]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/intel_lrc.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define RING_EXECLIST_QFULL (1 << 0x2)
142 #define RING_EXECLIST1_VALID (1 << 0x3)
143 #define RING_EXECLIST0_VALID (1 << 0x4)
144 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
145 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
146 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
147
148 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
149 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
150 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
151 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
152 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
153 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
154
155 #define GEN8_CTX_STATUS_COMPLETED_MASK \
156 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
157 GEN8_CTX_STATUS_PREEMPTED | \
158 GEN8_CTX_STATUS_ELEMENT_SWITCH)
159
160 #define CTX_LRI_HEADER_0 0x01
161 #define CTX_CONTEXT_CONTROL 0x02
162 #define CTX_RING_HEAD 0x04
163 #define CTX_RING_TAIL 0x06
164 #define CTX_RING_BUFFER_START 0x08
165 #define CTX_RING_BUFFER_CONTROL 0x0a
166 #define CTX_BB_HEAD_U 0x0c
167 #define CTX_BB_HEAD_L 0x0e
168 #define CTX_BB_STATE 0x10
169 #define CTX_SECOND_BB_HEAD_U 0x12
170 #define CTX_SECOND_BB_HEAD_L 0x14
171 #define CTX_SECOND_BB_STATE 0x16
172 #define CTX_BB_PER_CTX_PTR 0x18
173 #define CTX_RCS_INDIRECT_CTX 0x1a
174 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
175 #define CTX_LRI_HEADER_1 0x21
176 #define CTX_CTX_TIMESTAMP 0x22
177 #define CTX_PDP3_UDW 0x24
178 #define CTX_PDP3_LDW 0x26
179 #define CTX_PDP2_UDW 0x28
180 #define CTX_PDP2_LDW 0x2a
181 #define CTX_PDP1_UDW 0x2c
182 #define CTX_PDP1_LDW 0x2e
183 #define CTX_PDP0_UDW 0x30
184 #define CTX_PDP0_LDW 0x32
185 #define CTX_LRI_HEADER_2 0x41
186 #define CTX_R_PWR_CLK_STATE 0x42
187 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
188
189 #define CTX_REG(reg_state, pos, reg, val) do { \
190 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
191 (reg_state)[(pos)+1] = (val); \
192 } while (0)
193
194 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
195 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
196 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198 } while (0)
199
200 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
201 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
202 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
203 } while (0)
204
205 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
206 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
207 #define GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x19
208
209 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
210 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
211
212 #define WA_TAIL_DWORDS 2
213
214 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
215 struct intel_engine_cs *engine);
216 static void execlists_init_reg_state(u32 *reg_state,
217 struct i915_gem_context *ctx,
218 struct intel_engine_cs *engine,
219 struct intel_ring *ring);
220
221 /**
222 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
223 * @dev_priv: i915 device private
224 * @enable_execlists: value of i915.enable_execlists module parameter.
225 *
226 * Only certain platforms support Execlists (the prerequisites being
227 * support for Logical Ring Contexts and Aliasing PPGTT or better).
228 *
229 * Return: 1 if Execlists is supported and has to be enabled.
230 */
231 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
232 {
233 /* On platforms with execlist available, vGPU will only
234 * support execlist mode, no ring buffer mode.
235 */
236 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
237 return 1;
238
239 if (INTEL_GEN(dev_priv) >= 9)
240 return 1;
241
242 if (enable_execlists == 0)
243 return 0;
244
245 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
246 USES_PPGTT(dev_priv) &&
247 i915.use_mmio_flip >= 0)
248 return 1;
249
250 return 0;
251 }
252
253 /**
254 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
255 * descriptor for a pinned context
256 * @ctx: Context to work on
257 * @engine: Engine the descriptor will be used with
258 *
259 * The context descriptor encodes various attributes of a context,
260 * including its GTT address and some flags. Because it's fairly
261 * expensive to calculate, we'll just do it once and cache the result,
262 * which remains valid until the context is unpinned.
263 *
264 * This is what a descriptor looks like, from LSB to MSB::
265 *
266 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
267 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
268 * bits 32-52: ctx ID, a globally unique tag
269 * bits 53-54: mbz, reserved for use by hardware
270 * bits 55-63: group ID, currently unused and set to 0
271 */
272 static void
273 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
274 struct intel_engine_cs *engine)
275 {
276 struct intel_context *ce = &ctx->engine[engine->id];
277 u64 desc;
278
279 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
280
281 desc = ctx->desc_template; /* bits 0-11 */
282 desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
283 /* bits 12-31 */
284 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
285
286 ce->lrc_desc = desc;
287 }
288
289 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
290 struct intel_engine_cs *engine)
291 {
292 return ctx->engine[engine->id].lrc_desc;
293 }
294
295 static inline void
296 execlists_context_status_change(struct drm_i915_gem_request *rq,
297 unsigned long status)
298 {
299 /*
300 * Only used when GVT-g is enabled now. When GVT-g is disabled,
301 * The compiler should eliminate this function as dead-code.
302 */
303 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
304 return;
305
306 atomic_notifier_call_chain(&rq->engine->context_status_notifier,
307 status, rq);
308 }
309
310 static void
311 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
312 {
313 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
314 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
315 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
316 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
317 }
318
319 static u64 execlists_update_context(struct drm_i915_gem_request *rq)
320 {
321 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
322 struct i915_hw_ppgtt *ppgtt =
323 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
324 u32 *reg_state = ce->lrc_reg_state;
325
326 reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
327
328 /* True 32b PPGTT with dynamic page allocation: update PDP
329 * registers and point the unallocated PDPs to scratch page.
330 * PML4 is allocated during ppgtt init, so this is not needed
331 * in 48-bit mode.
332 */
333 if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
334 execlists_update_context_pdps(ppgtt, reg_state);
335
336 return ce->lrc_desc;
337 }
338
339 static void execlists_submit_ports(struct intel_engine_cs *engine)
340 {
341 struct execlist_port *port = engine->execlist_port;
342 u32 __iomem *elsp =
343 engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
344 unsigned int n;
345
346 for (n = ARRAY_SIZE(engine->execlist_port); n--; ) {
347 struct drm_i915_gem_request *rq;
348 unsigned int count;
349 u64 desc;
350
351 rq = port_unpack(&port[n], &count);
352 if (rq) {
353 GEM_BUG_ON(count > !n);
354 if (!count++)
355 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
356 port_set(&port[n], port_pack(rq, count));
357 desc = execlists_update_context(rq);
358 GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
359 } else {
360 GEM_BUG_ON(!n);
361 desc = 0;
362 }
363
364 writel(upper_32_bits(desc), elsp);
365 writel(lower_32_bits(desc), elsp);
366 }
367 }
368
369 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
370 {
371 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
372 i915_gem_context_force_single_submission(ctx));
373 }
374
375 static bool can_merge_ctx(const struct i915_gem_context *prev,
376 const struct i915_gem_context *next)
377 {
378 if (prev != next)
379 return false;
380
381 if (ctx_single_port_submission(prev))
382 return false;
383
384 return true;
385 }
386
387 static void port_assign(struct execlist_port *port,
388 struct drm_i915_gem_request *rq)
389 {
390 GEM_BUG_ON(rq == port_request(port));
391
392 if (port_isset(port))
393 i915_gem_request_put(port_request(port));
394
395 port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
396 }
397
398 static void execlists_dequeue(struct intel_engine_cs *engine)
399 {
400 struct drm_i915_gem_request *last;
401 struct execlist_port *port = engine->execlist_port;
402 struct rb_node *rb;
403 bool submit = false;
404
405 last = port_request(port);
406 if (last)
407 /* WaIdleLiteRestore:bdw,skl
408 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
409 * as we resubmit the request. See gen8_emit_breadcrumb()
410 * for where we prepare the padding after the end of the
411 * request.
