]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_lrc.c
drm/i915: Update reset path to fix incomplete requests
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL (1 << 0x2)
146 #define RING_EXECLIST1_VALID (1 << 0x3)
147 #define RING_EXECLIST0_VALID (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
158
159 #define GEN8_CTX_STATUS_COMPLETED_MASK \
160 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161 GEN8_CTX_STATUS_PREEMPTED | \
162 GEN8_CTX_STATUS_ELEMENT_SWITCH)
163
164 #define CTX_LRI_HEADER_0 0x01
165 #define CTX_CONTEXT_CONTROL 0x02
166 #define CTX_RING_HEAD 0x04
167 #define CTX_RING_TAIL 0x06
168 #define CTX_RING_BUFFER_START 0x08
169 #define CTX_RING_BUFFER_CONTROL 0x0a
170 #define CTX_BB_HEAD_U 0x0c
171 #define CTX_BB_HEAD_L 0x0e
172 #define CTX_BB_STATE 0x10
173 #define CTX_SECOND_BB_HEAD_U 0x12
174 #define CTX_SECOND_BB_HEAD_L 0x14
175 #define CTX_SECOND_BB_STATE 0x16
176 #define CTX_BB_PER_CTX_PTR 0x18
177 #define CTX_RCS_INDIRECT_CTX 0x1a
178 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
179 #define CTX_LRI_HEADER_1 0x21
180 #define CTX_CTX_TIMESTAMP 0x22
181 #define CTX_PDP3_UDW 0x24
182 #define CTX_PDP3_LDW 0x26
183 #define CTX_PDP2_UDW 0x28
184 #define CTX_PDP2_LDW 0x2a
185 #define CTX_PDP1_UDW 0x2c
186 #define CTX_PDP1_LDW 0x2e
187 #define CTX_PDP0_UDW 0x30
188 #define CTX_PDP0_LDW 0x32
189 #define CTX_LRI_HEADER_2 0x41
190 #define CTX_R_PWR_CLK_STATE 0x42
191 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
192
193 #define GEN8_CTX_VALID (1<<0)
194 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
195 #define GEN8_CTX_FORCE_RESTORE (1<<2)
196 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
197 #define GEN8_CTX_PRIVILEGE (1<<8)
198
199 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
200 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
201 (reg_state)[(pos)+1] = (val); \
202 } while (0)
203
204 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
205 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
206 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
207 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
208 } while (0)
209
210 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
211 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
212 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
213 } while (0)
214
215 enum {
216 FAULT_AND_HANG = 0,
217 FAULT_AND_HALT, /* Debug only */
218 FAULT_AND_STREAM,
219 FAULT_AND_CONTINUE /* Unsupported */
220 };
221 #define GEN8_CTX_ID_SHIFT 32
222 #define GEN8_CTX_ID_WIDTH 21
223 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
224 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
225
226 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
227 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
228
229 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
230 struct intel_engine_cs *engine);
231 static int intel_lr_context_pin(struct i915_gem_context *ctx,
232 struct intel_engine_cs *engine);
233
234 /**
235 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
236 * @dev_priv: i915 device private
237 * @enable_execlists: value of i915.enable_execlists module parameter.
238 *
239 * Only certain platforms support Execlists (the prerequisites being
240 * support for Logical Ring Contexts and Aliasing PPGTT or better).
241 *
242 * Return: 1 if Execlists is supported and has to be enabled.
243 */
244 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
245 {
246 /* On platforms with execlist available, vGPU will only
247 * support execlist mode, no ring buffer mode.
248 */
249 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
250 return 1;
251
252 if (INTEL_GEN(dev_priv) >= 9)
253 return 1;
254
255 if (enable_execlists == 0)
256 return 0;
257
258 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
259 USES_PPGTT(dev_priv) &&
260 i915.use_mmio_flip >= 0)
261 return 1;
262
263 return 0;
264 }
265
266 static void
267 logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
268 {
269 struct drm_i915_private *dev_priv = engine->i915;
270
271 engine->disable_lite_restore_wa =
272 (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
273 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
274 (engine->id == VCS || engine->id == VCS2);
275
276 engine->ctx_desc_template = GEN8_CTX_VALID;
277 if (IS_GEN8(dev_priv))
278 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
279 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
280
281 /* TODO: WaDisableLiteRestore when we start using semaphore
282 * signalling between Command Streamers */
283 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
284
285 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
286 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
287 if (engine->disable_lite_restore_wa)
288 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
289 }
290
291 /**
292 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
293 * descriptor for a pinned context
294 * @ctx: Context to work on
295 * @engine: Engine the descriptor will be used with
296 *
297 * The context descriptor encodes various attributes of a context,
298 * including its GTT address and some flags. Because it's fairly
299 * expensive to calculate, we'll just do it once and cache the result,
300 * which remains valid until the context is unpinned.
301 *
302 * This is what a descriptor looks like, from LSB to MSB::
303 *
304 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
305 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
306 * bits 32-52: ctx ID, a globally unique tag
307 * bits 53-54: mbz, reserved for use by hardware
308 * bits 55-63: group ID, currently unused and set to 0
309 */
310 static void
311 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
312 struct intel_engine_cs *engine)
313 {
314 struct intel_context *ce = &ctx->engine[engine->id];
315 u64 desc;
316
317 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
318
319 desc = ctx->desc_template; /* bits 3-4 */
320 desc |= engine->ctx_desc_template; /* bits 0-11 */
321 desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
322 /* bits 12-31 */
323 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
324
325 ce->lrc_desc = desc;
326 }
327
328 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
329 struct intel_engine_cs *engine)
330 {
331 return ctx->engine[engine->id].lrc_desc;
332 }
333
334 static inline void
335 execlists_context_status_change(struct drm_i915_gem_request *rq,
336 unsigned long status)
337 {
338 /*
339 * Only used when GVT-g is enabled now. When GVT-g is disabled,
340 * The compiler should eliminate this function as dead-code.
341 */
342 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
343 return;
344
345 atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
346 }
347
348 static void
349 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
350 {
351 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
352 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
353 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
354 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
355 }
356
357 static u64 execlists_update_context(struct drm_i915_gem_request *rq)
358 {
359 struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
360 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
361 u32 *reg_state = ce->lrc_reg_state;
362
363 reg_state[CTX_RING_TAIL+1] = intel_ring_offset(rq->ring, rq->tail);
364
365 /* True 32b PPGTT with dynamic page allocation: update PDP
366 * registers and point the unallocated PDPs to scratch page.
367 * PML4 is allocated during ppgtt init, so this is not needed
368 * in 48-bit mode.
