]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Let execlist_update_context() cover !FULL_PPGTT mode.
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL (1 << 0x2)
146 #define RING_EXECLIST1_VALID (1 << 0x3)
147 #define RING_EXECLIST0_VALID (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
158
159 #define GEN8_CTX_STATUS_COMPLETED_MASK \
160 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161 GEN8_CTX_STATUS_PREEMPTED | \
162 GEN8_CTX_STATUS_ELEMENT_SWITCH)
163
164 #define CTX_LRI_HEADER_0 0x01
165 #define CTX_CONTEXT_CONTROL 0x02
166 #define CTX_RING_HEAD 0x04
167 #define CTX_RING_TAIL 0x06
168 #define CTX_RING_BUFFER_START 0x08
169 #define CTX_RING_BUFFER_CONTROL 0x0a
170 #define CTX_BB_HEAD_U 0x0c
171 #define CTX_BB_HEAD_L 0x0e
172 #define CTX_BB_STATE 0x10
173 #define CTX_SECOND_BB_HEAD_U 0x12
174 #define CTX_SECOND_BB_HEAD_L 0x14
175 #define CTX_SECOND_BB_STATE 0x16
176 #define CTX_BB_PER_CTX_PTR 0x18
177 #define CTX_RCS_INDIRECT_CTX 0x1a
178 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
179 #define CTX_LRI_HEADER_1 0x21
180 #define CTX_CTX_TIMESTAMP 0x22
181 #define CTX_PDP3_UDW 0x24
182 #define CTX_PDP3_LDW 0x26
183 #define CTX_PDP2_UDW 0x28
184 #define CTX_PDP2_LDW 0x2a
185 #define CTX_PDP1_UDW 0x2c
186 #define CTX_PDP1_LDW 0x2e
187 #define CTX_PDP0_UDW 0x30
188 #define CTX_PDP0_LDW 0x32
189 #define CTX_LRI_HEADER_2 0x41
190 #define CTX_R_PWR_CLK_STATE 0x42
191 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
192
193 #define GEN8_CTX_VALID (1<<0)
194 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
195 #define GEN8_CTX_FORCE_RESTORE (1<<2)
196 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
197 #define GEN8_CTX_PRIVILEGE (1<<8)
198
199 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
200 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
201 (reg_state)[(pos)+1] = (val); \
202 } while (0)
203
204 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
205 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
206 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
207 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
208 } while (0)
209
210 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
211 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
212 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
213 } while (0)
214
215 enum {
216 FAULT_AND_HANG = 0,
217 FAULT_AND_HALT, /* Debug only */
218 FAULT_AND_STREAM,
219 FAULT_AND_CONTINUE /* Unsupported */
220 };
221 #define GEN8_CTX_ID_SHIFT 32
222 #define GEN8_CTX_ID_WIDTH 21
223 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
224 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
225
226 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
227 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
228
229 #define WA_TAIL_DWORDS 2
230
231 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
232 struct intel_engine_cs *engine);
233 static int intel_lr_context_pin(struct i915_gem_context *ctx,
234 struct intel_engine_cs *engine);
235 static void execlists_init_reg_state(u32 *reg_state,
236 struct i915_gem_context *ctx,
237 struct intel_engine_cs *engine,
238 struct intel_ring *ring);
239
240 /**
241 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
242 * @dev_priv: i915 device private
243 * @enable_execlists: value of i915.enable_execlists module parameter.
244 *
245 * Only certain platforms support Execlists (the prerequisites being
246 * support for Logical Ring Contexts and Aliasing PPGTT or better).
247 *
248 * Return: 1 if Execlists is supported and has to be enabled.
249 */
250 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
251 {
252 /* On platforms with execlist available, vGPU will only
253 * support execlist mode, no ring buffer mode.
254 */
255 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
256 return 1;
257
258 if (INTEL_GEN(dev_priv) >= 9)
259 return 1;
260
261 if (enable_execlists == 0)
262 return 0;
263
264 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
265 USES_PPGTT(dev_priv) &&
266 i915.use_mmio_flip >= 0)
267 return 1;
268
269 return 0;
270 }
271
272 static void
273 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
274 {
275 struct drm_i915_private *dev_priv = engine->i915;
276
277 engine->disable_lite_restore_wa =
278 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) &&
279 (engine->id == VCS || engine->id == VCS2);
280
281 engine->ctx_desc_template = GEN8_CTX_VALID;
282 if (IS_GEN8(dev_priv))
283 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
284 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
285
286 /* TODO: WaDisableLiteRestore when we start using semaphore
287 * signalling between Command Streamers */
288 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
289
290 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
291 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
292 if (engine->disable_lite_restore_wa)
293 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
294 }
295
296 /**
297 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
298 * descriptor for a pinned context
299 * @ctx: Context to work on
300 * @engine: Engine the descriptor will be used with
301 *
302 * The context descriptor encodes various attributes of a context,
303 * including its GTT address and some flags. Because it's fairly
304 * expensive to calculate, we'll just do it once and cache the result,
305 * which remains valid until the context is unpinned.
306 *
307 * This is what a descriptor looks like, from LSB to MSB::
308 *
309 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
310 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
311 * bits 32-52: ctx ID, a globally unique tag
312 * bits 53-54: mbz, reserved for use by hardware
313 * bits 55-63: group ID, currently unused and set to 0
314 */
315 static void
316 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
317 struct intel_engine_cs *engine)
318 {
319 struct intel_context *ce = &ctx->engine[engine->id];
320 u64 desc;
321
322 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
323
324 desc = ctx->desc_template; /* bits 3-4 */
325 desc |= engine->ctx_desc_template; /* bits 0-11 */
326 desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
327 /* bits 12-31 */
328 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
329
330 ce->lrc_desc = desc;
331 }
332
333 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
334 struct intel_engine_cs *engine)
335 {
336 return ctx->engine[engine->id].lrc_desc;
337 }
338
339 static inline void
340 execlists_context_status_change(struct drm_i915_gem_request *rq,
341 unsigned long status)
342 {
343 /*
344 * Only used when GVT-g is enabled now. When GVT-g is disabled,
345 * The compiler should eliminate this function as dead-code.
346 */
347 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
348 return;
349
350 atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
351 }
352
353 static void
354 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
355 {
356 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
357 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
358 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
359 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
360 }
361
362 static u64 execlists_update_context(struct drm_i915_gem_request *rq)
363 {
364 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
365 struct i915_hw_ppgtt *ppgtt =
366 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
367 u32 *reg_state = ce->lrc_reg_state;
368
369 reg_state[CTX_RING_TAIL+1] = rq->tail;
370
371 /* True 32b PPGTT with dynamic page allocation: update PDP
372 * registers and point the unallocated PDPs to scratch page.
373 * PML4 is allocated during ppgtt init, so this is not needed
374 * in 48-bit mode.
