]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/gpu/drm/i915/intel_lrc.c
Merge tag 'armsoc-cleanup' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[mirror_ubuntu-eoan-kernel.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138
139 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
143 #define RING_EXECLIST_QFULL (1 << 0x2)
144 #define RING_EXECLIST1_VALID (1 << 0x3)
145 #define RING_EXECLIST0_VALID (1 << 0x4)
146 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
147 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
148 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
149
150 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
151 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
152 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
153 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
154 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
155 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
156
157 #define CTX_LRI_HEADER_0 0x01
158 #define CTX_CONTEXT_CONTROL 0x02
159 #define CTX_RING_HEAD 0x04
160 #define CTX_RING_TAIL 0x06
161 #define CTX_RING_BUFFER_START 0x08
162 #define CTX_RING_BUFFER_CONTROL 0x0a
163 #define CTX_BB_HEAD_U 0x0c
164 #define CTX_BB_HEAD_L 0x0e
165 #define CTX_BB_STATE 0x10
166 #define CTX_SECOND_BB_HEAD_U 0x12
167 #define CTX_SECOND_BB_HEAD_L 0x14
168 #define CTX_SECOND_BB_STATE 0x16
169 #define CTX_BB_PER_CTX_PTR 0x18
170 #define CTX_RCS_INDIRECT_CTX 0x1a
171 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
172 #define CTX_LRI_HEADER_1 0x21
173 #define CTX_CTX_TIMESTAMP 0x22
174 #define CTX_PDP3_UDW 0x24
175 #define CTX_PDP3_LDW 0x26
176 #define CTX_PDP2_UDW 0x28
177 #define CTX_PDP2_LDW 0x2a
178 #define CTX_PDP1_UDW 0x2c
179 #define CTX_PDP1_LDW 0x2e
180 #define CTX_PDP0_UDW 0x30
181 #define CTX_PDP0_LDW 0x32
182 #define CTX_LRI_HEADER_2 0x41
183 #define CTX_R_PWR_CLK_STATE 0x42
184 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
185
186 #define GEN8_CTX_VALID (1<<0)
187 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188 #define GEN8_CTX_FORCE_RESTORE (1<<2)
189 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
190 #define GEN8_CTX_PRIVILEGE (1<<8)
191
192 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
193 const u64 _addr = test_bit(n, ppgtt->pdp.used_pdpes) ? \
194 ppgtt->pdp.page_directory[n]->daddr : \
195 ppgtt->scratch_pd->daddr; \
196 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198 }
199
200 enum {
201 ADVANCED_CONTEXT = 0,
202 LEGACY_CONTEXT,
203 ADVANCED_AD_CONTEXT,
204 LEGACY_64B_CONTEXT
205 };
206 #define GEN8_CTX_MODE_SHIFT 3
207 enum {
208 FAULT_AND_HANG = 0,
209 FAULT_AND_HALT, /* Debug only */
210 FAULT_AND_STREAM,
211 FAULT_AND_CONTINUE /* Unsupported */
212 };
213 #define GEN8_CTX_ID_SHIFT 32
214
215 static int intel_lr_context_pin(struct intel_engine_cs *ring,
216 struct intel_context *ctx);
217
218 /**
219 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
220 * @dev: DRM device.
221 * @enable_execlists: value of i915.enable_execlists module parameter.
222 *
223 * Only certain platforms support Execlists (the prerequisites being
224 * support for Logical Ring Contexts and Aliasing PPGTT or better).
225 *
226 * Return: 1 if Execlists is supported and has to be enabled.
227 */
228 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
229 {
230 WARN_ON(i915.enable_ppgtt == -1);
231
232 if (INTEL_INFO(dev)->gen >= 9)
233 return 1;
234
235 if (enable_execlists == 0)
236 return 0;
237
238 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
239 i915.use_mmio_flip >= 0)
240 return 1;
241
242 return 0;
243 }
244
245 /**
246 * intel_execlists_ctx_id() - get the Execlists Context ID
247 * @ctx_obj: Logical Ring Context backing object.
248 *
249 * Do not confuse with ctx->id! Unfortunately we have a name overload
250 * here: the old context ID we pass to userspace as a handler so that
251 * they can refer to a context, and the new context ID we pass to the
252 * ELSP so that the GPU can inform us of the context status via
253 * interrupts.
254 *
255 * Return: 20-bits globally unique context ID.
256 */
257 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
258 {
259 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
260
261 /* LRCA is required to be 4K aligned so the more significant 20 bits
262 * are globally unique */
263 return lrca >> 12;
264 }
265
266 static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
267 struct drm_i915_gem_object *ctx_obj)
268 {
269 struct drm_device *dev = ring->dev;
270 uint64_t desc;
271 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
272
273 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
274
275 desc = GEN8_CTX_VALID;
276 desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
277 if (IS_GEN8(ctx_obj->base.dev))
278 desc |= GEN8_CTX_L3LLC_COHERENT;
279 desc |= GEN8_CTX_PRIVILEGE;
280 desc |= lrca;
281 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
282
283 /* TODO: WaDisableLiteRestore when we start using semaphore
284 * signalling between Command Streamers */
285 /* desc |= GEN8_CTX_FORCE_RESTORE; */
286
287 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
288 if (IS_GEN9(dev) &&
289 INTEL_REVID(dev) <= SKL_REVID_B0 &&
290 (ring->id == BCS || ring->id == VCS ||
291 ring->id == VECS || ring->id == VCS2))
292 desc |= GEN8_CTX_FORCE_RESTORE;
293
294 return desc;
295 }
296
297 static void execlists_elsp_write(struct intel_engine_cs *ring,
298 struct drm_i915_gem_object *ctx_obj0,
299 struct drm_i915_gem_object *ctx_obj1)
300 {
301 struct drm_device *dev = ring->dev;
302 struct drm_i915_private *dev_priv = dev->dev_private;
303 uint64_t temp = 0;
304 uint32_t desc[4];
305
306 /* XXX: You must always write both descriptors in the order below. */
307 if (ctx_obj1)
308 temp = execlists_ctx_descriptor(ring, ctx_obj1);
309 else
310 temp = 0;
311 desc[1] = (u32)(temp >> 32);
312 desc[0] = (u32)temp;
313
314 temp = execlists_ctx_descriptor(ring, ctx_obj0);
315 desc[3] = (u32)(temp >> 32);
316 desc[2] = (u32)temp;
317
318 spin_lock(&dev_priv->uncore.lock);
319 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
320 I915_WRITE_FW(RING_ELSP(ring), desc[1]);
321 I915_WRITE_FW(RING_ELSP(ring), desc[0]);
322 I915_WRITE_FW(RING_ELSP(ring), desc[3]);
323
324 /* The context is automatically loaded after the following */
325 I915_WRITE_FW(RING_ELSP(ring), desc[2]);
326
327 /* ELSP is a wo register, so use another nearby reg for posting instead */
328 POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
329 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
330 spin_unlock(&dev_priv->uncore.lock);
331 }
332
333 static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
334 struct drm_i915_gem_object *ring_obj,
335 struct i915_hw_ppgtt *ppgtt,
336 u32 tail)
337 {
338 struct page *page;
339 uint32_t *reg_state;
340
341 page = i915_gem_object_get_page(ctx_obj, 1);
342 reg_state = kmap_atomic(page);
343
344 reg_state[CTX_RING_TAIL+1] = tail;
345 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
346
347 /* True PPGTT with dynamic page allocation: update PDP registers and
348 * point the unallocated PDPs to the scratch page
349 */
350 if (ppgtt) {
351 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
352 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
353 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
354 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
355 }
356
357 kunmap_atomic(reg_state);
358
359 return 0;
360 }
361
362 static void execlists_submit_contexts(struct intel_engine_cs *ring,
363 struct intel_context *to0, u32 tail0,
364 struct intel_context *to1, u32 tail1)
365 {
366 struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
367 struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
368 struct drm_i915_gem_object *ctx_obj1 = NULL;
369 struct intel_ringbuffer *ringbuf1 = NULL;
370
371 BUG_ON(!ctx_obj0);
372 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
373 WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
374
375 execlists_update_context(ctx_obj0, ringbuf0->obj, to0->ppgtt, tail0);
376
377 if (to1) {
378 ringbuf1 = to1->engine[ring->id].ringbuf;
379 ctx_obj1 = to1->engine[ring->id].state;
380 BUG_ON(!ctx_obj1);
381 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
382 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
383
384 execlists_update_context(ctx_obj1, ringbuf1->obj, to1->ppgtt, tail1);
385 }
386
387 execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
388 }
389
390 static void execlists_context_unqueue(struct intel_engine_cs *ring)
391 {
392 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
393 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
394
395 assert_spin_locked(&ring->execlist_lock);
396
397 /*
398 * If irqs are not active generate a warning as batches that finish
399 * without the irqs may get lost and a GPU Hang may occur.