412 */
413 last->tail = last->wa_tail;
414
415 GEM_BUG_ON(port_isset(&port[1]));
416
417 /* Hardware submission is through 2 ports. Conceptually each port
418 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
419 * static for a context, and unique to each, so we only execute
420 * requests belonging to a single context from each ring. RING_HEAD
421 * is maintained by the CS in the context image, it marks the place
422 * where it got up to last time, and through RING_TAIL we tell the CS
423 * where we want to execute up to this time.
424 *
425 * In this list the requests are in order of execution. Consecutive
426 * requests from the same context are adjacent in the ringbuffer. We
427 * can combine these requests into a single RING_TAIL update:
428 *
429 * RING_HEAD...req1...req2
430 * ^- RING_TAIL
431 * since to execute req2 the CS must first execute req1.
432 *
433 * Our goal then is to point each port to the end of a consecutive
434 * sequence of requests as being the most optimal (fewest wake ups
435 * and context switches) submission.
436 */
437
438 spin_lock_irq(&engine->timeline->lock);
439 rb = engine->execlist_first;
440 GEM_BUG_ON(rb_first(&engine->execlist_queue) != rb);
441 while (rb) {
442 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
443 struct drm_i915_gem_request *rq, *rn;
444
445 list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
446 /*
447 * Can we combine this request with the current port?
448 * It has to be the same context/ringbuffer and not
449 * have any exceptions (e.g. GVT saying never to
450 * combine contexts).
451 *
452 * If we can combine the requests, we can execute both
453 * by updating the RING_TAIL to point to the end of the
454 * second request, and so we never need to tell the
455 * hardware about the first.
456 */
457 if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
458 /*
459 * If we are on the second port and cannot
460 * combine this request with the last, then we
461 * are done.
462 */
463 if (port != engine->execlist_port) {
464 __list_del_many(&p->requests,
465 &rq->priotree.link);
466 goto done;
467 }
468
469 /*
470 * If GVT overrides us we only ever submit
471 * port[0], leaving port[1] empty. Note that we
472 * also have to be careful that we don't queue
473 * the same context (even though a different
474 * request) to the second port.
475 */
476 if (ctx_single_port_submission(last->ctx) ||
477 ctx_single_port_submission(rq->ctx)) {
478 __list_del_many(&p->requests,
479 &rq->priotree.link);
480 goto done;
481 }
482
483 GEM_BUG_ON(last->ctx == rq->ctx);
484
485 if (submit)
486 port_assign(port, last);
487 port++;
488 }
489
490 INIT_LIST_HEAD(&rq->priotree.link);
491 rq->priotree.priority = INT_MAX;
492
493 __i915_gem_request_submit(rq);
494 trace_i915_gem_request_in(rq, port_index(port, engine));
495 last = rq;
496 submit = true;
497 }
498
499 rb = rb_next(rb);
500 rb_erase(&p->node, &engine->execlist_queue);
501 INIT_LIST_HEAD(&p->requests);
502 if (p->priority != I915_PRIORITY_NORMAL)
503 kmem_cache_free(engine->i915->priorities, p);
504 }
505 done:
506 engine->execlist_first = rb;
507 if (submit)
508 port_assign(port, last);
509 spin_unlock_irq(&engine->timeline->lock);
510
511 if (submit)
512 execlists_submit_ports(engine);
513 }
514
515 static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
516 {
517 const struct execlist_port *port = engine->execlist_port;
518
519 return port_count(&port[0]) + port_count(&port[1]) < 2;
520 }
521
522 /*
523 * Check the unread Context Status Buffers and manage the submission of new
524 * contexts to the ELSP accordingly.
525 */
526 static void intel_lrc_irq_handler(unsigned long data)
527 {
528 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
529 struct execlist_port *port = engine->execlist_port;
530 struct drm_i915_private *dev_priv = engine->i915;
531
532 /* We can skip acquiring intel_runtime_pm_get() here as it was taken
533 * on our behalf by the request (see i915_gem_mark_busy()) and it will
534 * not be relinquished until the device is idle (see
535 * i915_gem_idle_work_handler()). As a precaution, we make sure
536 * that all ELSP are drained i.e. we have processed the CSB,
537 * before allowing ourselves to idle and calling intel_runtime_pm_put().
538 */
539 GEM_BUG_ON(!dev_priv->gt.awake);
540
541 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
542
543 /* Prefer doing test_and_clear_bit() as a two stage operation to avoid
544 * imposing the cost of a locked atomic transaction when submitting a
545 * new request (outside of the context-switch interrupt).
546 */
547 while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
548 u32 __iomem *csb_mmio =
549 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
550 u32 __iomem *buf =
551 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
552 unsigned int head, tail;
553
554 /* The write will be ordered by the uncached read (itself
555 * a memory barrier), so we do not need another in the form
556 * of a locked instruction. The race between the interrupt
557 * handler and the split test/clear is harmless as we order
558 * our clear before the CSB read. If the interrupt arrived
559 * first between the test and the clear, we read the updated
560 * CSB and clear the bit. If the interrupt arrives as we read
561 * the CSB or later (i.e. after we had cleared the bit) the bit
562 * is set and we do a new loop.
563 */
564 __clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
565 head = readl(csb_mmio);
566 tail = GEN8_CSB_WRITE_PTR(head);
567 head = GEN8_CSB_READ_PTR(head);
568 while (head != tail) {
569 struct drm_i915_gem_request *rq;
570 unsigned int status;
571 unsigned int count;
572
573 if (++head == GEN8_CSB_ENTRIES)
574 head = 0;
575
576 /* We are flying near dragons again.
577 *
578 * We hold a reference to the request in execlist_port[]
579 * but no more than that. We are operating in softirq
580 * context and so cannot hold any mutex or sleep. That
581 * prevents us stopping the requests we are processing
582 * in port[] from being retired simultaneously (the
583 * breadcrumb will be complete before we see the
584 * context-switch). As we only hold the reference to the
585 * request, any pointer chasing underneath the request
586 * is subject to a potential use-after-free. Thus we
587 * store all of the bookkeeping within port[] as
588 * required, and avoid using unguarded pointers beneath
589 * request itself. The same applies to the atomic
590 * status notifier.
