]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/intel_dp.c
drm/i915: Don't copy the DP source rates arrays
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 struct dp_link_dpll {
45 int link_bw;
46 struct dpll dpll;
47 };
48
49 static const struct dp_link_dpll gen4_dpll[] = {
50 { DP_LINK_BW_1_62,
51 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
52 { DP_LINK_BW_2_7,
53 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
54 };
55
56 static const struct dp_link_dpll pch_dpll[] = {
57 { DP_LINK_BW_1_62,
58 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
59 { DP_LINK_BW_2_7,
60 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
61 };
62
63 static const struct dp_link_dpll vlv_dpll[] = {
64 { DP_LINK_BW_1_62,
65 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
66 { DP_LINK_BW_2_7,
67 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
68 };
69
70 /*
71 * CHV supports eDP 1.4 that have more link rates.
72 * Below only provides the fixed rate but exclude variable rate.
73 */
74 static const struct dp_link_dpll chv_dpll[] = {
75 /*
76 * CHV requires to program fractional division for m2.
77 * m2 is stored in fixed point format using formula below
78 * (m2_int << 22) | m2_fraction
79 */
80 { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */
81 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
82 { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */
83 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
84 { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */
85 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
86 };
87 /* Skylake supports following rates */
88 static const int gen9_rates[] = { 162000, 216000, 270000,
89 324000, 432000, 540000 };
90 static const int default_rates[] = { 162000, 270000, 540000 };
91
92 /**
93 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
94 * @intel_dp: DP struct
95 *
96 * If a CPU or PCH DP output is attached to an eDP panel, this function
97 * will return true, and false otherwise.
98 */
99 static bool is_edp(struct intel_dp *intel_dp)
100 {
101 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
102
103 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
104 }
105
106 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
107 {
108 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
109
110 return intel_dig_port->base.base.dev;
111 }
112
113 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
114 {
115 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
116 }
117
118 static void intel_dp_link_down(struct intel_dp *intel_dp);
119 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
120 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
121 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
122 static void vlv_steal_power_sequencer(struct drm_device *dev,
123 enum pipe pipe);
124
125 int
126 intel_dp_max_link_bw(struct intel_dp *intel_dp)
127 {
128 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
129 struct drm_device *dev = intel_dp->attached_connector->base.dev;
130
131 switch (max_link_bw) {
132 case DP_LINK_BW_1_62:
133 case DP_LINK_BW_2_7:
134 break;
135 case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
136 if (IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0)
137 /* WaDisableHBR2:skl */
138 max_link_bw = DP_LINK_BW_2_7;
139 else if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
140 INTEL_INFO(dev)->gen >= 8) &&
141 intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
142 max_link_bw = DP_LINK_BW_5_4;
143 else
144 max_link_bw = DP_LINK_BW_2_7;
145 break;
146 default:
147 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
148 max_link_bw);
149 max_link_bw = DP_LINK_BW_1_62;
150 break;
151 }
152 return max_link_bw;
153 }
154
155 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
156 {
157 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
158 struct drm_device *dev = intel_dig_port->base.base.dev;
159 u8 source_max, sink_max;
160
161 source_max = 4;
162 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
163 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
164 source_max = 2;
165
166 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
167
168 return min(source_max, sink_max);
169 }
170
171 /*
172 * The units on the numbers in the next two are... bizarre. Examples will
173 * make it clearer; this one parallels an example in the eDP spec.
174 *
175 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
176 *
177 * 270000 * 1 * 8 / 10 == 216000
178 *
179 * The actual data capacity of that configuration is 2.16Gbit/s, so the
180 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
181 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
182 * 119000. At 18bpp that's 2142000 kilobits per second.
183 *
184 * Thus the strange-looking division by 10 in intel_dp_link_required, to
185 * get the result in decakilobits instead of kilobits.
186 */
187
188 static int
189 intel_dp_link_required(int pixel_clock, int bpp)
190 {
191 return (pixel_clock * bpp + 9) / 10;
192 }
193
194 static int
195 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
196 {
197 return (max_link_clock * max_lanes * 8) / 10;
198 }
199
200 static enum drm_mode_status
201 intel_dp_mode_valid(struct drm_connector *connector,
202 struct drm_display_mode *mode)
203 {
204 struct intel_dp *intel_dp = intel_attached_dp(connector);
205 struct intel_connector *intel_connector = to_intel_connector(connector);
206 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
207 int target_clock = mode->clock;
208 int max_rate, mode_rate, max_lanes, max_link_clock;
209
210 if (is_edp(intel_dp) && fixed_mode) {
211 if (mode->hdisplay > fixed_mode->hdisplay)
212 return MODE_PANEL;
213
214 if (mode->vdisplay > fixed_mode->vdisplay)
215 return MODE_PANEL;
216
217 target_clock = fixed_mode->clock;
218 }
219
220 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
221 max_lanes = intel_dp_max_lane_count(intel_dp);
222
223 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
224 mode_rate = intel_dp_link_required(target_clock, 18);
225
226 if (mode_rate > max_rate)
227 return MODE_CLOCK_HIGH;
228
229 if (mode->clock < 10000)
230 return MODE_CLOCK_LOW;
231
232 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
233 return MODE_H_ILLEGAL;
234
235 return MODE_OK;
236 }
237
238 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
239 {
240 int i;
241 uint32_t v = 0;
242
243 if (src_bytes > 4)
244 src_bytes = 4;
245 for (i = 0; i < src_bytes; i++)
246 v |= ((uint32_t) src[i]) << ((3-i) * 8);
247 return v;
248 }
249
250 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
251 {
252 int i;
253 if (dst_bytes > 4)
254 dst_bytes = 4;
255 for (i = 0; i < dst_bytes; i++)
256 dst[i] = src >> ((3-i) * 8);
257 }
258
259 /* hrawclock is 1/4 the FSB frequency */
260 static int
261 intel_hrawclk(struct drm_device *dev)
262 {
263 struct drm_i915_private *dev_priv = dev->dev_private;
264 uint32_t clkcfg;
265
266 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
267 if (IS_VALLEYVIEW(dev))
268 return 200;
269
270 clkcfg = I915_READ(CLKCFG);
271 switch (clkcfg & CLKCFG_FSB_MASK) {
272 case CLKCFG_FSB_400:
273 return 100;
274 case CLKCFG_FSB_533:
275 return 133;
276 case CLKCFG_FSB_667:
277 return 166;
278 case CLKCFG_FSB_800:
279 return 200;
280 case CLKCFG_FSB_1067:
281 return 266;
282 case CLKCFG_FSB_1333:
283 return 333;
284 /* these two are just a guess; one of them might be right */
285 case CLKCFG_FSB_1600:
286 case CLKCFG_FSB_1600_ALT:
287 return 400;
288 default:
289 return 133;
290 }
291 }
292
293 static void
294 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
295 struct intel_dp *intel_dp);
296 static void
297 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
298 struct intel_dp *intel_dp);
299
300 static void pps_lock(struct intel_dp *intel_dp)
301 {
302 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
303 struct intel_encoder *encoder = &intel_dig_port->base;
304 struct drm_device *dev = encoder->base.dev;
305 struct drm_i915_private *dev_priv = dev->dev_private;
306 enum intel_display_power_domain power_domain;
307
308 /*
309 * See vlv_power_sequencer_reset() why we need
310 * a power domain reference here.
311 */
312 power_domain = intel_display_port_power_domain(encoder);
313 intel_display_power_get(dev_priv, power_domain);
314
315 mutex_lock(&dev_priv->pps_mutex);
316 }
317
318 static void pps_unlock(struct intel_dp *intel_dp)
319 {
320 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
321 struct intel_encoder *encoder = &intel_dig_port->base;
322 struct drm_device *dev = encoder->base.dev;
323 struct drm_i915_private *dev_priv = dev->dev_private;
324 enum intel_display_power_domain power_domain;
325
326 mutex_unlock(&dev_priv->pps_mutex);
327
328 power_domain = intel_display_port_power_domain(encoder);
329 intel_display_power_put(dev_priv, power_domain);
330 }
331
332 static void
333 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
334 {
335 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
336 struct drm_device *dev = intel_dig_port->base.base.dev;
337 struct drm_i915_private *dev_priv = dev->dev_private;
338 enum pipe pipe = intel_dp->pps_pipe;
339 bool pll_enabled;
340 uint32_t DP;
341
342 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
343 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
344 pipe_name(pipe), port_name(intel_dig_port->port)))
345 return;
346
347 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
348 pipe_name(pipe), port_name(intel_dig_port->port));
349
350 /* Preserve the BIOS-computed detected bit. This is
351 * supposed to be read-only.
352 */
353 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
354 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
355 DP |= DP_PORT_WIDTH(1);
356 DP |= DP_LINK_TRAIN_PAT_1;
357
358 if (IS_CHERRYVIEW(dev))
359 DP |= DP_PIPE_SELECT_CHV(pipe);
360 else if (pipe == PIPE_B)
361 DP |= DP_PIPEB_SELECT;
362
363 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
364
365 /*
366 * The DPLL for the pipe must be enabled for this to work.
367 * So enable temporarily it if it's not already enabled.
368 */
369 if (!pll_enabled)
370 vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
371 &chv_dpll[0].dpll : &vlv_dpll[0].dpll);
372
373 /*
374 * Similar magic as in intel_dp_enable_port().
375 * We _must_ do this port enable + disable trick
376 * to make this power seqeuencer lock onto the port.
377 * Otherwise even VDD force bit won't work.
378 */
379 I915_WRITE(intel_dp->output_reg, DP);
380 POSTING_READ(intel_dp->output_reg);
381
382 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
383 POSTING_READ(intel_dp->output_reg);
384
385 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
386 POSTING_READ(intel_dp->output_reg);
387
388 if (!pll_enabled)
389 vlv_force_pll_off(dev, pipe);
390 }
391
392 static enum pipe
393 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
394 {
395 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
396 struct drm_device *dev = intel_dig_port->base.base.dev;
397 struct drm_i915_private *dev_priv = dev->dev_private;
398 struct intel_encoder *encoder;
399 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
400 enum pipe pipe;
401
402 lockdep_assert_held(&dev_priv->pps_mutex);
403
404 /* We should never land here with regular DP ports */
405 WARN_ON(!is_edp(intel_dp));
406
407 if (intel_dp->pps_pipe != INVALID_PIPE)
408 return intel_dp->pps_pipe;
409
410 /*
411 * We don't have power sequencer currently.
412 * Pick one that's not used by other ports.
413 */
414 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
415 base.head) {
416 struct intel_dp *tmp;
417
418 if (encoder->type != INTEL_OUTPUT_EDP)
419 continue;
420
421 tmp = enc_to_intel_dp(&encoder->base);
422
423 if (tmp->pps_pipe != INVALID_PIPE)
424 pipes &= ~(1 << tmp->pps_pipe);
425 }
426
427 /*
428 * Didn't find one. This should not happen since there
429 * are two power sequencers and up to two eDP ports.
430 */
431 if (WARN_ON(pipes == 0))
432 pipe = PIPE_A;
433 else
434 pipe = ffs(pipes) - 1;
435
436 vlv_steal_power_sequencer(dev, pipe);
437 intel_dp->pps_pipe = pipe;
438
439 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
440 pipe_name(intel_dp->pps_pipe),
441 port_name(intel_dig_port->port));
442
443 /* init power sequencer on this pipe and port */
444 intel_dp_init_panel_power_sequencer(dev, intel_dp);
445 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
446
447 /*
448 * Even vdd force doesn't work until we've made
449 * the power sequencer lock in on the port.
450 */
451 vlv_power_sequencer_kick(intel_dp);
452
453 return intel_dp->pps_pipe;
454 }
455
456 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
457 enum pipe pipe);
458
459 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
460 enum pipe pipe)
461 {
462 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
463 }
464
465 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
466 enum pipe pipe)
467 {
468 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
469 }
470
471 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
472 enum pipe pipe)
473 {
474 return true;
475 }
476
477 static enum pipe
478 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
479 enum port port,
480 vlv_pipe_check pipe_check)
481 {
482 enum pipe pipe;
483
484 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
485 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
486 PANEL_PORT_SELECT_MASK;
487
488 if (port_sel != PANEL_PORT_SELECT_VLV(port))
489 continue;
490
491 if (!pipe_check(dev_priv, pipe))
492 continue;
493
494 return pipe;
495 }
496
497 return INVALID_PIPE;
498 }
499
500 static void
501 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
502 {
503 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
504 struct drm_device *dev = intel_dig_port->base.base.dev;
505 struct drm_i915_private *dev_priv = dev->dev_private;
506 enum port port = intel_dig_port->port;
507
508 lockdep_assert_held(&dev_priv->pps_mutex);
509
510 /* try to find a pipe with this port selected */
511 /* first pick one where the panel is on */
512 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
513 vlv_pipe_has_pp_on);
514 /* didn't find one? pick one where vdd is on */
515 if (intel_dp->pps_pipe == INVALID_PIPE)
516 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
517 vlv_pipe_has_vdd_on);
518 /* didn't find one? pick one with just the correct port */
519 if (intel_dp->pps_pipe == INVALID_PIPE)
520 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
521 vlv_pipe_any);
522
523 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
524 if (intel_dp->pps_pipe == INVALID_PIPE) {
525 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
526 port_name(port));
527 return;
528 }
529
530 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
531 port_name(port), pipe_name(intel_dp->pps_pipe));
532
533 intel_dp_init_panel_power_sequencer(dev, intel_dp);
534 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
535 }
536
537 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
538 {
539 struct drm_device *dev = dev_priv->dev;
540 struct intel_encoder *encoder;
541
542 if (WARN_ON(!IS_VALLEYVIEW(dev)))
543 return;
544
545 /*
546 * We can't grab pps_mutex here due to deadlock with power_domain
547 * mutex when power_domain functions are called while holding pps_mutex.
548 * That also means that in order to use pps_pipe the code needs to
549 * hold both a power domain reference and pps_mutex, and the power domain
550 * reference get/put must be done while _not_ holding pps_mutex.
551 * pps_{lock,unlock}() do these steps in the correct order, so one
552 * should use them always.
553 */
554
555 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
556 struct intel_dp *intel_dp;
557
558 if (encoder->type != INTEL_OUTPUT_EDP)
559 continue;
560
561 intel_dp = enc_to_intel_dp(&encoder->base);
562 intel_dp->pps_pipe = INVALID_PIPE;
563 }
564 }
565
566 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
567 {
568 struct drm_device *dev = intel_dp_to_dev(intel_dp);
569
570 if (HAS_PCH_SPLIT(dev))
571 return PCH_PP_CONTROL;
572 else
573 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
574 }
575
576 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
577 {
578 struct drm_device *dev = intel_dp_to_dev(intel_dp);
579
580 if (HAS_PCH_SPLIT(dev))
581 return PCH_PP_STATUS;
582 else
583 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
584 }
585
586 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
587 This function only applicable when panel PM state is not to be tracked */
588 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
589 void *unused)
590 {
591 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
592 edp_notifier);
593 struct drm_device *dev = intel_dp_to_dev(intel_dp);
594 struct drm_i915_private *dev_priv = dev->dev_private;
595 u32 pp_div;
596 u32 pp_ctrl_reg, pp_div_reg;
597
598 if (!is_edp(intel_dp) || code != SYS_RESTART)
599 return 0;
600
601 pps_lock(intel_dp);
602
603 if (IS_VALLEYVIEW(dev)) {
604 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
605
606 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
607 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
608 pp_div = I915_READ(pp_div_reg);
609 pp_div &= PP_REFERENCE_DIVIDER_MASK;
610
611 /* 0x1F write to PP_DIV_REG sets max cycle delay */
612 I915_WRITE(pp_div_reg, pp_div | 0x1F);
613 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
614 msleep(intel_dp->panel_power_cycle_delay);
615 }
616
617 pps_unlock(intel_dp);
618
619 return 0;
620 }
621
622 static bool edp_have_panel_power(struct intel_dp *intel_dp)
623 {
624 struct drm_device *dev = intel_dp_to_dev(intel_dp);
625 struct drm_i915_private *dev_priv = dev->dev_private;
626
627 lockdep_assert_held(&dev_priv->pps_mutex);
628
629 if (IS_VALLEYVIEW(dev) &&
630 intel_dp->pps_pipe == INVALID_PIPE)
631 return false;
632
633 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
634 }
635
636 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
637 {
638 struct drm_device *dev = intel_dp_to_dev(intel_dp);
639 struct drm_i915_private *dev_priv = dev->dev_private;
640
641 lockdep_assert_held(&dev_priv->pps_mutex);
642
643 if (IS_VALLEYVIEW(dev) &&
644 intel_dp->pps_pipe == INVALID_PIPE)
645 return false;
646
647 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
648 }
649
650 static void
651 intel_dp_check_edp(struct intel_dp *intel_dp)
652 {
653 struct drm_device *dev = intel_dp_to_dev(intel_dp);
654 struct drm_i915_private *dev_priv = dev->dev_private;
655
656 if (!is_edp(intel_dp))
657 return;
658
659 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
660 WARN(1, "eDP powered off while attempting aux channel communication.\n");
661 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
662 I915_READ(_pp_stat_reg(intel_dp)),
663 I915_READ(_pp_ctrl_reg(intel_dp)));
664 }
665 }
666
667 static uint32_t
668 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
669 {
670 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
671 struct drm_device *dev = intel_dig_port->base.base.dev;
672 struct drm_i915_private *dev_priv = dev->dev_private;
673 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
674 uint32_t status;
675 bool done;
676
677 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
678 if (has_aux_irq)
679 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
680 msecs_to_jiffies_timeout(10));
681 else
682 done = wait_for_atomic(C, 10) == 0;
683 if (!done)
684 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
685 has_aux_irq);
686 #undef C
687
688 return status;
689 }
690
691 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
692 {
693 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
694 struct drm_device *dev = intel_dig_port->base.base.dev;
695
696 /*
697 * The clock divider is based off the hrawclk, and would like to run at
698 * 2MHz. So, take the hrawclk value and divide by 2 and use that
699 */
700 return index ? 0 : intel_hrawclk(dev) / 2;
701 }
702
703 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
704 {
705 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
706 struct drm_device *dev = intel_dig_port->base.base.dev;
707
708 if (index)
709 return 0;
710
711 if (intel_dig_port->port == PORT_A) {
712 if (IS_GEN6(dev) || IS_GEN7(dev))
713 return 200; /* SNB & IVB eDP input clock at 400Mhz */
714 else
715 return 225; /* eDP input clock at 450Mhz */
716 } else {
717 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
718 }
719 }
720
721 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
722 {
723 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
724 struct drm_device *dev = intel_dig_port->base.base.dev;
725 struct drm_i915_private *dev_priv = dev->dev_private;
726
727 if (intel_dig_port->port == PORT_A) {
728 if (index)
729 return 0;
730 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
731 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
732 /* Workaround for non-ULT HSW */
733 switch (index) {
734 case 0: return 63;
735 case 1: return 72;
736 default: return 0;
737 }
738 } else {
739 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
740 }
741 }
742
743 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
744 {
745 return index ? 0 : 100;
746 }
747
748 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
749 {
750 /*
751 * SKL doesn't need us to program the AUX clock divider (Hardware will
752 * derive the clock from CDCLK automatically). We still implement the
753 * get_aux_clock_divider vfunc to plug-in into the existing code.
