]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_dp.c
drm/i915: Add a note explaining vdd on/off handling in intel_dp_aux_ch()
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_crtc.h>
35 #include <drm/drm_crtc_helper.h>
36 #include <drm/drm_edid.h>
37 #include "intel_drv.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40
41 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
42
43 struct dp_link_dpll {
44 int link_bw;
45 struct dpll dpll;
46 };
47
48 static const struct dp_link_dpll gen4_dpll[] = {
49 { DP_LINK_BW_1_62,
50 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
51 { DP_LINK_BW_2_7,
52 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
53 };
54
55 static const struct dp_link_dpll pch_dpll[] = {
56 { DP_LINK_BW_1_62,
57 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
58 { DP_LINK_BW_2_7,
59 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
60 };
61
62 static const struct dp_link_dpll vlv_dpll[] = {
63 { DP_LINK_BW_1_62,
64 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
65 { DP_LINK_BW_2_7,
66 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
67 };
68
69 /*
70 * CHV supports eDP 1.4 that have more link rates.
71 * Below only provides the fixed rate but exclude variable rate.
72 */
73 static const struct dp_link_dpll chv_dpll[] = {
74 /*
75 * CHV requires to program fractional division for m2.
76 * m2 is stored in fixed point format using formula below
77 * (m2_int << 22) | m2_fraction
78 */
79 { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */
80 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
81 { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */
82 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
83 { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */
84 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
85 };
86
87 /**
88 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
89 * @intel_dp: DP struct
90 *
91 * If a CPU or PCH DP output is attached to an eDP panel, this function
92 * will return true, and false otherwise.
93 */
94 static bool is_edp(struct intel_dp *intel_dp)
95 {
96 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
97
98 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
99 }
100
101 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
102 {
103 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
104
105 return intel_dig_port->base.base.dev;
106 }
107
108 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
109 {
110 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
111 }
112
113 static void intel_dp_link_down(struct intel_dp *intel_dp);
114 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
115 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
116
117 int
118 intel_dp_max_link_bw(struct intel_dp *intel_dp)
119 {
120 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
121 struct drm_device *dev = intel_dp->attached_connector->base.dev;
122
123 switch (max_link_bw) {
124 case DP_LINK_BW_1_62:
125 case DP_LINK_BW_2_7:
126 break;
127 case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
128 if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
129 INTEL_INFO(dev)->gen >= 8) &&
130 intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
131 max_link_bw = DP_LINK_BW_5_4;
132 else
133 max_link_bw = DP_LINK_BW_2_7;
134 break;
135 default:
136 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
137 max_link_bw);
138 max_link_bw = DP_LINK_BW_1_62;
139 break;
140 }
141 return max_link_bw;
142 }
143
144 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
145 {
146 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
147 struct drm_device *dev = intel_dig_port->base.base.dev;
148 u8 source_max, sink_max;
149
150 source_max = 4;
151 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
152 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
153 source_max = 2;
154
155 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
156
157 return min(source_max, sink_max);
158 }
159
160 /*
161 * The units on the numbers in the next two are... bizarre. Examples will
162 * make it clearer; this one parallels an example in the eDP spec.
163 *
164 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
165 *
166 * 270000 * 1 * 8 / 10 == 216000
167 *
168 * The actual data capacity of that configuration is 2.16Gbit/s, so the
169 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
170 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
171 * 119000. At 18bpp that's 2142000 kilobits per second.
172 *
173 * Thus the strange-looking division by 10 in intel_dp_link_required, to
174 * get the result in decakilobits instead of kilobits.
175 */
176
177 static int
178 intel_dp_link_required(int pixel_clock, int bpp)
179 {
180 return (pixel_clock * bpp + 9) / 10;
181 }
182
183 static int
184 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
185 {
186 return (max_link_clock * max_lanes * 8) / 10;
187 }
188
189 static enum drm_mode_status
190 intel_dp_mode_valid(struct drm_connector *connector,
191 struct drm_display_mode *mode)
192 {
193 struct intel_dp *intel_dp = intel_attached_dp(connector);
194 struct intel_connector *intel_connector = to_intel_connector(connector);
195 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
196 int target_clock = mode->clock;
197 int max_rate, mode_rate, max_lanes, max_link_clock;
198
199 if (is_edp(intel_dp) && fixed_mode) {
200 if (mode->hdisplay > fixed_mode->hdisplay)
201 return MODE_PANEL;
202
203 if (mode->vdisplay > fixed_mode->vdisplay)
204 return MODE_PANEL;
205
206 target_clock = fixed_mode->clock;
207 }
208
209 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
210 max_lanes = intel_dp_max_lane_count(intel_dp);
211
212 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
213 mode_rate = intel_dp_link_required(target_clock, 18);
214
215 if (mode_rate > max_rate)
216 return MODE_CLOCK_HIGH;
217
218 if (mode->clock < 10000)
219 return MODE_CLOCK_LOW;
220
221 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
222 return MODE_H_ILLEGAL;
223
224 return MODE_OK;
225 }
226
227 static uint32_t
228 pack_aux(uint8_t *src, int src_bytes)
229 {
230 int i;
231 uint32_t v = 0;
232
233 if (src_bytes > 4)
234 src_bytes = 4;
235 for (i = 0; i < src_bytes; i++)
236 v |= ((uint32_t) src[i]) << ((3-i) * 8);
237 return v;
238 }
239
240 static void
241 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
242 {
243 int i;
244 if (dst_bytes > 4)
245 dst_bytes = 4;
246 for (i = 0; i < dst_bytes; i++)
247 dst[i] = src >> ((3-i) * 8);
248 }
249
250 /* hrawclock is 1/4 the FSB frequency */
251 static int
252 intel_hrawclk(struct drm_device *dev)
253 {
254 struct drm_i915_private *dev_priv = dev->dev_private;
255 uint32_t clkcfg;
256
257 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
258 if (IS_VALLEYVIEW(dev))
259 return 200;
260
261 clkcfg = I915_READ(CLKCFG);
262 switch (clkcfg & CLKCFG_FSB_MASK) {
263 case CLKCFG_FSB_400:
264 return 100;
265 case CLKCFG_FSB_533:
266 return 133;
267 case CLKCFG_FSB_667:
268 return 166;
269 case CLKCFG_FSB_800:
270 return 200;
271 case CLKCFG_FSB_1067:
272 return 266;
273 case CLKCFG_FSB_1333:
274 return 333;
275 /* these two are just a guess; one of them might be right */
276 case CLKCFG_FSB_1600:
277 case CLKCFG_FSB_1600_ALT:
278 return 400;
279 default:
280 return 133;
281 }
282 }
283
284 static void
285 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
286 struct intel_dp *intel_dp,
287 struct edp_power_seq *out);
288 static void
289 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
290 struct intel_dp *intel_dp,
291 struct edp_power_seq *out);
292
293 static enum pipe
294 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
295 {
296 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
297 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
298 struct drm_device *dev = intel_dig_port->base.base.dev;
299 struct drm_i915_private *dev_priv = dev->dev_private;
300 enum port port = intel_dig_port->port;
301 enum pipe pipe;
302
303 /* modeset should have pipe */
304 if (crtc)
305 return to_intel_crtc(crtc)->pipe;
306
307 /* init time, try to find a pipe with this port selected */
308 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
309 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
310 PANEL_PORT_SELECT_MASK;
311 if (port_sel == PANEL_PORT_SELECT_VLV(port))
312 return pipe;
313 }
314
315 /* shrug */
316 return PIPE_A;
317 }
318
319 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
320 {
321 struct drm_device *dev = intel_dp_to_dev(intel_dp);
322
323 if (HAS_PCH_SPLIT(dev))
324 return PCH_PP_CONTROL;
325 else
326 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
327 }
328
329 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
330 {
331 struct drm_device *dev = intel_dp_to_dev(intel_dp);
332
333 if (HAS_PCH_SPLIT(dev))
334 return PCH_PP_STATUS;
335 else
336 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
337 }
338
339 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
340 This function only applicable when panel PM state is not to be tracked */
341 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
342 void *unused)
343 {
344 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
345 edp_notifier);
346 struct drm_device *dev = intel_dp_to_dev(intel_dp);
347 struct drm_i915_private *dev_priv = dev->dev_private;
348 u32 pp_div;
349 u32 pp_ctrl_reg, pp_div_reg;
350 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
351
352 if (!is_edp(intel_dp) || code != SYS_RESTART)
353 return 0;
354
355 if (IS_VALLEYVIEW(dev)) {
356 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
357 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
358 pp_div = I915_READ(pp_div_reg);
359 pp_div &= PP_REFERENCE_DIVIDER_MASK;
360
361 /* 0x1F write to PP_DIV_REG sets max cycle delay */
362 I915_WRITE(pp_div_reg, pp_div | 0x1F);
363 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
364 msleep(intel_dp->panel_power_cycle_delay);
365 }
366
367 return 0;
368 }
369
370 static bool edp_have_panel_power(struct intel_dp *intel_dp)
371 {
372 struct drm_device *dev = intel_dp_to_dev(intel_dp);
373 struct drm_i915_private *dev_priv = dev->dev_private;
374
375 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
376 }
377
378 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
379 {
380 struct drm_device *dev = intel_dp_to_dev(intel_dp);
381 struct drm_i915_private *dev_priv = dev->dev_private;
382 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
383 struct intel_encoder *intel_encoder = &intel_dig_port->base;
384 enum intel_display_power_domain power_domain;
385
386 power_domain = intel_display_port_power_domain(intel_encoder);
387 return intel_display_power_enabled(dev_priv, power_domain) &&
388 (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
389 }
390
391 static void
392 intel_dp_check_edp(struct intel_dp *intel_dp)
393 {
394 struct drm_device *dev = intel_dp_to_dev(intel_dp);
395 struct drm_i915_private *dev_priv = dev->dev_private;
396
397 if (!is_edp(intel_dp))
398 return;
399
400 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
401 WARN(1, "eDP powered off while attempting aux channel communication.\n");
402 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
403 I915_READ(_pp_stat_reg(intel_dp)),
404 I915_READ(_pp_ctrl_reg(intel_dp)));
405 }
406 }
407
408 static uint32_t
409 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
410 {
411 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
412 struct drm_device *dev = intel_dig_port->base.base.dev;
413 struct drm_i915_private *dev_priv = dev->dev_private;
414 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
415 uint32_t status;
416 bool done;
417
418 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
419 if (has_aux_irq)
420 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
421 msecs_to_jiffies_timeout(10));
422 else
423 done = wait_for_atomic(C, 10) == 0;
424 if (!done)
425 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
426 has_aux_irq);
427 #undef C
428
429 return status;
430 }
431
432 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
433 {
434 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
435 struct drm_device *dev = intel_dig_port->base.base.dev;
436
437 /*
438 * The clock divider is based off the hrawclk, and would like to run at
439 * 2MHz. So, take the hrawclk value and divide by 2 and use that
440 */
441 return index ? 0 : intel_hrawclk(dev) / 2;
442 }
443
444 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
445 {
446 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
447 struct drm_device *dev = intel_dig_port->base.base.dev;
448
449 if (index)
450 return 0;
451
452 if (intel_dig_port->port == PORT_A) {
453 if (IS_GEN6(dev) || IS_GEN7(dev))
454 return 200; /* SNB & IVB eDP input clock at 400Mhz */
455 else
456 return 225; /* eDP input clock at 450Mhz */
457 } else {
458 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
459 }
460 }
461
462 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
463 {
464 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
465 struct drm_device *dev = intel_dig_port->base.base.dev;
466 struct drm_i915_private *dev_priv = dev->dev_private;
467
468 if (intel_dig_port->port == PORT_A) {
469 if (index)
470 return 0;
471 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
472 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
473 /* Workaround for non-ULT HSW */
474 switch (index) {
475 case 0: return 63;
476 case 1: return 72;
477 default: return 0;
478 }
479 } else {
480 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
481 }
482 }
483
484 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
485 {
486 return index ? 0 : 100;
487 }
488
489 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
490 bool has_aux_irq,
491 int send_bytes,
492 uint32_t aux_clock_divider)
493 {
494 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
495 struct drm_device *dev = intel_dig_port->base.base.dev;
496 uint32_t precharge, timeout;
497
498 if (IS_GEN6(dev))
499 precharge = 3;
500 else
501 precharge = 5;
502
503 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
504 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
505 else
506 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
507
508 return DP_AUX_CH_CTL_SEND_BUSY |
509 DP_AUX_CH_CTL_DONE |
510 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
511 DP_AUX_CH_CTL_TIME_OUT_ERROR |
512 timeout |
513 DP_AUX_CH_CTL_RECEIVE_ERROR |
514 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
515 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
516 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
517 }
518
519 static int
520 intel_dp_aux_ch(struct intel_dp *intel_dp,
521 uint8_t *send, int send_bytes,
522 uint8_t *recv, int recv_size)
523 {
524 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
525 struct drm_device *dev = intel_dig_port->base.base.dev;
526 struct drm_i915_private *dev_priv = dev->dev_private;
527 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
528 uint32_t ch_data = ch_ctl + 4;
529 uint32_t aux_clock_divider;
530 int i, ret, recv_bytes;
531 uint32_t status;
532 int try, clock = 0;
533 bool has_aux_irq = HAS_AUX_IRQ(dev);
534 bool vdd;
535
536 /*
537 * We will be called with VDD already enabled for dpcd/edid/oui reads.
538 * In such cases we want to leave VDD enabled and it's up to upper layers
539 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
540 * ourselves.
541 */
542 vdd = edp_panel_vdd_on(intel_dp);
543
544 /* dp aux is extremely sensitive to irq latency, hence request the
545 * lowest possible wakeup latency and so prevent the cpu from going into
546 * deep sleep states.
547 */
548 pm_qos_update_request(&dev_priv->pm_qos, 0);
549
550 intel_dp_check_edp(intel_dp);
551
552 intel_aux_display_runtime_get(dev_priv);
553
554 /* Try to wait for any previous AUX channel activity */
555 for (try = 0; try < 3; try++) {
556 status = I915_READ_NOTRACE(ch_ctl);
557 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
558 break;
559 msleep(1);
560 }
561
562 if (try == 3) {
563 WARN(1, "dp_aux_ch not started status 0x%08x\n",
564 I915_READ(ch_ctl));
565 ret = -EBUSY;
566 goto out;
567 }
568
569 /* Only 5 data registers! */
570 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
571 ret = -E2BIG;
572 goto out;
573 }
574
575 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
576 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
577 has_aux_irq,
578 send_bytes,
579 aux_clock_divider);
580
581 /* Must try at least 3 times according to DP spec */
582 for (try = 0; try < 5; try++) {
583 /* Load the send data into the aux channel data registers */
584 for (i = 0; i < send_bytes; i += 4)
585 I915_WRITE(ch_data + i,
586 pack_aux(send + i, send_bytes - i));
587
588 /* Send the command and wait for it to complete */
589 I915_WRITE(ch_ctl, send_ctl);
590
591 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
592
593 /* Clear done status and any errors */
594 I915_WRITE(ch_ctl,
595 status |
596 DP_AUX_CH_CTL_DONE |
597 DP_AUX_CH_CTL_TIME_OUT_ERROR |
598 DP_AUX_CH_CTL_RECEIVE_ERROR);
599
600 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
601 DP_AUX_CH_CTL_RECEIVE_ERROR))
602 continue;
603 if (status & DP_AUX_CH_CTL_DONE)
604 break;
605 }
606 if (status & DP_AUX_CH_CTL_DONE)
607 break;
608 }
609
610 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
611 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
612 ret = -EBUSY;
613 goto out;
614 }
615
616 /* Check for timeout or receive error.
617 * Timeouts occur when the sink is not connected
618 */
619 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
620 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
621 ret = -EIO;
622 goto out;
623 }
624
625 /* Timeouts occur when the device isn't connected, so they're
626 * "normal" -- don't fill the kernel log with these */
627 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
628 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
629 ret = -ETIMEDOUT;
630 goto out;
631 }
632
633 /* Unload any bytes sent back from the other side */
634 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
635 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
636 if (recv_bytes > recv_size)
637 recv_bytes = recv_size;
638
639 for (i = 0; i < recv_bytes; i += 4)
640 unpack_aux(I915_READ(ch_data + i),
641 recv + i, recv_bytes - i);
642
643 ret = recv_bytes;
644 out:
645 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
646 intel_aux_display_runtime_put(dev_priv);
647
648 if (vdd)
649 edp_panel_vdd_off(intel_dp, false);
650
651 return ret;
652 }
653
654 #define BARE_ADDRESS_SIZE 3
655 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
656 static ssize_t
657 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
658 {
659 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
660 uint8_t txbuf[20], rxbuf[20];
661 size_t txsize, rxsize;
662 int ret;
663
664 txbuf[0] = msg->request << 4;
665 txbuf[1] = msg->address >> 8;
666 txbuf[2] = msg->address & 0xff;
667 txbuf[3] = msg->size - 1;
668
669 switch (msg->request & ~DP_AUX_I2C_MOT) {
670 case DP_AUX_NATIVE_WRITE:
671 case DP_AUX_I2C_WRITE:
672 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
673 rxsize = 1;
674
675 if (WARN_ON(txsize > 20))
676 return -E2BIG;
677
678 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
679
680 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
681 if (ret > 0) {
682 msg->reply = rxbuf[0] >> 4;
683
684 /* Return payload size. */
685 ret = msg->size;
686 }
687 break;
688
689 case DP_AUX_NATIVE_READ:
690 case DP_AUX_I2C_READ:
691 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
692 rxsize = msg->size + 1;
693
694 if (WARN_ON(rxsize > 20))
695 return -E2BIG;
696
697 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
698 if (ret > 0) {
699 msg->reply = rxbuf[0] >> 4;
700 /*
701 * Assume happy day, and copy the data. The caller is
702 * expected to check msg->reply before touching it.
