]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/intel_fbc.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_fbc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * DOC: Frame Buffer Compression (FBC)
26 *
27 * FBC tries to save memory bandwidth (and so power consumption) by
28 * compressing the amount of memory used by the display. It is total
29 * transparent to user space and completely handled in the kernel.
30 *
31 * The benefits of FBC are mostly visible with solid backgrounds and
32 * variation-less patterns. It comes from keeping the memory footprint small
33 * and having fewer memory pages opened and accessed for refreshing the display.
34 *
35 * i915 is responsible to reserve stolen memory for FBC and configure its
36 * offset on proper registers. The hardware takes care of all
37 * compress/decompress. However there are many known cases where we have to
38 * forcibly disable it to allow proper screen updates.
39 */
40
41 #include "intel_drv.h"
42 #include "i915_drv.h"
43
44 static inline bool fbc_supported(struct drm_i915_private *dev_priv)
45 {
46 return HAS_FBC(dev_priv);
47 }
48
49 static inline bool fbc_on_pipe_a_only(struct drm_i915_private *dev_priv)
50 {
51 return IS_HASWELL(dev_priv) || INTEL_GEN(dev_priv) >= 8;
52 }
53
54 static inline bool fbc_on_plane_a_only(struct drm_i915_private *dev_priv)
55 {
56 return INTEL_GEN(dev_priv) < 4;
57 }
58
59 static inline bool no_fbc_on_multiple_pipes(struct drm_i915_private *dev_priv)
60 {
61 return INTEL_GEN(dev_priv) <= 3;
62 }
63
64 /*
65 * In some platforms where the CRTC's x:0/y:0 coordinates doesn't match the
66 * frontbuffer's x:0/y:0 coordinates we lie to the hardware about the plane's
67 * origin so the x and y offsets can actually fit the registers. As a
68 * consequence, the fence doesn't really start exactly at the display plane
69 * address we program because it starts at the real start of the buffer, so we
70 * have to take this into consideration here.
71 */
72 static unsigned int get_crtc_fence_y_offset(struct intel_crtc *crtc)
73 {
74 return crtc->base.y - crtc->adjusted_y;
75 }
76
77 /*
78 * For SKL+, the plane source size used by the hardware is based on the value we
79 * write to the PLANE_SIZE register. For BDW-, the hardware looks at the value
80 * we wrote to PIPESRC.
81 */
82 static void intel_fbc_get_plane_source_size(struct intel_fbc_state_cache *cache,
83 int *width, int *height)
84 {
85 if (width)
86 *width = cache->plane.src_w;
87 if (height)
88 *height = cache->plane.src_h;
89 }
90
91 static int intel_fbc_calculate_cfb_size(struct drm_i915_private *dev_priv,
92 struct intel_fbc_state_cache *cache)
93 {
94 int lines;
95
96 intel_fbc_get_plane_source_size(cache, NULL, &lines);
97 if (INTEL_GEN(dev_priv) == 7)
98 lines = min(lines, 2048);
99 else if (INTEL_GEN(dev_priv) >= 8)
100 lines = min(lines, 2560);
101
102 /* Hardware needs the full buffer stride, not just the active area. */
103 return lines * cache->fb.stride;
104 }
105
106 static void i8xx_fbc_deactivate(struct drm_i915_private *dev_priv)
107 {
108 u32 fbc_ctl;
109
110 /* Disable compression */
111 fbc_ctl = I915_READ(FBC_CONTROL);
112 if ((fbc_ctl & FBC_CTL_EN) == 0)
113 return;
114
115 fbc_ctl &= ~FBC_CTL_EN;
116 I915_WRITE(FBC_CONTROL, fbc_ctl);
117
118 /* Wait for compressing bit to clear */
119 if (intel_wait_for_register(dev_priv,
120 FBC_STATUS, FBC_STAT_COMPRESSING, 0,
121 10)) {
122 DRM_DEBUG_KMS("FBC idle timed out\n");
123 return;
124 }
125 }
126
127 static void i8xx_fbc_activate(struct drm_i915_private *dev_priv)
128 {
129 struct intel_fbc_reg_params *params = &dev_priv->fbc.params;
130 int cfb_pitch;
131 int i;
132 u32 fbc_ctl;
133
134 /* Note: fbc.threshold == 1 for i8xx */
135 cfb_pitch = params->cfb_size / FBC_LL_SIZE;
136 if (params->fb.stride < cfb_pitch)
137 cfb_pitch = params->fb.stride;
138
139 /* FBC_CTL wants 32B or 64B units */
140 if (IS_GEN2(dev_priv))
141 cfb_pitch = (cfb_pitch / 32) - 1;
142 else
143 cfb_pitch = (cfb_pitch / 64) - 1;
144
145 /* Clear old tags */
146 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
147 I915_WRITE(FBC_TAG(i), 0);
148
149 if (IS_GEN4(dev_priv)) {
150 u32 fbc_ctl2;
151
152 /* Set it up... */
153 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
154 fbc_ctl2 |= FBC_CTL_PLANE(params->crtc.plane);
155 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
156 I915_WRITE(FBC_FENCE_OFF, params->crtc.fence_y_offset);
157 }
158
159 /* enable it... */
160 fbc_ctl = I915_READ(FBC_CONTROL);
161 fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
162 fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
163 if (IS_I945GM(dev_priv))
164 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
165 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
166 fbc_ctl |= params->vma->fence->id;
167 I915_WRITE(FBC_CONTROL, fbc_ctl);
168 }
169
170 static bool i8xx_fbc_is_active(struct drm_i915_private *dev_priv)
171 {
172 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
173 }
174
175 static void g4x_fbc_activate(struct drm_i915_private *dev_priv)
176 {
177 struct intel_fbc_reg_params *params = &dev_priv->fbc.params;
178 u32 dpfc_ctl;
179
180 dpfc_ctl = DPFC_CTL_PLANE(params->crtc.plane) | DPFC_SR_EN;
181 if (params->fb.format->cpp[0] == 2)
182 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
183 else
184 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
185
186 if (params->vma->fence) {
187 dpfc_ctl |= DPFC_CTL_FENCE_EN | params->vma->fence->id;