375 */
376 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
377 execlists_update_context_pdps(ppgtt, reg_state);
378
379 return ce->lrc_desc;
380 }
381
382 static void execlists_submit_ports(struct intel_engine_cs *engine)
383 {
384 struct drm_i915_private *dev_priv = engine->i915;
385 struct execlist_port *port = engine->execlist_port;
386 u32 __iomem *elsp =
387 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
388 u64 desc[2];
389
390 if (!port[0].count)
391 execlists_context_status_change(port[0].request,
392 INTEL_CONTEXT_SCHEDULE_IN);
393 desc[0] = execlists_update_context(port[0].request);
394 engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */
395
396 if (port[1].request) {
397 GEM_BUG_ON(port[1].count);
398 execlists_context_status_change(port[1].request,
399 INTEL_CONTEXT_SCHEDULE_IN);
400 desc[1] = execlists_update_context(port[1].request);
401 port[1].count = 1;
402 } else {
403 desc[1] = 0;
404 }
405 GEM_BUG_ON(desc[0] == desc[1]);
406
407 /* You must always write both descriptors in the order below. */
408 writel(upper_32_bits(desc[1]), elsp);
409 writel(lower_32_bits(desc[1]), elsp);
410
411 writel(upper_32_bits(desc[0]), elsp);
412 /* The context is automatically loaded after the following */
413 writel(lower_32_bits(desc[0]), elsp);
414 }
415
416 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
417 {
418 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
419 ctx->execlists_force_single_submission);
420 }
421
422 static bool can_merge_ctx(const struct i915_gem_context *prev,
423 const struct i915_gem_context *next)
424 {
425 if (prev != next)
426 return false;
427
428 if (ctx_single_port_submission(prev))
429 return false;
430
431 return true;
432 }
433
434 static void execlists_dequeue(struct intel_engine_cs *engine)
435 {
436 struct drm_i915_gem_request *last;
437 struct execlist_port *port = engine->execlist_port;
438 unsigned long flags;
439 struct rb_node *rb;
440 bool submit = false;
441
442 last = port->request;
443 if (last)
444 /* WaIdleLiteRestore:bdw,skl
445 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
446 * as we resubmit the request. See gen8_emit_breadcrumb()
447 * for where we prepare the padding after the end of the
448 * request.
449 */
450 last->tail = last->wa_tail;
451
452 GEM_BUG_ON(port[1].request);
453
454 /* Hardware submission is through 2 ports. Conceptually each port
455 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
456 * static for a context, and unique to each, so we only execute
457 * requests belonging to a single context from each ring. RING_HEAD
458 * is maintained by the CS in the context image, it marks the place
459 * where it got up to last time, and through RING_TAIL we tell the CS
460 * where we want to execute up to this time.
461 *
462 * In this list the requests are in order of execution. Consecutive
463 * requests from the same context are adjacent in the ringbuffer. We
464 * can combine these requests into a single RING_TAIL update:
465 *
466 * RING_HEAD...req1...req2
467 * ^- RING_TAIL
468 * since to execute req2 the CS must first execute req1.
469 *
470 * Our goal then is to point each port to the end of a consecutive
471 * sequence of requests as being the most optimal (fewest wake ups
472 * and context switches) submission.
473 */
474
475 spin_lock_irqsave(&engine->timeline->lock, flags);
476 rb = engine->execlist_first;
477 while (rb) {
478 struct drm_i915_gem_request *cursor =
479 rb_entry(rb, typeof(*cursor), priotree.node);
480
481 /* Can we combine this request with the current port? It has to
482 * be the same context/ringbuffer and not have any exceptions
483 * (e.g. GVT saying never to combine contexts).
484 *
485 * If we can combine the requests, we can execute both by
486 * updating the RING_TAIL to point to the end of the second
487 * request, and so we never need to tell the hardware about
488 * the first.
489 */
490 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
491 /* If we are on the second port and cannot combine
492 * this request with the last, then we are done.
493 */
494 if (port != engine->execlist_port)
495 break;
496
497 /* If GVT overrides us we only ever submit port[0],
498 * leaving port[1] empty. Note that we also have
499 * to be careful that we don't queue the same
500 * context (even though a different request) to
501 * the second port.
502 */
503 if (ctx_single_port_submission(last->ctx) ||
504 ctx_single_port_submission(cursor->ctx))
505 break;
506
507 GEM_BUG_ON(last->ctx == cursor->ctx);
508
509 i915_gem_request_assign(&port->request, last);
510 port++;
511 }
512
513 rb = rb_next(rb);
514 rb_erase(&cursor->priotree.node, &engine->execlist_queue);
515 RB_CLEAR_NODE(&cursor->priotree.node);
516 cursor->priotree.priority = INT_MAX;
517
518 /* We keep the previous context alive until we retire the
519 * following request. This ensures that any the context object
520 * is still pinned for any residual writes the HW makes into it
521 * on the context switch into the next object following the
522 * breadcrumb. Otherwise, we may retire the context too early.
523 */
524 cursor->previous_context = engine->last_context;
525 engine->last_context = cursor->ctx;
526
527 __i915_gem_request_submit(cursor);
528 last = cursor;
529 submit = true;
530 }
531 if (submit) {
532 i915_gem_request_assign(&port->request, last);
533 engine->execlist_first = rb;
534 }
535 spin_unlock_irqrestore(&engine->timeline->lock, flags);
536
537 if (submit)
538 execlists_submit_ports(engine);
539 }
540
541 static bool execlists_elsp_idle(struct intel_engine_cs *engine)
542 {
543 return !engine->execlist_port[0].request;
544 }
545
546 /**
547 * intel_execlists_idle() - Determine if all engine submission ports are idle
548 * @dev_priv: i915 device private
549 *
550 * Return true if there are no requests pending on any of the submission ports
551 * of any engines.
552 */
553 bool intel_execlists_idle(struct drm_i915_private *dev_priv)
554 {
555 struct intel_engine_cs *engine;
556 enum intel_engine_id id;
557
558 if (!i915.enable_execlists)
559 return true;
560
561 for_each_engine(engine, dev_priv, id)
562 if (!execlists_elsp_idle(engine))
563 return false;
564
565 return true;
566 }
567
568 static bool execlists_elsp_ready(struct intel_engine_cs *engine)
569 {
570 int port;
571
572 port = 1; /* wait for a free slot */
573 if (engine->disable_lite_restore_wa || engine->preempt_wa)
574 port = 0; /* wait for GPU to be idle before continuing */
575
576 return !engine->execlist_port[port].request;
577 }
578
579 /*
580 * Check the unread Context Status Buffers and manage the submission of new
581 * contexts to the ELSP accordingly.
582 */
583 static void intel_lrc_irq_handler(unsigned long data)
584 {
585 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
586 struct execlist_port *port = engine->execlist_port;
587 struct drm_i915_private *dev_priv = engine->i915;
588
589 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
590
591 if (!execlists_elsp_idle(engine)) {
592 u32 __iomem *csb_mmio =
593 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
594 u32 __iomem *buf =
595 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
596 unsigned int csb, head, tail;
597
598 csb = readl(csb_mmio);
599 head = GEN8_CSB_READ_PTR(csb);
600 tail = GEN8_CSB_WRITE_PTR(csb);
601 if (tail < head)
602 tail += GEN8_CSB_ENTRIES;
603 while (head < tail) {
604 unsigned int idx = ++head % GEN8_CSB_ENTRIES;
605 unsigned int status = readl(buf + 2 * idx);
606
607 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
608 continue;
609
610 GEM_BUG_ON(port[0].count == 0);
611 if (--port[0].count == 0) {
612 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
613 execlists_context_status_change(port[0].request,
614 INTEL_CONTEXT_SCHEDULE_OUT);
615
616 i915_gem_request_put(port[0].request);
617 port[0] = port[1];
618 memset(&port[1], 0, sizeof(port[1]));
619
620 engine->preempt_wa = false;
621 }
622
623 GEM_BUG_ON(port[0].count == 0 &&
624 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
625 }
626
627 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
628 GEN8_CSB_WRITE_PTR(csb) << 8),
629 csb_mmio);
630 }
631
632 if (execlists_elsp_ready(engine))
633 execlists_dequeue(engine);
634
635 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
636 }
637
638 static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
639 {
640 struct rb_node **p, *rb;
641 bool first = true;
642
643 /* most positive priority is scheduled first, equal priorities fifo */
644 rb = NULL;
645 p = &root->rb_node;
646 while (*p) {
647 struct i915_priotree *pos;
648
649 rb = *p;
650 pos = rb_entry(rb, typeof(*pos), node);
651 if (pt->priority > pos->priority) {
652 p = &rb->rb_left;
653 } else {
654 p = &rb->rb_right;
655 first = false;
656 }
657 }
658 rb_link_node(&pt->node, rb, p);
659 rb_insert_color(&pt->node, root);
660
661 return first;
662 }
663
664 static void execlists_submit_request(struct drm_i915_gem_request *request)
665 {
666 struct intel_engine_cs *engine = request->engine;
667 unsigned long flags;
668
669 /* Will be called from irq-context when using foreign fences. */
670 spin_lock_irqsave(&engine->timeline->lock, flags);
671
672 if (insert_request(&request->priotree, &engine->execlist_queue))
673 engine->execlist_first = &request->priotree.node;
674 if (execlists_elsp_idle(engine))
675 tasklet_hi_schedule(&engine->irq_tasklet);
676
677 spin_unlock_irqrestore(&engine->timeline->lock, flags);
678 }
679
680 static struct intel_engine_cs *
681 pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
682 {
683 struct intel_engine_cs *engine;
684
685 engine = container_of(pt,
686 struct drm_i915_gem_request,
687 priotree)->engine;
688 if (engine != locked) {
689 if (locked)
690 spin_unlock_irq(&locked->timeline->lock);
691 spin_lock_irq(&engine->timeline->lock);
692 }
693
694 return engine;
695 }
696
697 static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
698 {
699 static DEFINE_MUTEX(lock);
700 struct intel_engine_cs *engine = NULL;
701 struct i915_dependency *dep, *p;
702 struct i915_dependency stack;
703 LIST_HEAD(dfs);
704
705 if (prio <= READ_ONCE(request->priotree.priority))
706 return;
707
708 /* Need global lock to use the temporary link inside i915_dependency */
709 mutex_lock(&lock);
710
711 stack.signaler = &request->priotree;
712 list_add(&stack.dfs_link, &dfs);
713
714 /* Recursively bump all dependent priorities to match the new request.