591 */
592
593 status = readl(buf + 2 * head);
594 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
595 continue;
596
597 /* Check the context/desc id for this event matches */
598 GEM_DEBUG_BUG_ON(readl(buf + 2 * head + 1) !=
599 port->context_id);
600
601 rq = port_unpack(port, &count);
602 GEM_BUG_ON(count == 0);
603 if (--count == 0) {
604 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
605 GEM_BUG_ON(!i915_gem_request_completed(rq));
606 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
607
608 trace_i915_gem_request_out(rq);
609 i915_gem_request_put(rq);
610
611 port[0] = port[1];
612 memset(&port[1], 0, sizeof(port[1]));
613 } else {
614 port_set(port, port_pack(rq, count));
615 }
616
617 /* After the final element, the hw should be idle */
618 GEM_BUG_ON(port_count(port) == 0 &&
619 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
620 }
621
622 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
623 csb_mmio);
624 }
625
626 if (execlists_elsp_ready(engine))
627 execlists_dequeue(engine);
628
629 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
630 }
631
632 static bool
633 insert_request(struct intel_engine_cs *engine,
634 struct i915_priotree *pt,
635 int prio)
636 {
637 struct i915_priolist *p;
638 struct rb_node **parent, *rb;
639 bool first = true;
640
641 if (unlikely(engine->no_priolist))
642 prio = I915_PRIORITY_NORMAL;
643
644 find_priolist:
645 /* most positive priority is scheduled first, equal priorities fifo */
646 rb = NULL;
647 parent = &engine->execlist_queue.rb_node;
648 while (*parent) {
649 rb = *parent;
650 p = rb_entry(rb, typeof(*p), node);
651 if (prio > p->priority) {
652 parent = &rb->rb_left;
653 } else if (prio < p->priority) {
654 parent = &rb->rb_right;
655 first = false;
656 } else {
657 list_add_tail(&pt->link, &p->requests);
658 return false;
659 }
660 }
661
662 if (prio == I915_PRIORITY_NORMAL) {
663 p = &engine->default_priolist;
664 } else {
665 p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
666 /* Convert an allocation failure to a priority bump */
667 if (unlikely(!p)) {
668 prio = I915_PRIORITY_NORMAL; /* recurses just once */
669
670 /* To maintain ordering with all rendering, after an
671 * allocation failure we have to disable all scheduling.
672 * Requests will then be executed in fifo, and schedule
673 * will ensure that dependencies are emitted in fifo.
674 * There will be still some reordering with existing
675 * requests, so if userspace lied about their
676 * dependencies that reordering may be visible.
677 */
678 engine->no_priolist = true;
679 goto find_priolist;
680 }
681 }
682
683 p->priority = prio;
684 rb_link_node(&p->node, rb, parent);
685 rb_insert_color(&p->node, &engine->execlist_queue);
686
687 INIT_LIST_HEAD(&p->requests);
688 list_add_tail(&pt->link, &p->requests);
689
690 if (first)
691 engine->execlist_first = &p->node;
692
693 return first;
694 }
695
696 static void execlists_submit_request(struct drm_i915_gem_request *request)
697 {
698 struct intel_engine_cs *engine = request->engine;
699 unsigned long flags;
700
701 /* Will be called from irq-context when using foreign fences. */
702 spin_lock_irqsave(&engine->timeline->lock, flags);
703
704 if (insert_request(engine,
705 &request->priotree,
706 request->priotree.priority)) {
707 if (execlists_elsp_ready(engine))
708 tasklet_hi_schedule(&engine->irq_tasklet);
709 }
710
711 GEM_BUG_ON(!engine->execlist_first);
712 GEM_BUG_ON(list_empty(&request->priotree.link));
713
714 spin_unlock_irqrestore(&engine->timeline->lock, flags);
715 }
716
717 static struct intel_engine_cs *
718 pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
719 {
720 struct intel_engine_cs *engine =
721 container_of(pt, struct drm_i915_gem_request, priotree)->engine;
722
723 GEM_BUG_ON(!locked);
724
725 if (engine != locked) {
726 spin_unlock(&locked->timeline->lock);
727 spin_lock(&engine->timeline->lock);
728 }
729
730 return engine;
731 }
732
733 static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
734 {
735 struct intel_engine_cs *engine;
736 struct i915_dependency *dep, *p;
737 struct i915_dependency stack;
738 LIST_HEAD(dfs);
739
740 if (prio <= READ_ONCE(request->priotree.priority))
741 return;
742
743 /* Need BKL in order to use the temporary link inside i915_dependency */
744 lockdep_assert_held(&request->i915->drm.struct_mutex);
745
746 stack.signaler = &request->priotree;
747 list_add(&stack.dfs_link, &dfs);
748
749 /* Recursively bump all dependent priorities to match the new request.
750 *
751 * A naive approach would be to use recursion:
752 * static void update_priorities(struct i915_priotree *pt, prio) {
753 * list_for_each_entry(dep, &pt->signalers_list, signal_link)
754 * update_priorities(dep->signal, prio)
755 * insert_request(pt);
756 * }
757 * but that may have unlimited recursion depth and so runs a very
758 * real risk of overunning the kernel stack. Instead, we build
759 * a flat list of all dependencies starting with the current request.
760 * As we walk the list of dependencies, we add all of its dependencies
761 * to the end of the list (this may include an already visited
762 * request) and continue to walk onwards onto the new dependencies. The
763 * end result is a topological list of requests in reverse order, the
764 * last element in the list is the request we must execute first.
765 */
766 list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
767 struct i915_priotree *pt = dep->signaler;
768
769 /* Within an engine, there can be no cycle, but we may
770 * refer to the same dependency chain multiple times
771 * (redundant dependencies are not eliminated) and across
772 * engines.
773 */
774 list_for_each_entry(p, &pt->signalers_list, signal_link) {
775 GEM_BUG_ON(p->signaler->priority < pt->priority);
776 if (prio > READ_ONCE(p->signaler->priority))
777 list_move_tail(&p->dfs_link, &dfs);
778 }
779
780 list_safe_reset_next(dep, p, dfs_link);
781 }
782
783 /* If we didn't need to bump any existing priorities, and we haven't
784 * yet submitted this request (i.e. there is no potential race with
785 * execlists_submit_request()), we can set our own priority and skip
786 * acquiring the engine locks.
