]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/intel_dp.c
drm/radeon/kms: fix the colorbuffer CS checker for r300-r500
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include "drmP.h"
31 #include "drm.h"
32 #include "drm_crtc.h"
33 #include "drm_crtc_helper.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "drm_dp_helper.h"
38
39
40 #define DP_LINK_STATUS_SIZE 6
41 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
42
43 #define DP_LINK_CONFIGURATION_SIZE 9
44
45 #define IS_eDP(i) ((i)->base.type == INTEL_OUTPUT_EDP)
46 #define IS_PCH_eDP(i) ((i)->is_pch_edp)
47
48 struct intel_dp {
49 struct intel_encoder base;
50 uint32_t output_reg;
51 uint32_t DP;
52 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
53 bool has_audio;
54 int dpms_mode;
55 uint8_t link_bw;
56 uint8_t lane_count;
57 uint8_t dpcd[4];
58 struct i2c_adapter adapter;
59 struct i2c_algo_dp_aux_data algo;
60 bool is_pch_edp;
61 };
62
63 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
64 {
65 return container_of(enc_to_intel_encoder(encoder), struct intel_dp, base);
66 }
67
68 static void intel_dp_link_train(struct intel_dp *intel_dp);
69 static void intel_dp_link_down(struct intel_dp *intel_dp);
70
71 void
72 intel_edp_link_config (struct intel_encoder *intel_encoder,
73 int *lane_num, int *link_bw)
74 {
75 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
76
77 *lane_num = intel_dp->lane_count;
78 if (intel_dp->link_bw == DP_LINK_BW_1_62)
79 *link_bw = 162000;
80 else if (intel_dp->link_bw == DP_LINK_BW_2_7)
81 *link_bw = 270000;
82 }
83
84 static int
85 intel_dp_max_lane_count(struct intel_dp *intel_dp)
86 {
87 int max_lane_count = 4;
88
89 if (intel_dp->dpcd[0] >= 0x11) {
90 max_lane_count = intel_dp->dpcd[2] & 0x1f;
91 switch (max_lane_count) {
92 case 1: case 2: case 4:
93 break;
94 default:
95 max_lane_count = 4;
96 }
97 }
98 return max_lane_count;
99 }
100
101 static int
102 intel_dp_max_link_bw(struct intel_dp *intel_dp)
103 {
104 int max_link_bw = intel_dp->dpcd[1];
105
106 switch (max_link_bw) {
107 case DP_LINK_BW_1_62:
108 case DP_LINK_BW_2_7:
109 break;
110 default:
111 max_link_bw = DP_LINK_BW_1_62;
112 break;
113 }
114 return max_link_bw;
115 }
116
117 static int
118 intel_dp_link_clock(uint8_t link_bw)
119 {
120 if (link_bw == DP_LINK_BW_2_7)
121 return 270000;
122 else
123 return 162000;
124 }
125
126 /* I think this is a fiction */
127 static int
128 intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
129 {
130 struct drm_i915_private *dev_priv = dev->dev_private;
131
132 if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
133 return (pixel_clock * dev_priv->edp_bpp) / 8;
134 else
135 return pixel_clock * 3;
136 }
137
138 static int
139 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
140 {
141 return (max_link_clock * max_lanes * 8) / 10;
142 }
143
144 static int
145 intel_dp_mode_valid(struct drm_connector *connector,
146 struct drm_display_mode *mode)
147 {
148 struct drm_encoder *encoder = intel_attached_encoder(connector);
149 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
150 struct drm_device *dev = connector->dev;
151 struct drm_i915_private *dev_priv = dev->dev_private;
152 int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
153 int max_lanes = intel_dp_max_lane_count(intel_dp);
154
155 if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
156 dev_priv->panel_fixed_mode) {
157 if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
158 return MODE_PANEL;
159
160 if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
161 return MODE_PANEL;
162 }
163
164 /* only refuse the mode on non eDP since we have seen some wierd eDP panels
165 which are outside spec tolerances but somehow work by magic */
166 if (!IS_eDP(intel_dp) &&
167 (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
168 > intel_dp_max_data_rate(max_link_clock, max_lanes)))
169 return MODE_CLOCK_HIGH;
170
171 if (mode->clock < 10000)
172 return MODE_CLOCK_LOW;
173
174 return MODE_OK;
175 }
176
177 static uint32_t
178 pack_aux(uint8_t *src, int src_bytes)
179 {
180 int i;
181 uint32_t v = 0;
182
183 if (src_bytes > 4)
184 src_bytes = 4;
185 for (i = 0; i < src_bytes; i++)
186 v |= ((uint32_t) src[i]) << ((3-i) * 8);
187 return v;
188 }
189
190 static void
191 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
192 {
193 int i;
194 if (dst_bytes > 4)
195 dst_bytes = 4;
196 for (i = 0; i < dst_bytes; i++)
197 dst[i] = src >> ((3-i) * 8);
198 }
199
200 /* hrawclock is 1/4 the FSB frequency */
201 static int
202 intel_hrawclk(struct drm_device *dev)
203 {
204 struct drm_i915_private *dev_priv = dev->dev_private;
205 uint32_t clkcfg;
206
207 clkcfg = I915_READ(CLKCFG);
208 switch (clkcfg & CLKCFG_FSB_MASK) {
209 case CLKCFG_FSB_400:
210 return 100;
211 case CLKCFG_FSB_533:
212 return 133;
213 case CLKCFG_FSB_667:
214 return 166;
215 case CLKCFG_FSB_800:
216 return 200;
217 case CLKCFG_FSB_1067:
218 return 266;
219 case CLKCFG_FSB_1333:
220 return 333;
221 /* these two are just a guess; one of them might be right */
222 case CLKCFG_FSB_1600:
223 case CLKCFG_FSB_1600_ALT:
224 return 400;
225 default:
226 return 133;
227 }
228 }
229
230 static int
231 intel_dp_aux_ch(struct intel_dp *intel_dp,
232 uint8_t *send, int send_bytes,
233 uint8_t *recv, int recv_size)
234 {
235 uint32_t output_reg = intel_dp->output_reg;
236 struct drm_device *dev = intel_dp->base.enc.dev;
237 struct drm_i915_private *dev_priv = dev->dev_private;
238 uint32_t ch_ctl = output_reg + 0x10;
239 uint32_t ch_data = ch_ctl + 4;
240 int i;
241 int recv_bytes;
242 uint32_t status;
243 uint32_t aux_clock_divider;
244 int try, precharge;
245
246 /* The clock divider is based off the hrawclk,
247 * and would like to run at 2MHz. So, take the
248 * hrawclk value and divide by 2 and use that
249 */
250 if (IS_eDP(intel_dp)) {
251 if (IS_GEN6(dev))
252 aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
253 else
254 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
255 } else if (HAS_PCH_SPLIT(dev))
256 aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
257 else
258 aux_clock_divider = intel_hrawclk(dev) / 2;
259
260 if (IS_GEN6(dev))
261 precharge = 3;
262 else
263 precharge = 5;
264
265 if (I915_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
266 DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
267 I915_READ(ch_ctl));
268 return -EBUSY;
269 }
270
271 /* Must try at least 3 times according to DP spec */
272 for (try = 0; try < 5; try++) {
273 /* Load the send data into the aux channel data registers */
274 for (i = 0; i < send_bytes; i += 4)
275 I915_WRITE(ch_data + i,
276 pack_aux(send + i, send_bytes - i));
277
278 /* Send the command and wait for it to complete */
279 I915_WRITE(ch_ctl,
280 DP_AUX_CH_CTL_SEND_BUSY |
281 DP_AUX_CH_CTL_TIME_OUT_400us |
282 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
