]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/intel_lrc.c
iommu/amd: Use BUG_ON instead of if () BUG()
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138
139 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
143 #define RING_EXECLIST_QFULL (1 << 0x2)
144 #define RING_EXECLIST1_VALID (1 << 0x3)
145 #define RING_EXECLIST0_VALID (1 << 0x4)
146 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
147 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
148 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
149
150 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
151 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
152 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
153 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
154 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
155 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
156
157 #define CTX_LRI_HEADER_0 0x01
158 #define CTX_CONTEXT_CONTROL 0x02
159 #define CTX_RING_HEAD 0x04
160 #define CTX_RING_TAIL 0x06
161 #define CTX_RING_BUFFER_START 0x08
162 #define CTX_RING_BUFFER_CONTROL 0x0a
163 #define CTX_BB_HEAD_U 0x0c
164 #define CTX_BB_HEAD_L 0x0e
165 #define CTX_BB_STATE 0x10
166 #define CTX_SECOND_BB_HEAD_U 0x12
167 #define CTX_SECOND_BB_HEAD_L 0x14
168 #define CTX_SECOND_BB_STATE 0x16
169 #define CTX_BB_PER_CTX_PTR 0x18
170 #define CTX_RCS_INDIRECT_CTX 0x1a
171 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
172 #define CTX_LRI_HEADER_1 0x21
173 #define CTX_CTX_TIMESTAMP 0x22
174 #define CTX_PDP3_UDW 0x24
175 #define CTX_PDP3_LDW 0x26
176 #define CTX_PDP2_UDW 0x28
177 #define CTX_PDP2_LDW 0x2a
178 #define CTX_PDP1_UDW 0x2c
179 #define CTX_PDP1_LDW 0x2e
180 #define CTX_PDP0_UDW 0x30
181 #define CTX_PDP0_LDW 0x32
182 #define CTX_LRI_HEADER_2 0x41
183 #define CTX_R_PWR_CLK_STATE 0x42
184 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
185
186 #define GEN8_CTX_VALID (1<<0)
187 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188 #define GEN8_CTX_FORCE_RESTORE (1<<2)
189 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
190 #define GEN8_CTX_PRIVILEGE (1<<8)
191
192 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
193 const u64 _addr = test_bit(n, ppgtt->pdp.used_pdpes) ? \
194 ppgtt->pdp.page_directory[n]->daddr : \
195 ppgtt->scratch_pd->daddr; \
196 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198 }
199
200 enum {
201 ADVANCED_CONTEXT = 0,
202 LEGACY_CONTEXT,
203 ADVANCED_AD_CONTEXT,
204 LEGACY_64B_CONTEXT
205 };
206 #define GEN8_CTX_MODE_SHIFT 3
207 enum {
208 FAULT_AND_HANG = 0,
209 FAULT_AND_HALT, /* Debug only */
210 FAULT_AND_STREAM,
211 FAULT_AND_CONTINUE /* Unsupported */
212 };
213 #define GEN8_CTX_ID_SHIFT 32
214
215 static int intel_lr_context_pin(struct intel_engine_cs *ring,
216 struct intel_context *ctx);
217
218 /**
219 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
220 * @dev: DRM device.
221 * @enable_execlists: value of i915.enable_execlists module parameter.
222 *
223 * Only certain platforms support Execlists (the prerequisites being
224 * support for Logical Ring Contexts and Aliasing PPGTT or better).
225 *
226 * Return: 1 if Execlists is supported and has to be enabled.
227 */
228 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
229 {
230 WARN_ON(i915.enable_ppgtt == -1);
231
232 if (INTEL_INFO(dev)->gen >= 9)
233 return 1;
234
235 if (enable_execlists == 0)
236 return 0;
237
238 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
239 i915.use_mmio_flip >= 0)
240 return 1;
241
242 return 0;
243 }
244
245 /**
246 * intel_execlists_ctx_id() - get the Execlists Context ID
247 * @ctx_obj: Logical Ring Context backing object.
248 *
249 * Do not confuse with ctx->id! Unfortunately we have a name overload
250 * here: the old context ID we pass to userspace as a handler so that
251 * they can refer to a context, and the new context ID we pass to the
252 * ELSP so that the GPU can inform us of the context status via
253 * interrupts.
254 *
255 * Return: 20-bits globally unique context ID.
256 */
257 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
258 {
259 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
260
261 /* LRCA is required to be 4K aligned so the more significant 20 bits
262 * are globally unique */
263 return lrca >> 12;
264 }
265
266 static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
267 struct drm_i915_gem_object *ctx_obj)
268 {
269 struct drm_device *dev = ring->dev;
270 uint64_t desc;
271 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
272
273 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
274
275 desc = GEN8_CTX_VALID;
276 desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
277 if (IS_GEN8(ctx_obj->base.dev))
278 desc |= GEN8_CTX_L3LLC_COHERENT;
279 desc |= GEN8_CTX_PRIVILEGE;
280 desc |= lrca;
281 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
282
283 /* TODO: WaDisableLiteRestore when we start using semaphore
284 * signalling between Command Streamers */
285 /* desc |= GEN8_CTX_FORCE_RESTORE; */
286
287 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
288 if (IS_GEN9(dev) &&
289 INTEL_REVID(dev) <= SKL_REVID_B0 &&
290 (ring->id == BCS || ring->id == VCS ||
291 ring->id == VECS || ring->id == VCS2))
292 desc |= GEN8_CTX_FORCE_RESTORE;
293
294 return desc;
295 }
296
297 static void execlists_elsp_write(struct intel_engine_cs *ring,
298 struct drm_i915_gem_object *ctx_obj0,
299 struct drm_i915_gem_object *ctx_obj1)
300 {
301 struct drm_device *dev = ring->dev;
302 struct drm_i915_private *dev_priv = dev->dev_private;
303 uint64_t temp = 0;
304 uint32_t desc[4];
305
306 /* XXX: You must always write both descriptors in the order below. */
307 if (ctx_obj1)
308 temp = execlists_ctx_descriptor(ring, ctx_obj1);
309 else
310 temp = 0;
311 desc[1] = (u32)(temp >> 32);
312 desc[0] = (u32)temp;
313
314 temp = execlists_ctx_descriptor(ring, ctx_obj0);
315 desc[3] = (u32)(temp >> 32);
316 desc[2] = (u32)temp;
317
318 spin_lock(&dev_priv->uncore.lock);
319 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
320 I915_WRITE_FW(RING_ELSP(ring), desc[1]);
321 I915_WRITE_FW(RING_ELSP(ring), desc[0]);
322 I915_WRITE_FW(RING_ELSP(ring), desc[3]);
323
324 /* The context is automatically loaded after the following */
325 I915_WRITE_FW(RING_ELSP(ring), desc[2]);
326
327 /* ELSP is a wo register, so use another nearby reg for posting instead */
328 POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
329 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
330 spin_unlock(&dev_priv->uncore.lock);
331 }
332
333 static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
334 struct drm_i915_gem_object *ring_obj,
335 struct i915_hw_ppgtt *ppgtt,
336 u32 tail)
337 {
338 struct page *page;
339 uint32_t *reg_state;
340
341 page = i915_gem_object_get_page(ctx_obj, 1);
342 reg_state = kmap_atomic(page);
343
344 reg_state[CTX_RING_TAIL+1] = tail;
345 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
346
347 /* True PPGTT with dynamic page allocation: update PDP registers and
348 * point the unallocated PDPs to the scratch page
349 */
350 if (ppgtt) {
351 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
352 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
353 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
354 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
355 }
356
357 kunmap_atomic(reg_state);
358
359 return 0;
360 }
361
362 static void execlists_submit_contexts(struct intel_engine_cs *ring,
363 struct intel_context *to0, u32 tail0,
364 struct intel_context *to1, u32 tail1)
365 {
366 struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
367 struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
368 struct drm_i915_gem_object *ctx_obj1 = NULL;
369 struct intel_ringbuffer *ringbuf1 = NULL;
370
371 BUG_ON(!ctx_obj0);
372 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
373 WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
374
375 execlists_update_context(ctx_obj0, ringbuf0->obj, to0->ppgtt, tail0);
376
377 if (to1) {
378 ringbuf1 = to1->engine[ring->id].ringbuf;
379 ctx_obj1 = to1->engine[ring->id].state;
380 BUG_ON(!ctx_obj1);
381 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
382 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
383
384 execlists_update_context(ctx_obj1, ringbuf1->obj, to1->ppgtt, tail1);
385 }
386
387 execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
388 }
389
390 static void execlists_context_unqueue(struct intel_engine_cs *ring)
391 {
392 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
393 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
394
395 assert_spin_locked(&ring->execlist_lock);
396
397 /*
398 * If irqs are not active generate a warning as batches that finish
399 * without the irqs may get lost and a GPU Hang may occur.
