 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
705 bool has_aux_irq,
706 int send_bytes,
707 uint32_t unused)
708 {
709 return DP_AUX_CH_CTL_SEND_BUSY |
710 DP_AUX_CH_CTL_DONE |
711 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
712 DP_AUX_CH_CTL_TIME_OUT_ERROR |
713 DP_AUX_CH_CTL_TIME_OUT_1600us |
714 DP_AUX_CH_CTL_RECEIVE_ERROR |
715 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
716 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
717 }
718
719 static int
720 intel_dp_aux_ch(struct intel_dp *intel_dp,
721 const uint8_t *send, int send_bytes,
722 uint8_t *recv, int recv_size)
723 {
724 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
725 struct drm_device *dev = intel_dig_port->base.base.dev;
726 struct drm_i915_private *dev_priv = dev->dev_private;
727 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
728 uint32_t ch_data = ch_ctl + 4;
729 uint32_t aux_clock_divider;
730 int i, ret, recv_bytes;
731 uint32_t status;
732 int try, clock = 0;
733 bool has_aux_irq = HAS_AUX_IRQ(dev);
734 bool vdd;
735
736 pps_lock(intel_dp);
737
738 /*
739 * We will be called with VDD already enabled for dpcd/edid/oui reads.
740 * In such cases we want to leave VDD enabled and it's up to upper layers
741 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
742 * ourselves.
743 */
744 vdd = edp_panel_vdd_on(intel_dp);
745
746 /* dp aux is extremely sensitive to irq latency, hence request the
747 * lowest possible wakeup latency and so prevent the cpu from going into
748 * deep sleep states.
749 */
750 pm_qos_update_request(&dev_priv->pm_qos, 0);
751
752 intel_dp_check_edp(intel_dp);
753
754 intel_aux_display_runtime_get(dev_priv);
755
756 /* Try to wait for any previous AUX channel activity */
757 for (try = 0; try < 3; try++) {
758 status = I915_READ_NOTRACE(ch_ctl);
759 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
760 break;
761 msleep(1);
762 }
763
764 if (try == 3) {
765 WARN(1, "dp_aux_ch not started status 0x%08x\n",
766 I915_READ(ch_ctl));
767 ret = -EBUSY;
768 goto out;
769 }
770
771 /* Only 5 data registers! */
772 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
773 ret = -E2BIG;
774 goto out;
775 }
776
777 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
778 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
779 has_aux_irq,
780 send_bytes,
781 aux_clock_divider);
782
783 /* Must try at least 3 times according to DP spec */
784 for (try = 0; try < 5; try++) {
785 /* Load the send data into the aux channel data registers */
786 for (i = 0; i < send_bytes; i += 4)
787 I915_WRITE(ch_data + i,
788 pack_aux(send + i, send_bytes - i));
789
790 /* Send the command and wait for it to complete */
791 I915_WRITE(ch_ctl, send_ctl);
792
793 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
794
795 /* Clear done status and any errors */
796 I915_WRITE(ch_ctl,
797 status |
798 DP_AUX_CH_CTL_DONE |
799 DP_AUX_CH_CTL_TIME_OUT_ERROR |
800 DP_AUX_CH_CTL_RECEIVE_ERROR);
801
802 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
803 DP_AUX_CH_CTL_RECEIVE_ERROR))
804 continue;
805 if (status & DP_AUX_CH_CTL_DONE)
806 break;
807 }
808 if (status & DP_AUX_CH_CTL_DONE)
809 break;
810 }
811
812 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
813 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
814 ret = -EBUSY;
815 goto out;
816 }
817
818 /* Check for timeout or receive error.
819 * Timeouts occur when the sink is not connected
820 */
821 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
822 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
823 ret = -EIO;
824 goto out;
825 }
826
827 /* Timeouts occur when the device isn't connected, so they're
828 * "normal" -- don't fill the kernel log with these */
829 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
830 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
831 ret = -ETIMEDOUT;
832 goto out;
833 }
834
835 /* Unload any bytes sent back from the other side */
836 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
837 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
838 if (recv_bytes > recv_size)
839 recv_bytes = recv_size;
840
841 for (i = 0; i < recv_bytes; i += 4)
842 unpack_aux(I915_READ(ch_data + i),
843 recv + i, recv_bytes - i);
844
845 ret = recv_bytes;
846 out:
847 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
848 intel_aux_display_runtime_put(dev_priv);
849
850 if (vdd)
851 edp_panel_vdd_off(intel_dp, false);
852
853 pps_unlock(intel_dp);
854
855 return ret;
856 }
857
858 #define BARE_ADDRESS_SIZE 3
859 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
860 static ssize_t
861 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
862 {
863 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
864 uint8_t txbuf[20], rxbuf[20];
865 size_t txsize, rxsize;
866 int ret;
867
868 txbuf[0] = msg->request << 4;
869 txbuf[1] = msg->address >> 8;
870 txbuf[2] = msg->address & 0xff;
871 txbuf[3] = msg->size - 1;
872
873 switch (msg->request & ~DP_AUX_I2C_MOT) {
874 case DP_AUX_NATIVE_WRITE:
875 case DP_AUX_I2C_WRITE:
876 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
877 rxsize = 1;
878
879 if (WARN_ON(txsize > 20))
880 return -E2BIG;
881
882 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
883
884 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
885 if (ret > 0) {
886 msg->reply = rxbuf[0] >> 4;
887
888 /* Return payload size. */
889 ret = msg->size;
890 }
891 break;
892
893 case DP_AUX_NATIVE_READ:
894 case DP_AUX_I2C_READ:
895 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
896 rxsize = msg->size + 1;
897
898 if (WARN_ON(rxsize > 20))
899 return -E2BIG;
900
901 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
902 if (ret > 0) {
903 msg->reply = rxbuf[0] >> 4;
904 /*
905 * Assume happy day, and copy the data. The caller is
906 * expected to check msg->reply before touching it.
907 *
908 * Return payload size.
909 */
910 ret--;
911 memcpy(msg->buffer, rxbuf + 1, ret);
912 }
913 break;
914
915 default:
916 ret = -EINVAL;
917 break;
918 }
919
920 return ret;
921 }
922
923 static void
924 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
925 {
926 struct drm_device *dev = intel_dp_to_dev(intel_dp);
927 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
928 enum port port = intel_dig_port->port;
929 const char *name = NULL;
930 int ret;
931
932 switch (port) {
933 case PORT_A:
934 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
935 name = "DPDDC-A";
936 break;
937 case PORT_B:
938 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
939 name = "DPDDC-B";
940 break;
941 case PORT_C:
942 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
943 name = "DPDDC-C";
944 break;
945 case PORT_D:
946 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
947 name = "DPDDC-D";
948 break;
949 default:
950 BUG();
951 }
952
953 /*
954 * The AUX_CTL register is usually DP_CTL + 0x10.
955 *
956 * On Haswell and Broadwell though:
957 * - Both port A DDI_BUF_CTL and DDI_AUX_CTL are on the CPU
958 * - Port B/C/D AUX channels are on the PCH, DDI_BUF_CTL on the CPU
959 *
960 * Skylake moves AUX_CTL back next to DDI_BUF_CTL, on the CPU.
961 */
962 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
963 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
964
965 intel_dp->aux.name = name;
966 intel_dp->aux.dev = dev->dev;
967 intel_dp->aux.transfer = intel_dp_aux_transfer;
968
969 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
970 connector->base.kdev->kobj.name);
971
972 ret = drm_dp_aux_register(&intel_dp->aux);
973 if (ret < 0) {
974 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
975 name, ret);
976 return;
977 }
978
979 ret = sysfs_create_link(&connector->base.kdev->kobj,
980 &intel_dp->aux.ddc.dev.kobj,
981 intel_dp->aux.ddc.dev.kobj.name);
982 if (ret < 0) {
983 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
984 drm_dp_aux_unregister(&intel_dp->aux);
985 }
986 }
987
988 static void
989 intel_dp_connector_unregister(struct intel_connector *intel_connector)
990 {
991 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
992
993 if (!intel_connector->mst_port)
994 sysfs_remove_link(&intel_connector->base.kdev->kobj,
995 intel_dp->aux.ddc.dev.kobj.name);
996 intel_connector_unregister(intel_connector);
997 }
998
999 static void
1000 hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw)
1001 {
1002 switch (link_bw) {
1003 case DP_LINK_BW_1_62:
1004 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
1005 break;
1006 case DP_LINK_BW_2_7:
1007 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
1008 break;
1009 case DP_LINK_BW_5_4:
1010 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
1011 break;
1012 }
1013 }
1014
1015 static void
1016 intel_dp_set_clock(struct intel_encoder *encoder,
1017 struct intel_crtc_config *pipe_config, int link_bw)
1018 {
1019 struct drm_device *dev = encoder->base.dev;
1020 const struct dp_link_dpll *divisor = NULL;
1021 int i, count = 0;
1022
1023 if (IS_G4X(dev)) {
1024 divisor = gen4_dpll;
1025 count = ARRAY_SIZE(gen4_dpll);
1026 } else if (HAS_PCH_SPLIT(dev)) {
1027 divisor = pch_dpll;
1028 count = ARRAY_SIZE(pch_dpll);
1029 } else if (IS_CHERRYVIEW(dev)) {
1030 divisor = chv_dpll;
1031 count = ARRAY_SIZE(chv_dpll);
1032 } else if (IS_VALLEYVIEW(dev)) {
1033 divisor = vlv_dpll;
1034 count = ARRAY_SIZE(vlv_dpll);
1035 }
1036
1037 if (divisor && count) {
1038 for (i = 0; i < count; i++) {
1039 if (link_bw == divisor[i].link_bw) {
1040 pipe_config->dpll = divisor[i].dpll;
1041 pipe_config->clock_set = true;
1042 break;
1043 }
1044 }
1045 }
1046 }
1047
1048 bool
1049 intel_dp_compute_config(struct intel_encoder *encoder,
1050 struct intel_crtc_config *pipe_config)
1051 {
1052 struct drm_device *dev = encoder->base.dev;
1053 struct drm_i915_private *dev_priv = dev->dev_private;
1054 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
1055 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1056 enum port port = dp_to_dig_port(intel_dp)->port;
1057 struct intel_crtc *intel_crtc = encoder->new_crtc;
1058 struct intel_connector *intel_connector = intel_dp->attached_connector;
1059 int lane_count, clock;
1060 int min_lane_count = 1;
1061 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1062 /* Conveniently, the link BW constants become indices with a shift...*/
1063 int min_clock = 0;
1064 int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
1065 int bpp, mode_rate;
1066 static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
1067 int link_avail, link_clock;
1068
1069 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1070 pipe_config->has_pch_encoder = true;
1071
1072 pipe_config->has_dp_encoder = true;
1073 pipe_config->has_drrs = false;
1074 pipe_config->has_audio = intel_dp->has_audio;
1075
1076 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1077 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1078 adjusted_mode);
1079 if (!HAS_PCH_SPLIT(dev))
1080 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1081 intel_connector->panel.fitting_mode);
1082 else
1083 intel_pch_panel_fitting(intel_crtc, pipe_config,
1084 intel_connector->panel.fitting_mode);
1085 }
1086
1087 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1088 return false;
1089
1090 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1091 "max bw %02x pixel clock %iKHz\n",
1092 max_lane_count, bws[max_clock],
1093 adjusted_mode->crtc_clock);
1094
1095 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1096 * bpc in between. */
1097 bpp = pipe_config->pipe_bpp;
1098 if (is_edp(intel_dp)) {
1099 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
1100 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1101 dev_priv->vbt.edp_bpp);
1102 bpp = dev_priv->vbt.edp_bpp;
1103 }
1104
1105 /*
1106 * Use the maximum clock and number of lanes the eDP panel
1107 * advertizes being capable of. The panels are generally
1108 * designed to support only a single clock and lane
1109 * configuration, and typically these values correspond to the
1110 * native resolution of the panel.
1111 */
1112 min_lane_count = max_lane_count;
1113 min_clock = max_clock;
1114 }
1115
1116 for (; bpp >= 6*3; bpp -= 2*3) {
1117 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1118 bpp);
1119
1120 for (clock = min_clock; clock <= max_clock; clock++) {
1121 for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
1122 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
1123 link_avail = intel_dp_max_data_rate(link_clock,
1124 lane_count);
1125
1126 if (mode_rate <= link_avail) {
1127 goto found;
1128 }
1129 }
1130 }
1131 }
1132
1133 return false;
1134
1135 found:
1136 if (intel_dp->color_range_auto) {
1137 /*
1138 * See:
1139 * CEA-861-E - 5.1 Default Encoding Parameters
1140 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1141 */
1142 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
1143 intel_dp->color_range = DP_COLOR_RANGE_16_235;
1144 else
1145 intel_dp->color_range = 0;
1146 }
1147
1148 if (intel_dp->color_range)
1149 pipe_config->limited_color_range = true;
1150
1151 intel_dp->link_bw = bws[clock];
1152 intel_dp->lane_count = lane_count;
1153 pipe_config->pipe_bpp = bpp;
1154 pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
1155
1156 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
1157 intel_dp->link_bw, intel_dp->lane_count,
1158 pipe_config->port_clock, bpp);
1159 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1160 mode_rate, link_avail);
1161
1162 intel_link_compute_m_n(bpp, lane_count,
1163 adjusted_mode->crtc_clock,
1164 pipe_config->port_clock,
1165 &pipe_config->dp_m_n);
1166
1167 if (intel_connector->panel.downclock_mode != NULL &&
1168 intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
1169 pipe_config->has_drrs = true;
1170 intel_link_compute_m_n(bpp, lane_count,
1171 intel_connector->panel.downclock_mode->clock,
1172 pipe_config->port_clock,
1173 &pipe_config->dp_m2_n2);
1174 }
1175
1176 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1177 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
1178 else
1179 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
1180
1181 return true;
1182 }
1183
1184 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1185 {
1186 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1187 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1188 struct drm_device *dev = crtc->base.dev;
1189 struct drm_i915_private *dev_priv = dev->dev_private;
1190 u32 dpa_ctl;
1191
1192 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
1193 dpa_ctl = I915_READ(DP_A);
1194 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1195
1196 if (crtc->config.port_clock == 162000) {
1197 /* For a long time we've carried around a ILK-DevA w/a for the
1198 * 160MHz clock. If we're really unlucky, it's still required.
1199 */
1200 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1201 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1202 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1203 } else {
1204 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1205 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1206 }
1207
1208 I915_WRITE(DP_A, dpa_ctl);
1209
1210 POSTING_READ(DP_A);
1211 udelay(500);
1212 }
1213
1214 static void intel_dp_prepare(struct intel_encoder *encoder)
1215 {
1216 struct drm_device *dev = encoder->base.dev;
1217 struct drm_i915_private *dev_priv = dev->dev_private;
1218 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1219 enum port port = dp_to_dig_port(intel_dp)->port;
1220 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1221 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
1222
1223 /*
1224 * There are four kinds of DP registers:
1225 *
1226 * IBX PCH
1227 * SNB CPU
1228 * IVB CPU
1229 * CPT PCH
1230 *
1231 * IBX PCH and CPU are the same for almost everything,
1232 * except that the CPU DP PLL is configured in this
1233 * register
1234 *
1235 * CPT PCH is quite different, having many bits moved
1236 * to the TRANS_DP_CTL register instead. That
1237 * configuration happens (oddly) in ironlake_pch_enable
1238 */
1239
1240 /* Preserve the BIOS-computed detected bit. This is
1241 * supposed to be read-only.