283 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
284 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
285 DP_AUX_CH_CTL_DONE |
286 DP_AUX_CH_CTL_TIME_OUT_ERROR |
287 DP_AUX_CH_CTL_RECEIVE_ERROR);
288 for (;;) {
289 status = I915_READ(ch_ctl);
290 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
291 break;
292 udelay(100);
293 }
294
295 /* Clear done status and any errors */
296 I915_WRITE(ch_ctl,
297 status |
298 DP_AUX_CH_CTL_DONE |
299 DP_AUX_CH_CTL_TIME_OUT_ERROR |
300 DP_AUX_CH_CTL_RECEIVE_ERROR);
301 if (status & DP_AUX_CH_CTL_DONE)
302 break;
303 }
304
305 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
306 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
307 return -EBUSY;
308 }
309
310 /* Check for timeout or receive error.
311 * Timeouts occur when the sink is not connected
312 */
313 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
314 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
315 return -EIO;
316 }
317
318 /* Timeouts occur when the device isn't connected, so they're
319 * "normal" -- don't fill the kernel log with these */
320 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
321 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
322 return -ETIMEDOUT;
323 }
324
325 /* Unload any bytes sent back from the other side */
326 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
327 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
328 if (recv_bytes > recv_size)
329 recv_bytes = recv_size;
330
331 for (i = 0; i < recv_bytes; i += 4)
332 unpack_aux(I915_READ(ch_data + i),
333 recv + i, recv_bytes - i);
334
335 return recv_bytes;
336 }
337
338 /* Write data to the aux channel in native mode */
339 static int
340 intel_dp_aux_native_write(struct intel_dp *intel_dp,
341 uint16_t address, uint8_t *send, int send_bytes)
342 {
343 int ret;
344 uint8_t msg[20];
345 int msg_bytes;
346 uint8_t ack;
347
348 if (send_bytes > 16)
349 return -1;
350 msg[0] = AUX_NATIVE_WRITE << 4;
351 msg[1] = address >> 8;
352 msg[2] = address & 0xff;
353 msg[3] = send_bytes - 1;
354 memcpy(&msg[4], send, send_bytes);
355 msg_bytes = send_bytes + 4;
356 for (;;) {
357 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
358 if (ret < 0)
359 return ret;
360 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
361 break;
362 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
363 udelay(100);
364 else
365 return -EIO;
366 }
367 return send_bytes;
368 }
369
370 /* Write a single byte to the aux channel in native mode */
371 static int
372 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
373 uint16_t address, uint8_t byte)
374 {
375 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
376 }
377
378 /* read bytes from a native aux channel */
379 static int
380 intel_dp_aux_native_read(struct intel_dp *intel_dp,
381 uint16_t address, uint8_t *recv, int recv_bytes)
382 {
383 uint8_t msg[4];
384 int msg_bytes;
385 uint8_t reply[20];
386 int reply_bytes;
387 uint8_t ack;
388 int ret;
389
390 msg[0] = AUX_NATIVE_READ << 4;
391 msg[1] = address >> 8;
392 msg[2] = address & 0xff;
393 msg[3] = recv_bytes - 1;
394
395 msg_bytes = 4;
396 reply_bytes = recv_bytes + 1;
397
398 for (;;) {
399 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
400 reply, reply_bytes);
401 if (ret == 0)
402 return -EPROTO;
403 if (ret < 0)
404 return ret;
405 ack = reply[0];
406 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
407 memcpy(recv, reply + 1, ret - 1);
408 return ret - 1;
409 }
410 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
411 udelay(100);
412 else
413 return -EIO;
414 }
415 }
416
417 static int
418 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
419 uint8_t write_byte, uint8_t *read_byte)
420 {
421 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
422 struct intel_dp *intel_dp = container_of(adapter,
423 struct intel_dp,
424 adapter);
425 uint16_t address = algo_data->address;
426 uint8_t msg[5];
427 uint8_t reply[2];
428 int msg_bytes;
429 int reply_bytes;
430 int ret;
431
432 /* Set up the command byte */
433 if (mode & MODE_I2C_READ)
434 msg[0] = AUX_I2C_READ << 4;
435 else
436 msg[0] = AUX_I2C_WRITE << 4;
437
438 if (!(mode & MODE_I2C_STOP))
439 msg[0] |= AUX_I2C_MOT << 4;
440
441 msg[1] = address >> 8;
442 msg[2] = address;
443
444 switch (mode) {
445 case MODE_I2C_WRITE:
446 msg[3] = 0;
447 msg[4] = write_byte;
448 msg_bytes = 5;
449 reply_bytes = 1;
450 break;
451 case MODE_I2C_READ:
452 msg[3] = 0;
453 msg_bytes = 4;
454 reply_bytes = 2;
455 break;
456 default:
457 msg_bytes = 3;
458 reply_bytes = 1;
459 break;
460 }
461
462 for (;;) {
463 ret = intel_dp_aux_ch(intel_dp,
464 msg, msg_bytes,
465 reply, reply_bytes);
466 if (ret < 0) {
467 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
468 return ret;
469 }
470 switch (reply[0] & AUX_I2C_REPLY_MASK) {
471 case AUX_I2C_REPLY_ACK:
472 if (mode == MODE_I2C_READ) {
473 *read_byte = reply[1];
474 }
475 return reply_bytes - 1;
476 case AUX_I2C_REPLY_NACK:
477 DRM_DEBUG_KMS("aux_ch nack\n");
478 return -EREMOTEIO;
479 case AUX_I2C_REPLY_DEFER:
480 DRM_DEBUG_KMS("aux_ch defer\n");
481 udelay(100);
482 break;
483 default:
484 DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
485 return -EREMOTEIO;
486 }
487 }
488 }
489
490 static int
491 intel_dp_i2c_init(struct intel_dp *intel_dp,
492 struct intel_connector *intel_connector, const char *name)
493 {
494 DRM_DEBUG_KMS("i2c_init %s\n", name);
495 intel_dp->algo.running = false;
496 intel_dp->algo.address = 0;
497 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
498
499 memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
500 intel_dp->adapter.owner = THIS_MODULE;
501 intel_dp->adapter.class = I2C_CLASS_DDC;
502 strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
503 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
504 intel_dp->adapter.algo_data = &intel_dp->algo;
505 intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
506
507 return i2c_dp_aux_add_bus(&intel_dp->adapter);
508 }
509
510 static bool
511 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
512 struct drm_display_mode *adjusted_mode)
513 {
514 struct drm_device *dev = encoder->dev;
515 struct drm_i915_private *dev_priv = dev->dev_private;
516 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
517 int lane_count, clock;
518 int max_lane_count = intel_dp_max_lane_count(intel_dp);
519 int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
520 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
521
522 if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
523 dev_priv->panel_fixed_mode) {
524 intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
525 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
526 mode, adjusted_mode);
527 /*
528 * the mode->clock is used to calculate the Data&Link M/N
529 * of the pipe. For the eDP the fixed clock should be used.