400 */
401 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
402
403 if (list_empty(&ring->execlist_queue))
404 return;
405
406 /* Try to read in pairs */
407 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
408 execlist_link) {
409 if (!req0) {
410 req0 = cursor;
411 } else if (req0->ctx == cursor->ctx) {
412 /* Same ctx: ignore first request, as second request
413 * will update tail past first request's workload */
414 cursor->elsp_submitted = req0->elsp_submitted;
415 list_del(&req0->execlist_link);
416 list_add_tail(&req0->execlist_link,
417 &ring->execlist_retired_req_list);
418 req0 = cursor;
419 } else {
420 req1 = cursor;
421 break;
422 }
423 }
424
425 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
426 /*
427 * WaIdleLiteRestore: make sure we never cause a lite
428 * restore with HEAD==TAIL
429 */
430 if (req0->elsp_submitted) {
431 /*
432 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
433 * as we resubmit the request. See gen8_emit_request()
434 * for where we prepare the padding after the end of the
435 * request.
436 */
437 struct intel_ringbuffer *ringbuf;
438
439 ringbuf = req0->ctx->engine[ring->id].ringbuf;
440 req0->tail += 8;
441 req0->tail &= ringbuf->size - 1;
442 }
443 }
444
445 WARN_ON(req1 && req1->elsp_submitted);
446
447 execlists_submit_contexts(ring, req0->ctx, req0->tail,
448 req1 ? req1->ctx : NULL,
449 req1 ? req1->tail : 0);
450
451 req0->elsp_submitted++;
452 if (req1)
453 req1->elsp_submitted++;
454 }
455
456 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
457 u32 request_id)
458 {
459 struct drm_i915_gem_request *head_req;
460
461 assert_spin_locked(&ring->execlist_lock);
462
463 head_req = list_first_entry_or_null(&ring->execlist_queue,
464 struct drm_i915_gem_request,
465 execlist_link);
466
467 if (head_req != NULL) {
468 struct drm_i915_gem_object *ctx_obj =
469 head_req->ctx->engine[ring->id].state;
470 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
471 WARN(head_req->elsp_submitted == 0,
472 "Never submitted head request\n");
473
474 if (--head_req->elsp_submitted <= 0) {
475 list_del(&head_req->execlist_link);
476 list_add_tail(&head_req->execlist_link,
477 &ring->execlist_retired_req_list);
478 return true;
479 }
480 }
481 }
482
483 return false;
484 }
485
486 /**
487 * intel_lrc_irq_handler() - handle Context Switch interrupts
488 * @ring: Engine Command Streamer to handle.
489 *
490 * Check the unread Context Status Buffers and manage the submission of new
491 * contexts to the ELSP accordingly.
492 */
493 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
494 {
495 struct drm_i915_private *dev_priv = ring->dev->dev_private;
496 u32 status_pointer;
497 u8 read_pointer;
498 u8 write_pointer;
499 u32 status;
500 u32 status_id;
501 u32 submit_contexts = 0;
502
503 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
504
505 read_pointer = ring->next_context_status_buffer;
506 write_pointer = status_pointer & 0x07;
507 if (read_pointer > write_pointer)
508 write_pointer += 6;
509
510 spin_lock(&ring->execlist_lock);
511
512 while (read_pointer < write_pointer) {
513 read_pointer++;
514 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
515 (read_pointer % 6) * 8);
516 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
517 (read_pointer % 6) * 8 + 4);
518
519 if (status & GEN8_CTX_STATUS_PREEMPTED) {
520 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
521 if (execlists_check_remove_request(ring, status_id))
522 WARN(1, "Lite Restored request removed from queue\n");
523 } else
524 WARN(1, "Preemption without Lite Restore\n");
525 }
526
527 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
528 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
529 if (execlists_check_remove_request(ring, status_id))
530 submit_contexts++;
531 }
532 }
533
534 if (submit_contexts != 0)
535 execlists_context_unqueue(ring);
536
537 spin_unlock(&ring->execlist_lock);
538
539 WARN(submit_contexts > 2, "More than two context complete events?\n");
540 ring->next_context_status_buffer = write_pointer % 6;
541
542 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
543 ((u32)ring->next_context_status_buffer & 0x07) << 8);
544 }
545
546 static int execlists_context_queue(struct intel_engine_cs *ring,
547 struct intel_context *to,
548 u32 tail,
549 struct drm_i915_gem_request *request)
550 {
551 struct drm_i915_gem_request *cursor;
552 int num_elements = 0;
553
554 if (to != ring->default_context)
555 intel_lr_context_pin(ring, to);
556
557 if (!request) {
558 /*
559 * If there isn't a request associated with this submission,
560 * create one as a temporary holder.