188 I915_WRITE(DPFC_FENCE_YOFF, params->crtc.fence_y_offset);
189 } else {
190 I915_WRITE(DPFC_FENCE_YOFF, 0);
191 }
192
193 /* enable it... */
194 I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
195 }
196
197 static void g4x_fbc_deactivate(struct drm_i915_private *dev_priv)
198 {
199 u32 dpfc_ctl;
200
201 /* Disable compression */
202 dpfc_ctl = I915_READ(DPFC_CONTROL);
203 if (dpfc_ctl & DPFC_CTL_EN) {
204 dpfc_ctl &= ~DPFC_CTL_EN;
205 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
206 }
207 }
208
209 static bool g4x_fbc_is_active(struct drm_i915_private *dev_priv)
210 {
211 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
212 }
213
214 /* This function forces a CFB recompression through the nuke operation. */
215 static void intel_fbc_recompress(struct drm_i915_private *dev_priv)
216 {
217 I915_WRITE(MSG_FBC_REND_STATE, FBC_REND_NUKE);
218 POSTING_READ(MSG_FBC_REND_STATE);
219 }
220
221 static void ilk_fbc_activate(struct drm_i915_private *dev_priv)
222 {
223 struct intel_fbc_reg_params *params = &dev_priv->fbc.params;
224 u32 dpfc_ctl;
225 int threshold = dev_priv->fbc.threshold;
226
227 dpfc_ctl = DPFC_CTL_PLANE(params->crtc.plane);
228 if (params->fb.format->cpp[0] == 2)
229 threshold++;
230
231 switch (threshold) {
232 case 4:
233 case 3:
234 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
235 break;
236 case 2:
237 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
238 break;
239 case 1:
240 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
241 break;
242 }
243
244 if (params->vma->fence) {
245 dpfc_ctl |= DPFC_CTL_FENCE_EN;
246 if (IS_GEN5(dev_priv))
247 dpfc_ctl |= params->vma->fence->id;
248 if (IS_GEN6(dev_priv)) {
249 I915_WRITE(SNB_DPFC_CTL_SA,
250 SNB_CPU_FENCE_ENABLE |
251 params->vma->fence->id);
252 I915_WRITE(DPFC_CPU_FENCE_OFFSET,
253 params->crtc.fence_y_offset);
254 }
255 } else {
256 if (IS_GEN6(dev_priv)) {
257 I915_WRITE(SNB_DPFC_CTL_SA, 0);
258 I915_WRITE(DPFC_CPU_FENCE_OFFSET, 0);
259 }
260 }
261
262 I915_WRITE(ILK_DPFC_FENCE_YOFF, params->crtc.fence_y_offset);
263 I915_WRITE(ILK_FBC_RT_BASE,
264 i915_ggtt_offset(params->vma) | ILK_FBC_RT_VALID);
265 /* enable it... */
266 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
267
268 intel_fbc_recompress(dev_priv);
269 }
270
271 static void ilk_fbc_deactivate(struct drm_i915_private *dev_priv)
272 {
273 u32 dpfc_ctl;
274
275 /* Disable compression */
276 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
277 if (dpfc_ctl & DPFC_CTL_EN) {
278 dpfc_ctl &= ~DPFC_CTL_EN;
279 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
280 }
281 }
282
283 static bool ilk_fbc_is_active(struct drm_i915_private *dev_priv)
284 {
285 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
286 }
287
288 static void gen7_fbc_activate(struct drm_i915_private *dev_priv)
289 {
290 struct intel_fbc_reg_params *params = &dev_priv->fbc.params;
291 u32 dpfc_ctl;
292 int threshold = dev_priv->fbc.threshold;
293
294 dpfc_ctl = 0;
295 if (IS_IVYBRIDGE(dev_priv))
296 dpfc_ctl |= IVB_DPFC_CTL_PLANE(params->crtc.plane);
297
298 if (params->fb.format->cpp[0] == 2)
299 threshold++;
300
301 switch (threshold) {
302 case 4:
303 case 3:
304 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
305 break;
306 case 2:
307 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
308 break;
309 case 1:
310 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
311 break;
312 }
313
314 if (params->vma->fence) {
315 dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
316 I915_WRITE(SNB_DPFC_CTL_SA,
317 SNB_CPU_FENCE_ENABLE |
318 params->vma->fence->id);
319 I915_WRITE(DPFC_CPU_FENCE_OFFSET, params->crtc.fence_y_offset);
320 } else {
321 I915_WRITE(SNB_DPFC_CTL_SA,0);
322 I915_WRITE(DPFC_CPU_FENCE_OFFSET, 0);
323 }
324
325 if (dev_priv->fbc.false_color)
326 dpfc_ctl |= FBC_CTL_FALSE_COLOR;
327
328 if (IS_IVYBRIDGE(dev_priv)) {
329 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
330 I915_WRITE(ILK_DISPLAY_CHICKEN1,
331 I915_READ(ILK_DISPLAY_CHICKEN1) |
332 ILK_FBCQ_DIS);
333 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
334 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
335 I915_WRITE(CHICKEN_PIPESL_1(params->crtc.pipe),
336 I915_READ(CHICKEN_PIPESL_1(params->crtc.pipe)) |
337 HSW_FBCQ_DIS);
338 }
339
340 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
341
342 intel_fbc_recompress(dev_priv);
343 }
344
345 static bool intel_fbc_hw_is_active(struct drm_i915_private *dev_priv)
346 {
347 if (INTEL_GEN(dev_priv) >= 5)
348 return ilk_fbc_is_active(dev_priv);
349 else if (IS_GM45(dev_priv))
350 return g4x_fbc_is_active(dev_priv);
351 else
352 return i8xx_fbc_is_active(dev_priv);
353 }
354
355 static void intel_fbc_hw_activate(struct drm_i915_private *dev_priv)
356 {
357 struct intel_fbc *fbc = &dev_priv->fbc;
358
359 fbc->active = true;
360
361 if (INTEL_GEN(dev_priv) >= 7)
362 gen7_fbc_activate(dev_priv);
363 else if (INTEL_GEN(dev_priv) >= 5)
364 ilk_fbc_activate(dev_priv);
365 else if (IS_GM45(dev_priv))
366 g4x_fbc_activate(dev_priv);
367 else
368 i8xx_fbc_activate(dev_priv);
369 }
370
371 static void intel_fbc_hw_deactivate(struct drm_i915_private *dev_priv)
372 {
373 struct intel_fbc *fbc = &dev_priv->fbc;
374
375 fbc->active = false;
376
377 if (INTEL_GEN(dev_priv) >= 5)
378 ilk_fbc_deactivate(dev_priv);
379 else if (IS_GM45(dev_priv))
380 g4x_fbc_deactivate(dev_priv);
381 else
382 i8xx_fbc_deactivate(dev_priv);
383 }
384
385 /**
386 * intel_fbc_is_active - Is FBC active?
