]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: silence io mapping/unmapping sparse warnings on different address spaces
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL (1 << 0x2)
146 #define RING_EXECLIST1_VALID (1 << 0x3)
147 #define RING_EXECLIST0_VALID (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
158
159 #define GEN8_CTX_STATUS_COMPLETED_MASK \
160 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161 GEN8_CTX_STATUS_PREEMPTED | \
162 GEN8_CTX_STATUS_ELEMENT_SWITCH)
163
164 #define CTX_LRI_HEADER_0 0x01
165 #define CTX_CONTEXT_CONTROL 0x02
166 #define CTX_RING_HEAD 0x04
167 #define CTX_RING_TAIL 0x06
168 #define CTX_RING_BUFFER_START 0x08
169 #define CTX_RING_BUFFER_CONTROL 0x0a
170 #define CTX_BB_HEAD_U 0x0c
171 #define CTX_BB_HEAD_L 0x0e
172 #define CTX_BB_STATE 0x10
173 #define CTX_SECOND_BB_HEAD_U 0x12
174 #define CTX_SECOND_BB_HEAD_L 0x14
175 #define CTX_SECOND_BB_STATE 0x16
176 #define CTX_BB_PER_CTX_PTR 0x18
177 #define CTX_RCS_INDIRECT_CTX 0x1a
178 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
179 #define CTX_LRI_HEADER_1 0x21
180 #define CTX_CTX_TIMESTAMP 0x22
181 #define CTX_PDP3_UDW 0x24
182 #define CTX_PDP3_LDW 0x26
183 #define CTX_PDP2_UDW 0x28
184 #define CTX_PDP2_LDW 0x2a
185 #define CTX_PDP1_UDW 0x2c
186 #define CTX_PDP1_LDW 0x2e
187 #define CTX_PDP0_UDW 0x30
188 #define CTX_PDP0_LDW 0x32
189 #define CTX_LRI_HEADER_2 0x41
190 #define CTX_R_PWR_CLK_STATE 0x42
191 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
192
193 #define GEN8_CTX_VALID (1<<0)
194 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
195 #define GEN8_CTX_FORCE_RESTORE (1<<2)
196 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
197 #define GEN8_CTX_PRIVILEGE (1<<8)
198
199 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
200 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
201 (reg_state)[(pos)+1] = (val); \
202 } while (0)
203
204 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
205 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
206 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
207 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
208 } while (0)
209
210 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
211 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
212 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
213 } while (0)
214
215 enum {
216 FAULT_AND_HANG = 0,
217 FAULT_AND_HALT, /* Debug only */
218 FAULT_AND_STREAM,
219 FAULT_AND_CONTINUE /* Unsupported */
220 };
221 #define GEN8_CTX_ID_SHIFT 32
222 #define GEN8_CTX_ID_WIDTH 21
223 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
224 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
225
226 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
227 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
228
229 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
230 struct intel_engine_cs *engine);
231 static int intel_lr_context_pin(struct i915_gem_context *ctx,
232 struct intel_engine_cs *engine);
233
234 /**
235 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
236 * @dev_priv: i915 device private
237 * @enable_execlists: value of i915.enable_execlists module parameter.
238 *
239 * Only certain platforms support Execlists (the prerequisites being
240 * support for Logical Ring Contexts and Aliasing PPGTT or better).
241 *
242 * Return: 1 if Execlists is supported and has to be enabled.
243 */
244 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
245 {
246 /* On platforms with execlist available, vGPU will only
247 * support execlist mode, no ring buffer mode.
248 */
249 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
250 return 1;
251
252 if (INTEL_GEN(dev_priv) >= 9)
253 return 1;
254
255 if (enable_execlists == 0)
256 return 0;
257
258 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
259 USES_PPGTT(dev_priv) &&
260 i915.use_mmio_flip >= 0)
261 return 1;
262
263 return 0;
264 }
265
266 static void
267 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
268 {
269 struct drm_i915_private *dev_priv = engine->i915;
270
271 engine->disable_lite_restore_wa =
272 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) &&
273 (engine->id == VCS || engine->id == VCS2);
274
275 engine->ctx_desc_template = GEN8_CTX_VALID;
276 if (IS_GEN8(dev_priv))
277 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
278 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
279
280 /* TODO: WaDisableLiteRestore when we start using semaphore
281 * signalling between Command Streamers */
282 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
283
284 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
285 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
286 if (engine->disable_lite_restore_wa)
287 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
288 }
289
290 /**
291 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
292 * descriptor for a pinned context
293 * @ctx: Context to work on
294 * @engine: Engine the descriptor will be used with
295 *
296 * The context descriptor encodes various attributes of a context,
297 * including its GTT address and some flags. Because it's fairly
298 * expensive to calculate, we'll just do it once and cache the result,
299 * which remains valid until the context is unpinned.
300 *
301 * This is what a descriptor looks like, from LSB to MSB::
302 *
303 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
304 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
305 * bits 32-52: ctx ID, a globally unique tag
306 * bits 53-54: mbz, reserved for use by hardware
307 * bits 55-63: group ID, currently unused and set to 0
308 */
309 static void
310 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
311 struct intel_engine_cs *engine)
312 {
313 struct intel_context *ce = &ctx->engine[engine->id];
314 u64 desc;
315
316 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
317
318 desc = ctx->desc_template; /* bits 3-4 */
319 desc |= engine->ctx_desc_template; /* bits 0-11 */
320 desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
321 /* bits 12-31 */
322 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
323
324 ce->lrc_desc = desc;
325 }
326
327 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
328 struct intel_engine_cs *engine)
329 {
330 return ctx->engine[engine->id].lrc_desc;
331 }
332
333 static inline void
334 execlists_context_status_change(struct drm_i915_gem_request *rq,
335 unsigned long status)
336 {
337 /*
338 * Only used when GVT-g is enabled now. When GVT-g is disabled,
339 * The compiler should eliminate this function as dead-code.
340 */
341 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
342 return;
343
344 atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
345 }
346
347 static void
348 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
349 {
350 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
351 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
352 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
353 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
354 }
355
356 static u64 execlists_update_context(struct drm_i915_gem_request *rq)
357 {
358 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
359 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
360 u32 *reg_state = ce->lrc_reg_state;
361
362 reg_state[CTX_RING_TAIL+1] = intel_ring_offset(rq->ring, rq->tail);
363
364 /* True 32b PPGTT with dynamic page allocation: update PDP
365 * registers and point the unallocated PDPs to scratch page.
366 * PML4 is allocated during ppgtt init, so this is not needed
367 * in 48-bit mode.
