]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_hdmi.c
drm/i915: reorganize the unclaimed register detection code
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_hdmi.c
1 /*
2 * Copyright 2006 Dave Airlie <airlied@linux.ie>
3 * Copyright © 2006-2009 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 *
24 * Authors:
25 * Eric Anholt <eric@anholt.net>
26 * Jesse Barnes <jesse.barnes@intel.com>
27 */
28
29 #include <linux/i2c.h>
30 #include <linux/slab.h>
31 #include <linux/delay.h>
32 #include <linux/hdmi.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_crtc.h>
35 #include <drm/drm_edid.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39
40 static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
41 {
42 return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
43 }
44
45 static void
46 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
47 {
48 struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
49 struct drm_i915_private *dev_priv = dev->dev_private;
50 uint32_t enabled_bits;
51
52 enabled_bits = HAS_DDI(dev) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
53
54 WARN(I915_READ(intel_hdmi->hdmi_reg) & enabled_bits,
55 "HDMI port enabled, expecting disabled\n");
56 }
57
58 struct intel_hdmi *enc_to_intel_hdmi(struct drm_encoder *encoder)
59 {
60 struct intel_digital_port *intel_dig_port =
61 container_of(encoder, struct intel_digital_port, base.base);
62 return &intel_dig_port->hdmi;
63 }
64
65 static struct intel_hdmi *intel_attached_hdmi(struct drm_connector *connector)
66 {
67 return enc_to_intel_hdmi(&intel_attached_encoder(connector)->base);
68 }
69
70 static u32 g4x_infoframe_index(enum hdmi_infoframe_type type)
71 {
72 switch (type) {
73 case HDMI_INFOFRAME_TYPE_AVI:
74 return VIDEO_DIP_SELECT_AVI;
75 case HDMI_INFOFRAME_TYPE_SPD:
76 return VIDEO_DIP_SELECT_SPD;
77 case HDMI_INFOFRAME_TYPE_VENDOR:
78 return VIDEO_DIP_SELECT_VENDOR;
79 default:
80 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
81 return 0;
82 }
83 }
84
85 static u32 g4x_infoframe_enable(enum hdmi_infoframe_type type)
86 {
87 switch (type) {
88 case HDMI_INFOFRAME_TYPE_AVI:
89 return VIDEO_DIP_ENABLE_AVI;
90 case HDMI_INFOFRAME_TYPE_SPD:
91 return VIDEO_DIP_ENABLE_SPD;
92 case HDMI_INFOFRAME_TYPE_VENDOR:
93 return VIDEO_DIP_ENABLE_VENDOR;
94 default:
95 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
96 return 0;
97 }
98 }
99
100 static u32 hsw_infoframe_enable(enum hdmi_infoframe_type type)
101 {
102 switch (type) {
103 case HDMI_INFOFRAME_TYPE_AVI:
104 return VIDEO_DIP_ENABLE_AVI_HSW;
105 case HDMI_INFOFRAME_TYPE_SPD:
106 return VIDEO_DIP_ENABLE_SPD_HSW;
107 case HDMI_INFOFRAME_TYPE_VENDOR:
108 return VIDEO_DIP_ENABLE_VS_HSW;
109 default:
110 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
111 return 0;
112 }
113 }
114
115 static u32 hsw_infoframe_data_reg(enum hdmi_infoframe_type type,
116 enum transcoder cpu_transcoder,
117 struct drm_i915_private *dev_priv)
118 {
119 switch (type) {
120 case HDMI_INFOFRAME_TYPE_AVI:
121 return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder);
122 case HDMI_INFOFRAME_TYPE_SPD:
123 return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder);
124 case HDMI_INFOFRAME_TYPE_VENDOR:
125 return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder);
126 default:
127 DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
128 return 0;
129 }
130 }
131
132 static void g4x_write_infoframe(struct drm_encoder *encoder,
133 enum hdmi_infoframe_type type,
134 const void *frame, ssize_t len)
135 {
136 const uint32_t *data = frame;
137 struct drm_device *dev = encoder->dev;
138 struct drm_i915_private *dev_priv = dev->dev_private;
139 u32 val = I915_READ(VIDEO_DIP_CTL);
140 int i;
141
142 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
143
144 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
145 val |= g4x_infoframe_index(type);
146
147 val &= ~g4x_infoframe_enable(type);
148
149 I915_WRITE(VIDEO_DIP_CTL, val);
150
151 mmiowb();
152 for (i = 0; i < len; i += 4) {
153 I915_WRITE(VIDEO_DIP_DATA, *data);
154 data++;
155 }
156 /* Write every possible data byte to force correct ECC calculation. */
157 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
158 I915_WRITE(VIDEO_DIP_DATA, 0);
159 mmiowb();
160
161 val |= g4x_infoframe_enable(type);
162 val &= ~VIDEO_DIP_FREQ_MASK;
163 val |= VIDEO_DIP_FREQ_VSYNC;
164
165 I915_WRITE(VIDEO_DIP_CTL, val);
166 POSTING_READ(VIDEO_DIP_CTL);
167 }
168
169 static void ibx_write_infoframe(struct drm_encoder *encoder,
170 enum hdmi_infoframe_type type,
171 const void *frame, ssize_t len)
172 {
173 const uint32_t *data = frame;
174 struct drm_device *dev = encoder->dev;
175 struct drm_i915_private *dev_priv = dev->dev_private;
176 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
177 int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
178 u32 val = I915_READ(reg);
179
180 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
181
182 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
183 val |= g4x_infoframe_index(type);
184
185 val &= ~g4x_infoframe_enable(type);
186
187 I915_WRITE(reg, val);
188
189 mmiowb();
190 for (i = 0; i < len; i += 4) {
191 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
192 data++;
193 }
194 /* Write every possible data byte to force correct ECC calculation. */
195 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
196 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
197 mmiowb();
198
199 val |= g4x_infoframe_enable(type);
200 val &= ~VIDEO_DIP_FREQ_MASK;
201 val |= VIDEO_DIP_FREQ_VSYNC;
202
203 I915_WRITE(reg, val);
204 POSTING_READ(reg);
205 }
206
207 static void cpt_write_infoframe(struct drm_encoder *encoder,
208 enum hdmi_infoframe_type type,
209 const void *frame, ssize_t len)
210 {
211 const uint32_t *data = frame;
212 struct drm_device *dev = encoder->dev;
213 struct drm_i915_private *dev_priv = dev->dev_private;
214 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
215 int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
216 u32 val = I915_READ(reg);
217
218 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
219
220 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
221 val |= g4x_infoframe_index(type);
222
223 /* The DIP control register spec says that we need to update the AVI
224 * infoframe without clearing its enable bit */
225 if (type != HDMI_INFOFRAME_TYPE_AVI)
226 val &= ~g4x_infoframe_enable(type);
227
228 I915_WRITE(reg, val);
229
230 mmiowb();
231 for (i = 0; i < len; i += 4) {
232 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
233 data++;
234 }
235 /* Write every possible data byte to force correct ECC calculation. */
236 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
