]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Avoid lock dropping between rescheduling
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL (1 << 0x2)
146 #define RING_EXECLIST1_VALID (1 << 0x3)
147 #define RING_EXECLIST0_VALID (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
158
159 #define GEN8_CTX_STATUS_COMPLETED_MASK \
160 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161 GEN8_CTX_STATUS_PREEMPTED | \
162 GEN8_CTX_STATUS_ELEMENT_SWITCH)
163
164 #define CTX_LRI_HEADER_0 0x01
165 #define CTX_CONTEXT_CONTROL 0x02
166 #define CTX_RING_HEAD 0x04
167 #define CTX_RING_TAIL 0x06
168 #define CTX_RING_BUFFER_START 0x08
169 #define CTX_RING_BUFFER_CONTROL 0x0a
170 #define CTX_BB_HEAD_U 0x0c
171 #define CTX_BB_HEAD_L 0x0e
172 #define CTX_BB_STATE 0x10
173 #define CTX_SECOND_BB_HEAD_U 0x12
174 #define CTX_SECOND_BB_HEAD_L 0x14
175 #define CTX_SECOND_BB_STATE 0x16
176 #define CTX_BB_PER_CTX_PTR 0x18
177 #define CTX_RCS_INDIRECT_CTX 0x1a
178 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
179 #define CTX_LRI_HEADER_1 0x21
180 #define CTX_CTX_TIMESTAMP 0x22
181 #define CTX_PDP3_UDW 0x24
182 #define CTX_PDP3_LDW 0x26
183 #define CTX_PDP2_UDW 0x28
184 #define CTX_PDP2_LDW 0x2a
185 #define CTX_PDP1_UDW 0x2c
186 #define CTX_PDP1_LDW 0x2e
187 #define CTX_PDP0_UDW 0x30
188 #define CTX_PDP0_LDW 0x32
189 #define CTX_LRI_HEADER_2 0x41
190 #define CTX_R_PWR_CLK_STATE 0x42
191 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
192
193 #define CTX_REG(reg_state, pos, reg, val) do { \
194 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195 (reg_state)[(pos)+1] = (val); \
196 } while (0)
197
198 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
199 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
200 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202 } while (0)
203
204 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207 } while (0)
208
209 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
210 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
211
212 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
213 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
214
215 #define WA_TAIL_DWORDS 2
216
217 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
218 struct intel_engine_cs *engine);
219 static void execlists_init_reg_state(u32 *reg_state,
220 struct i915_gem_context *ctx,
221 struct intel_engine_cs *engine,
222 struct intel_ring *ring);
223
224 /**
225 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
226 * @dev_priv: i915 device private
227 * @enable_execlists: value of i915.enable_execlists module parameter.
228 *
229 * Only certain platforms support Execlists (the prerequisites being
230 * support for Logical Ring Contexts and Aliasing PPGTT or better).
231 *
232 * Return: 1 if Execlists is supported and has to be enabled.
233 */
234 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
235 {
236 /* On platforms with execlist available, vGPU will only
237 * support execlist mode, no ring buffer mode.
238 */
239 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
240 return 1;
241
242 if (INTEL_GEN(dev_priv) >= 9)
243 return 1;
244
245 if (enable_execlists == 0)
246 return 0;
247
248 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
249 USES_PPGTT(dev_priv) &&
250 i915.use_mmio_flip >= 0)
251 return 1;
252
253 return 0;
254 }
255
256 /**
257 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
258 * descriptor for a pinned context
259 * @ctx: Context to work on
260 * @engine: Engine the descriptor will be used with
261 *
262 * The context descriptor encodes various attributes of a context,
263 * including its GTT address and some flags. Because it's fairly
264 * expensive to calculate, we'll just do it once and cache the result,
265 * which remains valid until the context is unpinned.
266 *
267 * This is what a descriptor looks like, from LSB to MSB::
268 *
269 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
270 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
271 * bits 32-52: ctx ID, a globally unique tag
272 * bits 53-54: mbz, reserved for use by hardware
273 * bits 55-63: group ID, currently unused and set to 0
274 */
275 static void
276 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
277 struct intel_engine_cs *engine)
278 {
279 struct intel_context *ce = &ctx->engine[engine->id];
280 u64 desc;
281
282 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
283
284 desc = ctx->desc_template; /* bits 0-11 */
285 desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
286 /* bits 12-31 */
287 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
288
289 ce->lrc_desc = desc;
290 }
291
292 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
293 struct intel_engine_cs *engine)
294 {
295 return ctx->engine[engine->id].lrc_desc;
296 }
297
298 static inline void
299 execlists_context_status_change(struct drm_i915_gem_request *rq,
300 unsigned long status)
301 {
302 /*
303 * Only used when GVT-g is enabled now. When GVT-g is disabled,
304 * The compiler should eliminate this function as dead-code.
305 */
306 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
307 return;
308
309 atomic_notifier_call_chain(&rq->engine->context_status_notifier,
310 status, rq);
311 }
312
313 static void
314 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
315 {
316 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
317 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
318 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
319 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
320 }
321
322 static u64 execlists_update_context(struct drm_i915_gem_request *rq)
323 {
324 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
325 struct i915_hw_ppgtt *ppgtt =
326 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
327 u32 *reg_state = ce->lrc_reg_state;
328
329 assert_ring_tail_valid(rq->ring, rq->tail);
330 reg_state[CTX_RING_TAIL+1] = rq->tail;
331
332 /* True 32b PPGTT with dynamic page allocation: update PDP
333 * registers and point the unallocated PDPs to scratch page.
334 * PML4 is allocated during ppgtt init, so this is not needed
335 * in 48-bit mode.
336 */
337 if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
338 execlists_update_context_pdps(ppgtt, reg_state);
339
340 return ce->lrc_desc;
341 }
342
343 static void execlists_submit_ports(struct intel_engine_cs *engine)
344 {
345 struct drm_i915_private *dev_priv = engine->i915;
346 struct execlist_port *port = engine->execlist_port;
347 u32 __iomem *elsp =
348 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
349 u64 desc[2];
350
351 GEM_BUG_ON(port[0].count > 1);
352 if (!port[0].count)
353 execlists_context_status_change(port[0].request,
354 INTEL_CONTEXT_SCHEDULE_IN);
355 desc[0] = execlists_update_context(port[0].request);
356 GEM_DEBUG_EXEC(port[0].context_id = upper_32_bits(desc[0]));
357 port[0].count++;
358
359 if (port[1].request) {
360 GEM_BUG_ON(port[1].count);
361 execlists_context_status_change(port[1].request,
362 INTEL_CONTEXT_SCHEDULE_IN);
363 desc[1] = execlists_update_context(port[1].request);
364 GEM_DEBUG_EXEC(port[1].context_id = upper_32_bits(desc[1]));
365 port[1].count = 1;
366 } else {
367 desc[1] = 0;
368 }
369 GEM_BUG_ON(desc[0] == desc[1]);
370
371 /* You must always write both descriptors in the order below. */
372 writel(upper_32_bits(desc[1]), elsp);
373 writel(lower_32_bits(desc[1]), elsp);
374
375 writel(upper_32_bits(desc[0]), elsp);
376 /* The context is automatically loaded after the following */
377 writel(lower_32_bits(desc[0]), elsp);
378 }
379
380 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
381 {
382 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
383 i915_gem_context_force_single_submission(ctx));
384 }
385
386 static bool can_merge_ctx(const struct i915_gem_context *prev,
387 const struct i915_gem_context *next)
388 {
389 if (prev != next)
390 return false;
391
392 if (ctx_single_port_submission(prev))
393 return false;
394
395 return true;
396 }
397
398 static void execlists_dequeue(struct intel_engine_cs *engine)
399 {
400 struct drm_i915_gem_request *last;
401 struct execlist_port *port = engine->execlist_port;
402 struct rb_node *rb;
403 bool submit = false;
404
405 /* After execlist_first is updated, the tasklet will be rescheduled.