703 *
704 * Return payload size.
705 */
706 ret--;
707 memcpy(msg->buffer, rxbuf + 1, ret);
708 }
709 break;
710
711 default:
712 ret = -EINVAL;
713 break;
714 }
715
716 return ret;
717 }
718
719 static void
720 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
721 {
722 struct drm_device *dev = intel_dp_to_dev(intel_dp);
723 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
724 enum port port = intel_dig_port->port;
725 const char *name = NULL;
726 int ret;
727
728 switch (port) {
729 case PORT_A:
730 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
731 name = "DPDDC-A";
732 break;
733 case PORT_B:
734 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
735 name = "DPDDC-B";
736 break;
737 case PORT_C:
738 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
739 name = "DPDDC-C";
740 break;
741 case PORT_D:
742 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
743 name = "DPDDC-D";
744 break;
745 default:
746 BUG();
747 }
748
749 if (!HAS_DDI(dev))
750 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
751
752 intel_dp->aux.name = name;
753 intel_dp->aux.dev = dev->dev;
754 intel_dp->aux.transfer = intel_dp_aux_transfer;
755
756 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
757 connector->base.kdev->kobj.name);
758
759 ret = drm_dp_aux_register(&intel_dp->aux);
760 if (ret < 0) {
761 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
762 name, ret);
763 return;
764 }
765
766 ret = sysfs_create_link(&connector->base.kdev->kobj,
767 &intel_dp->aux.ddc.dev.kobj,
768 intel_dp->aux.ddc.dev.kobj.name);
769 if (ret < 0) {
770 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
771 drm_dp_aux_unregister(&intel_dp->aux);
772 }
773 }
774
775 static void
776 intel_dp_connector_unregister(struct intel_connector *intel_connector)
777 {
778 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
779
780 if (!intel_connector->mst_port)
781 sysfs_remove_link(&intel_connector->base.kdev->kobj,
782 intel_dp->aux.ddc.dev.kobj.name);
783 intel_connector_unregister(intel_connector);
784 }
785
786 static void
787 hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw)
788 {
789 switch (link_bw) {
790 case DP_LINK_BW_1_62:
791 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
792 break;
793 case DP_LINK_BW_2_7:
794 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
795 break;
796 case DP_LINK_BW_5_4:
797 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
798 break;
799 }
800 }
801
802 static void
803 intel_dp_set_clock(struct intel_encoder *encoder,
804 struct intel_crtc_config *pipe_config, int link_bw)
805 {
806 struct drm_device *dev = encoder->base.dev;
807 const struct dp_link_dpll *divisor = NULL;
808 int i, count = 0;
809
810 if (IS_G4X(dev)) {
811 divisor = gen4_dpll;
812 count = ARRAY_SIZE(gen4_dpll);
813 } else if (HAS_PCH_SPLIT(dev)) {
814 divisor = pch_dpll;
815 count = ARRAY_SIZE(pch_dpll);
816 } else if (IS_CHERRYVIEW(dev)) {
817 divisor = chv_dpll;
818 count = ARRAY_SIZE(chv_dpll);
819 } else if (IS_VALLEYVIEW(dev)) {
820 divisor = vlv_dpll;
821 count = ARRAY_SIZE(vlv_dpll);
822 }
823
824 if (divisor && count) {
825 for (i = 0; i < count; i++) {
826 if (link_bw == divisor[i].link_bw) {
827 pipe_config->dpll = divisor[i].dpll;
828 pipe_config->clock_set = true;
829 break;
830 }
831 }
832 }
833 }
834
835 bool
836 intel_dp_compute_config(struct intel_encoder *encoder,
837 struct intel_crtc_config *pipe_config)
838 {
839 struct drm_device *dev = encoder->base.dev;
840 struct drm_i915_private *dev_priv = dev->dev_private;
841 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
842 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
843 enum port port = dp_to_dig_port(intel_dp)->port;
844 struct intel_crtc *intel_crtc = encoder->new_crtc;
845 struct intel_connector *intel_connector = intel_dp->attached_connector;
846 int lane_count, clock;
847 int min_lane_count = 1;
848 int max_lane_count = intel_dp_max_lane_count(intel_dp);
849 /* Conveniently, the link BW constants become indices with a shift...*/
850 int min_clock = 0;
851 int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
852 int bpp, mode_rate;
853 static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
854 int link_avail, link_clock;
855
856 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
857 pipe_config->has_pch_encoder = true;
858
859 pipe_config->has_dp_encoder = true;
860 pipe_config->has_drrs = false;
861 pipe_config->has_audio = intel_dp->has_audio;
862
863 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
864 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
865 adjusted_mode);
866 if (!HAS_PCH_SPLIT(dev))
867 intel_gmch_panel_fitting(intel_crtc, pipe_config,
868 intel_connector->panel.fitting_mode);
869 else
870 intel_pch_panel_fitting(intel_crtc, pipe_config,
871 intel_connector->panel.fitting_mode);
872 }
873
874 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
875 return false;
876
877 DRM_DEBUG_KMS("DP link computation with max lane count %i "
878 "max bw %02x pixel clock %iKHz\n",
879 max_lane_count, bws[max_clock],
880 adjusted_mode->crtc_clock);
881
882 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
883 * bpc in between. */
884 bpp = pipe_config->pipe_bpp;
885 if (is_edp(intel_dp)) {
886 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
887 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
888 dev_priv->vbt.edp_bpp);
889 bpp = dev_priv->vbt.edp_bpp;
890 }
891
892 if (IS_BROADWELL(dev)) {
893 /* Yes, it's an ugly hack. */
894 min_lane_count = max_lane_count;
895 DRM_DEBUG_KMS("forcing lane count to max (%u) on BDW\n",
896 min_lane_count);
897 } else if (dev_priv->vbt.edp_lanes) {
898 min_lane_count = min(dev_priv->vbt.edp_lanes,
899 max_lane_count);
900 DRM_DEBUG_KMS("using min %u lanes per VBT\n",
901 min_lane_count);
902 }
903
904 if (dev_priv->vbt.edp_rate) {
905 min_clock = min(dev_priv->vbt.edp_rate >> 3, max_clock);
906 DRM_DEBUG_KMS("using min %02x link bw per VBT\n",
907 bws[min_clock]);
908 }
909 }
910
911 for (; bpp >= 6*3; bpp -= 2*3) {
912 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
913 bpp);
914
915 for (clock = min_clock; clock <= max_clock; clock++) {
916 for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
917 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
918 link_avail = intel_dp_max_data_rate(link_clock,
919 lane_count);
920
921 if (mode_rate <= link_avail) {
922 goto found;
923 }
924 }
925 }
926 }
927
928 return false;
929
930 found:
931 if (intel_dp->color_range_auto) {
932 /*
933 * See:
934 * CEA-861-E - 5.1 Default Encoding Parameters
935 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
936 */
937 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
938 intel_dp->color_range = DP_COLOR_RANGE_16_235;
939 else
940 intel_dp->color_range = 0;
941 }
942
943 if (intel_dp->color_range)
944 pipe_config->limited_color_range = true;
945
946 intel_dp->link_bw = bws[clock];
947 intel_dp->lane_count = lane_count;
948 pipe_config->pipe_bpp = bpp;
949 pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
950
951 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
952 intel_dp->link_bw, intel_dp->lane_count,
953 pipe_config->port_clock, bpp);
954 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
955 mode_rate, link_avail);
956
957 intel_link_compute_m_n(bpp, lane_count,
958 adjusted_mode->crtc_clock,
959 pipe_config->port_clock,
960 &pipe_config->dp_m_n);
961
962 if (intel_connector->panel.downclock_mode != NULL &&
963 intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
964 pipe_config->has_drrs = true;
965 intel_link_compute_m_n(bpp, lane_count,
966 intel_connector->panel.downclock_mode->clock,
967 pipe_config->port_clock,
968 &pipe_config->dp_m2_n2);
969 }
970
971 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
972 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
973 else
974 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
975
976 return true;
977 }
978
979 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
980 {
981 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
982 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
983 struct drm_device *dev = crtc->base.dev;
984 struct drm_i915_private *dev_priv = dev->dev_private;
985 u32 dpa_ctl;
986
987 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
988 dpa_ctl = I915_READ(DP_A);
989 dpa_ctl &= ~DP_PLL_FREQ_MASK;
990
991 if (crtc->config.port_clock == 162000) {
992 /* For a long time we've carried around a ILK-DevA w/a for the
993 * 160MHz clock. If we're really unlucky, it's still required.
994 */
995 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
996 dpa_ctl |= DP_PLL_FREQ_160MHZ;
997 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
998 } else {
999 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1000 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1001 }
1002
1003 I915_WRITE(DP_A, dpa_ctl);
1004
1005 POSTING_READ(DP_A);
1006 udelay(500);
1007 }
1008
1009 static void intel_dp_prepare(struct intel_encoder *encoder)
1010 {
1011 struct drm_device *dev = encoder->base.dev;
1012 struct drm_i915_private *dev_priv = dev->dev_private;
1013 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1014 enum port port = dp_to_dig_port(intel_dp)->port;
1015 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1016 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
1017
1018 /*
1019 * There are four kinds of DP registers:
1020 *
1021 * IBX PCH
1022 * SNB CPU
1023 * IVB CPU
1024 * CPT PCH
1025 *
1026 * IBX PCH and CPU are the same for almost everything,
1027 * except that the CPU DP PLL is configured in this
1028 * register
1029 *
1030 * CPT PCH is quite different, having many bits moved
1031 * to the TRANS_DP_CTL register instead. That
1032 * configuration happens (oddly) in ironlake_pch_enable
1033 */
1034
1035 /* Preserve the BIOS-computed detected bit. This is
1036 * supposed to be read-only.
1037 */
1038 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1039
1040 /* Handle DP bits in common between all three register formats */
1041 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1042 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1043
1044 if (crtc->config.has_audio) {
1045 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1046 pipe_name(crtc->pipe));
1047 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1048 intel_write_eld(&encoder->base, adjusted_mode);
1049 }
1050
1051 /* Split out the IBX/CPU vs CPT settings */
1052
1053 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1054 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1055 intel_dp->DP |= DP_SYNC_HS_HIGH;
1056 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1057 intel_dp->DP |= DP_SYNC_VS_HIGH;
1058 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1059
1060 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1061 intel_dp->DP |= DP_ENHANCED_FRAMING;
1062
1063 intel_dp->DP |= crtc->pipe << 29;
1064 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1065 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1066 intel_dp->DP |= intel_dp->color_range;
1067
1068 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1069 intel_dp->DP |= DP_SYNC_HS_HIGH;
1070 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1071 intel_dp->DP |= DP_SYNC_VS_HIGH;
1072 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1073
1074 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1075 intel_dp->DP |= DP_ENHANCED_FRAMING;
1076
1077 if (!IS_CHERRYVIEW(dev)) {
1078 if (crtc->pipe == 1)
1079 intel_dp->DP |= DP_PIPEB_SELECT;
1080 } else {
1081 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1082 }
1083 } else {
1084 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1085 }
1086 }
1087
1088 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1089 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1090
1091 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1092 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1093
1094 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1095 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1096
1097 static void wait_panel_status(struct intel_dp *intel_dp,
1098 u32 mask,
1099 u32 value)
1100 {
1101 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1102 struct drm_i915_private *dev_priv = dev->dev_private;
1103 u32 pp_stat_reg, pp_ctrl_reg;
1104
1105 pp_stat_reg = _pp_stat_reg(intel_dp);
1106 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1107
1108 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1109 mask, value,
1110 I915_READ(pp_stat_reg),
1111 I915_READ(pp_ctrl_reg));
1112
1113 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1114 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1115 I915_READ(pp_stat_reg),
1116 I915_READ(pp_ctrl_reg));
1117 }
1118
1119 DRM_DEBUG_KMS("Wait complete\n");
1120 }
1121
1122 static void wait_panel_on(struct intel_dp *intel_dp)
1123 {
1124 DRM_DEBUG_KMS("Wait for panel power on\n");
1125 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1126 }
1127
1128 static void wait_panel_off(struct intel_dp *intel_dp)
1129 {
1130 DRM_DEBUG_KMS("Wait for panel power off time\n");
1131 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1132 }
1133
1134 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1135 {
1136 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1137
1138 /* When we disable the VDD override bit last we have to do the manual
1139 * wait. */
1140 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1141 intel_dp->panel_power_cycle_delay);
1142
1143 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1144 }
1145
1146 static void wait_backlight_on(struct intel_dp *intel_dp)
1147 {
1148 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1149 intel_dp->backlight_on_delay);
1150 }
1151
1152 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1153 {
1154 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1155 intel_dp->backlight_off_delay);
1156 }
1157
1158 /* Read the current pp_control value, unlocking the register if it
1159 * is locked
1160 */
1161
1162 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1163 {
1164 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1165 struct drm_i915_private *dev_priv = dev->dev_private;
1166 u32 control;
1167
1168 control = I915_READ(_pp_ctrl_reg(intel_dp));
1169 control &= ~PANEL_UNLOCK_MASK;
1170 control |= PANEL_UNLOCK_REGS;
1171 return control;
1172 }
1173
1174 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1175 {
1176 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1177 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1178 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1179 struct drm_i915_private *dev_priv = dev->dev_private;
1180 enum intel_display_power_domain power_domain;
1181 u32 pp;
1182 u32 pp_stat_reg, pp_ctrl_reg;
1183 bool need_to_disable = !intel_dp->want_panel_vdd;
1184
1185 if (!is_edp(intel_dp))
1186 return false;
1187
1188 intel_dp->want_panel_vdd = true;
1189
1190 if (edp_have_panel_vdd(intel_dp))
1191 return need_to_disable;
1192
1193 power_domain = intel_display_port_power_domain(intel_encoder);
1194 intel_display_power_get(dev_priv, power_domain);
1195
1196 DRM_DEBUG_KMS("Turning eDP VDD on\n");
1197
1198 if (!edp_have_panel_power(intel_dp))
1199 wait_panel_power_cycle(intel_dp);
1200
1201 pp = ironlake_get_pp_control(intel_dp);
1202 pp |= EDP_FORCE_VDD;
1203
1204 pp_stat_reg = _pp_stat_reg(intel_dp);
1205 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1206
1207 I915_WRITE(pp_ctrl_reg, pp);
1208 POSTING_READ(pp_ctrl_reg);
1209 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1210 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1211 /*
1212 * If the panel wasn't on, delay before accessing aux channel
1213 */
1214 if (!edp_have_panel_power(intel_dp)) {
1215 DRM_DEBUG_KMS("eDP was not running\n");
1216 msleep(intel_dp->panel_power_up_delay);
1217 }
1218
1219 return need_to_disable;
1220 }
1221
1222 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1223 {
1224 if (is_edp(intel_dp)) {
1225 bool vdd = edp_panel_vdd_on(intel_dp);
1226
1227 WARN(!vdd, "eDP VDD already requested on\n");
1228 }
1229 }
1230
1231 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1232 {
1233 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1234 struct drm_i915_private *dev_priv = dev->dev_private;
1235 u32 pp;
1236 u32 pp_stat_reg, pp_ctrl_reg;
1237
1238 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1239
1240 if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1241 struct intel_digital_port *intel_dig_port =
1242 dp_to_dig_port(intel_dp);
1243 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1244 enum intel_display_power_domain power_domain;
1245
1246 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1247
1248 pp = ironlake_get_pp_control(intel_dp);
1249 pp &= ~EDP_FORCE_VDD;
1250
1251 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1252 pp_stat_reg = _pp_stat_reg(intel_dp);
1253
1254 I915_WRITE(pp_ctrl_reg, pp);
1255 POSTING_READ(pp_ctrl_reg);
1256
1257 /* Make sure sequencer is idle before allowing subsequent activity */
1258 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1259 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1260
1261 if ((pp & POWER_TARGET_ON) == 0)
1262 intel_dp->last_power_cycle = jiffies;
1263
1264 power_domain = intel_display_port_power_domain(intel_encoder);
1265 intel_display_power_put(dev_priv, power_domain);
1266 }
1267 }
1268
1269 static void edp_panel_vdd_work(struct work_struct *__work)
1270 {
1271 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1272 struct intel_dp, panel_vdd_work);
1273 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1274
1275 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
1276 edp_panel_vdd_off_sync(intel_dp);
1277 drm_modeset_unlock(&dev->mode_config.connection_mutex);
1278 }
1279
1280 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1281 {
1282 unsigned long delay;
1283
1284 /*
1285 * Queue the timer to fire a long time from now (relative to the power
1286 * down delay) to keep the panel power up across a sequence of
1287 * operations.