787 */
788 if (request->priotree.priority == INT_MIN) {
789 GEM_BUG_ON(!list_empty(&request->priotree.link));
790 request->priotree.priority = prio;
791 if (stack.dfs_link.next == stack.dfs_link.prev)
792 return;
793 __list_del_entry(&stack.dfs_link);
794 }
795
796 engine = request->engine;
797 spin_lock_irq(&engine->timeline->lock);
798
799 /* Fifo and depth-first replacement ensure our deps execute before us */
800 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
801 struct i915_priotree *pt = dep->signaler;
802
803 INIT_LIST_HEAD(&dep->dfs_link);
804
805 engine = pt_lock_engine(pt, engine);
806
807 if (prio <= pt->priority)
808 continue;
809
810 pt->priority = prio;
811 if (!list_empty(&pt->link)) {
812 __list_del_entry(&pt->link);
813 insert_request(engine, pt, prio);
814 }
815 }
816
817 spin_unlock_irq(&engine->timeline->lock);
818
819 /* XXX Do we need to preempt to make room for us and our deps? */
820 }
821
822 static struct intel_ring *
823 execlists_context_pin(struct intel_engine_cs *engine,
824 struct i915_gem_context *ctx)
825 {
826 struct intel_context *ce = &ctx->engine[engine->id];
827 unsigned int flags;
828 void *vaddr;
829 int ret;
830
831 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
832
833 if (likely(ce->pin_count++))
834 goto out;
835 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
836
837 if (!ce->state) {
838 ret = execlists_context_deferred_alloc(ctx, engine);
839 if (ret)
840 goto err;
841 }
842 GEM_BUG_ON(!ce->state);
843
844 flags = PIN_GLOBAL | PIN_HIGH;
845 if (ctx->ggtt_offset_bias)
846 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
847
848 ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
849 if (ret)
850 goto err;
851
852 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
853 if (IS_ERR(vaddr)) {
854 ret = PTR_ERR(vaddr);
855 goto unpin_vma;
856 }
857
858 ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
859 if (ret)
860 goto unpin_map;
861
862 intel_lr_context_descriptor_update(ctx, engine);
863
864 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
865 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
866 i915_ggtt_offset(ce->ring->vma);
867
868 ce->state->obj->mm.dirty = true;
869
870 i915_gem_context_get(ctx);
871 out:
872 return ce->ring;
873
874 unpin_map:
875 i915_gem_object_unpin_map(ce->state->obj);
876 unpin_vma:
877 __i915_vma_unpin(ce->state);
878 err:
879 ce->pin_count = 0;
880 return ERR_PTR(ret);
881 }
882
883 static void execlists_context_unpin(struct intel_engine_cs *engine,
884 struct i915_gem_context *ctx)
885 {
886 struct intel_context *ce = &ctx->engine[engine->id];
887
888 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
889 GEM_BUG_ON(ce->pin_count == 0);
890
891 if (--ce->pin_count)
892 return;
893
894 intel_ring_unpin(ce->ring);
895
896 i915_gem_object_unpin_map(ce->state->obj);
897 i915_vma_unpin(ce->state);
898
899 i915_gem_context_put(ctx);
900 }
901
902 static int execlists_request_alloc(struct drm_i915_gem_request *request)
903 {
904 struct intel_engine_cs *engine = request->engine;
905 struct intel_context *ce = &request->ctx->engine[engine->id];
906 u32 *cs;
907 int ret;
908
909 GEM_BUG_ON(!ce->pin_count);
910
911 /* Flush enough space to reduce the likelihood of waiting after
912 * we start building the request - in which case we will just
913 * have to repeat work.
914 */
915 request->reserved_space += EXECLISTS_REQUEST_SIZE;
916
917 if (i915.enable_guc_submission) {
918 /*
919 * Check that the GuC has space for the request before
920 * going any further, as the i915_add_request() call
921 * later on mustn't fail ...
922 */
923 ret = i915_guc_wq_reserve(request);
924 if (ret)
925 goto err;
926 }
927
928 cs = intel_ring_begin(request, 0);
929 if (IS_ERR(cs)) {
930 ret = PTR_ERR(cs);
931 goto err_unreserve;
932 }
933
934 if (!ce->initialised) {
935 ret = engine->init_context(request);
936 if (ret)
937 goto err_unreserve;
938
939 ce->initialised = true;
940 }
941
942 /* Note that after this point, we have committed to using
943 * this request as it is being used to both track the
944 * state of engine initialisation and liveness of the
945 * golden renderstate above. Think twice before you try
946 * to cancel/unwind this request now.
947 */
948
949 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
950 return 0;
951
952 err_unreserve:
953 if (i915.enable_guc_submission)
954 i915_guc_wq_unreserve(request);
955 err:
956 return ret;
957 }
958
959 /*
960 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
961 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
962 * but there is a slight complication as this is applied in WA batch where the
963 * values are only initialized once so we cannot take register value at the
964 * beginning and reuse it further; hence we save its value to memory, upload a
965 * constant value with bit21 set and then we restore it back with the saved value.
966 * To simplify the WA, a constant value is formed by using the default value
967 * of this register. This shouldn't be a problem because we are only modifying
968 * it for a short period and this batch in non-premptible. We can ofcourse
969 * use additional instructions that read the actual value of the register
970 * at that time and set our bit of interest but it makes the WA complicated.
971 *
972 * This WA is also required for Gen9 so extracting as a function avoids
973 * code duplication.
974 */
975 static u32 *
976 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
977 {
978 *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
979 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
980 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
981 *batch++ = 0;
982
983 *batch++ = MI_LOAD_REGISTER_IMM(1);
984 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
985 *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
986
987 batch = gen8_emit_pipe_control(batch,
988 PIPE_CONTROL_CS_STALL |
989 PIPE_CONTROL_DC_FLUSH_ENABLE,
990 0);
991
992 *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
993 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
994 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
995 *batch++ = 0;
996
997 return batch;
998 }
999
1000 /*
1001 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1002 * initialized at the beginning and shared across all contexts but this field
1003 * helps us to have multiple batches at different offsets and select them based
1004 * on a criteria. At the moment this batch always start at the beginning of the page
1005 * and at this point we don't have multiple wa_ctx batch buffers.
1006 *
1007 * The number of WA applied are not known at the beginning; we use this field
1008 * to return the no of DWORDS written.
1009 *
1010 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1011 * so it adds NOOPs as padding to make it cacheline aligned.
1012 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1013 * makes a complete batch buffer.
1014 */
1015 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1016 {
1017 /* WaDisableCtxRestoreArbitration:bdw,chv */
1018 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1019
1020 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1021 if (IS_BROADWELL(engine->i915))
1022 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1023
1024 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1025 /* Actual scratch location is at 128 bytes offset */
1026 batch = gen8_emit_pipe_control(batch,
1027 PIPE_CONTROL_FLUSH_L3 |
1028 PIPE_CONTROL_GLOBAL_GTT_IVB |
1029 PIPE_CONTROL_CS_STALL |
1030 PIPE_CONTROL_QW_WRITE,
1031 i915_ggtt_offset(engine->scratch) +
1032 2 * CACHELINE_BYTES);
1033
1034 /* Pad to end of cacheline */
1035 while ((unsigned long)batch % CACHELINE_BYTES)
1036 *batch++ = MI_NOOP;
1037
1038 /*
1039 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1040 * execution depends on the length specified in terms of cache lines
1041 * in the register CTX_RCS_INDIRECT_CTX
1042 */
1043
1044 return batch;
1045 }
1046
1047 /*
1048 * This batch is started immediately after indirect_ctx batch. Since we ensure
1049 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1050 *
1051 * The number of DWORDS written are returned using this field.
1052 *
1053 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1054 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1055 */
1056 static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1057 {
1058 /* WaDisableCtxRestoreArbitration:bdw,chv */
1059 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1060 *batch++ = MI_BATCH_BUFFER_END;
1061
1062 return batch;
1063 }
1064
1065 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1066 {
1067 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1068 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1069
1070 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1071 *batch++ = MI_LOAD_REGISTER_IMM(1);
1072 *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1073 *batch++ = _MASKED_BIT_DISABLE(
1074 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1075 *batch++ = MI_NOOP;
1076
1077 /* WaClearSlmSpaceAtContextSwitch:kbl */
1078 /* Actual scratch location is at 128 bytes offset */
1079 if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1080 batch = gen8_emit_pipe_control(batch,
1081 PIPE_CONTROL_FLUSH_L3 |
1082 PIPE_CONTROL_GLOBAL_GTT_IVB |
1083 PIPE_CONTROL_CS_STALL |
1084 PIPE_CONTROL_QW_WRITE,
1085 i915_ggtt_offset(engine->scratch)
1086 + 2 * CACHELINE_BYTES);
1087 }
1088
1089 /* WaMediaPoolStateCmdInWABB:bxt,glk */
1090 if (HAS_POOLED_EU(engine->i915)) {
1091 /*
1092 * EU pool configuration is setup along with golden context
1093 * during context initialization. This value depends on
1094 * device type (2x6 or 3x6) and needs to be updated based
1095 * on which subslice is disabled especially for 2x6
1096 * devices, however it is safe to load default
1097 * configuration of 3x6 device instead of masking off
1098 * corresponding bits because HW ignores bits of a disabled
1099 * subslice and drops down to appropriate config. Please
1100 * see render_state_setup() in i915_gem_render_state.c for
1101 * possible configurations, to avoid duplication they are
1102 * not shown here again.