715 *
716 * A naive approach would be to use recursion:
717 * static void update_priorities(struct i915_priotree *pt, prio) {
718 * list_for_each_entry(dep, &pt->signalers_list, signal_link)
719 * update_priorities(dep->signal, prio)
720 * insert_request(pt);
721 * }
722 * but that may have unlimited recursion depth and so runs a very
723 * real risk of overunning the kernel stack. Instead, we build
724 * a flat list of all dependencies starting with the current request.
725 * As we walk the list of dependencies, we add all of its dependencies
726 * to the end of the list (this may include an already visited
727 * request) and continue to walk onwards onto the new dependencies. The
728 * end result is a topological list of requests in reverse order, the
729 * last element in the list is the request we must execute first.
730 */
731 list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
732 struct i915_priotree *pt = dep->signaler;
733
734 list_for_each_entry(p, &pt->signalers_list, signal_link)
735 if (prio > READ_ONCE(p->signaler->priority))
736 list_move_tail(&p->dfs_link, &dfs);
737
738 p = list_next_entry(dep, dfs_link);
739 if (!RB_EMPTY_NODE(&pt->node))
740 continue;
741
742 engine = pt_lock_engine(pt, engine);
743
744 /* If it is not already in the rbtree, we can update the
745 * priority inplace and skip over it (and its dependencies)
746 * if it is referenced *again* as we descend the dfs.
747 */
748 if (prio > pt->priority && RB_EMPTY_NODE(&pt->node)) {
749 pt->priority = prio;
750 list_del_init(&dep->dfs_link);
751 }
752 }
753
754 /* Fifo and depth-first replacement ensure our deps execute before us */
755 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
756 struct i915_priotree *pt = dep->signaler;
757
758 INIT_LIST_HEAD(&dep->dfs_link);
759
760 engine = pt_lock_engine(pt, engine);
761
762 if (prio <= pt->priority)
763 continue;
764
765 GEM_BUG_ON(RB_EMPTY_NODE(&pt->node));
766
767 pt->priority = prio;
768 rb_erase(&pt->node, &engine->execlist_queue);
769 if (insert_request(pt, &engine->execlist_queue))
770 engine->execlist_first = &pt->node;
771 }
772
773 if (engine)
774 spin_unlock_irq(&engine->timeline->lock);
775
776 mutex_unlock(&lock);
777
778 /* XXX Do we need to preempt to make room for us and our deps? */
779 }
780
781 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
782 {
783 struct intel_engine_cs *engine = request->engine;
784 struct intel_context *ce = &request->ctx->engine[engine->id];
785 int ret;
786
787 /* Flush enough space to reduce the likelihood of waiting after
788 * we start building the request - in which case we will just
789 * have to repeat work.
790 */
791 request->reserved_space += EXECLISTS_REQUEST_SIZE;
792
793 if (!ce->state) {
794 ret = execlists_context_deferred_alloc(request->ctx, engine);
795 if (ret)
796 return ret;
797 }
798
799 request->ring = ce->ring;
800
801 ret = intel_lr_context_pin(request->ctx, engine);
802 if (ret)
803 return ret;
804
805 if (i915.enable_guc_submission) {
806 /*
807 * Check that the GuC has space for the request before
808 * going any further, as the i915_add_request() call
809 * later on mustn't fail ...
810 */
811 ret = i915_guc_wq_reserve(request);
812 if (ret)
813 goto err_unpin;
814 }
815
816 ret = intel_ring_begin(request, 0);
817 if (ret)
818 goto err_unreserve;
819
820 if (!ce->initialised) {
821 ret = engine->init_context(request);
822 if (ret)
823 goto err_unreserve;
824
825 ce->initialised = true;
826 }
827
828 /* Note that after this point, we have committed to using
829 * this request as it is being used to both track the
830 * state of engine initialisation and liveness of the
831 * golden renderstate above. Think twice before you try
832 * to cancel/unwind this request now.
833 */
834
835 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
836 return 0;
837
838 err_unreserve:
839 if (i915.enable_guc_submission)
840 i915_guc_wq_unreserve(request);
841 err_unpin:
842 intel_lr_context_unpin(request->ctx, engine);
843 return ret;
844 }
845
846 static int intel_lr_context_pin(struct i915_gem_context *ctx,
847 struct intel_engine_cs *engine)
848 {
849 struct intel_context *ce = &ctx->engine[engine->id];
850 void *vaddr;
851 int ret;
852
853 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
854
855 if (ce->pin_count++)
856 return 0;
857
858 ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
859 PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
860 if (ret)
861 goto err;
862
863 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
864 if (IS_ERR(vaddr)) {
865 ret = PTR_ERR(vaddr);
866 goto unpin_vma;
867 }
868
869 ret = intel_ring_pin(ce->ring);
870 if (ret)
871 goto unpin_map;
872
873 intel_lr_context_descriptor_update(ctx, engine);
874
875 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
876 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
877 i915_ggtt_offset(ce->ring->vma);
878
879 ce->state->obj->mm.dirty = true;
880
881 /* Invalidate GuC TLB. */
882 if (i915.enable_guc_submission) {
883 struct drm_i915_private *dev_priv = ctx->i915;
884 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
885 }
886
887 i915_gem_context_get(ctx);
888 return 0;
889
890 unpin_map:
891 i915_gem_object_unpin_map(ce->state->obj);
892 unpin_vma:
893 __i915_vma_unpin(ce->state);
894 err:
895 ce->pin_count = 0;
896 return ret;
897 }
898
899 void intel_lr_context_unpin(struct i915_gem_context *ctx,
900 struct intel_engine_cs *engine)
901 {
902 struct intel_context *ce = &ctx->engine[engine->id];
903
904 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
905 GEM_BUG_ON(ce->pin_count == 0);
906
907 if (--ce->pin_count)
908 return;
909
910 intel_ring_unpin(ce->ring);
911
912 i915_gem_object_unpin_map(ce->state->obj);
913 i915_vma_unpin(ce->state);
914
915 i915_gem_context_put(ctx);
916 }
917
918 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
919 {
920 int ret, i;
921 struct intel_ring *ring = req->ring;
922 struct i915_workarounds *w = &req->i915->workarounds;
923
924 if (w->count == 0)
925 return 0;
926
927 ret = req->engine->emit_flush(req, EMIT_BARRIER);
928 if (ret)
929 return ret;
930
931 ret = intel_ring_begin(req, w->count * 2 + 2);
932 if (ret)
933 return ret;
934
935 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
936 for (i = 0; i < w->count; i++) {
937 intel_ring_emit_reg(ring, w->reg[i].addr);
938 intel_ring_emit(ring, w->reg[i].value);
939 }
940 intel_ring_emit(ring, MI_NOOP);
941
942 intel_ring_advance(ring);
943
944 ret = req->engine->emit_flush(req, EMIT_BARRIER);
945 if (ret)
946 return ret;
947
948 return 0;
949 }
950
951 #define wa_ctx_emit(batch, index, cmd) \
952 do { \
953 int __index = (index)++; \
954 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
955 return -ENOSPC; \
956 } \
957 batch[__index] = (cmd); \
958 } while (0)
959
960 #define wa_ctx_emit_reg(batch, index, reg) \
961 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
962
963 /*
964 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
965 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
966 * but there is a slight complication as this is applied in WA batch where the
967 * values are only initialized once so we cannot take register value at the
968 * beginning and reuse it further; hence we save its value to memory, upload a
969 * constant value with bit21 set and then we restore it back with the saved value.
