]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/intel_lrc.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138 #include "intel_mocs.h"
139
140 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
144 #define RING_EXECLIST_QFULL (1 << 0x2)
145 #define RING_EXECLIST1_VALID (1 << 0x3)
146 #define RING_EXECLIST0_VALID (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
150
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
157
158 #define CTX_LRI_HEADER_0 0x01
159 #define CTX_CONTEXT_CONTROL 0x02
160 #define CTX_RING_HEAD 0x04
161 #define CTX_RING_TAIL 0x06
162 #define CTX_RING_BUFFER_START 0x08
163 #define CTX_RING_BUFFER_CONTROL 0x0a
164 #define CTX_BB_HEAD_U 0x0c
165 #define CTX_BB_HEAD_L 0x0e
166 #define CTX_BB_STATE 0x10
167 #define CTX_SECOND_BB_HEAD_U 0x12
168 #define CTX_SECOND_BB_HEAD_L 0x14
169 #define CTX_SECOND_BB_STATE 0x16
170 #define CTX_BB_PER_CTX_PTR 0x18
171 #define CTX_RCS_INDIRECT_CTX 0x1a
172 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
173 #define CTX_LRI_HEADER_1 0x21
174 #define CTX_CTX_TIMESTAMP 0x22
175 #define CTX_PDP3_UDW 0x24
176 #define CTX_PDP3_LDW 0x26
177 #define CTX_PDP2_UDW 0x28
178 #define CTX_PDP2_LDW 0x2a
179 #define CTX_PDP1_UDW 0x2c
180 #define CTX_PDP1_LDW 0x2e
181 #define CTX_PDP0_UDW 0x30
182 #define CTX_PDP0_LDW 0x32
183 #define CTX_LRI_HEADER_2 0x41
184 #define CTX_R_PWR_CLK_STATE 0x42
185 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
186
187 #define GEN8_CTX_VALID (1<<0)
188 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189 #define GEN8_CTX_FORCE_RESTORE (1<<2)
190 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
191 #define GEN8_CTX_PRIVILEGE (1<<8)
192
193 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
194 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
195 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
196 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
197 }
198
199 enum {
200 ADVANCED_CONTEXT = 0,
201 LEGACY_CONTEXT,
202 ADVANCED_AD_CONTEXT,
203 LEGACY_64B_CONTEXT
204 };
205 #define GEN8_CTX_MODE_SHIFT 3
206 enum {
207 FAULT_AND_HANG = 0,
208 FAULT_AND_HALT, /* Debug only */
209 FAULT_AND_STREAM,
210 FAULT_AND_CONTINUE /* Unsupported */
211 };
212 #define GEN8_CTX_ID_SHIFT 32
213 #define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
214
215 static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
216
217 /**
218 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
219 * @dev: DRM device.
220 * @enable_execlists: value of i915.enable_execlists module parameter.
221 *
222 * Only certain platforms support Execlists (the prerequisites being
223 * support for Logical Ring Contexts and Aliasing PPGTT or better).
224 *
225 * Return: 1 if Execlists is supported and has to be enabled.
226 */
227 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
228 {
229 WARN_ON(i915.enable_ppgtt == -1);
230
231 if (INTEL_INFO(dev)->gen >= 9)
232 return 1;
233
234 if (enable_execlists == 0)
235 return 0;
236
237 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
238 i915.use_mmio_flip >= 0)
239 return 1;
240
241 return 0;
242 }
243
244 /**
245 * intel_execlists_ctx_id() - get the Execlists Context ID
246 * @ctx_obj: Logical Ring Context backing object.
247 *
248 * Do not confuse with ctx->id! Unfortunately we have a name overload
249 * here: the old context ID we pass to userspace as a handler so that
250 * they can refer to a context, and the new context ID we pass to the
251 * ELSP so that the GPU can inform us of the context status via
252 * interrupts.
253 *
254 * Return: 20-bits globally unique context ID.
255 */
256 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
257 {
258 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
259
260 /* LRCA is required to be 4K aligned so the more significant 20 bits
261 * are globally unique */
262 return lrca >> 12;
263 }
264
265 static uint64_t execlists_ctx_descriptor(struct drm_i915_gem_request *rq)
266 {
267 struct intel_engine_cs *ring = rq->ring;
268 struct drm_device *dev = ring->dev;
269 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
270 uint64_t desc;
271 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
272
273 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
274
275 desc = GEN8_CTX_VALID;
276 desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
277 if (IS_GEN8(ctx_obj->base.dev))
278 desc |= GEN8_CTX_L3LLC_COHERENT;
279 desc |= GEN8_CTX_PRIVILEGE;
280 desc |= lrca;
281 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
282
283 /* TODO: WaDisableLiteRestore when we start using semaphore
284 * signalling between Command Streamers */
285 /* desc |= GEN8_CTX_FORCE_RESTORE; */
286
287 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
288 if (IS_GEN9(dev) &&
289 INTEL_REVID(dev) <= SKL_REVID_B0 &&
290 (ring->id == BCS || ring->id == VCS ||
291 ring->id == VECS || ring->id == VCS2))
292 desc |= GEN8_CTX_FORCE_RESTORE;
293
294 return desc;
295 }
296
297 static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
298 struct drm_i915_gem_request *rq1)
299 {
300
301 struct intel_engine_cs *ring = rq0->ring;
302 struct drm_device *dev = ring->dev;
303 struct drm_i915_private *dev_priv = dev->dev_private;
304 uint64_t desc[2];
305
306 if (rq1) {
307 desc[1] = execlists_ctx_descriptor(rq1);
308 rq1->elsp_submitted++;
309 } else {
310 desc[1] = 0;
311 }
312
313 desc[0] = execlists_ctx_descriptor(rq0);
314 rq0->elsp_submitted++;
315
316 /* You must always write both descriptors in the order below. */
317 spin_lock(&dev_priv->uncore.lock);
318 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
319 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
320 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
321
322 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
323 /* The context is automatically loaded after the following */
324 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
325
326 /* ELSP is a wo register, use another nearby reg for posting */
327 POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
328 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
329 spin_unlock(&dev_priv->uncore.lock);
330 }
331
332 static int execlists_update_context(struct drm_i915_gem_request *rq)
333 {
334 struct intel_engine_cs *ring = rq->ring;
335 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
336 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
337 struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
338 struct page *page;
339 uint32_t *reg_state;
340
341 BUG_ON(!ctx_obj);
342 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
343 WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
344
345 page = i915_gem_object_get_page(ctx_obj, 1);
346 reg_state = kmap_atomic(page);
347
348 reg_state[CTX_RING_TAIL+1] = rq->tail;
349 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
350
351 /* True PPGTT with dynamic page allocation: update PDP registers and
352 * point the unallocated PDPs to the scratch page
353 */
354 if (ppgtt) {
355 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
356 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
357 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
358 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
359 }
360
361 kunmap_atomic(reg_state);
362
363 return 0;
364 }
365
366 static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
367 struct drm_i915_gem_request *rq1)
368 {
369 execlists_update_context(rq0);
370
371 if (rq1)
372 execlists_update_context(rq1);
373
374 execlists_elsp_write(rq0, rq1);
375 }
376
377 static void execlists_context_unqueue(struct intel_engine_cs *ring)
378 {
379 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
380 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
381
382 assert_spin_locked(&ring->execlist_lock);
383
384 /*
385 * If irqs are not active generate a warning as batches that finish
386 * without the irqs may get lost and a GPU Hang may occur.
387 */
388 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
389
390 if (list_empty(&ring->execlist_queue))
391 return;
392
393 /* Try to read in pairs */
394 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
395 execlist_link) {
396 if (!req0) {
397 req0 = cursor;
398 } else if (req0->ctx == cursor->ctx) {
399 /* Same ctx: ignore first request, as second request
400 * will update tail past first request's workload */
401 cursor->elsp_submitted = req0->elsp_submitted;
402 list_del(&req0->execlist_link);
403 list_add_tail(&req0->execlist_link,
404 &ring->execlist_retired_req_list);
405 req0 = cursor;
406 } else {
407 req1 = cursor;
408 break;
409 }
410 }
411
412 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
413 /*
414 * WaIdleLiteRestore: make sure we never cause a lite
415 * restore with HEAD==TAIL
416 */
417 if (req0->elsp_submitted) {
418 /*
419 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
420 * as we resubmit the request. See gen8_emit_request()
421 * for where we prepare the padding after the end of the
422 * request.