1288 */
1289 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1290 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1291 }
1292
1293 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1294 {
1295 if (!is_edp(intel_dp))
1296 return;
1297
1298 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1299
1300 intel_dp->want_panel_vdd = false;
1301
1302 if (sync)
1303 edp_panel_vdd_off_sync(intel_dp);
1304 else
1305 edp_panel_vdd_schedule_off(intel_dp);
1306 }
1307
1308 static void intel_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1309 {
1310 edp_panel_vdd_off(intel_dp, sync);
1311 }
1312
1313 void intel_edp_panel_on(struct intel_dp *intel_dp)
1314 {
1315 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1316 struct drm_i915_private *dev_priv = dev->dev_private;
1317 u32 pp;
1318 u32 pp_ctrl_reg;
1319
1320 if (!is_edp(intel_dp))
1321 return;
1322
1323 DRM_DEBUG_KMS("Turn eDP power on\n");
1324
1325 if (edp_have_panel_power(intel_dp)) {
1326 DRM_DEBUG_KMS("eDP power already on\n");
1327 return;
1328 }
1329
1330 wait_panel_power_cycle(intel_dp);
1331
1332 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1333 pp = ironlake_get_pp_control(intel_dp);
1334 if (IS_GEN5(dev)) {
1335 /* ILK workaround: disable reset around power sequence */
1336 pp &= ~PANEL_POWER_RESET;
1337 I915_WRITE(pp_ctrl_reg, pp);
1338 POSTING_READ(pp_ctrl_reg);
1339 }
1340
1341 pp |= POWER_TARGET_ON;
1342 if (!IS_GEN5(dev))
1343 pp |= PANEL_POWER_RESET;
1344
1345 I915_WRITE(pp_ctrl_reg, pp);
1346 POSTING_READ(pp_ctrl_reg);
1347
1348 wait_panel_on(intel_dp);
1349 intel_dp->last_power_on = jiffies;
1350
1351 if (IS_GEN5(dev)) {
1352 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1353 I915_WRITE(pp_ctrl_reg, pp);
1354 POSTING_READ(pp_ctrl_reg);
1355 }
1356 }
1357
1358 void intel_edp_panel_off(struct intel_dp *intel_dp)
1359 {
1360 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1361 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1362 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1363 struct drm_i915_private *dev_priv = dev->dev_private;
1364 enum intel_display_power_domain power_domain;
1365 u32 pp;
1366 u32 pp_ctrl_reg;
1367
1368 if (!is_edp(intel_dp))
1369 return;
1370
1371 DRM_DEBUG_KMS("Turn eDP power off\n");
1372
1373 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1374
1375 pp = ironlake_get_pp_control(intel_dp);
1376 /* We need to switch off panel power _and_ force vdd, for otherwise some
1377 * panels get very unhappy and cease to work. */
1378 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1379 EDP_BLC_ENABLE);
1380
1381 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1382
1383 intel_dp->want_panel_vdd = false;
1384
1385 I915_WRITE(pp_ctrl_reg, pp);
1386 POSTING_READ(pp_ctrl_reg);
1387
1388 intel_dp->last_power_cycle = jiffies;
1389 wait_panel_off(intel_dp);
1390
1391 /* We got a reference when we enabled the VDD. */
1392 power_domain = intel_display_port_power_domain(intel_encoder);
1393 intel_display_power_put(dev_priv, power_domain);
1394 }
1395
1396 /* Enable backlight in the panel power control. */
1397 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
1398 {
1399 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1400 struct drm_device *dev = intel_dig_port->base.base.dev;
1401 struct drm_i915_private *dev_priv = dev->dev_private;
1402 u32 pp;
1403 u32 pp_ctrl_reg;
1404
1405 /*
1406 * If we enable the backlight right away following a panel power
1407 * on, we may see slight flicker as the panel syncs with the eDP
1408 * link. So delay a bit to make sure the image is solid before
1409 * allowing it to appear.
1410 */
1411 wait_backlight_on(intel_dp);
1412 pp = ironlake_get_pp_control(intel_dp);
1413 pp |= EDP_BLC_ENABLE;
1414
1415 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1416
1417 I915_WRITE(pp_ctrl_reg, pp);
1418 POSTING_READ(pp_ctrl_reg);
1419 }
1420
1421 /* Enable backlight PWM and backlight PP control. */
1422 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1423 {
1424 if (!is_edp(intel_dp))
1425 return;
1426
1427 DRM_DEBUG_KMS("\n");
1428
1429 intel_panel_enable_backlight(intel_dp->attached_connector);
1430 _intel_edp_backlight_on(intel_dp);
1431 }
1432
1433 /* Disable backlight in the panel power control. */
1434 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
1435 {
1436 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1437 struct drm_i915_private *dev_priv = dev->dev_private;
1438 u32 pp;
1439 u32 pp_ctrl_reg;
1440
1441 pp = ironlake_get_pp_control(intel_dp);
1442 pp &= ~EDP_BLC_ENABLE;
1443
1444 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1445
1446 I915_WRITE(pp_ctrl_reg, pp);
1447 POSTING_READ(pp_ctrl_reg);
1448 intel_dp->last_backlight_off = jiffies;
1449
1450 edp_wait_backlight_off(intel_dp);
1451 }
1452
1453 /* Disable backlight PP control and backlight PWM. */
1454 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1455 {
1456 if (!is_edp(intel_dp))
1457 return;
1458
1459 DRM_DEBUG_KMS("\n");
1460
1461 _intel_edp_backlight_off(intel_dp);
1462 intel_panel_disable_backlight(intel_dp->attached_connector);
1463 }
1464
1465 /*
1466 * Hook for controlling the panel power control backlight through the bl_power
1467 * sysfs attribute. Take care to handle multiple calls.
1468 */
1469 static void intel_edp_backlight_power(struct intel_connector *connector,
1470 bool enable)
1471 {
1472 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
1473 bool is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
1474
1475 if (is_enabled == enable)
1476 return;
1477
1478 DRM_DEBUG_KMS("\n");
1479
1480 if (enable)
1481 _intel_edp_backlight_on(intel_dp);
1482 else
1483 _intel_edp_backlight_off(intel_dp);
1484 }
1485
1486 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1487 {
1488 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1489 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1490 struct drm_device *dev = crtc->dev;
1491 struct drm_i915_private *dev_priv = dev->dev_private;
1492 u32 dpa_ctl;
1493
1494 assert_pipe_disabled(dev_priv,
1495 to_intel_crtc(crtc)->pipe);
1496
1497 DRM_DEBUG_KMS("\n");
1498 dpa_ctl = I915_READ(DP_A);
1499 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1500 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1501
1502 /* We don't adjust intel_dp->DP while tearing down the link, to
1503 * facilitate link retraining (e.g. after hotplug). Hence clear all
1504 * enable bits here to ensure that we don't enable too much. */
1505 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1506 intel_dp->DP |= DP_PLL_ENABLE;
1507 I915_WRITE(DP_A, intel_dp->DP);
1508 POSTING_READ(DP_A);
1509 udelay(200);
1510 }
1511
1512 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1513 {
1514 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1515 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1516 struct drm_device *dev = crtc->dev;
1517 struct drm_i915_private *dev_priv = dev->dev_private;
1518 u32 dpa_ctl;
1519
1520 assert_pipe_disabled(dev_priv,
1521 to_intel_crtc(crtc)->pipe);
1522
1523 dpa_ctl = I915_READ(DP_A);
1524 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1525 "dp pll off, should be on\n");
1526 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1527
1528 /* We can't rely on the value tracked for the DP register in
1529 * intel_dp->DP because link_down must not change that (otherwise link
1530 * re-training will fail. */
1531 dpa_ctl &= ~DP_PLL_ENABLE;
1532 I915_WRITE(DP_A, dpa_ctl);
1533 POSTING_READ(DP_A);
1534 udelay(200);
1535 }
1536
1537 /* If the sink supports it, try to set the power state appropriately */
1538 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1539 {
1540 int ret, i;
1541
1542 /* Should have a valid DPCD by this point */
1543 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1544 return;
1545
1546 if (mode != DRM_MODE_DPMS_ON) {
1547 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1548 DP_SET_POWER_D3);
1549 if (ret != 1)
1550 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1551 } else {
1552 /*
1553 * When turning on, we need to retry for 1ms to give the sink
1554 * time to wake up.
1555 */
1556 for (i = 0; i < 3; i++) {
1557 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1558 DP_SET_POWER_D0);
1559 if (ret == 1)
1560 break;
1561 msleep(1);
1562 }
1563 }
1564 }
1565
1566 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1567 enum pipe *pipe)
1568 {
1569 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1570 enum port port = dp_to_dig_port(intel_dp)->port;
1571 struct drm_device *dev = encoder->base.dev;
1572 struct drm_i915_private *dev_priv = dev->dev_private;
1573 enum intel_display_power_domain power_domain;
1574 u32 tmp;
1575
1576 power_domain = intel_display_port_power_domain(encoder);
1577 if (!intel_display_power_enabled(dev_priv, power_domain))
1578 return false;
1579
1580 tmp = I915_READ(intel_dp->output_reg);
1581
1582 if (!(tmp & DP_PORT_EN))
1583 return false;
1584
1585 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1586 *pipe = PORT_TO_PIPE_CPT(tmp);
1587 } else if (IS_CHERRYVIEW(dev)) {
1588 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
1589 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1590 *pipe = PORT_TO_PIPE(tmp);
1591 } else {
1592 u32 trans_sel;
1593 u32 trans_dp;
1594 int i;
1595
1596 switch (intel_dp->output_reg) {
1597 case PCH_DP_B:
1598 trans_sel = TRANS_DP_PORT_SEL_B;
1599 break;
1600 case PCH_DP_C:
1601 trans_sel = TRANS_DP_PORT_SEL_C;
1602 break;
1603 case PCH_DP_D:
1604 trans_sel = TRANS_DP_PORT_SEL_D;
1605 break;
1606 default:
1607 return true;
1608 }
1609
1610 for_each_pipe(dev_priv, i) {
1611 trans_dp = I915_READ(TRANS_DP_CTL(i));
1612 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1613 *pipe = i;
1614 return true;
1615 }
1616 }
1617
1618 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1619 intel_dp->output_reg);
1620 }
1621
1622 return true;
1623 }
1624
1625 static void intel_dp_get_config(struct intel_encoder *encoder,
1626 struct intel_crtc_config *pipe_config)
1627 {
1628 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1629 u32 tmp, flags = 0;
1630 struct drm_device *dev = encoder->base.dev;
1631 struct drm_i915_private *dev_priv = dev->dev_private;
1632 enum port port = dp_to_dig_port(intel_dp)->port;
1633 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1634 int dotclock;
1635
1636 tmp = I915_READ(intel_dp->output_reg);
1637 if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1638 pipe_config->has_audio = true;
1639
1640 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1641 if (tmp & DP_SYNC_HS_HIGH)
1642 flags |= DRM_MODE_FLAG_PHSYNC;
1643 else
1644 flags |= DRM_MODE_FLAG_NHSYNC;
1645
1646 if (tmp & DP_SYNC_VS_HIGH)
1647 flags |= DRM_MODE_FLAG_PVSYNC;
1648 else
1649 flags |= DRM_MODE_FLAG_NVSYNC;
1650 } else {
1651 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1652 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1653 flags |= DRM_MODE_FLAG_PHSYNC;
1654 else
1655 flags |= DRM_MODE_FLAG_NHSYNC;
1656
1657 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1658 flags |= DRM_MODE_FLAG_PVSYNC;
1659 else
1660 flags |= DRM_MODE_FLAG_NVSYNC;
1661 }
1662
1663 pipe_config->adjusted_mode.flags |= flags;
1664
1665 pipe_config->has_dp_encoder = true;
1666
1667 intel_dp_get_m_n(crtc, pipe_config);
1668
1669 if (port == PORT_A) {
1670 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1671 pipe_config->port_clock = 162000;
1672 else
1673 pipe_config->port_clock = 270000;
1674 }
1675
1676 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1677 &pipe_config->dp_m_n);
1678
1679 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1680 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1681
1682 pipe_config->adjusted_mode.crtc_clock = dotclock;
1683
1684 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1685 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1686 /*
1687 * This is a big fat ugly hack.
1688 *
1689 * Some machines in UEFI boot mode provide us a VBT that has 18
1690 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1691 * unknown we fail to light up. Yet the same BIOS boots up with
1692 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1693 * max, not what it tells us to use.
1694 *
1695 * Note: This will still be broken if the eDP panel is not lit
1696 * up by the BIOS, and thus we can't get the mode at module
1697 * load.
1698 */
1699 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1700 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1701 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1702 }
1703 }
1704
1705 static bool is_edp_psr(struct intel_dp *intel_dp)
1706 {
1707 return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
1708 }
1709
1710 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1711 {
1712 struct drm_i915_private *dev_priv = dev->dev_private;
1713
1714 if (!HAS_PSR(dev))
1715 return false;
1716
1717 return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1718 }
1719
1720 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1721 struct edp_vsc_psr *vsc_psr)
1722 {
1723 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1724 struct drm_device *dev = dig_port->base.base.dev;
1725 struct drm_i915_private *dev_priv = dev->dev_private;
1726 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1727 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1728 u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1729 uint32_t *data = (uint32_t *) vsc_psr;
1730 unsigned int i;
1731
1732 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1733 the video DIP being updated before program video DIP data buffer
1734 registers for DIP being updated. */
1735 I915_WRITE(ctl_reg, 0);
1736 POSTING_READ(ctl_reg);
1737
1738 for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1739 if (i < sizeof(struct edp_vsc_psr))
1740 I915_WRITE(data_reg + i, *data++);
1741 else
1742 I915_WRITE(data_reg + i, 0);
1743 }
1744
1745 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1746 POSTING_READ(ctl_reg);
1747 }
1748
1749 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1750 {
1751 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1752 struct drm_i915_private *dev_priv = dev->dev_private;
1753 struct edp_vsc_psr psr_vsc;
1754
1755 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1756 memset(&psr_vsc, 0, sizeof(psr_vsc));
1757 psr_vsc.sdp_header.HB0 = 0;
1758 psr_vsc.sdp_header.HB1 = 0x7;
1759 psr_vsc.sdp_header.HB2 = 0x2;
1760 psr_vsc.sdp_header.HB3 = 0x8;
1761 intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1762
1763 /* Avoid continuous PSR exit by masking memup and hpd */
1764 I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1765 EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1766 }
1767
1768 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1769 {
1770 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1771 struct drm_device *dev = dig_port->base.base.dev;
1772 struct drm_i915_private *dev_priv = dev->dev_private;
1773 uint32_t aux_clock_divider;
1774 int precharge = 0x3;
1775 int msg_size = 5; /* Header(4) + Message(1) */
1776 bool only_standby = false;
1777
1778 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1779
1780 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1781 only_standby = true;
1782
1783 /* Enable PSR in sink */
1784 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
1785 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1786 DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
1787 else
1788 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1789 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
1790
1791 /* Setup AUX registers */
1792 I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1793 I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1794 I915_WRITE(EDP_PSR_AUX_CTL(dev),
1795 DP_AUX_CH_CTL_TIME_OUT_400us |
1796 (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1797 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1798 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1799 }
1800
1801 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1802 {
1803 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1804 struct drm_device *dev = dig_port->base.base.dev;
1805 struct drm_i915_private *dev_priv = dev->dev_private;
1806 uint32_t max_sleep_time = 0x1f;
1807 uint32_t idle_frames = 1;
1808 uint32_t val = 0x0;
1809 const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1810 bool only_standby = false;
1811
1812 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1813 only_standby = true;
1814
1815 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
1816 val |= EDP_PSR_LINK_STANDBY;
1817 val |= EDP_PSR_TP2_TP3_TIME_0us;
1818 val |= EDP_PSR_TP1_TIME_0us;
1819 val |= EDP_PSR_SKIP_AUX_EXIT;
1820 val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
1821 } else
1822 val |= EDP_PSR_LINK_DISABLE;
1823
1824 I915_WRITE(EDP_PSR_CTL(dev), val |
1825 (IS_BROADWELL(dev) ? 0 : link_entry_time) |
1826 max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1827 idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1828 EDP_PSR_ENABLE);
1829 }
1830
1831 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1832 {
1833 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1834 struct drm_device *dev = dig_port->base.base.dev;
1835 struct drm_i915_private *dev_priv = dev->dev_private;
1836 struct drm_crtc *crtc = dig_port->base.base.crtc;
1837 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1838
1839 lockdep_assert_held(&dev_priv->psr.lock);
1840 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1841 WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
1842
1843 dev_priv->psr.source_ok = false;
1844
1845 if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
1846 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1847 return false;
1848 }
1849
1850 if (!i915.enable_psr) {
1851 DRM_DEBUG_KMS("PSR disable by flag\n");
1852 return false;
1853 }
1854
1855 /* Below limitations aren't valid for Broadwell */
1856 if (IS_BROADWELL(dev))
1857 goto out;
1858
1859 if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1860 S3D_ENABLE) {
1861 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1862 return false;
1863 }
1864
1865 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1866 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1867 return false;
1868 }
1869
1870 out:
1871 dev_priv->psr.source_ok = true;
1872 return true;
1873 }
1874
1875 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1876 {
1877 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1878 struct drm_device *dev = intel_dig_port->base.base.dev;
1879 struct drm_i915_private *dev_priv = dev->dev_private;
1880
1881 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
1882 WARN_ON(dev_priv->psr.active);
1883 lockdep_assert_held(&dev_priv->psr.lock);
1884
1885 /* Enable PSR on the panel */
1886 intel_edp_psr_enable_sink(intel_dp);
1887
1888 /* Enable PSR on the host */
1889 intel_edp_psr_enable_source(intel_dp);
1890
1891 dev_priv->psr.active = true;
1892 }
1893
1894 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1895 {
1896 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1897 struct drm_i915_private *dev_priv = dev->dev_private;
1898
1899 if (!HAS_PSR(dev)) {
1900 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1901 return;
1902 }
1903
1904 if (!is_edp_psr(intel_dp)) {
1905 DRM_DEBUG_KMS("PSR not supported by this panel\n");
1906 return;
1907 }
1908
1909 mutex_lock(&dev_priv->psr.lock);
1910 if (dev_priv->psr.enabled) {
1911 DRM_DEBUG_KMS("PSR already in use\n");
1912 mutex_unlock(&dev_priv->psr.lock);
1913 return;
1914 }
1915
1916 dev_priv->psr.busy_frontbuffer_bits = 0;
1917
1918 /* Setup PSR once */
1919 intel_edp_psr_setup(intel_dp);
1920
1921 if (intel_edp_psr_match_conditions(intel_dp))
1922 dev_priv->psr.enabled = intel_dp;
1923 mutex_unlock(&dev_priv->psr.lock);
1924 }
1925
1926 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1927 {
1928 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1929 struct drm_i915_private *dev_priv = dev->dev_private;
1930
1931 mutex_lock(&dev_priv->psr.lock);
1932 if (!dev_priv->psr.enabled) {
1933 mutex_unlock(&dev_priv->psr.lock);
1934 return;
1935 }
1936
1937 if (dev_priv->psr.active) {
1938 I915_WRITE(EDP_PSR_CTL(dev),
1939 I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1940
1941 /* Wait till PSR is idle */
1942 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1943 EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1944 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1945
1946 dev_priv->psr.active = false;
1947 } else {
1948 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
1949 }
1950
1951 dev_priv->psr.enabled = NULL;
1952 mutex_unlock(&dev_priv->psr.lock);
1953
1954 cancel_delayed_work_sync(&dev_priv->psr.work);
1955 }
1956
1957 static void intel_edp_psr_work(struct work_struct *work)
1958 {
1959 struct drm_i915_private *dev_priv =
1960 container_of(work, typeof(*dev_priv), psr.work.work);
1961 struct intel_dp *intel_dp = dev_priv->psr.enabled;
1962
1963 mutex_lock(&dev_priv->psr.lock);
1964 intel_dp = dev_priv->psr.enabled;
1965
1966 if (!intel_dp)
1967 goto unlock;
1968
1969 /*
1970 * The delayed work can race with an invalidate hence we need to
1971 * recheck. Since psr_flush first clears this and then reschedules we
1972 * won't ever miss a flush when bailing out here.