406 *
407 * If we are currently running (inside the tasklet) and a third
408 * party queues a request and so updates engine->execlist_first under
409 * the spinlock (which we have elided), it will atomically set the
410 * TASKLET_SCHED flag causing the us to be re-executed and pick up
411 * the change in state (the update to TASKLET_SCHED incurs a memory
412 * barrier making this cross-cpu checking safe).
413 */
414 if (!READ_ONCE(engine->execlist_first))
415 return;
416
417 last = port->request;
418 if (last)
419 /* WaIdleLiteRestore:bdw,skl
420 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
421 * as we resubmit the request. See gen8_emit_breadcrumb()
422 * for where we prepare the padding after the end of the
423 * request.
424 */
425 last->tail = last->wa_tail;
426
427 GEM_BUG_ON(port[1].request);
428
429 /* Hardware submission is through 2 ports. Conceptually each port
430 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
431 * static for a context, and unique to each, so we only execute
432 * requests belonging to a single context from each ring. RING_HEAD
433 * is maintained by the CS in the context image, it marks the place
434 * where it got up to last time, and through RING_TAIL we tell the CS
435 * where we want to execute up to this time.
436 *
437 * In this list the requests are in order of execution. Consecutive
438 * requests from the same context are adjacent in the ringbuffer. We
439 * can combine these requests into a single RING_TAIL update:
440 *
441 * RING_HEAD...req1...req2
442 * ^- RING_TAIL
443 * since to execute req2 the CS must first execute req1.
444 *
445 * Our goal then is to point each port to the end of a consecutive
446 * sequence of requests as being the most optimal (fewest wake ups
447 * and context switches) submission.
448 */
449
450 spin_lock_irq(&engine->timeline->lock);
451 rb = engine->execlist_first;
452 while (rb) {
453 struct drm_i915_gem_request *cursor =
454 rb_entry(rb, typeof(*cursor), priotree.node);
455
456 /* Can we combine this request with the current port? It has to
457 * be the same context/ringbuffer and not have any exceptions
458 * (e.g. GVT saying never to combine contexts).
459 *
460 * If we can combine the requests, we can execute both by
461 * updating the RING_TAIL to point to the end of the second
462 * request, and so we never need to tell the hardware about
463 * the first.
464 */
465 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
466 /* If we are on the second port and cannot combine
467 * this request with the last, then we are done.
468 */
469 if (port != engine->execlist_port)
470 break;
471
472 /* If GVT overrides us we only ever submit port[0],
473 * leaving port[1] empty. Note that we also have
474 * to be careful that we don't queue the same
475 * context (even though a different request) to
476 * the second port.
477 */
478 if (ctx_single_port_submission(last->ctx) ||
479 ctx_single_port_submission(cursor->ctx))
480 break;
481
482 GEM_BUG_ON(last->ctx == cursor->ctx);
483
484 i915_gem_request_assign(&port->request, last);
485 port++;
486 }
487
488 rb = rb_next(rb);
489 rb_erase(&cursor->priotree.node, &engine->execlist_queue);
490 RB_CLEAR_NODE(&cursor->priotree.node);
491 cursor->priotree.priority = INT_MAX;
492
493 __i915_gem_request_submit(cursor);
494 trace_i915_gem_request_in(cursor, port - engine->execlist_port);
495 last = cursor;
496 submit = true;
497 }
498 if (submit) {
499 i915_gem_request_assign(&port->request, last);
500 engine->execlist_first = rb;
501 }
502 spin_unlock_irq(&engine->timeline->lock);
503
504 if (submit)
505 execlists_submit_ports(engine);
506 }
507
508 static bool execlists_elsp_idle(struct intel_engine_cs *engine)
509 {
510 return !engine->execlist_port[0].request;
511 }
512
513 static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
514 {
515 const struct execlist_port *port = engine->execlist_port;
516
517 return port[0].count + port[1].count < 2;
518 }
519
520 /*
521 * Check the unread Context Status Buffers and manage the submission of new
522 * contexts to the ELSP accordingly.
523 */
524 static void intel_lrc_irq_handler(unsigned long data)
525 {
526 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
527 struct execlist_port *port = engine->execlist_port;
528 struct drm_i915_private *dev_priv = engine->i915;
529
530 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
531
532 /* Prefer doing test_and_clear_bit() as a two stage operation to avoid
533 * imposing the cost of a locked atomic transaction when submitting a
534 * new request (outside of the context-switch interrupt).
535 */
536 while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
537 u32 __iomem *csb_mmio =
538 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
539 u32 __iomem *buf =
540 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
541 unsigned int head, tail;
542
543 /* The write will be ordered by the uncached read (itself
544 * a memory barrier), so we do not need another in the form
545 * of a locked instruction. The race between the interrupt
546 * handler and the split test/clear is harmless as we order
547 * our clear before the CSB read. If the interrupt arrived
548 * first between the test and the clear, we read the updated
549 * CSB and clear the bit. If the interrupt arrives as we read
550 * the CSB or later (i.e. after we had cleared the bit) the bit
551 * is set and we do a new loop.
552 */
553 __clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
554 head = readl(csb_mmio);
555 tail = GEN8_CSB_WRITE_PTR(head);
556 head = GEN8_CSB_READ_PTR(head);
557 while (head != tail) {
558 unsigned int status;
559
560 if (++head == GEN8_CSB_ENTRIES)
561 head = 0;
562
563 /* We are flying near dragons again.
564 *
565 * We hold a reference to the request in execlist_port[]
566 * but no more than that. We are operating in softirq
567 * context and so cannot hold any mutex or sleep. That
568 * prevents us stopping the requests we are processing
569 * in port[] from being retired simultaneously (the
570 * breadcrumb will be complete before we see the
571 * context-switch). As we only hold the reference to the
572 * request, any pointer chasing underneath the request
573 * is subject to a potential use-after-free. Thus we
574 * store all of the bookkeeping within port[] as
575 * required, and avoid using unguarded pointers beneath
576 * request itself. The same applies to the atomic
577 * status notifier.