1242 */
1243 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1244
1245 /* Handle DP bits in common between all three register formats */
1246 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1247 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1248
1249 if (crtc->config.has_audio) {
1250 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1251 pipe_name(crtc->pipe));
1252 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1253 intel_write_eld(&encoder->base, adjusted_mode);
1254 }
1255
1256 /* Split out the IBX/CPU vs CPT settings */
1257
1258 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1259 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1260 intel_dp->DP |= DP_SYNC_HS_HIGH;
1261 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1262 intel_dp->DP |= DP_SYNC_VS_HIGH;
1263 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1264
1265 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1266 intel_dp->DP |= DP_ENHANCED_FRAMING;
1267
1268 intel_dp->DP |= crtc->pipe << 29;
1269 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1270 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1271 intel_dp->DP |= intel_dp->color_range;
1272
1273 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1274 intel_dp->DP |= DP_SYNC_HS_HIGH;
1275 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1276 intel_dp->DP |= DP_SYNC_VS_HIGH;
1277 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1278
1279 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1280 intel_dp->DP |= DP_ENHANCED_FRAMING;
1281
1282 if (!IS_CHERRYVIEW(dev)) {
1283 if (crtc->pipe == 1)
1284 intel_dp->DP |= DP_PIPEB_SELECT;
1285 } else {
1286 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1287 }
1288 } else {
1289 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1290 }
1291 }
1292
1293 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1294 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1295
1296 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1297 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1298
1299 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1300 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1301
1302 static void wait_panel_status(struct intel_dp *intel_dp,
1303 u32 mask,
1304 u32 value)
1305 {
1306 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1307 struct drm_i915_private *dev_priv = dev->dev_private;
1308 u32 pp_stat_reg, pp_ctrl_reg;
1309
1310 lockdep_assert_held(&dev_priv->pps_mutex);
1311
1312 pp_stat_reg = _pp_stat_reg(intel_dp);
1313 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1314
1315 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1316 mask, value,
1317 I915_READ(pp_stat_reg),
1318 I915_READ(pp_ctrl_reg));
1319
1320 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1321 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1322 I915_READ(pp_stat_reg),
1323 I915_READ(pp_ctrl_reg));
1324 }
1325
1326 DRM_DEBUG_KMS("Wait complete\n");
1327 }
1328
1329 static void wait_panel_on(struct intel_dp *intel_dp)
1330 {
1331 DRM_DEBUG_KMS("Wait for panel power on\n");
1332 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1333 }
1334
1335 static void wait_panel_off(struct intel_dp *intel_dp)
1336 {
1337 DRM_DEBUG_KMS("Wait for panel power off time\n");
1338 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1339 }
1340
1341 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1342 {
1343 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1344
1345 /* When we disable the VDD override bit last we have to do the manual
1346 * wait. */
1347 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1348 intel_dp->panel_power_cycle_delay);
1349
1350 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1351 }
1352
1353 static void wait_backlight_on(struct intel_dp *intel_dp)
1354 {
1355 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1356 intel_dp->backlight_on_delay);
1357 }
1358
1359 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1360 {
1361 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1362 intel_dp->backlight_off_delay);
1363 }
1364
1365 /* Read the current pp_control value, unlocking the register if it
1366 * is locked
1367 */
1368
1369 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1370 {
1371 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1372 struct drm_i915_private *dev_priv = dev->dev_private;
1373 u32 control;
1374
1375 lockdep_assert_held(&dev_priv->pps_mutex);
1376
1377 control = I915_READ(_pp_ctrl_reg(intel_dp));
1378 control &= ~PANEL_UNLOCK_MASK;
1379 control |= PANEL_UNLOCK_REGS;
1380 return control;
1381 }
1382
1383 /*
1384 * Must be paired with edp_panel_vdd_off().
1385 * Must hold pps_mutex around the whole on/off sequence.
1386 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1387 */
1388 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1389 {
1390 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1391 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1392 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1393 struct drm_i915_private *dev_priv = dev->dev_private;
1394 enum intel_display_power_domain power_domain;
1395 u32 pp;
1396 u32 pp_stat_reg, pp_ctrl_reg;
1397 bool need_to_disable = !intel_dp->want_panel_vdd;
1398
1399 lockdep_assert_held(&dev_priv->pps_mutex);
1400
1401 if (!is_edp(intel_dp))
1402 return false;
1403
1404 intel_dp->want_panel_vdd = true;
1405
1406 if (edp_have_panel_vdd(intel_dp))
1407 return need_to_disable;
1408
1409 power_domain = intel_display_port_power_domain(intel_encoder);
1410 intel_display_power_get(dev_priv, power_domain);
1411
1412 DRM_DEBUG_KMS("Turning eDP VDD on\n");
1413
1414 if (!edp_have_panel_power(intel_dp))
1415 wait_panel_power_cycle(intel_dp);
1416
1417 pp = ironlake_get_pp_control(intel_dp);
1418 pp |= EDP_FORCE_VDD;
1419
1420 pp_stat_reg = _pp_stat_reg(intel_dp);
1421 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1422
1423 I915_WRITE(pp_ctrl_reg, pp);
1424 POSTING_READ(pp_ctrl_reg);
1425 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1426 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1427 /*
1428 * If the panel wasn't on, delay before accessing aux channel
1429 */
1430 if (!edp_have_panel_power(intel_dp)) {
1431 DRM_DEBUG_KMS("eDP was not running\n");
1432 msleep(intel_dp->panel_power_up_delay);
1433 }
1434
1435 return need_to_disable;
1436 }
1437
1438 /*
1439 * Must be paired with intel_edp_panel_vdd_off() or
1440 * intel_edp_panel_off().
1441 * Nested calls to these functions are not allowed since
1442 * we drop the lock. Caller must use some higher level
1443 * locking to prevent nested calls from other threads.
1444 */
1445 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1446 {
1447 bool vdd;
1448
1449 if (!is_edp(intel_dp))
1450 return;
1451
1452 pps_lock(intel_dp);
1453 vdd = edp_panel_vdd_on(intel_dp);
1454 pps_unlock(intel_dp);
1455
1456 WARN(!vdd, "eDP VDD already requested on\n");
1457 }
1458
1459 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1460 {
1461 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1462 struct drm_i915_private *dev_priv = dev->dev_private;
1463 struct intel_digital_port *intel_dig_port =
1464 dp_to_dig_port(intel_dp);
1465 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1466 enum intel_display_power_domain power_domain;
1467 u32 pp;
1468 u32 pp_stat_reg, pp_ctrl_reg;
1469
1470 lockdep_assert_held(&dev_priv->pps_mutex);
1471
1472 WARN_ON(intel_dp->want_panel_vdd);
1473
1474 if (!edp_have_panel_vdd(intel_dp))
1475 return;
1476
1477 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1478
1479 pp = ironlake_get_pp_control(intel_dp);
1480 pp &= ~EDP_FORCE_VDD;
1481
1482 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1483 pp_stat_reg = _pp_stat_reg(intel_dp);
1484
1485 I915_WRITE(pp_ctrl_reg, pp);
1486 POSTING_READ(pp_ctrl_reg);
1487
1488 /* Make sure sequencer is idle before allowing subsequent activity */
1489 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1490 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1491
1492 if ((pp & POWER_TARGET_ON) == 0)
1493 intel_dp->last_power_cycle = jiffies;
1494
1495 power_domain = intel_display_port_power_domain(intel_encoder);
1496 intel_display_power_put(dev_priv, power_domain);
1497 }
1498
1499 static void edp_panel_vdd_work(struct work_struct *__work)
1500 {
1501 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1502 struct intel_dp, panel_vdd_work);
1503
1504 pps_lock(intel_dp);
1505 if (!intel_dp->want_panel_vdd)
1506 edp_panel_vdd_off_sync(intel_dp);
1507 pps_unlock(intel_dp);
1508 }
1509
1510 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1511 {
1512 unsigned long delay;
1513
1514 /*
1515 * Queue the timer to fire a long time from now (relative to the power
1516 * down delay) to keep the panel power up across a sequence of
1517 * operations.
1518 */
1519 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1520 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1521 }
1522
1523 /*
1524 * Must be paired with edp_panel_vdd_on().
1525 * Must hold pps_mutex around the whole on/off sequence.
1526 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1527 */
1528 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1529 {
1530 struct drm_i915_private *dev_priv =
1531 intel_dp_to_dev(intel_dp)->dev_private;
1532
1533 lockdep_assert_held(&dev_priv->pps_mutex);
1534
1535 if (!is_edp(intel_dp))
1536 return;
1537
1538 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1539
1540 intel_dp->want_panel_vdd = false;
1541
1542 if (sync)
1543 edp_panel_vdd_off_sync(intel_dp);
1544 else
1545 edp_panel_vdd_schedule_off(intel_dp);
1546 }
1547
1548 /*
1549 * Must be paired with intel_edp_panel_vdd_on().
1550 * Nested calls to these functions are not allowed since
1551 * we drop the lock. Caller must use some higher level
1552 * locking to prevent nested calls from other threads.
1553 */
1554 static void intel_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1555 {
1556 if (!is_edp(intel_dp))
1557 return;
1558
1559 pps_lock(intel_dp);
1560 edp_panel_vdd_off(intel_dp, sync);
1561 pps_unlock(intel_dp);
1562 }
1563
1564 void intel_edp_panel_on(struct intel_dp *intel_dp)
1565 {
1566 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1567 struct drm_i915_private *dev_priv = dev->dev_private;
1568 u32 pp;
1569 u32 pp_ctrl_reg;
1570
1571 if (!is_edp(intel_dp))
1572 return;
1573
1574 DRM_DEBUG_KMS("Turn eDP power on\n");
1575
1576 pps_lock(intel_dp);
1577
1578 if (edp_have_panel_power(intel_dp)) {
1579 DRM_DEBUG_KMS("eDP power already on\n");
1580 goto out;
1581 }
1582
1583 wait_panel_power_cycle(intel_dp);
1584
1585 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1586 pp = ironlake_get_pp_control(intel_dp);
1587 if (IS_GEN5(dev)) {
1588 /* ILK workaround: disable reset around power sequence */
1589 pp &= ~PANEL_POWER_RESET;
1590 I915_WRITE(pp_ctrl_reg, pp);
1591 POSTING_READ(pp_ctrl_reg);
1592 }
1593
1594 pp |= POWER_TARGET_ON;
1595 if (!IS_GEN5(dev))
1596 pp |= PANEL_POWER_RESET;
1597
1598 I915_WRITE(pp_ctrl_reg, pp);
1599 POSTING_READ(pp_ctrl_reg);
1600
1601 wait_panel_on(intel_dp);
1602 intel_dp->last_power_on = jiffies;
1603
1604 if (IS_GEN5(dev)) {
1605 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1606 I915_WRITE(pp_ctrl_reg, pp);
1607 POSTING_READ(pp_ctrl_reg);
1608 }
1609
1610 out:
1611 pps_unlock(intel_dp);
1612 }
1613
1614 void intel_edp_panel_off(struct intel_dp *intel_dp)
1615 {
1616 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1617 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1618 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1619 struct drm_i915_private *dev_priv = dev->dev_private;
1620 enum intel_display_power_domain power_domain;
1621 u32 pp;
1622 u32 pp_ctrl_reg;
1623
1624 if (!is_edp(intel_dp))
1625 return;
1626
1627 DRM_DEBUG_KMS("Turn eDP power off\n");
1628
1629 pps_lock(intel_dp);
1630
1631 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1632
1633 pp = ironlake_get_pp_control(intel_dp);
1634 /* We need to switch off panel power _and_ force vdd, for otherwise some
1635 * panels get very unhappy and cease to work. */
1636 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1637 EDP_BLC_ENABLE);
1638
1639 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1640
1641 intel_dp->want_panel_vdd = false;
1642
1643 I915_WRITE(pp_ctrl_reg, pp);
1644 POSTING_READ(pp_ctrl_reg);
1645
1646 intel_dp->last_power_cycle = jiffies;
1647 wait_panel_off(intel_dp);
1648
1649 /* We got a reference when we enabled the VDD. */
1650 power_domain = intel_display_port_power_domain(intel_encoder);
1651 intel_display_power_put(dev_priv, power_domain);
1652
1653 pps_unlock(intel_dp);
1654 }
1655
1656 /* Enable backlight in the panel power control. */
1657 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
1658 {
1659 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1660 struct drm_device *dev = intel_dig_port->base.base.dev;
1661 struct drm_i915_private *dev_priv = dev->dev_private;
1662 u32 pp;
1663 u32 pp_ctrl_reg;
1664
1665 /*
1666 * If we enable the backlight right away following a panel power
1667 * on, we may see slight flicker as the panel syncs with the eDP
1668 * link. So delay a bit to make sure the image is solid before
1669 * allowing it to appear.
1670 */
1671 wait_backlight_on(intel_dp);
1672
1673 pps_lock(intel_dp);
1674
1675 pp = ironlake_get_pp_control(intel_dp);
1676 pp |= EDP_BLC_ENABLE;
1677
1678 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1679
1680 I915_WRITE(pp_ctrl_reg, pp);
1681 POSTING_READ(pp_ctrl_reg);
1682
1683 pps_unlock(intel_dp);
1684 }
1685
1686 /* Enable backlight PWM and backlight PP control. */
1687 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1688 {
1689 if (!is_edp(intel_dp))
1690 return;
1691
1692 DRM_DEBUG_KMS("\n");
1693
1694 intel_panel_enable_backlight(intel_dp->attached_connector);
1695 _intel_edp_backlight_on(intel_dp);
1696 }
1697
1698 /* Disable backlight in the panel power control. */
1699 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
1700 {
1701 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1702 struct drm_i915_private *dev_priv = dev->dev_private;
1703 u32 pp;
1704 u32 pp_ctrl_reg;
1705
1706 if (!is_edp(intel_dp))
1707 return;
1708
1709 pps_lock(intel_dp);
1710
1711 pp = ironlake_get_pp_control(intel_dp);
1712 pp &= ~EDP_BLC_ENABLE;
1713
1714 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1715
1716 I915_WRITE(pp_ctrl_reg, pp);
1717 POSTING_READ(pp_ctrl_reg);
1718
1719 pps_unlock(intel_dp);
1720
1721 intel_dp->last_backlight_off = jiffies;
1722 edp_wait_backlight_off(intel_dp);
1723 }
1724
1725 /* Disable backlight PP control and backlight PWM. */
1726 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1727 {
1728 if (!is_edp(intel_dp))
1729 return;
1730
1731 DRM_DEBUG_KMS("\n");
1732
1733 _intel_edp_backlight_off(intel_dp);
1734 intel_panel_disable_backlight(intel_dp->attached_connector);
1735 }
1736
1737 /*
1738 * Hook for controlling the panel power control backlight through the bl_power
1739 * sysfs attribute. Take care to handle multiple calls.
1740 */
1741 static void intel_edp_backlight_power(struct intel_connector *connector,
1742 bool enable)
1743 {
1744 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
1745 bool is_enabled;
1746
1747 pps_lock(intel_dp);
1748 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
1749 pps_unlock(intel_dp);
1750
1751 if (is_enabled == enable)
1752 return;
1753
1754 DRM_DEBUG_KMS("panel power control backlight %s\n",
1755 enable ? "enable" : "disable");
1756
1757 if (enable)
1758 _intel_edp_backlight_on(intel_dp);
1759 else
1760 _intel_edp_backlight_off(intel_dp);
1761 }
1762
1763 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1764 {
1765 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1766 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1767 struct drm_device *dev = crtc->dev;
1768 struct drm_i915_private *dev_priv = dev->dev_private;
1769 u32 dpa_ctl;
1770
1771 assert_pipe_disabled(dev_priv,
1772 to_intel_crtc(crtc)->pipe);
1773
1774 DRM_DEBUG_KMS("\n");
1775 dpa_ctl = I915_READ(DP_A);
1776 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1777 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1778
1779 /* We don't adjust intel_dp->DP while tearing down the link, to
1780 * facilitate link retraining (e.g. after hotplug). Hence clear all
1781 * enable bits here to ensure that we don't enable too much. */
1782 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1783 intel_dp->DP |= DP_PLL_ENABLE;
1784 I915_WRITE(DP_A, intel_dp->DP);
1785 POSTING_READ(DP_A);
1786 udelay(200);
1787 }
1788
1789 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1790 {
1791 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1792 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1793 struct drm_device *dev = crtc->dev;
1794 struct drm_i915_private *dev_priv = dev->dev_private;
1795 u32 dpa_ctl;
1796
1797 assert_pipe_disabled(dev_priv,
1798 to_intel_crtc(crtc)->pipe);
1799
1800 dpa_ctl = I915_READ(DP_A);
1801 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1802 "dp pll off, should be on\n");
1803 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1804
1805 /* We can't rely on the value tracked for the DP register in
1806 * intel_dp->DP because link_down must not change that (otherwise link
1807 * re-training will fail. */
1808 dpa_ctl &= ~DP_PLL_ENABLE;
1809 I915_WRITE(DP_A, dpa_ctl);
1810 POSTING_READ(DP_A);
1811 udelay(200);
1812 }
1813
1814 /* If the sink supports it, try to set the power state appropriately */
1815 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1816 {
1817 int ret, i;
1818
1819 /* Should have a valid DPCD by this point */
1820 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1821 return;
1822
1823 if (mode != DRM_MODE_DPMS_ON) {
1824 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1825 DP_SET_POWER_D3);
1826 } else {
1827 /*
1828 * When turning on, we need to retry for 1ms to give the sink
1829 * time to wake up.