754 */
755 return index ? 0 : 1;
756 }
757
758 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
759 bool has_aux_irq,
760 int send_bytes,
761 uint32_t aux_clock_divider)
762 {
763 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
764 struct drm_device *dev = intel_dig_port->base.base.dev;
765 uint32_t precharge, timeout;
766
767 if (IS_GEN6(dev))
768 precharge = 3;
769 else
770 precharge = 5;
771
772 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
773 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
774 else
775 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
776
777 return DP_AUX_CH_CTL_SEND_BUSY |
778 DP_AUX_CH_CTL_DONE |
779 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
780 DP_AUX_CH_CTL_TIME_OUT_ERROR |
781 timeout |
782 DP_AUX_CH_CTL_RECEIVE_ERROR |
783 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
784 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
785 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
786 }
787
788 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
789 bool has_aux_irq,
790 int send_bytes,
791 uint32_t unused)
792 {
793 return DP_AUX_CH_CTL_SEND_BUSY |
794 DP_AUX_CH_CTL_DONE |
795 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
796 DP_AUX_CH_CTL_TIME_OUT_ERROR |
797 DP_AUX_CH_CTL_TIME_OUT_1600us |
798 DP_AUX_CH_CTL_RECEIVE_ERROR |
799 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
800 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
801 }
802
803 static int
804 intel_dp_aux_ch(struct intel_dp *intel_dp,
805 const uint8_t *send, int send_bytes,
806 uint8_t *recv, int recv_size)
807 {
808 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
809 struct drm_device *dev = intel_dig_port->base.base.dev;
810 struct drm_i915_private *dev_priv = dev->dev_private;
811 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
812 uint32_t ch_data = ch_ctl + 4;
813 uint32_t aux_clock_divider;
814 int i, ret, recv_bytes;
815 uint32_t status;
816 int try, clock = 0;
817 bool has_aux_irq = HAS_AUX_IRQ(dev);
818 bool vdd;
819
820 pps_lock(intel_dp);
821
822 /*
823 * We will be called with VDD already enabled for dpcd/edid/oui reads.
824 * In such cases we want to leave VDD enabled and it's up to upper layers
825 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
826 * ourselves.
827 */
828 vdd = edp_panel_vdd_on(intel_dp);
829
830 /* dp aux is extremely sensitive to irq latency, hence request the
831 * lowest possible wakeup latency and so prevent the cpu from going into
832 * deep sleep states.
833 */
834 pm_qos_update_request(&dev_priv->pm_qos, 0);
835
836 intel_dp_check_edp(intel_dp);
837
838 intel_aux_display_runtime_get(dev_priv);
839
840 /* Try to wait for any previous AUX channel activity */
841 for (try = 0; try < 3; try++) {
842 status = I915_READ_NOTRACE(ch_ctl);
843 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
844 break;
845 msleep(1);
846 }
847
848 if (try == 3) {
849 WARN(1, "dp_aux_ch not started status 0x%08x\n",
850 I915_READ(ch_ctl));
851 ret = -EBUSY;
852 goto out;
853 }
854
855 /* Only 5 data registers! */
856 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
857 ret = -E2BIG;
858 goto out;
859 }
860
861 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
862 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
863 has_aux_irq,
864 send_bytes,
865 aux_clock_divider);
866
867 /* Must try at least 3 times according to DP spec */
868 for (try = 0; try < 5; try++) {
869 /* Load the send data into the aux channel data registers */
870 for (i = 0; i < send_bytes; i += 4)
871 I915_WRITE(ch_data + i,
872 intel_dp_pack_aux(send + i,
873 send_bytes - i));
874
875 /* Send the command and wait for it to complete */
876 I915_WRITE(ch_ctl, send_ctl);
877
878 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
879
880 /* Clear done status and any errors */
881 I915_WRITE(ch_ctl,
882 status |
883 DP_AUX_CH_CTL_DONE |
884 DP_AUX_CH_CTL_TIME_OUT_ERROR |
885 DP_AUX_CH_CTL_RECEIVE_ERROR);
886
887 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
888 DP_AUX_CH_CTL_RECEIVE_ERROR))
889 continue;
890 if (status & DP_AUX_CH_CTL_DONE)
891 break;
892 }
893 if (status & DP_AUX_CH_CTL_DONE)
894 break;
895 }
896
897 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
898 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
899 ret = -EBUSY;
900 goto out;
901 }
902
903 /* Check for timeout or receive error.
904 * Timeouts occur when the sink is not connected
905 */
906 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
907 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
908 ret = -EIO;
909 goto out;
910 }
911
912 /* Timeouts occur when the device isn't connected, so they're
913 * "normal" -- don't fill the kernel log with these */
914 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
915 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
916 ret = -ETIMEDOUT;
917 goto out;
918 }
919
920 /* Unload any bytes sent back from the other side */
921 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
922 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
923 if (recv_bytes > recv_size)
924 recv_bytes = recv_size;
925
926 for (i = 0; i < recv_bytes; i += 4)
927 intel_dp_unpack_aux(I915_READ(ch_data + i),
928 recv + i, recv_bytes - i);
929
930 ret = recv_bytes;
931 out:
932 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
933 intel_aux_display_runtime_put(dev_priv);
934
935 if (vdd)
936 edp_panel_vdd_off(intel_dp, false);
937
938 pps_unlock(intel_dp);
939
940 return ret;
941 }
942
943 #define BARE_ADDRESS_SIZE 3
944 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
945 static ssize_t
946 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
947 {
948 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
949 uint8_t txbuf[20], rxbuf[20];
950 size_t txsize, rxsize;
951 int ret;
952
953 txbuf[0] = msg->request << 4;
954 txbuf[1] = msg->address >> 8;
955 txbuf[2] = msg->address & 0xff;
956 txbuf[3] = msg->size - 1;
957
958 switch (msg->request & ~DP_AUX_I2C_MOT) {
959 case DP_AUX_NATIVE_WRITE:
960 case DP_AUX_I2C_WRITE:
961 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
962 rxsize = 1;
963
964 if (WARN_ON(txsize > 20))
965 return -E2BIG;
966
967 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
968
969 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
970 if (ret > 0) {
971 msg->reply = rxbuf[0] >> 4;
972
973 /* Return payload size. */
974 ret = msg->size;
975 }
976 break;
977
978 case DP_AUX_NATIVE_READ:
979 case DP_AUX_I2C_READ:
980 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
981 rxsize = msg->size + 1;
982
983 if (WARN_ON(rxsize > 20))
984 return -E2BIG;
985
986 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
987 if (ret > 0) {
988 msg->reply = rxbuf[0] >> 4;
989 /*
990 * Assume happy day, and copy the data. The caller is
991 * expected to check msg->reply before touching it.
992 *
993 * Return payload size.
994 */
995 ret--;
996 memcpy(msg->buffer, rxbuf + 1, ret);
997 }
998 break;
999
1000 default:
1001 ret = -EINVAL;
1002 break;
1003 }
1004
1005 return ret;
1006 }
1007
1008 static void
1009 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1010 {
1011 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1012 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1013 enum port port = intel_dig_port->port;
1014 const char *name = NULL;
1015 int ret;
1016
1017 switch (port) {
1018 case PORT_A:
1019 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
1020 name = "DPDDC-A";
1021 break;
1022 case PORT_B:
1023 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
1024 name = "DPDDC-B";
1025 break;
1026 case PORT_C:
1027 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
1028 name = "DPDDC-C";
1029 break;
1030 case PORT_D:
1031 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
1032 name = "DPDDC-D";
1033 break;
1034 default:
1035 BUG();
1036 }
1037
1038 /*
1039 * The AUX_CTL register is usually DP_CTL + 0x10.
1040 *
1041 * On Haswell and Broadwell though:
1042 * - Both port A DDI_BUF_CTL and DDI_AUX_CTL are on the CPU
1043 * - Port B/C/D AUX channels are on the PCH, DDI_BUF_CTL on the CPU
1044 *
1045 * Skylake moves AUX_CTL back next to DDI_BUF_CTL, on the CPU.
1046 */
1047 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1048 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
1049
1050 intel_dp->aux.name = name;
1051 intel_dp->aux.dev = dev->dev;
1052 intel_dp->aux.transfer = intel_dp_aux_transfer;
1053
1054 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
1055 connector->base.kdev->kobj.name);
1056
1057 ret = drm_dp_aux_register(&intel_dp->aux);
1058 if (ret < 0) {
1059 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1060 name, ret);
1061 return;
1062 }
1063
1064 ret = sysfs_create_link(&connector->base.kdev->kobj,
1065 &intel_dp->aux.ddc.dev.kobj,
1066 intel_dp->aux.ddc.dev.kobj.name);
1067 if (ret < 0) {
1068 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
1069 drm_dp_aux_unregister(&intel_dp->aux);
1070 }
1071 }
1072
1073 static void
1074 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1075 {
1076 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1077
1078 if (!intel_connector->mst_port)
1079 sysfs_remove_link(&intel_connector->base.kdev->kobj,
1080 intel_dp->aux.ddc.dev.kobj.name);
1081 intel_connector_unregister(intel_connector);
1082 }
1083
1084 static void
1085 skl_edp_set_pll_config(struct intel_crtc_state *pipe_config, int link_clock)
1086 {
1087 u32 ctrl1;
1088
1089 pipe_config->ddi_pll_sel = SKL_DPLL0;
1090 pipe_config->dpll_hw_state.cfgcr1 = 0;
1091 pipe_config->dpll_hw_state.cfgcr2 = 0;
1092
1093 ctrl1 = DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
1094 switch (link_clock / 2) {
1095 case 81000:
1096 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_810,
1097 SKL_DPLL0);
1098 break;
1099 case 135000:
1100 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_1350,
1101 SKL_DPLL0);
1102 break;
1103 case 270000:
1104 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_2700,
1105 SKL_DPLL0);
1106 break;
1107 case 162000:
1108 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_1620,
1109 SKL_DPLL0);
1110 break;
1111 /* TBD: For DP link rates 2.16 GHz and 4.32 GHz, VCO is 8640 which
1112 results in CDCLK change. Need to handle the change of CDCLK by
1113 disabling pipes and re-enabling them */
1114 case 108000:
1115 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_1080,
1116 SKL_DPLL0);
1117 break;
1118 case 216000:
1119 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_2160,
1120 SKL_DPLL0);
1121 break;
1122
1123 }
1124 pipe_config->dpll_hw_state.ctrl1 = ctrl1;
1125 }
1126
1127 static void
1128 hsw_dp_set_ddi_pll_sel(struct intel_crtc_state *pipe_config, int link_bw)
1129 {
1130 switch (link_bw) {
1131 case DP_LINK_BW_1_62:
1132 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
1133 break;
1134 case DP_LINK_BW_2_7:
1135 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
1136 break;
1137 case DP_LINK_BW_5_4:
1138 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
1139 break;
1140 }
1141 }
1142
1143 static int
1144 intel_read_sink_rates(struct intel_dp *intel_dp, int *sink_rates)
1145 {
1146 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1147
1148 if (INTEL_INFO(dev)->gen >= 9 && intel_dp->supported_rates[0]) {
1149 /*
1150 * Receiver supports only main-link rate selection by
1151 * link rate table method, so read link rates from
1152 * supported_link_rates
1153 */
1154 memcpy(sink_rates, intel_dp->supported_rates,
1155 sizeof(intel_dp->supported_rates));
1156
1157 return intel_dp->num_supported_rates;
1158 }
1159 return 0;
1160 }
1161
1162 static int
1163 intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1164 {
1165 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1166
1167 if (INTEL_INFO(dev)->gen >= 9) {
1168 *source_rates = gen9_rates;
1169 return ARRAY_SIZE(gen9_rates);
1170 }
1171
1172 *source_rates = default_rates;
1173
1174 return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1175 }
1176
1177 static void
1178 intel_dp_set_clock(struct intel_encoder *encoder,
1179 struct intel_crtc_state *pipe_config, int link_bw)
1180 {
1181 struct drm_device *dev = encoder->base.dev;
1182 const struct dp_link_dpll *divisor = NULL;
1183 int i, count = 0;
1184
1185 if (IS_G4X(dev)) {
1186 divisor = gen4_dpll;
1187 count = ARRAY_SIZE(gen4_dpll);
1188 } else if (HAS_PCH_SPLIT(dev)) {
1189 divisor = pch_dpll;
1190 count = ARRAY_SIZE(pch_dpll);
1191 } else if (IS_CHERRYVIEW(dev)) {
1192 divisor = chv_dpll;
1193 count = ARRAY_SIZE(chv_dpll);
1194 } else if (IS_VALLEYVIEW(dev)) {
1195 divisor = vlv_dpll;
1196 count = ARRAY_SIZE(vlv_dpll);
1197 }
1198
1199 if (divisor && count) {
1200 for (i = 0; i < count; i++) {
1201 if (link_bw == divisor[i].link_bw) {
1202 pipe_config->dpll = divisor[i].dpll;
1203 pipe_config->clock_set = true;
1204 break;
1205 }
1206 }
1207 }
1208 }
1209
1210 static int intel_supported_rates(const int *source_rates, int source_len,
1211 const int *sink_rates, int sink_len,
1212 int *supported_rates)
1213 {
1214 int i = 0, j = 0, k = 0;
1215
1216 /* For panels with edp version less than 1.4 */
1217 if (sink_len == 0) {
1218 for (i = 0; i < source_len; ++i)
1219 supported_rates[i] = source_rates[i];
1220 return source_len;
1221 }
1222
1223 /* For edp1.4 panels, find the common rates between source and sink */
1224 while (i < source_len && j < sink_len) {
1225 if (source_rates[i] == sink_rates[j]) {
1226 supported_rates[k] = source_rates[i];
1227 ++k;
1228 ++i;
1229 ++j;
1230 } else if (source_rates[i] < sink_rates[j]) {
1231 ++i;
1232 } else {
1233 ++j;
1234 }
1235 }
1236 return k;
1237 }
1238
1239 static int rate_to_index(int find, const int *rates)
1240 {
1241 int i = 0;
1242
1243 for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1244 if (find == rates[i])
1245 break;
1246
1247 return i;
1248 }
1249
1250 bool
1251 intel_dp_compute_config(struct intel_encoder *encoder,
1252 struct intel_crtc_state *pipe_config)
1253 {
1254 struct drm_device *dev = encoder->base.dev;
1255 struct drm_i915_private *dev_priv = dev->dev_private;
1256 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1257 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1258 enum port port = dp_to_dig_port(intel_dp)->port;
1259 struct intel_crtc *intel_crtc = encoder->new_crtc;
1260 struct intel_connector *intel_connector = intel_dp->attached_connector;
1261 int lane_count, clock;
1262 int min_lane_count = 1;
1263 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1264 /* Conveniently, the link BW constants become indices with a shift...*/
1265 int min_clock = 0;
1266 int max_clock;
1267 int bpp, mode_rate;
1268 int link_avail, link_clock;
1269 int sink_rates[8];
1270 int supported_rates[8] = {0};
1271 const int *source_rates;
1272 int source_len, sink_len, supported_len;
1273
1274 sink_len = intel_read_sink_rates(intel_dp, sink_rates);
1275
1276 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1277
1278 supported_len = intel_supported_rates(source_rates, source_len,
1279 sink_rates, sink_len, supported_rates);
1280
1281 /* No common link rates between source and sink */
1282 WARN_ON(supported_len <= 0);
1283
1284 max_clock = supported_len - 1;
1285
1286 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1287 pipe_config->has_pch_encoder = true;
1288
1289 pipe_config->has_dp_encoder = true;
1290 pipe_config->has_drrs = false;
1291 pipe_config->has_audio = intel_dp->has_audio;
1292
1293 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1294 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1295 adjusted_mode);
1296 if (!HAS_PCH_SPLIT(dev))
1297 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1298 intel_connector->panel.fitting_mode);
1299 else
1300 intel_pch_panel_fitting(intel_crtc, pipe_config,
1301 intel_connector->panel.fitting_mode);
1302 }
1303
1304 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1305 return false;
1306
1307 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1308 "max bw %d pixel clock %iKHz\n",
1309 max_lane_count, supported_rates[max_clock],
1310 adjusted_mode->crtc_clock);
1311
1312 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1313 * bpc in between. */
1314 bpp = pipe_config->pipe_bpp;
1315 if (is_edp(intel_dp)) {
1316 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
1317 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1318 dev_priv->vbt.edp_bpp);
1319 bpp = dev_priv->vbt.edp_bpp;
1320 }
1321
1322 /*
1323 * Use the maximum clock and number of lanes the eDP panel
1324 * advertizes being capable of. The panels are generally
1325 * designed to support only a single clock and lane
1326 * configuration, and typically these values correspond to the
1327 * native resolution of the panel.
1328 */
1329 min_lane_count = max_lane_count;
1330 min_clock = max_clock;
1331 }
1332
1333 for (; bpp >= 6*3; bpp -= 2*3) {
1334 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1335 bpp);
1336
1337 for (clock = min_clock; clock <= max_clock; clock++) {
1338 for (lane_count = min_lane_count;
1339 lane_count <= max_lane_count;
1340 lane_count <<= 1) {
1341
1342 link_clock = supported_rates[clock];
1343 link_avail = intel_dp_max_data_rate(link_clock,
1344 lane_count);
1345
1346 if (mode_rate <= link_avail) {
1347 goto found;
1348 }
1349 }
1350 }
1351 }
1352
1353 return false;
1354
1355 found:
1356 if (intel_dp->color_range_auto) {
1357 /*
1358 * See:
1359 * CEA-861-E - 5.1 Default Encoding Parameters
1360 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1361 */
1362 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
1363 intel_dp->color_range = DP_COLOR_RANGE_16_235;
1364 else
1365 intel_dp->color_range = 0;
1366 }
1367
1368 if (intel_dp->color_range)
1369 pipe_config->limited_color_range = true;
1370
1371 intel_dp->lane_count = lane_count;
1372
1373 intel_dp->link_bw =
1374 drm_dp_link_rate_to_bw_code(supported_rates[clock]);
1375
1376 if (INTEL_INFO(dev)->gen >= 9 && intel_dp->supported_rates[0]) {
1377 intel_dp->rate_select =
1378 rate_to_index(supported_rates[clock], sink_rates);
1379 intel_dp->link_bw = 0;
1380 }
1381
1382 pipe_config->pipe_bpp = bpp;
1383 pipe_config->port_clock = supported_rates[clock];
1384
1385 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
1386 intel_dp->link_bw, intel_dp->lane_count,
1387 pipe_config->port_clock, bpp);
1388 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1389 mode_rate, link_avail);
1390
1391 intel_link_compute_m_n(bpp, lane_count,
1392 adjusted_mode->crtc_clock,
1393 pipe_config->port_clock,
1394 &pipe_config->dp_m_n);
1395
1396 if (intel_connector->panel.downclock_mode != NULL &&
1397 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1398 pipe_config->has_drrs = true;
1399 intel_link_compute_m_n(bpp, lane_count,
1400 intel_connector->panel.downclock_mode->clock,
1401 pipe_config->port_clock,
1402 &pipe_config->dp_m2_n2);
1403 }
1404
1405 if (IS_SKYLAKE(dev) && is_edp(intel_dp))
1406 skl_edp_set_pll_config(pipe_config, supported_rates[clock]);
1407 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1408 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
1409 else
1410 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
1411
1412 return true;
1413 }
1414
1415 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1416 {
1417 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1418 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1419 struct drm_device *dev = crtc->base.dev;
1420 struct drm_i915_private *dev_priv = dev->dev_private;
1421 u32 dpa_ctl;
1422
1423 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n",
1424 crtc->config->port_clock);
1425 dpa_ctl = I915_READ(DP_A);
1426 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1427
1428 if (crtc->config->port_clock == 162000) {
1429 /* For a long time we've carried around a ILK-DevA w/a for the
1430 * 160MHz clock. If we're really unlucky, it's still required.
1431 */
1432 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1433 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1434 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1435 } else {
1436 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1437 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1438 }
1439
1440 I915_WRITE(DP_A, dpa_ctl);
1441
1442 POSTING_READ(DP_A);
1443 udelay(500);
1444 }
1445
1446 static void intel_dp_prepare(struct intel_encoder *encoder)
1447 {
1448 struct drm_device *dev = encoder->base.dev;
1449 struct drm_i915_private *dev_priv = dev->dev_private;
1450 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1451 enum port port = dp_to_dig_port(intel_dp)->port;
1452 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1453 struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1454
1455 /*
1456 * There are four kinds of DP registers:
1457 *
1458 * IBX PCH
1459 * SNB CPU
1460 * IVB CPU
1461 * CPT PCH
1462 *
1463 * IBX PCH and CPU are the same for almost everything,
1464 * except that the CPU DP PLL is configured in this
1465 * register
1466 *
1467 * CPT PCH is quite different, having many bits moved
1468 * to the TRANS_DP_CTL register instead. That
1469 * configuration happens (oddly) in ironlake_pch_enable
1470 */
1471
1472 /* Preserve the BIOS-computed detected bit. This is
1473 * supposed to be read-only.
