]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/intel_pm.c
drm/i915: Do not rely on wm preservation for ILK watermarks
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34 #include <drm/drm_atomic_helper.h>
35
36 /**
37 * DOC: RC6
38 *
39 * RC6 is a special power stage which allows the GPU to enter an very
40 * low-voltage mode when idle, using down to 0V while at this stage. This
41 * stage is entered automatically when the GPU is idle when RC6 support is
42 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
43 *
44 * There are different RC6 modes available in Intel GPU, which differentiate
45 * among each other with the latency required to enter and leave RC6 and
46 * voltage consumed by the GPU in different states.
47 *
48 * The combination of the following flags define which states GPU is allowed
49 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
50 * RC6pp is deepest RC6. Their support by hardware varies according to the
51 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
52 * which brings the most power savings; deeper states save more power, but
53 * require higher latency to switch to and wake up.
54 */
55 #define INTEL_RC6_ENABLE (1<<0)
56 #define INTEL_RC6p_ENABLE (1<<1)
57 #define INTEL_RC6pp_ENABLE (1<<2)
58
59 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60 {
61 /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
62 I915_WRITE(CHICKEN_PAR1_1,
63 I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
64
65 I915_WRITE(GEN8_CONFIG0,
66 I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67
68 /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
69 I915_WRITE(GEN8_CHICKEN_DCPR_1,
70 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71
72 /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
73 /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
74 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
75 DISP_FBC_WM_DIS |
76 DISP_FBC_MEMORY_WAKE);
77
78 /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
79 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
80 ILK_DPFC_DISABLE_DUMMY0);
81 }
82
83 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
84 {
85 gen9_init_clock_gating(dev_priv);
86
87 /* WaDisableSDEUnitClockGating:bxt */
88 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
89 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
90
91 /*
92 * FIXME:
93 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
94 */
95 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
96 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
97
98 /*
99 * Wa: Backlight PWM may stop in the asserted state, causing backlight
100 * to stay fully on.
101 */
102 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
103 PWM1_GATING_DIS | PWM2_GATING_DIS);
104 }
105
106 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
107 {
108 gen9_init_clock_gating(dev_priv);
109
110 /*
111 * WaDisablePWMClockGating:glk
112 * Backlight PWM may stop in the asserted state, causing backlight
113 * to stay fully on.
114 */
115 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
116 PWM1_GATING_DIS | PWM2_GATING_DIS);
117
118 /* WaDDIIOTimeout:glk */
119 if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
120 u32 val = I915_READ(CHICKEN_MISC_2);
121 val &= ~(GLK_CL0_PWR_DOWN |
122 GLK_CL1_PWR_DOWN |
123 GLK_CL2_PWR_DOWN);
124 I915_WRITE(CHICKEN_MISC_2, val);
125 }
126
127 }
128
129 static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
130 {
131 u32 tmp;
132
133 tmp = I915_READ(CLKCFG);
134
135 switch (tmp & CLKCFG_FSB_MASK) {
136 case CLKCFG_FSB_533:
137 dev_priv->fsb_freq = 533; /* 133*4 */
138 break;
139 case CLKCFG_FSB_800:
140 dev_priv->fsb_freq = 800; /* 200*4 */
141 break;
142 case CLKCFG_FSB_667:
143 dev_priv->fsb_freq = 667; /* 167*4 */
144 break;
145 case CLKCFG_FSB_400:
146 dev_priv->fsb_freq = 400; /* 100*4 */
147 break;
148 }
149
150 switch (tmp & CLKCFG_MEM_MASK) {
151 case CLKCFG_MEM_533:
152 dev_priv->mem_freq = 533;
153 break;
154 case CLKCFG_MEM_667:
155 dev_priv->mem_freq = 667;
156 break;
157 case CLKCFG_MEM_800:
158 dev_priv->mem_freq = 800;
159 break;
160 }
161
162 /* detect pineview DDR3 setting */
163 tmp = I915_READ(CSHRDDR3CTL);
164 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
165 }
166
167 static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
168 {
169 u16 ddrpll, csipll;
170
171 ddrpll = I915_READ16(DDRMPLL1);
172 csipll = I915_READ16(CSIPLL0);
173
174 switch (ddrpll & 0xff) {
175 case 0xc:
176 dev_priv->mem_freq = 800;
177 break;
178 case 0x10:
179 dev_priv->mem_freq = 1066;
180 break;
181 case 0x14:
182 dev_priv->mem_freq = 1333;
183 break;
184 case 0x18:
185 dev_priv->mem_freq = 1600;
186 break;
187 default:
188 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
189 ddrpll & 0xff);
190 dev_priv->mem_freq = 0;
191 break;
192 }
193
194 dev_priv->ips.r_t = dev_priv->mem_freq;
195
196 switch (csipll & 0x3ff) {
197 case 0x00c:
198 dev_priv->fsb_freq = 3200;
199 break;
200 case 0x00e:
201 dev_priv->fsb_freq = 3733;
202 break;
203 case 0x010:
204 dev_priv->fsb_freq = 4266;
205 break;
206 case 0x012:
207 dev_priv->fsb_freq = 4800;
208 break;
209 case 0x014:
210 dev_priv->fsb_freq = 5333;
211 break;
212 case 0x016:
213 dev_priv->fsb_freq = 5866;
214 break;
215 case 0x018:
216 dev_priv->fsb_freq = 6400;
217 break;
218 default:
219 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
220 csipll & 0x3ff);
221 dev_priv->fsb_freq = 0;
222 break;
223 }
224
225 if (dev_priv->fsb_freq == 3200) {
226 dev_priv->ips.c_m = 0;
227 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
228 dev_priv->ips.c_m = 1;
229 } else {
230 dev_priv->ips.c_m = 2;
231 }
232 }
233
234 static const struct cxsr_latency cxsr_latency_table[] = {
235 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
236 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
237 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
238 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
239 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
240
241 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
242 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
243 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
244 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
245 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
246
247 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
248 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
249 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
250 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
251 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
252
253 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
254 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
255 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
256 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
257 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
258