423 */
424 struct intel_ringbuffer *ringbuf;
425
426 ringbuf = req0->ctx->engine[ring->id].ringbuf;
427 req0->tail += 8;
428 req0->tail &= ringbuf->size - 1;
429 }
430 }
431
432 WARN_ON(req1 && req1->elsp_submitted);
433
434 execlists_submit_requests(req0, req1);
435 }
436
437 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
438 u32 request_id)
439 {
440 struct drm_i915_gem_request *head_req;
441
442 assert_spin_locked(&ring->execlist_lock);
443
444 head_req = list_first_entry_or_null(&ring->execlist_queue,
445 struct drm_i915_gem_request,
446 execlist_link);
447
448 if (head_req != NULL) {
449 struct drm_i915_gem_object *ctx_obj =
450 head_req->ctx->engine[ring->id].state;
451 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
452 WARN(head_req->elsp_submitted == 0,
453 "Never submitted head request\n");
454
455 if (--head_req->elsp_submitted <= 0) {
456 list_del(&head_req->execlist_link);
457 list_add_tail(&head_req->execlist_link,
458 &ring->execlist_retired_req_list);
459 return true;
460 }
461 }
462 }
463
464 return false;
465 }
466
467 /**
468 * intel_lrc_irq_handler() - handle Context Switch interrupts
469 * @ring: Engine Command Streamer to handle.
470 *
471 * Check the unread Context Status Buffers and manage the submission of new
472 * contexts to the ELSP accordingly.
473 */
474 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
475 {
476 struct drm_i915_private *dev_priv = ring->dev->dev_private;
477 u32 status_pointer;
478 u8 read_pointer;
479 u8 write_pointer;
480 u32 status;
481 u32 status_id;
482 u32 submit_contexts = 0;
483
484 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
485
486 read_pointer = ring->next_context_status_buffer;
487 write_pointer = status_pointer & GEN8_CSB_PTR_MASK;
488 if (read_pointer > write_pointer)
489 write_pointer += GEN8_CSB_ENTRIES;
490
491 spin_lock(&ring->execlist_lock);
492
493 while (read_pointer < write_pointer) {
494 read_pointer++;
495 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
496 (read_pointer % GEN8_CSB_ENTRIES) * 8);
497 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
498 (read_pointer % GEN8_CSB_ENTRIES) * 8 + 4);
499
500 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
501 continue;
502
503 if (status & GEN8_CTX_STATUS_PREEMPTED) {
504 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
505 if (execlists_check_remove_request(ring, status_id))
506 WARN(1, "Lite Restored request removed from queue\n");
507 } else
508 WARN(1, "Preemption without Lite Restore\n");
509 }
510
511 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
512 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
513 if (execlists_check_remove_request(ring, status_id))
514 submit_contexts++;
515 }
516 }
517
518 if (submit_contexts != 0)
519 execlists_context_unqueue(ring);
520
521 spin_unlock(&ring->execlist_lock);
522
523 WARN(submit_contexts > 2, "More than two context complete events?\n");
524 ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
525
526 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
527 _MASKED_FIELD(GEN8_CSB_PTR_MASK << 8,
528 ((u32)ring->next_context_status_buffer &
529 GEN8_CSB_PTR_MASK) << 8));
530 }
531
532 static int execlists_context_queue(struct drm_i915_gem_request *request)
533 {
534 struct intel_engine_cs *ring = request->ring;
535 struct drm_i915_gem_request *cursor;
536 int num_elements = 0;
537
538 if (request->ctx != ring->default_context)
539 intel_lr_context_pin(request);
540
541 i915_gem_request_reference(request);
542
543 request->tail = request->ringbuf->tail;
544
545 spin_lock_irq(&ring->execlist_lock);
546
547 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
548 if (++num_elements > 2)
549 break;
550
551 if (num_elements > 2) {
552 struct drm_i915_gem_request *tail_req;
553
554 tail_req = list_last_entry(&ring->execlist_queue,
555 struct drm_i915_gem_request,
556 execlist_link);
557
558 if (request->ctx == tail_req->ctx) {
559 WARN(tail_req->elsp_submitted != 0,
560 "More than 2 already-submitted reqs queued\n");
561 list_del(&tail_req->execlist_link);
562 list_add_tail(&tail_req->execlist_link,
563 &ring->execlist_retired_req_list);
564 }
565 }
566
567 list_add_tail(&request->execlist_link, &ring->execlist_queue);
568 if (num_elements == 0)
569 execlists_context_unqueue(ring);
570
571 spin_unlock_irq(&ring->execlist_lock);
572
573 return 0;
574 }
575
576 static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
577 {
578 struct intel_engine_cs *ring = req->ring;
579 uint32_t flush_domains;
580 int ret;
581
582 flush_domains = 0;
583 if (ring->gpu_caches_dirty)
584 flush_domains = I915_GEM_GPU_DOMAINS;
585
586 ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
587 if (ret)
588 return ret;
589
590 ring->gpu_caches_dirty = false;
591 return 0;
592 }
593
594 static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
595 struct list_head *vmas)
596 {
597 const unsigned other_rings = ~intel_ring_flag(req->ring);
598 struct i915_vma *vma;
599 uint32_t flush_domains = 0;
600 bool flush_chipset = false;
601 int ret;
602
603 list_for_each_entry(vma, vmas, exec_list) {
604 struct drm_i915_gem_object *obj = vma->obj;
605
606 if (obj->active & other_rings) {
607 ret = i915_gem_object_sync(obj, req->ring, &req);
608 if (ret)
609 return ret;
610 }
611
612 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
613 flush_chipset |= i915_gem_clflush_object(obj, false);
614
615 flush_domains |= obj->base.write_domain;
616 }
617
618 if (flush_domains & I915_GEM_DOMAIN_GTT)
619 wmb();
620
621 /* Unconditionally invalidate gpu caches and ensure that we do flush
622 * any residual writes from the previous batch.
623 */
624 return logical_ring_invalidate_all_caches(req);
625 }
626
627 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
628 {
629 int ret;
630
631 request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
632
633 if (request->ctx != request->ring->default_context) {
634 ret = intel_lr_context_pin(request);
635 if (ret)
636 return ret;
637 }
638
639 return 0;
640 }
641
642 static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
643 int bytes)
644 {
645 struct intel_ringbuffer *ringbuf = req->ringbuf;
646 struct intel_engine_cs *ring = req->ring;
647 struct drm_i915_gem_request *target;
648 unsigned space;
649 int ret;
650
651 if (intel_ring_space(ringbuf) >= bytes)
652 return 0;
653
654 /* The whole point of reserving space is to not wait! */
655 WARN_ON(ringbuf->reserved_in_use);
656
657 list_for_each_entry(target, &ring->request_list, list) {
658 /*
659 * The request queue is per-engine, so can contain requests
660 * from multiple ringbuffers. Here, we must ignore any that
661 * aren't from the ringbuffer we're considering.
662 */
663 if (target->ringbuf != ringbuf)
664 continue;
665
666 /* Would completion of this request free enough space? */
667 space = __intel_ring_space(target->postfix, ringbuf->tail,
668 ringbuf->size);
669 if (space >= bytes)
670 break;
671 }
672
673 if (WARN_ON(&target->list == &ring->request_list))
674 return -ENOSPC;
675
676 ret = i915_wait_request(target);
677 if (ret)
678 return ret;
679
680 ringbuf->space = space;
681 return 0;
682 }
683
684 /*
685 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
686 * @request: Request to advance the logical ringbuffer of.
687 *
688 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
689 * really happens during submission is that the context and current tail will be placed
690 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
691 * point, the tail *inside* the context is updated and the ELSP written to.
692 */
693 static void
694 intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
695 {
696 struct intel_engine_cs *ring = request->ring;
697
698 intel_logical_ring_advance(request->ringbuf);
699
700 if (intel_ring_stopped(ring))
701 return;
702
703 execlists_context_queue(request);
704 }
705
706 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
707 {
708 uint32_t __iomem *virt;
709 int rem = ringbuf->size - ringbuf->tail;
710
711 virt = ringbuf->virtual_start + ringbuf->tail;
712 rem /= 4;
713 while (rem--)
714 iowrite32(MI_NOOP, virt++);
715
716 ringbuf->tail = 0;
717 intel_ring_update_space(ringbuf);
718 }
719
720 static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
721 {
722 struct intel_ringbuffer *ringbuf = req->ringbuf;
723 int remain_usable = ringbuf->effective_size - ringbuf->tail;
724 int remain_actual = ringbuf->size - ringbuf->tail;
725 int ret, total_bytes, wait_bytes = 0;
726 bool need_wrap = false;
727
728 if (ringbuf->reserved_in_use)
729 total_bytes = bytes;
730 else
731 total_bytes = bytes + ringbuf->reserved_size;
732
733 if (unlikely(bytes > remain_usable)) {
734 /*
735 * Not enough space for the basic request. So need to flush
736 * out the remainder and then wait for base + reserved.