1474 */
1475 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1476
1477 /* Handle DP bits in common between all three register formats */
1478 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1479 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1480
1481 if (crtc->config->has_audio)
1482 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1483
1484 /* Split out the IBX/CPU vs CPT settings */
1485
1486 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1487 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1488 intel_dp->DP |= DP_SYNC_HS_HIGH;
1489 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1490 intel_dp->DP |= DP_SYNC_VS_HIGH;
1491 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1492
1493 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1494 intel_dp->DP |= DP_ENHANCED_FRAMING;
1495
1496 intel_dp->DP |= crtc->pipe << 29;
1497 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1498 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1499 intel_dp->DP |= intel_dp->color_range;
1500
1501 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1502 intel_dp->DP |= DP_SYNC_HS_HIGH;
1503 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1504 intel_dp->DP |= DP_SYNC_VS_HIGH;
1505 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1506
1507 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1508 intel_dp->DP |= DP_ENHANCED_FRAMING;
1509
1510 if (!IS_CHERRYVIEW(dev)) {
1511 if (crtc->pipe == 1)
1512 intel_dp->DP |= DP_PIPEB_SELECT;
1513 } else {
1514 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1515 }
1516 } else {
1517 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1518 }
1519 }
1520
1521 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1522 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1523
1524 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1525 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1526
1527 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1528 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1529
1530 static void wait_panel_status(struct intel_dp *intel_dp,
1531 u32 mask,
1532 u32 value)
1533 {
1534 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1535 struct drm_i915_private *dev_priv = dev->dev_private;
1536 u32 pp_stat_reg, pp_ctrl_reg;
1537
1538 lockdep_assert_held(&dev_priv->pps_mutex);
1539
1540 pp_stat_reg = _pp_stat_reg(intel_dp);
1541 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1542
1543 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1544 mask, value,
1545 I915_READ(pp_stat_reg),
1546 I915_READ(pp_ctrl_reg));
1547
1548 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1549 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1550 I915_READ(pp_stat_reg),
1551 I915_READ(pp_ctrl_reg));
1552 }
1553
1554 DRM_DEBUG_KMS("Wait complete\n");
1555 }
1556
1557 static void wait_panel_on(struct intel_dp *intel_dp)
1558 {
1559 DRM_DEBUG_KMS("Wait for panel power on\n");
1560 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1561 }
1562
1563 static void wait_panel_off(struct intel_dp *intel_dp)
1564 {
1565 DRM_DEBUG_KMS("Wait for panel power off time\n");
1566 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1567 }
1568
1569 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1570 {
1571 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1572
1573 /* When we disable the VDD override bit last we have to do the manual
1574 * wait. */
1575 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1576 intel_dp->panel_power_cycle_delay);
1577
1578 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1579 }
1580
1581 static void wait_backlight_on(struct intel_dp *intel_dp)
1582 {
1583 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1584 intel_dp->backlight_on_delay);
1585 }
1586
1587 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1588 {
1589 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1590 intel_dp->backlight_off_delay);
1591 }
1592
1593 /* Read the current pp_control value, unlocking the register if it
1594 * is locked
1595 */
1596
1597 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1598 {
1599 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1600 struct drm_i915_private *dev_priv = dev->dev_private;
1601 u32 control;
1602
1603 lockdep_assert_held(&dev_priv->pps_mutex);
1604
1605 control = I915_READ(_pp_ctrl_reg(intel_dp));
1606 control &= ~PANEL_UNLOCK_MASK;
1607 control |= PANEL_UNLOCK_REGS;
1608 return control;
1609 }
1610
1611 /*
1612 * Must be paired with edp_panel_vdd_off().
1613 * Must hold pps_mutex around the whole on/off sequence.
1614 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1615 */
1616 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1617 {
1618 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1619 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1620 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1621 struct drm_i915_private *dev_priv = dev->dev_private;
1622 enum intel_display_power_domain power_domain;
1623 u32 pp;
1624 u32 pp_stat_reg, pp_ctrl_reg;
1625 bool need_to_disable = !intel_dp->want_panel_vdd;
1626
1627 lockdep_assert_held(&dev_priv->pps_mutex);
1628
1629 if (!is_edp(intel_dp))
1630 return false;
1631
1632 cancel_delayed_work(&intel_dp->panel_vdd_work);
1633 intel_dp->want_panel_vdd = true;
1634
1635 if (edp_have_panel_vdd(intel_dp))
1636 return need_to_disable;
1637
1638 power_domain = intel_display_port_power_domain(intel_encoder);
1639 intel_display_power_get(dev_priv, power_domain);
1640
1641 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1642 port_name(intel_dig_port->port));
1643
1644 if (!edp_have_panel_power(intel_dp))
1645 wait_panel_power_cycle(intel_dp);
1646
1647 pp = ironlake_get_pp_control(intel_dp);
1648 pp |= EDP_FORCE_VDD;
1649
1650 pp_stat_reg = _pp_stat_reg(intel_dp);
1651 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1652
1653 I915_WRITE(pp_ctrl_reg, pp);
1654 POSTING_READ(pp_ctrl_reg);
1655 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1656 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1657 /*
1658 * If the panel wasn't on, delay before accessing aux channel
1659 */
1660 if (!edp_have_panel_power(intel_dp)) {
1661 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1662 port_name(intel_dig_port->port));
1663 msleep(intel_dp->panel_power_up_delay);
1664 }
1665
1666 return need_to_disable;
1667 }
1668
1669 /*
1670 * Must be paired with intel_edp_panel_vdd_off() or
1671 * intel_edp_panel_off().
1672 * Nested calls to these functions are not allowed since
1673 * we drop the lock. Caller must use some higher level
1674 * locking to prevent nested calls from other threads.
1675 */
1676 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1677 {
1678 bool vdd;
1679
1680 if (!is_edp(intel_dp))
1681 return;
1682
1683 pps_lock(intel_dp);
1684 vdd = edp_panel_vdd_on(intel_dp);
1685 pps_unlock(intel_dp);
1686
1687 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1688 port_name(dp_to_dig_port(intel_dp)->port));
1689 }
1690
1691 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1692 {
1693 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1694 struct drm_i915_private *dev_priv = dev->dev_private;
1695 struct intel_digital_port *intel_dig_port =
1696 dp_to_dig_port(intel_dp);
1697 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1698 enum intel_display_power_domain power_domain;
1699 u32 pp;
1700 u32 pp_stat_reg, pp_ctrl_reg;
1701
1702 lockdep_assert_held(&dev_priv->pps_mutex);
1703
1704 WARN_ON(intel_dp->want_panel_vdd);
1705
1706 if (!edp_have_panel_vdd(intel_dp))
1707 return;
1708
1709 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1710 port_name(intel_dig_port->port));
1711
1712 pp = ironlake_get_pp_control(intel_dp);
1713 pp &= ~EDP_FORCE_VDD;
1714
1715 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1716 pp_stat_reg = _pp_stat_reg(intel_dp);
1717
1718 I915_WRITE(pp_ctrl_reg, pp);
1719 POSTING_READ(pp_ctrl_reg);
1720
1721 /* Make sure sequencer is idle before allowing subsequent activity */
1722 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1723 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1724
1725 if ((pp & POWER_TARGET_ON) == 0)
1726 intel_dp->last_power_cycle = jiffies;
1727
1728 power_domain = intel_display_port_power_domain(intel_encoder);
1729 intel_display_power_put(dev_priv, power_domain);
1730 }
1731
1732 static void edp_panel_vdd_work(struct work_struct *__work)
1733 {
1734 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1735 struct intel_dp, panel_vdd_work);
1736
1737 pps_lock(intel_dp);
1738 if (!intel_dp->want_panel_vdd)
1739 edp_panel_vdd_off_sync(intel_dp);
1740 pps_unlock(intel_dp);
1741 }
1742
1743 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1744 {
1745 unsigned long delay;
1746
1747 /*
1748 * Queue the timer to fire a long time from now (relative to the power
1749 * down delay) to keep the panel power up across a sequence of
1750 * operations.
1751 */
1752 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1753 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1754 }
1755
1756 /*
1757 * Must be paired with edp_panel_vdd_on().
1758 * Must hold pps_mutex around the whole on/off sequence.
1759 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1760 */
1761 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1762 {
1763 struct drm_i915_private *dev_priv =
1764 intel_dp_to_dev(intel_dp)->dev_private;
1765
1766 lockdep_assert_held(&dev_priv->pps_mutex);
1767
1768 if (!is_edp(intel_dp))
1769 return;
1770
1771 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
1772 port_name(dp_to_dig_port(intel_dp)->port));
1773
1774 intel_dp->want_panel_vdd = false;
1775
1776 if (sync)
1777 edp_panel_vdd_off_sync(intel_dp);
1778 else
1779 edp_panel_vdd_schedule_off(intel_dp);
1780 }
1781
1782 static void edp_panel_on(struct intel_dp *intel_dp)
1783 {
1784 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1785 struct drm_i915_private *dev_priv = dev->dev_private;
1786 u32 pp;
1787 u32 pp_ctrl_reg;
1788
1789 lockdep_assert_held(&dev_priv->pps_mutex);
1790
1791 if (!is_edp(intel_dp))
1792 return;
1793
1794 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
1795 port_name(dp_to_dig_port(intel_dp)->port));
1796
1797 if (WARN(edp_have_panel_power(intel_dp),
1798 "eDP port %c panel power already on\n",
1799 port_name(dp_to_dig_port(intel_dp)->port)))
1800 return;
1801
1802 wait_panel_power_cycle(intel_dp);
1803
1804 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1805 pp = ironlake_get_pp_control(intel_dp);
1806 if (IS_GEN5(dev)) {
1807 /* ILK workaround: disable reset around power sequence */
1808 pp &= ~PANEL_POWER_RESET;
1809 I915_WRITE(pp_ctrl_reg, pp);
1810 POSTING_READ(pp_ctrl_reg);
1811 }
1812
1813 pp |= POWER_TARGET_ON;
1814 if (!IS_GEN5(dev))
1815 pp |= PANEL_POWER_RESET;
1816
1817 I915_WRITE(pp_ctrl_reg, pp);
1818 POSTING_READ(pp_ctrl_reg);
1819
1820 wait_panel_on(intel_dp);
1821 intel_dp->last_power_on = jiffies;
1822
1823 if (IS_GEN5(dev)) {
1824 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1825 I915_WRITE(pp_ctrl_reg, pp);
1826 POSTING_READ(pp_ctrl_reg);
1827 }
1828 }
1829
1830 void intel_edp_panel_on(struct intel_dp *intel_dp)
1831 {
1832 if (!is_edp(intel_dp))
1833 return;
1834
1835 pps_lock(intel_dp);
1836 edp_panel_on(intel_dp);
1837 pps_unlock(intel_dp);
1838 }
1839
1840
1841 static void edp_panel_off(struct intel_dp *intel_dp)
1842 {
1843 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1844 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1845 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1846 struct drm_i915_private *dev_priv = dev->dev_private;
1847 enum intel_display_power_domain power_domain;
1848 u32 pp;
1849 u32 pp_ctrl_reg;
1850
1851 lockdep_assert_held(&dev_priv->pps_mutex);
1852
1853 if (!is_edp(intel_dp))
1854 return;
1855
1856 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
1857 port_name(dp_to_dig_port(intel_dp)->port));
1858
1859 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
1860 port_name(dp_to_dig_port(intel_dp)->port));
1861
1862 pp = ironlake_get_pp_control(intel_dp);
1863 /* We need to switch off panel power _and_ force vdd, for otherwise some
1864 * panels get very unhappy and cease to work. */
1865 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1866 EDP_BLC_ENABLE);
1867
1868 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1869
1870 intel_dp->want_panel_vdd = false;
1871
1872 I915_WRITE(pp_ctrl_reg, pp);
1873 POSTING_READ(pp_ctrl_reg);
1874
1875 intel_dp->last_power_cycle = jiffies;
1876 wait_panel_off(intel_dp);
1877
1878 /* We got a reference when we enabled the VDD. */
1879 power_domain = intel_display_port_power_domain(intel_encoder);
1880 intel_display_power_put(dev_priv, power_domain);
1881 }
1882
1883 void intel_edp_panel_off(struct intel_dp *intel_dp)
1884 {
1885 if (!is_edp(intel_dp))
1886 return;
1887
1888 pps_lock(intel_dp);
1889 edp_panel_off(intel_dp);
1890 pps_unlock(intel_dp);
1891 }
1892
1893 /* Enable backlight in the panel power control. */
1894 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
1895 {
1896 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1897 struct drm_device *dev = intel_dig_port->base.base.dev;
1898 struct drm_i915_private *dev_priv = dev->dev_private;
1899 u32 pp;
1900 u32 pp_ctrl_reg;
1901
1902 /*
1903 * If we enable the backlight right away following a panel power
1904 * on, we may see slight flicker as the panel syncs with the eDP
1905 * link. So delay a bit to make sure the image is solid before
1906 * allowing it to appear.
1907 */
1908 wait_backlight_on(intel_dp);
1909
1910 pps_lock(intel_dp);
1911
1912 pp = ironlake_get_pp_control(intel_dp);
1913 pp |= EDP_BLC_ENABLE;
1914
1915 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1916
1917 I915_WRITE(pp_ctrl_reg, pp);
1918 POSTING_READ(pp_ctrl_reg);
1919
1920 pps_unlock(intel_dp);
1921 }
1922
1923 /* Enable backlight PWM and backlight PP control. */
1924 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1925 {
1926 if (!is_edp(intel_dp))
1927 return;
1928
1929 DRM_DEBUG_KMS("\n");
1930
1931 intel_panel_enable_backlight(intel_dp->attached_connector);
1932 _intel_edp_backlight_on(intel_dp);
1933 }
1934
1935 /* Disable backlight in the panel power control. */
1936 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
1937 {
1938 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1939 struct drm_i915_private *dev_priv = dev->dev_private;
1940 u32 pp;
1941 u32 pp_ctrl_reg;
1942
1943 if (!is_edp(intel_dp))
1944 return;
1945
1946 pps_lock(intel_dp);
1947
1948 pp = ironlake_get_pp_control(intel_dp);
1949 pp &= ~EDP_BLC_ENABLE;
1950
1951 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1952
1953 I915_WRITE(pp_ctrl_reg, pp);
1954 POSTING_READ(pp_ctrl_reg);
1955
1956 pps_unlock(intel_dp);
1957
1958 intel_dp->last_backlight_off = jiffies;
1959 edp_wait_backlight_off(intel_dp);
1960 }
1961
1962 /* Disable backlight PP control and backlight PWM. */
1963 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1964 {
1965 if (!is_edp(intel_dp))
1966 return;
1967
1968 DRM_DEBUG_KMS("\n");
1969
1970 _intel_edp_backlight_off(intel_dp);
1971 intel_panel_disable_backlight(intel_dp->attached_connector);
1972 }
1973
1974 /*
1975 * Hook for controlling the panel power control backlight through the bl_power
1976 * sysfs attribute. Take care to handle multiple calls.
1977 */
1978 static void intel_edp_backlight_power(struct intel_connector *connector,
1979 bool enable)
1980 {
1981 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
1982 bool is_enabled;
1983
1984 pps_lock(intel_dp);
1985 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
1986 pps_unlock(intel_dp);
1987
1988 if (is_enabled == enable)
1989 return;
1990
1991 DRM_DEBUG_KMS("panel power control backlight %s\n",
1992 enable ? "enable" : "disable");
1993
1994 if (enable)
1995 _intel_edp_backlight_on(intel_dp);
1996 else
1997 _intel_edp_backlight_off(intel_dp);
1998 }
1999
2000 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2001 {
2002 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2003 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2004 struct drm_device *dev = crtc->dev;
2005 struct drm_i915_private *dev_priv = dev->dev_private;
2006 u32 dpa_ctl;
2007
2008 assert_pipe_disabled(dev_priv,
2009 to_intel_crtc(crtc)->pipe);
2010
2011 DRM_DEBUG_KMS("\n");
2012 dpa_ctl = I915_READ(DP_A);
2013 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
2014 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
2015
2016 /* We don't adjust intel_dp->DP while tearing down the link, to
2017 * facilitate link retraining (e.g. after hotplug). Hence clear all
2018 * enable bits here to ensure that we don't enable too much. */
2019 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
2020 intel_dp->DP |= DP_PLL_ENABLE;
2021 I915_WRITE(DP_A, intel_dp->DP);
2022 POSTING_READ(DP_A);
2023 udelay(200);
2024 }
2025
2026 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2027 {
2028 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2029 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2030 struct drm_device *dev = crtc->dev;
2031 struct drm_i915_private *dev_priv = dev->dev_private;
2032 u32 dpa_ctl;
2033
2034 assert_pipe_disabled(dev_priv,
2035 to_intel_crtc(crtc)->pipe);
2036
2037 dpa_ctl = I915_READ(DP_A);
2038 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
2039 "dp pll off, should be on\n");
2040 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
2041
2042 /* We can't rely on the value tracked for the DP register in
2043 * intel_dp->DP because link_down must not change that (otherwise link
2044 * re-training will fail. */
2045 dpa_ctl &= ~DP_PLL_ENABLE;
2046 I915_WRITE(DP_A, dpa_ctl);
2047 POSTING_READ(DP_A);
2048 udelay(200);
2049 }
2050
2051 /* If the sink supports it, try to set the power state appropriately */
2052 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2053 {
2054 int ret, i;
2055
2056 /* Should have a valid DPCD by this point */
2057 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2058 return;
2059
2060 if (mode != DRM_MODE_DPMS_ON) {
2061 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2062 DP_SET_POWER_D3);
2063 } else {
2064 /*
2065 * When turning on, we need to retry for 1ms to give the sink
2066 * time to wake up.