561 */
562 request = kzalloc(sizeof(*request), GFP_KERNEL);
563 if (request == NULL)
564 return -ENOMEM;
565 request->ring = ring;
566 request->ctx = to;
567 kref_init(&request->ref);
568 i915_gem_context_reference(request->ctx);
569 } else {
570 i915_gem_request_reference(request);
571 WARN_ON(to != request->ctx);
572 }
573 request->tail = tail;
574
575 spin_lock_irq(&ring->execlist_lock);
576
577 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
578 if (++num_elements > 2)
579 break;
580
581 if (num_elements > 2) {
582 struct drm_i915_gem_request *tail_req;
583
584 tail_req = list_last_entry(&ring->execlist_queue,
585 struct drm_i915_gem_request,
586 execlist_link);
587
588 if (to == tail_req->ctx) {
589 WARN(tail_req->elsp_submitted != 0,
590 "More than 2 already-submitted reqs queued\n");
591 list_del(&tail_req->execlist_link);
592 list_add_tail(&tail_req->execlist_link,
593 &ring->execlist_retired_req_list);
594 }
595 }
596
597 list_add_tail(&request->execlist_link, &ring->execlist_queue);
598 if (num_elements == 0)
599 execlists_context_unqueue(ring);
600
601 spin_unlock_irq(&ring->execlist_lock);
602
603 return 0;
604 }
605
606 static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf,
607 struct intel_context *ctx)
608 {
609 struct intel_engine_cs *ring = ringbuf->ring;
610 uint32_t flush_domains;
611 int ret;
612
613 flush_domains = 0;
614 if (ring->gpu_caches_dirty)
615 flush_domains = I915_GEM_GPU_DOMAINS;
616
617 ret = ring->emit_flush(ringbuf, ctx,
618 I915_GEM_GPU_DOMAINS, flush_domains);
619 if (ret)
620 return ret;
621
622 ring->gpu_caches_dirty = false;
623 return 0;
624 }
625
626 static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
627 struct intel_context *ctx,
628 struct list_head *vmas)
629 {
630 struct intel_engine_cs *ring = ringbuf->ring;
631 const unsigned other_rings = ~intel_ring_flag(ring);
632 struct i915_vma *vma;
633 uint32_t flush_domains = 0;
634 bool flush_chipset = false;
635 int ret;
636
637 list_for_each_entry(vma, vmas, exec_list) {
638 struct drm_i915_gem_object *obj = vma->obj;
639
640 if (obj->active & other_rings) {
641 ret = i915_gem_object_sync(obj, ring);
642 if (ret)
643 return ret;
644 }
645
646 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
647 flush_chipset |= i915_gem_clflush_object(obj, false);
648
649 flush_domains |= obj->base.write_domain;
650 }
651
652 if (flush_domains & I915_GEM_DOMAIN_GTT)
653 wmb();
654
655 /* Unconditionally invalidate gpu caches and ensure that we do flush
656 * any residual writes from the previous batch.
657 */
658 return logical_ring_invalidate_all_caches(ringbuf, ctx);
659 }
660
661 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request,
662 struct intel_context *ctx)
663 {
664 int ret;
665
666 if (ctx != request->ring->default_context) {
667 ret = intel_lr_context_pin(request->ring, ctx);
668 if (ret)
669 return ret;
670 }
671
672 request->ringbuf = ctx->engine[request->ring->id].ringbuf;
673 request->ctx = ctx;
674 i915_gem_context_reference(request->ctx);
675
676 return 0;
677 }
678
679 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
680 struct intel_context *ctx,
681 int bytes)
682 {
683 struct intel_engine_cs *ring = ringbuf->ring;
684 struct drm_i915_gem_request *request;
685 unsigned space;
686 int ret;
687
688 if (intel_ring_space(ringbuf) >= bytes)
689 return 0;
690
691 list_for_each_entry(request, &ring->request_list, list) {
692 /*
693 * The request queue is per-engine, so can contain requests
694 * from multiple ringbuffers. Here, we must ignore any that
695 * aren't from the ringbuffer we're considering.
696 */
697 if (request->ringbuf != ringbuf)
698 continue;
699
700 /* Would completion of this request free enough space? */
701 space = __intel_ring_space(request->postfix, ringbuf->tail,
702 ringbuf->size);
703 if (space >= bytes)
704 break;
705 }
706
707 if (WARN_ON(&request->list == &ring->request_list))
708 return -ENOSPC;
709
710 ret = i915_wait_request(request);
711 if (ret)
712 return ret;
713
714 ringbuf->space = space;
715 return 0;
716 }
717
718 /*
719 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
720 * @ringbuf: Logical Ringbuffer to advance.
721 *
722 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
723 * really happens during submission is that the context and current tail will be placed
724 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
725 * point, the tail *inside* the context is updated and the ELSP written to.
726 */
727 static void
728 intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
729 struct intel_context *ctx,
730 struct drm_i915_gem_request *request)
731 {
732 struct intel_engine_cs *ring = ringbuf->ring;
733
734 intel_logical_ring_advance(ringbuf);
735
736 if (intel_ring_stopped(ring))
737 return;
738
739 execlists_context_queue(ring, ctx, ringbuf->tail, request);
740 }
741
742 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
743 struct intel_context *ctx)
744 {
745 uint32_t __iomem *virt;
746 int rem = ringbuf->size - ringbuf->tail;
747
748 if (ringbuf->space < rem) {
749 int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
750
751 if (ret)
752 return ret;
753 }
754
755 virt = ringbuf->virtual_start + ringbuf->tail;
756 rem /= 4;
757 while (rem--)
758 iowrite32(MI_NOOP, virt++);
759
760 ringbuf->tail = 0;
761 intel_ring_update_space(ringbuf);
762
763 return 0;
764 }
765
766 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
767 struct intel_context *ctx, int bytes)
768 {
769 int ret;
770
771 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
772 ret = logical_ring_wrap_buffer(ringbuf, ctx);
773 if (unlikely(ret))
774 return ret;
775 }
776
777 if (unlikely(ringbuf->space < bytes)) {
778 ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
779 if (unlikely(ret))
780 return ret;
781 }
782
783 return 0;
784 }
785
786 /**
787 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
788 *
789 * @ringbuf: Logical ringbuffer.
790 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
791 *
792 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
793 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
794 * and also preallocates a request (every workload submission is still mediated through
795 * requests, same as it did with legacy ringbuffer submission).
796 *
797 * Return: non-zero if the ringbuffer is not ready to be written to.
798 */
799 static int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
800 struct intel_context *ctx, int num_dwords)
801 {
802 struct intel_engine_cs *ring = ringbuf->ring;
803 struct drm_device *dev = ring->dev;
804 struct drm_i915_private *dev_priv = dev->dev_private;
805 int ret;
806
807 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
808 dev_priv->mm.interruptible);
809 if (ret)
810 return ret;
811
812 ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
813 if (ret)
814 return ret;
815
816 /* Preallocate the olr before touching the ring */
817 ret = i915_gem_request_alloc(ring, ctx);
818 if (ret)
819 return ret;
820
821 ringbuf->space -= num_dwords * sizeof(uint32_t);
822 return 0;
823 }
824
825 /**
826 * execlists_submission() - submit a batchbuffer for execution, Execlists style
827 * @dev: DRM device.
828 * @file: DRM file.
829 * @ring: Engine Command Streamer to submit to.
830 * @ctx: Context to employ for this submission.
831 * @args: execbuffer call arguments.
832 * @vmas: list of vmas.
833 * @batch_obj: the batchbuffer to submit.
834 * @exec_start: batchbuffer start virtual address pointer.
835 * @dispatch_flags: translated execbuffer call flags.
836 *
837 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
838 * away the submission details of the execbuffer ioctl call.