400 */
401 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
402
403 if (list_empty(&ring->execlist_queue))
404 return;
405
406 /* Try to read in pairs */
407 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
408 execlist_link) {
409 if (!req0) {
410 req0 = cursor;
411 } else if (req0->ctx == cursor->ctx) {
412 /* Same ctx: ignore first request, as second request
413 * will update tail past first request's workload */
414 cursor->elsp_submitted = req0->elsp_submitted;
415 list_del(&req0->execlist_link);
416 list_add_tail(&req0->execlist_link,
417 &ring->execlist_retired_req_list);
418 req0 = cursor;
419 } else {
420 req1 = cursor;
421 break;
422 }
423 }
424
425 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
426 /*
427 * WaIdleLiteRestore: make sure we never cause a lite
428 * restore with HEAD==TAIL
429 */
430 if (req0->elsp_submitted) {
431 /*
432 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
433 * as we resubmit the request. See gen8_emit_request()
434 * for where we prepare the padding after the end of the
435 * request.
436 */
437 struct intel_ringbuffer *ringbuf;
438
439 ringbuf = req0->ctx->engine[ring->id].ringbuf;
440 req0->tail += 8;
441 req0->tail &= ringbuf->size - 1;
442 }
443 }
444
445 WARN_ON(req1 && req1->elsp_submitted);
446
447 execlists_submit_contexts(ring, req0->ctx, req0->tail,
448 req1 ? req1->ctx : NULL,
449 req1 ? req1->tail : 0);
450
451 req0->elsp_submitted++;
452 if (req1)
453 req1->elsp_submitted++;
454 }
455
456 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
457 u32 request_id)
458 {
459 struct drm_i915_gem_request *head_req;
460
461 assert_spin_locked(&ring->execlist_lock);
462
463 head_req = list_first_entry_or_null(&ring->execlist_queue,
464 struct drm_i915_gem_request,
465 execlist_link);
466
467 if (head_req != NULL) {
468 struct drm_i915_gem_object *ctx_obj =
469 head_req->ctx->engine[ring->id].state;
470 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
471 WARN(head_req->elsp_submitted == 0,
472 "Never submitted head request\n");
473
474 if (--head_req->elsp_submitted <= 0) {
475 list_del(&head_req->execlist_link);
476 list_add_tail(&head_req->execlist_link,
477 &ring->execlist_retired_req_list);
478 return true;
479 }
480 }
481 }
482
483 return false;
484 }
485
486 /**
487 * intel_lrc_irq_handler() - handle Context Switch interrupts
488 * @ring: Engine Command Streamer to handle.
489 *
490 * Check the unread Context Status Buffers and manage the submission of new
491 * contexts to the ELSP accordingly.
492 */
493 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
494 {
495 struct drm_i915_private *dev_priv = ring->dev->dev_private;
496 u32 status_pointer;
497 u8 read_pointer;
498 u8 write_pointer;
499 u32 status;
500 u32 status_id;
501 u32 submit_contexts = 0;
502
503 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
504
505 read_pointer = ring->next_context_status_buffer;
506 write_pointer = status_pointer & 0x07;
507 if (read_pointer > write_pointer)
508 write_pointer += 6;
509
510 spin_lock(&ring->execlist_lock);
511
512 while (read_pointer < write_pointer) {
513 read_pointer++;
514 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
515 (read_pointer % 6) * 8);
516 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
517 (read_pointer % 6) * 8 + 4);
518
519 if (status & GEN8_CTX_STATUS_PREEMPTED) {
520 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
521 if (execlists_check_remove_request(ring, status_id))
522 WARN(1, "Lite Restored request removed from queue\n");
523 } else
524 WARN(1, "Preemption without Lite Restore\n");
525 }
526
527 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
528 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
529 if (execlists_check_remove_request(ring, status_id))
530 submit_contexts++;
531 }
532 }
533
534 if (submit_contexts != 0)
535 execlists_context_unqueue(ring);
536
537 spin_unlock(&ring->execlist_lock);
538
539 WARN(submit_contexts > 2, "More than two context complete events?\n");
540 ring->next_context_status_buffer = write_pointer % 6;
541
542 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
543 ((u32)ring->next_context_status_buffer & 0x07) << 8);
544 }
545
546 static int execlists_context_queue(struct intel_engine_cs *ring,
547 struct intel_context *to,
548 u32 tail,
549 struct drm_i915_gem_request *request)
550 {
551 struct drm_i915_gem_request *cursor;
552 int num_elements = 0;
553
554 if (to != ring->default_context)
555 intel_lr_context_pin(ring, to);
556
557 if (!request) {
558 /*
559 * If there isn't a request associated with this submission,
560 * create one as a temporary holder.