2067 */
2068 for (i = 0; i < 3; i++) {
2069 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2070 DP_SET_POWER_D0);
2071 if (ret == 1)
2072 break;
2073 msleep(1);
2074 }
2075 }
2076
2077 if (ret != 1)
2078 DRM_DEBUG_KMS("failed to %s sink power state\n",
2079 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2080 }
2081
2082 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2083 enum pipe *pipe)
2084 {
2085 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2086 enum port port = dp_to_dig_port(intel_dp)->port;
2087 struct drm_device *dev = encoder->base.dev;
2088 struct drm_i915_private *dev_priv = dev->dev_private;
2089 enum intel_display_power_domain power_domain;
2090 u32 tmp;
2091
2092 power_domain = intel_display_port_power_domain(encoder);
2093 if (!intel_display_power_is_enabled(dev_priv, power_domain))
2094 return false;
2095
2096 tmp = I915_READ(intel_dp->output_reg);
2097
2098 if (!(tmp & DP_PORT_EN))
2099 return false;
2100
2101 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
2102 *pipe = PORT_TO_PIPE_CPT(tmp);
2103 } else if (IS_CHERRYVIEW(dev)) {
2104 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2105 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
2106 *pipe = PORT_TO_PIPE(tmp);
2107 } else {
2108 u32 trans_sel;
2109 u32 trans_dp;
2110 int i;
2111
2112 switch (intel_dp->output_reg) {
2113 case PCH_DP_B:
2114 trans_sel = TRANS_DP_PORT_SEL_B;
2115 break;
2116 case PCH_DP_C:
2117 trans_sel = TRANS_DP_PORT_SEL_C;
2118 break;
2119 case PCH_DP_D:
2120 trans_sel = TRANS_DP_PORT_SEL_D;
2121 break;
2122 default:
2123 return true;
2124 }
2125
2126 for_each_pipe(dev_priv, i) {
2127 trans_dp = I915_READ(TRANS_DP_CTL(i));
2128 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
2129 *pipe = i;
2130 return true;
2131 }
2132 }
2133
2134 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2135 intel_dp->output_reg);
2136 }
2137
2138 return true;
2139 }
2140
2141 static void intel_dp_get_config(struct intel_encoder *encoder,
2142 struct intel_crtc_state *pipe_config)
2143 {
2144 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2145 u32 tmp, flags = 0;
2146 struct drm_device *dev = encoder->base.dev;
2147 struct drm_i915_private *dev_priv = dev->dev_private;
2148 enum port port = dp_to_dig_port(intel_dp)->port;
2149 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2150 int dotclock;
2151
2152 tmp = I915_READ(intel_dp->output_reg);
2153 if (tmp & DP_AUDIO_OUTPUT_ENABLE)
2154 pipe_config->has_audio = true;
2155
2156 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
2157 if (tmp & DP_SYNC_HS_HIGH)
2158 flags |= DRM_MODE_FLAG_PHSYNC;
2159 else
2160 flags |= DRM_MODE_FLAG_NHSYNC;
2161
2162 if (tmp & DP_SYNC_VS_HIGH)
2163 flags |= DRM_MODE_FLAG_PVSYNC;
2164 else
2165 flags |= DRM_MODE_FLAG_NVSYNC;
2166 } else {
2167 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2168 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2169 flags |= DRM_MODE_FLAG_PHSYNC;
2170 else
2171 flags |= DRM_MODE_FLAG_NHSYNC;
2172
2173 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2174 flags |= DRM_MODE_FLAG_PVSYNC;
2175 else
2176 flags |= DRM_MODE_FLAG_NVSYNC;
2177 }
2178
2179 pipe_config->base.adjusted_mode.flags |= flags;
2180
2181 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2182 tmp & DP_COLOR_RANGE_16_235)
2183 pipe_config->limited_color_range = true;
2184
2185 pipe_config->has_dp_encoder = true;
2186
2187 intel_dp_get_m_n(crtc, pipe_config);
2188
2189 if (port == PORT_A) {
2190 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
2191 pipe_config->port_clock = 162000;
2192 else
2193 pipe_config->port_clock = 270000;
2194 }
2195
2196 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
2197 &pipe_config->dp_m_n);
2198
2199 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
2200 ironlake_check_encoder_dotclock(pipe_config, dotclock);
2201
2202 pipe_config->base.adjusted_mode.crtc_clock = dotclock;
2203
2204 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
2205 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2206 /*
2207 * This is a big fat ugly hack.
2208 *
2209 * Some machines in UEFI boot mode provide us a VBT that has 18
2210 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2211 * unknown we fail to light up. Yet the same BIOS boots up with
2212 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2213 * max, not what it tells us to use.
2214 *
2215 * Note: This will still be broken if the eDP panel is not lit
2216 * up by the BIOS, and thus we can't get the mode at module
2217 * load.
2218 */
2219 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2220 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2221 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2222 }
2223 }
2224
2225 static void intel_disable_dp(struct intel_encoder *encoder)
2226 {
2227 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2228 struct drm_device *dev = encoder->base.dev;
2229 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2230
2231 if (crtc->config->has_audio)
2232 intel_audio_codec_disable(encoder);
2233
2234 if (HAS_PSR(dev) && !HAS_DDI(dev))
2235 intel_psr_disable(intel_dp);
2236
2237 /* Make sure the panel is off before trying to change the mode. But also
2238 * ensure that we have vdd while we switch off the panel. */
2239 intel_edp_panel_vdd_on(intel_dp);
2240 intel_edp_backlight_off(intel_dp);
2241 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2242 intel_edp_panel_off(intel_dp);
2243
2244 /* disable the port before the pipe on g4x */
2245 if (INTEL_INFO(dev)->gen < 5)
2246 intel_dp_link_down(intel_dp);
2247 }
2248
2249 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2250 {
2251 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2252 enum port port = dp_to_dig_port(intel_dp)->port;
2253
2254 intel_dp_link_down(intel_dp);
2255 if (port == PORT_A)
2256 ironlake_edp_pll_off(intel_dp);
2257 }
2258
2259 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2260 {
2261 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2262
2263 intel_dp_link_down(intel_dp);
2264 }
2265
2266 static void chv_post_disable_dp(struct intel_encoder *encoder)
2267 {
2268 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2269 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2270 struct drm_device *dev = encoder->base.dev;
2271 struct drm_i915_private *dev_priv = dev->dev_private;
2272 struct intel_crtc *intel_crtc =
2273 to_intel_crtc(encoder->base.crtc);
2274 enum dpio_channel ch = vlv_dport_to_channel(dport);
2275 enum pipe pipe = intel_crtc->pipe;
2276 u32 val;
2277
2278 intel_dp_link_down(intel_dp);
2279
2280 mutex_lock(&dev_priv->dpio_lock);
2281
2282 /* Propagate soft reset to data lane reset */
2283 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2284 val |= CHV_PCS_REQ_SOFTRESET_EN;
2285 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2286
2287 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2288 val |= CHV_PCS_REQ_SOFTRESET_EN;
2289 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2290
2291 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2292 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2293 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2294
2295 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2296 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2297 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2298
2299 mutex_unlock(&dev_priv->dpio_lock);
2300 }
2301
2302 static void
2303 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2304 uint32_t *DP,
2305 uint8_t dp_train_pat)
2306 {
2307 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2308 struct drm_device *dev = intel_dig_port->base.base.dev;
2309 struct drm_i915_private *dev_priv = dev->dev_private;
2310 enum port port = intel_dig_port->port;
2311
2312 if (HAS_DDI(dev)) {
2313 uint32_t temp = I915_READ(DP_TP_CTL(port));
2314
2315 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2316 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2317 else
2318 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2319
2320 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2321 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2322 case DP_TRAINING_PATTERN_DISABLE:
2323 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2324
2325 break;
2326 case DP_TRAINING_PATTERN_1:
2327 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2328 break;
2329 case DP_TRAINING_PATTERN_2:
2330 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2331 break;
2332 case DP_TRAINING_PATTERN_3:
2333 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2334 break;
2335 }
2336 I915_WRITE(DP_TP_CTL(port), temp);
2337
2338 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2339 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2340
2341 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2342 case DP_TRAINING_PATTERN_DISABLE:
2343 *DP |= DP_LINK_TRAIN_OFF_CPT;
2344 break;
2345 case DP_TRAINING_PATTERN_1:
2346 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2347 break;
2348 case DP_TRAINING_PATTERN_2:
2349 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2350 break;
2351 case DP_TRAINING_PATTERN_3:
2352 DRM_ERROR("DP training pattern 3 not supported\n");
2353 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2354 break;
2355 }
2356
2357 } else {
2358 if (IS_CHERRYVIEW(dev))
2359 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2360 else
2361 *DP &= ~DP_LINK_TRAIN_MASK;
2362
2363 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2364 case DP_TRAINING_PATTERN_DISABLE:
2365 *DP |= DP_LINK_TRAIN_OFF;
2366 break;
2367 case DP_TRAINING_PATTERN_1:
2368 *DP |= DP_LINK_TRAIN_PAT_1;
2369 break;
2370 case DP_TRAINING_PATTERN_2:
2371 *DP |= DP_LINK_TRAIN_PAT_2;
2372 break;
2373 case DP_TRAINING_PATTERN_3:
2374 if (IS_CHERRYVIEW(dev)) {
2375 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2376 } else {
2377 DRM_ERROR("DP training pattern 3 not supported\n");
2378 *DP |= DP_LINK_TRAIN_PAT_2;
2379 }
2380 break;
2381 }
2382 }
2383 }
2384
2385 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2386 {
2387 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2388 struct drm_i915_private *dev_priv = dev->dev_private;
2389
2390 /* enable with pattern 1 (as per spec) */
2391 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2392 DP_TRAINING_PATTERN_1);
2393
2394 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2395 POSTING_READ(intel_dp->output_reg);
2396
2397 /*
2398 * Magic for VLV/CHV. We _must_ first set up the register
2399 * without actually enabling the port, and then do another
2400 * write to enable the port. Otherwise link training will
2401 * fail when the power sequencer is freshly used for this port.
2402 */
2403 intel_dp->DP |= DP_PORT_EN;
2404
2405 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2406 POSTING_READ(intel_dp->output_reg);
2407 }
2408
2409 static void intel_enable_dp(struct intel_encoder *encoder)
2410 {
2411 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2412 struct drm_device *dev = encoder->base.dev;
2413 struct drm_i915_private *dev_priv = dev->dev_private;
2414 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2415 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2416
2417 if (WARN_ON(dp_reg & DP_PORT_EN))
2418 return;
2419
2420 pps_lock(intel_dp);
2421
2422 if (IS_VALLEYVIEW(dev))
2423 vlv_init_panel_power_sequencer(intel_dp);
2424
2425 intel_dp_enable_port(intel_dp);
2426
2427 edp_panel_vdd_on(intel_dp);
2428 edp_panel_on(intel_dp);
2429 edp_panel_vdd_off(intel_dp, true);
2430
2431 pps_unlock(intel_dp);
2432
2433 if (IS_VALLEYVIEW(dev))
2434 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp));
2435
2436 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2437 intel_dp_start_link_train(intel_dp);
2438 intel_dp_complete_link_train(intel_dp);
2439 intel_dp_stop_link_train(intel_dp);
2440
2441 if (crtc->config->has_audio) {
2442 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2443 pipe_name(crtc->pipe));
2444 intel_audio_codec_enable(encoder);
2445 }
2446 }
2447
2448 static void g4x_enable_dp(struct intel_encoder *encoder)
2449 {
2450 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2451
2452 intel_enable_dp(encoder);
2453 intel_edp_backlight_on(intel_dp);
2454 }
2455
2456 static void vlv_enable_dp(struct intel_encoder *encoder)
2457 {
2458 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2459
2460 intel_edp_backlight_on(intel_dp);
2461 intel_psr_enable(intel_dp);
2462 }
2463
2464 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2465 {
2466 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2467 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2468
2469 intel_dp_prepare(encoder);
2470
2471 /* Only ilk+ has port A */
2472 if (dport->port == PORT_A) {
2473 ironlake_set_pll_cpu_edp(intel_dp);
2474 ironlake_edp_pll_on(intel_dp);
2475 }
2476 }
2477
2478 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2479 {
2480 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2481 struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2482 enum pipe pipe = intel_dp->pps_pipe;
2483 int pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2484
2485 edp_panel_vdd_off_sync(intel_dp);
2486
2487 /*
2488 * VLV seems to get confused when multiple power seqeuencers
2489 * have the same port selected (even if only one has power/vdd
2490 * enabled). The failure manifests as vlv_wait_port_ready() failing
2491 * CHV on the other hand doesn't seem to mind having the same port
2492 * selected in multiple power seqeuencers, but let's clear the
2493 * port select always when logically disconnecting a power sequencer
2494 * from a port.
2495 */
2496 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2497 pipe_name(pipe), port_name(intel_dig_port->port));
2498 I915_WRITE(pp_on_reg, 0);
2499 POSTING_READ(pp_on_reg);
2500
2501 intel_dp->pps_pipe = INVALID_PIPE;
2502 }
2503
2504 static void vlv_steal_power_sequencer(struct drm_device *dev,
2505 enum pipe pipe)
2506 {
2507 struct drm_i915_private *dev_priv = dev->dev_private;
2508 struct intel_encoder *encoder;
2509
2510 lockdep_assert_held(&dev_priv->pps_mutex);
2511
2512 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2513 return;
2514
2515 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2516 base.head) {
2517 struct intel_dp *intel_dp;
2518 enum port port;
2519
2520 if (encoder->type != INTEL_OUTPUT_EDP)
2521 continue;
2522
2523 intel_dp = enc_to_intel_dp(&encoder->base);
2524 port = dp_to_dig_port(intel_dp)->port;
2525
2526 if (intel_dp->pps_pipe != pipe)
2527 continue;
2528
2529 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2530 pipe_name(pipe), port_name(port));
2531
2532 WARN(encoder->connectors_active,
2533 "stealing pipe %c power sequencer from active eDP port %c\n",
2534 pipe_name(pipe), port_name(port));
2535
2536 /* make sure vdd is off before we steal it */
2537 vlv_detach_power_sequencer(intel_dp);
2538 }
2539 }
2540
2541 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2542 {
2543 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2544 struct intel_encoder *encoder = &intel_dig_port->base;
2545 struct drm_device *dev = encoder->base.dev;
2546 struct drm_i915_private *dev_priv = dev->dev_private;
2547 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2548
2549 lockdep_assert_held(&dev_priv->pps_mutex);
2550
2551 if (!is_edp(intel_dp))
2552 return;
2553
2554 if (intel_dp->pps_pipe == crtc->pipe)
2555 return;
2556
2557 /*
2558 * If another power sequencer was being used on this
2559 * port previously make sure to turn off vdd there while
2560 * we still have control of it.
2561 */
2562 if (intel_dp->pps_pipe != INVALID_PIPE)
2563 vlv_detach_power_sequencer(intel_dp);
2564
2565 /*
2566 * We may be stealing the power
2567 * sequencer from another port.
2568 */
2569 vlv_steal_power_sequencer(dev, crtc->pipe);
2570
2571 /* now it's all ours */
2572 intel_dp->pps_pipe = crtc->pipe;
2573
2574 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2575 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2576
2577 /* init power sequencer on this pipe and port */
2578 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2579 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2580 }
2581
2582 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2583 {
2584 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2585 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2586 struct drm_device *dev = encoder->base.dev;
2587 struct drm_i915_private *dev_priv = dev->dev_private;
2588 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2589 enum dpio_channel port = vlv_dport_to_channel(dport);
2590 int pipe = intel_crtc->pipe;
2591 u32 val;
2592
2593 mutex_lock(&dev_priv->dpio_lock);
2594
2595 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2596 val = 0;
2597 if (pipe)
2598 val |= (1<<21);
2599 else
2600 val &= ~(1<<21);
2601 val |= 0x001000c4;
2602 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2603 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2604 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2605
2606 mutex_unlock(&dev_priv->dpio_lock);
2607
2608 intel_enable_dp(encoder);
2609 }
2610
2611 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2612 {
2613 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2614 struct drm_device *dev = encoder->base.dev;
2615 struct drm_i915_private *dev_priv = dev->dev_private;
2616 struct intel_crtc *intel_crtc =
2617 to_intel_crtc(encoder->base.crtc);
2618 enum dpio_channel port = vlv_dport_to_channel(dport);
2619 int pipe = intel_crtc->pipe;
2620
2621 intel_dp_prepare(encoder);
2622
2623 /* Program Tx lane resets to default */
2624 mutex_lock(&dev_priv->dpio_lock);
2625 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2626 DPIO_PCS_TX_LANE2_RESET |
2627 DPIO_PCS_TX_LANE1_RESET);
2628 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2629 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2630 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2631 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2632 DPIO_PCS_CLK_SOFT_RESET);
2633
2634 /* Fix up inter-pair skew failure */
2635 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2636 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2637 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2638 mutex_unlock(&dev_priv->dpio_lock);
2639 }
2640
2641 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2642 {
2643 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2644 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2645 struct drm_device *dev = encoder->base.dev;
2646 struct drm_i915_private *dev_priv = dev->dev_private;
2647 struct intel_crtc *intel_crtc =
2648 to_intel_crtc(encoder->base.crtc);
2649 enum dpio_channel ch = vlv_dport_to_channel(dport);
2650 int pipe = intel_crtc->pipe;
2651 int data, i;
2652 u32 val;
2653
2654 mutex_lock(&dev_priv->dpio_lock);
2655
2656 /* allow hardware to manage TX FIFO reset source */
2657 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2658 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2659 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2660
2661 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2662 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2663 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2664
2665 /* Deassert soft data lane reset*/
2666 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2667 val |= CHV_PCS_REQ_SOFTRESET_EN;
2668 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2669
2670 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2671 val |= CHV_PCS_REQ_SOFTRESET_EN;
2672 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2673
2674 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2675 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2676 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2677
2678 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2679 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2680 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2681
2682 /* Program Tx lane latency optimal setting*/
2683 for (i = 0; i < 4; i++) {
2684 /* Set the latency optimal bit */
2685 data = (i == 1) ? 0x0 : 0x6;
2686 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2687 data << DPIO_FRC_LATENCY_SHFIT);
2688
2689 /* Set the upar bit */
2690 data = (i == 1) ? 0x0 : 0x1;
2691 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2692 data << DPIO_UPAR_SHIFT);
2693 }
2694
2695 /* Data lane stagger programming */
2696 /* FIXME: Fix up value only after power analysis */
2697
2698 mutex_unlock(&dev_priv->dpio_lock);
2699
2700 intel_enable_dp(encoder);
2701 }
2702
2703 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2704 {
2705 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2706 struct drm_device *dev = encoder->base.dev;
2707 struct drm_i915_private *dev_priv = dev->dev_private;
2708 struct intel_crtc *intel_crtc =
2709 to_intel_crtc(encoder->base.crtc);
2710 enum dpio_channel ch = vlv_dport_to_channel(dport);
2711 enum pipe pipe = intel_crtc->pipe;
2712 u32 val;
2713
2714 intel_dp_prepare(encoder);
2715
2716 mutex_lock(&dev_priv->dpio_lock);
2717
2718 /* program left/right clock distribution */
2719 if (pipe != PIPE_B) {
2720 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2721 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2722 if (ch == DPIO_CH0)
2723 val |= CHV_BUFLEFTENA1_FORCE;
2724 if (ch == DPIO_CH1)
2725 val |= CHV_BUFRIGHTENA1_FORCE;
2726 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2727 } else {
2728 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2729 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2730 if (ch == DPIO_CH0)
2731 val |= CHV_BUFLEFTENA2_FORCE;
2732 if (ch == DPIO_CH1)
2733 val |= CHV_BUFRIGHTENA2_FORCE;
2734 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2735 }
2736
2737 /* program clock channel usage */
2738 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2739 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2740 if (pipe != PIPE_B)
2741 val &= ~CHV_PCS_USEDCLKCHANNEL;
2742 else
2743 val |= CHV_PCS_USEDCLKCHANNEL;
2744 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2745
2746 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2747 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2748 if (pipe != PIPE_B)
2749 val &= ~CHV_PCS_USEDCLKCHANNEL;
2750 else
2751 val |= CHV_PCS_USEDCLKCHANNEL;
2752 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2753
2754 /*
2755 * This a a bit weird since generally CL
2756 * matches the pipe, but here we need to
2757 * pick the CL based on the port.
2758 */
2759 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2760 if (pipe != PIPE_B)
2761 val &= ~CHV_CMN_USEDCLKCHANNEL;
2762 else
2763 val |= CHV_CMN_USEDCLKCHANNEL;
2764 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2765
2766 mutex_unlock(&dev_priv->dpio_lock);
2767 }
2768
2769 /*
2770 * Native read with retry for link status and receiver capability reads for
2771 * cases where the sink may still be asleep.
2772 *
2773 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2774 * supposed to retry 3 times per the spec.
2775 */
2776 static ssize_t
2777 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2778 void *buffer, size_t size)
2779 {
2780 ssize_t ret;
2781 int i;
2782
2783 /*
2784 * Sometime we just get the same incorrect byte repeated
2785 * over the entire buffer. Doing just one throw away read
2786 * initially seems to "solve" it.