369 */
370 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
371 execlists_update_context_pdps(ppgtt, reg_state);
372
373 return ce->lrc_desc;
374 }
375
376 static void execlists_submit_ports(struct intel_engine_cs *engine)
377 {
378 struct drm_i915_private *dev_priv = engine->i915;
379 struct execlist_port *port = engine->execlist_port;
380 u32 __iomem *elsp =
381 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
382 u64 desc[2];
383
384 if (!port[0].count)
385 execlists_context_status_change(port[0].request,
386 INTEL_CONTEXT_SCHEDULE_IN);
387 desc[0] = execlists_update_context(port[0].request);
388 engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */
389
390 if (port[1].request) {
391 GEM_BUG_ON(port[1].count);
392 execlists_context_status_change(port[1].request,
393 INTEL_CONTEXT_SCHEDULE_IN);
394 desc[1] = execlists_update_context(port[1].request);
395 port[1].count = 1;
396 } else {
397 desc[1] = 0;
398 }
399 GEM_BUG_ON(desc[0] == desc[1]);
400
401 /* You must always write both descriptors in the order below. */
402 writel(upper_32_bits(desc[1]), elsp);
403 writel(lower_32_bits(desc[1]), elsp);
404
405 writel(upper_32_bits(desc[0]), elsp);
406 /* The context is automatically loaded after the following */
407 writel(lower_32_bits(desc[0]), elsp);
408 }
409
410 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
411 {
412 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
413 ctx->execlists_force_single_submission);
414 }
415
416 static bool can_merge_ctx(const struct i915_gem_context *prev,
417 const struct i915_gem_context *next)
418 {
419 if (prev != next)
420 return false;
421
422 if (ctx_single_port_submission(prev))
423 return false;
424
425 return true;
426 }
427
428 static void execlists_dequeue(struct intel_engine_cs *engine)
429 {
430 struct drm_i915_gem_request *cursor, *last;
431 struct execlist_port *port = engine->execlist_port;
432 bool submit = false;
433
434 last = port->request;
435 if (last)
436 /* WaIdleLiteRestore:bdw,skl
437 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
438 * as we resubmit the request. See gen8_emit_request()
439 * for where we prepare the padding after the end of the
440 * request.
441 */
442 last->tail = last->wa_tail;
443
444 GEM_BUG_ON(port[1].request);
445
446 /* Hardware submission is through 2 ports. Conceptually each port
447 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
448 * static for a context, and unique to each, so we only execute
449 * requests belonging to a single context from each ring. RING_HEAD
450 * is maintained by the CS in the context image, it marks the place
451 * where it got up to last time, and through RING_TAIL we tell the CS
452 * where we want to execute up to this time.
453 *
454 * In this list the requests are in order of execution. Consecutive
455 * requests from the same context are adjacent in the ringbuffer. We
456 * can combine these requests into a single RING_TAIL update:
457 *
458 * RING_HEAD...req1...req2
459 * ^- RING_TAIL
460 * since to execute req2 the CS must first execute req1.
461 *
462 * Our goal then is to point each port to the end of a consecutive
463 * sequence of requests as being the most optimal (fewest wake ups
464 * and context switches) submission.
465 */
466
467 spin_lock(&engine->execlist_lock);
468 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link) {
469 /* Can we combine this request with the current port? It has to
470 * be the same context/ringbuffer and not have any exceptions
471 * (e.g. GVT saying never to combine contexts).
472 *
473 * If we can combine the requests, we can execute both by
474 * updating the RING_TAIL to point to the end of the second
475 * request, and so we never need to tell the hardware about
476 * the first.
477 */
478 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
479 /* If we are on the second port and cannot combine
480 * this request with the last, then we are done.
481 */
482 if (port != engine->execlist_port)
483 break;
484
485 /* If GVT overrides us we only ever submit port[0],
486 * leaving port[1] empty. Note that we also have
487 * to be careful that we don't queue the same
488 * context (even though a different request) to
489 * the second port.
490 */
491 if (ctx_single_port_submission(cursor->ctx))
492 break;
493
494 GEM_BUG_ON(last->ctx == cursor->ctx);
495
496 i915_gem_request_assign(&port->request, last);
497 port++;
498 }
499 last = cursor;
500 submit = true;
501 }
502 if (submit) {
503 /* Decouple all the requests submitted from the queue */
504 engine->execlist_queue.next = &cursor->execlist_link;
505 cursor->execlist_link.prev = &engine->execlist_queue;
506
507 i915_gem_request_assign(&port->request, last);
508 }
509 spin_unlock(&engine->execlist_lock);
510
511 if (submit)
512 execlists_submit_ports(engine);
513 }
514
515 static bool execlists_elsp_idle(struct intel_engine_cs *engine)
516 {
517 return !engine->execlist_port[0].request;
518 }
519
520 static bool execlists_elsp_ready(struct intel_engine_cs *engine)
521 {
522 int port;
523
524 port = 1; /* wait for a free slot */
525 if (engine->disable_lite_restore_wa || engine->preempt_wa)
526 port = 0; /* wait for GPU to be idle before continuing */
527
528 return !engine->execlist_port[port].request;
529 }
530
531 /*
532 * Check the unread Context Status Buffers and manage the submission of new
533 * contexts to the ELSP accordingly.
534 */
535 static void intel_lrc_irq_handler(unsigned long data)
536 {
537 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
538 struct execlist_port *port = engine->execlist_port;
539 struct drm_i915_private *dev_priv = engine->i915;
540
541 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
542
543 if (!execlists_elsp_idle(engine)) {
544 u32 __iomem *csb_mmio =
545 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
546 u32 __iomem *buf =
547 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
548 unsigned int csb, head, tail;
549
550 csb = readl(csb_mmio);
551 head = GEN8_CSB_READ_PTR(csb);
552 tail = GEN8_CSB_WRITE_PTR(csb);
553 if (tail < head)
554 tail += GEN8_CSB_ENTRIES;
555 while (head < tail) {
556 unsigned int idx = ++head % GEN8_CSB_ENTRIES;
557 unsigned int status = readl(buf + 2 * idx);
558
559 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
560 continue;
561
562 GEM_BUG_ON(port[0].count == 0);
563 if (--port[0].count == 0) {
564 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
565 execlists_context_status_change(port[0].request,
566 INTEL_CONTEXT_SCHEDULE_OUT);
567
568 i915_gem_request_put(port[0].request);
569 port[0] = port[1];
570 memset(&port[1], 0, sizeof(port[1]));
571
572 engine->preempt_wa = false;
573 }
574
575 GEM_BUG_ON(port[0].count == 0 &&
576 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
577 }
578
579 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
580 GEN8_CSB_WRITE_PTR(csb) << 8),
581 csb_mmio);
582 }
583
584 if (execlists_elsp_ready(engine))
585 execlists_dequeue(engine);
586
587 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
588 }
589
590 static void execlists_submit_request(struct drm_i915_gem_request *request)
591 {
592 struct intel_engine_cs *engine = request->engine;
593
594 spin_lock_bh(&engine->execlist_lock);
595
596 list_add_tail(&request->execlist_link, &engine->execlist_queue);
597 if (execlists_elsp_idle(engine))
598 tasklet_hi_schedule(&engine->irq_tasklet);
599
600 spin_unlock_bh(&engine->execlist_lock);
601 }
602
603 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
604 {
605 struct intel_engine_cs *engine = request->engine;
606 struct intel_context *ce = &request->ctx->engine[engine->id];
607 int ret;
608
609 /* Flush enough space to reduce the likelihood of waiting after
610 * we start building the request - in which case we will just
611 * have to repeat work.
612 */
613 request->reserved_space += EXECLISTS_REQUEST_SIZE;
614
615 if (!ce->state) {
616 ret = execlists_context_deferred_alloc(request->ctx, engine);
617 if (ret)
618 return ret;
619 }
620
621 request->ring = ce->ring;
622
623 if (i915.enable_guc_submission) {
624 /*
625 * Check that the GuC has space for the request before
626 * going any further, as the i915_add_request() call
627 * later on mustn't fail ...