561 */
562 request = kzalloc(sizeof(*request), GFP_KERNEL);
563 if (request == NULL)
564 return -ENOMEM;
565 request->ring = ring;
566 request->ctx = to;
567 kref_init(&request->ref);
568 i915_gem_context_reference(request->ctx);
569 } else {
570 i915_gem_request_reference(request);
571 WARN_ON(to != request->ctx);
572 }
573 request->tail = tail;
574
575 spin_lock_irq(&ring->execlist_lock);
576
577 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
578 if (++num_elements > 2)
579 break;
580
581 if (num_elements > 2) {
582 struct drm_i915_gem_request *tail_req;
583
584 tail_req = list_last_entry(&ring->execlist_queue,
585 struct drm_i915_gem_request,
586 execlist_link);
587
588 if (to == tail_req->ctx) {
589 WARN(tail_req->elsp_submitted != 0,
590 "More than 2 already-submitted reqs queued\n");
591 list_del(&tail_req->execlist_link);
592 list_add_tail(&tail_req->execlist_link,
593 &ring->execlist_retired_req_list);
594 }
595 }
596
597 list_add_tail(&request->execlist_link, &ring->execlist_queue);
598 if (num_elements == 0)
599 execlists_context_unqueue(ring);
600
601 spin_unlock_irq(&ring->execlist_lock);
602
603 return 0;
604 }
605
606 static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf,
607 struct intel_context *ctx)
608 {
609 struct intel_engine_cs *ring = ringbuf->ring;
610 uint32_t flush_domains;
611 int ret;
612
613 flush_domains = 0;
614 if (ring->gpu_caches_dirty)
615 flush_domains = I915_GEM_GPU_DOMAINS;
616
617 ret = ring->emit_flush(ringbuf, ctx,
618 I915_GEM_GPU_DOMAINS, flush_domains);
619 if (ret)
620 return ret;
621
622 ring->gpu_caches_dirty = false;
623 return 0;
624 }
625
626 static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
627 struct intel_context *ctx,
628 struct list_head *vmas)
629 {
630 struct intel_engine_cs *ring = ringbuf->ring;
631 const unsigned other_rings = ~intel_ring_flag(ring);
632 struct i915_vma *vma;
633 uint32_t flush_domains = 0;
634 bool flush_chipset = false;
635 int ret;
636
637 list_for_each_entry(vma, vmas, exec_list) {
638 struct drm_i915_gem_object *obj = vma->obj;
639
640 if (obj->active & other_rings) {
641 ret = i915_gem_object_sync(obj, ring);
642 if (ret)
643 return ret;
644 }
645
646 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
647 flush_chipset |= i915_gem_clflush_object(obj, false);
648
649 flush_domains |= obj->base.write_domain;
650 }
651
652 if (flush_domains & I915_GEM_DOMAIN_GTT)
653 wmb();
654
655 /* Unconditionally invalidate gpu caches and ensure that we do flush
656 * any residual writes from the previous batch.
657 */
658 return logical_ring_invalidate_all_caches(ringbuf, ctx);
659 }
660
661 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request,
662 struct intel_context *ctx)
663 {
664 int ret;
665
666 if (ctx != request->ring->default_context) {
667 ret = intel_lr_context_pin(request->ring, ctx);
668 if (ret)
669 return ret;
670 }
671
672 request->ringbuf = ctx->engine[request->ring->id].ringbuf;
673 request->ctx = ctx;
674 i915_gem_context_reference(request->ctx);
675
676 return 0;
677 }
678
679 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
680 struct intel_context *ctx,
681 int bytes)
682 {
683 struct intel_engine_cs *ring = ringbuf->ring;
684 struct drm_i915_gem_request *request;
685 unsigned space;
686 int ret;
687
688 if (intel_ring_space(ringbuf) >= bytes)
689 return 0;
690
691 list_for_each_entry(request, &ring->request_list, list) {
692 /*
693 * The request queue is per-engine, so can contain requests
694 * from multiple ringbuffers. Here, we must ignore any that
695 * aren't from the ringbuffer we're considering.
696 */
697 if (request->ringbuf != ringbuf)
698 continue;
699
700 /* Would completion of this request free enough space? */
701 space = __intel_ring_space(request->postfix, ringbuf->tail,
702 ringbuf->size);
703 if (space >= bytes)
704 break;
705 }
706
707 if (WARN_ON(&request->list == &ring->request_list))
708 return -ENOSPC;
709
710 ret = i915_wait_request(request);
711 if (ret)
712 return ret;
713
714 ringbuf->space = space;
715 return 0;
716 }
717
718 /*
719 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
720 * @ringbuf: Logical Ringbuffer to advance.
721 *
722 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
723 * really happens during submission is that the context and current tail will be placed
724 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
725 * point, the tail *inside* the context is updated and the ELSP written to.
726 */
727 static void
728 intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
729 struct intel_context *ctx,
730 struct drm_i915_gem_request *request)
731 {
732 struct intel_engine_cs *ring = ringbuf->ring;
733
734 intel_logical_ring_advance(ringbuf);
735
736 if (intel_ring_stopped(ring))
737 return;
738
739 execlists_context_queue(ring, ctx, ringbuf->tail, request);
740 }
741
742 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
743 struct intel_context *ctx)
744 {
745 uint32_t __iomem *virt;
746 int rem = ringbuf->size - ringbuf->tail;
747
748 if (ringbuf->space < rem) {
749 int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
750
751 if (ret)
752 return ret;
753 }
754
755 virt = ringbuf->virtual_start + ringbuf->tail;
756 rem /= 4;
757 while (rem--)
758 iowrite32(MI_NOOP, virt++);
759
760 ringbuf->tail = 0;
761 intel_ring_update_space(ringbuf);
762
763 return 0;
764 }
765
766 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
767 struct intel_context *ctx, int bytes)
768 {
769 int ret;
770
771 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
772 ret = logical_ring_wrap_buffer(ringbuf, ctx);
773 if (unlikely(ret))
774 return ret;
775 }
776
777 if (unlikely(ringbuf->space < bytes)) {
778 ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
779 if (unlikely(ret))
780 return ret;
781 }
782
783 return 0;
784 }
785
786 /**
787 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
788 *
789 * @ringbuf: Logical ringbuffer.
790 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
791 *
792 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
793 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
794 * and also preallocates a request (every workload submission is still mediated through
795 * requests, same as it did with legacy ringbuffer submission).
796 *
797 * Return: non-zero if the ringbuffer is not ready to be written to.
798 */
799 static int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
800 struct intel_context *ctx, int num_dwords)
801 {
802 struct intel_engine_cs *ring = ringbuf->ring;
803 struct drm_device *dev = ring->dev;
804 struct drm_i915_private *dev_priv = dev->dev_private;
805 int ret;
806
807 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
808 dev_priv->mm.interruptible);
809 if (ret)
810 return ret;
811
812 ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
813 if (ret)
814 return ret;
815
816 /* Preallocate the olr before touching the ring */
817 ret = i915_gem_request_alloc(ring, ctx);
818 if (ret)
819 return ret;
820
821 ringbuf->space -= num_dwords * sizeof(uint32_t);
822 return 0;
823 }
824
825 /**
826 * execlists_submission() - submit a batchbuffer for execution, Execlists style
827 * @dev: DRM device.
828 * @file: DRM file.
829 * @ring: Engine Command Streamer to submit to.
830 * @ctx: Context to employ for this submission.
831 * @args: execbuffer call arguments.
832 * @vmas: list of vmas.
833 * @batch_obj: the batchbuffer to submit.
834 * @exec_start: batchbuffer start virtual address pointer.
835 * @dispatch_flags: translated execbuffer call flags.
836 *
837 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
838 * away the submission details of the execbuffer ioctl call.
