]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/intel_lrc.c
Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linux
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_mocs.h"
139
140 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
144 #define RING_EXECLIST_QFULL (1 << 0x2)
145 #define RING_EXECLIST1_VALID (1 << 0x3)
146 #define RING_EXECLIST0_VALID (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
157
158 #define CTX_LRI_HEADER_0 0x01
159 #define CTX_CONTEXT_CONTROL 0x02
160 #define CTX_RING_HEAD 0x04
161 #define CTX_RING_TAIL 0x06
162 #define CTX_RING_BUFFER_START 0x08
163 #define CTX_RING_BUFFER_CONTROL 0x0a
164 #define CTX_BB_HEAD_U 0x0c
165 #define CTX_BB_HEAD_L 0x0e
166 #define CTX_BB_STATE 0x10
167 #define CTX_SECOND_BB_HEAD_U 0x12
168 #define CTX_SECOND_BB_HEAD_L 0x14
169 #define CTX_SECOND_BB_STATE 0x16
170 #define CTX_BB_PER_CTX_PTR 0x18
171 #define CTX_RCS_INDIRECT_CTX 0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
173 #define CTX_LRI_HEADER_1 0x21
174 #define CTX_CTX_TIMESTAMP 0x22
175 #define CTX_PDP3_UDW 0x24
176 #define CTX_PDP3_LDW 0x26
177 #define CTX_PDP2_UDW 0x28
178 #define CTX_PDP2_LDW 0x2a
179 #define CTX_PDP1_UDW 0x2c
180 #define CTX_PDP1_LDW 0x2e
181 #define CTX_PDP0_UDW 0x30
182 #define CTX_PDP0_LDW 0x32
183 #define CTX_LRI_HEADER_2 0x41
184 #define CTX_R_PWR_CLK_STATE 0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
186
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192
193 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
194 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
195 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
196 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
197 }
198
199 #define ASSIGN_CTX_PML4(ppgtt, reg_state) { \
200 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
201 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
202 }
203
204 enum {
205 ADVANCED_CONTEXT = 0,
206 LEGACY_32B_CONTEXT,
207 ADVANCED_AD_CONTEXT,
208 LEGACY_64B_CONTEXT
209 };
210 #define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
211 #define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
212 LEGACY_64B_CONTEXT :\
213 LEGACY_32B_CONTEXT)
214 enum {
215 FAULT_AND_HANG = 0,
216 FAULT_AND_HALT, /* Debug only */
217 FAULT_AND_STREAM,
218 FAULT_AND_CONTINUE /* Unsupported */
219 };
220 #define GEN8_CTX_ID_SHIFT 32
221 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
222
223 static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
224 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
225 struct drm_i915_gem_object *default_ctx_obj);
226
227
228 /**
229 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
230 * @dev: DRM device.
231 * @enable_execlists: value of i915.enable_execlists module parameter.
232 *
233 * Only certain platforms support Execlists (the prerequisites being
234 * support for Logical Ring Contexts and Aliasing PPGTT or better).
235 *
236 * Return: 1 if Execlists is supported and has to be enabled.
237 */
238 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
239 {
240 WARN_ON(i915.enable_ppgtt == -1);
241
242 /* On platforms with execlist available, vGPU will only
243 * support execlist mode, no ring buffer mode.
244 */
245 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
246 return 1;
247
248 if (INTEL_INFO(dev)->gen >= 9)
249 return 1;
250
251 if (enable_execlists == 0)
252 return 0;
253
254 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
255 i915.use_mmio_flip >= 0)
256 return 1;
257
258 return 0;
259 }
260
261 /**
262 * intel_execlists_ctx_id() - get the Execlists Context ID
263 * @ctx_obj: Logical Ring Context backing object.
264 *
265 * Do not confuse with ctx->id! Unfortunately we have a name overload
266 * here: the old context ID we pass to userspace as a handler so that
267 * they can refer to a context, and the new context ID we pass to the
268 * ELSP so that the GPU can inform us of the context status via
269 * interrupts.
270 *
271 * Return: 20-bits globally unique context ID.
272 */
273 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
274 {
275 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
276 LRC_PPHWSP_PN * PAGE_SIZE;
277
278 /* LRCA is required to be 4K aligned so the more significant 20 bits
279 * are globally unique */
280 return lrca >> 12;
281 }
282
283 static bool disable_lite_restore_wa(struct intel_engine_cs *ring)
284 {
285 struct drm_device *dev = ring->dev;
286
287 return ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
288 (IS_BROXTON(dev) && INTEL_REVID(dev) == BXT_REVID_A0)) &&
289 (ring->id == VCS || ring->id == VCS2);
290 }
291
292 uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
293 struct intel_engine_cs *ring)
294 {
295 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
296 uint64_t desc;
297 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
298 LRC_PPHWSP_PN * PAGE_SIZE;
299
300 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
301
302 desc = GEN8_CTX_VALID;
303 desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
304 if (IS_GEN8(ctx_obj->base.dev))
305 desc |= GEN8_CTX_L3LLC_COHERENT;
306 desc |= GEN8_CTX_PRIVILEGE;
307 desc |= lrca;
308 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
309
310 /* TODO: WaDisableLiteRestore when we start using semaphore
311 * signalling between Command Streamers */
312 /* desc |= GEN8_CTX_FORCE_RESTORE; */
313
314 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
315 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
316 if (disable_lite_restore_wa(ring))
317 desc |= GEN8_CTX_FORCE_RESTORE;
318
319 return desc;
320 }
321
322 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
323 struct drm_i915_gem_request *rq1)
324 {
325
326 struct intel_engine_cs *ring = rq0->ring;
327 struct drm_device *dev = ring->dev;
328 struct drm_i915_private *dev_priv = dev->dev_private;
329 uint64_t desc[2];
330
331 if (rq1) {
332 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
333 rq1->elsp_submitted++;
334 } else {
335 desc[1] = 0;
336 }
337
338 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
339 rq0->elsp_submitted++;
340
341 /* You must always write both descriptors in the order below. */
342 spin_lock(&dev_priv->uncore.lock);
343 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
344 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
345 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
346
347 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
348 /* The context is automatically loaded after the following */
349 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
350
351 /* ELSP is a wo register, use another nearby reg for posting */
352 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
353 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
354 spin_unlock(&dev_priv->uncore.lock);
355 }
356
357 static int execlists_update_context(struct drm_i915_gem_request *rq)
358 {
359 struct intel_engine_cs *ring = rq->ring;
360 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
361 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
362 struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
363 struct page *page;
364 uint32_t *reg_state;
365
366 BUG_ON(!ctx_obj);
367 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
368 WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
369
370 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
371 reg_state = kmap_atomic(page);
372
373 reg_state[CTX_RING_TAIL+1] = rq->tail;
374 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
375
376 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
377 /* True 32b PPGTT with dynamic page allocation: update PDP
378 * registers and point the unallocated PDPs to scratch page.
379 * PML4 is allocated during ppgtt init, so this is not needed
380 * in 48-bit mode.
381 */
382 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
383 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
384 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
385 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
386 }
387
388 kunmap_atomic(reg_state);
389
390 return 0;
391 }
392
393 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
394 struct drm_i915_gem_request *rq1)
395 {
396 execlists_update_context(rq0);
397
398 if (rq1)
399 execlists_update_context(rq1);
400
401 execlists_elsp_write(rq0, rq1);
402 }
403
404 static void execlists_context_unqueue(struct intel_engine_cs *ring)
405 {
406 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
407 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
408
409 assert_spin_locked(&ring->execlist_lock);
410
411 /*
412 * If irqs are not active generate a warning as batches that finish
413 * without the irqs may get lost and a GPU Hang may occur.
414 */
415 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
416
417 if (list_empty(&ring->execlist_queue))
418 return;
419
420 /* Try to read in pairs */
421 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
422 execlist_link) {
423 if (!req0) {
424 req0 = cursor;
425 } else if (req0->ctx == cursor->ctx) {
426 /* Same ctx: ignore first request, as second request
427 * will update tail past first request's workload */
428 cursor->elsp_submitted = req0->elsp_submitted;
429 list_del(&req0->execlist_link);
430 list_add_tail(&req0->execlist_link,
431 &ring->execlist_retired_req_list);
432 req0 = cursor;
433 } else {
434 req1 = cursor;
435 break;
436 }
437 }
438
439 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
440 /*
441 * WaIdleLiteRestore: make sure we never cause a lite
442 * restore with HEAD==TAIL
443 */
444 if (req0->elsp_submitted) {
445 /*
446 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
447 * as we resubmit the request. See gen8_emit_request()
448 * for where we prepare the padding after the end of the
449 * request.