628 */
629 ret = i915_guc_wq_check_space(request);
630 if (ret)
631 return ret;
632 }
633
634 ret = intel_lr_context_pin(request->ctx, engine);
635 if (ret)
636 return ret;
637
638 ret = intel_ring_begin(request, 0);
639 if (ret)
640 goto err_unpin;
641
642 if (!ce->initialised) {
643 ret = engine->init_context(request);
644 if (ret)
645 goto err_unpin;
646
647 ce->initialised = true;
648 }
649
650 /* Note that after this point, we have committed to using
651 * this request as it is being used to both track the
652 * state of engine initialisation and liveness of the
653 * golden renderstate above. Think twice before you try
654 * to cancel/unwind this request now.
655 */
656
657 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
658 return 0;
659
660 err_unpin:
661 intel_lr_context_unpin(request->ctx, engine);
662 return ret;
663 }
664
665 /*
666 * intel_logical_ring_advance() - advance the tail and prepare for submission
667 * @request: Request to advance the logical ringbuffer of.
668 *
669 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
670 * really happens during submission is that the context and current tail will be placed
671 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
672 * point, the tail *inside* the context is updated and the ELSP written to.
673 */
674 static int
675 intel_logical_ring_advance(struct drm_i915_gem_request *request)
676 {
677 struct intel_ring *ring = request->ring;
678 struct intel_engine_cs *engine = request->engine;
679
680 intel_ring_advance(ring);
681 request->tail = ring->tail;
682
683 /*
684 * Here we add two extra NOOPs as padding to avoid
685 * lite restore of a context with HEAD==TAIL.
686 *
687 * Caller must reserve WA_TAIL_DWORDS for us!
688 */
689 intel_ring_emit(ring, MI_NOOP);
690 intel_ring_emit(ring, MI_NOOP);
691 intel_ring_advance(ring);
692 request->wa_tail = ring->tail;
693
694 /* We keep the previous context alive until we retire the following
695 * request. This ensures that any the context object is still pinned
696 * for any residual writes the HW makes into it on the context switch
697 * into the next object following the breadcrumb. Otherwise, we may
698 * retire the context too early.
699 */
700 request->previous_context = engine->last_context;
701 engine->last_context = request->ctx;
702 return 0;
703 }
704
705 static int intel_lr_context_pin(struct i915_gem_context *ctx,
706 struct intel_engine_cs *engine)
707 {
708 struct intel_context *ce = &ctx->engine[engine->id];
709 void *vaddr;
710 u32 *lrc_reg_state;
711 int ret;
712
713 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
714
715 if (ce->pin_count++)
716 return 0;
717
718 ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
719 PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
720 if (ret)
721 goto err;
722
723 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
724 if (IS_ERR(vaddr)) {
725 ret = PTR_ERR(vaddr);
726 goto unpin_vma;
727 }
728
729 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
730
731 ret = intel_ring_pin(ce->ring);
732 if (ret)
733 goto unpin_map;
734
735 intel_lr_context_descriptor_update(ctx, engine);
736
737 lrc_reg_state[CTX_RING_BUFFER_START+1] =
738 i915_ggtt_offset(ce->ring->vma);
739 ce->lrc_reg_state = lrc_reg_state;
740 ce->state->obj->dirty = true;
741
742 /* Invalidate GuC TLB. */
743 if (i915.enable_guc_submission) {
744 struct drm_i915_private *dev_priv = ctx->i915;
745 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
746 }
747
748 i915_gem_context_get(ctx);
749 return 0;
750
751 unpin_map:
752 i915_gem_object_unpin_map(ce->state->obj);
753 unpin_vma:
754 __i915_vma_unpin(ce->state);
755 err:
756 ce->pin_count = 0;
757 return ret;
758 }
759
760 void intel_lr_context_unpin(struct i915_gem_context *ctx,
761 struct intel_engine_cs *engine)
762 {
763 struct intel_context *ce = &ctx->engine[engine->id];
764
765 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
766 GEM_BUG_ON(ce->pin_count == 0);
767
768 if (--ce->pin_count)
769 return;
770
771 intel_ring_unpin(ce->ring);
772
773 i915_gem_object_unpin_map(ce->state->obj);
774 i915_vma_unpin(ce->state);
775
776 i915_gem_context_put(ctx);
777 }
778
779 static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
780 {
781 int ret, i;
782 struct intel_ring *ring = req->ring;
783 struct i915_workarounds *w = &req->i915->workarounds;
784
785 if (w->count == 0)
786 return 0;
787
788 ret = req->engine->emit_flush(req, EMIT_BARRIER);
789 if (ret)
790 return ret;
791
792 ret = intel_ring_begin(req, w->count * 2 + 2);
793 if (ret)
794 return ret;
795
796 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
797 for (i = 0; i < w->count; i++) {
798 intel_ring_emit_reg(ring, w->reg[i].addr);
799 intel_ring_emit(ring, w->reg[i].value);
800 }
801 intel_ring_emit(ring, MI_NOOP);
802
803 intel_ring_advance(ring);
804
805 ret = req->engine->emit_flush(req, EMIT_BARRIER);
806 if (ret)
807 return ret;
808
809 return 0;
810 }
811
812 #define wa_ctx_emit(batch, index, cmd) \
813 do { \
814 int __index = (index)++; \
815 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
816 return -ENOSPC; \
817 } \
818 batch[__index] = (cmd); \
819 } while (0)
820
821 #define wa_ctx_emit_reg(batch, index, reg) \
822 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
823
824 /*
825 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
826 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
827 * but there is a slight complication as this is applied in WA batch where the
828 * values are only initialized once so we cannot take register value at the
829 * beginning and reuse it further; hence we save its value to memory, upload a
830 * constant value with bit21 set and then we restore it back with the saved value.
831 * To simplify the WA, a constant value is formed by using the default value
832 * of this register. This shouldn't be a problem because we are only modifying
833 * it for a short period and this batch in non-premptible. We can ofcourse
834 * use additional instructions that read the actual value of the register
835 * at that time and set our bit of interest but it makes the WA complicated.
836 *
837 * This WA is also required for Gen9 so extracting as a function avoids
838 * code duplication.
839 */
840 static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
841 uint32_t *batch,
842 uint32_t index)
843 {
844 struct drm_i915_private *dev_priv = engine->i915;
845 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
846
847 /*
848 * WaDisableLSQCROPERFforOCL:skl,kbl
849 * This WA is implemented in skl_init_clock_gating() but since
850 * this batch updates GEN8_L3SQCREG4 with default value we need to
851 * set this bit here to retain the WA during flush.
