]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Rename drm_gem_object_unreference in preparation for lockless free
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL (1 << 0x2)
146 #define RING_EXECLIST1_VALID (1 << 0x3)
147 #define RING_EXECLIST0_VALID (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
158
159 #define CTX_LRI_HEADER_0 0x01
160 #define CTX_CONTEXT_CONTROL 0x02
161 #define CTX_RING_HEAD 0x04
162 #define CTX_RING_TAIL 0x06
163 #define CTX_RING_BUFFER_START 0x08
164 #define CTX_RING_BUFFER_CONTROL 0x0a
165 #define CTX_BB_HEAD_U 0x0c
166 #define CTX_BB_HEAD_L 0x0e
167 #define CTX_BB_STATE 0x10
168 #define CTX_SECOND_BB_HEAD_U 0x12
169 #define CTX_SECOND_BB_HEAD_L 0x14
170 #define CTX_SECOND_BB_STATE 0x16
171 #define CTX_BB_PER_CTX_PTR 0x18
172 #define CTX_RCS_INDIRECT_CTX 0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174 #define CTX_LRI_HEADER_1 0x21
175 #define CTX_CTX_TIMESTAMP 0x22
176 #define CTX_PDP3_UDW 0x24
177 #define CTX_PDP3_LDW 0x26
178 #define CTX_PDP2_UDW 0x28
179 #define CTX_PDP2_LDW 0x2a
180 #define CTX_PDP1_UDW 0x2c
181 #define CTX_PDP1_LDW 0x2e
182 #define CTX_PDP0_UDW 0x30
183 #define CTX_PDP0_LDW 0x32
184 #define CTX_LRI_HEADER_2 0x41
185 #define CTX_R_PWR_CLK_STATE 0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
188 #define GEN8_CTX_VALID (1<<0)
189 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190 #define GEN8_CTX_FORCE_RESTORE (1<<2)
191 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
192 #define GEN8_CTX_PRIVILEGE (1<<8)
193
194 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 (reg_state)[(pos)+1] = (val); \
197 } while (0)
198
199 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203 } while (0)
204
205 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208 } while (0)
209
210 enum {
211 FAULT_AND_HANG = 0,
212 FAULT_AND_HALT, /* Debug only */
213 FAULT_AND_STREAM,
214 FAULT_AND_CONTINUE /* Unsupported */
215 };
216 #define GEN8_CTX_ID_SHIFT 32
217 #define GEN8_CTX_ID_WIDTH 21
218 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
219 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
220
221 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
222 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
223
224 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
225 struct intel_engine_cs *engine);
226 static int intel_lr_context_pin(struct i915_gem_context *ctx,
227 struct intel_engine_cs *engine);
228
229 /**
230 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
231 * @dev_priv: i915 device private
232 * @enable_execlists: value of i915.enable_execlists module parameter.
233 *
234 * Only certain platforms support Execlists (the prerequisites being
235 * support for Logical Ring Contexts and Aliasing PPGTT or better).
236 *
237 * Return: 1 if Execlists is supported and has to be enabled.
238 */
239 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
240 {
241 /* On platforms with execlist available, vGPU will only
242 * support execlist mode, no ring buffer mode.
243 */
244 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
245 return 1;
246
247 if (INTEL_GEN(dev_priv) >= 9)
248 return 1;
249
250 if (enable_execlists == 0)
251 return 0;
252
253 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
254 USES_PPGTT(dev_priv) &&
255 i915.use_mmio_flip >= 0)
256 return 1;
257
258 return 0;
259 }
260
261 static void
262 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
263 {
264 struct drm_i915_private *dev_priv = engine->i915;
265
266 if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
267 engine->idle_lite_restore_wa = ~0;
268
269 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
270 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
271 (engine->id == VCS || engine->id == VCS2);
272
273 engine->ctx_desc_template = GEN8_CTX_VALID;
274 if (IS_GEN8(dev_priv))
275 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
276 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
277
278 /* TODO: WaDisableLiteRestore when we start using semaphore
279 * signalling between Command Streamers */
280 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
281
282 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
283 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
284 if (engine->disable_lite_restore_wa)
285 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
286 }
287
288 /**
289 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
290 * descriptor for a pinned context
291 * @ctx: Context to work on
292 * @engine: Engine the descriptor will be used with
293 *
294 * The context descriptor encodes various attributes of a context,
295 * including its GTT address and some flags. Because it's fairly
296 * expensive to calculate, we'll just do it once and cache the result,
297 * which remains valid until the context is unpinned.
298 *
299 * This is what a descriptor looks like, from LSB to MSB::
300 *
301 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
302 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
303 * bits 32-52: ctx ID, a globally unique tag
304 * bits 53-54: mbz, reserved for use by hardware
305 * bits 55-63: group ID, currently unused and set to 0
306 */
307 static void
308 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
309 struct intel_engine_cs *engine)
310 {
311 struct intel_context *ce = &ctx->engine[engine->id];
312 u64 desc;
313
314 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
315
316 desc = ctx->desc_template; /* bits 3-4 */
317 desc |= engine->ctx_desc_template; /* bits 0-11 */
318 desc |= ce->lrc_vma->node.start + LRC_PPHWSP_PN * PAGE_SIZE;
319 /* bits 12-31 */
320 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
321
322 ce->lrc_desc = desc;
323 }
324
325 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
326 struct intel_engine_cs *engine)
327 {
328 return ctx->engine[engine->id].lrc_desc;
329 }
330
331 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
332 struct drm_i915_gem_request *rq1)
333 {
334
335 struct intel_engine_cs *engine = rq0->engine;
336 struct drm_i915_private *dev_priv = rq0->i915;
337 uint64_t desc[2];
338
339 if (rq1) {
340 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
341 rq1->elsp_submitted++;
342 } else {
343 desc[1] = 0;
344 }
345
346 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
347 rq0->elsp_submitted++;
348
349 /* You must always write both descriptors in the order below. */
350 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
351 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
352
353 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
354 /* The context is automatically loaded after the following */
355 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
356
357 /* ELSP is a wo register, use another nearby reg for posting */
358 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
359 }
360
361 static void
362 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
363 {
364 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
365 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
366 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
367 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
368 }
369
370 static void execlists_update_context(struct drm_i915_gem_request *rq)
371 {
372 struct intel_engine_cs *engine = rq->engine;
373 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
374 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
375
376 reg_state[CTX_RING_TAIL+1] = rq->tail;
377
378 /* True 32b PPGTT with dynamic page allocation: update PDP
379 * registers and point the unallocated PDPs to scratch page.
380 * PML4 is allocated during ppgtt init, so this is not needed
381 * in 48-bit mode.
382 */
383 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
384 execlists_update_context_pdps(ppgtt, reg_state);
385 }
386
387 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
388 struct drm_i915_gem_request *rq1)
389 {
390 struct drm_i915_private *dev_priv = rq0->i915;
391 unsigned int fw_domains = rq0->engine->fw_domains;
392
393 execlists_update_context(rq0);
394
395 if (rq1)
396 execlists_update_context(rq1);
397
398 spin_lock_irq(&dev_priv->uncore.lock);
399 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
400
401 execlists_elsp_write(rq0, rq1);
402
403 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
404 spin_unlock_irq(&dev_priv->uncore.lock);
405 }
406
407 static inline void execlists_context_status_change(
408 struct drm_i915_gem_request *rq,
409 unsigned long status)
410 {
411 /*
412 * Only used when GVT-g is enabled now. When GVT-g is disabled,
413 * The compiler should eliminate this function as dead-code.
414 */
415 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
416 return;
417
418 atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
419 }
420
421 static void execlists_context_unqueue(struct intel_engine_cs *engine)
422 {
423 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
424 struct drm_i915_gem_request *cursor, *tmp;
425
426 assert_spin_locked(&engine->execlist_lock);
427
428 /*
429 * If irqs are not active generate a warning as batches that finish
430 * without the irqs may get lost and a GPU Hang may occur.