1103 */
1104 *batch++ = GEN9_MEDIA_POOL_STATE;
1105 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1106 *batch++ = 0x00777000;
1107 *batch++ = 0;
1108 *batch++ = 0;
1109 *batch++ = 0;
1110 }
1111
1112 /* Pad to end of cacheline */
1113 while ((unsigned long)batch % CACHELINE_BYTES)
1114 *batch++ = MI_NOOP;
1115
1116 return batch;
1117 }
1118
1119 static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1120 {
1121 *batch++ = MI_BATCH_BUFFER_END;
1122
1123 return batch;
1124 }
1125
1126 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1127
1128 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1129 {
1130 struct drm_i915_gem_object *obj;
1131 struct i915_vma *vma;
1132 int err;
1133
1134 obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1135 if (IS_ERR(obj))
1136 return PTR_ERR(obj);
1137
1138 vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1139 if (IS_ERR(vma)) {
1140 err = PTR_ERR(vma);
1141 goto err;
1142 }
1143
1144 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1145 if (err)
1146 goto err;
1147
1148 engine->wa_ctx.vma = vma;
1149 return 0;
1150
1151 err:
1152 i915_gem_object_put(obj);
1153 return err;
1154 }
1155
1156 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1157 {
1158 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1159 }
1160
1161 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1162
1163 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1164 {
1165 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1166 struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1167 &wa_ctx->per_ctx };
1168 wa_bb_func_t wa_bb_fn[2];
1169 struct page *page;
1170 void *batch, *batch_ptr;
1171 unsigned int i;
1172 int ret;
1173
1174 if (WARN_ON(engine->id != RCS || !engine->scratch))
1175 return -EINVAL;
1176
1177 switch (INTEL_GEN(engine->i915)) {
1178 case 9:
1179 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1180 wa_bb_fn[1] = gen9_init_perctx_bb;
1181 break;
1182 case 8:
1183 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1184 wa_bb_fn[1] = gen8_init_perctx_bb;
1185 break;
1186 default:
1187 MISSING_CASE(INTEL_GEN(engine->i915));
1188 return 0;
1189 }
1190
1191 ret = lrc_setup_wa_ctx(engine);
1192 if (ret) {
1193 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1194 return ret;
1195 }
1196
1197 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1198 batch = batch_ptr = kmap_atomic(page);
1199
1200 /*
1201 * Emit the two workaround batch buffers, recording the offset from the
1202 * start of the workaround batch buffer object for each and their
1203 * respective sizes.
1204 */
1205 for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1206 wa_bb[i]->offset = batch_ptr - batch;
1207 if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
1208 ret = -EINVAL;
1209 break;
1210 }
1211 batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1212 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1213 }
1214
1215 BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1216
1217 kunmap_atomic(batch);
1218 if (ret)
1219 lrc_destroy_wa_ctx(engine);
1220
1221 return ret;
1222 }
1223
1224 static u8 gtiir[] = {
1225 [RCS] = 0,
1226 [BCS] = 0,
1227 [VCS] = 1,
1228 [VCS2] = 1,
1229 [VECS] = 3,
1230 };
1231
1232 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1233 {
1234 struct drm_i915_private *dev_priv = engine->i915;
1235 struct execlist_port *port = engine->execlist_port;
1236 unsigned int n;
1237 bool submit;
1238 int ret;
1239
1240 ret = intel_mocs_init_engine(engine);
1241 if (ret)
1242 return ret;
1243
1244 intel_engine_reset_breadcrumbs(engine);
1245 intel_engine_init_hangcheck(engine);
1246
1247 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1248 I915_WRITE(RING_MODE_GEN7(engine),
1249 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1250 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1251 engine->status_page.ggtt_offset);
1252 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1253
1254 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1255
1256 GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));
1257
1258 /*
1259 * Clear any pending interrupt state.
1260 *
1261 * We do it twice out of paranoia that some of the IIR are double
1262 * buffered, and if we only reset it once there may still be
1263 * an interrupt pending.
1264 */
1265 I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
1266 GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1267 I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
1268 GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1269 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1270
1271 /* After a GPU reset, we may have requests to replay */
1272 submit = false;
1273 for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++) {
1274 if (!port_isset(&port[n]))
1275 break;
1276
1277 DRM_DEBUG_DRIVER("Restarting %s:%d from 0x%x\n",
1278 engine->name, n,
1279 port_request(&port[n])->global_seqno);
1280
1281 /* Discard the current inflight count */
1282 port_set(&port[n], port_request(&port[n]));
1283 submit = true;
1284 }
1285
1286 if (submit && !i915.enable_guc_submission)
1287 execlists_submit_ports(engine);
1288
1289 return 0;
1290 }
1291
1292 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1293 {
1294 struct drm_i915_private *dev_priv = engine->i915;
1295 int ret;
1296
1297 ret = gen8_init_common_ring(engine);
1298 if (ret)
1299 return ret;
1300
1301 /* We need to disable the AsyncFlip performance optimisations in order
1302 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1303 * programmed to '1' on all products.
1304 *
1305 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1306 */
1307 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1308
1309 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1310
1311 return init_workarounds_ring(engine);
1312 }
1313
1314 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1315 {
1316 int ret;
1317
1318 ret = gen8_init_common_ring(engine);
1319 if (ret)
1320 return ret;
1321
1322 return init_workarounds_ring(engine);
1323 }
1324
1325 static void reset_common_ring(struct intel_engine_cs *engine,
1326 struct drm_i915_gem_request *request)
1327 {
1328 struct execlist_port *port = engine->execlist_port;
1329 struct intel_context *ce;
1330
1331 /* If the request was innocent, we leave the request in the ELSP
1332 * and will try to replay it on restarting. The context image may
1333 * have been corrupted by the reset, in which case we may have
1334 * to service a new GPU hang, but more likely we can continue on
1335 * without impact.
1336 *
1337 * If the request was guilty, we presume the context is corrupt
1338 * and have to at least restore the RING register in the context
1339 * image back to the expected values to skip over the guilty request.
1340 */
1341 if (!request || request->fence.error != -EIO)
1342 return;
1343
1344 /* We want a simple context + ring to execute the breadcrumb update.
1345 * We cannot rely on the context being intact across the GPU hang,
1346 * so clear it and rebuild just what we need for the breadcrumb.