852 */
853 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0) ||
854 IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
855 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
856
857 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
858 MI_SRM_LRM_GLOBAL_GTT));
859 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
860 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
861 wa_ctx_emit(batch, index, 0);
862
863 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
864 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
865 wa_ctx_emit(batch, index, l3sqc4_flush);
866
867 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
868 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
869 PIPE_CONTROL_DC_FLUSH_ENABLE));
870 wa_ctx_emit(batch, index, 0);
871 wa_ctx_emit(batch, index, 0);
872 wa_ctx_emit(batch, index, 0);
873 wa_ctx_emit(batch, index, 0);
874
875 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
876 MI_SRM_LRM_GLOBAL_GTT));
877 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
878 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
879 wa_ctx_emit(batch, index, 0);
880
881 return index;
882 }
883
884 static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
885 uint32_t offset,
886 uint32_t start_alignment)
887 {
888 return wa_ctx->offset = ALIGN(offset, start_alignment);
889 }
890
891 static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
892 uint32_t offset,
893 uint32_t size_alignment)
894 {
895 wa_ctx->size = offset - wa_ctx->offset;
896
897 WARN(wa_ctx->size % size_alignment,
898 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
899 wa_ctx->size, size_alignment);
900 return 0;
901 }
902
903 /*
904 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
905 * initialized at the beginning and shared across all contexts but this field
906 * helps us to have multiple batches at different offsets and select them based
907 * on a criteria. At the moment this batch always start at the beginning of the page
908 * and at this point we don't have multiple wa_ctx batch buffers.
909 *
910 * The number of WA applied are not known at the beginning; we use this field
911 * to return the no of DWORDS written.
912 *
913 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
914 * so it adds NOOPs as padding to make it cacheline aligned.
915 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
916 * makes a complete batch buffer.
917 */
918 static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
919 struct i915_wa_ctx_bb *wa_ctx,
920 uint32_t *batch,
921 uint32_t *offset)
922 {
923 uint32_t scratch_addr;
924 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
925
926 /* WaDisableCtxRestoreArbitration:bdw,chv */
927 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
928
929 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
930 if (IS_BROADWELL(engine->i915)) {
931 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
932 if (rc < 0)
933 return rc;
934 index = rc;
935 }
936
937 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
938 /* Actual scratch location is at 128 bytes offset */
939 scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
940
941 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
942 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
943 PIPE_CONTROL_GLOBAL_GTT_IVB |
944 PIPE_CONTROL_CS_STALL |
945 PIPE_CONTROL_QW_WRITE));
946 wa_ctx_emit(batch, index, scratch_addr);
947 wa_ctx_emit(batch, index, 0);
948 wa_ctx_emit(batch, index, 0);
949 wa_ctx_emit(batch, index, 0);
950
951 /* Pad to end of cacheline */
952 while (index % CACHELINE_DWORDS)
953 wa_ctx_emit(batch, index, MI_NOOP);
954
955 /*
956 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
957 * execution depends on the length specified in terms of cache lines
958 * in the register CTX_RCS_INDIRECT_CTX
959 */
960
961 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
962 }
963
964 /*
965 * This batch is started immediately after indirect_ctx batch. Since we ensure
966 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
967 *
968 * The number of DWORDS written are returned using this field.
969 *
970 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
971 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
972 */
973 static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
974 struct i915_wa_ctx_bb *wa_ctx,
975 uint32_t *batch,
976 uint32_t *offset)
977 {
978 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
979
980 /* WaDisableCtxRestoreArbitration:bdw,chv */
981 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
982
983 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
984
985 return wa_ctx_end(wa_ctx, *offset = index, 1);
986 }
987
988 static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
989 struct i915_wa_ctx_bb *wa_ctx,
990 uint32_t *batch,
991 uint32_t *offset)
992 {
993 int ret;
994 struct drm_i915_private *dev_priv = engine->i915;
995 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
996
997 /* WaDisableCtxRestoreArbitration:skl,bxt */
998 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
999 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1000 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1001
1002 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1003 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1004 if (ret < 0)
1005 return ret;
1006 index = ret;
1007
1008 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
1009 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1010 wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
1011 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
1012 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
1013 wa_ctx_emit(batch, index, MI_NOOP);
1014
1015 /* WaClearSlmSpaceAtContextSwitch:kbl */
1016 /* Actual scratch location is at 128 bytes offset */
1017 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1018 u32 scratch_addr =
1019 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1020
1021 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1022 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1023 PIPE_CONTROL_GLOBAL_GTT_IVB |
1024 PIPE_CONTROL_CS_STALL |
1025 PIPE_CONTROL_QW_WRITE));
1026 wa_ctx_emit(batch, index, scratch_addr);
1027 wa_ctx_emit(batch, index, 0);
1028 wa_ctx_emit(batch, index, 0);
1029 wa_ctx_emit(batch, index, 0);
1030 }
1031
1032 /* WaMediaPoolStateCmdInWABB:bxt */
1033 if (HAS_POOLED_EU(engine->i915)) {
1034 /*
1035 * EU pool configuration is setup along with golden context
1036 * during context initialization. This value depends on
1037 * device type (2x6 or 3x6) and needs to be updated based
1038 * on which subslice is disabled especially for 2x6
1039 * devices, however it is safe to load default
1040 * configuration of 3x6 device instead of masking off
1041 * corresponding bits because HW ignores bits of a disabled
1042 * subslice and drops down to appropriate config. Please
1043 * see render_state_setup() in i915_gem_render_state.c for
1044 * possible configurations, to avoid duplication they are
1045 * not shown here again.