839 *
840 * Return: non-zero if the submission fails.
841 */
842 int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
843 struct intel_engine_cs *ring,
844 struct intel_context *ctx,
845 struct drm_i915_gem_execbuffer2 *args,
846 struct list_head *vmas,
847 struct drm_i915_gem_object *batch_obj,
848 u64 exec_start, u32 dispatch_flags)
849 {
850 struct drm_i915_private *dev_priv = dev->dev_private;
851 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
852 int instp_mode;
853 u32 instp_mask;
854 int ret;
855
856 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
857 instp_mask = I915_EXEC_CONSTANTS_MASK;
858 switch (instp_mode) {
859 case I915_EXEC_CONSTANTS_REL_GENERAL:
860 case I915_EXEC_CONSTANTS_ABSOLUTE:
861 case I915_EXEC_CONSTANTS_REL_SURFACE:
862 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
863 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
864 return -EINVAL;
865 }
866
867 if (instp_mode != dev_priv->relative_constants_mode) {
868 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
869 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
870 return -EINVAL;
871 }
872
873 /* The HW changed the meaning on this bit on gen6 */
874 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
875 }
876 break;
877 default:
878 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
879 return -EINVAL;
880 }
881
882 if (args->num_cliprects != 0) {
883 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
884 return -EINVAL;
885 } else {
886 if (args->DR4 == 0xffffffff) {
887 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
888 args->DR4 = 0;
889 }
890
891 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
892 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
893 return -EINVAL;
894 }
895 }
896
897 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
898 DRM_DEBUG("sol reset is gen7 only\n");
899 return -EINVAL;
900 }
901
902 ret = execlists_move_to_gpu(ringbuf, ctx, vmas);
903 if (ret)
904 return ret;
905
906 if (ring == &dev_priv->ring[RCS] &&
907 instp_mode != dev_priv->relative_constants_mode) {
908 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
909 if (ret)
910 return ret;
911
912 intel_logical_ring_emit(ringbuf, MI_NOOP);
913 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
914 intel_logical_ring_emit(ringbuf, INSTPM);
915 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
916 intel_logical_ring_advance(ringbuf);
917
918 dev_priv->relative_constants_mode = instp_mode;
919 }
920
921 ret = ring->emit_bb_start(ringbuf, ctx, exec_start, dispatch_flags);
922 if (ret)
923 return ret;
924
925 trace_i915_gem_ring_dispatch(intel_ring_get_request(ring), dispatch_flags);
926
927 i915_gem_execbuffer_move_to_active(vmas, ring);
928 i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
929
930 return 0;
931 }
932
933 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
934 {
935 struct drm_i915_gem_request *req, *tmp;
936 struct list_head retired_list;
937
938 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
939 if (list_empty(&ring->execlist_retired_req_list))
940 return;
941
942 INIT_LIST_HEAD(&retired_list);
943 spin_lock_irq(&ring->execlist_lock);
944 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
945 spin_unlock_irq(&ring->execlist_lock);
946
947 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
948 struct intel_context *ctx = req->ctx;
949 struct drm_i915_gem_object *ctx_obj =
950 ctx->engine[ring->id].state;
951
952 if (ctx_obj && (ctx != ring->default_context))
953 intel_lr_context_unpin(ring, ctx);
954 list_del(&req->execlist_link);
955 i915_gem_request_unreference(req);
956 }
957 }
958
959 void intel_logical_ring_stop(struct intel_engine_cs *ring)
960 {
961 struct drm_i915_private *dev_priv = ring->dev->dev_private;
962 int ret;
963
964 if (!intel_ring_initialized(ring))
965 return;
966
967 ret = intel_ring_idle(ring);
968 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
969 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
970 ring->name, ret);
971
972 /* TODO: Is this correct with Execlists enabled? */
973 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
974 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
975 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
976 return;
977 }
978 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
979 }
980
981 int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf,
982 struct intel_context *ctx)
983 {
984 struct intel_engine_cs *ring = ringbuf->ring;
985 int ret;
986
987 if (!ring->gpu_caches_dirty)
988 return 0;
989
990 ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS);
991 if (ret)
992 return ret;
993
994 ring->gpu_caches_dirty = false;
995 return 0;
996 }
997
998 static int intel_lr_context_pin(struct intel_engine_cs *ring,
999 struct intel_context *ctx)
1000 {
1001 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1002 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1003 int ret = 0;
1004
1005 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1006 if (ctx->engine[ring->id].pin_count++ == 0) {
1007 ret = i915_gem_obj_ggtt_pin(ctx_obj,
1008 GEN8_LR_CONTEXT_ALIGN, 0);
1009 if (ret)
1010 goto reset_pin_count;
1011
1012 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1013 if (ret)
1014 goto unpin_ctx_obj;
1015
1016 ctx_obj->dirty = true;
1017 }
1018
1019 return ret;
1020
1021 unpin_ctx_obj:
1022 i915_gem_object_ggtt_unpin(ctx_obj);
1023 reset_pin_count:
1024 ctx->engine[ring->id].pin_count = 0;
1025
1026 return ret;
1027 }
1028
1029 void intel_lr_context_unpin(struct intel_engine_cs *ring,
1030 struct intel_context *ctx)
1031 {
1032 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1033 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1034
1035 if (ctx_obj) {
1036 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1037 if (--ctx->engine[ring->id].pin_count == 0) {
1038 intel_unpin_ringbuffer_obj(ringbuf);
1039 i915_gem_object_ggtt_unpin(ctx_obj);
1040 }
1041 }
1042 }
1043
1044 static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1045 struct intel_context *ctx)
1046 {
1047 int ret, i;
1048 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1049 struct drm_device *dev = ring->dev;
1050 struct drm_i915_private *dev_priv = dev->dev_private;
1051 struct i915_workarounds *w = &dev_priv->workarounds;
1052
1053 if (WARN_ON_ONCE(w->count == 0))
1054 return 0;
1055
1056 ring->gpu_caches_dirty = true;
1057 ret = logical_ring_flush_all_caches(ringbuf, ctx);
1058 if (ret)
1059 return ret;
1060
1061 ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2);
1062 if (ret)
1063 return ret;
1064
1065 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1066 for (i = 0; i < w->count; i++) {
1067 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1068 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1069 }
1070 intel_logical_ring_emit(ringbuf, MI_NOOP);
1071
1072 intel_logical_ring_advance(ringbuf);
1073
1074 ring->gpu_caches_dirty = true;
1075 ret = logical_ring_flush_all_caches(ringbuf, ctx);
1076 if (ret)
1077 return ret;
1078
1079 return 0;
1080 }
1081
1082 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1083 {
1084 struct drm_device *dev = ring->dev;
1085 struct drm_i915_private *dev_priv = dev->dev_private;
1086
1087 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1088 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1089
1090 if (ring->status_page.obj) {
1091 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1092 (u32)ring->status_page.gfx_addr);
1093 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1094 }
1095
1096 I915_WRITE(RING_MODE_GEN7(ring),
1097 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1098 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1099 POSTING_READ(RING_MODE_GEN7(ring));
1100 ring->next_context_status_buffer = 0;
1101 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1102
1103 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1104
1105 return 0;
1106 }
1107
1108 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1109 {
1110 struct drm_device *dev = ring->dev;
1111 struct drm_i915_private *dev_priv = dev->dev_private;
1112 int ret;
1113
1114 ret = gen8_init_common_ring(ring);
1115 if (ret)
1116 return ret;
1117
1118 /* We need to disable the AsyncFlip performance optimisations in order
1119 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1120 * programmed to '1' on all products.