530 */
531 mode->clock = dev_priv->panel_fixed_mode->clock;
532 }
533
534 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
535 for (clock = 0; clock <= max_clock; clock++) {
536 int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
537
538 if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
539 <= link_avail) {
540 intel_dp->link_bw = bws[clock];
541 intel_dp->lane_count = lane_count;
542 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
543 DRM_DEBUG_KMS("Display port link bw %02x lane "
544 "count %d clock %d\n",
545 intel_dp->link_bw, intel_dp->lane_count,
546 adjusted_mode->clock);
547 return true;
548 }
549 }
550 }
551
552 if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
553 /* okay we failed just pick the highest */
554 intel_dp->lane_count = max_lane_count;
555 intel_dp->link_bw = bws[max_clock];
556 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
557 DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
558 "count %d clock %d\n",
559 intel_dp->link_bw, intel_dp->lane_count,
560 adjusted_mode->clock);
561
562 return true;
563 }
564
565 return false;
566 }
567
568 struct intel_dp_m_n {
569 uint32_t tu;
570 uint32_t gmch_m;
571 uint32_t gmch_n;
572 uint32_t link_m;
573 uint32_t link_n;
574 };
575
576 static void
577 intel_reduce_ratio(uint32_t *num, uint32_t *den)
578 {
579 while (*num > 0xffffff || *den > 0xffffff) {
580 *num >>= 1;
581 *den >>= 1;
582 }
583 }
584
585 static void
586 intel_dp_compute_m_n(int bpp,
587 int nlanes,
588 int pixel_clock,
589 int link_clock,
590 struct intel_dp_m_n *m_n)
591 {
592 m_n->tu = 64;
593 m_n->gmch_m = (pixel_clock * bpp) >> 3;
594 m_n->gmch_n = link_clock * nlanes;
595 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
596 m_n->link_m = pixel_clock;
597 m_n->link_n = link_clock;
598 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
599 }
600
601 bool intel_pch_has_edp(struct drm_crtc *crtc)
602 {
603 struct drm_device *dev = crtc->dev;
604 struct drm_mode_config *mode_config = &dev->mode_config;
605 struct drm_encoder *encoder;
606
607 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
608 struct intel_dp *intel_dp;
609
610 if (encoder->crtc != crtc)
611 continue;
612
613 intel_dp = enc_to_intel_dp(encoder);
614 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
615 return intel_dp->is_pch_edp;
616 }
617 return false;
618 }
619
620 void
621 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
622 struct drm_display_mode *adjusted_mode)
623 {
624 struct drm_device *dev = crtc->dev;
625 struct drm_mode_config *mode_config = &dev->mode_config;
626 struct drm_encoder *encoder;
627 struct drm_i915_private *dev_priv = dev->dev_private;
628 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
629 int lane_count = 4, bpp = 24;
630 struct intel_dp_m_n m_n;
631
632 /*
633 * Find the lane count in the intel_encoder private
634 */
635 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
636 struct intel_dp *intel_dp;
637
638 if (encoder->crtc != crtc)
639 continue;
640
641 intel_dp = enc_to_intel_dp(encoder);
642 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
643 lane_count = intel_dp->lane_count;
644 if (IS_PCH_eDP(intel_dp))
645 bpp = dev_priv->edp_bpp;
646 break;
647 }
648 }
649
650 /*
651 * Compute the GMCH and Link ratios. The '3' here is
652 * the number of bytes_per_pixel post-LUT, which we always
653 * set up for 8-bits of R/G/B, or 3 bytes total.