450 */
451 struct intel_ringbuffer *ringbuf;
452
453 ringbuf = req0->ctx->engine[ring->id].ringbuf;
454 req0->tail += 8;
455 req0->tail &= ringbuf->size - 1;
456 }
457 }
458
459 WARN_ON(req1 && req1->elsp_submitted);
460
461 execlists_submit_requests(req0, req1);
462 }
463
464 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
465 u32 request_id)
466 {
467 struct drm_i915_gem_request *head_req;
468
469 assert_spin_locked(&ring->execlist_lock);
470
471 head_req = list_first_entry_or_null(&ring->execlist_queue,
472 struct drm_i915_gem_request,
473 execlist_link);
474
475 if (head_req != NULL) {
476 struct drm_i915_gem_object *ctx_obj =
477 head_req->ctx->engine[ring->id].state;
478 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
479 WARN(head_req->elsp_submitted == 0,
480 "Never submitted head request\n");
481
482 if (--head_req->elsp_submitted <= 0) {
483 list_del(&head_req->execlist_link);
484 list_add_tail(&head_req->execlist_link,
485 &ring->execlist_retired_req_list);
486 return true;
487 }
488 }
489 }
490
491 return false;
492 }
493
494 /**
495 * intel_lrc_irq_handler() - handle Context Switch interrupts
496 * @ring: Engine Command Streamer to handle.
497 *
498 * Check the unread Context Status Buffers and manage the submission of new
499 * contexts to the ELSP accordingly.
500 */
501 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
502 {
503 struct drm_i915_private *dev_priv = ring->dev->dev_private;
504 u32 status_pointer;
505 u8 read_pointer;
506 u8 write_pointer;
507 u32 status = 0;
508 u32 status_id;
509 u32 submit_contexts = 0;
510
511 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
512
513 read_pointer = ring->next_context_status_buffer;
514 write_pointer = status_pointer & GEN8_CSB_PTR_MASK;
515 if (read_pointer > write_pointer)
516 write_pointer += GEN8_CSB_ENTRIES;
517
518 spin_lock(&ring->execlist_lock);
519
520 while (read_pointer < write_pointer) {
521 read_pointer++;
522 status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer % GEN8_CSB_ENTRIES));
523 status_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer % GEN8_CSB_ENTRIES));
524
525 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
526 continue;
527
528 if (status & GEN8_CTX_STATUS_PREEMPTED) {
529 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
530 if (execlists_check_remove_request(ring, status_id))
531 WARN(1, "Lite Restored request removed from queue\n");
532 } else
533 WARN(1, "Preemption without Lite Restore\n");
534 }
535
536 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
537 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
538 if (execlists_check_remove_request(ring, status_id))
539 submit_contexts++;
540 }
541 }
542
543 if (disable_lite_restore_wa(ring)) {
544 /* Prevent a ctx to preempt itself */
545 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
546 (submit_contexts != 0))
547 execlists_context_unqueue(ring);
548 } else if (submit_contexts != 0) {
549 execlists_context_unqueue(ring);
550 }
551
552 spin_unlock(&ring->execlist_lock);
553
554 WARN(submit_contexts > 2, "More than two context complete events?\n");
555 ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
556
557 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
558 _MASKED_FIELD(GEN8_CSB_PTR_MASK << 8,
559 ((u32)ring->next_context_status_buffer &
560 GEN8_CSB_PTR_MASK) << 8));
561 }
562
563 static int execlists_context_queue(struct drm_i915_gem_request *request)
564 {
565 struct intel_engine_cs *ring = request->ring;
566 struct drm_i915_gem_request *cursor;
567 int num_elements = 0;
568
569 if (request->ctx != ring->default_context)
570 intel_lr_context_pin(request);
571
572 i915_gem_request_reference(request);
573
574 spin_lock_irq(&ring->execlist_lock);
575
576 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
577 if (++num_elements > 2)
578 break;
579
580 if (num_elements > 2) {
581 struct drm_i915_gem_request *tail_req;
582
583 tail_req = list_last_entry(&ring->execlist_queue,
584 struct drm_i915_gem_request,
585 execlist_link);
586
587 if (request->ctx == tail_req->ctx) {
588 WARN(tail_req->elsp_submitted != 0,
589 "More than 2 already-submitted reqs queued\n");
590 list_del(&tail_req->execlist_link);
591 list_add_tail(&tail_req->execlist_link,
592 &ring->execlist_retired_req_list);
593 }
594 }
595
596 list_add_tail(&request->execlist_link, &ring->execlist_queue);
597 if (num_elements == 0)
598 execlists_context_unqueue(ring);
599
600 spin_unlock_irq(&ring->execlist_lock);
601
602 return 0;
603 }
604
605 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
606 {
607 struct intel_engine_cs *ring = req->ring;
608 uint32_t flush_domains;
609 int ret;
610
611 flush_domains = 0;
612 if (ring->gpu_caches_dirty)
613 flush_domains = I915_GEM_GPU_DOMAINS;
614
615 ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
616 if (ret)
617 return ret;
618
619 ring->gpu_caches_dirty = false;
620 return 0;
621 }
622
623 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
624 struct list_head *vmas)
625 {
626 const unsigned other_rings = ~intel_ring_flag(req->ring);
627 struct i915_vma *vma;
628 uint32_t flush_domains = 0;
629 bool flush_chipset = false;
630 int ret;
631
632 list_for_each_entry(vma, vmas, exec_list) {
633 struct drm_i915_gem_object *obj = vma->obj;
634
635 if (obj->active & other_rings) {
636 ret = i915_gem_object_sync(obj, req->ring, &req);
637 if (ret)
638 return ret;
639 }
640
641 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
642 flush_chipset |= i915_gem_clflush_object(obj, false);
643
644 flush_domains |= obj->base.write_domain;
645 }
646
647 if (flush_domains & I915_GEM_DOMAIN_GTT)
648 wmb();
649
650 /* Unconditionally invalidate gpu caches and ensure that we do flush
651 * any residual writes from the previous batch.
652 */
653 return logical_ring_invalidate_all_caches(req);
654 }
655
656 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
657 {
658 int ret;
659
660 request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
661
662 if (request->ctx != request->ring->default_context) {
663 ret = intel_lr_context_pin(request);
664 if (ret)
665 return ret;
666 }
667
668 return 0;
669 }
670
671 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
672 int bytes)
673 {
674 struct intel_ringbuffer *ringbuf = req->ringbuf;
675 struct intel_engine_cs *ring = req->ring;
676 struct drm_i915_gem_request *target;
677 unsigned space;
678 int ret;
679
680 if (intel_ring_space(ringbuf) >= bytes)
681 return 0;
682
683 /* The whole point of reserving space is to not wait! */
684 WARN_ON(ringbuf->reserved_in_use);
685
686 list_for_each_entry(target, &ring->request_list, list) {
687 /*
688 * The request queue is per-engine, so can contain requests
689 * from multiple ringbuffers. Here, we must ignore any that
690 * aren't from the ringbuffer we're considering.
691 */
692 if (target->ringbuf != ringbuf)
693 continue;
694
695 /* Would completion of this request free enough space? */
696 space = __intel_ring_space(target->postfix, ringbuf->tail,
697 ringbuf->size);
698 if (space >= bytes)
699 break;
700 }
701
702 if (WARN_ON(&target->list == &ring->request_list))
703 return -ENOSPC;
704
705 ret = i915_wait_request(target);
706 if (ret)
707 return ret;
708
709 ringbuf->space = space;
710 return 0;
711 }
712
713 /*
714 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
715 * @request: Request to advance the logical ringbuffer of.
716 *
717 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
718 * really happens during submission is that the context and current tail will be placed
719 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
720 * point, the tail *inside* the context is updated and the ELSP written to.
721 */
722 static void
723 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
724 {
725 struct intel_engine_cs *ring = request->ring;
726 struct drm_i915_private *dev_priv = request->i915;
727
728 intel_logical_ring_advance(request->ringbuf);
729
730 request->tail = request->ringbuf->tail;
731
732 if (intel_ring_stopped(ring))
733 return;
734
735 if (dev_priv->guc.execbuf_client)
736 i915_guc_submit(dev_priv->guc.execbuf_client, request);
737 else
738 execlists_context_queue(request);
739 }
740
741 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
742 {
743 uint32_t __iomem *virt;
744 int rem = ringbuf->size - ringbuf->tail;
745
746 virt = ringbuf->virtual_start + ringbuf->tail;
747 rem /= 4;
748 while (rem--)
749 iowrite32(MI_NOOP, virt++);
750
751 ringbuf->tail = 0;
752 intel_ring_update_space(ringbuf);
753 }
754
755 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
756 {
757 struct intel_ringbuffer *ringbuf = req->ringbuf;
758 int remain_usable = ringbuf->effective_size - ringbuf->tail;
759 int remain_actual = ringbuf->size - ringbuf->tail;
760 int ret, total_bytes, wait_bytes = 0;
761 bool need_wrap = false;
762
763 if (ringbuf->reserved_in_use)
764 total_bytes = bytes;
765 else
766 total_bytes = bytes + ringbuf->reserved_size;
767
768 if (unlikely(bytes > remain_usable)) {
769 /*
770 * Not enough space for the basic request. So need to flush
771 * out the remainder and then wait for base + reserved.
