]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_lrc.c
drm/amdkfd: Improve multiple SDMA queues support per process
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define RING_EXECLIST_QFULL (1 << 0x2)
142 #define RING_EXECLIST1_VALID (1 << 0x3)
143 #define RING_EXECLIST0_VALID (1 << 0x4)
144 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
145 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
146 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
147
148 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
149 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
150 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
151 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
152 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
153 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
154
155 #define GEN8_CTX_STATUS_COMPLETED_MASK \
156 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
157 GEN8_CTX_STATUS_PREEMPTED | \
158 GEN8_CTX_STATUS_ELEMENT_SWITCH)
159
160 #define CTX_LRI_HEADER_0 0x01
161 #define CTX_CONTEXT_CONTROL 0x02
162 #define CTX_RING_HEAD 0x04
163 #define CTX_RING_TAIL 0x06
164 #define CTX_RING_BUFFER_START 0x08
165 #define CTX_RING_BUFFER_CONTROL 0x0a
166 #define CTX_BB_HEAD_U 0x0c
167 #define CTX_BB_HEAD_L 0x0e
168 #define CTX_BB_STATE 0x10
169 #define CTX_SECOND_BB_HEAD_U 0x12
170 #define CTX_SECOND_BB_HEAD_L 0x14
171 #define CTX_SECOND_BB_STATE 0x16
172 #define CTX_BB_PER_CTX_PTR 0x18
173 #define CTX_RCS_INDIRECT_CTX 0x1a
174 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
175 #define CTX_LRI_HEADER_1 0x21
176 #define CTX_CTX_TIMESTAMP 0x22
177 #define CTX_PDP3_UDW 0x24
178 #define CTX_PDP3_LDW 0x26
179 #define CTX_PDP2_UDW 0x28
180 #define CTX_PDP2_LDW 0x2a
181 #define CTX_PDP1_UDW 0x2c
182 #define CTX_PDP1_LDW 0x2e
183 #define CTX_PDP0_UDW 0x30
184 #define CTX_PDP0_LDW 0x32
185 #define CTX_LRI_HEADER_2 0x41
186 #define CTX_R_PWR_CLK_STATE 0x42
187 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
188
189 #define CTX_REG(reg_state, pos, reg, val) do { \
190 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
191 (reg_state)[(pos)+1] = (val); \
192 } while (0)
193
194 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
195 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
196 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198 } while (0)
199
200 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
201 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
202 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
203 } while (0)
204
205 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
206 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
207 #define GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x19
208
209 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
210 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
211
212 #define WA_TAIL_DWORDS 2
213
214 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
215 struct intel_engine_cs *engine);
216 static void execlists_init_reg_state(u32 *reg_state,
217 struct i915_gem_context *ctx,
218 struct intel_engine_cs *engine,
219 struct intel_ring *ring);
220
221 /**
222 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
223 * @dev_priv: i915 device private
224 * @enable_execlists: value of i915.enable_execlists module parameter.
225 *
226 * Only certain platforms support Execlists (the prerequisites being
227 * support for Logical Ring Contexts and Aliasing PPGTT or better).
228 *
229 * Return: 1 if Execlists is supported and has to be enabled.
230 */
231 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
232 {
233 /* On platforms with execlist available, vGPU will only
234 * support execlist mode, no ring buffer mode.
235 */
236 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
237 return 1;
238
239 if (INTEL_GEN(dev_priv) >= 9)
240 return 1;
241
242 if (enable_execlists == 0)
243 return 0;
244
245 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
246 USES_PPGTT(dev_priv) &&
247 i915_modparams.use_mmio_flip >= 0)
248 return 1;
249
250 return 0;
251 }
252
253 /**
254 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
255 * descriptor for a pinned context
256 * @ctx: Context to work on
257 * @engine: Engine the descriptor will be used with
258 *
259 * The context descriptor encodes various attributes of a context,
260 * including its GTT address and some flags. Because it's fairly
261 * expensive to calculate, we'll just do it once and cache the result,
262 * which remains valid until the context is unpinned.
263 *
264 * This is what a descriptor looks like, from LSB to MSB::
265 *
266 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
267 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
268 * bits 32-52: ctx ID, a globally unique tag
269 * bits 53-54: mbz, reserved for use by hardware
270 * bits 55-63: group ID, currently unused and set to 0
271 */
272 static void
273 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
274 struct intel_engine_cs *engine)
275 {
276 struct intel_context *ce = &ctx->engine[engine->id];
277 u64 desc;
278
279 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
280
281 desc = ctx->desc_template; /* bits 0-11 */
282 desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
283 /* bits 12-31 */
284 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
285
286 ce->lrc_desc = desc;
287 }
288
289 static struct i915_priolist *
290 lookup_priolist(struct intel_engine_cs *engine,
291 struct i915_priotree *pt,
292 int prio)
293 {
294 struct intel_engine_execlists * const execlists = &engine->execlists;
295 struct i915_priolist *p;
296 struct rb_node **parent, *rb;
297 bool first = true;
298
299 if (unlikely(execlists->no_priolist))
300 prio = I915_PRIORITY_NORMAL;
301
302 find_priolist:
303 /* most positive priority is scheduled first, equal priorities fifo */
304 rb = NULL;
305 parent = &execlists->queue.rb_node;
306 while (*parent) {
307 rb = *parent;
308 p = rb_entry(rb, typeof(*p), node);
309 if (prio > p->priority) {
310 parent = &rb->rb_left;
311 } else if (prio < p->priority) {
312 parent = &rb->rb_right;
313 first = false;
314 } else {
315 return p;
316 }
317 }
318
319 if (prio == I915_PRIORITY_NORMAL) {
320 p = &execlists->default_priolist;
321 } else {
322 p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
323 /* Convert an allocation failure to a priority bump */
324 if (unlikely(!p)) {
325 prio = I915_PRIORITY_NORMAL; /* recurses just once */
326
327 /* To maintain ordering with all rendering, after an
328 * allocation failure we have to disable all scheduling.
329 * Requests will then be executed in fifo, and schedule
330 * will ensure that dependencies are emitted in fifo.
331 * There will be still some reordering with existing
332 * requests, so if userspace lied about their
333 * dependencies that reordering may be visible.
334 */
335 execlists->no_priolist = true;
336 goto find_priolist;
337 }
338 }
339
340 p->priority = prio;
341 INIT_LIST_HEAD(&p->requests);
342 rb_link_node(&p->node, rb, parent);
343 rb_insert_color(&p->node, &execlists->queue);
344
345 if (first)
346 execlists->first = &p->node;
347
348 return ptr_pack_bits(p, first, 1);
349 }
350
351 static inline void
352 execlists_context_status_change(struct drm_i915_gem_request *rq,
353 unsigned long status)
354 {
355 /*
356 * Only used when GVT-g is enabled now. When GVT-g is disabled,
357 * The compiler should eliminate this function as dead-code.
358 */
359 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
360 return;
361
362 atomic_notifier_call_chain(&rq->engine->context_status_notifier,
363 status, rq);
364 }
365
366 static void
367 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
368 {
369 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
370 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
371 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
372 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
373 }
374
375 static u64 execlists_update_context(struct drm_i915_gem_request *rq)
376 {
377 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
378 struct i915_hw_ppgtt *ppgtt =
379 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
380 u32 *reg_state = ce->lrc_reg_state;
381
382 reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
383
384 /* True 32b PPGTT with dynamic page allocation: update PDP
385 * registers and point the unallocated PDPs to scratch page.
386 * PML4 is allocated during ppgtt init, so this is not needed
387 * in 48-bit mode.