654 */
655 intel_dp_compute_m_n(bpp, lane_count,
656 mode->clock, adjusted_mode->clock, &m_n);
657
658 if (HAS_PCH_SPLIT(dev)) {
659 if (intel_crtc->pipe == 0) {
660 I915_WRITE(TRANSA_DATA_M1,
661 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
662 m_n.gmch_m);
663 I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
664 I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
665 I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
666 } else {
667 I915_WRITE(TRANSB_DATA_M1,
668 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
669 m_n.gmch_m);
670 I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
671 I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
672 I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
673 }
674 } else {
675 if (intel_crtc->pipe == 0) {
676 I915_WRITE(PIPEA_GMCH_DATA_M,
677 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
678 m_n.gmch_m);
679 I915_WRITE(PIPEA_GMCH_DATA_N,
680 m_n.gmch_n);
681 I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
682 I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
683 } else {
684 I915_WRITE(PIPEB_GMCH_DATA_M,
685 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
686 m_n.gmch_m);
687 I915_WRITE(PIPEB_GMCH_DATA_N,
688 m_n.gmch_n);
689 I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
690 I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
691 }
692 }
693 }
694
695 static void
696 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
697 struct drm_display_mode *adjusted_mode)
698 {
699 struct drm_device *dev = encoder->dev;
700 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
701 struct drm_crtc *crtc = intel_dp->base.enc.crtc;
702 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
703
704 intel_dp->DP = (DP_VOLTAGE_0_4 |
705 DP_PRE_EMPHASIS_0);
706
707 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
708 intel_dp->DP |= DP_SYNC_HS_HIGH;
709 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
710 intel_dp->DP |= DP_SYNC_VS_HIGH;
711
712 if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
713 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
714 else
715 intel_dp->DP |= DP_LINK_TRAIN_OFF;
716
717 switch (intel_dp->lane_count) {
718 case 1:
719 intel_dp->DP |= DP_PORT_WIDTH_1;
720 break;
721 case 2:
722 intel_dp->DP |= DP_PORT_WIDTH_2;
723 break;
724 case 4:
725 intel_dp->DP |= DP_PORT_WIDTH_4;
726 break;
727 }
728 if (intel_dp->has_audio)
729 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
730
731 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
732 intel_dp->link_configuration[0] = intel_dp->link_bw;
733 intel_dp->link_configuration[1] = intel_dp->lane_count;
734
735 /*
736 * Check for DPCD version > 1.1 and enhanced framing support
737 */
738 if (intel_dp->dpcd[0] >= 0x11 && (intel_dp->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
739 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
740 intel_dp->DP |= DP_ENHANCED_FRAMING;
741 }
742
743 /* CPT DP's pipe select is decided in TRANS_DP_CTL */
744 if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
745 intel_dp->DP |= DP_PIPEB_SELECT;
746
747 if (IS_eDP(intel_dp)) {
748 /* don't miss out required setting for eDP */
749 intel_dp->DP |= DP_PLL_ENABLE;
750 if (adjusted_mode->clock < 200000)
751 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
752 else
753 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
754 }
755 }
756
757 static void ironlake_edp_panel_on (struct drm_device *dev)
758 {
759 struct drm_i915_private *dev_priv = dev->dev_private;
760 u32 pp;
761
762 if (I915_READ(PCH_PP_STATUS) & PP_ON)
763 return;
764
765 pp = I915_READ(PCH_PP_CONTROL);
766
767 /* ILK workaround: disable reset around power sequence */
768 pp &= ~PANEL_POWER_RESET;
769 I915_WRITE(PCH_PP_CONTROL, pp);
770 POSTING_READ(PCH_PP_CONTROL);
771
772 pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
773 I915_WRITE(PCH_PP_CONTROL, pp);
774
775 if (wait_for(I915_READ(PCH_PP_STATUS) & PP_ON, 5000, 10))
776 DRM_ERROR("panel on wait timed out: 0x%08x\n",
777 I915_READ(PCH_PP_STATUS));
778
779 pp &= ~(PANEL_UNLOCK_REGS | EDP_FORCE_VDD);
780 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
781 I915_WRITE(PCH_PP_CONTROL, pp);
782 POSTING_READ(PCH_PP_CONTROL);
783 }
784
785 static void ironlake_edp_panel_off (struct drm_device *dev)
786 {
787 struct drm_i915_private *dev_priv = dev->dev_private;
788 u32 pp;
789
790 pp = I915_READ(PCH_PP_CONTROL);
791
792 /* ILK workaround: disable reset around power sequence */
793 pp &= ~PANEL_POWER_RESET;
794 I915_WRITE(PCH_PP_CONTROL, pp);
795 POSTING_READ(PCH_PP_CONTROL);
796
797 pp &= ~POWER_TARGET_ON;
798 I915_WRITE(PCH_PP_CONTROL, pp);
799
800 if (wait_for((I915_READ(PCH_PP_STATUS) & PP_ON) == 0, 5000, 10))
801 DRM_ERROR("panel off wait timed out: 0x%08x\n",
802 I915_READ(PCH_PP_STATUS));
803
804 /* Make sure VDD is enabled so DP AUX will work */
805 pp |= EDP_FORCE_VDD | PANEL_POWER_RESET; /* restore panel reset bit */
806 I915_WRITE(PCH_PP_CONTROL, pp);
807 POSTING_READ(PCH_PP_CONTROL);
808 }
809
810 static void ironlake_edp_backlight_on (struct drm_device *dev)
811 {
812 struct drm_i915_private *dev_priv = dev->dev_private;
813 u32 pp;
814
815 DRM_DEBUG_KMS("\n");
816 pp = I915_READ(PCH_PP_CONTROL);
817 pp |= EDP_BLC_ENABLE;
818 I915_WRITE(PCH_PP_CONTROL, pp);
819 }
820
821 static void ironlake_edp_backlight_off (struct drm_device *dev)
822 {
823 struct drm_i915_private *dev_priv = dev->dev_private;
824 u32 pp;
825
826 DRM_DEBUG_KMS("\n");
827 pp = I915_READ(PCH_PP_CONTROL);
828 pp &= ~EDP_BLC_ENABLE;
829 I915_WRITE(PCH_PP_CONTROL, pp);
830 }
831
832 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
833 {
834 struct drm_device *dev = encoder->dev;
835 struct drm_i915_private *dev_priv = dev->dev_private;
836 u32 dpa_ctl;
837
838 DRM_DEBUG_KMS("\n");
839 dpa_ctl = I915_READ(DP_A);
840 dpa_ctl &= ~DP_PLL_ENABLE;
841 I915_WRITE(DP_A, dpa_ctl);
842 }
843
844 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
845 {
846 struct drm_device *dev = encoder->dev;
847 struct drm_i915_private *dev_priv = dev->dev_private;
848 u32 dpa_ctl;
849
850 dpa_ctl = I915_READ(DP_A);
851 dpa_ctl |= DP_PLL_ENABLE;
852 I915_WRITE(DP_A, dpa_ctl);