368 */
369 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
370 execlists_update_context_pdps(ppgtt, reg_state);
371
372 return ce->lrc_desc;
373 }
374
375 static void execlists_submit_ports(struct intel_engine_cs *engine)
376 {
377 struct drm_i915_private *dev_priv = engine->i915;
378 struct execlist_port *port = engine->execlist_port;
379 u32 __iomem *elsp =
380 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
381 u64 desc[2];
382
383 if (!port[0].count)
384 execlists_context_status_change(port[0].request,
385 INTEL_CONTEXT_SCHEDULE_IN);
386 desc[0] = execlists_update_context(port[0].request);
387 engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */
388
389 if (port[1].request) {
390 GEM_BUG_ON(port[1].count);
391 execlists_context_status_change(port[1].request,
392 INTEL_CONTEXT_SCHEDULE_IN);
393 desc[1] = execlists_update_context(port[1].request);
394 port[1].count = 1;
395 } else {
396 desc[1] = 0;
397 }
398 GEM_BUG_ON(desc[0] == desc[1]);
399
400 /* You must always write both descriptors in the order below. */
401 writel(upper_32_bits(desc[1]), elsp);
402 writel(lower_32_bits(desc[1]), elsp);
403
404 writel(upper_32_bits(desc[0]), elsp);
405 /* The context is automatically loaded after the following */
406 writel(lower_32_bits(desc[0]), elsp);
407 }
408
409 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
410 {
411 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
412 ctx->execlists_force_single_submission);
413 }
414
415 static bool can_merge_ctx(const struct i915_gem_context *prev,
416 const struct i915_gem_context *next)
417 {
418 if (prev != next)
419 return false;
420
421 if (ctx_single_port_submission(prev))
422 return false;
423
424 return true;
425 }
426
427 static void execlists_dequeue(struct intel_engine_cs *engine)
428 {
429 struct drm_i915_gem_request *cursor, *last;
430 struct execlist_port *port = engine->execlist_port;
431 bool submit = false;
432
433 last = port->request;
434 if (last)
435 /* WaIdleLiteRestore:bdw,skl
436 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
437 * as we resubmit the request. See gen8_emit_request()
438 * for where we prepare the padding after the end of the
439 * request.
440 */
441 last->tail = last->wa_tail;
442
443 GEM_BUG_ON(port[1].request);
444
445 /* Hardware submission is through 2 ports. Conceptually each port
446 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
447 * static for a context, and unique to each, so we only execute
448 * requests belonging to a single context from each ring. RING_HEAD
449 * is maintained by the CS in the context image, it marks the place
450 * where it got up to last time, and through RING_TAIL we tell the CS
451 * where we want to execute up to this time.
452 *
453 * In this list the requests are in order of execution. Consecutive
454 * requests from the same context are adjacent in the ringbuffer. We
455 * can combine these requests into a single RING_TAIL update:
456 *
457 * RING_HEAD...req1...req2
458 * ^- RING_TAIL
459 * since to execute req2 the CS must first execute req1.
460 *
461 * Our goal then is to point each port to the end of a consecutive
462 * sequence of requests as being the most optimal (fewest wake ups
463 * and context switches) submission.
464 */
465
466 spin_lock(&engine->execlist_lock);
467 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link) {
468 /* Can we combine this request with the current port? It has to
469 * be the same context/ringbuffer and not have any exceptions
470 * (e.g. GVT saying never to combine contexts).
471 *
472 * If we can combine the requests, we can execute both by
473 * updating the RING_TAIL to point to the end of the second
474 * request, and so we never need to tell the hardware about
475 * the first.
476 */
477 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
478 /* If we are on the second port and cannot combine
479 * this request with the last, then we are done.
480 */
481 if (port != engine->execlist_port)
482 break;
483
484 /* If GVT overrides us we only ever submit port[0],
485 * leaving port[1] empty. Note that we also have
486 * to be careful that we don't queue the same
487 * context (even though a different request) to
488 * the second port.
489 */
490 if (ctx_single_port_submission(cursor->ctx))
491 break;
492
493 GEM_BUG_ON(last->ctx == cursor->ctx);
494
495 i915_gem_request_assign(&port->request, last);
496 port++;
497 }
498 last = cursor;
499 submit = true;
500 }
501 if (submit) {
502 /* Decouple all the requests submitted from the queue */
503 engine->execlist_queue.next = &cursor->execlist_link;
504 cursor->execlist_link.prev = &engine->execlist_queue;
505
506 i915_gem_request_assign(&port->request, last);
507 }
508 spin_unlock(&engine->execlist_lock);
509
510 if (submit)
511 execlists_submit_ports(engine);
512 }
513
514 static bool execlists_elsp_idle(struct intel_engine_cs *engine)
515 {
516 return !engine->execlist_port[0].request;
517 }
518
519 static bool execlists_elsp_ready(struct intel_engine_cs *engine)
520 {
521 int port;
522
523 port = 1; /* wait for a free slot */
524 if (engine->disable_lite_restore_wa || engine->preempt_wa)
525 port = 0; /* wait for GPU to be idle before continuing */
526
527 return !engine->execlist_port[port].request;
528 }
529
530 /*
531 * Check the unread Context Status Buffers and manage the submission of new
532 * contexts to the ELSP accordingly.
533 */
534 static void intel_lrc_irq_handler(unsigned long data)
535 {
536 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
537 struct execlist_port *port = engine->execlist_port;
538 struct drm_i915_private *dev_priv = engine->i915;
539
540 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
541
542 if (!execlists_elsp_idle(engine)) {
543 u32 __iomem *csb_mmio =
544 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
545 u32 __iomem *buf =
546 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
547 unsigned int csb, head, tail;
548
549 csb = readl(csb_mmio);
550 head = GEN8_CSB_READ_PTR(csb);
551 tail = GEN8_CSB_WRITE_PTR(csb);
552 if (tail < head)
553 tail += GEN8_CSB_ENTRIES;
554 while (head < tail) {
555 unsigned int idx = ++head % GEN8_CSB_ENTRIES;
556 unsigned int status = readl(buf + 2 * idx);
557
558 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
559 continue;
560
561 GEM_BUG_ON(port[0].count == 0);
562 if (--port[0].count == 0) {
563 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
564 execlists_context_status_change(port[0].request,
565 INTEL_CONTEXT_SCHEDULE_OUT);
566
567 i915_gem_request_put(port[0].request);
568 port[0] = port[1];
569 memset(&port[1], 0, sizeof(port[1]));
570
571 engine->preempt_wa = false;
572 }
573
574 GEM_BUG_ON(port[0].count == 0 &&
575 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
576 }
577
578 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
579 GEN8_CSB_WRITE_PTR(csb) << 8),
580 csb_mmio);
581 }
582
583 if (execlists_elsp_ready(engine))
584 execlists_dequeue(engine);
585
586 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
587 }
588
589 static void execlists_submit_request(struct drm_i915_gem_request *request)
590 {
591 struct intel_engine_cs *engine = request->engine;
592 unsigned long flags;
593
594 spin_lock_irqsave(&engine->execlist_lock, flags);
595
596 list_add_tail(&request->execlist_link, &engine->execlist_queue);
597 if (execlists_elsp_idle(engine))
598 tasklet_hi_schedule(&engine->irq_tasklet);
599
600 spin_unlock_irqrestore(&engine->execlist_lock, flags);
601 }
602
603 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
604 {
605 struct intel_engine_cs *engine = request->engine;
606 struct intel_context *ce = &request->ctx->engine[engine->id];
607 int ret;
608
609 /* Flush enough space to reduce the likelihood of waiting after
610 * we start building the request - in which case we will just
611 * have to repeat work.
612 */
613 request->reserved_space += EXECLISTS_REQUEST_SIZE;
614
615 if (!ce->state) {
616 ret = execlists_context_deferred_alloc(request->ctx, engine);
617 if (ret)
618 return ret;
619 }
620
621 request->ring = ce->ring;
622
623 if (i915.enable_guc_submission) {
624 /*
625 * Check that the GuC has space for the request before
626 * going any further, as the i915_add_request() call
627 * later on mustn't fail ...