578 */
579
580 status = readl(buf + 2 * head);
581 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
582 continue;
583
584 /* Check the context/desc id for this event matches */
585 GEM_DEBUG_BUG_ON(readl(buf + 2 * head + 1) !=
586 port[0].context_id);
587
588 GEM_BUG_ON(port[0].count == 0);
589 if (--port[0].count == 0) {
590 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
591 GEM_BUG_ON(!i915_gem_request_completed(port[0].request));
592 execlists_context_status_change(port[0].request,
593 INTEL_CONTEXT_SCHEDULE_OUT);
594
595 trace_i915_gem_request_out(port[0].request);
596 i915_gem_request_put(port[0].request);
597 port[0] = port[1];
598 memset(&port[1], 0, sizeof(port[1]));
599 }
600
601 GEM_BUG_ON(port[0].count == 0 &&
602 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
603 }
604
605 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
606 csb_mmio);
607 }
608
609 if (execlists_elsp_ready(engine))
610 execlists_dequeue(engine);
611
612 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
613 }
614
615 static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
616 {
617 struct rb_node **p, *rb;
618 bool first = true;
619
620 /* most positive priority is scheduled first, equal priorities fifo */
621 rb = NULL;
622 p = &root->rb_node;
623 while (*p) {
624 struct i915_priotree *pos;
625
626 rb = *p;
627 pos = rb_entry(rb, typeof(*pos), node);
628 if (pt->priority > pos->priority) {
629 p = &rb->rb_left;
630 } else {
631 p = &rb->rb_right;
632 first = false;
633 }
634 }
635 rb_link_node(&pt->node, rb, p);
636 rb_insert_color(&pt->node, root);
637
638 return first;
639 }
640
641 static void execlists_submit_request(struct drm_i915_gem_request *request)
642 {
643 struct intel_engine_cs *engine = request->engine;
644 unsigned long flags;
645
646 /* Will be called from irq-context when using foreign fences. */
647 spin_lock_irqsave(&engine->timeline->lock, flags);
648
649 if (insert_request(&request->priotree, &engine->execlist_queue)) {
650 engine->execlist_first = &request->priotree.node;
651 if (execlists_elsp_ready(engine))
652 tasklet_hi_schedule(&engine->irq_tasklet);
653 }
654
655 spin_unlock_irqrestore(&engine->timeline->lock, flags);
656 }
657
658 static struct intel_engine_cs *
659 pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
660 {
661 struct intel_engine_cs *engine =
662 container_of(pt, struct drm_i915_gem_request, priotree)->engine;
663
664 GEM_BUG_ON(!locked);
665
666 if (engine != locked) {
667 spin_unlock(&locked->timeline->lock);
668 spin_lock(&engine->timeline->lock);
669 }
670
671 return engine;
672 }
673
674 static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
675 {
676 struct intel_engine_cs *engine;
677 struct i915_dependency *dep, *p;
678 struct i915_dependency stack;
679 LIST_HEAD(dfs);
680
681 if (prio <= READ_ONCE(request->priotree.priority))
682 return;
683
684 /* Need BKL in order to use the temporary link inside i915_dependency */
685 lockdep_assert_held(&request->i915->drm.struct_mutex);
686
687 stack.signaler = &request->priotree;
688 list_add(&stack.dfs_link, &dfs);
689
690 /* Recursively bump all dependent priorities to match the new request.
691 *
692 * A naive approach would be to use recursion:
693 * static void update_priorities(struct i915_priotree *pt, prio) {
694 * list_for_each_entry(dep, &pt->signalers_list, signal_link)
695 * update_priorities(dep->signal, prio)
696 * insert_request(pt);
697 * }
698 * but that may have unlimited recursion depth and so runs a very
699 * real risk of overunning the kernel stack. Instead, we build
700 * a flat list of all dependencies starting with the current request.
701 * As we walk the list of dependencies, we add all of its dependencies
702 * to the end of the list (this may include an already visited
703 * request) and continue to walk onwards onto the new dependencies. The
704 * end result is a topological list of requests in reverse order, the
705 * last element in the list is the request we must execute first.
706 */
707 list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
708 struct i915_priotree *pt = dep->signaler;
709
710 /* Within an engine, there can be no cycle, but we may
711 * refer to the same dependency chain multiple times
712 * (redundant dependencies are not eliminated) and across
713 * engines.
714 */
715 list_for_each_entry(p, &pt->signalers_list, signal_link) {
716 GEM_BUG_ON(p->signaler->priority < pt->priority);
717 if (prio > READ_ONCE(p->signaler->priority))
718 list_move_tail(&p->dfs_link, &dfs);
719 }
720
721 list_safe_reset_next(dep, p, dfs_link);
722 }
723
724 engine = request->engine;
725 spin_lock_irq(&engine->timeline->lock);
726
727 /* Fifo and depth-first replacement ensure our deps execute before us */
728 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
729 struct i915_priotree *pt = dep->signaler;
730
731 INIT_LIST_HEAD(&dep->dfs_link);
732
733 engine = pt_lock_engine(pt, engine);
734
735 if (prio <= pt->priority)
736 continue;
737
738 pt->priority = prio;
739 if (!RB_EMPTY_NODE(&pt->node)) {
740 rb_erase(&pt->node, &engine->execlist_queue);
741 if (insert_request(pt, &engine->execlist_queue))
742 engine->execlist_first = &pt->node;
743 }
744 }
745
746 spin_unlock_irq(&engine->timeline->lock);
747
748 /* XXX Do we need to preempt to make room for us and our deps? */
749 }
750
751 static int execlists_context_pin(struct intel_engine_cs *engine,
752 struct i915_gem_context *ctx)
753 {
754 struct intel_context *ce = &ctx->engine[engine->id];
755 unsigned int flags;
756 void *vaddr;
757 int ret;
758
759 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
760
761 if (ce->pin_count++)
762 return 0;
763 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
764
765 if (!ce->state) {
766 ret = execlists_context_deferred_alloc(ctx, engine);
767 if (ret)
768 goto err;
769 }
770 GEM_BUG_ON(!ce->state);
771
772 flags = PIN_GLOBAL | PIN_HIGH;
773 if (ctx->ggtt_offset_bias)
774 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
775
776 ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
777 if (ret)
778 goto err;
779
780 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
781 if (IS_ERR(vaddr)) {
782 ret = PTR_ERR(vaddr);
783 goto unpin_vma;
784 }
785
786 ret = intel_ring_pin(ce->ring, ctx->ggtt_offset_bias);
787 if (ret)
788 goto unpin_map;
789
790 intel_lr_context_descriptor_update(ctx, engine);
791
792 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
793 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
794 i915_ggtt_offset(ce->ring->vma);
795
796 ce->state->obj->mm.dirty = true;
797
798 i915_gem_context_get(ctx);
799 return 0;
800
801 unpin_map:
802 i915_gem_object_unpin_map(ce->state->obj);
803 unpin_vma:
804 __i915_vma_unpin(ce->state);
805 err:
806 ce->pin_count = 0;
807 return ret;
808 }
809
810 static void execlists_context_unpin(struct intel_engine_cs *engine,
811 struct i915_gem_context *ctx)
812 {
813 struct intel_context *ce = &ctx->engine[engine->id];
814
815 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
816 GEM_BUG_ON(ce->pin_count == 0);
817
818 if (--ce->pin_count)
819 return;
820
821 intel_ring_unpin(ce->ring);
822
823 i915_gem_object_unpin_map(ce->state->obj);
824 i915_vma_unpin(ce->state);
825
826 i915_gem_context_put(ctx);
827 }
828
829 static int execlists_request_alloc(struct drm_i915_gem_request *request)
830 {
831 struct intel_engine_cs *engine = request->engine;
832 struct intel_context *ce = &request->ctx->engine[engine->id];
833 u32 *cs;
834 int ret;
835
836 GEM_BUG_ON(!ce->pin_count);
837
838 /* Flush enough space to reduce the likelihood of waiting after
839 * we start building the request - in which case we will just
840 * have to repeat work.