387 * @dev_priv: i915 device instance
388 *
389 * This function is used to verify the current state of FBC.
390 *
391 * FIXME: This should be tracked in the plane config eventually
392 * instead of queried at runtime for most callers.
393 */
394 bool intel_fbc_is_active(struct drm_i915_private *dev_priv)
395 {
396 return dev_priv->fbc.active;
397 }
398
399 static void intel_fbc_work_fn(struct work_struct *__work)
400 {
401 struct drm_i915_private *dev_priv =
402 container_of(__work, struct drm_i915_private, fbc.work.work);
403 struct intel_fbc *fbc = &dev_priv->fbc;
404 struct intel_fbc_work *work = &fbc->work;
405 struct intel_crtc *crtc = fbc->crtc;
406 struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[crtc->pipe];
407
408 if (drm_crtc_vblank_get(&crtc->base)) {
409 DRM_ERROR("vblank not available for FBC on pipe %c\n",
410 pipe_name(crtc->pipe));
411
412 mutex_lock(&fbc->lock);
413 work->scheduled = false;
414 mutex_unlock(&fbc->lock);
415 return;
416 }
417
418 retry:
419 /* Delay the actual enabling to let pageflipping cease and the
420 * display to settle before starting the compression. Note that
421 * this delay also serves a second purpose: it allows for a
422 * vblank to pass after disabling the FBC before we attempt
423 * to modify the control registers.
424 *
425 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
426 *
427 * It is also worth mentioning that since work->scheduled_vblank can be
428 * updated multiple times by the other threads, hitting the timeout is
429 * not an error condition. We'll just end up hitting the "goto retry"
430 * case below.
431 */
432 wait_event_timeout(vblank->queue,
433 drm_crtc_vblank_count(&crtc->base) != work->scheduled_vblank,
434 msecs_to_jiffies(50));
435
436 mutex_lock(&fbc->lock);
437
438 /* Were we cancelled? */
439 if (!work->scheduled)
440 goto out;
441
442 /* Were we delayed again while this function was sleeping? */
443 if (drm_crtc_vblank_count(&crtc->base) == work->scheduled_vblank) {
444 mutex_unlock(&fbc->lock);
445 goto retry;
446 }
447
448 intel_fbc_hw_activate(dev_priv);
449
450 work->scheduled = false;
451
452 out:
453 mutex_unlock(&fbc->lock);
454 drm_crtc_vblank_put(&crtc->base);
455 }
456
457 static void intel_fbc_schedule_activation(struct intel_crtc *crtc)
458 {
459 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
460 struct intel_fbc *fbc = &dev_priv->fbc;
461 struct intel_fbc_work *work = &fbc->work;
462
463 WARN_ON(!mutex_is_locked(&fbc->lock));
464
465 if (drm_crtc_vblank_get(&crtc->base)) {
466 DRM_ERROR("vblank not available for FBC on pipe %c\n",
467 pipe_name(crtc->pipe));
468 return;
469 }
470
471 /* It is useless to call intel_fbc_cancel_work() or cancel_work() in
472 * this function since we're not releasing fbc.lock, so it won't have an
473 * opportunity to grab it to discover that it was cancelled. So we just
474 * update the expected jiffy count. */
475 work->scheduled = true;
476 work->scheduled_vblank = drm_crtc_vblank_count(&crtc->base);
477 drm_crtc_vblank_put(&crtc->base);
478
479 schedule_work(&work->work);
480 }
481
482 static void intel_fbc_deactivate(struct drm_i915_private *dev_priv)
483 {
484 struct intel_fbc *fbc = &dev_priv->fbc;
485
486 WARN_ON(!mutex_is_locked(&fbc->lock));
487
488 /* Calling cancel_work() here won't help due to the fact that the work
489 * function grabs fbc->lock. Just set scheduled to false so the work
490 * function can know it was cancelled. */
491 fbc->work.scheduled = false;
492
493 if (fbc->active)
494 intel_fbc_hw_deactivate(dev_priv);
495 }
496
497 static bool multiple_pipes_ok(struct intel_crtc *crtc,
498 struct intel_plane_state *plane_state)
499 {
500 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
501 struct intel_fbc *fbc = &dev_priv->fbc;
502 enum pipe pipe = crtc->pipe;
503
504 /* Don't even bother tracking anything we don't need. */
505 if (!no_fbc_on_multiple_pipes(dev_priv))
506 return true;
507
508 if (plane_state->base.visible)
509 fbc->visible_pipes_mask |= (1 << pipe);
510 else
511 fbc->visible_pipes_mask &= ~(1 << pipe);
512
513 return (fbc->visible_pipes_mask & ~(1 << pipe)) != 0;
514 }
515
516 static int find_compression_threshold(struct drm_i915_private *dev_priv,
517 struct drm_mm_node *node,
518 int size,
519 int fb_cpp)
520 {
521 struct i915_ggtt *ggtt = &dev_priv->ggtt;
522 int compression_threshold = 1;
523 int ret;
524 u64 end;
525
526 /* The FBC hardware for BDW/SKL doesn't have access to the stolen
527 * reserved range size, so it always assumes the maximum (8mb) is used.
528 * If we enable FBC using a CFB on that memory range we'll get FIFO
529 * underruns, even if that range is not reserved by the BIOS. */
530 if (IS_BROADWELL(dev_priv) || IS_GEN9_BC(dev_priv))
531 end = ggtt->stolen_size - 8 * 1024 * 1024;
532 else
533 end = U64_MAX;
534
535 /* HACK: This code depends on what we will do in *_enable_fbc. If that
536 * code changes, this code needs to change as well.
537 *
538 * The enable_fbc code will attempt to use one of our 2 compression
539 * thresholds, therefore, in that case, we only have 1 resort.