1121 *
1122 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1123 */
1124 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1125
1126 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1127
1128 return init_workarounds_ring(ring);
1129 }
1130
1131 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1132 {
1133 int ret;
1134
1135 ret = gen8_init_common_ring(ring);
1136 if (ret)
1137 return ret;
1138
1139 return init_workarounds_ring(ring);
1140 }
1141
1142 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1143 struct intel_context *ctx,
1144 u64 offset, unsigned dispatch_flags)
1145 {
1146 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1147 int ret;
1148
1149 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1150 if (ret)
1151 return ret;
1152
1153 /* FIXME(BDW): Address space and security selectors. */
1154 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1155 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1156 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1157 intel_logical_ring_emit(ringbuf, MI_NOOP);
1158 intel_logical_ring_advance(ringbuf);
1159
1160 return 0;
1161 }
1162
1163 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1164 {
1165 struct drm_device *dev = ring->dev;
1166 struct drm_i915_private *dev_priv = dev->dev_private;
1167 unsigned long flags;
1168
1169 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1170 return false;
1171
1172 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1173 if (ring->irq_refcount++ == 0) {
1174 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1175 POSTING_READ(RING_IMR(ring->mmio_base));
1176 }
1177 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1178
1179 return true;
1180 }
1181
1182 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1183 {
1184 struct drm_device *dev = ring->dev;
1185 struct drm_i915_private *dev_priv = dev->dev_private;
1186 unsigned long flags;
1187
1188 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1189 if (--ring->irq_refcount == 0) {
1190 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1191 POSTING_READ(RING_IMR(ring->mmio_base));
1192 }
1193 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1194 }
1195
1196 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1197 struct intel_context *ctx,
1198 u32 invalidate_domains,
1199 u32 unused)
1200 {
1201 struct intel_engine_cs *ring = ringbuf->ring;
1202 struct drm_device *dev = ring->dev;
1203 struct drm_i915_private *dev_priv = dev->dev_private;
1204 uint32_t cmd;
1205 int ret;
1206
1207 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1208 if (ret)
1209 return ret;
1210
1211 cmd = MI_FLUSH_DW + 1;
1212
1213 /* We always require a command barrier so that subsequent
1214 * commands, such as breadcrumb interrupts, are strictly ordered
1215 * wrt the contents of the write cache being flushed to memory
1216 * (and thus being coherent from the CPU).
1217 */
1218 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1219
1220 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1221 cmd |= MI_INVALIDATE_TLB;
1222 if (ring == &dev_priv->ring[VCS])
1223 cmd |= MI_INVALIDATE_BSD;
1224 }
1225
1226 intel_logical_ring_emit(ringbuf, cmd);
1227 intel_logical_ring_emit(ringbuf,
1228 I915_GEM_HWS_SCRATCH_ADDR |
1229 MI_FLUSH_DW_USE_GTT);
1230 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1231 intel_logical_ring_emit(ringbuf, 0); /* value */
1232 intel_logical_ring_advance(ringbuf);
1233
1234 return 0;
1235 }
1236
1237 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1238 struct intel_context *ctx,
1239 u32 invalidate_domains,
1240 u32 flush_domains)
1241 {
1242 struct intel_engine_cs *ring = ringbuf->ring;
1243 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1244 bool vf_flush_wa;
1245 u32 flags = 0;
1246 int ret;
1247
1248 flags |= PIPE_CONTROL_CS_STALL;
1249
1250 if (flush_domains) {
1251 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1252 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1253 }
1254
1255 if (invalidate_domains) {
1256 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1257 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1258 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1259 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1260 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1261 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1262 flags |= PIPE_CONTROL_QW_WRITE;
1263 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1264 }
1265
1266 /*
1267 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1268 * control.
1269 */
1270 vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1271 flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1272
1273 ret = intel_logical_ring_begin(ringbuf, ctx, vf_flush_wa ? 12 : 6);
1274 if (ret)
1275 return ret;
1276
1277 if (vf_flush_wa) {
1278 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1279 intel_logical_ring_emit(ringbuf, 0);
1280 intel_logical_ring_emit(ringbuf, 0);
1281 intel_logical_ring_emit(ringbuf, 0);
1282 intel_logical_ring_emit(ringbuf, 0);
1283 intel_logical_ring_emit(ringbuf, 0);
1284 }
1285
1286 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1287 intel_logical_ring_emit(ringbuf, flags);
1288 intel_logical_ring_emit(ringbuf, scratch_addr);
1289 intel_logical_ring_emit(ringbuf, 0);
1290 intel_logical_ring_emit(ringbuf, 0);
1291 intel_logical_ring_emit(ringbuf, 0);
1292 intel_logical_ring_advance(ringbuf);
1293
1294 return 0;
1295 }
1296
1297 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1298 {
1299 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1300 }
1301
1302 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1303 {
1304 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1305 }
1306
1307 static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
1308 struct drm_i915_gem_request *request)
1309 {
1310 struct intel_engine_cs *ring = ringbuf->ring;
1311 u32 cmd;
1312 int ret;
1313
1314 /*
1315 * Reserve space for 2 NOOPs at the end of each request to be
1316 * used as a workaround for not being allowed to do lite
1317 * restore with HEAD==TAIL (WaIdleLiteRestore).
1318 */
1319 ret = intel_logical_ring_begin(ringbuf, request->ctx, 8);
1320 if (ret)
1321 return ret;
1322
1323 cmd = MI_STORE_DWORD_IMM_GEN4;
1324 cmd |= MI_GLOBAL_GTT;
1325
1326 intel_logical_ring_emit(ringbuf, cmd);
1327 intel_logical_ring_emit(ringbuf,
1328 (ring->status_page.gfx_addr +
1329 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1330 intel_logical_ring_emit(ringbuf, 0);
1331 intel_logical_ring_emit(ringbuf,
1332 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1333 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1334 intel_logical_ring_emit(ringbuf, MI_NOOP);
1335 intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
1336
1337 /*
1338 * Here we add two extra NOOPs as padding to avoid
1339 * lite restore of a context with HEAD==TAIL.