841 */
842 request->reserved_space += EXECLISTS_REQUEST_SIZE;
843
844 GEM_BUG_ON(!ce->ring);
845 request->ring = ce->ring;
846
847 if (i915.enable_guc_submission) {
848 /*
849 * Check that the GuC has space for the request before
850 * going any further, as the i915_add_request() call
851 * later on mustn't fail ...
852 */
853 ret = i915_guc_wq_reserve(request);
854 if (ret)
855 goto err;
856 }
857
858 cs = intel_ring_begin(request, 0);
859 if (IS_ERR(cs)) {
860 ret = PTR_ERR(cs);
861 goto err_unreserve;
862 }
863
864 if (!ce->initialised) {
865 ret = engine->init_context(request);
866 if (ret)
867 goto err_unreserve;
868
869 ce->initialised = true;
870 }
871
872 /* Note that after this point, we have committed to using
873 * this request as it is being used to both track the
874 * state of engine initialisation and liveness of the
875 * golden renderstate above. Think twice before you try
876 * to cancel/unwind this request now.
877 */
878
879 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
880 return 0;
881
882 err_unreserve:
883 if (i915.enable_guc_submission)
884 i915_guc_wq_unreserve(request);
885 err:
886 return ret;
887 }
888
889 /*
890 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
891 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
892 * but there is a slight complication as this is applied in WA batch where the
893 * values are only initialized once so we cannot take register value at the
894 * beginning and reuse it further; hence we save its value to memory, upload a
895 * constant value with bit21 set and then we restore it back with the saved value.
896 * To simplify the WA, a constant value is formed by using the default value
897 * of this register. This shouldn't be a problem because we are only modifying
898 * it for a short period and this batch in non-premptible. We can ofcourse
899 * use additional instructions that read the actual value of the register
900 * at that time and set our bit of interest but it makes the WA complicated.
901 *
902 * This WA is also required for Gen9 so extracting as a function avoids
903 * code duplication.
904 */
905 static u32 *
906 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
907 {
908 *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
909 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
910 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
911 *batch++ = 0;
912
913 *batch++ = MI_LOAD_REGISTER_IMM(1);
914 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
915 *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
916
917 batch = gen8_emit_pipe_control(batch,
918 PIPE_CONTROL_CS_STALL |
919 PIPE_CONTROL_DC_FLUSH_ENABLE,
920 0);
921
922 *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
923 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
924 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
925 *batch++ = 0;
926
927 return batch;
928 }
929
930 /*
931 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
932 * initialized at the beginning and shared across all contexts but this field
933 * helps us to have multiple batches at different offsets and select them based
934 * on a criteria. At the moment this batch always start at the beginning of the page
935 * and at this point we don't have multiple wa_ctx batch buffers.
936 *
937 * The number of WA applied are not known at the beginning; we use this field
938 * to return the no of DWORDS written.
939 *
940 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
941 * so it adds NOOPs as padding to make it cacheline aligned.
942 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
943 * makes a complete batch buffer.
944 */
945 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
946 {
947 /* WaDisableCtxRestoreArbitration:bdw,chv */
948 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
949
950 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
951 if (IS_BROADWELL(engine->i915))
952 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
953
954 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
955 /* Actual scratch location is at 128 bytes offset */
956 batch = gen8_emit_pipe_control(batch,
957 PIPE_CONTROL_FLUSH_L3 |
958 PIPE_CONTROL_GLOBAL_GTT_IVB |
959 PIPE_CONTROL_CS_STALL |
960 PIPE_CONTROL_QW_WRITE,
961 i915_ggtt_offset(engine->scratch) +
962 2 * CACHELINE_BYTES);
963
964 /* Pad to end of cacheline */
965 while ((unsigned long)batch % CACHELINE_BYTES)
966 *batch++ = MI_NOOP;
967
968 /*
969 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
970 * execution depends on the length specified in terms of cache lines
971 * in the register CTX_RCS_INDIRECT_CTX
972 */
973
974 return batch;
975 }
976
977 /*
978 * This batch is started immediately after indirect_ctx batch. Since we ensure
979 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
980 *
981 * The number of DWORDS written are returned using this field.
982 *
983 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
984 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
985 */
986 static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
987 {
988 /* WaDisableCtxRestoreArbitration:bdw,chv */
989 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
990 *batch++ = MI_BATCH_BUFFER_END;
991
992 return batch;
993 }
994
995 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
996 {
997 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
998 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
999
1000 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1001 *batch++ = MI_LOAD_REGISTER_IMM(1);
1002 *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1003 *batch++ = _MASKED_BIT_DISABLE(
1004 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1005 *batch++ = MI_NOOP;
1006
1007 /* WaClearSlmSpaceAtContextSwitch:kbl */
1008 /* Actual scratch location is at 128 bytes offset */
1009 if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1010 batch = gen8_emit_pipe_control(batch,
1011 PIPE_CONTROL_FLUSH_L3 |
1012 PIPE_CONTROL_GLOBAL_GTT_IVB |
1013 PIPE_CONTROL_CS_STALL |
1014 PIPE_CONTROL_QW_WRITE,
1015 i915_ggtt_offset(engine->scratch)
1016 + 2 * CACHELINE_BYTES);
1017 }
1018
1019 /* WaMediaPoolStateCmdInWABB:bxt,glk */
1020 if (HAS_POOLED_EU(engine->i915)) {
1021 /*
1022 * EU pool configuration is setup along with golden context
1023 * during context initialization. This value depends on
1024 * device type (2x6 or 3x6) and needs to be updated based
1025 * on which subslice is disabled especially for 2x6
1026 * devices, however it is safe to load default
1027 * configuration of 3x6 device instead of masking off
1028 * corresponding bits because HW ignores bits of a disabled
1029 * subslice and drops down to appropriate config. Please
1030 * see render_state_setup() in i915_gem_render_state.c for
1031 * possible configurations, to avoid duplication they are
1032 * not shown here again.