1830 */
1831 for (i = 0; i < 3; i++) {
1832 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1833 DP_SET_POWER_D0);
1834 if (ret == 1)
1835 break;
1836 msleep(1);
1837 }
1838 }
1839
1840 if (ret != 1)
1841 DRM_DEBUG_KMS("failed to %s sink power state\n",
1842 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
1843 }
1844
1845 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1846 enum pipe *pipe)
1847 {
1848 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1849 enum port port = dp_to_dig_port(intel_dp)->port;
1850 struct drm_device *dev = encoder->base.dev;
1851 struct drm_i915_private *dev_priv = dev->dev_private;
1852 enum intel_display_power_domain power_domain;
1853 u32 tmp;
1854
1855 power_domain = intel_display_port_power_domain(encoder);
1856 if (!intel_display_power_is_enabled(dev_priv, power_domain))
1857 return false;
1858
1859 tmp = I915_READ(intel_dp->output_reg);
1860
1861 if (!(tmp & DP_PORT_EN))
1862 return false;
1863
1864 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1865 *pipe = PORT_TO_PIPE_CPT(tmp);
1866 } else if (IS_CHERRYVIEW(dev)) {
1867 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
1868 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1869 *pipe = PORT_TO_PIPE(tmp);
1870 } else {
1871 u32 trans_sel;
1872 u32 trans_dp;
1873 int i;
1874
1875 switch (intel_dp->output_reg) {
1876 case PCH_DP_B:
1877 trans_sel = TRANS_DP_PORT_SEL_B;
1878 break;
1879 case PCH_DP_C:
1880 trans_sel = TRANS_DP_PORT_SEL_C;
1881 break;
1882 case PCH_DP_D:
1883 trans_sel = TRANS_DP_PORT_SEL_D;
1884 break;
1885 default:
1886 return true;
1887 }
1888
1889 for_each_pipe(dev_priv, i) {
1890 trans_dp = I915_READ(TRANS_DP_CTL(i));
1891 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1892 *pipe = i;
1893 return true;
1894 }
1895 }
1896
1897 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1898 intel_dp->output_reg);
1899 }
1900
1901 return true;
1902 }
1903
1904 static void intel_dp_get_config(struct intel_encoder *encoder,
1905 struct intel_crtc_config *pipe_config)
1906 {
1907 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1908 u32 tmp, flags = 0;
1909 struct drm_device *dev = encoder->base.dev;
1910 struct drm_i915_private *dev_priv = dev->dev_private;
1911 enum port port = dp_to_dig_port(intel_dp)->port;
1912 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1913 int dotclock;
1914
1915 tmp = I915_READ(intel_dp->output_reg);
1916 if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1917 pipe_config->has_audio = true;
1918
1919 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1920 if (tmp & DP_SYNC_HS_HIGH)
1921 flags |= DRM_MODE_FLAG_PHSYNC;
1922 else
1923 flags |= DRM_MODE_FLAG_NHSYNC;
1924
1925 if (tmp & DP_SYNC_VS_HIGH)
1926 flags |= DRM_MODE_FLAG_PVSYNC;
1927 else
1928 flags |= DRM_MODE_FLAG_NVSYNC;
1929 } else {
1930 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1931 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1932 flags |= DRM_MODE_FLAG_PHSYNC;
1933 else
1934 flags |= DRM_MODE_FLAG_NHSYNC;
1935
1936 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1937 flags |= DRM_MODE_FLAG_PVSYNC;
1938 else
1939 flags |= DRM_MODE_FLAG_NVSYNC;
1940 }
1941
1942 pipe_config->adjusted_mode.flags |= flags;
1943
1944 pipe_config->has_dp_encoder = true;
1945
1946 intel_dp_get_m_n(crtc, pipe_config);
1947
1948 if (port == PORT_A) {
1949 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1950 pipe_config->port_clock = 162000;
1951 else
1952 pipe_config->port_clock = 270000;
1953 }
1954
1955 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1956 &pipe_config->dp_m_n);
1957
1958 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1959 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1960
1961 pipe_config->adjusted_mode.crtc_clock = dotclock;
1962
1963 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1964 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1965 /*
1966 * This is a big fat ugly hack.
1967 *
1968 * Some machines in UEFI boot mode provide us a VBT that has 18
1969 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1970 * unknown we fail to light up. Yet the same BIOS boots up with
1971 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1972 * max, not what it tells us to use.
1973 *
1974 * Note: This will still be broken if the eDP panel is not lit
1975 * up by the BIOS, and thus we can't get the mode at module
1976 * load.
1977 */
1978 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1979 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1980 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1981 }
1982 }
1983
1984 static bool is_edp_psr(struct intel_dp *intel_dp)
1985 {
1986 return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
1987 }
1988
1989 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1990 {
1991 struct drm_i915_private *dev_priv = dev->dev_private;
1992
1993 if (!HAS_PSR(dev))
1994 return false;
1995
1996 return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1997 }
1998
1999 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
2000 struct edp_vsc_psr *vsc_psr)
2001 {
2002 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2003 struct drm_device *dev = dig_port->base.base.dev;
2004 struct drm_i915_private *dev_priv = dev->dev_private;
2005 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
2006 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
2007 u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
2008 uint32_t *data = (uint32_t *) vsc_psr;
2009 unsigned int i;
2010
2011 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
2012 the video DIP being updated before program video DIP data buffer
2013 registers for DIP being updated. */
2014 I915_WRITE(ctl_reg, 0);
2015 POSTING_READ(ctl_reg);
2016
2017 for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
2018 if (i < sizeof(struct edp_vsc_psr))
2019 I915_WRITE(data_reg + i, *data++);
2020 else
2021 I915_WRITE(data_reg + i, 0);
2022 }
2023
2024 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
2025 POSTING_READ(ctl_reg);
2026 }
2027
2028 static void intel_edp_psr_setup_vsc(struct intel_dp *intel_dp)
2029 {
2030 struct edp_vsc_psr psr_vsc;
2031
2032 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
2033 memset(&psr_vsc, 0, sizeof(psr_vsc));
2034 psr_vsc.sdp_header.HB0 = 0;
2035 psr_vsc.sdp_header.HB1 = 0x7;
2036 psr_vsc.sdp_header.HB2 = 0x2;
2037 psr_vsc.sdp_header.HB3 = 0x8;
2038 intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
2039 }
2040
2041 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
2042 {
2043 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2044 struct drm_device *dev = dig_port->base.base.dev;
2045 struct drm_i915_private *dev_priv = dev->dev_private;
2046 uint32_t aux_clock_divider;
2047 int precharge = 0x3;
2048 bool only_standby = false;
2049 static const uint8_t aux_msg[] = {
2050 [0] = DP_AUX_NATIVE_WRITE << 4,
2051 [1] = DP_SET_POWER >> 8,
2052 [2] = DP_SET_POWER & 0xff,
2053 [3] = 1 - 1,
2054 [4] = DP_SET_POWER_D0,
2055 };
2056 int i;
2057
2058 BUILD_BUG_ON(sizeof(aux_msg) > 20);
2059
2060 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
2061
2062 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
2063 only_standby = true;
2064
2065 /* Enable PSR in sink */
2066 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
2067 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
2068 DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
2069 else
2070 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
2071 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
2072
2073 /* Setup AUX registers */
2074 for (i = 0; i < sizeof(aux_msg); i += 4)
2075 I915_WRITE(EDP_PSR_AUX_DATA1(dev) + i,
2076 pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
2077
2078 I915_WRITE(EDP_PSR_AUX_CTL(dev),
2079 DP_AUX_CH_CTL_TIME_OUT_400us |
2080 (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
2081 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
2082 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
2083 }
2084
2085 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
2086 {
2087 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2088 struct drm_device *dev = dig_port->base.base.dev;
2089 struct drm_i915_private *dev_priv = dev->dev_private;
2090 uint32_t max_sleep_time = 0x1f;
2091 uint32_t idle_frames = 1;
2092 uint32_t val = 0x0;
2093 const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
2094 bool only_standby = false;
2095
2096 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
2097 only_standby = true;
2098
2099 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
2100 val |= EDP_PSR_LINK_STANDBY;
2101 val |= EDP_PSR_TP2_TP3_TIME_0us;
2102 val |= EDP_PSR_TP1_TIME_0us;
2103 val |= EDP_PSR_SKIP_AUX_EXIT;
2104 val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
2105 } else
2106 val |= EDP_PSR_LINK_DISABLE;
2107
2108 I915_WRITE(EDP_PSR_CTL(dev), val |
2109 (IS_BROADWELL(dev) ? 0 : link_entry_time) |
2110 max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
2111 idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
2112 EDP_PSR_ENABLE);
2113 }
2114
2115 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
2116 {
2117 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2118 struct drm_device *dev = dig_port->base.base.dev;
2119 struct drm_i915_private *dev_priv = dev->dev_private;
2120 struct drm_crtc *crtc = dig_port->base.base.crtc;
2121 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2122
2123 lockdep_assert_held(&dev_priv->psr.lock);
2124 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
2125 WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
2126
2127 dev_priv->psr.source_ok = false;
2128
2129 if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
2130 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
2131 return false;
2132 }
2133
2134 if (!i915.enable_psr) {
2135 DRM_DEBUG_KMS("PSR disable by flag\n");
2136 return false;
2137 }
2138
2139 /* Below limitations aren't valid for Broadwell */
2140 if (IS_BROADWELL(dev))
2141 goto out;
2142
2143 if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
2144 S3D_ENABLE) {
2145 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
2146 return false;
2147 }
2148
2149 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
2150 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
2151 return false;
2152 }
2153
2154 out:
2155 dev_priv->psr.source_ok = true;
2156 return true;
2157 }
2158
2159 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
2160 {
2161 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2162 struct drm_device *dev = intel_dig_port->base.base.dev;
2163 struct drm_i915_private *dev_priv = dev->dev_private;
2164
2165 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
2166 WARN_ON(dev_priv->psr.active);
2167 lockdep_assert_held(&dev_priv->psr.lock);
2168
2169 /* Enable/Re-enable PSR on the host */
2170 intel_edp_psr_enable_source(intel_dp);
2171
2172 dev_priv->psr.active = true;
2173 }
2174
2175 void intel_edp_psr_enable(struct intel_dp *intel_dp)
2176 {
2177 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2178 struct drm_i915_private *dev_priv = dev->dev_private;
2179
2180 if (!HAS_PSR(dev)) {
2181 DRM_DEBUG_KMS("PSR not supported on this platform\n");
2182 return;
2183 }
2184
2185 if (!is_edp_psr(intel_dp)) {
2186 DRM_DEBUG_KMS("PSR not supported by this panel\n");
2187 return;
2188 }
2189
2190 mutex_lock(&dev_priv->psr.lock);
2191 if (dev_priv->psr.enabled) {
2192 DRM_DEBUG_KMS("PSR already in use\n");
2193 goto unlock;
2194 }
2195
2196 if (!intel_edp_psr_match_conditions(intel_dp))
2197 goto unlock;
2198
2199 dev_priv->psr.busy_frontbuffer_bits = 0;
2200
2201 intel_edp_psr_setup_vsc(intel_dp);
2202
2203 /* Avoid continuous PSR exit by masking memup and hpd */
2204 I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
2205 EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
2206
2207 /* Enable PSR on the panel */
2208 intel_edp_psr_enable_sink(intel_dp);
2209
2210 dev_priv->psr.enabled = intel_dp;
2211 unlock:
2212 mutex_unlock(&dev_priv->psr.lock);
2213 }
2214
2215 void intel_edp_psr_disable(struct intel_dp *intel_dp)
2216 {
2217 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2218 struct drm_i915_private *dev_priv = dev->dev_private;
2219
2220 mutex_lock(&dev_priv->psr.lock);
2221 if (!dev_priv->psr.enabled) {
2222 mutex_unlock(&dev_priv->psr.lock);
2223 return;
2224 }
2225
2226 if (dev_priv->psr.active) {
2227 I915_WRITE(EDP_PSR_CTL(dev),
2228 I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
2229
2230 /* Wait till PSR is idle */
2231 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
2232 EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
2233 DRM_ERROR("Timed out waiting for PSR Idle State\n");
2234
2235 dev_priv->psr.active = false;
2236 } else {
2237 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
2238 }
2239
2240 dev_priv->psr.enabled = NULL;
2241 mutex_unlock(&dev_priv->psr.lock);
2242
2243 cancel_delayed_work_sync(&dev_priv->psr.work);
2244 }
2245
2246 static void intel_edp_psr_work(struct work_struct *work)
2247 {
2248 struct drm_i915_private *dev_priv =
2249 container_of(work, typeof(*dev_priv), psr.work.work);
2250 struct intel_dp *intel_dp = dev_priv->psr.enabled;
2251
2252 /* We have to make sure PSR is ready for re-enable
2253 * otherwise it keeps disabled until next full enable/disable cycle.
2254 * PSR might take some time to get fully disabled
2255 * and be ready for re-enable.
2256 */
2257 if (wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev_priv->dev)) &
2258 EDP_PSR_STATUS_STATE_MASK) == 0, 50)) {
2259 DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
2260 return;
2261 }
2262
2263 mutex_lock(&dev_priv->psr.lock);
2264 intel_dp = dev_priv->psr.enabled;
2265
2266 if (!intel_dp)
2267 goto unlock;
2268
2269 /*
2270 * The delayed work can race with an invalidate hence we need to
2271 * recheck. Since psr_flush first clears this and then reschedules we
2272 * won't ever miss a flush when bailing out here.
2273 */
2274 if (dev_priv->psr.busy_frontbuffer_bits)
2275 goto unlock;
2276
2277 intel_edp_psr_do_enable(intel_dp);
2278 unlock:
2279 mutex_unlock(&dev_priv->psr.lock);
2280 }
2281
2282 static void intel_edp_psr_do_exit(struct drm_device *dev)
2283 {
2284 struct drm_i915_private *dev_priv = dev->dev_private;
2285
2286 if (dev_priv->psr.active) {
2287 u32 val = I915_READ(EDP_PSR_CTL(dev));
2288
2289 WARN_ON(!(val & EDP_PSR_ENABLE));
2290
2291 I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
2292
2293 dev_priv->psr.active = false;
2294 }
2295
2296 }
2297
2298 void intel_edp_psr_invalidate(struct drm_device *dev,
2299 unsigned frontbuffer_bits)
2300 {
2301 struct drm_i915_private *dev_priv = dev->dev_private;
2302 struct drm_crtc *crtc;
2303 enum pipe pipe;
2304
2305 mutex_lock(&dev_priv->psr.lock);
2306 if (!dev_priv->psr.enabled) {
2307 mutex_unlock(&dev_priv->psr.lock);
2308 return;
2309 }
2310
2311 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2312 pipe = to_intel_crtc(crtc)->pipe;
2313
2314 intel_edp_psr_do_exit(dev);
2315
2316 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
2317
2318 dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
2319 mutex_unlock(&dev_priv->psr.lock);
2320 }
2321
2322 void intel_edp_psr_flush(struct drm_device *dev,
2323 unsigned frontbuffer_bits)
2324 {
2325 struct drm_i915_private *dev_priv = dev->dev_private;
2326 struct drm_crtc *crtc;
2327 enum pipe pipe;
2328
2329 mutex_lock(&dev_priv->psr.lock);
2330 if (!dev_priv->psr.enabled) {
2331 mutex_unlock(&dev_priv->psr.lock);
2332 return;
2333 }
2334
2335 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2336 pipe = to_intel_crtc(crtc)->pipe;
2337 dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
2338
2339 /*
2340 * On Haswell sprite plane updates don't result in a psr invalidating
2341 * signal in the hardware. Which means we need to manually fake this in
2342 * software for all flushes, not just when we've seen a preceding
2343 * invalidation through frontbuffer rendering.