259 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
260 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
261 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
262 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
263 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
264
265 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
266 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
267 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
268 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
269 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
270 };
271
272 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
273 bool is_ddr3,
274 int fsb,
275 int mem)
276 {
277 const struct cxsr_latency *latency;
278 int i;
279
280 if (fsb == 0 || mem == 0)
281 return NULL;
282
283 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
284 latency = &cxsr_latency_table[i];
285 if (is_desktop == latency->is_desktop &&
286 is_ddr3 == latency->is_ddr3 &&
287 fsb == latency->fsb_freq && mem == latency->mem_freq)
288 return latency;
289 }
290
291 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
292
293 return NULL;
294 }
295
296 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
297 {
298 u32 val;
299
300 mutex_lock(&dev_priv->rps.hw_lock);
301
302 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
303 if (enable)
304 val &= ~FORCE_DDR_HIGH_FREQ;
305 else
306 val |= FORCE_DDR_HIGH_FREQ;
307 val &= ~FORCE_DDR_LOW_FREQ;
308 val |= FORCE_DDR_FREQ_REQ_ACK;
309 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
310
311 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
312 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
313 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
314
315 mutex_unlock(&dev_priv->rps.hw_lock);
316 }
317
318 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
319 {
320 u32 val;
321
322 mutex_lock(&dev_priv->rps.hw_lock);
323
324 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
325 if (enable)
326 val |= DSP_MAXFIFO_PM5_ENABLE;
327 else
328 val &= ~DSP_MAXFIFO_PM5_ENABLE;
329 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
330
331 mutex_unlock(&dev_priv->rps.hw_lock);
332 }
333
334 #define FW_WM(value, plane) \
335 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
336
337 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
338 {
339 bool was_enabled;
340 u32 val;
341
342 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
343 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
344 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
345 POSTING_READ(FW_BLC_SELF_VLV);
346 } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
347 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
348 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
349 POSTING_READ(FW_BLC_SELF);
350 } else if (IS_PINEVIEW(dev_priv)) {
351 val = I915_READ(DSPFW3);
352 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
353 if (enable)
354 val |= PINEVIEW_SELF_REFRESH_EN;
355 else
356 val &= ~PINEVIEW_SELF_REFRESH_EN;
357 I915_WRITE(DSPFW3, val);
358 POSTING_READ(DSPFW3);
359 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
360 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
361 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
362 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
363 I915_WRITE(FW_BLC_SELF, val);
364 POSTING_READ(FW_BLC_SELF);
365 } else if (IS_I915GM(dev_priv)) {
366 /*
367 * FIXME can't find a bit like this for 915G, and
368 * and yet it does have the related watermark in
369 * FW_BLC_SELF. What's going on?
370 */
371 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
372 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
373 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
374 I915_WRITE(INSTPM, val);
375 POSTING_READ(INSTPM);
376 } else {
377 return false;
378 }
379
380 trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
381
382 DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
383 enableddisabled(enable),
384 enableddisabled(was_enabled));
385
386 return was_enabled;
387 }
388
389 /**
390 * intel_set_memory_cxsr - Configure CxSR state
391 * @dev_priv: i915 device
392 * @enable: Allow vs. disallow CxSR
393 *
394 * Allow or disallow the system to enter a special CxSR
395 * (C-state self refresh) state. What typically happens in CxSR mode
396 * is that several display FIFOs may get combined into a single larger
397 * FIFO for a particular plane (so called max FIFO mode) to allow the
398 * system to defer memory fetches longer, and the memory will enter
399 * self refresh.
400 *
401 * Note that enabling CxSR does not guarantee that the system enter
402 * this special mode, nor does it guarantee that the system stays
403 * in that mode once entered. So this just allows/disallows the system
404 * to autonomously utilize the CxSR mode. Other factors such as core
405 * C-states will affect when/if the system actually enters/exits the
406 * CxSR mode.
407 *
408 * Note that on VLV/CHV this actually only controls the max FIFO mode,
409 * and the system is free to enter/exit memory self refresh at any time
410 * even when the use of CxSR has been disallowed.
411 *
412 * While the system is actually in the CxSR/max FIFO mode, some plane
413 * control registers will not get latched on vblank. Thus in order to
414 * guarantee the system will respond to changes in the plane registers
415 * we must always disallow CxSR prior to making changes to those registers.
416 * Unfortunately the system will re-evaluate the CxSR conditions at
417 * frame start which happens after vblank start (which is when the plane
418 * registers would get latched), so we can't proceed with the plane update
419 * during the same frame where we disallowed CxSR.
420 *
421 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
422 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
423 * the hardware w.r.t. HPLL SR when writing to plane registers.
424 * Disallowing just CxSR is sufficient.
425 */
426 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
427 {
428 bool ret;
429
430 mutex_lock(&dev_priv->wm.wm_mutex);
431 ret = _intel_set_memory_cxsr(dev_priv, enable);
432 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
433 dev_priv->wm.vlv.cxsr = enable;
434 else if (IS_G4X(dev_priv))
435 dev_priv->wm.g4x.cxsr = enable;
436 mutex_unlock(&dev_priv->wm.wm_mutex);
437
438 return ret;
439 }
440
441 /*
442 * Latency for FIFO fetches is dependent on several factors:
443 * - memory configuration (speed, channels)
444 * - chipset
445 * - current MCH state
446 * It can be fairly high in some situations, so here we assume a fairly
447 * pessimal value. It's a tradeoff between extra memory fetches (if we
448 * set this value too high, the FIFO will fetch frequently to stay full)
449 * and power consumption (set it too low to save power and we might see
450 * FIFO underruns and display "flicker").