237 I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
238 mmiowb();
239
240 val |= g4x_infoframe_enable(type);
241 val &= ~VIDEO_DIP_FREQ_MASK;
242 val |= VIDEO_DIP_FREQ_VSYNC;
243
244 I915_WRITE(reg, val);
245 POSTING_READ(reg);
246 }
247
248 static void vlv_write_infoframe(struct drm_encoder *encoder,
249 enum hdmi_infoframe_type type,
250 const void *frame, ssize_t len)
251 {
252 const uint32_t *data = frame;
253 struct drm_device *dev = encoder->dev;
254 struct drm_i915_private *dev_priv = dev->dev_private;
255 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
256 int i, reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
257 u32 val = I915_READ(reg);
258
259 WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
260
261 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
262 val |= g4x_infoframe_index(type);
263
264 val &= ~g4x_infoframe_enable(type);
265
266 I915_WRITE(reg, val);
267
268 mmiowb();
269 for (i = 0; i < len; i += 4) {
270 I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
271 data++;
272 }
273 /* Write every possible data byte to force correct ECC calculation. */
274 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
275 I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
276 mmiowb();
277
278 val |= g4x_infoframe_enable(type);
279 val &= ~VIDEO_DIP_FREQ_MASK;
280 val |= VIDEO_DIP_FREQ_VSYNC;
281
282 I915_WRITE(reg, val);
283 POSTING_READ(reg);
284 }
285
286 static void hsw_write_infoframe(struct drm_encoder *encoder,
287 enum hdmi_infoframe_type type,
288 const void *frame, ssize_t len)
289 {
290 const uint32_t *data = frame;
291 struct drm_device *dev = encoder->dev;
292 struct drm_i915_private *dev_priv = dev->dev_private;
293 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
294 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config.cpu_transcoder);
295 u32 data_reg;
296 int i;
297 u32 val = I915_READ(ctl_reg);
298
299 data_reg = hsw_infoframe_data_reg(type,
300 intel_crtc->config.cpu_transcoder,
301 dev_priv);
302 if (data_reg == 0)
303 return;
304
305 val &= ~hsw_infoframe_enable(type);
306 I915_WRITE(ctl_reg, val);
307
308 mmiowb();
309 for (i = 0; i < len; i += 4) {
310 I915_WRITE(data_reg + i, *data);
311 data++;
312 }
313 /* Write every possible data byte to force correct ECC calculation. */
314 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
315 I915_WRITE(data_reg + i, 0);
316 mmiowb();
317
318 val |= hsw_infoframe_enable(type);
319 I915_WRITE(ctl_reg, val);
320 POSTING_READ(ctl_reg);
321 }
322
323 /*
324 * The data we write to the DIP data buffer registers is 1 byte bigger than the
325 * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
326 * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
327 * used for both technologies.
328 *
329 * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
330 * DW1: DB3 | DB2 | DB1 | DB0
331 * DW2: DB7 | DB6 | DB5 | DB4
332 * DW3: ...
333 *
334 * (HB is Header Byte, DB is Data Byte)
335 *
336 * The hdmi pack() functions don't know about that hardware specific hole so we
337 * trick them by giving an offset into the buffer and moving back the header
338 * bytes by one.
339 */
340 static void intel_write_infoframe(struct drm_encoder *encoder,
341 union hdmi_infoframe *frame)
342 {
343 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
344 uint8_t buffer[VIDEO_DIP_DATA_SIZE];
345 ssize_t len;
346
347 /* see comment above for the reason for this offset */
348 len = hdmi_infoframe_pack(frame, buffer + 1, sizeof(buffer) - 1);
349 if (len < 0)
350 return;
351
352 /* Insert the 'hole' (see big comment above) at position 3 */
353 buffer[0] = buffer[1];
354 buffer[1] = buffer[2];
355 buffer[2] = buffer[3];
356 buffer[3] = 0;
357 len++;
358
359 intel_hdmi->write_infoframe(encoder, frame->any.type, buffer, len);
360 }
361
362 static void intel_hdmi_set_avi_infoframe(struct drm_encoder *encoder,
363 struct drm_display_mode *adjusted_mode)
364 {
365 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
366 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
367 union hdmi_infoframe frame;
368 int ret;
369
370 /* Set user selected PAR to incoming mode's member */
371 adjusted_mode->picture_aspect_ratio = intel_hdmi->aspect_ratio;
372
373 ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
374 adjusted_mode);
375 if (ret < 0) {
376 DRM_ERROR("couldn't fill AVI infoframe\n");
377 return;
378 }
379
380 if (intel_hdmi->rgb_quant_range_selectable) {
381 if (intel_crtc->config.limited_color_range)
382 frame.avi.quantization_range =
383 HDMI_QUANTIZATION_RANGE_LIMITED;
384 else
385 frame.avi.quantization_range =
386 HDMI_QUANTIZATION_RANGE_FULL;
387 }
388
389 intel_write_infoframe(encoder, &frame);
390 }
391
392 static void intel_hdmi_set_spd_infoframe(struct drm_encoder *encoder)
393 {
394 union hdmi_infoframe frame;
395 int ret;
396
397 ret = hdmi_spd_infoframe_init(&frame.spd, "Intel", "Integrated gfx");
398 if (ret < 0) {
399 DRM_ERROR("couldn't fill SPD infoframe\n");
400 return;
401 }
402
403 frame.spd.sdi = HDMI_SPD_SDI_PC;
404
405 intel_write_infoframe(encoder, &frame);
406 }
407
408 static void
409 intel_hdmi_set_hdmi_infoframe(struct drm_encoder *encoder,
410 struct drm_display_mode *adjusted_mode)
411 {
412 union hdmi_infoframe frame;
413 int ret;
414
415 ret = drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
416 adjusted_mode);
417 if (ret < 0)
418 return;
419
420 intel_write_infoframe(encoder, &frame);
421 }
422
423 static void g4x_set_infoframes(struct drm_encoder *encoder,
424 bool enable,
425 struct drm_display_mode *adjusted_mode)
426 {
427 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
428 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
429 struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
430 u32 reg = VIDEO_DIP_CTL;
431 u32 val = I915_READ(reg);
432 u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
433
434 assert_hdmi_port_disabled(intel_hdmi);
435
436 /* If the registers were not initialized yet, they might be zeroes,
437 * which means we're selecting the AVI DIP and we're setting its
438 * frequency to once. This seems to really confuse the HW and make
439 * things stop working (the register spec says the AVI always needs to
440 * be sent every VSync). So here we avoid writing to the register more
441 * than we need and also explicitly select the AVI DIP and explicitly
442 * set its frequency to every VSync. Avoiding to write it twice seems to
443 * be enough to solve the problem, but being defensive shouldn't hurt us
444 * either. */
445 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
446
447 if (!enable) {
448 if (!(val & VIDEO_DIP_ENABLE))
449 return;
450 val &= ~VIDEO_DIP_ENABLE;
451 I915_WRITE(reg, val);