772 */
773 wait_bytes = remain_actual + total_bytes;
774 need_wrap = true;
775 } else {
776 if (unlikely(total_bytes > remain_usable)) {
777 /*
778 * The base request will fit but the reserved space
779 * falls off the end. So only need to to wait for the
780 * reserved size after flushing out the remainder.
781 */
782 wait_bytes = remain_actual + ringbuf->reserved_size;
783 need_wrap = true;
784 } else if (total_bytes > ringbuf->space) {
785 /* No wrapping required, just waiting. */
786 wait_bytes = total_bytes;
787 }
788 }
789
790 if (wait_bytes) {
791 ret = logical_ring_wait_for_space(req, wait_bytes);
792 if (unlikely(ret))
793 return ret;
794
795 if (need_wrap)
796 __wrap_ring_buffer(ringbuf);
797 }
798
799 return 0;
800 }
801
802 /**
803 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
804 *
805 * @req: The request to start some new work for
806 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
807 *
808 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
809 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
810 * and also preallocates a request (every workload submission is still mediated through
811 * requests, same as it did with legacy ringbuffer submission).
812 *
813 * Return: non-zero if the ringbuffer is not ready to be written to.
814 */
815 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
816 {
817 struct drm_i915_private *dev_priv;
818 int ret;
819
820 WARN_ON(req == NULL);
821 dev_priv = req->ring->dev->dev_private;
822
823 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
824 dev_priv->mm.interruptible);
825 if (ret)
826 return ret;
827
828 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
829 if (ret)
830 return ret;
831
832 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
833 return 0;
834 }
835
836 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
837 {
838 /*
839 * The first call merely notes the reserve request and is common for
840 * all back ends. The subsequent localised _begin() call actually
841 * ensures that the reservation is available. Without the begin, if
842 * the request creator immediately submitted the request without
843 * adding any commands to it then there might not actually be
844 * sufficient room for the submission commands.
845 */
846 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
847
848 return intel_logical_ring_begin(request, 0);
849 }
850
851 /**
852 * execlists_submission() - submit a batchbuffer for execution, Execlists style
853 * @dev: DRM device.
854 * @file: DRM file.
855 * @ring: Engine Command Streamer to submit to.
856 * @ctx: Context to employ for this submission.
857 * @args: execbuffer call arguments.
858 * @vmas: list of vmas.
859 * @batch_obj: the batchbuffer to submit.
860 * @exec_start: batchbuffer start virtual address pointer.
861 * @dispatch_flags: translated execbuffer call flags.
862 *
863 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
864 * away the submission details of the execbuffer ioctl call.
865 *
866 * Return: non-zero if the submission fails.
867 */
868 int intel_execlists_submission(struct i915_execbuffer_params *params,
869 struct drm_i915_gem_execbuffer2 *args,
870 struct list_head *vmas)
871 {
872 struct drm_device *dev = params->dev;
873 struct intel_engine_cs *ring = params->ring;
874 struct drm_i915_private *dev_priv = dev->dev_private;
875 struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
876 u64 exec_start;
877 int instp_mode;
878 u32 instp_mask;
879 int ret;
880
881 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
882 instp_mask = I915_EXEC_CONSTANTS_MASK;
883 switch (instp_mode) {
884 case I915_EXEC_CONSTANTS_REL_GENERAL:
885 case I915_EXEC_CONSTANTS_ABSOLUTE:
886 case I915_EXEC_CONSTANTS_REL_SURFACE:
887 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
888 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
889 return -EINVAL;
890 }
891
892 if (instp_mode != dev_priv->relative_constants_mode) {
893 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
894 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
895 return -EINVAL;
896 }
897
898 /* The HW changed the meaning on this bit on gen6 */
899 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
900 }
901 break;
902 default:
903 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
904 return -EINVAL;
905 }
906
907 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
908 DRM_DEBUG("sol reset is gen7 only\n");
909 return -EINVAL;
910 }
911
912 ret = execlists_move_to_gpu(params->request, vmas);
913 if (ret)
914 return ret;
915
916 if (ring == &dev_priv->ring[RCS] &&
917 instp_mode != dev_priv->relative_constants_mode) {
918 ret = intel_logical_ring_begin(params->request, 4);
919 if (ret)
920 return ret;
921
922 intel_logical_ring_emit(ringbuf, MI_NOOP);
923 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
924 intel_logical_ring_emit(ringbuf, INSTPM);
925 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
926 intel_logical_ring_advance(ringbuf);
927
928 dev_priv->relative_constants_mode = instp_mode;
929 }
930
931 exec_start = params->batch_obj_vm_offset +
932 args->batch_start_offset;
933
934 ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
935 if (ret)
936 return ret;
937
938 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
939
940 i915_gem_execbuffer_move_to_active(vmas, params->request);
941 i915_gem_execbuffer_retire_commands(params);
942
943 return 0;
944 }
945
946 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
947 {
948 struct drm_i915_gem_request *req, *tmp;
949 struct list_head retired_list;
950
951 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
952 if (list_empty(&ring->execlist_retired_req_list))
953 return;
954
955 INIT_LIST_HEAD(&retired_list);
956 spin_lock_irq(&ring->execlist_lock);
957 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
958 spin_unlock_irq(&ring->execlist_lock);
959
960 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
961 struct intel_context *ctx = req->ctx;
962 struct drm_i915_gem_object *ctx_obj =
963 ctx->engine[ring->id].state;
964
965 if (ctx_obj && (ctx != ring->default_context))
966 intel_lr_context_unpin(req);
967 list_del(&req->execlist_link);
968 i915_gem_request_unreference(req);
969 }
970 }
971
972 void intel_logical_ring_stop(struct intel_engine_cs *ring)
973 {
974 struct drm_i915_private *dev_priv = ring->dev->dev_private;
975 int ret;
976
977 if (!intel_ring_initialized(ring))
978 return;
979
980 ret = intel_ring_idle(ring);
981 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
982 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
983 ring->name, ret);
984
985 /* TODO: Is this correct with Execlists enabled? */
986 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
987 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
988 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
989 return;
990 }
991 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
992 }
993
994 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
995 {
996 struct intel_engine_cs *ring = req->ring;
997 int ret;
998
999 if (!ring->gpu_caches_dirty)
1000 return 0;
1001
1002 ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1003 if (ret)
1004 return ret;
1005
1006 ring->gpu_caches_dirty = false;
1007 return 0;
1008 }
1009
1010 static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
1011 struct drm_i915_gem_object *ctx_obj,
1012 struct intel_ringbuffer *ringbuf)
1013 {
1014 struct drm_device *dev = ring->dev;
1015 struct drm_i915_private *dev_priv = dev->dev_private;
1016 int ret = 0;
1017
1018 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1019 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1020 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1021 if (ret)
1022 return ret;
1023
1024 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1025 if (ret)
1026 goto unpin_ctx_obj;
1027
1028 ctx_obj->dirty = true;
1029
1030 /* Invalidate GuC TLB. */
1031 if (i915.enable_guc_submission)
1032 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1033
1034 return ret;
1035
1036 unpin_ctx_obj:
1037 i915_gem_object_ggtt_unpin(ctx_obj);
1038
1039 return ret;
1040 }
1041
1042 static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1043 {
1044 int ret = 0;
1045 struct intel_engine_cs *ring = rq->ring;
1046 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1047 struct intel_ringbuffer *ringbuf = rq->ringbuf;
1048
1049 if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1050 ret = intel_lr_context_do_pin(ring, ctx_obj, ringbuf);
1051 if (ret)
1052 goto reset_pin_count;
1053 }
1054 return ret;
1055
1056 reset_pin_count:
1057 rq->ctx->engine[ring->id].pin_count = 0;
1058 return ret;
1059 }
1060
1061 void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1062 {
1063 struct intel_engine_cs *ring = rq->ring;
1064 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1065 struct intel_ringbuffer *ringbuf = rq->ringbuf;
1066
1067 if (ctx_obj) {
1068 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1069 if (--rq->ctx->engine[ring->id].pin_count == 0) {
1070 intel_unpin_ringbuffer_obj(ringbuf);
1071 i915_gem_object_ggtt_unpin(ctx_obj);
1072 }
1073 }
1074 }
1075
1076 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1077 {
1078 int ret, i;
1079 struct intel_engine_cs *ring = req->ring;
1080 struct intel_ringbuffer *ringbuf = req->ringbuf;
1081 struct drm_device *dev = ring->dev;
1082 struct drm_i915_private *dev_priv = dev->dev_private;
1083 struct i915_workarounds *w = &dev_priv->workarounds;
1084
1085 if (WARN_ON_ONCE(w->count == 0))
1086 return 0;
1087
1088 ring->gpu_caches_dirty = true;
1089 ret = logical_ring_flush_all_caches(req);
1090 if (ret)
1091 return ret;
1092
1093 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1094 if (ret)
1095 return ret;
1096
1097 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1098 for (i = 0; i < w->count; i++) {
1099 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1100 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1101 }
1102 intel_logical_ring_emit(ringbuf, MI_NOOP);
1103
1104 intel_logical_ring_advance(ringbuf);
1105
1106 ring->gpu_caches_dirty = true;
1107 ret = logical_ring_flush_all_caches(req);
1108 if (ret)
1109 return ret;
1110
1111 return 0;
1112 }
1113
1114 #define wa_ctx_emit(batch, index, cmd) \
1115 do { \
1116 int __index = (index)++; \
1117 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1118 return -ENOSPC; \
1119 } \
1120 batch[__index] = (cmd); \
1121 } while (0)
1122
1123
1124 /*
1125 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1126 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1127 * but there is a slight complication as this is applied in WA batch where the
1128 * values are only initialized once so we cannot take register value at the
1129 * beginning and reuse it further; hence we save its value to memory, upload a
1130 * constant value with bit21 set and then we restore it back with the saved value.