451 *
452 * A value of 5us seems to be a good balance; safe for very low end
453 * platforms but not overly aggressive on lower latency configs.
454 */
455 static const int pessimal_latency_ns = 5000;
456
457 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
458 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
459
460 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
461 {
462 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
463 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
464 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
465 enum pipe pipe = crtc->pipe;
466 int sprite0_start, sprite1_start;
467
468 switch (pipe) {
469 uint32_t dsparb, dsparb2, dsparb3;
470 case PIPE_A:
471 dsparb = I915_READ(DSPARB);
472 dsparb2 = I915_READ(DSPARB2);
473 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
474 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
475 break;
476 case PIPE_B:
477 dsparb = I915_READ(DSPARB);
478 dsparb2 = I915_READ(DSPARB2);
479 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
480 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
481 break;
482 case PIPE_C:
483 dsparb2 = I915_READ(DSPARB2);
484 dsparb3 = I915_READ(DSPARB3);
485 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
486 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
487 break;
488 default:
489 MISSING_CASE(pipe);
490 return;
491 }
492
493 fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
494 fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
495 fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
496 fifo_state->plane[PLANE_CURSOR] = 63;
497 }
498
499 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
500 {
501 uint32_t dsparb = I915_READ(DSPARB);
502 int size;
503
504 size = dsparb & 0x7f;
505 if (plane)
506 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
507
508 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
509 plane ? "B" : "A", size);
510
511 return size;
512 }
513
514 static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
515 {
516 uint32_t dsparb = I915_READ(DSPARB);
517 int size;
518
519 size = dsparb & 0x1ff;
520 if (plane)
521 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
522 size >>= 1; /* Convert to cachelines */
523
524 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
525 plane ? "B" : "A", size);
526
527 return size;
528 }
529
530 static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
531 {
532 uint32_t dsparb = I915_READ(DSPARB);
533 int size;
534
535 size = dsparb & 0x7f;
536 size >>= 2; /* Convert to cachelines */
537
538 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
539 plane ? "B" : "A",
540 size);
541
542 return size;
543 }
544
545 /* Pineview has different values for various configs */
546 static const struct intel_watermark_params pineview_display_wm = {
547 .fifo_size = PINEVIEW_DISPLAY_FIFO,
548 .max_wm = PINEVIEW_MAX_WM,
549 .default_wm = PINEVIEW_DFT_WM,
550 .guard_size = PINEVIEW_GUARD_WM,
551 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
552 };
553 static const struct intel_watermark_params pineview_display_hplloff_wm = {
554 .fifo_size = PINEVIEW_DISPLAY_FIFO,
555 .max_wm = PINEVIEW_MAX_WM,
556 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
557 .guard_size = PINEVIEW_GUARD_WM,
558 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
559 };
560 static const struct intel_watermark_params pineview_cursor_wm = {
561 .fifo_size = PINEVIEW_CURSOR_FIFO,
562 .max_wm = PINEVIEW_CURSOR_MAX_WM,
563 .default_wm = PINEVIEW_CURSOR_DFT_WM,
564 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
565 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
566 };
567 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
568 .fifo_size = PINEVIEW_CURSOR_FIFO,
569 .max_wm = PINEVIEW_CURSOR_MAX_WM,
570 .default_wm = PINEVIEW_CURSOR_DFT_WM,
571 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
572 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
573 };
574 static const struct intel_watermark_params i965_cursor_wm_info = {
575 .fifo_size = I965_CURSOR_FIFO,
576 .max_wm = I965_CURSOR_MAX_WM,
577 .default_wm = I965_CURSOR_DFT_WM,
578 .guard_size = 2,
579 .cacheline_size = I915_FIFO_LINE_SIZE,
580 };
581 static const struct intel_watermark_params i945_wm_info = {
582 .fifo_size = I945_FIFO_SIZE,
583 .max_wm = I915_MAX_WM,
584 .default_wm = 1,
585 .guard_size = 2,
586 .cacheline_size = I915_FIFO_LINE_SIZE,
587 };
588 static const struct intel_watermark_params i915_wm_info = {
589 .fifo_size = I915_FIFO_SIZE,
590 .max_wm = I915_MAX_WM,
591 .default_wm = 1,
592 .guard_size = 2,
593 .cacheline_size = I915_FIFO_LINE_SIZE,
594 };
595 static const struct intel_watermark_params i830_a_wm_info = {
596 .fifo_size = I855GM_FIFO_SIZE,
597 .max_wm = I915_MAX_WM,
598 .default_wm = 1,
599 .guard_size = 2,
600 .cacheline_size = I830_FIFO_LINE_SIZE,
601 };
602 static const struct intel_watermark_params i830_bc_wm_info = {
603 .fifo_size = I855GM_FIFO_SIZE,
604 .max_wm = I915_MAX_WM/2,
605 .default_wm = 1,
606 .guard_size = 2,
607 .cacheline_size = I830_FIFO_LINE_SIZE,
608 };
609 static const struct intel_watermark_params i845_wm_info = {
610 .fifo_size = I830_FIFO_SIZE,
611 .max_wm = I915_MAX_WM,
612 .default_wm = 1,
613 .guard_size = 2,
614 .cacheline_size = I830_FIFO_LINE_SIZE,
615 };
616
617 /**
618 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
619 * @pixel_rate: Pipe pixel rate in kHz
620 * @cpp: Plane bytes per pixel
621 * @latency: Memory wakeup latency in 0.1us units
622 *
623 * Compute the watermark using the method 1 or "small buffer"
624 * formula. The caller may additonally add extra cachelines
625 * to account for TLB misses and clock crossings.
626 *
627 * This method is concerned with the short term drain rate
628 * of the FIFO, ie. it does not account for blanking periods
629 * which would effectively reduce the average drain rate across
630 * a longer period. The name "small" refers to the fact the
631 * FIFO is relatively small compared to the amount of data
632 * fetched.