970 * To simplify the WA, a constant value is formed by using the default value
971 * of this register. This shouldn't be a problem because we are only modifying
972 * it for a short period and this batch in non-premptible. We can ofcourse
973 * use additional instructions that read the actual value of the register
974 * at that time and set our bit of interest but it makes the WA complicated.
975 *
976 * This WA is also required for Gen9 so extracting as a function avoids
977 * code duplication.
978 */
979 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
980 uint32_t *batch,
981 uint32_t index)
982 {
983 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
984
985 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
986 MI_SRM_LRM_GLOBAL_GTT));
987 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
988 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
989 wa_ctx_emit(batch, index, 0);
990
991 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
992 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
993 wa_ctx_emit(batch, index, l3sqc4_flush);
994
995 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
996 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
997 PIPE_CONTROL_DC_FLUSH_ENABLE));
998 wa_ctx_emit(batch, index, 0);
999 wa_ctx_emit(batch, index, 0);
1000 wa_ctx_emit(batch, index, 0);
1001 wa_ctx_emit(batch, index, 0);
1002
1003 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1004 MI_SRM_LRM_GLOBAL_GTT));
1005 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1006 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
1007 wa_ctx_emit(batch, index, 0);
1008
1009 return index;
1010 }
1011
1012 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1013 uint32_t offset,
1014 uint32_t start_alignment)
1015 {
1016 return wa_ctx->offset = ALIGN(offset, start_alignment);
1017 }
1018
1019 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1020 uint32_t offset,
1021 uint32_t size_alignment)
1022 {
1023 wa_ctx->size = offset - wa_ctx->offset;
1024
1025 WARN(wa_ctx->size % size_alignment,
1026 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1027 wa_ctx->size, size_alignment);
1028 return 0;
1029 }
1030
1031 /*
1032 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1033 * initialized at the beginning and shared across all contexts but this field
1034 * helps us to have multiple batches at different offsets and select them based
1035 * on a criteria. At the moment this batch always start at the beginning of the page
1036 * and at this point we don't have multiple wa_ctx batch buffers.
1037 *
1038 * The number of WA applied are not known at the beginning; we use this field
1039 * to return the no of DWORDS written.
1040 *
1041 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1042 * so it adds NOOPs as padding to make it cacheline aligned.
1043 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1044 * makes a complete batch buffer.
1045 */
1046 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1047 struct i915_wa_ctx_bb *wa_ctx,
1048 uint32_t *batch,
1049 uint32_t *offset)
1050 {
1051 uint32_t scratch_addr;
1052 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1053
1054 /* WaDisableCtxRestoreArbitration:bdw,chv */
1055 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1056
1057 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1058 if (IS_BROADWELL(engine->i915)) {
1059 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1060 if (rc < 0)
1061 return rc;
1062 index = rc;
1063 }
1064
1065 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1066 /* Actual scratch location is at 128 bytes offset */
1067 scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1068
1069 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1070 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1071 PIPE_CONTROL_GLOBAL_GTT_IVB |
1072 PIPE_CONTROL_CS_STALL |
1073 PIPE_CONTROL_QW_WRITE));
1074 wa_ctx_emit(batch, index, scratch_addr);
1075 wa_ctx_emit(batch, index, 0);
1076 wa_ctx_emit(batch, index, 0);
1077 wa_ctx_emit(batch, index, 0);
1078
1079 /* Pad to end of cacheline */
1080 while (index % CACHELINE_DWORDS)
1081 wa_ctx_emit(batch, index, MI_NOOP);
1082
1083 /*
1084 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1085 * execution depends on the length specified in terms of cache lines
1086 * in the register CTX_RCS_INDIRECT_CTX
1087 */
1088
1089 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1090 }
1091
1092 /*
1093 * This batch is started immediately after indirect_ctx batch. Since we ensure
1094 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1095 *
1096 * The number of DWORDS written are returned using this field.
1097 *
1098 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1099 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1100 */
1101 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1102 struct i915_wa_ctx_bb *wa_ctx,
1103 uint32_t *batch,
1104 uint32_t *offset)
1105 {
1106 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1107
1108 /* WaDisableCtxRestoreArbitration:bdw,chv */
1109 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1110
1111 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1112
1113 return wa_ctx_end(wa_ctx, *offset = index, 1);
1114 }
1115
1116 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1117 struct i915_wa_ctx_bb *wa_ctx,
1118 uint32_t *batch,
1119 uint32_t *offset)
1120 {
1121 int ret;
1122 struct drm_i915_private *dev_priv = engine->i915;
1123 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1124
1125 /* WaDisableCtxRestoreArbitration:bxt */
1126 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1127 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1128
1129 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1130 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1131 if (ret < 0)
1132 return ret;
1133 index = ret;
1134
1135 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
1136 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1137 wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
1138 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
1139 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
1140 wa_ctx_emit(batch, index, MI_NOOP);
1141
1142 /* WaClearSlmSpaceAtContextSwitch:kbl */
1143 /* Actual scratch location is at 128 bytes offset */
1144 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1145 u32 scratch_addr =
1146 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1147
1148 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1149 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1150 PIPE_CONTROL_GLOBAL_GTT_IVB |
1151 PIPE_CONTROL_CS_STALL |
1152 PIPE_CONTROL_QW_WRITE));
1153 wa_ctx_emit(batch, index, scratch_addr);
1154 wa_ctx_emit(batch, index, 0);
1155 wa_ctx_emit(batch, index, 0);
1156 wa_ctx_emit(batch, index, 0);
1157 }
1158
1159 /* WaMediaPoolStateCmdInWABB:bxt */
1160 if (HAS_POOLED_EU(engine->i915)) {
1161 /*
1162 * EU pool configuration is setup along with golden context
1163 * during context initialization. This value depends on
1164 * device type (2x6 or 3x6) and needs to be updated based
1165 * on which subslice is disabled especially for 2x6
1166 * devices, however it is safe to load default
1167 * configuration of 3x6 device instead of masking off
1168 * corresponding bits because HW ignores bits of a disabled
1169 * subslice and drops down to appropriate config. Please
1170 * see render_state_setup() in i915_gem_render_state.c for
1171 * possible configurations, to avoid duplication they are
1172 * not shown here again.