1347 * All pending requests for this context will be zapped, and any
1348 * future request will be after userspace has had the opportunity
1349 * to recreate its own state.
1350 */
1351 ce = &request->ctx->engine[engine->id];
1352 execlists_init_reg_state(ce->lrc_reg_state,
1353 request->ctx, engine, ce->ring);
1354
1355 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1356 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1357 i915_ggtt_offset(ce->ring->vma);
1358 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1359
1360 request->ring->head = request->postfix;
1361 intel_ring_update_space(request->ring);
1362
1363 /* Catch up with any missed context-switch interrupts */
1364 if (request->ctx != port_request(port)->ctx) {
1365 i915_gem_request_put(port_request(port));
1366 port[0] = port[1];
1367 memset(&port[1], 0, sizeof(port[1]));
1368 }
1369
1370 GEM_BUG_ON(request->ctx != port_request(port)->ctx);
1371
1372 /* Reset WaIdleLiteRestore:bdw,skl as well */
1373 request->tail =
1374 intel_ring_wrap(request->ring,
1375 request->wa_tail - WA_TAIL_DWORDS*sizeof(u32));
1376 assert_ring_tail_valid(request->ring, request->tail);
1377 }
1378
1379 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1380 {
1381 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1382 struct intel_engine_cs *engine = req->engine;
1383 const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1384 u32 *cs;
1385 int i;
1386
1387 cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1388 if (IS_ERR(cs))
1389 return PTR_ERR(cs);
1390
1391 *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1392 for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1393 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1394
1395 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1396 *cs++ = upper_32_bits(pd_daddr);
1397 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1398 *cs++ = lower_32_bits(pd_daddr);
1399 }
1400
1401 *cs++ = MI_NOOP;
1402 intel_ring_advance(req, cs);
1403
1404 return 0;
1405 }
1406
1407 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1408 u64 offset, u32 len,
1409 const unsigned int flags)
1410 {
1411 u32 *cs;
1412 int ret;
1413
1414 /* Don't rely in hw updating PDPs, specially in lite-restore.
1415 * Ideally, we should set Force PD Restore in ctx descriptor,
1416 * but we can't. Force Restore would be a second option, but
1417 * it is unsafe in case of lite-restore (because the ctx is
1418 * not idle). PML4 is allocated during ppgtt init so this is
1419 * not needed in 48-bit.*/
1420 if (req->ctx->ppgtt &&
1421 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
1422 !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
1423 !intel_vgpu_active(req->i915)) {
1424 ret = intel_logical_ring_emit_pdps(req);
1425 if (ret)
1426 return ret;
1427
1428 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1429 }
1430
1431 cs = intel_ring_begin(req, 4);
1432 if (IS_ERR(cs))
1433 return PTR_ERR(cs);
1434
1435 /* FIXME(BDW): Address space and security selectors. */
1436 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1437 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1438 (flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1439 *cs++ = lower_32_bits(offset);
1440 *cs++ = upper_32_bits(offset);
1441 *cs++ = MI_NOOP;
1442 intel_ring_advance(req, cs);
1443
1444 return 0;
1445 }
1446
1447 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1448 {
1449 struct drm_i915_private *dev_priv = engine->i915;
1450 I915_WRITE_IMR(engine,
1451 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1452 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1453 }
1454
1455 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1456 {
1457 struct drm_i915_private *dev_priv = engine->i915;
1458 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1459 }
1460
1461 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1462 {
1463 u32 cmd, *cs;
1464
1465 cs = intel_ring_begin(request, 4);
1466 if (IS_ERR(cs))
1467 return PTR_ERR(cs);
1468
1469 cmd = MI_FLUSH_DW + 1;
1470
1471 /* We always require a command barrier so that subsequent
1472 * commands, such as breadcrumb interrupts, are strictly ordered
1473 * wrt the contents of the write cache being flushed to memory
1474 * (and thus being coherent from the CPU).
1475 */
1476 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1477
1478 if (mode & EMIT_INVALIDATE) {
1479 cmd |= MI_INVALIDATE_TLB;
1480 if (request->engine->id == VCS)
1481 cmd |= MI_INVALIDATE_BSD;
1482 }
1483
1484 *cs++ = cmd;
1485 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1486 *cs++ = 0; /* upper addr */
1487 *cs++ = 0; /* value */
1488 intel_ring_advance(request, cs);
1489
1490 return 0;
1491 }
1492
1493 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1494 u32 mode)
1495 {
1496 struct intel_engine_cs *engine = request->engine;
1497 u32 scratch_addr =
1498 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1499 bool vf_flush_wa = false, dc_flush_wa = false;
1500 u32 *cs, flags = 0;
1501 int len;
1502
1503 flags |= PIPE_CONTROL_CS_STALL;
1504
1505 if (mode & EMIT_FLUSH) {
1506 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1507 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1508 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1509 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1510 }
1511
1512 if (mode & EMIT_INVALIDATE) {
1513 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1514 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1515 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1516 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1517 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1518 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1519 flags |= PIPE_CONTROL_QW_WRITE;
1520 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1521
1522 /*
1523 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1524 * pipe control.
1525 */
1526 if (IS_GEN9(request->i915))
1527 vf_flush_wa = true;
1528
1529 /* WaForGAMHang:kbl */
1530 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1531 dc_flush_wa = true;
1532 }
1533
1534 len = 6;
1535
1536 if (vf_flush_wa)
1537 len += 6;
1538
1539 if (dc_flush_wa)
1540 len += 12;
1541
1542 cs = intel_ring_begin(request, len);
1543 if (IS_ERR(cs))
1544 return PTR_ERR(cs);
1545
1546 if (vf_flush_wa)
1547 cs = gen8_emit_pipe_control(cs, 0, 0);
1548
1549 if (dc_flush_wa)
1550 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1551 0);
1552
1553 cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
1554
1555 if (dc_flush_wa)
1556 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
1557
1558 intel_ring_advance(request, cs);
1559
1560 return 0;
1561 }
1562
1563 /*
1564 * Reserve space for 2 NOOPs at the end of each request to be
1565 * used as a workaround for not being allowed to do lite
1566 * restore with HEAD==TAIL (WaIdleLiteRestore).
1567 */
1568 static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1569 {
1570 *cs++ = MI_NOOP;
1571 *cs++ = MI_NOOP;
1572 request->wa_tail = intel_ring_offset(request, cs);
1573 }
1574
1575 static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
1576 {
1577 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1578 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1579
1580 *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1581 *cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1582 *cs++ = 0;
1583 *cs++ = request->global_seqno;
1584 *cs++ = MI_USER_INTERRUPT;
1585 *cs++ = MI_NOOP;
1586 request->tail = intel_ring_offset(request, cs);
1587 assert_ring_tail_valid(request->ring, request->tail);
1588
1589 gen8_emit_wa_tail(request, cs);
1590 }
1591
1592 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1593
1594 static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1595 u32 *cs)
1596 {
1597 /* We're using qword write, seqno should be aligned to 8 bytes. */
1598 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1599
1600 /* w/a for post sync ops following a GPGPU operation we
1601 * need a prior CS_STALL, which is emitted by the flush
1602 * following the batch.