633 *
634 * The FIFO level vs. time graph might look something like:
635 *
636 * |\ |\
637 * | \ | \
638 * __---__---__ (- plane active, _ blanking)
639 * -> time
640 *
641 * or perhaps like this:
642 *
643 * |\|\ |\|\
644 * __----__----__ (- plane active, _ blanking)
645 * -> time
646 *
647 * Returns:
648 * The watermark in bytes
649 */
650 static unsigned int intel_wm_method1(unsigned int pixel_rate,
651 unsigned int cpp,
652 unsigned int latency)
653 {
654 uint64_t ret;
655
656 ret = (uint64_t) pixel_rate * cpp * latency;
657 ret = DIV_ROUND_UP_ULL(ret, 10000);
658
659 return ret;
660 }
661
662 /**
663 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
664 * @pixel_rate: Pipe pixel rate in kHz
665 * @htotal: Pipe horizontal total
666 * @width: Plane width in pixels
667 * @cpp: Plane bytes per pixel
668 * @latency: Memory wakeup latency in 0.1us units
669 *
670 * Compute the watermark using the method 2 or "large buffer"
671 * formula. The caller may additonally add extra cachelines
672 * to account for TLB misses and clock crossings.
673 *
674 * This method is concerned with the long term drain rate
675 * of the FIFO, ie. it does account for blanking periods
676 * which effectively reduce the average drain rate across
677 * a longer period. The name "large" refers to the fact the
678 * FIFO is relatively large compared to the amount of data
679 * fetched.
680 *
681 * The FIFO level vs. time graph might look something like:
682 *
683 * |\___ |\___
684 * | \___ | \___
685 * | \ | \
686 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
687 * -> time
688 *
689 * Returns:
690 * The watermark in bytes
691 */
692 static unsigned int intel_wm_method2(unsigned int pixel_rate,
693 unsigned int htotal,
694 unsigned int width,
695 unsigned int cpp,
696 unsigned int latency)
697 {
698 unsigned int ret;
699
700 /*
701 * FIXME remove once all users are computing
702 * watermarks in the correct place.
703 */
704 if (WARN_ON_ONCE(htotal == 0))
705 htotal = 1;
706
707 ret = (latency * pixel_rate) / (htotal * 10000);
708 ret = (ret + 1) * width * cpp;
709
710 return ret;
711 }
712
713 /**
714 * intel_calculate_wm - calculate watermark level
715 * @pixel_rate: pixel clock
716 * @wm: chip FIFO params
717 * @cpp: bytes per pixel
718 * @latency_ns: memory latency for the platform
719 *
720 * Calculate the watermark level (the level at which the display plane will
721 * start fetching from memory again). Each chip has a different display
722 * FIFO size and allocation, so the caller needs to figure that out and pass
723 * in the correct intel_watermark_params structure.
724 *
725 * As the pixel clock runs, the FIFO will be drained at a rate that depends
726 * on the pixel size. When it reaches the watermark level, it'll start
727 * fetching FIFO line sized based chunks from memory until the FIFO fills
728 * past the watermark point. If the FIFO drains completely, a FIFO underrun
729 * will occur, and a display engine hang could result.
730 */
731 static unsigned int intel_calculate_wm(int pixel_rate,
732 const struct intel_watermark_params *wm,
733 int fifo_size, int cpp,
734 unsigned int latency_ns)
735 {
736 int entries, wm_size;
737
738 /*
739 * Note: we need to make sure we don't overflow for various clock &
740 * latency values.
741 * clocks go from a few thousand to several hundred thousand.
742 * latency is usually a few thousand
743 */
744 entries = intel_wm_method1(pixel_rate, cpp,
745 latency_ns / 100);
746 entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
747 wm->guard_size;
748 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
749
750 wm_size = fifo_size - entries;
751 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
752
753 /* Don't promote wm_size to unsigned... */
754 if (wm_size > wm->max_wm)
755 wm_size = wm->max_wm;
756 if (wm_size <= 0)
757 wm_size = wm->default_wm;
758
759 /*
760 * Bspec seems to indicate that the value shouldn't be lower than
761 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
762 * Lets go for 8 which is the burst size since certain platforms
763 * already use a hardcoded 8 (which is what the spec says should be
764 * done).
765 */
766 if (wm_size <= 8)
767 wm_size = 8;
768
769 return wm_size;
770 }
771
772 static bool is_disabling(int old, int new, int threshold)
773 {
774 return old >= threshold && new < threshold;
775 }
776
777 static bool is_enabling(int old, int new, int threshold)
778 {
779 return old < threshold && new >= threshold;
780 }
781
782 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
783 {
784 return dev_priv->wm.max_level + 1;
785 }
786
787 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
788 const struct intel_plane_state *plane_state)
789 {
790 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
791
792 /* FIXME check the 'enable' instead */
793 if (!crtc_state->base.active)
794 return false;
795
796 /*
797 * Treat cursor with fb as always visible since cursor updates
798 * can happen faster than the vrefresh rate, and the current
799 * watermark code doesn't handle that correctly. Cursor updates
800 * which set/clear the fb or change the cursor size are going
801 * to get throttled by intel_legacy_cursor_update() to work
802 * around this problem with the watermark code.