628 */
629 ret = i915_guc_wq_reserve(request);
630 if (ret)
631 return ret;
632 }
633
634 ret = intel_lr_context_pin(request->ctx, engine);
635 if (ret)
636 return ret;
637
638 ret = intel_ring_begin(request, 0);
639 if (ret)
640 goto err_unpin;
641
642 if (!ce->initialised) {
643 ret = engine->init_context(request);
644 if (ret)
645 goto err_unpin;
646
647 ce->initialised = true;
648 }
649
650 /* Note that after this point, we have committed to using
651 * this request as it is being used to both track the
652 * state of engine initialisation and liveness of the
653 * golden renderstate above. Think twice before you try
654 * to cancel/unwind this request now.
655 */
656
657 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
658 return 0;
659
660 err_unpin:
661 intel_lr_context_unpin(request->ctx, engine);
662 return ret;
663 }
664
665 /*
666 * intel_logical_ring_advance() - advance the tail and prepare for submission
667 * @request: Request to advance the logical ringbuffer of.
668 *
669 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
670 * really happens during submission is that the context and current tail will be placed
671 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
672 * point, the tail *inside* the context is updated and the ELSP written to.
673 */
674 static int
675 intel_logical_ring_advance(struct drm_i915_gem_request *request)
676 {
677 struct intel_ring *ring = request->ring;
678 struct intel_engine_cs *engine = request->engine;
679
680 intel_ring_advance(ring);
681 request->tail = ring->tail;
682
683 /*
684 * Here we add two extra NOOPs as padding to avoid
685 * lite restore of a context with HEAD==TAIL.
686 *
687 * Caller must reserve WA_TAIL_DWORDS for us!
688 */
689 intel_ring_emit(ring, MI_NOOP);
690 intel_ring_emit(ring, MI_NOOP);
691 intel_ring_advance(ring);
692 request->wa_tail = ring->tail;
693
694 /* We keep the previous context alive until we retire the following
695 * request. This ensures that any the context object is still pinned
696 * for any residual writes the HW makes into it on the context switch
697 * into the next object following the breadcrumb. Otherwise, we may
698 * retire the context too early.
699 */
700 request->previous_context = engine->last_context;
701 engine->last_context = request->ctx;
702 return 0;
703 }
704
705 static int intel_lr_context_pin(struct i915_gem_context *ctx,
706 struct intel_engine_cs *engine)
707 {
708 struct intel_context *ce = &ctx->engine[engine->id];
709 void *vaddr;
710 u32 *lrc_reg_state;
711 int ret;
712
713 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
714
715 if (ce->pin_count++)
716 return 0;
717
718 ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
719 PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
720 if (ret)
721 goto err;
722
723 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
724 if (IS_ERR(vaddr)) {
725 ret = PTR_ERR(vaddr);
726 goto unpin_vma;
727 }
728
729 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
730
731 ret = intel_ring_pin(ce->ring);
732 if (ret)
733 goto unpin_map;
734
735 intel_lr_context_descriptor_update(ctx, engine);
736
737 lrc_reg_state[CTX_RING_BUFFER_START+1] =
738 i915_ggtt_offset(ce->ring->vma);
739 ce->lrc_reg_state = lrc_reg_state;
740 ce->state->obj->dirty = true;
741
742 /* Invalidate GuC TLB. */
743 if (i915.enable_guc_submission) {
744 struct drm_i915_private *dev_priv = ctx->i915;
745 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
746 }
747
748 i915_gem_context_get(ctx);
749 return 0;
750
751 unpin_map:
752 i915_gem_object_unpin_map(ce->state->obj);
753 unpin_vma:
754 __i915_vma_unpin(ce->state);
755 err:
756 ce->pin_count = 0;
757 return ret;
758 }
759
760 void intel_lr_context_unpin(struct i915_gem_context *ctx,
761 struct intel_engine_cs *engine)
762 {
763 struct intel_context *ce = &ctx->engine[engine->id];
764
765 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
766 GEM_BUG_ON(ce->pin_count == 0);
767
768 if (--ce->pin_count)
769 return;
770
771 intel_ring_unpin(ce->ring);
772
773 i915_gem_object_unpin_map(ce->state->obj);
774 i915_vma_unpin(ce->state);
775
776 i915_gem_context_put(ctx);
777 }
778
779 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
780 {
781 int ret, i;
782 struct intel_ring *ring = req->ring;
783 struct i915_workarounds *w = &req->i915->workarounds;
784
785 if (w->count == 0)
786 return 0;
787
788 ret = req->engine->emit_flush(req, EMIT_BARRIER);
789 if (ret)
790 return ret;
791
792 ret = intel_ring_begin(req, w->count * 2 + 2);
793 if (ret)
794 return ret;
795
796 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
797 for (i = 0; i < w->count; i++) {
798 intel_ring_emit_reg(ring, w->reg[i].addr);
799 intel_ring_emit(ring, w->reg[i].value);
800 }
801 intel_ring_emit(ring, MI_NOOP);
802
803 intel_ring_advance(ring);
804
805 ret = req->engine->emit_flush(req, EMIT_BARRIER);
806 if (ret)
807 return ret;
808
809 return 0;
810 }
811
812 #define wa_ctx_emit(batch, index, cmd) \
813 do { \
814 int __index = (index)++; \
815 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
816 return -ENOSPC; \
817 } \
818 batch[__index] = (cmd); \
819 } while (0)
820
821 #define wa_ctx_emit_reg(batch, index, reg) \
822 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
823
824 /*
825 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
826 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
827 * but there is a slight complication as this is applied in WA batch where the
828 * values are only initialized once so we cannot take register value at the
829 * beginning and reuse it further; hence we save its value to memory, upload a
830 * constant value with bit21 set and then we restore it back with the saved value.
831 * To simplify the WA, a constant value is formed by using the default value
832 * of this register. This shouldn't be a problem because we are only modifying
833 * it for a short period and this batch in non-premptible. We can ofcourse
834 * use additional instructions that read the actual value of the register
835 * at that time and set our bit of interest but it makes the WA complicated.
836 *
837 * This WA is also required for Gen9 so extracting as a function avoids
838 * code duplication.
839 */
840 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
841 uint32_t *batch,
842 uint32_t index)
843 {
844 struct drm_i915_private *dev_priv = engine->i915;
845 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
846
847 /*
848 * WaDisableLSQCROPERFforOCL:kbl
849 * This WA is implemented in skl_init_clock_gating() but since
850 * this batch updates GEN8_L3SQCREG4 with default value we need to
851 * set this bit here to retain the WA during flush.