431 */
432 WARN_ON(!intel_irqs_enabled(engine->i915));
433
434 /* Try to read in pairs */
435 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
436 execlist_link) {
437 if (!req0) {
438 req0 = cursor;
439 } else if (req0->ctx == cursor->ctx) {
440 /* Same ctx: ignore first request, as second request
441 * will update tail past first request's workload */
442 cursor->elsp_submitted = req0->elsp_submitted;
443 list_del(&req0->execlist_link);
444 i915_gem_request_put(req0);
445 req0 = cursor;
446 } else {
447 if (IS_ENABLED(CONFIG_DRM_I915_GVT)) {
448 /*
449 * req0 (after merged) ctx requires single
450 * submission, stop picking
451 */
452 if (req0->ctx->execlists_force_single_submission)
453 break;
454 /*
455 * req0 ctx doesn't require single submission,
456 * but next req ctx requires, stop picking
457 */
458 if (cursor->ctx->execlists_force_single_submission)
459 break;
460 }
461 req1 = cursor;
462 WARN_ON(req1->elsp_submitted);
463 break;
464 }
465 }
466
467 if (unlikely(!req0))
468 return;
469
470 execlists_context_status_change(req0, INTEL_CONTEXT_SCHEDULE_IN);
471
472 if (req1)
473 execlists_context_status_change(req1,
474 INTEL_CONTEXT_SCHEDULE_IN);
475
476 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
477 /*
478 * WaIdleLiteRestore: make sure we never cause a lite restore
479 * with HEAD==TAIL.
480 *
481 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
482 * resubmit the request. See gen8_emit_request() for where we
483 * prepare the padding after the end of the request.
484 */
485 struct intel_ringbuffer *ringbuf;
486
487 ringbuf = req0->ctx->engine[engine->id].ringbuf;
488 req0->tail += 8;
489 req0->tail &= ringbuf->size - 1;
490 }
491
492 execlists_submit_requests(req0, req1);
493 }
494
495 static unsigned int
496 execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
497 {
498 struct drm_i915_gem_request *head_req;
499
500 assert_spin_locked(&engine->execlist_lock);
501
502 head_req = list_first_entry_or_null(&engine->execlist_queue,
503 struct drm_i915_gem_request,
504 execlist_link);
505
506 if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
507 return 0;
508
509 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
510
511 if (--head_req->elsp_submitted > 0)
512 return 0;
513
514 execlists_context_status_change(head_req, INTEL_CONTEXT_SCHEDULE_OUT);
515
516 list_del(&head_req->execlist_link);
517 i915_gem_request_put(head_req);
518
519 return 1;
520 }
521
522 static u32
523 get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
524 u32 *context_id)
525 {
526 struct drm_i915_private *dev_priv = engine->i915;
527 u32 status;
528
529 read_pointer %= GEN8_CSB_ENTRIES;
530
531 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
532
533 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
534 return 0;
535
536 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
537 read_pointer));
538
539 return status;
540 }
541
542 /*
543 * Check the unread Context Status Buffers and manage the submission of new
544 * contexts to the ELSP accordingly.
545 */
546 static void intel_lrc_irq_handler(unsigned long data)
547 {
548 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
549 struct drm_i915_private *dev_priv = engine->i915;
550 u32 status_pointer;
551 unsigned int read_pointer, write_pointer;
552 u32 csb[GEN8_CSB_ENTRIES][2];
553 unsigned int csb_read = 0, i;
554 unsigned int submit_contexts = 0;
555
556 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
557
558 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
559
560 read_pointer = engine->next_context_status_buffer;
561 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
562 if (read_pointer > write_pointer)
563 write_pointer += GEN8_CSB_ENTRIES;
564
565 while (read_pointer < write_pointer) {
566 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
567 break;
568 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
569 &csb[csb_read][1]);
570 csb_read++;
571 }
572
573 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
574
575 /* Update the read pointer to the old write pointer. Manual ringbuffer
576 * management ftw </sarcasm> */
577 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
578 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
579 engine->next_context_status_buffer << 8));
580
581 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
582
583 spin_lock(&engine->execlist_lock);
584
585 for (i = 0; i < csb_read; i++) {
586 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
587 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
588 if (execlists_check_remove_request(engine, csb[i][1]))
589 WARN(1, "Lite Restored request removed from queue\n");
590 } else
591 WARN(1, "Preemption without Lite Restore\n");
592 }
593
594 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
595 GEN8_CTX_STATUS_ELEMENT_SWITCH))
596 submit_contexts +=
597 execlists_check_remove_request(engine, csb[i][1]);
598 }
599
600 if (submit_contexts) {
601 if (!engine->disable_lite_restore_wa ||
602 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
603 execlists_context_unqueue(engine);
604 }
605
606 spin_unlock(&engine->execlist_lock);
607
608 if (unlikely(submit_contexts > 2))
609 DRM_ERROR("More than two context complete events?\n");
610 }
611
612 static void execlists_context_queue(struct drm_i915_gem_request *request)
613 {
614 struct intel_engine_cs *engine = request->engine;
615 struct drm_i915_gem_request *cursor;
616 int num_elements = 0;
617
618 spin_lock_bh(&engine->execlist_lock);
619
620 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
621 if (++num_elements > 2)
622 break;
623
624 if (num_elements > 2) {
625 struct drm_i915_gem_request *tail_req;
626
627 tail_req = list_last_entry(&engine->execlist_queue,
628 struct drm_i915_gem_request,
629 execlist_link);
630
631 if (request->ctx == tail_req->ctx) {
632 WARN(tail_req->elsp_submitted != 0,
633 "More than 2 already-submitted reqs queued\n");
634 list_del(&tail_req->execlist_link);
635 i915_gem_request_put(tail_req);
636 }
637 }
638
639 i915_gem_request_get(request);
640 list_add_tail(&request->execlist_link, &engine->execlist_queue);
641 request->ctx_hw_id = request->ctx->hw_id;
642 if (num_elements == 0)
643 execlists_context_unqueue(engine);
644
645 spin_unlock_bh(&engine->execlist_lock);
646 }
647
648 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
649 {
650 struct intel_engine_cs *engine = req->engine;
651 uint32_t flush_domains;
652 int ret;
653
654 flush_domains = 0;
655 if (engine->gpu_caches_dirty)
656 flush_domains = I915_GEM_GPU_DOMAINS;
657
658 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
659 if (ret)
660 return ret;
661
662 engine->gpu_caches_dirty = false;
663 return 0;
664 }
665
666 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
667 struct list_head *vmas)
668 {
669 const unsigned other_rings = ~intel_engine_flag(req->engine);
670 struct i915_vma *vma;
671 uint32_t flush_domains = 0;
672 bool flush_chipset = false;
673 int ret;
674
675 list_for_each_entry(vma, vmas, exec_list) {
676 struct drm_i915_gem_object *obj = vma->obj;
677
678 if (obj->active & other_rings) {
679 ret = i915_gem_object_sync(obj, req->engine, &req);
680 if (ret)
681 return ret;
682 }
683
684 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
685 flush_chipset |= i915_gem_clflush_object(obj, false);
686
687 flush_domains |= obj->base.write_domain;
688 }
689
690 if (flush_domains & I915_GEM_DOMAIN_GTT)
691 wmb();
692
693 /* Unconditionally invalidate gpu caches and ensure that we do flush
694 * any residual writes from the previous batch.
695 */
696 return logical_ring_invalidate_all_caches(req);
697 }
698
699 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
700 {
701 struct intel_engine_cs *engine = request->engine;
702 struct intel_context *ce = &request->ctx->engine[engine->id];
703 int ret;
704
705 /* Flush enough space to reduce the likelihood of waiting after
706 * we start building the request - in which case we will just
707 * have to repeat work.
708 */
709 request->reserved_space += EXECLISTS_REQUEST_SIZE;
710
711 if (!ce->state) {
712 ret = execlists_context_deferred_alloc(request->ctx, engine);
713 if (ret)
714 return ret;
715 }
716
717 request->ringbuf = ce->ringbuf;
718
719 if (i915.enable_guc_submission) {
720 /*
721 * Check that the GuC has space for the request before
722 * going any further, as the i915_add_request() call
723 * later on mustn't fail ...