1340 */
1341 intel_logical_ring_emit(ringbuf, MI_NOOP);
1342 intel_logical_ring_emit(ringbuf, MI_NOOP);
1343 intel_logical_ring_advance(ringbuf);
1344
1345 return 0;
1346 }
1347
1348 static int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1349 struct intel_context *ctx)
1350 {
1351 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1352 struct render_state so;
1353 struct drm_i915_file_private *file_priv = ctx->file_priv;
1354 struct drm_file *file = file_priv ? file_priv->file : NULL;
1355 int ret;
1356
1357 ret = i915_gem_render_state_prepare(ring, &so);
1358 if (ret)
1359 return ret;
1360
1361 if (so.rodata == NULL)
1362 return 0;
1363
1364 ret = ring->emit_bb_start(ringbuf,
1365 ctx,
1366 so.ggtt_offset,
1367 I915_DISPATCH_SECURE);
1368 if (ret)
1369 goto out;
1370
1371 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1372
1373 ret = __i915_add_request(ring, file, so.obj);
1374 /* intel_logical_ring_add_request moves object to inactive if it
1375 * fails */
1376 out:
1377 i915_gem_render_state_fini(&so);
1378 return ret;
1379 }
1380
1381 static int gen8_init_rcs_context(struct intel_engine_cs *ring,
1382 struct intel_context *ctx)
1383 {
1384 int ret;
1385
1386 ret = intel_logical_ring_workarounds_emit(ring, ctx);
1387 if (ret)
1388 return ret;
1389
1390 return intel_lr_context_render_state_init(ring, ctx);
1391 }
1392
1393 /**
1394 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1395 *
1396 * @ring: Engine Command Streamer.
1397 *
1398 */
1399 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1400 {
1401 struct drm_i915_private *dev_priv;
1402
1403 if (!intel_ring_initialized(ring))
1404 return;
1405
1406 dev_priv = ring->dev->dev_private;
1407
1408 intel_logical_ring_stop(ring);
1409 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1410 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1411
1412 if (ring->cleanup)
1413 ring->cleanup(ring);
1414
1415 i915_cmd_parser_fini_ring(ring);
1416 i915_gem_batch_pool_fini(&ring->batch_pool);
1417
1418 if (ring->status_page.obj) {
1419 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1420 ring->status_page.obj = NULL;
1421 }
1422 }
1423
1424 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1425 {
1426 int ret;
1427
1428 /* Intentionally left blank. */
1429 ring->buffer = NULL;
1430
1431 ring->dev = dev;
1432 INIT_LIST_HEAD(&ring->active_list);
1433 INIT_LIST_HEAD(&ring->request_list);
1434 i915_gem_batch_pool_init(dev, &ring->batch_pool);
1435 init_waitqueue_head(&ring->irq_queue);
1436
1437 INIT_LIST_HEAD(&ring->execlist_queue);
1438 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1439 spin_lock_init(&ring->execlist_lock);
1440
1441 ret = i915_cmd_parser_init_ring(ring);
1442 if (ret)
1443 return ret;
1444
1445 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1446
1447 return ret;
1448 }
1449
1450 static int logical_render_ring_init(struct drm_device *dev)
1451 {
1452 struct drm_i915_private *dev_priv = dev->dev_private;
1453 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1454 int ret;
1455
1456 ring->name = "render ring";
1457 ring->id = RCS;
1458 ring->mmio_base = RENDER_RING_BASE;
1459 ring->irq_enable_mask =
1460 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1461 ring->irq_keep_mask =
1462 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1463 if (HAS_L3_DPF(dev))
1464 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1465
1466 if (INTEL_INFO(dev)->gen >= 9)
1467 ring->init_hw = gen9_init_render_ring;
1468 else
1469 ring->init_hw = gen8_init_render_ring;
1470 ring->init_context = gen8_init_rcs_context;
1471 ring->cleanup = intel_fini_pipe_control;
1472 ring->get_seqno = gen8_get_seqno;
1473 ring->set_seqno = gen8_set_seqno;
1474 ring->emit_request = gen8_emit_request;
1475 ring->emit_flush = gen8_emit_flush_render;
1476 ring->irq_get = gen8_logical_ring_get_irq;
1477 ring->irq_put = gen8_logical_ring_put_irq;
1478 ring->emit_bb_start = gen8_emit_bb_start;
1479
1480 ring->dev = dev;
1481 ret = logical_ring_init(dev, ring);
1482 if (ret)
1483 return ret;
1484
1485 return intel_init_pipe_control(ring);
1486 }
1487
1488 static int logical_bsd_ring_init(struct drm_device *dev)
1489 {
1490 struct drm_i915_private *dev_priv = dev->dev_private;
1491 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1492
1493 ring->name = "bsd ring";
1494 ring->id = VCS;
1495 ring->mmio_base = GEN6_BSD_RING_BASE;
1496 ring->irq_enable_mask =
1497 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1498 ring->irq_keep_mask =
1499 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1500
1501 ring->init_hw = gen8_init_common_ring;
1502 ring->get_seqno = gen8_get_seqno;
1503 ring->set_seqno = gen8_set_seqno;
1504 ring->emit_request = gen8_emit_request;
1505 ring->emit_flush = gen8_emit_flush;
1506 ring->irq_get = gen8_logical_ring_get_irq;
1507 ring->irq_put = gen8_logical_ring_put_irq;
1508 ring->emit_bb_start = gen8_emit_bb_start;
1509
1510 return logical_ring_init(dev, ring);
1511 }
1512
1513 static int logical_bsd2_ring_init(struct drm_device *dev)
1514 {
1515 struct drm_i915_private *dev_priv = dev->dev_private;
1516 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1517
1518 ring->name = "bds2 ring";
1519 ring->id = VCS2;
1520 ring->mmio_base = GEN8_BSD2_RING_BASE;
1521 ring->irq_enable_mask =
1522 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1523 ring->irq_keep_mask =
1524 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1525
1526 ring->init_hw = gen8_init_common_ring;
1527 ring->get_seqno = gen8_get_seqno;
1528 ring->set_seqno = gen8_set_seqno;
1529 ring->emit_request = gen8_emit_request;
1530 ring->emit_flush = gen8_emit_flush;
1531 ring->irq_get = gen8_logical_ring_get_irq;
1532 ring->irq_put = gen8_logical_ring_put_irq;
1533 ring->emit_bb_start = gen8_emit_bb_start;
1534
1535 return logical_ring_init(dev, ring);
1536 }
1537
1538 static int logical_blt_ring_init(struct drm_device *dev)
1539 {
1540 struct drm_i915_private *dev_priv = dev->dev_private;
1541 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1542
1543 ring->name = "blitter ring";
1544 ring->id = BCS;
1545 ring->mmio_base = BLT_RING_BASE;
1546 ring->irq_enable_mask =
1547 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1548 ring->irq_keep_mask =
1549 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1550
1551 ring->init_hw = gen8_init_common_ring;
1552 ring->get_seqno = gen8_get_seqno;
1553 ring->set_seqno = gen8_set_seqno;
1554 ring->emit_request = gen8_emit_request;
1555 ring->emit_flush = gen8_emit_flush;
1556 ring->irq_get = gen8_logical_ring_get_irq;
1557 ring->irq_put = gen8_logical_ring_put_irq;
1558 ring->emit_bb_start = gen8_emit_bb_start;
1559
1560 return logical_ring_init(dev, ring);
1561 }
1562
1563 static int logical_vebox_ring_init(struct drm_device *dev)
1564 {
1565 struct drm_i915_private *dev_priv = dev->dev_private;
1566 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1567
1568 ring->name = "video enhancement ring";
1569 ring->id = VECS;
1570 ring->mmio_base = VEBOX_RING_BASE;
1571 ring->irq_enable_mask =
1572 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1573 ring->irq_keep_mask =
1574 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1575
1576 ring->init_hw = gen8_init_common_ring;
1577 ring->get_seqno = gen8_get_seqno;
1578 ring->set_seqno = gen8_set_seqno;
1579 ring->emit_request = gen8_emit_request;
1580 ring->emit_flush = gen8_emit_flush;
1581 ring->irq_get = gen8_logical_ring_get_irq;
1582 ring->irq_put = gen8_logical_ring_put_irq;
1583 ring->emit_bb_start = gen8_emit_bb_start;
1584
1585 return logical_ring_init(dev, ring);
1586 }
1587
1588 /**
1589 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1590 * @dev: DRM device.