388 */
389 if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
390 execlists_update_context_pdps(ppgtt, reg_state);
391
392 return ce->lrc_desc;
393 }
394
395 static void execlists_submit_ports(struct intel_engine_cs *engine)
396 {
397 struct execlist_port *port = engine->execlists.port;
398 u32 __iomem *elsp =
399 engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));
400 unsigned int n;
401
402 for (n = execlists_num_ports(&engine->execlists); n--; ) {
403 struct drm_i915_gem_request *rq;
404 unsigned int count;
405 u64 desc;
406
407 rq = port_unpack(&port[n], &count);
408 if (rq) {
409 GEM_BUG_ON(count > !n);
410 if (!count++)
411 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
412 port_set(&port[n], port_pack(rq, count));
413 desc = execlists_update_context(rq);
414 GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
415 } else {
416 GEM_BUG_ON(!n);
417 desc = 0;
418 }
419
420 writel(upper_32_bits(desc), elsp);
421 writel(lower_32_bits(desc), elsp);
422 }
423 }
424
425 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
426 {
427 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
428 i915_gem_context_force_single_submission(ctx));
429 }
430
431 static bool can_merge_ctx(const struct i915_gem_context *prev,
432 const struct i915_gem_context *next)
433 {
434 if (prev != next)
435 return false;
436
437 if (ctx_single_port_submission(prev))
438 return false;
439
440 return true;
441 }
442
443 static void port_assign(struct execlist_port *port,
444 struct drm_i915_gem_request *rq)
445 {
446 GEM_BUG_ON(rq == port_request(port));
447
448 if (port_isset(port))
449 i915_gem_request_put(port_request(port));
450
451 port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
452 }
453
454 static void execlists_dequeue(struct intel_engine_cs *engine)
455 {
456 struct drm_i915_gem_request *last;
457 struct intel_engine_execlists * const execlists = &engine->execlists;
458 struct execlist_port *port = execlists->port;
459 const struct execlist_port * const last_port =
460 &execlists->port[execlists->port_mask];
461 struct rb_node *rb;
462 bool submit = false;
463
464 last = port_request(port);
465 if (last)
466 /* WaIdleLiteRestore:bdw,skl
467 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
468 * as we resubmit the request. See gen8_emit_breadcrumb()
469 * for where we prepare the padding after the end of the
470 * request.
471 */
472 last->tail = last->wa_tail;
473
474 /* Hardware submission is through 2 ports. Conceptually each port
475 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
476 * static for a context, and unique to each, so we only execute
477 * requests belonging to a single context from each ring. RING_HEAD
478 * is maintained by the CS in the context image, it marks the place
479 * where it got up to last time, and through RING_TAIL we tell the CS
480 * where we want to execute up to this time.
481 *
482 * In this list the requests are in order of execution. Consecutive
483 * requests from the same context are adjacent in the ringbuffer. We
484 * can combine these requests into a single RING_TAIL update:
485 *
486 * RING_HEAD...req1...req2
487 * ^- RING_TAIL
488 * since to execute req2 the CS must first execute req1.
489 *
490 * Our goal then is to point each port to the end of a consecutive
491 * sequence of requests as being the most optimal (fewest wake ups
492 * and context switches) submission.
493 */
494
495 spin_lock_irq(&engine->timeline->lock);
496 rb = execlists->first;
497 GEM_BUG_ON(rb_first(&execlists->queue) != rb);
498 while (rb) {
499 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
500 struct drm_i915_gem_request *rq, *rn;
501
502 list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
503 /*
504 * Can we combine this request with the current port?
505 * It has to be the same context/ringbuffer and not
506 * have any exceptions (e.g. GVT saying never to
507 * combine contexts).
508 *
509 * If we can combine the requests, we can execute both
510 * by updating the RING_TAIL to point to the end of the
511 * second request, and so we never need to tell the
512 * hardware about the first.
513 */
514 if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
515 /*
516 * If we are on the second port and cannot
517 * combine this request with the last, then we
518 * are done.
519 */
520 if (port == last_port) {
521 __list_del_many(&p->requests,
522 &rq->priotree.link);
523 goto done;
524 }
525
526 /*
527 * If GVT overrides us we only ever submit
528 * port[0], leaving port[1] empty. Note that we
529 * also have to be careful that we don't queue
530 * the same context (even though a different
531 * request) to the second port.
532 */
533 if (ctx_single_port_submission(last->ctx) ||
534 ctx_single_port_submission(rq->ctx)) {
535 __list_del_many(&p->requests,
536 &rq->priotree.link);
537 goto done;
538 }
539
540 GEM_BUG_ON(last->ctx == rq->ctx);
541
542 if (submit)
543 port_assign(port, last);
544 port++;
545
546 GEM_BUG_ON(port_isset(port));
547 }
548
549 INIT_LIST_HEAD(&rq->priotree.link);
550 rq->priotree.priority = INT_MAX;
551
552 __i915_gem_request_submit(rq);
553 trace_i915_gem_request_in(rq, port_index(port, execlists));
554 last = rq;
555 submit = true;
556 }
557
558 rb = rb_next(rb);
559 rb_erase(&p->node, &execlists->queue);
560 INIT_LIST_HEAD(&p->requests);
561 if (p->priority != I915_PRIORITY_NORMAL)
562 kmem_cache_free(engine->i915->priorities, p);
563 }
564 done:
565 execlists->first = rb;
566 if (submit)
567 port_assign(port, last);
568 spin_unlock_irq(&engine->timeline->lock);
569
570 if (submit)
571 execlists_submit_ports(engine);
572 }
573
574 static void
575 execlist_cancel_port_requests(struct intel_engine_execlists *execlists)
576 {
577 struct execlist_port *port = execlists->port;
578 unsigned int num_ports = ARRAY_SIZE(execlists->port);
579
580 while (num_ports-- && port_isset(port)) {
581 struct drm_i915_gem_request *rq = port_request(port);
582
583 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
584 i915_gem_request_put(rq);
585
586 memset(port, 0, sizeof(*port));
587 port++;
588 }
589 }
590
591 static void execlists_cancel_requests(struct intel_engine_cs *engine)
592 {
593 struct intel_engine_execlists * const execlists = &engine->execlists;
594 struct drm_i915_gem_request *rq, *rn;
595 struct rb_node *rb;
596 unsigned long flags;
597
598 spin_lock_irqsave(&engine->timeline->lock, flags);
599
600 /* Cancel the requests on the HW and clear the ELSP tracker. */
601 execlist_cancel_port_requests(execlists);
602
603 /* Mark all executing requests as skipped. */
604 list_for_each_entry(rq, &engine->timeline->requests, link) {
605 GEM_BUG_ON(!rq->global_seqno);
606 if (!i915_gem_request_completed(rq))
607 dma_fence_set_error(&rq->fence, -EIO);
608 }
609
610 /* Flush the queued requests to the timeline list (for retiring). */
611 rb = execlists->first;
612 while (rb) {
613 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
614
615 list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
616 INIT_LIST_HEAD(&rq->priotree.link);
617 rq->priotree.priority = INT_MAX;
618
619 dma_fence_set_error(&rq->fence, -EIO);
620 __i915_gem_request_submit(rq);
621 }
622
623 rb = rb_next(rb);
624 rb_erase(&p->node, &execlists->queue);
625 INIT_LIST_HEAD(&p->requests);
626 if (p->priority != I915_PRIORITY_NORMAL)
627 kmem_cache_free(engine->i915->priorities, p);
628 }
629
630 /* Remaining _unready_ requests will be nop'ed when submitted */
631
632
633 execlists->queue = RB_ROOT;
634 execlists->first = NULL;
635 GEM_BUG_ON(port_isset(execlists->port));
636
637 /*
638 * The port is checked prior to scheduling a tasklet, but
639 * just in case we have suspended the tasklet to do the
640 * wedging make sure that when it wakes, it decides there
641 * is no work to do by clearing the irq_posted bit.