839 *
840 * Return: non-zero if the submission fails.
841 */
842 int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
843 struct intel_engine_cs *ring,
844 struct intel_context *ctx,
845 struct drm_i915_gem_execbuffer2 *args,
846 struct list_head *vmas,
847 struct drm_i915_gem_object *batch_obj,
848 u64 exec_start, u32 dispatch_flags)
849 {
850 struct drm_i915_private *dev_priv = dev->dev_private;
851 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
852 int instp_mode;
853 u32 instp_mask;
854 int ret;
855
856 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
857 instp_mask = I915_EXEC_CONSTANTS_MASK;
858 switch (instp_mode) {
859 case I915_EXEC_CONSTANTS_REL_GENERAL:
860 case I915_EXEC_CONSTANTS_ABSOLUTE:
861 case I915_EXEC_CONSTANTS_REL_SURFACE:
862 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
863 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
864 return -EINVAL;
865 }
866
867 if (instp_mode != dev_priv->relative_constants_mode) {
868 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
869 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
870 return -EINVAL;
871 }
872
873 /* The HW changed the meaning on this bit on gen6 */
874 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
875 }
876 break;
877 default:
878 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
879 return -EINVAL;
880 }
881
882 if (args->num_cliprects != 0) {
883 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
884 return -EINVAL;
885 } else {
886 if (args->DR4 == 0xffffffff) {
887 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
888 args->DR4 = 0;
889 }
890
891 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
892 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
893 return -EINVAL;
894 }
895 }
896
897 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
898 DRM_DEBUG("sol reset is gen7 only\n");
899 return -EINVAL;
900 }
901
902 ret = execlists_move_to_gpu(ringbuf, ctx, vmas);
903 if (ret)
904 return ret;
905
906 if (ring == &dev_priv->ring[RCS] &&
907 instp_mode != dev_priv->relative_constants_mode) {
908 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
909 if (ret)
910 return ret;
911
912 intel_logical_ring_emit(ringbuf, MI_NOOP);
913 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
914 intel_logical_ring_emit(ringbuf, INSTPM);
915 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
916 intel_logical_ring_advance(ringbuf);
917
918 dev_priv->relative_constants_mode = instp_mode;
919 }
920
921 ret = ring->emit_bb_start(ringbuf, ctx, exec_start, dispatch_flags);
922 if (ret)
923 return ret;
924
925 trace_i915_gem_ring_dispatch(intel_ring_get_request(ring), dispatch_flags);
926
927 i915_gem_execbuffer_move_to_active(vmas, ring);
928 i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
929
930 return 0;
931 }
932
933 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
934 {
935 struct drm_i915_gem_request *req, *tmp;
936 struct list_head retired_list;
937
938 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
939 if (list_empty(&ring->execlist_retired_req_list))
940 return;
941
942 INIT_LIST_HEAD(&retired_list);
943 spin_lock_irq(&ring->execlist_lock);
944 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
945 spin_unlock_irq(&ring->execlist_lock);
946
947 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
948 struct intel_context *ctx = req->ctx;
949 struct drm_i915_gem_object *ctx_obj =
950 ctx->engine[ring->id].state;
951
952 if (ctx_obj && (ctx != ring->default_context))
953 intel_lr_context_unpin(ring, ctx);
954 list_del(&req->execlist_link);
955 i915_gem_request_unreference(req);
956 }
957 }
958
959 void intel_logical_ring_stop(struct intel_engine_cs *ring)
960 {
961 struct drm_i915_private *dev_priv = ring->dev->dev_private;
962 int ret;
963
964 if (!intel_ring_initialized(ring))
965 return;
966
967 ret = intel_ring_idle(ring);
968 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
969 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
970 ring->name, ret);
971
972 /* TODO: Is this correct with Execlists enabled? */
973 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
974 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
975 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
976 return;
977 }
978 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
979 }
980
981 int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf,
982 struct intel_context *ctx)
983 {
984 struct intel_engine_cs *ring = ringbuf->ring;
985 int ret;
986
987 if (!ring->gpu_caches_dirty)
988 return 0;
989
990 ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS);
991 if (ret)
992 return ret;
993
994 ring->gpu_caches_dirty = false;
995 return 0;
996 }
997
998 static int intel_lr_context_pin(struct intel_engine_cs *ring,
999 struct intel_context *ctx)
1000 {
1001 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1002 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1003 int ret = 0;
1004
1005 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1006 if (ctx->engine[ring->id].pin_count++ == 0) {
1007 ret = i915_gem_obj_ggtt_pin(ctx_obj,
1008 GEN8_LR_CONTEXT_ALIGN, 0);
1009 if (ret)
1010 goto reset_pin_count;
1011
1012 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1013 if (ret)
1014 goto unpin_ctx_obj;
1015 }
1016
1017 return ret;
1018
1019 unpin_ctx_obj:
1020 i915_gem_object_ggtt_unpin(ctx_obj);
1021 reset_pin_count:
1022 ctx->engine[ring->id].pin_count = 0;
1023
1024 return ret;
1025 }
1026
1027 void intel_lr_context_unpin(struct intel_engine_cs *ring,
1028 struct intel_context *ctx)
1029 {
1030 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1031 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1032
1033 if (ctx_obj) {
1034 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1035 if (--ctx->engine[ring->id].pin_count == 0) {
1036 intel_unpin_ringbuffer_obj(ringbuf);
1037 i915_gem_object_ggtt_unpin(ctx_obj);
1038 }
1039 }
1040 }
1041
1042 static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1043 struct intel_context *ctx)
1044 {
1045 int ret, i;
1046 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1047 struct drm_device *dev = ring->dev;
1048 struct drm_i915_private *dev_priv = dev->dev_private;
1049 struct i915_workarounds *w = &dev_priv->workarounds;
1050
1051 if (WARN_ON_ONCE(w->count == 0))
1052 return 0;
1053
1054 ring->gpu_caches_dirty = true;
1055 ret = logical_ring_flush_all_caches(ringbuf, ctx);
1056 if (ret)
1057 return ret;
1058
1059 ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2);
1060 if (ret)
1061 return ret;
1062
1063 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1064 for (i = 0; i < w->count; i++) {
1065 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1066 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1067 }
1068 intel_logical_ring_emit(ringbuf, MI_NOOP);
1069
1070 intel_logical_ring_advance(ringbuf);
1071
1072 ring->gpu_caches_dirty = true;
1073 ret = logical_ring_flush_all_caches(ringbuf, ctx);
1074 if (ret)
1075 return ret;
1076
1077 return 0;
1078 }
1079
1080 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1081 {
1082 struct drm_device *dev = ring->dev;
1083 struct drm_i915_private *dev_priv = dev->dev_private;
1084
1085 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1086 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1087
1088 if (ring->status_page.obj) {
1089 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1090 (u32)ring->status_page.gfx_addr);
1091 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1092 }
1093
1094 I915_WRITE(RING_MODE_GEN7(ring),
1095 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1096 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1097 POSTING_READ(RING_MODE_GEN7(ring));
1098 ring->next_context_status_buffer = 0;
1099 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1100
1101 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1102
1103 return 0;
1104 }
1105
1106 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1107 {
1108 struct drm_device *dev = ring->dev;
1109 struct drm_i915_private *dev_priv = dev->dev_private;
1110 int ret;
1111
1112 ret = gen8_init_common_ring(ring);
1113 if (ret)
1114 return ret;
1115
1116 /* We need to disable the AsyncFlip performance optimisations in order
1117 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1118 * programmed to '1' on all products.