737 */
738 wait_bytes = remain_actual + total_bytes;
739 need_wrap = true;
740 } else {
741 if (unlikely(total_bytes > remain_usable)) {
742 /*
743 * The base request will fit but the reserved space
744 * falls off the end. So only need to to wait for the
745 * reserved size after flushing out the remainder.
746 */
747 wait_bytes = remain_actual + ringbuf->reserved_size;
748 need_wrap = true;
749 } else if (total_bytes > ringbuf->space) {
750 /* No wrapping required, just waiting. */
751 wait_bytes = total_bytes;
752 }
753 }
754
755 if (wait_bytes) {
756 ret = logical_ring_wait_for_space(req, wait_bytes);
757 if (unlikely(ret))
758 return ret;
759
760 if (need_wrap)
761 __wrap_ring_buffer(ringbuf);
762 }
763
764 return 0;
765 }
766
767 /**
768 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
769 *
770 * @request: The request to start some new work for
771 * @ctx: Logical ring context whose ringbuffer is being prepared.
772 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
773 *
774 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
775 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
776 * and also preallocates a request (every workload submission is still mediated through
777 * requests, same as it did with legacy ringbuffer submission).
778 *
779 * Return: non-zero if the ringbuffer is not ready to be written to.
780 */
781 int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
782 {
783 struct drm_i915_private *dev_priv;
784 int ret;
785
786 WARN_ON(req == NULL);
787 dev_priv = req->ring->dev->dev_private;
788
789 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
790 dev_priv->mm.interruptible);
791 if (ret)
792 return ret;
793
794 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
795 if (ret)
796 return ret;
797
798 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
799 return 0;
800 }
801
802 int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
803 {
804 /*
805 * The first call merely notes the reserve request and is common for
806 * all back ends. The subsequent localised _begin() call actually
807 * ensures that the reservation is available. Without the begin, if
808 * the request creator immediately submitted the request without
809 * adding any commands to it then there might not actually be
810 * sufficient room for the submission commands.
811 */
812 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
813
814 return intel_logical_ring_begin(request, 0);
815 }
816
817 /**
818 * execlists_submission() - submit a batchbuffer for execution, Execlists style
819 * @dev: DRM device.
820 * @file: DRM file.
821 * @ring: Engine Command Streamer to submit to.
822 * @ctx: Context to employ for this submission.
823 * @args: execbuffer call arguments.
824 * @vmas: list of vmas.
825 * @batch_obj: the batchbuffer to submit.
826 * @exec_start: batchbuffer start virtual address pointer.
827 * @dispatch_flags: translated execbuffer call flags.
828 *
829 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
830 * away the submission details of the execbuffer ioctl call.
831 *
832 * Return: non-zero if the submission fails.
833 */
834 int intel_execlists_submission(struct i915_execbuffer_params *params,
835 struct drm_i915_gem_execbuffer2 *args,
836 struct list_head *vmas)
837 {
838 struct drm_device *dev = params->dev;
839 struct intel_engine_cs *ring = params->ring;
840 struct drm_i915_private *dev_priv = dev->dev_private;
841 struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
842 u64 exec_start;
843 int instp_mode;
844 u32 instp_mask;
845 int ret;
846
847 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
848 instp_mask = I915_EXEC_CONSTANTS_MASK;
849 switch (instp_mode) {
850 case I915_EXEC_CONSTANTS_REL_GENERAL:
851 case I915_EXEC_CONSTANTS_ABSOLUTE:
852 case I915_EXEC_CONSTANTS_REL_SURFACE:
853 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
854 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
855 return -EINVAL;
856 }
857
858 if (instp_mode != dev_priv->relative_constants_mode) {
859 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
860 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
861 return -EINVAL;
862 }
863
864 /* The HW changed the meaning on this bit on gen6 */
865 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
866 }
867 break;
868 default:
869 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
870 return -EINVAL;
871 }
872
873 if (args->num_cliprects != 0) {
874 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
875 return -EINVAL;
876 } else {
877 if (args->DR4 == 0xffffffff) {
878 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
879 args->DR4 = 0;
880 }
881
882 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
883 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
884 return -EINVAL;
885 }
886 }
887
888 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
889 DRM_DEBUG("sol reset is gen7 only\n");
890 return -EINVAL;
891 }
892
893 ret = execlists_move_to_gpu(params->request, vmas);
894 if (ret)
895 return ret;
896
897 if (ring == &dev_priv->ring[RCS] &&
898 instp_mode != dev_priv->relative_constants_mode) {
899 ret = intel_logical_ring_begin(params->request, 4);
900 if (ret)
901 return ret;
902
903 intel_logical_ring_emit(ringbuf, MI_NOOP);
904 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
905 intel_logical_ring_emit(ringbuf, INSTPM);
906 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
907 intel_logical_ring_advance(ringbuf);
908
909 dev_priv->relative_constants_mode = instp_mode;
910 }
911
912 exec_start = params->batch_obj_vm_offset +
913 args->batch_start_offset;
914
915 ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
916 if (ret)
917 return ret;
918
919 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
920
921 i915_gem_execbuffer_move_to_active(vmas, params->request);
922 i915_gem_execbuffer_retire_commands(params);
923
924 return 0;
925 }
926
927 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
928 {
929 struct drm_i915_gem_request *req, *tmp;
930 struct list_head retired_list;
931
932 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
933 if (list_empty(&ring->execlist_retired_req_list))
934 return;
935
936 INIT_LIST_HEAD(&retired_list);
937 spin_lock_irq(&ring->execlist_lock);
938 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
939 spin_unlock_irq(&ring->execlist_lock);
940
941 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
942 struct intel_context *ctx = req->ctx;
943 struct drm_i915_gem_object *ctx_obj =
944 ctx->engine[ring->id].state;
945
946 if (ctx_obj && (ctx != ring->default_context))
947 intel_lr_context_unpin(req);
948 list_del(&req->execlist_link);
949 i915_gem_request_unreference(req);
950 }
951 }
952
953 void intel_logical_ring_stop(struct intel_engine_cs *ring)
954 {
955 struct drm_i915_private *dev_priv = ring->dev->dev_private;
956 int ret;
957
958 if (!intel_ring_initialized(ring))
959 return;
960
961 ret = intel_ring_idle(ring);
962 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
963 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
964 ring->name, ret);
965
966 /* TODO: Is this correct with Execlists enabled? */
967 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
968 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
969 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
970 return;
971 }
972 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
973 }
974
975 int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
976 {
977 struct intel_engine_cs *ring = req->ring;
978 int ret;
979
980 if (!ring->gpu_caches_dirty)
981 return 0;
982
983 ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
984 if (ret)
985 return ret;
986
987 ring->gpu_caches_dirty = false;
988 return 0;
989 }
990
991 static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
992 {
993 struct intel_engine_cs *ring = rq->ring;
994 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
995 struct intel_ringbuffer *ringbuf = rq->ringbuf;
996 int ret = 0;
997
998 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
999 if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1000 ret = i915_gem_obj_ggtt_pin(ctx_obj,
1001 GEN8_LR_CONTEXT_ALIGN, 0);
1002 if (ret)
1003 goto reset_pin_count;
1004
1005 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1006 if (ret)
1007 goto unpin_ctx_obj;
1008
1009 ctx_obj->dirty = true;
1010 }
1011
1012 return ret;
1013
1014 unpin_ctx_obj:
1015 i915_gem_object_ggtt_unpin(ctx_obj);
1016 reset_pin_count:
1017 rq->ctx->engine[ring->id].pin_count = 0;
1018
1019 return ret;
1020 }
1021
1022 void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1023 {
1024 struct intel_engine_cs *ring = rq->ring;
1025 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1026 struct intel_ringbuffer *ringbuf = rq->ringbuf;
1027
1028 if (ctx_obj) {
1029 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1030 if (--rq->ctx->engine[ring->id].pin_count == 0) {
1031 intel_unpin_ringbuffer_obj(ringbuf);
1032 i915_gem_object_ggtt_unpin(ctx_obj);
1033 }
1034 }
1035 }
1036
1037 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1038 {
1039 int ret, i;
1040 struct intel_engine_cs *ring = req->ring;
1041 struct intel_ringbuffer *ringbuf = req->ringbuf;
1042 struct drm_device *dev = ring->dev;
1043 struct drm_i915_private *dev_priv = dev->dev_private;
1044 struct i915_workarounds *w = &dev_priv->workarounds;
1045
1046 if (WARN_ON_ONCE(w->count == 0))
1047 return 0;
1048
1049 ring->gpu_caches_dirty = true;
1050 ret = logical_ring_flush_all_caches(req);
1051 if (ret)
1052 return ret;
1053
1054 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1055 if (ret)
1056 return ret;
1057
1058 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1059 for (i = 0; i < w->count; i++) {
1060 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1061 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1062 }
1063 intel_logical_ring_emit(ringbuf, MI_NOOP);
1064
1065 intel_logical_ring_advance(ringbuf);
1066
1067 ring->gpu_caches_dirty = true;
1068 ret = logical_ring_flush_all_caches(req);
1069 if (ret)
1070 return ret;
1071
1072 return 0;
1073 }
1074
1075 #define wa_ctx_emit(batch, index, cmd) \
1076 do { \
1077 int __index = (index)++; \
1078 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1079 return -ENOSPC; \
1080 } \
1081 batch[__index] = (cmd); \
1082 } while (0)
1083
1084
1085 /*
1086 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1087 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1088 * but there is a slight complication as this is applied in WA batch where the
1089 * values are only initialized once so we cannot take register value at the
1090 * beginning and reuse it further; hence we save its value to memory, upload a
1091 * constant value with bit21 set and then we restore it back with the saved value.