1973 */
1974 if (dev_priv->psr.busy_frontbuffer_bits)
1975 goto unlock;
1976
1977 intel_edp_psr_do_enable(intel_dp);
1978 unlock:
1979 mutex_unlock(&dev_priv->psr.lock);
1980 }
1981
1982 static void intel_edp_psr_do_exit(struct drm_device *dev)
1983 {
1984 struct drm_i915_private *dev_priv = dev->dev_private;
1985
1986 if (dev_priv->psr.active) {
1987 u32 val = I915_READ(EDP_PSR_CTL(dev));
1988
1989 WARN_ON(!(val & EDP_PSR_ENABLE));
1990
1991 I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
1992
1993 dev_priv->psr.active = false;
1994 }
1995
1996 }
1997
1998 void intel_edp_psr_invalidate(struct drm_device *dev,
1999 unsigned frontbuffer_bits)
2000 {
2001 struct drm_i915_private *dev_priv = dev->dev_private;
2002 struct drm_crtc *crtc;
2003 enum pipe pipe;
2004
2005 mutex_lock(&dev_priv->psr.lock);
2006 if (!dev_priv->psr.enabled) {
2007 mutex_unlock(&dev_priv->psr.lock);
2008 return;
2009 }
2010
2011 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2012 pipe = to_intel_crtc(crtc)->pipe;
2013
2014 intel_edp_psr_do_exit(dev);
2015
2016 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
2017
2018 dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
2019 mutex_unlock(&dev_priv->psr.lock);
2020 }
2021
2022 void intel_edp_psr_flush(struct drm_device *dev,
2023 unsigned frontbuffer_bits)
2024 {
2025 struct drm_i915_private *dev_priv = dev->dev_private;
2026 struct drm_crtc *crtc;
2027 enum pipe pipe;
2028
2029 mutex_lock(&dev_priv->psr.lock);
2030 if (!dev_priv->psr.enabled) {
2031 mutex_unlock(&dev_priv->psr.lock);
2032 return;
2033 }
2034
2035 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2036 pipe = to_intel_crtc(crtc)->pipe;
2037 dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
2038
2039 /*
2040 * On Haswell sprite plane updates don't result in a psr invalidating
2041 * signal in the hardware. Which means we need to manually fake this in
2042 * software for all flushes, not just when we've seen a preceding
2043 * invalidation through frontbuffer rendering.
2044 */
2045 if (IS_HASWELL(dev) &&
2046 (frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe)))
2047 intel_edp_psr_do_exit(dev);
2048
2049 if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
2050 schedule_delayed_work(&dev_priv->psr.work,
2051 msecs_to_jiffies(100));
2052 mutex_unlock(&dev_priv->psr.lock);
2053 }
2054
2055 void intel_edp_psr_init(struct drm_device *dev)
2056 {
2057 struct drm_i915_private *dev_priv = dev->dev_private;
2058
2059 INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work);
2060 mutex_init(&dev_priv->psr.lock);
2061 }
2062
2063 static void intel_disable_dp(struct intel_encoder *encoder)
2064 {
2065 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2066 enum port port = dp_to_dig_port(intel_dp)->port;
2067 struct drm_device *dev = encoder->base.dev;
2068
2069 /* Make sure the panel is off before trying to change the mode. But also
2070 * ensure that we have vdd while we switch off the panel. */
2071 intel_edp_panel_vdd_on(intel_dp);
2072 intel_edp_backlight_off(intel_dp);
2073 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2074 intel_edp_panel_off(intel_dp);
2075
2076 /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
2077 if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
2078 intel_dp_link_down(intel_dp);
2079 }
2080
2081 static void g4x_post_disable_dp(struct intel_encoder *encoder)
2082 {
2083 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2084 enum port port = dp_to_dig_port(intel_dp)->port;
2085
2086 if (port != PORT_A)
2087 return;
2088
2089 intel_dp_link_down(intel_dp);
2090 ironlake_edp_pll_off(intel_dp);
2091 }
2092
2093 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2094 {
2095 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2096
2097 intel_dp_link_down(intel_dp);
2098 }
2099
2100 static void chv_post_disable_dp(struct intel_encoder *encoder)
2101 {
2102 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2103 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2104 struct drm_device *dev = encoder->base.dev;
2105 struct drm_i915_private *dev_priv = dev->dev_private;
2106 struct intel_crtc *intel_crtc =
2107 to_intel_crtc(encoder->base.crtc);
2108 enum dpio_channel ch = vlv_dport_to_channel(dport);
2109 enum pipe pipe = intel_crtc->pipe;
2110 u32 val;
2111
2112 intel_dp_link_down(intel_dp);
2113
2114 mutex_lock(&dev_priv->dpio_lock);
2115
2116 /* Propagate soft reset to data lane reset */
2117 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2118 val |= CHV_PCS_REQ_SOFTRESET_EN;
2119 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2120
2121 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2122 val |= CHV_PCS_REQ_SOFTRESET_EN;
2123 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2124
2125 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2126 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2127 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2128
2129 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2130 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2131 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2132
2133 mutex_unlock(&dev_priv->dpio_lock);
2134 }
2135
2136 static void intel_enable_dp(struct intel_encoder *encoder)
2137 {
2138 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2139 struct drm_device *dev = encoder->base.dev;
2140 struct drm_i915_private *dev_priv = dev->dev_private;
2141 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2142
2143 if (WARN_ON(dp_reg & DP_PORT_EN))
2144 return;
2145
2146 intel_edp_panel_vdd_on(intel_dp);
2147 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2148 intel_dp_start_link_train(intel_dp);
2149 intel_edp_panel_on(intel_dp);
2150 intel_edp_panel_vdd_off(intel_dp, true);
2151 intel_dp_complete_link_train(intel_dp);
2152 intel_dp_stop_link_train(intel_dp);
2153 }
2154
2155 static void g4x_enable_dp(struct intel_encoder *encoder)
2156 {
2157 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2158
2159 intel_enable_dp(encoder);
2160 intel_edp_backlight_on(intel_dp);
2161 }
2162
2163 static void vlv_enable_dp(struct intel_encoder *encoder)
2164 {
2165 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2166
2167 intel_edp_backlight_on(intel_dp);
2168 }
2169
2170 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2171 {
2172 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2173 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2174
2175 intel_dp_prepare(encoder);
2176
2177 /* Only ilk+ has port A */
2178 if (dport->port == PORT_A) {
2179 ironlake_set_pll_cpu_edp(intel_dp);
2180 ironlake_edp_pll_on(intel_dp);
2181 }
2182 }
2183
2184 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2185 {
2186 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2187 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2188 struct drm_device *dev = encoder->base.dev;
2189 struct drm_i915_private *dev_priv = dev->dev_private;
2190 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2191 enum dpio_channel port = vlv_dport_to_channel(dport);
2192 int pipe = intel_crtc->pipe;
2193 struct edp_power_seq power_seq;
2194 u32 val;
2195
2196 mutex_lock(&dev_priv->dpio_lock);
2197
2198 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2199 val = 0;
2200 if (pipe)
2201 val |= (1<<21);
2202 else
2203 val &= ~(1<<21);
2204 val |= 0x001000c4;
2205 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2206 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2207 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2208
2209 mutex_unlock(&dev_priv->dpio_lock);
2210
2211 if (is_edp(intel_dp)) {
2212 /* init power sequencer on this pipe and port */
2213 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2214 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2215 &power_seq);
2216 }
2217
2218 intel_enable_dp(encoder);
2219
2220 vlv_wait_port_ready(dev_priv, dport);
2221 }
2222
2223 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2224 {
2225 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2226 struct drm_device *dev = encoder->base.dev;
2227 struct drm_i915_private *dev_priv = dev->dev_private;
2228 struct intel_crtc *intel_crtc =
2229 to_intel_crtc(encoder->base.crtc);
2230 enum dpio_channel port = vlv_dport_to_channel(dport);
2231 int pipe = intel_crtc->pipe;
2232
2233 intel_dp_prepare(encoder);
2234
2235 /* Program Tx lane resets to default */
2236 mutex_lock(&dev_priv->dpio_lock);
2237 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2238 DPIO_PCS_TX_LANE2_RESET |
2239 DPIO_PCS_TX_LANE1_RESET);
2240 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2241 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2242 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2243 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2244 DPIO_PCS_CLK_SOFT_RESET);
2245
2246 /* Fix up inter-pair skew failure */
2247 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2248 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2249 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2250 mutex_unlock(&dev_priv->dpio_lock);
2251 }
2252
2253 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2254 {
2255 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2256 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2257 struct drm_device *dev = encoder->base.dev;
2258 struct drm_i915_private *dev_priv = dev->dev_private;
2259 struct edp_power_seq power_seq;
2260 struct intel_crtc *intel_crtc =
2261 to_intel_crtc(encoder->base.crtc);
2262 enum dpio_channel ch = vlv_dport_to_channel(dport);
2263 int pipe = intel_crtc->pipe;
2264 int data, i;
2265 u32 val;
2266
2267 mutex_lock(&dev_priv->dpio_lock);
2268
2269 /* Deassert soft data lane reset*/
2270 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2271 val |= CHV_PCS_REQ_SOFTRESET_EN;
2272 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2273
2274 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2275 val |= CHV_PCS_REQ_SOFTRESET_EN;
2276 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2277
2278 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2279 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2280 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2281
2282 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2283 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2284 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2285
2286 /* Program Tx lane latency optimal setting*/
2287 for (i = 0; i < 4; i++) {
2288 /* Set the latency optimal bit */
2289 data = (i == 1) ? 0x0 : 0x6;
2290 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2291 data << DPIO_FRC_LATENCY_SHFIT);
2292
2293 /* Set the upar bit */
2294 data = (i == 1) ? 0x0 : 0x1;
2295 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2296 data << DPIO_UPAR_SHIFT);
2297 }
2298
2299 /* Data lane stagger programming */
2300 /* FIXME: Fix up value only after power analysis */
2301
2302 mutex_unlock(&dev_priv->dpio_lock);
2303
2304 if (is_edp(intel_dp)) {
2305 /* init power sequencer on this pipe and port */
2306 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2307 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2308 &power_seq);
2309 }
2310
2311 intel_enable_dp(encoder);
2312
2313 vlv_wait_port_ready(dev_priv, dport);
2314 }
2315
2316 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2317 {
2318 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2319 struct drm_device *dev = encoder->base.dev;
2320 struct drm_i915_private *dev_priv = dev->dev_private;
2321 struct intel_crtc *intel_crtc =
2322 to_intel_crtc(encoder->base.crtc);
2323 enum dpio_channel ch = vlv_dport_to_channel(dport);
2324 enum pipe pipe = intel_crtc->pipe;
2325 u32 val;
2326
2327 intel_dp_prepare(encoder);
2328
2329 mutex_lock(&dev_priv->dpio_lock);
2330
2331 /* program left/right clock distribution */
2332 if (pipe != PIPE_B) {
2333 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2334 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2335 if (ch == DPIO_CH0)
2336 val |= CHV_BUFLEFTENA1_FORCE;
2337 if (ch == DPIO_CH1)
2338 val |= CHV_BUFRIGHTENA1_FORCE;
2339 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2340 } else {
2341 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2342 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2343 if (ch == DPIO_CH0)
2344 val |= CHV_BUFLEFTENA2_FORCE;
2345 if (ch == DPIO_CH1)
2346 val |= CHV_BUFRIGHTENA2_FORCE;
2347 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2348 }
2349
2350 /* program clock channel usage */
2351 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2352 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2353 if (pipe != PIPE_B)
2354 val &= ~CHV_PCS_USEDCLKCHANNEL;
2355 else
2356 val |= CHV_PCS_USEDCLKCHANNEL;
2357 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2358
2359 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2360 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2361 if (pipe != PIPE_B)
2362 val &= ~CHV_PCS_USEDCLKCHANNEL;
2363 else
2364 val |= CHV_PCS_USEDCLKCHANNEL;
2365 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2366
2367 /*
2368 * This a a bit weird since generally CL
2369 * matches the pipe, but here we need to
2370 * pick the CL based on the port.
2371 */
2372 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2373 if (pipe != PIPE_B)
2374 val &= ~CHV_CMN_USEDCLKCHANNEL;
2375 else
2376 val |= CHV_CMN_USEDCLKCHANNEL;
2377 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2378
2379 mutex_unlock(&dev_priv->dpio_lock);
2380 }
2381
2382 /*
2383 * Native read with retry for link status and receiver capability reads for
2384 * cases where the sink may still be asleep.
2385 *
2386 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2387 * supposed to retry 3 times per the spec.