1119 *
1120 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1121 */
1122 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1123
1124 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1125
1126 return init_workarounds_ring(ring);
1127 }
1128
1129 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1130 {
1131 int ret;
1132
1133 ret = gen8_init_common_ring(ring);
1134 if (ret)
1135 return ret;
1136
1137 return init_workarounds_ring(ring);
1138 }
1139
1140 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1141 struct intel_context *ctx,
1142 u64 offset, unsigned dispatch_flags)
1143 {
1144 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1145 int ret;
1146
1147 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1148 if (ret)
1149 return ret;
1150
1151 /* FIXME(BDW): Address space and security selectors. */
1152 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1153 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1154 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1155 intel_logical_ring_emit(ringbuf, MI_NOOP);
1156 intel_logical_ring_advance(ringbuf);
1157
1158 return 0;
1159 }
1160
1161 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1162 {
1163 struct drm_device *dev = ring->dev;
1164 struct drm_i915_private *dev_priv = dev->dev_private;
1165 unsigned long flags;
1166
1167 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1168 return false;
1169
1170 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1171 if (ring->irq_refcount++ == 0) {
1172 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1173 POSTING_READ(RING_IMR(ring->mmio_base));
1174 }
1175 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1176
1177 return true;
1178 }
1179
1180 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1181 {
1182 struct drm_device *dev = ring->dev;
1183 struct drm_i915_private *dev_priv = dev->dev_private;
1184 unsigned long flags;
1185
1186 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1187 if (--ring->irq_refcount == 0) {
1188 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1189 POSTING_READ(RING_IMR(ring->mmio_base));
1190 }
1191 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1192 }
1193
1194 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1195 struct intel_context *ctx,
1196 u32 invalidate_domains,
1197 u32 unused)
1198 {
1199 struct intel_engine_cs *ring = ringbuf->ring;
1200 struct drm_device *dev = ring->dev;
1201 struct drm_i915_private *dev_priv = dev->dev_private;
1202 uint32_t cmd;
1203 int ret;
1204
1205 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1206 if (ret)
1207 return ret;
1208
1209 cmd = MI_FLUSH_DW + 1;
1210
1211 /* We always require a command barrier so that subsequent
1212 * commands, such as breadcrumb interrupts, are strictly ordered
1213 * wrt the contents of the write cache being flushed to memory
1214 * (and thus being coherent from the CPU).
1215 */
1216 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1217
1218 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1219 cmd |= MI_INVALIDATE_TLB;
1220 if (ring == &dev_priv->ring[VCS])
1221 cmd |= MI_INVALIDATE_BSD;
1222 }
1223
1224 intel_logical_ring_emit(ringbuf, cmd);
1225 intel_logical_ring_emit(ringbuf,
1226 I915_GEM_HWS_SCRATCH_ADDR |
1227 MI_FLUSH_DW_USE_GTT);
1228 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1229 intel_logical_ring_emit(ringbuf, 0); /* value */
1230 intel_logical_ring_advance(ringbuf);
1231
1232 return 0;
1233 }
1234
1235 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1236 struct intel_context *ctx,
1237 u32 invalidate_domains,
1238 u32 flush_domains)
1239 {
1240 struct intel_engine_cs *ring = ringbuf->ring;
1241 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1242 bool vf_flush_wa;
1243 u32 flags = 0;
1244 int ret;
1245
1246 flags |= PIPE_CONTROL_CS_STALL;
1247
1248 if (flush_domains) {
1249 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1250 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1251 }
1252
1253 if (invalidate_domains) {
1254 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1255 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1256 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1257 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1258 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1259 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1260 flags |= PIPE_CONTROL_QW_WRITE;
1261 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1262 }
1263
1264 /*
1265 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1266 * control.
1267 */
1268 vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1269 flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1270
1271 ret = intel_logical_ring_begin(ringbuf, ctx, vf_flush_wa ? 12 : 6);
1272 if (ret)
1273 return ret;
1274
1275 if (vf_flush_wa) {
1276 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1277 intel_logical_ring_emit(ringbuf, 0);
1278 intel_logical_ring_emit(ringbuf, 0);
1279 intel_logical_ring_emit(ringbuf, 0);
1280 intel_logical_ring_emit(ringbuf, 0);
1281 intel_logical_ring_emit(ringbuf, 0);
1282 }
1283
1284 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1285 intel_logical_ring_emit(ringbuf, flags);
1286 intel_logical_ring_emit(ringbuf, scratch_addr);
1287 intel_logical_ring_emit(ringbuf, 0);
1288 intel_logical_ring_emit(ringbuf, 0);
1289 intel_logical_ring_emit(ringbuf, 0);
1290 intel_logical_ring_advance(ringbuf);
1291
1292 return 0;
1293 }
1294
1295 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1296 {
1297 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1298 }
1299
1300 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1301 {
1302 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1303 }
1304
1305 static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
1306 struct drm_i915_gem_request *request)
1307 {
1308 struct intel_engine_cs *ring = ringbuf->ring;
1309 u32 cmd;
1310 int ret;
1311
1312 /*
1313 * Reserve space for 2 NOOPs at the end of each request to be
1314 * used as a workaround for not being allowed to do lite
1315 * restore with HEAD==TAIL (WaIdleLiteRestore).
1316 */
1317 ret = intel_logical_ring_begin(ringbuf, request->ctx, 8);
1318 if (ret)
1319 return ret;
1320
1321 cmd = MI_STORE_DWORD_IMM_GEN4;
1322 cmd |= MI_GLOBAL_GTT;
1323
1324 intel_logical_ring_emit(ringbuf, cmd);
1325 intel_logical_ring_emit(ringbuf,
1326 (ring->status_page.gfx_addr +
1327 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1328 intel_logical_ring_emit(ringbuf, 0);
1329 intel_logical_ring_emit(ringbuf,
1330 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1331 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1332 intel_logical_ring_emit(ringbuf, MI_NOOP);
1333 intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
1334
1335 /*
1336 * Here we add two extra NOOPs as padding to avoid
1337 * lite restore of a context with HEAD==TAIL.
