]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/intel_dp.c
Merge tag 'v4.0-rc3' into drm-next
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 struct dp_link_dpll {
45 int link_bw;
46 struct dpll dpll;
47 };
48
49 static const struct dp_link_dpll gen4_dpll[] = {
50 { DP_LINK_BW_1_62,
51 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
52 { DP_LINK_BW_2_7,
53 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
54 };
55
56 static const struct dp_link_dpll pch_dpll[] = {
57 { DP_LINK_BW_1_62,
58 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
59 { DP_LINK_BW_2_7,
60 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
61 };
62
63 static const struct dp_link_dpll vlv_dpll[] = {
64 { DP_LINK_BW_1_62,
65 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
66 { DP_LINK_BW_2_7,
67 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
68 };
69
70 /*
71 * CHV supports eDP 1.4 that have more link rates.
72 * Below only provides the fixed rate but exclude variable rate.
73 */
74 static const struct dp_link_dpll chv_dpll[] = {
75 /*
76 * CHV requires to program fractional division for m2.
77 * m2 is stored in fixed point format using formula below
78 * (m2_int << 22) | m2_fraction
79 */
80 { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */
81 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
82 { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */
83 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
84 { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */
85 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
86 };
87
88 /**
89 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
90 * @intel_dp: DP struct
91 *
92 * If a CPU or PCH DP output is attached to an eDP panel, this function
93 * will return true, and false otherwise.
94 */
95 static bool is_edp(struct intel_dp *intel_dp)
96 {
97 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
98
99 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
100 }
101
102 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
103 {
104 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
105
106 return intel_dig_port->base.base.dev;
107 }
108
109 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
110 {
111 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
112 }
113
114 static void intel_dp_link_down(struct intel_dp *intel_dp);
115 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
116 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
117 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
118 static void vlv_steal_power_sequencer(struct drm_device *dev,
119 enum pipe pipe);
120
121 int
122 intel_dp_max_link_bw(struct intel_dp *intel_dp)
123 {
124 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
125 struct drm_device *dev = intel_dp->attached_connector->base.dev;
126
127 switch (max_link_bw) {
128 case DP_LINK_BW_1_62:
129 case DP_LINK_BW_2_7:
130 break;
131 case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
132 if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
133 INTEL_INFO(dev)->gen >= 8) &&
134 intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
135 max_link_bw = DP_LINK_BW_5_4;
136 else
137 max_link_bw = DP_LINK_BW_2_7;
138 break;
139 default:
140 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
141 max_link_bw);
142 max_link_bw = DP_LINK_BW_1_62;
143 break;
144 }
145 return max_link_bw;
146 }
147
148 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
149 {
150 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
151 struct drm_device *dev = intel_dig_port->base.base.dev;
152 u8 source_max, sink_max;
153
154 source_max = 4;
155 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
156 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
157 source_max = 2;
158
159 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
160
161 return min(source_max, sink_max);
162 }
163
164 /*
165 * The units on the numbers in the next two are... bizarre. Examples will
166 * make it clearer; this one parallels an example in the eDP spec.
167 *
168 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
169 *
170 * 270000 * 1 * 8 / 10 == 216000
171 *
172 * The actual data capacity of that configuration is 2.16Gbit/s, so the
173 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
174 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
175 * 119000. At 18bpp that's 2142000 kilobits per second.
176 *
177 * Thus the strange-looking division by 10 in intel_dp_link_required, to
178 * get the result in decakilobits instead of kilobits.
179 */
180
181 static int
182 intel_dp_link_required(int pixel_clock, int bpp)
183 {
184 return (pixel_clock * bpp + 9) / 10;
185 }
186
187 static int
188 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
189 {
190 return (max_link_clock * max_lanes * 8) / 10;
191 }
192
193 static enum drm_mode_status
194 intel_dp_mode_valid(struct drm_connector *connector,
195 struct drm_display_mode *mode)
196 {
197 struct intel_dp *intel_dp = intel_attached_dp(connector);
198 struct intel_connector *intel_connector = to_intel_connector(connector);
199 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
200 int target_clock = mode->clock;
201 int max_rate, mode_rate, max_lanes, max_link_clock;
202
203 if (is_edp(intel_dp) && fixed_mode) {
204 if (mode->hdisplay > fixed_mode->hdisplay)
205 return MODE_PANEL;
206
207 if (mode->vdisplay > fixed_mode->vdisplay)
208 return MODE_PANEL;
209
210 target_clock = fixed_mode->clock;
211 }
212
213 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
214 max_lanes = intel_dp_max_lane_count(intel_dp);
215
216 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
217 mode_rate = intel_dp_link_required(target_clock, 18);
218
219 if (mode_rate > max_rate)
220 return MODE_CLOCK_HIGH;
221
222 if (mode->clock < 10000)
223 return MODE_CLOCK_LOW;
224
225 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
226 return MODE_H_ILLEGAL;
227
228 return MODE_OK;
229 }
230
231 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
232 {
233 int i;
234 uint32_t v = 0;
235
236 if (src_bytes > 4)
237 src_bytes = 4;
238 for (i = 0; i < src_bytes; i++)
239 v |= ((uint32_t) src[i]) << ((3-i) * 8);
240 return v;
241 }
242
243 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
244 {
245 int i;
246 if (dst_bytes > 4)
247 dst_bytes = 4;
248 for (i = 0; i < dst_bytes; i++)
249 dst[i] = src >> ((3-i) * 8);
250 }
251
252 /* hrawclock is 1/4 the FSB frequency */
253 static int
254 intel_hrawclk(struct drm_device *dev)
255 {
256 struct drm_i915_private *dev_priv = dev->dev_private;
257 uint32_t clkcfg;
258
259 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
260 if (IS_VALLEYVIEW(dev))
261 return 200;
262
263 clkcfg = I915_READ(CLKCFG);
264 switch (clkcfg & CLKCFG_FSB_MASK) {
265 case CLKCFG_FSB_400:
266 return 100;
267 case CLKCFG_FSB_533:
268 return 133;
269 case CLKCFG_FSB_667:
270 return 166;
271 case CLKCFG_FSB_800:
272 return 200;
273 case CLKCFG_FSB_1067:
274 return 266;
275 case CLKCFG_FSB_1333:
276 return 333;
277 /* these two are just a guess; one of them might be right */
278 case CLKCFG_FSB_1600:
279 case CLKCFG_FSB_1600_ALT:
280 return 400;
281 default:
282 return 133;
283 }
284 }
285
286 static void
287 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
288 struct intel_dp *intel_dp);
289 static void
290 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
291 struct intel_dp *intel_dp);
292
293 static void pps_lock(struct intel_dp *intel_dp)
294 {
295 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
296 struct intel_encoder *encoder = &intel_dig_port->base;
297 struct drm_device *dev = encoder->base.dev;
298 struct drm_i915_private *dev_priv = dev->dev_private;
299 enum intel_display_power_domain power_domain;
300
301 /*
302 * See vlv_power_sequencer_reset() why we need
303 * a power domain reference here.
304 */
305 power_domain = intel_display_port_power_domain(encoder);
306 intel_display_power_get(dev_priv, power_domain);
307
308 mutex_lock(&dev_priv->pps_mutex);
309 }
310
311 static void pps_unlock(struct intel_dp *intel_dp)
312 {
313 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
314 struct intel_encoder *encoder = &intel_dig_port->base;
315 struct drm_device *dev = encoder->base.dev;
316 struct drm_i915_private *dev_priv = dev->dev_private;
317 enum intel_display_power_domain power_domain;
318
319 mutex_unlock(&dev_priv->pps_mutex);
320
321 power_domain = intel_display_port_power_domain(encoder);
322 intel_display_power_put(dev_priv, power_domain);
323 }
324
325 static void
326 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
327 {
328 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
329 struct drm_device *dev = intel_dig_port->base.base.dev;
330 struct drm_i915_private *dev_priv = dev->dev_private;
331 enum pipe pipe = intel_dp->pps_pipe;
332 bool pll_enabled;
333 uint32_t DP;
334
335 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
336 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
337 pipe_name(pipe), port_name(intel_dig_port->port)))
338 return;
339
340 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
341 pipe_name(pipe), port_name(intel_dig_port->port));
342
343 /* Preserve the BIOS-computed detected bit. This is
344 * supposed to be read-only.
345 */
346 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
347 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
348 DP |= DP_PORT_WIDTH(1);
349 DP |= DP_LINK_TRAIN_PAT_1;
350
351 if (IS_CHERRYVIEW(dev))
352 DP |= DP_PIPE_SELECT_CHV(pipe);
353 else if (pipe == PIPE_B)
354 DP |= DP_PIPEB_SELECT;
355
356 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
357
358 /*
359 * The DPLL for the pipe must be enabled for this to work.
360 * So enable temporarily it if it's not already enabled.
361 */
362 if (!pll_enabled)
363 vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
364 &chv_dpll[0].dpll : &vlv_dpll[0].dpll);
365
366 /*
367 * Similar magic as in intel_dp_enable_port().
368 * We _must_ do this port enable + disable trick
369 * to make this power seqeuencer lock onto the port.
370 * Otherwise even VDD force bit won't work.
371 */
372 I915_WRITE(intel_dp->output_reg, DP);
373 POSTING_READ(intel_dp->output_reg);
374
375 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
376 POSTING_READ(intel_dp->output_reg);
377
378 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
379 POSTING_READ(intel_dp->output_reg);
380
381 if (!pll_enabled)
382 vlv_force_pll_off(dev, pipe);
383 }
384
385 static enum pipe
386 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
387 {
388 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
389 struct drm_device *dev = intel_dig_port->base.base.dev;
390 struct drm_i915_private *dev_priv = dev->dev_private;
391 struct intel_encoder *encoder;
392 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
393 enum pipe pipe;
394
395 lockdep_assert_held(&dev_priv->pps_mutex);
396
397 /* We should never land here with regular DP ports */
398 WARN_ON(!is_edp(intel_dp));
399
400 if (intel_dp->pps_pipe != INVALID_PIPE)
401 return intel_dp->pps_pipe;
402
403 /*
404 * We don't have power sequencer currently.
405 * Pick one that's not used by other ports.
406 */
407 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
408 base.head) {
409 struct intel_dp *tmp;
410
411 if (encoder->type != INTEL_OUTPUT_EDP)
412 continue;
413
414 tmp = enc_to_intel_dp(&encoder->base);
415
416 if (tmp->pps_pipe != INVALID_PIPE)
417 pipes &= ~(1 << tmp->pps_pipe);
418 }
419
420 /*
421 * Didn't find one. This should not happen since there
422 * are two power sequencers and up to two eDP ports.
423 */
424 if (WARN_ON(pipes == 0))
425 pipe = PIPE_A;
426 else
427 pipe = ffs(pipes) - 1;
428
429 vlv_steal_power_sequencer(dev, pipe);
430 intel_dp->pps_pipe = pipe;
431
432 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
433 pipe_name(intel_dp->pps_pipe),
434 port_name(intel_dig_port->port));
435
436 /* init power sequencer on this pipe and port */
437 intel_dp_init_panel_power_sequencer(dev, intel_dp);
438 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
439
440 /*
441 * Even vdd force doesn't work until we've made
442 * the power sequencer lock in on the port.
443 */
444 vlv_power_sequencer_kick(intel_dp);
445
446 return intel_dp->pps_pipe;
447 }
448
449 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
450 enum pipe pipe);
451
452 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
453 enum pipe pipe)
454 {
455 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
456 }
457
458 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
459 enum pipe pipe)
460 {
461 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
462 }
463
464 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
465 enum pipe pipe)
466 {
467 return true;
468 }
469
470 static enum pipe
471 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
472 enum port port,
473 vlv_pipe_check pipe_check)
474 {
475 enum pipe pipe;
476
477 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
478 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
479 PANEL_PORT_SELECT_MASK;
480
481 if (port_sel != PANEL_PORT_SELECT_VLV(port))
482 continue;
483
484 if (!pipe_check(dev_priv, pipe))
485 continue;
486
487 return pipe;
488 }
489
490 return INVALID_PIPE;
491 }
492
493 static void
494 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
495 {
496 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
497 struct drm_device *dev = intel_dig_port->base.base.dev;
498 struct drm_i915_private *dev_priv = dev->dev_private;
499 enum port port = intel_dig_port->port;
500
501 lockdep_assert_held(&dev_priv->pps_mutex);
502
503 /* try to find a pipe with this port selected */
504 /* first pick one where the panel is on */
505 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
506 vlv_pipe_has_pp_on);
507 /* didn't find one? pick one where vdd is on */
508 if (intel_dp->pps_pipe == INVALID_PIPE)
509 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
510 vlv_pipe_has_vdd_on);
511 /* didn't find one? pick one with just the correct port */
512 if (intel_dp->pps_pipe == INVALID_PIPE)
513 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
514 vlv_pipe_any);
515
516 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
517 if (intel_dp->pps_pipe == INVALID_PIPE) {
518 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
519 port_name(port));
520 return;
521 }
522
523 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
524 port_name(port), pipe_name(intel_dp->pps_pipe));
525
526 intel_dp_init_panel_power_sequencer(dev, intel_dp);
527 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
528 }
529
530 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
531 {
532 struct drm_device *dev = dev_priv->dev;
533 struct intel_encoder *encoder;
534
535 if (WARN_ON(!IS_VALLEYVIEW(dev)))
536 return;
537
538 /*
539 * We can't grab pps_mutex here due to deadlock with power_domain
540 * mutex when power_domain functions are called while holding pps_mutex.
541 * That also means that in order to use pps_pipe the code needs to
542 * hold both a power domain reference and pps_mutex, and the power domain
543 * reference get/put must be done while _not_ holding pps_mutex.
544 * pps_{lock,unlock}() do these steps in the correct order, so one
545 * should use them always.
546 */
547
548 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
549 struct intel_dp *intel_dp;
550
551 if (encoder->type != INTEL_OUTPUT_EDP)
552 continue;
553
554 intel_dp = enc_to_intel_dp(&encoder->base);
555 intel_dp->pps_pipe = INVALID_PIPE;
556 }
557 }
558
559 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
560 {
561 struct drm_device *dev = intel_dp_to_dev(intel_dp);
562
563 if (HAS_PCH_SPLIT(dev))
564 return PCH_PP_CONTROL;
565 else
566 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
567 }
568
569 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
570 {
571 struct drm_device *dev = intel_dp_to_dev(intel_dp);
572
573 if (HAS_PCH_SPLIT(dev))
574 return PCH_PP_STATUS;
575 else
576 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
577 }
578
579 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
580 This function only applicable when panel PM state is not to be tracked */
581 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
582 void *unused)
583 {
584 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
585 edp_notifier);
586 struct drm_device *dev = intel_dp_to_dev(intel_dp);
587 struct drm_i915_private *dev_priv = dev->dev_private;
588 u32 pp_div;
589 u32 pp_ctrl_reg, pp_div_reg;
590
591 if (!is_edp(intel_dp) || code != SYS_RESTART)
592 return 0;
593
594 pps_lock(intel_dp);
595
596 if (IS_VALLEYVIEW(dev)) {
597 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
598
599 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
600 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
601 pp_div = I915_READ(pp_div_reg);
602 pp_div &= PP_REFERENCE_DIVIDER_MASK;
603
604 /* 0x1F write to PP_DIV_REG sets max cycle delay */
605 I915_WRITE(pp_div_reg, pp_div | 0x1F);
606 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
607 msleep(intel_dp->panel_power_cycle_delay);
608 }
609
610 pps_unlock(intel_dp);
611
612 return 0;
613 }
614
615 static bool edp_have_panel_power(struct intel_dp *intel_dp)
616 {
617 struct drm_device *dev = intel_dp_to_dev(intel_dp);
618 struct drm_i915_private *dev_priv = dev->dev_private;
619
620 lockdep_assert_held(&dev_priv->pps_mutex);
621
622 if (IS_VALLEYVIEW(dev) &&
623 intel_dp->pps_pipe == INVALID_PIPE)
624 return false;
625
626 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
627 }
628
629 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
630 {
631 struct drm_device *dev = intel_dp_to_dev(intel_dp);
632 struct drm_i915_private *dev_priv = dev->dev_private;
633
634 lockdep_assert_held(&dev_priv->pps_mutex);
635
636 if (IS_VALLEYVIEW(dev) &&
637 intel_dp->pps_pipe == INVALID_PIPE)
638 return false;
639
640 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
641 }
642
643 static void
644 intel_dp_check_edp(struct intel_dp *intel_dp)
645 {
646 struct drm_device *dev = intel_dp_to_dev(intel_dp);
647 struct drm_i915_private *dev_priv = dev->dev_private;
648
649 if (!is_edp(intel_dp))
650 return;
651
652 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
653 WARN(1, "eDP powered off while attempting aux channel communication.\n");
654 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
655 I915_READ(_pp_stat_reg(intel_dp)),
656 I915_READ(_pp_ctrl_reg(intel_dp)));
657 }
658 }
659
660 static uint32_t
661 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
662 {
663 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
664 struct drm_device *dev = intel_dig_port->base.base.dev;
665 struct drm_i915_private *dev_priv = dev->dev_private;
666 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
667 uint32_t status;
668 bool done;
669
670 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
671 if (has_aux_irq)
672 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
673 msecs_to_jiffies_timeout(10));
674 else
675 done = wait_for_atomic(C, 10) == 0;
676 if (!done)
677 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
678 has_aux_irq);
679 #undef C
680
681 return status;
682 }
683
684 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
685 {
686 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
687 struct drm_device *dev = intel_dig_port->base.base.dev;
688
689 /*
690 * The clock divider is based off the hrawclk, and would like to run at
691 * 2MHz. So, take the hrawclk value and divide by 2 and use that
692 */
693 return index ? 0 : intel_hrawclk(dev) / 2;
694 }
695
696 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
697 {
698 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
699 struct drm_device *dev = intel_dig_port->base.base.dev;
700
701 if (index)
702 return 0;
703
704 if (intel_dig_port->port == PORT_A) {
705 if (IS_GEN6(dev) || IS_GEN7(dev))
706 return 200; /* SNB & IVB eDP input clock at 400Mhz */
707 else
708 return 225; /* eDP input clock at 450Mhz */
709 } else {
710 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
711 }
712 }
713
714 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
715 {
716 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
717 struct drm_device *dev = intel_dig_port->base.base.dev;
718 struct drm_i915_private *dev_priv = dev->dev_private;
719
720 if (intel_dig_port->port == PORT_A) {
721 if (index)
722 return 0;
723 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
724 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
725 /* Workaround for non-ULT HSW */
726 switch (index) {
727 case 0: return 63;
728 case 1: return 72;
729 default: return 0;
730 }
731 } else {
732 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
733 }
734 }
735
736 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
737 {
738 return index ? 0 : 100;
739 }
740
741 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
742 {
743 /*
744 * SKL doesn't need us to program the AUX clock divider (Hardware will
745 * derive the clock from CDCLK automatically). We still implement the
746 * get_aux_clock_divider vfunc to plug-in into the existing code.