1173 */
1174 u32 eu_pool_config = 0x00777000;
1175 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1176 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1177 wa_ctx_emit(batch, index, eu_pool_config);
1178 wa_ctx_emit(batch, index, 0);
1179 wa_ctx_emit(batch, index, 0);
1180 wa_ctx_emit(batch, index, 0);
1181 }
1182
1183 /* Pad to end of cacheline */
1184 while (index % CACHELINE_DWORDS)
1185 wa_ctx_emit(batch, index, MI_NOOP);
1186
1187 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1188 }
1189
1190 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1191 struct i915_wa_ctx_bb *wa_ctx,
1192 uint32_t *batch,
1193 uint32_t *offset)
1194 {
1195 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1196
1197 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
1198 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1199 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1200 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1201 wa_ctx_emit(batch, index,
1202 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1203 wa_ctx_emit(batch, index, MI_NOOP);
1204 }
1205
1206 /* WaClearTdlStateAckDirtyBits:bxt */
1207 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1208 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1209
1210 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1211 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1212
1213 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1214 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1215
1216 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1217 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1218
1219 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1220 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1221 wa_ctx_emit(batch, index, 0x0);
1222 wa_ctx_emit(batch, index, MI_NOOP);
1223 }
1224
1225 /* WaDisableCtxRestoreArbitration:bxt */
1226 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1227 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1228
1229 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1230
1231 return wa_ctx_end(wa_ctx, *offset = index, 1);
1232 }
1233
1234 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1235 {
1236 struct drm_i915_gem_object *obj;
1237 struct i915_vma *vma;
1238 int err;
1239
1240 obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
1241 if (IS_ERR(obj))
1242 return PTR_ERR(obj);
1243
1244 vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1245 if (IS_ERR(vma)) {
1246 err = PTR_ERR(vma);
1247 goto err;
1248 }
1249
1250 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1251 if (err)
1252 goto err;
1253
1254 engine->wa_ctx.vma = vma;
1255 return 0;
1256
1257 err:
1258 i915_gem_object_put(obj);
1259 return err;
1260 }
1261
1262 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1263 {
1264 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1265 }
1266
1267 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1268 {
1269 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1270 uint32_t *batch;
1271 uint32_t offset;
1272 struct page *page;
1273 int ret;
1274
1275 WARN_ON(engine->id != RCS);
1276
1277 /* update this when WA for higher Gen are added */
1278 if (INTEL_GEN(engine->i915) > 9) {
1279 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1280 INTEL_GEN(engine->i915));
1281 return 0;
1282 }
1283
1284 /* some WA perform writes to scratch page, ensure it is valid */
1285 if (!engine->scratch) {
1286 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1287 return -EINVAL;
1288 }
1289
1290 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1291 if (ret) {
1292 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1293 return ret;
1294 }
1295
1296 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1297 batch = kmap_atomic(page);
1298 offset = 0;
1299
1300 if (IS_GEN8(engine->i915)) {
1301 ret = gen8_init_indirectctx_bb(engine,
1302 &wa_ctx->indirect_ctx,
1303 batch,
1304 &offset);
1305 if (ret)
1306 goto out;
1307
1308 ret = gen8_init_perctx_bb(engine,
1309 &wa_ctx->per_ctx,
1310 batch,
1311 &offset);
1312 if (ret)
1313 goto out;
1314 } else if (IS_GEN9(engine->i915)) {
1315 ret = gen9_init_indirectctx_bb(engine,
1316 &wa_ctx->indirect_ctx,
1317 batch,
1318 &offset);
1319 if (ret)
1320 goto out;
1321
1322 ret = gen9_init_perctx_bb(engine,
1323 &wa_ctx->per_ctx,
1324 batch,
1325 &offset);
1326 if (ret)
1327 goto out;
1328 }
1329
1330 out:
1331 kunmap_atomic(batch);
1332 if (ret)
1333 lrc_destroy_wa_ctx_obj(engine);
1334
1335 return ret;
1336 }
1337
1338 static void lrc_init_hws(struct intel_engine_cs *engine)
1339 {
1340 struct drm_i915_private *dev_priv = engine->i915;
1341
1342 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1343 engine->status_page.ggtt_offset);
1344 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1345 }
1346
1347 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1348 {
1349 struct drm_i915_private *dev_priv = engine->i915;
1350 int ret;
1351
1352 ret = intel_mocs_init_engine(engine);
1353 if (ret)
1354 return ret;
1355
1356 lrc_init_hws(engine);
1357
1358 intel_engine_reset_breadcrumbs(engine);
1359
1360 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1361
1362 I915_WRITE(RING_MODE_GEN7(engine),
1363 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1364 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1365
1366 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1367
1368 intel_engine_init_hangcheck(engine);
1369
1370 /* After a GPU reset, we may have requests to replay */
1371 if (!execlists_elsp_idle(engine)) {
1372 engine->execlist_port[0].count = 0;
1373 engine->execlist_port[1].count = 0;
1374 execlists_submit_ports(engine);
1375 }
1376
1377 return 0;
1378 }
1379
1380 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1381 {
1382 struct drm_i915_private *dev_priv = engine->i915;
1383 int ret;
1384
1385 ret = gen8_init_common_ring(engine);
1386 if (ret)
1387 return ret;
1388
1389 /* We need to disable the AsyncFlip performance optimisations in order
1390 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1391 * programmed to '1' on all products.
1392 *
1393 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1394 */
1395 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1396
1397 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1398
1399 return init_workarounds_ring(engine);
1400 }
1401
1402 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1403 {
1404 int ret;
1405
1406 ret = gen8_init_common_ring(engine);
1407 if (ret)
1408 return ret;
1409
1410 return init_workarounds_ring(engine);
1411 }
1412
1413 static void reset_common_ring(struct intel_engine_cs *engine,
1414 struct drm_i915_gem_request *request)
1415 {
1416 struct drm_i915_private *dev_priv = engine->i915;
1417 struct execlist_port *port = engine->execlist_port;
1418 struct intel_context *ce = &request->ctx->engine[engine->id];
1419
1420 /* We want a simple context + ring to execute the breadcrumb update.
1421 * We cannot rely on the context being intact across the GPU hang,
1422 * so clear it and rebuild just what we need for the breadcrumb.
1423 * All pending requests for this context will be zapped, and any
1424 * future request will be after userspace has had the opportunity
1425 * to recreate its own state.
1426 */
1427 execlists_init_reg_state(ce->lrc_reg_state,
1428 request->ctx, engine, ce->ring);
1429
1430 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1431 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1432 i915_ggtt_offset(ce->ring->vma);
1433 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1434
1435 request->ring->head = request->postfix;
1436 request->ring->last_retired_head = -1;
1437 intel_ring_update_space(request->ring);
1438
1439 if (i915.enable_guc_submission)
1440 return;
1441
1442 /* Catch up with any missed context-switch interrupts */
1443 I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
1444 if (request->ctx != port[0].request->ctx) {
1445 i915_gem_request_put(port[0].request);
1446 port[0] = port[1];
1447 memset(&port[1], 0, sizeof(port[1]));
1448 }
1449
1450 GEM_BUG_ON(request->ctx != port[0].request->ctx);
1451
1452 /* Reset WaIdleLiteRestore:bdw,skl as well */
1453 request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1454 }
1455
1456 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1457 {
1458 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1459 struct intel_ring *ring = req->ring;
1460 struct intel_engine_cs *engine = req->engine;
1461 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1462 int i, ret;
1463
1464 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1465 if (ret)
1466 return ret;
1467
1468 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1469 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1470 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1471
1472 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
1473 intel_ring_emit(ring, upper_32_bits(pd_daddr));
1474 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
1475 intel_ring_emit(ring, lower_32_bits(pd_daddr));
1476 }
1477
1478 intel_ring_emit(ring, MI_NOOP);
1479 intel_ring_advance(ring);
1480
1481 return 0;
1482 }
1483
1484 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1485 u64 offset, u32 len,
1486 unsigned int dispatch_flags)
1487 {
1488 struct intel_ring *ring = req->ring;
1489 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1490 int ret;
1491
1492 /* Don't rely in hw updating PDPs, specially in lite-restore.