1338 */
1339 intel_logical_ring_emit(ringbuf, MI_NOOP);
1340 intel_logical_ring_emit(ringbuf, MI_NOOP);
1341 intel_logical_ring_advance(ringbuf);
1342
1343 return 0;
1344 }
1345
1346 static int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1347 struct intel_context *ctx)
1348 {
1349 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1350 struct render_state so;
1351 struct drm_i915_file_private *file_priv = ctx->file_priv;
1352 struct drm_file *file = file_priv ? file_priv->file : NULL;
1353 int ret;
1354
1355 ret = i915_gem_render_state_prepare(ring, &so);
1356 if (ret)
1357 return ret;
1358
1359 if (so.rodata == NULL)
1360 return 0;
1361
1362 ret = ring->emit_bb_start(ringbuf,
1363 ctx,
1364 so.ggtt_offset,
1365 I915_DISPATCH_SECURE);
1366 if (ret)
1367 goto out;
1368
1369 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1370
1371 ret = __i915_add_request(ring, file, so.obj);
1372 /* intel_logical_ring_add_request moves object to inactive if it
1373 * fails */
1374 out:
1375 i915_gem_render_state_fini(&so);
1376 return ret;
1377 }
1378
1379 static int gen8_init_rcs_context(struct intel_engine_cs *ring,
1380 struct intel_context *ctx)
1381 {
1382 int ret;
1383
1384 ret = intel_logical_ring_workarounds_emit(ring, ctx);
1385 if (ret)
1386 return ret;
1387
1388 return intel_lr_context_render_state_init(ring, ctx);
1389 }
1390
1391 /**
1392 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1393 *
1394 * @ring: Engine Command Streamer.
1395 *
1396 */
1397 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1398 {
1399 struct drm_i915_private *dev_priv;
1400
1401 if (!intel_ring_initialized(ring))
1402 return;
1403
1404 dev_priv = ring->dev->dev_private;
1405
1406 intel_logical_ring_stop(ring);
1407 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1408 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1409
1410 if (ring->cleanup)
1411 ring->cleanup(ring);
1412
1413 i915_cmd_parser_fini_ring(ring);
1414 i915_gem_batch_pool_fini(&ring->batch_pool);
1415
1416 if (ring->status_page.obj) {
1417 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1418 ring->status_page.obj = NULL;
1419 }
1420 }
1421
1422 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1423 {
1424 int ret;
1425
1426 /* Intentionally left blank. */
1427 ring->buffer = NULL;
1428
1429 ring->dev = dev;
1430 INIT_LIST_HEAD(&ring->active_list);
1431 INIT_LIST_HEAD(&ring->request_list);
1432 i915_gem_batch_pool_init(dev, &ring->batch_pool);
1433 init_waitqueue_head(&ring->irq_queue);
1434
1435 INIT_LIST_HEAD(&ring->execlist_queue);
1436 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1437 spin_lock_init(&ring->execlist_lock);
1438
1439 ret = i915_cmd_parser_init_ring(ring);
1440 if (ret)
1441 return ret;
1442
1443 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1444
1445 return ret;
1446 }
1447
1448 static int logical_render_ring_init(struct drm_device *dev)
1449 {
1450 struct drm_i915_private *dev_priv = dev->dev_private;
1451 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1452 int ret;
1453
1454 ring->name = "render ring";
1455 ring->id = RCS;
1456 ring->mmio_base = RENDER_RING_BASE;
1457 ring->irq_enable_mask =
1458 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1459 ring->irq_keep_mask =
1460 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1461 if (HAS_L3_DPF(dev))
1462 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1463
1464 if (INTEL_INFO(dev)->gen >= 9)
1465 ring->init_hw = gen9_init_render_ring;
1466 else
1467 ring->init_hw = gen8_init_render_ring;
1468 ring->init_context = gen8_init_rcs_context;
1469 ring->cleanup = intel_fini_pipe_control;
1470 ring->get_seqno = gen8_get_seqno;
1471 ring->set_seqno = gen8_set_seqno;
1472 ring->emit_request = gen8_emit_request;
1473 ring->emit_flush = gen8_emit_flush_render;
1474 ring->irq_get = gen8_logical_ring_get_irq;
1475 ring->irq_put = gen8_logical_ring_put_irq;
1476 ring->emit_bb_start = gen8_emit_bb_start;
1477
1478 ring->dev = dev;
1479 ret = logical_ring_init(dev, ring);
1480 if (ret)
1481 return ret;
1482
1483 return intel_init_pipe_control(ring);
1484 }
1485
1486 static int logical_bsd_ring_init(struct drm_device *dev)
1487 {
1488 struct drm_i915_private *dev_priv = dev->dev_private;
1489 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1490
1491 ring->name = "bsd ring";
1492 ring->id = VCS;
1493 ring->mmio_base = GEN6_BSD_RING_BASE;
1494 ring->irq_enable_mask =
1495 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1496 ring->irq_keep_mask =
1497 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1498
1499 ring->init_hw = gen8_init_common_ring;
1500 ring->get_seqno = gen8_get_seqno;
1501 ring->set_seqno = gen8_set_seqno;
1502 ring->emit_request = gen8_emit_request;
1503 ring->emit_flush = gen8_emit_flush;
1504 ring->irq_get = gen8_logical_ring_get_irq;
1505 ring->irq_put = gen8_logical_ring_put_irq;
1506 ring->emit_bb_start = gen8_emit_bb_start;
1507
1508 return logical_ring_init(dev, ring);
1509 }
1510
1511 static int logical_bsd2_ring_init(struct drm_device *dev)
1512 {
1513 struct drm_i915_private *dev_priv = dev->dev_private;
1514 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1515
1516 ring->name = "bds2 ring";
1517 ring->id = VCS2;
1518 ring->mmio_base = GEN8_BSD2_RING_BASE;
1519 ring->irq_enable_mask =
1520 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1521 ring->irq_keep_mask =
1522 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1523
1524 ring->init_hw = gen8_init_common_ring;
1525 ring->get_seqno = gen8_get_seqno;
1526 ring->set_seqno = gen8_set_seqno;
1527 ring->emit_request = gen8_emit_request;
1528 ring->emit_flush = gen8_emit_flush;
1529 ring->irq_get = gen8_logical_ring_get_irq;
1530 ring->irq_put = gen8_logical_ring_put_irq;
1531 ring->emit_bb_start = gen8_emit_bb_start;
1532
1533 return logical_ring_init(dev, ring);
1534 }
1535
1536 static int logical_blt_ring_init(struct drm_device *dev)
1537 {
1538 struct drm_i915_private *dev_priv = dev->dev_private;
1539 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1540
1541 ring->name = "blitter ring";
1542 ring->id = BCS;
1543 ring->mmio_base = BLT_RING_BASE;
1544 ring->irq_enable_mask =
1545 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1546 ring->irq_keep_mask =
1547 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1548
1549 ring->init_hw = gen8_init_common_ring;
1550 ring->get_seqno = gen8_get_seqno;
1551 ring->set_seqno = gen8_set_seqno;
1552 ring->emit_request = gen8_emit_request;
1553 ring->emit_flush = gen8_emit_flush;
1554 ring->irq_get = gen8_logical_ring_get_irq;
1555 ring->irq_put = gen8_logical_ring_put_irq;
1556 ring->emit_bb_start = gen8_emit_bb_start;
1557
1558 return logical_ring_init(dev, ring);
1559 }
1560
1561 static int logical_vebox_ring_init(struct drm_device *dev)
1562 {
1563 struct drm_i915_private *dev_priv = dev->dev_private;
1564 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1565
1566 ring->name = "video enhancement ring";
1567 ring->id = VECS;
1568 ring->mmio_base = VEBOX_RING_BASE;
1569 ring->irq_enable_mask =
1570 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1571 ring->irq_keep_mask =
1572 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1573
1574 ring->init_hw = gen8_init_common_ring;
1575 ring->get_seqno = gen8_get_seqno;
1576 ring->set_seqno = gen8_set_seqno;
1577 ring->emit_request = gen8_emit_request;
1578 ring->emit_flush = gen8_emit_flush;
1579 ring->irq_get = gen8_logical_ring_get_irq;
1580 ring->irq_put = gen8_logical_ring_put_irq;
1581 ring->emit_bb_start = gen8_emit_bb_start;
1582
1583 return logical_ring_init(dev, ring);
1584 }
1585
1586 /**
1587 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1588 * @dev: DRM device.