1033 */
1034 *batch++ = GEN9_MEDIA_POOL_STATE;
1035 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1036 *batch++ = 0x00777000;
1037 *batch++ = 0;
1038 *batch++ = 0;
1039 *batch++ = 0;
1040 }
1041
1042 /* Pad to end of cacheline */
1043 while ((unsigned long)batch % CACHELINE_BYTES)
1044 *batch++ = MI_NOOP;
1045
1046 return batch;
1047 }
1048
1049 static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1050 {
1051 *batch++ = MI_BATCH_BUFFER_END;
1052
1053 return batch;
1054 }
1055
1056 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1057
1058 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1059 {
1060 struct drm_i915_gem_object *obj;
1061 struct i915_vma *vma;
1062 int err;
1063
1064 obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1065 if (IS_ERR(obj))
1066 return PTR_ERR(obj);
1067
1068 vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1069 if (IS_ERR(vma)) {
1070 err = PTR_ERR(vma);
1071 goto err;
1072 }
1073
1074 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1075 if (err)
1076 goto err;
1077
1078 engine->wa_ctx.vma = vma;
1079 return 0;
1080
1081 err:
1082 i915_gem_object_put(obj);
1083 return err;
1084 }
1085
1086 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1087 {
1088 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1089 }
1090
1091 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1092
1093 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1094 {
1095 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1096 struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1097 &wa_ctx->per_ctx };
1098 wa_bb_func_t wa_bb_fn[2];
1099 struct page *page;
1100 void *batch, *batch_ptr;
1101 unsigned int i;
1102 int ret;
1103
1104 if (WARN_ON(engine->id != RCS || !engine->scratch))
1105 return -EINVAL;
1106
1107 switch (INTEL_GEN(engine->i915)) {
1108 case 9:
1109 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1110 wa_bb_fn[1] = gen9_init_perctx_bb;
1111 break;
1112 case 8:
1113 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1114 wa_bb_fn[1] = gen8_init_perctx_bb;
1115 break;
1116 default:
1117 MISSING_CASE(INTEL_GEN(engine->i915));
1118 return 0;
1119 }
1120
1121 ret = lrc_setup_wa_ctx(engine);
1122 if (ret) {
1123 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1124 return ret;
1125 }
1126
1127 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1128 batch = batch_ptr = kmap_atomic(page);
1129
1130 /*
1131 * Emit the two workaround batch buffers, recording the offset from the
1132 * start of the workaround batch buffer object for each and their
1133 * respective sizes.
1134 */
1135 for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1136 wa_bb[i]->offset = batch_ptr - batch;
1137 if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
1138 ret = -EINVAL;
1139 break;
1140 }
1141 batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1142 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1143 }
1144
1145 BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1146
1147 kunmap_atomic(batch);
1148 if (ret)
1149 lrc_destroy_wa_ctx(engine);
1150
1151 return ret;
1152 }
1153
1154 static u32 port_seqno(struct execlist_port *port)
1155 {
1156 return port->request ? port->request->global_seqno : 0;
1157 }
1158
1159 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1160 {
1161 struct drm_i915_private *dev_priv = engine->i915;
1162 int ret;
1163
1164 ret = intel_mocs_init_engine(engine);
1165 if (ret)
1166 return ret;
1167
1168 intel_engine_reset_breadcrumbs(engine);
1169 intel_engine_init_hangcheck(engine);
1170
1171 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1172 I915_WRITE(RING_MODE_GEN7(engine),
1173 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1174 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1175 engine->status_page.ggtt_offset);
1176 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1177
1178 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1179
1180 /* After a GPU reset, we may have requests to replay */
1181 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1182 if (!i915.enable_guc_submission && !execlists_elsp_idle(engine)) {
1183 DRM_DEBUG_DRIVER("Restarting %s from requests [0x%x, 0x%x]\n",
1184 engine->name,
1185 port_seqno(&engine->execlist_port[0]),
1186 port_seqno(&engine->execlist_port[1]));
1187 engine->execlist_port[0].count = 0;
1188 engine->execlist_port[1].count = 0;
1189 execlists_submit_ports(engine);
1190 }
1191
1192 return 0;
1193 }
1194
1195 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1196 {
1197 struct drm_i915_private *dev_priv = engine->i915;
1198 int ret;
1199
1200 ret = gen8_init_common_ring(engine);
1201 if (ret)
1202 return ret;
1203
1204 /* We need to disable the AsyncFlip performance optimisations in order
1205 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1206 * programmed to '1' on all products.
1207 *
1208 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1209 */
1210 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1211
1212 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1213
1214 return init_workarounds_ring(engine);
1215 }
1216
1217 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1218 {
1219 int ret;
1220
1221 ret = gen8_init_common_ring(engine);
1222 if (ret)
1223 return ret;
1224
1225 return init_workarounds_ring(engine);
1226 }
1227
1228 static void reset_common_ring(struct intel_engine_cs *engine,
1229 struct drm_i915_gem_request *request)
1230 {
1231 struct execlist_port *port = engine->execlist_port;
1232 struct intel_context *ce;
1233
1234 /* If the request was innocent, we leave the request in the ELSP
1235 * and will try to replay it on restarting. The context image may
1236 * have been corrupted by the reset, in which case we may have
1237 * to service a new GPU hang, but more likely we can continue on
1238 * without impact.
1239 *
1240 * If the request was guilty, we presume the context is corrupt
1241 * and have to at least restore the RING register in the context
1242 * image back to the expected values to skip over the guilty request.
1243 */
1244 if (!request || request->fence.error != -EIO)
1245 return;
1246
1247 /* We want a simple context + ring to execute the breadcrumb update.
1248 * We cannot rely on the context being intact across the GPU hang,
1249 * so clear it and rebuild just what we need for the breadcrumb.
1250 * All pending requests for this context will be zapped, and any
1251 * future request will be after userspace has had the opportunity
1252 * to recreate its own state.
1253 */
1254 ce = &request->ctx->engine[engine->id];
1255 execlists_init_reg_state(ce->lrc_reg_state,
1256 request->ctx, engine, ce->ring);
1257
1258 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1259 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1260 i915_ggtt_offset(ce->ring->vma);
1261 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1262
1263 request->ring->head = request->postfix;
1264 intel_ring_update_space(request->ring);
1265
1266 /* Catch up with any missed context-switch interrupts */
1267 if (request->ctx != port[0].request->ctx) {
1268 i915_gem_request_put(port[0].request);
1269 port[0] = port[1];
1270 memset(&port[1], 0, sizeof(port[1]));
1271 }
1272
1273 GEM_BUG_ON(request->ctx != port[0].request->ctx);
1274
1275 /* Reset WaIdleLiteRestore:bdw,skl as well */
1276 request->tail =
1277 intel_ring_wrap(request->ring,
1278 request->wa_tail - WA_TAIL_DWORDS*sizeof(u32));
1279 assert_ring_tail_valid(request->ring, request->tail);
1280 }
1281
1282 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1283 {
1284 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1285 struct intel_engine_cs *engine = req->engine;
1286 const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1287 u32 *cs;
1288 int i;
1289
1290 cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1291 if (IS_ERR(cs))
1292 return PTR_ERR(cs);
1293
1294 *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1295 for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1296 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1297
1298 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1299 *cs++ = upper_32_bits(pd_daddr);
1300 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1301 *cs++ = lower_32_bits(pd_daddr);
1302 }
1303
1304 *cs++ = MI_NOOP;
1305 intel_ring_advance(req, cs);
1306
1307 return 0;
1308 }
1309
1310 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1311 u64 offset, u32 len,
1312 const unsigned int flags)
1313 {
1314 u32 *cs;
1315 int ret;
1316
1317 /* Don't rely in hw updating PDPs, specially in lite-restore.