747 */
748 return index ? 0 : 1;
749 }
750
751 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
752 bool has_aux_irq,
753 int send_bytes,
754 uint32_t aux_clock_divider)
755 {
756 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
757 struct drm_device *dev = intel_dig_port->base.base.dev;
758 uint32_t precharge, timeout;
759
760 if (IS_GEN6(dev))
761 precharge = 3;
762 else
763 precharge = 5;
764
765 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
766 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
767 else
768 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
769
770 return DP_AUX_CH_CTL_SEND_BUSY |
771 DP_AUX_CH_CTL_DONE |
772 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
773 DP_AUX_CH_CTL_TIME_OUT_ERROR |
774 timeout |
775 DP_AUX_CH_CTL_RECEIVE_ERROR |
776 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
777 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
778 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
779 }
780
781 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
782 bool has_aux_irq,
783 int send_bytes,
784 uint32_t unused)
785 {
786 return DP_AUX_CH_CTL_SEND_BUSY |
787 DP_AUX_CH_CTL_DONE |
788 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
789 DP_AUX_CH_CTL_TIME_OUT_ERROR |
790 DP_AUX_CH_CTL_TIME_OUT_1600us |
791 DP_AUX_CH_CTL_RECEIVE_ERROR |
792 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
793 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
794 }
795
796 static int
797 intel_dp_aux_ch(struct intel_dp *intel_dp,
798 const uint8_t *send, int send_bytes,
799 uint8_t *recv, int recv_size)
800 {
801 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
802 struct drm_device *dev = intel_dig_port->base.base.dev;
803 struct drm_i915_private *dev_priv = dev->dev_private;
804 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
805 uint32_t ch_data = ch_ctl + 4;
806 uint32_t aux_clock_divider;
807 int i, ret, recv_bytes;
808 uint32_t status;
809 int try, clock = 0;
810 bool has_aux_irq = HAS_AUX_IRQ(dev);
811 bool vdd;
812
813 pps_lock(intel_dp);
814
815 /*
816 * We will be called with VDD already enabled for dpcd/edid/oui reads.
817 * In such cases we want to leave VDD enabled and it's up to upper layers
818 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
819 * ourselves.
820 */
821 vdd = edp_panel_vdd_on(intel_dp);
822
823 /* dp aux is extremely sensitive to irq latency, hence request the
824 * lowest possible wakeup latency and so prevent the cpu from going into
825 * deep sleep states.
826 */
827 pm_qos_update_request(&dev_priv->pm_qos, 0);
828
829 intel_dp_check_edp(intel_dp);
830
831 intel_aux_display_runtime_get(dev_priv);
832
833 /* Try to wait for any previous AUX channel activity */
834 for (try = 0; try < 3; try++) {
835 status = I915_READ_NOTRACE(ch_ctl);
836 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
837 break;
838 msleep(1);
839 }
840
841 if (try == 3) {
842 WARN(1, "dp_aux_ch not started status 0x%08x\n",
843 I915_READ(ch_ctl));
844 ret = -EBUSY;
845 goto out;
846 }
847
848 /* Only 5 data registers! */
849 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
850 ret = -E2BIG;
851 goto out;
852 }
853
854 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
855 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
856 has_aux_irq,
857 send_bytes,
858 aux_clock_divider);
859
860 /* Must try at least 3 times according to DP spec */
861 for (try = 0; try < 5; try++) {
862 /* Load the send data into the aux channel data registers */
863 for (i = 0; i < send_bytes; i += 4)
864 I915_WRITE(ch_data + i,
865 intel_dp_pack_aux(send + i,
866 send_bytes - i));
867
868 /* Send the command and wait for it to complete */
869 I915_WRITE(ch_ctl, send_ctl);
870
871 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
872
873 /* Clear done status and any errors */
874 I915_WRITE(ch_ctl,
875 status |
876 DP_AUX_CH_CTL_DONE |
877 DP_AUX_CH_CTL_TIME_OUT_ERROR |
878 DP_AUX_CH_CTL_RECEIVE_ERROR);
879
880 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
881 DP_AUX_CH_CTL_RECEIVE_ERROR))
882 continue;
883 if (status & DP_AUX_CH_CTL_DONE)
884 break;
885 }
886 if (status & DP_AUX_CH_CTL_DONE)
887 break;
888 }
889
890 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
891 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
892 ret = -EBUSY;
893 goto out;
894 }
895
896 /* Check for timeout or receive error.
897 * Timeouts occur when the sink is not connected
898 */
899 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
900 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
901 ret = -EIO;
902 goto out;
903 }
904
905 /* Timeouts occur when the device isn't connected, so they're
906 * "normal" -- don't fill the kernel log with these */
907 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
908 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
909 ret = -ETIMEDOUT;
910 goto out;
911 }
912
913 /* Unload any bytes sent back from the other side */
914 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
915 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
916 if (recv_bytes > recv_size)
917 recv_bytes = recv_size;
918
919 for (i = 0; i < recv_bytes; i += 4)
920 intel_dp_unpack_aux(I915_READ(ch_data + i),
921 recv + i, recv_bytes - i);
922
923 ret = recv_bytes;
924 out:
925 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
926 intel_aux_display_runtime_put(dev_priv);
927
928 if (vdd)
929 edp_panel_vdd_off(intel_dp, false);
930
931 pps_unlock(intel_dp);
932
933 return ret;
934 }
935
936 #define BARE_ADDRESS_SIZE 3
937 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
938 static ssize_t
939 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
940 {
941 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
942 uint8_t txbuf[20], rxbuf[20];
943 size_t txsize, rxsize;
944 int ret;
945
946 txbuf[0] = msg->request << 4;
947 txbuf[1] = msg->address >> 8;
948 txbuf[2] = msg->address & 0xff;
949 txbuf[3] = msg->size - 1;
950
951 switch (msg->request & ~DP_AUX_I2C_MOT) {
952 case DP_AUX_NATIVE_WRITE:
953 case DP_AUX_I2C_WRITE:
954 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
955 rxsize = 1;
956
957 if (WARN_ON(txsize > 20))
958 return -E2BIG;
959
960 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
961
962 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
963 if (ret > 0) {
964 msg->reply = rxbuf[0] >> 4;
965
966 /* Return payload size. */
967 ret = msg->size;
968 }
969 break;
970
971 case DP_AUX_NATIVE_READ:
972 case DP_AUX_I2C_READ:
973 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
974 rxsize = msg->size + 1;
975
976 if (WARN_ON(rxsize > 20))
977 return -E2BIG;
978
979 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
980 if (ret > 0) {
981 msg->reply = rxbuf[0] >> 4;
982 /*
983 * Assume happy day, and copy the data. The caller is
984 * expected to check msg->reply before touching it.
985 *
986 * Return payload size.
987 */
988 ret--;
989 memcpy(msg->buffer, rxbuf + 1, ret);
990 }
991 break;
992
993 default:
994 ret = -EINVAL;
995 break;
996 }
997
998 return ret;
999 }
1000
1001 static void
1002 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1003 {
1004 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1005 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1006 enum port port = intel_dig_port->port;
1007 const char *name = NULL;
1008 int ret;
1009
1010 switch (port) {
1011 case PORT_A:
1012 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
1013 name = "DPDDC-A";
1014 break;
1015 case PORT_B:
1016 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
1017 name = "DPDDC-B";
1018 break;
1019 case PORT_C:
1020 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
1021 name = "DPDDC-C";
1022 break;
1023 case PORT_D:
1024 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
1025 name = "DPDDC-D";
1026 break;
1027 default:
1028 BUG();
1029 }
1030
1031 /*
1032 * The AUX_CTL register is usually DP_CTL + 0x10.
1033 *
1034 * On Haswell and Broadwell though:
1035 * - Both port A DDI_BUF_CTL and DDI_AUX_CTL are on the CPU
1036 * - Port B/C/D AUX channels are on the PCH, DDI_BUF_CTL on the CPU
1037 *
1038 * Skylake moves AUX_CTL back next to DDI_BUF_CTL, on the CPU.
1039 */
1040 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1041 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
1042
1043 intel_dp->aux.name = name;
1044 intel_dp->aux.dev = dev->dev;
1045 intel_dp->aux.transfer = intel_dp_aux_transfer;
1046
1047 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
1048 connector->base.kdev->kobj.name);
1049
1050 ret = drm_dp_aux_register(&intel_dp->aux);
1051 if (ret < 0) {
1052 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1053 name, ret);
1054 return;
1055 }
1056
1057 ret = sysfs_create_link(&connector->base.kdev->kobj,
1058 &intel_dp->aux.ddc.dev.kobj,
1059 intel_dp->aux.ddc.dev.kobj.name);
1060 if (ret < 0) {
1061 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
1062 drm_dp_aux_unregister(&intel_dp->aux);
1063 }
1064 }
1065
1066 static void
1067 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1068 {
1069 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1070
1071 if (!intel_connector->mst_port)
1072 sysfs_remove_link(&intel_connector->base.kdev->kobj,
1073 intel_dp->aux.ddc.dev.kobj.name);
1074 intel_connector_unregister(intel_connector);
1075 }
1076
1077 static void
1078 skl_edp_set_pll_config(struct intel_crtc_state *pipe_config, int link_bw)
1079 {
1080 u32 ctrl1;
1081
1082 pipe_config->ddi_pll_sel = SKL_DPLL0;
1083 pipe_config->dpll_hw_state.cfgcr1 = 0;
1084 pipe_config->dpll_hw_state.cfgcr2 = 0;
1085
1086 ctrl1 = DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
1087 switch (link_bw) {
1088 case DP_LINK_BW_1_62:
1089 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_810,
1090 SKL_DPLL0);
1091 break;
1092 case DP_LINK_BW_2_7:
1093 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_1350,
1094 SKL_DPLL0);
1095 break;
1096 case DP_LINK_BW_5_4:
1097 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_2700,
1098 SKL_DPLL0);
1099 break;
1100 }
1101 pipe_config->dpll_hw_state.ctrl1 = ctrl1;
1102 }
1103
1104 static void
1105 hsw_dp_set_ddi_pll_sel(struct intel_crtc_state *pipe_config, int link_bw)
1106 {
1107 switch (link_bw) {
1108 case DP_LINK_BW_1_62:
1109 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
1110 break;
1111 case DP_LINK_BW_2_7:
1112 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
1113 break;
1114 case DP_LINK_BW_5_4:
1115 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
1116 break;
1117 }
1118 }
1119
1120 static void
1121 intel_dp_set_clock(struct intel_encoder *encoder,
1122 struct intel_crtc_state *pipe_config, int link_bw)
1123 {
1124 struct drm_device *dev = encoder->base.dev;
1125 const struct dp_link_dpll *divisor = NULL;
1126 int i, count = 0;
1127
1128 if (IS_G4X(dev)) {
1129 divisor = gen4_dpll;
1130 count = ARRAY_SIZE(gen4_dpll);
1131 } else if (HAS_PCH_SPLIT(dev)) {
1132 divisor = pch_dpll;
1133 count = ARRAY_SIZE(pch_dpll);
1134 } else if (IS_CHERRYVIEW(dev)) {
1135 divisor = chv_dpll;
1136 count = ARRAY_SIZE(chv_dpll);
1137 } else if (IS_VALLEYVIEW(dev)) {
1138 divisor = vlv_dpll;
1139 count = ARRAY_SIZE(vlv_dpll);
1140 }
1141
1142 if (divisor && count) {
1143 for (i = 0; i < count; i++) {
1144 if (link_bw == divisor[i].link_bw) {
1145 pipe_config->dpll = divisor[i].dpll;
1146 pipe_config->clock_set = true;
1147 break;
1148 }
1149 }
1150 }
1151 }
1152
1153 bool
1154 intel_dp_compute_config(struct intel_encoder *encoder,
1155 struct intel_crtc_state *pipe_config)
1156 {
1157 struct drm_device *dev = encoder->base.dev;
1158 struct drm_i915_private *dev_priv = dev->dev_private;
1159 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1160 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1161 enum port port = dp_to_dig_port(intel_dp)->port;
1162 struct intel_crtc *intel_crtc = encoder->new_crtc;
1163 struct intel_connector *intel_connector = intel_dp->attached_connector;
1164 int lane_count, clock;
1165 int min_lane_count = 1;
1166 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1167 /* Conveniently, the link BW constants become indices with a shift...*/
1168 int min_clock = 0;
1169 int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
1170 int bpp, mode_rate;
1171 static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
1172 int link_avail, link_clock;
1173
1174 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1175 pipe_config->has_pch_encoder = true;
1176
1177 pipe_config->has_dp_encoder = true;
1178 pipe_config->has_drrs = false;
1179 pipe_config->has_audio = intel_dp->has_audio;
1180
1181 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1182 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1183 adjusted_mode);
1184 if (!HAS_PCH_SPLIT(dev))
1185 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1186 intel_connector->panel.fitting_mode);
1187 else
1188 intel_pch_panel_fitting(intel_crtc, pipe_config,
1189 intel_connector->panel.fitting_mode);
1190 }
1191
1192 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1193 return false;
1194
1195 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1196 "max bw %02x pixel clock %iKHz\n",
1197 max_lane_count, bws[max_clock],
1198 adjusted_mode->crtc_clock);
1199
1200 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1201 * bpc in between. */
1202 bpp = pipe_config->pipe_bpp;
1203 if (is_edp(intel_dp)) {
1204 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
1205 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1206 dev_priv->vbt.edp_bpp);
1207 bpp = dev_priv->vbt.edp_bpp;
1208 }
1209
1210 /*
1211 * Use the maximum clock and number of lanes the eDP panel
1212 * advertizes being capable of. The panels are generally
1213 * designed to support only a single clock and lane
1214 * configuration, and typically these values correspond to the
1215 * native resolution of the panel.
1216 */
1217 min_lane_count = max_lane_count;
1218 min_clock = max_clock;
1219 }
1220
1221 for (; bpp >= 6*3; bpp -= 2*3) {
1222 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1223 bpp);
1224
1225 for (clock = min_clock; clock <= max_clock; clock++) {
1226 for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
1227 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
1228 link_avail = intel_dp_max_data_rate(link_clock,
1229 lane_count);
1230
1231 if (mode_rate <= link_avail) {
1232 goto found;
1233 }
1234 }
1235 }
1236 }
1237
1238 return false;
1239
1240 found:
1241 if (intel_dp->color_range_auto) {
1242 /*
1243 * See:
1244 * CEA-861-E - 5.1 Default Encoding Parameters
1245 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1246 */
1247 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
1248 intel_dp->color_range = DP_COLOR_RANGE_16_235;
1249 else
1250 intel_dp->color_range = 0;
1251 }
1252
1253 if (intel_dp->color_range)
1254 pipe_config->limited_color_range = true;
1255
1256 intel_dp->link_bw = bws[clock];
1257 intel_dp->lane_count = lane_count;
1258 pipe_config->pipe_bpp = bpp;
1259 pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
1260
1261 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
1262 intel_dp->link_bw, intel_dp->lane_count,
1263 pipe_config->port_clock, bpp);
1264 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1265 mode_rate, link_avail);
1266
1267 intel_link_compute_m_n(bpp, lane_count,
1268 adjusted_mode->crtc_clock,
1269 pipe_config->port_clock,
1270 &pipe_config->dp_m_n);
1271
1272 if (intel_connector->panel.downclock_mode != NULL &&
1273 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1274 pipe_config->has_drrs = true;
1275 intel_link_compute_m_n(bpp, lane_count,
1276 intel_connector->panel.downclock_mode->clock,
1277 pipe_config->port_clock,
1278 &pipe_config->dp_m2_n2);
1279 }
1280
1281 if (IS_SKYLAKE(dev) && is_edp(intel_dp))
1282 skl_edp_set_pll_config(pipe_config, intel_dp->link_bw);
1283 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1284 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
1285 else
1286 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
1287
1288 return true;
1289 }
1290
1291 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1292 {
1293 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1294 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1295 struct drm_device *dev = crtc->base.dev;
1296 struct drm_i915_private *dev_priv = dev->dev_private;
1297 u32 dpa_ctl;
1298
1299 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n",
1300 crtc->config->port_clock);
1301 dpa_ctl = I915_READ(DP_A);
1302 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1303
1304 if (crtc->config->port_clock == 162000) {
1305 /* For a long time we've carried around a ILK-DevA w/a for the
1306 * 160MHz clock. If we're really unlucky, it's still required.
1307 */
1308 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1309 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1310 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1311 } else {
1312 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1313 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1314 }
1315
1316 I915_WRITE(DP_A, dpa_ctl);
1317
1318 POSTING_READ(DP_A);
1319 udelay(500);
1320 }
1321
1322 static void intel_dp_prepare(struct intel_encoder *encoder)
1323 {
1324 struct drm_device *dev = encoder->base.dev;
1325 struct drm_i915_private *dev_priv = dev->dev_private;
1326 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1327 enum port port = dp_to_dig_port(intel_dp)->port;
1328 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1329 struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1330
1331 /*
1332 * There are four kinds of DP registers:
1333 *
1334 * IBX PCH
1335 * SNB CPU
1336 * IVB CPU
1337 * CPT PCH
1338 *
1339 * IBX PCH and CPU are the same for almost everything,
1340 * except that the CPU DP PLL is configured in this
1341 * register
1342 *
1343 * CPT PCH is quite different, having many bits moved
1344 * to the TRANS_DP_CTL register instead. That
1345 * configuration happens (oddly) in ironlake_pch_enable
1346 */
1347
1348 /* Preserve the BIOS-computed detected bit. This is
1349 * supposed to be read-only.
1350 */
1351 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1352
1353 /* Handle DP bits in common between all three register formats */
1354 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1355 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1356
1357 if (crtc->config->has_audio)
1358 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1359
1360 /* Split out the IBX/CPU vs CPT settings */
1361
1362 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1363 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1364 intel_dp->DP |= DP_SYNC_HS_HIGH;
1365 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1366 intel_dp->DP |= DP_SYNC_VS_HIGH;
1367 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1368
1369 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1370 intel_dp->DP |= DP_ENHANCED_FRAMING;
1371
1372 intel_dp->DP |= crtc->pipe << 29;
1373 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1374 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1375 intel_dp->DP |= intel_dp->color_range;
1376
1377 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1378 intel_dp->DP |= DP_SYNC_HS_HIGH;
1379 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1380 intel_dp->DP |= DP_SYNC_VS_HIGH;
1381 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1382
1383 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1384 intel_dp->DP |= DP_ENHANCED_FRAMING;
1385
1386 if (!IS_CHERRYVIEW(dev)) {
1387 if (crtc->pipe == 1)
1388 intel_dp->DP |= DP_PIPEB_SELECT;
1389 } else {
1390 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1391 }
1392 } else {
1393 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1394 }
1395 }
1396
1397 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1398 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1399
1400 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1401 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1402
1403 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1404 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1405
1406 static void wait_panel_status(struct intel_dp *intel_dp,
1407 u32 mask,
1408 u32 value)
1409 {
1410 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1411 struct drm_i915_private *dev_priv = dev->dev_private;
1412 u32 pp_stat_reg, pp_ctrl_reg;
1413
1414 lockdep_assert_held(&dev_priv->pps_mutex);
1415
1416 pp_stat_reg = _pp_stat_reg(intel_dp);
1417 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1418
1419 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1420 mask, value,
1421 I915_READ(pp_stat_reg),
1422 I915_READ(pp_ctrl_reg));
1423
1424 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1425 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1426 I915_READ(pp_stat_reg),
1427 I915_READ(pp_ctrl_reg));
1428 }
1429
1430 DRM_DEBUG_KMS("Wait complete\n");
1431 }
1432
1433 static void wait_panel_on(struct intel_dp *intel_dp)
1434 {
1435 DRM_DEBUG_KMS("Wait for panel power on\n");
1436 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1437 }
1438
1439 static void wait_panel_off(struct intel_dp *intel_dp)
1440 {
1441 DRM_DEBUG_KMS("Wait for panel power off time\n");
1442 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1443 }
1444
1445 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1446 {
1447 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1448
1449 /* When we disable the VDD override bit last we have to do the manual
1450 * wait. */
1451 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1452 intel_dp->panel_power_cycle_delay);
1453
1454 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1455 }
1456
1457 static void wait_backlight_on(struct intel_dp *intel_dp)
1458 {
1459 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1460 intel_dp->backlight_on_delay);
1461 }
1462
1463 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1464 {
1465 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1466 intel_dp->backlight_off_delay);
1467 }
1468
1469 /* Read the current pp_control value, unlocking the register if it
1470 * is locked
1471 */
1472
1473 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1474 {
1475 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1476 struct drm_i915_private *dev_priv = dev->dev_private;
1477 u32 control;
1478
1479 lockdep_assert_held(&dev_priv->pps_mutex);
1480
1481 control = I915_READ(_pp_ctrl_reg(intel_dp));
1482 control &= ~PANEL_UNLOCK_MASK;
1483 control |= PANEL_UNLOCK_REGS;
1484 return control;
1485 }
1486
1487 /*
1488 * Must be paired with edp_panel_vdd_off().