642 */
643 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
644
645 spin_unlock_irqrestore(&engine->timeline->lock, flags);
646 }
647
648 static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
649 {
650 const struct execlist_port *port = engine->execlists.port;
651
652 return port_count(&port[0]) + port_count(&port[1]) < 2;
653 }
654
655 /*
656 * Check the unread Context Status Buffers and manage the submission of new
657 * contexts to the ELSP accordingly.
658 */
659 static void intel_lrc_irq_handler(unsigned long data)
660 {
661 struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
662 struct intel_engine_execlists * const execlists = &engine->execlists;
663 struct execlist_port *port = execlists->port;
664 struct drm_i915_private *dev_priv = engine->i915;
665
666 /* We can skip acquiring intel_runtime_pm_get() here as it was taken
667 * on our behalf by the request (see i915_gem_mark_busy()) and it will
668 * not be relinquished until the device is idle (see
669 * i915_gem_idle_work_handler()). As a precaution, we make sure
670 * that all ELSP are drained i.e. we have processed the CSB,
671 * before allowing ourselves to idle and calling intel_runtime_pm_put().
672 */
673 GEM_BUG_ON(!dev_priv->gt.awake);
674
675 intel_uncore_forcewake_get(dev_priv, execlists->fw_domains);
676
677 /* Prefer doing test_and_clear_bit() as a two stage operation to avoid
678 * imposing the cost of a locked atomic transaction when submitting a
679 * new request (outside of the context-switch interrupt).
680 */
681 while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
682 /* The HWSP contains a (cacheable) mirror of the CSB */
683 const u32 *buf =
684 &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
685 unsigned int head, tail;
686
687 /* However GVT emulation depends upon intercepting CSB mmio */
688 if (unlikely(execlists->csb_use_mmio)) {
689 buf = (u32 * __force)
690 (dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
691 execlists->csb_head = -1; /* force mmio read of CSB ptrs */
692 }
693
694 /* The write will be ordered by the uncached read (itself
695 * a memory barrier), so we do not need another in the form
696 * of a locked instruction. The race between the interrupt
697 * handler and the split test/clear is harmless as we order
698 * our clear before the CSB read. If the interrupt arrived
699 * first between the test and the clear, we read the updated
700 * CSB and clear the bit. If the interrupt arrives as we read
701 * the CSB or later (i.e. after we had cleared the bit) the bit
702 * is set and we do a new loop.
703 */
704 __clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
705 if (unlikely(execlists->csb_head == -1)) { /* following a reset */
706 head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
707 tail = GEN8_CSB_WRITE_PTR(head);
708 head = GEN8_CSB_READ_PTR(head);
709 execlists->csb_head = head;
710 } else {
711 const int write_idx =
712 intel_hws_csb_write_index(dev_priv) -
713 I915_HWS_CSB_BUF0_INDEX;
714
715 head = execlists->csb_head;
716 tail = READ_ONCE(buf[write_idx]);
717 }
718
719 while (head != tail) {
720 struct drm_i915_gem_request *rq;
721 unsigned int status;
722 unsigned int count;
723
724 if (++head == GEN8_CSB_ENTRIES)
725 head = 0;
726
727 /* We are flying near dragons again.
728 *
729 * We hold a reference to the request in execlist_port[]
730 * but no more than that. We are operating in softirq
731 * context and so cannot hold any mutex or sleep. That
732 * prevents us stopping the requests we are processing
733 * in port[] from being retired simultaneously (the
734 * breadcrumb will be complete before we see the
735 * context-switch). As we only hold the reference to the
736 * request, any pointer chasing underneath the request
737 * is subject to a potential use-after-free. Thus we
738 * store all of the bookkeeping within port[] as
739 * required, and avoid using unguarded pointers beneath
740 * request itself. The same applies to the atomic
741 * status notifier.
742 */
743
744 status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
745 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
746 continue;
747
748 /* Check the context/desc id for this event matches */
749 GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
750
751 rq = port_unpack(port, &count);
752 GEM_BUG_ON(count == 0);
753 if (--count == 0) {
754 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
755 GEM_BUG_ON(!i915_gem_request_completed(rq));
756 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
757
758 trace_i915_gem_request_out(rq);
759 i915_gem_request_put(rq);
760
761 execlists_port_complete(execlists, port);
762 } else {
763 port_set(port, port_pack(rq, count));
764 }
765
766 /* After the final element, the hw should be idle */
767 GEM_BUG_ON(port_count(port) == 0 &&
768 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
769 }
770
771 if (head != execlists->csb_head) {
772 execlists->csb_head = head;
773 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
774 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
775 }
776 }
777
778 if (execlists_elsp_ready(engine))
779 execlists_dequeue(engine);
780
781 intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
782 }
783
784 static void insert_request(struct intel_engine_cs *engine,
785 struct i915_priotree *pt,
786 int prio)
787 {
788 struct i915_priolist *p = lookup_priolist(engine, pt, prio);
789
790 list_add_tail(&pt->link, &ptr_mask_bits(p, 1)->requests);
791 if (ptr_unmask_bits(p, 1) && execlists_elsp_ready(engine))
792 tasklet_hi_schedule(&engine->execlists.irq_tasklet);
793 }
794
795 static void execlists_submit_request(struct drm_i915_gem_request *request)
796 {
797 struct intel_engine_cs *engine = request->engine;
798 unsigned long flags;
799
800 /* Will be called from irq-context when using foreign fences. */
801 spin_lock_irqsave(&engine->timeline->lock, flags);
802
803 insert_request(engine, &request->priotree, request->priotree.priority);
804
805 GEM_BUG_ON(!engine->execlists.first);
806 GEM_BUG_ON(list_empty(&request->priotree.link));
807
808 spin_unlock_irqrestore(&engine->timeline->lock, flags);
809 }
810
811 static struct intel_engine_cs *
812 pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
813 {
814 struct intel_engine_cs *engine =
815 container_of(pt, struct drm_i915_gem_request, priotree)->engine;
816
817 GEM_BUG_ON(!locked);
818
819 if (engine != locked) {
820 spin_unlock(&locked->timeline->lock);
821 spin_lock(&engine->timeline->lock);
822 }
823
824 return engine;
825 }
826
827 static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
828 {
829 struct intel_engine_cs *engine;
830 struct i915_dependency *dep, *p;
831 struct i915_dependency stack;
832 LIST_HEAD(dfs);
833
834 if (prio <= READ_ONCE(request->priotree.priority))
835 return;
836
837 /* Need BKL in order to use the temporary link inside i915_dependency */
838 lockdep_assert_held(&request->i915->drm.struct_mutex);
839
840 stack.signaler = &request->priotree;
841 list_add(&stack.dfs_link, &dfs);
842
843 /* Recursively bump all dependent priorities to match the new request.
844 *
845 * A naive approach would be to use recursion:
846 * static void update_priorities(struct i915_priotree *pt, prio) {
847 * list_for_each_entry(dep, &pt->signalers_list, signal_link)
848 * update_priorities(dep->signal, prio)
849 * insert_request(pt);
850 * }
851 * but that may have unlimited recursion depth and so runs a very
852 * real risk of overunning the kernel stack. Instead, we build
853 * a flat list of all dependencies starting with the current request.