2344 */
2345 if (IS_HASWELL(dev) &&
2346 (frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe)))
2347 intel_edp_psr_do_exit(dev);
2348
2349 if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
2350 schedule_delayed_work(&dev_priv->psr.work,
2351 msecs_to_jiffies(100));
2352 mutex_unlock(&dev_priv->psr.lock);
2353 }
2354
2355 void intel_edp_psr_init(struct drm_device *dev)
2356 {
2357 struct drm_i915_private *dev_priv = dev->dev_private;
2358
2359 INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work);
2360 mutex_init(&dev_priv->psr.lock);
2361 }
2362
2363 static void intel_disable_dp(struct intel_encoder *encoder)
2364 {
2365 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2366 struct drm_device *dev = encoder->base.dev;
2367
2368 /* Make sure the panel is off before trying to change the mode. But also
2369 * ensure that we have vdd while we switch off the panel. */
2370 intel_edp_panel_vdd_on(intel_dp);
2371 intel_edp_backlight_off(intel_dp);
2372 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2373 intel_edp_panel_off(intel_dp);
2374
2375 /* disable the port before the pipe on g4x */
2376 if (INTEL_INFO(dev)->gen < 5)
2377 intel_dp_link_down(intel_dp);
2378 }
2379
2380 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2381 {
2382 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2383 enum port port = dp_to_dig_port(intel_dp)->port;
2384
2385 intel_dp_link_down(intel_dp);
2386 if (port == PORT_A)
2387 ironlake_edp_pll_off(intel_dp);
2388 }
2389
2390 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2391 {
2392 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2393
2394 intel_dp_link_down(intel_dp);
2395 }
2396
2397 static void chv_post_disable_dp(struct intel_encoder *encoder)
2398 {
2399 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2400 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2401 struct drm_device *dev = encoder->base.dev;
2402 struct drm_i915_private *dev_priv = dev->dev_private;
2403 struct intel_crtc *intel_crtc =
2404 to_intel_crtc(encoder->base.crtc);
2405 enum dpio_channel ch = vlv_dport_to_channel(dport);
2406 enum pipe pipe = intel_crtc->pipe;
2407 u32 val;
2408
2409 intel_dp_link_down(intel_dp);
2410
2411 mutex_lock(&dev_priv->dpio_lock);
2412
2413 /* Propagate soft reset to data lane reset */
2414 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2415 val |= CHV_PCS_REQ_SOFTRESET_EN;
2416 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2417
2418 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2419 val |= CHV_PCS_REQ_SOFTRESET_EN;
2420 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2421
2422 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2423 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2424 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2425
2426 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2427 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2428 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2429
2430 mutex_unlock(&dev_priv->dpio_lock);
2431 }
2432
2433 static void
2434 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2435 uint32_t *DP,
2436 uint8_t dp_train_pat)
2437 {
2438 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2439 struct drm_device *dev = intel_dig_port->base.base.dev;
2440 struct drm_i915_private *dev_priv = dev->dev_private;
2441 enum port port = intel_dig_port->port;
2442
2443 if (HAS_DDI(dev)) {
2444 uint32_t temp = I915_READ(DP_TP_CTL(port));
2445
2446 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2447 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2448 else
2449 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2450
2451 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2452 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2453 case DP_TRAINING_PATTERN_DISABLE:
2454 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2455
2456 break;
2457 case DP_TRAINING_PATTERN_1:
2458 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2459 break;
2460 case DP_TRAINING_PATTERN_2:
2461 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2462 break;
2463 case DP_TRAINING_PATTERN_3:
2464 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2465 break;
2466 }
2467 I915_WRITE(DP_TP_CTL(port), temp);
2468
2469 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2470 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2471
2472 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2473 case DP_TRAINING_PATTERN_DISABLE:
2474 *DP |= DP_LINK_TRAIN_OFF_CPT;
2475 break;
2476 case DP_TRAINING_PATTERN_1:
2477 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2478 break;
2479 case DP_TRAINING_PATTERN_2:
2480 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2481 break;
2482 case DP_TRAINING_PATTERN_3:
2483 DRM_ERROR("DP training pattern 3 not supported\n");
2484 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2485 break;
2486 }
2487
2488 } else {
2489 if (IS_CHERRYVIEW(dev))
2490 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2491 else
2492 *DP &= ~DP_LINK_TRAIN_MASK;
2493
2494 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2495 case DP_TRAINING_PATTERN_DISABLE:
2496 *DP |= DP_LINK_TRAIN_OFF;
2497 break;
2498 case DP_TRAINING_PATTERN_1:
2499 *DP |= DP_LINK_TRAIN_PAT_1;
2500 break;
2501 case DP_TRAINING_PATTERN_2:
2502 *DP |= DP_LINK_TRAIN_PAT_2;
2503 break;
2504 case DP_TRAINING_PATTERN_3:
2505 if (IS_CHERRYVIEW(dev)) {
2506 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2507 } else {
2508 DRM_ERROR("DP training pattern 3 not supported\n");
2509 *DP |= DP_LINK_TRAIN_PAT_2;
2510 }
2511 break;
2512 }
2513 }
2514 }
2515
2516 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2517 {
2518 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2519 struct drm_i915_private *dev_priv = dev->dev_private;
2520
2521 intel_dp->DP |= DP_PORT_EN;
2522
2523 /* enable with pattern 1 (as per spec) */
2524 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2525 DP_TRAINING_PATTERN_1);
2526
2527 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2528 POSTING_READ(intel_dp->output_reg);
2529 }
2530
2531 static void intel_enable_dp(struct intel_encoder *encoder)
2532 {
2533 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2534 struct drm_device *dev = encoder->base.dev;
2535 struct drm_i915_private *dev_priv = dev->dev_private;
2536 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2537
2538 if (WARN_ON(dp_reg & DP_PORT_EN))
2539 return;
2540
2541 intel_dp_enable_port(intel_dp);
2542 intel_edp_panel_vdd_on(intel_dp);
2543 intel_edp_panel_on(intel_dp);
2544 intel_edp_panel_vdd_off(intel_dp, true);
2545 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2546 intel_dp_start_link_train(intel_dp);
2547 intel_dp_complete_link_train(intel_dp);
2548 intel_dp_stop_link_train(intel_dp);
2549 }
2550
2551 static void g4x_enable_dp(struct intel_encoder *encoder)
2552 {
2553 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2554
2555 intel_enable_dp(encoder);
2556 intel_edp_backlight_on(intel_dp);
2557 }
2558
2559 static void vlv_enable_dp(struct intel_encoder *encoder)
2560 {
2561 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2562
2563 intel_edp_backlight_on(intel_dp);
2564 }
2565
2566 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2567 {
2568 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2569 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2570
2571 intel_dp_prepare(encoder);
2572
2573 /* Only ilk+ has port A */
2574 if (dport->port == PORT_A) {
2575 ironlake_set_pll_cpu_edp(intel_dp);
2576 ironlake_edp_pll_on(intel_dp);
2577 }
2578 }
2579
2580 static void vlv_steal_power_sequencer(struct drm_device *dev,
2581 enum pipe pipe)
2582 {
2583 struct drm_i915_private *dev_priv = dev->dev_private;
2584 struct intel_encoder *encoder;
2585
2586 lockdep_assert_held(&dev_priv->pps_mutex);
2587
2588 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2589 base.head) {
2590 struct intel_dp *intel_dp;
2591 enum port port;
2592
2593 if (encoder->type != INTEL_OUTPUT_EDP)
2594 continue;
2595
2596 intel_dp = enc_to_intel_dp(&encoder->base);
2597 port = dp_to_dig_port(intel_dp)->port;
2598
2599 if (intel_dp->pps_pipe != pipe)
2600 continue;
2601
2602 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2603 pipe_name(pipe), port_name(port));
2604
2605 /* make sure vdd is off before we steal it */
2606 edp_panel_vdd_off_sync(intel_dp);
2607
2608 intel_dp->pps_pipe = INVALID_PIPE;
2609 }
2610 }
2611
2612 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2613 {
2614 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2615 struct intel_encoder *encoder = &intel_dig_port->base;
2616 struct drm_device *dev = encoder->base.dev;
2617 struct drm_i915_private *dev_priv = dev->dev_private;
2618 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2619 struct edp_power_seq power_seq;
2620
2621 lockdep_assert_held(&dev_priv->pps_mutex);
2622
2623 if (intel_dp->pps_pipe == crtc->pipe)
2624 return;
2625
2626 /*
2627 * If another power sequencer was being used on this
2628 * port previously make sure to turn off vdd there while
2629 * we still have control of it.
2630 */
2631 if (intel_dp->pps_pipe != INVALID_PIPE)
2632 edp_panel_vdd_off_sync(intel_dp);
2633
2634 /*
2635 * We may be stealing the power
2636 * sequencer from another port.
2637 */
2638 vlv_steal_power_sequencer(dev, crtc->pipe);
2639
2640 /* now it's all ours */
2641 intel_dp->pps_pipe = crtc->pipe;
2642
2643 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2644 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2645
2646 /* init power sequencer on this pipe and port */
2647 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2648 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2649 &power_seq);
2650 }
2651
2652 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2653 {
2654 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2655 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2656 struct drm_device *dev = encoder->base.dev;
2657 struct drm_i915_private *dev_priv = dev->dev_private;
2658 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2659 enum dpio_channel port = vlv_dport_to_channel(dport);
2660 int pipe = intel_crtc->pipe;
2661 u32 val;
2662
2663 mutex_lock(&dev_priv->dpio_lock);
2664
2665 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2666 val = 0;
2667 if (pipe)
2668 val |= (1<<21);
2669 else
2670 val &= ~(1<<21);
2671 val |= 0x001000c4;
2672 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2673 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2674 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2675
2676 mutex_unlock(&dev_priv->dpio_lock);
2677
2678 if (is_edp(intel_dp)) {
2679 pps_lock(intel_dp);
2680 vlv_init_panel_power_sequencer(intel_dp);
2681 pps_unlock(intel_dp);
2682 }
2683
2684 intel_enable_dp(encoder);
2685
2686 vlv_wait_port_ready(dev_priv, dport);
2687 }
2688
2689 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2690 {
2691 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2692 struct drm_device *dev = encoder->base.dev;
2693 struct drm_i915_private *dev_priv = dev->dev_private;
2694 struct intel_crtc *intel_crtc =
2695 to_intel_crtc(encoder->base.crtc);
2696 enum dpio_channel port = vlv_dport_to_channel(dport);
2697 int pipe = intel_crtc->pipe;
2698
2699 intel_dp_prepare(encoder);
2700
2701 /* Program Tx lane resets to default */
2702 mutex_lock(&dev_priv->dpio_lock);
2703 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2704 DPIO_PCS_TX_LANE2_RESET |
2705 DPIO_PCS_TX_LANE1_RESET);
2706 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2707 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2708 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2709 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2710 DPIO_PCS_CLK_SOFT_RESET);
2711
2712 /* Fix up inter-pair skew failure */
2713 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2714 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2715 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2716 mutex_unlock(&dev_priv->dpio_lock);
2717 }
2718
2719 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2720 {
2721 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2722 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2723 struct drm_device *dev = encoder->base.dev;
2724 struct drm_i915_private *dev_priv = dev->dev_private;
2725 struct intel_crtc *intel_crtc =
2726 to_intel_crtc(encoder->base.crtc);
2727 enum dpio_channel ch = vlv_dport_to_channel(dport);
2728 int pipe = intel_crtc->pipe;
2729 int data, i;
2730 u32 val;
2731
2732 mutex_lock(&dev_priv->dpio_lock);
2733
2734 /* Deassert soft data lane reset*/
2735 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2736 val |= CHV_PCS_REQ_SOFTRESET_EN;
2737 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2738
2739 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2740 val |= CHV_PCS_REQ_SOFTRESET_EN;
2741 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2742
2743 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2744 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2745 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2746
2747 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2748 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2749 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2750
2751 /* Program Tx lane latency optimal setting*/
2752 for (i = 0; i < 4; i++) {
2753 /* Set the latency optimal bit */
2754 data = (i == 1) ? 0x0 : 0x6;
2755 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2756 data << DPIO_FRC_LATENCY_SHFIT);
2757
2758 /* Set the upar bit */
2759 data = (i == 1) ? 0x0 : 0x1;
2760 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2761 data << DPIO_UPAR_SHIFT);
2762 }
2763
2764 /* Data lane stagger programming */
2765 /* FIXME: Fix up value only after power analysis */
2766
2767 mutex_unlock(&dev_priv->dpio_lock);
2768
2769 if (is_edp(intel_dp)) {
2770 pps_lock(intel_dp);
2771 vlv_init_panel_power_sequencer(intel_dp);
2772 pps_unlock(intel_dp);
2773 }
2774
2775 intel_enable_dp(encoder);
2776
2777 vlv_wait_port_ready(dev_priv, dport);
2778 }
2779
2780 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2781 {
2782 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2783 struct drm_device *dev = encoder->base.dev;
2784 struct drm_i915_private *dev_priv = dev->dev_private;
2785 struct intel_crtc *intel_crtc =
2786 to_intel_crtc(encoder->base.crtc);
2787 enum dpio_channel ch = vlv_dport_to_channel(dport);
2788 enum pipe pipe = intel_crtc->pipe;
2789 u32 val;
2790
2791 intel_dp_prepare(encoder);
2792
2793 mutex_lock(&dev_priv->dpio_lock);
2794
2795 /* program left/right clock distribution */
2796 if (pipe != PIPE_B) {
2797 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2798 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2799 if (ch == DPIO_CH0)
2800 val |= CHV_BUFLEFTENA1_FORCE;
2801 if (ch == DPIO_CH1)
2802 val |= CHV_BUFRIGHTENA1_FORCE;
2803 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2804 } else {
2805 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2806 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2807 if (ch == DPIO_CH0)
2808 val |= CHV_BUFLEFTENA2_FORCE;
2809 if (ch == DPIO_CH1)
2810 val |= CHV_BUFRIGHTENA2_FORCE;
2811 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2812 }
2813
2814 /* program clock channel usage */
2815 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2816 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2817 if (pipe != PIPE_B)
2818 val &= ~CHV_PCS_USEDCLKCHANNEL;
2819 else
2820 val |= CHV_PCS_USEDCLKCHANNEL;
2821 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2822
2823 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2824 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2825 if (pipe != PIPE_B)
2826 val &= ~CHV_PCS_USEDCLKCHANNEL;
2827 else
2828 val |= CHV_PCS_USEDCLKCHANNEL;
2829 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2830
2831 /*
2832 * This a a bit weird since generally CL
2833 * matches the pipe, but here we need to
2834 * pick the CL based on the port.
2835 */
2836 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2837 if (pipe != PIPE_B)
2838 val &= ~CHV_CMN_USEDCLKCHANNEL;
2839 else
2840 val |= CHV_CMN_USEDCLKCHANNEL;
2841 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2842
2843 mutex_unlock(&dev_priv->dpio_lock);
2844 }
2845
2846 /*
2847 * Native read with retry for link status and receiver capability reads for
2848 * cases where the sink may still be asleep.
2849 *
2850 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2851 * supposed to retry 3 times per the spec.