1489 * Must hold pps_mutex around the whole on/off sequence.
1490 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1491 */
1492 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1493 {
1494 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1495 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1496 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1497 struct drm_i915_private *dev_priv = dev->dev_private;
1498 enum intel_display_power_domain power_domain;
1499 u32 pp;
1500 u32 pp_stat_reg, pp_ctrl_reg;
1501 bool need_to_disable = !intel_dp->want_panel_vdd;
1502
1503 lockdep_assert_held(&dev_priv->pps_mutex);
1504
1505 if (!is_edp(intel_dp))
1506 return false;
1507
1508 cancel_delayed_work(&intel_dp->panel_vdd_work);
1509 intel_dp->want_panel_vdd = true;
1510
1511 if (edp_have_panel_vdd(intel_dp))
1512 return need_to_disable;
1513
1514 power_domain = intel_display_port_power_domain(intel_encoder);
1515 intel_display_power_get(dev_priv, power_domain);
1516
1517 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1518 port_name(intel_dig_port->port));
1519
1520 if (!edp_have_panel_power(intel_dp))
1521 wait_panel_power_cycle(intel_dp);
1522
1523 pp = ironlake_get_pp_control(intel_dp);
1524 pp |= EDP_FORCE_VDD;
1525
1526 pp_stat_reg = _pp_stat_reg(intel_dp);
1527 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1528
1529 I915_WRITE(pp_ctrl_reg, pp);
1530 POSTING_READ(pp_ctrl_reg);
1531 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1532 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1533 /*
1534 * If the panel wasn't on, delay before accessing aux channel
1535 */
1536 if (!edp_have_panel_power(intel_dp)) {
1537 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1538 port_name(intel_dig_port->port));
1539 msleep(intel_dp->panel_power_up_delay);
1540 }
1541
1542 return need_to_disable;
1543 }
1544
1545 /*
1546 * Must be paired with intel_edp_panel_vdd_off() or
1547 * intel_edp_panel_off().
1548 * Nested calls to these functions are not allowed since
1549 * we drop the lock. Caller must use some higher level
1550 * locking to prevent nested calls from other threads.
1551 */
1552 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1553 {
1554 bool vdd;
1555
1556 if (!is_edp(intel_dp))
1557 return;
1558
1559 pps_lock(intel_dp);
1560 vdd = edp_panel_vdd_on(intel_dp);
1561 pps_unlock(intel_dp);
1562
1563 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1564 port_name(dp_to_dig_port(intel_dp)->port));
1565 }
1566
1567 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1568 {
1569 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1570 struct drm_i915_private *dev_priv = dev->dev_private;
1571 struct intel_digital_port *intel_dig_port =
1572 dp_to_dig_port(intel_dp);
1573 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1574 enum intel_display_power_domain power_domain;
1575 u32 pp;
1576 u32 pp_stat_reg, pp_ctrl_reg;
1577
1578 lockdep_assert_held(&dev_priv->pps_mutex);
1579
1580 WARN_ON(intel_dp->want_panel_vdd);
1581
1582 if (!edp_have_panel_vdd(intel_dp))
1583 return;
1584
1585 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1586 port_name(intel_dig_port->port));
1587
1588 pp = ironlake_get_pp_control(intel_dp);
1589 pp &= ~EDP_FORCE_VDD;
1590
1591 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1592 pp_stat_reg = _pp_stat_reg(intel_dp);
1593
1594 I915_WRITE(pp_ctrl_reg, pp);
1595 POSTING_READ(pp_ctrl_reg);
1596
1597 /* Make sure sequencer is idle before allowing subsequent activity */
1598 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1599 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1600
1601 if ((pp & POWER_TARGET_ON) == 0)
1602 intel_dp->last_power_cycle = jiffies;
1603
1604 power_domain = intel_display_port_power_domain(intel_encoder);
1605 intel_display_power_put(dev_priv, power_domain);
1606 }
1607
1608 static void edp_panel_vdd_work(struct work_struct *__work)
1609 {
1610 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1611 struct intel_dp, panel_vdd_work);
1612
1613 pps_lock(intel_dp);
1614 if (!intel_dp->want_panel_vdd)
1615 edp_panel_vdd_off_sync(intel_dp);
1616 pps_unlock(intel_dp);
1617 }
1618
1619 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1620 {
1621 unsigned long delay;
1622
1623 /*
1624 * Queue the timer to fire a long time from now (relative to the power
1625 * down delay) to keep the panel power up across a sequence of
1626 * operations.
1627 */
1628 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1629 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1630 }
1631
1632 /*
1633 * Must be paired with edp_panel_vdd_on().
1634 * Must hold pps_mutex around the whole on/off sequence.
1635 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1636 */
1637 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1638 {
1639 struct drm_i915_private *dev_priv =
1640 intel_dp_to_dev(intel_dp)->dev_private;
1641
1642 lockdep_assert_held(&dev_priv->pps_mutex);
1643
1644 if (!is_edp(intel_dp))
1645 return;
1646
1647 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
1648 port_name(dp_to_dig_port(intel_dp)->port));
1649
1650 intel_dp->want_panel_vdd = false;
1651
1652 if (sync)
1653 edp_panel_vdd_off_sync(intel_dp);
1654 else
1655 edp_panel_vdd_schedule_off(intel_dp);
1656 }
1657
1658 static void edp_panel_on(struct intel_dp *intel_dp)
1659 {
1660 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1661 struct drm_i915_private *dev_priv = dev->dev_private;
1662 u32 pp;
1663 u32 pp_ctrl_reg;
1664
1665 lockdep_assert_held(&dev_priv->pps_mutex);
1666
1667 if (!is_edp(intel_dp))
1668 return;
1669
1670 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
1671 port_name(dp_to_dig_port(intel_dp)->port));
1672
1673 if (WARN(edp_have_panel_power(intel_dp),
1674 "eDP port %c panel power already on\n",
1675 port_name(dp_to_dig_port(intel_dp)->port)))
1676 return;
1677
1678 wait_panel_power_cycle(intel_dp);
1679
1680 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1681 pp = ironlake_get_pp_control(intel_dp);
1682 if (IS_GEN5(dev)) {
1683 /* ILK workaround: disable reset around power sequence */
1684 pp &= ~PANEL_POWER_RESET;
1685 I915_WRITE(pp_ctrl_reg, pp);
1686 POSTING_READ(pp_ctrl_reg);
1687 }
1688
1689 pp |= POWER_TARGET_ON;
1690 if (!IS_GEN5(dev))
1691 pp |= PANEL_POWER_RESET;
1692
1693 I915_WRITE(pp_ctrl_reg, pp);
1694 POSTING_READ(pp_ctrl_reg);
1695
1696 wait_panel_on(intel_dp);
1697 intel_dp->last_power_on = jiffies;
1698
1699 if (IS_GEN5(dev)) {
1700 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1701 I915_WRITE(pp_ctrl_reg, pp);
1702 POSTING_READ(pp_ctrl_reg);
1703 }
1704 }
1705
1706 void intel_edp_panel_on(struct intel_dp *intel_dp)
1707 {
1708 if (!is_edp(intel_dp))
1709 return;
1710
1711 pps_lock(intel_dp);
1712 edp_panel_on(intel_dp);
1713 pps_unlock(intel_dp);
1714 }
1715
1716
1717 static void edp_panel_off(struct intel_dp *intel_dp)
1718 {
1719 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1720 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1721 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1722 struct drm_i915_private *dev_priv = dev->dev_private;
1723 enum intel_display_power_domain power_domain;
1724 u32 pp;
1725 u32 pp_ctrl_reg;
1726
1727 lockdep_assert_held(&dev_priv->pps_mutex);
1728
1729 if (!is_edp(intel_dp))
1730 return;
1731
1732 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
1733 port_name(dp_to_dig_port(intel_dp)->port));
1734
1735 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
1736 port_name(dp_to_dig_port(intel_dp)->port));
1737
1738 pp = ironlake_get_pp_control(intel_dp);
1739 /* We need to switch off panel power _and_ force vdd, for otherwise some
1740 * panels get very unhappy and cease to work. */
1741 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1742 EDP_BLC_ENABLE);
1743
1744 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1745
1746 intel_dp->want_panel_vdd = false;
1747
1748 I915_WRITE(pp_ctrl_reg, pp);
1749 POSTING_READ(pp_ctrl_reg);
1750
1751 intel_dp->last_power_cycle = jiffies;
1752 wait_panel_off(intel_dp);
1753
1754 /* We got a reference when we enabled the VDD. */
1755 power_domain = intel_display_port_power_domain(intel_encoder);
1756 intel_display_power_put(dev_priv, power_domain);
1757 }
1758
1759 void intel_edp_panel_off(struct intel_dp *intel_dp)
1760 {
1761 if (!is_edp(intel_dp))
1762 return;
1763
1764 pps_lock(intel_dp);
1765 edp_panel_off(intel_dp);
1766 pps_unlock(intel_dp);
1767 }
1768
1769 /* Enable backlight in the panel power control. */
1770 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
1771 {
1772 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1773 struct drm_device *dev = intel_dig_port->base.base.dev;
1774 struct drm_i915_private *dev_priv = dev->dev_private;
1775 u32 pp;
1776 u32 pp_ctrl_reg;
1777
1778 /*
1779 * If we enable the backlight right away following a panel power
1780 * on, we may see slight flicker as the panel syncs with the eDP
1781 * link. So delay a bit to make sure the image is solid before
1782 * allowing it to appear.
1783 */
1784 wait_backlight_on(intel_dp);
1785
1786 pps_lock(intel_dp);
1787
1788 pp = ironlake_get_pp_control(intel_dp);
1789 pp |= EDP_BLC_ENABLE;
1790
1791 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1792
1793 I915_WRITE(pp_ctrl_reg, pp);
1794 POSTING_READ(pp_ctrl_reg);
1795
1796 pps_unlock(intel_dp);
1797 }
1798
1799 /* Enable backlight PWM and backlight PP control. */
1800 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1801 {
1802 if (!is_edp(intel_dp))
1803 return;
1804
1805 DRM_DEBUG_KMS("\n");
1806
1807 intel_panel_enable_backlight(intel_dp->attached_connector);
1808 _intel_edp_backlight_on(intel_dp);
1809 }
1810
1811 /* Disable backlight in the panel power control. */
1812 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
1813 {
1814 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1815 struct drm_i915_private *dev_priv = dev->dev_private;
1816 u32 pp;
1817 u32 pp_ctrl_reg;
1818
1819 if (!is_edp(intel_dp))
1820 return;
1821
1822 pps_lock(intel_dp);
1823
1824 pp = ironlake_get_pp_control(intel_dp);
1825 pp &= ~EDP_BLC_ENABLE;
1826
1827 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1828
1829 I915_WRITE(pp_ctrl_reg, pp);
1830 POSTING_READ(pp_ctrl_reg);
1831
1832 pps_unlock(intel_dp);
1833
1834 intel_dp->last_backlight_off = jiffies;
1835 edp_wait_backlight_off(intel_dp);
1836 }
1837
1838 /* Disable backlight PP control and backlight PWM. */
1839 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1840 {
1841 if (!is_edp(intel_dp))
1842 return;
1843
1844 DRM_DEBUG_KMS("\n");
1845
1846 _intel_edp_backlight_off(intel_dp);
1847 intel_panel_disable_backlight(intel_dp->attached_connector);
1848 }
1849
1850 /*
1851 * Hook for controlling the panel power control backlight through the bl_power
1852 * sysfs attribute. Take care to handle multiple calls.
1853 */
1854 static void intel_edp_backlight_power(struct intel_connector *connector,
1855 bool enable)
1856 {
1857 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
1858 bool is_enabled;
1859
1860 pps_lock(intel_dp);
1861 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
1862 pps_unlock(intel_dp);
1863
1864 if (is_enabled == enable)
1865 return;
1866
1867 DRM_DEBUG_KMS("panel power control backlight %s\n",
1868 enable ? "enable" : "disable");
1869
1870 if (enable)
1871 _intel_edp_backlight_on(intel_dp);
1872 else
1873 _intel_edp_backlight_off(intel_dp);
1874 }
1875
1876 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1877 {
1878 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1879 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1880 struct drm_device *dev = crtc->dev;
1881 struct drm_i915_private *dev_priv = dev->dev_private;
1882 u32 dpa_ctl;
1883
1884 assert_pipe_disabled(dev_priv,
1885 to_intel_crtc(crtc)->pipe);
1886
1887 DRM_DEBUG_KMS("\n");
1888 dpa_ctl = I915_READ(DP_A);
1889 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1890 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1891
1892 /* We don't adjust intel_dp->DP while tearing down the link, to
1893 * facilitate link retraining (e.g. after hotplug). Hence clear all
1894 * enable bits here to ensure that we don't enable too much. */
1895 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1896 intel_dp->DP |= DP_PLL_ENABLE;
1897 I915_WRITE(DP_A, intel_dp->DP);
1898 POSTING_READ(DP_A);
1899 udelay(200);
1900 }
1901
1902 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1903 {
1904 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1905 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1906 struct drm_device *dev = crtc->dev;
1907 struct drm_i915_private *dev_priv = dev->dev_private;
1908 u32 dpa_ctl;
1909
1910 assert_pipe_disabled(dev_priv,
1911 to_intel_crtc(crtc)->pipe);
1912
1913 dpa_ctl = I915_READ(DP_A);
1914 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1915 "dp pll off, should be on\n");
1916 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1917
1918 /* We can't rely on the value tracked for the DP register in
1919 * intel_dp->DP because link_down must not change that (otherwise link
1920 * re-training will fail. */
1921 dpa_ctl &= ~DP_PLL_ENABLE;
1922 I915_WRITE(DP_A, dpa_ctl);
1923 POSTING_READ(DP_A);
1924 udelay(200);
1925 }
1926
1927 /* If the sink supports it, try to set the power state appropriately */
1928 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1929 {
1930 int ret, i;
1931
1932 /* Should have a valid DPCD by this point */
1933 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1934 return;
1935
1936 if (mode != DRM_MODE_DPMS_ON) {
1937 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1938 DP_SET_POWER_D3);
1939 } else {
1940 /*
1941 * When turning on, we need to retry for 1ms to give the sink
1942 * time to wake up.
1943 */
1944 for (i = 0; i < 3; i++) {
1945 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1946 DP_SET_POWER_D0);
1947 if (ret == 1)
1948 break;
1949 msleep(1);
1950 }
1951 }
1952
1953 if (ret != 1)
1954 DRM_DEBUG_KMS("failed to %s sink power state\n",
1955 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
1956 }
1957
1958 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1959 enum pipe *pipe)
1960 {
1961 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1962 enum port port = dp_to_dig_port(intel_dp)->port;
1963 struct drm_device *dev = encoder->base.dev;
1964 struct drm_i915_private *dev_priv = dev->dev_private;
1965 enum intel_display_power_domain power_domain;
1966 u32 tmp;
1967
1968 power_domain = intel_display_port_power_domain(encoder);
1969 if (!intel_display_power_is_enabled(dev_priv, power_domain))
1970 return false;
1971
1972 tmp = I915_READ(intel_dp->output_reg);
1973
1974 if (!(tmp & DP_PORT_EN))
1975 return false;
1976
1977 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1978 *pipe = PORT_TO_PIPE_CPT(tmp);
1979 } else if (IS_CHERRYVIEW(dev)) {
1980 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
1981 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1982 *pipe = PORT_TO_PIPE(tmp);
1983 } else {
1984 u32 trans_sel;
1985 u32 trans_dp;
1986 int i;
1987
1988 switch (intel_dp->output_reg) {
1989 case PCH_DP_B:
1990 trans_sel = TRANS_DP_PORT_SEL_B;
1991 break;
1992 case PCH_DP_C:
1993 trans_sel = TRANS_DP_PORT_SEL_C;
1994 break;
1995 case PCH_DP_D:
1996 trans_sel = TRANS_DP_PORT_SEL_D;
1997 break;
1998 default:
1999 return true;
2000 }
2001
2002 for_each_pipe(dev_priv, i) {
2003 trans_dp = I915_READ(TRANS_DP_CTL(i));
2004 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
2005 *pipe = i;
2006 return true;
2007 }
2008 }
2009
2010 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2011 intel_dp->output_reg);
2012 }
2013
2014 return true;
2015 }
2016
2017 static void intel_dp_get_config(struct intel_encoder *encoder,
2018 struct intel_crtc_state *pipe_config)
2019 {
2020 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2021 u32 tmp, flags = 0;
2022 struct drm_device *dev = encoder->base.dev;
2023 struct drm_i915_private *dev_priv = dev->dev_private;
2024 enum port port = dp_to_dig_port(intel_dp)->port;
2025 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2026 int dotclock;
2027
2028 tmp = I915_READ(intel_dp->output_reg);
2029 if (tmp & DP_AUDIO_OUTPUT_ENABLE)
2030 pipe_config->has_audio = true;
2031
2032 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
2033 if (tmp & DP_SYNC_HS_HIGH)
2034 flags |= DRM_MODE_FLAG_PHSYNC;
2035 else
2036 flags |= DRM_MODE_FLAG_NHSYNC;
2037
2038 if (tmp & DP_SYNC_VS_HIGH)
2039 flags |= DRM_MODE_FLAG_PVSYNC;
2040 else
2041 flags |= DRM_MODE_FLAG_NVSYNC;
2042 } else {
2043 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2044 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2045 flags |= DRM_MODE_FLAG_PHSYNC;
2046 else
2047 flags |= DRM_MODE_FLAG_NHSYNC;
2048
2049 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2050 flags |= DRM_MODE_FLAG_PVSYNC;
2051 else
2052 flags |= DRM_MODE_FLAG_NVSYNC;
2053 }
2054
2055 pipe_config->base.adjusted_mode.flags |= flags;
2056
2057 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2058 tmp & DP_COLOR_RANGE_16_235)
2059 pipe_config->limited_color_range = true;
2060
2061 pipe_config->has_dp_encoder = true;
2062
2063 intel_dp_get_m_n(crtc, pipe_config);
2064
2065 if (port == PORT_A) {
2066 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
2067 pipe_config->port_clock = 162000;
2068 else
2069 pipe_config->port_clock = 270000;
2070 }
2071
2072 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
2073 &pipe_config->dp_m_n);
2074
2075 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
2076 ironlake_check_encoder_dotclock(pipe_config, dotclock);
2077
2078 pipe_config->base.adjusted_mode.crtc_clock = dotclock;
2079
2080 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
2081 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2082 /*
2083 * This is a big fat ugly hack.