853 udelay(200);
854 }
855
856 static void intel_dp_prepare(struct drm_encoder *encoder)
857 {
858 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
859 struct drm_device *dev = encoder->dev;
860 struct drm_i915_private *dev_priv = dev->dev_private;
861 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
862
863 if (IS_eDP(intel_dp)) {
864 ironlake_edp_backlight_off(dev);
865 ironlake_edp_panel_on(dev);
866 ironlake_edp_pll_on(encoder);
867 }
868 if (dp_reg & DP_PORT_EN)
869 intel_dp_link_down(intel_dp);
870 }
871
872 static void intel_dp_commit(struct drm_encoder *encoder)
873 {
874 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
875 struct drm_device *dev = encoder->dev;
876 struct drm_i915_private *dev_priv = dev->dev_private;
877 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
878
879 if (!(dp_reg & DP_PORT_EN)) {
880 intel_dp_link_train(intel_dp);
881 }
882 if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
883 ironlake_edp_backlight_on(dev);
884 }
885
886 static void
887 intel_dp_dpms(struct drm_encoder *encoder, int mode)
888 {
889 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
890 struct drm_device *dev = encoder->dev;
891 struct drm_i915_private *dev_priv = dev->dev_private;
892 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
893
894 if (mode != DRM_MODE_DPMS_ON) {
895 if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
896 ironlake_edp_backlight_off(dev);
897 ironlake_edp_panel_off(dev);
898 }
899 if (dp_reg & DP_PORT_EN)
900 intel_dp_link_down(intel_dp);
901 if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
902 ironlake_edp_pll_off(encoder);
903 } else {
904 if (!(dp_reg & DP_PORT_EN)) {
905 if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
906 ironlake_edp_panel_on(dev);
907 intel_dp_link_train(intel_dp);
908 if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp))
909 ironlake_edp_backlight_on(dev);
910 }
911 }
912 intel_dp->dpms_mode = mode;
913 }
914
915 /*
916 * Fetch AUX CH registers 0x202 - 0x207 which contain
917 * link status information
918 */
919 static bool
920 intel_dp_get_link_status(struct intel_dp *intel_dp,
921 uint8_t link_status[DP_LINK_STATUS_SIZE])
922 {
923 int ret;
924
925 ret = intel_dp_aux_native_read(intel_dp,
926 DP_LANE0_1_STATUS,
927 link_status, DP_LINK_STATUS_SIZE);
928 if (ret != DP_LINK_STATUS_SIZE)
929 return false;
930 return true;
931 }
932
933 static uint8_t
934 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
935 int r)
936 {
937 return link_status[r - DP_LANE0_1_STATUS];
938 }
939
940 static uint8_t
941 intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
942 int lane)
943 {
944 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
945 int s = ((lane & 1) ?
946 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
947 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
948 uint8_t l = intel_dp_link_status(link_status, i);
949
950 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
951 }
952
953 static uint8_t
954 intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
955 int lane)
956 {
957 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
958 int s = ((lane & 1) ?
959 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
960 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
961 uint8_t l = intel_dp_link_status(link_status, i);
962
963 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
964 }
965
966
967 #if 0
968 static char *voltage_names[] = {
969 "0.4V", "0.6V", "0.8V", "1.2V"
970 };
971 static char *pre_emph_names[] = {
972 "0dB", "3.5dB", "6dB", "9.5dB"
973 };
974 static char *link_train_names[] = {
975 "pattern 1", "pattern 2", "idle", "off"
976 };
977 #endif
978
979 /*
980 * These are source-specific values; current Intel hardware supports
981 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
982 */
983 #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
984
985 static uint8_t
986 intel_dp_pre_emphasis_max(uint8_t voltage_swing)
987 {
988 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
989 case DP_TRAIN_VOLTAGE_SWING_400:
990 return DP_TRAIN_PRE_EMPHASIS_6;
991 case DP_TRAIN_VOLTAGE_SWING_600:
992 return DP_TRAIN_PRE_EMPHASIS_6;
993 case DP_TRAIN_VOLTAGE_SWING_800:
994 return DP_TRAIN_PRE_EMPHASIS_3_5;
995 case DP_TRAIN_VOLTAGE_SWING_1200:
996 default:
997 return DP_TRAIN_PRE_EMPHASIS_0;
998 }
999 }
1000
1001 static void
1002 intel_get_adjust_train(struct intel_dp *intel_dp,
1003 uint8_t link_status[DP_LINK_STATUS_SIZE],
1004 int lane_count,
1005 uint8_t train_set[4])
1006 {
1007 uint8_t v = 0;
1008 uint8_t p = 0;
1009 int lane;
1010
1011 for (lane = 0; lane < lane_count; lane++) {
1012 uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
1013 uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);
1014
1015 if (this_v > v)
1016 v = this_v;
1017 if (this_p > p)
1018 p = this_p;
1019 }
1020
1021 if (v >= I830_DP_VOLTAGE_MAX)
1022 v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1023
1024 if (p >= intel_dp_pre_emphasis_max(v))
1025 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1026
1027 for (lane = 0; lane < 4; lane++)
1028 train_set[lane] = v | p;
1029 }
1030
1031 static uint32_t
1032 intel_dp_signal_levels(uint8_t train_set, int lane_count)
1033 {
1034 uint32_t signal_levels = 0;
1035
1036 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1037 case DP_TRAIN_VOLTAGE_SWING_400:
1038 default:
1039 signal_levels |= DP_VOLTAGE_0_4;
1040 break;
1041 case DP_TRAIN_VOLTAGE_SWING_600:
1042 signal_levels |= DP_VOLTAGE_0_6;
1043 break;
1044 case DP_TRAIN_VOLTAGE_SWING_800:
1045 signal_levels |= DP_VOLTAGE_0_8;
1046 break;
1047 case DP_TRAIN_VOLTAGE_SWING_1200:
1048 signal_levels |= DP_VOLTAGE_1_2;
1049 break;
1050 }
1051 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1052 case DP_TRAIN_PRE_EMPHASIS_0:
1053 default:
1054 signal_levels |= DP_PRE_EMPHASIS_0;
1055 break;
1056 case DP_TRAIN_PRE_EMPHASIS_3_5:
1057 signal_levels |= DP_PRE_EMPHASIS_3_5;
1058 break;
1059 case DP_TRAIN_PRE_EMPHASIS_6:
1060 signal_levels |= DP_PRE_EMPHASIS_6;
1061 break;
1062 case DP_TRAIN_PRE_EMPHASIS_9_5:
1063 signal_levels |= DP_PRE_EMPHASIS_9_5;
1064 break;
1065 }
1066 return signal_levels;
1067 }
1068