1092 * To simplify the WA, a constant value is formed by using the default value
1093 * of this register. This shouldn't be a problem because we are only modifying
1094 * it for a short period and this batch in non-premptible. We can ofcourse
1095 * use additional instructions that read the actual value of the register
1096 * at that time and set our bit of interest but it makes the WA complicated.
1097 *
1098 * This WA is also required for Gen9 so extracting as a function avoids
1099 * code duplication.
1100 */
1101 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1102 uint32_t *const batch,
1103 uint32_t index)
1104 {
1105 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1106
1107 /*
1108 * WaDisableLSQCROPERFforOCL:skl
1109 * This WA is implemented in skl_init_clock_gating() but since
1110 * this batch updates GEN8_L3SQCREG4 with default value we need to
1111 * set this bit here to retain the WA during flush.
1112 */
1113 if (IS_SKYLAKE(ring->dev) && INTEL_REVID(ring->dev) <= SKL_REVID_E0)
1114 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1115
1116 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8(1) |
1117 MI_SRM_LRM_GLOBAL_GTT));
1118 wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1119 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1120 wa_ctx_emit(batch, index, 0);
1121
1122 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1123 wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1124 wa_ctx_emit(batch, index, l3sqc4_flush);
1125
1126 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1127 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1128 PIPE_CONTROL_DC_FLUSH_ENABLE));
1129 wa_ctx_emit(batch, index, 0);
1130 wa_ctx_emit(batch, index, 0);
1131 wa_ctx_emit(batch, index, 0);
1132 wa_ctx_emit(batch, index, 0);
1133
1134 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8(1) |
1135 MI_SRM_LRM_GLOBAL_GTT));
1136 wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1137 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1138 wa_ctx_emit(batch, index, 0);
1139
1140 return index;
1141 }
1142
1143 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1144 uint32_t offset,
1145 uint32_t start_alignment)
1146 {
1147 return wa_ctx->offset = ALIGN(offset, start_alignment);
1148 }
1149
1150 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1151 uint32_t offset,
1152 uint32_t size_alignment)
1153 {
1154 wa_ctx->size = offset - wa_ctx->offset;
1155
1156 WARN(wa_ctx->size % size_alignment,
1157 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1158 wa_ctx->size, size_alignment);
1159 return 0;
1160 }
1161
1162 /**
1163 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1164 *
1165 * @ring: only applicable for RCS
1166 * @wa_ctx: structure representing wa_ctx
1167 * offset: specifies start of the batch, should be cache-aligned. This is updated
1168 * with the offset value received as input.
1169 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1170 * @batch: page in which WA are loaded
1171 * @offset: This field specifies the start of the batch, it should be
1172 * cache-aligned otherwise it is adjusted accordingly.
1173 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1174 * initialized at the beginning and shared across all contexts but this field
1175 * helps us to have multiple batches at different offsets and select them based
1176 * on a criteria. At the moment this batch always start at the beginning of the page
1177 * and at this point we don't have multiple wa_ctx batch buffers.
1178 *
1179 * The number of WA applied are not known at the beginning; we use this field
1180 * to return the no of DWORDS written.
1181 *
1182 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1183 * so it adds NOOPs as padding to make it cacheline aligned.
1184 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1185 * makes a complete batch buffer.
1186 *
1187 * Return: non-zero if we exceed the PAGE_SIZE limit.
1188 */
1189
1190 static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1191 struct i915_wa_ctx_bb *wa_ctx,
1192 uint32_t *const batch,
1193 uint32_t *offset)
1194 {
1195 uint32_t scratch_addr;
1196 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1197
1198 /* WaDisableCtxRestoreArbitration:bdw,chv */
1199 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1200
1201 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1202 if (IS_BROADWELL(ring->dev)) {
1203 index = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1204 if (index < 0)
1205 return index;
1206 }
1207
1208 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1209 /* Actual scratch location is at 128 bytes offset */
1210 scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1211
1212 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1213 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1214 PIPE_CONTROL_GLOBAL_GTT_IVB |
1215 PIPE_CONTROL_CS_STALL |
1216 PIPE_CONTROL_QW_WRITE));
1217 wa_ctx_emit(batch, index, scratch_addr);
1218 wa_ctx_emit(batch, index, 0);
1219 wa_ctx_emit(batch, index, 0);
1220 wa_ctx_emit(batch, index, 0);
1221
1222 /* Pad to end of cacheline */
1223 while (index % CACHELINE_DWORDS)
1224 wa_ctx_emit(batch, index, MI_NOOP);
1225
1226 /*
1227 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1228 * execution depends on the length specified in terms of cache lines
1229 * in the register CTX_RCS_INDIRECT_CTX
1230 */
1231
1232 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1233 }
1234
1235 /**
1236 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1237 *
1238 * @ring: only applicable for RCS
1239 * @wa_ctx: structure representing wa_ctx
1240 * offset: specifies start of the batch, should be cache-aligned.
1241 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1242 * @batch: page in which WA are loaded
1243 * @offset: This field specifies the start of this batch.
1244 * This batch is started immediately after indirect_ctx batch. Since we ensure
1245 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1246 *
1247 * The number of DWORDS written are returned using this field.