540 */
541
542 /* Try to over-allocate to reduce reallocations and fragmentation. */
543 ret = i915_gem_stolen_insert_node_in_range(dev_priv, node, size <<= 1,
544 4096, 0, end);
545 if (ret == 0)
546 return compression_threshold;
547
548 again:
549 /* HW's ability to limit the CFB is 1:4 */
550 if (compression_threshold > 4 ||
551 (fb_cpp == 2 && compression_threshold == 2))
552 return 0;
553
554 ret = i915_gem_stolen_insert_node_in_range(dev_priv, node, size >>= 1,
555 4096, 0, end);
556 if (ret && INTEL_GEN(dev_priv) <= 4) {
557 return 0;
558 } else if (ret) {
559 compression_threshold <<= 1;
560 goto again;
561 } else {
562 return compression_threshold;
563 }
564 }
565
566 static int intel_fbc_alloc_cfb(struct intel_crtc *crtc)
567 {
568 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
569 struct intel_fbc *fbc = &dev_priv->fbc;
570 struct drm_mm_node *uninitialized_var(compressed_llb);
571 int size, fb_cpp, ret;
572
573 WARN_ON(drm_mm_node_allocated(&fbc->compressed_fb));
574
575 size = intel_fbc_calculate_cfb_size(dev_priv, &fbc->state_cache);
576 fb_cpp = fbc->state_cache.fb.format->cpp[0];
577
578 ret = find_compression_threshold(dev_priv, &fbc->compressed_fb,
579 size, fb_cpp);
580 if (!ret)
581 goto err_llb;
582 else if (ret > 1) {
583 DRM_INFO("Reducing the compressed framebuffer size. This may lead to less power savings than a non-reduced-size. Try to increase stolen memory size if available in BIOS.\n");
584
585 }
586
587 fbc->threshold = ret;
588
589 if (INTEL_GEN(dev_priv) >= 5)
590 I915_WRITE(ILK_DPFC_CB_BASE, fbc->compressed_fb.start);
591 else if (IS_GM45(dev_priv)) {
592 I915_WRITE(DPFC_CB_BASE, fbc->compressed_fb.start);
593 } else {
594 compressed_llb = kzalloc(sizeof(*compressed_llb), GFP_KERNEL);
595 if (!compressed_llb)
596 goto err_fb;
597
598 ret = i915_gem_stolen_insert_node(dev_priv, compressed_llb,
599 4096, 4096);
600 if (ret)
601 goto err_fb;
602
603 fbc->compressed_llb = compressed_llb;
604
605 I915_WRITE(FBC_CFB_BASE,
606 dev_priv->mm.stolen_base + fbc->compressed_fb.start);
607 I915_WRITE(FBC_LL_BASE,
608 dev_priv->mm.stolen_base + compressed_llb->start);
609 }
610
611 DRM_DEBUG_KMS("reserved %llu bytes of contiguous stolen space for FBC, threshold: %d\n",
612 fbc->compressed_fb.size, fbc->threshold);
613
614 return 0;
615
616 err_fb:
617 kfree(compressed_llb);
618 i915_gem_stolen_remove_node(dev_priv, &fbc->compressed_fb);
619 err_llb:
620 if (drm_mm_initialized(&dev_priv->mm.stolen))
621 pr_info_once("drm: not enough stolen space for compressed buffer (need %d more bytes), disabling. Hint: you may be able to increase stolen memory size in the BIOS to avoid this.\n", size);
622 return -ENOSPC;
623 }
624
625 static void __intel_fbc_cleanup_cfb(struct drm_i915_private *dev_priv)
626 {
627 struct intel_fbc *fbc = &dev_priv->fbc;
628
629 if (drm_mm_node_allocated(&fbc->compressed_fb))
630 i915_gem_stolen_remove_node(dev_priv, &fbc->compressed_fb);
631
632 if (fbc->compressed_llb) {
633 i915_gem_stolen_remove_node(dev_priv, fbc->compressed_llb);
634 kfree(fbc->compressed_llb);
635 }
636 }
637
638 void intel_fbc_cleanup_cfb(struct drm_i915_private *dev_priv)
639 {
640 struct intel_fbc *fbc = &dev_priv->fbc;
641
642 if (!fbc_supported(dev_priv))
643 return;
644
645 mutex_lock(&fbc->lock);
646 __intel_fbc_cleanup_cfb(dev_priv);
647 mutex_unlock(&fbc->lock);
648 }
649
650 static bool stride_is_valid(struct drm_i915_private *dev_priv,
651 unsigned int stride)
652 {
653 /* These should have been caught earlier. */
654 WARN_ON(stride < 512);
655 WARN_ON((stride & (64 - 1)) != 0);
656
657 /* Below are the additional FBC restrictions. */
658
659 if (IS_GEN2(dev_priv) || IS_GEN3(dev_priv))
660 return stride == 4096 || stride == 8192;
661
662 if (IS_GEN4(dev_priv) && !IS_G4X(dev_priv) && stride < 2048)
663 return false;
664
665 if (stride > 16384)
666 return false;
667
668 return true;
669 }
670
671 static bool pixel_format_is_valid(struct drm_i915_private *dev_priv,
672 uint32_t pixel_format)
673 {
674 switch (pixel_format) {
675 case DRM_FORMAT_XRGB8888:
676 case DRM_FORMAT_XBGR8888:
677 return true;
678 case DRM_FORMAT_XRGB1555:
679 case DRM_FORMAT_RGB565:
680 /* 16bpp not supported on gen2 */
681 if (IS_GEN2(dev_priv))
682 return false;
683 /* WaFbcOnly1to1Ratio:ctg */
684 if (IS_G4X(dev_priv))
685 return false;
686 return true;
687 default:
688 return false;
689 }
690 }
691
692 /*
693 * For some reason, the hardware tracking starts looking at whatever we
694 * programmed as the display plane base address register. It does not look at
695 * the X and Y offset registers. That's why we look at the crtc->adjusted{x,y}
696 * variables instead of just looking at the pipe/plane size.