854 * As we walk the list of dependencies, we add all of its dependencies
855 * to the end of the list (this may include an already visited
856 * request) and continue to walk onwards onto the new dependencies. The
857 * end result is a topological list of requests in reverse order, the
858 * last element in the list is the request we must execute first.
859 */
860 list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
861 struct i915_priotree *pt = dep->signaler;
862
863 /* Within an engine, there can be no cycle, but we may
864 * refer to the same dependency chain multiple times
865 * (redundant dependencies are not eliminated) and across
866 * engines.
867 */
868 list_for_each_entry(p, &pt->signalers_list, signal_link) {
869 GEM_BUG_ON(p->signaler->priority < pt->priority);
870 if (prio > READ_ONCE(p->signaler->priority))
871 list_move_tail(&p->dfs_link, &dfs);
872 }
873
874 list_safe_reset_next(dep, p, dfs_link);
875 }
876
877 /* If we didn't need to bump any existing priorities, and we haven't
878 * yet submitted this request (i.e. there is no potential race with
879 * execlists_submit_request()), we can set our own priority and skip
880 * acquiring the engine locks.
881 */
882 if (request->priotree.priority == INT_MIN) {
883 GEM_BUG_ON(!list_empty(&request->priotree.link));
884 request->priotree.priority = prio;
885 if (stack.dfs_link.next == stack.dfs_link.prev)
886 return;
887 __list_del_entry(&stack.dfs_link);
888 }
889
890 engine = request->engine;
891 spin_lock_irq(&engine->timeline->lock);
892
893 /* Fifo and depth-first replacement ensure our deps execute before us */
894 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
895 struct i915_priotree *pt = dep->signaler;
896
897 INIT_LIST_HEAD(&dep->dfs_link);
898
899 engine = pt_lock_engine(pt, engine);
900
901 if (prio <= pt->priority)
902 continue;
903
904 pt->priority = prio;
905 if (!list_empty(&pt->link)) {
906 __list_del_entry(&pt->link);
907 insert_request(engine, pt, prio);
908 }
909 }
910
911 spin_unlock_irq(&engine->timeline->lock);
912
913 /* XXX Do we need to preempt to make room for us and our deps? */
914 }
915
916 static struct intel_ring *
917 execlists_context_pin(struct intel_engine_cs *engine,
918 struct i915_gem_context *ctx)
919 {
920 struct intel_context *ce = &ctx->engine[engine->id];
921 unsigned int flags;
922 void *vaddr;
923 int ret;
924
925 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
926
927 if (likely(ce->pin_count++))
928 goto out;
929 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
930
931 if (!ce->state) {
932 ret = execlists_context_deferred_alloc(ctx, engine);
933 if (ret)
934 goto err;
935 }
936 GEM_BUG_ON(!ce->state);
937
938 flags = PIN_GLOBAL | PIN_HIGH;
939 if (ctx->ggtt_offset_bias)
940 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
941
942 ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
943 if (ret)
944 goto err;
945
946 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
947 if (IS_ERR(vaddr)) {
948 ret = PTR_ERR(vaddr);
949 goto unpin_vma;
950 }
951
952 ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
953 if (ret)
954 goto unpin_map;
955
956 intel_lr_context_descriptor_update(ctx, engine);
957
958 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
959 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
960 i915_ggtt_offset(ce->ring->vma);
961
962 ce->state->obj->mm.dirty = true;
963
964 i915_gem_context_get(ctx);
965 out:
966 return ce->ring;
967
968 unpin_map:
969 i915_gem_object_unpin_map(ce->state->obj);
970 unpin_vma:
971 __i915_vma_unpin(ce->state);
972 err:
973 ce->pin_count = 0;
974 return ERR_PTR(ret);
975 }
976
977 static void execlists_context_unpin(struct intel_engine_cs *engine,
978 struct i915_gem_context *ctx)
979 {
980 struct intel_context *ce = &ctx->engine[engine->id];
981
982 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
983 GEM_BUG_ON(ce->pin_count == 0);
984
985 if (--ce->pin_count)
986 return;
987
988 intel_ring_unpin(ce->ring);
989
990 i915_gem_object_unpin_map(ce->state->obj);
991 i915_vma_unpin(ce->state);
992
993 i915_gem_context_put(ctx);
994 }
995
996 static int execlists_request_alloc(struct drm_i915_gem_request *request)
997 {
998 struct intel_engine_cs *engine = request->engine;
999 struct intel_context *ce = &request->ctx->engine[engine->id];
1000 u32 *cs;
1001 int ret;
1002
1003 GEM_BUG_ON(!ce->pin_count);
1004
1005 /* Flush enough space to reduce the likelihood of waiting after
1006 * we start building the request - in which case we will just
1007 * have to repeat work.
1008 */
1009 request->reserved_space += EXECLISTS_REQUEST_SIZE;
1010
1011 cs = intel_ring_begin(request, 0);
1012 if (IS_ERR(cs))
1013 return PTR_ERR(cs);
1014
1015 if (!ce->initialised) {
1016 ret = engine->init_context(request);
1017 if (ret)
1018 return ret;
1019
1020 ce->initialised = true;
1021 }
1022
1023 /* Note that after this point, we have committed to using
1024 * this request as it is being used to both track the
1025 * state of engine initialisation and liveness of the
1026 * golden renderstate above. Think twice before you try
1027 * to cancel/unwind this request now.
1028 */
1029
1030 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1031 return 0;
1032 }
1033
1034 /*
1035 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1036 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1037 * but there is a slight complication as this is applied in WA batch where the
1038 * values are only initialized once so we cannot take register value at the
1039 * beginning and reuse it further; hence we save its value to memory, upload a
1040 * constant value with bit21 set and then we restore it back with the saved value.
1041 * To simplify the WA, a constant value is formed by using the default value
1042 * of this register. This shouldn't be a problem because we are only modifying
1043 * it for a short period and this batch in non-premptible. We can ofcourse
1044 * use additional instructions that read the actual value of the register
1045 * at that time and set our bit of interest but it makes the WA complicated.
1046 *
1047 * This WA is also required for Gen9 so extracting as a function avoids
1048 * code duplication.
1049 */
1050 static u32 *
1051 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1052 {
1053 *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1054 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1055 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1056 *batch++ = 0;
1057
1058 *batch++ = MI_LOAD_REGISTER_IMM(1);
1059 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1060 *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1061
1062 batch = gen8_emit_pipe_control(batch,
1063 PIPE_CONTROL_CS_STALL |
1064 PIPE_CONTROL_DC_FLUSH_ENABLE,
1065 0);
1066
1067 *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1068 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1069 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1070 *batch++ = 0;
1071
1072 return batch;
1073 }
1074
1075 /*
1076 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1077 * initialized at the beginning and shared across all contexts but this field
1078 * helps us to have multiple batches at different offsets and select them based
1079 * on a criteria. At the moment this batch always start at the beginning of the page
1080 * and at this point we don't have multiple wa_ctx batch buffers.
1081 *
1082 * The number of WA applied are not known at the beginning; we use this field
1083 * to return the no of DWORDS written.
1084 *
1085 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1086 * so it adds NOOPs as padding to make it cacheline aligned.
1087 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1088 * makes a complete batch buffer.