1589 *
1590 * This function inits the engines for an Execlists submission style (the equivalent in the
1591 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1592 * those engines that are present in the hardware.
1593 *
1594 * Return: non-zero if the initialization failed.
1595 */
1596 int intel_logical_rings_init(struct drm_device *dev)
1597 {
1598 struct drm_i915_private *dev_priv = dev->dev_private;
1599 int ret;
1600
1601 ret = logical_render_ring_init(dev);
1602 if (ret)
1603 return ret;
1604
1605 if (HAS_BSD(dev)) {
1606 ret = logical_bsd_ring_init(dev);
1607 if (ret)
1608 goto cleanup_render_ring;
1609 }
1610
1611 if (HAS_BLT(dev)) {
1612 ret = logical_blt_ring_init(dev);
1613 if (ret)
1614 goto cleanup_bsd_ring;
1615 }
1616
1617 if (HAS_VEBOX(dev)) {
1618 ret = logical_vebox_ring_init(dev);
1619 if (ret)
1620 goto cleanup_blt_ring;
1621 }
1622
1623 if (HAS_BSD2(dev)) {
1624 ret = logical_bsd2_ring_init(dev);
1625 if (ret)
1626 goto cleanup_vebox_ring;
1627 }
1628
1629 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1630 if (ret)
1631 goto cleanup_bsd2_ring;
1632
1633 return 0;
1634
1635 cleanup_bsd2_ring:
1636 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1637 cleanup_vebox_ring:
1638 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1639 cleanup_blt_ring:
1640 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1641 cleanup_bsd_ring:
1642 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1643 cleanup_render_ring:
1644 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1645
1646 return ret;
1647 }
1648
1649 static u32
1650 make_rpcs(struct drm_device *dev)
1651 {
1652 u32 rpcs = 0;
1653
1654 /*
1655 * No explicit RPCS request is needed to ensure full
1656 * slice/subslice/EU enablement prior to Gen9.
1657 */
1658 if (INTEL_INFO(dev)->gen < 9)
1659 return 0;
1660
1661 /*
1662 * Starting in Gen9, render power gating can leave
1663 * slice/subslice/EU in a partially enabled state. We
1664 * must make an explicit request through RPCS for full
1665 * enablement.
1666 */
1667 if (INTEL_INFO(dev)->has_slice_pg) {
1668 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1669 rpcs |= INTEL_INFO(dev)->slice_total <<
1670 GEN8_RPCS_S_CNT_SHIFT;
1671 rpcs |= GEN8_RPCS_ENABLE;
1672 }
1673
1674 if (INTEL_INFO(dev)->has_subslice_pg) {
1675 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1676 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
1677 GEN8_RPCS_SS_CNT_SHIFT;
1678 rpcs |= GEN8_RPCS_ENABLE;
1679 }
1680
1681 if (INTEL_INFO(dev)->has_eu_pg) {
1682 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1683 GEN8_RPCS_EU_MIN_SHIFT;
1684 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1685 GEN8_RPCS_EU_MAX_SHIFT;
1686 rpcs |= GEN8_RPCS_ENABLE;
1687 }
1688
1689 return rpcs;
1690 }
1691
1692 static int
1693 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1694 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1695 {
1696 struct drm_device *dev = ring->dev;
1697 struct drm_i915_private *dev_priv = dev->dev_private;
1698 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1699 struct page *page;
1700 uint32_t *reg_state;
1701 int ret;
1702
1703 if (!ppgtt)
1704 ppgtt = dev_priv->mm.aliasing_ppgtt;
1705
1706 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1707 if (ret) {
1708 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1709 return ret;
1710 }
1711
1712 ret = i915_gem_object_get_pages(ctx_obj);
1713 if (ret) {
1714 DRM_DEBUG_DRIVER("Could not get object pages\n");
1715 return ret;
1716 }
1717
1718 i915_gem_object_pin_pages(ctx_obj);
1719
1720 /* The second page of the context object contains some fields which must
1721 * be set up prior to the first execution. */
1722 page = i915_gem_object_get_page(ctx_obj, 1);
1723 reg_state = kmap_atomic(page);
1724
1725 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1726 * commands followed by (reg, value) pairs. The values we are setting here are
1727 * only for the first context restore: on a subsequent save, the GPU will
1728 * recreate this batchbuffer with new values (including all the missing
1729 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1730 if (ring->id == RCS)
1731 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1732 else
1733 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1734 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1735 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1736 reg_state[CTX_CONTEXT_CONTROL+1] =
1737 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1738 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
1739 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1740 reg_state[CTX_RING_HEAD+1] = 0;
1741 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1742 reg_state[CTX_RING_TAIL+1] = 0;
1743 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1744 /* Ring buffer start address is not known until the buffer is pinned.
1745 * It is written to the context image in execlists_update_context()
1746 */
1747 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1748 reg_state[CTX_RING_BUFFER_CONTROL+1] =
1749 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1750 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1751 reg_state[CTX_BB_HEAD_U+1] = 0;
1752 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1753 reg_state[CTX_BB_HEAD_L+1] = 0;
1754 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1755 reg_state[CTX_BB_STATE+1] = (1<<5);
1756 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1757 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1758 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1759 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1760 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1761 reg_state[CTX_SECOND_BB_STATE+1] = 0;
1762 if (ring->id == RCS) {
1763 /* TODO: according to BSpec, the register state context
1764 * for CHV does not have these. OTOH, these registers do
1765 * exist in CHV. I'm waiting for a clarification */
1766 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1767 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1768 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1769 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1770 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1771 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1772 }
1773 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1774 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1775 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1776 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1777 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1778 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1779 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1780 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1781 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1782 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1783 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1784 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1785
1786 /* With dynamic page allocation, PDPs may not be allocated at this point,
1787 * Point the unallocated PDPs to the scratch page
1788 */
1789 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
1790 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
1791 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
1792 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
1793 if (ring->id == RCS) {
1794 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1795 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
1796 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
1797 }
1798
1799 kunmap_atomic(reg_state);
1800
1801 ctx_obj->dirty = 1;
1802 set_page_dirty(page);
1803 i915_gem_object_unpin_pages(ctx_obj);
1804
1805 return 0;
1806 }
1807
1808 /**
1809 * intel_lr_context_free() - free the LRC specific bits of a context
1810 * @ctx: the LR context to free.