697 */
698 static bool intel_fbc_hw_tracking_covers_screen(struct intel_crtc *crtc)
699 {
700 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
701 struct intel_fbc *fbc = &dev_priv->fbc;
702 unsigned int effective_w, effective_h, max_w, max_h;
703
704 if (INTEL_GEN(dev_priv) >= 8 || IS_HASWELL(dev_priv)) {
705 max_w = 4096;
706 max_h = 4096;
707 } else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
708 max_w = 4096;
709 max_h = 2048;
710 } else {
711 max_w = 2048;
712 max_h = 1536;
713 }
714
715 intel_fbc_get_plane_source_size(&fbc->state_cache, &effective_w,
716 &effective_h);
717 effective_w += crtc->adjusted_x;
718 effective_h += crtc->adjusted_y;
719
720 return effective_w <= max_w && effective_h <= max_h;
721 }
722
723 static void intel_fbc_update_state_cache(struct intel_crtc *crtc,
724 struct intel_crtc_state *crtc_state,
725 struct intel_plane_state *plane_state)
726 {
727 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
728 struct intel_fbc *fbc = &dev_priv->fbc;
729 struct intel_fbc_state_cache *cache = &fbc->state_cache;
730 struct drm_framebuffer *fb = plane_state->base.fb;
731
732 cache->vma = NULL;
733
734 cache->crtc.mode_flags = crtc_state->base.adjusted_mode.flags;
735 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
736 cache->crtc.hsw_bdw_pixel_rate = crtc_state->pixel_rate;
737
738 cache->plane.rotation = plane_state->base.rotation;
739 /*
740 * Src coordinates are already rotated by 270 degrees for
741 * the 90/270 degree plane rotation cases (to match the
742 * GTT mapping), hence no need to account for rotation here.
743 */
744 cache->plane.src_w = drm_rect_width(&plane_state->base.src) >> 16;
745 cache->plane.src_h = drm_rect_height(&plane_state->base.src) >> 16;
746 cache->plane.visible = plane_state->base.visible;
747
748 if (!cache->plane.visible)
749 return;
750
751 cache->fb.format = fb->format;
752 cache->fb.stride = fb->pitches[0];
753
754 cache->vma = plane_state->vma;
755 }
756
757 static bool intel_fbc_can_activate(struct intel_crtc *crtc)
758 {
759 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
760 struct intel_fbc *fbc = &dev_priv->fbc;
761 struct intel_fbc_state_cache *cache = &fbc->state_cache;
762
763 /* We don't need to use a state cache here since this information is
764 * global for all CRTC.
765 */
766 if (fbc->underrun_detected) {
767 fbc->no_fbc_reason = "underrun detected";
768 return false;
769 }
770
771 if (!cache->vma) {
772 fbc->no_fbc_reason = "primary plane not visible";
773 return false;
774 }
775
776 if ((cache->crtc.mode_flags & DRM_MODE_FLAG_INTERLACE) ||
777 (cache->crtc.mode_flags & DRM_MODE_FLAG_DBLSCAN)) {
778 fbc->no_fbc_reason = "incompatible mode";
779 return false;
780 }
781
782 if (!intel_fbc_hw_tracking_covers_screen(crtc)) {
783 fbc->no_fbc_reason = "mode too large for compression";
784 return false;
785 }
786
787 /* The use of a CPU fence is mandatory in order to detect writes
788 * by the CPU to the scanout and trigger updates to the FBC.
789 *
790 * Note that is possible for a tiled surface to be unmappable (and
791 * so have no fence associated with it) due to aperture constaints
792 * at the time of pinning.
793 */
794 if (!cache->vma->fence) {
795 fbc->no_fbc_reason = "framebuffer not tiled or fenced";
796 return false;
797 }
798 if (INTEL_GEN(dev_priv) <= 4 && !IS_G4X(dev_priv) &&
799 cache->plane.rotation != DRM_MODE_ROTATE_0) {
800 fbc->no_fbc_reason = "rotation unsupported";
801 return false;
802 }
803
804 if (!stride_is_valid(dev_priv, cache->fb.stride)) {
805 fbc->no_fbc_reason = "framebuffer stride not supported";
806 return false;
807 }
808
809 if (!pixel_format_is_valid(dev_priv, cache->fb.format->format)) {
810 fbc->no_fbc_reason = "pixel format is invalid";
811 return false;
812 }
813
814 /* WaFbcExceedCdClockThreshold:hsw,bdw */
815 if ((IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) &&
816 cache->crtc.hsw_bdw_pixel_rate >= dev_priv->cdclk.hw.cdclk * 95 / 100) {
817 fbc->no_fbc_reason = "pixel rate is too big";
818 return false;
819 }
820
821 /* It is possible for the required CFB size change without a
822 * crtc->disable + crtc->enable since it is possible to change the
823 * stride without triggering a full modeset. Since we try to
824 * over-allocate the CFB, there's a chance we may keep FBC enabled even
825 * if this happens, but if we exceed the current CFB size we'll have to
826 * disable FBC. Notice that it would be possible to disable FBC, wait
827 * for a frame, free the stolen node, then try to reenable FBC in case
828 * we didn't get any invalidate/deactivate calls, but this would require
829 * a lot of tracking just for a specific case. If we conclude it's an
830 * important case, we can implement it later. */
831 if (intel_fbc_calculate_cfb_size(dev_priv, &fbc->state_cache) >
832 fbc->compressed_fb.size * fbc->threshold) {
833 fbc->no_fbc_reason = "CFB requirements changed";
834 return false;
835 }
836
837 return true;
838 }
839
840 static bool intel_fbc_can_enable(struct drm_i915_private *dev_priv)
841 {
842 struct intel_fbc *fbc = &dev_priv->fbc;
843
844 if (intel_vgpu_active(dev_priv)) {
845 fbc->no_fbc_reason = "VGPU is active";
846 return false;
847 }
848
849 if (!i915.enable_fbc) {
850 fbc->no_fbc_reason = "disabled per module param or by default";