1089 */
1090 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1091 {
1092 /* WaDisableCtxRestoreArbitration:bdw,chv */
1093 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1094
1095 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1096 if (IS_BROADWELL(engine->i915))
1097 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1098
1099 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1100 /* Actual scratch location is at 128 bytes offset */
1101 batch = gen8_emit_pipe_control(batch,
1102 PIPE_CONTROL_FLUSH_L3 |
1103 PIPE_CONTROL_GLOBAL_GTT_IVB |
1104 PIPE_CONTROL_CS_STALL |
1105 PIPE_CONTROL_QW_WRITE,
1106 i915_ggtt_offset(engine->scratch) +
1107 2 * CACHELINE_BYTES);
1108
1109 /* Pad to end of cacheline */
1110 while ((unsigned long)batch % CACHELINE_BYTES)
1111 *batch++ = MI_NOOP;
1112
1113 /*
1114 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1115 * execution depends on the length specified in terms of cache lines
1116 * in the register CTX_RCS_INDIRECT_CTX
1117 */
1118
1119 return batch;
1120 }
1121
1122 /*
1123 * This batch is started immediately after indirect_ctx batch. Since we ensure
1124 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1125 *
1126 * The number of DWORDS written are returned using this field.
1127 *
1128 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1129 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1130 */
1131 static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1132 {
1133 /* WaDisableCtxRestoreArbitration:bdw,chv */
1134 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1135 *batch++ = MI_BATCH_BUFFER_END;
1136
1137 return batch;
1138 }
1139
1140 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1141 {
1142 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1143 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1144
1145 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1146 *batch++ = MI_LOAD_REGISTER_IMM(1);
1147 *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1148 *batch++ = _MASKED_BIT_DISABLE(
1149 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1150 *batch++ = MI_NOOP;
1151
1152 /* WaClearSlmSpaceAtContextSwitch:kbl */
1153 /* Actual scratch location is at 128 bytes offset */
1154 if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1155 batch = gen8_emit_pipe_control(batch,
1156 PIPE_CONTROL_FLUSH_L3 |
1157 PIPE_CONTROL_GLOBAL_GTT_IVB |
1158 PIPE_CONTROL_CS_STALL |
1159 PIPE_CONTROL_QW_WRITE,
1160 i915_ggtt_offset(engine->scratch)
1161 + 2 * CACHELINE_BYTES);
1162 }
1163
1164 /* WaMediaPoolStateCmdInWABB:bxt,glk */
1165 if (HAS_POOLED_EU(engine->i915)) {
1166 /*
1167 * EU pool configuration is setup along with golden context
1168 * during context initialization. This value depends on
1169 * device type (2x6 or 3x6) and needs to be updated based
1170 * on which subslice is disabled especially for 2x6
1171 * devices, however it is safe to load default
1172 * configuration of 3x6 device instead of masking off
1173 * corresponding bits because HW ignores bits of a disabled
1174 * subslice and drops down to appropriate config. Please
1175 * see render_state_setup() in i915_gem_render_state.c for
1176 * possible configurations, to avoid duplication they are
1177 * not shown here again.
1178 */
1179 *batch++ = GEN9_MEDIA_POOL_STATE;
1180 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1181 *batch++ = 0x00777000;
1182 *batch++ = 0;
1183 *batch++ = 0;
1184 *batch++ = 0;
1185 }
1186
1187 /* Pad to end of cacheline */
1188 while ((unsigned long)batch % CACHELINE_BYTES)
1189 *batch++ = MI_NOOP;
1190
1191 return batch;
1192 }
1193
1194 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1195
1196 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1197 {
1198 struct drm_i915_gem_object *obj;
1199 struct i915_vma *vma;
1200 int err;
1201
1202 obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1203 if (IS_ERR(obj))
1204 return PTR_ERR(obj);
1205
1206 vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1207 if (IS_ERR(vma)) {
1208 err = PTR_ERR(vma);
1209 goto err;
1210 }
1211
1212 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1213 if (err)
1214 goto err;
1215
1216 engine->wa_ctx.vma = vma;
1217 return 0;
1218
1219 err:
1220 i915_gem_object_put(obj);
1221 return err;
1222 }
1223
1224 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1225 {
1226 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1227 }
1228
1229 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1230
1231 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1232 {
1233 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1234 struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1235 &wa_ctx->per_ctx };
1236 wa_bb_func_t wa_bb_fn[2];
1237 struct page *page;
1238 void *batch, *batch_ptr;
1239 unsigned int i;
1240 int ret;
1241
1242 if (WARN_ON(engine->id != RCS || !engine->scratch))
1243 return -EINVAL;
1244
1245 switch (INTEL_GEN(engine->i915)) {
1246 case 10:
1247 return 0;
1248 case 9:
1249 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1250 wa_bb_fn[1] = NULL;
1251 break;
1252 case 8:
1253 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1254 wa_bb_fn[1] = gen8_init_perctx_bb;
1255 break;
1256 default:
1257 MISSING_CASE(INTEL_GEN(engine->i915));
1258 return 0;
1259 }
1260
1261 ret = lrc_setup_wa_ctx(engine);
1262 if (ret) {
1263 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1264 return ret;
1265 }
1266
1267 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1268 batch = batch_ptr = kmap_atomic(page);
1269
1270 /*
1271 * Emit the two workaround batch buffers, recording the offset from the
1272 * start of the workaround batch buffer object for each and their
1273 * respective sizes.
1274 */
1275 for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1276 wa_bb[i]->offset = batch_ptr - batch;
1277 if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
1278 ret = -EINVAL;
1279 break;
1280 }
1281 if (wa_bb_fn[i])
1282 batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1283 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1284 }
1285
1286 BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1287
1288 kunmap_atomic(batch);
1289 if (ret)
1290 lrc_destroy_wa_ctx(engine);
1291
1292 return ret;
1293 }
1294
1295 static u8 gtiir[] = {
1296 [RCS] = 0,
1297 [BCS] = 0,
1298 [VCS] = 1,
1299 [VCS2] = 1,
1300 [VECS] = 3,
1301 };
1302
1303 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1304 {
1305 struct drm_i915_private *dev_priv = engine->i915;
1306 struct intel_engine_execlists * const execlists = &engine->execlists;
1307 int ret;
1308
1309 ret = intel_mocs_init_engine(engine);
1310 if (ret)
1311 return ret;
1312
1313 intel_engine_reset_breadcrumbs(engine);
1314 intel_engine_init_hangcheck(engine);
1315
1316 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1317 I915_WRITE(RING_MODE_GEN7(engine),
1318 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1319 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1320 engine->status_page.ggtt_offset);
1321 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1322
1323 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1324
1325 GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));
1326
1327 /*
1328 * Clear any pending interrupt state.
1329 *
1330 * We do it twice out of paranoia that some of the IIR are double
1331 * buffered, and if we only reset it once there may still be
1332 * an interrupt pending.
1333 */
1334 I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
1335 GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1336 I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
1337 GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1338 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1339 execlists->csb_head = -1;
1340
1341 /* After a GPU reset, we may have requests to replay */
1342 if (!i915_modparams.enable_guc_submission && execlists->first)
1343 tasklet_schedule(&execlists->irq_tasklet);
1344
1345 return 0;
1346 }
1347
1348 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1349 {
1350 struct drm_i915_private *dev_priv = engine->i915;
1351 int ret;
1352
1353 ret = gen8_init_common_ring(engine);
1354 if (ret)
1355 return ret;
1356
1357 /* We need to disable the AsyncFlip performance optimisations in order
1358 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1359 * programmed to '1' on all products.
1360 *
1361 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1362 */
1363 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1364
1365 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1366
1367 return init_workarounds_ring(engine);
1368 }
1369
1370 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1371 {
1372 int ret;
1373
1374 ret = gen8_init_common_ring(engine);
1375 if (ret)
1376 return ret;
1377
1378 return init_workarounds_ring(engine);
1379 }
1380
1381 static void reset_common_ring(struct intel_engine_cs *engine,
1382 struct drm_i915_gem_request *request)
1383 {
1384 struct intel_engine_execlists * const execlists = &engine->execlists;
1385 struct drm_i915_gem_request *rq, *rn;
1386 struct intel_context *ce;
1387 unsigned long flags;
1388
1389 spin_lock_irqsave(&engine->timeline->lock, flags);
1390
1391 /*
1392 * Catch up with any missed context-switch interrupts.