1811 *
1812 * The real context freeing is done in i915_gem_context_free: this only
1813 * takes care of the bits that are LRC related: the per-engine backing
1814 * objects and the logical ringbuffer.
1815 */
1816 void intel_lr_context_free(struct intel_context *ctx)
1817 {
1818 int i;
1819
1820 for (i = 0; i < I915_NUM_RINGS; i++) {
1821 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1822
1823 if (ctx_obj) {
1824 struct intel_ringbuffer *ringbuf =
1825 ctx->engine[i].ringbuf;
1826 struct intel_engine_cs *ring = ringbuf->ring;
1827
1828 if (ctx == ring->default_context) {
1829 intel_unpin_ringbuffer_obj(ringbuf);
1830 i915_gem_object_ggtt_unpin(ctx_obj);
1831 }
1832 WARN_ON(ctx->engine[ring->id].pin_count);
1833 intel_destroy_ringbuffer_obj(ringbuf);
1834 kfree(ringbuf);
1835 drm_gem_object_unreference(&ctx_obj->base);
1836 }
1837 }
1838 }
1839
1840 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1841 {
1842 int ret = 0;
1843
1844 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
1845
1846 switch (ring->id) {
1847 case RCS:
1848 if (INTEL_INFO(ring->dev)->gen >= 9)
1849 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1850 else
1851 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1852 break;
1853 case VCS:
1854 case BCS:
1855 case VECS:
1856 case VCS2:
1857 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1858 break;
1859 }
1860
1861 return ret;
1862 }
1863
1864 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1865 struct drm_i915_gem_object *default_ctx_obj)
1866 {
1867 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1868
1869 /* The status page is offset 0 from the default context object
1870 * in LRC mode. */
1871 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
1872 ring->status_page.page_addr =
1873 kmap(sg_page(default_ctx_obj->pages->sgl));
1874 ring->status_page.obj = default_ctx_obj;
1875
1876 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1877 (u32)ring->status_page.gfx_addr);
1878 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1879 }
1880
1881 /**
1882 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1883 * @ctx: LR context to create.
1884 * @ring: engine to be used with the context.
1885 *
1886 * This function can be called more than once, with different engines, if we plan
1887 * to use the context with them. The context backing objects and the ringbuffers
1888 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1889 * the creation is a deferred call: it's better to make sure first that we need to use
1890 * a given ring with the context.
1891 *
1892 * Return: non-zero on error.
1893 */
1894 int intel_lr_context_deferred_create(struct intel_context *ctx,
1895 struct intel_engine_cs *ring)
1896 {
1897 const bool is_global_default_ctx = (ctx == ring->default_context);
1898 struct drm_device *dev = ring->dev;
1899 struct drm_i915_gem_object *ctx_obj;
1900 uint32_t context_size;
1901 struct intel_ringbuffer *ringbuf;
1902 int ret;
1903
1904 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1905 WARN_ON(ctx->engine[ring->id].state);
1906
1907 context_size = round_up(get_lr_context_size(ring), 4096);
1908
1909 ctx_obj = i915_gem_alloc_object(dev, context_size);
1910 if (!ctx_obj) {
1911 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
1912 return -ENOMEM;
1913 }
1914
1915 if (is_global_default_ctx) {
1916 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1917 if (ret) {
1918 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
1919 ret);
1920 drm_gem_object_unreference(&ctx_obj->base);
1921 return ret;
1922 }
1923 }
1924
1925 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1926 if (!ringbuf) {
1927 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1928 ring->name);
1929 ret = -ENOMEM;
1930 goto error_unpin_ctx;
1931 }
1932
1933 ringbuf->ring = ring;
1934
1935 ringbuf->size = 32 * PAGE_SIZE;
1936 ringbuf->effective_size = ringbuf->size;
1937 ringbuf->head = 0;
1938 ringbuf->tail = 0;
1939 ringbuf->last_retired_head = -1;
1940 intel_ring_update_space(ringbuf);
1941
1942 if (ringbuf->obj == NULL) {
1943 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1944 if (ret) {
1945 DRM_DEBUG_DRIVER(
1946 "Failed to allocate ringbuffer obj %s: %d\n",
1947 ring->name, ret);
1948 goto error_free_rbuf;
1949 }
1950
1951 if (is_global_default_ctx) {
1952 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1953 if (ret) {
1954 DRM_ERROR(
1955 "Failed to pin and map ringbuffer %s: %d\n",
1956 ring->name, ret);
1957 goto error_destroy_rbuf;
1958 }
1959 }
1960
1961 }
1962
1963 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1964 if (ret) {
1965 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1966 goto error;
1967 }
1968
1969 ctx->engine[ring->id].ringbuf = ringbuf;
1970 ctx->engine[ring->id].state = ctx_obj;
1971
1972 if (ctx == ring->default_context)
1973 lrc_setup_hardware_status_page(ring, ctx_obj);
1974 else if (ring->id == RCS && !ctx->rcs_initialized) {
1975 if (ring->init_context) {
1976 ret = ring->init_context(ring, ctx);
1977 if (ret) {
1978 DRM_ERROR("ring init context: %d\n", ret);
1979 ctx->engine[ring->id].ringbuf = NULL;
1980 ctx->engine[ring->id].state = NULL;
1981 goto error;
1982 }
1983 }
1984
1985 ctx->rcs_initialized = true;
1986 }
1987
1988 return 0;
1989
1990 error:
1991 if (is_global_default_ctx)
1992 intel_unpin_ringbuffer_obj(ringbuf);
1993 error_destroy_rbuf:
1994 intel_destroy_ringbuffer_obj(ringbuf);
1995 error_free_rbuf:
1996 kfree(ringbuf);
1997 error_unpin_ctx:
1998 if (is_global_default_ctx)
1999 i915_gem_object_ggtt_unpin(ctx_obj);
2000 drm_gem_object_unreference(&ctx_obj->base);
2001 return ret;
2002 }
2003
2004 void intel_lr_context_reset(struct drm_device *dev,
2005 struct intel_context *ctx)
2006 {
2007 struct drm_i915_private *dev_priv = dev->dev_private;
2008 struct intel_engine_cs *ring;
2009 int i;
2010
2011 for_each_ring(ring, dev_priv, i) {
2012 struct drm_i915_gem_object *ctx_obj =
2013 ctx->engine[ring->id].state;
2014 struct intel_ringbuffer *ringbuf =
2015 ctx->engine[ring->id].ringbuf;
2016 uint32_t *reg_state;
2017 struct page *page;
2018
2019 if (!ctx_obj)
2020 continue;
2021
2022 if (i915_gem_object_get_pages(ctx_obj)) {
2023 WARN(1, "Failed get_pages for context obj\n");
2024 continue;
2025 }
2026 page = i915_gem_object_get_page(ctx_obj, 1);
2027 reg_state = kmap_atomic(page);
2028
2029 reg_state[CTX_RING_HEAD+1] = 0;
2030 reg_state[CTX_RING_TAIL+1] = 0;
2031
2032 kunmap_atomic(reg_state);
2033
2034 ringbuf->head = 0;
2035 ringbuf->tail = 0;
2036 }
2037 }