1046 */
1047 u32 eu_pool_config = 0x00777000;
1048 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1049 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1050 wa_ctx_emit(batch, index, eu_pool_config);
1051 wa_ctx_emit(batch, index, 0);
1052 wa_ctx_emit(batch, index, 0);
1053 wa_ctx_emit(batch, index, 0);
1054 }
1055
1056 /* Pad to end of cacheline */
1057 while (index % CACHELINE_DWORDS)
1058 wa_ctx_emit(batch, index, MI_NOOP);
1059
1060 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1061 }
1062
1063 static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1064 struct i915_wa_ctx_bb *wa_ctx,
1065 uint32_t *batch,
1066 uint32_t *offset)
1067 {
1068 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1069
1070 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1071 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
1072 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1073 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1074 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1075 wa_ctx_emit(batch, index,
1076 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1077 wa_ctx_emit(batch, index, MI_NOOP);
1078 }
1079
1080 /* WaClearTdlStateAckDirtyBits:bxt */
1081 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1082 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1083
1084 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1085 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1086
1087 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1088 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1089
1090 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1091 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1092
1093 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1094 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1095 wa_ctx_emit(batch, index, 0x0);
1096 wa_ctx_emit(batch, index, MI_NOOP);
1097 }
1098
1099 /* WaDisableCtxRestoreArbitration:skl,bxt */
1100 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1101 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1102 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1103
1104 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1105
1106 return wa_ctx_end(wa_ctx, *offset = index, 1);
1107 }
1108
1109 static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1110 {
1111 struct drm_i915_gem_object *obj;
1112 struct i915_vma *vma;
1113 int err;
1114
1115 obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
1116 if (IS_ERR(obj))
1117 return PTR_ERR(obj);
1118
1119 vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1120 if (IS_ERR(vma)) {
1121 err = PTR_ERR(vma);
1122 goto err;
1123 }
1124
1125 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1126 if (err)
1127 goto err;
1128
1129 engine->wa_ctx.vma = vma;
1130 return 0;
1131
1132 err:
1133 i915_gem_object_put(obj);
1134 return err;
1135 }
1136
1137 static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1138 {
1139 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1140 }
1141
1142 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1143 {
1144 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1145 uint32_t *batch;
1146 uint32_t offset;
1147 struct page *page;
1148 int ret;
1149
1150 WARN_ON(engine->id != RCS);
1151
1152 /* update this when WA for higher Gen are added */
1153 if (INTEL_GEN(engine->i915) > 9) {
1154 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1155 INTEL_GEN(engine->i915));
1156 return 0;
1157 }
1158
1159 /* some WA perform writes to scratch page, ensure it is valid */
1160 if (!engine->scratch) {
1161 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1162 return -EINVAL;
1163 }
1164
1165 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1166 if (ret) {
1167 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1168 return ret;
1169 }
1170
1171 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1172 batch = kmap_atomic(page);
1173 offset = 0;
1174
1175 if (IS_GEN8(engine->i915)) {
1176 ret = gen8_init_indirectctx_bb(engine,
1177 &wa_ctx->indirect_ctx,
1178 batch,
1179 &offset);
1180 if (ret)
1181 goto out;
1182
1183 ret = gen8_init_perctx_bb(engine,
1184 &wa_ctx->per_ctx,
1185 batch,
1186 &offset);
1187 if (ret)
1188 goto out;
1189 } else if (IS_GEN9(engine->i915)) {
1190 ret = gen9_init_indirectctx_bb(engine,
1191 &wa_ctx->indirect_ctx,
1192 batch,
1193 &offset);
1194 if (ret)
1195 goto out;
1196
1197 ret = gen9_init_perctx_bb(engine,
1198 &wa_ctx->per_ctx,
1199 batch,
1200 &offset);
1201 if (ret)
1202 goto out;
1203 }
1204
1205 out:
1206 kunmap_atomic(batch);
1207 if (ret)
1208 lrc_destroy_wa_ctx_obj(engine);
1209
1210 return ret;
1211 }
1212
1213 static void lrc_init_hws(struct intel_engine_cs *engine)
1214 {
1215 struct drm_i915_private *dev_priv = engine->i915;
1216
1217 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1218 engine->status_page.ggtt_offset);
1219 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1220 }
1221
1222 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1223 {
1224 struct drm_i915_private *dev_priv = engine->i915;
1225 int ret;
1226
1227 ret = intel_mocs_init_engine(engine);
1228 if (ret)
1229 return ret;
1230
1231 lrc_init_hws(engine);
1232
1233 intel_engine_reset_irq(engine);
1234
1235 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1236
1237 I915_WRITE(RING_MODE_GEN7(engine),
1238 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1239 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1240
1241 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1242
1243 intel_engine_init_hangcheck(engine);
1244
1245 if (!execlists_elsp_idle(engine))
1246 execlists_submit_ports(engine);
1247
1248 return 0;
1249 }
1250
1251 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1252 {
1253 struct drm_i915_private *dev_priv = engine->i915;
1254 int ret;
1255
1256 ret = gen8_init_common_ring(engine);
1257 if (ret)
1258 return ret;
1259
1260 /* We need to disable the AsyncFlip performance optimisations in order
1261 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1262 * programmed to '1' on all products.
1263 *
1264 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1265 */
1266 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1267
1268 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1269
1270 return init_workarounds_ring(engine);
1271 }
1272
1273 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1274 {
1275 int ret;
1276
1277 ret = gen8_init_common_ring(engine);
1278 if (ret)
1279 return ret;
1280
1281 return init_workarounds_ring(engine);
1282 }
1283
1284 static void reset_common_ring(struct intel_engine_cs *engine,
1285 struct drm_i915_gem_request *request)
1286 {
1287 struct drm_i915_private *dev_priv = engine->i915;
1288 struct execlist_port *port = engine->execlist_port;
1289 struct intel_context *ce = &request->ctx->engine[engine->id];
1290
1291 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1292 ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1293 request->ring->head = request->postfix;
1294 request->ring->last_retired_head = -1;
1295 intel_ring_update_space(request->ring);
1296
1297 if (i915.enable_guc_submission)
1298 return;
1299
1300 /* Catch up with any missed context-switch interrupts */
1301 I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
1302 if (request->ctx != port[0].request->ctx) {
1303 i915_gem_request_put(port[0].request);
1304 port[0] = port[1];
1305 memset(&port[1], 0, sizeof(port[1]));
1306 }
1307
1308 /* CS is stopped, and we will resubmit both ports on resume */
1309 GEM_BUG_ON(request->ctx != port[0].request->ctx);
1310 port[0].count = 0;
1311 port[1].count = 0;
1312 }
1313
1314 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1315 {
1316 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1317 struct intel_ring *ring = req->ring;
1318 struct intel_engine_cs *engine = req->engine;
1319 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1320 int i, ret;
1321
1322 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1323 if (ret)
1324 return ret;
1325
1326 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1327 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1328 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1329
1330 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
1331 intel_ring_emit(ring, upper_32_bits(pd_daddr));
1332 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
1333 intel_ring_emit(ring, lower_32_bits(pd_daddr));
1334 }
1335
1336 intel_ring_emit(ring, MI_NOOP);
1337 intel_ring_advance(ring);
1338
1339 return 0;
1340 }
1341
1342 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1343 u64 offset, u32 len,
1344 unsigned int dispatch_flags)
1345 {
1346 struct intel_ring *ring = req->ring;
1347 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1348 int ret;
1349
1350 /* Don't rely in hw updating PDPs, specially in lite-restore.
1351 * Ideally, we should set Force PD Restore in ctx descriptor,
1352 * but we can't. Force Restore would be a second option, but
1353 * it is unsafe in case of lite-restore (because the ctx is
1354 * not idle). PML4 is allocated during ppgtt init so this is
1355 * not needed in 48-bit.*/
1356 if (req->ctx->ppgtt &&
1357 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1358 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1359 !intel_vgpu_active(req->i915)) {
1360 ret = intel_logical_ring_emit_pdps(req);
1361 if (ret)
1362 return ret;
1363 }
1364
1365 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1366 }
1367
1368 ret = intel_ring_begin(req, 4);
1369 if (ret)
1370 return ret;
1371
1372 /* FIXME(BDW): Address space and security selectors. */
1373 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
1374 (ppgtt<<8) |
1375 (dispatch_flags & I915_DISPATCH_RS ?
1376 MI_BATCH_RESOURCE_STREAMER : 0));
1377 intel_ring_emit(ring, lower_32_bits(offset));
1378 intel_ring_emit(ring, upper_32_bits(offset));
1379 intel_ring_emit(ring, MI_NOOP);
1380 intel_ring_advance(ring);
1381
1382 return 0;
1383 }
1384
1385 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1386 {
1387 struct drm_i915_private *dev_priv = engine->i915;
1388 I915_WRITE_IMR(engine,
1389 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1390 POSTING_READ_FW(RING_IMR(engine->mmio_base));
1391 }
1392
1393 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1394 {
1395 struct drm_i915_private *dev_priv = engine->i915;
1396 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1397 }
1398
1399 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1400 {
1401 struct intel_ring *ring = request->ring;
1402 u32 cmd;
1403 int ret;
1404
1405 ret = intel_ring_begin(request, 4);
1406 if (ret)
1407 return ret;
1408
1409 cmd = MI_FLUSH_DW + 1;
1410
1411 /* We always require a command barrier so that subsequent
1412 * commands, such as breadcrumb interrupts, are strictly ordered
1413 * wrt the contents of the write cache being flushed to memory
1414 * (and thus being coherent from the CPU).