1393 *
1394 * Ideally we would just read the remaining CSB entries now that we
1395 * know the gpu is idle. However, the CSB registers are sometimes^W
1396 * often trashed across a GPU reset! Instead we have to rely on
1397 * guessing the missed context-switch events by looking at what
1398 * requests were completed.
1399 */
1400 execlist_cancel_port_requests(execlists);
1401
1402 /* Push back any incomplete requests for replay after the reset. */
1403 list_for_each_entry_safe_reverse(rq, rn,
1404 &engine->timeline->requests, link) {
1405 struct i915_priolist *p;
1406
1407 if (i915_gem_request_completed(rq))
1408 break;
1409
1410 __i915_gem_request_unsubmit(rq);
1411
1412 p = lookup_priolist(engine,
1413 &rq->priotree,
1414 rq->priotree.priority);
1415 list_add(&rq->priotree.link,
1416 &ptr_mask_bits(p, 1)->requests);
1417 }
1418
1419 spin_unlock_irqrestore(&engine->timeline->lock, flags);
1420
1421 /* If the request was innocent, we leave the request in the ELSP
1422 * and will try to replay it on restarting. The context image may
1423 * have been corrupted by the reset, in which case we may have
1424 * to service a new GPU hang, but more likely we can continue on
1425 * without impact.
1426 *
1427 * If the request was guilty, we presume the context is corrupt
1428 * and have to at least restore the RING register in the context
1429 * image back to the expected values to skip over the guilty request.
1430 */
1431 if (!request || request->fence.error != -EIO)
1432 return;
1433
1434 /* We want a simple context + ring to execute the breadcrumb update.
1435 * We cannot rely on the context being intact across the GPU hang,
1436 * so clear it and rebuild just what we need for the breadcrumb.
1437 * All pending requests for this context will be zapped, and any
1438 * future request will be after userspace has had the opportunity
1439 * to recreate its own state.
1440 */
1441 ce = &request->ctx->engine[engine->id];
1442 execlists_init_reg_state(ce->lrc_reg_state,
1443 request->ctx, engine, ce->ring);
1444
1445 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1446 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1447 i915_ggtt_offset(ce->ring->vma);
1448 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1449
1450 request->ring->head = request->postfix;
1451 intel_ring_update_space(request->ring);
1452
1453 /* Reset WaIdleLiteRestore:bdw,skl as well */
1454 request->tail =
1455 intel_ring_wrap(request->ring,
1456 request->wa_tail - WA_TAIL_DWORDS*sizeof(u32));
1457 assert_ring_tail_valid(request->ring, request->tail);
1458 }
1459
1460 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1461 {
1462 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1463 struct intel_engine_cs *engine = req->engine;
1464 const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1465 u32 *cs;
1466 int i;
1467
1468 cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1469 if (IS_ERR(cs))
1470 return PTR_ERR(cs);
1471
1472 *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1473 for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1474 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1475
1476 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1477 *cs++ = upper_32_bits(pd_daddr);
1478 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1479 *cs++ = lower_32_bits(pd_daddr);
1480 }
1481
1482 *cs++ = MI_NOOP;
1483 intel_ring_advance(req, cs);
1484
1485 return 0;
1486 }
1487
1488 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1489 u64 offset, u32 len,
1490 const unsigned int flags)
1491 {
1492 u32 *cs;
1493 int ret;
1494
1495 /* Don't rely in hw updating PDPs, specially in lite-restore.
1496 * Ideally, we should set Force PD Restore in ctx descriptor,
1497 * but we can't. Force Restore would be a second option, but
1498 * it is unsafe in case of lite-restore (because the ctx is
1499 * not idle). PML4 is allocated during ppgtt init so this is
1500 * not needed in 48-bit.*/
1501 if (req->ctx->ppgtt &&
1502 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
1503 !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
1504 !intel_vgpu_active(req->i915)) {
1505 ret = intel_logical_ring_emit_pdps(req);
1506 if (ret)
1507 return ret;
1508
1509 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1510 }
1511
1512 cs = intel_ring_begin(req, 4);
1513 if (IS_ERR(cs))
1514 return PTR_ERR(cs);
1515
1516 /* FIXME(BDW): Address space and security selectors. */
1517 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1518 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1519 (flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1520 *cs++ = lower_32_bits(offset);
1521 *cs++ = upper_32_bits(offset);
1522 *cs++ = MI_NOOP;
1523 intel_ring_advance(req, cs);
1524
1525 return 0;
1526 }
1527
1528 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1529 {
1530 struct drm_i915_private *dev_priv = engine->i915;
1531 I915_WRITE_IMR(engine,
1532 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1533 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1534 }
1535
1536 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1537 {
1538 struct drm_i915_private *dev_priv = engine->i915;
1539 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1540 }
1541
1542 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1543 {
1544 u32 cmd, *cs;
1545
1546 cs = intel_ring_begin(request, 4);
1547 if (IS_ERR(cs))
1548 return PTR_ERR(cs);
1549
1550 cmd = MI_FLUSH_DW + 1;
1551
1552 /* We always require a command barrier so that subsequent
1553 * commands, such as breadcrumb interrupts, are strictly ordered
1554 * wrt the contents of the write cache being flushed to memory
1555 * (and thus being coherent from the CPU).
1556 */
1557 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1558
1559 if (mode & EMIT_INVALIDATE) {
1560 cmd |= MI_INVALIDATE_TLB;
1561 if (request->engine->id == VCS)
1562 cmd |= MI_INVALIDATE_BSD;
1563 }
1564
1565 *cs++ = cmd;
1566 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1567 *cs++ = 0; /* upper addr */
1568 *cs++ = 0; /* value */
1569 intel_ring_advance(request, cs);
1570
1571 return 0;
1572 }
1573
1574 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1575 u32 mode)
1576 {
1577 struct intel_engine_cs *engine = request->engine;
1578 u32 scratch_addr =
1579 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1580 bool vf_flush_wa = false, dc_flush_wa = false;
1581 u32 *cs, flags = 0;
1582 int len;
1583
1584 flags |= PIPE_CONTROL_CS_STALL;
1585
1586 if (mode & EMIT_FLUSH) {
1587 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1588 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1589 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1590 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1591 }
1592
1593 if (mode & EMIT_INVALIDATE) {
1594 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1595 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1596 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1597 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1598 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1599 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1600 flags |= PIPE_CONTROL_QW_WRITE;
1601 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1602
1603 /*
1604 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1605 * pipe control.
1606 */
1607 if (IS_GEN9(request->i915))
1608 vf_flush_wa = true;
1609
1610 /* WaForGAMHang:kbl */
1611 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1612 dc_flush_wa = true;
1613 }
1614
1615 len = 6;
1616
1617 if (vf_flush_wa)
1618 len += 6;
1619
1620 if (dc_flush_wa)
1621 len += 12;
1622
1623 cs = intel_ring_begin(request, len);
1624 if (IS_ERR(cs))
1625 return PTR_ERR(cs);
1626
1627 if (vf_flush_wa)
1628 cs = gen8_emit_pipe_control(cs, 0, 0);
1629
1630 if (dc_flush_wa)
1631 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1632 0);
1633
1634 cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
1635
1636 if (dc_flush_wa)
1637 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
1638
1639 intel_ring_advance(request, cs);
1640
1641 return 0;
1642 }
1643
1644 /*
1645 * Reserve space for 2 NOOPs at the end of each request to be
1646 * used as a workaround for not being allowed to do lite
1647 * restore with HEAD==TAIL (WaIdleLiteRestore).