2787 */
2788 drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
2789
2790 for (i = 0; i < 3; i++) {
2791 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2792 if (ret == size)
2793 return ret;
2794 msleep(1);
2795 }
2796
2797 return ret;
2798 }
2799
2800 /*
2801 * Fetch AUX CH registers 0x202 - 0x207 which contain
2802 * link status information
2803 */
2804 static bool
2805 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2806 {
2807 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2808 DP_LANE0_1_STATUS,
2809 link_status,
2810 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2811 }
2812
2813 /* These are source-specific values. */
2814 static uint8_t
2815 intel_dp_voltage_max(struct intel_dp *intel_dp)
2816 {
2817 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2818 struct drm_i915_private *dev_priv = dev->dev_private;
2819 enum port port = dp_to_dig_port(intel_dp)->port;
2820
2821 if (INTEL_INFO(dev)->gen >= 9) {
2822 if (dev_priv->vbt.edp_low_vswing && port == PORT_A)
2823 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2824 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2825 } else if (IS_VALLEYVIEW(dev))
2826 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2827 else if (IS_GEN7(dev) && port == PORT_A)
2828 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2829 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2830 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2831 else
2832 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2833 }
2834
2835 static uint8_t
2836 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2837 {
2838 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2839 enum port port = dp_to_dig_port(intel_dp)->port;
2840
2841 if (INTEL_INFO(dev)->gen >= 9) {
2842 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2843 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2844 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2845 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2846 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2847 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2848 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2849 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2850 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2851 default:
2852 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2853 }
2854 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2855 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2856 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2857 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2858 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2859 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2860 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2861 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2862 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2863 default:
2864 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2865 }
2866 } else if (IS_VALLEYVIEW(dev)) {
2867 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2868 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2869 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2870 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2871 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2872 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2873 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2874 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2875 default:
2876 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2877 }
2878 } else if (IS_GEN7(dev) && port == PORT_A) {
2879 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2880 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2881 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2882 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2883 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2884 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2885 default:
2886 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2887 }
2888 } else {
2889 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2890 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2891 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2892 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2893 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2894 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2895 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2896 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2897 default:
2898 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2899 }
2900 }
2901 }
2902
2903 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2904 {
2905 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2906 struct drm_i915_private *dev_priv = dev->dev_private;
2907 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2908 struct intel_crtc *intel_crtc =
2909 to_intel_crtc(dport->base.base.crtc);
2910 unsigned long demph_reg_value, preemph_reg_value,
2911 uniqtranscale_reg_value;
2912 uint8_t train_set = intel_dp->train_set[0];
2913 enum dpio_channel port = vlv_dport_to_channel(dport);
2914 int pipe = intel_crtc->pipe;
2915
2916 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2917 case DP_TRAIN_PRE_EMPH_LEVEL_0:
2918 preemph_reg_value = 0x0004000;
2919 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2920 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2921 demph_reg_value = 0x2B405555;
2922 uniqtranscale_reg_value = 0x552AB83A;
2923 break;
2924 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2925 demph_reg_value = 0x2B404040;
2926 uniqtranscale_reg_value = 0x5548B83A;
2927 break;
2928 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2929 demph_reg_value = 0x2B245555;
2930 uniqtranscale_reg_value = 0x5560B83A;
2931 break;
2932 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2933 demph_reg_value = 0x2B405555;
2934 uniqtranscale_reg_value = 0x5598DA3A;
2935 break;
2936 default:
2937 return 0;
2938 }
2939 break;
2940 case DP_TRAIN_PRE_EMPH_LEVEL_1:
2941 preemph_reg_value = 0x0002000;
2942 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2943 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2944 demph_reg_value = 0x2B404040;
2945 uniqtranscale_reg_value = 0x5552B83A;
2946 break;
2947 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2948 demph_reg_value = 0x2B404848;
2949 uniqtranscale_reg_value = 0x5580B83A;
2950 break;
2951 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2952 demph_reg_value = 0x2B404040;
2953 uniqtranscale_reg_value = 0x55ADDA3A;
2954 break;
2955 default:
2956 return 0;
2957 }
2958 break;
2959 case DP_TRAIN_PRE_EMPH_LEVEL_2:
2960 preemph_reg_value = 0x0000000;
2961 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2962 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2963 demph_reg_value = 0x2B305555;
2964 uniqtranscale_reg_value = 0x5570B83A;
2965 break;
2966 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2967 demph_reg_value = 0x2B2B4040;
2968 uniqtranscale_reg_value = 0x55ADDA3A;
2969 break;
2970 default:
2971 return 0;
2972 }
2973 break;
2974 case DP_TRAIN_PRE_EMPH_LEVEL_3:
2975 preemph_reg_value = 0x0006000;
2976 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2977 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2978 demph_reg_value = 0x1B405555;
2979 uniqtranscale_reg_value = 0x55ADDA3A;
2980 break;
2981 default:
2982 return 0;
2983 }
2984 break;
2985 default:
2986 return 0;
2987 }
2988
2989 mutex_lock(&dev_priv->dpio_lock);
2990 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2991 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2992 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2993 uniqtranscale_reg_value);
2994 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2995 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2996 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2997 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2998 mutex_unlock(&dev_priv->dpio_lock);
2999
3000 return 0;
3001 }
3002
3003 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
3004 {
3005 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3006 struct drm_i915_private *dev_priv = dev->dev_private;
3007 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3008 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3009 u32 deemph_reg_value, margin_reg_value, val;
3010 uint8_t train_set = intel_dp->train_set[0];
3011 enum dpio_channel ch = vlv_dport_to_channel(dport);
3012 enum pipe pipe = intel_crtc->pipe;
3013 int i;
3014
3015 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3016 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3017 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3018 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3019 deemph_reg_value = 128;
3020 margin_reg_value = 52;
3021 break;
3022 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3023 deemph_reg_value = 128;
3024 margin_reg_value = 77;
3025 break;
3026 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3027 deemph_reg_value = 128;
3028 margin_reg_value = 102;
3029 break;
3030 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3031 deemph_reg_value = 128;
3032 margin_reg_value = 154;
3033 /* FIXME extra to set for 1200 */
3034 break;
3035 default:
3036 return 0;
3037 }
3038 break;
3039 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3040 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3041 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3042 deemph_reg_value = 85;
3043 margin_reg_value = 78;
3044 break;
3045 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3046 deemph_reg_value = 85;
3047 margin_reg_value = 116;
3048 break;
3049 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3050 deemph_reg_value = 85;
3051 margin_reg_value = 154;
3052 break;
3053 default:
3054 return 0;
3055 }
3056 break;
3057 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3058 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3059 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3060 deemph_reg_value = 64;
3061 margin_reg_value = 104;
3062 break;
3063 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3064 deemph_reg_value = 64;
3065 margin_reg_value = 154;
3066 break;
3067 default:
3068 return 0;
3069 }
3070 break;
3071 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3072 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3073 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3074 deemph_reg_value = 43;
3075 margin_reg_value = 154;
3076 break;
3077 default:
3078 return 0;
3079 }
3080 break;
3081 default:
3082 return 0;
3083 }
3084
3085 mutex_lock(&dev_priv->dpio_lock);
3086
3087 /* Clear calc init */
3088 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3089 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3090 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3091 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3092 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3093
3094 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3095 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3096 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3097 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3098 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3099
3100 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
3101 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3102 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3103 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
3104
3105 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
3106 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3107 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3108 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
3109
3110 /* Program swing deemph */
3111 for (i = 0; i < 4; i++) {
3112 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3113 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3114 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3115 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3116 }
3117
3118 /* Program swing margin */
3119 for (i = 0; i < 4; i++) {
3120 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3121 val &= ~DPIO_SWING_MARGIN000_MASK;
3122 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3123 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3124 }
3125
3126 /* Disable unique transition scale */
3127 for (i = 0; i < 4; i++) {
3128 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3129 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3130 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3131 }
3132
3133 if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
3134 == DP_TRAIN_PRE_EMPH_LEVEL_0) &&
3135 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
3136 == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)) {
3137
3138 /*
3139 * The document said it needs to set bit 27 for ch0 and bit 26
3140 * for ch1. Might be a typo in the doc.
3141 * For now, for this unique transition scale selection, set bit
3142 * 27 for ch0 and ch1.
3143 */
3144 for (i = 0; i < 4; i++) {
3145 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3146 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3147 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3148 }
3149
3150 for (i = 0; i < 4; i++) {
3151 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3152 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3153 val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3154 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3155 }
3156 }
3157
3158 /* Start swing calculation */
3159 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3160 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3161 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3162
3163 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3164 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3165 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3166
3167 /* LRC Bypass */
3168 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
3169 val |= DPIO_LRC_BYPASS;
3170 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
3171
3172 mutex_unlock(&dev_priv->dpio_lock);
3173
3174 return 0;
3175 }
3176
3177 static void
3178 intel_get_adjust_train(struct intel_dp *intel_dp,
3179 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3180 {
3181 uint8_t v = 0;
3182 uint8_t p = 0;
3183 int lane;
3184 uint8_t voltage_max;
3185 uint8_t preemph_max;
3186
3187 for (lane = 0; lane < intel_dp->lane_count; lane++) {
3188 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
3189 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
3190
3191 if (this_v > v)
3192 v = this_v;
3193 if (this_p > p)
3194 p = this_p;
3195 }
3196
3197 voltage_max = intel_dp_voltage_max(intel_dp);
3198 if (v >= voltage_max)
3199 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
3200
3201 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
3202 if (p >= preemph_max)
3203 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
3204
3205 for (lane = 0; lane < 4; lane++)
3206 intel_dp->train_set[lane] = v | p;
3207 }
3208
3209 static uint32_t
3210 intel_gen4_signal_levels(uint8_t train_set)
3211 {
3212 uint32_t signal_levels = 0;
3213
3214 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3215 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3216 default:
3217 signal_levels |= DP_VOLTAGE_0_4;
3218 break;
3219 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3220 signal_levels |= DP_VOLTAGE_0_6;
3221 break;
3222 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3223 signal_levels |= DP_VOLTAGE_0_8;
3224 break;
3225 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3226 signal_levels |= DP_VOLTAGE_1_2;
3227 break;
3228 }
3229 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3230 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3231 default:
3232 signal_levels |= DP_PRE_EMPHASIS_0;
3233 break;
3234 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3235 signal_levels |= DP_PRE_EMPHASIS_3_5;
3236 break;
3237 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3238 signal_levels |= DP_PRE_EMPHASIS_6;
3239 break;
3240 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3241 signal_levels |= DP_PRE_EMPHASIS_9_5;
3242 break;
3243 }
3244 return signal_levels;
3245 }
3246
3247 /* Gen6's DP voltage swing and pre-emphasis control */
3248 static uint32_t
3249 intel_gen6_edp_signal_levels(uint8_t train_set)
3250 {
3251 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3252 DP_TRAIN_PRE_EMPHASIS_MASK);
3253 switch (signal_levels) {
3254 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3255 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3256 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3257 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3258 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3259 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3260 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3261 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3262 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3263 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3264 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3265 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3266 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3267 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3268 default:
3269 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3270 "0x%x\n", signal_levels);
3271 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3272 }
3273 }
3274
3275 /* Gen7's DP voltage swing and pre-emphasis control */
3276 static uint32_t
3277 intel_gen7_edp_signal_levels(uint8_t train_set)
3278 {
3279 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3280 DP_TRAIN_PRE_EMPHASIS_MASK);
3281 switch (signal_levels) {
3282 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3283 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3284 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3285 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3286 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3287 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3288
3289 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3290 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3291 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3292 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3293
3294 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3295 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3296 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3297 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3298
3299 default:
3300 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3301 "0x%x\n", signal_levels);
3302 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3303 }
3304 }
3305
3306 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
3307 static uint32_t
3308 intel_hsw_signal_levels(uint8_t train_set)
3309 {
3310 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3311 DP_TRAIN_PRE_EMPHASIS_MASK);
3312 switch (signal_levels) {
3313 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3314 return DDI_BUF_TRANS_SELECT(0);
3315 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3316 return DDI_BUF_TRANS_SELECT(1);
3317 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3318 return DDI_BUF_TRANS_SELECT(2);
3319 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
3320 return DDI_BUF_TRANS_SELECT(3);
3321
3322 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3323 return DDI_BUF_TRANS_SELECT(4);
3324 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3325 return DDI_BUF_TRANS_SELECT(5);
3326 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3327 return DDI_BUF_TRANS_SELECT(6);
3328
3329 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3330 return DDI_BUF_TRANS_SELECT(7);
3331 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3332 return DDI_BUF_TRANS_SELECT(8);
3333
3334 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3335 return DDI_BUF_TRANS_SELECT(9);
3336 default:
3337 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3338 "0x%x\n", signal_levels);
3339 return DDI_BUF_TRANS_SELECT(0);
3340 }
3341 }
3342
3343 /* Properly updates "DP" with the correct signal levels. */
3344 static void
3345 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
3346 {
3347 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3348 enum port port = intel_dig_port->port;
3349 struct drm_device *dev = intel_dig_port->base.base.dev;
3350 uint32_t signal_levels, mask;
3351 uint8_t train_set = intel_dp->train_set[0];
3352
3353 if (IS_HASWELL(dev) || IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
3354 signal_levels = intel_hsw_signal_levels(train_set);
3355 mask = DDI_BUF_EMP_MASK;
3356 } else if (IS_CHERRYVIEW(dev)) {
3357 signal_levels = intel_chv_signal_levels(intel_dp);
3358 mask = 0;
3359 } else if (IS_VALLEYVIEW(dev)) {
3360 signal_levels = intel_vlv_signal_levels(intel_dp);
3361 mask = 0;
3362 } else if (IS_GEN7(dev) && port == PORT_A) {
3363 signal_levels = intel_gen7_edp_signal_levels(train_set);
3364 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3365 } else if (IS_GEN6(dev) && port == PORT_A) {
3366 signal_levels = intel_gen6_edp_signal_levels(train_set);
3367 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3368 } else {
3369 signal_levels = intel_gen4_signal_levels(train_set);
3370 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3371 }
3372
3373 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3374
3375 *DP = (*DP & ~mask) | signal_levels;
3376 }
3377
3378 static bool
3379 intel_dp_set_link_train(struct intel_dp *intel_dp,
3380 uint32_t *DP,
3381 uint8_t dp_train_pat)
3382 {
3383 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3384 struct drm_device *dev = intel_dig_port->base.base.dev;
3385 struct drm_i915_private *dev_priv = dev->dev_private;
3386 uint8_t buf[sizeof(intel_dp->train_set) + 1];
3387 int ret, len;
3388
3389 _intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3390
3391 I915_WRITE(intel_dp->output_reg, *DP);
3392 POSTING_READ(intel_dp->output_reg);
3393
3394 buf[0] = dp_train_pat;
3395 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3396 DP_TRAINING_PATTERN_DISABLE) {
3397 /* don't write DP_TRAINING_LANEx_SET on disable */
3398 len = 1;
3399 } else {
3400 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3401 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3402 len = intel_dp->lane_count + 1;
3403 }
3404
3405 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3406 buf, len);
3407
3408 return ret == len;
3409 }
3410
3411 static bool
3412 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3413 uint8_t dp_train_pat)
3414 {
3415 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3416 intel_dp_set_signal_levels(intel_dp, DP);
3417 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3418 }
3419
3420 static bool
3421 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3422 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3423 {
3424 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3425 struct drm_device *dev = intel_dig_port->base.base.dev;
3426 struct drm_i915_private *dev_priv = dev->dev_private;
3427 int ret;
3428
3429 intel_get_adjust_train(intel_dp, link_status);
3430 intel_dp_set_signal_levels(intel_dp, DP);
3431
3432 I915_WRITE(intel_dp->output_reg, *DP);
3433 POSTING_READ(intel_dp->output_reg);
3434
3435 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3436 intel_dp->train_set, intel_dp->lane_count);
3437
3438 return ret == intel_dp->lane_count;
3439 }
3440
3441 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3442 {
3443 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3444 struct drm_device *dev = intel_dig_port->base.base.dev;
3445 struct drm_i915_private *dev_priv = dev->dev_private;
3446 enum port port = intel_dig_port->port;
3447 uint32_t val;
3448
3449 if (!HAS_DDI(dev))
3450 return;
3451
3452 val = I915_READ(DP_TP_CTL(port));
3453 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3454 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3455 I915_WRITE(DP_TP_CTL(port), val);
3456
3457 /*
3458 * On PORT_A we can have only eDP in SST mode. There the only reason
3459 * we need to set idle transmission mode is to work around a HW issue
3460 * where we enable the pipe while not in idle link-training mode.
3461 * In this case there is requirement to wait for a minimum number of
3462 * idle patterns to be sent.
3463 */
3464 if (port == PORT_A)
3465 return;
3466
3467 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3468 1))
3469 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3470 }
3471
3472 /* Enable corresponding port and start training pattern 1 */
3473 void
3474 intel_dp_start_link_train(struct intel_dp *intel_dp)
3475 {
3476 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3477 struct drm_device *dev = encoder->dev;
3478 int i;
3479 uint8_t voltage;
3480 int voltage_tries, loop_tries;
3481 uint32_t DP = intel_dp->DP;
3482 uint8_t link_config[2];
3483
3484 if (HAS_DDI(dev))
3485 intel_ddi_prepare_link_retrain(encoder);
3486
3487 /* Write the link configuration data */
3488 link_config[0] = intel_dp->link_bw;
3489 link_config[1] = intel_dp->lane_count;
3490 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3491 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3492 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3493 if (INTEL_INFO(dev)->gen >= 9 && intel_dp->supported_rates[0])
3494 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_RATE_SET,
3495 &intel_dp->rate_select, 1);
3496
3497 link_config[0] = 0;
3498 link_config[1] = DP_SET_ANSI_8B10B;
3499 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3500
3501 DP |= DP_PORT_EN;
3502
3503 /* clock recovery */
3504 if (!intel_dp_reset_link_train(intel_dp, &DP,
3505 DP_TRAINING_PATTERN_1 |
3506 DP_LINK_SCRAMBLING_DISABLE)) {
3507 DRM_ERROR("failed to enable link training\n");
3508 return;
3509 }
3510
3511 voltage = 0xff;
3512 voltage_tries = 0;
3513 loop_tries = 0;
3514 for (;;) {
3515 uint8_t link_status[DP_LINK_STATUS_SIZE];
3516
3517 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3518 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3519 DRM_ERROR("failed to get link status\n");
3520 break;
3521 }
3522
3523 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3524 DRM_DEBUG_KMS("clock recovery OK\n");
3525 break;
3526 }
3527
3528 /* Check to see if we've tried the max voltage */
3529 for (i = 0; i < intel_dp->lane_count; i++)
3530 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3531 break;
3532 if (i == intel_dp->lane_count) {
3533 ++loop_tries;
3534 if (loop_tries == 5) {
3535 DRM_ERROR("too many full retries, give up\n");
3536 break;
3537 }
3538 intel_dp_reset_link_train(intel_dp, &DP,
3539 DP_TRAINING_PATTERN_1 |
3540 DP_LINK_SCRAMBLING_DISABLE);
3541 voltage_tries = 0;
3542 continue;
3543 }
3544
3545 /* Check to see if we've tried the same voltage 5 times */
3546 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3547 ++voltage_tries;
3548 if (voltage_tries == 5) {
3549 DRM_ERROR("too many voltage retries, give up\n");
3550 break;
3551 }
3552 } else
3553 voltage_tries = 0;
3554 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3555
3556 /* Update training set as requested by target */
3557 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3558 DRM_ERROR("failed to update link training\n");
3559 break;
3560 }
3561 }
3562
3563 intel_dp->DP = DP;
3564 }
3565
3566 void
3567 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3568 {
3569 bool channel_eq = false;
3570 int tries, cr_tries;
3571 uint32_t DP = intel_dp->DP;
3572 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3573
3574 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3575 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3576 training_pattern = DP_TRAINING_PATTERN_3;
3577
3578 /* channel equalization */
3579 if (!intel_dp_set_link_train(intel_dp, &DP,
3580 training_pattern |
3581 DP_LINK_SCRAMBLING_DISABLE)) {
3582 DRM_ERROR("failed to start channel equalization\n");
3583 return;
3584 }
3585
3586 tries = 0;
3587 cr_tries = 0;
3588 channel_eq = false;
3589 for (;;) {
3590 uint8_t link_status[DP_LINK_STATUS_SIZE];
3591
3592 if (cr_tries > 5) {
3593 DRM_ERROR("failed to train DP, aborting\n");
3594 break;
3595 }
3596
3597 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3598 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3599 DRM_ERROR("failed to get link status\n");
3600 break;
3601 }
3602
3603 /* Make sure clock is still ok */
3604 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3605 intel_dp_start_link_train(intel_dp);
3606 intel_dp_set_link_train(intel_dp, &DP,
3607 training_pattern |
3608 DP_LINK_SCRAMBLING_DISABLE);
3609 cr_tries++;
3610 continue;
3611 }
3612
3613 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3614 channel_eq = true;
3615 break;
3616 }
3617
3618 /* Try 5 times, then try clock recovery if that fails */
3619 if (tries > 5) {
3620 intel_dp_start_link_train(intel_dp);
3621 intel_dp_set_link_train(intel_dp, &DP,
3622 training_pattern |
3623 DP_LINK_SCRAMBLING_DISABLE);
3624 tries = 0;
3625 cr_tries++;
3626 continue;
3627 }
3628
3629 /* Update training set as requested by target */
3630 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3631 DRM_ERROR("failed to update link training\n");
3632 break;
3633 }
3634 ++tries;
3635 }
3636
3637 intel_dp_set_idle_link_train(intel_dp);
3638
3639 intel_dp->DP = DP;
3640
3641 if (channel_eq)
3642 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3643
3644 }
3645
3646 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3647 {
3648 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3649 DP_TRAINING_PATTERN_DISABLE);
3650 }
3651
3652 static void
3653 intel_dp_link_down(struct intel_dp *intel_dp)
3654 {
3655 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3656 enum port port = intel_dig_port->port;
3657 struct drm_device *dev = intel_dig_port->base.base.dev;
3658 struct drm_i915_private *dev_priv = dev->dev_private;
3659 uint32_t DP = intel_dp->DP;
3660
3661 if (WARN_ON(HAS_DDI(dev)))
3662 return;
3663
3664 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3665 return;
3666
3667 DRM_DEBUG_KMS("\n");
3668
3669 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3670 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3671 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3672 } else {
3673 if (IS_CHERRYVIEW(dev))
3674 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3675 else
3676 DP &= ~DP_LINK_TRAIN_MASK;
3677 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3678 }
3679 POSTING_READ(intel_dp->output_reg);
3680
3681 if (HAS_PCH_IBX(dev) &&
3682 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3683 /* Hardware workaround: leaving our transcoder select
3684 * set to transcoder B while it's off will prevent the
3685 * corresponding HDMI output on transcoder A.