2084 *
2085 * Some machines in UEFI boot mode provide us a VBT that has 18
2086 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2087 * unknown we fail to light up. Yet the same BIOS boots up with
2088 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2089 * max, not what it tells us to use.
2090 *
2091 * Note: This will still be broken if the eDP panel is not lit
2092 * up by the BIOS, and thus we can't get the mode at module
2093 * load.
2094 */
2095 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2096 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2097 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2098 }
2099 }
2100
2101 static void intel_disable_dp(struct intel_encoder *encoder)
2102 {
2103 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2104 struct drm_device *dev = encoder->base.dev;
2105 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2106
2107 if (crtc->config->has_audio)
2108 intel_audio_codec_disable(encoder);
2109
2110 if (HAS_PSR(dev) && !HAS_DDI(dev))
2111 intel_psr_disable(intel_dp);
2112
2113 /* Make sure the panel is off before trying to change the mode. But also
2114 * ensure that we have vdd while we switch off the panel. */
2115 intel_edp_panel_vdd_on(intel_dp);
2116 intel_edp_backlight_off(intel_dp);
2117 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2118 intel_edp_panel_off(intel_dp);
2119
2120 /* disable the port before the pipe on g4x */
2121 if (INTEL_INFO(dev)->gen < 5)
2122 intel_dp_link_down(intel_dp);
2123 }
2124
2125 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2126 {
2127 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2128 enum port port = dp_to_dig_port(intel_dp)->port;
2129
2130 intel_dp_link_down(intel_dp);
2131 if (port == PORT_A)
2132 ironlake_edp_pll_off(intel_dp);
2133 }
2134
2135 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2136 {
2137 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2138
2139 intel_dp_link_down(intel_dp);
2140 }
2141
2142 static void chv_post_disable_dp(struct intel_encoder *encoder)
2143 {
2144 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2145 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2146 struct drm_device *dev = encoder->base.dev;
2147 struct drm_i915_private *dev_priv = dev->dev_private;
2148 struct intel_crtc *intel_crtc =
2149 to_intel_crtc(encoder->base.crtc);
2150 enum dpio_channel ch = vlv_dport_to_channel(dport);
2151 enum pipe pipe = intel_crtc->pipe;
2152 u32 val;
2153
2154 intel_dp_link_down(intel_dp);
2155
2156 mutex_lock(&dev_priv->dpio_lock);
2157
2158 /* Propagate soft reset to data lane reset */
2159 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2160 val |= CHV_PCS_REQ_SOFTRESET_EN;
2161 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2162
2163 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2164 val |= CHV_PCS_REQ_SOFTRESET_EN;
2165 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2166
2167 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2168 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2169 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2170
2171 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2172 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2173 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2174
2175 mutex_unlock(&dev_priv->dpio_lock);
2176 }
2177
2178 static void
2179 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2180 uint32_t *DP,
2181 uint8_t dp_train_pat)
2182 {
2183 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2184 struct drm_device *dev = intel_dig_port->base.base.dev;
2185 struct drm_i915_private *dev_priv = dev->dev_private;
2186 enum port port = intel_dig_port->port;
2187
2188 if (HAS_DDI(dev)) {
2189 uint32_t temp = I915_READ(DP_TP_CTL(port));
2190
2191 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2192 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2193 else
2194 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2195
2196 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2197 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2198 case DP_TRAINING_PATTERN_DISABLE:
2199 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2200
2201 break;
2202 case DP_TRAINING_PATTERN_1:
2203 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2204 break;
2205 case DP_TRAINING_PATTERN_2:
2206 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2207 break;
2208 case DP_TRAINING_PATTERN_3:
2209 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2210 break;
2211 }
2212 I915_WRITE(DP_TP_CTL(port), temp);
2213
2214 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2215 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2216
2217 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2218 case DP_TRAINING_PATTERN_DISABLE:
2219 *DP |= DP_LINK_TRAIN_OFF_CPT;
2220 break;
2221 case DP_TRAINING_PATTERN_1:
2222 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2223 break;
2224 case DP_TRAINING_PATTERN_2:
2225 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2226 break;
2227 case DP_TRAINING_PATTERN_3:
2228 DRM_ERROR("DP training pattern 3 not supported\n");
2229 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2230 break;
2231 }
2232
2233 } else {
2234 if (IS_CHERRYVIEW(dev))
2235 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2236 else
2237 *DP &= ~DP_LINK_TRAIN_MASK;
2238
2239 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2240 case DP_TRAINING_PATTERN_DISABLE:
2241 *DP |= DP_LINK_TRAIN_OFF;
2242 break;
2243 case DP_TRAINING_PATTERN_1:
2244 *DP |= DP_LINK_TRAIN_PAT_1;
2245 break;
2246 case DP_TRAINING_PATTERN_2:
2247 *DP |= DP_LINK_TRAIN_PAT_2;
2248 break;
2249 case DP_TRAINING_PATTERN_3:
2250 if (IS_CHERRYVIEW(dev)) {
2251 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2252 } else {
2253 DRM_ERROR("DP training pattern 3 not supported\n");
2254 *DP |= DP_LINK_TRAIN_PAT_2;
2255 }
2256 break;
2257 }
2258 }
2259 }
2260
2261 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2262 {
2263 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2264 struct drm_i915_private *dev_priv = dev->dev_private;
2265
2266 /* enable with pattern 1 (as per spec) */
2267 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2268 DP_TRAINING_PATTERN_1);
2269
2270 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2271 POSTING_READ(intel_dp->output_reg);
2272
2273 /*
2274 * Magic for VLV/CHV. We _must_ first set up the register
2275 * without actually enabling the port, and then do another
2276 * write to enable the port. Otherwise link training will
2277 * fail when the power sequencer is freshly used for this port.
2278 */
2279 intel_dp->DP |= DP_PORT_EN;
2280
2281 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2282 POSTING_READ(intel_dp->output_reg);
2283 }
2284
2285 static void intel_enable_dp(struct intel_encoder *encoder)
2286 {
2287 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2288 struct drm_device *dev = encoder->base.dev;
2289 struct drm_i915_private *dev_priv = dev->dev_private;
2290 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2291 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2292
2293 if (WARN_ON(dp_reg & DP_PORT_EN))
2294 return;
2295
2296 pps_lock(intel_dp);
2297
2298 if (IS_VALLEYVIEW(dev))
2299 vlv_init_panel_power_sequencer(intel_dp);
2300
2301 intel_dp_enable_port(intel_dp);
2302
2303 edp_panel_vdd_on(intel_dp);
2304 edp_panel_on(intel_dp);
2305 edp_panel_vdd_off(intel_dp, true);
2306
2307 pps_unlock(intel_dp);
2308
2309 if (IS_VALLEYVIEW(dev))
2310 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp));
2311
2312 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2313 intel_dp_start_link_train(intel_dp);
2314 intel_dp_complete_link_train(intel_dp);
2315 intel_dp_stop_link_train(intel_dp);
2316
2317 if (crtc->config->has_audio) {
2318 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2319 pipe_name(crtc->pipe));
2320 intel_audio_codec_enable(encoder);
2321 }
2322 }
2323
2324 static void g4x_enable_dp(struct intel_encoder *encoder)
2325 {
2326 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2327
2328 intel_enable_dp(encoder);
2329 intel_edp_backlight_on(intel_dp);
2330 }
2331
2332 static void vlv_enable_dp(struct intel_encoder *encoder)
2333 {
2334 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2335
2336 intel_edp_backlight_on(intel_dp);
2337 intel_psr_enable(intel_dp);
2338 }
2339
2340 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2341 {
2342 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2343 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2344
2345 intel_dp_prepare(encoder);
2346
2347 /* Only ilk+ has port A */
2348 if (dport->port == PORT_A) {
2349 ironlake_set_pll_cpu_edp(intel_dp);
2350 ironlake_edp_pll_on(intel_dp);
2351 }
2352 }
2353
2354 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2355 {
2356 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2357 struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2358 enum pipe pipe = intel_dp->pps_pipe;
2359 int pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2360
2361 edp_panel_vdd_off_sync(intel_dp);
2362
2363 /*
2364 * VLV seems to get confused when multiple power seqeuencers
2365 * have the same port selected (even if only one has power/vdd
2366 * enabled). The failure manifests as vlv_wait_port_ready() failing
2367 * CHV on the other hand doesn't seem to mind having the same port
2368 * selected in multiple power seqeuencers, but let's clear the
2369 * port select always when logically disconnecting a power sequencer
2370 * from a port.
2371 */
2372 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2373 pipe_name(pipe), port_name(intel_dig_port->port));
2374 I915_WRITE(pp_on_reg, 0);
2375 POSTING_READ(pp_on_reg);
2376
2377 intel_dp->pps_pipe = INVALID_PIPE;
2378 }
2379
2380 static void vlv_steal_power_sequencer(struct drm_device *dev,
2381 enum pipe pipe)
2382 {
2383 struct drm_i915_private *dev_priv = dev->dev_private;
2384 struct intel_encoder *encoder;
2385
2386 lockdep_assert_held(&dev_priv->pps_mutex);
2387
2388 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2389 return;
2390
2391 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2392 base.head) {
2393 struct intel_dp *intel_dp;
2394 enum port port;
2395
2396 if (encoder->type != INTEL_OUTPUT_EDP)
2397 continue;
2398
2399 intel_dp = enc_to_intel_dp(&encoder->base);
2400 port = dp_to_dig_port(intel_dp)->port;
2401
2402 if (intel_dp->pps_pipe != pipe)
2403 continue;
2404
2405 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2406 pipe_name(pipe), port_name(port));
2407
2408 WARN(encoder->connectors_active,
2409 "stealing pipe %c power sequencer from active eDP port %c\n",
2410 pipe_name(pipe), port_name(port));
2411
2412 /* make sure vdd is off before we steal it */
2413 vlv_detach_power_sequencer(intel_dp);
2414 }
2415 }
2416
2417 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2418 {
2419 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2420 struct intel_encoder *encoder = &intel_dig_port->base;
2421 struct drm_device *dev = encoder->base.dev;
2422 struct drm_i915_private *dev_priv = dev->dev_private;
2423 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2424
2425 lockdep_assert_held(&dev_priv->pps_mutex);
2426
2427 if (!is_edp(intel_dp))
2428 return;
2429
2430 if (intel_dp->pps_pipe == crtc->pipe)
2431 return;
2432
2433 /*
2434 * If another power sequencer was being used on this
2435 * port previously make sure to turn off vdd there while
2436 * we still have control of it.
2437 */
2438 if (intel_dp->pps_pipe != INVALID_PIPE)
2439 vlv_detach_power_sequencer(intel_dp);
2440
2441 /*
2442 * We may be stealing the power
2443 * sequencer from another port.
2444 */
2445 vlv_steal_power_sequencer(dev, crtc->pipe);
2446
2447 /* now it's all ours */
2448 intel_dp->pps_pipe = crtc->pipe;
2449
2450 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2451 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2452
2453 /* init power sequencer on this pipe and port */
2454 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2455 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2456 }
2457
2458 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2459 {
2460 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2461 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2462 struct drm_device *dev = encoder->base.dev;
2463 struct drm_i915_private *dev_priv = dev->dev_private;
2464 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2465 enum dpio_channel port = vlv_dport_to_channel(dport);
2466 int pipe = intel_crtc->pipe;
2467 u32 val;
2468
2469 mutex_lock(&dev_priv->dpio_lock);
2470
2471 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2472 val = 0;
2473 if (pipe)
2474 val |= (1<<21);
2475 else
2476 val &= ~(1<<21);
2477 val |= 0x001000c4;
2478 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2479 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2480 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2481
2482 mutex_unlock(&dev_priv->dpio_lock);
2483
2484 intel_enable_dp(encoder);
2485 }
2486
2487 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2488 {
2489 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2490 struct drm_device *dev = encoder->base.dev;
2491 struct drm_i915_private *dev_priv = dev->dev_private;
2492 struct intel_crtc *intel_crtc =
2493 to_intel_crtc(encoder->base.crtc);
2494 enum dpio_channel port = vlv_dport_to_channel(dport);
2495 int pipe = intel_crtc->pipe;
2496
2497 intel_dp_prepare(encoder);
2498
2499 /* Program Tx lane resets to default */
2500 mutex_lock(&dev_priv->dpio_lock);
2501 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2502 DPIO_PCS_TX_LANE2_RESET |
2503 DPIO_PCS_TX_LANE1_RESET);
2504 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2505 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2506 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2507 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2508 DPIO_PCS_CLK_SOFT_RESET);
2509
2510 /* Fix up inter-pair skew failure */
2511 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2512 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2513 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2514 mutex_unlock(&dev_priv->dpio_lock);
2515 }
2516
2517 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2518 {
2519 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2520 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2521 struct drm_device *dev = encoder->base.dev;
2522 struct drm_i915_private *dev_priv = dev->dev_private;
2523 struct intel_crtc *intel_crtc =
2524 to_intel_crtc(encoder->base.crtc);
2525 enum dpio_channel ch = vlv_dport_to_channel(dport);
2526 int pipe = intel_crtc->pipe;
2527 int data, i;
2528 u32 val;
2529
2530 mutex_lock(&dev_priv->dpio_lock);
2531
2532 /* allow hardware to manage TX FIFO reset source */
2533 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2534 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2535 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2536
2537 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2538 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2539 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2540
2541 /* Deassert soft data lane reset*/
2542 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2543 val |= CHV_PCS_REQ_SOFTRESET_EN;
2544 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2545
2546 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2547 val |= CHV_PCS_REQ_SOFTRESET_EN;
2548 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2549
2550 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2551 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2552 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2553
2554 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2555 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2556 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2557
2558 /* Program Tx lane latency optimal setting*/
2559 for (i = 0; i < 4; i++) {
2560 /* Set the latency optimal bit */
2561 data = (i == 1) ? 0x0 : 0x6;
2562 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2563 data << DPIO_FRC_LATENCY_SHFIT);
2564
2565 /* Set the upar bit */
2566 data = (i == 1) ? 0x0 : 0x1;
2567 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2568 data << DPIO_UPAR_SHIFT);
2569 }
2570
2571 /* Data lane stagger programming */
2572 /* FIXME: Fix up value only after power analysis */
2573
2574 mutex_unlock(&dev_priv->dpio_lock);
2575
2576 intel_enable_dp(encoder);
2577 }
2578
2579 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2580 {
2581 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2582 struct drm_device *dev = encoder->base.dev;
2583 struct drm_i915_private *dev_priv = dev->dev_private;
2584 struct intel_crtc *intel_crtc =
2585 to_intel_crtc(encoder->base.crtc);
2586 enum dpio_channel ch = vlv_dport_to_channel(dport);
2587 enum pipe pipe = intel_crtc->pipe;
2588 u32 val;
2589
2590 intel_dp_prepare(encoder);
2591
2592 mutex_lock(&dev_priv->dpio_lock);
2593
2594 /* program left/right clock distribution */
2595 if (pipe != PIPE_B) {
2596 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2597 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2598 if (ch == DPIO_CH0)
2599 val |= CHV_BUFLEFTENA1_FORCE;
2600 if (ch == DPIO_CH1)
2601 val |= CHV_BUFRIGHTENA1_FORCE;
2602 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2603 } else {
2604 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2605 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2606 if (ch == DPIO_CH0)
2607 val |= CHV_BUFLEFTENA2_FORCE;
2608 if (ch == DPIO_CH1)
2609 val |= CHV_BUFRIGHTENA2_FORCE;
2610 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2611 }
2612
2613 /* program clock channel usage */
2614 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2615 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2616 if (pipe != PIPE_B)
2617 val &= ~CHV_PCS_USEDCLKCHANNEL;
2618 else
2619 val |= CHV_PCS_USEDCLKCHANNEL;
2620 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2621
2622 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2623 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2624 if (pipe != PIPE_B)
2625 val &= ~CHV_PCS_USEDCLKCHANNEL;
2626 else
2627 val |= CHV_PCS_USEDCLKCHANNEL;
2628 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2629
2630 /*
2631 * This a a bit weird since generally CL
2632 * matches the pipe, but here we need to
2633 * pick the CL based on the port.
2634 */
2635 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2636 if (pipe != PIPE_B)
2637 val &= ~CHV_CMN_USEDCLKCHANNEL;
2638 else
2639 val |= CHV_CMN_USEDCLKCHANNEL;
2640 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2641
2642 mutex_unlock(&dev_priv->dpio_lock);
2643 }
2644
2645 /*
2646 * Native read with retry for link status and receiver capability reads for
2647 * cases where the sink may still be asleep.
2648 *
2649 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2650 * supposed to retry 3 times per the spec.
2651 */
2652 static ssize_t
2653 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2654 void *buffer, size_t size)
2655 {
2656 ssize_t ret;
2657 int i;
2658
2659 /*
2660 * Sometime we just get the same incorrect byte repeated
2661 * over the entire buffer. Doing just one throw away read
2662 * initially seems to "solve" it.