1591 *
1592 * This function inits the engines for an Execlists submission style (the equivalent in the
1593 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1594 * those engines that are present in the hardware.
1595 *
1596 * Return: non-zero if the initialization failed.
1597 */
1598 int intel_logical_rings_init(struct drm_device *dev)
1599 {
1600 struct drm_i915_private *dev_priv = dev->dev_private;
1601 int ret;
1602
1603 ret = logical_render_ring_init(dev);
1604 if (ret)
1605 return ret;
1606
1607 if (HAS_BSD(dev)) {
1608 ret = logical_bsd_ring_init(dev);
1609 if (ret)
1610 goto cleanup_render_ring;
1611 }
1612
1613 if (HAS_BLT(dev)) {
1614 ret = logical_blt_ring_init(dev);
1615 if (ret)
1616 goto cleanup_bsd_ring;
1617 }
1618
1619 if (HAS_VEBOX(dev)) {
1620 ret = logical_vebox_ring_init(dev);
1621 if (ret)
1622 goto cleanup_blt_ring;
1623 }
1624
1625 if (HAS_BSD2(dev)) {
1626 ret = logical_bsd2_ring_init(dev);
1627 if (ret)
1628 goto cleanup_vebox_ring;
1629 }
1630
1631 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1632 if (ret)
1633 goto cleanup_bsd2_ring;
1634
1635 return 0;
1636
1637 cleanup_bsd2_ring:
1638 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1639 cleanup_vebox_ring:
1640 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1641 cleanup_blt_ring:
1642 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1643 cleanup_bsd_ring:
1644 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1645 cleanup_render_ring:
1646 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1647
1648 return ret;
1649 }
1650
1651 static u32
1652 make_rpcs(struct drm_device *dev)
1653 {
1654 u32 rpcs = 0;
1655
1656 /*
1657 * No explicit RPCS request is needed to ensure full
1658 * slice/subslice/EU enablement prior to Gen9.
1659 */
1660 if (INTEL_INFO(dev)->gen < 9)
1661 return 0;
1662
1663 /*
1664 * Starting in Gen9, render power gating can leave
1665 * slice/subslice/EU in a partially enabled state. We
1666 * must make an explicit request through RPCS for full
1667 * enablement.
1668 */
1669 if (INTEL_INFO(dev)->has_slice_pg) {
1670 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1671 rpcs |= INTEL_INFO(dev)->slice_total <<
1672 GEN8_RPCS_S_CNT_SHIFT;
1673 rpcs |= GEN8_RPCS_ENABLE;
1674 }
1675
1676 if (INTEL_INFO(dev)->has_subslice_pg) {
1677 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1678 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
1679 GEN8_RPCS_SS_CNT_SHIFT;
1680 rpcs |= GEN8_RPCS_ENABLE;
1681 }
1682
1683 if (INTEL_INFO(dev)->has_eu_pg) {
1684 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1685 GEN8_RPCS_EU_MIN_SHIFT;
1686 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1687 GEN8_RPCS_EU_MAX_SHIFT;
1688 rpcs |= GEN8_RPCS_ENABLE;
1689 }
1690
1691 return rpcs;
1692 }
1693
1694 static int
1695 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1696 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1697 {
1698 struct drm_device *dev = ring->dev;
1699 struct drm_i915_private *dev_priv = dev->dev_private;
1700 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1701 struct page *page;
1702 uint32_t *reg_state;
1703 int ret;
1704
1705 if (!ppgtt)
1706 ppgtt = dev_priv->mm.aliasing_ppgtt;
1707
1708 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1709 if (ret) {
1710 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1711 return ret;
1712 }
1713
1714 ret = i915_gem_object_get_pages(ctx_obj);
1715 if (ret) {
1716 DRM_DEBUG_DRIVER("Could not get object pages\n");
1717 return ret;
1718 }
1719
1720 i915_gem_object_pin_pages(ctx_obj);
1721
1722 /* The second page of the context object contains some fields which must
1723 * be set up prior to the first execution. */
1724 page = i915_gem_object_get_page(ctx_obj, 1);
1725 reg_state = kmap_atomic(page);
1726
1727 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1728 * commands followed by (reg, value) pairs. The values we are setting here are
1729 * only for the first context restore: on a subsequent save, the GPU will
1730 * recreate this batchbuffer with new values (including all the missing
1731 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1732 if (ring->id == RCS)
1733 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1734 else
1735 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1736 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1737 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1738 reg_state[CTX_CONTEXT_CONTROL+1] =
1739 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1740 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
1741 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1742 reg_state[CTX_RING_HEAD+1] = 0;
1743 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1744 reg_state[CTX_RING_TAIL+1] = 0;
1745 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1746 /* Ring buffer start address is not known until the buffer is pinned.
1747 * It is written to the context image in execlists_update_context()
1748 */
1749 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1750 reg_state[CTX_RING_BUFFER_CONTROL+1] =
1751 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1752 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1753 reg_state[CTX_BB_HEAD_U+1] = 0;
1754 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1755 reg_state[CTX_BB_HEAD_L+1] = 0;
1756 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1757 reg_state[CTX_BB_STATE+1] = (1<<5);
1758 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1759 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1760 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1761 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1762 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1763 reg_state[CTX_SECOND_BB_STATE+1] = 0;
1764 if (ring->id == RCS) {
1765 /* TODO: according to BSpec, the register state context
1766 * for CHV does not have these. OTOH, these registers do
1767 * exist in CHV. I'm waiting for a clarification */
1768 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1769 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1770 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1771 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1772 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1773 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1774 }
1775 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1776 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1777 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1778 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1779 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1780 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1781 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1782 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1783 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1784 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1785 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1786 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1787
1788 /* With dynamic page allocation, PDPs may not be allocated at this point,
1789 * Point the unallocated PDPs to the scratch page
1790 */
1791 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
1792 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
1793 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
1794 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
1795 if (ring->id == RCS) {
1796 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1797 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
1798 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
1799 }
1800
1801 kunmap_atomic(reg_state);
1802
1803 ctx_obj->dirty = 1;
1804 set_page_dirty(page);
1805 i915_gem_object_unpin_pages(ctx_obj);
1806
1807 return 0;
1808 }
1809
1810 /**
1811 * intel_lr_context_free() - free the LRC specific bits of a context
1812 * @ctx: the LR context to free.