852 */
853 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
854 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
855
856 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
857 MI_SRM_LRM_GLOBAL_GTT));
858 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
859 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
860 wa_ctx_emit(batch, index, 0);
861
862 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
863 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
864 wa_ctx_emit(batch, index, l3sqc4_flush);
865
866 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
867 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
868 PIPE_CONTROL_DC_FLUSH_ENABLE));
869 wa_ctx_emit(batch, index, 0);
870 wa_ctx_emit(batch, index, 0);
871 wa_ctx_emit(batch, index, 0);
872 wa_ctx_emit(batch, index, 0);
873
874 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
875 MI_SRM_LRM_GLOBAL_GTT));
876 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
877 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
878 wa_ctx_emit(batch, index, 0);
879
880 return index;
881 }
882
883 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
884 uint32_t offset,
885 uint32_t start_alignment)
886 {
887 return wa_ctx->offset = ALIGN(offset, start_alignment);
888 }
889
890 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
891 uint32_t offset,
892 uint32_t size_alignment)
893 {
894 wa_ctx->size = offset - wa_ctx->offset;
895
896 WARN(wa_ctx->size % size_alignment,
897 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
898 wa_ctx->size, size_alignment);
899 return 0;
900 }
901
902 /*
903 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
904 * initialized at the beginning and shared across all contexts but this field
905 * helps us to have multiple batches at different offsets and select them based
906 * on a criteria. At the moment this batch always start at the beginning of the page
907 * and at this point we don't have multiple wa_ctx batch buffers.
908 *
909 * The number of WA applied are not known at the beginning; we use this field
910 * to return the no of DWORDS written.
911 *
912 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
913 * so it adds NOOPs as padding to make it cacheline aligned.
914 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
915 * makes a complete batch buffer.
916 */
917 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
918 struct i915_wa_ctx_bb *wa_ctx,
919 uint32_t *batch,
920 uint32_t *offset)
921 {
922 uint32_t scratch_addr;
923 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
924
925 /* WaDisableCtxRestoreArbitration:bdw,chv */
926 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
927
928 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
929 if (IS_BROADWELL(engine->i915)) {
930 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
931 if (rc < 0)
932 return rc;
933 index = rc;
934 }
935
936 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
937 /* Actual scratch location is at 128 bytes offset */
938 scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
939
940 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
941 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
942 PIPE_CONTROL_GLOBAL_GTT_IVB |
943 PIPE_CONTROL_CS_STALL |
944 PIPE_CONTROL_QW_WRITE));
945 wa_ctx_emit(batch, index, scratch_addr);
946 wa_ctx_emit(batch, index, 0);
947 wa_ctx_emit(batch, index, 0);
948 wa_ctx_emit(batch, index, 0);
949
950 /* Pad to end of cacheline */
951 while (index % CACHELINE_DWORDS)
952 wa_ctx_emit(batch, index, MI_NOOP);
953
954 /*
955 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
956 * execution depends on the length specified in terms of cache lines
957 * in the register CTX_RCS_INDIRECT_CTX
958 */
959
960 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
961 }
962
963 /*
964 * This batch is started immediately after indirect_ctx batch. Since we ensure
965 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
966 *
967 * The number of DWORDS written are returned using this field.
968 *
969 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
970 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
971 */
972 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
973 struct i915_wa_ctx_bb *wa_ctx,
974 uint32_t *batch,
975 uint32_t *offset)
976 {
977 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
978
979 /* WaDisableCtxRestoreArbitration:bdw,chv */
980 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
981
982 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
983
984 return wa_ctx_end(wa_ctx, *offset = index, 1);
985 }
986
987 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
988 struct i915_wa_ctx_bb *wa_ctx,
989 uint32_t *batch,
990 uint32_t *offset)
991 {
992 int ret;
993 struct drm_i915_private *dev_priv = engine->i915;
994 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
995
996 /* WaDisableCtxRestoreArbitration:bxt */
997 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
998 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
999
1000 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1001 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1002 if (ret < 0)
1003 return ret;
1004 index = ret;
1005
1006 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
1007 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1008 wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
1009 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
1010 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
1011 wa_ctx_emit(batch, index, MI_NOOP);
1012
1013 /* WaClearSlmSpaceAtContextSwitch:kbl */
1014 /* Actual scratch location is at 128 bytes offset */
1015 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1016 u32 scratch_addr =
1017 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1018
1019 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1020 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1021 PIPE_CONTROL_GLOBAL_GTT_IVB |
1022 PIPE_CONTROL_CS_STALL |
1023 PIPE_CONTROL_QW_WRITE));
1024 wa_ctx_emit(batch, index, scratch_addr);
1025 wa_ctx_emit(batch, index, 0);
1026 wa_ctx_emit(batch, index, 0);
1027 wa_ctx_emit(batch, index, 0);
1028 }
1029
1030 /* WaMediaPoolStateCmdInWABB:bxt */
1031 if (HAS_POOLED_EU(engine->i915)) {
1032 /*
1033 * EU pool configuration is setup along with golden context
1034 * during context initialization. This value depends on
1035 * device type (2x6 or 3x6) and needs to be updated based
1036 * on which subslice is disabled especially for 2x6
1037 * devices, however it is safe to load default
1038 * configuration of 3x6 device instead of masking off
1039 * corresponding bits because HW ignores bits of a disabled
1040 * subslice and drops down to appropriate config. Please
1041 * see render_state_setup() in i915_gem_render_state.c for
1042 * possible configurations, to avoid duplication they are
1043 * not shown here again.
1044 */
1045 u32 eu_pool_config = 0x00777000;
1046 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1047 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1048 wa_ctx_emit(batch, index, eu_pool_config);
1049 wa_ctx_emit(batch, index, 0);
1050 wa_ctx_emit(batch, index, 0);
1051 wa_ctx_emit(batch, index, 0);
1052 }
1053
1054 /* Pad to end of cacheline */
1055 while (index % CACHELINE_DWORDS)
1056 wa_ctx_emit(batch, index, MI_NOOP);
1057
1058 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1059 }
1060
1061 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1062 struct i915_wa_ctx_bb *wa_ctx,
1063 uint32_t *batch,
1064 uint32_t *offset)
1065 {
1066 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1067
1068 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
1069 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1070 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1071 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1072 wa_ctx_emit(batch, index,
1073 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1074 wa_ctx_emit(batch, index, MI_NOOP);
1075 }
1076
1077 /* WaClearTdlStateAckDirtyBits:bxt */
1078 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1079 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1080
1081 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1082 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1083
1084 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1085 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1086
1087 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1088 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1089
1090 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1091 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1092 wa_ctx_emit(batch, index, 0x0);
1093 wa_ctx_emit(batch, index, MI_NOOP);
1094 }
1095
1096 /* WaDisableCtxRestoreArbitration:bxt */
1097 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1098 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1099