2388 */
2389 static ssize_t
2390 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2391 void *buffer, size_t size)
2392 {
2393 ssize_t ret;
2394 int i;
2395
2396 for (i = 0; i < 3; i++) {
2397 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2398 if (ret == size)
2399 return ret;
2400 msleep(1);
2401 }
2402
2403 return ret;
2404 }
2405
2406 /*
2407 * Fetch AUX CH registers 0x202 - 0x207 which contain
2408 * link status information
2409 */
2410 static bool
2411 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2412 {
2413 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2414 DP_LANE0_1_STATUS,
2415 link_status,
2416 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2417 }
2418
2419 /* These are source-specific values. */
2420 static uint8_t
2421 intel_dp_voltage_max(struct intel_dp *intel_dp)
2422 {
2423 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2424 enum port port = dp_to_dig_port(intel_dp)->port;
2425
2426 if (IS_VALLEYVIEW(dev))
2427 return DP_TRAIN_VOLTAGE_SWING_1200;
2428 else if (IS_GEN7(dev) && port == PORT_A)
2429 return DP_TRAIN_VOLTAGE_SWING_800;
2430 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2431 return DP_TRAIN_VOLTAGE_SWING_1200;
2432 else
2433 return DP_TRAIN_VOLTAGE_SWING_800;
2434 }
2435
2436 static uint8_t
2437 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2438 {
2439 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2440 enum port port = dp_to_dig_port(intel_dp)->port;
2441
2442 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2443 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2444 case DP_TRAIN_VOLTAGE_SWING_400:
2445 return DP_TRAIN_PRE_EMPHASIS_9_5;
2446 case DP_TRAIN_VOLTAGE_SWING_600:
2447 return DP_TRAIN_PRE_EMPHASIS_6;
2448 case DP_TRAIN_VOLTAGE_SWING_800:
2449 return DP_TRAIN_PRE_EMPHASIS_3_5;
2450 case DP_TRAIN_VOLTAGE_SWING_1200:
2451 default:
2452 return DP_TRAIN_PRE_EMPHASIS_0;
2453 }
2454 } else if (IS_VALLEYVIEW(dev)) {
2455 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2456 case DP_TRAIN_VOLTAGE_SWING_400:
2457 return DP_TRAIN_PRE_EMPHASIS_9_5;
2458 case DP_TRAIN_VOLTAGE_SWING_600:
2459 return DP_TRAIN_PRE_EMPHASIS_6;
2460 case DP_TRAIN_VOLTAGE_SWING_800:
2461 return DP_TRAIN_PRE_EMPHASIS_3_5;
2462 case DP_TRAIN_VOLTAGE_SWING_1200:
2463 default:
2464 return DP_TRAIN_PRE_EMPHASIS_0;
2465 }
2466 } else if (IS_GEN7(dev) && port == PORT_A) {
2467 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2468 case DP_TRAIN_VOLTAGE_SWING_400:
2469 return DP_TRAIN_PRE_EMPHASIS_6;
2470 case DP_TRAIN_VOLTAGE_SWING_600:
2471 case DP_TRAIN_VOLTAGE_SWING_800:
2472 return DP_TRAIN_PRE_EMPHASIS_3_5;
2473 default:
2474 return DP_TRAIN_PRE_EMPHASIS_0;
2475 }
2476 } else {
2477 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2478 case DP_TRAIN_VOLTAGE_SWING_400:
2479 return DP_TRAIN_PRE_EMPHASIS_6;
2480 case DP_TRAIN_VOLTAGE_SWING_600:
2481 return DP_TRAIN_PRE_EMPHASIS_6;
2482 case DP_TRAIN_VOLTAGE_SWING_800:
2483 return DP_TRAIN_PRE_EMPHASIS_3_5;
2484 case DP_TRAIN_VOLTAGE_SWING_1200:
2485 default:
2486 return DP_TRAIN_PRE_EMPHASIS_0;
2487 }
2488 }
2489 }
2490
2491 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2492 {
2493 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2494 struct drm_i915_private *dev_priv = dev->dev_private;
2495 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2496 struct intel_crtc *intel_crtc =
2497 to_intel_crtc(dport->base.base.crtc);
2498 unsigned long demph_reg_value, preemph_reg_value,
2499 uniqtranscale_reg_value;
2500 uint8_t train_set = intel_dp->train_set[0];
2501 enum dpio_channel port = vlv_dport_to_channel(dport);
2502 int pipe = intel_crtc->pipe;
2503
2504 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2505 case DP_TRAIN_PRE_EMPHASIS_0:
2506 preemph_reg_value = 0x0004000;
2507 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2508 case DP_TRAIN_VOLTAGE_SWING_400:
2509 demph_reg_value = 0x2B405555;
2510 uniqtranscale_reg_value = 0x552AB83A;
2511 break;
2512 case DP_TRAIN_VOLTAGE_SWING_600:
2513 demph_reg_value = 0x2B404040;
2514 uniqtranscale_reg_value = 0x5548B83A;
2515 break;
2516 case DP_TRAIN_VOLTAGE_SWING_800:
2517 demph_reg_value = 0x2B245555;
2518 uniqtranscale_reg_value = 0x5560B83A;
2519 break;
2520 case DP_TRAIN_VOLTAGE_SWING_1200:
2521 demph_reg_value = 0x2B405555;
2522 uniqtranscale_reg_value = 0x5598DA3A;
2523 break;
2524 default:
2525 return 0;
2526 }
2527 break;
2528 case DP_TRAIN_PRE_EMPHASIS_3_5:
2529 preemph_reg_value = 0x0002000;
2530 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2531 case DP_TRAIN_VOLTAGE_SWING_400:
2532 demph_reg_value = 0x2B404040;
2533 uniqtranscale_reg_value = 0x5552B83A;
2534 break;
2535 case DP_TRAIN_VOLTAGE_SWING_600:
2536 demph_reg_value = 0x2B404848;
2537 uniqtranscale_reg_value = 0x5580B83A;
2538 break;
2539 case DP_TRAIN_VOLTAGE_SWING_800:
2540 demph_reg_value = 0x2B404040;
2541 uniqtranscale_reg_value = 0x55ADDA3A;
2542 break;
2543 default:
2544 return 0;
2545 }
2546 break;
2547 case DP_TRAIN_PRE_EMPHASIS_6:
2548 preemph_reg_value = 0x0000000;
2549 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2550 case DP_TRAIN_VOLTAGE_SWING_400:
2551 demph_reg_value = 0x2B305555;
2552 uniqtranscale_reg_value = 0x5570B83A;
2553 break;
2554 case DP_TRAIN_VOLTAGE_SWING_600:
2555 demph_reg_value = 0x2B2B4040;
2556 uniqtranscale_reg_value = 0x55ADDA3A;
2557 break;
2558 default:
2559 return 0;
2560 }
2561 break;
2562 case DP_TRAIN_PRE_EMPHASIS_9_5:
2563 preemph_reg_value = 0x0006000;
2564 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2565 case DP_TRAIN_VOLTAGE_SWING_400:
2566 demph_reg_value = 0x1B405555;
2567 uniqtranscale_reg_value = 0x55ADDA3A;
2568 break;
2569 default:
2570 return 0;
2571 }
2572 break;
2573 default:
2574 return 0;
2575 }
2576
2577 mutex_lock(&dev_priv->dpio_lock);
2578 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2579 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2580 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2581 uniqtranscale_reg_value);
2582 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2583 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2584 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2585 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2586 mutex_unlock(&dev_priv->dpio_lock);
2587
2588 return 0;
2589 }
2590
2591 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
2592 {
2593 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2594 struct drm_i915_private *dev_priv = dev->dev_private;
2595 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2596 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
2597 u32 deemph_reg_value, margin_reg_value, val;
2598 uint8_t train_set = intel_dp->train_set[0];
2599 enum dpio_channel ch = vlv_dport_to_channel(dport);
2600 enum pipe pipe = intel_crtc->pipe;
2601 int i;
2602
2603 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2604 case DP_TRAIN_PRE_EMPHASIS_0:
2605 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2606 case DP_TRAIN_VOLTAGE_SWING_400:
2607 deemph_reg_value = 128;
2608 margin_reg_value = 52;
2609 break;
2610 case DP_TRAIN_VOLTAGE_SWING_600:
2611 deemph_reg_value = 128;
2612 margin_reg_value = 77;
2613 break;
2614 case DP_TRAIN_VOLTAGE_SWING_800:
2615 deemph_reg_value = 128;
2616 margin_reg_value = 102;
2617 break;
2618 case DP_TRAIN_VOLTAGE_SWING_1200:
2619 deemph_reg_value = 128;
2620 margin_reg_value = 154;
2621 /* FIXME extra to set for 1200 */
2622 break;
2623 default:
2624 return 0;
2625 }
2626 break;
2627 case DP_TRAIN_PRE_EMPHASIS_3_5:
2628 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2629 case DP_TRAIN_VOLTAGE_SWING_400:
2630 deemph_reg_value = 85;
2631 margin_reg_value = 78;
2632 break;
2633 case DP_TRAIN_VOLTAGE_SWING_600:
2634 deemph_reg_value = 85;
2635 margin_reg_value = 116;
2636 break;
2637 case DP_TRAIN_VOLTAGE_SWING_800:
2638 deemph_reg_value = 85;
2639 margin_reg_value = 154;
2640 break;
2641 default:
2642 return 0;
2643 }
2644 break;
2645 case DP_TRAIN_PRE_EMPHASIS_6:
2646 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2647 case DP_TRAIN_VOLTAGE_SWING_400:
2648 deemph_reg_value = 64;
2649 margin_reg_value = 104;
2650 break;
2651 case DP_TRAIN_VOLTAGE_SWING_600:
2652 deemph_reg_value = 64;
2653 margin_reg_value = 154;
2654 break;
2655 default:
2656 return 0;
2657 }
2658 break;
2659 case DP_TRAIN_PRE_EMPHASIS_9_5:
2660 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2661 case DP_TRAIN_VOLTAGE_SWING_400:
2662 deemph_reg_value = 43;
2663 margin_reg_value = 154;
2664 break;
2665 default:
2666 return 0;
2667 }
2668 break;
2669 default:
2670 return 0;
2671 }
2672
2673 mutex_lock(&dev_priv->dpio_lock);
2674
2675 /* Clear calc init */
2676 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2677 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2678 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2679
2680 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2681 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2682 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2683
2684 /* Program swing deemph */
2685 for (i = 0; i < 4; i++) {
2686 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
2687 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
2688 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
2689 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
2690 }
2691
2692 /* Program swing margin */
2693 for (i = 0; i < 4; i++) {
2694 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2695 val &= ~DPIO_SWING_MARGIN000_MASK;
2696 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
2697 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2698 }
2699
2700 /* Disable unique transition scale */
2701 for (i = 0; i < 4; i++) {
2702 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2703 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
2704 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2705 }
2706
2707 if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
2708 == DP_TRAIN_PRE_EMPHASIS_0) &&
2709 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
2710 == DP_TRAIN_VOLTAGE_SWING_1200)) {
2711
2712 /*
2713 * The document said it needs to set bit 27 for ch0 and bit 26
2714 * for ch1. Might be a typo in the doc.
2715 * For now, for this unique transition scale selection, set bit
2716 * 27 for ch0 and ch1.
2717 */
2718 for (i = 0; i < 4; i++) {
2719 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2720 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
2721 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2722 }
2723
2724 for (i = 0; i < 4; i++) {
2725 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2726 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2727 val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2728 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2729 }
2730 }
2731
2732 /* Start swing calculation */
2733 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2734 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2735 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2736
2737 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2738 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2739 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2740
2741 /* LRC Bypass */
2742 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
2743 val |= DPIO_LRC_BYPASS;
2744 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
2745
2746 mutex_unlock(&dev_priv->dpio_lock);
2747
2748 return 0;
2749 }
2750
2751 static void
2752 intel_get_adjust_train(struct intel_dp *intel_dp,
2753 const uint8_t link_status[DP_LINK_STATUS_SIZE])
2754 {
2755 uint8_t v = 0;
2756 uint8_t p = 0;
2757 int lane;
2758 uint8_t voltage_max;
2759 uint8_t preemph_max;
2760
2761 for (lane = 0; lane < intel_dp->lane_count; lane++) {
2762 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2763 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2764
2765 if (this_v > v)
2766 v = this_v;
2767 if (this_p > p)
2768 p = this_p;
2769 }
2770
2771 voltage_max = intel_dp_voltage_max(intel_dp);
2772 if (v >= voltage_max)
2773 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2774
2775 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2776 if (p >= preemph_max)
2777 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2778
2779 for (lane = 0; lane < 4; lane++)
2780 intel_dp->train_set[lane] = v | p;
2781 }
2782
2783 static uint32_t
2784 intel_gen4_signal_levels(uint8_t train_set)
2785 {
2786 uint32_t signal_levels = 0;
2787
2788 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2789 case DP_TRAIN_VOLTAGE_SWING_400:
2790 default:
2791 signal_levels |= DP_VOLTAGE_0_4;
2792 break;
2793 case DP_TRAIN_VOLTAGE_SWING_600:
2794 signal_levels |= DP_VOLTAGE_0_6;
2795 break;
2796 case DP_TRAIN_VOLTAGE_SWING_800:
2797 signal_levels |= DP_VOLTAGE_0_8;
2798 break;
2799 case DP_TRAIN_VOLTAGE_SWING_1200:
2800 signal_levels |= DP_VOLTAGE_1_2;
2801 break;
2802 }
2803 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2804 case DP_TRAIN_PRE_EMPHASIS_0:
2805 default:
2806 signal_levels |= DP_PRE_EMPHASIS_0;
2807 break;
2808 case DP_TRAIN_PRE_EMPHASIS_3_5:
2809 signal_levels |= DP_PRE_EMPHASIS_3_5;
2810 break;
2811 case DP_TRAIN_PRE_EMPHASIS_6:
2812 signal_levels |= DP_PRE_EMPHASIS_6;
2813 break;
2814 case DP_TRAIN_PRE_EMPHASIS_9_5:
2815 signal_levels |= DP_PRE_EMPHASIS_9_5;
2816 break;
2817 }
2818 return signal_levels;
2819 }
2820
2821 /* Gen6's DP voltage swing and pre-emphasis control */
2822 static uint32_t
2823 intel_gen6_edp_signal_levels(uint8_t train_set)
2824 {
2825 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2826 DP_TRAIN_PRE_EMPHASIS_MASK);
2827 switch (signal_levels) {
2828 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2829 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2830 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2831 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2832 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2833 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2834 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2835 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2836 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2837 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2838 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2839 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2840 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2841 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2842 default:
2843 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2844 "0x%x\n", signal_levels);
2845 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2846 }
2847 }
2848
2849 /* Gen7's DP voltage swing and pre-emphasis control */
2850 static uint32_t
2851 intel_gen7_edp_signal_levels(uint8_t train_set)
2852 {
2853 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2854 DP_TRAIN_PRE_EMPHASIS_MASK);
2855 switch (signal_levels) {
2856 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2857 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2858 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2859 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2860 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2861 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2862
2863 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2864 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2865 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2866 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2867
2868 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2869 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2870 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2871 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2872
2873 default:
2874 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2875 "0x%x\n", signal_levels);
2876 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2877 }
2878 }
2879
2880 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2881 static uint32_t
2882 intel_hsw_signal_levels(uint8_t train_set)
2883 {
2884 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2885 DP_TRAIN_PRE_EMPHASIS_MASK);
2886 switch (signal_levels) {
2887 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2888 return DDI_BUF_EMP_400MV_0DB_HSW;
2889 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2890 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2891 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2892 return DDI_BUF_EMP_400MV_6DB_HSW;
2893 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2894 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2895
2896 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2897 return DDI_BUF_EMP_600MV_0DB_HSW;
2898 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2899 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2900 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2901 return DDI_BUF_EMP_600MV_6DB_HSW;
2902
2903 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2904 return DDI_BUF_EMP_800MV_0DB_HSW;
2905 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2906 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2907 default:
2908 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2909 "0x%x\n", signal_levels);
2910 return DDI_BUF_EMP_400MV_0DB_HSW;
2911 }
2912 }
2913
2914 /* Properly updates "DP" with the correct signal levels. */
2915 static void
2916 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2917 {
2918 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2919 enum port port = intel_dig_port->port;
2920 struct drm_device *dev = intel_dig_port->base.base.dev;
2921 uint32_t signal_levels, mask;
2922 uint8_t train_set = intel_dp->train_set[0];
2923
2924 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2925 signal_levels = intel_hsw_signal_levels(train_set);
2926 mask = DDI_BUF_EMP_MASK;
2927 } else if (IS_CHERRYVIEW(dev)) {
2928 signal_levels = intel_chv_signal_levels(intel_dp);
2929 mask = 0;
2930 } else if (IS_VALLEYVIEW(dev)) {
2931 signal_levels = intel_vlv_signal_levels(intel_dp);
2932 mask = 0;
2933 } else if (IS_GEN7(dev) && port == PORT_A) {
2934 signal_levels = intel_gen7_edp_signal_levels(train_set);
2935 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2936 } else if (IS_GEN6(dev) && port == PORT_A) {
2937 signal_levels = intel_gen6_edp_signal_levels(train_set);
2938 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2939 } else {
2940 signal_levels = intel_gen4_signal_levels(train_set);
2941 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2942 }
2943
2944 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2945
2946 *DP = (*DP & ~mask) | signal_levels;
2947 }
2948
2949 static bool
2950 intel_dp_set_link_train(struct intel_dp *intel_dp,
2951 uint32_t *DP,
2952 uint8_t dp_train_pat)
2953 {
2954 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2955 struct drm_device *dev = intel_dig_port->base.base.dev;
2956 struct drm_i915_private *dev_priv = dev->dev_private;
2957 enum port port = intel_dig_port->port;
2958 uint8_t buf[sizeof(intel_dp->train_set) + 1];
2959 int ret, len;
2960
2961 if (HAS_DDI(dev)) {
2962 uint32_t temp = I915_READ(DP_TP_CTL(port));
2963
2964 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2965 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2966 else
2967 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2968
2969 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2970 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2971 case DP_TRAINING_PATTERN_DISABLE:
2972 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2973
2974 break;
2975 case DP_TRAINING_PATTERN_1:
2976 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2977 break;
2978 case DP_TRAINING_PATTERN_2:
2979 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2980 break;
2981 case DP_TRAINING_PATTERN_3:
2982 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2983 break;
2984 }
2985 I915_WRITE(DP_TP_CTL(port), temp);
2986
2987 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2988 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2989
2990 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2991 case DP_TRAINING_PATTERN_DISABLE:
2992 *DP |= DP_LINK_TRAIN_OFF_CPT;
2993 break;
2994 case DP_TRAINING_PATTERN_1:
2995 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2996 break;
2997 case DP_TRAINING_PATTERN_2:
2998 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2999 break;
3000 case DP_TRAINING_PATTERN_3:
3001 DRM_ERROR("DP training pattern 3 not supported\n");
3002 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3003 break;
3004 }
3005
3006 } else {
3007 if (IS_CHERRYVIEW(dev))
3008 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
3009 else
3010 *DP &= ~DP_LINK_TRAIN_MASK;
3011
3012 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3013 case DP_TRAINING_PATTERN_DISABLE:
3014 *DP |= DP_LINK_TRAIN_OFF;
3015 break;
3016 case DP_TRAINING_PATTERN_1:
3017 *DP |= DP_LINK_TRAIN_PAT_1;
3018 break;
3019 case DP_TRAINING_PATTERN_2:
3020 *DP |= DP_LINK_TRAIN_PAT_2;
3021 break;
3022 case DP_TRAINING_PATTERN_3:
3023 if (IS_CHERRYVIEW(dev)) {
3024 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
3025 } else {
3026 DRM_ERROR("DP training pattern 3 not supported\n");
3027 *DP |= DP_LINK_TRAIN_PAT_2;
3028 }
3029 break;
3030 }
3031 }
3032
3033 I915_WRITE(intel_dp->output_reg, *DP);
3034 POSTING_READ(intel_dp->output_reg);
3035
3036 buf[0] = dp_train_pat;
3037 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3038 DP_TRAINING_PATTERN_DISABLE) {
3039 /* don't write DP_TRAINING_LANEx_SET on disable */
3040 len = 1;
3041 } else {
3042 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3043 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3044 len = intel_dp->lane_count + 1;
3045 }
3046
3047 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3048 buf, len);
3049
3050 return ret == len;
3051 }
3052
3053 static bool
3054 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3055 uint8_t dp_train_pat)
3056 {
3057 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3058 intel_dp_set_signal_levels(intel_dp, DP);
3059 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3060 }
3061
3062 static bool
3063 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3064 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3065 {
3066 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3067 struct drm_device *dev = intel_dig_port->base.base.dev;
3068 struct drm_i915_private *dev_priv = dev->dev_private;
3069 int ret;
3070
3071 intel_get_adjust_train(intel_dp, link_status);
3072 intel_dp_set_signal_levels(intel_dp, DP);
3073
3074 I915_WRITE(intel_dp->output_reg, *DP);
3075 POSTING_READ(intel_dp->output_reg);
3076
3077 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3078 intel_dp->train_set, intel_dp->lane_count);
3079
3080 return ret == intel_dp->lane_count;
3081 }
3082
3083 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3084 {
3085 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3086 struct drm_device *dev = intel_dig_port->base.base.dev;
3087 struct drm_i915_private *dev_priv = dev->dev_private;
3088 enum port port = intel_dig_port->port;
3089 uint32_t val;
3090
3091 if (!HAS_DDI(dev))
3092 return;
3093
3094 val = I915_READ(DP_TP_CTL(port));
3095 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3096 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3097 I915_WRITE(DP_TP_CTL(port), val);
3098
3099 /*
3100 * On PORT_A we can have only eDP in SST mode. There the only reason
3101 * we need to set idle transmission mode is to work around a HW issue
3102 * where we enable the pipe while not in idle link-training mode.