2852 */
2853 static ssize_t
2854 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2855 void *buffer, size_t size)
2856 {
2857 ssize_t ret;
2858 int i;
2859
2860 for (i = 0; i < 3; i++) {
2861 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2862 if (ret == size)
2863 return ret;
2864 msleep(1);
2865 }
2866
2867 return ret;
2868 }
2869
2870 /*
2871 * Fetch AUX CH registers 0x202 - 0x207 which contain
2872 * link status information
2873 */
2874 static bool
2875 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2876 {
2877 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2878 DP_LANE0_1_STATUS,
2879 link_status,
2880 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2881 }
2882
2883 /* These are source-specific values. */
2884 static uint8_t
2885 intel_dp_voltage_max(struct intel_dp *intel_dp)
2886 {
2887 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2888 enum port port = dp_to_dig_port(intel_dp)->port;
2889
2890 if (INTEL_INFO(dev)->gen >= 9)
2891 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2892 else if (IS_VALLEYVIEW(dev))
2893 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2894 else if (IS_GEN7(dev) && port == PORT_A)
2895 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2896 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2897 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2898 else
2899 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2900 }
2901
2902 static uint8_t
2903 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2904 {
2905 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2906 enum port port = dp_to_dig_port(intel_dp)->port;
2907
2908 if (INTEL_INFO(dev)->gen >= 9) {
2909 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2910 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2911 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2912 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2913 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2914 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2915 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2916 default:
2917 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2918 }
2919 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2920 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2921 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2922 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2923 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2924 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2925 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2926 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2927 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2928 default:
2929 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2930 }
2931 } else if (IS_VALLEYVIEW(dev)) {
2932 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2933 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2934 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2935 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2936 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2937 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2938 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2939 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2940 default:
2941 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2942 }
2943 } else if (IS_GEN7(dev) && port == PORT_A) {
2944 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2945 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2946 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2947 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2948 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2949 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2950 default:
2951 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2952 }
2953 } else {
2954 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2955 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2956 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2957 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2958 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2959 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2960 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2961 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2962 default:
2963 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2964 }
2965 }
2966 }
2967
2968 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2969 {
2970 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2971 struct drm_i915_private *dev_priv = dev->dev_private;
2972 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2973 struct intel_crtc *intel_crtc =
2974 to_intel_crtc(dport->base.base.crtc);
2975 unsigned long demph_reg_value, preemph_reg_value,
2976 uniqtranscale_reg_value;
2977 uint8_t train_set = intel_dp->train_set[0];
2978 enum dpio_channel port = vlv_dport_to_channel(dport);
2979 int pipe = intel_crtc->pipe;
2980
2981 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2982 case DP_TRAIN_PRE_EMPH_LEVEL_0:
2983 preemph_reg_value = 0x0004000;
2984 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2985 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2986 demph_reg_value = 0x2B405555;
2987 uniqtranscale_reg_value = 0x552AB83A;
2988 break;
2989 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2990 demph_reg_value = 0x2B404040;
2991 uniqtranscale_reg_value = 0x5548B83A;
2992 break;
2993 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2994 demph_reg_value = 0x2B245555;
2995 uniqtranscale_reg_value = 0x5560B83A;
2996 break;
2997 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2998 demph_reg_value = 0x2B405555;
2999 uniqtranscale_reg_value = 0x5598DA3A;
3000 break;
3001 default:
3002 return 0;
3003 }
3004 break;
3005 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3006 preemph_reg_value = 0x0002000;
3007 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3008 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3009 demph_reg_value = 0x2B404040;
3010 uniqtranscale_reg_value = 0x5552B83A;
3011 break;
3012 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3013 demph_reg_value = 0x2B404848;
3014 uniqtranscale_reg_value = 0x5580B83A;
3015 break;
3016 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3017 demph_reg_value = 0x2B404040;
3018 uniqtranscale_reg_value = 0x55ADDA3A;
3019 break;
3020 default:
3021 return 0;
3022 }
3023 break;
3024 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3025 preemph_reg_value = 0x0000000;
3026 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3027 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3028 demph_reg_value = 0x2B305555;
3029 uniqtranscale_reg_value = 0x5570B83A;
3030 break;
3031 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3032 demph_reg_value = 0x2B2B4040;
3033 uniqtranscale_reg_value = 0x55ADDA3A;
3034 break;
3035 default:
3036 return 0;
3037 }
3038 break;
3039 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3040 preemph_reg_value = 0x0006000;
3041 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3042 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3043 demph_reg_value = 0x1B405555;
3044 uniqtranscale_reg_value = 0x55ADDA3A;
3045 break;
3046 default:
3047 return 0;
3048 }
3049 break;
3050 default:
3051 return 0;
3052 }
3053
3054 mutex_lock(&dev_priv->dpio_lock);
3055 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
3056 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3057 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3058 uniqtranscale_reg_value);
3059 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3060 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3061 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3062 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3063 mutex_unlock(&dev_priv->dpio_lock);
3064
3065 return 0;
3066 }
3067
3068 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
3069 {
3070 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3071 struct drm_i915_private *dev_priv = dev->dev_private;
3072 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3073 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3074 u32 deemph_reg_value, margin_reg_value, val;
3075 uint8_t train_set = intel_dp->train_set[0];
3076 enum dpio_channel ch = vlv_dport_to_channel(dport);
3077 enum pipe pipe = intel_crtc->pipe;
3078 int i;
3079
3080 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3081 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3082 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3083 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3084 deemph_reg_value = 128;
3085 margin_reg_value = 52;
3086 break;
3087 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3088 deemph_reg_value = 128;
3089 margin_reg_value = 77;
3090 break;
3091 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3092 deemph_reg_value = 128;
3093 margin_reg_value = 102;
3094 break;
3095 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3096 deemph_reg_value = 128;
3097 margin_reg_value = 154;
3098 /* FIXME extra to set for 1200 */
3099 break;
3100 default:
3101 return 0;
3102 }
3103 break;
3104 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3105 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3106 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3107 deemph_reg_value = 85;
3108 margin_reg_value = 78;
3109 break;
3110 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3111 deemph_reg_value = 85;
3112 margin_reg_value = 116;
3113 break;
3114 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3115 deemph_reg_value = 85;
3116 margin_reg_value = 154;
3117 break;
3118 default:
3119 return 0;
3120 }
3121 break;
3122 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3123 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3124 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3125 deemph_reg_value = 64;
3126 margin_reg_value = 104;
3127 break;
3128 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3129 deemph_reg_value = 64;
3130 margin_reg_value = 154;
3131 break;
3132 default:
3133 return 0;
3134 }
3135 break;
3136 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3137 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3138 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3139 deemph_reg_value = 43;
3140 margin_reg_value = 154;
3141 break;
3142 default:
3143 return 0;
3144 }
3145 break;
3146 default:
3147 return 0;
3148 }
3149
3150 mutex_lock(&dev_priv->dpio_lock);
3151
3152 /* Clear calc init */
3153 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3154 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3155 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3156
3157 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3158 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3159 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3160
3161 /* Program swing deemph */
3162 for (i = 0; i < 4; i++) {
3163 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3164 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3165 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3166 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3167 }
3168
3169 /* Program swing margin */
3170 for (i = 0; i < 4; i++) {
3171 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3172 val &= ~DPIO_SWING_MARGIN000_MASK;
3173 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3174 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3175 }
3176
3177 /* Disable unique transition scale */
3178 for (i = 0; i < 4; i++) {
3179 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3180 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3181 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3182 }
3183
3184 if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
3185 == DP_TRAIN_PRE_EMPH_LEVEL_0) &&
3186 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
3187 == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)) {
3188
3189 /*
3190 * The document said it needs to set bit 27 for ch0 and bit 26
3191 * for ch1. Might be a typo in the doc.
3192 * For now, for this unique transition scale selection, set bit
3193 * 27 for ch0 and ch1.
3194 */
3195 for (i = 0; i < 4; i++) {
3196 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3197 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3198 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3199 }
3200
3201 for (i = 0; i < 4; i++) {
3202 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3203 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3204 val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3205 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3206 }
3207 }
3208
3209 /* Start swing calculation */
3210 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3211 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3212 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3213
3214 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3215 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3216 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3217
3218 /* LRC Bypass */
3219 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
3220 val |= DPIO_LRC_BYPASS;
3221 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
3222
3223 mutex_unlock(&dev_priv->dpio_lock);
3224
3225 return 0;
3226 }
3227
3228 static void
3229 intel_get_adjust_train(struct intel_dp *intel_dp,
3230 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3231 {
3232 uint8_t v = 0;
3233 uint8_t p = 0;
3234 int lane;
3235 uint8_t voltage_max;
3236 uint8_t preemph_max;
3237
3238 for (lane = 0; lane < intel_dp->lane_count; lane++) {
3239 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
3240 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
3241
3242 if (this_v > v)
3243 v = this_v;
3244 if (this_p > p)
3245 p = this_p;
3246 }
3247
3248 voltage_max = intel_dp_voltage_max(intel_dp);
3249 if (v >= voltage_max)
3250 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
3251
3252 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
3253 if (p >= preemph_max)
3254 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
3255
3256 for (lane = 0; lane < 4; lane++)
3257 intel_dp->train_set[lane] = v | p;
3258 }
3259
3260 static uint32_t
3261 intel_gen4_signal_levels(uint8_t train_set)
3262 {
3263 uint32_t signal_levels = 0;
3264
3265 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3266 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3267 default:
3268 signal_levels |= DP_VOLTAGE_0_4;
3269 break;
3270 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3271 signal_levels |= DP_VOLTAGE_0_6;
3272 break;
3273 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3274 signal_levels |= DP_VOLTAGE_0_8;
3275 break;
3276 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3277 signal_levels |= DP_VOLTAGE_1_2;
3278 break;
3279 }
3280 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3281 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3282 default:
3283 signal_levels |= DP_PRE_EMPHASIS_0;
3284 break;
3285 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3286 signal_levels |= DP_PRE_EMPHASIS_3_5;
3287 break;
3288 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3289 signal_levels |= DP_PRE_EMPHASIS_6;
3290 break;
3291 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3292 signal_levels |= DP_PRE_EMPHASIS_9_5;
3293 break;
3294 }
3295 return signal_levels;
3296 }
3297
3298 /* Gen6's DP voltage swing and pre-emphasis control */
3299 static uint32_t
3300 intel_gen6_edp_signal_levels(uint8_t train_set)
3301 {
3302 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3303 DP_TRAIN_PRE_EMPHASIS_MASK);
3304 switch (signal_levels) {
3305 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3306 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3307 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3308 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3309 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3310 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3311 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3312 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3313 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3314 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3315 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3316 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3317 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3318 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3319 default:
3320 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3321 "0x%x\n", signal_levels);
3322 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3323 }
3324 }
3325
3326 /* Gen7's DP voltage swing and pre-emphasis control */
3327 static uint32_t
3328 intel_gen7_edp_signal_levels(uint8_t train_set)
3329 {
3330 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3331 DP_TRAIN_PRE_EMPHASIS_MASK);
3332 switch (signal_levels) {
3333 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3334 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3335 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3336 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3337 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3338 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3339
3340 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3341 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3342 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3343 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3344
3345 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3346 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3347 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3348 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3349
3350 default:
3351 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3352 "0x%x\n", signal_levels);
3353 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3354 }
3355 }
3356
3357 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
3358 static uint32_t
3359 intel_hsw_signal_levels(uint8_t train_set)
3360 {
3361 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3362 DP_TRAIN_PRE_EMPHASIS_MASK);
3363 switch (signal_levels) {
3364 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3365 return DDI_BUF_TRANS_SELECT(0);
3366 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3367 return DDI_BUF_TRANS_SELECT(1);
3368 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3369 return DDI_BUF_TRANS_SELECT(2);
3370 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
3371 return DDI_BUF_TRANS_SELECT(3);
3372
3373 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3374 return DDI_BUF_TRANS_SELECT(4);
3375 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3376 return DDI_BUF_TRANS_SELECT(5);
3377 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3378 return DDI_BUF_TRANS_SELECT(6);
3379
3380 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3381 return DDI_BUF_TRANS_SELECT(7);
3382 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3383 return DDI_BUF_TRANS_SELECT(8);
3384 default:
3385 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3386 "0x%x\n", signal_levels);
3387 return DDI_BUF_TRANS_SELECT(0);
3388 }
3389 }
3390
3391 /* Properly updates "DP" with the correct signal levels. */
3392 static void
3393 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
3394 {
3395 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3396 enum port port = intel_dig_port->port;
3397 struct drm_device *dev = intel_dig_port->base.base.dev;
3398 uint32_t signal_levels, mask;
3399 uint8_t train_set = intel_dp->train_set[0];
3400
3401 if (IS_HASWELL(dev) || IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
3402 signal_levels = intel_hsw_signal_levels(train_set);
3403 mask = DDI_BUF_EMP_MASK;
3404 } else if (IS_CHERRYVIEW(dev)) {
3405 signal_levels = intel_chv_signal_levels(intel_dp);
3406 mask = 0;
3407 } else if (IS_VALLEYVIEW(dev)) {
3408 signal_levels = intel_vlv_signal_levels(intel_dp);
3409 mask = 0;
3410 } else if (IS_GEN7(dev) && port == PORT_A) {
3411 signal_levels = intel_gen7_edp_signal_levels(train_set);
3412 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3413 } else if (IS_GEN6(dev) && port == PORT_A) {
3414 signal_levels = intel_gen6_edp_signal_levels(train_set);
3415 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3416 } else {
3417 signal_levels = intel_gen4_signal_levels(train_set);
3418 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3419 }
3420
3421 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3422
3423 *DP = (*DP & ~mask) | signal_levels;
3424 }
3425
3426 static bool
3427 intel_dp_set_link_train(struct intel_dp *intel_dp,
3428 uint32_t *DP,
3429 uint8_t dp_train_pat)
3430 {
3431 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3432 struct drm_device *dev = intel_dig_port->base.base.dev;
3433 struct drm_i915_private *dev_priv = dev->dev_private;
3434 uint8_t buf[sizeof(intel_dp->train_set) + 1];
3435 int ret, len;
3436
3437 _intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3438
3439 I915_WRITE(intel_dp->output_reg, *DP);
3440 POSTING_READ(intel_dp->output_reg);
3441
3442 buf[0] = dp_train_pat;
3443 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3444 DP_TRAINING_PATTERN_DISABLE) {
3445 /* don't write DP_TRAINING_LANEx_SET on disable */
3446 len = 1;
3447 } else {
3448 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3449 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3450 len = intel_dp->lane_count + 1;
3451 }
3452
3453 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3454 buf, len);
3455
3456 return ret == len;
3457 }
3458
3459 static bool
3460 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3461 uint8_t dp_train_pat)
3462 {
3463 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3464 intel_dp_set_signal_levels(intel_dp, DP);
3465 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3466 }
3467
3468 static bool
3469 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3470 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3471 {
3472 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3473 struct drm_device *dev = intel_dig_port->base.base.dev;
3474 struct drm_i915_private *dev_priv = dev->dev_private;
3475 int ret;
3476
3477 intel_get_adjust_train(intel_dp, link_status);
3478 intel_dp_set_signal_levels(intel_dp, DP);
3479
3480 I915_WRITE(intel_dp->output_reg, *DP);
3481 POSTING_READ(intel_dp->output_reg);
3482
3483 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3484 intel_dp->train_set, intel_dp->lane_count);
3485
3486 return ret == intel_dp->lane_count;
3487 }
3488
3489 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3490 {
3491 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3492 struct drm_device *dev = intel_dig_port->base.base.dev;
3493 struct drm_i915_private *dev_priv = dev->dev_private;
3494 enum port port = intel_dig_port->port;
3495 uint32_t val;
3496
3497 if (!HAS_DDI(dev))
3498 return;
3499
3500 val = I915_READ(DP_TP_CTL(port));
3501 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3502 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3503 I915_WRITE(DP_TP_CTL(port), val);
3504
3505 /*
3506 * On PORT_A we can have only eDP in SST mode. There the only reason
3507 * we need to set idle transmission mode is to work around a HW issue
3508 * where we enable the pipe while not in idle link-training mode.
3509 * In this case there is requirement to wait for a minimum number of
3510 * idle patterns to be sent.
3511 */
3512 if (port == PORT_A)
3513 return;
3514
3515 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3516 1))
3517 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3518 }
3519
3520 /* Enable corresponding port and start training pattern 1 */
3521 void
3522 intel_dp_start_link_train(struct intel_dp *intel_dp)
3523 {
3524 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3525 struct drm_device *dev = encoder->dev;
3526 int i;
3527 uint8_t voltage;
3528 int voltage_tries, loop_tries;
3529 uint32_t DP = intel_dp->DP;
3530 uint8_t link_config[2];
3531
3532 if (HAS_DDI(dev))
3533 intel_ddi_prepare_link_retrain(encoder);
3534
3535 /* Write the link configuration data */
3536 link_config[0] = intel_dp->link_bw;
3537 link_config[1] = intel_dp->lane_count;
3538 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3539 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3540 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3541
3542 link_config[0] = 0;
3543 link_config[1] = DP_SET_ANSI_8B10B;
3544 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3545
3546 DP |= DP_PORT_EN;
3547
3548 /* clock recovery */
3549 if (!intel_dp_reset_link_train(intel_dp, &DP,
3550 DP_TRAINING_PATTERN_1 |
3551 DP_LINK_SCRAMBLING_DISABLE)) {
3552 DRM_ERROR("failed to enable link training\n");
3553 return;
3554 }
3555
3556 voltage = 0xff;
3557 voltage_tries = 0;
3558 loop_tries = 0;
3559 for (;;) {
3560 uint8_t link_status[DP_LINK_STATUS_SIZE];
3561
3562 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3563 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3564 DRM_ERROR("failed to get link status\n");
3565 break;
3566 }
3567
3568 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3569 DRM_DEBUG_KMS("clock recovery OK\n");
3570 break;
3571 }
3572
3573 /* Check to see if we've tried the max voltage */
3574 for (i = 0; i < intel_dp->lane_count; i++)
3575 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3576 break;
3577 if (i == intel_dp->lane_count) {
3578 ++loop_tries;
3579 if (loop_tries == 5) {
3580 DRM_ERROR("too many full retries, give up\n");
3581 break;
3582 }
3583 intel_dp_reset_link_train(intel_dp, &DP,
3584 DP_TRAINING_PATTERN_1 |
3585 DP_LINK_SCRAMBLING_DISABLE);
3586 voltage_tries = 0;
3587 continue;
3588 }
3589
3590 /* Check to see if we've tried the same voltage 5 times */
3591 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3592 ++voltage_tries;
3593 if (voltage_tries == 5) {
3594 DRM_ERROR("too many voltage retries, give up\n");
3595 break;
3596 }
3597 } else
3598 voltage_tries = 0;
3599 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3600
3601 /* Update training set as requested by target */
3602 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3603 DRM_ERROR("failed to update link training\n");
3604 break;
3605 }
3606 }
3607
3608 intel_dp->DP = DP;
3609 }
3610
3611 void
3612 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3613 {
3614 bool channel_eq = false;
3615 int tries, cr_tries;
3616 uint32_t DP = intel_dp->DP;
3617 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3618
3619 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3620 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3621 training_pattern = DP_TRAINING_PATTERN_3;
3622
3623 /* channel equalization */
3624 if (!intel_dp_set_link_train(intel_dp, &DP,
3625 training_pattern |
3626 DP_LINK_SCRAMBLING_DISABLE)) {
3627 DRM_ERROR("failed to start channel equalization\n");
3628 return;
3629 }
3630
3631 tries = 0;
3632 cr_tries = 0;
3633 channel_eq = false;
3634 for (;;) {
3635 uint8_t link_status[DP_LINK_STATUS_SIZE];
3636
3637 if (cr_tries > 5) {
3638 DRM_ERROR("failed to train DP, aborting\n");
3639 break;
3640 }
3641
3642 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3643 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3644 DRM_ERROR("failed to get link status\n");
3645 break;
3646 }
3647
3648 /* Make sure clock is still ok */
3649 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3650 intel_dp_start_link_train(intel_dp);
3651 intel_dp_set_link_train(intel_dp, &DP,
3652 training_pattern |
3653 DP_LINK_SCRAMBLING_DISABLE);
3654 cr_tries++;
3655 continue;
3656 }
3657
3658 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3659 channel_eq = true;
3660 break;
3661 }
3662
3663 /* Try 5 times, then try clock recovery if that fails */
3664 if (tries > 5) {
3665 intel_dp_link_down(intel_dp);
3666 intel_dp_start_link_train(intel_dp);
3667 intel_dp_set_link_train(intel_dp, &DP,
3668 training_pattern |
3669 DP_LINK_SCRAMBLING_DISABLE);
3670 tries = 0;
3671 cr_tries++;
3672 continue;
3673 }
3674
3675 /* Update training set as requested by target */
3676 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3677 DRM_ERROR("failed to update link training\n");
3678 break;
3679 }
3680 ++tries;
3681 }
3682
3683 intel_dp_set_idle_link_train(intel_dp);
3684
3685 intel_dp->DP = DP;
3686
3687 if (channel_eq)
3688 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3689
3690 }
3691
3692 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3693 {
3694 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3695 DP_TRAINING_PATTERN_DISABLE);
3696 }
3697
3698 static void
3699 intel_dp_link_down(struct intel_dp *intel_dp)
3700 {
3701 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3702 enum port port = intel_dig_port->port;
3703 struct drm_device *dev = intel_dig_port->base.base.dev;
3704 struct drm_i915_private *dev_priv = dev->dev_private;
3705 struct intel_crtc *intel_crtc =
3706 to_intel_crtc(intel_dig_port->base.base.crtc);
3707 uint32_t DP = intel_dp->DP;
3708
3709 if (WARN_ON(HAS_DDI(dev)))
3710 return;
3711
3712 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3713 return;
3714
3715 DRM_DEBUG_KMS("\n");
3716
3717 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3718 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3719 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3720 } else {
3721 if (IS_CHERRYVIEW(dev))
3722 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3723 else
3724 DP &= ~DP_LINK_TRAIN_MASK;
3725 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3726 }
3727 POSTING_READ(intel_dp->output_reg);
3728
3729 if (HAS_PCH_IBX(dev) &&
3730 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3731 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3732
3733 /* Hardware workaround: leaving our transcoder select
3734 * set to transcoder B while it's off will prevent the
3735 * corresponding HDMI output on transcoder A.