1415 */
1416 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1417
1418 if (mode & EMIT_INVALIDATE) {
1419 cmd |= MI_INVALIDATE_TLB;
1420 if (request->engine->id == VCS)
1421 cmd |= MI_INVALIDATE_BSD;
1422 }
1423
1424 intel_ring_emit(ring, cmd);
1425 intel_ring_emit(ring,
1426 I915_GEM_HWS_SCRATCH_ADDR |
1427 MI_FLUSH_DW_USE_GTT);
1428 intel_ring_emit(ring, 0); /* upper addr */
1429 intel_ring_emit(ring, 0); /* value */
1430 intel_ring_advance(ring);
1431
1432 return 0;
1433 }
1434
1435 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1436 u32 mode)
1437 {
1438 struct intel_ring *ring = request->ring;
1439 struct intel_engine_cs *engine = request->engine;
1440 u32 scratch_addr =
1441 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1442 bool vf_flush_wa = false, dc_flush_wa = false;
1443 u32 flags = 0;
1444 int ret;
1445 int len;
1446
1447 flags |= PIPE_CONTROL_CS_STALL;
1448
1449 if (mode & EMIT_FLUSH) {
1450 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1451 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1452 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1453 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1454 }
1455
1456 if (mode & EMIT_INVALIDATE) {
1457 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1458 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1459 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1460 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1461 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1462 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1463 flags |= PIPE_CONTROL_QW_WRITE;
1464 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1465
1466 /*
1467 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1468 * pipe control.
1469 */
1470 if (IS_GEN9(request->i915))
1471 vf_flush_wa = true;
1472
1473 /* WaForGAMHang:kbl */
1474 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1475 dc_flush_wa = true;
1476 }
1477
1478 len = 6;
1479
1480 if (vf_flush_wa)
1481 len += 6;
1482
1483 if (dc_flush_wa)
1484 len += 12;
1485
1486 ret = intel_ring_begin(request, len);
1487 if (ret)
1488 return ret;
1489
1490 if (vf_flush_wa) {
1491 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1492 intel_ring_emit(ring, 0);
1493 intel_ring_emit(ring, 0);
1494 intel_ring_emit(ring, 0);
1495 intel_ring_emit(ring, 0);
1496 intel_ring_emit(ring, 0);
1497 }
1498
1499 if (dc_flush_wa) {
1500 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1501 intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
1502 intel_ring_emit(ring, 0);
1503 intel_ring_emit(ring, 0);
1504 intel_ring_emit(ring, 0);
1505 intel_ring_emit(ring, 0);
1506 }
1507
1508 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1509 intel_ring_emit(ring, flags);
1510 intel_ring_emit(ring, scratch_addr);
1511 intel_ring_emit(ring, 0);
1512 intel_ring_emit(ring, 0);
1513 intel_ring_emit(ring, 0);
1514
1515 if (dc_flush_wa) {
1516 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1517 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
1518 intel_ring_emit(ring, 0);
1519 intel_ring_emit(ring, 0);
1520 intel_ring_emit(ring, 0);
1521 intel_ring_emit(ring, 0);
1522 }
1523
1524 intel_ring_advance(ring);
1525
1526 return 0;
1527 }
1528
1529 static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1530 {
1531 /*
1532 * On BXT A steppings there is a HW coherency issue whereby the
1533 * MI_STORE_DATA_IMM storing the completed request's seqno
1534 * occasionally doesn't invalidate the CPU cache. Work around this by
1535 * clflushing the corresponding cacheline whenever the caller wants
1536 * the coherency to be guaranteed. Note that this cacheline is known
1537 * to be clean at this point, since we only write it in
1538 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1539 * this clflush in practice becomes an invalidate operation.
1540 */
1541 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1542 }
1543
1544 /*
1545 * Reserve space for 2 NOOPs at the end of each request to be
1546 * used as a workaround for not being allowed to do lite
1547 * restore with HEAD==TAIL (WaIdleLiteRestore).
1548 */
1549 #define WA_TAIL_DWORDS 2
1550
1551 static int gen8_emit_request(struct drm_i915_gem_request *request)
1552 {
1553 struct intel_ring *ring = request->ring;
1554 int ret;
1555
1556 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1557 if (ret)
1558 return ret;
1559
1560 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1561 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1562
1563 intel_ring_emit(ring, (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1564 intel_ring_emit(ring,
1565 intel_hws_seqno_address(request->engine) |
1566 MI_FLUSH_DW_USE_GTT);
1567 intel_ring_emit(ring, 0);
1568 intel_ring_emit(ring, request->fence.seqno);
1569 intel_ring_emit(ring, MI_USER_INTERRUPT);
1570 intel_ring_emit(ring, MI_NOOP);
1571 return intel_logical_ring_advance(request);
1572 }
1573
1574 static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1575 {
1576 struct intel_ring *ring = request->ring;
1577 int ret;
1578
1579 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1580 if (ret)
1581 return ret;
1582
1583 /* We're using qword write, seqno should be aligned to 8 bytes. */
1584 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1585
1586 /* w/a for post sync ops following a GPGPU operation we
1587 * need a prior CS_STALL, which is emitted by the flush
1588 * following the batch.
1589 */
1590 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1591 intel_ring_emit(ring,
1592 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1593 PIPE_CONTROL_CS_STALL |
1594 PIPE_CONTROL_QW_WRITE));
1595 intel_ring_emit(ring, intel_hws_seqno_address(request->engine));
1596 intel_ring_emit(ring, 0);
1597 intel_ring_emit(ring, i915_gem_request_get_seqno(request));
1598 /* We're thrashing one dword of HWS. */
1599 intel_ring_emit(ring, 0);
1600 intel_ring_emit(ring, MI_USER_INTERRUPT);
1601 intel_ring_emit(ring, MI_NOOP);
1602 return intel_logical_ring_advance(request);
1603 }
1604
1605 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1606 {
1607 int ret;
1608
1609 ret = intel_logical_ring_workarounds_emit(req);
1610 if (ret)
1611 return ret;
1612
1613 ret = intel_rcs_context_init_mocs(req);
1614 /*
1615 * Failing to program the MOCS is non-fatal.The system will not
1616 * run at peak performance. So generate an error and carry on.
1617 */
1618 if (ret)
1619 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1620
1621 return i915_gem_render_state_init(req);
1622 }
1623
1624 /**
1625 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1626 * @engine: Engine Command Streamer.
1627 */
1628 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1629 {
1630 struct drm_i915_private *dev_priv;
1631
1632 if (!intel_engine_initialized(engine))
1633 return;
1634
1635 /*
1636 * Tasklet cannot be active at this point due intel_mark_active/idle
1637 * so this is just for documentation.