3103 * In this case there is requirement to wait for a minimum number of
3104 * idle patterns to be sent.
3105 */
3106 if (port == PORT_A)
3107 return;
3108
3109 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3110 1))
3111 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3112 }
3113
3114 /* Enable corresponding port and start training pattern 1 */
3115 void
3116 intel_dp_start_link_train(struct intel_dp *intel_dp)
3117 {
3118 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3119 struct drm_device *dev = encoder->dev;
3120 int i;
3121 uint8_t voltage;
3122 int voltage_tries, loop_tries;
3123 uint32_t DP = intel_dp->DP;
3124 uint8_t link_config[2];
3125
3126 if (HAS_DDI(dev))
3127 intel_ddi_prepare_link_retrain(encoder);
3128
3129 /* Write the link configuration data */
3130 link_config[0] = intel_dp->link_bw;
3131 link_config[1] = intel_dp->lane_count;
3132 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3133 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3134 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3135
3136 link_config[0] = 0;
3137 link_config[1] = DP_SET_ANSI_8B10B;
3138 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3139
3140 DP |= DP_PORT_EN;
3141
3142 /* clock recovery */
3143 if (!intel_dp_reset_link_train(intel_dp, &DP,
3144 DP_TRAINING_PATTERN_1 |
3145 DP_LINK_SCRAMBLING_DISABLE)) {
3146 DRM_ERROR("failed to enable link training\n");
3147 return;
3148 }
3149
3150 voltage = 0xff;
3151 voltage_tries = 0;
3152 loop_tries = 0;
3153 for (;;) {
3154 uint8_t link_status[DP_LINK_STATUS_SIZE];
3155
3156 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3157 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3158 DRM_ERROR("failed to get link status\n");
3159 break;
3160 }
3161
3162 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3163 DRM_DEBUG_KMS("clock recovery OK\n");
3164 break;
3165 }
3166
3167 /* Check to see if we've tried the max voltage */
3168 for (i = 0; i < intel_dp->lane_count; i++)
3169 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3170 break;
3171 if (i == intel_dp->lane_count) {
3172 ++loop_tries;
3173 if (loop_tries == 5) {
3174 DRM_ERROR("too many full retries, give up\n");
3175 break;
3176 }
3177 intel_dp_reset_link_train(intel_dp, &DP,
3178 DP_TRAINING_PATTERN_1 |
3179 DP_LINK_SCRAMBLING_DISABLE);
3180 voltage_tries = 0;
3181 continue;
3182 }
3183
3184 /* Check to see if we've tried the same voltage 5 times */
3185 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3186 ++voltage_tries;
3187 if (voltage_tries == 5) {
3188 DRM_ERROR("too many voltage retries, give up\n");
3189 break;
3190 }
3191 } else
3192 voltage_tries = 0;
3193 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3194
3195 /* Update training set as requested by target */
3196 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3197 DRM_ERROR("failed to update link training\n");
3198 break;
3199 }
3200 }
3201
3202 intel_dp->DP = DP;
3203 }
3204
3205 void
3206 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3207 {
3208 bool channel_eq = false;
3209 int tries, cr_tries;
3210 uint32_t DP = intel_dp->DP;
3211 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3212
3213 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3214 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3215 training_pattern = DP_TRAINING_PATTERN_3;
3216
3217 /* channel equalization */
3218 if (!intel_dp_set_link_train(intel_dp, &DP,
3219 training_pattern |
3220 DP_LINK_SCRAMBLING_DISABLE)) {
3221 DRM_ERROR("failed to start channel equalization\n");
3222 return;
3223 }
3224
3225 tries = 0;
3226 cr_tries = 0;
3227 channel_eq = false;
3228 for (;;) {
3229 uint8_t link_status[DP_LINK_STATUS_SIZE];
3230
3231 if (cr_tries > 5) {
3232 DRM_ERROR("failed to train DP, aborting\n");
3233 break;
3234 }
3235
3236 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3237 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3238 DRM_ERROR("failed to get link status\n");
3239 break;
3240 }
3241
3242 /* Make sure clock is still ok */
3243 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3244 intel_dp_start_link_train(intel_dp);
3245 intel_dp_set_link_train(intel_dp, &DP,
3246 training_pattern |
3247 DP_LINK_SCRAMBLING_DISABLE);
3248 cr_tries++;
3249 continue;
3250 }
3251
3252 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3253 channel_eq = true;
3254 break;
3255 }
3256
3257 /* Try 5 times, then try clock recovery if that fails */
3258 if (tries > 5) {
3259 intel_dp_link_down(intel_dp);
3260 intel_dp_start_link_train(intel_dp);
3261 intel_dp_set_link_train(intel_dp, &DP,
3262 training_pattern |
3263 DP_LINK_SCRAMBLING_DISABLE);
3264 tries = 0;
3265 cr_tries++;
3266 continue;
3267 }
3268
3269 /* Update training set as requested by target */
3270 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3271 DRM_ERROR("failed to update link training\n");
3272 break;
3273 }
3274 ++tries;
3275 }
3276
3277 intel_dp_set_idle_link_train(intel_dp);
3278
3279 intel_dp->DP = DP;
3280
3281 if (channel_eq)
3282 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3283
3284 }
3285
3286 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3287 {
3288 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3289 DP_TRAINING_PATTERN_DISABLE);
3290 }
3291
3292 static void
3293 intel_dp_link_down(struct intel_dp *intel_dp)
3294 {
3295 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3296 enum port port = intel_dig_port->port;
3297 struct drm_device *dev = intel_dig_port->base.base.dev;
3298 struct drm_i915_private *dev_priv = dev->dev_private;
3299 struct intel_crtc *intel_crtc =
3300 to_intel_crtc(intel_dig_port->base.base.crtc);
3301 uint32_t DP = intel_dp->DP;
3302
3303 if (WARN_ON(HAS_DDI(dev)))
3304 return;
3305
3306 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3307 return;
3308
3309 DRM_DEBUG_KMS("\n");
3310
3311 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3312 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3313 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3314 } else {
3315 if (IS_CHERRYVIEW(dev))
3316 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3317 else
3318 DP &= ~DP_LINK_TRAIN_MASK;
3319 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3320 }
3321 POSTING_READ(intel_dp->output_reg);
3322
3323 if (HAS_PCH_IBX(dev) &&
3324 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3325 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3326
3327 /* Hardware workaround: leaving our transcoder select
3328 * set to transcoder B while it's off will prevent the
3329 * corresponding HDMI output on transcoder A.
3330 *
3331 * Combine this with another hardware workaround:
3332 * transcoder select bit can only be cleared while the
3333 * port is enabled.
3334 */
3335 DP &= ~DP_PIPEB_SELECT;
3336 I915_WRITE(intel_dp->output_reg, DP);
3337
3338 /* Changes to enable or select take place the vblank
3339 * after being written.
3340 */
3341 if (WARN_ON(crtc == NULL)) {
3342 /* We should never try to disable a port without a crtc
3343 * attached. For paranoia keep the code around for a
3344 * bit. */
3345 POSTING_READ(intel_dp->output_reg);
3346 msleep(50);
3347 } else
3348 intel_wait_for_vblank(dev, intel_crtc->pipe);
3349 }
3350
3351 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3352 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3353 POSTING_READ(intel_dp->output_reg);
3354 msleep(intel_dp->panel_power_down_delay);
3355 }
3356
3357 static bool
3358 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3359 {
3360 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3361 struct drm_device *dev = dig_port->base.base.dev;
3362 struct drm_i915_private *dev_priv = dev->dev_private;
3363
3364 char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
3365
3366 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3367 sizeof(intel_dp->dpcd)) < 0)
3368 return false; /* aux transfer failed */
3369
3370 hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
3371 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
3372 DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
3373
3374 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3375 return false; /* DPCD not present */
3376
3377 /* Check if the panel supports PSR */
3378 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3379 if (is_edp(intel_dp)) {
3380 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3381 intel_dp->psr_dpcd,
3382 sizeof(intel_dp->psr_dpcd));
3383 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3384 dev_priv->psr.sink_support = true;
3385 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3386 }
3387 }
3388
3389 /* Training Pattern 3 support */
3390 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3391 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3392 intel_dp->use_tps3 = true;
3393 DRM_DEBUG_KMS("Displayport TPS3 supported");
3394 } else
3395 intel_dp->use_tps3 = false;
3396
3397 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3398 DP_DWN_STRM_PORT_PRESENT))
3399 return true; /* native DP sink */
3400
3401 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3402 return true; /* no per-port downstream info */
3403
3404 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3405 intel_dp->downstream_ports,
3406 DP_MAX_DOWNSTREAM_PORTS) < 0)
3407 return false; /* downstream port status fetch failed */
3408
3409 return true;
3410 }
3411
3412 static void
3413 intel_dp_probe_oui(struct intel_dp *intel_dp)
3414 {
3415 u8 buf[3];
3416
3417 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3418 return;
3419
3420 intel_edp_panel_vdd_on(intel_dp);
3421
3422 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3423 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3424 buf[0], buf[1], buf[2]);
3425
3426 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3427 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3428 buf[0], buf[1], buf[2]);
3429
3430 intel_edp_panel_vdd_off(intel_dp, false);
3431 }
3432
3433 static bool
3434 intel_dp_probe_mst(struct intel_dp *intel_dp)
3435 {
3436 u8 buf[1];
3437
3438 if (!intel_dp->can_mst)
3439 return false;
3440
3441 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3442 return false;
3443
3444 intel_edp_panel_vdd_on(intel_dp);
3445 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3446 if (buf[0] & DP_MST_CAP) {
3447 DRM_DEBUG_KMS("Sink is MST capable\n");
3448 intel_dp->is_mst = true;
3449 } else {
3450 DRM_DEBUG_KMS("Sink is not MST capable\n");
3451 intel_dp->is_mst = false;
3452 }
3453 }
3454 intel_edp_panel_vdd_off(intel_dp, false);
3455
3456 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3457 return intel_dp->is_mst;
3458 }
3459
3460 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3461 {
3462 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3463 struct drm_device *dev = intel_dig_port->base.base.dev;
3464 struct intel_crtc *intel_crtc =
3465 to_intel_crtc(intel_dig_port->base.base.crtc);
3466 u8 buf[1];
3467
3468 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
3469 return -EAGAIN;
3470
3471 if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
3472 return -ENOTTY;
3473
3474 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3475 DP_TEST_SINK_START) < 0)
3476 return -EAGAIN;
3477
3478 /* Wait 2 vblanks to be sure we will have the correct CRC value */
3479 intel_wait_for_vblank(dev, intel_crtc->pipe);
3480 intel_wait_for_vblank(dev, intel_crtc->pipe);
3481
3482 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3483 return -EAGAIN;
3484
3485 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
3486 return 0;
3487 }
3488
3489 static bool
3490 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3491 {
3492 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3493 DP_DEVICE_SERVICE_IRQ_VECTOR,
3494 sink_irq_vector, 1) == 1;
3495 }
3496
3497 static bool
3498 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3499 {
3500 int ret;
3501
3502 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
3503 DP_SINK_COUNT_ESI,
3504 sink_irq_vector, 14);
3505 if (ret != 14)
3506 return false;
3507
3508 return true;
3509 }
3510
3511 static void
3512 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3513 {
3514 /* NAK by default */
3515 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3516 }
3517
3518 static int
3519 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3520 {
3521 bool bret;
3522
3523 if (intel_dp->is_mst) {
3524 u8 esi[16] = { 0 };
3525 int ret = 0;
3526 int retry;
3527 bool handled;
3528 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3529 go_again:
3530 if (bret == true) {
3531
3532 /* check link status - esi[10] = 0x200c */
3533 if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3534 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3535 intel_dp_start_link_train(intel_dp);
3536 intel_dp_complete_link_train(intel_dp);
3537 intel_dp_stop_link_train(intel_dp);
3538 }
3539
3540 DRM_DEBUG_KMS("got esi %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3541 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3542
3543 if (handled) {
3544 for (retry = 0; retry < 3; retry++) {
3545 int wret;
3546 wret = drm_dp_dpcd_write(&intel_dp->aux,
3547 DP_SINK_COUNT_ESI+1,
3548 &esi[1], 3);
3549 if (wret == 3) {
3550 break;
3551 }
3552 }
3553
3554 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3555 if (bret == true) {
3556 DRM_DEBUG_KMS("got esi2 %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3557 goto go_again;
3558 }
3559 } else
3560 ret = 0;
3561
3562 return ret;
3563 } else {
3564 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3565 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3566 intel_dp->is_mst = false;
3567 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3568 /* send a hotplug event */
3569 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3570 }
3571 }
3572 return -EINVAL;
3573 }
3574
3575 /*
3576 * According to DP spec
3577 * 5.1.2:
3578 * 1. Read DPCD
3579 * 2. Configure link according to Receiver Capabilities
3580 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
3581 * 4. Check link status on receipt of hot-plug interrupt
3582 */
3583 void
3584 intel_dp_check_link_status(struct intel_dp *intel_dp)
3585 {
3586 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3587 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3588 u8 sink_irq_vector;
3589 u8 link_status[DP_LINK_STATUS_SIZE];
3590
3591 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3592
3593 if (!intel_encoder->connectors_active)
3594 return;
3595
3596 if (WARN_ON(!intel_encoder->base.crtc))
3597 return;
3598
3599 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
3600 return;
3601
3602 /* Try to read receiver status if the link appears to be up */
3603 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3604 return;
3605 }
3606
3607 /* Now read the DPCD to see if it's actually running */
3608 if (!intel_dp_get_dpcd(intel_dp)) {
3609 return;
3610 }
3611
3612 /* Try to read the source of the interrupt */
3613 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3614 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3615 /* Clear interrupt source */
3616 drm_dp_dpcd_writeb(&intel_dp->aux,
3617 DP_DEVICE_SERVICE_IRQ_VECTOR,
3618 sink_irq_vector);
3619
3620 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3621 intel_dp_handle_test_request(intel_dp);
3622 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3623 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3624 }
3625
3626 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3627 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3628 intel_encoder->base.name);
3629 intel_dp_start_link_train(intel_dp);
3630 intel_dp_complete_link_train(intel_dp);
3631 intel_dp_stop_link_train(intel_dp);
3632 }
3633 }
3634
3635 /* XXX this is probably wrong for multiple downstream ports */
3636 static enum drm_connector_status
3637 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3638 {
3639 uint8_t *dpcd = intel_dp->dpcd;
3640 uint8_t type;
3641
3642 if (!intel_dp_get_dpcd(intel_dp))
3643 return connector_status_disconnected;
3644
3645 /* if there's no downstream port, we're done */
3646 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3647 return connector_status_connected;
3648
3649 /* If we're HPD-aware, SINK_COUNT changes dynamically */
3650 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3651 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3652 uint8_t reg;
3653
3654 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3655 &reg, 1) < 0)
3656 return connector_status_unknown;
3657
3658 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3659 : connector_status_disconnected;
3660 }
3661
3662 /* If no HPD, poke DDC gently */
3663 if (drm_probe_ddc(&intel_dp->aux.ddc))
3664 return connector_status_connected;
3665
3666 /* Well we tried, say unknown for unreliable port types */
3667 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3668 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3669 if (type == DP_DS_PORT_TYPE_VGA ||
3670 type == DP_DS_PORT_TYPE_NON_EDID)
3671 return connector_status_unknown;
3672 } else {
3673 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3674 DP_DWN_STRM_PORT_TYPE_MASK;
3675 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3676 type == DP_DWN_STRM_PORT_TYPE_OTHER)
3677 return connector_status_unknown;
3678 }
3679
3680 /* Anything else is out of spec, warn and ignore */
3681 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3682 return connector_status_disconnected;
3683 }
3684
3685 static enum drm_connector_status
3686 ironlake_dp_detect(struct intel_dp *intel_dp)
3687 {
3688 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3689 struct drm_i915_private *dev_priv = dev->dev_private;
3690 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3691 enum drm_connector_status status;
3692
3693 /* Can't disconnect eDP, but you can close the lid... */
3694 if (is_edp(intel_dp)) {
3695 status = intel_panel_detect(dev);
3696 if (status == connector_status_unknown)
3697 status = connector_status_connected;
3698 return status;
3699 }
3700
3701 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3702 return connector_status_disconnected;
3703
3704 return intel_dp_detect_dpcd(intel_dp);
3705 }
3706
3707 static enum drm_connector_status
3708 g4x_dp_detect(struct intel_dp *intel_dp)
3709 {
3710 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3711 struct drm_i915_private *dev_priv = dev->dev_private;
3712 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3713 uint32_t bit;
3714
3715 /* Can't disconnect eDP, but you can close the lid... */
3716 if (is_edp(intel_dp)) {
3717 enum drm_connector_status status;
3718
3719 status = intel_panel_detect(dev);
3720 if (status == connector_status_unknown)
3721 status = connector_status_connected;
3722 return status;
3723 }
3724
3725 if (IS_VALLEYVIEW(dev)) {
3726 switch (intel_dig_port->port) {
3727 case PORT_B:
3728 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3729 break;
3730 case PORT_C:
3731 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3732 break;
3733 case PORT_D:
3734 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3735 break;
3736 default:
3737 return connector_status_unknown;
3738 }
3739 } else {
3740 switch (intel_dig_port->port) {
3741 case PORT_B:
3742 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3743 break;
3744 case PORT_C:
3745 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3746 break;
3747 case PORT_D:
3748 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3749 break;
3750 default:
3751 return connector_status_unknown;
3752 }
3753 }
3754
3755 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3756 return connector_status_disconnected;
3757
3758 return intel_dp_detect_dpcd(intel_dp);
3759 }
3760
3761 static struct edid *
3762 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3763 {
3764 struct intel_connector *intel_connector = to_intel_connector(connector);
3765
3766 /* use cached edid if we have one */
3767 if (intel_connector->edid) {
3768 /* invalid edid */
3769 if (IS_ERR(intel_connector->edid))
3770 return NULL;
3771
3772 return drm_edid_duplicate(intel_connector->edid);
3773 }
3774
3775 return drm_get_edid(connector, adapter);
3776 }
3777
3778 static int
3779 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3780 {
3781 struct intel_connector *intel_connector = to_intel_connector(connector);
3782
3783 /* use cached edid if we have one */
3784 if (intel_connector->edid) {
3785 /* invalid edid */
3786 if (IS_ERR(intel_connector->edid))
3787 return 0;
3788
3789 return intel_connector_update_modes(connector,
3790 intel_connector->edid);
3791 }
3792
3793 return intel_ddc_get_modes(connector, adapter);
3794 }
3795
3796 static enum drm_connector_status
3797 intel_dp_detect(struct drm_connector *connector, bool force)
3798 {
3799 struct intel_dp *intel_dp = intel_attached_dp(connector);
3800 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3801 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3802 struct drm_device *dev = connector->dev;
3803 struct drm_i915_private *dev_priv = dev->dev_private;
3804 enum drm_connector_status status;
3805 enum intel_display_power_domain power_domain;
3806 struct edid *edid = NULL;
3807 bool ret;
3808
3809 power_domain = intel_display_port_power_domain(intel_encoder);
3810 intel_display_power_get(dev_priv, power_domain);
3811
3812 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3813 connector->base.id, connector->name);
3814
3815 if (intel_dp->is_mst) {
3816 /* MST devices are disconnected from a monitor POV */
3817 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3818 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3819 status = connector_status_disconnected;
3820 goto out;
3821 }
3822
3823 intel_dp->has_audio = false;
3824
3825 if (HAS_PCH_SPLIT(dev))
3826 status = ironlake_dp_detect(intel_dp);
3827 else
3828 status = g4x_dp_detect(intel_dp);
3829
3830 if (status != connector_status_connected)
3831 goto out;
3832
3833 intel_dp_probe_oui(intel_dp);
3834
3835 ret = intel_dp_probe_mst(intel_dp);
3836 if (ret) {
3837 /* if we are in MST mode then this connector
3838 won't appear connected or have anything with EDID on it */
3839 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3840 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3841 status = connector_status_disconnected;
3842 goto out;
3843 }
3844
3845 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3846 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3847 } else {
3848 edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3849 if (edid) {
3850 intel_dp->has_audio = drm_detect_monitor_audio(edid);
3851 kfree(edid);
3852 }
3853 }
3854
3855 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3856 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3857 status = connector_status_connected;
3858
3859 out:
3860 intel_display_power_put(dev_priv, power_domain);
3861 return status;
3862 }
3863
3864 static int intel_dp_get_modes(struct drm_connector *connector)
3865 {
3866 struct intel_dp *intel_dp = intel_attached_dp(connector);
3867 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3868 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3869 struct intel_connector *intel_connector = to_intel_connector(connector);
3870 struct drm_device *dev = connector->dev;
3871 struct drm_i915_private *dev_priv = dev->dev_private;
3872 enum intel_display_power_domain power_domain;
3873 int ret;
3874
3875 /* We should parse the EDID data and find out if it has an audio sink
3876 */
3877
3878 power_domain = intel_display_port_power_domain(intel_encoder);
3879 intel_display_power_get(dev_priv, power_domain);
3880
3881 ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
3882 intel_display_power_put(dev_priv, power_domain);
3883 if (ret)
3884 return ret;
3885
3886 /* if eDP has no EDID, fall back to fixed mode */
3887 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3888 struct drm_display_mode *mode;
3889 mode = drm_mode_duplicate(dev,
3890 intel_connector->panel.fixed_mode);
3891 if (mode) {
3892 drm_mode_probed_add(connector, mode);
3893 return 1;
3894 }
3895 }
3896 return 0;
3897 }
3898
3899 static bool
3900 intel_dp_detect_audio(struct drm_connector *connector)
3901 {
3902 struct intel_dp *intel_dp = intel_attached_dp(connector);
3903 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3904 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3905 struct drm_device *dev = connector->dev;
3906 struct drm_i915_private *dev_priv = dev->dev_private;
3907 enum intel_display_power_domain power_domain;
3908 struct edid *edid;
3909 bool has_audio = false;
3910
3911 power_domain = intel_display_port_power_domain(intel_encoder);
3912 intel_display_power_get(dev_priv, power_domain);
3913
3914 edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3915 if (edid) {
3916 has_audio = drm_detect_monitor_audio(edid);
3917 kfree(edid);
3918 }
3919
3920 intel_display_power_put(dev_priv, power_domain);
3921
3922 return has_audio;
3923 }
3924
3925 static int
3926 intel_dp_set_property(struct drm_connector *connector,
3927 struct drm_property *property,
3928 uint64_t val)
3929 {
3930 struct drm_i915_private *dev_priv = connector->dev->dev_private;
3931 struct intel_connector *intel_connector = to_intel_connector(connector);
3932 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3933 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3934 int ret;
3935
3936 ret = drm_object_property_set_value(&connector->base, property, val);
3937 if (ret)
3938 return ret;
3939
3940 if (property == dev_priv->force_audio_property) {
3941 int i = val;
3942 bool has_audio;
3943
3944 if (i == intel_dp->force_audio)
3945 return 0;
3946
3947 intel_dp->force_audio = i;
3948
3949 if (i == HDMI_AUDIO_AUTO)
3950 has_audio = intel_dp_detect_audio(connector);
3951 else
3952 has_audio = (i == HDMI_AUDIO_ON);
3953
3954 if (has_audio == intel_dp->has_audio)
3955 return 0;
3956
3957 intel_dp->has_audio = has_audio;
3958 goto done;
3959 }
3960
3961 if (property == dev_priv->broadcast_rgb_property) {
3962 bool old_auto = intel_dp->color_range_auto;
3963 uint32_t old_range = intel_dp->color_range;
3964
3965 switch (val) {
3966 case INTEL_BROADCAST_RGB_AUTO:
3967 intel_dp->color_range_auto = true;
3968 break;
3969 case INTEL_BROADCAST_RGB_FULL:
3970 intel_dp->color_range_auto = false;
3971 intel_dp->color_range = 0;
3972 break;
3973 case INTEL_BROADCAST_RGB_LIMITED:
3974 intel_dp->color_range_auto = false;
3975 intel_dp->color_range = DP_COLOR_RANGE_16_235;
3976 break;
3977 default:
3978 return -EINVAL;
3979 }
3980
3981 if (old_auto == intel_dp->color_range_auto &&
3982 old_range == intel_dp->color_range)
3983 return 0;
3984
3985 goto done;
3986 }
3987
3988 if (is_edp(intel_dp) &&
3989 property == connector->dev->mode_config.scaling_mode_property) {
3990 if (val == DRM_MODE_SCALE_NONE) {
3991 DRM_DEBUG_KMS("no scaling not supported\n");
3992 return -EINVAL;
3993 }
3994
3995 if (intel_connector->panel.fitting_mode == val) {
3996 /* the eDP scaling property is not changed */
3997 return 0;
3998 }
3999 intel_connector->panel.fitting_mode = val;
4000
4001 goto done;
4002 }
4003
4004 return -EINVAL;
4005
4006 done:
4007 if (intel_encoder->base.crtc)
4008 intel_crtc_restore_mode(intel_encoder->base.crtc);
4009
4010 return 0;
4011 }
4012
4013 static void
4014 intel_dp_connector_destroy(struct drm_connector *connector)
4015 {
4016 struct intel_connector *intel_connector = to_intel_connector(connector);
4017
4018 if (!IS_ERR_OR_NULL(intel_connector->edid))
4019 kfree(intel_connector->edid);
4020
4021 /* Can't call is_edp() since the encoder may have been destroyed
4022 * already. */
4023 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4024 intel_panel_fini(&intel_connector->panel);
4025
4026 drm_connector_cleanup(connector);
4027 kfree(connector);
4028 }
4029
4030 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4031 {
4032 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4033 struct intel_dp *intel_dp = &intel_dig_port->dp;
4034 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4035
4036 drm_dp_aux_unregister(&intel_dp->aux);
4037 intel_dp_mst_encoder_cleanup(intel_dig_port);
4038 drm_encoder_cleanup(encoder);
4039 if (is_edp(intel_dp)) {
4040 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4041 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4042 edp_panel_vdd_off_sync(intel_dp);
4043 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4044 if (intel_dp->edp_notifier.notifier_call) {
4045 unregister_reboot_notifier(&intel_dp->edp_notifier);
4046 intel_dp->edp_notifier.notifier_call = NULL;
4047 }
4048 }
4049 kfree(intel_dig_port);
4050 }
4051
4052 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4053 {
4054 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4055
4056 if (!is_edp(intel_dp))
4057 return;
4058
4059 edp_panel_vdd_off_sync(intel_dp);
4060 }
4061
4062 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4063 {
4064 intel_edp_panel_vdd_sanitize(to_intel_encoder(encoder));
4065 }
4066
4067 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4068 .dpms = intel_connector_dpms,
4069 .detect = intel_dp_detect,
4070 .fill_modes = drm_helper_probe_single_connector_modes,
4071 .set_property = intel_dp_set_property,
4072 .destroy = intel_dp_connector_destroy,
4073 };
4074
4075 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4076 .get_modes = intel_dp_get_modes,
4077 .mode_valid = intel_dp_mode_valid,
4078 .best_encoder = intel_best_encoder,
4079 };
4080
4081 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4082 .reset = intel_dp_encoder_reset,
4083 .destroy = intel_dp_encoder_destroy,
4084 };
4085
4086 void
4087 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4088 {
4089 return;
4090 }
4091
4092 bool
4093 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4094 {
4095 struct intel_dp *intel_dp = &intel_dig_port->dp;
4096 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4097 struct drm_device *dev = intel_dig_port->base.base.dev;
4098 struct drm_i915_private *dev_priv = dev->dev_private;
4099 enum intel_display_power_domain power_domain;
4100 bool ret = true;
4101
4102 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4103 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4104
4105 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4106 port_name(intel_dig_port->port),
4107 long_hpd ? "long" : "short");
4108
4109 power_domain = intel_display_port_power_domain(intel_encoder);
4110 intel_display_power_get(dev_priv, power_domain);
4111
4112 if (long_hpd) {
4113 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4114 goto mst_fail;
4115
4116 if (!intel_dp_get_dpcd(intel_dp)) {
4117 goto mst_fail;
4118 }
4119
4120 intel_dp_probe_oui(intel_dp);
4121
4122 if (!intel_dp_probe_mst(intel_dp))
4123 goto mst_fail;
4124
4125 } else {
4126 if (intel_dp->is_mst) {
4127 if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4128 goto mst_fail;
4129 }
4130
4131 if (!intel_dp->is_mst) {
4132 /*
4133 * we'll check the link status via the normal hot plug path later -
4134 * but for short hpds we should check it now
4135 */
4136 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4137 intel_dp_check_link_status(intel_dp);
4138 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4139 }
4140 }
4141 ret = false;
4142 goto put_power;
4143 mst_fail:
4144 /* if we were in MST mode, and device is not there get out of MST mode */
4145 if (intel_dp->is_mst) {
4146 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4147 intel_dp->is_mst = false;
4148 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4149 }
4150 put_power:
4151 intel_display_power_put(dev_priv, power_domain);
4152
4153 return ret;
4154 }
4155
4156 /* Return which DP Port should be selected for Transcoder DP control */
4157 int
4158 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4159 {
4160 struct drm_device *dev = crtc->dev;
4161 struct intel_encoder *intel_encoder;
4162 struct intel_dp *intel_dp;
4163
4164 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4165 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4166
4167 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4168 intel_encoder->type == INTEL_OUTPUT_EDP)
4169 return intel_dp->output_reg;
4170 }
4171
4172 return -1;
4173 }
4174
4175 /* check the VBT to see whether the eDP is on DP-D port */
4176 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4177 {
4178 struct drm_i915_private *dev_priv = dev->dev_private;
4179 union child_device_config *p_child;
4180 int i;
4181 static const short port_mapping[] = {
4182 [PORT_B] = PORT_IDPB,
4183 [PORT_C] = PORT_IDPC,
4184 [PORT_D] = PORT_IDPD,
4185 };
4186
4187 if (port == PORT_A)
4188 return true;
4189
4190 if (!dev_priv->vbt.child_dev_num)
4191 return false;
4192
4193 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4194 p_child = dev_priv->vbt.child_dev + i;
4195
4196 if (p_child->common.dvo_port == port_mapping[port] &&
4197 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4198 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
4199 return true;
4200 }
4201 return false;
4202 }
4203
4204 void
4205 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4206 {
4207 struct intel_connector *intel_connector = to_intel_connector(connector);
4208
4209 intel_attach_force_audio_property(connector);
4210 intel_attach_broadcast_rgb_property(connector);
4211 intel_dp->color_range_auto = true;
4212
4213 if (is_edp(intel_dp)) {
4214 drm_mode_create_scaling_mode_property(connector->dev);
4215 drm_object_attach_property(
4216 &connector->base,
4217 connector->dev->mode_config.scaling_mode_property,
4218 DRM_MODE_SCALE_ASPECT);
4219 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4220 }
4221 }
4222
4223 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4224 {
4225 intel_dp->last_power_cycle = jiffies;
4226 intel_dp->last_power_on = jiffies;
4227 intel_dp->last_backlight_off = jiffies;
4228 }
4229
4230 static void
4231 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4232 struct intel_dp *intel_dp,
4233 struct edp_power_seq *out)
4234 {
4235 struct drm_i915_private *dev_priv = dev->dev_private;
4236 struct edp_power_seq cur, vbt, spec, final;
4237 u32 pp_on, pp_off, pp_div, pp;
4238 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4239
4240 if (HAS_PCH_SPLIT(dev)) {
4241 pp_ctrl_reg = PCH_PP_CONTROL;
4242 pp_on_reg = PCH_PP_ON_DELAYS;
4243 pp_off_reg = PCH_PP_OFF_DELAYS;
4244 pp_div_reg = PCH_PP_DIVISOR;
4245 } else {
4246 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4247
4248 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4249 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4250 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4251 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4252 }
4253
4254 /* Workaround: Need to write PP_CONTROL with the unlock key as
4255 * the very first thing. */
4256 pp = ironlake_get_pp_control(intel_dp);
4257 I915_WRITE(pp_ctrl_reg, pp);
4258
4259 pp_on = I915_READ(pp_on_reg);
4260 pp_off = I915_READ(pp_off_reg);
4261 pp_div = I915_READ(pp_div_reg);
4262
4263 /* Pull timing values out of registers */
4264 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4265 PANEL_POWER_UP_DELAY_SHIFT;
4266
4267 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4268 PANEL_LIGHT_ON_DELAY_SHIFT;
4269
4270 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4271 PANEL_LIGHT_OFF_DELAY_SHIFT;
4272
4273 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4274 PANEL_POWER_DOWN_DELAY_SHIFT;
4275
4276 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4277 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4278
4279 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4280 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4281
4282 vbt = dev_priv->vbt.edp_pps;
4283
4284 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4285 * our hw here, which are all in 100usec. */
4286 spec.t1_t3 = 210 * 10;
4287 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4288 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4289 spec.t10 = 500 * 10;
4290 /* This one is special and actually in units of 100ms, but zero
4291 * based in the hw (so we need to add 100 ms). But the sw vbt
4292 * table multiplies it with 1000 to make it in units of 100usec,
4293 * too. */
4294 spec.t11_t12 = (510 + 100) * 10;
4295
4296 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4297 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4298
4299 /* Use the max of the register settings and vbt. If both are
4300 * unset, fall back to the spec limits. */
4301 #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
4302 spec.field : \
4303 max(cur.field, vbt.field))
4304 assign_final(t1_t3);
4305 assign_final(t8);
4306 assign_final(t9);
4307 assign_final(t10);
4308 assign_final(t11_t12);
4309 #undef assign_final
4310
4311 #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
4312 intel_dp->panel_power_up_delay = get_delay(t1_t3);
4313 intel_dp->backlight_on_delay = get_delay(t8);
4314 intel_dp->backlight_off_delay = get_delay(t9);
4315 intel_dp->panel_power_down_delay = get_delay(t10);
4316 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4317 #undef get_delay
4318
4319 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4320 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4321 intel_dp->panel_power_cycle_delay);
4322
4323 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4324 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4325
4326 if (out)
4327 *out = final;
4328 }
4329
4330 static void
4331 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4332 struct intel_dp *intel_dp,
4333 struct edp_power_seq *seq)
4334 {
4335 struct drm_i915_private *dev_priv = dev->dev_private;
4336 u32 pp_on, pp_off, pp_div, port_sel = 0;
4337 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4338 int pp_on_reg, pp_off_reg, pp_div_reg;
4339 enum port port = dp_to_dig_port(intel_dp)->port;
4340
4341 if (HAS_PCH_SPLIT(dev)) {
4342 pp_on_reg = PCH_PP_ON_DELAYS;
4343 pp_off_reg = PCH_PP_OFF_DELAYS;
4344 pp_div_reg = PCH_PP_DIVISOR;
4345 } else {
4346 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4347
4348 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4349 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4350 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4351 }
4352
4353 /*
4354 * And finally store the new values in the power sequencer. The
4355 * backlight delays are set to 1 because we do manual waits on them. For
4356 * T8, even BSpec recommends doing it. For T9, if we don't do this,
4357 * we'll end up waiting for the backlight off delay twice: once when we
4358 * do the manual sleep, and once when we disable the panel and wait for
4359 * the PP_STATUS bit to become zero.