2663 */
2664 drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
2665
2666 for (i = 0; i < 3; i++) {
2667 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2668 if (ret == size)
2669 return ret;
2670 msleep(1);
2671 }
2672
2673 return ret;
2674 }
2675
2676 /*
2677 * Fetch AUX CH registers 0x202 - 0x207 which contain
2678 * link status information
2679 */
2680 static bool
2681 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2682 {
2683 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2684 DP_LANE0_1_STATUS,
2685 link_status,
2686 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2687 }
2688
2689 /* These are source-specific values. */
2690 static uint8_t
2691 intel_dp_voltage_max(struct intel_dp *intel_dp)
2692 {
2693 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2694 struct drm_i915_private *dev_priv = dev->dev_private;
2695 enum port port = dp_to_dig_port(intel_dp)->port;
2696
2697 if (INTEL_INFO(dev)->gen >= 9) {
2698 if (dev_priv->vbt.edp_low_vswing && port == PORT_A)
2699 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2700 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2701 } else if (IS_VALLEYVIEW(dev))
2702 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2703 else if (IS_GEN7(dev) && port == PORT_A)
2704 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2705 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2706 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2707 else
2708 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2709 }
2710
2711 static uint8_t
2712 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2713 {
2714 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2715 enum port port = dp_to_dig_port(intel_dp)->port;
2716
2717 if (INTEL_INFO(dev)->gen >= 9) {
2718 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2719 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2720 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2721 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2722 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2723 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2724 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2725 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2726 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2727 default:
2728 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2729 }
2730 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2731 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2732 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2733 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2734 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2735 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2736 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2737 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2738 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2739 default:
2740 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2741 }
2742 } else if (IS_VALLEYVIEW(dev)) {
2743 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2744 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2745 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2746 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2747 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2748 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2749 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2750 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2751 default:
2752 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2753 }
2754 } else if (IS_GEN7(dev) && port == PORT_A) {
2755 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2756 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2757 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2758 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2759 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2760 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2761 default:
2762 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2763 }
2764 } else {
2765 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2766 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2767 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2768 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2769 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2770 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2771 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2772 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2773 default:
2774 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2775 }
2776 }
2777 }
2778
2779 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2780 {
2781 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2782 struct drm_i915_private *dev_priv = dev->dev_private;
2783 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2784 struct intel_crtc *intel_crtc =
2785 to_intel_crtc(dport->base.base.crtc);
2786 unsigned long demph_reg_value, preemph_reg_value,
2787 uniqtranscale_reg_value;
2788 uint8_t train_set = intel_dp->train_set[0];
2789 enum dpio_channel port = vlv_dport_to_channel(dport);
2790 int pipe = intel_crtc->pipe;
2791
2792 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2793 case DP_TRAIN_PRE_EMPH_LEVEL_0:
2794 preemph_reg_value = 0x0004000;
2795 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2796 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2797 demph_reg_value = 0x2B405555;
2798 uniqtranscale_reg_value = 0x552AB83A;
2799 break;
2800 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2801 demph_reg_value = 0x2B404040;
2802 uniqtranscale_reg_value = 0x5548B83A;
2803 break;
2804 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2805 demph_reg_value = 0x2B245555;
2806 uniqtranscale_reg_value = 0x5560B83A;
2807 break;
2808 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2809 demph_reg_value = 0x2B405555;
2810 uniqtranscale_reg_value = 0x5598DA3A;
2811 break;
2812 default:
2813 return 0;
2814 }
2815 break;
2816 case DP_TRAIN_PRE_EMPH_LEVEL_1:
2817 preemph_reg_value = 0x0002000;
2818 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2819 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2820 demph_reg_value = 0x2B404040;
2821 uniqtranscale_reg_value = 0x5552B83A;
2822 break;
2823 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2824 demph_reg_value = 0x2B404848;
2825 uniqtranscale_reg_value = 0x5580B83A;
2826 break;
2827 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2828 demph_reg_value = 0x2B404040;
2829 uniqtranscale_reg_value = 0x55ADDA3A;
2830 break;
2831 default:
2832 return 0;
2833 }
2834 break;
2835 case DP_TRAIN_PRE_EMPH_LEVEL_2:
2836 preemph_reg_value = 0x0000000;
2837 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2838 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2839 demph_reg_value = 0x2B305555;
2840 uniqtranscale_reg_value = 0x5570B83A;
2841 break;
2842 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2843 demph_reg_value = 0x2B2B4040;
2844 uniqtranscale_reg_value = 0x55ADDA3A;
2845 break;
2846 default:
2847 return 0;
2848 }
2849 break;
2850 case DP_TRAIN_PRE_EMPH_LEVEL_3:
2851 preemph_reg_value = 0x0006000;
2852 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2853 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2854 demph_reg_value = 0x1B405555;
2855 uniqtranscale_reg_value = 0x55ADDA3A;
2856 break;
2857 default:
2858 return 0;
2859 }
2860 break;
2861 default:
2862 return 0;
2863 }
2864
2865 mutex_lock(&dev_priv->dpio_lock);
2866 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2867 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2868 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2869 uniqtranscale_reg_value);
2870 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2871 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2872 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2873 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2874 mutex_unlock(&dev_priv->dpio_lock);
2875
2876 return 0;
2877 }
2878
2879 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
2880 {
2881 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2882 struct drm_i915_private *dev_priv = dev->dev_private;
2883 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2884 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
2885 u32 deemph_reg_value, margin_reg_value, val;
2886 uint8_t train_set = intel_dp->train_set[0];
2887 enum dpio_channel ch = vlv_dport_to_channel(dport);
2888 enum pipe pipe = intel_crtc->pipe;
2889 int i;
2890
2891 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2892 case DP_TRAIN_PRE_EMPH_LEVEL_0:
2893 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2894 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2895 deemph_reg_value = 128;
2896 margin_reg_value = 52;
2897 break;
2898 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2899 deemph_reg_value = 128;
2900 margin_reg_value = 77;
2901 break;
2902 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2903 deemph_reg_value = 128;
2904 margin_reg_value = 102;
2905 break;
2906 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2907 deemph_reg_value = 128;
2908 margin_reg_value = 154;
2909 /* FIXME extra to set for 1200 */
2910 break;
2911 default:
2912 return 0;
2913 }
2914 break;
2915 case DP_TRAIN_PRE_EMPH_LEVEL_1:
2916 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2917 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2918 deemph_reg_value = 85;
2919 margin_reg_value = 78;
2920 break;
2921 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2922 deemph_reg_value = 85;
2923 margin_reg_value = 116;
2924 break;
2925 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2926 deemph_reg_value = 85;
2927 margin_reg_value = 154;
2928 break;
2929 default:
2930 return 0;
2931 }
2932 break;
2933 case DP_TRAIN_PRE_EMPH_LEVEL_2:
2934 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2935 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2936 deemph_reg_value = 64;
2937 margin_reg_value = 104;
2938 break;
2939 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2940 deemph_reg_value = 64;
2941 margin_reg_value = 154;
2942 break;
2943 default:
2944 return 0;
2945 }
2946 break;
2947 case DP_TRAIN_PRE_EMPH_LEVEL_3:
2948 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2949 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2950 deemph_reg_value = 43;
2951 margin_reg_value = 154;
2952 break;
2953 default:
2954 return 0;
2955 }
2956 break;
2957 default:
2958 return 0;
2959 }
2960
2961 mutex_lock(&dev_priv->dpio_lock);
2962
2963 /* Clear calc init */
2964 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2965 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2966 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
2967 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
2968 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2969
2970 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2971 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2972 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
2973 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
2974 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2975
2976 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
2977 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
2978 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
2979 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
2980
2981 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
2982 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
2983 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
2984 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
2985
2986 /* Program swing deemph */
2987 for (i = 0; i < 4; i++) {
2988 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
2989 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
2990 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
2991 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
2992 }
2993
2994 /* Program swing margin */
2995 for (i = 0; i < 4; i++) {
2996 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2997 val &= ~DPIO_SWING_MARGIN000_MASK;
2998 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
2999 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3000 }
3001
3002 /* Disable unique transition scale */
3003 for (i = 0; i < 4; i++) {
3004 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3005 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3006 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3007 }
3008
3009 if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
3010 == DP_TRAIN_PRE_EMPH_LEVEL_0) &&
3011 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
3012 == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)) {
3013
3014 /*
3015 * The document said it needs to set bit 27 for ch0 and bit 26
3016 * for ch1. Might be a typo in the doc.
3017 * For now, for this unique transition scale selection, set bit
3018 * 27 for ch0 and ch1.
3019 */
3020 for (i = 0; i < 4; i++) {
3021 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3022 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3023 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3024 }
3025
3026 for (i = 0; i < 4; i++) {
3027 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3028 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3029 val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3030 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3031 }
3032 }
3033
3034 /* Start swing calculation */
3035 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3036 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3037 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3038
3039 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3040 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3041 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3042
3043 /* LRC Bypass */
3044 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
3045 val |= DPIO_LRC_BYPASS;
3046 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
3047
3048 mutex_unlock(&dev_priv->dpio_lock);
3049
3050 return 0;
3051 }
3052
3053 static void
3054 intel_get_adjust_train(struct intel_dp *intel_dp,
3055 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3056 {
3057 uint8_t v = 0;
3058 uint8_t p = 0;
3059 int lane;
3060 uint8_t voltage_max;
3061 uint8_t preemph_max;
3062
3063 for (lane = 0; lane < intel_dp->lane_count; lane++) {
3064 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
3065 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
3066
3067 if (this_v > v)
3068 v = this_v;
3069 if (this_p > p)
3070 p = this_p;
3071 }
3072
3073 voltage_max = intel_dp_voltage_max(intel_dp);
3074 if (v >= voltage_max)
3075 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
3076
3077 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
3078 if (p >= preemph_max)
3079 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
3080
3081 for (lane = 0; lane < 4; lane++)
3082 intel_dp->train_set[lane] = v | p;
3083 }
3084
3085 static uint32_t
3086 intel_gen4_signal_levels(uint8_t train_set)
3087 {
3088 uint32_t signal_levels = 0;
3089
3090 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3091 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3092 default:
3093 signal_levels |= DP_VOLTAGE_0_4;
3094 break;
3095 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3096 signal_levels |= DP_VOLTAGE_0_6;
3097 break;
3098 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3099 signal_levels |= DP_VOLTAGE_0_8;
3100 break;
3101 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3102 signal_levels |= DP_VOLTAGE_1_2;
3103 break;
3104 }
3105 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3106 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3107 default:
3108 signal_levels |= DP_PRE_EMPHASIS_0;
3109 break;
3110 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3111 signal_levels |= DP_PRE_EMPHASIS_3_5;
3112 break;
3113 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3114 signal_levels |= DP_PRE_EMPHASIS_6;
3115 break;
3116 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3117 signal_levels |= DP_PRE_EMPHASIS_9_5;
3118 break;
3119 }
3120 return signal_levels;
3121 }
3122
3123 /* Gen6's DP voltage swing and pre-emphasis control */
3124 static uint32_t
3125 intel_gen6_edp_signal_levels(uint8_t train_set)
3126 {
3127 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3128 DP_TRAIN_PRE_EMPHASIS_MASK);
3129 switch (signal_levels) {
3130 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3131 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3132 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3133 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3134 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3135 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3136 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3137 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3138 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3139 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3140 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3141 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3142 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3143 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3144 default:
3145 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3146 "0x%x\n", signal_levels);
3147 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3148 }
3149 }
3150
3151 /* Gen7's DP voltage swing and pre-emphasis control */
3152 static uint32_t
3153 intel_gen7_edp_signal_levels(uint8_t train_set)
3154 {
3155 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3156 DP_TRAIN_PRE_EMPHASIS_MASK);
3157 switch (signal_levels) {
3158 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3159 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3160 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3161 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3162 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3163 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3164
3165 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3166 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3167 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3168 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3169
3170 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3171 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3172 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3173 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3174
3175 default:
3176 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3177 "0x%x\n", signal_levels);
3178 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3179 }
3180 }
3181
3182 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
3183 static uint32_t
3184 intel_hsw_signal_levels(uint8_t train_set)
3185 {
3186 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3187 DP_TRAIN_PRE_EMPHASIS_MASK);
3188 switch (signal_levels) {
3189 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3190 return DDI_BUF_TRANS_SELECT(0);
3191 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3192 return DDI_BUF_TRANS_SELECT(1);
3193 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3194 return DDI_BUF_TRANS_SELECT(2);
3195 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
3196 return DDI_BUF_TRANS_SELECT(3);
3197
3198 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3199 return DDI_BUF_TRANS_SELECT(4);
3200 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3201 return DDI_BUF_TRANS_SELECT(5);
3202 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3203 return DDI_BUF_TRANS_SELECT(6);
3204
3205 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3206 return DDI_BUF_TRANS_SELECT(7);
3207 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3208 return DDI_BUF_TRANS_SELECT(8);
3209
3210 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3211 return DDI_BUF_TRANS_SELECT(9);
3212 default:
3213 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3214 "0x%x\n", signal_levels);
3215 return DDI_BUF_TRANS_SELECT(0);
3216 }
3217 }
3218
3219 /* Properly updates "DP" with the correct signal levels. */
3220 static void
3221 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
3222 {
3223 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3224 enum port port = intel_dig_port->port;
3225 struct drm_device *dev = intel_dig_port->base.base.dev;
3226 uint32_t signal_levels, mask;
3227 uint8_t train_set = intel_dp->train_set[0];
3228
3229 if (IS_HASWELL(dev) || IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
3230 signal_levels = intel_hsw_signal_levels(train_set);
3231 mask = DDI_BUF_EMP_MASK;
3232 } else if (IS_CHERRYVIEW(dev)) {
3233 signal_levels = intel_chv_signal_levels(intel_dp);
3234 mask = 0;
3235 } else if (IS_VALLEYVIEW(dev)) {
3236 signal_levels = intel_vlv_signal_levels(intel_dp);
3237 mask = 0;
3238 } else if (IS_GEN7(dev) && port == PORT_A) {
3239 signal_levels = intel_gen7_edp_signal_levels(train_set);
3240 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3241 } else if (IS_GEN6(dev) && port == PORT_A) {
3242 signal_levels = intel_gen6_edp_signal_levels(train_set);
3243 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3244 } else {
3245 signal_levels = intel_gen4_signal_levels(train_set);
3246 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3247 }
3248
3249 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3250
3251 *DP = (*DP & ~mask) | signal_levels;
3252 }
3253
3254 static bool
3255 intel_dp_set_link_train(struct intel_dp *intel_dp,
3256 uint32_t *DP,
3257 uint8_t dp_train_pat)
3258 {
3259 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3260 struct drm_device *dev = intel_dig_port->base.base.dev;
3261 struct drm_i915_private *dev_priv = dev->dev_private;
3262 uint8_t buf[sizeof(intel_dp->train_set) + 1];
3263 int ret, len;
3264
3265 _intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3266
3267 I915_WRITE(intel_dp->output_reg, *DP);
3268 POSTING_READ(intel_dp->output_reg);
3269
3270 buf[0] = dp_train_pat;
3271 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3272 DP_TRAINING_PATTERN_DISABLE) {
3273 /* don't write DP_TRAINING_LANEx_SET on disable */
3274 len = 1;
3275 } else {
3276 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3277 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3278 len = intel_dp->lane_count + 1;
3279 }
3280
3281 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3282 buf, len);
3283
3284 return ret == len;
3285 }
3286
3287 static bool
3288 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3289 uint8_t dp_train_pat)
3290 {
3291 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3292 intel_dp_set_signal_levels(intel_dp, DP);
3293 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3294 }
3295
3296 static bool
3297 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3298 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3299 {
3300 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3301 struct drm_device *dev = intel_dig_port->base.base.dev;
3302 struct drm_i915_private *dev_priv = dev->dev_private;
3303 int ret;
3304
3305 intel_get_adjust_train(intel_dp, link_status);
3306 intel_dp_set_signal_levels(intel_dp, DP);
3307
3308 I915_WRITE(intel_dp->output_reg, *DP);
3309 POSTING_READ(intel_dp->output_reg);
3310
3311 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3312 intel_dp->train_set, intel_dp->lane_count);
3313
3314 return ret == intel_dp->lane_count;
3315 }
3316
3317 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3318 {
3319 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3320 struct drm_device *dev = intel_dig_port->base.base.dev;
3321 struct drm_i915_private *dev_priv = dev->dev_private;
3322 enum port port = intel_dig_port->port;
3323 uint32_t val;
3324
3325 if (!HAS_DDI(dev))
3326 return;
3327
3328 val = I915_READ(DP_TP_CTL(port));
3329 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3330 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3331 I915_WRITE(DP_TP_CTL(port), val);
3332
3333 /*
3334 * On PORT_A we can have only eDP in SST mode. There the only reason
3335 * we need to set idle transmission mode is to work around a HW issue
3336 * where we enable the pipe while not in idle link-training mode.
3337 * In this case there is requirement to wait for a minimum number of
3338 * idle patterns to be sent.
3339 */
3340 if (port == PORT_A)
3341 return;
3342
3343 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3344 1))
3345 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3346 }
3347
3348 /* Enable corresponding port and start training pattern 1 */
3349 void
3350 intel_dp_start_link_train(struct intel_dp *intel_dp)
3351 {
3352 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3353 struct drm_device *dev = encoder->dev;
3354 int i;
3355 uint8_t voltage;
3356 int voltage_tries, loop_tries;
3357 uint32_t DP = intel_dp->DP;
3358 uint8_t link_config[2];
3359
3360 if (HAS_DDI(dev))
3361 intel_ddi_prepare_link_retrain(encoder);
3362
3363 /* Write the link configuration data */
3364 link_config[0] = intel_dp->link_bw;
3365 link_config[1] = intel_dp->lane_count;
3366 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3367 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3368 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3369
3370 link_config[0] = 0;
3371 link_config[1] = DP_SET_ANSI_8B10B;
3372 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3373
3374 DP |= DP_PORT_EN;
3375
3376 /* clock recovery */
3377 if (!intel_dp_reset_link_train(intel_dp, &DP,
3378 DP_TRAINING_PATTERN_1 |
3379 DP_LINK_SCRAMBLING_DISABLE)) {
3380 DRM_ERROR("failed to enable link training\n");
3381 return;
3382 }
3383
3384 voltage = 0xff;
3385 voltage_tries = 0;
3386 loop_tries = 0;
3387 for (;;) {
3388 uint8_t link_status[DP_LINK_STATUS_SIZE];
3389
3390 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3391 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3392 DRM_ERROR("failed to get link status\n");
3393 break;
3394 }
3395
3396 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3397 DRM_DEBUG_KMS("clock recovery OK\n");
3398 break;
3399 }
3400
3401 /* Check to see if we've tried the max voltage */
3402 for (i = 0; i < intel_dp->lane_count; i++)
3403 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3404 break;
3405 if (i == intel_dp->lane_count) {
3406 ++loop_tries;
3407 if (loop_tries == 5) {
3408 DRM_ERROR("too many full retries, give up\n");
3409 break;
3410 }
3411 intel_dp_reset_link_train(intel_dp, &DP,
3412 DP_TRAINING_PATTERN_1 |
3413 DP_LINK_SCRAMBLING_DISABLE);
3414 voltage_tries = 0;
3415 continue;
3416 }
3417
3418 /* Check to see if we've tried the same voltage 5 times */
3419 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3420 ++voltage_tries;
3421 if (voltage_tries == 5) {
3422 DRM_ERROR("too many voltage retries, give up\n");
3423 break;
3424 }
3425 } else
3426 voltage_tries = 0;
3427 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3428
3429 /* Update training set as requested by target */
3430 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3431 DRM_ERROR("failed to update link training\n");
3432 break;
3433 }
3434 }
3435
3436 intel_dp->DP = DP;
3437 }
3438
3439 void
3440 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3441 {
3442 bool channel_eq = false;
3443 int tries, cr_tries;
3444 uint32_t DP = intel_dp->DP;
3445 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3446
3447 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3448 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3449 training_pattern = DP_TRAINING_PATTERN_3;
3450
3451 /* channel equalization */
3452 if (!intel_dp_set_link_train(intel_dp, &DP,
3453 training_pattern |
3454 DP_LINK_SCRAMBLING_DISABLE)) {
3455 DRM_ERROR("failed to start channel equalization\n");
3456 return;
3457 }
3458
3459 tries = 0;
3460 cr_tries = 0;
3461 channel_eq = false;
3462 for (;;) {
3463 uint8_t link_status[DP_LINK_STATUS_SIZE];
3464
3465 if (cr_tries > 5) {
3466 DRM_ERROR("failed to train DP, aborting\n");
3467 break;
3468 }
3469
3470 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3471 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3472 DRM_ERROR("failed to get link status\n");
3473 break;
3474 }
3475
3476 /* Make sure clock is still ok */
3477 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3478 intel_dp_start_link_train(intel_dp);
3479 intel_dp_set_link_train(intel_dp, &DP,
3480 training_pattern |
3481 DP_LINK_SCRAMBLING_DISABLE);
3482 cr_tries++;
3483 continue;
3484 }
3485
3486 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3487 channel_eq = true;
3488 break;
3489 }
3490
3491 /* Try 5 times, then try clock recovery if that fails */
3492 if (tries > 5) {
3493 intel_dp_start_link_train(intel_dp);
3494 intel_dp_set_link_train(intel_dp, &DP,
3495 training_pattern |
3496 DP_LINK_SCRAMBLING_DISABLE);
3497 tries = 0;
3498 cr_tries++;
3499 continue;
3500 }
3501
3502 /* Update training set as requested by target */
3503 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3504 DRM_ERROR("failed to update link training\n");
3505 break;
3506 }
3507 ++tries;
3508 }
3509
3510 intel_dp_set_idle_link_train(intel_dp);
3511
3512 intel_dp->DP = DP;
3513
3514 if (channel_eq)
3515 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3516
3517 }
3518
3519 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3520 {
3521 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3522 DP_TRAINING_PATTERN_DISABLE);
3523 }
3524
3525 static void
3526 intel_dp_link_down(struct intel_dp *intel_dp)
3527 {
3528 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3529 enum port port = intel_dig_port->port;
3530 struct drm_device *dev = intel_dig_port->base.base.dev;
3531 struct drm_i915_private *dev_priv = dev->dev_private;
3532 uint32_t DP = intel_dp->DP;
3533
3534 if (WARN_ON(HAS_DDI(dev)))
3535 return;
3536
3537 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3538 return;
3539
3540 DRM_DEBUG_KMS("\n");
3541
3542 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3543 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3544 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3545 } else {
3546 if (IS_CHERRYVIEW(dev))
3547 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3548 else
3549 DP &= ~DP_LINK_TRAIN_MASK;
3550 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3551 }
3552 POSTING_READ(intel_dp->output_reg);
3553
3554 if (HAS_PCH_IBX(dev) &&
3555 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3556 /* Hardware workaround: leaving our transcoder select
3557 * set to transcoder B while it's off will prevent the
3558 * corresponding HDMI output on transcoder A.