3736 *
3737 * Combine this with another hardware workaround:
3738 * transcoder select bit can only be cleared while the
3739 * port is enabled.
3740 */
3741 DP &= ~DP_PIPEB_SELECT;
3742 I915_WRITE(intel_dp->output_reg, DP);
3743
3744 /* Changes to enable or select take place the vblank
3745 * after being written.
3746 */
3747 if (WARN_ON(crtc == NULL)) {
3748 /* We should never try to disable a port without a crtc
3749 * attached. For paranoia keep the code around for a
3750 * bit. */
3751 POSTING_READ(intel_dp->output_reg);
3752 msleep(50);
3753 } else
3754 intel_wait_for_vblank(dev, intel_crtc->pipe);
3755 }
3756
3757 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3758 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3759 POSTING_READ(intel_dp->output_reg);
3760 msleep(intel_dp->panel_power_down_delay);
3761 }
3762
3763 static bool
3764 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3765 {
3766 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3767 struct drm_device *dev = dig_port->base.base.dev;
3768 struct drm_i915_private *dev_priv = dev->dev_private;
3769
3770 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3771 sizeof(intel_dp->dpcd)) < 0)
3772 return false; /* aux transfer failed */
3773
3774 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3775
3776 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3777 return false; /* DPCD not present */
3778
3779 /* Check if the panel supports PSR */
3780 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3781 if (is_edp(intel_dp)) {
3782 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3783 intel_dp->psr_dpcd,
3784 sizeof(intel_dp->psr_dpcd));
3785 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3786 dev_priv->psr.sink_support = true;
3787 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3788 }
3789 }
3790
3791 /* Training Pattern 3 support */
3792 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3793 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3794 intel_dp->use_tps3 = true;
3795 DRM_DEBUG_KMS("Displayport TPS3 supported\n");
3796 } else
3797 intel_dp->use_tps3 = false;
3798
3799 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3800 DP_DWN_STRM_PORT_PRESENT))
3801 return true; /* native DP sink */
3802
3803 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3804 return true; /* no per-port downstream info */
3805
3806 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3807 intel_dp->downstream_ports,
3808 DP_MAX_DOWNSTREAM_PORTS) < 0)
3809 return false; /* downstream port status fetch failed */
3810
3811 return true;
3812 }
3813
3814 static void
3815 intel_dp_probe_oui(struct intel_dp *intel_dp)
3816 {
3817 u8 buf[3];
3818
3819 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3820 return;
3821
3822 intel_edp_panel_vdd_on(intel_dp);
3823
3824 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3825 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3826 buf[0], buf[1], buf[2]);
3827
3828 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3829 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3830 buf[0], buf[1], buf[2]);
3831
3832 intel_edp_panel_vdd_off(intel_dp, false);
3833 }
3834
3835 static bool
3836 intel_dp_probe_mst(struct intel_dp *intel_dp)
3837 {
3838 u8 buf[1];
3839
3840 if (!intel_dp->can_mst)
3841 return false;
3842
3843 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3844 return false;
3845
3846 intel_edp_panel_vdd_on(intel_dp);
3847 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3848 if (buf[0] & DP_MST_CAP) {
3849 DRM_DEBUG_KMS("Sink is MST capable\n");
3850 intel_dp->is_mst = true;
3851 } else {
3852 DRM_DEBUG_KMS("Sink is not MST capable\n");
3853 intel_dp->is_mst = false;
3854 }
3855 }
3856 intel_edp_panel_vdd_off(intel_dp, false);
3857
3858 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3859 return intel_dp->is_mst;
3860 }
3861
3862 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3863 {
3864 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3865 struct drm_device *dev = intel_dig_port->base.base.dev;
3866 struct intel_crtc *intel_crtc =
3867 to_intel_crtc(intel_dig_port->base.base.crtc);
3868 u8 buf;
3869 int test_crc_count;
3870 int attempts = 6;
3871
3872 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3873 return -EIO;
3874
3875 if (!(buf & DP_TEST_CRC_SUPPORTED))
3876 return -ENOTTY;
3877
3878 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3879 return -EIO;
3880
3881 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3882 buf | DP_TEST_SINK_START) < 0)
3883 return -EIO;
3884
3885 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3886 return -EIO;
3887 test_crc_count = buf & DP_TEST_COUNT_MASK;
3888
3889 do {
3890 if (drm_dp_dpcd_readb(&intel_dp->aux,
3891 DP_TEST_SINK_MISC, &buf) < 0)
3892 return -EIO;
3893 intel_wait_for_vblank(dev, intel_crtc->pipe);
3894 } while (--attempts && (buf & DP_TEST_COUNT_MASK) == test_crc_count);
3895
3896 if (attempts == 0) {
3897 DRM_ERROR("Panel is unable to calculate CRC after 6 vblanks\n");
3898 return -EIO;
3899 }
3900
3901 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3902 return -EIO;
3903
3904 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3905 return -EIO;
3906 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3907 buf & ~DP_TEST_SINK_START) < 0)
3908 return -EIO;
3909
3910 return 0;
3911 }
3912
3913 static bool
3914 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3915 {
3916 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3917 DP_DEVICE_SERVICE_IRQ_VECTOR,
3918 sink_irq_vector, 1) == 1;
3919 }
3920
3921 static bool
3922 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3923 {
3924 int ret;
3925
3926 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
3927 DP_SINK_COUNT_ESI,
3928 sink_irq_vector, 14);
3929 if (ret != 14)
3930 return false;
3931
3932 return true;
3933 }
3934
3935 static void
3936 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3937 {
3938 /* NAK by default */
3939 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3940 }
3941
3942 static int
3943 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3944 {
3945 bool bret;
3946
3947 if (intel_dp->is_mst) {
3948 u8 esi[16] = { 0 };
3949 int ret = 0;
3950 int retry;
3951 bool handled;
3952 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3953 go_again:
3954 if (bret == true) {
3955
3956 /* check link status - esi[10] = 0x200c */
3957 if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3958 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3959 intel_dp_start_link_train(intel_dp);
3960 intel_dp_complete_link_train(intel_dp);
3961 intel_dp_stop_link_train(intel_dp);
3962 }
3963
3964 DRM_DEBUG_KMS("got esi %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3965 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3966
3967 if (handled) {
3968 for (retry = 0; retry < 3; retry++) {
3969 int wret;
3970 wret = drm_dp_dpcd_write(&intel_dp->aux,
3971 DP_SINK_COUNT_ESI+1,
3972 &esi[1], 3);
3973 if (wret == 3) {
3974 break;
3975 }
3976 }
3977
3978 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3979 if (bret == true) {
3980 DRM_DEBUG_KMS("got esi2 %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3981 goto go_again;
3982 }
3983 } else
3984 ret = 0;
3985
3986 return ret;
3987 } else {
3988 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3989 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3990 intel_dp->is_mst = false;
3991 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3992 /* send a hotplug event */
3993 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3994 }
3995 }
3996 return -EINVAL;
3997 }
3998
3999 /*
4000 * According to DP spec
4001 * 5.1.2:
4002 * 1. Read DPCD
4003 * 2. Configure link according to Receiver Capabilities
4004 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4005 * 4. Check link status on receipt of hot-plug interrupt
4006 */
4007 void
4008 intel_dp_check_link_status(struct intel_dp *intel_dp)
4009 {
4010 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4011 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4012 u8 sink_irq_vector;
4013 u8 link_status[DP_LINK_STATUS_SIZE];
4014
4015 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4016
4017 if (!intel_encoder->connectors_active)
4018 return;
4019
4020 if (WARN_ON(!intel_encoder->base.crtc))
4021 return;
4022
4023 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4024 return;
4025
4026 /* Try to read receiver status if the link appears to be up */
4027 if (!intel_dp_get_link_status(intel_dp, link_status)) {
4028 return;
4029 }
4030
4031 /* Now read the DPCD to see if it's actually running */
4032 if (!intel_dp_get_dpcd(intel_dp)) {
4033 return;
4034 }
4035
4036 /* Try to read the source of the interrupt */
4037 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4038 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4039 /* Clear interrupt source */
4040 drm_dp_dpcd_writeb(&intel_dp->aux,
4041 DP_DEVICE_SERVICE_IRQ_VECTOR,
4042 sink_irq_vector);
4043
4044 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4045 intel_dp_handle_test_request(intel_dp);
4046 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4047 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4048 }
4049
4050 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
4051 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4052 intel_encoder->base.name);
4053 intel_dp_start_link_train(intel_dp);
4054 intel_dp_complete_link_train(intel_dp);
4055 intel_dp_stop_link_train(intel_dp);
4056 }
4057 }
4058
4059 /* XXX this is probably wrong for multiple downstream ports */
4060 static enum drm_connector_status
4061 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4062 {
4063 uint8_t *dpcd = intel_dp->dpcd;
4064 uint8_t type;
4065
4066 if (!intel_dp_get_dpcd(intel_dp))
4067 return connector_status_disconnected;
4068
4069 /* if there's no downstream port, we're done */
4070 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4071 return connector_status_connected;
4072
4073 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4074 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4075 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4076 uint8_t reg;
4077
4078 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
4079 &reg, 1) < 0)
4080 return connector_status_unknown;
4081
4082 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
4083 : connector_status_disconnected;
4084 }
4085
4086 /* If no HPD, poke DDC gently */
4087 if (drm_probe_ddc(&intel_dp->aux.ddc))
4088 return connector_status_connected;
4089
4090 /* Well we tried, say unknown for unreliable port types */
4091 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4092 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4093 if (type == DP_DS_PORT_TYPE_VGA ||
4094 type == DP_DS_PORT_TYPE_NON_EDID)
4095 return connector_status_unknown;
4096 } else {
4097 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4098 DP_DWN_STRM_PORT_TYPE_MASK;
4099 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4100 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4101 return connector_status_unknown;
4102 }
4103
4104 /* Anything else is out of spec, warn and ignore */
4105 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4106 return connector_status_disconnected;
4107 }
4108
4109 static enum drm_connector_status
4110 edp_detect(struct intel_dp *intel_dp)
4111 {
4112 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4113 enum drm_connector_status status;
4114
4115 status = intel_panel_detect(dev);
4116 if (status == connector_status_unknown)
4117 status = connector_status_connected;
4118
4119 return status;
4120 }
4121
4122 static enum drm_connector_status
4123 ironlake_dp_detect(struct intel_dp *intel_dp)
4124 {
4125 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4126 struct drm_i915_private *dev_priv = dev->dev_private;
4127 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4128
4129 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4130 return connector_status_disconnected;
4131
4132 return intel_dp_detect_dpcd(intel_dp);
4133 }
4134
4135 static int g4x_digital_port_connected(struct drm_device *dev,
4136 struct intel_digital_port *intel_dig_port)
4137 {
4138 struct drm_i915_private *dev_priv = dev->dev_private;
4139 uint32_t bit;
4140
4141 if (IS_VALLEYVIEW(dev)) {
4142 switch (intel_dig_port->port) {
4143 case PORT_B:
4144 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
4145 break;
4146 case PORT_C:
4147 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
4148 break;
4149 case PORT_D:
4150 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
4151 break;
4152 default:
4153 return -EINVAL;
4154 }
4155 } else {
4156 switch (intel_dig_port->port) {
4157 case PORT_B:
4158 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4159 break;
4160 case PORT_C:
4161 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4162 break;
4163 case PORT_D:
4164 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4165 break;
4166 default:
4167 return -EINVAL;
4168 }
4169 }
4170
4171 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
4172 return 0;
4173 return 1;
4174 }
4175
4176 static enum drm_connector_status
4177 g4x_dp_detect(struct intel_dp *intel_dp)
4178 {
4179 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4180 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4181 int ret;
4182
4183 /* Can't disconnect eDP, but you can close the lid... */
4184 if (is_edp(intel_dp)) {
4185 enum drm_connector_status status;
4186
4187 status = intel_panel_detect(dev);
4188 if (status == connector_status_unknown)
4189 status = connector_status_connected;
4190 return status;
4191 }
4192
4193 ret = g4x_digital_port_connected(dev, intel_dig_port);
4194 if (ret == -EINVAL)
4195 return connector_status_unknown;
4196 else if (ret == 0)
4197 return connector_status_disconnected;
4198
4199 return intel_dp_detect_dpcd(intel_dp);
4200 }
4201
4202 static struct edid *
4203 intel_dp_get_edid(struct intel_dp *intel_dp)
4204 {
4205 struct intel_connector *intel_connector = intel_dp->attached_connector;
4206
4207 /* use cached edid if we have one */
4208 if (intel_connector->edid) {
4209 /* invalid edid */
4210 if (IS_ERR(intel_connector->edid))
4211 return NULL;
4212
4213 return drm_edid_duplicate(intel_connector->edid);
4214 } else
4215 return drm_get_edid(&intel_connector->base,
4216 &intel_dp->aux.ddc);
4217 }
4218
4219 static void
4220 intel_dp_set_edid(struct intel_dp *intel_dp)
4221 {
4222 struct intel_connector *intel_connector = intel_dp->attached_connector;
4223 struct edid *edid;
4224
4225 edid = intel_dp_get_edid(intel_dp);
4226 intel_connector->detect_edid = edid;
4227
4228 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4229 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4230 else
4231 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4232 }
4233
4234 static void
4235 intel_dp_unset_edid(struct intel_dp *intel_dp)
4236 {
4237 struct intel_connector *intel_connector = intel_dp->attached_connector;
4238
4239 kfree(intel_connector->detect_edid);
4240 intel_connector->detect_edid = NULL;
4241
4242 intel_dp->has_audio = false;
4243 }
4244
4245 static enum intel_display_power_domain
4246 intel_dp_power_get(struct intel_dp *dp)
4247 {
4248 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4249 enum intel_display_power_domain power_domain;
4250
4251 power_domain = intel_display_port_power_domain(encoder);
4252 intel_display_power_get(to_i915(encoder->base.dev), power_domain);
4253
4254 return power_domain;
4255 }
4256
4257 static void
4258 intel_dp_power_put(struct intel_dp *dp,
4259 enum intel_display_power_domain power_domain)
4260 {
4261 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4262 intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4263 }
4264
4265 static enum drm_connector_status
4266 intel_dp_detect(struct drm_connector *connector, bool force)
4267 {
4268 struct intel_dp *intel_dp = intel_attached_dp(connector);
4269 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4270 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4271 struct drm_device *dev = connector->dev;
4272 enum drm_connector_status status;
4273 enum intel_display_power_domain power_domain;
4274 bool ret;
4275
4276 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4277 connector->base.id, connector->name);
4278 intel_dp_unset_edid(intel_dp);
4279
4280 if (intel_dp->is_mst) {
4281 /* MST devices are disconnected from a monitor POV */
4282 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4283 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4284 return connector_status_disconnected;
4285 }
4286
4287 power_domain = intel_dp_power_get(intel_dp);
4288
4289 /* Can't disconnect eDP, but you can close the lid... */
4290 if (is_edp(intel_dp))
4291 status = edp_detect(intel_dp);
4292 else if (HAS_PCH_SPLIT(dev))
4293 status = ironlake_dp_detect(intel_dp);