1638 */
1639 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1640 tasklet_kill(&engine->irq_tasklet);
1641
1642 dev_priv = engine->i915;
1643
1644 if (engine->buffer) {
1645 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1646 }
1647
1648 if (engine->cleanup)
1649 engine->cleanup(engine);
1650
1651 intel_engine_cleanup_common(engine);
1652
1653 if (engine->status_page.vma) {
1654 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1655 engine->status_page.vma = NULL;
1656 }
1657 intel_lr_context_unpin(dev_priv->kernel_context, engine);
1658
1659 lrc_destroy_wa_ctx_obj(engine);
1660 engine->i915 = NULL;
1661 }
1662
1663 void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1664 {
1665 struct intel_engine_cs *engine;
1666
1667 for_each_engine(engine, dev_priv)
1668 engine->submit_request = execlists_submit_request;
1669 }
1670
1671 static void
1672 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1673 {
1674 /* Default vfuncs which can be overriden by each engine. */
1675 engine->init_hw = gen8_init_common_ring;
1676 engine->reset_hw = reset_common_ring;
1677 engine->emit_flush = gen8_emit_flush;
1678 engine->emit_request = gen8_emit_request;
1679 engine->submit_request = execlists_submit_request;
1680
1681 engine->irq_enable = gen8_logical_ring_enable_irq;
1682 engine->irq_disable = gen8_logical_ring_disable_irq;
1683 engine->emit_bb_start = gen8_emit_bb_start;
1684 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1685 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1686 }
1687
1688 static inline void
1689 logical_ring_default_irqs(struct intel_engine_cs *engine)
1690 {
1691 unsigned shift = engine->irq_shift;
1692 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1693 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1694 }
1695
1696 static int
1697 lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1698 {
1699 const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1700 void *hws;
1701
1702 /* The HWSP is part of the default context object in LRC mode. */
1703 hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1704 if (IS_ERR(hws))
1705 return PTR_ERR(hws);
1706
1707 engine->status_page.page_addr = hws + hws_offset;
1708 engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1709 engine->status_page.vma = vma;
1710
1711 return 0;
1712 }
1713
1714 static void
1715 logical_ring_setup(struct intel_engine_cs *engine)
1716 {
1717 struct drm_i915_private *dev_priv = engine->i915;
1718 enum forcewake_domains fw_domains;
1719
1720 intel_engine_setup_common(engine);
1721
1722 /* Intentionally left blank. */
1723 engine->buffer = NULL;
1724
1725 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1726 RING_ELSP(engine),
1727 FW_REG_WRITE);
1728
1729 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1730 RING_CONTEXT_STATUS_PTR(engine),
1731 FW_REG_READ | FW_REG_WRITE);
1732
1733 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1734 RING_CONTEXT_STATUS_BUF_BASE(engine),
1735 FW_REG_READ);
1736
1737 engine->fw_domains = fw_domains;
1738
1739 tasklet_init(&engine->irq_tasklet,
1740 intel_lrc_irq_handler, (unsigned long)engine);
1741
1742 logical_ring_init_platform_invariants(engine);
1743 logical_ring_default_vfuncs(engine);
1744 logical_ring_default_irqs(engine);
1745 }
1746
1747 static int
1748 logical_ring_init(struct intel_engine_cs *engine)
1749 {
1750 struct i915_gem_context *dctx = engine->i915->kernel_context;
1751 int ret;
1752
1753 ret = intel_engine_init_common(engine);
1754 if (ret)
1755 goto error;
1756
1757 ret = execlists_context_deferred_alloc(dctx, engine);
1758 if (ret)
1759 goto error;
1760
1761 /* As this is the default context, always pin it */
1762 ret = intel_lr_context_pin(dctx, engine);
1763 if (ret) {
1764 DRM_ERROR("Failed to pin context for %s: %d\n",
1765 engine->name, ret);
1766 goto error;
1767 }
1768
1769 /* And setup the hardware status page. */
1770 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1771 if (ret) {
1772 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1773 goto error;
1774 }
1775
1776 return 0;
1777
1778 error:
1779 intel_logical_ring_cleanup(engine);
1780 return ret;
1781 }
1782
1783 int logical_render_ring_init(struct intel_engine_cs *engine)
1784 {
1785 struct drm_i915_private *dev_priv = engine->i915;
1786 int ret;
1787
1788 logical_ring_setup(engine);
1789
1790 if (HAS_L3_DPF(dev_priv))
1791 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1792
1793 /* Override some for render ring. */
1794 if (INTEL_GEN(dev_priv) >= 9)
1795 engine->init_hw = gen9_init_render_ring;
1796 else
1797 engine->init_hw = gen8_init_render_ring;
1798 engine->init_context = gen8_init_rcs_context;
1799 engine->emit_flush = gen8_emit_flush_render;
1800 engine->emit_request = gen8_emit_request_render;
1801
1802 ret = intel_engine_create_scratch(engine, 4096);
1803 if (ret)
1804 return ret;
1805
1806 ret = intel_init_workaround_bb(engine);
1807 if (ret) {
1808 /*
1809 * We continue even if we fail to initialize WA batch
1810 * because we only expect rare glitches but nothing
1811 * critical to prevent us from using GPU
1812 */
1813 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1814 ret);
1815 }
1816
1817 ret = logical_ring_init(engine);
1818 if (ret) {
1819 lrc_destroy_wa_ctx_obj(engine);
1820 }
1821
1822 return ret;
1823 }
1824
1825 int logical_xcs_ring_init(struct intel_engine_cs *engine)
1826 {
1827 logical_ring_setup(engine);
1828
1829 return logical_ring_init(engine);
1830 }
1831
1832 static u32
1833 make_rpcs(struct drm_i915_private *dev_priv)
1834 {
1835 u32 rpcs = 0;
1836
1837 /*
1838 * No explicit RPCS request is needed to ensure full
1839 * slice/subslice/EU enablement prior to Gen9.
1840 */
1841 if (INTEL_GEN(dev_priv) < 9)
1842 return 0;
1843
1844 /*
1845 * Starting in Gen9, render power gating can leave
1846 * slice/subslice/EU in a partially enabled state. We
1847 * must make an explicit request through RPCS for full
1848 * enablement.
1849 */
1850 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1851 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1852 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1853 GEN8_RPCS_S_CNT_SHIFT;
1854 rpcs |= GEN8_RPCS_ENABLE;
1855 }
1856
1857 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1858 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1859 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1860 GEN8_RPCS_SS_CNT_SHIFT;
1861 rpcs |= GEN8_RPCS_ENABLE;
1862 }
1863
1864 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1865 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1866 GEN8_RPCS_EU_MIN_SHIFT;
1867 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1868 GEN8_RPCS_EU_MAX_SHIFT;
1869 rpcs |= GEN8_RPCS_ENABLE;
1870 }
1871
1872 return rpcs;
1873 }
1874
1875 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1876 {
1877 u32 indirect_ctx_offset;
1878
1879 switch (INTEL_GEN(engine->i915)) {
1880 default:
1881 MISSING_CASE(INTEL_GEN(engine->i915));
1882 /* fall through */
1883 case 9:
1884 indirect_ctx_offset =
1885 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1886 break;
1887 case 8:
1888 indirect_ctx_offset =
1889 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1890 break;
1891 }
1892
1893 return indirect_ctx_offset;
1894 }
1895
1896 static int
1897 populate_lr_context(struct i915_gem_context *ctx,
1898 struct drm_i915_gem_object *ctx_obj,
1899 struct intel_engine_cs *engine,
1900 struct intel_ring *ring)
1901 {
1902 struct drm_i915_private *dev_priv = ctx->i915;
1903 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1904 void *vaddr;
1905 u32 *reg_state;
1906 int ret;
1907
1908 if (!ppgtt)
1909 ppgtt = dev_priv->mm.aliasing_ppgtt;
1910
1911 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1912 if (ret) {
1913 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1914 return ret;
1915 }
1916
1917 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
1918 if (IS_ERR(vaddr)) {
1919 ret = PTR_ERR(vaddr);
1920 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
1921 return ret;
1922 }
1923 ctx_obj->dirty = true;
1924
1925 /* The second page of the context object contains some fields which must
1926 * be set up prior to the first execution. */
1927 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1928
1929 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1930 * commands followed by (reg, value) pairs. The values we are setting here are
1931 * only for the first context restore: on a subsequent save, the GPU will
1932 * recreate this batchbuffer with new values (including all the missing
1933 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1934 reg_state[CTX_LRI_HEADER_0] =
1935 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
1936 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
1937 RING_CONTEXT_CONTROL(engine),
1938 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1939 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1940 (HAS_RESOURCE_STREAMER(dev_priv) ?