3559 *
3560 * Combine this with another hardware workaround:
3561 * transcoder select bit can only be cleared while the
3562 * port is enabled.
3563 */
3564 DP &= ~DP_PIPEB_SELECT;
3565 I915_WRITE(intel_dp->output_reg, DP);
3566 POSTING_READ(intel_dp->output_reg);
3567 }
3568
3569 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3570 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3571 POSTING_READ(intel_dp->output_reg);
3572 msleep(intel_dp->panel_power_down_delay);
3573 }
3574
3575 static bool
3576 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3577 {
3578 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3579 struct drm_device *dev = dig_port->base.base.dev;
3580 struct drm_i915_private *dev_priv = dev->dev_private;
3581
3582 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3583 sizeof(intel_dp->dpcd)) < 0)
3584 return false; /* aux transfer failed */
3585
3586 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3587
3588 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3589 return false; /* DPCD not present */
3590
3591 /* Check if the panel supports PSR */
3592 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3593 if (is_edp(intel_dp)) {
3594 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3595 intel_dp->psr_dpcd,
3596 sizeof(intel_dp->psr_dpcd));
3597 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3598 dev_priv->psr.sink_support = true;
3599 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3600 }
3601 }
3602
3603 /* Training Pattern 3 support, both source and sink */
3604 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3605 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED &&
3606 (IS_HASWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 8)) {
3607 intel_dp->use_tps3 = true;
3608 DRM_DEBUG_KMS("Displayport TPS3 supported\n");
3609 } else
3610 intel_dp->use_tps3 = false;
3611
3612 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3613 DP_DWN_STRM_PORT_PRESENT))
3614 return true; /* native DP sink */
3615
3616 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3617 return true; /* no per-port downstream info */
3618
3619 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3620 intel_dp->downstream_ports,
3621 DP_MAX_DOWNSTREAM_PORTS) < 0)
3622 return false; /* downstream port status fetch failed */
3623
3624 return true;
3625 }
3626
3627 static void
3628 intel_dp_probe_oui(struct intel_dp *intel_dp)
3629 {
3630 u8 buf[3];
3631
3632 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3633 return;
3634
3635 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3636 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3637 buf[0], buf[1], buf[2]);
3638
3639 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3640 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3641 buf[0], buf[1], buf[2]);
3642 }
3643
3644 static bool
3645 intel_dp_probe_mst(struct intel_dp *intel_dp)
3646 {
3647 u8 buf[1];
3648
3649 if (!intel_dp->can_mst)
3650 return false;
3651
3652 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3653 return false;
3654
3655 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3656 if (buf[0] & DP_MST_CAP) {
3657 DRM_DEBUG_KMS("Sink is MST capable\n");
3658 intel_dp->is_mst = true;
3659 } else {
3660 DRM_DEBUG_KMS("Sink is not MST capable\n");
3661 intel_dp->is_mst = false;
3662 }
3663 }
3664
3665 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3666 return intel_dp->is_mst;
3667 }
3668
3669 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3670 {
3671 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3672 struct drm_device *dev = intel_dig_port->base.base.dev;
3673 struct intel_crtc *intel_crtc =
3674 to_intel_crtc(intel_dig_port->base.base.crtc);
3675 u8 buf;
3676 int test_crc_count;
3677 int attempts = 6;
3678
3679 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3680 return -EIO;
3681
3682 if (!(buf & DP_TEST_CRC_SUPPORTED))
3683 return -ENOTTY;
3684
3685 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3686 return -EIO;
3687
3688 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3689 buf | DP_TEST_SINK_START) < 0)
3690 return -EIO;
3691
3692 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3693 return -EIO;
3694 test_crc_count = buf & DP_TEST_COUNT_MASK;
3695
3696 do {
3697 if (drm_dp_dpcd_readb(&intel_dp->aux,
3698 DP_TEST_SINK_MISC, &buf) < 0)
3699 return -EIO;
3700 intel_wait_for_vblank(dev, intel_crtc->pipe);
3701 } while (--attempts && (buf & DP_TEST_COUNT_MASK) == test_crc_count);
3702
3703 if (attempts == 0) {
3704 DRM_DEBUG_KMS("Panel is unable to calculate CRC after 6 vblanks\n");
3705 return -ETIMEDOUT;
3706 }
3707
3708 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3709 return -EIO;
3710
3711 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3712 return -EIO;
3713 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3714 buf & ~DP_TEST_SINK_START) < 0)
3715 return -EIO;
3716
3717 return 0;
3718 }
3719
3720 static bool
3721 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3722 {
3723 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3724 DP_DEVICE_SERVICE_IRQ_VECTOR,
3725 sink_irq_vector, 1) == 1;
3726 }
3727
3728 static bool
3729 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3730 {
3731 int ret;
3732
3733 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
3734 DP_SINK_COUNT_ESI,
3735 sink_irq_vector, 14);
3736 if (ret != 14)
3737 return false;
3738
3739 return true;
3740 }
3741
3742 static void
3743 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3744 {
3745 /* NAK by default */
3746 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3747 }
3748
3749 static int
3750 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3751 {
3752 bool bret;
3753
3754 if (intel_dp->is_mst) {
3755 u8 esi[16] = { 0 };
3756 int ret = 0;
3757 int retry;
3758 bool handled;
3759 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3760 go_again:
3761 if (bret == true) {
3762
3763 /* check link status - esi[10] = 0x200c */
3764 if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3765 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3766 intel_dp_start_link_train(intel_dp);
3767 intel_dp_complete_link_train(intel_dp);
3768 intel_dp_stop_link_train(intel_dp);
3769 }
3770
3771 DRM_DEBUG_KMS("got esi %3ph\n", esi);
3772 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3773
3774 if (handled) {
3775 for (retry = 0; retry < 3; retry++) {
3776 int wret;
3777 wret = drm_dp_dpcd_write(&intel_dp->aux,
3778 DP_SINK_COUNT_ESI+1,
3779 &esi[1], 3);
3780 if (wret == 3) {
3781 break;
3782 }
3783 }
3784
3785 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3786 if (bret == true) {
3787 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
3788 goto go_again;
3789 }
3790 } else
3791 ret = 0;
3792
3793 return ret;
3794 } else {
3795 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3796 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3797 intel_dp->is_mst = false;
3798 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3799 /* send a hotplug event */
3800 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3801 }
3802 }
3803 return -EINVAL;
3804 }
3805
3806 /*
3807 * According to DP spec
3808 * 5.1.2:
3809 * 1. Read DPCD
3810 * 2. Configure link according to Receiver Capabilities
3811 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
3812 * 4. Check link status on receipt of hot-plug interrupt
3813 */
3814 static void
3815 intel_dp_check_link_status(struct intel_dp *intel_dp)
3816 {
3817 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3818 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3819 u8 sink_irq_vector;
3820 u8 link_status[DP_LINK_STATUS_SIZE];
3821
3822 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3823
3824 if (!intel_encoder->connectors_active)
3825 return;
3826
3827 if (WARN_ON(!intel_encoder->base.crtc))
3828 return;
3829
3830 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
3831 return;
3832
3833 /* Try to read receiver status if the link appears to be up */
3834 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3835 return;
3836 }
3837
3838 /* Now read the DPCD to see if it's actually running */
3839 if (!intel_dp_get_dpcd(intel_dp)) {
3840 return;
3841 }
3842
3843 /* Try to read the source of the interrupt */
3844 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3845 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3846 /* Clear interrupt source */
3847 drm_dp_dpcd_writeb(&intel_dp->aux,
3848 DP_DEVICE_SERVICE_IRQ_VECTOR,
3849 sink_irq_vector);
3850
3851 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3852 intel_dp_handle_test_request(intel_dp);
3853 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3854 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3855 }
3856
3857 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3858 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3859 intel_encoder->base.name);
3860 intel_dp_start_link_train(intel_dp);
3861 intel_dp_complete_link_train(intel_dp);
3862 intel_dp_stop_link_train(intel_dp);
3863 }
3864 }
3865
3866 /* XXX this is probably wrong for multiple downstream ports */
3867 static enum drm_connector_status
3868 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3869 {
3870 uint8_t *dpcd = intel_dp->dpcd;
3871 uint8_t type;
3872
3873 if (!intel_dp_get_dpcd(intel_dp))
3874 return connector_status_disconnected;
3875
3876 /* if there's no downstream port, we're done */
3877 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3878 return connector_status_connected;
3879
3880 /* If we're HPD-aware, SINK_COUNT changes dynamically */
3881 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3882 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3883 uint8_t reg;
3884
3885 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3886 &reg, 1) < 0)
3887 return connector_status_unknown;
3888
3889 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3890 : connector_status_disconnected;
3891 }
3892
3893 /* If no HPD, poke DDC gently */
3894 if (drm_probe_ddc(&intel_dp->aux.ddc))
3895 return connector_status_connected;
3896
3897 /* Well we tried, say unknown for unreliable port types */
3898 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3899 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3900 if (type == DP_DS_PORT_TYPE_VGA ||
3901 type == DP_DS_PORT_TYPE_NON_EDID)
3902 return connector_status_unknown;
3903 } else {
3904 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3905 DP_DWN_STRM_PORT_TYPE_MASK;
3906 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3907 type == DP_DWN_STRM_PORT_TYPE_OTHER)
3908 return connector_status_unknown;
3909 }
3910
3911 /* Anything else is out of spec, warn and ignore */
3912 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3913 return connector_status_disconnected;
3914 }
3915
3916 static enum drm_connector_status
3917 edp_detect(struct intel_dp *intel_dp)
3918 {
3919 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3920 enum drm_connector_status status;
3921
3922 status = intel_panel_detect(dev);
3923 if (status == connector_status_unknown)
3924 status = connector_status_connected;
3925
3926 return status;
3927 }
3928
3929 static enum drm_connector_status
3930 ironlake_dp_detect(struct intel_dp *intel_dp)
3931 {
3932 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3933 struct drm_i915_private *dev_priv = dev->dev_private;
3934 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3935
3936 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3937 return connector_status_disconnected;
3938
3939 return intel_dp_detect_dpcd(intel_dp);
3940 }
3941
3942 static int g4x_digital_port_connected(struct drm_device *dev,
3943 struct intel_digital_port *intel_dig_port)
3944 {
3945 struct drm_i915_private *dev_priv = dev->dev_private;
3946 uint32_t bit;
3947
3948 if (IS_VALLEYVIEW(dev)) {
3949 switch (intel_dig_port->port) {
3950 case PORT_B:
3951 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3952 break;
3953 case PORT_C:
3954 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3955 break;
3956 case PORT_D:
3957 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3958 break;
3959 default:
3960 return -EINVAL;
3961 }
3962 } else {
3963 switch (intel_dig_port->port) {
3964 case PORT_B:
3965 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3966 break;
3967 case PORT_C:
3968 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3969 break;
3970 case PORT_D:
3971 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3972 break;
3973 default:
3974 return -EINVAL;
3975 }
3976 }
3977
3978 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3979 return 0;
3980 return 1;
3981 }
3982
3983 static enum drm_connector_status
3984 g4x_dp_detect(struct intel_dp *intel_dp)
3985 {
3986 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3987 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3988 int ret;
3989
3990 /* Can't disconnect eDP, but you can close the lid... */
3991 if (is_edp(intel_dp)) {
3992 enum drm_connector_status status;
3993
3994 status = intel_panel_detect(dev);
3995 if (status == connector_status_unknown)
3996 status = connector_status_connected;
3997 return status;
3998 }
3999
4000 ret = g4x_digital_port_connected(dev, intel_dig_port);
4001 if (ret == -EINVAL)
4002 return connector_status_unknown;
4003 else if (ret == 0)
4004 return connector_status_disconnected;
4005
4006 return intel_dp_detect_dpcd(intel_dp);
4007 }
4008
4009 static struct edid *
4010 intel_dp_get_edid(struct intel_dp *intel_dp)
4011 {
4012 struct intel_connector *intel_connector = intel_dp->attached_connector;
4013
4014 /* use cached edid if we have one */
4015 if (intel_connector->edid) {
4016 /* invalid edid */
4017 if (IS_ERR(intel_connector->edid))
4018 return NULL;
4019
4020 return drm_edid_duplicate(intel_connector->edid);
4021 } else
4022 return drm_get_edid(&intel_connector->base,
4023 &intel_dp->aux.ddc);
4024 }
4025
4026 static void
4027 intel_dp_set_edid(struct intel_dp *intel_dp)
4028 {
4029 struct intel_connector *intel_connector = intel_dp->attached_connector;
4030 struct edid *edid;
4031
4032 edid = intel_dp_get_edid(intel_dp);
4033 intel_connector->detect_edid = edid;
4034
4035 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4036 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4037 else
4038 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4039 }
4040
4041 static void
4042 intel_dp_unset_edid(struct intel_dp *intel_dp)
4043 {
4044 struct intel_connector *intel_connector = intel_dp->attached_connector;
4045
4046 kfree(intel_connector->detect_edid);
4047 intel_connector->detect_edid = NULL;
4048
4049 intel_dp->has_audio = false;
4050 }
4051
4052 static enum intel_display_power_domain
4053 intel_dp_power_get(struct intel_dp *dp)
4054 {
4055 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4056 enum intel_display_power_domain power_domain;
4057
4058 power_domain = intel_display_port_power_domain(encoder);
4059 intel_display_power_get(to_i915(encoder->base.dev), power_domain);
4060
4061 return power_domain;
4062 }
4063
4064 static void
4065 intel_dp_power_put(struct intel_dp *dp,
4066 enum intel_display_power_domain power_domain)
4067 {
4068 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4069 intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4070 }
4071
4072 static enum drm_connector_status
4073 intel_dp_detect(struct drm_connector *connector, bool force)
4074 {
4075 struct intel_dp *intel_dp = intel_attached_dp(connector);
4076 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4077 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4078 struct drm_device *dev = connector->dev;
4079 enum drm_connector_status status;
4080 enum intel_display_power_domain power_domain;
4081 bool ret;
4082
4083 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4084 connector->base.id, connector->name);
4085 intel_dp_unset_edid(intel_dp);
4086
4087 if (intel_dp->is_mst) {
4088 /* MST devices are disconnected from a monitor POV */
4089 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4090 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4091 return connector_status_disconnected;
4092 }
4093
4094 power_domain = intel_dp_power_get(intel_dp);
4095
4096 /* Can't disconnect eDP, but you can close the lid... */
4097 if (is_edp(intel_dp))
4098 status = edp_detect(intel_dp);
4099 else if (HAS_PCH_SPLIT(dev))
4100 status = ironlake_dp_detect(intel_dp);
4101 else
4102 status = g4x_dp_detect(intel_dp);
4103 if (status != connector_status_connected)
4104 goto out;
4105
4106 intel_dp_probe_oui(intel_dp);
4107
4108 ret = intel_dp_probe_mst(intel_dp);
4109 if (ret) {
4110 /* if we are in MST mode then this connector
4111 won't appear connected or have anything with EDID on it */
4112 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4113 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4114 status = connector_status_disconnected;
4115 goto out;
4116 }
4117
4118 intel_dp_set_edid(intel_dp);
4119
4120 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4121 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4122 status = connector_status_connected;
4123
4124 out:
4125 intel_dp_power_put(intel_dp, power_domain);
4126 return status;
4127 }
4128
4129 static void
4130 intel_dp_force(struct drm_connector *connector)
4131 {
4132 struct intel_dp *intel_dp = intel_attached_dp(connector);
4133 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4134 enum intel_display_power_domain power_domain;
4135
4136 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4137 connector->base.id, connector->name);
4138 intel_dp_unset_edid(intel_dp);
4139
4140 if (connector->status != connector_status_connected)
4141 return;
4142
4143 power_domain = intel_dp_power_get(intel_dp);
4144
4145 intel_dp_set_edid(intel_dp);
4146
4147 intel_dp_power_put(intel_dp, power_domain);
4148
4149 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4150 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4151 }
4152
4153 static int intel_dp_get_modes(struct drm_connector *connector)
4154 {
4155 struct intel_connector *intel_connector = to_intel_connector(connector);
4156 struct edid *edid;
4157
4158 edid = intel_connector->detect_edid;
4159 if (edid) {
4160 int ret = intel_connector_update_modes(connector, edid);
4161 if (ret)
4162 return ret;
4163 }
4164
4165 /* if eDP has no EDID, fall back to fixed mode */
4166 if (is_edp(intel_attached_dp(connector)) &&
4167 intel_connector->panel.fixed_mode) {
4168 struct drm_display_mode *mode;
4169
4170 mode = drm_mode_duplicate(connector->dev,
4171 intel_connector->panel.fixed_mode);
4172 if (mode) {
4173 drm_mode_probed_add(connector, mode);
4174 return 1;
4175 }
4176 }
4177
4178 return 0;
4179 }
4180
4181 static bool
4182 intel_dp_detect_audio(struct drm_connector *connector)
4183 {
4184 bool has_audio = false;
4185 struct edid *edid;
4186
4187 edid = to_intel_connector(connector)->detect_edid;
4188 if (edid)
4189 has_audio = drm_detect_monitor_audio(edid);
4190
4191 return has_audio;
4192 }
4193
4194 static int
4195 intel_dp_set_property(struct drm_connector *connector,
4196 struct drm_property *property,
4197 uint64_t val)
4198 {
4199 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4200 struct intel_connector *intel_connector = to_intel_connector(connector);
4201 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4202 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4203 int ret;
4204
4205 ret = drm_object_property_set_value(&connector->base, property, val);
4206 if (ret)
4207 return ret;
4208
4209 if (property == dev_priv->force_audio_property) {
4210 int i = val;
4211 bool has_audio;
4212
4213 if (i == intel_dp->force_audio)
4214 return 0;
4215
4216 intel_dp->force_audio = i;
4217
4218 if (i == HDMI_AUDIO_AUTO)
4219 has_audio = intel_dp_detect_audio(connector);
4220 else
4221 has_audio = (i == HDMI_AUDIO_ON);
4222
4223 if (has_audio == intel_dp->has_audio)
4224 return 0;
4225
4226 intel_dp->has_audio = has_audio;
4227 goto done;
4228 }
4229
4230 if (property == dev_priv->broadcast_rgb_property) {
4231 bool old_auto = intel_dp->color_range_auto;
4232 uint32_t old_range = intel_dp->color_range;
4233
4234 switch (val) {
4235 case INTEL_BROADCAST_RGB_AUTO:
4236 intel_dp->color_range_auto = true;
4237 break;
4238 case INTEL_BROADCAST_RGB_FULL:
4239 intel_dp->color_range_auto = false;
4240 intel_dp->color_range = 0;
4241 break;
4242 case INTEL_BROADCAST_RGB_LIMITED:
4243 intel_dp->color_range_auto = false;
4244 intel_dp->color_range = DP_COLOR_RANGE_16_235;
4245 break;
4246 default:
4247 return -EINVAL;
4248 }
4249
4250 if (old_auto == intel_dp->color_range_auto &&
4251 old_range == intel_dp->color_range)
4252 return 0;
4253
4254 goto done;
4255 }
4256
4257 if (is_edp(intel_dp) &&
4258 property == connector->dev->mode_config.scaling_mode_property) {
4259 if (val == DRM_MODE_SCALE_NONE) {
4260 DRM_DEBUG_KMS("no scaling not supported\n");
4261 return -EINVAL;
4262 }
4263
4264 if (intel_connector->panel.fitting_mode == val) {
4265 /* the eDP scaling property is not changed */
4266 return 0;
4267 }
4268 intel_connector->panel.fitting_mode = val;
4269
4270 goto done;
4271 }
4272
4273 return -EINVAL;
4274
4275 done:
4276 if (intel_encoder->base.crtc)
4277 intel_crtc_restore_mode(intel_encoder->base.crtc);
4278
4279 return 0;
4280 }
4281
4282 static void
4283 intel_dp_connector_destroy(struct drm_connector *connector)
4284 {
4285 struct intel_connector *intel_connector = to_intel_connector(connector);
4286
4287 kfree(intel_connector->detect_edid);
4288
4289 if (!IS_ERR_OR_NULL(intel_connector->edid))
4290 kfree(intel_connector->edid);
4291
4292 /* Can't call is_edp() since the encoder may have been destroyed
4293 * already. */
4294 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4295 intel_panel_fini(&intel_connector->panel);
4296
4297 drm_connector_cleanup(connector);
4298 kfree(connector);
4299 }
4300
4301 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4302 {
4303 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4304 struct intel_dp *intel_dp = &intel_dig_port->dp;
4305
4306 drm_dp_aux_unregister(&intel_dp->aux);
4307 intel_dp_mst_encoder_cleanup(intel_dig_port);
4308 if (is_edp(intel_dp)) {
4309 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4310 /*
4311 * vdd might still be enabled do to the delayed vdd off.