4360 */
4361 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4362 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4363 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4364 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4365 /* Compute the divisor for the pp clock, simply match the Bspec
4366 * formula. */
4367 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4368 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4369 << PANEL_POWER_CYCLE_DELAY_SHIFT);
4370
4371 /* Haswell doesn't have any port selection bits for the panel
4372 * power sequencer any more. */
4373 if (IS_VALLEYVIEW(dev)) {
4374 port_sel = PANEL_PORT_SELECT_VLV(port);
4375 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4376 if (port == PORT_A)
4377 port_sel = PANEL_PORT_SELECT_DPA;
4378 else
4379 port_sel = PANEL_PORT_SELECT_DPD;
4380 }
4381
4382 pp_on |= port_sel;
4383
4384 I915_WRITE(pp_on_reg, pp_on);
4385 I915_WRITE(pp_off_reg, pp_off);
4386 I915_WRITE(pp_div_reg, pp_div);
4387
4388 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4389 I915_READ(pp_on_reg),
4390 I915_READ(pp_off_reg),
4391 I915_READ(pp_div_reg));
4392 }
4393
4394 void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4395 {
4396 struct drm_i915_private *dev_priv = dev->dev_private;
4397 struct intel_encoder *encoder;
4398 struct intel_dp *intel_dp = NULL;
4399 struct intel_crtc_config *config = NULL;
4400 struct intel_crtc *intel_crtc = NULL;
4401 struct intel_connector *intel_connector = dev_priv->drrs.connector;
4402 u32 reg, val;
4403 enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
4404
4405 if (refresh_rate <= 0) {
4406 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4407 return;
4408 }
4409
4410 if (intel_connector == NULL) {
4411 DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
4412 return;
4413 }
4414
4415 /*
4416 * FIXME: This needs proper synchronization with psr state. But really
4417 * hard to tell without seeing the user of this function of this code.
4418 * Check locking and ordering once that lands.
4419 */
4420 if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
4421 DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
4422 return;
4423 }
4424
4425 encoder = intel_attached_encoder(&intel_connector->base);
4426 intel_dp = enc_to_intel_dp(&encoder->base);
4427 intel_crtc = encoder->new_crtc;
4428
4429 if (!intel_crtc) {
4430 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4431 return;
4432 }
4433
4434 config = &intel_crtc->config;
4435
4436 if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
4437 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4438 return;
4439 }
4440
4441 if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
4442 index = DRRS_LOW_RR;
4443
4444 if (index == intel_dp->drrs_state.refresh_rate_type) {
4445 DRM_DEBUG_KMS(
4446 "DRRS requested for previously set RR...ignoring\n");
4447 return;
4448 }
4449
4450 if (!intel_crtc->active) {
4451 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4452 return;
4453 }
4454
4455 if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
4456 reg = PIPECONF(intel_crtc->config.cpu_transcoder);
4457 val = I915_READ(reg);
4458 if (index > DRRS_HIGH_RR) {
4459 val |= PIPECONF_EDP_RR_MODE_SWITCH;
4460 intel_dp_set_m_n(intel_crtc);
4461 } else {
4462 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4463 }
4464 I915_WRITE(reg, val);
4465 }
4466
4467 /*
4468 * mutex taken to ensure that there is no race between differnt
4469 * drrs calls trying to update refresh rate. This scenario may occur
4470 * in future when idleness detection based DRRS in kernel and
4471 * possible calls from user space to set differnt RR are made.
4472 */
4473
4474 mutex_lock(&intel_dp->drrs_state.mutex);
4475
4476 intel_dp->drrs_state.refresh_rate_type = index;
4477
4478 mutex_unlock(&intel_dp->drrs_state.mutex);
4479
4480 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4481 }
4482
4483 static struct drm_display_mode *
4484 intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4485 struct intel_connector *intel_connector,
4486 struct drm_display_mode *fixed_mode)
4487 {
4488 struct drm_connector *connector = &intel_connector->base;
4489 struct intel_dp *intel_dp = &intel_dig_port->dp;
4490 struct drm_device *dev = intel_dig_port->base.base.dev;
4491 struct drm_i915_private *dev_priv = dev->dev_private;
4492 struct drm_display_mode *downclock_mode = NULL;
4493
4494 if (INTEL_INFO(dev)->gen <= 6) {
4495 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4496 return NULL;
4497 }
4498
4499 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4500 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
4501 return NULL;
4502 }
4503
4504 downclock_mode = intel_find_panel_downclock
4505 (dev, fixed_mode, connector);
4506
4507 if (!downclock_mode) {
4508 DRM_DEBUG_KMS("DRRS not supported\n");
4509 return NULL;
4510 }
4511
4512 dev_priv->drrs.connector = intel_connector;
4513
4514 mutex_init(&intel_dp->drrs_state.mutex);
4515
4516 intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
4517
4518 intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
4519 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
4520 return downclock_mode;
4521 }
4522
4523 void intel_edp_panel_vdd_sanitize(struct intel_encoder *intel_encoder)
4524 {
4525 struct drm_device *dev = intel_encoder->base.dev;
4526 struct drm_i915_private *dev_priv = dev->dev_private;
4527 struct intel_dp *intel_dp;
4528 enum intel_display_power_domain power_domain;
4529
4530 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4531 return;
4532
4533 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4534 if (!edp_have_panel_vdd(intel_dp))
4535 return;
4536 /*
4537 * The VDD bit needs a power domain reference, so if the bit is
4538 * already enabled when we boot or resume, grab this reference and
4539 * schedule a vdd off, so we don't hold on to the reference
4540 * indefinitely.
4541 */
4542 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4543 power_domain = intel_display_port_power_domain(intel_encoder);
4544 intel_display_power_get(dev_priv, power_domain);
4545
4546 edp_panel_vdd_schedule_off(intel_dp);
4547 }
4548
4549 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
4550 struct intel_connector *intel_connector,
4551 struct edp_power_seq *power_seq)
4552 {
4553 struct drm_connector *connector = &intel_connector->base;
4554 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4555 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4556 struct drm_device *dev = intel_encoder->base.dev;
4557 struct drm_i915_private *dev_priv = dev->dev_private;
4558 struct drm_display_mode *fixed_mode = NULL;
4559 struct drm_display_mode *downclock_mode = NULL;
4560 bool has_dpcd;
4561 struct drm_display_mode *scan;
4562 struct edid *edid;
4563
4564 intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
4565
4566 if (!is_edp(intel_dp))
4567 return true;
4568
4569 intel_edp_panel_vdd_sanitize(intel_encoder);
4570
4571 /* Cache DPCD and EDID for edp. */
4572 intel_edp_panel_vdd_on(intel_dp);
4573 has_dpcd = intel_dp_get_dpcd(intel_dp);
4574 intel_edp_panel_vdd_off(intel_dp, false);
4575
4576 if (has_dpcd) {
4577 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4578 dev_priv->no_aux_handshake =
4579 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4580 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4581 } else {
4582 /* if this fails, presume the device is a ghost */
4583 DRM_INFO("failed to retrieve link info, disabling eDP\n");
4584 return false;
4585 }
4586
4587 /* We now know it's not a ghost, init power sequence regs. */
4588 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
4589
4590 mutex_lock(&dev->mode_config.mutex);
4591 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
4592 if (edid) {
4593 if (drm_add_edid_modes(connector, edid)) {
4594 drm_mode_connector_update_edid_property(connector,
4595 edid);
4596 drm_edid_to_eld(connector, edid);
4597 } else {
4598 kfree(edid);
4599 edid = ERR_PTR(-EINVAL);
4600 }
4601 } else {
4602 edid = ERR_PTR(-ENOENT);
4603 }
4604 intel_connector->edid = edid;
4605
4606 /* prefer fixed mode from EDID if available */
4607 list_for_each_entry(scan, &connector->probed_modes, head) {
4608 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
4609 fixed_mode = drm_mode_duplicate(dev, scan);
4610 downclock_mode = intel_dp_drrs_init(
4611 intel_dig_port,
4612 intel_connector, fixed_mode);
4613 break;
4614 }
4615 }
4616
4617 /* fallback to VBT if available for eDP */
4618 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
4619 fixed_mode = drm_mode_duplicate(dev,
4620 dev_priv->vbt.lfp_lvds_vbt_mode);
4621 if (fixed_mode)
4622 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
4623 }
4624 mutex_unlock(&dev->mode_config.mutex);
4625
4626 if (IS_VALLEYVIEW(dev)) {
4627 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
4628 register_reboot_notifier(&intel_dp->edp_notifier);
4629 }
4630
4631 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
4632 intel_connector->panel.backlight_power = intel_edp_backlight_power;
4633 intel_panel_setup_backlight(connector);
4634
4635 return true;
4636 }
4637
4638 bool
4639 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
4640 struct intel_connector *intel_connector)
4641 {
4642 struct drm_connector *connector = &intel_connector->base;
4643 struct intel_dp *intel_dp = &intel_dig_port->dp;
4644 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4645 struct drm_device *dev = intel_encoder->base.dev;
4646 struct drm_i915_private *dev_priv = dev->dev_private;
4647 enum port port = intel_dig_port->port;
4648 struct edp_power_seq power_seq = { 0 };
4649 int type;
4650
4651 /* intel_dp vfuncs */
4652 if (IS_VALLEYVIEW(dev))
4653 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
4654 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4655 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
4656 else if (HAS_PCH_SPLIT(dev))
4657 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
4658 else
4659 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
4660
4661 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
4662
4663 /* Preserve the current hw state. */
4664 intel_dp->DP = I915_READ(intel_dp->output_reg);
4665 intel_dp->attached_connector = intel_connector;
4666
4667 if (intel_dp_is_edp(dev, port))
4668 type = DRM_MODE_CONNECTOR_eDP;
4669 else
4670 type = DRM_MODE_CONNECTOR_DisplayPort;
4671
4672 /*
4673 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
4674 * for DP the encoder type can be set by the caller to
4675 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
4676 */
4677 if (type == DRM_MODE_CONNECTOR_eDP)
4678 intel_encoder->type = INTEL_OUTPUT_EDP;
4679
4680 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
4681 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
4682 port_name(port));
4683
4684 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
4685 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
4686
4687 connector->interlace_allowed = true;
4688 connector->doublescan_allowed = 0;
4689
4690 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
4691 edp_panel_vdd_work);
4692
4693 intel_connector_attach_encoder(intel_connector, intel_encoder);
4694 drm_connector_register(connector);
4695
4696 if (HAS_DDI(dev))
4697 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
4698 else
4699 intel_connector->get_hw_state = intel_connector_get_hw_state;
4700 intel_connector->unregister = intel_dp_connector_unregister;
4701
4702 /* Set up the hotplug pin. */
4703 switch (port) {
4704 case PORT_A:
4705 intel_encoder->hpd_pin = HPD_PORT_A;
4706 break;
4707 case PORT_B:
4708 intel_encoder->hpd_pin = HPD_PORT_B;
4709 break;
4710 case PORT_C:
4711 intel_encoder->hpd_pin = HPD_PORT_C;
4712 break;
4713 case PORT_D:
4714 intel_encoder->hpd_pin = HPD_PORT_D;
4715 break;
4716 default:
4717 BUG();
4718 }
4719
4720 if (is_edp(intel_dp)) {
4721 intel_dp_init_panel_power_timestamps(intel_dp);
4722 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
4723 }
4724
4725 intel_dp_aux_init(intel_dp, intel_connector);
4726
4727 /* init MST on ports that can support it */
4728 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4729 if (port == PORT_B || port == PORT_C || port == PORT_D) {
4730 intel_dp_mst_encoder_init(intel_dig_port, intel_connector->base.base.id);
4731 }
4732 }
4733
4734 if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
4735 drm_dp_aux_unregister(&intel_dp->aux);
4736 if (is_edp(intel_dp)) {
4737 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4738 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4739 edp_panel_vdd_off_sync(intel_dp);
4740 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4741 }
4742 drm_connector_unregister(connector);
4743 drm_connector_cleanup(connector);
4744 return false;
4745 }
4746
4747 intel_dp_add_properties(intel_dp, connector);
4748
4749 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
4750 * 0xd. Failure to do so will result in spurious interrupts being
4751 * generated on the port when a cable is not attached.
4752 */
4753 if (IS_G4X(dev) && !IS_GM45(dev)) {
4754 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
4755 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
4756 }
4757
4758 return true;
4759 }
4760
4761 void
4762 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
4763 {
4764 struct drm_i915_private *dev_priv = dev->dev_private;
4765 struct intel_digital_port *intel_dig_port;
4766 struct intel_encoder *intel_encoder;
4767 struct drm_encoder *encoder;
4768 struct intel_connector *intel_connector;
4769
4770 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
4771 if (!intel_dig_port)
4772 return;
4773
4774 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
4775 if (!intel_connector) {
4776 kfree(intel_dig_port);
4777 return;
4778 }
4779
4780 intel_encoder = &intel_dig_port->base;
4781 encoder = &intel_encoder->base;
4782
4783 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
4784 DRM_MODE_ENCODER_TMDS);
4785
4786 intel_encoder->compute_config = intel_dp_compute_config;
4787 intel_encoder->disable = intel_disable_dp;
4788 intel_encoder->get_hw_state = intel_dp_get_hw_state;
4789 intel_encoder->get_config = intel_dp_get_config;
4790 intel_encoder->suspend = intel_dp_encoder_suspend;
4791 if (IS_CHERRYVIEW(dev)) {
4792 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
4793 intel_encoder->pre_enable = chv_pre_enable_dp;
4794 intel_encoder->enable = vlv_enable_dp;
4795 intel_encoder->post_disable = chv_post_disable_dp;
4796 } else if (IS_VALLEYVIEW(dev)) {
4797 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
4798 intel_encoder->pre_enable = vlv_pre_enable_dp;
4799 intel_encoder->enable = vlv_enable_dp;
4800 intel_encoder->post_disable = vlv_post_disable_dp;
4801 } else {
4802 intel_encoder->pre_enable = g4x_pre_enable_dp;
4803 intel_encoder->enable = g4x_enable_dp;
4804 intel_encoder->post_disable = g4x_post_disable_dp;
4805 }
4806
4807 intel_dig_port->port = port;
4808 intel_dig_port->dp.output_reg = output_reg;
4809
4810 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4811 if (IS_CHERRYVIEW(dev)) {
4812 if (port == PORT_D)
4813 intel_encoder->crtc_mask = 1 << 2;
4814 else
4815 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
4816 } else {
4817 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
4818 }
4819 intel_encoder->cloneable = 0;
4820 intel_encoder->hot_plug = intel_dp_hot_plug;
4821
4822 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
4823 dev_priv->hpd_irq_port[port] = intel_dig_port;
4824
4825 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
4826 drm_encoder_cleanup(encoder);
4827 kfree(intel_dig_port);
4828 kfree(intel_connector);
4829 }
4830 }
4831
4832 void intel_dp_mst_suspend(struct drm_device *dev)
4833 {
4834 struct drm_i915_private *dev_priv = dev->dev_private;
4835 int i;
4836
4837 /* disable MST */
4838 for (i = 0; i < I915_MAX_PORTS; i++) {
4839 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
4840 if (!intel_dig_port)
4841 continue;
4842
4843 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
4844 if (!intel_dig_port->dp.can_mst)
4845 continue;
4846 if (intel_dig_port->dp.is_mst)
4847 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
4848 }
4849 }
4850 }
4851
4852 void intel_dp_mst_resume(struct drm_device *dev)
4853 {
4854 struct drm_i915_private *dev_priv = dev->dev_private;
4855 int i;
4856
4857 for (i = 0; i < I915_MAX_PORTS; i++) {
4858 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
4859 if (!intel_dig_port)
4860 continue;
4861 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
4862 int ret;
4863
4864 if (!intel_dig_port->dp.can_mst)
4865 continue;
4866
4867 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
4868 if (ret != 0) {
4869 intel_dp_check_mst_status(&intel_dig_port->dp);
4870 }
4871 }
4872 }
4873 }