1248 *
1249 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1250 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1251 */
1252 static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1253 struct i915_wa_ctx_bb *wa_ctx,
1254 uint32_t *const batch,
1255 uint32_t *offset)
1256 {
1257 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1258
1259 /* WaDisableCtxRestoreArbitration:bdw,chv */
1260 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1261
1262 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1263
1264 return wa_ctx_end(wa_ctx, *offset = index, 1);
1265 }
1266
1267 static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1268 struct i915_wa_ctx_bb *wa_ctx,
1269 uint32_t *const batch,
1270 uint32_t *offset)
1271 {
1272 int ret;
1273 struct drm_device *dev = ring->dev;
1274 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1275
1276 /* WaDisableCtxRestoreArbitration:skl,bxt */
1277 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1278 (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1279 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1280
1281 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1282 ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1283 if (ret < 0)
1284 return ret;
1285 index = ret;
1286
1287 /* Pad to end of cacheline */
1288 while (index % CACHELINE_DWORDS)
1289 wa_ctx_emit(batch, index, MI_NOOP);
1290
1291 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1292 }
1293
1294 static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1295 struct i915_wa_ctx_bb *wa_ctx,
1296 uint32_t *const batch,
1297 uint32_t *offset)
1298 {
1299 struct drm_device *dev = ring->dev;
1300 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1301
1302 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1303 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_B0)) ||
1304 (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0))) {
1305 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1306 wa_ctx_emit(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1307 wa_ctx_emit(batch, index,
1308 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1309 wa_ctx_emit(batch, index, MI_NOOP);
1310 }
1311
1312 /* WaDisableCtxRestoreArbitration:skl,bxt */
1313 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1314 (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1315 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1316
1317 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1318
1319 return wa_ctx_end(wa_ctx, *offset = index, 1);
1320 }
1321
1322 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1323 {
1324 int ret;
1325
1326 ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1327 if (!ring->wa_ctx.obj) {
1328 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1329 return -ENOMEM;
1330 }
1331
1332 ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1333 if (ret) {
1334 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1335 ret);
1336 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1337 return ret;
1338 }
1339
1340 return 0;
1341 }
1342
1343 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1344 {
1345 if (ring->wa_ctx.obj) {
1346 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1347 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1348 ring->wa_ctx.obj = NULL;
1349 }
1350 }
1351
1352 static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1353 {
1354 int ret;
1355 uint32_t *batch;
1356 uint32_t offset;
1357 struct page *page;
1358 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1359
1360 WARN_ON(ring->id != RCS);
1361
1362 /* update this when WA for higher Gen are added */
1363 if (INTEL_INFO(ring->dev)->gen > 9) {
1364 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1365 INTEL_INFO(ring->dev)->gen);
1366 return 0;
1367 }
1368
1369 /* some WA perform writes to scratch page, ensure it is valid */
1370 if (ring->scratch.obj == NULL) {
1371 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1372 return -EINVAL;
1373 }
1374
1375 ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1376 if (ret) {
1377 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1378 return ret;
1379 }
1380
1381 page = i915_gem_object_get_page(wa_ctx->obj, 0);
1382 batch = kmap_atomic(page);
1383 offset = 0;
1384
1385 if (INTEL_INFO(ring->dev)->gen == 8) {
1386 ret = gen8_init_indirectctx_bb(ring,
1387 &wa_ctx->indirect_ctx,
1388 batch,
1389 &offset);
1390 if (ret)
1391 goto out;
1392
1393 ret = gen8_init_perctx_bb(ring,
1394 &wa_ctx->per_ctx,
1395 batch,
1396 &offset);
1397 if (ret)
1398 goto out;
1399 } else if (INTEL_INFO(ring->dev)->gen == 9) {
1400 ret = gen9_init_indirectctx_bb(ring,
1401 &wa_ctx->indirect_ctx,
1402 batch,
1403 &offset);
1404 if (ret)
1405 goto out;
1406
1407 ret = gen9_init_perctx_bb(ring,
1408 &wa_ctx->per_ctx,
1409 batch,
1410 &offset);
1411 if (ret)
1412 goto out;
1413 }
1414
1415 out:
1416 kunmap_atomic(batch);
1417 if (ret)
1418 lrc_destroy_wa_ctx_obj(ring);
1419
1420 return ret;
1421 }
1422
1423 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1424 {
1425 struct drm_device *dev = ring->dev;
1426 struct drm_i915_private *dev_priv = dev->dev_private;
1427 u8 next_context_status_buffer_hw;
1428
1429 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1430 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1431
1432 if (ring->status_page.obj) {
1433 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1434 (u32)ring->status_page.gfx_addr);
1435 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1436 }
1437
1438 I915_WRITE(RING_MODE_GEN7(ring),
1439 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1440 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1441 POSTING_READ(RING_MODE_GEN7(ring));
1442
1443 /*
1444 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1445 * zero, we need to read the write pointer from hardware and use its
1446 * value because "this register is power context save restored".
1447 * Effectively, these states have been observed:
1448 *
1449 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1450 * BDW | CSB regs not reset | CSB regs reset |
1451 * CHT | CSB regs not reset | CSB regs not reset |
1452 */
1453 next_context_status_buffer_hw = (I915_READ(RING_CONTEXT_STATUS_PTR(ring))
1454 & GEN8_CSB_PTR_MASK);
1455
1456 /*
1457 * When the CSB registers are reset (also after power-up / gpu reset),
1458 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1459 * this special case, so the first element read is CSB[0].
1460 */
1461 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1462 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1463
1464 ring->next_context_status_buffer = next_context_status_buffer_hw;
1465 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1466
1467 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1468
1469 return 0;
1470 }
1471
1472 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1473 {
1474 struct drm_device *dev = ring->dev;
1475 struct drm_i915_private *dev_priv = dev->dev_private;
1476 int ret;
1477
1478 ret = gen8_init_common_ring(ring);
1479 if (ret)
1480 return ret;
1481
1482 /* We need to disable the AsyncFlip performance optimisations in order
1483 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1484 * programmed to '1' on all products.
1485 *
1486 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1487 */
1488 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1489
1490 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1491
1492 return init_workarounds_ring(ring);
1493 }
1494
1495 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1496 {
1497 int ret;
1498
1499 ret = gen8_init_common_ring(ring);
1500 if (ret)
1501 return ret;
1502
1503 return init_workarounds_ring(ring);
1504 }
1505
1506 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1507 {
1508 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1509 struct intel_engine_cs *ring = req->ring;
1510 struct intel_ringbuffer *ringbuf = req->ringbuf;
1511 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1512 int i, ret;
1513
1514 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1515 if (ret)
1516 return ret;
1517
1518 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1519 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1520 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1521
1522 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1523 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1524 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1525 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1526 }
1527
1528 intel_logical_ring_emit(ringbuf, MI_NOOP);
1529 intel_logical_ring_advance(ringbuf);
1530
1531 return 0;
1532 }
1533
1534 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1535 u64 offset, unsigned dispatch_flags)
1536 {
1537 struct intel_ringbuffer *ringbuf = req->ringbuf;
1538 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1539 int ret;
1540
1541 /* Don't rely in hw updating PDPs, specially in lite-restore.
1542 * Ideally, we should set Force PD Restore in ctx descriptor,
1543 * but we can't. Force Restore would be a second option, but
1544 * it is unsafe in case of lite-restore (because the ctx is
1545 * not idle). */
1546 if (req->ctx->ppgtt &&
1547 (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1548 ret = intel_logical_ring_emit_pdps(req);
1549 if (ret)
1550 return ret;
1551
1552 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1553 }
1554
1555 ret = intel_logical_ring_begin(req, 4);
1556 if (ret)
1557 return ret;
1558
1559 /* FIXME(BDW): Address space and security selectors. */
1560 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1561 (ppgtt<<8) |
1562 (dispatch_flags & I915_DISPATCH_RS ?
1563 MI_BATCH_RESOURCE_STREAMER : 0));
1564 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1565 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1566 intel_logical_ring_emit(ringbuf, MI_NOOP);
1567 intel_logical_ring_advance(ringbuf);
1568
1569 return 0;
1570 }
1571
1572 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1573 {
1574 struct drm_device *dev = ring->dev;
1575 struct drm_i915_private *dev_priv = dev->dev_private;
1576 unsigned long flags;
1577
1578 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1579 return false;
1580
1581 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1582 if (ring->irq_refcount++ == 0) {
1583 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1584 POSTING_READ(RING_IMR(ring->mmio_base));
1585 }
1586 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1587
1588 return true;
1589 }
1590
1591 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1592 {
1593 struct drm_device *dev = ring->dev;
1594 struct drm_i915_private *dev_priv = dev->dev_private;
1595 unsigned long flags;
1596
1597 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1598 if (--ring->irq_refcount == 0) {
1599 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1600 POSTING_READ(RING_IMR(ring->mmio_base));
1601 }
1602 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1603 }
1604
1605 static int gen8_emit_flush(struct drm_i915_gem_request *request,
1606 u32 invalidate_domains,
1607 u32 unused)
1608 {
1609 struct intel_ringbuffer *ringbuf = request->ringbuf;
1610 struct intel_engine_cs *ring = ringbuf->ring;
1611 struct drm_device *dev = ring->dev;
1612 struct drm_i915_private *dev_priv = dev->dev_private;
1613 uint32_t cmd;
1614 int ret;
1615
1616 ret = intel_logical_ring_begin(request, 4);
1617 if (ret)
1618 return ret;
1619
1620 cmd = MI_FLUSH_DW + 1;
1621
1622 /* We always require a command barrier so that subsequent
1623 * commands, such as breadcrumb interrupts, are strictly ordered
1624 * wrt the contents of the write cache being flushed to memory
1625 * (and thus being coherent from the CPU).
1626 */
1627 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1628
1629 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1630 cmd |= MI_INVALIDATE_TLB;
1631 if (ring == &dev_priv->ring[VCS])
1632 cmd |= MI_INVALIDATE_BSD;
1633 }
1634
1635 intel_logical_ring_emit(ringbuf, cmd);
1636 intel_logical_ring_emit(ringbuf,
1637 I915_GEM_HWS_SCRATCH_ADDR |
1638 MI_FLUSH_DW_USE_GTT);
1639 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1640 intel_logical_ring_emit(ringbuf, 0); /* value */
1641 intel_logical_ring_advance(ringbuf);
1642
1643 return 0;
1644 }
1645
1646 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1647 u32 invalidate_domains,
1648 u32 flush_domains)
1649 {
1650 struct intel_ringbuffer *ringbuf = request->ringbuf;
1651 struct intel_engine_cs *ring = ringbuf->ring;
1652 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1653 bool vf_flush_wa;
1654 u32 flags = 0;
1655 int ret;
1656
1657 flags |= PIPE_CONTROL_CS_STALL;
1658
1659 if (flush_domains) {
1660 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1661 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1662 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1663 }
1664
1665 if (invalidate_domains) {
1666 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1667 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1668 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1669 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1670 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1671 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1672 flags |= PIPE_CONTROL_QW_WRITE;
1673 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1674 }
1675
1676 /*
1677 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1678 * control.