1100 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1101
1102 return wa_ctx_end(wa_ctx, *offset = index, 1);
1103 }
1104
1105 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1106 {
1107 struct drm_i915_gem_object *obj;
1108 struct i915_vma *vma;
1109 int err;
1110
1111 obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
1112 if (IS_ERR(obj))
1113 return PTR_ERR(obj);
1114
1115 vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1116 if (IS_ERR(vma)) {
1117 err = PTR_ERR(vma);
1118 goto err;
1119 }
1120
1121 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1122 if (err)
1123 goto err;
1124
1125 engine->wa_ctx.vma = vma;
1126 return 0;
1127
1128 err:
1129 i915_gem_object_put(obj);
1130 return err;
1131 }
1132
1133 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1134 {
1135 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1136 }
1137
1138 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1139 {
1140 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1141 uint32_t *batch;
1142 uint32_t offset;
1143 struct page *page;
1144 int ret;
1145
1146 WARN_ON(engine->id != RCS);
1147
1148 /* update this when WA for higher Gen are added */
1149 if (INTEL_GEN(engine->i915) > 9) {
1150 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1151 INTEL_GEN(engine->i915));
1152 return 0;
1153 }
1154
1155 /* some WA perform writes to scratch page, ensure it is valid */
1156 if (!engine->scratch) {
1157 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1158 return -EINVAL;
1159 }
1160
1161 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1162 if (ret) {
1163 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1164 return ret;
1165 }
1166
1167 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1168 batch = kmap_atomic(page);
1169 offset = 0;
1170
1171 if (IS_GEN8(engine->i915)) {
1172 ret = gen8_init_indirectctx_bb(engine,
1173 &wa_ctx->indirect_ctx,
1174 batch,
1175 &offset);
1176 if (ret)
1177 goto out;
1178
1179 ret = gen8_init_perctx_bb(engine,
1180 &wa_ctx->per_ctx,
1181 batch,
1182 &offset);
1183 if (ret)
1184 goto out;
1185 } else if (IS_GEN9(engine->i915)) {
1186 ret = gen9_init_indirectctx_bb(engine,
1187 &wa_ctx->indirect_ctx,
1188 batch,
1189 &offset);
1190 if (ret)
1191 goto out;
1192
1193 ret = gen9_init_perctx_bb(engine,
1194 &wa_ctx->per_ctx,
1195 batch,
1196 &offset);
1197 if (ret)
1198 goto out;
1199 }
1200
1201 out:
1202 kunmap_atomic(batch);
1203 if (ret)
1204 lrc_destroy_wa_ctx_obj(engine);
1205
1206 return ret;
1207 }
1208
1209 static void lrc_init_hws(struct intel_engine_cs *engine)
1210 {
1211 struct drm_i915_private *dev_priv = engine->i915;
1212
1213 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1214 engine->status_page.ggtt_offset);
1215 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1216 }
1217
1218 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1219 {
1220 struct drm_i915_private *dev_priv = engine->i915;
1221 int ret;
1222
1223 ret = intel_mocs_init_engine(engine);
1224 if (ret)
1225 return ret;
1226
1227 lrc_init_hws(engine);
1228
1229 intel_engine_reset_irq(engine);
1230
1231 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1232
1233 I915_WRITE(RING_MODE_GEN7(engine),
1234 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1235 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1236
1237 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1238
1239 intel_engine_init_hangcheck(engine);
1240
1241 if (!execlists_elsp_idle(engine))
1242 execlists_submit_ports(engine);
1243
1244 return 0;
1245 }
1246
1247 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1248 {
1249 struct drm_i915_private *dev_priv = engine->i915;
1250 int ret;
1251
1252 ret = gen8_init_common_ring(engine);
1253 if (ret)
1254 return ret;
1255
1256 /* We need to disable the AsyncFlip performance optimisations in order
1257 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1258 * programmed to '1' on all products.
1259 *
1260 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1261 */
1262 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1263
1264 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1265
1266 return init_workarounds_ring(engine);
1267 }
1268
1269 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1270 {
1271 int ret;
1272
1273 ret = gen8_init_common_ring(engine);
1274 if (ret)
1275 return ret;
1276
1277 return init_workarounds_ring(engine);
1278 }
1279
1280 static void reset_common_ring(struct intel_engine_cs *engine,
1281 struct drm_i915_gem_request *request)
1282 {
1283 struct drm_i915_private *dev_priv = engine->i915;
1284 struct execlist_port *port = engine->execlist_port;
1285 struct intel_context *ce = &request->ctx->engine[engine->id];
1286
1287 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1288 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1289 request->ring->head = request->postfix;
1290 request->ring->last_retired_head = -1;
1291 intel_ring_update_space(request->ring);
1292
1293 if (i915.enable_guc_submission)
1294 return;
1295
1296 /* Catch up with any missed context-switch interrupts */
1297 I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
1298 if (request->ctx != port[0].request->ctx) {
1299 i915_gem_request_put(port[0].request);
1300 port[0] = port[1];
1301 memset(&port[1], 0, sizeof(port[1]));
1302 }
1303
1304 /* CS is stopped, and we will resubmit both ports on resume */
1305 GEM_BUG_ON(request->ctx != port[0].request->ctx);
1306 port[0].count = 0;
1307 port[1].count = 0;
1308 }
1309
1310 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1311 {
1312 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1313 struct intel_ring *ring = req->ring;
1314 struct intel_engine_cs *engine = req->engine;
1315 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1316 int i, ret;
1317
1318 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1319 if (ret)
1320 return ret;
1321
1322 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1323 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1324 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1325
1326 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
1327 intel_ring_emit(ring, upper_32_bits(pd_daddr));
1328 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
1329 intel_ring_emit(ring, lower_32_bits(pd_daddr));
1330 }
1331
1332 intel_ring_emit(ring, MI_NOOP);
1333 intel_ring_advance(ring);
1334
1335 return 0;
1336 }
1337
1338 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1339 u64 offset, u32 len,
1340 unsigned int dispatch_flags)
1341 {
1342 struct intel_ring *ring = req->ring;
1343 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1344 int ret;
1345
1346 /* Don't rely in hw updating PDPs, specially in lite-restore.
1347 * Ideally, we should set Force PD Restore in ctx descriptor,
1348 * but we can't. Force Restore would be a second option, but
1349 * it is unsafe in case of lite-restore (because the ctx is
1350 * not idle). PML4 is allocated during ppgtt init so this is
1351 * not needed in 48-bit.*/
1352 if (req->ctx->ppgtt &&
1353 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1354 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1355 !intel_vgpu_active(req->i915)) {
1356 ret = intel_logical_ring_emit_pdps(req);
1357 if (ret)
1358 return ret;
1359 }
1360
1361 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1362 }
1363
1364 ret = intel_ring_begin(req, 4);
1365 if (ret)
1366 return ret;
1367
1368 /* FIXME(BDW): Address space and security selectors. */
1369 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
1370 (ppgtt<<8) |
1371 (dispatch_flags & I915_DISPATCH_RS ?
1372 MI_BATCH_RESOURCE_STREAMER : 0));
1373 intel_ring_emit(ring, lower_32_bits(offset));
1374 intel_ring_emit(ring, upper_32_bits(offset));
1375 intel_ring_emit(ring, MI_NOOP);
1376 intel_ring_advance(ring);
1377
1378 return 0;
1379 }
1380
1381 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1382 {
1383 struct drm_i915_private *dev_priv = engine->i915;
1384 I915_WRITE_IMR(engine,
1385 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1386 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1387 }
1388
1389 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1390 {
1391 struct drm_i915_private *dev_priv = engine->i915;
1392 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1393 }
1394
1395 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1396 {
1397 struct intel_ring *ring = request->ring;
1398 u32 cmd;
1399 int ret;
1400
1401 ret = intel_ring_begin(request, 4);
1402 if (ret)
1403 return ret;
1404
1405 cmd = MI_FLUSH_DW + 1;
1406
1407 /* We always require a command barrier so that subsequent
1408 * commands, such as breadcrumb interrupts, are strictly ordered
1409 * wrt the contents of the write cache being flushed to memory
1410 * (and thus being coherent from the CPU).