1318 * Ideally, we should set Force PD Restore in ctx descriptor,
1319 * but we can't. Force Restore would be a second option, but
1320 * it is unsafe in case of lite-restore (because the ctx is
1321 * not idle). PML4 is allocated during ppgtt init so this is
1322 * not needed in 48-bit.*/
1323 if (req->ctx->ppgtt &&
1324 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
1325 !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
1326 !intel_vgpu_active(req->i915)) {
1327 ret = intel_logical_ring_emit_pdps(req);
1328 if (ret)
1329 return ret;
1330
1331 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1332 }
1333
1334 cs = intel_ring_begin(req, 4);
1335 if (IS_ERR(cs))
1336 return PTR_ERR(cs);
1337
1338 /* FIXME(BDW): Address space and security selectors. */
1339 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1340 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1341 (flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1342 *cs++ = lower_32_bits(offset);
1343 *cs++ = upper_32_bits(offset);
1344 *cs++ = MI_NOOP;
1345 intel_ring_advance(req, cs);
1346
1347 return 0;
1348 }
1349
1350 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1351 {
1352 struct drm_i915_private *dev_priv = engine->i915;
1353 I915_WRITE_IMR(engine,
1354 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1355 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1356 }
1357
1358 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1359 {
1360 struct drm_i915_private *dev_priv = engine->i915;
1361 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1362 }
1363
1364 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1365 {
1366 u32 cmd, *cs;
1367
1368 cs = intel_ring_begin(request, 4);
1369 if (IS_ERR(cs))
1370 return PTR_ERR(cs);
1371
1372 cmd = MI_FLUSH_DW + 1;
1373
1374 /* We always require a command barrier so that subsequent
1375 * commands, such as breadcrumb interrupts, are strictly ordered
1376 * wrt the contents of the write cache being flushed to memory
1377 * (and thus being coherent from the CPU).
1378 */
1379 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1380
1381 if (mode & EMIT_INVALIDATE) {
1382 cmd |= MI_INVALIDATE_TLB;
1383 if (request->engine->id == VCS)
1384 cmd |= MI_INVALIDATE_BSD;
1385 }
1386
1387 *cs++ = cmd;
1388 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1389 *cs++ = 0; /* upper addr */
1390 *cs++ = 0; /* value */
1391 intel_ring_advance(request, cs);
1392
1393 return 0;
1394 }
1395
1396 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1397 u32 mode)
1398 {
1399 struct intel_engine_cs *engine = request->engine;
1400 u32 scratch_addr =
1401 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1402 bool vf_flush_wa = false, dc_flush_wa = false;
1403 u32 *cs, flags = 0;
1404 int len;
1405
1406 flags |= PIPE_CONTROL_CS_STALL;
1407
1408 if (mode & EMIT_FLUSH) {
1409 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1410 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1411 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1412 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1413 }
1414
1415 if (mode & EMIT_INVALIDATE) {
1416 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1417 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1418 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1419 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1420 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1421 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1422 flags |= PIPE_CONTROL_QW_WRITE;
1423 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1424
1425 /*
1426 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1427 * pipe control.
1428 */
1429 if (IS_GEN9(request->i915))
1430 vf_flush_wa = true;
1431
1432 /* WaForGAMHang:kbl */
1433 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1434 dc_flush_wa = true;
1435 }
1436
1437 len = 6;
1438
1439 if (vf_flush_wa)
1440 len += 6;
1441
1442 if (dc_flush_wa)
1443 len += 12;
1444
1445 cs = intel_ring_begin(request, len);
1446 if (IS_ERR(cs))
1447 return PTR_ERR(cs);
1448
1449 if (vf_flush_wa)
1450 cs = gen8_emit_pipe_control(cs, 0, 0);
1451
1452 if (dc_flush_wa)
1453 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1454 0);
1455
1456 cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
1457
1458 if (dc_flush_wa)
1459 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
1460
1461 intel_ring_advance(request, cs);
1462
1463 return 0;
1464 }
1465
1466 /*
1467 * Reserve space for 2 NOOPs at the end of each request to be
1468 * used as a workaround for not being allowed to do lite
1469 * restore with HEAD==TAIL (WaIdleLiteRestore).
1470 */
1471 static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1472 {
1473 *cs++ = MI_NOOP;
1474 *cs++ = MI_NOOP;
1475 request->wa_tail = intel_ring_offset(request, cs);
1476 }
1477
1478 static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
1479 {
1480 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1481 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1482
1483 *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1484 *cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1485 *cs++ = 0;
1486 *cs++ = request->global_seqno;
1487 *cs++ = MI_USER_INTERRUPT;
1488 *cs++ = MI_NOOP;
1489 request->tail = intel_ring_offset(request, cs);
1490 assert_ring_tail_valid(request->ring, request->tail);
1491
1492 gen8_emit_wa_tail(request, cs);
1493 }
1494
1495 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1496
1497 static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1498 u32 *cs)
1499 {
1500 /* We're using qword write, seqno should be aligned to 8 bytes. */
1501 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1502
1503 /* w/a for post sync ops following a GPGPU operation we
1504 * need a prior CS_STALL, which is emitted by the flush
1505 * following the batch.
1506 */
1507 *cs++ = GFX_OP_PIPE_CONTROL(6);
1508 *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
1509 PIPE_CONTROL_QW_WRITE;
1510 *cs++ = intel_hws_seqno_address(request->engine);
1511 *cs++ = 0;
1512 *cs++ = request->global_seqno;
1513 /* We're thrashing one dword of HWS. */
1514 *cs++ = 0;
1515 *cs++ = MI_USER_INTERRUPT;
1516 *cs++ = MI_NOOP;
1517 request->tail = intel_ring_offset(request, cs);
1518 assert_ring_tail_valid(request->ring, request->tail);
1519
1520 gen8_emit_wa_tail(request, cs);
1521 }
1522
1523 static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1524
1525 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1526 {
1527 int ret;
1528
1529 ret = intel_ring_workarounds_emit(req);
1530 if (ret)
1531 return ret;
1532
1533 ret = intel_rcs_context_init_mocs(req);
1534 /*
1535 * Failing to program the MOCS is non-fatal.The system will not
1536 * run at peak performance. So generate an error and carry on.
1537 */
1538 if (ret)
1539 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1540
1541 return i915_gem_render_state_emit(req);
1542 }
1543
1544 /**
1545 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1546 * @engine: Engine Command Streamer.
1547 */
1548 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1549 {
1550 struct drm_i915_private *dev_priv;
1551
1552 /*
1553 * Tasklet cannot be active at this point due intel_mark_active/idle
1554 * so this is just for documentation.