724 */
725 ret = i915_guc_wq_check_space(request);
726 if (ret)
727 return ret;
728 }
729
730 ret = intel_lr_context_pin(request->ctx, engine);
731 if (ret)
732 return ret;
733
734 ret = intel_ring_begin(request, 0);
735 if (ret)
736 goto err_unpin;
737
738 if (!ce->initialised) {
739 ret = engine->init_context(request);
740 if (ret)
741 goto err_unpin;
742
743 ce->initialised = true;
744 }
745
746 /* Note that after this point, we have committed to using
747 * this request as it is being used to both track the
748 * state of engine initialisation and liveness of the
749 * golden renderstate above. Think twice before you try
750 * to cancel/unwind this request now.
751 */
752
753 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
754 return 0;
755
756 err_unpin:
757 intel_lr_context_unpin(request->ctx, engine);
758 return ret;
759 }
760
761 /*
762 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
763 * @request: Request to advance the logical ringbuffer of.
764 *
765 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
766 * really happens during submission is that the context and current tail will be placed
767 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
768 * point, the tail *inside* the context is updated and the ELSP written to.
769 */
770 static int
771 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
772 {
773 struct intel_ringbuffer *ringbuf = request->ringbuf;
774 struct intel_engine_cs *engine = request->engine;
775
776 intel_logical_ring_advance(ringbuf);
777 request->tail = ringbuf->tail;
778
779 /*
780 * Here we add two extra NOOPs as padding to avoid
781 * lite restore of a context with HEAD==TAIL.
782 *
783 * Caller must reserve WA_TAIL_DWORDS for us!
784 */
785 intel_logical_ring_emit(ringbuf, MI_NOOP);
786 intel_logical_ring_emit(ringbuf, MI_NOOP);
787 intel_logical_ring_advance(ringbuf);
788
789 /* We keep the previous context alive until we retire the following
790 * request. This ensures that any the context object is still pinned
791 * for any residual writes the HW makes into it on the context switch
792 * into the next object following the breadcrumb. Otherwise, we may
793 * retire the context too early.
794 */
795 request->previous_context = engine->last_context;
796 engine->last_context = request->ctx;
797
798 if (i915.enable_guc_submission)
799 i915_guc_submit(request);
800 else
801 execlists_context_queue(request);
802
803 return 0;
804 }
805
806 /**
807 * intel_execlists_submission() - submit a batchbuffer for execution, Execlists style
808 * @params: execbuffer call parameters.
809 * @args: execbuffer call arguments.
810 * @vmas: list of vmas.
811 *
812 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
813 * away the submission details of the execbuffer ioctl call.
814 *
815 * Return: non-zero if the submission fails.
816 */
817 int intel_execlists_submission(struct i915_execbuffer_params *params,
818 struct drm_i915_gem_execbuffer2 *args,
819 struct list_head *vmas)
820 {
821 struct drm_device *dev = params->dev;
822 struct intel_engine_cs *engine = params->engine;
823 struct drm_i915_private *dev_priv = to_i915(dev);
824 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
825 u64 exec_start;
826 int instp_mode;
827 u32 instp_mask;
828 int ret;
829
830 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
831 instp_mask = I915_EXEC_CONSTANTS_MASK;
832 switch (instp_mode) {
833 case I915_EXEC_CONSTANTS_REL_GENERAL:
834 case I915_EXEC_CONSTANTS_ABSOLUTE:
835 case I915_EXEC_CONSTANTS_REL_SURFACE:
836 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
837 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
838 return -EINVAL;
839 }
840
841 if (instp_mode != dev_priv->relative_constants_mode) {
842 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
843 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
844 return -EINVAL;
845 }
846
847 /* The HW changed the meaning on this bit on gen6 */
848 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
849 }
850 break;
851 default:
852 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
853 return -EINVAL;
854 }
855
856 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
857 DRM_DEBUG("sol reset is gen7 only\n");
858 return -EINVAL;
859 }
860
861 ret = execlists_move_to_gpu(params->request, vmas);
862 if (ret)
863 return ret;
864
865 if (engine == &dev_priv->engine[RCS] &&
866 instp_mode != dev_priv->relative_constants_mode) {
867 ret = intel_ring_begin(params->request, 4);
868 if (ret)
869 return ret;
870
871 intel_logical_ring_emit(ringbuf, MI_NOOP);
872 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
873 intel_logical_ring_emit_reg(ringbuf, INSTPM);
874 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
875 intel_logical_ring_advance(ringbuf);
876
877 dev_priv->relative_constants_mode = instp_mode;
878 }
879
880 exec_start = params->batch_obj_vm_offset +
881 args->batch_start_offset;
882
883 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
884 if (ret)
885 return ret;
886
887 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
888
889 i915_gem_execbuffer_move_to_active(vmas, params->request);
890
891 return 0;
892 }
893
894 void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
895 {
896 struct drm_i915_gem_request *req, *tmp;
897 LIST_HEAD(cancel_list);
898
899 WARN_ON(!mutex_is_locked(&engine->i915->drm.struct_mutex));
900
901 spin_lock_bh(&engine->execlist_lock);
902 list_replace_init(&engine->execlist_queue, &cancel_list);
903 spin_unlock_bh(&engine->execlist_lock);
904
905 list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
906 list_del(&req->execlist_link);
907 i915_gem_request_put(req);
908 }
909 }
910
911 void intel_logical_ring_stop(struct intel_engine_cs *engine)
912 {
913 struct drm_i915_private *dev_priv = engine->i915;
914 int ret;
915
916 if (!intel_engine_initialized(engine))
917 return;
918
919 ret = intel_engine_idle(engine);
920 if (ret)
921 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
922 engine->name, ret);
923
924 /* TODO: Is this correct with Execlists enabled? */
925 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
926 if (intel_wait_for_register(dev_priv,
927 RING_MI_MODE(engine->mmio_base),
928 MODE_IDLE, MODE_IDLE,
929 1000)) {
930 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
931 return;
932 }
933 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
934 }
935
936 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
937 {
938 struct intel_engine_cs *engine = req->engine;
939 int ret;
940
941 if (!engine->gpu_caches_dirty)
942 return 0;
943
944 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
945 if (ret)
946 return ret;
947
948 engine->gpu_caches_dirty = false;
949 return 0;
950 }
951
952 static int intel_lr_context_pin(struct i915_gem_context *ctx,
953 struct intel_engine_cs *engine)
954 {
955 struct drm_i915_private *dev_priv = ctx->i915;
956 struct intel_context *ce = &ctx->engine[engine->id];
957 void *vaddr;
958 u32 *lrc_reg_state;
959 int ret;
960
961 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
962
963 if (ce->pin_count++)
964 return 0;
965
966 ret = i915_gem_obj_ggtt_pin(ce->state, GEN8_LR_CONTEXT_ALIGN,
967 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
968 if (ret)
969 goto err;
970
971 vaddr = i915_gem_object_pin_map(ce->state);
972 if (IS_ERR(vaddr)) {
973 ret = PTR_ERR(vaddr);
974 goto unpin_ctx_obj;
975 }
976
977 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
978
979 ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ce->ringbuf);
980 if (ret)
981 goto unpin_map;
982
983 ce->lrc_vma = i915_gem_obj_to_ggtt(ce->state);
984 intel_lr_context_descriptor_update(ctx, engine);
985
986 lrc_reg_state[CTX_RING_BUFFER_START+1] = ce->ringbuf->vma->node.start;
987 ce->lrc_reg_state = lrc_reg_state;
988 ce->state->dirty = true;
989
990 /* Invalidate GuC TLB. */
991 if (i915.enable_guc_submission)
992 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
993
994 i915_gem_context_get(ctx);
995 return 0;
996
997 unpin_map:
998 i915_gem_object_unpin_map(ce->state);
999 unpin_ctx_obj:
1000 i915_gem_object_ggtt_unpin(ce->state);
1001 err:
1002 ce->pin_count = 0;
1003 return ret;
1004 }
1005
1006 void intel_lr_context_unpin(struct i915_gem_context *ctx,
1007 struct intel_engine_cs *engine)
1008 {
1009 struct intel_context *ce = &ctx->engine[engine->id];
1010
1011 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1012 GEM_BUG_ON(ce->pin_count == 0);
1013
1014 if (--ce->pin_count)
1015 return;
1016
1017 intel_unpin_ringbuffer_obj(ce->ringbuf);
1018
1019 i915_gem_object_unpin_map(ce->state);
1020 i915_gem_object_ggtt_unpin(ce->state);
1021
1022 ce->lrc_vma = NULL;
1023 ce->lrc_desc = 0;
1024 ce->lrc_reg_state = NULL;
1025
1026 i915_gem_context_put(ctx);
1027 }
1028
1029 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1030 {
1031 int ret, i;
1032 struct intel_engine_cs *engine = req->engine;
1033 struct intel_ringbuffer *ringbuf = req->ringbuf;
1034 struct i915_workarounds *w = &req->i915->workarounds;
1035
1036 if (w->count == 0)
1037 return 0;
1038
1039 engine->gpu_caches_dirty = true;
1040 ret = logical_ring_flush_all_caches(req);
1041 if (ret)
1042 return ret;
1043
1044 ret = intel_ring_begin(req, w->count * 2 + 2);
1045 if (ret)
1046 return ret;
1047
1048 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1049 for (i = 0; i < w->count; i++) {
1050 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1051 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1052 }
1053 intel_logical_ring_emit(ringbuf, MI_NOOP);
1054
1055 intel_logical_ring_advance(ringbuf);
1056
1057 engine->gpu_caches_dirty = true;
1058 ret = logical_ring_flush_all_caches(req);
1059 if (ret)
1060 return ret;
1061
1062 return 0;
1063 }
1064
1065 #define wa_ctx_emit(batch, index, cmd) \
1066 do { \
1067 int __index = (index)++; \
1068 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1069 return -ENOSPC; \
1070 } \
1071 batch[__index] = (cmd); \
1072 } while (0)
1073
1074 #define wa_ctx_emit_reg(batch, index, reg) \
1075 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1076
1077 /*
1078 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1079 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1080 * but there is a slight complication as this is applied in WA batch where the
1081 * values are only initialized once so we cannot take register value at the
1082 * beginning and reuse it further; hence we save its value to memory, upload a
1083 * constant value with bit21 set and then we restore it back with the saved value.