4312 * Make sure vdd is actually turned off here.
4313 */
4314 pps_lock(intel_dp);
4315 edp_panel_vdd_off_sync(intel_dp);
4316 pps_unlock(intel_dp);
4317
4318 if (intel_dp->edp_notifier.notifier_call) {
4319 unregister_reboot_notifier(&intel_dp->edp_notifier);
4320 intel_dp->edp_notifier.notifier_call = NULL;
4321 }
4322 }
4323 drm_encoder_cleanup(encoder);
4324 kfree(intel_dig_port);
4325 }
4326
4327 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4328 {
4329 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4330
4331 if (!is_edp(intel_dp))
4332 return;
4333
4334 /*
4335 * vdd might still be enabled do to the delayed vdd off.
4336 * Make sure vdd is actually turned off here.
4337 */
4338 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4339 pps_lock(intel_dp);
4340 edp_panel_vdd_off_sync(intel_dp);
4341 pps_unlock(intel_dp);
4342 }
4343
4344 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4345 {
4346 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4347 struct drm_device *dev = intel_dig_port->base.base.dev;
4348 struct drm_i915_private *dev_priv = dev->dev_private;
4349 enum intel_display_power_domain power_domain;
4350
4351 lockdep_assert_held(&dev_priv->pps_mutex);
4352
4353 if (!edp_have_panel_vdd(intel_dp))
4354 return;
4355
4356 /*
4357 * The VDD bit needs a power domain reference, so if the bit is
4358 * already enabled when we boot or resume, grab this reference and
4359 * schedule a vdd off, so we don't hold on to the reference
4360 * indefinitely.
4361 */
4362 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4363 power_domain = intel_display_port_power_domain(&intel_dig_port->base);
4364 intel_display_power_get(dev_priv, power_domain);
4365
4366 edp_panel_vdd_schedule_off(intel_dp);
4367 }
4368
4369 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4370 {
4371 struct intel_dp *intel_dp;
4372
4373 if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4374 return;
4375
4376 intel_dp = enc_to_intel_dp(encoder);
4377
4378 pps_lock(intel_dp);
4379
4380 /*
4381 * Read out the current power sequencer assignment,
4382 * in case the BIOS did something with it.
4383 */
4384 if (IS_VALLEYVIEW(encoder->dev))
4385 vlv_initial_power_sequencer_setup(intel_dp);
4386
4387 intel_edp_panel_vdd_sanitize(intel_dp);
4388
4389 pps_unlock(intel_dp);
4390 }
4391
4392 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4393 .dpms = intel_connector_dpms,
4394 .detect = intel_dp_detect,
4395 .force = intel_dp_force,
4396 .fill_modes = drm_helper_probe_single_connector_modes,
4397 .set_property = intel_dp_set_property,
4398 .atomic_get_property = intel_connector_atomic_get_property,
4399 .destroy = intel_dp_connector_destroy,
4400 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4401 };
4402
4403 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4404 .get_modes = intel_dp_get_modes,
4405 .mode_valid = intel_dp_mode_valid,
4406 .best_encoder = intel_best_encoder,
4407 };
4408
4409 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4410 .reset = intel_dp_encoder_reset,
4411 .destroy = intel_dp_encoder_destroy,
4412 };
4413
4414 void
4415 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4416 {
4417 return;
4418 }
4419
4420 enum irqreturn
4421 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4422 {
4423 struct intel_dp *intel_dp = &intel_dig_port->dp;
4424 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4425 struct drm_device *dev = intel_dig_port->base.base.dev;
4426 struct drm_i915_private *dev_priv = dev->dev_private;
4427 enum intel_display_power_domain power_domain;
4428 enum irqreturn ret = IRQ_NONE;
4429
4430 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4431 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4432
4433 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4434 /*
4435 * vdd off can generate a long pulse on eDP which
4436 * would require vdd on to handle it, and thus we
4437 * would end up in an endless cycle of
4438 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4439 */
4440 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4441 port_name(intel_dig_port->port));
4442 return IRQ_HANDLED;
4443 }
4444
4445 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4446 port_name(intel_dig_port->port),
4447 long_hpd ? "long" : "short");
4448
4449 power_domain = intel_display_port_power_domain(intel_encoder);
4450 intel_display_power_get(dev_priv, power_domain);
4451
4452 if (long_hpd) {
4453
4454 if (HAS_PCH_SPLIT(dev)) {
4455 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4456 goto mst_fail;
4457 } else {
4458 if (g4x_digital_port_connected(dev, intel_dig_port) != 1)
4459 goto mst_fail;
4460 }
4461
4462 if (!intel_dp_get_dpcd(intel_dp)) {
4463 goto mst_fail;
4464 }
4465
4466 intel_dp_probe_oui(intel_dp);
4467
4468 if (!intel_dp_probe_mst(intel_dp))
4469 goto mst_fail;
4470
4471 } else {
4472 if (intel_dp->is_mst) {
4473 if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4474 goto mst_fail;
4475 }
4476
4477 if (!intel_dp->is_mst) {
4478 /*
4479 * we'll check the link status via the normal hot plug path later -
4480 * but for short hpds we should check it now
4481 */
4482 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4483 intel_dp_check_link_status(intel_dp);
4484 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4485 }
4486 }
4487
4488 ret = IRQ_HANDLED;
4489
4490 goto put_power;
4491 mst_fail:
4492 /* if we were in MST mode, and device is not there get out of MST mode */
4493 if (intel_dp->is_mst) {
4494 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4495 intel_dp->is_mst = false;
4496 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4497 }
4498 put_power:
4499 intel_display_power_put(dev_priv, power_domain);
4500
4501 return ret;
4502 }
4503
4504 /* Return which DP Port should be selected for Transcoder DP control */
4505 int
4506 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4507 {
4508 struct drm_device *dev = crtc->dev;
4509 struct intel_encoder *intel_encoder;
4510 struct intel_dp *intel_dp;
4511
4512 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4513 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4514
4515 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4516 intel_encoder->type == INTEL_OUTPUT_EDP)
4517 return intel_dp->output_reg;
4518 }
4519
4520 return -1;
4521 }
4522
4523 /* check the VBT to see whether the eDP is on DP-D port */
4524 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4525 {
4526 struct drm_i915_private *dev_priv = dev->dev_private;
4527 union child_device_config *p_child;
4528 int i;
4529 static const short port_mapping[] = {
4530 [PORT_B] = PORT_IDPB,
4531 [PORT_C] = PORT_IDPC,
4532 [PORT_D] = PORT_IDPD,
4533 };
4534
4535 if (port == PORT_A)
4536 return true;
4537
4538 if (!dev_priv->vbt.child_dev_num)
4539 return false;
4540
4541 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4542 p_child = dev_priv->vbt.child_dev + i;
4543
4544 if (p_child->common.dvo_port == port_mapping[port] &&
4545 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4546 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
4547 return true;
4548 }
4549 return false;
4550 }
4551
4552 void
4553 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4554 {
4555 struct intel_connector *intel_connector = to_intel_connector(connector);
4556
4557 intel_attach_force_audio_property(connector);
4558 intel_attach_broadcast_rgb_property(connector);
4559 intel_dp->color_range_auto = true;
4560
4561 if (is_edp(intel_dp)) {
4562 drm_mode_create_scaling_mode_property(connector->dev);
4563 drm_object_attach_property(
4564 &connector->base,
4565 connector->dev->mode_config.scaling_mode_property,
4566 DRM_MODE_SCALE_ASPECT);
4567 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4568 }
4569 }
4570
4571 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4572 {
4573 intel_dp->last_power_cycle = jiffies;
4574 intel_dp->last_power_on = jiffies;
4575 intel_dp->last_backlight_off = jiffies;
4576 }
4577
4578 static void
4579 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4580 struct intel_dp *intel_dp)
4581 {
4582 struct drm_i915_private *dev_priv = dev->dev_private;
4583 struct edp_power_seq cur, vbt, spec,
4584 *final = &intel_dp->pps_delays;
4585 u32 pp_on, pp_off, pp_div, pp;
4586 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4587
4588 lockdep_assert_held(&dev_priv->pps_mutex);
4589
4590 /* already initialized? */
4591 if (final->t11_t12 != 0)
4592 return;
4593
4594 if (HAS_PCH_SPLIT(dev)) {
4595 pp_ctrl_reg = PCH_PP_CONTROL;
4596 pp_on_reg = PCH_PP_ON_DELAYS;
4597 pp_off_reg = PCH_PP_OFF_DELAYS;
4598 pp_div_reg = PCH_PP_DIVISOR;
4599 } else {
4600 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4601
4602 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4603 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4604 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4605 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4606 }
4607
4608 /* Workaround: Need to write PP_CONTROL with the unlock key as
4609 * the very first thing. */
4610 pp = ironlake_get_pp_control(intel_dp);
4611 I915_WRITE(pp_ctrl_reg, pp);
4612
4613 pp_on = I915_READ(pp_on_reg);
4614 pp_off = I915_READ(pp_off_reg);
4615 pp_div = I915_READ(pp_div_reg);
4616
4617 /* Pull timing values out of registers */
4618 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4619 PANEL_POWER_UP_DELAY_SHIFT;
4620
4621 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4622 PANEL_LIGHT_ON_DELAY_SHIFT;
4623
4624 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4625 PANEL_LIGHT_OFF_DELAY_SHIFT;
4626
4627 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4628 PANEL_POWER_DOWN_DELAY_SHIFT;
4629
4630 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4631 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4632
4633 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4634 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4635
4636 vbt = dev_priv->vbt.edp_pps;
4637
4638 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4639 * our hw here, which are all in 100usec. */
4640 spec.t1_t3 = 210 * 10;
4641 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4642 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4643 spec.t10 = 500 * 10;
4644 /* This one is special and actually in units of 100ms, but zero
4645 * based in the hw (so we need to add 100 ms). But the sw vbt
4646 * table multiplies it with 1000 to make it in units of 100usec,
4647 * too. */
4648 spec.t11_t12 = (510 + 100) * 10;
4649
4650 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4651 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4652
4653 /* Use the max of the register settings and vbt. If both are
4654 * unset, fall back to the spec limits. */
4655 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
4656 spec.field : \
4657 max(cur.field, vbt.field))
4658 assign_final(t1_t3);
4659 assign_final(t8);
4660 assign_final(t9);
4661 assign_final(t10);
4662 assign_final(t11_t12);
4663 #undef assign_final
4664
4665 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
4666 intel_dp->panel_power_up_delay = get_delay(t1_t3);
4667 intel_dp->backlight_on_delay = get_delay(t8);
4668 intel_dp->backlight_off_delay = get_delay(t9);
4669 intel_dp->panel_power_down_delay = get_delay(t10);
4670 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4671 #undef get_delay
4672
4673 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4674 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4675 intel_dp->panel_power_cycle_delay);
4676
4677 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4678 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4679 }
4680
4681 static void
4682 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4683 struct intel_dp *intel_dp)
4684 {
4685 struct drm_i915_private *dev_priv = dev->dev_private;
4686 u32 pp_on, pp_off, pp_div, port_sel = 0;
4687 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4688 int pp_on_reg, pp_off_reg, pp_div_reg;
4689 enum port port = dp_to_dig_port(intel_dp)->port;
4690 const struct edp_power_seq *seq = &intel_dp->pps_delays;
4691
4692 lockdep_assert_held(&dev_priv->pps_mutex);
4693
4694 if (HAS_PCH_SPLIT(dev)) {
4695 pp_on_reg = PCH_PP_ON_DELAYS;
4696 pp_off_reg = PCH_PP_OFF_DELAYS;
4697 pp_div_reg = PCH_PP_DIVISOR;
4698 } else {
4699 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4700
4701 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4702 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4703 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4704 }
4705
4706 /*
4707 * And finally store the new values in the power sequencer. The
4708 * backlight delays are set to 1 because we do manual waits on them. For
4709 * T8, even BSpec recommends doing it. For T9, if we don't do this,
4710 * we'll end up waiting for the backlight off delay twice: once when we
4711 * do the manual sleep, and once when we disable the panel and wait for
4712 * the PP_STATUS bit to become zero.
4713 */
4714 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4715 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4716 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4717 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4718 /* Compute the divisor for the pp clock, simply match the Bspec
4719 * formula. */
4720 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4721 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4722 << PANEL_POWER_CYCLE_DELAY_SHIFT);
4723
4724 /* Haswell doesn't have any port selection bits for the panel
4725 * power sequencer any more. */
4726 if (IS_VALLEYVIEW(dev)) {
4727 port_sel = PANEL_PORT_SELECT_VLV(port);
4728 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4729 if (port == PORT_A)
4730 port_sel = PANEL_PORT_SELECT_DPA;
4731 else
4732 port_sel = PANEL_PORT_SELECT_DPD;
4733 }
4734
4735 pp_on |= port_sel;
4736
4737 I915_WRITE(pp_on_reg, pp_on);
4738 I915_WRITE(pp_off_reg, pp_off);
4739 I915_WRITE(pp_div_reg, pp_div);
4740
4741 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4742 I915_READ(pp_on_reg),
4743 I915_READ(pp_off_reg),
4744 I915_READ(pp_div_reg));
4745 }
4746
4747 /**
4748 * intel_dp_set_drrs_state - program registers for RR switch to take effect
4749 * @dev: DRM device
4750 * @refresh_rate: RR to be programmed
4751 *
4752 * This function gets called when refresh rate (RR) has to be changed from
4753 * one frequency to another. Switches can be between high and low RR
4754 * supported by the panel or to any other RR based on media playback (in
4755 * this case, RR value needs to be passed from user space).
4756 *
4757 * The caller of this function needs to take a lock on dev_priv->drrs.
4758 */
4759 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4760 {
4761 struct drm_i915_private *dev_priv = dev->dev_private;
4762 struct intel_encoder *encoder;
4763 struct intel_digital_port *dig_port = NULL;
4764 struct intel_dp *intel_dp = dev_priv->drrs.dp;
4765 struct intel_crtc_state *config = NULL;
4766 struct intel_crtc *intel_crtc = NULL;
4767 u32 reg, val;
4768 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
4769
4770 if (refresh_rate <= 0) {
4771 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4772 return;
4773 }
4774
4775 if (intel_dp == NULL) {
4776 DRM_DEBUG_KMS("DRRS not supported.\n");
4777 return;
4778 }
4779
4780 /*
4781 * FIXME: This needs proper synchronization with psr state for some
4782 * platforms that cannot have PSR and DRRS enabled at the same time.
4783 */
4784
4785 dig_port = dp_to_dig_port(intel_dp);
4786 encoder = &dig_port->base;
4787 intel_crtc = encoder->new_crtc;
4788
4789 if (!intel_crtc) {
4790 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4791 return;
4792 }
4793
4794 config = intel_crtc->config;
4795
4796 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
4797 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4798 return;
4799 }
4800
4801 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
4802 refresh_rate)
4803 index = DRRS_LOW_RR;
4804
4805 if (index == dev_priv->drrs.refresh_rate_type) {
4806 DRM_DEBUG_KMS(
4807 "DRRS requested for previously set RR...ignoring\n");
4808 return;
4809 }
4810
4811 if (!intel_crtc->active) {
4812 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4813 return;
4814 }
4815
4816 if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
4817 switch (index) {
4818 case DRRS_HIGH_RR:
4819 intel_dp_set_m_n(intel_crtc, M1_N1);
4820 break;
4821 case DRRS_LOW_RR:
4822 intel_dp_set_m_n(intel_crtc, M2_N2);
4823 break;
4824 case DRRS_MAX_RR:
4825 default:
4826 DRM_ERROR("Unsupported refreshrate type\n");
4827 }
4828 } else if (INTEL_INFO(dev)->gen > 6) {
4829 reg = PIPECONF(intel_crtc->config->cpu_transcoder);
4830 val = I915_READ(reg);
4831
4832 if (index > DRRS_HIGH_RR) {
4833 if (IS_VALLEYVIEW(dev))
4834 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
4835 else
4836 val |= PIPECONF_EDP_RR_MODE_SWITCH;
4837 } else {
4838 if (IS_VALLEYVIEW(dev))
4839 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
4840 else
4841 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4842 }
4843 I915_WRITE(reg, val);
4844 }
4845
4846 dev_priv->drrs.refresh_rate_type = index;
4847
4848 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4849 }
4850
4851 /**
4852 * intel_edp_drrs_enable - init drrs struct if supported
4853 * @intel_dp: DP struct
4854 *
4855 * Initializes frontbuffer_bits and drrs.dp
4856 */
4857 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
4858 {
4859 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4860 struct drm_i915_private *dev_priv = dev->dev_private;
4861 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
4862 struct drm_crtc *crtc = dig_port->base.base.crtc;
4863 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4864
4865 if (!intel_crtc->config->has_drrs) {
4866 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
4867 return;
4868 }
4869
4870 mutex_lock(&dev_priv->drrs.mutex);
4871 if (WARN_ON(dev_priv->drrs.dp)) {
4872 DRM_ERROR("DRRS already enabled\n");
4873 goto unlock;
4874 }
4875
4876 dev_priv->drrs.busy_frontbuffer_bits = 0;
4877
4878 dev_priv->drrs.dp = intel_dp;
4879
4880 unlock:
4881 mutex_unlock(&dev_priv->drrs.mutex);
4882 }
4883
4884 /**
4885 * intel_edp_drrs_disable - Disable DRRS
4886 * @intel_dp: DP struct
4887 *
4888 */
4889 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
4890 {
4891 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4892 struct drm_i915_private *dev_priv = dev->dev_private;
4893 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
4894 struct drm_crtc *crtc = dig_port->base.base.crtc;
4895 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4896
4897 if (!intel_crtc->config->has_drrs)
4898 return;
4899
4900 mutex_lock(&dev_priv->drrs.mutex);
4901 if (!dev_priv->drrs.dp) {
4902 mutex_unlock(&dev_priv->drrs.mutex);
4903 return;
4904 }
4905
4906 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
4907 intel_dp_set_drrs_state(dev_priv->dev,
4908 intel_dp->attached_connector->panel.