1555 */
1556 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1557 tasklet_kill(&engine->irq_tasklet);
1558
1559 dev_priv = engine->i915;
1560
1561 if (engine->buffer) {
1562 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1563 }
1564
1565 if (engine->cleanup)
1566 engine->cleanup(engine);
1567
1568 if (engine->status_page.vma) {
1569 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1570 engine->status_page.vma = NULL;
1571 }
1572
1573 intel_engine_cleanup_common(engine);
1574
1575 lrc_destroy_wa_ctx(engine);
1576 engine->i915 = NULL;
1577 dev_priv->engine[engine->id] = NULL;
1578 kfree(engine);
1579 }
1580
1581 static void execlists_set_default_submission(struct intel_engine_cs *engine)
1582 {
1583 engine->submit_request = execlists_submit_request;
1584 engine->schedule = execlists_schedule;
1585 engine->irq_tasklet.func = intel_lrc_irq_handler;
1586 }
1587
1588 static void
1589 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1590 {
1591 /* Default vfuncs which can be overriden by each engine. */
1592 engine->init_hw = gen8_init_common_ring;
1593 engine->reset_hw = reset_common_ring;
1594
1595 engine->context_pin = execlists_context_pin;
1596 engine->context_unpin = execlists_context_unpin;
1597
1598 engine->request_alloc = execlists_request_alloc;
1599
1600 engine->emit_flush = gen8_emit_flush;
1601 engine->emit_breadcrumb = gen8_emit_breadcrumb;
1602 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1603
1604 engine->set_default_submission = execlists_set_default_submission;
1605
1606 engine->irq_enable = gen8_logical_ring_enable_irq;
1607 engine->irq_disable = gen8_logical_ring_disable_irq;
1608 engine->emit_bb_start = gen8_emit_bb_start;
1609 }
1610
1611 static inline void
1612 logical_ring_default_irqs(struct intel_engine_cs *engine)
1613 {
1614 unsigned shift = engine->irq_shift;
1615 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1616 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1617 }
1618
1619 static int
1620 lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1621 {
1622 const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1623 void *hws;
1624
1625 /* The HWSP is part of the default context object in LRC mode. */
1626 hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1627 if (IS_ERR(hws))
1628 return PTR_ERR(hws);
1629
1630 engine->status_page.page_addr = hws + hws_offset;
1631 engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1632 engine->status_page.vma = vma;
1633
1634 return 0;
1635 }
1636
1637 static void
1638 logical_ring_setup(struct intel_engine_cs *engine)
1639 {
1640 struct drm_i915_private *dev_priv = engine->i915;
1641 enum forcewake_domains fw_domains;
1642
1643 intel_engine_setup_common(engine);
1644
1645 /* Intentionally left blank. */
1646 engine->buffer = NULL;
1647
1648 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1649 RING_ELSP(engine),
1650 FW_REG_WRITE);
1651
1652 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1653 RING_CONTEXT_STATUS_PTR(engine),
1654 FW_REG_READ | FW_REG_WRITE);
1655
1656 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1657 RING_CONTEXT_STATUS_BUF_BASE(engine),
1658 FW_REG_READ);
1659
1660 engine->fw_domains = fw_domains;
1661
1662 tasklet_init(&engine->irq_tasklet,
1663 intel_lrc_irq_handler, (unsigned long)engine);
1664
1665 logical_ring_default_vfuncs(engine);
1666 logical_ring_default_irqs(engine);
1667 }
1668
1669 static int
1670 logical_ring_init(struct intel_engine_cs *engine)
1671 {
1672 struct i915_gem_context *dctx = engine->i915->kernel_context;
1673 int ret;
1674
1675 ret = intel_engine_init_common(engine);
1676 if (ret)
1677 goto error;
1678
1679 /* And setup the hardware status page. */
1680 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1681 if (ret) {
1682 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1683 goto error;
1684 }
1685
1686 return 0;
1687
1688 error:
1689 intel_logical_ring_cleanup(engine);
1690 return ret;
1691 }
1692
1693 int logical_render_ring_init(struct intel_engine_cs *engine)
1694 {
1695 struct drm_i915_private *dev_priv = engine->i915;
1696 int ret;
1697
1698 logical_ring_setup(engine);
1699
1700 if (HAS_L3_DPF(dev_priv))
1701 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1702
1703 /* Override some for render ring. */
1704 if (INTEL_GEN(dev_priv) >= 9)
1705 engine->init_hw = gen9_init_render_ring;
1706 else
1707 engine->init_hw = gen8_init_render_ring;
1708 engine->init_context = gen8_init_rcs_context;
1709 engine->emit_flush = gen8_emit_flush_render;
1710 engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1711 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1712
1713 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1714 if (ret)
1715 return ret;
1716
1717 ret = intel_init_workaround_bb(engine);
1718 if (ret) {
1719 /*
1720 * We continue even if we fail to initialize WA batch
1721 * because we only expect rare glitches but nothing
1722 * critical to prevent us from using GPU
1723 */
1724 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1725 ret);
1726 }
1727
1728 return logical_ring_init(engine);
1729 }
1730
1731 int logical_xcs_ring_init(struct intel_engine_cs *engine)
1732 {
1733 logical_ring_setup(engine);
1734
1735 return logical_ring_init(engine);
1736 }
1737
1738 static u32
1739 make_rpcs(struct drm_i915_private *dev_priv)
1740 {
1741 u32 rpcs = 0;
1742
1743 /*
1744 * No explicit RPCS request is needed to ensure full
1745 * slice/subslice/EU enablement prior to Gen9.
1746 */
1747 if (INTEL_GEN(dev_priv) < 9)
1748 return 0;
1749
1750 /*
1751 * Starting in Gen9, render power gating can leave
1752 * slice/subslice/EU in a partially enabled state. We
1753 * must make an explicit request through RPCS for full
1754 * enablement.
1755 */
1756 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1757 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1758 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1759 GEN8_RPCS_S_CNT_SHIFT;
1760 rpcs |= GEN8_RPCS_ENABLE;
1761 }
1762
1763 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1764 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1765 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1766 GEN8_RPCS_SS_CNT_SHIFT;
1767 rpcs |= GEN8_RPCS_ENABLE;
1768 }
1769
1770 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1771 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1772 GEN8_RPCS_EU_MIN_SHIFT;
1773 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1774 GEN8_RPCS_EU_MAX_SHIFT;
1775 rpcs |= GEN8_RPCS_ENABLE;
1776 }
1777
1778 return rpcs;
1779 }
1780
1781 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1782 {
1783 u32 indirect_ctx_offset;
1784
1785 switch (INTEL_GEN(engine->i915)) {
1786 default:
1787 MISSING_CASE(INTEL_GEN(engine->i915));
1788 /* fall through */
1789 case 9:
1790 indirect_ctx_offset =
1791 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1792 break;
1793 case 8:
1794 indirect_ctx_offset =
1795 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1796 break;
1797 }
1798
1799 return indirect_ctx_offset;
1800 }
1801
1802 static void execlists_init_reg_state(u32 *regs,
1803 struct i915_gem_context *ctx,
1804 struct intel_engine_cs *engine,
1805 struct intel_ring *ring)
1806 {
1807 struct drm_i915_private *dev_priv = engine->i915;
1808 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1809 u32 base = engine->mmio_base;
1810 bool rcs = engine->id == RCS;
1811
1812 /* A context is actually a big batch buffer with several
1813 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
1814 * values we are setting here are only for the first context restore:
1815 * on a subsequent save, the GPU will recreate this batchbuffer with new
1816 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
1817 * we are not initializing here).