1084 * To simplify the WA, a constant value is formed by using the default value
1085 * of this register. This shouldn't be a problem because we are only modifying
1086 * it for a short period and this batch in non-premptible. We can ofcourse
1087 * use additional instructions that read the actual value of the register
1088 * at that time and set our bit of interest but it makes the WA complicated.
1089 *
1090 * This WA is also required for Gen9 so extracting as a function avoids
1091 * code duplication.
1092 */
1093 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1094 uint32_t *batch,
1095 uint32_t index)
1096 {
1097 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1098
1099 /*
1100 * WaDisableLSQCROPERFforOCL:skl,kbl
1101 * This WA is implemented in skl_init_clock_gating() but since
1102 * this batch updates GEN8_L3SQCREG4 with default value we need to
1103 * set this bit here to retain the WA during flush.
1104 */
1105 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_E0) ||
1106 IS_KBL_REVID(engine->i915, 0, KBL_REVID_E0))
1107 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1108
1109 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1110 MI_SRM_LRM_GLOBAL_GTT));
1111 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1112 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1113 wa_ctx_emit(batch, index, 0);
1114
1115 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1116 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1117 wa_ctx_emit(batch, index, l3sqc4_flush);
1118
1119 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1120 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1121 PIPE_CONTROL_DC_FLUSH_ENABLE));
1122 wa_ctx_emit(batch, index, 0);
1123 wa_ctx_emit(batch, index, 0);
1124 wa_ctx_emit(batch, index, 0);
1125 wa_ctx_emit(batch, index, 0);
1126
1127 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1128 MI_SRM_LRM_GLOBAL_GTT));
1129 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1130 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1131 wa_ctx_emit(batch, index, 0);
1132
1133 return index;
1134 }
1135
1136 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1137 uint32_t offset,
1138 uint32_t start_alignment)
1139 {
1140 return wa_ctx->offset = ALIGN(offset, start_alignment);
1141 }
1142
1143 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1144 uint32_t offset,
1145 uint32_t size_alignment)
1146 {
1147 wa_ctx->size = offset - wa_ctx->offset;
1148
1149 WARN(wa_ctx->size % size_alignment,
1150 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1151 wa_ctx->size, size_alignment);
1152 return 0;
1153 }
1154
1155 /*
1156 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1157 * initialized at the beginning and shared across all contexts but this field
1158 * helps us to have multiple batches at different offsets and select them based
1159 * on a criteria. At the moment this batch always start at the beginning of the page
1160 * and at this point we don't have multiple wa_ctx batch buffers.
1161 *
1162 * The number of WA applied are not known at the beginning; we use this field
1163 * to return the no of DWORDS written.
1164 *
1165 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1166 * so it adds NOOPs as padding to make it cacheline aligned.
1167 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1168 * makes a complete batch buffer.
1169 */
1170 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1171 struct i915_wa_ctx_bb *wa_ctx,
1172 uint32_t *batch,
1173 uint32_t *offset)
1174 {
1175 uint32_t scratch_addr;
1176 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1177
1178 /* WaDisableCtxRestoreArbitration:bdw,chv */
1179 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1180
1181 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1182 if (IS_BROADWELL(engine->i915)) {
1183 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1184 if (rc < 0)
1185 return rc;
1186 index = rc;
1187 }
1188
1189 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1190 /* Actual scratch location is at 128 bytes offset */
1191 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1192
1193 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1194 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1195 PIPE_CONTROL_GLOBAL_GTT_IVB |
1196 PIPE_CONTROL_CS_STALL |
1197 PIPE_CONTROL_QW_WRITE));
1198 wa_ctx_emit(batch, index, scratch_addr);
1199 wa_ctx_emit(batch, index, 0);
1200 wa_ctx_emit(batch, index, 0);
1201 wa_ctx_emit(batch, index, 0);
1202
1203 /* Pad to end of cacheline */
1204 while (index % CACHELINE_DWORDS)
1205 wa_ctx_emit(batch, index, MI_NOOP);
1206
1207 /*
1208 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1209 * execution depends on the length specified in terms of cache lines
1210 * in the register CTX_RCS_INDIRECT_CTX
1211 */
1212
1213 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1214 }
1215
1216 /*
1217 * This batch is started immediately after indirect_ctx batch. Since we ensure
1218 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1219 *
1220 * The number of DWORDS written are returned using this field.
1221 *
1222 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1223 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1224 */
1225 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1226 struct i915_wa_ctx_bb *wa_ctx,
1227 uint32_t *batch,
1228 uint32_t *offset)
1229 {
1230 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1231
1232 /* WaDisableCtxRestoreArbitration:bdw,chv */
1233 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1234
1235 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1236
1237 return wa_ctx_end(wa_ctx, *offset = index, 1);
1238 }
1239
1240 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1241 struct i915_wa_ctx_bb *wa_ctx,
1242 uint32_t *batch,
1243 uint32_t *offset)
1244 {
1245 int ret;
1246 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1247
1248 /* WaDisableCtxRestoreArbitration:skl,bxt */
1249 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1250 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1251 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1252
1253 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1254 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1255 if (ret < 0)
1256 return ret;
1257 index = ret;
1258
1259 /* WaClearSlmSpaceAtContextSwitch:kbl */
1260 /* Actual scratch location is at 128 bytes offset */
1261 if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1262 uint32_t scratch_addr
1263 = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1264
1265 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1266 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1267 PIPE_CONTROL_GLOBAL_GTT_IVB |
1268 PIPE_CONTROL_CS_STALL |
1269 PIPE_CONTROL_QW_WRITE));
1270 wa_ctx_emit(batch, index, scratch_addr);
1271 wa_ctx_emit(batch, index, 0);
1272 wa_ctx_emit(batch, index, 0);
1273 wa_ctx_emit(batch, index, 0);
1274 }
1275
1276 /* WaMediaPoolStateCmdInWABB:bxt */
1277 if (HAS_POOLED_EU(engine->i915)) {
1278 /*
1279 * EU pool configuration is setup along with golden context
1280 * during context initialization. This value depends on
1281 * device type (2x6 or 3x6) and needs to be updated based
1282 * on which subslice is disabled especially for 2x6
1283 * devices, however it is safe to load default
1284 * configuration of 3x6 device instead of masking off
1285 * corresponding bits because HW ignores bits of a disabled
1286 * subslice and drops down to appropriate config. Please
1287 * see render_state_setup() in i915_gem_render_state.c for
1288 * possible configurations, to avoid duplication they are
1289 * not shown here again.