803 */
804 if (plane->id == PLANE_CURSOR)
805 return plane_state->base.fb != NULL;
806 else
807 return plane_state->base.visible;
808 }
809
810 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
811 {
812 struct intel_crtc *crtc, *enabled = NULL;
813
814 for_each_intel_crtc(&dev_priv->drm, crtc) {
815 if (intel_crtc_active(crtc)) {
816 if (enabled)
817 return NULL;
818 enabled = crtc;
819 }
820 }
821
822 return enabled;
823 }
824
825 static void pineview_update_wm(struct intel_crtc *unused_crtc)
826 {
827 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
828 struct intel_crtc *crtc;
829 const struct cxsr_latency *latency;
830 u32 reg;
831 unsigned int wm;
832
833 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
834 dev_priv->is_ddr3,
835 dev_priv->fsb_freq,
836 dev_priv->mem_freq);
837 if (!latency) {
838 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
839 intel_set_memory_cxsr(dev_priv, false);
840 return;
841 }
842
843 crtc = single_enabled_crtc(dev_priv);
844 if (crtc) {
845 const struct drm_display_mode *adjusted_mode =
846 &crtc->config->base.adjusted_mode;
847 const struct drm_framebuffer *fb =
848 crtc->base.primary->state->fb;
849 int cpp = fb->format->cpp[0];
850 int clock = adjusted_mode->crtc_clock;
851
852 /* Display SR */
853 wm = intel_calculate_wm(clock, &pineview_display_wm,
854 pineview_display_wm.fifo_size,
855 cpp, latency->display_sr);
856 reg = I915_READ(DSPFW1);
857 reg &= ~DSPFW_SR_MASK;
858 reg |= FW_WM(wm, SR);
859 I915_WRITE(DSPFW1, reg);
860 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
861
862 /* cursor SR */
863 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
864 pineview_display_wm.fifo_size,
865 4, latency->cursor_sr);
866 reg = I915_READ(DSPFW3);
867 reg &= ~DSPFW_CURSOR_SR_MASK;
868 reg |= FW_WM(wm, CURSOR_SR);
869 I915_WRITE(DSPFW3, reg);
870
871 /* Display HPLL off SR */
872 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
873 pineview_display_hplloff_wm.fifo_size,
874 cpp, latency->display_hpll_disable);
875 reg = I915_READ(DSPFW3);
876 reg &= ~DSPFW_HPLL_SR_MASK;
877 reg |= FW_WM(wm, HPLL_SR);
878 I915_WRITE(DSPFW3, reg);
879
880 /* cursor HPLL off SR */
881 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
882 pineview_display_hplloff_wm.fifo_size,
883 4, latency->cursor_hpll_disable);
884 reg = I915_READ(DSPFW3);
885 reg &= ~DSPFW_HPLL_CURSOR_MASK;
886 reg |= FW_WM(wm, HPLL_CURSOR);
887 I915_WRITE(DSPFW3, reg);
888 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
889
890 intel_set_memory_cxsr(dev_priv, true);
891 } else {
892 intel_set_memory_cxsr(dev_priv, false);
893 }
894 }
895
896 /*
897 * Documentation says:
898 * "If the line size is small, the TLB fetches can get in the way of the
899 * data fetches, causing some lag in the pixel data return which is not
900 * accounted for in the above formulas. The following adjustment only
901 * needs to be applied if eight whole lines fit in the buffer at once.
902 * The WM is adjusted upwards by the difference between the FIFO size
903 * and the size of 8 whole lines. This adjustment is always performed
904 * in the actual pixel depth regardless of whether FBC is enabled or not."
905 */
906 static int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
907 {
908 int tlb_miss = fifo_size * 64 - width * cpp * 8;
909
910 return max(0, tlb_miss);
911 }
912
913 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
914 const struct g4x_wm_values *wm)
915 {
916 enum pipe pipe;
917
918 for_each_pipe(dev_priv, pipe)
919 trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
920
921 I915_WRITE(DSPFW1,
922 FW_WM(wm->sr.plane, SR) |
923 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
924 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
925 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
926 I915_WRITE(DSPFW2,
927 (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
928 FW_WM(wm->sr.fbc, FBC_SR) |
929 FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
930 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
931 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
932 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
933 I915_WRITE(DSPFW3,
934 (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
935 FW_WM(wm->sr.cursor, CURSOR_SR) |
936 FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
937 FW_WM(wm->hpll.plane, HPLL_SR));
938
939 POSTING_READ(DSPFW1);
940 }
941
942 #define FW_WM_VLV(value, plane) \
943 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
944
945 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
946 const struct vlv_wm_values *wm)
947 {
948 enum pipe pipe;
949
950 for_each_pipe(dev_priv, pipe) {
951 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
952
953 I915_WRITE(VLV_DDL(pipe),
954 (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
955 (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
956 (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
957 (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
958 }
959
960 /*
961 * Zero the (unused) WM1 watermarks, and also clear all the
962 * high order bits so that there are no out of bounds values
963 * present in the registers during the reprogramming.
964 */
965 I915_WRITE(DSPHOWM, 0);
966 I915_WRITE(DSPHOWM1, 0);
967 I915_WRITE(DSPFW4, 0);
968 I915_WRITE(DSPFW5, 0);
969 I915_WRITE(DSPFW6, 0);
970
971 I915_WRITE(DSPFW1,
972 FW_WM(wm->sr.plane, SR) |
973 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
974 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
975 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
976 I915_WRITE(DSPFW2,
977 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
978 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
979 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
980 I915_WRITE(DSPFW3,
981 FW_WM(wm->sr.cursor, CURSOR_SR));
982
983 if (IS_CHERRYVIEW(dev_priv)) {
984 I915_WRITE(DSPFW7_CHV,
985 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
986 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
987 I915_WRITE(DSPFW8_CHV,
988 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
989 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
990 I915_WRITE(DSPFW9_CHV,
991 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
992 FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
993 I915_WRITE(DSPHOWM,
994 FW_WM(wm->sr.plane >> 9, SR_HI) |
995 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
996 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
997 FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
998 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
999 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1000 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1001 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1002 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1003 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1004 } else {
1005 I915_WRITE(DSPFW7,
1006 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1007 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1008 I915_WRITE(DSPHOWM,
1009 FW_WM(wm->sr.plane >> 9, SR_HI) |
1010 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1011 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1012 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1013 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1014 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1015 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1016 }
1017
1018 POSTING_READ(DSPFW1);
1019 }
1020
1021 #undef FW_WM_VLV
1022
1023 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1024 {
1025 /* all latencies in usec */
1026 dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1027 dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1028 dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1029
1030 dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1031 }
1032
1033 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1034 {
1035 /*
1036 * DSPCNTR[13] supposedly controls whether the
1037 * primary plane can use the FIFO space otherwise
1038 * reserved for the sprite plane. It's not 100% clear
1039 * what the actual FIFO size is, but it looks like we
1040 * can happily set both primary and sprite watermarks
1041 * up to 127 cachelines. So that would seem to mean
1042 * that either DSPCNTR[13] doesn't do anything, or that
1043 * the total FIFO is >= 256 cachelines in size. Either
1044 * way, we don't seem to have to worry about this
1045 * repartitioning as the maximum watermark value the
1046 * register can hold for each plane is lower than the
1047 * minimum FIFO size.