4294 else
4295 status = g4x_dp_detect(intel_dp);
4296 if (status != connector_status_connected)
4297 goto out;
4298
4299 intel_dp_probe_oui(intel_dp);
4300
4301 ret = intel_dp_probe_mst(intel_dp);
4302 if (ret) {
4303 /* if we are in MST mode then this connector
4304 won't appear connected or have anything with EDID on it */
4305 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4306 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4307 status = connector_status_disconnected;
4308 goto out;
4309 }
4310
4311 intel_dp_set_edid(intel_dp);
4312
4313 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4314 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4315 status = connector_status_connected;
4316
4317 out:
4318 intel_dp_power_put(intel_dp, power_domain);
4319 return status;
4320 }
4321
4322 static void
4323 intel_dp_force(struct drm_connector *connector)
4324 {
4325 struct intel_dp *intel_dp = intel_attached_dp(connector);
4326 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4327 enum intel_display_power_domain power_domain;
4328
4329 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4330 connector->base.id, connector->name);
4331 intel_dp_unset_edid(intel_dp);
4332
4333 if (connector->status != connector_status_connected)
4334 return;
4335
4336 power_domain = intel_dp_power_get(intel_dp);
4337
4338 intel_dp_set_edid(intel_dp);
4339
4340 intel_dp_power_put(intel_dp, power_domain);
4341
4342 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4343 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4344 }
4345
4346 static int intel_dp_get_modes(struct drm_connector *connector)
4347 {
4348 struct intel_connector *intel_connector = to_intel_connector(connector);
4349 struct edid *edid;
4350
4351 edid = intel_connector->detect_edid;
4352 if (edid) {
4353 int ret = intel_connector_update_modes(connector, edid);
4354 if (ret)
4355 return ret;
4356 }
4357
4358 /* if eDP has no EDID, fall back to fixed mode */
4359 if (is_edp(intel_attached_dp(connector)) &&
4360 intel_connector->panel.fixed_mode) {
4361 struct drm_display_mode *mode;
4362
4363 mode = drm_mode_duplicate(connector->dev,
4364 intel_connector->panel.fixed_mode);
4365 if (mode) {
4366 drm_mode_probed_add(connector, mode);
4367 return 1;
4368 }
4369 }
4370
4371 return 0;
4372 }
4373
4374 static bool
4375 intel_dp_detect_audio(struct drm_connector *connector)
4376 {
4377 bool has_audio = false;
4378 struct edid *edid;
4379
4380 edid = to_intel_connector(connector)->detect_edid;
4381 if (edid)
4382 has_audio = drm_detect_monitor_audio(edid);
4383
4384 return has_audio;
4385 }
4386
4387 static int
4388 intel_dp_set_property(struct drm_connector *connector,
4389 struct drm_property *property,
4390 uint64_t val)
4391 {
4392 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4393 struct intel_connector *intel_connector = to_intel_connector(connector);
4394 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4395 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4396 int ret;
4397
4398 ret = drm_object_property_set_value(&connector->base, property, val);
4399 if (ret)
4400 return ret;
4401
4402 if (property == dev_priv->force_audio_property) {
4403 int i = val;
4404 bool has_audio;
4405
4406 if (i == intel_dp->force_audio)
4407 return 0;
4408
4409 intel_dp->force_audio = i;
4410
4411 if (i == HDMI_AUDIO_AUTO)
4412 has_audio = intel_dp_detect_audio(connector);
4413 else
4414 has_audio = (i == HDMI_AUDIO_ON);
4415
4416 if (has_audio == intel_dp->has_audio)
4417 return 0;
4418
4419 intel_dp->has_audio = has_audio;
4420 goto done;
4421 }
4422
4423 if (property == dev_priv->broadcast_rgb_property) {
4424 bool old_auto = intel_dp->color_range_auto;
4425 uint32_t old_range = intel_dp->color_range;
4426
4427 switch (val) {
4428 case INTEL_BROADCAST_RGB_AUTO:
4429 intel_dp->color_range_auto = true;
4430 break;
4431 case INTEL_BROADCAST_RGB_FULL:
4432 intel_dp->color_range_auto = false;
4433 intel_dp->color_range = 0;
4434 break;
4435 case INTEL_BROADCAST_RGB_LIMITED:
4436 intel_dp->color_range_auto = false;
4437 intel_dp->color_range = DP_COLOR_RANGE_16_235;
4438 break;
4439 default:
4440 return -EINVAL;
4441 }
4442
4443 if (old_auto == intel_dp->color_range_auto &&
4444 old_range == intel_dp->color_range)
4445 return 0;
4446
4447 goto done;
4448 }
4449
4450 if (is_edp(intel_dp) &&
4451 property == connector->dev->mode_config.scaling_mode_property) {
4452 if (val == DRM_MODE_SCALE_NONE) {
4453 DRM_DEBUG_KMS("no scaling not supported\n");
4454 return -EINVAL;
4455 }
4456
4457 if (intel_connector->panel.fitting_mode == val) {
4458 /* the eDP scaling property is not changed */
4459 return 0;
4460 }
4461 intel_connector->panel.fitting_mode = val;
4462
4463 goto done;
4464 }
4465
4466 return -EINVAL;
4467
4468 done:
4469 if (intel_encoder->base.crtc)
4470 intel_crtc_restore_mode(intel_encoder->base.crtc);
4471
4472 return 0;
4473 }
4474
4475 static void
4476 intel_dp_connector_destroy(struct drm_connector *connector)
4477 {
4478 struct intel_connector *intel_connector = to_intel_connector(connector);
4479
4480 kfree(intel_connector->detect_edid);
4481
4482 if (!IS_ERR_OR_NULL(intel_connector->edid))
4483 kfree(intel_connector->edid);
4484
4485 /* Can't call is_edp() since the encoder may have been destroyed
4486 * already. */
4487 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4488 intel_panel_fini(&intel_connector->panel);
4489
4490 drm_connector_cleanup(connector);
4491 kfree(connector);
4492 }
4493
4494 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4495 {
4496 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4497 struct intel_dp *intel_dp = &intel_dig_port->dp;
4498
4499 drm_dp_aux_unregister(&intel_dp->aux);
4500 intel_dp_mst_encoder_cleanup(intel_dig_port);
4501 drm_encoder_cleanup(encoder);
4502 if (is_edp(intel_dp)) {
4503 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4504 /*
4505 * vdd might still be enabled do to the delayed vdd off.
4506 * Make sure vdd is actually turned off here.
4507 */
4508 pps_lock(intel_dp);
4509 edp_panel_vdd_off_sync(intel_dp);
4510 pps_unlock(intel_dp);
4511
4512 if (intel_dp->edp_notifier.notifier_call) {
4513 unregister_reboot_notifier(&intel_dp->edp_notifier);
4514 intel_dp->edp_notifier.notifier_call = NULL;
4515 }
4516 }
4517 kfree(intel_dig_port);
4518 }
4519
4520 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4521 {
4522 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4523
4524 if (!is_edp(intel_dp))
4525 return;
4526
4527 /*
4528 * vdd might still be enabled do to the delayed vdd off.
4529 * Make sure vdd is actually turned off here.
4530 */
4531 pps_lock(intel_dp);
4532 edp_panel_vdd_off_sync(intel_dp);
4533 pps_unlock(intel_dp);
4534 }
4535
4536 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4537 {
4538 intel_edp_panel_vdd_sanitize(to_intel_encoder(encoder));
4539 }
4540
4541 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4542 .dpms = intel_connector_dpms,
4543 .detect = intel_dp_detect,
4544 .force = intel_dp_force,
4545 .fill_modes = drm_helper_probe_single_connector_modes,
4546 .set_property = intel_dp_set_property,
4547 .destroy = intel_dp_connector_destroy,
4548 };
4549
4550 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4551 .get_modes = intel_dp_get_modes,
4552 .mode_valid = intel_dp_mode_valid,
4553 .best_encoder = intel_best_encoder,
4554 };
4555
4556 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4557 .reset = intel_dp_encoder_reset,
4558 .destroy = intel_dp_encoder_destroy,
4559 };
4560
4561 void
4562 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4563 {
4564 return;
4565 }
4566
4567 bool
4568 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4569 {
4570 struct intel_dp *intel_dp = &intel_dig_port->dp;
4571 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4572 struct drm_device *dev = intel_dig_port->base.base.dev;
4573 struct drm_i915_private *dev_priv = dev->dev_private;
4574 enum intel_display_power_domain power_domain;
4575 bool ret = true;
4576
4577 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4578 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4579
4580 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4581 port_name(intel_dig_port->port),
4582 long_hpd ? "long" : "short");
4583
4584 power_domain = intel_display_port_power_domain(intel_encoder);
4585 intel_display_power_get(dev_priv, power_domain);
4586
4587 if (long_hpd) {
4588
4589 if (HAS_PCH_SPLIT(dev)) {
4590 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4591 goto mst_fail;
4592 } else {
4593 if (g4x_digital_port_connected(dev, intel_dig_port) != 1)
4594 goto mst_fail;
4595 }
4596
4597 if (!intel_dp_get_dpcd(intel_dp)) {
4598 goto mst_fail;
4599 }
4600
4601 intel_dp_probe_oui(intel_dp);
4602
4603 if (!intel_dp_probe_mst(intel_dp))
4604 goto mst_fail;
4605
4606 } else {
4607 if (intel_dp->is_mst) {
4608 if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4609 goto mst_fail;
4610 }
4611
4612 if (!intel_dp->is_mst) {
4613 /*
4614 * we'll check the link status via the normal hot plug path later -
4615 * but for short hpds we should check it now
4616 */
4617 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4618 intel_dp_check_link_status(intel_dp);
4619 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4620 }
4621 }
4622 ret = false;
4623 goto put_power;
4624 mst_fail:
4625 /* if we were in MST mode, and device is not there get out of MST mode */
4626 if (intel_dp->is_mst) {
4627 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4628 intel_dp->is_mst = false;
4629 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4630 }
4631 put_power:
4632 intel_display_power_put(dev_priv, power_domain);
4633
4634 return ret;
4635 }
4636
4637 /* Return which DP Port should be selected for Transcoder DP control */
4638 int
4639 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4640 {
4641 struct drm_device *dev = crtc->dev;
4642 struct intel_encoder *intel_encoder;
4643 struct intel_dp *intel_dp;
4644
4645 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4646 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4647
4648 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4649 intel_encoder->type == INTEL_OUTPUT_EDP)
4650 return intel_dp->output_reg;
4651 }
4652
4653 return -1;
4654 }
4655
4656 /* check the VBT to see whether the eDP is on DP-D port */
4657 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4658 {
4659 struct drm_i915_private *dev_priv = dev->dev_private;
4660 union child_device_config *p_child;
4661 int i;
4662 static const short port_mapping[] = {
4663 [PORT_B] = PORT_IDPB,
4664 [PORT_C] = PORT_IDPC,
4665 [PORT_D] = PORT_IDPD,
4666 };
4667
4668 if (port == PORT_A)
4669 return true;
4670
4671 if (!dev_priv->vbt.child_dev_num)
4672 return false;
4673
4674 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4675 p_child = dev_priv->vbt.child_dev + i;
4676
4677 if (p_child->common.dvo_port == port_mapping[port] &&
4678 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4679 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
4680 return true;
4681 }
4682 return false;
4683 }
4684
4685 void
4686 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4687 {
4688 struct intel_connector *intel_connector = to_intel_connector(connector);
4689
4690 intel_attach_force_audio_property(connector);
4691 intel_attach_broadcast_rgb_property(connector);
4692 intel_dp->color_range_auto = true;
4693
4694 if (is_edp(intel_dp)) {
4695 drm_mode_create_scaling_mode_property(connector->dev);
4696 drm_object_attach_property(
4697 &connector->base,
4698 connector->dev->mode_config.scaling_mode_property,
4699 DRM_MODE_SCALE_ASPECT);
4700 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4701 }
4702 }
4703
4704 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4705 {
4706 intel_dp->last_power_cycle = jiffies;
4707 intel_dp->last_power_on = jiffies;
4708 intel_dp->last_backlight_off = jiffies;
4709 }
4710
4711 static void
4712 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4713 struct intel_dp *intel_dp,
4714 struct edp_power_seq *out)
4715 {
4716 struct drm_i915_private *dev_priv = dev->dev_private;
4717 struct edp_power_seq cur, vbt, spec, final;
4718 u32 pp_on, pp_off, pp_div, pp;
4719 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4720
4721 lockdep_assert_held(&dev_priv->pps_mutex);
4722
4723 if (HAS_PCH_SPLIT(dev)) {
4724 pp_ctrl_reg = PCH_PP_CONTROL;
4725 pp_on_reg = PCH_PP_ON_DELAYS;
4726 pp_off_reg = PCH_PP_OFF_DELAYS;
4727 pp_div_reg = PCH_PP_DIVISOR;
4728 } else {
4729 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4730
4731 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4732 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4733 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4734 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4735 }
4736
4737 /* Workaround: Need to write PP_CONTROL with the unlock key as
4738 * the very first thing. */
4739 pp = ironlake_get_pp_control(intel_dp);
4740 I915_WRITE(pp_ctrl_reg, pp);
4741
4742 pp_on = I915_READ(pp_on_reg);
4743 pp_off = I915_READ(pp_off_reg);
4744 pp_div = I915_READ(pp_div_reg);
4745
4746 /* Pull timing values out of registers */
4747 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4748 PANEL_POWER_UP_DELAY_SHIFT;
4749
4750 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4751 PANEL_LIGHT_ON_DELAY_SHIFT;
4752
4753 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4754 PANEL_LIGHT_OFF_DELAY_SHIFT;
4755
4756 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4757 PANEL_POWER_DOWN_DELAY_SHIFT;
4758
4759 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4760 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4761
4762 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4763 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4764
4765 vbt = dev_priv->vbt.edp_pps;
4766
4767 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4768 * our hw here, which are all in 100usec. */
4769 spec.t1_t3 = 210 * 10;
4770 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4771 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4772 spec.t10 = 500 * 10;
4773 /* This one is special and actually in units of 100ms, but zero
4774 * based in the hw (so we need to add 100 ms). But the sw vbt
4775 * table multiplies it with 1000 to make it in units of 100usec,
4776 * too. */
4777 spec.t11_t12 = (510 + 100) * 10;
4778
4779 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4780 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4781
4782 /* Use the max of the register settings and vbt. If both are
4783 * unset, fall back to the spec limits. */
4784 #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
4785 spec.field : \
4786 max(cur.field, vbt.field))
4787 assign_final(t1_t3);
4788 assign_final(t8);
4789 assign_final(t9);
4790 assign_final(t10);
4791 assign_final(t11_t12);
4792 #undef assign_final
4793
4794 #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
4795 intel_dp->panel_power_up_delay = get_delay(t1_t3);
4796 intel_dp->backlight_on_delay = get_delay(t8);
4797 intel_dp->backlight_off_delay = get_delay(t9);
4798 intel_dp->panel_power_down_delay = get_delay(t10);
4799 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4800 #undef get_delay
4801
4802 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4803 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4804 intel_dp->panel_power_cycle_delay);
4805
4806 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4807 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4808
4809 if (out)
4810 *out = final;
4811 }
4812
4813 static void
4814 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4815 struct intel_dp *intel_dp,
4816 struct edp_power_seq *seq)
4817 {
4818 struct drm_i915_private *dev_priv = dev->dev_private;
4819 u32 pp_on, pp_off, pp_div, port_sel = 0;
4820 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4821 int pp_on_reg, pp_off_reg, pp_div_reg;
4822 enum port port = dp_to_dig_port(intel_dp)->port;
4823
4824 lockdep_assert_held(&dev_priv->pps_mutex);
4825
4826 if (HAS_PCH_SPLIT(dev)) {
4827 pp_on_reg = PCH_PP_ON_DELAYS;
4828 pp_off_reg = PCH_PP_OFF_DELAYS;
4829 pp_div_reg = PCH_PP_DIVISOR;
4830 } else {
4831 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4832
4833 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4834 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4835 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4836 }
4837
4838 /*
4839 * And finally store the new values in the power sequencer. The
4840 * backlight delays are set to 1 because we do manual waits on them. For
4841 * T8, even BSpec recommends doing it. For T9, if we don't do this,
4842 * we'll end up waiting for the backlight off delay twice: once when we
4843 * do the manual sleep, and once when we disable the panel and wait for
4844 * the PP_STATUS bit to become zero.