1290 */
1291 u32 eu_pool_config = 0x00777000;
1292 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1293 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1294 wa_ctx_emit(batch, index, eu_pool_config);
1295 wa_ctx_emit(batch, index, 0);
1296 wa_ctx_emit(batch, index, 0);
1297 wa_ctx_emit(batch, index, 0);
1298 }
1299
1300 /* Pad to end of cacheline */
1301 while (index % CACHELINE_DWORDS)
1302 wa_ctx_emit(batch, index, MI_NOOP);
1303
1304 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1305 }
1306
1307 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1308 struct i915_wa_ctx_bb *wa_ctx,
1309 uint32_t *batch,
1310 uint32_t *offset)
1311 {
1312 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1313
1314 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1315 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
1316 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1317 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1318 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1319 wa_ctx_emit(batch, index,
1320 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1321 wa_ctx_emit(batch, index, MI_NOOP);
1322 }
1323
1324 /* WaClearTdlStateAckDirtyBits:bxt */
1325 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1326 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1327
1328 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1329 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1330
1331 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1332 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1333
1334 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1335 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1336
1337 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1338 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1339 wa_ctx_emit(batch, index, 0x0);
1340 wa_ctx_emit(batch, index, MI_NOOP);
1341 }
1342
1343 /* WaDisableCtxRestoreArbitration:skl,bxt */
1344 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1345 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1346 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1347
1348 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1349
1350 return wa_ctx_end(wa_ctx, *offset = index, 1);
1351 }
1352
1353 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1354 {
1355 int ret;
1356
1357 engine->wa_ctx.obj = i915_gem_object_create(&engine->i915->drm,
1358 PAGE_ALIGN(size));
1359 if (IS_ERR(engine->wa_ctx.obj)) {
1360 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1361 ret = PTR_ERR(engine->wa_ctx.obj);
1362 engine->wa_ctx.obj = NULL;
1363 return ret;
1364 }
1365
1366 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1367 if (ret) {
1368 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1369 ret);
1370 i915_gem_object_put(engine->wa_ctx.obj);
1371 return ret;
1372 }
1373
1374 return 0;
1375 }
1376
1377 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1378 {
1379 if (engine->wa_ctx.obj) {
1380 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1381 i915_gem_object_put(engine->wa_ctx.obj);
1382 engine->wa_ctx.obj = NULL;
1383 }
1384 }
1385
1386 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1387 {
1388 int ret;
1389 uint32_t *batch;
1390 uint32_t offset;
1391 struct page *page;
1392 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1393
1394 WARN_ON(engine->id != RCS);
1395
1396 /* update this when WA for higher Gen are added */
1397 if (INTEL_GEN(engine->i915) > 9) {
1398 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1399 INTEL_GEN(engine->i915));
1400 return 0;
1401 }
1402
1403 /* some WA perform writes to scratch page, ensure it is valid */
1404 if (engine->scratch.obj == NULL) {
1405 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1406 return -EINVAL;
1407 }
1408
1409 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1410 if (ret) {
1411 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1412 return ret;
1413 }
1414
1415 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1416 batch = kmap_atomic(page);
1417 offset = 0;
1418
1419 if (IS_GEN8(engine->i915)) {
1420 ret = gen8_init_indirectctx_bb(engine,
1421 &wa_ctx->indirect_ctx,
1422 batch,
1423 &offset);
1424 if (ret)
1425 goto out;
1426
1427 ret = gen8_init_perctx_bb(engine,
1428 &wa_ctx->per_ctx,
1429 batch,
1430 &offset);
1431 if (ret)
1432 goto out;
1433 } else if (IS_GEN9(engine->i915)) {
1434 ret = gen9_init_indirectctx_bb(engine,
1435 &wa_ctx->indirect_ctx,
1436 batch,
1437 &offset);
1438 if (ret)
1439 goto out;
1440
1441 ret = gen9_init_perctx_bb(engine,
1442 &wa_ctx->per_ctx,
1443 batch,
1444 &offset);
1445 if (ret)
1446 goto out;
1447 }
1448
1449 out:
1450 kunmap_atomic(batch);
1451 if (ret)
1452 lrc_destroy_wa_ctx_obj(engine);
1453
1454 return ret;
1455 }
1456
1457 static void lrc_init_hws(struct intel_engine_cs *engine)
1458 {
1459 struct drm_i915_private *dev_priv = engine->i915;
1460
1461 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1462 (u32)engine->status_page.gfx_addr);
1463 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1464 }
1465
1466 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1467 {
1468 struct drm_i915_private *dev_priv = engine->i915;
1469 unsigned int next_context_status_buffer_hw;
1470
1471 lrc_init_hws(engine);
1472
1473 I915_WRITE_IMR(engine,
1474 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1475 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1476
1477 I915_WRITE(RING_MODE_GEN7(engine),
1478 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1479 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1480 POSTING_READ(RING_MODE_GEN7(engine));
1481
1482 /*
1483 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1484 * zero, we need to read the write pointer from hardware and use its
1485 * value because "this register is power context save restored".
1486 * Effectively, these states have been observed:
1487 *
1488 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1489 * BDW | CSB regs not reset | CSB regs reset |
1490 * CHT | CSB regs not reset | CSB regs not reset |
1491 * SKL | ? | ? |
1492 * BXT | ? | ? |
1493 */
1494 next_context_status_buffer_hw =
1495 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1496
1497 /*
1498 * When the CSB registers are reset (also after power-up / gpu reset),
1499 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1500 * this special case, so the first element read is CSB[0].
1501 */
1502 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1503 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1504
1505 engine->next_context_status_buffer = next_context_status_buffer_hw;
1506 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1507
1508 intel_engine_init_hangcheck(engine);
1509
1510 return intel_mocs_init_engine(engine);
1511 }
1512
1513 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1514 {
1515 struct drm_i915_private *dev_priv = engine->i915;
1516 int ret;
1517
1518 ret = gen8_init_common_ring(engine);
1519 if (ret)
1520 return ret;
1521
1522 /* We need to disable the AsyncFlip performance optimisations in order
1523 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1524 * programmed to '1' on all products.
1525 *
1526 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1527 */
1528 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1529
1530 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1531
1532 return init_workarounds_ring(engine);
1533 }
1534
1535 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1536 {
1537 int ret;
1538
1539 ret = gen8_init_common_ring(engine);
1540 if (ret)
1541 return ret;
1542
1543 return init_workarounds_ring(engine);
1544 }
1545
1546 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1547 {
1548 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1549 struct intel_engine_cs *engine = req->engine;
1550 struct intel_ringbuffer *ringbuf = req->ringbuf;
1551 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1552 int i, ret;
1553
1554 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1555 if (ret)
1556 return ret;
1557
1558 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1559 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1560 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1561
1562 intel_logical_ring_emit_reg(ringbuf,
1563 GEN8_RING_PDP_UDW(engine, i));
1564 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1565 intel_logical_ring_emit_reg(ringbuf,
1566 GEN8_RING_PDP_LDW(engine, i));
1567 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1568 }
1569
1570 intel_logical_ring_emit(ringbuf, MI_NOOP);
1571 intel_logical_ring_advance(ringbuf);
1572
1573 return 0;
1574 }
1575
1576 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1577 u64 offset, unsigned dispatch_flags)
1578 {
1579 struct intel_ringbuffer *ringbuf = req->ringbuf;
1580 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1581 int ret;
1582
1583 /* Don't rely in hw updating PDPs, specially in lite-restore.
1584 * Ideally, we should set Force PD Restore in ctx descriptor,
1585 * but we can't. Force Restore would be a second option, but
1586 * it is unsafe in case of lite-restore (because the ctx is
1587 * not idle). PML4 is allocated during ppgtt init so this is
1588 * not needed in 48-bit.*/
1589 if (req->ctx->ppgtt &&
1590 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1591 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1592 !intel_vgpu_active(req->i915)) {
1593 ret = intel_logical_ring_emit_pdps(req);
1594 if (ret)
1595 return ret;
1596 }
1597
1598 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1599 }
1600
1601 ret = intel_ring_begin(req, 4);
1602 if (ret)
1603 return ret;
1604
1605 /* FIXME(BDW): Address space and security selectors. */
1606 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1607 (ppgtt<<8) |
1608 (dispatch_flags & I915_DISPATCH_RS ?