452 POSTING_READ(reg);
453 return;
454 }
455
456 if (port != (val & VIDEO_DIP_PORT_MASK)) {
457 if (val & VIDEO_DIP_ENABLE) {
458 val &= ~VIDEO_DIP_ENABLE;
459 I915_WRITE(reg, val);
460 POSTING_READ(reg);
461 }
462 val &= ~VIDEO_DIP_PORT_MASK;
463 val |= port;
464 }
465
466 val |= VIDEO_DIP_ENABLE;
467 val &= ~VIDEO_DIP_ENABLE_VENDOR;
468
469 I915_WRITE(reg, val);
470 POSTING_READ(reg);
471
472 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
473 intel_hdmi_set_spd_infoframe(encoder);
474 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
475 }
476
477 static void ibx_set_infoframes(struct drm_encoder *encoder,
478 bool enable,
479 struct drm_display_mode *adjusted_mode)
480 {
481 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
482 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
483 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
484 struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
485 u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
486 u32 val = I915_READ(reg);
487 u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
488
489 assert_hdmi_port_disabled(intel_hdmi);
490
491 /* See the big comment in g4x_set_infoframes() */
492 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
493
494 if (!enable) {
495 if (!(val & VIDEO_DIP_ENABLE))
496 return;
497 val &= ~VIDEO_DIP_ENABLE;
498 I915_WRITE(reg, val);
499 POSTING_READ(reg);
500 return;
501 }
502
503 if (port != (val & VIDEO_DIP_PORT_MASK)) {
504 if (val & VIDEO_DIP_ENABLE) {
505 val &= ~VIDEO_DIP_ENABLE;
506 I915_WRITE(reg, val);
507 POSTING_READ(reg);
508 }
509 val &= ~VIDEO_DIP_PORT_MASK;
510 val |= port;
511 }
512
513 val |= VIDEO_DIP_ENABLE;
514 val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
515 VIDEO_DIP_ENABLE_GCP);
516
517 I915_WRITE(reg, val);
518 POSTING_READ(reg);
519
520 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
521 intel_hdmi_set_spd_infoframe(encoder);
522 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
523 }
524
525 static void cpt_set_infoframes(struct drm_encoder *encoder,
526 bool enable,
527 struct drm_display_mode *adjusted_mode)
528 {
529 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
530 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
531 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
532 u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
533 u32 val = I915_READ(reg);
534
535 assert_hdmi_port_disabled(intel_hdmi);
536
537 /* See the big comment in g4x_set_infoframes() */
538 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
539
540 if (!enable) {
541 if (!(val & VIDEO_DIP_ENABLE))
542 return;
543 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI);
544 I915_WRITE(reg, val);
545 POSTING_READ(reg);
546 return;
547 }
548
549 /* Set both together, unset both together: see the spec. */
550 val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
551 val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
552 VIDEO_DIP_ENABLE_GCP);
553
554 I915_WRITE(reg, val);
555 POSTING_READ(reg);
556
557 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
558 intel_hdmi_set_spd_infoframe(encoder);
559 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
560 }
561
562 static void vlv_set_infoframes(struct drm_encoder *encoder,
563 bool enable,
564 struct drm_display_mode *adjusted_mode)
565 {
566 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
567 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
568 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
569 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
570 u32 reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
571 u32 val = I915_READ(reg);
572 u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
573
574 assert_hdmi_port_disabled(intel_hdmi);
575
576 /* See the big comment in g4x_set_infoframes() */
577 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
578
579 if (!enable) {
580 if (!(val & VIDEO_DIP_ENABLE))
581 return;
582 val &= ~VIDEO_DIP_ENABLE;
583 I915_WRITE(reg, val);
584 POSTING_READ(reg);
585 return;
586 }
587
588 if (port != (val & VIDEO_DIP_PORT_MASK)) {
589 if (val & VIDEO_DIP_ENABLE) {
590 val &= ~VIDEO_DIP_ENABLE;
591 I915_WRITE(reg, val);
592 POSTING_READ(reg);
593 }
594 val &= ~VIDEO_DIP_PORT_MASK;
595 val |= port;
596 }
597
598 val |= VIDEO_DIP_ENABLE;
599 val &= ~(VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR |
600 VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_GCP);
601
602 I915_WRITE(reg, val);
603 POSTING_READ(reg);
604
605 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
606 intel_hdmi_set_spd_infoframe(encoder);
607 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
608 }
609
610 static void hsw_set_infoframes(struct drm_encoder *encoder,
611 bool enable,
612 struct drm_display_mode *adjusted_mode)
613 {
614 struct drm_i915_private *dev_priv = encoder->dev->dev_private;
615 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
616 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
617 u32 reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config.cpu_transcoder);
618 u32 val = I915_READ(reg);
619
620 assert_hdmi_port_disabled(intel_hdmi);
621
622 if (!enable) {
623 I915_WRITE(reg, 0);
624 POSTING_READ(reg);
625 return;
626 }
627
628 val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_GCP_HSW |
629 VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW);
630
631 I915_WRITE(reg, val);
632 POSTING_READ(reg);
633
634 intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
635 intel_hdmi_set_spd_infoframe(encoder);
636 intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
637 }
638
639 static void intel_hdmi_prepare(struct intel_encoder *encoder)
640 {
641 struct drm_device *dev = encoder->base.dev;
642 struct drm_i915_private *dev_priv = dev->dev_private;
643 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
644 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
645 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
646 u32 hdmi_val;
647
648 hdmi_val = SDVO_ENCODING_HDMI;
649 if (!HAS_PCH_SPLIT(dev))
650 hdmi_val |= intel_hdmi->color_range;
651 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
652 hdmi_val |= SDVO_VSYNC_ACTIVE_HIGH;
653 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
654 hdmi_val |= SDVO_HSYNC_ACTIVE_HIGH;
655
656 if (crtc->config.pipe_bpp > 24)
657 hdmi_val |= HDMI_COLOR_FORMAT_12bpc;
658 else
659 hdmi_val |= SDVO_COLOR_FORMAT_8bpc;
660
661 if (crtc->config.has_hdmi_sink)
662 hdmi_val |= HDMI_MODE_SELECT_HDMI;
663
664 if (crtc->config.has_audio) {
665 WARN_ON(!crtc->config.has_hdmi_sink);
666 DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n",
667 pipe_name(crtc->pipe));
668 hdmi_val |= SDVO_AUDIO_ENABLE;