1131 * To simplify the WA, a constant value is formed by using the default value
1132 * of this register. This shouldn't be a problem because we are only modifying
1133 * it for a short period and this batch in non-premptible. We can ofcourse
1134 * use additional instructions that read the actual value of the register
1135 * at that time and set our bit of interest but it makes the WA complicated.
1136 *
1137 * This WA is also required for Gen9 so extracting as a function avoids
1138 * code duplication.
1139 */
1140 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1141 uint32_t *const batch,
1142 uint32_t index)
1143 {
1144 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1145
1146 /*
1147 * WaDisableLSQCROPERFforOCL:skl
1148 * This WA is implemented in skl_init_clock_gating() but since
1149 * this batch updates GEN8_L3SQCREG4 with default value we need to
1150 * set this bit here to retain the WA during flush.
1151 */
1152 if (IS_SKYLAKE(ring->dev) && INTEL_REVID(ring->dev) <= SKL_REVID_E0)
1153 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1154
1155 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1156 MI_SRM_LRM_GLOBAL_GTT));
1157 wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1158 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1159 wa_ctx_emit(batch, index, 0);
1160
1161 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1162 wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1163 wa_ctx_emit(batch, index, l3sqc4_flush);
1164
1165 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1166 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1167 PIPE_CONTROL_DC_FLUSH_ENABLE));
1168 wa_ctx_emit(batch, index, 0);
1169 wa_ctx_emit(batch, index, 0);
1170 wa_ctx_emit(batch, index, 0);
1171 wa_ctx_emit(batch, index, 0);
1172
1173 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1174 MI_SRM_LRM_GLOBAL_GTT));
1175 wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1176 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1177 wa_ctx_emit(batch, index, 0);
1178
1179 return index;
1180 }
1181
1182 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1183 uint32_t offset,
1184 uint32_t start_alignment)
1185 {
1186 return wa_ctx->offset = ALIGN(offset, start_alignment);
1187 }
1188
1189 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1190 uint32_t offset,
1191 uint32_t size_alignment)
1192 {
1193 wa_ctx->size = offset - wa_ctx->offset;
1194
1195 WARN(wa_ctx->size % size_alignment,
1196 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1197 wa_ctx->size, size_alignment);
1198 return 0;
1199 }
1200
1201 /**
1202 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1203 *
1204 * @ring: only applicable for RCS
1205 * @wa_ctx: structure representing wa_ctx
1206 * offset: specifies start of the batch, should be cache-aligned. This is updated
1207 * with the offset value received as input.
1208 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1209 * @batch: page in which WA are loaded
1210 * @offset: This field specifies the start of the batch, it should be
1211 * cache-aligned otherwise it is adjusted accordingly.
1212 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1213 * initialized at the beginning and shared across all contexts but this field
1214 * helps us to have multiple batches at different offsets and select them based
1215 * on a criteria. At the moment this batch always start at the beginning of the page
1216 * and at this point we don't have multiple wa_ctx batch buffers.
1217 *
1218 * The number of WA applied are not known at the beginning; we use this field
1219 * to return the no of DWORDS written.
1220 *
1221 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1222 * so it adds NOOPs as padding to make it cacheline aligned.
1223 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1224 * makes a complete batch buffer.
1225 *
1226 * Return: non-zero if we exceed the PAGE_SIZE limit.
1227 */
1228
1229 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1230 struct i915_wa_ctx_bb *wa_ctx,
1231 uint32_t *const batch,
1232 uint32_t *offset)
1233 {
1234 uint32_t scratch_addr;
1235 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1236
1237 /* WaDisableCtxRestoreArbitration:bdw,chv */
1238 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1239
1240 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1241 if (IS_BROADWELL(ring->dev)) {
1242 int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1243 if (rc < 0)
1244 return rc;
1245 index = rc;
1246 }
1247
1248 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1249 /* Actual scratch location is at 128 bytes offset */
1250 scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1251
1252 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1253 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1254 PIPE_CONTROL_GLOBAL_GTT_IVB |
1255 PIPE_CONTROL_CS_STALL |
1256 PIPE_CONTROL_QW_WRITE));
1257 wa_ctx_emit(batch, index, scratch_addr);
1258 wa_ctx_emit(batch, index, 0);
1259 wa_ctx_emit(batch, index, 0);
1260 wa_ctx_emit(batch, index, 0);
1261
1262 /* Pad to end of cacheline */
1263 while (index % CACHELINE_DWORDS)
1264 wa_ctx_emit(batch, index, MI_NOOP);
1265
1266 /*
1267 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1268 * execution depends on the length specified in terms of cache lines
1269 * in the register CTX_RCS_INDIRECT_CTX
1270 */
1271
1272 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1273 }
1274
1275 /**
1276 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1277 *
1278 * @ring: only applicable for RCS
1279 * @wa_ctx: structure representing wa_ctx
1280 * offset: specifies start of the batch, should be cache-aligned.
1281 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1282 * @batch: page in which WA are loaded
1283 * @offset: This field specifies the start of this batch.
1284 * This batch is started immediately after indirect_ctx batch. Since we ensure
1285 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1286 *
1287 * The number of DWORDS written are returned using this field.