1493 * Ideally, we should set Force PD Restore in ctx descriptor,
1494 * but we can't. Force Restore would be a second option, but
1495 * it is unsafe in case of lite-restore (because the ctx is
1496 * not idle). PML4 is allocated during ppgtt init so this is
1497 * not needed in 48-bit.*/
1498 if (req->ctx->ppgtt &&
1499 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1500 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1501 !intel_vgpu_active(req->i915)) {
1502 ret = intel_logical_ring_emit_pdps(req);
1503 if (ret)
1504 return ret;
1505 }
1506
1507 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1508 }
1509
1510 ret = intel_ring_begin(req, 4);
1511 if (ret)
1512 return ret;
1513
1514 /* FIXME(BDW): Address space and security selectors. */
1515 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
1516 (ppgtt<<8) |
1517 (dispatch_flags & I915_DISPATCH_RS ?
1518 MI_BATCH_RESOURCE_STREAMER : 0));
1519 intel_ring_emit(ring, lower_32_bits(offset));
1520 intel_ring_emit(ring, upper_32_bits(offset));
1521 intel_ring_emit(ring, MI_NOOP);
1522 intel_ring_advance(ring);
1523
1524 return 0;
1525 }
1526
1527 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1528 {
1529 struct drm_i915_private *dev_priv = engine->i915;
1530 I915_WRITE_IMR(engine,
1531 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1532 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1533 }
1534
1535 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1536 {
1537 struct drm_i915_private *dev_priv = engine->i915;
1538 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1539 }
1540
1541 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1542 {
1543 struct intel_ring *ring = request->ring;
1544 u32 cmd;
1545 int ret;
1546
1547 ret = intel_ring_begin(request, 4);
1548 if (ret)
1549 return ret;
1550
1551 cmd = MI_FLUSH_DW + 1;
1552
1553 /* We always require a command barrier so that subsequent
1554 * commands, such as breadcrumb interrupts, are strictly ordered
1555 * wrt the contents of the write cache being flushed to memory
1556 * (and thus being coherent from the CPU).
1557 */
1558 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1559
1560 if (mode & EMIT_INVALIDATE) {
1561 cmd |= MI_INVALIDATE_TLB;
1562 if (request->engine->id == VCS)
1563 cmd |= MI_INVALIDATE_BSD;
1564 }
1565
1566 intel_ring_emit(ring, cmd);
1567 intel_ring_emit(ring,
1568 I915_GEM_HWS_SCRATCH_ADDR |
1569 MI_FLUSH_DW_USE_GTT);
1570 intel_ring_emit(ring, 0); /* upper addr */
1571 intel_ring_emit(ring, 0); /* value */
1572 intel_ring_advance(ring);
1573
1574 return 0;
1575 }
1576
1577 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1578 u32 mode)
1579 {
1580 struct intel_ring *ring = request->ring;
1581 struct intel_engine_cs *engine = request->engine;
1582 u32 scratch_addr =
1583 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1584 bool vf_flush_wa = false, dc_flush_wa = false;
1585 u32 flags = 0;
1586 int ret;
1587 int len;
1588
1589 flags |= PIPE_CONTROL_CS_STALL;
1590
1591 if (mode & EMIT_FLUSH) {
1592 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1593 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1594 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1595 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1596 }
1597
1598 if (mode & EMIT_INVALIDATE) {
1599 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1600 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1601 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1602 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1603 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1604 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1605 flags |= PIPE_CONTROL_QW_WRITE;
1606 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1607
1608 /*
1609 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1610 * pipe control.
1611 */
1612 if (IS_GEN9(request->i915))
1613 vf_flush_wa = true;
1614
1615 /* WaForGAMHang:kbl */
1616 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1617 dc_flush_wa = true;
1618 }
1619
1620 len = 6;
1621
1622 if (vf_flush_wa)
1623 len += 6;
1624
1625 if (dc_flush_wa)
1626 len += 12;
1627
1628 ret = intel_ring_begin(request, len);
1629 if (ret)
1630 return ret;
1631
1632 if (vf_flush_wa) {
1633 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1634 intel_ring_emit(ring, 0);
1635 intel_ring_emit(ring, 0);
1636 intel_ring_emit(ring, 0);
1637 intel_ring_emit(ring, 0);
1638 intel_ring_emit(ring, 0);
1639 }
1640
1641 if (dc_flush_wa) {
1642 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1643 intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
1644 intel_ring_emit(ring, 0);
1645 intel_ring_emit(ring, 0);
1646 intel_ring_emit(ring, 0);
1647 intel_ring_emit(ring, 0);
1648 }
1649
1650 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1651 intel_ring_emit(ring, flags);
1652 intel_ring_emit(ring, scratch_addr);
1653 intel_ring_emit(ring, 0);
1654 intel_ring_emit(ring, 0);
1655 intel_ring_emit(ring, 0);
1656
1657 if (dc_flush_wa) {
1658 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1659 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
1660 intel_ring_emit(ring, 0);
1661 intel_ring_emit(ring, 0);
1662 intel_ring_emit(ring, 0);
1663 intel_ring_emit(ring, 0);
1664 }
1665
1666 intel_ring_advance(ring);
1667
1668 return 0;
1669 }
1670
1671 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1672 {
1673 /*
1674 * On BXT A steppings there is a HW coherency issue whereby the
1675 * MI_STORE_DATA_IMM storing the completed request's seqno
1676 * occasionally doesn't invalidate the CPU cache. Work around this by
1677 * clflushing the corresponding cacheline whenever the caller wants
1678 * the coherency to be guaranteed. Note that this cacheline is known
1679 * to be clean at this point, since we only write it in
1680 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1681 * this clflush in practice becomes an invalidate operation.
1682 */
1683 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1684 }
1685
1686 /*
1687 * Reserve space for 2 NOOPs at the end of each request to be
1688 * used as a workaround for not being allowed to do lite
1689 * restore with HEAD==TAIL (WaIdleLiteRestore).
1690 */
1691 static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *out)
1692 {
1693 *out++ = MI_NOOP;
1694 *out++ = MI_NOOP;
1695 request->wa_tail = intel_ring_offset(request->ring, out);
1696 }
1697
1698 static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request,
1699 u32 *out)
1700 {
1701 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1702 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1703
1704 *out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1705 *out++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1706 *out++ = 0;
1707 *out++ = request->global_seqno;
1708 *out++ = MI_USER_INTERRUPT;
1709 *out++ = MI_NOOP;
1710 request->tail = intel_ring_offset(request->ring, out);
1711
1712 gen8_emit_wa_tail(request, out);
1713 }
1714
1715 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1716
1717 static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1718 u32 *out)
1719 {
1720 /* We're using qword write, seqno should be aligned to 8 bytes. */
1721 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1722
1723 /* w/a for post sync ops following a GPGPU operation we
1724 * need a prior CS_STALL, which is emitted by the flush
1725 * following the batch.
1726 */
1727 *out++ = GFX_OP_PIPE_CONTROL(6);
1728 *out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
1729 PIPE_CONTROL_CS_STALL |
1730 PIPE_CONTROL_QW_WRITE);
1731 *out++ = intel_hws_seqno_address(request->engine);
1732 *out++ = 0;
1733 *out++ = request->global_seqno;
1734 /* We're thrashing one dword of HWS. */
1735 *out++ = 0;
1736 *out++ = MI_USER_INTERRUPT;
1737 *out++ = MI_NOOP;
1738 request->tail = intel_ring_offset(request->ring, out);
1739
1740 gen8_emit_wa_tail(request, out);
1741 }
1742
1743 static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1744
1745 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1746 {
1747 int ret;
1748
1749 ret = intel_logical_ring_workarounds_emit(req);
1750 if (ret)
1751 return ret;
1752
1753 ret = intel_rcs_context_init_mocs(req);
1754 /*
1755 * Failing to program the MOCS is non-fatal.The system will not
1756 * run at peak performance. So generate an error and carry on.
1757 */
1758 if (ret)
1759 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1760
1761 return i915_gem_render_state_emit(req);
1762 }
1763
1764 /**
1765 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1766 * @engine: Engine Command Streamer.