669 intel_write_eld(&encoder->base, adjusted_mode);
670 }
671
672 if (HAS_PCH_CPT(dev))
673 hdmi_val |= SDVO_PIPE_SEL_CPT(crtc->pipe);
674 else if (IS_CHERRYVIEW(dev))
675 hdmi_val |= SDVO_PIPE_SEL_CHV(crtc->pipe);
676 else
677 hdmi_val |= SDVO_PIPE_SEL(crtc->pipe);
678
679 I915_WRITE(intel_hdmi->hdmi_reg, hdmi_val);
680 POSTING_READ(intel_hdmi->hdmi_reg);
681 }
682
683 static bool intel_hdmi_get_hw_state(struct intel_encoder *encoder,
684 enum pipe *pipe)
685 {
686 struct drm_device *dev = encoder->base.dev;
687 struct drm_i915_private *dev_priv = dev->dev_private;
688 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
689 enum intel_display_power_domain power_domain;
690 u32 tmp;
691
692 power_domain = intel_display_port_power_domain(encoder);
693 if (!intel_display_power_enabled(dev_priv, power_domain))
694 return false;
695
696 tmp = I915_READ(intel_hdmi->hdmi_reg);
697
698 if (!(tmp & SDVO_ENABLE))
699 return false;
700
701 if (HAS_PCH_CPT(dev))
702 *pipe = PORT_TO_PIPE_CPT(tmp);
703 else if (IS_CHERRYVIEW(dev))
704 *pipe = SDVO_PORT_TO_PIPE_CHV(tmp);
705 else
706 *pipe = PORT_TO_PIPE(tmp);
707
708 return true;
709 }
710
711 static void intel_hdmi_get_config(struct intel_encoder *encoder,
712 struct intel_crtc_config *pipe_config)
713 {
714 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
715 struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
716 u32 tmp, flags = 0;
717 int dotclock;
718
719 tmp = I915_READ(intel_hdmi->hdmi_reg);
720
721 if (tmp & SDVO_HSYNC_ACTIVE_HIGH)
722 flags |= DRM_MODE_FLAG_PHSYNC;
723 else
724 flags |= DRM_MODE_FLAG_NHSYNC;
725
726 if (tmp & SDVO_VSYNC_ACTIVE_HIGH)
727 flags |= DRM_MODE_FLAG_PVSYNC;
728 else
729 flags |= DRM_MODE_FLAG_NVSYNC;
730
731 if (tmp & HDMI_MODE_SELECT_HDMI)
732 pipe_config->has_hdmi_sink = true;
733
734 if (tmp & HDMI_MODE_SELECT_HDMI)
735 pipe_config->has_audio = true;
736
737 pipe_config->adjusted_mode.flags |= flags;
738
739 if ((tmp & SDVO_COLOR_FORMAT_MASK) == HDMI_COLOR_FORMAT_12bpc)
740 dotclock = pipe_config->port_clock * 2 / 3;
741 else
742 dotclock = pipe_config->port_clock;
743
744 if (HAS_PCH_SPLIT(dev_priv->dev))
745 ironlake_check_encoder_dotclock(pipe_config, dotclock);
746
747 pipe_config->adjusted_mode.crtc_clock = dotclock;
748 }
749
750 static void intel_enable_hdmi(struct intel_encoder *encoder)
751 {
752 struct drm_device *dev = encoder->base.dev;
753 struct drm_i915_private *dev_priv = dev->dev_private;
754 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
755 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
756 u32 temp;
757 u32 enable_bits = SDVO_ENABLE;
758
759 if (intel_crtc->config.has_audio)
760 enable_bits |= SDVO_AUDIO_ENABLE;
761
762 temp = I915_READ(intel_hdmi->hdmi_reg);
763
764 /* HW workaround for IBX, we need to move the port to transcoder A
765 * before disabling it, so restore the transcoder select bit here. */
766 if (HAS_PCH_IBX(dev))
767 enable_bits |= SDVO_PIPE_SEL(intel_crtc->pipe);
768
769 /* HW workaround, need to toggle enable bit off and on for 12bpc, but
770 * we do this anyway which shows more stable in testing.
771 */
772 if (HAS_PCH_SPLIT(dev)) {
773 I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
774 POSTING_READ(intel_hdmi->hdmi_reg);
775 }
776
777 temp |= enable_bits;
778
779 I915_WRITE(intel_hdmi->hdmi_reg, temp);
780 POSTING_READ(intel_hdmi->hdmi_reg);
781
782 /* HW workaround, need to write this twice for issue that may result
783 * in first write getting masked.
784 */
785 if (HAS_PCH_SPLIT(dev)) {
786 I915_WRITE(intel_hdmi->hdmi_reg, temp);
787 POSTING_READ(intel_hdmi->hdmi_reg);
788 }
789 }
790
791 static void vlv_enable_hdmi(struct intel_encoder *encoder)
792 {
793 }
794
795 static void intel_disable_hdmi(struct intel_encoder *encoder)
796 {
797 struct drm_device *dev = encoder->base.dev;
798 struct drm_i915_private *dev_priv = dev->dev_private;
799 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
800 u32 temp;
801 u32 enable_bits = SDVO_ENABLE | SDVO_AUDIO_ENABLE;
802
803 temp = I915_READ(intel_hdmi->hdmi_reg);
804
805 /* HW workaround for IBX, we need to move the port to transcoder A
806 * before disabling it. */
807 if (HAS_PCH_IBX(dev)) {
808 struct drm_crtc *crtc = encoder->base.crtc;
809 int pipe = crtc ? to_intel_crtc(crtc)->pipe : -1;
810
811 if (temp & SDVO_PIPE_B_SELECT) {
812 temp &= ~SDVO_PIPE_B_SELECT;
813 I915_WRITE(intel_hdmi->hdmi_reg, temp);
814 POSTING_READ(intel_hdmi->hdmi_reg);
815
816 /* Again we need to write this twice. */
817 I915_WRITE(intel_hdmi->hdmi_reg, temp);
818 POSTING_READ(intel_hdmi->hdmi_reg);
819
820 /* Transcoder selection bits only update
821 * effectively on vblank. */
822 if (crtc)
823 intel_wait_for_vblank(dev, pipe);
824 else
825 msleep(50);
826 }
827 }
828
829 /* HW workaround, need to toggle enable bit off and on for 12bpc, but
830 * we do this anyway which shows more stable in testing.
831 */
832 if (HAS_PCH_SPLIT(dev)) {
833 I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
834 POSTING_READ(intel_hdmi->hdmi_reg);
835 }
836
837 temp &= ~enable_bits;
838
839 I915_WRITE(intel_hdmi->hdmi_reg, temp);
840 POSTING_READ(intel_hdmi->hdmi_reg);
841
842 /* HW workaround, need to write this twice for issue that may result
843 * in first write getting masked.
844 */
845 if (HAS_PCH_SPLIT(dev)) {
846 I915_WRITE(intel_hdmi->hdmi_reg, temp);
847 POSTING_READ(intel_hdmi->hdmi_reg);
848 }
849 }
850
851 static int hdmi_portclock_limit(struct intel_hdmi *hdmi, bool respect_dvi_limit)
852 {
853 struct drm_device *dev = intel_hdmi_to_dev(hdmi);
854
855 if ((respect_dvi_limit && !hdmi->has_hdmi_sink) || IS_G4X(dev))
856 return 165000;
857 else if (IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8)
858 return 300000;
859 else
860 return 225000;
861 }
862
863 static enum drm_mode_status
864 intel_hdmi_mode_valid(struct drm_connector *connector,
865 struct drm_display_mode *mode)
866 {
867 if (mode->clock > hdmi_portclock_limit(intel_attached_hdmi(connector),
868 true))
869 return MODE_CLOCK_HIGH;
870 if (mode->clock < 20000)
871 return MODE_CLOCK_LOW;
872
873 if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
874 return MODE_NO_DBLESCAN;
875
876 return MODE_OK;
877 }
878
879 static bool hdmi_12bpc_possible(struct intel_crtc *crtc)
880 {
881 struct drm_device *dev = crtc->base.dev;
882 struct intel_encoder *encoder;
883 int count = 0, count_hdmi = 0;
884
885 if (!HAS_PCH_SPLIT(dev))
886 return false;
887
888 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
889 if (encoder->new_crtc != crtc)
890 continue;
891
892 count_hdmi += encoder->type == INTEL_OUTPUT_HDMI;
893 count++;
894 }
895
896 /*
897 * HDMI 12bpc affects the clocks, so it's only possible
898 * when not cloning with other encoder types.