1609 MI_BATCH_RESOURCE_STREAMER : 0));
1610 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1611 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1612 intel_logical_ring_emit(ringbuf, MI_NOOP);
1613 intel_logical_ring_advance(ringbuf);
1614
1615 return 0;
1616 }
1617
1618 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1619 {
1620 struct drm_i915_private *dev_priv = engine->i915;
1621 I915_WRITE_IMR(engine,
1622 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1623 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1624 }
1625
1626 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1627 {
1628 struct drm_i915_private *dev_priv = engine->i915;
1629 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1630 }
1631
1632 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1633 u32 invalidate_domains,
1634 u32 unused)
1635 {
1636 struct intel_ringbuffer *ringbuf = request->ringbuf;
1637 struct intel_engine_cs *engine = ringbuf->engine;
1638 struct drm_i915_private *dev_priv = request->i915;
1639 uint32_t cmd;
1640 int ret;
1641
1642 ret = intel_ring_begin(request, 4);
1643 if (ret)
1644 return ret;
1645
1646 cmd = MI_FLUSH_DW + 1;
1647
1648 /* We always require a command barrier so that subsequent
1649 * commands, such as breadcrumb interrupts, are strictly ordered
1650 * wrt the contents of the write cache being flushed to memory
1651 * (and thus being coherent from the CPU).
1652 */
1653 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1654
1655 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1656 cmd |= MI_INVALIDATE_TLB;
1657 if (engine == &dev_priv->engine[VCS])
1658 cmd |= MI_INVALIDATE_BSD;
1659 }
1660
1661 intel_logical_ring_emit(ringbuf, cmd);
1662 intel_logical_ring_emit(ringbuf,
1663 I915_GEM_HWS_SCRATCH_ADDR |
1664 MI_FLUSH_DW_USE_GTT);
1665 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1666 intel_logical_ring_emit(ringbuf, 0); /* value */
1667 intel_logical_ring_advance(ringbuf);
1668
1669 return 0;
1670 }
1671
1672 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1673 u32 invalidate_domains,
1674 u32 flush_domains)
1675 {
1676 struct intel_ringbuffer *ringbuf = request->ringbuf;
1677 struct intel_engine_cs *engine = ringbuf->engine;
1678 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1679 bool vf_flush_wa = false, dc_flush_wa = false;
1680 u32 flags = 0;
1681 int ret;
1682 int len;
1683
1684 flags |= PIPE_CONTROL_CS_STALL;
1685
1686 if (flush_domains) {
1687 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1688 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1689 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1690 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1691 }
1692
1693 if (invalidate_domains) {
1694 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1695 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1696 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1697 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1698 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1699 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1700 flags |= PIPE_CONTROL_QW_WRITE;
1701 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1702
1703 /*
1704 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1705 * pipe control.
1706 */
1707 if (IS_GEN9(request->i915))
1708 vf_flush_wa = true;
1709
1710 /* WaForGAMHang:kbl */
1711 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1712 dc_flush_wa = true;
1713 }
1714
1715 len = 6;
1716
1717 if (vf_flush_wa)
1718 len += 6;
1719
1720 if (dc_flush_wa)
1721 len += 12;
1722
1723 ret = intel_ring_begin(request, len);
1724 if (ret)
1725 return ret;
1726
1727 if (vf_flush_wa) {
1728 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1729 intel_logical_ring_emit(ringbuf, 0);
1730 intel_logical_ring_emit(ringbuf, 0);
1731 intel_logical_ring_emit(ringbuf, 0);
1732 intel_logical_ring_emit(ringbuf, 0);
1733 intel_logical_ring_emit(ringbuf, 0);
1734 }
1735
1736 if (dc_flush_wa) {
1737 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1738 intel_logical_ring_emit(ringbuf, PIPE_CONTROL_DC_FLUSH_ENABLE);
1739 intel_logical_ring_emit(ringbuf, 0);
1740 intel_logical_ring_emit(ringbuf, 0);
1741 intel_logical_ring_emit(ringbuf, 0);
1742 intel_logical_ring_emit(ringbuf, 0);
1743 }
1744
1745 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1746 intel_logical_ring_emit(ringbuf, flags);
1747 intel_logical_ring_emit(ringbuf, scratch_addr);
1748 intel_logical_ring_emit(ringbuf, 0);
1749 intel_logical_ring_emit(ringbuf, 0);
1750 intel_logical_ring_emit(ringbuf, 0);
1751
1752 if (dc_flush_wa) {
1753 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1754 intel_logical_ring_emit(ringbuf, PIPE_CONTROL_CS_STALL);
1755 intel_logical_ring_emit(ringbuf, 0);
1756 intel_logical_ring_emit(ringbuf, 0);
1757 intel_logical_ring_emit(ringbuf, 0);
1758 intel_logical_ring_emit(ringbuf, 0);
1759 }
1760
1761 intel_logical_ring_advance(ringbuf);
1762
1763 return 0;
1764 }
1765
1766 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1767 {
1768 /*
1769 * On BXT A steppings there is a HW coherency issue whereby the
1770 * MI_STORE_DATA_IMM storing the completed request's seqno
1771 * occasionally doesn't invalidate the CPU cache. Work around this by
1772 * clflushing the corresponding cacheline whenever the caller wants
1773 * the coherency to be guaranteed. Note that this cacheline is known
1774 * to be clean at this point, since we only write it in
1775 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1776 * this clflush in practice becomes an invalidate operation.
1777 */
1778 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1779 }
1780
1781 /*
1782 * Reserve space for 2 NOOPs at the end of each request to be
1783 * used as a workaround for not being allowed to do lite
1784 * restore with HEAD==TAIL (WaIdleLiteRestore).
1785 */
1786 #define WA_TAIL_DWORDS 2
1787
1788 static int gen8_emit_request(struct drm_i915_gem_request *request)
1789 {
1790 struct intel_ringbuffer *ringbuf = request->ringbuf;
1791 int ret;
1792
1793 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1794 if (ret)
1795 return ret;
1796
1797 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1798 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1799
1800 intel_logical_ring_emit(ringbuf,
1801 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1802 intel_logical_ring_emit(ringbuf,
1803 intel_hws_seqno_address(request->engine) |
1804 MI_FLUSH_DW_USE_GTT);
1805 intel_logical_ring_emit(ringbuf, 0);
1806 intel_logical_ring_emit(ringbuf, request->fence.seqno);
1807 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1808 intel_logical_ring_emit(ringbuf, MI_NOOP);
1809 return intel_logical_ring_advance_and_submit(request);
1810 }
1811
1812 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1813 {
1814 struct intel_ringbuffer *ringbuf = request->ringbuf;
1815 int ret;
1816
1817 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1818 if (ret)
1819 return ret;
1820
1821 /* We're using qword write, seqno should be aligned to 8 bytes. */
1822 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1823
1824 /* w/a for post sync ops following a GPGPU operation we
1825 * need a prior CS_STALL, which is emitted by the flush
1826 * following the batch.
1827 */
1828 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1829 intel_logical_ring_emit(ringbuf,
1830 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1831 PIPE_CONTROL_CS_STALL |
1832 PIPE_CONTROL_QW_WRITE));
1833 intel_logical_ring_emit(ringbuf,
1834 intel_hws_seqno_address(request->engine));
1835 intel_logical_ring_emit(ringbuf, 0);
1836 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1837 /* We're thrashing one dword of HWS. */
1838 intel_logical_ring_emit(ringbuf, 0);
1839 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1840 intel_logical_ring_emit(ringbuf, MI_NOOP);
1841 return intel_logical_ring_advance_and_submit(request);
1842 }
1843
1844 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1845 {
1846 struct render_state so;
1847 int ret;
1848
1849 ret = i915_gem_render_state_prepare(req->engine, &so);
1850 if (ret)
1851 return ret;
1852
1853 if (so.rodata == NULL)
1854 return 0;
1855
1856 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1857 I915_DISPATCH_SECURE);
1858 if (ret)
1859 goto out;
1860
1861 ret = req->engine->emit_bb_start(req,
1862 (so.ggtt_offset + so.aux_batch_offset),
1863 I915_DISPATCH_SECURE);
1864 if (ret)
1865 goto out;
1866
1867 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1868
1869 out:
1870 i915_gem_render_state_fini(&so);
1871 return ret;
1872 }
1873
1874 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1875 {
1876 int ret;
1877
1878 ret = intel_logical_ring_workarounds_emit(req);
1879 if (ret)
1880 return ret;
1881
1882 ret = intel_rcs_context_init_mocs(req);
1883 /*
1884 * Failing to program the MOCS is non-fatal.The system will not
1885 * run at peak performance. So generate an error and carry on.