1411 */
1412 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1413
1414 if (mode & EMIT_INVALIDATE) {
1415 cmd |= MI_INVALIDATE_TLB;
1416 if (request->engine->id == VCS)
1417 cmd |= MI_INVALIDATE_BSD;
1418 }
1419
1420 intel_ring_emit(ring, cmd);
1421 intel_ring_emit(ring,
1422 I915_GEM_HWS_SCRATCH_ADDR |
1423 MI_FLUSH_DW_USE_GTT);
1424 intel_ring_emit(ring, 0); /* upper addr */
1425 intel_ring_emit(ring, 0); /* value */
1426 intel_ring_advance(ring);
1427
1428 return 0;
1429 }
1430
1431 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1432 u32 mode)
1433 {
1434 struct intel_ring *ring = request->ring;
1435 struct intel_engine_cs *engine = request->engine;
1436 u32 scratch_addr =
1437 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1438 bool vf_flush_wa = false, dc_flush_wa = false;
1439 u32 flags = 0;
1440 int ret;
1441 int len;
1442
1443 flags |= PIPE_CONTROL_CS_STALL;
1444
1445 if (mode & EMIT_FLUSH) {
1446 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1447 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1448 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1449 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1450 }
1451
1452 if (mode & EMIT_INVALIDATE) {
1453 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1454 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1455 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1456 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1457 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1458 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1459 flags |= PIPE_CONTROL_QW_WRITE;
1460 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1461
1462 /*
1463 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1464 * pipe control.
1465 */
1466 if (IS_GEN9(request->i915))
1467 vf_flush_wa = true;
1468
1469 /* WaForGAMHang:kbl */
1470 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1471 dc_flush_wa = true;
1472 }
1473
1474 len = 6;
1475
1476 if (vf_flush_wa)
1477 len += 6;
1478
1479 if (dc_flush_wa)
1480 len += 12;
1481
1482 ret = intel_ring_begin(request, len);
1483 if (ret)
1484 return ret;
1485
1486 if (vf_flush_wa) {
1487 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1488 intel_ring_emit(ring, 0);
1489 intel_ring_emit(ring, 0);
1490 intel_ring_emit(ring, 0);
1491 intel_ring_emit(ring, 0);
1492 intel_ring_emit(ring, 0);
1493 }
1494
1495 if (dc_flush_wa) {
1496 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1497 intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
1498 intel_ring_emit(ring, 0);
1499 intel_ring_emit(ring, 0);
1500 intel_ring_emit(ring, 0);
1501 intel_ring_emit(ring, 0);
1502 }
1503
1504 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1505 intel_ring_emit(ring, flags);
1506 intel_ring_emit(ring, scratch_addr);
1507 intel_ring_emit(ring, 0);
1508 intel_ring_emit(ring, 0);
1509 intel_ring_emit(ring, 0);
1510
1511 if (dc_flush_wa) {
1512 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1513 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
1514 intel_ring_emit(ring, 0);
1515 intel_ring_emit(ring, 0);
1516 intel_ring_emit(ring, 0);
1517 intel_ring_emit(ring, 0);
1518 }
1519
1520 intel_ring_advance(ring);
1521
1522 return 0;
1523 }
1524
1525 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1526 {
1527 /*
1528 * On BXT A steppings there is a HW coherency issue whereby the
1529 * MI_STORE_DATA_IMM storing the completed request's seqno
1530 * occasionally doesn't invalidate the CPU cache. Work around this by
1531 * clflushing the corresponding cacheline whenever the caller wants
1532 * the coherency to be guaranteed. Note that this cacheline is known
1533 * to be clean at this point, since we only write it in
1534 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1535 * this clflush in practice becomes an invalidate operation.
1536 */
1537 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1538 }
1539
1540 /*
1541 * Reserve space for 2 NOOPs at the end of each request to be
1542 * used as a workaround for not being allowed to do lite
1543 * restore with HEAD==TAIL (WaIdleLiteRestore).
1544 */
1545 #define WA_TAIL_DWORDS 2
1546
1547 static int gen8_emit_request(struct drm_i915_gem_request *request)
1548 {
1549 struct intel_ring *ring = request->ring;
1550 int ret;
1551
1552 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1553 if (ret)
1554 return ret;
1555
1556 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1557 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1558
1559 intel_ring_emit(ring, (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1560 intel_ring_emit(ring,
1561 intel_hws_seqno_address(request->engine) |
1562 MI_FLUSH_DW_USE_GTT);
1563 intel_ring_emit(ring, 0);
1564 intel_ring_emit(ring, request->fence.seqno);
1565 intel_ring_emit(ring, MI_USER_INTERRUPT);
1566 intel_ring_emit(ring, MI_NOOP);
1567 return intel_logical_ring_advance(request);
1568 }
1569
1570 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1571 {
1572 struct intel_ring *ring = request->ring;
1573 int ret;
1574
1575 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1576 if (ret)
1577 return ret;
1578
1579 /* We're using qword write, seqno should be aligned to 8 bytes. */
1580 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1581
1582 /* w/a for post sync ops following a GPGPU operation we
1583 * need a prior CS_STALL, which is emitted by the flush
1584 * following the batch.
1585 */
1586 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1587 intel_ring_emit(ring,
1588 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1589 PIPE_CONTROL_CS_STALL |
1590 PIPE_CONTROL_QW_WRITE));
1591 intel_ring_emit(ring, intel_hws_seqno_address(request->engine));
1592 intel_ring_emit(ring, 0);
1593 intel_ring_emit(ring, i915_gem_request_get_seqno(request));
1594 /* We're thrashing one dword of HWS. */
1595 intel_ring_emit(ring, 0);
1596 intel_ring_emit(ring, MI_USER_INTERRUPT);
1597 intel_ring_emit(ring, MI_NOOP);
1598 return intel_logical_ring_advance(request);
1599 }
1600
1601 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1602 {
1603 int ret;
1604
1605 ret = intel_logical_ring_workarounds_emit(req);
1606 if (ret)
1607 return ret;
1608
1609 ret = intel_rcs_context_init_mocs(req);
1610 /*
1611 * Failing to program the MOCS is non-fatal.The system will not
1612 * run at peak performance. So generate an error and carry on.
1613 */
1614 if (ret)
1615 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1616
1617 return i915_gem_render_state_init(req);
1618 }
1619
1620 /**
1621 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1622 * @engine: Engine Command Streamer.
1623 */
1624 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1625 {
1626 struct drm_i915_private *dev_priv;
1627
1628 if (!intel_engine_initialized(engine))
1629 return;
1630
1631 /*
1632 * Tasklet cannot be active at this point due intel_mark_active/idle
1633 * so this is just for documentation.