1679 */
1680 vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1681 flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1682
1683 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1684 if (ret)
1685 return ret;
1686
1687 if (vf_flush_wa) {
1688 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1689 intel_logical_ring_emit(ringbuf, 0);
1690 intel_logical_ring_emit(ringbuf, 0);
1691 intel_logical_ring_emit(ringbuf, 0);
1692 intel_logical_ring_emit(ringbuf, 0);
1693 intel_logical_ring_emit(ringbuf, 0);
1694 }
1695
1696 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1697 intel_logical_ring_emit(ringbuf, flags);
1698 intel_logical_ring_emit(ringbuf, scratch_addr);
1699 intel_logical_ring_emit(ringbuf, 0);
1700 intel_logical_ring_emit(ringbuf, 0);
1701 intel_logical_ring_emit(ringbuf, 0);
1702 intel_logical_ring_advance(ringbuf);
1703
1704 return 0;
1705 }
1706
1707 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1708 {
1709 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1710 }
1711
1712 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1713 {
1714 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1715 }
1716
1717 static int gen8_emit_request(struct drm_i915_gem_request *request)
1718 {
1719 struct intel_ringbuffer *ringbuf = request->ringbuf;
1720 struct intel_engine_cs *ring = ringbuf->ring;
1721 u32 cmd;
1722 int ret;
1723
1724 /*
1725 * Reserve space for 2 NOOPs at the end of each request to be
1726 * used as a workaround for not being allowed to do lite
1727 * restore with HEAD==TAIL (WaIdleLiteRestore).
1728 */
1729 ret = intel_logical_ring_begin(request, 8);
1730 if (ret)
1731 return ret;
1732
1733 cmd = MI_STORE_DWORD_IMM_GEN4;
1734 cmd |= MI_GLOBAL_GTT;
1735
1736 intel_logical_ring_emit(ringbuf, cmd);
1737 intel_logical_ring_emit(ringbuf,
1738 (ring->status_page.gfx_addr +
1739 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1740 intel_logical_ring_emit(ringbuf, 0);
1741 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1742 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1743 intel_logical_ring_emit(ringbuf, MI_NOOP);
1744 intel_logical_ring_advance_and_submit(request);
1745
1746 /*
1747 * Here we add two extra NOOPs as padding to avoid
1748 * lite restore of a context with HEAD==TAIL.
1749 */
1750 intel_logical_ring_emit(ringbuf, MI_NOOP);
1751 intel_logical_ring_emit(ringbuf, MI_NOOP);
1752 intel_logical_ring_advance(ringbuf);
1753
1754 return 0;
1755 }
1756
1757 static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1758 {
1759 struct render_state so;
1760 int ret;
1761
1762 ret = i915_gem_render_state_prepare(req->ring, &so);
1763 if (ret)
1764 return ret;
1765
1766 if (so.rodata == NULL)
1767 return 0;
1768
1769 ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1770 I915_DISPATCH_SECURE);
1771 if (ret)
1772 goto out;
1773
1774 ret = req->ring->emit_bb_start(req,
1775 (so.ggtt_offset + so.aux_batch_offset),
1776 I915_DISPATCH_SECURE);
1777 if (ret)
1778 goto out;
1779
1780 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1781
1782 out:
1783 i915_gem_render_state_fini(&so);
1784 return ret;
1785 }
1786
1787 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1788 {
1789 int ret;
1790
1791 ret = intel_logical_ring_workarounds_emit(req);
1792 if (ret)
1793 return ret;
1794
1795 ret = intel_rcs_context_init_mocs(req);
1796 /*
1797 * Failing to program the MOCS is non-fatal.The system will not
1798 * run at peak performance. So generate an error and carry on.
1799 */
1800 if (ret)
1801 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1802
1803 return intel_lr_context_render_state_init(req);
1804 }
1805
1806 /**
1807 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1808 *
1809 * @ring: Engine Command Streamer.
1810 *
1811 */
1812 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1813 {
1814 struct drm_i915_private *dev_priv;
1815
1816 if (!intel_ring_initialized(ring))
1817 return;
1818
1819 dev_priv = ring->dev->dev_private;
1820
1821 intel_logical_ring_stop(ring);
1822 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1823
1824 if (ring->cleanup)
1825 ring->cleanup(ring);
1826
1827 i915_cmd_parser_fini_ring(ring);
1828 i915_gem_batch_pool_fini(&ring->batch_pool);
1829
1830 if (ring->status_page.obj) {
1831 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1832 ring->status_page.obj = NULL;
1833 }
1834
1835 lrc_destroy_wa_ctx_obj(ring);
1836 }
1837
1838 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1839 {
1840 int ret;
1841
1842 /* Intentionally left blank. */
1843 ring->buffer = NULL;
1844
1845 ring->dev = dev;
1846 INIT_LIST_HEAD(&ring->active_list);
1847 INIT_LIST_HEAD(&ring->request_list);
1848 i915_gem_batch_pool_init(dev, &ring->batch_pool);
1849 init_waitqueue_head(&ring->irq_queue);
1850
1851 INIT_LIST_HEAD(&ring->execlist_queue);
1852 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1853 spin_lock_init(&ring->execlist_lock);
1854
1855 ret = i915_cmd_parser_init_ring(ring);
1856 if (ret)
1857 return ret;
1858
1859 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1860
1861 return ret;
1862 }
1863
1864 static int logical_render_ring_init(struct drm_device *dev)
1865 {
1866 struct drm_i915_private *dev_priv = dev->dev_private;
1867 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1868 int ret;
1869
1870 ring->name = "render ring";
1871 ring->id = RCS;
1872 ring->mmio_base = RENDER_RING_BASE;
1873 ring->irq_enable_mask =
1874 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1875 ring->irq_keep_mask =
1876 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1877 if (HAS_L3_DPF(dev))
1878 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1879
1880 if (INTEL_INFO(dev)->gen >= 9)
1881 ring->init_hw = gen9_init_render_ring;
1882 else
1883 ring->init_hw = gen8_init_render_ring;
1884 ring->init_context = gen8_init_rcs_context;
1885 ring->cleanup = intel_fini_pipe_control;
1886 ring->get_seqno = gen8_get_seqno;
1887 ring->set_seqno = gen8_set_seqno;
1888 ring->emit_request = gen8_emit_request;
1889 ring->emit_flush = gen8_emit_flush_render;
1890 ring->irq_get = gen8_logical_ring_get_irq;
1891 ring->irq_put = gen8_logical_ring_put_irq;
1892 ring->emit_bb_start = gen8_emit_bb_start;
1893
1894 ring->dev = dev;
1895
1896 ret = intel_init_pipe_control(ring);
1897 if (ret)
1898 return ret;
1899
1900 ret = intel_init_workaround_bb(ring);
1901 if (ret) {
1902 /*
1903 * We continue even if we fail to initialize WA batch
1904 * because we only expect rare glitches but nothing
1905 * critical to prevent us from using GPU
1906 */
1907 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1908 ret);
1909 }
1910
1911 ret = logical_ring_init(dev, ring);
1912 if (ret) {
1913 lrc_destroy_wa_ctx_obj(ring);
1914 }
1915
1916 return ret;
1917 }
1918
1919 static int logical_bsd_ring_init(struct drm_device *dev)
1920 {
1921 struct drm_i915_private *dev_priv = dev->dev_private;
1922 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1923
1924 ring->name = "bsd ring";
1925 ring->id = VCS;
1926 ring->mmio_base = GEN6_BSD_RING_BASE;
1927 ring->irq_enable_mask =
1928 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1929 ring->irq_keep_mask =
1930 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1931
1932 ring->init_hw = gen8_init_common_ring;
1933 ring->get_seqno = gen8_get_seqno;
1934 ring->set_seqno = gen8_set_seqno;
1935 ring->emit_request = gen8_emit_request;
1936 ring->emit_flush = gen8_emit_flush;
1937 ring->irq_get = gen8_logical_ring_get_irq;
1938 ring->irq_put = gen8_logical_ring_put_irq;
1939 ring->emit_bb_start = gen8_emit_bb_start;
1940
1941 return logical_ring_init(dev, ring);
1942 }
1943