1288 *
1289 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1290 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1291 */
1292 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1293 struct i915_wa_ctx_bb *wa_ctx,
1294 uint32_t *const batch,
1295 uint32_t *offset)
1296 {
1297 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1298
1299 /* WaDisableCtxRestoreArbitration:bdw,chv */
1300 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1301
1302 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1303
1304 return wa_ctx_end(wa_ctx, *offset = index, 1);
1305 }
1306
1307 static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1308 struct i915_wa_ctx_bb *wa_ctx,
1309 uint32_t *const batch,
1310 uint32_t *offset)
1311 {
1312 int ret;
1313 struct drm_device *dev = ring->dev;
1314 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1315
1316 /* WaDisableCtxRestoreArbitration:skl,bxt */
1317 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1318 (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1319 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1320
1321 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1322 ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1323 if (ret < 0)
1324 return ret;
1325 index = ret;
1326
1327 /* Pad to end of cacheline */
1328 while (index % CACHELINE_DWORDS)
1329 wa_ctx_emit(batch, index, MI_NOOP);
1330
1331 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1332 }
1333
1334 static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1335 struct i915_wa_ctx_bb *wa_ctx,
1336 uint32_t *const batch,
1337 uint32_t *offset)
1338 {
1339 struct drm_device *dev = ring->dev;
1340 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1341
1342 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1343 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_B0)) ||
1344 (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0))) {
1345 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1346 wa_ctx_emit(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1347 wa_ctx_emit(batch, index,
1348 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1349 wa_ctx_emit(batch, index, MI_NOOP);
1350 }
1351
1352 /* WaDisableCtxRestoreArbitration:skl,bxt */
1353 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1354 (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1355 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1356
1357 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1358
1359 return wa_ctx_end(wa_ctx, *offset = index, 1);
1360 }
1361
1362 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1363 {
1364 int ret;
1365
1366 ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1367 if (!ring->wa_ctx.obj) {
1368 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1369 return -ENOMEM;
1370 }
1371
1372 ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1373 if (ret) {
1374 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1375 ret);
1376 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1377 return ret;
1378 }
1379
1380 return 0;
1381 }
1382
1383 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1384 {
1385 if (ring->wa_ctx.obj) {
1386 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1387 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1388 ring->wa_ctx.obj = NULL;
1389 }
1390 }
1391
1392 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1393 {
1394 int ret;
1395 uint32_t *batch;
1396 uint32_t offset;
1397 struct page *page;
1398 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1399
1400 WARN_ON(ring->id != RCS);
1401
1402 /* update this when WA for higher Gen are added */
1403 if (INTEL_INFO(ring->dev)->gen > 9) {
1404 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1405 INTEL_INFO(ring->dev)->gen);
1406 return 0;
1407 }
1408
1409 /* some WA perform writes to scratch page, ensure it is valid */
1410 if (ring->scratch.obj == NULL) {
1411 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1412 return -EINVAL;
1413 }
1414
1415 ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1416 if (ret) {
1417 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1418 return ret;
1419 }
1420
1421 page = i915_gem_object_get_page(wa_ctx->obj, 0);
1422 batch = kmap_atomic(page);
1423 offset = 0;
1424
1425 if (INTEL_INFO(ring->dev)->gen == 8) {
1426 ret = gen8_init_indirectctx_bb(ring,
1427 &wa_ctx->indirect_ctx,
1428 batch,
1429 &offset);
1430 if (ret)
1431 goto out;
1432
1433 ret = gen8_init_perctx_bb(ring,
1434 &wa_ctx->per_ctx,
1435 batch,
1436 &offset);
1437 if (ret)
1438 goto out;
1439 } else if (INTEL_INFO(ring->dev)->gen == 9) {
1440 ret = gen9_init_indirectctx_bb(ring,
1441 &wa_ctx->indirect_ctx,
1442 batch,
1443 &offset);
1444 if (ret)
1445 goto out;
1446
1447 ret = gen9_init_perctx_bb(ring,
1448 &wa_ctx->per_ctx,
1449 batch,
1450 &offset);
1451 if (ret)
1452 goto out;
1453 }
1454
1455 out:
1456 kunmap_atomic(batch);
1457 if (ret)
1458 lrc_destroy_wa_ctx_obj(ring);
1459
1460 return ret;
1461 }
1462
1463 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1464 {
1465 struct drm_device *dev = ring->dev;
1466 struct drm_i915_private *dev_priv = dev->dev_private;
1467 u8 next_context_status_buffer_hw;
1468
1469 lrc_setup_hardware_status_page(ring,
1470 ring->default_context->engine[ring->id].state);
1471
1472 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1473 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1474
1475 if (ring->status_page.obj) {
1476 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1477 (u32)ring->status_page.gfx_addr);
1478 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1479 }
1480
1481 I915_WRITE(RING_MODE_GEN7(ring),
1482 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1483 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1484 POSTING_READ(RING_MODE_GEN7(ring));
1485
1486 /*
1487 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1488 * zero, we need to read the write pointer from hardware and use its
1489 * value because "this register is power context save restored".
1490 * Effectively, these states have been observed:
1491 *
1492 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1493 * BDW | CSB regs not reset | CSB regs reset |
1494 * CHT | CSB regs not reset | CSB regs not reset |
1495 */
1496 next_context_status_buffer_hw = (I915_READ(RING_CONTEXT_STATUS_PTR(ring))
1497 & GEN8_CSB_PTR_MASK);
1498
1499 /*
1500 * When the CSB registers are reset (also after power-up / gpu reset),
1501 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1502 * this special case, so the first element read is CSB[0].
1503 */
1504 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1505 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1506
1507 ring->next_context_status_buffer = next_context_status_buffer_hw;
1508 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1509
1510 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1511
1512 return 0;
1513 }
1514
1515 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1516 {
1517 struct drm_device *dev = ring->dev;
1518 struct drm_i915_private *dev_priv = dev->dev_private;
1519 int ret;
1520
1521 ret = gen8_init_common_ring(ring);
1522 if (ret)
1523 return ret;
1524
1525 /* We need to disable the AsyncFlip performance optimisations in order
1526 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1527 * programmed to '1' on all products.
1528 *
1529 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1530 */
1531 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1532
1533 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1534
1535 return init_workarounds_ring(ring);
1536 }
1537
1538 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1539 {
1540 int ret;
1541
1542 ret = gen8_init_common_ring(ring);
1543 if (ret)
1544 return ret;
1545
1546 return init_workarounds_ring(ring);
1547 }
1548
1549 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1550 {
1551 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1552 struct intel_engine_cs *ring = req->ring;
1553 struct intel_ringbuffer *ringbuf = req->ringbuf;
1554 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1555 int i, ret;
1556
1557 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1558 if (ret)
1559 return ret;
1560
1561 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1562 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1563 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1564
1565 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1566 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1567 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1568 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1569 }
1570
1571 intel_logical_ring_emit(ringbuf, MI_NOOP);
1572 intel_logical_ring_advance(ringbuf);
1573
1574 return 0;
1575 }
1576
1577 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1578 u64 offset, unsigned dispatch_flags)
1579 {
1580 struct intel_ringbuffer *ringbuf = req->ringbuf;
1581 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1582 int ret;
1583
1584 /* Don't rely in hw updating PDPs, specially in lite-restore.
1585 * Ideally, we should set Force PD Restore in ctx descriptor,
1586 * but we can't. Force Restore would be a second option, but
1587 * it is unsafe in case of lite-restore (because the ctx is
1588 * not idle). PML4 is allocated during ppgtt init so this is
1589 * not needed in 48-bit.*/
1590 if (req->ctx->ppgtt &&
1591 (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1592 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1593 !intel_vgpu_active(req->i915->dev)) {
1594 ret = intel_logical_ring_emit_pdps(req);
1595 if (ret)
1596 return ret;
1597 }
1598
1599 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1600 }
1601
1602 ret = intel_logical_ring_begin(req, 4);
1603 if (ret)
1604 return ret;
1605
1606 /* FIXME(BDW): Address space and security selectors. */
1607 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1608 (ppgtt<<8) |
1609 (dispatch_flags & I915_DISPATCH_RS ?
1610 MI_BATCH_RESOURCE_STREAMER : 0));
1611 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1612 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1613 intel_logical_ring_emit(ringbuf, MI_NOOP);
1614 intel_logical_ring_advance(ringbuf);
1615
1616 return 0;
1617 }
1618
1619 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1620 {
1621 struct drm_device *dev = ring->dev;
1622 struct drm_i915_private *dev_priv = dev->dev_private;
1623 unsigned long flags;
1624
1625 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1626 return false;
1627
1628 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1629 if (ring->irq_refcount++ == 0) {
1630 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1631 POSTING_READ(RING_IMR(ring->mmio_base));
1632 }
1633 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1634
1635 return true;
1636 }
1637
1638 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1639 {
1640 struct drm_device *dev = ring->dev;
1641 struct drm_i915_private *dev_priv = dev->dev_private;
1642 unsigned long flags;
1643
1644 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1645 if (--ring->irq_refcount == 0) {
1646 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1647 POSTING_READ(RING_IMR(ring->mmio_base));
1648 }
1649 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1650 }
1651
1652 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1653 u32 invalidate_domains,
1654 u32 unused)
1655 {
1656 struct intel_ringbuffer *ringbuf = request->ringbuf;
1657 struct intel_engine_cs *ring = ringbuf->ring;
1658 struct drm_device *dev = ring->dev;
1659 struct drm_i915_private *dev_priv = dev->dev_private;
1660 uint32_t cmd;
1661 int ret;
1662
1663 ret = intel_logical_ring_begin(request, 4);
1664 if (ret)
1665 return ret;
1666
1667 cmd = MI_FLUSH_DW + 1;
1668
1669 /* We always require a command barrier so that subsequent
1670 * commands, such as breadcrumb interrupts, are strictly ordered
1671 * wrt the contents of the write cache being flushed to memory
1672 * (and thus being coherent from the CPU).