851 return false;
852 }
853
854 if (fbc->underrun_detected) {
855 fbc->no_fbc_reason = "underrun detected";
856 return false;
857 }
858
859 return true;
860 }
861
862 static void intel_fbc_get_reg_params(struct intel_crtc *crtc,
863 struct intel_fbc_reg_params *params)
864 {
865 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
866 struct intel_fbc *fbc = &dev_priv->fbc;
867 struct intel_fbc_state_cache *cache = &fbc->state_cache;
868
869 /* Since all our fields are integer types, use memset here so the
870 * comparison function can rely on memcmp because the padding will be
871 * zero. */
872 memset(params, 0, sizeof(*params));
873
874 params->vma = cache->vma;
875
876 params->crtc.pipe = crtc->pipe;
877 params->crtc.plane = crtc->plane;
878 params->crtc.fence_y_offset = get_crtc_fence_y_offset(crtc);
879
880 params->fb.format = cache->fb.format;
881 params->fb.stride = cache->fb.stride;
882
883 params->cfb_size = intel_fbc_calculate_cfb_size(dev_priv, cache);
884 }
885
886 static bool intel_fbc_reg_params_equal(struct intel_fbc_reg_params *params1,
887 struct intel_fbc_reg_params *params2)
888 {
889 /* We can use this since intel_fbc_get_reg_params() does a memset. */
890 return memcmp(params1, params2, sizeof(*params1)) == 0;
891 }
892
893 void intel_fbc_pre_update(struct intel_crtc *crtc,
894 struct intel_crtc_state *crtc_state,
895 struct intel_plane_state *plane_state)
896 {
897 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
898 struct intel_fbc *fbc = &dev_priv->fbc;
899
900 if (!fbc_supported(dev_priv))
901 return;
902
903 mutex_lock(&fbc->lock);
904
905 if (!multiple_pipes_ok(crtc, plane_state)) {
906 fbc->no_fbc_reason = "more than one pipe active";
907 goto deactivate;
908 }
909
910 if (!fbc->enabled || fbc->crtc != crtc)
911 goto unlock;
912
913 intel_fbc_update_state_cache(crtc, crtc_state, plane_state);
914
915 deactivate:
916 intel_fbc_deactivate(dev_priv);
917 unlock:
918 mutex_unlock(&fbc->lock);
919 }
920
921 static void __intel_fbc_post_update(struct intel_crtc *crtc)
922 {
923 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
924 struct intel_fbc *fbc = &dev_priv->fbc;
925 struct intel_fbc_reg_params old_params;
926
927 WARN_ON(!mutex_is_locked(&fbc->lock));
928
929 if (!fbc->enabled || fbc->crtc != crtc)
930 return;
931
932 if (!intel_fbc_can_activate(crtc)) {
933 WARN_ON(fbc->active);
934 return;
935 }
936
937 old_params = fbc->params;
938 intel_fbc_get_reg_params(crtc, &fbc->params);
939
940 /* If the scanout has not changed, don't modify the FBC settings.
941 * Note that we make the fundamental assumption that the fb->obj
942 * cannot be unpinned (and have its GTT offset and fence revoked)
943 * without first being decoupled from the scanout and FBC disabled.
944 */
945 if (fbc->active &&
946 intel_fbc_reg_params_equal(&old_params, &fbc->params))
947 return;
948
949 intel_fbc_deactivate(dev_priv);
950 intel_fbc_schedule_activation(crtc);
951 fbc->no_fbc_reason = "FBC enabled (active or scheduled)";
952 }
953
954 void intel_fbc_post_update(struct intel_crtc *crtc)
955 {
956 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
957 struct intel_fbc *fbc = &dev_priv->fbc;
958
959 if (!fbc_supported(dev_priv))
960 return;
961
962 mutex_lock(&fbc->lock);
963 __intel_fbc_post_update(crtc);
964 mutex_unlock(&fbc->lock);
965 }
966
967 static unsigned int intel_fbc_get_frontbuffer_bit(struct intel_fbc *fbc)
968 {
969 if (fbc->enabled)
970 return to_intel_plane(fbc->crtc->base.primary)->frontbuffer_bit;
971 else
972 return fbc->possible_framebuffer_bits;
973 }
974
975 void intel_fbc_invalidate(struct drm_i915_private *dev_priv,
976 unsigned int frontbuffer_bits,
977 enum fb_op_origin origin)
978 {
979 struct intel_fbc *fbc = &dev_priv->fbc;
980
981 if (!fbc_supported(dev_priv))
982 return;
983
984 if (origin == ORIGIN_GTT || origin == ORIGIN_FLIP)
985 return;
986
987 mutex_lock(&fbc->lock);
988
989 fbc->busy_bits |= intel_fbc_get_frontbuffer_bit(fbc) & frontbuffer_bits;
990
991 if (fbc->enabled && fbc->busy_bits)
992 intel_fbc_deactivate(dev_priv);
993
994 mutex_unlock(&fbc->lock);
995 }
996
997 void intel_fbc_flush(struct drm_i915_private *dev_priv,
998 unsigned int frontbuffer_bits, enum fb_op_origin origin)
999 {
1000 struct intel_fbc *fbc = &dev_priv->fbc;
1001
1002 if (!fbc_supported(dev_priv))
1003 return;
1004
1005 mutex_lock(&fbc->lock);
1006
1007 fbc->busy_bits &= ~frontbuffer_bits;
1008
1009 if (origin == ORIGIN_GTT || origin == ORIGIN_FLIP)
1010 goto out;
1011
1012 if (!fbc->busy_bits && fbc->enabled &&
1013 (frontbuffer_bits & intel_fbc_get_frontbuffer_bit(fbc))) {
1014 if (fbc->active)
1015 intel_fbc_recompress(dev_priv);
1016 else
1017 __intel_fbc_post_update(fbc->crtc);
1018 }
1019
1020 out:
1021 mutex_unlock(&fbc->lock);
1022 }
1023
1024 /**
1025 * intel_fbc_choose_crtc - select a CRTC to enable FBC on
1026 * @dev_priv: i915 device instance
1027 * @state: the atomic state structure
1028 *
1029 * This function looks at the proposed state for CRTCs and planes, then chooses
1030 * which pipe is going to have FBC by setting intel_crtc_state->enable_fbc to
1031 * true.
1032 *
1033 * Later, intel_fbc_enable is going to look for state->enable_fbc and then maybe
1034 * enable FBC for the chosen CRTC. If it does, it will set dev_priv->fbc.crtc.