1818 */
1819 regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
1820 MI_LRI_FORCE_POSTED;
1821
1822 CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
1823 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1824 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1825 (HAS_RESOURCE_STREAMER(dev_priv) ?
1826 CTX_CTRL_RS_CTX_ENABLE : 0)));
1827 CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
1828 CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
1829 CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
1830 CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
1831 RING_CTL_SIZE(ring->size) | RING_VALID);
1832 CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
1833 CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
1834 CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
1835 CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
1836 CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
1837 CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
1838 if (rcs) {
1839 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
1840 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
1841 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
1842 RING_INDIRECT_CTX_OFFSET(base), 0);
1843
1844 if (engine->wa_ctx.vma) {
1845 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1846 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1847
1848 regs[CTX_RCS_INDIRECT_CTX + 1] =
1849 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
1850 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
1851
1852 regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
1853 intel_lr_indirect_ctx_offset(engine) << 6;
1854
1855 regs[CTX_BB_PER_CTX_PTR + 1] =
1856 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
1857 }
1858 }
1859
1860 regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1861
1862 CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
1863 /* PDP values well be assigned later if needed */
1864 CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
1865 CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
1866 CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
1867 CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
1868 CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
1869 CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
1870 CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
1871 CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
1872
1873 if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
1874 /* 64b PPGTT (48bit canonical)
1875 * PDP0_DESCRIPTOR contains the base address to PML4 and
1876 * other PDP Descriptors are ignored.
1877 */
1878 ASSIGN_CTX_PML4(ppgtt, regs);
1879 }
1880
1881 if (rcs) {
1882 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1883 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
1884 make_rpcs(dev_priv));
1885 }
1886 }
1887
1888 static int
1889 populate_lr_context(struct i915_gem_context *ctx,
1890 struct drm_i915_gem_object *ctx_obj,
1891 struct intel_engine_cs *engine,
1892 struct intel_ring *ring)
1893 {
1894 void *vaddr;
1895 int ret;
1896
1897 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1898 if (ret) {
1899 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1900 return ret;
1901 }
1902
1903 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
1904 if (IS_ERR(vaddr)) {
1905 ret = PTR_ERR(vaddr);
1906 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
1907 return ret;
1908 }
1909 ctx_obj->mm.dirty = true;
1910
1911 /* The second page of the context object contains some fields which must
1912 * be set up prior to the first execution. */
1913
1914 execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
1915 ctx, engine, ring);
1916
1917 i915_gem_object_unpin_map(ctx_obj);
1918
1919 return 0;
1920 }
1921
1922 /**
1923 * intel_lr_context_size() - return the size of the context for an engine
1924 * @engine: which engine to find the context size for
1925 *
1926 * Each engine may require a different amount of space for a context image,
1927 * so when allocating (or copying) an image, this function can be used to
1928 * find the right size for the specific engine.
1929 *
1930 * Return: size (in bytes) of an engine-specific context image
1931 *
1932 * Note: this size includes the HWSP, which is part of the context image
1933 * in LRC mode, but does not include the "shared data page" used with
1934 * GuC submission. The caller should account for this if using the GuC.
1935 */
1936 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
1937 {
1938 int ret = 0;
1939
1940 WARN_ON(INTEL_GEN(engine->i915) < 8);
1941
1942 switch (engine->id) {
1943 case RCS:
1944 if (INTEL_GEN(engine->i915) >= 9)
1945 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1946 else
1947 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1948 break;
1949 case VCS:
1950 case BCS:
1951 case VECS:
1952 case VCS2:
1953 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1954 break;
1955 }
1956
1957 return ret;
1958 }
1959
1960 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
1961 struct intel_engine_cs *engine)
1962 {
1963 struct drm_i915_gem_object *ctx_obj;
1964 struct intel_context *ce = &ctx->engine[engine->id];
1965 struct i915_vma *vma;
1966 uint32_t context_size;
1967 struct intel_ring *ring;
1968 int ret;
1969
1970 WARN_ON(ce->state);
1971
1972 context_size = round_up(intel_lr_context_size(engine),
1973 I915_GTT_PAGE_SIZE);
1974
1975 /* One extra page as the sharing data between driver and GuC */
1976 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
1977
1978 ctx_obj = i915_gem_object_create(ctx->i915, context_size);
1979 if (IS_ERR(ctx_obj)) {
1980 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
1981 return PTR_ERR(ctx_obj);
1982 }
1983
1984 vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
1985 if (IS_ERR(vma)) {
1986 ret = PTR_ERR(vma);
1987 goto error_deref_obj;
1988 }
1989
1990 ring = intel_engine_create_ring(engine, ctx->ring_size);
1991 if (IS_ERR(ring)) {
1992 ret = PTR_ERR(ring);
1993 goto error_deref_obj;
1994 }
1995
1996 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
1997 if (ret) {
1998 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1999 goto error_ring_free;
2000 }
2001
2002 ce->ring = ring;
2003 ce->state = vma;
2004 ce->initialised = engine->init_context == NULL;
2005
2006 return 0;
2007
2008 error_ring_free:
2009 intel_ring_free(ring);
2010 error_deref_obj:
2011 i915_gem_object_put(ctx_obj);
2012 return ret;
2013 }
2014
2015 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2016 {
2017 struct intel_engine_cs *engine;
2018 struct i915_gem_context *ctx;
2019 enum intel_engine_id id;
2020
2021 /* Because we emit WA_TAIL_DWORDS there may be a disparity
2022 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2023 * that stored in context. As we only write new commands from
2024 * ce->ring->tail onwards, everything before that is junk. If the GPU
2025 * starts reading from its RING_HEAD from the context, it may try to
2026 * execute that junk and die.
2027 *
2028 * So to avoid that we reset the context images upon resume. For
2029 * simplicity, we just zero everything out.
2030 */
2031 list_for_each_entry(ctx, &dev_priv->context_list, link) {
2032 for_each_engine(engine, dev_priv, id) {
2033 struct intel_context *ce = &ctx->engine[engine->id];
2034 u32 *reg;
2035
2036 if (!ce->state)
2037 continue;
2038
2039 reg = i915_gem_object_pin_map(ce->state->obj,
2040 I915_MAP_WB);
2041 if (WARN_ON(IS_ERR(reg)))
2042 continue;
2043
2044 reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2045 reg[CTX_RING_HEAD+1] = 0;
2046 reg[CTX_RING_TAIL+1] = 0;
2047
2048 ce->state->obj->mm.dirty = true;
2049 i915_gem_object_unpin_map(ce->state->obj);
2050
2051 ce->ring->head = ce->ring->tail = 0;
2052 intel_ring_update_space(ce->ring);
2053 }
2054 }
2055 }