1767 */
1768 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1769 {
1770 struct drm_i915_private *dev_priv;
1771
1772 /*
1773 * Tasklet cannot be active at this point due intel_mark_active/idle
1774 * so this is just for documentation.
1775 */
1776 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1777 tasklet_kill(&engine->irq_tasklet);
1778
1779 dev_priv = engine->i915;
1780
1781 if (engine->buffer) {
1782 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1783 }
1784
1785 if (engine->cleanup)
1786 engine->cleanup(engine);
1787
1788 intel_engine_cleanup_common(engine);
1789
1790 if (engine->status_page.vma) {
1791 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1792 engine->status_page.vma = NULL;
1793 }
1794 intel_lr_context_unpin(dev_priv->kernel_context, engine);
1795
1796 lrc_destroy_wa_ctx_obj(engine);
1797 engine->i915 = NULL;
1798 dev_priv->engine[engine->id] = NULL;
1799 kfree(engine);
1800 }
1801
1802 void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1803 {
1804 struct intel_engine_cs *engine;
1805 enum intel_engine_id id;
1806
1807 for_each_engine(engine, dev_priv, id) {
1808 engine->submit_request = execlists_submit_request;
1809 engine->schedule = execlists_schedule;
1810 }
1811 }
1812
1813 static void
1814 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1815 {
1816 /* Default vfuncs which can be overriden by each engine. */
1817 engine->init_hw = gen8_init_common_ring;
1818 engine->reset_hw = reset_common_ring;
1819 engine->emit_flush = gen8_emit_flush;
1820 engine->emit_breadcrumb = gen8_emit_breadcrumb;
1821 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1822 engine->submit_request = execlists_submit_request;
1823 engine->schedule = execlists_schedule;
1824
1825 engine->irq_enable = gen8_logical_ring_enable_irq;
1826 engine->irq_disable = gen8_logical_ring_disable_irq;
1827 engine->emit_bb_start = gen8_emit_bb_start;
1828 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1829 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1830 }
1831
1832 static inline void
1833 logical_ring_default_irqs(struct intel_engine_cs *engine)
1834 {
1835 unsigned shift = engine->irq_shift;
1836 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1837 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1838 }
1839
1840 static int
1841 lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1842 {
1843 const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1844 void *hws;
1845
1846 /* The HWSP is part of the default context object in LRC mode. */
1847 hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1848 if (IS_ERR(hws))
1849 return PTR_ERR(hws);
1850
1851 engine->status_page.page_addr = hws + hws_offset;
1852 engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1853 engine->status_page.vma = vma;
1854
1855 return 0;
1856 }
1857
1858 static void
1859 logical_ring_setup(struct intel_engine_cs *engine)
1860 {
1861 struct drm_i915_private *dev_priv = engine->i915;
1862 enum forcewake_domains fw_domains;
1863
1864 intel_engine_setup_common(engine);
1865
1866 /* Intentionally left blank. */
1867 engine->buffer = NULL;
1868
1869 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1870 RING_ELSP(engine),
1871 FW_REG_WRITE);
1872
1873 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1874 RING_CONTEXT_STATUS_PTR(engine),
1875 FW_REG_READ | FW_REG_WRITE);
1876
1877 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1878 RING_CONTEXT_STATUS_BUF_BASE(engine),
1879 FW_REG_READ);
1880
1881 engine->fw_domains = fw_domains;
1882
1883 tasklet_init(&engine->irq_tasklet,
1884 intel_lrc_irq_handler, (unsigned long)engine);
1885
1886 logical_ring_init_platform_invariants(engine);
1887 logical_ring_default_vfuncs(engine);
1888 logical_ring_default_irqs(engine);
1889 }
1890
1891 static int
1892 logical_ring_init(struct intel_engine_cs *engine)
1893 {
1894 struct i915_gem_context *dctx = engine->i915->kernel_context;
1895 int ret;
1896
1897 ret = intel_engine_init_common(engine);
1898 if (ret)
1899 goto error;
1900
1901 ret = execlists_context_deferred_alloc(dctx, engine);
1902 if (ret)
1903 goto error;
1904
1905 /* As this is the default context, always pin it */
1906 ret = intel_lr_context_pin(dctx, engine);
1907 if (ret) {
1908 DRM_ERROR("Failed to pin context for %s: %d\n",
1909 engine->name, ret);
1910 goto error;
1911 }
1912
1913 /* And setup the hardware status page. */
1914 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1915 if (ret) {
1916 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1917 goto error;
1918 }
1919
1920 return 0;
1921
1922 error:
1923 intel_logical_ring_cleanup(engine);
1924 return ret;
1925 }
1926
1927 int logical_render_ring_init(struct intel_engine_cs *engine)
1928 {
1929 struct drm_i915_private *dev_priv = engine->i915;
1930 int ret;
1931
1932 logical_ring_setup(engine);
1933
1934 if (HAS_L3_DPF(dev_priv))
1935 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1936
1937 /* Override some for render ring. */
1938 if (INTEL_GEN(dev_priv) >= 9)
1939 engine->init_hw = gen9_init_render_ring;
1940 else
1941 engine->init_hw = gen8_init_render_ring;
1942 engine->init_context = gen8_init_rcs_context;
1943 engine->emit_flush = gen8_emit_flush_render;
1944 engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1945 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1946
1947 ret = intel_engine_create_scratch(engine, 4096);
1948 if (ret)
1949 return ret;
1950
1951 ret = intel_init_workaround_bb(engine);
1952 if (ret) {
1953 /*
1954 * We continue even if we fail to initialize WA batch
1955 * because we only expect rare glitches but nothing
1956 * critical to prevent us from using GPU
1957 */
1958 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1959 ret);
1960 }
1961
1962 return logical_ring_init(engine);
1963 }
1964
1965 int logical_xcs_ring_init(struct intel_engine_cs *engine)
1966 {
1967 logical_ring_setup(engine);
1968
1969 return logical_ring_init(engine);
1970 }
1971
1972 static u32
1973 make_rpcs(struct drm_i915_private *dev_priv)
1974 {
1975 u32 rpcs = 0;
1976
1977 /*
1978 * No explicit RPCS request is needed to ensure full
1979 * slice/subslice/EU enablement prior to Gen9.
1980 */
1981 if (INTEL_GEN(dev_priv) < 9)
1982 return 0;
1983
1984 /*
1985 * Starting in Gen9, render power gating can leave
1986 * slice/subslice/EU in a partially enabled state. We
1987 * must make an explicit request through RPCS for full
1988 * enablement.
1989 */
1990 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1991 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1992 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1993 GEN8_RPCS_S_CNT_SHIFT;
1994 rpcs |= GEN8_RPCS_ENABLE;
1995 }
1996
1997 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1998 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1999 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
2000 GEN8_RPCS_SS_CNT_SHIFT;
2001 rpcs |= GEN8_RPCS_ENABLE;
2002 }
2003
2004 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2005 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2006 GEN8_RPCS_EU_MIN_SHIFT;
2007 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2008 GEN8_RPCS_EU_MAX_SHIFT;
2009 rpcs |= GEN8_RPCS_ENABLE;
2010 }
2011
2012 return rpcs;
2013 }
2014
2015 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2016 {
2017 u32 indirect_ctx_offset;
2018
2019 switch (INTEL_GEN(engine->i915)) {
2020 default:
2021 MISSING_CASE(INTEL_GEN(engine->i915));
2022 /* fall through */
2023 case 9:
2024 indirect_ctx_offset =
2025 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2026 break;
2027 case 8:
2028 indirect_ctx_offset =
2029 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2030 break;
2031 }
2032
2033 return indirect_ctx_offset;
2034 }
2035
2036 static void execlists_init_reg_state(u32 *reg_state,
2037 struct i915_gem_context *ctx,
2038 struct intel_engine_cs *engine,
2039 struct intel_ring *ring)
2040 {
2041 struct drm_i915_private *dev_priv = engine->i915;
2042 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2043
2044 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2045 * commands followed by (reg, value) pairs. The values we are setting here are
2046 * only for the first context restore: on a subsequent save, the GPU will
2047 * recreate this batchbuffer with new values (including all the missing
2048 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2049 reg_state[CTX_LRI_HEADER_0] =
2050 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2051 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2052 RING_CONTEXT_CONTROL(engine),
2053 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2054 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2055 (HAS_RESOURCE_STREAMER(dev_priv) ?