1035 */
1036 void intel_fbc_choose_crtc(struct drm_i915_private *dev_priv,
1037 struct drm_atomic_state *state)
1038 {
1039 struct intel_fbc *fbc = &dev_priv->fbc;
1040 struct drm_plane *plane;
1041 struct drm_plane_state *plane_state;
1042 bool crtc_chosen = false;
1043 int i;
1044
1045 mutex_lock(&fbc->lock);
1046
1047 /* Does this atomic commit involve the CRTC currently tied to FBC? */
1048 if (fbc->crtc &&
1049 !drm_atomic_get_existing_crtc_state(state, &fbc->crtc->base))
1050 goto out;
1051
1052 if (!intel_fbc_can_enable(dev_priv))
1053 goto out;
1054
1055 /* Simply choose the first CRTC that is compatible and has a visible
1056 * plane. We could go for fancier schemes such as checking the plane
1057 * size, but this would just affect the few platforms that don't tie FBC
1058 * to pipe or plane A. */
1059 for_each_new_plane_in_state(state, plane, plane_state, i) {
1060 struct intel_plane_state *intel_plane_state =
1061 to_intel_plane_state(plane_state);
1062 struct intel_crtc_state *intel_crtc_state;
1063 struct intel_crtc *crtc = to_intel_crtc(plane_state->crtc);
1064
1065 if (!intel_plane_state->base.visible)
1066 continue;
1067
1068 if (fbc_on_pipe_a_only(dev_priv) && crtc->pipe != PIPE_A)
1069 continue;
1070
1071 if (fbc_on_plane_a_only(dev_priv) && crtc->plane != PLANE_A)
1072 continue;
1073
1074 intel_crtc_state = to_intel_crtc_state(
1075 drm_atomic_get_existing_crtc_state(state, &crtc->base));
1076
1077 intel_crtc_state->enable_fbc = true;
1078 crtc_chosen = true;
1079 break;
1080 }
1081
1082 if (!crtc_chosen)
1083 fbc->no_fbc_reason = "no suitable CRTC for FBC";
1084
1085 out:
1086 mutex_unlock(&fbc->lock);
1087 }
1088
1089 /**
1090 * intel_fbc_enable: tries to enable FBC on the CRTC
1091 * @crtc: the CRTC
1092 * @crtc_state: corresponding &drm_crtc_state for @crtc
1093 * @plane_state: corresponding &drm_plane_state for the primary plane of @crtc
1094 *
1095 * This function checks if the given CRTC was chosen for FBC, then enables it if
1096 * possible. Notice that it doesn't activate FBC. It is valid to call
1097 * intel_fbc_enable multiple times for the same pipe without an
1098 * intel_fbc_disable in the middle, as long as it is deactivated.
1099 */
1100 void intel_fbc_enable(struct intel_crtc *crtc,
1101 struct intel_crtc_state *crtc_state,
1102 struct intel_plane_state *plane_state)
1103 {
1104 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1105 struct intel_fbc *fbc = &dev_priv->fbc;
1106
1107 if (!fbc_supported(dev_priv))
1108 return;
1109
1110 mutex_lock(&fbc->lock);
1111
1112 if (fbc->enabled) {
1113 WARN_ON(fbc->crtc == NULL);
1114 if (fbc->crtc == crtc) {
1115 WARN_ON(!crtc_state->enable_fbc);
1116 WARN_ON(fbc->active);
1117 }
1118 goto out;
1119 }
1120
1121 if (!crtc_state->enable_fbc)
1122 goto out;
1123
1124 WARN_ON(fbc->active);
1125 WARN_ON(fbc->crtc != NULL);
1126
1127 intel_fbc_update_state_cache(crtc, crtc_state, plane_state);
1128 if (intel_fbc_alloc_cfb(crtc)) {
1129 fbc->no_fbc_reason = "not enough stolen memory";
1130 goto out;
1131 }
1132
1133 DRM_DEBUG_KMS("Enabling FBC on pipe %c\n", pipe_name(crtc->pipe));
1134 fbc->no_fbc_reason = "FBC enabled but not active yet\n";
1135
1136 fbc->enabled = true;
1137 fbc->crtc = crtc;
1138 out:
1139 mutex_unlock(&fbc->lock);
1140 }
1141
1142 /**
1143 * __intel_fbc_disable - disable FBC
1144 * @dev_priv: i915 device instance
1145 *
1146 * This is the low level function that actually disables FBC. Callers should
1147 * grab the FBC lock.
1148 */
1149 static void __intel_fbc_disable(struct drm_i915_private *dev_priv)
1150 {
1151 struct intel_fbc *fbc = &dev_priv->fbc;
1152 struct intel_crtc *crtc = fbc->crtc;
1153
1154 WARN_ON(!mutex_is_locked(&fbc->lock));
1155 WARN_ON(!fbc->enabled);
1156 WARN_ON(fbc->active);
1157 WARN_ON(crtc->active);
1158
1159 DRM_DEBUG_KMS("Disabling FBC on pipe %c\n", pipe_name(crtc->pipe));
1160
1161 __intel_fbc_cleanup_cfb(dev_priv);
1162
1163 fbc->enabled = false;
1164 fbc->crtc = NULL;
1165 }
1166
1167 /**
1168 * intel_fbc_disable - disable FBC if it's associated with crtc
1169 * @crtc: the CRTC
1170 *
1171 * This function disables FBC if it's associated with the provided CRTC.
1172 */
1173 void intel_fbc_disable(struct intel_crtc *crtc)
1174 {
1175 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1176 struct intel_fbc *fbc = &dev_priv->fbc;
1177
1178 if (!fbc_supported(dev_priv))
1179 return;
1180
1181 mutex_lock(&fbc->lock);
1182 if (fbc->crtc == crtc)
1183 __intel_fbc_disable(dev_priv);
1184 mutex_unlock(&fbc->lock);
1185
1186 cancel_work_sync(&fbc->work.work);
1187 }
1188
1189 /**
1190 * intel_fbc_global_disable - globally disable FBC
1191 * @dev_priv: i915 device instance
1192 *
1193 * This function disables FBC regardless of which CRTC is associated with it.