3686 *
3687 * Combine this with another hardware workaround:
3688 * transcoder select bit can only be cleared while the
3689 * port is enabled.
3690 */
3691 DP &= ~DP_PIPEB_SELECT;
3692 I915_WRITE(intel_dp->output_reg, DP);
3693 POSTING_READ(intel_dp->output_reg);
3694 }
3695
3696 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3697 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3698 POSTING_READ(intel_dp->output_reg);
3699 msleep(intel_dp->panel_power_down_delay);
3700 }
3701
3702 static bool
3703 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3704 {
3705 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3706 struct drm_device *dev = dig_port->base.base.dev;
3707 struct drm_i915_private *dev_priv = dev->dev_private;
3708 uint8_t rev;
3709
3710 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3711 sizeof(intel_dp->dpcd)) < 0)
3712 return false; /* aux transfer failed */
3713
3714 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3715
3716 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3717 return false; /* DPCD not present */
3718
3719 /* Check if the panel supports PSR */
3720 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3721 if (is_edp(intel_dp)) {
3722 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3723 intel_dp->psr_dpcd,
3724 sizeof(intel_dp->psr_dpcd));
3725 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3726 dev_priv->psr.sink_support = true;
3727 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3728 }
3729 }
3730
3731 /* Training Pattern 3 support, both source and sink */
3732 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3733 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED &&
3734 (IS_HASWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 8)) {
3735 intel_dp->use_tps3 = true;
3736 DRM_DEBUG_KMS("Displayport TPS3 supported\n");
3737 } else
3738 intel_dp->use_tps3 = false;
3739
3740 /* Intermediate frequency support */
3741 if (is_edp(intel_dp) &&
3742 (intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3743 (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_EDP_DPCD_REV, &rev, 1) == 1) &&
3744 (rev >= 0x03)) { /* eDp v1.4 or higher */
3745 __le16 supported_rates[DP_MAX_SUPPORTED_RATES];
3746 int i;
3747
3748 intel_dp_dpcd_read_wake(&intel_dp->aux,
3749 DP_SUPPORTED_LINK_RATES,
3750 supported_rates,
3751 sizeof(supported_rates));
3752
3753 for (i = 0; i < ARRAY_SIZE(supported_rates); i++) {
3754 int val = le16_to_cpu(supported_rates[i]);
3755
3756 if (val == 0)
3757 break;
3758
3759 intel_dp->supported_rates[i] = val * 200;
3760 }
3761 intel_dp->num_supported_rates = i;
3762 }
3763 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3764 DP_DWN_STRM_PORT_PRESENT))
3765 return true; /* native DP sink */
3766
3767 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3768 return true; /* no per-port downstream info */
3769
3770 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3771 intel_dp->downstream_ports,
3772 DP_MAX_DOWNSTREAM_PORTS) < 0)
3773 return false; /* downstream port status fetch failed */
3774
3775 return true;
3776 }
3777
3778 static void
3779 intel_dp_probe_oui(struct intel_dp *intel_dp)
3780 {
3781 u8 buf[3];
3782
3783 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3784 return;
3785
3786 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3787 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3788 buf[0], buf[1], buf[2]);
3789
3790 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3791 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3792 buf[0], buf[1], buf[2]);
3793 }
3794
3795 static bool
3796 intel_dp_probe_mst(struct intel_dp *intel_dp)
3797 {
3798 u8 buf[1];
3799
3800 if (!intel_dp->can_mst)
3801 return false;
3802
3803 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3804 return false;
3805
3806 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3807 if (buf[0] & DP_MST_CAP) {
3808 DRM_DEBUG_KMS("Sink is MST capable\n");
3809 intel_dp->is_mst = true;
3810 } else {
3811 DRM_DEBUG_KMS("Sink is not MST capable\n");
3812 intel_dp->is_mst = false;
3813 }
3814 }
3815
3816 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3817 return intel_dp->is_mst;
3818 }
3819
3820 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3821 {
3822 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3823 struct drm_device *dev = intel_dig_port->base.base.dev;
3824 struct intel_crtc *intel_crtc =
3825 to_intel_crtc(intel_dig_port->base.base.crtc);
3826 u8 buf;
3827 int test_crc_count;
3828 int attempts = 6;
3829
3830 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3831 return -EIO;
3832
3833 if (!(buf & DP_TEST_CRC_SUPPORTED))
3834 return -ENOTTY;
3835
3836 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3837 return -EIO;
3838
3839 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3840 buf | DP_TEST_SINK_START) < 0)
3841 return -EIO;
3842
3843 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3844 return -EIO;
3845 test_crc_count = buf & DP_TEST_COUNT_MASK;
3846
3847 do {
3848 if (drm_dp_dpcd_readb(&intel_dp->aux,
3849 DP_TEST_SINK_MISC, &buf) < 0)
3850 return -EIO;
3851 intel_wait_for_vblank(dev, intel_crtc->pipe);
3852 } while (--attempts && (buf & DP_TEST_COUNT_MASK) == test_crc_count);
3853
3854 if (attempts == 0) {
3855 DRM_DEBUG_KMS("Panel is unable to calculate CRC after 6 vblanks\n");
3856 return -ETIMEDOUT;
3857 }
3858
3859 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3860 return -EIO;
3861
3862 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3863 return -EIO;
3864 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3865 buf & ~DP_TEST_SINK_START) < 0)
3866 return -EIO;
3867
3868 return 0;
3869 }
3870
3871 static bool
3872 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3873 {
3874 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3875 DP_DEVICE_SERVICE_IRQ_VECTOR,
3876 sink_irq_vector, 1) == 1;
3877 }
3878
3879 static bool
3880 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3881 {
3882 int ret;
3883
3884 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
3885 DP_SINK_COUNT_ESI,
3886 sink_irq_vector, 14);
3887 if (ret != 14)
3888 return false;
3889
3890 return true;
3891 }
3892
3893 static void
3894 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3895 {
3896 /* NAK by default */
3897 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3898 }
3899
3900 static int
3901 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3902 {
3903 bool bret;
3904
3905 if (intel_dp->is_mst) {
3906 u8 esi[16] = { 0 };
3907 int ret = 0;
3908 int retry;
3909 bool handled;
3910 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3911 go_again:
3912 if (bret == true) {
3913
3914 /* check link status - esi[10] = 0x200c */
3915 if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3916 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3917 intel_dp_start_link_train(intel_dp);
3918 intel_dp_complete_link_train(intel_dp);
3919 intel_dp_stop_link_train(intel_dp);
3920 }
3921
3922 DRM_DEBUG_KMS("got esi %3ph\n", esi);
3923 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3924
3925 if (handled) {
3926 for (retry = 0; retry < 3; retry++) {
3927 int wret;
3928 wret = drm_dp_dpcd_write(&intel_dp->aux,
3929 DP_SINK_COUNT_ESI+1,
3930 &esi[1], 3);
3931 if (wret == 3) {
3932 break;
3933 }
3934 }
3935
3936 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3937 if (bret == true) {
3938 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
3939 goto go_again;
3940 }
3941 } else
3942 ret = 0;
3943
3944 return ret;
3945 } else {
3946 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3947 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3948 intel_dp->is_mst = false;
3949 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3950 /* send a hotplug event */
3951 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3952 }
3953 }
3954 return -EINVAL;
3955 }
3956
3957 /*
3958 * According to DP spec
3959 * 5.1.2:
3960 * 1. Read DPCD
3961 * 2. Configure link according to Receiver Capabilities
3962 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
3963 * 4. Check link status on receipt of hot-plug interrupt
3964 */
3965 static void
3966 intel_dp_check_link_status(struct intel_dp *intel_dp)
3967 {
3968 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3969 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3970 u8 sink_irq_vector;
3971 u8 link_status[DP_LINK_STATUS_SIZE];
3972
3973 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3974
3975 if (!intel_encoder->connectors_active)
3976 return;
3977
3978 if (WARN_ON(!intel_encoder->base.crtc))
3979 return;
3980
3981 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
3982 return;
3983
3984 /* Try to read receiver status if the link appears to be up */
3985 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3986 return;
3987 }
3988
3989 /* Now read the DPCD to see if it's actually running */
3990 if (!intel_dp_get_dpcd(intel_dp)) {
3991 return;
3992 }
3993
3994 /* Try to read the source of the interrupt */
3995 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3996 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3997 /* Clear interrupt source */
3998 drm_dp_dpcd_writeb(&intel_dp->aux,
3999 DP_DEVICE_SERVICE_IRQ_VECTOR,
4000 sink_irq_vector);
4001
4002 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4003 intel_dp_handle_test_request(intel_dp);
4004 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4005 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4006 }
4007
4008 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
4009 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4010 intel_encoder->base.name);
4011 intel_dp_start_link_train(intel_dp);
4012 intel_dp_complete_link_train(intel_dp);
4013 intel_dp_stop_link_train(intel_dp);
4014 }
4015 }
4016
4017 /* XXX this is probably wrong for multiple downstream ports */
4018 static enum drm_connector_status
4019 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4020 {
4021 uint8_t *dpcd = intel_dp->dpcd;
4022 uint8_t type;
4023
4024 if (!intel_dp_get_dpcd(intel_dp))
4025 return connector_status_disconnected;
4026
4027 /* if there's no downstream port, we're done */
4028 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4029 return connector_status_connected;
4030
4031 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4032 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4033 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4034 uint8_t reg;
4035
4036 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
4037 &reg, 1) < 0)
4038 return connector_status_unknown;
4039
4040 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
4041 : connector_status_disconnected;
4042 }
4043
4044 /* If no HPD, poke DDC gently */
4045 if (drm_probe_ddc(&intel_dp->aux.ddc))
4046 return connector_status_connected;
4047
4048 /* Well we tried, say unknown for unreliable port types */
4049 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4050 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4051 if (type == DP_DS_PORT_TYPE_VGA ||
4052 type == DP_DS_PORT_TYPE_NON_EDID)
4053 return connector_status_unknown;
4054 } else {
4055 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4056 DP_DWN_STRM_PORT_TYPE_MASK;
4057 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4058 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4059 return connector_status_unknown;
4060 }
4061
4062 /* Anything else is out of spec, warn and ignore */
4063 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4064 return connector_status_disconnected;
4065 }
4066
4067 static enum drm_connector_status
4068 edp_detect(struct intel_dp *intel_dp)
4069 {
4070 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4071 enum drm_connector_status status;
4072
4073 status = intel_panel_detect(dev);
4074 if (status == connector_status_unknown)
4075 status = connector_status_connected;
4076
4077 return status;
4078 }
4079
4080 static enum drm_connector_status
4081 ironlake_dp_detect(struct intel_dp *intel_dp)
4082 {
4083 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4084 struct drm_i915_private *dev_priv = dev->dev_private;
4085 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4086
4087 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4088 return connector_status_disconnected;
4089
4090 return intel_dp_detect_dpcd(intel_dp);
4091 }
4092
4093 static int g4x_digital_port_connected(struct drm_device *dev,
4094 struct intel_digital_port *intel_dig_port)
4095 {
4096 struct drm_i915_private *dev_priv = dev->dev_private;
4097 uint32_t bit;
4098
4099 if (IS_VALLEYVIEW(dev)) {
4100 switch (intel_dig_port->port) {
4101 case PORT_B:
4102 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
4103 break;
4104 case PORT_C:
4105 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
4106 break;
4107 case PORT_D:
4108 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
4109 break;
4110 default:
4111 return -EINVAL;
4112 }
4113 } else {
4114 switch (intel_dig_port->port) {
4115 case PORT_B:
4116 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4117 break;
4118 case PORT_C:
4119 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4120 break;
4121 case PORT_D:
4122 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4123 break;
4124 default:
4125 return -EINVAL;
4126 }
4127 }
4128
4129 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
4130 return 0;
4131 return 1;
4132 }
4133
4134 static enum drm_connector_status
4135 g4x_dp_detect(struct intel_dp *intel_dp)
4136 {
4137 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4138 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4139 int ret;
4140
4141 /* Can't disconnect eDP, but you can close the lid... */
4142 if (is_edp(intel_dp)) {
4143 enum drm_connector_status status;
4144
4145 status = intel_panel_detect(dev);
4146 if (status == connector_status_unknown)
4147 status = connector_status_connected;
4148 return status;
4149 }
4150
4151 ret = g4x_digital_port_connected(dev, intel_dig_port);
4152 if (ret == -EINVAL)
4153 return connector_status_unknown;
4154 else if (ret == 0)
4155 return connector_status_disconnected;
4156
4157 return intel_dp_detect_dpcd(intel_dp);
4158 }
4159
4160 static struct edid *
4161 intel_dp_get_edid(struct intel_dp *intel_dp)
4162 {
4163 struct intel_connector *intel_connector = intel_dp->attached_connector;
4164
4165 /* use cached edid if we have one */
4166 if (intel_connector->edid) {
4167 /* invalid edid */
4168 if (IS_ERR(intel_connector->edid))
4169 return NULL;
4170
4171 return drm_edid_duplicate(intel_connector->edid);
4172 } else
4173 return drm_get_edid(&intel_connector->base,
4174 &intel_dp->aux.ddc);
4175 }
4176
4177 static void
4178 intel_dp_set_edid(struct intel_dp *intel_dp)
4179 {
4180 struct intel_connector *intel_connector = intel_dp->attached_connector;
4181 struct edid *edid;
4182
4183 edid = intel_dp_get_edid(intel_dp);
4184 intel_connector->detect_edid = edid;
4185
4186 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4187 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4188 else
4189 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4190 }
4191
4192 static void
4193 intel_dp_unset_edid(struct intel_dp *intel_dp)
4194 {
4195 struct intel_connector *intel_connector = intel_dp->attached_connector;
4196
4197 kfree(intel_connector->detect_edid);
4198 intel_connector->detect_edid = NULL;
4199
4200 intel_dp->has_audio = false;
4201 }
4202
4203 static enum intel_display_power_domain
4204 intel_dp_power_get(struct intel_dp *dp)
4205 {
4206 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4207 enum intel_display_power_domain power_domain;
4208
4209 power_domain = intel_display_port_power_domain(encoder);
4210 intel_display_power_get(to_i915(encoder->base.dev), power_domain);
4211
4212 return power_domain;
4213 }
4214
4215 static void
4216 intel_dp_power_put(struct intel_dp *dp,
4217 enum intel_display_power_domain power_domain)
4218 {
4219 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4220 intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4221 }
4222
4223 static enum drm_connector_status
4224 intel_dp_detect(struct drm_connector *connector, bool force)
4225 {
4226 struct intel_dp *intel_dp = intel_attached_dp(connector);
4227 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4228 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4229 struct drm_device *dev = connector->dev;
4230 enum drm_connector_status status;
4231 enum intel_display_power_domain power_domain;
4232 bool ret;
4233
4234 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4235 connector->base.id, connector->name);
4236 intel_dp_unset_edid(intel_dp);
4237
4238 if (intel_dp->is_mst) {
4239 /* MST devices are disconnected from a monitor POV */
4240 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4241 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4242 return connector_status_disconnected;
4243 }
4244
4245 power_domain = intel_dp_power_get(intel_dp);
4246
4247 /* Can't disconnect eDP, but you can close the lid... */
4248 if (is_edp(intel_dp))
4249 status = edp_detect(intel_dp);
4250 else if (HAS_PCH_SPLIT(dev))
4251 status = ironlake_dp_detect(intel_dp);
4252 else
4253 status = g4x_dp_detect(intel_dp);
4254 if (status != connector_status_connected)
4255 goto out;
4256
4257 intel_dp_probe_oui(intel_dp);
4258
4259 ret = intel_dp_probe_mst(intel_dp);
4260 if (ret) {
4261 /* if we are in MST mode then this connector
4262 won't appear connected or have anything with EDID on it */
4263 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4264 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4265 status = connector_status_disconnected;
4266 goto out;
4267 }
4268
4269 intel_dp_set_edid(intel_dp);
4270
4271 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4272 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4273 status = connector_status_connected;
4274
4275 out:
4276 intel_dp_power_put(intel_dp, power_domain);
4277 return status;
4278 }
4279
4280 static void
4281 intel_dp_force(struct drm_connector *connector)
4282 {
4283 struct intel_dp *intel_dp = intel_attached_dp(connector);
4284 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4285 enum intel_display_power_domain power_domain;
4286
4287 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4288 connector->base.id, connector->name);
4289 intel_dp_unset_edid(intel_dp);
4290
4291 if (connector->status != connector_status_connected)
4292 return;
4293
4294 power_domain = intel_dp_power_get(intel_dp);
4295
4296 intel_dp_set_edid(intel_dp);
4297
4298 intel_dp_power_put(intel_dp, power_domain);
4299
4300 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4301 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4302 }
4303
4304 static int intel_dp_get_modes(struct drm_connector *connector)
4305 {
4306 struct intel_connector *intel_connector = to_intel_connector(connector);
4307 struct edid *edid;
4308
4309 edid = intel_connector->detect_edid;
4310 if (edid) {
4311 int ret = intel_connector_update_modes(connector, edid);
4312 if (ret)
4313 return ret;
4314 }
4315
4316 /* if eDP has no EDID, fall back to fixed mode */
4317 if (is_edp(intel_attached_dp(connector)) &&
4318 intel_connector->panel.fixed_mode) {
4319 struct drm_display_mode *mode;
4320
4321 mode = drm_mode_duplicate(connector->dev,
4322 intel_connector->panel.fixed_mode);
4323 if (mode) {
4324 drm_mode_probed_add(connector, mode);
4325 return 1;
4326 }
4327 }
4328
4329 return 0;
4330 }
4331
4332 static bool
4333 intel_dp_detect_audio(struct drm_connector *connector)
4334 {
4335 bool has_audio = false;
4336 struct edid *edid;
4337
4338 edid = to_intel_connector(connector)->detect_edid;
4339 if (edid)
4340 has_audio = drm_detect_monitor_audio(edid);
4341
4342 return has_audio;
4343 }
4344
4345 static int
4346 intel_dp_set_property(struct drm_connector *connector,
4347 struct drm_property *property,
4348 uint64_t val)
4349 {
4350 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4351 struct intel_connector *intel_connector = to_intel_connector(connector);
4352 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4353 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4354 int ret;
4355
4356 ret = drm_object_property_set_value(&connector->base, property, val);
4357 if (ret)
4358 return ret;
4359
4360 if (property == dev_priv->force_audio_property) {
4361 int i = val;
4362 bool has_audio;
4363
4364 if (i == intel_dp->force_audio)
4365 return 0;
4366
4367 intel_dp->force_audio = i;
4368
4369 if (i == HDMI_AUDIO_AUTO)
4370 has_audio = intel_dp_detect_audio(connector);
4371 else
4372 has_audio = (i == HDMI_AUDIO_ON);
4373
4374 if (has_audio == intel_dp->has_audio)
4375 return 0;
4376
4377 intel_dp->has_audio = has_audio;
4378 goto done;
4379 }
4380
4381 if (property == dev_priv->broadcast_rgb_property) {
4382 bool old_auto = intel_dp->color_range_auto;
4383 uint32_t old_range = intel_dp->color_range;
4384
4385 switch (val) {
4386 case INTEL_BROADCAST_RGB_AUTO:
4387 intel_dp->color_range_auto = true;
4388 break;
4389 case INTEL_BROADCAST_RGB_FULL:
4390 intel_dp->color_range_auto = false;
4391 intel_dp->color_range = 0;
4392 break;
4393 case INTEL_BROADCAST_RGB_LIMITED:
4394 intel_dp->color_range_auto = false;
4395 intel_dp->color_range = DP_COLOR_RANGE_16_235;
4396 break;
4397 default:
4398 return -EINVAL;
4399 }
4400
4401 if (old_auto == intel_dp->color_range_auto &&
4402 old_range == intel_dp->color_range)
4403 return 0;
4404
4405 goto done;
4406 }
4407
4408 if (is_edp(intel_dp) &&
4409 property == connector->dev->mode_config.scaling_mode_property) {
4410 if (val == DRM_MODE_SCALE_NONE) {
4411 DRM_DEBUG_KMS("no scaling not supported\n");
4412 return -EINVAL;
4413 }
4414
4415 if (intel_connector->panel.fitting_mode == val) {
4416 /* the eDP scaling property is not changed */
4417 return 0;
4418 }
4419 intel_connector->panel.fitting_mode = val;
4420
4421 goto done;
4422 }
4423
4424 return -EINVAL;
4425
4426 done:
4427 if (intel_encoder->base.crtc)
4428 intel_crtc_restore_mode(intel_encoder->base.crtc);
4429
4430 return 0;
4431 }
4432
4433 static void
4434 intel_dp_connector_destroy(struct drm_connector *connector)
4435 {
4436 struct intel_connector *intel_connector = to_intel_connector(connector);
4437
4438 kfree(intel_connector->detect_edid);
4439
4440 if (!IS_ERR_OR_NULL(intel_connector->edid))
4441 kfree(intel_connector->edid);
4442
4443 /* Can't call is_edp() since the encoder may have been destroyed
4444 * already. */
4445 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4446 intel_panel_fini(&intel_connector->panel);
4447
4448 drm_connector_cleanup(connector);
4449 kfree(connector);
4450 }
4451
4452 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4453 {
4454 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4455 struct intel_dp *intel_dp = &intel_dig_port->dp;
4456
4457 drm_dp_aux_unregister(&intel_dp->aux);
4458 intel_dp_mst_encoder_cleanup(intel_dig_port);
4459 if (is_edp(intel_dp)) {
4460 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4461 /*
4462 * vdd might still be enabled do to the delayed vdd off.