899 */
900 return count_hdmi > 0 && count_hdmi == count;
901 }
902
903 bool intel_hdmi_compute_config(struct intel_encoder *encoder,
904 struct intel_crtc_config *pipe_config)
905 {
906 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
907 struct drm_device *dev = encoder->base.dev;
908 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
909 int clock_12bpc = pipe_config->adjusted_mode.crtc_clock * 3 / 2;
910 int portclock_limit = hdmi_portclock_limit(intel_hdmi, false);
911 int desired_bpp;
912
913 pipe_config->has_hdmi_sink = intel_hdmi->has_hdmi_sink;
914
915 if (intel_hdmi->color_range_auto) {
916 /* See CEA-861-E - 5.1 Default Encoding Parameters */
917 if (pipe_config->has_hdmi_sink &&
918 drm_match_cea_mode(adjusted_mode) > 1)
919 intel_hdmi->color_range = HDMI_COLOR_RANGE_16_235;
920 else
921 intel_hdmi->color_range = 0;
922 }
923
924 if (intel_hdmi->color_range)
925 pipe_config->limited_color_range = true;
926
927 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev))
928 pipe_config->has_pch_encoder = true;
929
930 if (pipe_config->has_hdmi_sink && intel_hdmi->has_audio)
931 pipe_config->has_audio = true;
932
933 /*
934 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
935 * through, clamp it down. Note that g4x/vlv don't support 12bpc hdmi
936 * outputs. We also need to check that the higher clock still fits
937 * within limits.
938 */
939 if (pipe_config->pipe_bpp > 8*3 && pipe_config->has_hdmi_sink &&
940 clock_12bpc <= portclock_limit &&
941 hdmi_12bpc_possible(encoder->new_crtc)) {
942 DRM_DEBUG_KMS("picking bpc to 12 for HDMI output\n");
943 desired_bpp = 12*3;
944
945 /* Need to adjust the port link by 1.5x for 12bpc. */
946 pipe_config->port_clock = clock_12bpc;
947 } else {
948 DRM_DEBUG_KMS("picking bpc to 8 for HDMI output\n");
949 desired_bpp = 8*3;
950 }
951
952 if (!pipe_config->bw_constrained) {
953 DRM_DEBUG_KMS("forcing pipe bpc to %i for HDMI\n", desired_bpp);
954 pipe_config->pipe_bpp = desired_bpp;
955 }
956
957 if (adjusted_mode->crtc_clock > portclock_limit) {
958 DRM_DEBUG_KMS("too high HDMI clock, rejecting mode\n");
959 return false;
960 }
961
962 return true;
963 }
964
965 static enum drm_connector_status
966 intel_hdmi_detect(struct drm_connector *connector, bool force)
967 {
968 struct drm_device *dev = connector->dev;
969 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
970 struct intel_digital_port *intel_dig_port =
971 hdmi_to_dig_port(intel_hdmi);
972 struct intel_encoder *intel_encoder = &intel_dig_port->base;
973 struct drm_i915_private *dev_priv = dev->dev_private;
974 struct edid *edid;
975 enum intel_display_power_domain power_domain;
976 enum drm_connector_status status = connector_status_disconnected;
977
978 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
979 connector->base.id, connector->name);
980
981 power_domain = intel_display_port_power_domain(intel_encoder);
982 intel_display_power_get(dev_priv, power_domain);
983
984 intel_hdmi->has_hdmi_sink = false;
985 intel_hdmi->has_audio = false;
986 intel_hdmi->rgb_quant_range_selectable = false;
987 edid = drm_get_edid(connector,
988 intel_gmbus_get_adapter(dev_priv,
989 intel_hdmi->ddc_bus));
990
991 if (edid) {
992 if (edid->input & DRM_EDID_INPUT_DIGITAL) {
993 status = connector_status_connected;
994 if (intel_hdmi->force_audio != HDMI_AUDIO_OFF_DVI)
995 intel_hdmi->has_hdmi_sink =
996 drm_detect_hdmi_monitor(edid);
997 intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
998 intel_hdmi->rgb_quant_range_selectable =
999 drm_rgb_quant_range_selectable(edid);
1000 }
1001 kfree(edid);
1002 }
1003
1004 if (status == connector_status_connected) {
1005 if (intel_hdmi->force_audio != HDMI_AUDIO_AUTO)
1006 intel_hdmi->has_audio =
1007 (intel_hdmi->force_audio == HDMI_AUDIO_ON);
1008 intel_encoder->type = INTEL_OUTPUT_HDMI;
1009 }
1010
1011 intel_display_power_put(dev_priv, power_domain);
1012
1013 return status;
1014 }
1015
1016 static int intel_hdmi_get_modes(struct drm_connector *connector)
1017 {
1018 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
1019 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
1020 struct drm_i915_private *dev_priv = connector->dev->dev_private;
1021 enum intel_display_power_domain power_domain;
1022 int ret;
1023
1024 /* We should parse the EDID data and find out if it's an HDMI sink so
1025 * we can send audio to it.