1194 */
1195 void intel_fbc_global_disable(struct drm_i915_private *dev_priv)
1196 {
1197 struct intel_fbc *fbc = &dev_priv->fbc;
1198
1199 if (!fbc_supported(dev_priv))
1200 return;
1201
1202 mutex_lock(&fbc->lock);
1203 if (fbc->enabled)
1204 __intel_fbc_disable(dev_priv);
1205 mutex_unlock(&fbc->lock);
1206
1207 cancel_work_sync(&fbc->work.work);
1208 }
1209
1210 static void intel_fbc_underrun_work_fn(struct work_struct *work)
1211 {
1212 struct drm_i915_private *dev_priv =
1213 container_of(work, struct drm_i915_private, fbc.underrun_work);
1214 struct intel_fbc *fbc = &dev_priv->fbc;
1215
1216 mutex_lock(&fbc->lock);
1217
1218 /* Maybe we were scheduled twice. */
1219 if (fbc->underrun_detected)
1220 goto out;
1221
1222 DRM_DEBUG_KMS("Disabling FBC due to FIFO underrun.\n");
1223 fbc->underrun_detected = true;
1224
1225 intel_fbc_deactivate(dev_priv);
1226 out:
1227 mutex_unlock(&fbc->lock);
1228 }
1229
1230 /**
1231 * intel_fbc_handle_fifo_underrun_irq - disable FBC when we get a FIFO underrun
1232 * @dev_priv: i915 device instance
1233 *
1234 * Without FBC, most underruns are harmless and don't really cause too many
1235 * problems, except for an annoying message on dmesg. With FBC, underruns can
1236 * become black screens or even worse, especially when paired with bad
1237 * watermarks. So in order for us to be on the safe side, completely disable FBC
1238 * in case we ever detect a FIFO underrun on any pipe. An underrun on any pipe
1239 * already suggests that watermarks may be bad, so try to be as safe as
1240 * possible.
1241 *
1242 * This function is called from the IRQ handler.
1243 */
1244 void intel_fbc_handle_fifo_underrun_irq(struct drm_i915_private *dev_priv)
1245 {
1246 struct intel_fbc *fbc = &dev_priv->fbc;
1247
1248 if (!fbc_supported(dev_priv))
1249 return;
1250
1251 /* There's no guarantee that underrun_detected won't be set to true
1252 * right after this check and before the work is scheduled, but that's
1253 * not a problem since we'll check it again under the work function
1254 * while FBC is locked. This check here is just to prevent us from
1255 * unnecessarily scheduling the work, and it relies on the fact that we
1256 * never switch underrun_detect back to false after it's true. */
1257 if (READ_ONCE(fbc->underrun_detected))
1258 return;
1259
1260 schedule_work(&fbc->underrun_work);
1261 }
1262
1263 /**
1264 * intel_fbc_init_pipe_state - initialize FBC's CRTC visibility tracking
1265 * @dev_priv: i915 device instance
1266 *
1267 * The FBC code needs to track CRTC visibility since the older platforms can't
1268 * have FBC enabled while multiple pipes are used. This function does the
1269 * initial setup at driver load to make sure FBC is matching the real hardware.
1270 */
1271 void intel_fbc_init_pipe_state(struct drm_i915_private *dev_priv)
1272 {
1273 struct intel_crtc *crtc;
1274
1275 /* Don't even bother tracking anything if we don't need. */
1276 if (!no_fbc_on_multiple_pipes(dev_priv))
1277 return;
1278
1279 for_each_intel_crtc(&dev_priv->drm, crtc)
1280 if (intel_crtc_active(crtc) &&
1281 crtc->base.primary->state->visible)
1282 dev_priv->fbc.visible_pipes_mask |= (1 << crtc->pipe);
1283 }
1284
1285 /*
1286 * The DDX driver changes its behavior depending on the value it reads from
1287 * i915.enable_fbc, so sanitize it by translating the default value into either
1288 * 0 or 1 in order to allow it to know what's going on.
1289 *
1290 * Notice that this is done at driver initialization and we still allow user
1291 * space to change the value during runtime without sanitizing it again. IGT
1292 * relies on being able to change i915.enable_fbc at runtime.
1293 */
1294 static int intel_sanitize_fbc_option(struct drm_i915_private *dev_priv)
1295 {
1296 if (i915.enable_fbc >= 0)
1297 return !!i915.enable_fbc;
1298
1299 if (!HAS_FBC(dev_priv))
1300 return 0;
1301
1302 if (IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9)
1303 return 1;
1304
1305 return 0;
1306 }
1307
1308 static bool need_fbc_vtd_wa(struct drm_i915_private *dev_priv)
1309 {
1310 /* WaFbcTurnOffFbcWhenHyperVisorIsUsed:skl,bxt */
1311 if (intel_vtd_active() &&
1312 (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv))) {
1313 DRM_INFO("Disabling framebuffer compression (FBC) to prevent screen flicker with VT-d enabled\n");
1314 return true;
1315 }
1316
1317 return false;
1318 }
1319
1320 /**
1321 * intel_fbc_init - Initialize FBC
1322 * @dev_priv: the i915 device
1323 *
1324 * This function might be called during PM init process.
1325 */
1326 void intel_fbc_init(struct drm_i915_private *dev_priv)
1327 {
1328 struct intel_fbc *fbc = &dev_priv->fbc;
1329 enum pipe pipe;
1330
1331 INIT_WORK(&fbc->work.work, intel_fbc_work_fn);
1332 INIT_WORK(&fbc->underrun_work, intel_fbc_underrun_work_fn);
1333 mutex_init(&fbc->lock);
1334 fbc->enabled = false;
1335 fbc->active = false;
1336 fbc->work.scheduled = false;
1337
1338 if (need_fbc_vtd_wa(dev_priv))
1339 mkwrite_device_info(dev_priv)->has_fbc = false;
1340
1341 i915.enable_fbc = intel_sanitize_fbc_option(dev_priv);
1342 DRM_DEBUG_KMS("Sanitized enable_fbc value: %d\n", i915.enable_fbc);
1343
1344 if (!HAS_FBC(dev_priv)) {
1345 fbc->no_fbc_reason = "unsupported by this chipset";
1346 return;
1347 }
1348
1349 for_each_pipe(dev_priv, pipe) {
1350 fbc->possible_framebuffer_bits |=
1351 INTEL_FRONTBUFFER_PRIMARY(pipe);
1352
1353 if (fbc_on_pipe_a_only(dev_priv))
1354 break;
1355 }
1356
1357 /* This value was pulled out of someone's hat */
1358 if (INTEL_GEN(dev_priv) <= 4 && !IS_GM45(dev_priv))
1359 I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
1360
1361 /* We still don't have any sort of hardware state readout for FBC, so
1362 * deactivate it in case the BIOS activated it to make sure software
1363 * matches the hardware state. */
1364 if (intel_fbc_hw_is_active(dev_priv))
1365 intel_fbc_hw_deactivate(dev_priv);
1366 }