4463 * Make sure vdd is actually turned off here.
4464 */
4465 pps_lock(intel_dp);
4466 edp_panel_vdd_off_sync(intel_dp);
4467 pps_unlock(intel_dp);
4468
4469 if (intel_dp->edp_notifier.notifier_call) {
4470 unregister_reboot_notifier(&intel_dp->edp_notifier);
4471 intel_dp->edp_notifier.notifier_call = NULL;
4472 }
4473 }
4474 drm_encoder_cleanup(encoder);
4475 kfree(intel_dig_port);
4476 }
4477
4478 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4479 {
4480 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4481
4482 if (!is_edp(intel_dp))
4483 return;
4484
4485 /*
4486 * vdd might still be enabled do to the delayed vdd off.
4487 * Make sure vdd is actually turned off here.
4488 */
4489 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4490 pps_lock(intel_dp);
4491 edp_panel_vdd_off_sync(intel_dp);
4492 pps_unlock(intel_dp);
4493 }
4494
4495 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4496 {
4497 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4498 struct drm_device *dev = intel_dig_port->base.base.dev;
4499 struct drm_i915_private *dev_priv = dev->dev_private;
4500 enum intel_display_power_domain power_domain;
4501
4502 lockdep_assert_held(&dev_priv->pps_mutex);
4503
4504 if (!edp_have_panel_vdd(intel_dp))
4505 return;
4506
4507 /*
4508 * The VDD bit needs a power domain reference, so if the bit is
4509 * already enabled when we boot or resume, grab this reference and
4510 * schedule a vdd off, so we don't hold on to the reference
4511 * indefinitely.
4512 */
4513 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4514 power_domain = intel_display_port_power_domain(&intel_dig_port->base);
4515 intel_display_power_get(dev_priv, power_domain);
4516
4517 edp_panel_vdd_schedule_off(intel_dp);
4518 }
4519
4520 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4521 {
4522 struct intel_dp *intel_dp;
4523
4524 if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4525 return;
4526
4527 intel_dp = enc_to_intel_dp(encoder);
4528
4529 pps_lock(intel_dp);
4530
4531 /*
4532 * Read out the current power sequencer assignment,
4533 * in case the BIOS did something with it.
4534 */
4535 if (IS_VALLEYVIEW(encoder->dev))
4536 vlv_initial_power_sequencer_setup(intel_dp);
4537
4538 intel_edp_panel_vdd_sanitize(intel_dp);
4539
4540 pps_unlock(intel_dp);
4541 }
4542
4543 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4544 .dpms = intel_connector_dpms,
4545 .detect = intel_dp_detect,
4546 .force = intel_dp_force,
4547 .fill_modes = drm_helper_probe_single_connector_modes,
4548 .set_property = intel_dp_set_property,
4549 .atomic_get_property = intel_connector_atomic_get_property,
4550 .destroy = intel_dp_connector_destroy,
4551 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4552 };
4553
4554 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4555 .get_modes = intel_dp_get_modes,
4556 .mode_valid = intel_dp_mode_valid,
4557 .best_encoder = intel_best_encoder,
4558 };
4559
4560 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4561 .reset = intel_dp_encoder_reset,
4562 .destroy = intel_dp_encoder_destroy,
4563 };
4564
4565 void
4566 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4567 {
4568 return;
4569 }
4570
4571 enum irqreturn
4572 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4573 {
4574 struct intel_dp *intel_dp = &intel_dig_port->dp;
4575 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4576 struct drm_device *dev = intel_dig_port->base.base.dev;
4577 struct drm_i915_private *dev_priv = dev->dev_private;
4578 enum intel_display_power_domain power_domain;
4579 enum irqreturn ret = IRQ_NONE;
4580
4581 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4582 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4583
4584 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4585 /*
4586 * vdd off can generate a long pulse on eDP which
4587 * would require vdd on to handle it, and thus we
4588 * would end up in an endless cycle of
4589 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4590 */
4591 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4592 port_name(intel_dig_port->port));
4593 return IRQ_HANDLED;
4594 }
4595
4596 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4597 port_name(intel_dig_port->port),
4598 long_hpd ? "long" : "short");
4599
4600 power_domain = intel_display_port_power_domain(intel_encoder);
4601 intel_display_power_get(dev_priv, power_domain);
4602
4603 if (long_hpd) {
4604
4605 if (HAS_PCH_SPLIT(dev)) {
4606 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4607 goto mst_fail;
4608 } else {
4609 if (g4x_digital_port_connected(dev, intel_dig_port) != 1)
4610 goto mst_fail;
4611 }
4612
4613 if (!intel_dp_get_dpcd(intel_dp)) {
4614 goto mst_fail;
4615 }
4616
4617 intel_dp_probe_oui(intel_dp);
4618
4619 if (!intel_dp_probe_mst(intel_dp))
4620 goto mst_fail;
4621
4622 } else {
4623 if (intel_dp->is_mst) {
4624 if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4625 goto mst_fail;
4626 }
4627
4628 if (!intel_dp->is_mst) {
4629 /*
4630 * we'll check the link status via the normal hot plug path later -
4631 * but for short hpds we should check it now
4632 */
4633 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4634 intel_dp_check_link_status(intel_dp);
4635 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4636 }
4637 }
4638
4639 ret = IRQ_HANDLED;
4640
4641 goto put_power;
4642 mst_fail:
4643 /* if we were in MST mode, and device is not there get out of MST mode */
4644 if (intel_dp->is_mst) {
4645 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4646 intel_dp->is_mst = false;
4647 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4648 }
4649 put_power:
4650 intel_display_power_put(dev_priv, power_domain);
4651
4652 return ret;
4653 }
4654
4655 /* Return which DP Port should be selected for Transcoder DP control */
4656 int
4657 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4658 {
4659 struct drm_device *dev = crtc->dev;
4660 struct intel_encoder *intel_encoder;
4661 struct intel_dp *intel_dp;
4662
4663 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4664 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4665
4666 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4667 intel_encoder->type == INTEL_OUTPUT_EDP)
4668 return intel_dp->output_reg;
4669 }
4670
4671 return -1;
4672 }
4673
4674 /* check the VBT to see whether the eDP is on DP-D port */
4675 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4676 {
4677 struct drm_i915_private *dev_priv = dev->dev_private;
4678 union child_device_config *p_child;
4679 int i;
4680 static const short port_mapping[] = {
4681 [PORT_B] = PORT_IDPB,
4682 [PORT_C] = PORT_IDPC,
4683 [PORT_D] = PORT_IDPD,
4684 };
4685
4686 if (port == PORT_A)
4687 return true;
4688
4689 if (!dev_priv->vbt.child_dev_num)
4690 return false;
4691
4692 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4693 p_child = dev_priv->vbt.child_dev + i;
4694
4695 if (p_child->common.dvo_port == port_mapping[port] &&
4696 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4697 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
4698 return true;
4699 }
4700 return false;
4701 }
4702
4703 void
4704 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4705 {
4706 struct intel_connector *intel_connector = to_intel_connector(connector);
4707
4708 intel_attach_force_audio_property(connector);
4709 intel_attach_broadcast_rgb_property(connector);
4710 intel_dp->color_range_auto = true;
4711
4712 if (is_edp(intel_dp)) {
4713 drm_mode_create_scaling_mode_property(connector->dev);
4714 drm_object_attach_property(
4715 &connector->base,
4716 connector->dev->mode_config.scaling_mode_property,
4717 DRM_MODE_SCALE_ASPECT);
4718 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4719 }
4720 }
4721
4722 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4723 {
4724 intel_dp->last_power_cycle = jiffies;
4725 intel_dp->last_power_on = jiffies;
4726 intel_dp->last_backlight_off = jiffies;
4727 }
4728
4729 static void
4730 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4731 struct intel_dp *intel_dp)
4732 {
4733 struct drm_i915_private *dev_priv = dev->dev_private;
4734 struct edp_power_seq cur, vbt, spec,
4735 *final = &intel_dp->pps_delays;
4736 u32 pp_on, pp_off, pp_div, pp;
4737 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4738
4739 lockdep_assert_held(&dev_priv->pps_mutex);
4740
4741 /* already initialized? */
4742 if (final->t11_t12 != 0)
4743 return;
4744
4745 if (HAS_PCH_SPLIT(dev)) {
4746 pp_ctrl_reg = PCH_PP_CONTROL;
4747 pp_on_reg = PCH_PP_ON_DELAYS;
4748 pp_off_reg = PCH_PP_OFF_DELAYS;
4749 pp_div_reg = PCH_PP_DIVISOR;
4750 } else {
4751 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4752
4753 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4754 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4755 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4756 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4757 }
4758
4759 /* Workaround: Need to write PP_CONTROL with the unlock key as
4760 * the very first thing. */
4761 pp = ironlake_get_pp_control(intel_dp);
4762 I915_WRITE(pp_ctrl_reg, pp);
4763
4764 pp_on = I915_READ(pp_on_reg);
4765 pp_off = I915_READ(pp_off_reg);
4766 pp_div = I915_READ(pp_div_reg);
4767
4768 /* Pull timing values out of registers */
4769 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4770 PANEL_POWER_UP_DELAY_SHIFT;
4771
4772 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4773 PANEL_LIGHT_ON_DELAY_SHIFT;
4774
4775 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4776 PANEL_LIGHT_OFF_DELAY_SHIFT;
4777
4778 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4779 PANEL_POWER_DOWN_DELAY_SHIFT;
4780
4781 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4782 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4783
4784 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4785 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4786
4787 vbt = dev_priv->vbt.edp_pps;
4788
4789 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4790 * our hw here, which are all in 100usec. */
4791 spec.t1_t3 = 210 * 10;
4792 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4793 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4794 spec.t10 = 500 * 10;
4795 /* This one is special and actually in units of 100ms, but zero
4796 * based in the hw (so we need to add 100 ms). But the sw vbt
4797 * table multiplies it with 1000 to make it in units of 100usec,
4798 * too. */
4799 spec.t11_t12 = (510 + 100) * 10;
4800
4801 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4802 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4803
4804 /* Use the max of the register settings and vbt. If both are
4805 * unset, fall back to the spec limits. */
4806 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
4807 spec.field : \
4808 max(cur.field, vbt.field))
4809 assign_final(t1_t3);
4810 assign_final(t8);
4811 assign_final(t9);
4812 assign_final(t10);
4813 assign_final(t11_t12);
4814 #undef assign_final
4815
4816 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
4817 intel_dp->panel_power_up_delay = get_delay(t1_t3);
4818 intel_dp->backlight_on_delay = get_delay(t8);
4819 intel_dp->backlight_off_delay = get_delay(t9);
4820 intel_dp->panel_power_down_delay = get_delay(t10);
4821 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4822 #undef get_delay
4823
4824 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4825 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4826 intel_dp->panel_power_cycle_delay);
4827
4828 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4829 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4830 }
4831
4832 static void
4833 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4834 struct intel_dp *intel_dp)
4835 {
4836 struct drm_i915_private *dev_priv = dev->dev_private;
4837 u32 pp_on, pp_off, pp_div, port_sel = 0;
4838 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4839 int pp_on_reg, pp_off_reg, pp_div_reg;
4840 enum port port = dp_to_dig_port(intel_dp)->port;
4841 const struct edp_power_seq *seq = &intel_dp->pps_delays;
4842
4843 lockdep_assert_held(&dev_priv->pps_mutex);
4844
4845 if (HAS_PCH_SPLIT(dev)) {
4846 pp_on_reg = PCH_PP_ON_DELAYS;
4847 pp_off_reg = PCH_PP_OFF_DELAYS;
4848 pp_div_reg = PCH_PP_DIVISOR;
4849 } else {
4850 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4851
4852 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4853 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4854 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4855 }
4856
4857 /*
4858 * And finally store the new values in the power sequencer. The
4859 * backlight delays are set to 1 because we do manual waits on them. For
4860 * T8, even BSpec recommends doing it. For T9, if we don't do this,
4861 * we'll end up waiting for the backlight off delay twice: once when we
4862 * do the manual sleep, and once when we disable the panel and wait for
4863 * the PP_STATUS bit to become zero.
4864 */
4865 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4866 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4867 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4868 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4869 /* Compute the divisor for the pp clock, simply match the Bspec
4870 * formula. */
4871 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4872 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4873 << PANEL_POWER_CYCLE_DELAY_SHIFT);
4874
4875 /* Haswell doesn't have any port selection bits for the panel
4876 * power sequencer any more. */
4877 if (IS_VALLEYVIEW(dev)) {
4878 port_sel = PANEL_PORT_SELECT_VLV(port);
4879 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4880 if (port == PORT_A)
4881 port_sel = PANEL_PORT_SELECT_DPA;
4882 else
4883 port_sel = PANEL_PORT_SELECT_DPD;
4884 }
4885
4886 pp_on |= port_sel;
4887
4888 I915_WRITE(pp_on_reg, pp_on);
4889 I915_WRITE(pp_off_reg, pp_off);
4890 I915_WRITE(pp_div_reg, pp_div);
4891
4892 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4893 I915_READ(pp_on_reg),
4894 I915_READ(pp_off_reg),
4895 I915_READ(pp_div_reg));
4896 }
4897
4898 /**
4899 * intel_dp_set_drrs_state - program registers for RR switch to take effect
4900 * @dev: DRM device
4901 * @refresh_rate: RR to be programmed
4902 *
4903 * This function gets called when refresh rate (RR) has to be changed from
4904 * one frequency to another. Switches can be between high and low RR
4905 * supported by the panel or to any other RR based on media playback (in
4906 * this case, RR value needs to be passed from user space).
4907 *
4908 * The caller of this function needs to take a lock on dev_priv->drrs.
4909 */
4910 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4911 {
4912 struct drm_i915_private *dev_priv = dev->dev_private;
4913 struct intel_encoder *encoder;
4914 struct intel_digital_port *dig_port = NULL;
4915 struct intel_dp *intel_dp = dev_priv->drrs.dp;
4916 struct intel_crtc_state *config = NULL;
4917 struct intel_crtc *intel_crtc = NULL;
4918 u32 reg, val;
4919 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
4920
4921 if (refresh_rate <= 0) {
4922 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4923 return;
4924 }
4925
4926 if (intel_dp == NULL) {
4927 DRM_DEBUG_KMS("DRRS not supported.\n");
4928 return;
4929 }
4930
4931 /*
4932 * FIXME: This needs proper synchronization with psr state for some
4933 * platforms that cannot have PSR and DRRS enabled at the same time.