1026 */
1027
1028 power_domain = intel_display_port_power_domain(intel_encoder);
1029 intel_display_power_get(dev_priv, power_domain);
1030
1031 ret = intel_ddc_get_modes(connector,
1032 intel_gmbus_get_adapter(dev_priv,
1033 intel_hdmi->ddc_bus));
1034
1035 intel_display_power_put(dev_priv, power_domain);
1036
1037 return ret;
1038 }
1039
1040 static bool
1041 intel_hdmi_detect_audio(struct drm_connector *connector)
1042 {
1043 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
1044 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
1045 struct drm_i915_private *dev_priv = connector->dev->dev_private;
1046 enum intel_display_power_domain power_domain;
1047 struct edid *edid;
1048 bool has_audio = false;
1049
1050 power_domain = intel_display_port_power_domain(intel_encoder);
1051 intel_display_power_get(dev_priv, power_domain);
1052
1053 edid = drm_get_edid(connector,
1054 intel_gmbus_get_adapter(dev_priv,
1055 intel_hdmi->ddc_bus));
1056 if (edid) {
1057 if (edid->input & DRM_EDID_INPUT_DIGITAL)
1058 has_audio = drm_detect_monitor_audio(edid);
1059 kfree(edid);
1060 }
1061
1062 intel_display_power_put(dev_priv, power_domain);
1063
1064 return has_audio;
1065 }
1066
1067 static int
1068 intel_hdmi_set_property(struct drm_connector *connector,
1069 struct drm_property *property,
1070 uint64_t val)
1071 {
1072 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1073 struct intel_digital_port *intel_dig_port =
1074 hdmi_to_dig_port(intel_hdmi);
1075 struct drm_i915_private *dev_priv = connector->dev->dev_private;
1076 int ret;
1077
1078 ret = drm_object_property_set_value(&connector->base, property, val);
1079 if (ret)
1080 return ret;
1081
1082 if (property == dev_priv->force_audio_property) {
1083 enum hdmi_force_audio i = val;
1084 bool has_audio;
1085
1086 if (i == intel_hdmi->force_audio)
1087 return 0;
1088
1089 intel_hdmi->force_audio = i;
1090
1091 if (i == HDMI_AUDIO_AUTO)
1092 has_audio = intel_hdmi_detect_audio(connector);
1093 else
1094 has_audio = (i == HDMI_AUDIO_ON);
1095
1096 if (i == HDMI_AUDIO_OFF_DVI)
1097 intel_hdmi->has_hdmi_sink = 0;
1098
1099 intel_hdmi->has_audio = has_audio;
1100 goto done;
1101 }
1102
1103 if (property == dev_priv->broadcast_rgb_property) {
1104 bool old_auto = intel_hdmi->color_range_auto;
1105 uint32_t old_range = intel_hdmi->color_range;
1106
1107 switch (val) {
1108 case INTEL_BROADCAST_RGB_AUTO:
1109 intel_hdmi->color_range_auto = true;
1110 break;
1111 case INTEL_BROADCAST_RGB_FULL:
1112 intel_hdmi->color_range_auto = false;
1113 intel_hdmi->color_range = 0;
1114 break;
1115 case INTEL_BROADCAST_RGB_LIMITED:
1116 intel_hdmi->color_range_auto = false;
1117 intel_hdmi->color_range = HDMI_COLOR_RANGE_16_235;
1118 break;
1119 default:
1120 return -EINVAL;
1121 }
1122
1123 if (old_auto == intel_hdmi->color_range_auto &&
1124 old_range == intel_hdmi->color_range)
1125 return 0;
1126
1127 goto done;
1128 }
1129
1130 if (property == connector->dev->mode_config.aspect_ratio_property) {
1131 switch (val) {
1132 case DRM_MODE_PICTURE_ASPECT_NONE:
1133 intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
1134 break;
1135 case DRM_MODE_PICTURE_ASPECT_4_3:
1136 intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_4_3;
1137 break;
1138 case DRM_MODE_PICTURE_ASPECT_16_9:
1139 intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_16_9;
1140 break;
1141 default:
1142 return -EINVAL;
1143 }
1144 goto done;
1145 }
1146
1147 return -EINVAL;
1148
1149 done:
1150 if (intel_dig_port->base.base.crtc)
1151 intel_crtc_restore_mode(intel_dig_port->base.base.crtc);
1152
1153 return 0;
1154 }
1155
1156 static void intel_hdmi_pre_enable(struct intel_encoder *encoder)
1157 {
1158 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1159 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1160 struct drm_display_mode *adjusted_mode =
1161 &intel_crtc->config.adjusted_mode;
1162
1163 intel_hdmi_prepare(encoder);
1164
1165 intel_hdmi->set_infoframes(&encoder->base,
1166 intel_crtc->config.has_hdmi_sink,
1167 adjusted_mode);
1168 }
1169
1170 static void vlv_hdmi_pre_enable(struct intel_encoder *encoder)
1171 {
1172 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1173 struct intel_hdmi *intel_hdmi = &dport->hdmi;
1174 struct drm_device *dev = encoder->base.dev;
1175 struct drm_i915_private *dev_priv = dev->dev_private;
1176 struct intel_crtc *intel_crtc =
1177 to_intel_crtc(encoder->base.crtc);
1178 struct drm_display_mode *adjusted_mode =
1179 &intel_crtc->config.adjusted_mode;
1180 enum dpio_channel port = vlv_dport_to_channel(dport);
1181 int pipe = intel_crtc->pipe;
1182 u32 val;
1183
1184 /* Enable clock channels for this port */
1185 mutex_lock(&dev_priv->dpio_lock);
1186 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1187 val = 0;
1188 if (pipe)
1189 val |= (1<<21);
1190 else
1191 val &= ~(1<<21);
1192 val |= 0x001000c4;
1193 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1194
1195 /* HDMI 1.0V-2dB */
1196 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0);
1197 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), 0x2b245f5f);
1198 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port), 0x5578b83a);
1199 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0c782040);
1200 vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), 0x2b247878);
1201 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
1202 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
1203 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1204
1205 /* Program lane clock */
1206 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1207 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1208 mutex_unlock(&dev_priv->dpio_lock);
1209
1210 intel_hdmi->set_infoframes(&encoder->base,
1211 intel_crtc->config.has_hdmi_sink,
1212 adjusted_mode);
1213
1214 intel_enable_hdmi(encoder);
1215
1216 vlv_wait_port_ready(dev_priv, dport);
1217 }
1218
1219 static void vlv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
1220 {
1221 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1222 struct drm_device *dev = encoder->base.dev;
1223 struct drm_i915_private *dev_priv = dev->dev_private;
1224 struct intel_crtc *intel_crtc =
1225 to_intel_crtc(encoder->base.crtc);
1226 enum dpio_channel port = vlv_dport_to_channel(dport);
1227 int pipe = intel_crtc->pipe;
1228
1229 intel_hdmi_prepare(encoder);
1230
1231 /* Program Tx lane resets to default */
1232 mutex_lock(&dev_priv->dpio_lock);
1233 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1234 DPIO_PCS_TX_LANE2_RESET |
1235 DPIO_PCS_TX_LANE1_RESET);
1236 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1237 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1238 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1239 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1240 DPIO_PCS_CLK_SOFT_RESET);
1241
1242 /* Fix up inter-pair skew failure */
1243 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1244 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1245 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1246
1247 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
1248 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1249 mutex_unlock(&dev_priv->dpio_lock);
1250 }
1251
1252 static void chv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
1253 {
1254 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1255 struct drm_device *dev = encoder->base.dev;
1256 struct drm_i915_private *dev_priv = dev->dev_private;
1257 struct intel_crtc *intel_crtc =
1258 to_intel_crtc(encoder->base.crtc);
1259 enum dpio_channel ch = vlv_dport_to_channel(dport);
1260 enum pipe pipe = intel_crtc->pipe;
1261 u32 val;
1262
1263 mutex_lock(&dev_priv->dpio_lock);
1264
1265 /* program left/right clock distribution */
1266 if (pipe != PIPE_B) {
1267 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1268 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1269 if (ch == DPIO_CH0)
1270 val |= CHV_BUFLEFTENA1_FORCE;
1271 if (ch == DPIO_CH1)
1272 val |= CHV_BUFRIGHTENA1_FORCE;
1273 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1274 } else {
1275 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1276 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1277 if (ch == DPIO_CH0)
1278 val |= CHV_BUFLEFTENA2_FORCE;
1279 if (ch == DPIO_CH1)
1280 val |= CHV_BUFRIGHTENA2_FORCE;
1281 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1282 }
1283
1284 /* program clock channel usage */
1285 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
1286 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
1287 if (pipe != PIPE_B)
1288 val &= ~CHV_PCS_USEDCLKCHANNEL;
1289 else
1290 val |= CHV_PCS_USEDCLKCHANNEL;
1291 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
1292
1293 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
1294 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
1295 if (pipe != PIPE_B)
1296 val &= ~CHV_PCS_USEDCLKCHANNEL;
1297 else
1298 val |= CHV_PCS_USEDCLKCHANNEL;
1299 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
1300
1301 /*
1302 * This a a bit weird since generally CL
1303 * matches the pipe, but here we need to
1304 * pick the CL based on the port.