1886 */
1887 if (ret)
1888 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1889
1890 return intel_lr_context_render_state_init(req);
1891 }
1892
1893 /**
1894 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1895 * @engine: Engine Command Streamer.
1896 */
1897 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1898 {
1899 struct drm_i915_private *dev_priv;
1900
1901 if (!intel_engine_initialized(engine))
1902 return;
1903
1904 /*
1905 * Tasklet cannot be active at this point due intel_mark_active/idle
1906 * so this is just for documentation.
1907 */
1908 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1909 tasklet_kill(&engine->irq_tasklet);
1910
1911 dev_priv = engine->i915;
1912
1913 if (engine->buffer) {
1914 intel_logical_ring_stop(engine);
1915 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1916 }
1917
1918 if (engine->cleanup)
1919 engine->cleanup(engine);
1920
1921 i915_cmd_parser_fini_ring(engine);
1922 i915_gem_batch_pool_fini(&engine->batch_pool);
1923
1924 intel_engine_fini_breadcrumbs(engine);
1925
1926 if (engine->status_page.obj) {
1927 i915_gem_object_unpin_map(engine->status_page.obj);
1928 engine->status_page.obj = NULL;
1929 }
1930 intel_lr_context_unpin(dev_priv->kernel_context, engine);
1931
1932 engine->idle_lite_restore_wa = 0;
1933 engine->disable_lite_restore_wa = false;
1934 engine->ctx_desc_template = 0;
1935
1936 lrc_destroy_wa_ctx_obj(engine);
1937 engine->i915 = NULL;
1938 }
1939
1940 static void
1941 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1942 {
1943 /* Default vfuncs which can be overriden by each engine. */
1944 engine->init_hw = gen8_init_common_ring;
1945 engine->emit_request = gen8_emit_request;
1946 engine->emit_flush = gen8_emit_flush;
1947 engine->irq_enable = gen8_logical_ring_enable_irq;
1948 engine->irq_disable = gen8_logical_ring_disable_irq;
1949 engine->emit_bb_start = gen8_emit_bb_start;
1950 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1951 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1952 }
1953
1954 static inline void
1955 logical_ring_default_irqs(struct intel_engine_cs *engine)
1956 {
1957 unsigned shift = engine->irq_shift;
1958 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1959 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1960 }
1961
1962 static int
1963 lrc_setup_hws(struct intel_engine_cs *engine,
1964 struct drm_i915_gem_object *dctx_obj)
1965 {
1966 void *hws;
1967
1968 /* The HWSP is part of the default context object in LRC mode. */
1969 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1970 LRC_PPHWSP_PN * PAGE_SIZE;
1971 hws = i915_gem_object_pin_map(dctx_obj);
1972 if (IS_ERR(hws))
1973 return PTR_ERR(hws);
1974 engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1975 engine->status_page.obj = dctx_obj;
1976
1977 return 0;
1978 }
1979
1980 static void
1981 logical_ring_setup(struct intel_engine_cs *engine)
1982 {
1983 struct drm_i915_private *dev_priv = engine->i915;
1984 enum forcewake_domains fw_domains;
1985
1986 intel_engine_setup_common(engine);
1987
1988 /* Intentionally left blank. */
1989 engine->buffer = NULL;
1990
1991 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1992 RING_ELSP(engine),
1993 FW_REG_WRITE);
1994
1995 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1996 RING_CONTEXT_STATUS_PTR(engine),
1997 FW_REG_READ | FW_REG_WRITE);
1998
1999 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2000 RING_CONTEXT_STATUS_BUF_BASE(engine),
2001 FW_REG_READ);
2002
2003 engine->fw_domains = fw_domains;
2004
2005 tasklet_init(&engine->irq_tasklet,
2006 intel_lrc_irq_handler, (unsigned long)engine);
2007
2008 logical_ring_init_platform_invariants(engine);
2009 logical_ring_default_vfuncs(engine);
2010 logical_ring_default_irqs(engine);
2011 }
2012
2013 static int
2014 logical_ring_init(struct intel_engine_cs *engine)
2015 {
2016 struct i915_gem_context *dctx = engine->i915->kernel_context;
2017 int ret;
2018
2019 ret = intel_engine_init_common(engine);
2020 if (ret)
2021 goto error;
2022
2023 ret = execlists_context_deferred_alloc(dctx, engine);
2024 if (ret)
2025 goto error;
2026
2027 /* As this is the default context, always pin it */
2028 ret = intel_lr_context_pin(dctx, engine);
2029 if (ret) {
2030 DRM_ERROR("Failed to pin context for %s: %d\n",
2031 engine->name, ret);
2032 goto error;
2033 }
2034
2035 /* And setup the hardware status page. */
2036 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2037 if (ret) {
2038 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2039 goto error;
2040 }
2041
2042 return 0;
2043
2044 error:
2045 intel_logical_ring_cleanup(engine);
2046 return ret;
2047 }
2048
2049 int logical_render_ring_init(struct intel_engine_cs *engine)
2050 {
2051 struct drm_i915_private *dev_priv = engine->i915;
2052 int ret;
2053
2054 logical_ring_setup(engine);
2055
2056 if (HAS_L3_DPF(dev_priv))
2057 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2058
2059 /* Override some for render ring. */
2060 if (INTEL_GEN(dev_priv) >= 9)
2061 engine->init_hw = gen9_init_render_ring;
2062 else
2063 engine->init_hw = gen8_init_render_ring;
2064 engine->init_context = gen8_init_rcs_context;
2065 engine->cleanup = intel_fini_pipe_control;
2066 engine->emit_flush = gen8_emit_flush_render;
2067 engine->emit_request = gen8_emit_request_render;
2068
2069 ret = intel_init_pipe_control(engine, 4096);
2070 if (ret)
2071 return ret;
2072
2073 ret = intel_init_workaround_bb(engine);
2074 if (ret) {
2075 /*
2076 * We continue even if we fail to initialize WA batch
2077 * because we only expect rare glitches but nothing
2078 * critical to prevent us from using GPU
2079 */
2080 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2081 ret);
2082 }
2083
2084 ret = logical_ring_init(engine);
2085 if (ret) {
2086 lrc_destroy_wa_ctx_obj(engine);
2087 }
2088
2089 return ret;
2090 }
2091
2092 int logical_xcs_ring_init(struct intel_engine_cs *engine)
2093 {
2094 logical_ring_setup(engine);
2095
2096 return logical_ring_init(engine);
2097 }
2098
2099 static u32
2100 make_rpcs(struct drm_i915_private *dev_priv)
2101 {
2102 u32 rpcs = 0;
2103
2104 /*
2105 * No explicit RPCS request is needed to ensure full
2106 * slice/subslice/EU enablement prior to Gen9.
2107 */
2108 if (INTEL_GEN(dev_priv) < 9)
2109 return 0;
2110
2111 /*
2112 * Starting in Gen9, render power gating can leave
2113 * slice/subslice/EU in a partially enabled state. We
2114 * must make an explicit request through RPCS for full
2115 * enablement.