1048 */
1049 switch (plane_id) {
1050 case PLANE_CURSOR:
1051 return 63;
1052 case PLANE_PRIMARY:
1053 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1054 case PLANE_SPRITE0:
1055 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1056 default:
1057 MISSING_CASE(plane_id);
1058 return 0;
1059 }
1060 }
1061
1062 static int g4x_fbc_fifo_size(int level)
1063 {
1064 switch (level) {
1065 case G4X_WM_LEVEL_SR:
1066 return 7;
1067 case G4X_WM_LEVEL_HPLL:
1068 return 15;
1069 default:
1070 MISSING_CASE(level);
1071 return 0;
1072 }
1073 }
1074
1075 static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1076 const struct intel_plane_state *plane_state,
1077 int level)
1078 {
1079 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1080 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1081 const struct drm_display_mode *adjusted_mode =
1082 &crtc_state->base.adjusted_mode;
1083 int clock, htotal, cpp, width, wm;
1084 int latency = dev_priv->wm.pri_latency[level] * 10;
1085
1086 if (latency == 0)
1087 return USHRT_MAX;
1088
1089 if (!intel_wm_plane_visible(crtc_state, plane_state))
1090 return 0;
1091
1092 /*
1093 * Not 100% sure which way ELK should go here as the
1094 * spec only says CL/CTG should assume 32bpp and BW
1095 * doesn't need to. But as these things followed the
1096 * mobile vs. desktop lines on gen3 as well, let's
1097 * assume ELK doesn't need this.
1098 *
1099 * The spec also fails to list such a restriction for
1100 * the HPLL watermark, which seems a little strange.
1101 * Let's use 32bpp for the HPLL watermark as well.
1102 */
1103 if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1104 level != G4X_WM_LEVEL_NORMAL)
1105 cpp = 4;
1106 else
1107 cpp = plane_state->base.fb->format->cpp[0];
1108
1109 clock = adjusted_mode->crtc_clock;
1110 htotal = adjusted_mode->crtc_htotal;
1111
1112 if (plane->id == PLANE_CURSOR)
1113 width = plane_state->base.crtc_w;
1114 else
1115 width = drm_rect_width(&plane_state->base.dst);
1116
1117 if (plane->id == PLANE_CURSOR) {
1118 wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1119 } else if (plane->id == PLANE_PRIMARY &&
1120 level == G4X_WM_LEVEL_NORMAL) {
1121 wm = intel_wm_method1(clock, cpp, latency);
1122 } else {
1123 int small, large;
1124
1125 small = intel_wm_method1(clock, cpp, latency);
1126 large = intel_wm_method2(clock, htotal, width, cpp, latency);
1127
1128 wm = min(small, large);
1129 }
1130
1131 wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1132 width, cpp);
1133
1134 wm = DIV_ROUND_UP(wm, 64) + 2;
1135
1136 return min_t(int, wm, USHRT_MAX);
1137 }
1138
1139 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1140 int level, enum plane_id plane_id, u16 value)
1141 {
1142 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1143 bool dirty = false;
1144
1145 for (; level < intel_wm_num_levels(dev_priv); level++) {
1146 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1147
1148 dirty |= raw->plane[plane_id] != value;
1149 raw->plane[plane_id] = value;
1150 }
1151
1152 return dirty;
1153 }
1154
1155 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1156 int level, u16 value)
1157 {
1158 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1159 bool dirty = false;
1160
1161 /* NORMAL level doesn't have an FBC watermark */
1162 level = max(level, G4X_WM_LEVEL_SR);
1163
1164 for (; level < intel_wm_num_levels(dev_priv); level++) {
1165 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1166
1167 dirty |= raw->fbc != value;
1168 raw->fbc = value;
1169 }
1170
1171 return dirty;
1172 }
1173
1174 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1175 const struct intel_plane_state *pstate,
1176 uint32_t pri_val);
1177
1178 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1179 const struct intel_plane_state *plane_state)
1180 {
1181 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1182 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1183 enum plane_id plane_id = plane->id;
1184 bool dirty = false;
1185 int level;
1186
1187 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1188 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1189 if (plane_id == PLANE_PRIMARY)
1190 dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1191 goto out;
1192 }
1193
1194 for (level = 0; level < num_levels; level++) {
1195 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1196 int wm, max_wm;
1197
1198 wm = g4x_compute_wm(crtc_state, plane_state, level);
1199 max_wm = g4x_plane_fifo_size(plane_id, level);
1200
1201 if (wm > max_wm)
1202 break;
1203
1204 dirty |= raw->plane[plane_id] != wm;
1205 raw->plane[plane_id] = wm;
1206
1207 if (plane_id != PLANE_PRIMARY ||
1208 level == G4X_WM_LEVEL_NORMAL)
1209 continue;
1210
1211 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1212 raw->plane[plane_id]);
1213 max_wm = g4x_fbc_fifo_size(level);
1214
1215 /*
1216 * FBC wm is not mandatory as we
1217 * can always just disable its use.