1634 */
1635 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1636 tasklet_kill(&engine->irq_tasklet);
1637
1638 dev_priv = engine->i915;
1639
1640 if (engine->buffer) {
1641 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1642 }
1643
1644 if (engine->cleanup)
1645 engine->cleanup(engine);
1646
1647 intel_engine_cleanup_common(engine);
1648
1649 if (engine->status_page.vma) {
1650 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1651 engine->status_page.vma = NULL;
1652 }
1653 intel_lr_context_unpin(dev_priv->kernel_context, engine);
1654
1655 lrc_destroy_wa_ctx_obj(engine);
1656 engine->i915 = NULL;
1657 }
1658
1659 void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1660 {
1661 struct intel_engine_cs *engine;
1662
1663 for_each_engine(engine, dev_priv)
1664 engine->submit_request = execlists_submit_request;
1665 }
1666
1667 static void
1668 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1669 {
1670 /* Default vfuncs which can be overriden by each engine. */
1671 engine->init_hw = gen8_init_common_ring;
1672 engine->reset_hw = reset_common_ring;
1673 engine->emit_flush = gen8_emit_flush;
1674 engine->emit_request = gen8_emit_request;
1675 engine->submit_request = execlists_submit_request;
1676
1677 engine->irq_enable = gen8_logical_ring_enable_irq;
1678 engine->irq_disable = gen8_logical_ring_disable_irq;
1679 engine->emit_bb_start = gen8_emit_bb_start;
1680 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1681 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1682 }
1683
1684 static inline void
1685 logical_ring_default_irqs(struct intel_engine_cs *engine)
1686 {
1687 unsigned shift = engine->irq_shift;
1688 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1689 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1690 }
1691
1692 static int
1693 lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1694 {
1695 const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1696 void *hws;
1697
1698 /* The HWSP is part of the default context object in LRC mode. */
1699 hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1700 if (IS_ERR(hws))
1701 return PTR_ERR(hws);
1702
1703 engine->status_page.page_addr = hws + hws_offset;
1704 engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1705 engine->status_page.vma = vma;
1706
1707 return 0;
1708 }
1709
1710 static void
1711 logical_ring_setup(struct intel_engine_cs *engine)
1712 {
1713 struct drm_i915_private *dev_priv = engine->i915;
1714 enum forcewake_domains fw_domains;
1715
1716 intel_engine_setup_common(engine);
1717
1718 /* Intentionally left blank. */
1719 engine->buffer = NULL;
1720
1721 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1722 RING_ELSP(engine),
1723 FW_REG_WRITE);
1724
1725 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1726 RING_CONTEXT_STATUS_PTR(engine),
1727 FW_REG_READ | FW_REG_WRITE);
1728
1729 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1730 RING_CONTEXT_STATUS_BUF_BASE(engine),
1731 FW_REG_READ);
1732
1733 engine->fw_domains = fw_domains;
1734
1735 tasklet_init(&engine->irq_tasklet,
1736 intel_lrc_irq_handler, (unsigned long)engine);
1737
1738 logical_ring_init_platform_invariants(engine);
1739 logical_ring_default_vfuncs(engine);
1740 logical_ring_default_irqs(engine);
1741 }
1742
1743 static int
1744 logical_ring_init(struct intel_engine_cs *engine)
1745 {
1746 struct i915_gem_context *dctx = engine->i915->kernel_context;
1747 int ret;
1748
1749 ret = intel_engine_init_common(engine);
1750 if (ret)
1751 goto error;
1752
1753 ret = execlists_context_deferred_alloc(dctx, engine);
1754 if (ret)
1755 goto error;
1756
1757 /* As this is the default context, always pin it */
1758 ret = intel_lr_context_pin(dctx, engine);
1759 if (ret) {
1760 DRM_ERROR("Failed to pin context for %s: %d\n",
1761 engine->name, ret);
1762 goto error;
1763 }
1764
1765 /* And setup the hardware status page. */
1766 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1767 if (ret) {
1768 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1769 goto error;
1770 }
1771
1772 return 0;
1773
1774 error:
1775 intel_logical_ring_cleanup(engine);
1776 return ret;
1777 }
1778
1779 int logical_render_ring_init(struct intel_engine_cs *engine)
1780 {
1781 struct drm_i915_private *dev_priv = engine->i915;
1782 int ret;
1783
1784 logical_ring_setup(engine);
1785
1786 if (HAS_L3_DPF(dev_priv))
1787 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1788
1789 /* Override some for render ring. */
1790 if (INTEL_GEN(dev_priv) >= 9)
1791 engine->init_hw = gen9_init_render_ring;
1792 else
1793 engine->init_hw = gen8_init_render_ring;
1794 engine->init_context = gen8_init_rcs_context;
1795 engine->emit_flush = gen8_emit_flush_render;
1796 engine->emit_request = gen8_emit_request_render;
1797
1798 ret = intel_engine_create_scratch(engine, 4096);
1799 if (ret)
1800 return ret;
1801
1802 ret = intel_init_workaround_bb(engine);
1803 if (ret) {
1804 /*
1805 * We continue even if we fail to initialize WA batch
1806 * because we only expect rare glitches but nothing
1807 * critical to prevent us from using GPU
1808 */
1809 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1810 ret);
1811 }
1812
1813 ret = logical_ring_init(engine);
1814 if (ret) {
1815 lrc_destroy_wa_ctx_obj(engine);
1816 }
1817
1818 return ret;
1819 }
1820
1821 int logical_xcs_ring_init(struct intel_engine_cs *engine)
1822 {
1823 logical_ring_setup(engine);
1824
1825 return logical_ring_init(engine);
1826 }
1827
1828 static u32
1829 make_rpcs(struct drm_i915_private *dev_priv)
1830 {
1831 u32 rpcs = 0;
1832
1833 /*
1834 * No explicit RPCS request is needed to ensure full
1835 * slice/subslice/EU enablement prior to Gen9.
1836 */
1837 if (INTEL_GEN(dev_priv) < 9)
1838 return 0;
1839
1840 /*
1841 * Starting in Gen9, render power gating can leave
1842 * slice/subslice/EU in a partially enabled state. We
1843 * must make an explicit request through RPCS for full
1844 * enablement.
1845 */
1846 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1847 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1848 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1849 GEN8_RPCS_S_CNT_SHIFT;
1850 rpcs |= GEN8_RPCS_ENABLE;
1851 }
1852
1853 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1854 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1855 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1856 GEN8_RPCS_SS_CNT_SHIFT;
1857 rpcs |= GEN8_RPCS_ENABLE;
1858 }
1859
1860 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1861 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1862 GEN8_RPCS_EU_MIN_SHIFT;
1863 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1864 GEN8_RPCS_EU_MAX_SHIFT;
1865 rpcs |= GEN8_RPCS_ENABLE;
1866 }
1867
1868 return rpcs;
1869 }
1870
1871 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1872 {
1873 u32 indirect_ctx_offset;
1874
1875 switch (INTEL_GEN(engine->i915)) {
1876 default:
1877 MISSING_CASE(INTEL_GEN(engine->i915));
1878 /* fall through */
1879 case 9:
1880 indirect_ctx_offset =
1881 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1882 break;
1883 case 8:
1884 indirect_ctx_offset =
1885 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1886 break;
1887 }
1888
1889 return indirect_ctx_offset;
1890 }
1891
1892 static int
1893 populate_lr_context(struct i915_gem_context *ctx,
1894 struct drm_i915_gem_object *ctx_obj,
1895 struct intel_engine_cs *engine,
1896 struct intel_ring *ring)
1897 {
1898 struct drm_i915_private *dev_priv = ctx->i915;
1899 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1900 void *vaddr;
1901 u32 *reg_state;
1902 int ret;
1903
1904 if (!ppgtt)
1905 ppgtt = dev_priv->mm.aliasing_ppgtt;
1906
1907 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1908 if (ret) {
1909 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1910 return ret;
1911 }
1912
1913 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
1914 if (IS_ERR(vaddr)) {
1915 ret = PTR_ERR(vaddr);
1916 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
1917 return ret;
1918 }
1919 ctx_obj->dirty = true;
1920
1921 /* The second page of the context object contains some fields which must
1922 * be set up prior to the first execution. */
1923 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1924
1925 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1926 * commands followed by (reg, value) pairs. The values we are setting here are
1927 * only for the first context restore: on a subsequent save, the GPU will
1928 * recreate this batchbuffer with new values (including all the missing
1929 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1930 reg_state[CTX_LRI_HEADER_0] =
1931 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
1932 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
1933 RING_CONTEXT_CONTROL(engine),
1934 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1935 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1936 (HAS_RESOURCE_STREAMER(dev_priv) ?