4909 fixed_mode->vrefresh);
4910
4911 dev_priv->drrs.dp = NULL;
4912 mutex_unlock(&dev_priv->drrs.mutex);
4913
4914 cancel_delayed_work_sync(&dev_priv->drrs.work);
4915 }
4916
4917 static void intel_edp_drrs_downclock_work(struct work_struct *work)
4918 {
4919 struct drm_i915_private *dev_priv =
4920 container_of(work, typeof(*dev_priv), drrs.work.work);
4921 struct intel_dp *intel_dp;
4922
4923 mutex_lock(&dev_priv->drrs.mutex);
4924
4925 intel_dp = dev_priv->drrs.dp;
4926
4927 if (!intel_dp)
4928 goto unlock;
4929
4930 /*
4931 * The delayed work can race with an invalidate hence we need to
4932 * recheck.
4933 */
4934
4935 if (dev_priv->drrs.busy_frontbuffer_bits)
4936 goto unlock;
4937
4938 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
4939 intel_dp_set_drrs_state(dev_priv->dev,
4940 intel_dp->attached_connector->panel.
4941 downclock_mode->vrefresh);
4942
4943 unlock:
4944
4945 mutex_unlock(&dev_priv->drrs.mutex);
4946 }
4947
4948 /**
4949 * intel_edp_drrs_invalidate - Invalidate DRRS
4950 * @dev: DRM device
4951 * @frontbuffer_bits: frontbuffer plane tracking bits
4952 *
4953 * When there is a disturbance on screen (due to cursor movement/time
4954 * update etc), DRRS needs to be invalidated, i.e. need to switch to
4955 * high RR.
4956 *
4957 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
4958 */
4959 void intel_edp_drrs_invalidate(struct drm_device *dev,
4960 unsigned frontbuffer_bits)
4961 {
4962 struct drm_i915_private *dev_priv = dev->dev_private;
4963 struct drm_crtc *crtc;
4964 enum pipe pipe;
4965
4966 if (!dev_priv->drrs.dp)
4967 return;
4968
4969 mutex_lock(&dev_priv->drrs.mutex);
4970 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
4971 pipe = to_intel_crtc(crtc)->pipe;
4972
4973 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) {
4974 cancel_delayed_work_sync(&dev_priv->drrs.work);
4975 intel_dp_set_drrs_state(dev_priv->dev,
4976 dev_priv->drrs.dp->attached_connector->panel.
4977 fixed_mode->vrefresh);
4978 }
4979
4980 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
4981
4982 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
4983 mutex_unlock(&dev_priv->drrs.mutex);
4984 }
4985
4986 /**
4987 * intel_edp_drrs_flush - Flush DRRS
4988 * @dev: DRM device
4989 * @frontbuffer_bits: frontbuffer plane tracking bits
4990 *
4991 * When there is no movement on screen, DRRS work can be scheduled.
4992 * This DRRS work is responsible for setting relevant registers after a
4993 * timeout of 1 second.
4994 *
4995 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
4996 */
4997 void intel_edp_drrs_flush(struct drm_device *dev,
4998 unsigned frontbuffer_bits)
4999 {
5000 struct drm_i915_private *dev_priv = dev->dev_private;
5001 struct drm_crtc *crtc;
5002 enum pipe pipe;
5003
5004 if (!dev_priv->drrs.dp)
5005 return;
5006
5007 mutex_lock(&dev_priv->drrs.mutex);
5008 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5009 pipe = to_intel_crtc(crtc)->pipe;
5010 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5011
5012 cancel_delayed_work_sync(&dev_priv->drrs.work);
5013
5014 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR &&
5015 !dev_priv->drrs.busy_frontbuffer_bits)
5016 schedule_delayed_work(&dev_priv->drrs.work,
5017 msecs_to_jiffies(1000));
5018 mutex_unlock(&dev_priv->drrs.mutex);
5019 }
5020
5021 /**
5022 * DOC: Display Refresh Rate Switching (DRRS)
5023 *
5024 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5025 * which enables swtching between low and high refresh rates,
5026 * dynamically, based on the usage scenario. This feature is applicable
5027 * for internal panels.
5028 *
5029 * Indication that the panel supports DRRS is given by the panel EDID, which
5030 * would list multiple refresh rates for one resolution.
5031 *
5032 * DRRS is of 2 types - static and seamless.
5033 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5034 * (may appear as a blink on screen) and is used in dock-undock scenario.
5035 * Seamless DRRS involves changing RR without any visual effect to the user
5036 * and can be used during normal system usage. This is done by programming
5037 * certain registers.
5038 *
5039 * Support for static/seamless DRRS may be indicated in the VBT based on
5040 * inputs from the panel spec.
5041 *
5042 * DRRS saves power by switching to low RR based on usage scenarios.
5043 *
5044 * eDP DRRS:-
5045 * The implementation is based on frontbuffer tracking implementation.
5046 * When there is a disturbance on the screen triggered by user activity or a
5047 * periodic system activity, DRRS is disabled (RR is changed to high RR).
5048 * When there is no movement on screen, after a timeout of 1 second, a switch
5049 * to low RR is made.
5050 * For integration with frontbuffer tracking code,
5051 * intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called.
5052 *
5053 * DRRS can be further extended to support other internal panels and also
5054 * the scenario of video playback wherein RR is set based on the rate
5055 * requested by userspace.
5056 */
5057
5058 /**
5059 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5060 * @intel_connector: eDP connector
5061 * @fixed_mode: preferred mode of panel
5062 *
5063 * This function is called only once at driver load to initialize basic
5064 * DRRS stuff.
5065 *
5066 * Returns:
5067 * Downclock mode if panel supports it, else return NULL.
5068 * DRRS support is determined by the presence of downclock mode (apart
5069 * from VBT setting).
5070 */
5071 static struct drm_display_mode *
5072 intel_dp_drrs_init(struct intel_connector *intel_connector,
5073 struct drm_display_mode *fixed_mode)
5074 {
5075 struct drm_connector *connector = &intel_connector->base;
5076 struct drm_device *dev = connector->dev;
5077 struct drm_i915_private *dev_priv = dev->dev_private;
5078 struct drm_display_mode *downclock_mode = NULL;
5079
5080 if (INTEL_INFO(dev)->gen <= 6) {
5081 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5082 return NULL;
5083 }
5084
5085 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5086 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5087 return NULL;
5088 }
5089
5090 downclock_mode = intel_find_panel_downclock
5091 (dev, fixed_mode, connector);
5092
5093 if (!downclock_mode) {
5094 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5095 return NULL;
5096 }
5097
5098 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5099
5100 mutex_init(&dev_priv->drrs.mutex);
5101
5102 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5103
5104 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5105 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5106 return downclock_mode;
5107 }
5108
5109 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5110 struct intel_connector *intel_connector)
5111 {
5112 struct drm_connector *connector = &intel_connector->base;
5113 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5114 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5115 struct drm_device *dev = intel_encoder->base.dev;
5116 struct drm_i915_private *dev_priv = dev->dev_private;
5117 struct drm_display_mode *fixed_mode = NULL;
5118 struct drm_display_mode *downclock_mode = NULL;
5119 bool has_dpcd;
5120 struct drm_display_mode *scan;
5121 struct edid *edid;
5122 enum pipe pipe = INVALID_PIPE;
5123
5124 dev_priv->drrs.type = DRRS_NOT_SUPPORTED;
5125
5126 if (!is_edp(intel_dp))
5127 return true;
5128
5129 pps_lock(intel_dp);
5130 intel_edp_panel_vdd_sanitize(intel_dp);
5131 pps_unlock(intel_dp);
5132
5133 /* Cache DPCD and EDID for edp. */
5134 has_dpcd = intel_dp_get_dpcd(intel_dp);
5135
5136 if (has_dpcd) {
5137 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5138 dev_priv->no_aux_handshake =
5139 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5140 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5141 } else {
5142 /* if this fails, presume the device is a ghost */
5143 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5144 return false;
5145 }
5146
5147 /* We now know it's not a ghost, init power sequence regs. */
5148 pps_lock(intel_dp);
5149 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5150 pps_unlock(intel_dp);
5151
5152 mutex_lock(&dev->mode_config.mutex);
5153 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5154 if (edid) {
5155 if (drm_add_edid_modes(connector, edid)) {
5156 drm_mode_connector_update_edid_property(connector,
5157 edid);
5158 drm_edid_to_eld(connector, edid);
5159 } else {
5160 kfree(edid);
5161 edid = ERR_PTR(-EINVAL);
5162 }
5163 } else {
5164 edid = ERR_PTR(-ENOENT);
5165 }
5166 intel_connector->edid = edid;
5167
5168 /* prefer fixed mode from EDID if available */
5169 list_for_each_entry(scan, &connector->probed_modes, head) {
5170 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5171 fixed_mode = drm_mode_duplicate(dev, scan);
5172 downclock_mode = intel_dp_drrs_init(
5173 intel_connector, fixed_mode);
5174 break;
5175 }
5176 }
5177
5178 /* fallback to VBT if available for eDP */
5179 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5180 fixed_mode = drm_mode_duplicate(dev,
5181 dev_priv->vbt.lfp_lvds_vbt_mode);
5182 if (fixed_mode)
5183 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5184 }
5185 mutex_unlock(&dev->mode_config.mutex);
5186
5187 if (IS_VALLEYVIEW(dev)) {
5188 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5189 register_reboot_notifier(&intel_dp->edp_notifier);
5190
5191 /*
5192 * Figure out the current pipe for the initial backlight setup.
5193 * If the current pipe isn't valid, try the PPS pipe, and if that
5194 * fails just assume pipe A.
5195 */
5196 if (IS_CHERRYVIEW(dev))
5197 pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5198 else
5199 pipe = PORT_TO_PIPE(intel_dp->DP);
5200
5201 if (pipe != PIPE_A && pipe != PIPE_B)
5202 pipe = intel_dp->pps_pipe;
5203
5204 if (pipe != PIPE_A && pipe != PIPE_B)
5205 pipe = PIPE_A;
5206
5207 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5208 pipe_name(pipe));
5209 }
5210
5211 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5212 intel_connector->panel.backlight_power = intel_edp_backlight_power;
5213 intel_panel_setup_backlight(connector, pipe);
5214
5215 return true;
5216 }
5217
5218 bool
5219 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5220 struct intel_connector *intel_connector)
5221 {
5222 struct drm_connector *connector = &intel_connector->base;
5223 struct intel_dp *intel_dp = &intel_dig_port->dp;
5224 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5225 struct drm_device *dev = intel_encoder->base.dev;
5226 struct drm_i915_private *dev_priv = dev->dev_private;
5227 enum port port = intel_dig_port->port;
5228 int type;
5229
5230 intel_dp->pps_pipe = INVALID_PIPE;
5231
5232 /* intel_dp vfuncs */
5233 if (INTEL_INFO(dev)->gen >= 9)
5234 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5235 else if (IS_VALLEYVIEW(dev))
5236 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5237 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5238 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5239 else if (HAS_PCH_SPLIT(dev))
5240 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5241 else
5242 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5243
5244 if (INTEL_INFO(dev)->gen >= 9)
5245 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5246 else
5247 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5248
5249 /* Preserve the current hw state. */
5250 intel_dp->DP = I915_READ(intel_dp->output_reg);
5251 intel_dp->attached_connector = intel_connector;
5252
5253 if (intel_dp_is_edp(dev, port))
5254 type = DRM_MODE_CONNECTOR_eDP;
5255 else
5256 type = DRM_MODE_CONNECTOR_DisplayPort;
5257
5258 /*
5259 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5260 * for DP the encoder type can be set by the caller to
5261 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5262 */
5263 if (type == DRM_MODE_CONNECTOR_eDP)
5264 intel_encoder->type = INTEL_OUTPUT_EDP;
5265
5266 /* eDP only on port B and/or C on vlv/chv */
5267 if (WARN_ON(IS_VALLEYVIEW(dev) && is_edp(intel_dp) &&
5268 port != PORT_B && port != PORT_C))
5269 return false;
5270
5271 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5272 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5273 port_name(port));
5274
5275 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5276 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5277
5278 connector->interlace_allowed = true;
5279 connector->doublescan_allowed = 0;
5280
5281 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5282 edp_panel_vdd_work);
5283
5284 intel_connector_attach_encoder(intel_connector, intel_encoder);
5285 drm_connector_register(connector);
5286
5287 if (HAS_DDI(dev))
5288 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5289 else
5290 intel_connector->get_hw_state = intel_connector_get_hw_state;
5291 intel_connector->unregister = intel_dp_connector_unregister;
5292
5293 /* Set up the hotplug pin. */
5294 switch (port) {
5295 case PORT_A:
5296 intel_encoder->hpd_pin = HPD_PORT_A;
5297 break;
5298 case PORT_B:
5299 intel_encoder->hpd_pin = HPD_PORT_B;
5300 break;
5301 case PORT_C:
5302 intel_encoder->hpd_pin = HPD_PORT_C;
5303 break;
5304 case PORT_D:
5305 intel_encoder->hpd_pin = HPD_PORT_D;
5306 break;
5307 default:
5308 BUG();
5309 }
5310
5311 if (is_edp(intel_dp)) {
5312 pps_lock(intel_dp);
5313 intel_dp_init_panel_power_timestamps(intel_dp);
5314 if (IS_VALLEYVIEW(dev))
5315 vlv_initial_power_sequencer_setup(intel_dp);
5316 else
5317 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5318 pps_unlock(intel_dp);
5319 }
5320
5321 intel_dp_aux_init(intel_dp, intel_connector);
5322
5323 /* init MST on ports that can support it */
5324 if (IS_HASWELL(dev) || IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
5325 if (port == PORT_B || port == PORT_C || port == PORT_D) {
5326 intel_dp_mst_encoder_init(intel_dig_port,
5327 intel_connector->base.base.id);
5328 }
5329 }
5330
5331 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5332 drm_dp_aux_unregister(&intel_dp->aux);
5333 if (is_edp(intel_dp)) {
5334 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5335 /*
5336 * vdd might still be enabled do to the delayed vdd off.
5337 * Make sure vdd is actually turned off here.
5338 */
5339 pps_lock(intel_dp);
5340 edp_panel_vdd_off_sync(intel_dp);
5341 pps_unlock(intel_dp);
5342 }
5343 drm_connector_unregister(connector);
5344 drm_connector_cleanup(connector);
5345 return false;
5346 }
5347
5348 intel_dp_add_properties(intel_dp, connector);
5349
5350 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5351 * 0xd. Failure to do so will result in spurious interrupts being
5352 * generated on the port when a cable is not attached.
5353 */
5354 if (IS_G4X(dev) && !IS_GM45(dev)) {
5355 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5356 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5357 }
5358
5359 return true;
5360 }
5361
5362 void
5363 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
5364 {
5365 struct drm_i915_private *dev_priv = dev->dev_private;
5366 struct intel_digital_port *intel_dig_port;
5367 struct intel_encoder *intel_encoder;
5368 struct drm_encoder *encoder;
5369 struct intel_connector *intel_connector;
5370
5371 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5372 if (!intel_dig_port)
5373 return;
5374
5375 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
5376 if (!intel_connector) {
5377 kfree(intel_dig_port);
5378 return;
5379 }
5380
5381 intel_encoder = &intel_dig_port->base;
5382 encoder = &intel_encoder->base;
5383
5384 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5385 DRM_MODE_ENCODER_TMDS);
5386
5387 intel_encoder->compute_config = intel_dp_compute_config;
5388 intel_encoder->disable = intel_disable_dp;
5389 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5390 intel_encoder->get_config = intel_dp_get_config;
5391 intel_encoder->suspend = intel_dp_encoder_suspend;
5392 if (IS_CHERRYVIEW(dev)) {
5393 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5394 intel_encoder->pre_enable = chv_pre_enable_dp;
5395 intel_encoder->enable = vlv_enable_dp;
5396 intel_encoder->post_disable = chv_post_disable_dp;
5397 } else if (IS_VALLEYVIEW(dev)) {
5398 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5399 intel_encoder->pre_enable = vlv_pre_enable_dp;
5400 intel_encoder->enable = vlv_enable_dp;
5401 intel_encoder->post_disable = vlv_post_disable_dp;
5402 } else {
5403 intel_encoder->pre_enable = g4x_pre_enable_dp;
5404 intel_encoder->enable = g4x_enable_dp;
5405 if (INTEL_INFO(dev)->gen >= 5)
5406 intel_encoder->post_disable = ilk_post_disable_dp;
5407 }
5408
5409 intel_dig_port->port = port;
5410 intel_dig_port->dp.output_reg = output_reg;
5411
5412 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5413 if (IS_CHERRYVIEW(dev)) {
5414 if (port == PORT_D)
5415 intel_encoder->crtc_mask = 1 << 2;
5416 else
5417 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5418 } else {
5419 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5420 }
5421 intel_encoder->cloneable = 0;
5422 intel_encoder->hot_plug = intel_dp_hot_plug;
5423
5424 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5425 dev_priv->hpd_irq_port[port] = intel_dig_port;
5426
5427 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
5428 drm_encoder_cleanup(encoder);
5429 kfree(intel_dig_port);
5430 kfree(intel_connector);
5431 }
5432 }
5433
5434 void intel_dp_mst_suspend(struct drm_device *dev)
5435 {
5436 struct drm_i915_private *dev_priv = dev->dev_private;
5437 int i;
5438
5439 /* disable MST */
5440 for (i = 0; i < I915_MAX_PORTS; i++) {
5441 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5442 if (!intel_dig_port)
5443 continue;
5444
5445 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5446 if (!intel_dig_port->dp.can_mst)
5447 continue;
5448 if (intel_dig_port->dp.is_mst)
5449 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5450 }
5451 }
5452 }
5453
5454 void intel_dp_mst_resume(struct drm_device *dev)
5455 {
5456 struct drm_i915_private *dev_priv = dev->dev_private;
5457 int i;
5458
5459 for (i = 0; i < I915_MAX_PORTS; i++) {
5460 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5461 if (!intel_dig_port)
5462 continue;
5463 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5464 int ret;
5465
5466 if (!intel_dig_port->dp.can_mst)
5467 continue;
5468
5469 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5470 if (ret != 0) {
5471 intel_dp_check_mst_status(&intel_dig_port->dp);
5472 }
5473 }
5474 }
5475 }