1305 */
1306 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
1307 if (pipe != PIPE_B)
1308 val &= ~CHV_CMN_USEDCLKCHANNEL;
1309 else
1310 val |= CHV_CMN_USEDCLKCHANNEL;
1311 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
1312
1313 mutex_unlock(&dev_priv->dpio_lock);
1314 }
1315
1316 static void vlv_hdmi_post_disable(struct intel_encoder *encoder)
1317 {
1318 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1319 struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
1320 struct intel_crtc *intel_crtc =
1321 to_intel_crtc(encoder->base.crtc);
1322 enum dpio_channel port = vlv_dport_to_channel(dport);
1323 int pipe = intel_crtc->pipe;
1324
1325 /* Reset lanes to avoid HDMI flicker (VLV w/a) */
1326 mutex_lock(&dev_priv->dpio_lock);
1327 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
1328 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
1329 mutex_unlock(&dev_priv->dpio_lock);
1330 }
1331
1332 static void chv_hdmi_post_disable(struct intel_encoder *encoder)
1333 {
1334 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1335 struct drm_device *dev = encoder->base.dev;
1336 struct drm_i915_private *dev_priv = dev->dev_private;
1337 struct intel_crtc *intel_crtc =
1338 to_intel_crtc(encoder->base.crtc);
1339 enum dpio_channel ch = vlv_dport_to_channel(dport);
1340 enum pipe pipe = intel_crtc->pipe;
1341 u32 val;
1342
1343 mutex_lock(&dev_priv->dpio_lock);
1344
1345 /* Propagate soft reset to data lane reset */
1346 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
1347 val |= CHV_PCS_REQ_SOFTRESET_EN;
1348 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
1349
1350 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
1351 val |= CHV_PCS_REQ_SOFTRESET_EN;
1352 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
1353
1354 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
1355 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1356 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
1357
1358 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
1359 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1360 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
1361
1362 mutex_unlock(&dev_priv->dpio_lock);
1363 }
1364
1365 static void chv_hdmi_pre_enable(struct intel_encoder *encoder)
1366 {
1367 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1368 struct drm_device *dev = encoder->base.dev;
1369 struct drm_i915_private *dev_priv = dev->dev_private;
1370 struct intel_crtc *intel_crtc =
1371 to_intel_crtc(encoder->base.crtc);
1372 enum dpio_channel ch = vlv_dport_to_channel(dport);
1373 int pipe = intel_crtc->pipe;
1374 int data, i;
1375 u32 val;
1376
1377 mutex_lock(&dev_priv->dpio_lock);
1378
1379 /* Deassert soft data lane reset*/
1380 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
1381 val |= CHV_PCS_REQ_SOFTRESET_EN;
1382 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
1383
1384 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
1385 val |= CHV_PCS_REQ_SOFTRESET_EN;
1386 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
1387
1388 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
1389 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1390 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
1391
1392 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
1393 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1394 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
1395
1396 /* Program Tx latency optimal setting */
1397 for (i = 0; i < 4; i++) {
1398 /* Set the latency optimal bit */
1399 data = (i == 1) ? 0x0 : 0x6;
1400 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
1401 data << DPIO_FRC_LATENCY_SHFIT);
1402
1403 /* Set the upar bit */
1404 data = (i == 1) ? 0x0 : 0x1;
1405 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
1406 data << DPIO_UPAR_SHIFT);
1407 }
1408
1409 /* Data lane stagger programming */
1410 /* FIXME: Fix up value only after power analysis */
1411
1412 /* Clear calc init */
1413 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
1414 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
1415 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
1416
1417 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
1418 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
1419 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
1420
1421 /* FIXME: Program the support xxx V-dB */
1422 /* Use 800mV-0dB */
1423 for (i = 0; i < 4; i++) {
1424 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
1425 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
1426 val |= 128 << DPIO_SWING_DEEMPH9P5_SHIFT;
1427 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
1428 }
1429
1430 for (i = 0; i < 4; i++) {
1431 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
1432 val &= ~DPIO_SWING_MARGIN_MASK;
1433 val |= 102 << DPIO_SWING_MARGIN_SHIFT;
1434 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
1435 }
1436
1437 /* Disable unique transition scale */
1438 for (i = 0; i < 4; i++) {
1439 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
1440 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
1441 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
1442 }
1443
1444 /* Additional steps for 1200mV-0dB */
1445 #if 0
1446 val = vlv_dpio_read(dev_priv, pipe, VLV_TX_DW3(ch));
1447 if (ch)
1448 val |= DPIO_TX_UNIQ_TRANS_SCALE_CH1;
1449 else
1450 val |= DPIO_TX_UNIQ_TRANS_SCALE_CH0;
1451 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(ch), val);
1452
1453 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(ch),
1454 vlv_dpio_read(dev_priv, pipe, VLV_TX_DW2(ch)) |
1455 (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT));
1456 #endif
1457 /* Start swing calculation */
1458 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
1459 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
1460 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
1461
1462 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
1463 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
1464 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
1465
1466 /* LRC Bypass */
1467 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
1468 val |= DPIO_LRC_BYPASS;
1469 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
1470
1471 mutex_unlock(&dev_priv->dpio_lock);
1472
1473 intel_enable_hdmi(encoder);
1474
1475 vlv_wait_port_ready(dev_priv, dport);
1476 }
1477
1478 static void intel_hdmi_destroy(struct drm_connector *connector)
1479 {
1480 drm_connector_cleanup(connector);