4934 */
4935
4936 dig_port = dp_to_dig_port(intel_dp);
4937 encoder = &dig_port->base;
4938 intel_crtc = encoder->new_crtc;
4939
4940 if (!intel_crtc) {
4941 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4942 return;
4943 }
4944
4945 config = intel_crtc->config;
4946
4947 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
4948 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4949 return;
4950 }
4951
4952 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
4953 refresh_rate)
4954 index = DRRS_LOW_RR;
4955
4956 if (index == dev_priv->drrs.refresh_rate_type) {
4957 DRM_DEBUG_KMS(
4958 "DRRS requested for previously set RR...ignoring\n");
4959 return;
4960 }
4961
4962 if (!intel_crtc->active) {
4963 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4964 return;
4965 }
4966
4967 if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
4968 switch (index) {
4969 case DRRS_HIGH_RR:
4970 intel_dp_set_m_n(intel_crtc, M1_N1);
4971 break;
4972 case DRRS_LOW_RR:
4973 intel_dp_set_m_n(intel_crtc, M2_N2);
4974 break;
4975 case DRRS_MAX_RR:
4976 default:
4977 DRM_ERROR("Unsupported refreshrate type\n");
4978 }
4979 } else if (INTEL_INFO(dev)->gen > 6) {
4980 reg = PIPECONF(intel_crtc->config->cpu_transcoder);
4981 val = I915_READ(reg);
4982
4983 if (index > DRRS_HIGH_RR) {
4984 if (IS_VALLEYVIEW(dev))
4985 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
4986 else
4987 val |= PIPECONF_EDP_RR_MODE_SWITCH;
4988 } else {
4989 if (IS_VALLEYVIEW(dev))
4990 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
4991 else
4992 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4993 }
4994 I915_WRITE(reg, val);
4995 }
4996
4997 dev_priv->drrs.refresh_rate_type = index;
4998
4999 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5000 }
5001
5002 /**
5003 * intel_edp_drrs_enable - init drrs struct if supported
5004 * @intel_dp: DP struct
5005 *
5006 * Initializes frontbuffer_bits and drrs.dp
5007 */
5008 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5009 {
5010 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5011 struct drm_i915_private *dev_priv = dev->dev_private;
5012 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5013 struct drm_crtc *crtc = dig_port->base.base.crtc;
5014 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5015
5016 if (!intel_crtc->config->has_drrs) {
5017 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5018 return;
5019 }
5020
5021 mutex_lock(&dev_priv->drrs.mutex);
5022 if (WARN_ON(dev_priv->drrs.dp)) {
5023 DRM_ERROR("DRRS already enabled\n");
5024 goto unlock;
5025 }
5026
5027 dev_priv->drrs.busy_frontbuffer_bits = 0;
5028
5029 dev_priv->drrs.dp = intel_dp;
5030
5031 unlock:
5032 mutex_unlock(&dev_priv->drrs.mutex);
5033 }
5034
5035 /**
5036 * intel_edp_drrs_disable - Disable DRRS
5037 * @intel_dp: DP struct
5038 *
5039 */
5040 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5041 {
5042 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5043 struct drm_i915_private *dev_priv = dev->dev_private;
5044 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5045 struct drm_crtc *crtc = dig_port->base.base.crtc;
5046 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5047
5048 if (!intel_crtc->config->has_drrs)
5049 return;
5050
5051 mutex_lock(&dev_priv->drrs.mutex);
5052 if (!dev_priv->drrs.dp) {
5053 mutex_unlock(&dev_priv->drrs.mutex);
5054 return;
5055 }
5056
5057 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5058 intel_dp_set_drrs_state(dev_priv->dev,
5059 intel_dp->attached_connector->panel.
5060 fixed_mode->vrefresh);
5061
5062 dev_priv->drrs.dp = NULL;
5063 mutex_unlock(&dev_priv->drrs.mutex);
5064
5065 cancel_delayed_work_sync(&dev_priv->drrs.work);
5066 }
5067
5068 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5069 {
5070 struct drm_i915_private *dev_priv =
5071 container_of(work, typeof(*dev_priv), drrs.work.work);
5072 struct intel_dp *intel_dp;
5073
5074 mutex_lock(&dev_priv->drrs.mutex);
5075
5076 intel_dp = dev_priv->drrs.dp;
5077
5078 if (!intel_dp)
5079 goto unlock;
5080
5081 /*
5082 * The delayed work can race with an invalidate hence we need to
5083 * recheck.
5084 */
5085
5086 if (dev_priv->drrs.busy_frontbuffer_bits)
5087 goto unlock;
5088
5089 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5090 intel_dp_set_drrs_state(dev_priv->dev,
5091 intel_dp->attached_connector->panel.
5092 downclock_mode->vrefresh);
5093
5094 unlock:
5095
5096 mutex_unlock(&dev_priv->drrs.mutex);
5097 }
5098
5099 /**
5100 * intel_edp_drrs_invalidate - Invalidate DRRS
5101 * @dev: DRM device
5102 * @frontbuffer_bits: frontbuffer plane tracking bits
5103 *
5104 * When there is a disturbance on screen (due to cursor movement/time
5105 * update etc), DRRS needs to be invalidated, i.e. need to switch to
5106 * high RR.
5107 *
5108 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5109 */
5110 void intel_edp_drrs_invalidate(struct drm_device *dev,
5111 unsigned frontbuffer_bits)
5112 {
5113 struct drm_i915_private *dev_priv = dev->dev_private;
5114 struct drm_crtc *crtc;
5115 enum pipe pipe;
5116
5117 if (!dev_priv->drrs.dp)
5118 return;
5119
5120 cancel_delayed_work_sync(&dev_priv->drrs.work);
5121
5122 mutex_lock(&dev_priv->drrs.mutex);
5123 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5124 pipe = to_intel_crtc(crtc)->pipe;
5125
5126 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) {
5127 intel_dp_set_drrs_state(dev_priv->dev,
5128 dev_priv->drrs.dp->attached_connector->panel.
5129 fixed_mode->vrefresh);
5130 }
5131
5132 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5133
5134 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5135 mutex_unlock(&dev_priv->drrs.mutex);
5136 }
5137
5138 /**
5139 * intel_edp_drrs_flush - Flush DRRS
5140 * @dev: DRM device
5141 * @frontbuffer_bits: frontbuffer plane tracking bits
5142 *
5143 * When there is no movement on screen, DRRS work can be scheduled.
5144 * This DRRS work is responsible for setting relevant registers after a
5145 * timeout of 1 second.
5146 *
5147 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5148 */
5149 void intel_edp_drrs_flush(struct drm_device *dev,
5150 unsigned frontbuffer_bits)
5151 {
5152 struct drm_i915_private *dev_priv = dev->dev_private;
5153 struct drm_crtc *crtc;
5154 enum pipe pipe;
5155
5156 if (!dev_priv->drrs.dp)
5157 return;
5158
5159 cancel_delayed_work_sync(&dev_priv->drrs.work);
5160
5161 mutex_lock(&dev_priv->drrs.mutex);
5162 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5163 pipe = to_intel_crtc(crtc)->pipe;
5164 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5165
5166 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR &&
5167 !dev_priv->drrs.busy_frontbuffer_bits)
5168 schedule_delayed_work(&dev_priv->drrs.work,
5169 msecs_to_jiffies(1000));
5170 mutex_unlock(&dev_priv->drrs.mutex);
5171 }
5172
5173 /**
5174 * DOC: Display Refresh Rate Switching (DRRS)
5175 *
5176 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5177 * which enables swtching between low and high refresh rates,
5178 * dynamically, based on the usage scenario. This feature is applicable
5179 * for internal panels.
5180 *
5181 * Indication that the panel supports DRRS is given by the panel EDID, which
5182 * would list multiple refresh rates for one resolution.
5183 *
5184 * DRRS is of 2 types - static and seamless.
5185 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5186 * (may appear as a blink on screen) and is used in dock-undock scenario.
5187 * Seamless DRRS involves changing RR without any visual effect to the user
5188 * and can be used during normal system usage. This is done by programming
5189 * certain registers.
5190 *
5191 * Support for static/seamless DRRS may be indicated in the VBT based on
5192 * inputs from the panel spec.
5193 *
5194 * DRRS saves power by switching to low RR based on usage scenarios.
5195 *
5196 * eDP DRRS:-
5197 * The implementation is based on frontbuffer tracking implementation.
5198 * When there is a disturbance on the screen triggered by user activity or a
5199 * periodic system activity, DRRS is disabled (RR is changed to high RR).
5200 * When there is no movement on screen, after a timeout of 1 second, a switch
5201 * to low RR is made.
5202 * For integration with frontbuffer tracking code,
5203 * intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called.
5204 *
5205 * DRRS can be further extended to support other internal panels and also
5206 * the scenario of video playback wherein RR is set based on the rate
5207 * requested by userspace.
5208 */
5209
5210 /**
5211 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5212 * @intel_connector: eDP connector
5213 * @fixed_mode: preferred mode of panel
5214 *
5215 * This function is called only once at driver load to initialize basic
5216 * DRRS stuff.
5217 *
5218 * Returns:
5219 * Downclock mode if panel supports it, else return NULL.
5220 * DRRS support is determined by the presence of downclock mode (apart
5221 * from VBT setting).
5222 */
5223 static struct drm_display_mode *
5224 intel_dp_drrs_init(struct intel_connector *intel_connector,
5225 struct drm_display_mode *fixed_mode)
5226 {
5227 struct drm_connector *connector = &intel_connector->base;
5228 struct drm_device *dev = connector->dev;
5229 struct drm_i915_private *dev_priv = dev->dev_private;
5230 struct drm_display_mode *downclock_mode = NULL;
5231
5232 if (INTEL_INFO(dev)->gen <= 6) {
5233 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5234 return NULL;
5235 }
5236
5237 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5238 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5239 return NULL;
5240 }
5241
5242 downclock_mode = intel_find_panel_downclock
5243 (dev, fixed_mode, connector);
5244
5245 if (!downclock_mode) {
5246 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5247 return NULL;
5248 }
5249
5250 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5251
5252 mutex_init(&dev_priv->drrs.mutex);
5253
5254 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5255
5256 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5257 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5258 return downclock_mode;
5259 }
5260
5261 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5262 struct intel_connector *intel_connector)
5263 {
5264 struct drm_connector *connector = &intel_connector->base;
5265 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5266 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5267 struct drm_device *dev = intel_encoder->base.dev;
5268 struct drm_i915_private *dev_priv = dev->dev_private;
5269 struct drm_display_mode *fixed_mode = NULL;
5270 struct drm_display_mode *downclock_mode = NULL;
5271 bool has_dpcd;
5272 struct drm_display_mode *scan;
5273 struct edid *edid;
5274 enum pipe pipe = INVALID_PIPE;
5275
5276 dev_priv->drrs.type = DRRS_NOT_SUPPORTED;
5277
5278 if (!is_edp(intel_dp))
5279 return true;
5280
5281 pps_lock(intel_dp);
5282 intel_edp_panel_vdd_sanitize(intel_dp);
5283 pps_unlock(intel_dp);
5284
5285 /* Cache DPCD and EDID for edp. */
5286 has_dpcd = intel_dp_get_dpcd(intel_dp);
5287
5288 if (has_dpcd) {
5289 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5290 dev_priv->no_aux_handshake =
5291 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5292 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5293 } else {
5294 /* if this fails, presume the device is a ghost */
5295 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5296 return false;
5297 }
5298
5299 /* We now know it's not a ghost, init power sequence regs. */
5300 pps_lock(intel_dp);
5301 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5302 pps_unlock(intel_dp);
5303
5304 mutex_lock(&dev->mode_config.mutex);
5305 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5306 if (edid) {
5307 if (drm_add_edid_modes(connector, edid)) {
5308 drm_mode_connector_update_edid_property(connector,
5309 edid);
5310 drm_edid_to_eld(connector, edid);
5311 } else {
5312 kfree(edid);
5313 edid = ERR_PTR(-EINVAL);
5314 }
5315 } else {
5316 edid = ERR_PTR(-ENOENT);
5317 }
5318 intel_connector->edid = edid;
5319
5320 /* prefer fixed mode from EDID if available */
5321 list_for_each_entry(scan, &connector->probed_modes, head) {
5322 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5323 fixed_mode = drm_mode_duplicate(dev, scan);
5324 downclock_mode = intel_dp_drrs_init(
5325 intel_connector, fixed_mode);
5326 break;
5327 }
5328 }
5329
5330 /* fallback to VBT if available for eDP */
5331 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5332 fixed_mode = drm_mode_duplicate(dev,
5333 dev_priv->vbt.lfp_lvds_vbt_mode);
5334 if (fixed_mode)
5335 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5336 }
5337 mutex_unlock(&dev->mode_config.mutex);
5338
5339 if (IS_VALLEYVIEW(dev)) {
5340 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5341 register_reboot_notifier(&intel_dp->edp_notifier);
5342
5343 /*
5344 * Figure out the current pipe for the initial backlight setup.
5345 * If the current pipe isn't valid, try the PPS pipe, and if that
5346 * fails just assume pipe A.
5347 */
5348 if (IS_CHERRYVIEW(dev))
5349 pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5350 else
5351 pipe = PORT_TO_PIPE(intel_dp->DP);
5352
5353 if (pipe != PIPE_A && pipe != PIPE_B)
5354 pipe = intel_dp->pps_pipe;
5355
5356 if (pipe != PIPE_A && pipe != PIPE_B)
5357 pipe = PIPE_A;
5358
5359 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5360 pipe_name(pipe));
5361 }
5362
5363 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5364 intel_connector->panel.backlight_power = intel_edp_backlight_power;
5365 intel_panel_setup_backlight(connector, pipe);
5366
5367 return true;
5368 }
5369
5370 bool
5371 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5372 struct intel_connector *intel_connector)
5373 {
5374 struct drm_connector *connector = &intel_connector->base;
5375 struct intel_dp *intel_dp = &intel_dig_port->dp;
5376 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5377 struct drm_device *dev = intel_encoder->base.dev;
5378 struct drm_i915_private *dev_priv = dev->dev_private;
5379 enum port port = intel_dig_port->port;
5380 int type;
5381
5382 intel_dp->pps_pipe = INVALID_PIPE;
5383
5384 /* intel_dp vfuncs */
5385 if (INTEL_INFO(dev)->gen >= 9)
5386 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5387 else if (IS_VALLEYVIEW(dev))
5388 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5389 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5390 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5391 else if (HAS_PCH_SPLIT(dev))
5392 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5393 else
5394 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5395
5396 if (INTEL_INFO(dev)->gen >= 9)
5397 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5398 else
5399 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5400
5401 /* Preserve the current hw state. */
5402 intel_dp->DP = I915_READ(intel_dp->output_reg);
5403 intel_dp->attached_connector = intel_connector;
5404
5405 if (intel_dp_is_edp(dev, port))
5406 type = DRM_MODE_CONNECTOR_eDP;
5407 else
5408 type = DRM_MODE_CONNECTOR_DisplayPort;
5409
5410 /*
5411 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5412 * for DP the encoder type can be set by the caller to
5413 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5414 */
5415 if (type == DRM_MODE_CONNECTOR_eDP)
5416 intel_encoder->type = INTEL_OUTPUT_EDP;
5417
5418 /* eDP only on port B and/or C on vlv/chv */
5419 if (WARN_ON(IS_VALLEYVIEW(dev) && is_edp(intel_dp) &&
5420 port != PORT_B && port != PORT_C))
5421 return false;
5422
5423 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5424 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5425 port_name(port));
5426
5427 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5428 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5429
5430 connector->interlace_allowed = true;
5431 connector->doublescan_allowed = 0;
5432
5433 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5434 edp_panel_vdd_work);
5435
5436 intel_connector_attach_encoder(intel_connector, intel_encoder);
5437 drm_connector_register(connector);
5438
5439 if (HAS_DDI(dev))
5440 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5441 else
5442 intel_connector->get_hw_state = intel_connector_get_hw_state;
5443 intel_connector->unregister = intel_dp_connector_unregister;
5444
5445 /* Set up the hotplug pin. */
5446 switch (port) {
5447 case PORT_A:
5448 intel_encoder->hpd_pin = HPD_PORT_A;
5449 break;
5450 case PORT_B:
5451 intel_encoder->hpd_pin = HPD_PORT_B;
5452 break;
5453 case PORT_C:
5454 intel_encoder->hpd_pin = HPD_PORT_C;
5455 break;
5456 case PORT_D:
5457 intel_encoder->hpd_pin = HPD_PORT_D;
5458 break;
5459 default:
5460 BUG();
5461 }
5462
5463 if (is_edp(intel_dp)) {
5464 pps_lock(intel_dp);
5465 intel_dp_init_panel_power_timestamps(intel_dp);
5466 if (IS_VALLEYVIEW(dev))
5467 vlv_initial_power_sequencer_setup(intel_dp);
5468 else
5469 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5470 pps_unlock(intel_dp);
5471 }
5472
5473 intel_dp_aux_init(intel_dp, intel_connector);
5474
5475 /* init MST on ports that can support it */
5476 if (IS_HASWELL(dev) || IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
5477 if (port == PORT_B || port == PORT_C || port == PORT_D) {
5478 intel_dp_mst_encoder_init(intel_dig_port,
5479 intel_connector->base.base.id);
5480 }
5481 }
5482
5483 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5484 drm_dp_aux_unregister(&intel_dp->aux);
5485 if (is_edp(intel_dp)) {
5486 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5487 /*
5488 * vdd might still be enabled do to the delayed vdd off.
5489 * Make sure vdd is actually turned off here.
5490 */
5491 pps_lock(intel_dp);
5492 edp_panel_vdd_off_sync(intel_dp);
5493 pps_unlock(intel_dp);
5494 }
5495 drm_connector_unregister(connector);
5496 drm_connector_cleanup(connector);
5497 return false;
5498 }
5499
5500 intel_dp_add_properties(intel_dp, connector);
5501
5502 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5503 * 0xd. Failure to do so will result in spurious interrupts being
5504 * generated on the port when a cable is not attached.
5505 */
5506 if (IS_G4X(dev) && !IS_GM45(dev)) {
5507 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5508 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5509 }
5510
5511 return true;
5512 }
5513
5514 void
5515 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
5516 {
5517 struct drm_i915_private *dev_priv = dev->dev_private;
5518 struct intel_digital_port *intel_dig_port;
5519 struct intel_encoder *intel_encoder;
5520 struct drm_encoder *encoder;
5521 struct intel_connector *intel_connector;
5522
5523 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5524 if (!intel_dig_port)
5525 return;
5526
5527 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
5528 if (!intel_connector) {
5529 kfree(intel_dig_port);
5530 return;
5531 }
5532
5533 intel_encoder = &intel_dig_port->base;
5534 encoder = &intel_encoder->base;
5535
5536 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5537 DRM_MODE_ENCODER_TMDS);
5538
5539 intel_encoder->compute_config = intel_dp_compute_config;
5540 intel_encoder->disable = intel_disable_dp;
5541 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5542 intel_encoder->get_config = intel_dp_get_config;
5543 intel_encoder->suspend = intel_dp_encoder_suspend;
5544 if (IS_CHERRYVIEW(dev)) {
5545 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5546 intel_encoder->pre_enable = chv_pre_enable_dp;
5547 intel_encoder->enable = vlv_enable_dp;
5548 intel_encoder->post_disable = chv_post_disable_dp;
5549 } else if (IS_VALLEYVIEW(dev)) {
5550 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5551 intel_encoder->pre_enable = vlv_pre_enable_dp;
5552 intel_encoder->enable = vlv_enable_dp;
5553 intel_encoder->post_disable = vlv_post_disable_dp;
5554 } else {
5555 intel_encoder->pre_enable = g4x_pre_enable_dp;
5556 intel_encoder->enable = g4x_enable_dp;
5557 if (INTEL_INFO(dev)->gen >= 5)
5558 intel_encoder->post_disable = ilk_post_disable_dp;
5559 }
5560
5561 intel_dig_port->port = port;
5562 intel_dig_port->dp.output_reg = output_reg;
5563
5564 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5565 if (IS_CHERRYVIEW(dev)) {
5566 if (port == PORT_D)
5567 intel_encoder->crtc_mask = 1 << 2;
5568 else
5569 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5570 } else {
5571 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5572 }
5573 intel_encoder->cloneable = 0;
5574 intel_encoder->hot_plug = intel_dp_hot_plug;
5575
5576 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5577 dev_priv->hpd_irq_port[port] = intel_dig_port;
5578
5579 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
5580 drm_encoder_cleanup(encoder);
5581 kfree(intel_dig_port);
5582 kfree(intel_connector);
5583 }
5584 }
5585
5586 void intel_dp_mst_suspend(struct drm_device *dev)
5587 {
5588 struct drm_i915_private *dev_priv = dev->dev_private;
5589 int i;
5590
5591 /* disable MST */
5592 for (i = 0; i < I915_MAX_PORTS; i++) {
5593 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5594 if (!intel_dig_port)
5595 continue;
5596
5597 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5598 if (!intel_dig_port->dp.can_mst)
5599 continue;
5600 if (intel_dig_port->dp.is_mst)
5601 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5602 }
5603 }
5604 }
5605
5606 void intel_dp_mst_resume(struct drm_device *dev)
5607 {
5608 struct drm_i915_private *dev_priv = dev->dev_private;
5609 int i;
5610
5611 for (i = 0; i < I915_MAX_PORTS; i++) {
5612 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5613 if (!intel_dig_port)
5614 continue;
5615 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5616 int ret;
5617
5618 if (!intel_dig_port->dp.can_mst)
5619 continue;
5620
5621 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5622 if (ret != 0) {
5623 intel_dp_check_mst_status(&intel_dig_port->dp);
5624 }
5625 }
5626 }
5627 }