1673 */
1674 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1675
1676 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1677 cmd |= MI_INVALIDATE_TLB;
1678 if (ring == &dev_priv->ring[VCS])
1679 cmd |= MI_INVALIDATE_BSD;
1680 }
1681
1682 intel_logical_ring_emit(ringbuf, cmd);
1683 intel_logical_ring_emit(ringbuf,
1684 I915_GEM_HWS_SCRATCH_ADDR |
1685 MI_FLUSH_DW_USE_GTT);
1686 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1687 intel_logical_ring_emit(ringbuf, 0); /* value */
1688 intel_logical_ring_advance(ringbuf);
1689
1690 return 0;
1691 }
1692
1693 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1694 u32 invalidate_domains,
1695 u32 flush_domains)
1696 {
1697 struct intel_ringbuffer *ringbuf = request->ringbuf;
1698 struct intel_engine_cs *ring = ringbuf->ring;
1699 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1700 bool vf_flush_wa;
1701 u32 flags = 0;
1702 int ret;
1703
1704 flags |= PIPE_CONTROL_CS_STALL;
1705
1706 if (flush_domains) {
1707 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1708 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1709 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1710 }
1711
1712 if (invalidate_domains) {
1713 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1714 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1715 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1716 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1717 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1718 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1719 flags |= PIPE_CONTROL_QW_WRITE;
1720 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1721 }
1722
1723 /*
1724 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1725 * control.
1726 */
1727 vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1728 flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1729
1730 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1731 if (ret)
1732 return ret;
1733
1734 if (vf_flush_wa) {
1735 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1736 intel_logical_ring_emit(ringbuf, 0);
1737 intel_logical_ring_emit(ringbuf, 0);
1738 intel_logical_ring_emit(ringbuf, 0);
1739 intel_logical_ring_emit(ringbuf, 0);
1740 intel_logical_ring_emit(ringbuf, 0);
1741 }
1742
1743 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1744 intel_logical_ring_emit(ringbuf, flags);
1745 intel_logical_ring_emit(ringbuf, scratch_addr);
1746 intel_logical_ring_emit(ringbuf, 0);
1747 intel_logical_ring_emit(ringbuf, 0);
1748 intel_logical_ring_emit(ringbuf, 0);
1749 intel_logical_ring_advance(ringbuf);
1750
1751 return 0;
1752 }
1753
1754 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1755 {
1756 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1757 }
1758
1759 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1760 {
1761 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1762 }
1763
1764 static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1765 {
1766
1767 /*
1768 * On BXT A steppings there is a HW coherency issue whereby the
1769 * MI_STORE_DATA_IMM storing the completed request's seqno
1770 * occasionally doesn't invalidate the CPU cache. Work around this by
1771 * clflushing the corresponding cacheline whenever the caller wants
1772 * the coherency to be guaranteed. Note that this cacheline is known
1773 * to be clean at this point, since we only write it in
1774 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1775 * this clflush in practice becomes an invalidate operation.
1776 */
1777
1778 if (!lazy_coherency)
1779 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1780
1781 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1782 }
1783
1784 static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1785 {
1786 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1787
1788 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1789 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1790 }
1791
1792 static int gen8_emit_request(struct drm_i915_gem_request *request)
1793 {
1794 struct intel_ringbuffer *ringbuf = request->ringbuf;
1795 struct intel_engine_cs *ring = ringbuf->ring;
1796 u32 cmd;
1797 int ret;
1798
1799 /*
1800 * Reserve space for 2 NOOPs at the end of each request to be
1801 * used as a workaround for not being allowed to do lite
1802 * restore with HEAD==TAIL (WaIdleLiteRestore).
1803 */
1804 ret = intel_logical_ring_begin(request, 8);
1805 if (ret)
1806 return ret;
1807
1808 cmd = MI_STORE_DWORD_IMM_GEN4;
1809 cmd |= MI_GLOBAL_GTT;
1810
1811 intel_logical_ring_emit(ringbuf, cmd);
1812 intel_logical_ring_emit(ringbuf,
1813 (ring->status_page.gfx_addr +
1814 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1815 intel_logical_ring_emit(ringbuf, 0);
1816 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1817 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1818 intel_logical_ring_emit(ringbuf, MI_NOOP);
1819 intel_logical_ring_advance_and_submit(request);
1820
1821 /*
1822 * Here we add two extra NOOPs as padding to avoid
1823 * lite restore of a context with HEAD==TAIL.
1824 */
1825 intel_logical_ring_emit(ringbuf, MI_NOOP);
1826 intel_logical_ring_emit(ringbuf, MI_NOOP);
1827 intel_logical_ring_advance(ringbuf);
1828
1829 return 0;
1830 }
1831
1832 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1833 {
1834 struct render_state so;
1835 int ret;
1836
1837 ret = i915_gem_render_state_prepare(req->ring, &so);
1838 if (ret)
1839 return ret;
1840
1841 if (so.rodata == NULL)
1842 return 0;
1843
1844 ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1845 I915_DISPATCH_SECURE);
1846 if (ret)
1847 goto out;
1848
1849 ret = req->ring->emit_bb_start(req,
1850 (so.ggtt_offset + so.aux_batch_offset),
1851 I915_DISPATCH_SECURE);
1852 if (ret)
1853 goto out;
1854
1855 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1856
1857 out:
1858 i915_gem_render_state_fini(&so);
1859 return ret;
1860 }
1861
1862 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1863 {
1864 int ret;
1865
1866 ret = intel_logical_ring_workarounds_emit(req);
1867 if (ret)
1868 return ret;
1869
1870 ret = intel_rcs_context_init_mocs(req);
1871 /*
1872 * Failing to program the MOCS is non-fatal.The system will not
1873 * run at peak performance. So generate an error and carry on.
1874 */
1875 if (ret)
1876 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1877
1878 return intel_lr_context_render_state_init(req);
1879 }
1880
1881 /**
1882 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1883 *
1884 * @ring: Engine Command Streamer.
1885 *
1886 */
1887 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1888 {
1889 struct drm_i915_private *dev_priv;
1890
1891 if (!intel_ring_initialized(ring))
1892 return;
1893
1894 dev_priv = ring->dev->dev_private;
1895
1896 intel_logical_ring_stop(ring);
1897 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1898
1899 if (ring->cleanup)
1900 ring->cleanup(ring);
1901
1902 i915_cmd_parser_fini_ring(ring);
1903 i915_gem_batch_pool_fini(&ring->batch_pool);
1904
1905 if (ring->status_page.obj) {
1906 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1907 ring->status_page.obj = NULL;
1908 }
1909
1910 lrc_destroy_wa_ctx_obj(ring);
1911 }
1912
1913 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1914 {
1915 int ret;
1916
1917 /* Intentionally left blank. */
1918 ring->buffer = NULL;
1919
1920 ring->dev = dev;
1921 INIT_LIST_HEAD(&ring->active_list);
1922 INIT_LIST_HEAD(&ring->request_list);
1923 i915_gem_batch_pool_init(dev, &ring->batch_pool);
1924 init_waitqueue_head(&ring->irq_queue);
1925
1926 INIT_LIST_HEAD(&ring->execlist_queue);
1927 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1928 spin_lock_init(&ring->execlist_lock);
1929
1930 ret = i915_cmd_parser_init_ring(ring);
1931 if (ret)
1932 return ret;
1933
1934 ret = intel_lr_context_deferred_alloc(ring->default_context, ring);
1935 if (ret)
1936 return ret;
1937
1938 /* As this is the default context, always pin it */
1939 ret = intel_lr_context_do_pin(
1940 ring,
1941 ring->default_context->engine[ring->id].state,
1942 ring->default_context->engine[ring->id].ringbuf);
1943 if (ret) {
1944 DRM_ERROR(
1945 "Failed to pin and map ringbuffer %s: %d\n",
1946 ring->name, ret);
1947 return ret;
1948 }
1949
1950 return ret;
1951 }
1952
1953 static int logical_render_ring_init(struct drm_device *dev)
1954 {
1955 struct drm_i915_private *dev_priv = dev->dev_private;
1956 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1957 int ret;
1958
1959 ring->name = "render ring";
1960 ring->id = RCS;
1961 ring->mmio_base = RENDER_RING_BASE;
1962 ring->irq_enable_mask =
1963 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1964 ring->irq_keep_mask =
1965 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1966 if (HAS_L3_DPF(dev))
1967 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1968
1969 if (INTEL_INFO(dev)->gen >= 9)
1970 ring->init_hw = gen9_init_render_ring;
1971 else
1972 ring->init_hw = gen8_init_render_ring;
1973 ring->init_context = gen8_init_rcs_context;
1974 ring->cleanup = intel_fini_pipe_control;
1975 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
1976 ring->get_seqno = bxt_a_get_seqno;
1977 ring->set_seqno = bxt_a_set_seqno;
1978 } else {
1979 ring->get_seqno = gen8_get_seqno;
1980 ring->set_seqno = gen8_set_seqno;
1981 }
1982 ring->emit_request = gen8_emit_request;
1983 ring->emit_flush = gen8_emit_flush_render;
1984 ring->irq_get = gen8_logical_ring_get_irq;