4845 */
4846 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4847 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4848 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4849 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4850 /* Compute the divisor for the pp clock, simply match the Bspec
4851 * formula. */
4852 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4853 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4854 << PANEL_POWER_CYCLE_DELAY_SHIFT);
4855
4856 /* Haswell doesn't have any port selection bits for the panel
4857 * power sequencer any more. */
4858 if (IS_VALLEYVIEW(dev)) {
4859 port_sel = PANEL_PORT_SELECT_VLV(port);
4860 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4861 if (port == PORT_A)
4862 port_sel = PANEL_PORT_SELECT_DPA;
4863 else
4864 port_sel = PANEL_PORT_SELECT_DPD;
4865 }
4866
4867 pp_on |= port_sel;
4868
4869 I915_WRITE(pp_on_reg, pp_on);
4870 I915_WRITE(pp_off_reg, pp_off);
4871 I915_WRITE(pp_div_reg, pp_div);
4872
4873 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4874 I915_READ(pp_on_reg),
4875 I915_READ(pp_off_reg),
4876 I915_READ(pp_div_reg));
4877 }
4878
4879 void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4880 {
4881 struct drm_i915_private *dev_priv = dev->dev_private;
4882 struct intel_encoder *encoder;
4883 struct intel_dp *intel_dp = NULL;
4884 struct intel_crtc_config *config = NULL;
4885 struct intel_crtc *intel_crtc = NULL;
4886 struct intel_connector *intel_connector = dev_priv->drrs.connector;
4887 u32 reg, val;
4888 enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
4889
4890 if (refresh_rate <= 0) {
4891 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4892 return;
4893 }
4894
4895 if (intel_connector == NULL) {
4896 DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
4897 return;
4898 }
4899
4900 /*
4901 * FIXME: This needs proper synchronization with psr state. But really
4902 * hard to tell without seeing the user of this function of this code.
4903 * Check locking and ordering once that lands.
4904 */
4905 if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
4906 DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
4907 return;
4908 }
4909
4910 encoder = intel_attached_encoder(&intel_connector->base);
4911 intel_dp = enc_to_intel_dp(&encoder->base);
4912 intel_crtc = encoder->new_crtc;
4913
4914 if (!intel_crtc) {
4915 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4916 return;
4917 }
4918
4919 config = &intel_crtc->config;
4920
4921 if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
4922 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4923 return;
4924 }
4925
4926 if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
4927 index = DRRS_LOW_RR;
4928
4929 if (index == intel_dp->drrs_state.refresh_rate_type) {
4930 DRM_DEBUG_KMS(
4931 "DRRS requested for previously set RR...ignoring\n");
4932 return;
4933 }
4934
4935 if (!intel_crtc->active) {
4936 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4937 return;
4938 }
4939
4940 if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
4941 reg = PIPECONF(intel_crtc->config.cpu_transcoder);
4942 val = I915_READ(reg);
4943 if (index > DRRS_HIGH_RR) {
4944 val |= PIPECONF_EDP_RR_MODE_SWITCH;
4945 intel_dp_set_m_n(intel_crtc);
4946 } else {
4947 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4948 }
4949 I915_WRITE(reg, val);
4950 }
4951
4952 /*
4953 * mutex taken to ensure that there is no race between differnt
4954 * drrs calls trying to update refresh rate. This scenario may occur
4955 * in future when idleness detection based DRRS in kernel and
4956 * possible calls from user space to set differnt RR are made.
4957 */
4958
4959 mutex_lock(&intel_dp->drrs_state.mutex);
4960
4961 intel_dp->drrs_state.refresh_rate_type = index;
4962
4963 mutex_unlock(&intel_dp->drrs_state.mutex);
4964
4965 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4966 }
4967
4968 static struct drm_display_mode *
4969 intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4970 struct intel_connector *intel_connector,
4971 struct drm_display_mode *fixed_mode)
4972 {
4973 struct drm_connector *connector = &intel_connector->base;
4974 struct intel_dp *intel_dp = &intel_dig_port->dp;
4975 struct drm_device *dev = intel_dig_port->base.base.dev;
4976 struct drm_i915_private *dev_priv = dev->dev_private;
4977 struct drm_display_mode *downclock_mode = NULL;
4978
4979 if (INTEL_INFO(dev)->gen <= 6) {
4980 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4981 return NULL;
4982 }
4983
4984 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4985 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
4986 return NULL;
4987 }
4988
4989 downclock_mode = intel_find_panel_downclock
4990 (dev, fixed_mode, connector);
4991
4992 if (!downclock_mode) {
4993 DRM_DEBUG_KMS("DRRS not supported\n");
4994 return NULL;
4995 }
4996
4997 dev_priv->drrs.connector = intel_connector;
4998
4999 mutex_init(&intel_dp->drrs_state.mutex);
5000
5001 intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
5002
5003 intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
5004 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5005 return downclock_mode;
5006 }
5007
5008 void intel_edp_panel_vdd_sanitize(struct intel_encoder *intel_encoder)
5009 {
5010 struct drm_device *dev = intel_encoder->base.dev;
5011 struct drm_i915_private *dev_priv = dev->dev_private;
5012 struct intel_dp *intel_dp;
5013 enum intel_display_power_domain power_domain;
5014
5015 if (intel_encoder->type != INTEL_OUTPUT_EDP)
5016 return;
5017
5018 intel_dp = enc_to_intel_dp(&intel_encoder->base);
5019
5020 pps_lock(intel_dp);
5021
5022 if (!edp_have_panel_vdd(intel_dp))
5023 goto out;
5024 /*
5025 * The VDD bit needs a power domain reference, so if the bit is
5026 * already enabled when we boot or resume, grab this reference and
5027 * schedule a vdd off, so we don't hold on to the reference
5028 * indefinitely.
5029 */
5030 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
5031 power_domain = intel_display_port_power_domain(intel_encoder);
5032 intel_display_power_get(dev_priv, power_domain);
5033
5034 edp_panel_vdd_schedule_off(intel_dp);
5035 out:
5036 pps_unlock(intel_dp);
5037 }
5038
5039 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5040 struct intel_connector *intel_connector,
5041 struct edp_power_seq *power_seq)
5042 {
5043 struct drm_connector *connector = &intel_connector->base;
5044 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5045 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5046 struct drm_device *dev = intel_encoder->base.dev;
5047 struct drm_i915_private *dev_priv = dev->dev_private;
5048 struct drm_display_mode *fixed_mode = NULL;
5049 struct drm_display_mode *downclock_mode = NULL;
5050 bool has_dpcd;
5051 struct drm_display_mode *scan;
5052 struct edid *edid;
5053
5054 intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
5055
5056 if (!is_edp(intel_dp))
5057 return true;
5058
5059 intel_edp_panel_vdd_sanitize(intel_encoder);
5060
5061 /* Cache DPCD and EDID for edp. */
5062 intel_edp_panel_vdd_on(intel_dp);
5063 has_dpcd = intel_dp_get_dpcd(intel_dp);
5064 intel_edp_panel_vdd_off(intel_dp, false);
5065
5066 if (has_dpcd) {
5067 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5068 dev_priv->no_aux_handshake =
5069 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5070 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5071 } else {
5072 /* if this fails, presume the device is a ghost */
5073 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5074 return false;
5075 }
5076
5077 /* We now know it's not a ghost, init power sequence regs. */
5078 pps_lock(intel_dp);
5079 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
5080 pps_unlock(intel_dp);
5081
5082 mutex_lock(&dev->mode_config.mutex);
5083 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5084 if (edid) {
5085 if (drm_add_edid_modes(connector, edid)) {
5086 drm_mode_connector_update_edid_property(connector,
5087 edid);
5088 drm_edid_to_eld(connector, edid);
5089 } else {
5090 kfree(edid);
5091 edid = ERR_PTR(-EINVAL);
5092 }
5093 } else {
5094 edid = ERR_PTR(-ENOENT);
5095 }
5096 intel_connector->edid = edid;
5097
5098 /* prefer fixed mode from EDID if available */
5099 list_for_each_entry(scan, &connector->probed_modes, head) {
5100 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5101 fixed_mode = drm_mode_duplicate(dev, scan);
5102 downclock_mode = intel_dp_drrs_init(
5103 intel_dig_port,
5104 intel_connector, fixed_mode);
5105 break;
5106 }
5107 }
5108
5109 /* fallback to VBT if available for eDP */
5110 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5111 fixed_mode = drm_mode_duplicate(dev,
5112 dev_priv->vbt.lfp_lvds_vbt_mode);
5113 if (fixed_mode)
5114 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5115 }
5116 mutex_unlock(&dev->mode_config.mutex);
5117
5118 if (IS_VALLEYVIEW(dev)) {
5119 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5120 register_reboot_notifier(&intel_dp->edp_notifier);
5121 }
5122
5123 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5124 intel_connector->panel.backlight_power = intel_edp_backlight_power;
5125 intel_panel_setup_backlight(connector);
5126
5127 return true;
5128 }
5129
5130 bool
5131 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5132 struct intel_connector *intel_connector)
5133 {
5134 struct drm_connector *connector = &intel_connector->base;
5135 struct intel_dp *intel_dp = &intel_dig_port->dp;
5136 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5137 struct drm_device *dev = intel_encoder->base.dev;
5138 struct drm_i915_private *dev_priv = dev->dev_private;
5139 enum port port = intel_dig_port->port;
5140 struct edp_power_seq power_seq = { 0 };
5141 int type;
5142
5143 intel_dp->pps_pipe = INVALID_PIPE;
5144
5145 /* intel_dp vfuncs */
5146 if (INTEL_INFO(dev)->gen >= 9)
5147 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5148 else if (IS_VALLEYVIEW(dev))
5149 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5150 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5151 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5152 else if (HAS_PCH_SPLIT(dev))
5153 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5154 else
5155 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5156
5157 if (INTEL_INFO(dev)->gen >= 9)
5158 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5159 else
5160 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5161
5162 /* Preserve the current hw state. */
5163 intel_dp->DP = I915_READ(intel_dp->output_reg);
5164 intel_dp->attached_connector = intel_connector;
5165
5166 if (intel_dp_is_edp(dev, port))
5167 type = DRM_MODE_CONNECTOR_eDP;
5168 else
5169 type = DRM_MODE_CONNECTOR_DisplayPort;
5170
5171 /*
5172 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5173 * for DP the encoder type can be set by the caller to
5174 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5175 */
5176 if (type == DRM_MODE_CONNECTOR_eDP)
5177 intel_encoder->type = INTEL_OUTPUT_EDP;
5178
5179 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5180 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5181 port_name(port));
5182
5183 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5184 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5185
5186 connector->interlace_allowed = true;
5187 connector->doublescan_allowed = 0;
5188
5189 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5190 edp_panel_vdd_work);
5191
5192 intel_connector_attach_encoder(intel_connector, intel_encoder);
5193 drm_connector_register(connector);
5194
5195 if (HAS_DDI(dev))
5196 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5197 else
5198 intel_connector->get_hw_state = intel_connector_get_hw_state;
5199 intel_connector->unregister = intel_dp_connector_unregister;
5200
5201 /* Set up the hotplug pin. */
5202 switch (port) {
5203 case PORT_A:
5204 intel_encoder->hpd_pin = HPD_PORT_A;
5205 break;
5206 case PORT_B:
5207 intel_encoder->hpd_pin = HPD_PORT_B;
5208 break;
5209 case PORT_C:
5210 intel_encoder->hpd_pin = HPD_PORT_C;
5211 break;
5212 case PORT_D:
5213 intel_encoder->hpd_pin = HPD_PORT_D;
5214 break;
5215 default:
5216 BUG();
5217 }
5218
5219 if (is_edp(intel_dp)) {
5220 pps_lock(intel_dp);
5221 if (IS_VALLEYVIEW(dev)) {
5222 vlv_initial_power_sequencer_setup(intel_dp);
5223 } else {
5224 intel_dp_init_panel_power_timestamps(intel_dp);
5225 intel_dp_init_panel_power_sequencer(dev, intel_dp,
5226 &power_seq);
5227 }
5228 pps_unlock(intel_dp);
5229 }
5230
5231 intel_dp_aux_init(intel_dp, intel_connector);
5232
5233 /* init MST on ports that can support it */
5234 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5235 if (port == PORT_B || port == PORT_C || port == PORT_D) {
5236 intel_dp_mst_encoder_init(intel_dig_port,
5237 intel_connector->base.base.id);
5238 }
5239 }
5240
5241 if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
5242 drm_dp_aux_unregister(&intel_dp->aux);
5243 if (is_edp(intel_dp)) {
5244 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5245 /*
5246 * vdd might still be enabled do to the delayed vdd off.
5247 * Make sure vdd is actually turned off here.
5248 */
5249 pps_lock(intel_dp);
5250 edp_panel_vdd_off_sync(intel_dp);
5251 pps_unlock(intel_dp);
5252 }
5253 drm_connector_unregister(connector);
5254 drm_connector_cleanup(connector);
5255 return false;
5256 }
5257
5258 intel_dp_add_properties(intel_dp, connector);
5259
5260 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5261 * 0xd. Failure to do so will result in spurious interrupts being
5262 * generated on the port when a cable is not attached.
5263 */
5264 if (IS_G4X(dev) && !IS_GM45(dev)) {
5265 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5266 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5267 }
5268
5269 return true;
5270 }
5271
5272 void
5273 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
5274 {
5275 struct drm_i915_private *dev_priv = dev->dev_private;
5276 struct intel_digital_port *intel_dig_port;
5277 struct intel_encoder *intel_encoder;
5278 struct drm_encoder *encoder;
5279 struct intel_connector *intel_connector;
5280
5281 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5282 if (!intel_dig_port)
5283 return;
5284
5285 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
5286 if (!intel_connector) {
5287 kfree(intel_dig_port);
5288 return;
5289 }
5290
5291 intel_encoder = &intel_dig_port->base;
5292 encoder = &intel_encoder->base;
5293
5294 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5295 DRM_MODE_ENCODER_TMDS);
5296
5297 intel_encoder->compute_config = intel_dp_compute_config;
5298 intel_encoder->disable = intel_disable_dp;
5299 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5300 intel_encoder->get_config = intel_dp_get_config;
5301 intel_encoder->suspend = intel_dp_encoder_suspend;
5302 if (IS_CHERRYVIEW(dev)) {
5303 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5304 intel_encoder->pre_enable = chv_pre_enable_dp;
5305 intel_encoder->enable = vlv_enable_dp;
5306 intel_encoder->post_disable = chv_post_disable_dp;
5307 } else if (IS_VALLEYVIEW(dev)) {
5308 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5309 intel_encoder->pre_enable = vlv_pre_enable_dp;
5310 intel_encoder->enable = vlv_enable_dp;
5311 intel_encoder->post_disable = vlv_post_disable_dp;
5312 } else {
5313 intel_encoder->pre_enable = g4x_pre_enable_dp;
5314 intel_encoder->enable = g4x_enable_dp;
5315 if (INTEL_INFO(dev)->gen >= 5)
5316 intel_encoder->post_disable = ilk_post_disable_dp;
5317 }
5318
5319 intel_dig_port->port = port;
5320 intel_dig_port->dp.output_reg = output_reg;
5321
5322 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5323 if (IS_CHERRYVIEW(dev)) {
5324 if (port == PORT_D)
5325 intel_encoder->crtc_mask = 1 << 2;
5326 else
5327 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5328 } else {
5329 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5330 }
5331 intel_encoder->cloneable = 0;
5332 intel_encoder->hot_plug = intel_dp_hot_plug;
5333
5334 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5335 dev_priv->hpd_irq_port[port] = intel_dig_port;
5336
5337 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
5338 drm_encoder_cleanup(encoder);
5339 kfree(intel_dig_port);
5340 kfree(intel_connector);
5341 }
5342 }
5343
5344 void intel_dp_mst_suspend(struct drm_device *dev)
5345 {
5346 struct drm_i915_private *dev_priv = dev->dev_private;
5347 int i;
5348
5349 /* disable MST */
5350 for (i = 0; i < I915_MAX_PORTS; i++) {
5351 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5352 if (!intel_dig_port)
5353 continue;
5354
5355 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5356 if (!intel_dig_port->dp.can_mst)
5357 continue;
5358 if (intel_dig_port->dp.is_mst)
5359 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5360 }
5361 }
5362 }
5363
5364 void intel_dp_mst_resume(struct drm_device *dev)
5365 {
5366 struct drm_i915_private *dev_priv = dev->dev_private;
5367 int i;
5368
5369 for (i = 0; i < I915_MAX_PORTS; i++) {
5370 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5371 if (!intel_dig_port)
5372 continue;
5373 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5374 int ret;
5375
5376 if (!intel_dig_port->dp.can_mst)
5377 continue;
5378
5379 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5380 if (ret != 0) {
5381 intel_dp_check_mst_status(&intel_dig_port->dp);
5382 }
5383 }
5384 }
5385 }