1603 */
1604 *cs++ = GFX_OP_PIPE_CONTROL(6);
1605 *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
1606 PIPE_CONTROL_QW_WRITE;
1607 *cs++ = intel_hws_seqno_address(request->engine);
1608 *cs++ = 0;
1609 *cs++ = request->global_seqno;
1610 /* We're thrashing one dword of HWS. */
1611 *cs++ = 0;
1612 *cs++ = MI_USER_INTERRUPT;
1613 *cs++ = MI_NOOP;
1614 request->tail = intel_ring_offset(request, cs);
1615 assert_ring_tail_valid(request->ring, request->tail);
1616
1617 gen8_emit_wa_tail(request, cs);
1618 }
1619
1620 static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1621
1622 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1623 {
1624 int ret;
1625
1626 ret = intel_ring_workarounds_emit(req);
1627 if (ret)
1628 return ret;
1629
1630 ret = intel_rcs_context_init_mocs(req);
1631 /*
1632 * Failing to program the MOCS is non-fatal.The system will not
1633 * run at peak performance. So generate an error and carry on.
1634 */
1635 if (ret)
1636 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1637
1638 return i915_gem_render_state_emit(req);
1639 }
1640
1641 /**
1642 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1643 * @engine: Engine Command Streamer.
1644 */
1645 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1646 {
1647 struct drm_i915_private *dev_priv;
1648
1649 /*
1650 * Tasklet cannot be active at this point due intel_mark_active/idle
1651 * so this is just for documentation.
1652 */
1653 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1654 tasklet_kill(&engine->irq_tasklet);
1655
1656 dev_priv = engine->i915;
1657
1658 if (engine->buffer) {
1659 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1660 }
1661
1662 if (engine->cleanup)
1663 engine->cleanup(engine);
1664
1665 if (engine->status_page.vma) {
1666 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1667 engine->status_page.vma = NULL;
1668 }
1669
1670 intel_engine_cleanup_common(engine);
1671
1672 lrc_destroy_wa_ctx(engine);
1673 engine->i915 = NULL;
1674 dev_priv->engine[engine->id] = NULL;
1675 kfree(engine);
1676 }
1677
1678 static void execlists_set_default_submission(struct intel_engine_cs *engine)
1679 {
1680 engine->submit_request = execlists_submit_request;
1681 engine->schedule = execlists_schedule;
1682 engine->irq_tasklet.func = intel_lrc_irq_handler;
1683 }
1684
1685 static void
1686 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1687 {
1688 /* Default vfuncs which can be overriden by each engine. */
1689 engine->init_hw = gen8_init_common_ring;
1690 engine->reset_hw = reset_common_ring;
1691
1692 engine->context_pin = execlists_context_pin;
1693 engine->context_unpin = execlists_context_unpin;
1694
1695 engine->request_alloc = execlists_request_alloc;
1696
1697 engine->emit_flush = gen8_emit_flush;
1698 engine->emit_breadcrumb = gen8_emit_breadcrumb;
1699 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1700
1701 engine->set_default_submission = execlists_set_default_submission;
1702
1703 engine->irq_enable = gen8_logical_ring_enable_irq;
1704 engine->irq_disable = gen8_logical_ring_disable_irq;
1705 engine->emit_bb_start = gen8_emit_bb_start;
1706 }
1707
1708 static inline void
1709 logical_ring_default_irqs(struct intel_engine_cs *engine)
1710 {
1711 unsigned shift = engine->irq_shift;
1712 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1713 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1714 }
1715
1716 static int
1717 lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1718 {
1719 const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1720 void *hws;
1721
1722 /* The HWSP is part of the default context object in LRC mode. */
1723 hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1724 if (IS_ERR(hws))
1725 return PTR_ERR(hws);
1726
1727 engine->status_page.page_addr = hws + hws_offset;
1728 engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1729 engine->status_page.vma = vma;
1730
1731 return 0;
1732 }
1733
1734 static void
1735 logical_ring_setup(struct intel_engine_cs *engine)
1736 {
1737 struct drm_i915_private *dev_priv = engine->i915;
1738 enum forcewake_domains fw_domains;
1739
1740 intel_engine_setup_common(engine);
1741
1742 /* Intentionally left blank. */
1743 engine->buffer = NULL;
1744
1745 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1746 RING_ELSP(engine),
1747 FW_REG_WRITE);
1748
1749 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1750 RING_CONTEXT_STATUS_PTR(engine),
1751 FW_REG_READ | FW_REG_WRITE);
1752
1753 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1754 RING_CONTEXT_STATUS_BUF_BASE(engine),
1755 FW_REG_READ);
1756
1757 engine->fw_domains = fw_domains;
1758
1759 tasklet_init(&engine->irq_tasklet,
1760 intel_lrc_irq_handler, (unsigned long)engine);
1761
1762 logical_ring_default_vfuncs(engine);
1763 logical_ring_default_irqs(engine);
1764 }
1765
1766 static int
1767 logical_ring_init(struct intel_engine_cs *engine)
1768 {
1769 struct i915_gem_context *dctx = engine->i915->kernel_context;
1770 int ret;
1771
1772 ret = intel_engine_init_common(engine);
1773 if (ret)
1774 goto error;
1775
1776 /* And setup the hardware status page. */
1777 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1778 if (ret) {
1779 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1780 goto error;
1781 }
1782
1783 return 0;
1784
1785 error:
1786 intel_logical_ring_cleanup(engine);
1787 return ret;
1788 }
1789
1790 int logical_render_ring_init(struct intel_engine_cs *engine)
1791 {
1792 struct drm_i915_private *dev_priv = engine->i915;
1793 int ret;
1794
1795 logical_ring_setup(engine);
1796
1797 if (HAS_L3_DPF(dev_priv))
1798 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1799
1800 /* Override some for render ring. */
1801 if (INTEL_GEN(dev_priv) >= 9)
1802 engine->init_hw = gen9_init_render_ring;
1803 else
1804 engine->init_hw = gen8_init_render_ring;
1805 engine->init_context = gen8_init_rcs_context;
1806 engine->emit_flush = gen8_emit_flush_render;
1807 engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1808 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1809
1810 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1811 if (ret)
1812 return ret;
1813
1814 ret = intel_init_workaround_bb(engine);
1815 if (ret) {
1816 /*
1817 * We continue even if we fail to initialize WA batch
1818 * because we only expect rare glitches but nothing
1819 * critical to prevent us from using GPU
1820 */
1821 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1822 ret);
1823 }
1824
1825 return logical_ring_init(engine);
1826 }
1827
1828 int logical_xcs_ring_init(struct intel_engine_cs *engine)
1829 {
1830 logical_ring_setup(engine);
1831
1832 return logical_ring_init(engine);
1833 }
1834
1835 static u32
1836 make_rpcs(struct drm_i915_private *dev_priv)
1837 {
1838 u32 rpcs = 0;
1839
1840 /*
1841 * No explicit RPCS request is needed to ensure full
1842 * slice/subslice/EU enablement prior to Gen9.
1843 */
1844 if (INTEL_GEN(dev_priv) < 9)
1845 return 0;
1846
1847 /*
1848 * Starting in Gen9, render power gating can leave
1849 * slice/subslice/EU in a partially enabled state. We
1850 * must make an explicit request through RPCS for full
1851 * enablement.