1069 /* Gen6's DP voltage swing and pre-emphasis control */
1070 static uint32_t
1071 intel_gen6_edp_signal_levels(uint8_t train_set)
1072 {
1073 switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
1074 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1075 return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
1076 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1077 return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
1078 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1079 return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
1080 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1081 return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
1082 default:
1083 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
1084 return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
1085 }
1086 }
1087
1088 static uint8_t
1089 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1090 int lane)
1091 {
1092 int i = DP_LANE0_1_STATUS + (lane >> 1);
1093 int s = (lane & 1) * 4;
1094 uint8_t l = intel_dp_link_status(link_status, i);
1095
1096 return (l >> s) & 0xf;
1097 }
1098
1099 /* Check for clock recovery is done on all channels */
1100 static bool
1101 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1102 {
1103 int lane;
1104 uint8_t lane_status;
1105
1106 for (lane = 0; lane < lane_count; lane++) {
1107 lane_status = intel_get_lane_status(link_status, lane);
1108 if ((lane_status & DP_LANE_CR_DONE) == 0)
1109 return false;
1110 }
1111 return true;
1112 }
1113
1114 /* Check to see if channel eq is done on all channels */
1115 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1116 DP_LANE_CHANNEL_EQ_DONE|\
1117 DP_LANE_SYMBOL_LOCKED)
1118 static bool
1119 intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1120 {
1121 uint8_t lane_align;
1122 uint8_t lane_status;
1123 int lane;
1124
1125 lane_align = intel_dp_link_status(link_status,
1126 DP_LANE_ALIGN_STATUS_UPDATED);
1127 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1128 return false;
1129 for (lane = 0; lane < lane_count; lane++) {
1130 lane_status = intel_get_lane_status(link_status, lane);
1131 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1132 return false;
1133 }
1134 return true;
1135 }
1136
1137 static bool
1138 intel_dp_set_link_train(struct intel_dp *intel_dp,
1139 uint32_t dp_reg_value,
1140 uint8_t dp_train_pat,
1141 uint8_t train_set[4],
1142 bool first)
1143 {
1144 struct drm_device *dev = intel_dp->base.enc.dev;
1145 struct drm_i915_private *dev_priv = dev->dev_private;
1146 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.enc.crtc);
1147 int ret;
1148
1149 I915_WRITE(intel_dp->output_reg, dp_reg_value);
1150 POSTING_READ(intel_dp->output_reg);
1151 if (first)
1152 intel_wait_for_vblank(dev, intel_crtc->pipe);
1153
1154 intel_dp_aux_native_write_1(intel_dp,
1155 DP_TRAINING_PATTERN_SET,
1156 dp_train_pat);
1157
1158 ret = intel_dp_aux_native_write(intel_dp,
1159 DP_TRAINING_LANE0_SET, train_set, 4);
1160 if (ret != 4)
1161 return false;
1162
1163 return true;
1164 }
1165
1166 static void
1167 intel_dp_link_train(struct intel_dp *intel_dp)
1168 {
1169 struct drm_device *dev = intel_dp->base.enc.dev;
1170 struct drm_i915_private *dev_priv = dev->dev_private;
1171 uint8_t train_set[4];
1172 uint8_t link_status[DP_LINK_STATUS_SIZE];
1173 int i;
1174 uint8_t voltage;
1175 bool clock_recovery = false;
1176 bool channel_eq = false;
1177 bool first = true;
1178 int tries;
1179 u32 reg;
1180 uint32_t DP = intel_dp->DP;
1181
1182 /* Write the link configuration data */
1183 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1184 intel_dp->link_configuration,
1185 DP_LINK_CONFIGURATION_SIZE);
1186
1187 DP |= DP_PORT_EN;
1188 if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
1189 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1190 else
1191 DP &= ~DP_LINK_TRAIN_MASK;
1192 memset(train_set, 0, 4);
1193 voltage = 0xff;
1194 tries = 0;
1195 clock_recovery = false;
1196 for (;;) {
1197 /* Use train_set[0] to set the voltage and pre emphasis values */
1198 uint32_t signal_levels;
1199 if (IS_GEN6(dev) && IS_eDP(intel_dp)) {
1200 signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
1201 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1202 } else {
1203 signal_levels = intel_dp_signal_levels(train_set[0], intel_dp->lane_count);
1204 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1205 }
1206
1207 if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
1208 reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1209 else
1210 reg = DP | DP_LINK_TRAIN_PAT_1;
1211
1212 if (!intel_dp_set_link_train(intel_dp, reg,
1213 DP_TRAINING_PATTERN_1, train_set, first))
1214 break;
1215 first = false;
1216 /* Set training pattern 1 */
1217
1218 udelay(100);
1219 if (!intel_dp_get_link_status(intel_dp, link_status))
1220 break;
1221
1222 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1223 clock_recovery = true;
1224 break;
1225 }
1226
1227 /* Check to see if we've tried the max voltage */
1228 for (i = 0; i < intel_dp->lane_count; i++)
1229 if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1230 break;
1231 if (i == intel_dp->lane_count)
1232 break;
1233
1234 /* Check to see if we've tried the same voltage 5 times */
1235 if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1236 ++tries;
1237 if (tries == 5)
1238 break;
1239 } else
1240 tries = 0;
1241 voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1242
1243 /* Compute new train_set as requested by target */
1244 intel_get_adjust_train(intel_dp, link_status, intel_dp->lane_count, train_set);
1245 }
1246
1247 /* channel equalization */
1248 tries = 0;
1249 channel_eq = false;
1250 for (;;) {
1251 /* Use train_set[0] to set the voltage and pre emphasis values */
1252 uint32_t signal_levels;
1253
1254 if (IS_GEN6(dev) && IS_eDP(intel_dp)) {
1255 signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
1256 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1257 } else {
1258 signal_levels = intel_dp_signal_levels(train_set[0], intel_dp->lane_count);
1259 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1260 }
1261
1262 if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