1648 */
1649 static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1650 {
1651 *cs++ = MI_NOOP;
1652 *cs++ = MI_NOOP;
1653 request->wa_tail = intel_ring_offset(request, cs);
1654 }
1655
1656 static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
1657 {
1658 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1659 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1660
1661 *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1662 *cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1663 *cs++ = 0;
1664 *cs++ = request->global_seqno;
1665 *cs++ = MI_USER_INTERRUPT;
1666 *cs++ = MI_NOOP;
1667 request->tail = intel_ring_offset(request, cs);
1668 assert_ring_tail_valid(request->ring, request->tail);
1669
1670 gen8_emit_wa_tail(request, cs);
1671 }
1672
1673 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1674
1675 static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1676 u32 *cs)
1677 {
1678 /* We're using qword write, seqno should be aligned to 8 bytes. */
1679 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1680
1681 /* w/a for post sync ops following a GPGPU operation we
1682 * need a prior CS_STALL, which is emitted by the flush
1683 * following the batch.
1684 */
1685 *cs++ = GFX_OP_PIPE_CONTROL(6);
1686 *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
1687 PIPE_CONTROL_QW_WRITE;
1688 *cs++ = intel_hws_seqno_address(request->engine);
1689 *cs++ = 0;
1690 *cs++ = request->global_seqno;
1691 /* We're thrashing one dword of HWS. */
1692 *cs++ = 0;
1693 *cs++ = MI_USER_INTERRUPT;
1694 *cs++ = MI_NOOP;
1695 request->tail = intel_ring_offset(request, cs);
1696 assert_ring_tail_valid(request->ring, request->tail);
1697
1698 gen8_emit_wa_tail(request, cs);
1699 }
1700
1701 static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1702
1703 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1704 {
1705 int ret;
1706
1707 ret = intel_ring_workarounds_emit(req);
1708 if (ret)
1709 return ret;
1710
1711 ret = intel_rcs_context_init_mocs(req);
1712 /*
1713 * Failing to program the MOCS is non-fatal.The system will not
1714 * run at peak performance. So generate an error and carry on.
1715 */
1716 if (ret)
1717 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1718
1719 return i915_gem_render_state_emit(req);
1720 }
1721
1722 /**
1723 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1724 * @engine: Engine Command Streamer.
1725 */
1726 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1727 {
1728 struct drm_i915_private *dev_priv;
1729
1730 /*
1731 * Tasklet cannot be active at this point due intel_mark_active/idle
1732 * so this is just for documentation.
1733 */
1734 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->execlists.irq_tasklet.state)))
1735 tasklet_kill(&engine->execlists.irq_tasklet);
1736
1737 dev_priv = engine->i915;
1738
1739 if (engine->buffer) {
1740 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1741 }
1742
1743 if (engine->cleanup)
1744 engine->cleanup(engine);
1745
1746 intel_engine_cleanup_common(engine);
1747
1748 lrc_destroy_wa_ctx(engine);
1749 engine->i915 = NULL;
1750 dev_priv->engine[engine->id] = NULL;
1751 kfree(engine);
1752 }
1753
1754 static void execlists_set_default_submission(struct intel_engine_cs *engine)
1755 {
1756 engine->submit_request = execlists_submit_request;
1757 engine->cancel_requests = execlists_cancel_requests;
1758 engine->schedule = execlists_schedule;
1759 engine->execlists.irq_tasklet.func = intel_lrc_irq_handler;
1760 }
1761
1762 static void
1763 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1764 {
1765 /* Default vfuncs which can be overriden by each engine. */
1766 engine->init_hw = gen8_init_common_ring;
1767 engine->reset_hw = reset_common_ring;
1768
1769 engine->context_pin = execlists_context_pin;
1770 engine->context_unpin = execlists_context_unpin;
1771
1772 engine->request_alloc = execlists_request_alloc;
1773
1774 engine->emit_flush = gen8_emit_flush;
1775 engine->emit_breadcrumb = gen8_emit_breadcrumb;
1776 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1777
1778 engine->set_default_submission = execlists_set_default_submission;
1779
1780 engine->irq_enable = gen8_logical_ring_enable_irq;
1781 engine->irq_disable = gen8_logical_ring_disable_irq;
1782 engine->emit_bb_start = gen8_emit_bb_start;
1783 }
1784
1785 static inline void
1786 logical_ring_default_irqs(struct intel_engine_cs *engine)
1787 {
1788 unsigned shift = engine->irq_shift;
1789 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1790 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1791 }
1792
1793 static void
1794 logical_ring_setup(struct intel_engine_cs *engine)
1795 {
1796 struct drm_i915_private *dev_priv = engine->i915;
1797 enum forcewake_domains fw_domains;
1798
1799 intel_engine_setup_common(engine);
1800
1801 /* Intentionally left blank. */
1802 engine->buffer = NULL;
1803
1804 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1805 RING_ELSP(engine),
1806 FW_REG_WRITE);
1807
1808 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1809 RING_CONTEXT_STATUS_PTR(engine),
1810 FW_REG_READ | FW_REG_WRITE);
1811
1812 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1813 RING_CONTEXT_STATUS_BUF_BASE(engine),
1814 FW_REG_READ);
1815
1816 engine->execlists.fw_domains = fw_domains;
1817
1818 tasklet_init(&engine->execlists.irq_tasklet,
1819 intel_lrc_irq_handler, (unsigned long)engine);
1820
1821 logical_ring_default_vfuncs(engine);
1822 logical_ring_default_irqs(engine);
1823 }
1824
1825 static int logical_ring_init(struct intel_engine_cs *engine)
1826 {
1827 int ret;
1828
1829 ret = intel_engine_init_common(engine);
1830 if (ret)
1831 goto error;
1832
1833 return 0;
1834
1835 error:
1836 intel_logical_ring_cleanup(engine);
1837 return ret;
1838 }
1839
1840 int logical_render_ring_init(struct intel_engine_cs *engine)
1841 {
1842 struct drm_i915_private *dev_priv = engine->i915;
1843 int ret;
1844
1845 logical_ring_setup(engine);
1846
1847 if (HAS_L3_DPF(dev_priv))
1848 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1849
1850 /* Override some for render ring. */
1851 if (INTEL_GEN(dev_priv) >= 9)
1852 engine->init_hw = gen9_init_render_ring;
1853 else
1854 engine->init_hw = gen8_init_render_ring;
1855 engine->init_context = gen8_init_rcs_context;
1856 engine->emit_flush = gen8_emit_flush_render;
1857 engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1858 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1859
1860 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1861 if (ret)
1862 return ret;
1863
1864 ret = intel_init_workaround_bb(engine);
1865 if (ret) {
1866 /*
1867 * We continue even if we fail to initialize WA batch
1868 * because we only expect rare glitches but nothing
1869 * critical to prevent us from using GPU
1870 */
1871 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1872 ret);
1873 }
1874
1875 return logical_ring_init(engine);
1876 }
1877
1878 int logical_xcs_ring_init(struct intel_engine_cs *engine)
1879 {
1880 logical_ring_setup(engine);
1881
1882 return logical_ring_init(engine);
1883 }
1884
1885 static u32
1886 make_rpcs(struct drm_i915_private *dev_priv)
1887 {
1888 u32 rpcs = 0;
1889
1890 /*
1891 * No explicit RPCS request is needed to ensure full
1892 * slice/subslice/EU enablement prior to Gen9.