1937 CTX_CTRL_RS_CTX_ENABLE : 0)));
1938 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
1939 0);
1940 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
1941 0);
1942 /* Ring buffer start address is not known until the buffer is pinned.
1943 * It is written to the context image in execlists_update_context()
1944 */
1945 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
1946 RING_START(engine->mmio_base), 0);
1947 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
1948 RING_CTL(engine->mmio_base),
1949 ((ring->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
1950 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
1951 RING_BBADDR_UDW(engine->mmio_base), 0);
1952 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
1953 RING_BBADDR(engine->mmio_base), 0);
1954 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
1955 RING_BBSTATE(engine->mmio_base),
1956 RING_BB_PPGTT);
1957 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
1958 RING_SBBADDR_UDW(engine->mmio_base), 0);
1959 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
1960 RING_SBBADDR(engine->mmio_base), 0);
1961 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
1962 RING_SBBSTATE(engine->mmio_base), 0);
1963 if (engine->id == RCS) {
1964 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
1965 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
1966 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
1967 RING_INDIRECT_CTX(engine->mmio_base), 0);
1968 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
1969 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
1970 if (engine->wa_ctx.vma) {
1971 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1972 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1973
1974 reg_state[CTX_RCS_INDIRECT_CTX+1] =
1975 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
1976 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
1977
1978 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
1979 intel_lr_indirect_ctx_offset(engine) << 6;
1980
1981 reg_state[CTX_BB_PER_CTX_PTR+1] =
1982 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
1983 0x01;
1984 }
1985 }
1986 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1987 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
1988 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
1989 /* PDP values well be assigned later if needed */
1990 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
1991 0);
1992 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
1993 0);
1994 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
1995 0);
1996 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
1997 0);
1998 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
1999 0);
2000 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2001 0);
2002 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2003 0);
2004 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2005 0);
2006
2007 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2008 /* 64b PPGTT (48bit canonical)
2009 * PDP0_DESCRIPTOR contains the base address to PML4 and
2010 * other PDP Descriptors are ignored.
2011 */
2012 ASSIGN_CTX_PML4(ppgtt, reg_state);
2013 } else {
2014 /* 32b PPGTT
2015 * PDP*_DESCRIPTOR contains the base address of space supported.
2016 * With dynamic page allocation, PDPs may not be allocated at
2017 * this point. Point the unallocated PDPs to the scratch page
2018 */
2019 execlists_update_context_pdps(ppgtt, reg_state);
2020 }
2021
2022 if (engine->id == RCS) {
2023 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2024 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2025 make_rpcs(dev_priv));
2026 }
2027
2028 i915_gem_object_unpin_map(ctx_obj);
2029
2030 return 0;
2031 }
2032
2033 /**
2034 * intel_lr_context_size() - return the size of the context for an engine
2035 * @engine: which engine to find the context size for
2036 *
2037 * Each engine may require a different amount of space for a context image,
2038 * so when allocating (or copying) an image, this function can be used to
2039 * find the right size for the specific engine.
2040 *
2041 * Return: size (in bytes) of an engine-specific context image
2042 *
2043 * Note: this size includes the HWSP, which is part of the context image
2044 * in LRC mode, but does not include the "shared data page" used with
2045 * GuC submission. The caller should account for this if using the GuC.
2046 */
2047 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2048 {
2049 int ret = 0;
2050
2051 WARN_ON(INTEL_GEN(engine->i915) < 8);
2052
2053 switch (engine->id) {
2054 case RCS:
2055 if (INTEL_GEN(engine->i915) >= 9)
2056 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2057 else
2058 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2059 break;
2060 case VCS:
2061 case BCS:
2062 case VECS:
2063 case VCS2:
2064 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2065 break;
2066 }
2067
2068 return ret;
2069 }
2070
2071 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2072 struct intel_engine_cs *engine)
2073 {
2074 struct drm_i915_gem_object *ctx_obj;
2075 struct intel_context *ce = &ctx->engine[engine->id];
2076 struct i915_vma *vma;
2077 uint32_t context_size;
2078 struct intel_ring *ring;
2079 int ret;
2080
2081 WARN_ON(ce->state);
2082
2083 context_size = round_up(intel_lr_context_size(engine), 4096);
2084
2085 /* One extra page as the sharing data between driver and GuC */
2086 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2087
2088 ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2089 if (IS_ERR(ctx_obj)) {
2090 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2091 return PTR_ERR(ctx_obj);
2092 }
2093
2094 vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
2095 if (IS_ERR(vma)) {
2096 ret = PTR_ERR(vma);
2097 goto error_deref_obj;
2098 }
2099
2100 ring = intel_engine_create_ring(engine, ctx->ring_size);
2101 if (IS_ERR(ring)) {
2102 ret = PTR_ERR(ring);
2103 goto error_deref_obj;
2104 }
2105
2106 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2107 if (ret) {
2108 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2109 goto error_ring_free;
2110 }
2111
2112 ce->ring = ring;
2113 ce->state = vma;
2114 ce->initialised = engine->init_context == NULL;
2115
2116 return 0;
2117
2118 error_ring_free:
2119 intel_ring_free(ring);
2120 error_deref_obj:
2121 i915_gem_object_put(ctx_obj);
2122 return ret;
2123 }
2124
2125 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2126 {
2127 struct intel_engine_cs *engine;
2128 struct i915_gem_context *ctx;
2129
2130 /* Because we emit WA_TAIL_DWORDS there may be a disparity
2131 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2132 * that stored in context. As we only write new commands from
2133 * ce->ring->tail onwards, everything before that is junk. If the GPU
2134 * starts reading from its RING_HEAD from the context, it may try to
2135 * execute that junk and die.
2136 *
2137 * So to avoid that we reset the context images upon resume. For
2138 * simplicity, we just zero everything out.
2139 */
2140 list_for_each_entry(ctx, &dev_priv->context_list, link) {
2141 for_each_engine(engine, dev_priv) {
2142 struct intel_context *ce = &ctx->engine[engine->id];
2143 u32 *reg;
2144
2145 if (!ce->state)
2146 continue;
2147
2148 reg = i915_gem_object_pin_map(ce->state->obj,
2149 I915_MAP_WB);
2150 if (WARN_ON(IS_ERR(reg)))
2151 continue;
2152
2153 reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2154 reg[CTX_RING_HEAD+1] = 0;
2155 reg[CTX_RING_TAIL+1] = 0;
2156
2157 ce->state->obj->dirty = true;
2158 i915_gem_object_unpin_map(ce->state->obj);
2159
2160 ce->ring->head = ce->ring->tail = 0;
2161 ce->ring->last_retired_head = -1;
2162 intel_ring_update_space(ce->ring);
2163 }
2164 }
2165 }