1263 reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1264 else
1265 reg = DP | DP_LINK_TRAIN_PAT_2;
1266
1267 /* channel eq pattern */
1268 if (!intel_dp_set_link_train(intel_dp, reg,
1269 DP_TRAINING_PATTERN_2, train_set,
1270 false))
1271 break;
1272
1273 udelay(400);
1274 if (!intel_dp_get_link_status(intel_dp, link_status))
1275 break;
1276
1277 if (intel_channel_eq_ok(link_status, intel_dp->lane_count)) {
1278 channel_eq = true;
1279 break;
1280 }
1281
1282 /* Try 5 times */
1283 if (tries > 5)
1284 break;
1285
1286 /* Compute new train_set as requested by target */
1287 intel_get_adjust_train(intel_dp, link_status, intel_dp->lane_count, train_set);
1288 ++tries;
1289 }
1290
1291 if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp))
1292 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1293 else
1294 reg = DP | DP_LINK_TRAIN_OFF;
1295
1296 I915_WRITE(intel_dp->output_reg, reg);
1297 POSTING_READ(intel_dp->output_reg);
1298 intel_dp_aux_native_write_1(intel_dp,
1299 DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1300 }
1301
1302 static void
1303 intel_dp_link_down(struct intel_dp *intel_dp)
1304 {
1305 struct drm_device *dev = intel_dp->base.enc.dev;
1306 struct drm_i915_private *dev_priv = dev->dev_private;
1307 uint32_t DP = intel_dp->DP;
1308
1309 DRM_DEBUG_KMS("\n");
1310
1311 if (IS_eDP(intel_dp)) {
1312 DP &= ~DP_PLL_ENABLE;
1313 I915_WRITE(intel_dp->output_reg, DP);
1314 POSTING_READ(intel_dp->output_reg);
1315 udelay(100);
1316 }
1317
1318 if (HAS_PCH_CPT(dev) && !IS_eDP(intel_dp)) {
1319 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1320 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1321 POSTING_READ(intel_dp->output_reg);
1322 } else {
1323 DP &= ~DP_LINK_TRAIN_MASK;
1324 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1325 POSTING_READ(intel_dp->output_reg);
1326 }
1327
1328 udelay(17000);
1329
1330 if (IS_eDP(intel_dp))
1331 DP |= DP_LINK_TRAIN_OFF;
1332 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1333 POSTING_READ(intel_dp->output_reg);
1334 }
1335
1336 /*
1337 * According to DP spec
1338 * 5.1.2:
1339 * 1. Read DPCD
1340 * 2. Configure link according to Receiver Capabilities
1341 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
1342 * 4. Check link status on receipt of hot-plug interrupt
1343 */
1344
1345 static void
1346 intel_dp_check_link_status(struct intel_dp *intel_dp)
1347 {
1348 uint8_t link_status[DP_LINK_STATUS_SIZE];
1349
1350 if (!intel_dp->base.enc.crtc)
1351 return;
1352
1353 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1354 intel_dp_link_down(intel_dp);
1355 return;
1356 }
1357
1358 if (!intel_channel_eq_ok(link_status, intel_dp->lane_count))
1359 intel_dp_link_train(intel_dp);
1360 }
1361
1362 static enum drm_connector_status
1363 ironlake_dp_detect(struct drm_connector *connector)
1364 {
1365 struct drm_encoder *encoder = intel_attached_encoder(connector);
1366 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1367 enum drm_connector_status status;
1368
1369 status = connector_status_disconnected;
1370 if (intel_dp_aux_native_read(intel_dp,
1371 0x000, intel_dp->dpcd,
1372 sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1373 {
1374 if (intel_dp->dpcd[0] != 0)
1375 status = connector_status_connected;
1376 }
1377 DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
1378 intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
1379 return status;
1380 }
1381
1382 /**
1383 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1384 *
1385 * \return true if DP port is connected.
1386 * \return false if DP port is disconnected.
1387 */
1388 static enum drm_connector_status
1389 intel_dp_detect(struct drm_connector *connector,
1390 bool nondestructive)
1391 {
1392 struct drm_encoder *encoder = intel_attached_encoder(connector);
1393 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1394 struct drm_device *dev = intel_dp->base.enc.dev;
1395 struct drm_i915_private *dev_priv = dev->dev_private;
1396 uint32_t temp, bit;
1397 enum drm_connector_status status;
1398
1399 intel_dp->has_audio = false;
1400
1401 if (HAS_PCH_SPLIT(dev))
1402 return ironlake_dp_detect(connector);
1403
1404 switch (intel_dp->output_reg) {
1405 case DP_B:
1406 bit = DPB_HOTPLUG_INT_STATUS;
1407 break;
1408 case DP_C:
1409 bit = DPC_HOTPLUG_INT_STATUS;
1410 break;
1411 case DP_D:
1412 bit = DPD_HOTPLUG_INT_STATUS;
1413 break;
1414 default:
1415 return connector_status_unknown;
1416 }
1417
1418 temp = I915_READ(PORT_HOTPLUG_STAT);
1419
1420 if ((temp & bit) == 0)
1421 return connector_status_disconnected;
1422
1423 status = connector_status_disconnected;
1424 if (intel_dp_aux_native_read(intel_dp,
1425 0x000, intel_dp->dpcd,
1426 sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1427 {
1428 if (intel_dp->dpcd[0] != 0)
1429 status = connector_status_connected;
1430 }
1431 return status;
1432 }
1433
1434 static int intel_dp_get_modes(struct drm_connector *connector)
1435 {
1436 struct drm_encoder *encoder = intel_attached_encoder(connector);
1437 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1438 struct drm_device *dev = intel_dp->base.enc.dev;
1439 struct drm_i915_private *dev_priv = dev->dev_private;
1440 int ret;
1441
1442 /* We should parse the EDID data and find out if it has an audio sink
1443 */
1444
1445 ret = intel_ddc_get_modes(connector, intel_dp->base.ddc_bus);
1446 if (ret) {
1447 if ((IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) &&
1448 !dev_priv->panel_fixed_mode) {
1449 struct drm_display_mode *newmode;
1450 list_for_each_entry(newmode, &connector->probed_modes,
1451 head) {
1452 if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1453 dev_priv->panel_fixed_mode =
1454 drm_mode_duplicate(dev, newmode);
1455 break;
1456 }
1457 }
1458 }
1459
1460 return ret;
1461 }
1462
1463 /* if eDP has no EDID, try to use fixed panel mode from VBT */
1464 if (IS_eDP(intel_dp) || IS_PCH_eDP(intel_dp)) {
1465 if (dev_priv->panel_fixed_mode != NULL) {
1466 struct drm_display_mode *mode;
1467 mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
1468 drm_mode_probed_add(connector, mode);
1469 return 1;
1470 }
1471 }