1813 *
1814 * The real context freeing is done in i915_gem_context_free: this only
1815 * takes care of the bits that are LRC related: the per-engine backing
1816 * objects and the logical ringbuffer.
1817 */
1818 void intel_lr_context_free(struct intel_context *ctx)
1819 {
1820 int i;
1821
1822 for (i = 0; i < I915_NUM_RINGS; i++) {
1823 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1824
1825 if (ctx_obj) {
1826 struct intel_ringbuffer *ringbuf =
1827 ctx->engine[i].ringbuf;
1828 struct intel_engine_cs *ring = ringbuf->ring;
1829
1830 if (ctx == ring->default_context) {
1831 intel_unpin_ringbuffer_obj(ringbuf);
1832 i915_gem_object_ggtt_unpin(ctx_obj);
1833 }
1834 WARN_ON(ctx->engine[ring->id].pin_count);
1835 intel_destroy_ringbuffer_obj(ringbuf);
1836 kfree(ringbuf);
1837 drm_gem_object_unreference(&ctx_obj->base);
1838 }
1839 }
1840 }
1841
1842 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1843 {
1844 int ret = 0;
1845
1846 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
1847
1848 switch (ring->id) {
1849 case RCS:
1850 if (INTEL_INFO(ring->dev)->gen >= 9)
1851 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1852 else
1853 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1854 break;
1855 case VCS:
1856 case BCS:
1857 case VECS:
1858 case VCS2:
1859 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1860 break;
1861 }
1862
1863 return ret;
1864 }
1865
1866 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1867 struct drm_i915_gem_object *default_ctx_obj)
1868 {
1869 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1870
1871 /* The status page is offset 0 from the default context object
1872 * in LRC mode. */
1873 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
1874 ring->status_page.page_addr =
1875 kmap(sg_page(default_ctx_obj->pages->sgl));
1876 ring->status_page.obj = default_ctx_obj;
1877
1878 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1879 (u32)ring->status_page.gfx_addr);
1880 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1881 }
1882
1883 /**
1884 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1885 * @ctx: LR context to create.
1886 * @ring: engine to be used with the context.
1887 *
1888 * This function can be called more than once, with different engines, if we plan
1889 * to use the context with them. The context backing objects and the ringbuffers
1890 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1891 * the creation is a deferred call: it's better to make sure first that we need to use
1892 * a given ring with the context.
1893 *
1894 * Return: non-zero on error.
1895 */
1896 int intel_lr_context_deferred_create(struct intel_context *ctx,
1897 struct intel_engine_cs *ring)
1898 {
1899 const bool is_global_default_ctx = (ctx == ring->default_context);
1900 struct drm_device *dev = ring->dev;
1901 struct drm_i915_gem_object *ctx_obj;
1902 uint32_t context_size;
1903 struct intel_ringbuffer *ringbuf;
1904 int ret;
1905
1906 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1907 WARN_ON(ctx->engine[ring->id].state);
1908
1909 context_size = round_up(get_lr_context_size(ring), 4096);
1910
1911 ctx_obj = i915_gem_alloc_object(dev, context_size);
1912 if (!ctx_obj) {
1913 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
1914 return -ENOMEM;
1915 }
1916
1917 if (is_global_default_ctx) {
1918 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1919 if (ret) {
1920 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
1921 ret);
1922 drm_gem_object_unreference(&ctx_obj->base);
1923 return ret;
1924 }
1925 }
1926
1927 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1928 if (!ringbuf) {
1929 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1930 ring->name);
1931 ret = -ENOMEM;
1932 goto error_unpin_ctx;
1933 }
1934
1935 ringbuf->ring = ring;
1936
1937 ringbuf->size = 32 * PAGE_SIZE;
1938 ringbuf->effective_size = ringbuf->size;
1939 ringbuf->head = 0;
1940 ringbuf->tail = 0;
1941 ringbuf->last_retired_head = -1;
1942 intel_ring_update_space(ringbuf);
1943
1944 if (ringbuf->obj == NULL) {
1945 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1946 if (ret) {
1947 DRM_DEBUG_DRIVER(
1948 "Failed to allocate ringbuffer obj %s: %d\n",
1949 ring->name, ret);
1950 goto error_free_rbuf;
1951 }
1952
1953 if (is_global_default_ctx) {
1954 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1955 if (ret) {
1956 DRM_ERROR(
1957 "Failed to pin and map ringbuffer %s: %d\n",
1958 ring->name, ret);
1959 goto error_destroy_rbuf;
1960 }
1961 }
1962
1963 }
1964
1965 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1966 if (ret) {
1967 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1968 goto error;
1969 }
1970
1971 ctx->engine[ring->id].ringbuf = ringbuf;
1972 ctx->engine[ring->id].state = ctx_obj;
1973
1974 if (ctx == ring->default_context)
1975 lrc_setup_hardware_status_page(ring, ctx_obj);
1976 else if (ring->id == RCS && !ctx->rcs_initialized) {
1977 if (ring->init_context) {
1978 ret = ring->init_context(ring, ctx);
1979 if (ret) {
1980 DRM_ERROR("ring init context: %d\n", ret);
1981 ctx->engine[ring->id].ringbuf = NULL;
1982 ctx->engine[ring->id].state = NULL;
1983 goto error;
1984 }
1985 }
1986
1987 ctx->rcs_initialized = true;
1988 }
1989
1990 return 0;
1991
1992 error:
1993 if (is_global_default_ctx)
1994 intel_unpin_ringbuffer_obj(ringbuf);
1995 error_destroy_rbuf:
1996 intel_destroy_ringbuffer_obj(ringbuf);
1997 error_free_rbuf:
1998 kfree(ringbuf);
1999 error_unpin_ctx:
2000 if (is_global_default_ctx)
2001 i915_gem_object_ggtt_unpin(ctx_obj);
2002 drm_gem_object_unreference(&ctx_obj->base);
2003 return ret;
2004 }
2005
2006 void intel_lr_context_reset(struct drm_device *dev,
2007 struct intel_context *ctx)
2008 {
2009 struct drm_i915_private *dev_priv = dev->dev_private;
2010 struct intel_engine_cs *ring;
2011 int i;
2012
2013 for_each_ring(ring, dev_priv, i) {
2014 struct drm_i915_gem_object *ctx_obj =
2015 ctx->engine[ring->id].state;
2016 struct intel_ringbuffer *ringbuf =
2017 ctx->engine[ring->id].ringbuf;
2018 uint32_t *reg_state;
2019 struct page *page;
2020
2021 if (!ctx_obj)
2022 continue;
2023
2024 if (i915_gem_object_get_pages(ctx_obj)) {
2025 WARN(1, "Failed get_pages for context obj\n");
2026 continue;
2027 }
2028 page = i915_gem_object_get_page(ctx_obj, 1);
2029 reg_state = kmap_atomic(page);
2030
2031 reg_state[CTX_RING_HEAD+1] = 0;
2032 reg_state[CTX_RING_TAIL+1] = 0;
2033
2034 kunmap_atomic(reg_state);
2035
2036 ringbuf->head = 0;
2037 ringbuf->tail = 0;
2038 }
2039 }