1481 kfree(connector);
1482 }
1483
1484 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
1485 .dpms = intel_connector_dpms,
1486 .detect = intel_hdmi_detect,
1487 .fill_modes = drm_helper_probe_single_connector_modes,
1488 .set_property = intel_hdmi_set_property,
1489 .destroy = intel_hdmi_destroy,
1490 };
1491
1492 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
1493 .get_modes = intel_hdmi_get_modes,
1494 .mode_valid = intel_hdmi_mode_valid,
1495 .best_encoder = intel_best_encoder,
1496 };
1497
1498 static const struct drm_encoder_funcs intel_hdmi_enc_funcs = {
1499 .destroy = intel_encoder_destroy,
1500 };
1501
1502 static void
1503 intel_attach_aspect_ratio_property(struct drm_connector *connector)
1504 {
1505 if (!drm_mode_create_aspect_ratio_property(connector->dev))
1506 drm_object_attach_property(&connector->base,
1507 connector->dev->mode_config.aspect_ratio_property,
1508 DRM_MODE_PICTURE_ASPECT_NONE);
1509 }
1510
1511 static void
1512 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
1513 {
1514 intel_attach_force_audio_property(connector);
1515 intel_attach_broadcast_rgb_property(connector);
1516 intel_hdmi->color_range_auto = true;
1517 intel_attach_aspect_ratio_property(connector);
1518 intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
1519 }
1520
1521 void intel_hdmi_init_connector(struct intel_digital_port *intel_dig_port,
1522 struct intel_connector *intel_connector)
1523 {
1524 struct drm_connector *connector = &intel_connector->base;
1525 struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
1526 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1527 struct drm_device *dev = intel_encoder->base.dev;
1528 struct drm_i915_private *dev_priv = dev->dev_private;
1529 enum port port = intel_dig_port->port;
1530
1531 drm_connector_init(dev, connector, &intel_hdmi_connector_funcs,
1532 DRM_MODE_CONNECTOR_HDMIA);
1533 drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
1534
1535 connector->interlace_allowed = 1;
1536 connector->doublescan_allowed = 0;
1537 connector->stereo_allowed = 1;
1538
1539 switch (port) {
1540 case PORT_B:
1541 intel_hdmi->ddc_bus = GMBUS_PORT_DPB;
1542 intel_encoder->hpd_pin = HPD_PORT_B;
1543 break;
1544 case PORT_C:
1545 intel_hdmi->ddc_bus = GMBUS_PORT_DPC;
1546 intel_encoder->hpd_pin = HPD_PORT_C;
1547 break;
1548 case PORT_D:
1549 if (IS_CHERRYVIEW(dev))
1550 intel_hdmi->ddc_bus = GMBUS_PORT_DPD_CHV;
1551 else
1552 intel_hdmi->ddc_bus = GMBUS_PORT_DPD;
1553 intel_encoder->hpd_pin = HPD_PORT_D;
1554 break;
1555 case PORT_A:
1556 intel_encoder->hpd_pin = HPD_PORT_A;
1557 /* Internal port only for eDP. */
1558 default:
1559 BUG();
1560 }
1561
1562 if (IS_VALLEYVIEW(dev)) {
1563 intel_hdmi->write_infoframe = vlv_write_infoframe;
1564 intel_hdmi->set_infoframes = vlv_set_infoframes;
1565 } else if (!HAS_PCH_SPLIT(dev)) {
1566 intel_hdmi->write_infoframe = g4x_write_infoframe;
1567 intel_hdmi->set_infoframes = g4x_set_infoframes;
1568 } else if (HAS_DDI(dev)) {
1569 intel_hdmi->write_infoframe = hsw_write_infoframe;
1570 intel_hdmi->set_infoframes = hsw_set_infoframes;
1571 } else if (HAS_PCH_IBX(dev)) {
1572 intel_hdmi->write_infoframe = ibx_write_infoframe;
1573 intel_hdmi->set_infoframes = ibx_set_infoframes;
1574 } else {
1575 intel_hdmi->write_infoframe = cpt_write_infoframe;
1576 intel_hdmi->set_infoframes = cpt_set_infoframes;
1577 }
1578
1579 if (HAS_DDI(dev))
1580 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
1581 else
1582 intel_connector->get_hw_state = intel_connector_get_hw_state;
1583 intel_connector->unregister = intel_connector_unregister;
1584
1585 intel_hdmi_add_properties(intel_hdmi, connector);
1586
1587 intel_connector_attach_encoder(intel_connector, intel_encoder);
1588 drm_sysfs_connector_add(connector);
1589
1590 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
1591 * 0xd. Failure to do so will result in spurious interrupts being
1592 * generated on the port when a cable is not attached.
1593 */
1594 if (IS_G4X(dev) && !IS_GM45(dev)) {
1595 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
1596 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
1597 }
1598 }
1599
1600 void intel_hdmi_init(struct drm_device *dev, int hdmi_reg, enum port port)
1601 {
1602 struct intel_digital_port *intel_dig_port;
1603 struct intel_encoder *intel_encoder;
1604 struct intel_connector *intel_connector;
1605
1606 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
1607 if (!intel_dig_port)
1608 return;
1609
1610 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
1611 if (!intel_connector) {
1612 kfree(intel_dig_port);
1613 return;
1614 }
1615
1616 intel_encoder = &intel_dig_port->base;
1617
1618 drm_encoder_init(dev, &intel_encoder->base, &intel_hdmi_enc_funcs,
1619 DRM_MODE_ENCODER_TMDS);
1620
1621 intel_encoder->compute_config = intel_hdmi_compute_config;
1622 intel_encoder->disable = intel_disable_hdmi;
1623 intel_encoder->get_hw_state = intel_hdmi_get_hw_state;
1624 intel_encoder->get_config = intel_hdmi_get_config;
1625 if (IS_CHERRYVIEW(dev)) {
1626 intel_encoder->pre_pll_enable = chv_hdmi_pre_pll_enable;
1627 intel_encoder->pre_enable = chv_hdmi_pre_enable;
1628 intel_encoder->enable = vlv_enable_hdmi;
1629 intel_encoder->post_disable = chv_hdmi_post_disable;
1630 } else if (IS_VALLEYVIEW(dev)) {
1631 intel_encoder->pre_pll_enable = vlv_hdmi_pre_pll_enable;
1632 intel_encoder->pre_enable = vlv_hdmi_pre_enable;
1633 intel_encoder->enable = vlv_enable_hdmi;
1634 intel_encoder->post_disable = vlv_hdmi_post_disable;
1635 } else {
1636 intel_encoder->pre_enable = intel_hdmi_pre_enable;
1637 intel_encoder->enable = intel_enable_hdmi;
1638 }
1639
1640 intel_encoder->type = INTEL_OUTPUT_HDMI;
1641 if (IS_CHERRYVIEW(dev)) {
1642 if (port == PORT_D)
1643 intel_encoder->crtc_mask = 1 << 2;
1644 else
1645 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
1646 } else {
1647 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
1648 }
1649 intel_encoder->cloneable = 1 << INTEL_OUTPUT_ANALOG;
1650 /*
1651 * BSpec is unclear about HDMI+HDMI cloning on g4x, but it seems
1652 * to work on real hardware. And since g4x can send infoframes to
1653 * only one port anyway, nothing is lost by allowing it.
1654 */
1655 if (IS_G4X(dev))
1656 intel_encoder->cloneable |= 1 << INTEL_OUTPUT_HDMI;
1657
1658 intel_dig_port->port = port;
1659 intel_dig_port->hdmi.hdmi_reg = hdmi_reg;
1660 intel_dig_port->dp.output_reg = 0;
1661
1662 intel_hdmi_init_connector(intel_dig_port, intel_connector);
1663 }