1985 ring->irq_put = gen8_logical_ring_put_irq;
1986 ring->emit_bb_start = gen8_emit_bb_start;
1987
1988 ring->dev = dev;
1989
1990 ret = intel_init_pipe_control(ring);
1991 if (ret)
1992 return ret;
1993
1994 ret = intel_init_workaround_bb(ring);
1995 if (ret) {
1996 /*
1997 * We continue even if we fail to initialize WA batch
1998 * because we only expect rare glitches but nothing
1999 * critical to prevent us from using GPU
2000 */
2001 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2002 ret);
2003 }
2004
2005 ret = logical_ring_init(dev, ring);
2006 if (ret) {
2007 lrc_destroy_wa_ctx_obj(ring);
2008 }
2009
2010 return ret;
2011 }
2012
2013 static int logical_bsd_ring_init(struct drm_device *dev)
2014 {
2015 struct drm_i915_private *dev_priv = dev->dev_private;
2016 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2017
2018 ring->name = "bsd ring";
2019 ring->id = VCS;
2020 ring->mmio_base = GEN6_BSD_RING_BASE;
2021 ring->irq_enable_mask =
2022 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2023 ring->irq_keep_mask =
2024 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2025
2026 ring->init_hw = gen8_init_common_ring;
2027 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2028 ring->get_seqno = bxt_a_get_seqno;
2029 ring->set_seqno = bxt_a_set_seqno;
2030 } else {
2031 ring->get_seqno = gen8_get_seqno;
2032 ring->set_seqno = gen8_set_seqno;
2033 }
2034 ring->emit_request = gen8_emit_request;
2035 ring->emit_flush = gen8_emit_flush;
2036 ring->irq_get = gen8_logical_ring_get_irq;
2037 ring->irq_put = gen8_logical_ring_put_irq;
2038 ring->emit_bb_start = gen8_emit_bb_start;
2039
2040 return logical_ring_init(dev, ring);
2041 }
2042
2043 static int logical_bsd2_ring_init(struct drm_device *dev)
2044 {
2045 struct drm_i915_private *dev_priv = dev->dev_private;
2046 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2047
2048 ring->name = "bds2 ring";
2049 ring->id = VCS2;
2050 ring->mmio_base = GEN8_BSD2_RING_BASE;
2051 ring->irq_enable_mask =
2052 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2053 ring->irq_keep_mask =
2054 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2055
2056 ring->init_hw = gen8_init_common_ring;
2057 ring->get_seqno = gen8_get_seqno;
2058 ring->set_seqno = gen8_set_seqno;
2059 ring->emit_request = gen8_emit_request;
2060 ring->emit_flush = gen8_emit_flush;
2061 ring->irq_get = gen8_logical_ring_get_irq;
2062 ring->irq_put = gen8_logical_ring_put_irq;
2063 ring->emit_bb_start = gen8_emit_bb_start;
2064
2065 return logical_ring_init(dev, ring);
2066 }
2067
2068 static int logical_blt_ring_init(struct drm_device *dev)
2069 {
2070 struct drm_i915_private *dev_priv = dev->dev_private;
2071 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2072
2073 ring->name = "blitter ring";
2074 ring->id = BCS;
2075 ring->mmio_base = BLT_RING_BASE;
2076 ring->irq_enable_mask =
2077 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2078 ring->irq_keep_mask =
2079 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2080
2081 ring->init_hw = gen8_init_common_ring;
2082 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2083 ring->get_seqno = bxt_a_get_seqno;
2084 ring->set_seqno = bxt_a_set_seqno;
2085 } else {
2086 ring->get_seqno = gen8_get_seqno;
2087 ring->set_seqno = gen8_set_seqno;
2088 }
2089 ring->emit_request = gen8_emit_request;
2090 ring->emit_flush = gen8_emit_flush;
2091 ring->irq_get = gen8_logical_ring_get_irq;
2092 ring->irq_put = gen8_logical_ring_put_irq;
2093 ring->emit_bb_start = gen8_emit_bb_start;
2094
2095 return logical_ring_init(dev, ring);
2096 }
2097
2098 static int logical_vebox_ring_init(struct drm_device *dev)
2099 {
2100 struct drm_i915_private *dev_priv = dev->dev_private;
2101 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2102
2103 ring->name = "video enhancement ring";
2104 ring->id = VECS;
2105 ring->mmio_base = VEBOX_RING_BASE;
2106 ring->irq_enable_mask =
2107 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2108 ring->irq_keep_mask =
2109 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2110
2111 ring->init_hw = gen8_init_common_ring;
2112 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2113 ring->get_seqno = bxt_a_get_seqno;
2114 ring->set_seqno = bxt_a_set_seqno;
2115 } else {
2116 ring->get_seqno = gen8_get_seqno;
2117 ring->set_seqno = gen8_set_seqno;
2118 }
2119 ring->emit_request = gen8_emit_request;
2120 ring->emit_flush = gen8_emit_flush;
2121 ring->irq_get = gen8_logical_ring_get_irq;
2122 ring->irq_put = gen8_logical_ring_put_irq;
2123 ring->emit_bb_start = gen8_emit_bb_start;
2124
2125 return logical_ring_init(dev, ring);
2126 }
2127
2128 /**
2129 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2130 * @dev: DRM device.
2131 *
2132 * This function inits the engines for an Execlists submission style (the equivalent in the
2133 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2134 * those engines that are present in the hardware.
2135 *
2136 * Return: non-zero if the initialization failed.
2137 */
2138 int intel_logical_rings_init(struct drm_device *dev)
2139 {
2140 struct drm_i915_private *dev_priv = dev->dev_private;
2141 int ret;
2142
2143 ret = logical_render_ring_init(dev);
2144 if (ret)
2145 return ret;
2146
2147 if (HAS_BSD(dev)) {
2148 ret = logical_bsd_ring_init(dev);
2149 if (ret)
2150 goto cleanup_render_ring;
2151 }
2152
2153 if (HAS_BLT(dev)) {
2154 ret = logical_blt_ring_init(dev);
2155 if (ret)
2156 goto cleanup_bsd_ring;
2157 }
2158
2159 if (HAS_VEBOX(dev)) {
2160 ret = logical_vebox_ring_init(dev);
2161 if (ret)
2162 goto cleanup_blt_ring;
2163 }
2164
2165 if (HAS_BSD2(dev)) {
2166 ret = logical_bsd2_ring_init(dev);
2167 if (ret)
2168 goto cleanup_vebox_ring;
2169 }
2170
2171 return 0;
2172
2173 cleanup_vebox_ring:
2174 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2175 cleanup_blt_ring:
2176 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2177 cleanup_bsd_ring:
2178 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2179 cleanup_render_ring:
2180 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2181
2182 return ret;
2183 }
2184
2185 static u32
2186 make_rpcs(struct drm_device *dev)
2187 {
2188 u32 rpcs = 0;
2189
2190 /*
2191 * No explicit RPCS request is needed to ensure full
2192 * slice/subslice/EU enablement prior to Gen9.
2193 */
2194 if (INTEL_INFO(dev)->gen < 9)
2195 return 0;
2196
2197 /*
2198 * Starting in Gen9, render power gating can leave
2199 * slice/subslice/EU in a partially enabled state. We
2200 * must make an explicit request through RPCS for full
2201 * enablement.
2202 */
2203 if (INTEL_INFO(dev)->has_slice_pg) {
2204 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2205 rpcs |= INTEL_INFO(dev)->slice_total <<
2206 GEN8_RPCS_S_CNT_SHIFT;
2207 rpcs |= GEN8_RPCS_ENABLE;
2208 }
2209
2210 if (INTEL_INFO(dev)->has_subslice_pg) {
2211 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2212 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2213 GEN8_RPCS_SS_CNT_SHIFT;
2214 rpcs |= GEN8_RPCS_ENABLE;
2215 }
2216
2217 if (INTEL_INFO(dev)->has_eu_pg) {
2218 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2219 GEN8_RPCS_EU_MIN_SHIFT;
2220 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2221 GEN8_RPCS_EU_MAX_SHIFT;
2222 rpcs |= GEN8_RPCS_ENABLE;
2223 }
2224
2225 return rpcs;
2226 }
2227
2228 static int
2229 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2230 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2231 {
2232 struct drm_device *dev = ring->dev;
2233 struct drm_i915_private *dev_priv = dev->dev_private;
2234 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2235 struct page *page;
2236 uint32_t *reg_state;
2237 int ret;
2238
2239 if (!ppgtt)
2240 ppgtt = dev_priv->mm.aliasing_ppgtt;
2241
2242 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2243 if (ret) {
2244 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2245 return ret;
2246 }
2247
2248 ret = i915_gem_object_get_pages(ctx_obj);
2249 if (ret) {
2250 DRM_DEBUG_DRIVER("Could not get object pages\n");
2251 return ret;
2252 }
2253
2254 i915_gem_object_pin_pages(ctx_obj);
2255
2256 /* The second page of the context object contains some fields which must
2257 * be set up prior to the first execution. */
2258 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2259 reg_state = kmap_atomic(page);
2260
2261 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2262 * commands followed by (reg, value) pairs. The values we are setting here are
2263 * only for the first context restore: on a subsequent save, the GPU will
2264 * recreate this batchbuffer with new values (including all the missing
2265 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2266 if (ring->id == RCS)
2267 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
2268 else
2269 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
2270 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
2271 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
2272 reg_state[CTX_CONTEXT_CONTROL+1] =
2273 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2274 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2275 CTX_CTRL_RS_CTX_ENABLE);
2276 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
2277 reg_state[CTX_RING_HEAD+1] = 0;
2278 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
2279 reg_state[CTX_RING_TAIL+1] = 0;
2280 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
2281 /* Ring buffer start address is not known until the buffer is pinned.