1218 */
1219 if (wm > max_wm)
1220 wm = USHRT_MAX;
1221
1222 dirty |= raw->fbc != wm;
1223 raw->fbc = wm;
1224 }
1225
1226 /* mark watermarks as invalid */
1227 dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1228
1229 if (plane_id == PLANE_PRIMARY)
1230 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1231
1232 out:
1233 if (dirty) {
1234 DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1235 plane->base.name,
1236 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1237 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1238 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1239
1240 if (plane_id == PLANE_PRIMARY)
1241 DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
1242 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1243 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1244 }
1245
1246 return dirty;
1247 }
1248
1249 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1250 enum plane_id plane_id, int level)
1251 {
1252 const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1253
1254 return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1255 }
1256
1257 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1258 int level)
1259 {
1260 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1261
1262 if (level > dev_priv->wm.max_level)
1263 return false;
1264
1265 return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1266 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1267 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1268 }
1269
1270 /* mark all levels starting from 'level' as invalid */
1271 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1272 struct g4x_wm_state *wm_state, int level)
1273 {
1274 if (level <= G4X_WM_LEVEL_NORMAL) {
1275 enum plane_id plane_id;
1276
1277 for_each_plane_id_on_crtc(crtc, plane_id)
1278 wm_state->wm.plane[plane_id] = USHRT_MAX;
1279 }
1280
1281 if (level <= G4X_WM_LEVEL_SR) {
1282 wm_state->cxsr = false;
1283 wm_state->sr.cursor = USHRT_MAX;
1284 wm_state->sr.plane = USHRT_MAX;
1285 wm_state->sr.fbc = USHRT_MAX;
1286 }
1287
1288 if (level <= G4X_WM_LEVEL_HPLL) {
1289 wm_state->hpll_en = false;
1290 wm_state->hpll.cursor = USHRT_MAX;
1291 wm_state->hpll.plane = USHRT_MAX;
1292 wm_state->hpll.fbc = USHRT_MAX;
1293 }
1294 }
1295
1296 static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1297 {
1298 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1299 struct intel_atomic_state *state =
1300 to_intel_atomic_state(crtc_state->base.state);
1301 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1302 int num_active_planes = hweight32(crtc_state->active_planes &
1303 ~BIT(PLANE_CURSOR));
1304 const struct g4x_pipe_wm *raw;
1305 struct intel_plane_state *plane_state;
1306 struct intel_plane *plane;
1307 enum plane_id plane_id;
1308 int i, level;
1309 unsigned int dirty = 0;
1310
1311 for_each_intel_plane_in_state(state, plane, plane_state, i) {
1312 const struct intel_plane_state *old_plane_state =
1313 to_intel_plane_state(plane->base.state);
1314
1315 if (plane_state->base.crtc != &crtc->base &&
1316 old_plane_state->base.crtc != &crtc->base)
1317 continue;
1318
1319 if (g4x_raw_plane_wm_compute(crtc_state, plane_state))
1320 dirty |= BIT(plane->id);
1321 }
1322
1323 if (!dirty)
1324 return 0;
1325
1326 level = G4X_WM_LEVEL_NORMAL;
1327 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1328 goto out;
1329
1330 raw = &crtc_state->wm.g4x.raw[level];
1331 for_each_plane_id_on_crtc(crtc, plane_id)
1332 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1333
1334 level = G4X_WM_LEVEL_SR;
1335
1336 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1337 goto out;
1338
1339 raw = &crtc_state->wm.g4x.raw[level];
1340 wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1341 wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1342 wm_state->sr.fbc = raw->fbc;
1343
1344 wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1345
1346 level = G4X_WM_LEVEL_HPLL;
1347
1348 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1349 goto out;
1350
1351 raw = &crtc_state->wm.g4x.raw[level];
1352 wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1353 wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1354 wm_state->hpll.fbc = raw->fbc;
1355
1356 wm_state->hpll_en = wm_state->cxsr;
1357
1358 level++;
1359
1360 out:
1361 if (level == G4X_WM_LEVEL_NORMAL)
1362 return -EINVAL;
1363
1364 /* invalidate the higher levels */
1365 g4x_invalidate_wms(crtc, wm_state, level);
1366
1367 /*
1368 * Determine if the FBC watermark(s) can be used. IF
1369 * this isn't the case we prefer to disable the FBC
1370 ( watermark(s) rather than disable the SR/HPLL
1371 * level(s) entirely.