2056 CTX_CTRL_RS_CTX_ENABLE : 0)));
2057 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2058 0);
2059 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2060 0);
2061 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2062 RING_START(engine->mmio_base), 0);
2063 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2064 RING_CTL(engine->mmio_base),
2065 RING_CTL_SIZE(ring->size) | RING_VALID);
2066 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2067 RING_BBADDR_UDW(engine->mmio_base), 0);
2068 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2069 RING_BBADDR(engine->mmio_base), 0);
2070 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2071 RING_BBSTATE(engine->mmio_base),
2072 RING_BB_PPGTT);
2073 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2074 RING_SBBADDR_UDW(engine->mmio_base), 0);
2075 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2076 RING_SBBADDR(engine->mmio_base), 0);
2077 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2078 RING_SBBSTATE(engine->mmio_base), 0);
2079 if (engine->id == RCS) {
2080 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2081 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2082 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2083 RING_INDIRECT_CTX(engine->mmio_base), 0);
2084 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2085 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2086 if (engine->wa_ctx.vma) {
2087 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2088 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2089
2090 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2091 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2092 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2093
2094 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2095 intel_lr_indirect_ctx_offset(engine) << 6;
2096
2097 reg_state[CTX_BB_PER_CTX_PTR+1] =
2098 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2099 0x01;
2100 }
2101 }
2102 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2103 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2104 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2105 /* PDP values well be assigned later if needed */
2106 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2107 0);
2108 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2109 0);
2110 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2111 0);
2112 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2113 0);
2114 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2115 0);
2116 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2117 0);
2118 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2119 0);
2120 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2121 0);
2122
2123 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2124 /* 64b PPGTT (48bit canonical)
2125 * PDP0_DESCRIPTOR contains the base address to PML4 and
2126 * other PDP Descriptors are ignored.
2127 */
2128 ASSIGN_CTX_PML4(ppgtt, reg_state);
2129 } else {
2130 /* 32b PPGTT
2131 * PDP*_DESCRIPTOR contains the base address of space supported.
2132 * With dynamic page allocation, PDPs may not be allocated at
2133 * this point. Point the unallocated PDPs to the scratch page
2134 */
2135 execlists_update_context_pdps(ppgtt, reg_state);
2136 }
2137
2138 if (engine->id == RCS) {
2139 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2140 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2141 make_rpcs(dev_priv));
2142 }
2143 }
2144
2145 static int
2146 populate_lr_context(struct i915_gem_context *ctx,
2147 struct drm_i915_gem_object *ctx_obj,
2148 struct intel_engine_cs *engine,
2149 struct intel_ring *ring)
2150 {
2151 void *vaddr;
2152 int ret;
2153
2154 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2155 if (ret) {
2156 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2157 return ret;
2158 }
2159
2160 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2161 if (IS_ERR(vaddr)) {
2162 ret = PTR_ERR(vaddr);
2163 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2164 return ret;
2165 }
2166 ctx_obj->mm.dirty = true;
2167
2168 /* The second page of the context object contains some fields which must
2169 * be set up prior to the first execution. */
2170
2171 execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
2172 ctx, engine, ring);
2173
2174 i915_gem_object_unpin_map(ctx_obj);
2175
2176 return 0;
2177 }
2178
2179 /**
2180 * intel_lr_context_size() - return the size of the context for an engine
2181 * @engine: which engine to find the context size for
2182 *
2183 * Each engine may require a different amount of space for a context image,
2184 * so when allocating (or copying) an image, this function can be used to
2185 * find the right size for the specific engine.
2186 *
2187 * Return: size (in bytes) of an engine-specific context image
2188 *
2189 * Note: this size includes the HWSP, which is part of the context image
2190 * in LRC mode, but does not include the "shared data page" used with
2191 * GuC submission. The caller should account for this if using the GuC.
2192 */
2193 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2194 {
2195 int ret = 0;
2196
2197 WARN_ON(INTEL_GEN(engine->i915) < 8);
2198
2199 switch (engine->id) {
2200 case RCS:
2201 if (INTEL_GEN(engine->i915) >= 9)
2202 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2203 else
2204 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2205 break;
2206 case VCS:
2207 case BCS:
2208 case VECS:
2209 case VCS2:
2210 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2211 break;
2212 }
2213
2214 return ret;
2215 }
2216
2217 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2218 struct intel_engine_cs *engine)
2219 {
2220 struct drm_i915_gem_object *ctx_obj;
2221 struct intel_context *ce = &ctx->engine[engine->id];
2222 struct i915_vma *vma;
2223 uint32_t context_size;
2224 struct intel_ring *ring;
2225 int ret;
2226
2227 WARN_ON(ce->state);
2228
2229 context_size = round_up(intel_lr_context_size(engine), 4096);
2230
2231 /* One extra page as the sharing data between driver and GuC */
2232 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2233
2234 ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2235 if (IS_ERR(ctx_obj)) {
2236 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2237 return PTR_ERR(ctx_obj);
2238 }
2239
2240 vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
2241 if (IS_ERR(vma)) {
2242 ret = PTR_ERR(vma);
2243 goto error_deref_obj;
2244 }
2245
2246 ring = intel_engine_create_ring(engine, ctx->ring_size);
2247 if (IS_ERR(ring)) {
2248 ret = PTR_ERR(ring);
2249 goto error_deref_obj;
2250 }
2251
2252 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2253 if (ret) {
2254 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2255 goto error_ring_free;
2256 }
2257
2258 ce->ring = ring;
2259 ce->state = vma;
2260 ce->initialised = engine->init_context == NULL;
2261
2262 return 0;
2263
2264 error_ring_free:
2265 intel_ring_free(ring);
2266 error_deref_obj:
2267 i915_gem_object_put(ctx_obj);
2268 return ret;
2269 }
2270
2271 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2272 {
2273 struct intel_engine_cs *engine;
2274 struct i915_gem_context *ctx;
2275 enum intel_engine_id id;
2276
2277 /* Because we emit WA_TAIL_DWORDS there may be a disparity
2278 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2279 * that stored in context. As we only write new commands from
2280 * ce->ring->tail onwards, everything before that is junk. If the GPU
2281 * starts reading from its RING_HEAD from the context, it may try to
2282 * execute that junk and die.
2283 *
2284 * So to avoid that we reset the context images upon resume. For
2285 * simplicity, we just zero everything out.
2286 */
2287 list_for_each_entry(ctx, &dev_priv->context_list, link) {
2288 for_each_engine(engine, dev_priv, id) {
2289 struct intel_context *ce = &ctx->engine[engine->id];
2290 u32 *reg;
2291
2292 if (!ce->state)
2293 continue;
2294
2295 reg = i915_gem_object_pin_map(ce->state->obj,
2296 I915_MAP_WB);
2297 if (WARN_ON(IS_ERR(reg)))
2298 continue;
2299
2300 reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2301 reg[CTX_RING_HEAD+1] = 0;
2302 reg[CTX_RING_TAIL+1] = 0;
2303
2304 ce->state->obj->mm.dirty = true;
2305 i915_gem_object_unpin_map(ce->state->obj);
2306
2307 ce->ring->head = ce->ring->tail = 0;
2308 ce->ring->last_retired_head = -1;
2309 intel_ring_update_space(ce->ring);
2310 }
2311 }
2312 }