1893 */
1894 if (INTEL_GEN(dev_priv) < 9)
1895 return 0;
1896
1897 /*
1898 * Starting in Gen9, render power gating can leave
1899 * slice/subslice/EU in a partially enabled state. We
1900 * must make an explicit request through RPCS for full
1901 * enablement.
1902 */
1903 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1904 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1905 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1906 GEN8_RPCS_S_CNT_SHIFT;
1907 rpcs |= GEN8_RPCS_ENABLE;
1908 }
1909
1910 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1911 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1912 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1913 GEN8_RPCS_SS_CNT_SHIFT;
1914 rpcs |= GEN8_RPCS_ENABLE;
1915 }
1916
1917 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1918 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1919 GEN8_RPCS_EU_MIN_SHIFT;
1920 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1921 GEN8_RPCS_EU_MAX_SHIFT;
1922 rpcs |= GEN8_RPCS_ENABLE;
1923 }
1924
1925 return rpcs;
1926 }
1927
1928 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1929 {
1930 u32 indirect_ctx_offset;
1931
1932 switch (INTEL_GEN(engine->i915)) {
1933 default:
1934 MISSING_CASE(INTEL_GEN(engine->i915));
1935 /* fall through */
1936 case 10:
1937 indirect_ctx_offset =
1938 GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1939 break;
1940 case 9:
1941 indirect_ctx_offset =
1942 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1943 break;
1944 case 8:
1945 indirect_ctx_offset =
1946 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1947 break;
1948 }
1949
1950 return indirect_ctx_offset;
1951 }
1952
1953 static void execlists_init_reg_state(u32 *regs,
1954 struct i915_gem_context *ctx,
1955 struct intel_engine_cs *engine,
1956 struct intel_ring *ring)
1957 {
1958 struct drm_i915_private *dev_priv = engine->i915;
1959 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1960 u32 base = engine->mmio_base;
1961 bool rcs = engine->id == RCS;
1962
1963 /* A context is actually a big batch buffer with several
1964 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
1965 * values we are setting here are only for the first context restore:
1966 * on a subsequent save, the GPU will recreate this batchbuffer with new
1967 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
1968 * we are not initializing here).
1969 */
1970 regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
1971 MI_LRI_FORCE_POSTED;
1972
1973 CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
1974 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1975 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1976 (HAS_RESOURCE_STREAMER(dev_priv) ?
1977 CTX_CTRL_RS_CTX_ENABLE : 0)));
1978 CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
1979 CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
1980 CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
1981 CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
1982 RING_CTL_SIZE(ring->size) | RING_VALID);
1983 CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
1984 CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
1985 CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
1986 CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
1987 CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
1988 CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
1989 if (rcs) {
1990 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1991
1992 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
1993 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
1994 RING_INDIRECT_CTX_OFFSET(base), 0);
1995 if (wa_ctx->indirect_ctx.size) {
1996 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1997
1998 regs[CTX_RCS_INDIRECT_CTX + 1] =
1999 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2000 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2001
2002 regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2003 intel_lr_indirect_ctx_offset(engine) << 6;
2004 }
2005
2006 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2007 if (wa_ctx->per_ctx.size) {
2008 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2009
2010 regs[CTX_BB_PER_CTX_PTR + 1] =
2011 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2012 }
2013 }
2014
2015 regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2016
2017 CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2018 /* PDP values well be assigned later if needed */
2019 CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
2020 CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
2021 CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
2022 CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
2023 CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
2024 CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
2025 CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
2026 CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2027
2028 if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2029 /* 64b PPGTT (48bit canonical)
2030 * PDP0_DESCRIPTOR contains the base address to PML4 and
2031 * other PDP Descriptors are ignored.
2032 */
2033 ASSIGN_CTX_PML4(ppgtt, regs);
2034 }
2035
2036 if (rcs) {
2037 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2038 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2039 make_rpcs(dev_priv));
2040
2041 i915_oa_init_reg_state(engine, ctx, regs);
2042 }
2043 }
2044
2045 static int
2046 populate_lr_context(struct i915_gem_context *ctx,
2047 struct drm_i915_gem_object *ctx_obj,
2048 struct intel_engine_cs *engine,
2049 struct intel_ring *ring)
2050 {
2051 void *vaddr;
2052 int ret;
2053
2054 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2055 if (ret) {
2056 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2057 return ret;
2058 }
2059
2060 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2061 if (IS_ERR(vaddr)) {
2062 ret = PTR_ERR(vaddr);
2063 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2064 return ret;
2065 }
2066 ctx_obj->mm.dirty = true;
2067
2068 /* The second page of the context object contains some fields which must
2069 * be set up prior to the first execution. */
2070
2071 execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
2072 ctx, engine, ring);
2073
2074 i915_gem_object_unpin_map(ctx_obj);
2075
2076 return 0;
2077 }
2078
2079 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2080 struct intel_engine_cs *engine)
2081 {
2082 struct drm_i915_gem_object *ctx_obj;
2083 struct intel_context *ce = &ctx->engine[engine->id];
2084 struct i915_vma *vma;
2085 uint32_t context_size;
2086 struct intel_ring *ring;
2087 int ret;
2088
2089 WARN_ON(ce->state);
2090
2091 context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2092
2093 /*
2094 * Before the actual start of the context image, we insert a few pages
2095 * for our own use and for sharing with the GuC.
2096 */
2097 context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2098
2099 ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2100 if (IS_ERR(ctx_obj)) {
2101 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2102 return PTR_ERR(ctx_obj);
2103 }
2104
2105 vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2106 if (IS_ERR(vma)) {
2107 ret = PTR_ERR(vma);
2108 goto error_deref_obj;
2109 }
2110
2111 ring = intel_engine_create_ring(engine, ctx->ring_size);
2112 if (IS_ERR(ring)) {
2113 ret = PTR_ERR(ring);
2114 goto error_deref_obj;
2115 }
2116
2117 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2118 if (ret) {
2119 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2120 goto error_ring_free;
2121 }
2122
2123 ce->ring = ring;
2124 ce->state = vma;
2125 ce->initialised |= engine->init_context == NULL;
2126
2127 return 0;
2128
2129 error_ring_free:
2130 intel_ring_free(ring);
2131 error_deref_obj:
2132 i915_gem_object_put(ctx_obj);
2133 return ret;
2134 }
2135
2136 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2137 {
2138 struct intel_engine_cs *engine;
2139 struct i915_gem_context *ctx;
2140 enum intel_engine_id id;
2141
2142 /* Because we emit WA_TAIL_DWORDS there may be a disparity
2143 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2144 * that stored in context. As we only write new commands from
2145 * ce->ring->tail onwards, everything before that is junk. If the GPU
2146 * starts reading from its RING_HEAD from the context, it may try to
2147 * execute that junk and die.
2148 *
2149 * So to avoid that we reset the context images upon resume. For
2150 * simplicity, we just zero everything out.
2151 */
2152 list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2153 for_each_engine(engine, dev_priv, id) {
2154 struct intel_context *ce = &ctx->engine[engine->id];
2155 u32 *reg;
2156
2157 if (!ce->state)
2158 continue;
2159
2160 reg = i915_gem_object_pin_map(ce->state->obj,
2161 I915_MAP_WB);
2162 if (WARN_ON(IS_ERR(reg)))
2163 continue;
2164
2165 reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2166 reg[CTX_RING_HEAD+1] = 0;
2167 reg[CTX_RING_TAIL+1] = 0;
2168
2169 ce->state->obj->mm.dirty = true;
2170 i915_gem_object_unpin_map(ce->state->obj);
2171
2172 intel_ring_reset(ce->ring, 0);
2173 }
2174 }
2175 }