2116 */
2117 if (INTEL_INFO(dev_priv)->has_slice_pg) {
2118 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2119 rpcs |= INTEL_INFO(dev_priv)->slice_total <<
2120 GEN8_RPCS_S_CNT_SHIFT;
2121 rpcs |= GEN8_RPCS_ENABLE;
2122 }
2123
2124 if (INTEL_INFO(dev_priv)->has_subslice_pg) {
2125 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2126 rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
2127 GEN8_RPCS_SS_CNT_SHIFT;
2128 rpcs |= GEN8_RPCS_ENABLE;
2129 }
2130
2131 if (INTEL_INFO(dev_priv)->has_eu_pg) {
2132 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2133 GEN8_RPCS_EU_MIN_SHIFT;
2134 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
2135 GEN8_RPCS_EU_MAX_SHIFT;
2136 rpcs |= GEN8_RPCS_ENABLE;
2137 }
2138
2139 return rpcs;
2140 }
2141
2142 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2143 {
2144 u32 indirect_ctx_offset;
2145
2146 switch (INTEL_GEN(engine->i915)) {
2147 default:
2148 MISSING_CASE(INTEL_GEN(engine->i915));
2149 /* fall through */
2150 case 9:
2151 indirect_ctx_offset =
2152 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2153 break;
2154 case 8:
2155 indirect_ctx_offset =
2156 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2157 break;
2158 }
2159
2160 return indirect_ctx_offset;
2161 }
2162
2163 static int
2164 populate_lr_context(struct i915_gem_context *ctx,
2165 struct drm_i915_gem_object *ctx_obj,
2166 struct intel_engine_cs *engine,
2167 struct intel_ringbuffer *ringbuf)
2168 {
2169 struct drm_i915_private *dev_priv = ctx->i915;
2170 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2171 void *vaddr;
2172 u32 *reg_state;
2173 int ret;
2174
2175 if (!ppgtt)
2176 ppgtt = dev_priv->mm.aliasing_ppgtt;
2177
2178 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2179 if (ret) {
2180 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2181 return ret;
2182 }
2183
2184 vaddr = i915_gem_object_pin_map(ctx_obj);
2185 if (IS_ERR(vaddr)) {
2186 ret = PTR_ERR(vaddr);
2187 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2188 return ret;
2189 }
2190 ctx_obj->dirty = true;
2191
2192 /* The second page of the context object contains some fields which must
2193 * be set up prior to the first execution. */
2194 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2195
2196 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2197 * commands followed by (reg, value) pairs. The values we are setting here are
2198 * only for the first context restore: on a subsequent save, the GPU will
2199 * recreate this batchbuffer with new values (including all the missing
2200 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2201 reg_state[CTX_LRI_HEADER_0] =
2202 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2203 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2204 RING_CONTEXT_CONTROL(engine),
2205 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2206 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2207 (HAS_RESOURCE_STREAMER(dev_priv) ?
2208 CTX_CTRL_RS_CTX_ENABLE : 0)));
2209 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2210 0);
2211 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2212 0);
2213 /* Ring buffer start address is not known until the buffer is pinned.
2214 * It is written to the context image in execlists_update_context()
2215 */
2216 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2217 RING_START(engine->mmio_base), 0);
2218 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2219 RING_CTL(engine->mmio_base),
2220 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2221 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2222 RING_BBADDR_UDW(engine->mmio_base), 0);
2223 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2224 RING_BBADDR(engine->mmio_base), 0);
2225 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2226 RING_BBSTATE(engine->mmio_base),
2227 RING_BB_PPGTT);
2228 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2229 RING_SBBADDR_UDW(engine->mmio_base), 0);
2230 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2231 RING_SBBADDR(engine->mmio_base), 0);
2232 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2233 RING_SBBSTATE(engine->mmio_base), 0);
2234 if (engine->id == RCS) {
2235 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2236 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2237 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2238 RING_INDIRECT_CTX(engine->mmio_base), 0);
2239 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2240 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2241 if (engine->wa_ctx.obj) {
2242 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2243 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2244
2245 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2246 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2247 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2248
2249 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2250 intel_lr_indirect_ctx_offset(engine) << 6;
2251
2252 reg_state[CTX_BB_PER_CTX_PTR+1] =
2253 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2254 0x01;
2255 }
2256 }
2257 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2258 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2259 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2260 /* PDP values well be assigned later if needed */
2261 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2262 0);
2263 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2264 0);
2265 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2266 0);
2267 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2268 0);
2269 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2270 0);
2271 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2272 0);
2273 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2274 0);
2275 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2276 0);
2277
2278 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2279 /* 64b PPGTT (48bit canonical)
2280 * PDP0_DESCRIPTOR contains the base address to PML4 and
2281 * other PDP Descriptors are ignored.
2282 */
2283 ASSIGN_CTX_PML4(ppgtt, reg_state);
2284 } else {
2285 /* 32b PPGTT
2286 * PDP*_DESCRIPTOR contains the base address of space supported.
2287 * With dynamic page allocation, PDPs may not be allocated at
2288 * this point. Point the unallocated PDPs to the scratch page
2289 */
2290 execlists_update_context_pdps(ppgtt, reg_state);
2291 }
2292
2293 if (engine->id == RCS) {
2294 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2295 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2296 make_rpcs(dev_priv));
2297 }
2298
2299 i915_gem_object_unpin_map(ctx_obj);
2300
2301 return 0;
2302 }
2303
2304 /**
2305 * intel_lr_context_size() - return the size of the context for an engine
2306 * @engine: which engine to find the context size for
2307 *
2308 * Each engine may require a different amount of space for a context image,
2309 * so when allocating (or copying) an image, this function can be used to
2310 * find the right size for the specific engine.
2311 *
2312 * Return: size (in bytes) of an engine-specific context image
2313 *
2314 * Note: this size includes the HWSP, which is part of the context image
2315 * in LRC mode, but does not include the "shared data page" used with
2316 * GuC submission. The caller should account for this if using the GuC.
2317 */
2318 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2319 {
2320 int ret = 0;
2321
2322 WARN_ON(INTEL_GEN(engine->i915) < 8);
2323
2324 switch (engine->id) {
2325 case RCS:
2326 if (INTEL_GEN(engine->i915) >= 9)
2327 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2328 else
2329 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2330 break;
2331 case VCS:
2332 case BCS:
2333 case VECS:
2334 case VCS2:
2335 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2336 break;
2337 }
2338
2339 return ret;
2340 }
2341
2342 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2343 struct intel_engine_cs *engine)
2344 {
2345 struct drm_i915_gem_object *ctx_obj;
2346 struct intel_context *ce = &ctx->engine[engine->id];
2347 uint32_t context_size;
2348 struct intel_ringbuffer *ringbuf;
2349 int ret;
2350
2351 WARN_ON(ce->state);
2352
2353 context_size = round_up(intel_lr_context_size(engine), 4096);
2354
2355 /* One extra page as the sharing data between driver and GuC */
2356 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2357
2358 ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2359 if (IS_ERR(ctx_obj)) {
2360 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2361 return PTR_ERR(ctx_obj);
2362 }
2363
2364 ringbuf = intel_engine_create_ringbuffer(engine, ctx->ring_size);
2365 if (IS_ERR(ringbuf)) {
2366 ret = PTR_ERR(ringbuf);
2367 goto error_deref_obj;
2368 }
2369
2370 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2371 if (ret) {
2372 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2373 goto error_ringbuf;
2374 }
2375
2376 ce->ringbuf = ringbuf;
2377 ce->state = ctx_obj;
2378 ce->initialised = engine->init_context == NULL;
2379
2380 return 0;
2381
2382 error_ringbuf:
2383 intel_ringbuffer_free(ringbuf);
2384 error_deref_obj:
2385 i915_gem_object_put(ctx_obj);
2386 ce->ringbuf = NULL;
2387 ce->state = NULL;
2388 return ret;
2389 }
2390
2391 void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2392 struct i915_gem_context *ctx)
2393 {
2394 struct intel_engine_cs *engine;
2395
2396 for_each_engine(engine, dev_priv) {
2397 struct intel_context *ce = &ctx->engine[engine->id];
2398 struct drm_i915_gem_object *ctx_obj = ce->state;
2399 void *vaddr;
2400 uint32_t *reg_state;
2401
2402 if (!ctx_obj)
2403 continue;
2404
2405 vaddr = i915_gem_object_pin_map(ctx_obj);
2406 if (WARN_ON(IS_ERR(vaddr)))
2407 continue;
2408
2409 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2410 ctx_obj->dirty = true;
2411
2412 reg_state[CTX_RING_HEAD+1] = 0;
2413 reg_state[CTX_RING_TAIL+1] = 0;
2414
2415 i915_gem_object_unpin_map(ctx_obj);
2416
2417 ce->ringbuf->head = 0;
2418 ce->ringbuf->tail = 0;
2419 }
2420 }