1852 */
1853 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1854 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1855 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1856 GEN8_RPCS_S_CNT_SHIFT;
1857 rpcs |= GEN8_RPCS_ENABLE;
1858 }
1859
1860 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1861 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1862 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1863 GEN8_RPCS_SS_CNT_SHIFT;
1864 rpcs |= GEN8_RPCS_ENABLE;
1865 }
1866
1867 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1868 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1869 GEN8_RPCS_EU_MIN_SHIFT;
1870 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1871 GEN8_RPCS_EU_MAX_SHIFT;
1872 rpcs |= GEN8_RPCS_ENABLE;
1873 }
1874
1875 return rpcs;
1876 }
1877
1878 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1879 {
1880 u32 indirect_ctx_offset;
1881
1882 switch (INTEL_GEN(engine->i915)) {
1883 default:
1884 MISSING_CASE(INTEL_GEN(engine->i915));
1885 /* fall through */
1886 case 10:
1887 indirect_ctx_offset =
1888 GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1889 break;
1890 case 9:
1891 indirect_ctx_offset =
1892 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1893 break;
1894 case 8:
1895 indirect_ctx_offset =
1896 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1897 break;
1898 }
1899
1900 return indirect_ctx_offset;
1901 }
1902
1903 static void execlists_init_reg_state(u32 *regs,
1904 struct i915_gem_context *ctx,
1905 struct intel_engine_cs *engine,
1906 struct intel_ring *ring)
1907 {
1908 struct drm_i915_private *dev_priv = engine->i915;
1909 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1910 u32 base = engine->mmio_base;
1911 bool rcs = engine->id == RCS;
1912
1913 /* A context is actually a big batch buffer with several
1914 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
1915 * values we are setting here are only for the first context restore:
1916 * on a subsequent save, the GPU will recreate this batchbuffer with new
1917 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
1918 * we are not initializing here).
1919 */
1920 regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
1921 MI_LRI_FORCE_POSTED;
1922
1923 CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
1924 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1925 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1926 (HAS_RESOURCE_STREAMER(dev_priv) ?
1927 CTX_CTRL_RS_CTX_ENABLE : 0)));
1928 CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
1929 CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
1930 CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
1931 CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
1932 RING_CTL_SIZE(ring->size) | RING_VALID);
1933 CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
1934 CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
1935 CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
1936 CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
1937 CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
1938 CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
1939 if (rcs) {
1940 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
1941 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
1942 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
1943 RING_INDIRECT_CTX_OFFSET(base), 0);
1944
1945 if (engine->wa_ctx.vma) {
1946 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1947 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1948
1949 regs[CTX_RCS_INDIRECT_CTX + 1] =
1950 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
1951 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
1952
1953 regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
1954 intel_lr_indirect_ctx_offset(engine) << 6;
1955
1956 regs[CTX_BB_PER_CTX_PTR + 1] =
1957 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
1958 }
1959 }
1960
1961 regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1962
1963 CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
1964 /* PDP values well be assigned later if needed */
1965 CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
1966 CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
1967 CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
1968 CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
1969 CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
1970 CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
1971 CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
1972 CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
1973
1974 if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
1975 /* 64b PPGTT (48bit canonical)
1976 * PDP0_DESCRIPTOR contains the base address to PML4 and
1977 * other PDP Descriptors are ignored.
1978 */
1979 ASSIGN_CTX_PML4(ppgtt, regs);
1980 }
1981
1982 if (rcs) {
1983 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1984 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
1985 make_rpcs(dev_priv));
1986
1987 i915_oa_init_reg_state(engine, ctx, regs);
1988 }
1989 }
1990
1991 static int
1992 populate_lr_context(struct i915_gem_context *ctx,
1993 struct drm_i915_gem_object *ctx_obj,
1994 struct intel_engine_cs *engine,
1995 struct intel_ring *ring)
1996 {
1997 void *vaddr;
1998 int ret;
1999
2000 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2001 if (ret) {
2002 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2003 return ret;
2004 }
2005
2006 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2007 if (IS_ERR(vaddr)) {
2008 ret = PTR_ERR(vaddr);
2009 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2010 return ret;
2011 }
2012 ctx_obj->mm.dirty = true;
2013
2014 /* The second page of the context object contains some fields which must
2015 * be set up prior to the first execution. */
2016
2017 execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
2018 ctx, engine, ring);
2019
2020 i915_gem_object_unpin_map(ctx_obj);
2021
2022 return 0;
2023 }
2024
2025 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2026 struct intel_engine_cs *engine)
2027 {
2028 struct drm_i915_gem_object *ctx_obj;
2029 struct intel_context *ce = &ctx->engine[engine->id];
2030 struct i915_vma *vma;
2031 uint32_t context_size;
2032 struct intel_ring *ring;
2033 int ret;
2034
2035 WARN_ON(ce->state);
2036
2037 context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2038
2039 /* One extra page as the sharing data between driver and GuC */
2040 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2041
2042 ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2043 if (IS_ERR(ctx_obj)) {
2044 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2045 return PTR_ERR(ctx_obj);
2046 }
2047
2048 vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2049 if (IS_ERR(vma)) {
2050 ret = PTR_ERR(vma);
2051 goto error_deref_obj;
2052 }
2053
2054 ring = intel_engine_create_ring(engine, ctx->ring_size);
2055 if (IS_ERR(ring)) {
2056 ret = PTR_ERR(ring);
2057 goto error_deref_obj;
2058 }
2059
2060 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2061 if (ret) {
2062 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2063 goto error_ring_free;
2064 }
2065
2066 ce->ring = ring;
2067 ce->state = vma;
2068 ce->initialised |= engine->init_context == NULL;
2069
2070 return 0;
2071
2072 error_ring_free:
2073 intel_ring_free(ring);
2074 error_deref_obj:
2075 i915_gem_object_put(ctx_obj);
2076 return ret;
2077 }
2078
2079 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2080 {
2081 struct intel_engine_cs *engine;
2082 struct i915_gem_context *ctx;
2083 enum intel_engine_id id;
2084
2085 /* Because we emit WA_TAIL_DWORDS there may be a disparity
2086 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2087 * that stored in context. As we only write new commands from
2088 * ce->ring->tail onwards, everything before that is junk. If the GPU
2089 * starts reading from its RING_HEAD from the context, it may try to
2090 * execute that junk and die.
2091 *
2092 * So to avoid that we reset the context images upon resume. For
2093 * simplicity, we just zero everything out.
2094 */
2095 list_for_each_entry(ctx, &dev_priv->context_list, link) {
2096 for_each_engine(engine, dev_priv, id) {
2097 struct intel_context *ce = &ctx->engine[engine->id];
2098 u32 *reg;
2099
2100 if (!ce->state)
2101 continue;
2102
2103 reg = i915_gem_object_pin_map(ce->state->obj,
2104 I915_MAP_WB);
2105 if (WARN_ON(IS_ERR(reg)))
2106 continue;
2107
2108 reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2109 reg[CTX_RING_HEAD+1] = 0;
2110 reg[CTX_RING_TAIL+1] = 0;
2111
2112 ce->state->obj->mm.dirty = true;
2113 i915_gem_object_unpin_map(ce->state->obj);
2114
2115 intel_ring_reset(ce->ring, 0);
2116 }
2117 }
2118 }