1472 return 0;
1473 }
1474
1475 static void
1476 intel_dp_destroy (struct drm_connector *connector)
1477 {
1478 drm_sysfs_connector_remove(connector);
1479 drm_connector_cleanup(connector);
1480 kfree(connector);
1481 }
1482
1483 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1484 .dpms = intel_dp_dpms,
1485 .mode_fixup = intel_dp_mode_fixup,
1486 .prepare = intel_dp_prepare,
1487 .mode_set = intel_dp_mode_set,
1488 .commit = intel_dp_commit,
1489 };
1490
1491 static const struct drm_connector_funcs intel_dp_connector_funcs = {
1492 .dpms = drm_helper_connector_dpms,
1493 .detect = intel_dp_detect,
1494 .fill_modes = drm_helper_probe_single_connector_modes,
1495 .destroy = intel_dp_destroy,
1496 };
1497
1498 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1499 .get_modes = intel_dp_get_modes,
1500 .mode_valid = intel_dp_mode_valid,
1501 .best_encoder = intel_attached_encoder,
1502 };
1503
1504 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1505 .destroy = intel_encoder_destroy,
1506 };
1507
1508 void
1509 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
1510 {
1511 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
1512
1513 if (intel_dp->dpms_mode == DRM_MODE_DPMS_ON)
1514 intel_dp_check_link_status(intel_dp);
1515 }
1516
1517 /* Return which DP Port should be selected for Transcoder DP control */
1518 int
1519 intel_trans_dp_port_sel (struct drm_crtc *crtc)
1520 {
1521 struct drm_device *dev = crtc->dev;
1522 struct drm_mode_config *mode_config = &dev->mode_config;
1523 struct drm_encoder *encoder;
1524
1525 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1526 struct intel_dp *intel_dp;
1527
1528 if (encoder->crtc != crtc)
1529 continue;
1530
1531 intel_dp = enc_to_intel_dp(encoder);
1532 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
1533 return intel_dp->output_reg;
1534 }
1535
1536 return -1;
1537 }
1538
1539 /* check the VBT to see whether the eDP is on DP-D port */
1540 bool intel_dpd_is_edp(struct drm_device *dev)
1541 {
1542 struct drm_i915_private *dev_priv = dev->dev_private;
1543 struct child_device_config *p_child;
1544 int i;
1545
1546 if (!dev_priv->child_dev_num)
1547 return false;
1548
1549 for (i = 0; i < dev_priv->child_dev_num; i++) {
1550 p_child = dev_priv->child_dev + i;
1551
1552 if (p_child->dvo_port == PORT_IDPD &&
1553 p_child->device_type == DEVICE_TYPE_eDP)
1554 return true;
1555 }
1556 return false;
1557 }
1558
1559 void
1560 intel_dp_init(struct drm_device *dev, int output_reg)
1561 {
1562 struct drm_i915_private *dev_priv = dev->dev_private;
1563 struct drm_connector *connector;
1564 struct intel_dp *intel_dp;
1565 struct intel_encoder *intel_encoder;
1566 struct intel_connector *intel_connector;
1567 const char *name = NULL;
1568 int type;
1569
1570 intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
1571 if (!intel_dp)
1572 return;
1573
1574 intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
1575 if (!intel_connector) {
1576 kfree(intel_dp);
1577 return;
1578 }
1579 intel_encoder = &intel_dp->base;
1580
1581 if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
1582 if (intel_dpd_is_edp(dev))
1583 intel_dp->is_pch_edp = true;
1584
1585 if (output_reg == DP_A || IS_PCH_eDP(intel_dp)) {
1586 type = DRM_MODE_CONNECTOR_eDP;
1587 intel_encoder->type = INTEL_OUTPUT_EDP;
1588 } else {
1589 type = DRM_MODE_CONNECTOR_DisplayPort;
1590 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1591 }
1592
1593 connector = &intel_connector->base;
1594 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
1595 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1596
1597 connector->polled = DRM_CONNECTOR_POLL_HPD;
1598
1599 if (output_reg == DP_B || output_reg == PCH_DP_B)
1600 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1601 else if (output_reg == DP_C || output_reg == PCH_DP_C)
1602 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1603 else if (output_reg == DP_D || output_reg == PCH_DP_D)
1604 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
1605
1606 if (IS_eDP(intel_dp))
1607 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
1608
1609 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
1610 connector->interlace_allowed = true;
1611 connector->doublescan_allowed = 0;
1612
1613 intel_dp->output_reg = output_reg;
1614 intel_dp->has_audio = false;
1615 intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1616
1617 drm_encoder_init(dev, &intel_encoder->enc, &intel_dp_enc_funcs,
1618 DRM_MODE_ENCODER_TMDS);
1619 drm_encoder_helper_add(&intel_encoder->enc, &intel_dp_helper_funcs);
1620
1621 drm_mode_connector_attach_encoder(&intel_connector->base,
1622 &intel_encoder->enc);
1623 drm_sysfs_connector_add(connector);
1624
1625 /* Set up the DDC bus. */
1626 switch (output_reg) {
1627 case DP_A:
1628 name = "DPDDC-A";
1629 break;
1630 case DP_B:
1631 case PCH_DP_B:
1632 dev_priv->hotplug_supported_mask |=
1633 HDMIB_HOTPLUG_INT_STATUS;
1634 name = "DPDDC-B";
1635 break;
1636 case DP_C:
1637 case PCH_DP_C:
1638 dev_priv->hotplug_supported_mask |=
1639 HDMIC_HOTPLUG_INT_STATUS;
1640 name = "DPDDC-C";
1641 break;
1642 case DP_D:
1643 case PCH_DP_D:
1644 dev_priv->hotplug_supported_mask |=
1645 HDMID_HOTPLUG_INT_STATUS;
1646 name = "DPDDC-D";
1647 break;
1648 }
1649
1650 intel_dp_i2c_init(intel_dp, intel_connector, name);
1651
1652 intel_encoder->ddc_bus = &intel_dp->adapter;
1653 intel_encoder->hot_plug = intel_dp_hot_plug;
1654
1655 if (output_reg == DP_A || IS_PCH_eDP(intel_dp)) {
1656 /* initialize panel mode from VBT if available for eDP */
1657 if (dev_priv->lfp_lvds_vbt_mode) {
1658 dev_priv->panel_fixed_mode =
1659 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1660 if (dev_priv->panel_fixed_mode) {
1661 dev_priv->panel_fixed_mode->type |=
1662 DRM_MODE_TYPE_PREFERRED;
1663 }
1664 }
1665 }
1666
1667 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
1668 * 0xd. Failure to do so will result in spurious interrupts being
1669 * generated on the port when a cable is not attached.
1670 */
1671 if (IS_G4X(dev) && !IS_GM45(dev)) {
1672 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
1673 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
1674 }
1675 }