1941 CTX_CTRL_RS_CTX_ENABLE : 0)));
1942 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
1943 0);
1944 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
1945 0);
1946 /* Ring buffer start address is not known until the buffer is pinned.
1947 * It is written to the context image in execlists_update_context()
1948 */
1949 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
1950 RING_START(engine->mmio_base), 0);
1951 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
1952 RING_CTL(engine->mmio_base),
1953 ((ring->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
1954 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
1955 RING_BBADDR_UDW(engine->mmio_base), 0);
1956 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
1957 RING_BBADDR(engine->mmio_base), 0);
1958 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
1959 RING_BBSTATE(engine->mmio_base),
1960 RING_BB_PPGTT);
1961 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
1962 RING_SBBADDR_UDW(engine->mmio_base), 0);
1963 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
1964 RING_SBBADDR(engine->mmio_base), 0);
1965 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
1966 RING_SBBSTATE(engine->mmio_base), 0);
1967 if (engine->id == RCS) {
1968 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
1969 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
1970 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
1971 RING_INDIRECT_CTX(engine->mmio_base), 0);
1972 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
1973 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
1974 if (engine->wa_ctx.vma) {
1975 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1976 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1977
1978 reg_state[CTX_RCS_INDIRECT_CTX+1] =
1979 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
1980 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
1981
1982 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
1983 intel_lr_indirect_ctx_offset(engine) << 6;
1984
1985 reg_state[CTX_BB_PER_CTX_PTR+1] =
1986 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
1987 0x01;
1988 }
1989 }
1990 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1991 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
1992 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
1993 /* PDP values well be assigned later if needed */
1994 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
1995 0);
1996 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
1997 0);
1998 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
1999 0);
2000 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2001 0);
2002 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2003 0);
2004 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2005 0);
2006 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2007 0);
2008 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2009 0);
2010
2011 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2012 /* 64b PPGTT (48bit canonical)
2013 * PDP0_DESCRIPTOR contains the base address to PML4 and
2014 * other PDP Descriptors are ignored.
2015 */
2016 ASSIGN_CTX_PML4(ppgtt, reg_state);
2017 } else {
2018 /* 32b PPGTT
2019 * PDP*_DESCRIPTOR contains the base address of space supported.
2020 * With dynamic page allocation, PDPs may not be allocated at
2021 * this point. Point the unallocated PDPs to the scratch page
2022 */
2023 execlists_update_context_pdps(ppgtt, reg_state);
2024 }
2025
2026 if (engine->id == RCS) {
2027 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2028 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2029 make_rpcs(dev_priv));
2030 }
2031
2032 i915_gem_object_unpin_map(ctx_obj);
2033
2034 return 0;
2035 }
2036
2037 /**
2038 * intel_lr_context_size() - return the size of the context for an engine
2039 * @engine: which engine to find the context size for
2040 *
2041 * Each engine may require a different amount of space for a context image,
2042 * so when allocating (or copying) an image, this function can be used to
2043 * find the right size for the specific engine.
2044 *
2045 * Return: size (in bytes) of an engine-specific context image
2046 *
2047 * Note: this size includes the HWSP, which is part of the context image
2048 * in LRC mode, but does not include the "shared data page" used with
2049 * GuC submission. The caller should account for this if using the GuC.
2050 */
2051 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2052 {
2053 int ret = 0;
2054
2055 WARN_ON(INTEL_GEN(engine->i915) < 8);
2056
2057 switch (engine->id) {
2058 case RCS:
2059 if (INTEL_GEN(engine->i915) >= 9)
2060 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2061 else
2062 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2063 break;
2064 case VCS:
2065 case BCS:
2066 case VECS:
2067 case VCS2:
2068 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2069 break;
2070 }
2071
2072 return ret;
2073 }
2074
2075 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2076 struct intel_engine_cs *engine)
2077 {
2078 struct drm_i915_gem_object *ctx_obj;
2079 struct intel_context *ce = &ctx->engine[engine->id];
2080 struct i915_vma *vma;
2081 uint32_t context_size;
2082 struct intel_ring *ring;
2083 int ret;
2084
2085 WARN_ON(ce->state);
2086
2087 context_size = round_up(intel_lr_context_size(engine), 4096);
2088
2089 /* One extra page as the sharing data between driver and GuC */
2090 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2091
2092 ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2093 if (IS_ERR(ctx_obj)) {
2094 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2095 return PTR_ERR(ctx_obj);
2096 }
2097
2098 vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
2099 if (IS_ERR(vma)) {
2100 ret = PTR_ERR(vma);
2101 goto error_deref_obj;
2102 }
2103
2104 ring = intel_engine_create_ring(engine, ctx->ring_size);
2105 if (IS_ERR(ring)) {
2106 ret = PTR_ERR(ring);
2107 goto error_deref_obj;
2108 }
2109
2110 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2111 if (ret) {
2112 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2113 goto error_ring_free;
2114 }
2115
2116 ce->ring = ring;
2117 ce->state = vma;
2118 ce->initialised = engine->init_context == NULL;
2119
2120 return 0;
2121
2122 error_ring_free:
2123 intel_ring_free(ring);
2124 error_deref_obj:
2125 i915_gem_object_put(ctx_obj);
2126 return ret;
2127 }
2128
2129 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2130 {
2131 struct i915_gem_context *ctx = dev_priv->kernel_context;
2132 struct intel_engine_cs *engine;
2133
2134 for_each_engine(engine, dev_priv) {
2135 struct intel_context *ce = &ctx->engine[engine->id];
2136 void *vaddr;
2137 uint32_t *reg_state;
2138
2139 if (!ce->state)
2140 continue;
2141
2142 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
2143 if (WARN_ON(IS_ERR(vaddr)))
2144 continue;
2145
2146 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2147
2148 reg_state[CTX_RING_HEAD+1] = 0;
2149 reg_state[CTX_RING_TAIL+1] = 0;
2150
2151 ce->state->obj->dirty = true;
2152 i915_gem_object_unpin_map(ce->state->obj);
2153
2154 ce->ring->head = 0;
2155 ce->ring->tail = 0;
2156 }
2157 }