1944 static int logical_bsd2_ring_init(struct drm_device *dev)
1945 {
1946 struct drm_i915_private *dev_priv = dev->dev_private;
1947 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1948
1949 ring->name = "bds2 ring";
1950 ring->id = VCS2;
1951 ring->mmio_base = GEN8_BSD2_RING_BASE;
1952 ring->irq_enable_mask =
1953 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1954 ring->irq_keep_mask =
1955 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1956
1957 ring->init_hw = gen8_init_common_ring;
1958 ring->get_seqno = gen8_get_seqno;
1959 ring->set_seqno = gen8_set_seqno;
1960 ring->emit_request = gen8_emit_request;
1961 ring->emit_flush = gen8_emit_flush;
1962 ring->irq_get = gen8_logical_ring_get_irq;
1963 ring->irq_put = gen8_logical_ring_put_irq;
1964 ring->emit_bb_start = gen8_emit_bb_start;
1965
1966 return logical_ring_init(dev, ring);
1967 }
1968
1969 static int logical_blt_ring_init(struct drm_device *dev)
1970 {
1971 struct drm_i915_private *dev_priv = dev->dev_private;
1972 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1973
1974 ring->name = "blitter ring";
1975 ring->id = BCS;
1976 ring->mmio_base = BLT_RING_BASE;
1977 ring->irq_enable_mask =
1978 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1979 ring->irq_keep_mask =
1980 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1981
1982 ring->init_hw = gen8_init_common_ring;
1983 ring->get_seqno = gen8_get_seqno;
1984 ring->set_seqno = gen8_set_seqno;
1985 ring->emit_request = gen8_emit_request;
1986 ring->emit_flush = gen8_emit_flush;
1987 ring->irq_get = gen8_logical_ring_get_irq;
1988 ring->irq_put = gen8_logical_ring_put_irq;
1989 ring->emit_bb_start = gen8_emit_bb_start;
1990
1991 return logical_ring_init(dev, ring);
1992 }
1993
1994 static int logical_vebox_ring_init(struct drm_device *dev)
1995 {
1996 struct drm_i915_private *dev_priv = dev->dev_private;
1997 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1998
1999 ring->name = "video enhancement ring";
2000 ring->id = VECS;
2001 ring->mmio_base = VEBOX_RING_BASE;
2002 ring->irq_enable_mask =
2003 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2004 ring->irq_keep_mask =
2005 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2006
2007 ring->init_hw = gen8_init_common_ring;
2008 ring->get_seqno = gen8_get_seqno;
2009 ring->set_seqno = gen8_set_seqno;
2010 ring->emit_request = gen8_emit_request;
2011 ring->emit_flush = gen8_emit_flush;
2012 ring->irq_get = gen8_logical_ring_get_irq;
2013 ring->irq_put = gen8_logical_ring_put_irq;
2014 ring->emit_bb_start = gen8_emit_bb_start;
2015
2016 return logical_ring_init(dev, ring);
2017 }
2018
2019 /**
2020 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2021 * @dev: DRM device.
2022 *
2023 * This function inits the engines for an Execlists submission style (the equivalent in the
2024 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2025 * those engines that are present in the hardware.
2026 *
2027 * Return: non-zero if the initialization failed.
2028 */
2029 int intel_logical_rings_init(struct drm_device *dev)
2030 {
2031 struct drm_i915_private *dev_priv = dev->dev_private;
2032 int ret;
2033
2034 ret = logical_render_ring_init(dev);
2035 if (ret)
2036 return ret;
2037
2038 if (HAS_BSD(dev)) {
2039 ret = logical_bsd_ring_init(dev);
2040 if (ret)
2041 goto cleanup_render_ring;
2042 }
2043
2044 if (HAS_BLT(dev)) {
2045 ret = logical_blt_ring_init(dev);
2046 if (ret)
2047 goto cleanup_bsd_ring;
2048 }
2049
2050 if (HAS_VEBOX(dev)) {
2051 ret = logical_vebox_ring_init(dev);
2052 if (ret)
2053 goto cleanup_blt_ring;
2054 }
2055
2056 if (HAS_BSD2(dev)) {
2057 ret = logical_bsd2_ring_init(dev);
2058 if (ret)
2059 goto cleanup_vebox_ring;
2060 }
2061
2062 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
2063 if (ret)
2064 goto cleanup_bsd2_ring;
2065
2066 return 0;
2067
2068 cleanup_bsd2_ring:
2069 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
2070 cleanup_vebox_ring:
2071 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2072 cleanup_blt_ring:
2073 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2074 cleanup_bsd_ring:
2075 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2076 cleanup_render_ring:
2077 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2078
2079 return ret;
2080 }
2081
2082 static u32
2083 make_rpcs(struct drm_device *dev)
2084 {
2085 u32 rpcs = 0;
2086
2087 /*
2088 * No explicit RPCS request is needed to ensure full
2089 * slice/subslice/EU enablement prior to Gen9.
2090 */
2091 if (INTEL_INFO(dev)->gen < 9)
2092 return 0;
2093
2094 /*
2095 * Starting in Gen9, render power gating can leave
2096 * slice/subslice/EU in a partially enabled state. We
2097 * must make an explicit request through RPCS for full
2098 * enablement.
2099 */
2100 if (INTEL_INFO(dev)->has_slice_pg) {
2101 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2102 rpcs |= INTEL_INFO(dev)->slice_total <<
2103 GEN8_RPCS_S_CNT_SHIFT;
2104 rpcs |= GEN8_RPCS_ENABLE;
2105 }
2106
2107 if (INTEL_INFO(dev)->has_subslice_pg) {
2108 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2109 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2110 GEN8_RPCS_SS_CNT_SHIFT;
2111 rpcs |= GEN8_RPCS_ENABLE;
2112 }
2113
2114 if (INTEL_INFO(dev)->has_eu_pg) {
2115 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2116 GEN8_RPCS_EU_MIN_SHIFT;
2117 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2118 GEN8_RPCS_EU_MAX_SHIFT;
2119 rpcs |= GEN8_RPCS_ENABLE;
2120 }
2121
2122 return rpcs;
2123 }
2124
2125 static int
2126 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2127 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2128 {
2129 struct drm_device *dev = ring->dev;
2130 struct drm_i915_private *dev_priv = dev->dev_private;
2131 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2132 struct page *page;
2133 uint32_t *reg_state;
2134 int ret;
2135
2136 if (!ppgtt)
2137 ppgtt = dev_priv->mm.aliasing_ppgtt;
2138
2139 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2140 if (ret) {
2141 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2142 return ret;
2143 }
2144
2145 ret = i915_gem_object_get_pages(ctx_obj);
2146 if (ret) {
2147 DRM_DEBUG_DRIVER("Could not get object pages\n");
2148 return ret;
2149 }
2150
2151 i915_gem_object_pin_pages(ctx_obj);
2152
2153 /* The second page of the context object contains some fields which must
2154 * be set up prior to the first execution. */
2155 page = i915_gem_object_get_page(ctx_obj, 1);
2156 reg_state = kmap_atomic(page);
2157
2158 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2159 * commands followed by (reg, value) pairs. The values we are setting here are
2160 * only for the first context restore: on a subsequent save, the GPU will
2161 * recreate this batchbuffer with new values (including all the missing
2162 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2163 if (ring->id == RCS)
2164 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
2165 else
2166 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
2167 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
2168 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
2169 reg_state[CTX_CONTEXT_CONTROL+1] =
2170 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2171 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2172 CTX_CTRL_RS_CTX_ENABLE);
2173 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
2174 reg_state[CTX_RING_HEAD+1] = 0;
2175 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
2176 reg_state[CTX_RING_TAIL+1] = 0;
2177 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
2178 /* Ring buffer start address is not known until the buffer is pinned.