2282 * It is written to the context image in execlists_update_context()
2283 */
2284 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
2285 reg_state[CTX_RING_BUFFER_CONTROL+1] =
2286 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
2287 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
2288 reg_state[CTX_BB_HEAD_U+1] = 0;
2289 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
2290 reg_state[CTX_BB_HEAD_L+1] = 0;
2291 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
2292 reg_state[CTX_BB_STATE+1] = (1<<5);
2293 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
2294 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
2295 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
2296 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
2297 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
2298 reg_state[CTX_SECOND_BB_STATE+1] = 0;
2299 if (ring->id == RCS) {
2300 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2301 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2302 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2303 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2304 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2305 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
2306 if (ring->wa_ctx.obj) {
2307 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2308 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2309
2310 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2311 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2312 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2313
2314 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2315 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2316
2317 reg_state[CTX_BB_PER_CTX_PTR+1] =
2318 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2319 0x01;
2320 }
2321 }
2322 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2323 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2324 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2325 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2326 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2327 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2328 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2329 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2330 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2331 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2332 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2333 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
2334
2335 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2336 /* 64b PPGTT (48bit canonical)
2337 * PDP0_DESCRIPTOR contains the base address to PML4 and
2338 * other PDP Descriptors are ignored.
2339 */
2340 ASSIGN_CTX_PML4(ppgtt, reg_state);
2341 } else {
2342 /* 32b PPGTT
2343 * PDP*_DESCRIPTOR contains the base address of space supported.
2344 * With dynamic page allocation, PDPs may not be allocated at
2345 * this point. Point the unallocated PDPs to the scratch page
2346 */
2347 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2348 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2349 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2350 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2351 }
2352
2353 if (ring->id == RCS) {
2354 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2355 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2356 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
2357 }
2358
2359 kunmap_atomic(reg_state);
2360
2361 ctx_obj->dirty = 1;
2362 set_page_dirty(page);
2363 i915_gem_object_unpin_pages(ctx_obj);
2364
2365 return 0;
2366 }
2367
2368 /**
2369 * intel_lr_context_free() - free the LRC specific bits of a context
2370 * @ctx: the LR context to free.
2371 *
2372 * The real context freeing is done in i915_gem_context_free: this only
2373 * takes care of the bits that are LRC related: the per-engine backing
2374 * objects and the logical ringbuffer.
2375 */
2376 void intel_lr_context_free(struct intel_context *ctx)
2377 {
2378 int i;
2379
2380 for (i = 0; i < I915_NUM_RINGS; i++) {
2381 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2382
2383 if (ctx_obj) {
2384 struct intel_ringbuffer *ringbuf =
2385 ctx->engine[i].ringbuf;
2386 struct intel_engine_cs *ring = ringbuf->ring;
2387
2388 if (ctx == ring->default_context) {
2389 intel_unpin_ringbuffer_obj(ringbuf);
2390 i915_gem_object_ggtt_unpin(ctx_obj);
2391 }
2392 WARN_ON(ctx->engine[ring->id].pin_count);
2393 intel_ringbuffer_free(ringbuf);
2394 drm_gem_object_unreference(&ctx_obj->base);
2395 }
2396 }
2397 }
2398
2399 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2400 {
2401 int ret = 0;
2402
2403 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2404
2405 switch (ring->id) {
2406 case RCS:
2407 if (INTEL_INFO(ring->dev)->gen >= 9)
2408 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2409 else
2410 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2411 break;
2412 case VCS:
2413 case BCS:
2414 case VECS:
2415 case VCS2:
2416 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2417 break;
2418 }
2419
2420 return ret;
2421 }
2422
2423 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2424 struct drm_i915_gem_object *default_ctx_obj)
2425 {
2426 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2427 struct page *page;
2428
2429 /* The HWSP is part of the default context object in LRC mode. */
2430 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2431 + LRC_PPHWSP_PN * PAGE_SIZE;
2432 page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2433 ring->status_page.page_addr = kmap(page);
2434 ring->status_page.obj = default_ctx_obj;
2435
2436 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2437 (u32)ring->status_page.gfx_addr);
2438 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2439 }
2440
2441 /**
2442 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2443 * @ctx: LR context to create.
2444 * @ring: engine to be used with the context.
2445 *
2446 * This function can be called more than once, with different engines, if we plan
2447 * to use the context with them. The context backing objects and the ringbuffers
2448 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2449 * the creation is a deferred call: it's better to make sure first that we need to use
2450 * a given ring with the context.
2451 *
2452 * Return: non-zero on error.
2453 */
2454
2455 int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2456 struct intel_engine_cs *ring)
2457 {
2458 struct drm_device *dev = ring->dev;
2459 struct drm_i915_gem_object *ctx_obj;
2460 uint32_t context_size;
2461 struct intel_ringbuffer *ringbuf;
2462 int ret;
2463
2464 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2465 WARN_ON(ctx->engine[ring->id].state);
2466
2467 context_size = round_up(get_lr_context_size(ring), 4096);
2468
2469 /* One extra page as the sharing data between driver and GuC */
2470 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2471
2472 ctx_obj = i915_gem_alloc_object(dev, context_size);
2473 if (!ctx_obj) {
2474 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2475 return -ENOMEM;
2476 }
2477
2478 ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2479 if (IS_ERR(ringbuf)) {
2480 ret = PTR_ERR(ringbuf);
2481 goto error_deref_obj;
2482 }
2483
2484 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2485 if (ret) {
2486 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2487 goto error_ringbuf;
2488 }
2489
2490 ctx->engine[ring->id].ringbuf = ringbuf;
2491 ctx->engine[ring->id].state = ctx_obj;
2492
2493 if (ctx != ring->default_context && ring->init_context) {
2494 struct drm_i915_gem_request *req;
2495
2496 ret = i915_gem_request_alloc(ring,
2497 ctx, &req);
2498 if (ret) {
2499 DRM_ERROR("ring create req: %d\n",
2500 ret);
2501 goto error_ringbuf;
2502 }
2503
2504 ret = ring->init_context(req);
2505 if (ret) {
2506 DRM_ERROR("ring init context: %d\n",
2507 ret);
2508 i915_gem_request_cancel(req);
2509 goto error_ringbuf;
2510 }
2511 i915_add_request_no_flush(req);
2512 }
2513 return 0;
2514
2515 error_ringbuf:
2516 intel_ringbuffer_free(ringbuf);
2517 error_deref_obj:
2518 drm_gem_object_unreference(&ctx_obj->base);
2519 ctx->engine[ring->id].ringbuf = NULL;
2520 ctx->engine[ring->id].state = NULL;
2521 return ret;
2522 }
2523
2524 void intel_lr_context_reset(struct drm_device *dev,
2525 struct intel_context *ctx)
2526 {
2527 struct drm_i915_private *dev_priv = dev->dev_private;
2528 struct intel_engine_cs *ring;
2529 int i;
2530
2531 for_each_ring(ring, dev_priv, i) {
2532 struct drm_i915_gem_object *ctx_obj =
2533 ctx->engine[ring->id].state;
2534 struct intel_ringbuffer *ringbuf =
2535 ctx->engine[ring->id].ringbuf;
2536 uint32_t *reg_state;
2537 struct page *page;
2538
2539 if (!ctx_obj)
2540 continue;
2541
2542 if (i915_gem_object_get_pages(ctx_obj)) {
2543 WARN(1, "Failed get_pages for context obj\n");
2544 continue;
2545 }
2546 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2547 reg_state = kmap_atomic(page);
2548
2549 reg_state[CTX_RING_HEAD+1] = 0;
2550 reg_state[CTX_RING_TAIL+1] = 0;
2551
2552 kunmap_atomic(reg_state);
2553
2554 ringbuf->head = 0;
2555 ringbuf->tail = 0;
2556 }
2557 }