2179 * It is written to the context image in execlists_update_context()
2180 */
2181 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
2182 reg_state[CTX_RING_BUFFER_CONTROL+1] =
2183 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
2184 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
2185 reg_state[CTX_BB_HEAD_U+1] = 0;
2186 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
2187 reg_state[CTX_BB_HEAD_L+1] = 0;
2188 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
2189 reg_state[CTX_BB_STATE+1] = (1<<5);
2190 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
2191 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
2192 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
2193 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
2194 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
2195 reg_state[CTX_SECOND_BB_STATE+1] = 0;
2196 if (ring->id == RCS) {
2197 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2198 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2199 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2200 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2201 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2202 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
2203 if (ring->wa_ctx.obj) {
2204 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2205 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2206
2207 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2208 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2209 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2210
2211 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2212 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2213
2214 reg_state[CTX_BB_PER_CTX_PTR+1] =
2215 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2216 0x01;
2217 }
2218 }
2219 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2220 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2221 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2222 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2223 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2224 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2225 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2226 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2227 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2228 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2229 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2230 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
2231
2232 /* With dynamic page allocation, PDPs may not be allocated at this point,
2233 * Point the unallocated PDPs to the scratch page
2234 */
2235 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2236 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2237 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2238 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2239 if (ring->id == RCS) {
2240 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2241 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2242 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
2243 }
2244
2245 kunmap_atomic(reg_state);
2246
2247 ctx_obj->dirty = 1;
2248 set_page_dirty(page);
2249 i915_gem_object_unpin_pages(ctx_obj);
2250
2251 return 0;
2252 }
2253
2254 /**
2255 * intel_lr_context_free() - free the LRC specific bits of a context
2256 * @ctx: the LR context to free.
2257 *
2258 * The real context freeing is done in i915_gem_context_free: this only
2259 * takes care of the bits that are LRC related: the per-engine backing
2260 * objects and the logical ringbuffer.
2261 */
2262 void intel_lr_context_free(struct intel_context *ctx)
2263 {
2264 int i;
2265
2266 for (i = 0; i < I915_NUM_RINGS; i++) {
2267 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2268
2269 if (ctx_obj) {
2270 struct intel_ringbuffer *ringbuf =
2271 ctx->engine[i].ringbuf;
2272 struct intel_engine_cs *ring = ringbuf->ring;
2273
2274 if (ctx == ring->default_context) {
2275 intel_unpin_ringbuffer_obj(ringbuf);
2276 i915_gem_object_ggtt_unpin(ctx_obj);
2277 }
2278 WARN_ON(ctx->engine[ring->id].pin_count);
2279 intel_destroy_ringbuffer_obj(ringbuf);
2280 kfree(ringbuf);
2281 drm_gem_object_unreference(&ctx_obj->base);
2282 }
2283 }
2284 }
2285
2286 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2287 {
2288 int ret = 0;
2289
2290 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2291
2292 switch (ring->id) {
2293 case RCS:
2294 if (INTEL_INFO(ring->dev)->gen >= 9)
2295 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2296 else
2297 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2298 break;
2299 case VCS:
2300 case BCS:
2301 case VECS:
2302 case VCS2:
2303 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2304 break;
2305 }
2306
2307 return ret;
2308 }
2309
2310 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2311 struct drm_i915_gem_object *default_ctx_obj)
2312 {
2313 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2314
2315 /* The status page is offset 0 from the default context object
2316 * in LRC mode. */
2317 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
2318 ring->status_page.page_addr =
2319 kmap(sg_page(default_ctx_obj->pages->sgl));
2320 ring->status_page.obj = default_ctx_obj;
2321
2322 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2323 (u32)ring->status_page.gfx_addr);
2324 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
2325 }
2326
2327 /**
2328 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
2329 * @ctx: LR context to create.
2330 * @ring: engine to be used with the context.
2331 *
2332 * This function can be called more than once, with different engines, if we plan
2333 * to use the context with them. The context backing objects and the ringbuffers
2334 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2335 * the creation is a deferred call: it's better to make sure first that we need to use
2336 * a given ring with the context.
2337 *
2338 * Return: non-zero on error.
2339 */
2340 int intel_lr_context_deferred_create(struct intel_context *ctx,
2341 struct intel_engine_cs *ring)
2342 {
2343 const bool is_global_default_ctx = (ctx == ring->default_context);
2344 struct drm_device *dev = ring->dev;
2345 struct drm_i915_gem_object *ctx_obj;
2346 uint32_t context_size;
2347 struct intel_ringbuffer *ringbuf;
2348 int ret;
2349
2350 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2351 WARN_ON(ctx->engine[ring->id].state);
2352
2353 context_size = round_up(get_lr_context_size(ring), 4096);
2354
2355 ctx_obj = i915_gem_alloc_object(dev, context_size);
2356 if (!ctx_obj) {
2357 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2358 return -ENOMEM;
2359 }
2360
2361 if (is_global_default_ctx) {
2362 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
2363 if (ret) {
2364 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
2365 ret);
2366 drm_gem_object_unreference(&ctx_obj->base);
2367 return ret;
2368 }
2369 }
2370
2371 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2372 if (!ringbuf) {
2373 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2374 ring->name);
2375 ret = -ENOMEM;
2376 goto error_unpin_ctx;
2377 }
2378
2379 ringbuf->ring = ring;
2380
2381 ringbuf->size = 32 * PAGE_SIZE;
2382 ringbuf->effective_size = ringbuf->size;
2383 ringbuf->head = 0;
2384 ringbuf->tail = 0;
2385 ringbuf->last_retired_head = -1;
2386 intel_ring_update_space(ringbuf);
2387
2388 if (ringbuf->obj == NULL) {
2389 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2390 if (ret) {
2391 DRM_DEBUG_DRIVER(
2392 "Failed to allocate ringbuffer obj %s: %d\n",
2393 ring->name, ret);
2394 goto error_free_rbuf;
2395 }
2396
2397 if (is_global_default_ctx) {
2398 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2399 if (ret) {
2400 DRM_ERROR(
2401 "Failed to pin and map ringbuffer %s: %d\n",
2402 ring->name, ret);
2403 goto error_destroy_rbuf;
2404 }
2405 }
2406
2407 }
2408
2409 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2410 if (ret) {
2411 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2412 goto error;
2413 }
2414
2415 ctx->engine[ring->id].ringbuf = ringbuf;
2416 ctx->engine[ring->id].state = ctx_obj;
2417
2418 if (ctx == ring->default_context)
2419 lrc_setup_hardware_status_page(ring, ctx_obj);
2420 else if (ring->id == RCS && !ctx->rcs_initialized) {
2421 if (ring->init_context) {
2422 struct drm_i915_gem_request *req;
2423
2424 ret = i915_gem_request_alloc(ring, ctx, &req);
2425 if (ret)
2426 return ret;
2427
2428 ret = ring->init_context(req);
2429 if (ret) {
2430 DRM_ERROR("ring init context: %d\n", ret);
2431 i915_gem_request_cancel(req);
2432 ctx->engine[ring->id].ringbuf = NULL;
2433 ctx->engine[ring->id].state = NULL;
2434 goto error;
2435 }
2436
2437 i915_add_request_no_flush(req);
2438 }
2439
2440 ctx->rcs_initialized = true;
2441 }
2442
2443 return 0;
2444
2445 error:
2446 if (is_global_default_ctx)
2447 intel_unpin_ringbuffer_obj(ringbuf);
2448 error_destroy_rbuf:
2449 intel_destroy_ringbuffer_obj(ringbuf);
2450 error_free_rbuf:
2451 kfree(ringbuf);
2452 error_unpin_ctx:
2453 if (is_global_default_ctx)
2454 i915_gem_object_ggtt_unpin(ctx_obj);
2455 drm_gem_object_unreference(&ctx_obj->base);
2456 return ret;
2457 }
2458
2459 void intel_lr_context_reset(struct drm_device *dev,
2460 struct intel_context *ctx)
2461 {
2462 struct drm_i915_private *dev_priv = dev->dev_private;
2463 struct intel_engine_cs *ring;
2464 int i;
2465
2466 for_each_ring(ring, dev_priv, i) {
2467 struct drm_i915_gem_object *ctx_obj =
2468 ctx->engine[ring->id].state;
2469 struct intel_ringbuffer *ringbuf =
2470 ctx->engine[ring->id].ringbuf;
2471 uint32_t *reg_state;
2472 struct page *page;
2473
2474 if (!ctx_obj)
2475 continue;
2476
2477 if (i915_gem_object_get_pages(ctx_obj)) {
2478 WARN(1, "Failed get_pages for context obj\n");
2479 continue;
2480 }
2481 page = i915_gem_object_get_page(ctx_obj, 1);
2482 reg_state = kmap_atomic(page);
2483
2484 reg_state[CTX_RING_HEAD+1] = 0;
2485 reg_state[CTX_RING_TAIL+1] = 0;
2486
2487 kunmap_atomic(reg_state);
2488
2489 ringbuf->head = 0;
2490 ringbuf->tail = 0;
2491 }
2492 }