1372 */
1373 wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1374
1375 if (level >= G4X_WM_LEVEL_SR &&
1376 wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1377 wm_state->fbc_en = false;
1378 else if (level >= G4X_WM_LEVEL_HPLL &&
1379 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1380 wm_state->fbc_en = false;
1381
1382 return 0;
1383 }
1384
1385 static int g4x_compute_intermediate_wm(struct drm_device *dev,
1386 struct intel_crtc *crtc,
1387 struct intel_crtc_state *crtc_state)
1388 {
1389 struct g4x_wm_state *intermediate = &crtc_state->wm.g4x.intermediate;
1390 const struct g4x_wm_state *optimal = &crtc_state->wm.g4x.optimal;
1391 const struct g4x_wm_state *active = &crtc->wm.active.g4x;
1392 enum plane_id plane_id;
1393
1394 intermediate->cxsr = optimal->cxsr && active->cxsr &&
1395 !crtc_state->disable_cxsr;
1396 intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1397 !crtc_state->disable_cxsr;
1398 intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1399
1400 for_each_plane_id_on_crtc(crtc, plane_id) {
1401 intermediate->wm.plane[plane_id] =
1402 max(optimal->wm.plane[plane_id],
1403 active->wm.plane[plane_id]);
1404
1405 WARN_ON(intermediate->wm.plane[plane_id] >
1406 g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1407 }
1408
1409 intermediate->sr.plane = max(optimal->sr.plane,
1410 active->sr.plane);
1411 intermediate->sr.cursor = max(optimal->sr.cursor,
1412 active->sr.cursor);
1413 intermediate->sr.fbc = max(optimal->sr.fbc,
1414 active->sr.fbc);
1415
1416 intermediate->hpll.plane = max(optimal->hpll.plane,
1417 active->hpll.plane);
1418 intermediate->hpll.cursor = max(optimal->hpll.cursor,
1419 active->hpll.cursor);
1420 intermediate->hpll.fbc = max(optimal->hpll.fbc,
1421 active->hpll.fbc);
1422
1423 WARN_ON((intermediate->sr.plane >
1424 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1425 intermediate->sr.cursor >
1426 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1427 intermediate->cxsr);
1428 WARN_ON((intermediate->sr.plane >
1429 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1430 intermediate->sr.cursor >
1431 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1432 intermediate->hpll_en);
1433
1434 WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1435 intermediate->fbc_en && intermediate->cxsr);
1436 WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1437 intermediate->fbc_en && intermediate->hpll_en);
1438
1439 /*
1440 * If our intermediate WM are identical to the final WM, then we can
1441 * omit the post-vblank programming; only update if it's different.
1442 */
1443 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1444 crtc_state->wm.need_postvbl_update = true;
1445
1446 return 0;
1447 }
1448
1449 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1450 struct g4x_wm_values *wm)
1451 {
1452 struct intel_crtc *crtc;
1453 int num_active_crtcs = 0;
1454
1455 wm->cxsr = true;
1456 wm->hpll_en = true;
1457 wm->fbc_en = true;
1458
1459 for_each_intel_crtc(&dev_priv->drm, crtc) {
1460 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1461
1462 if (!crtc->active)
1463 continue;
1464
1465 if (!wm_state->cxsr)
1466 wm->cxsr = false;
1467 if (!wm_state->hpll_en)
1468 wm->hpll_en = false;
1469 if (!wm_state->fbc_en)
1470 wm->fbc_en = false;
1471
1472 num_active_crtcs++;
1473 }
1474
1475 if (num_active_crtcs != 1) {
1476 wm->cxsr = false;
1477 wm->hpll_en = false;
1478 wm->fbc_en = false;
1479 }
1480
1481 for_each_intel_crtc(&dev_priv->drm, crtc) {
1482 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1483 enum pipe pipe = crtc->pipe;
1484
1485 wm->pipe[pipe] = wm_state->wm;
1486 if (crtc->active && wm->cxsr)
1487 wm->sr = wm_state->sr;
1488 if (crtc->active && wm->hpll_en)
1489 wm->hpll = wm_state->hpll;
1490 }
1491 }
1492
1493 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1494 {
1495 struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1496 struct g4x_wm_values new_wm = {};
1497
1498 g4x_merge_wm(dev_priv, &new_wm);
1499
1500 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1501 return;
1502
1503 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1504 _intel_set_memory_cxsr(dev_priv, false);
1505
1506 g4x_write_wm_values(dev_priv, &new_wm);
1507
1508 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1509 _intel_set_memory_cxsr(dev_priv, true);
1510
1511 *old_wm = new_wm;
1512 }
1513
1514 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1515 struct intel_crtc_state *crtc_state)
1516 {
1517 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1518 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1519
1520 mutex_lock(&dev_priv->wm.wm_mutex);
1521 crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1522 g4x_program_watermarks(dev_priv);
1523 mutex_unlock(&dev_priv->wm.wm_mutex);
1524 }
1525
1526 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1527 struct intel_crtc_state *crtc_state)
1528 {
1529 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1530 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
1531
1532 if (!crtc_state->wm.need_postvbl_update)
1533 return;
1534
1535 mutex_lock(&dev_priv->wm.wm_mutex);
1536 intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1537 g4x_program_watermarks(dev_priv);
1538 mutex_unlock(&dev_priv->wm.wm_mutex);
1539 }
1540
1541 /* latency must be in 0.1us units. */
1542 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1543 unsigned int htotal,
1544 unsigned int width,
1545 unsigned int cpp,
1546 unsigned int latency)
1547 {
1548 unsigned int ret;
1549
1550 ret = intel_wm_method2(pixel_rate, htotal,
1551 width, cpp, latency);
1552 ret = DIV_ROUND_UP(ret, 64);
1553
1554 return ret;
1555 }
1556
1557 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1558 {
1559 /* all latencies in usec */
1560 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1561
1562 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1563
1564 if (IS_CHERRYVIEW(dev_priv)) {
1565 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1566 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1567
1568 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1569 }
1570 }
1571
1572 static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1573 const struct intel_plane_state *plane_state,
1574 int level)
1575 {
1576 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1577 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1578 const struct drm_display_mode *adjusted_mode =
1579 &crtc_state->base.adjusted_mode;
1580 int clock, htotal, cpp, width, wm;
1581
1582 if (dev_priv->wm.pri_latency[level] == 0)
1583 return USHRT_MAX;
1584
1585 if (!intel_wm_plane_visible(crtc_state, plane_state))
1586 return 0;
1587
1588 cpp = plane_state->base.fb->format->cpp[0];
1589 clock = adjusted_mode->crtc_clock;
1590 htotal = adjusted_mode->crtc_htotal;
1591 width = crtc_state->pipe_src_w;
1592
1593 if (plane->id == PLANE_CURSOR) {
1594 /*
1595 * FIXME the formula gives values that are
1596 * too big for the cursor FIFO, and hence we
1597 * would never be able to use cursors. For
1598 * now just hardcode the watermark.
1599 */
1600 wm = 63;
1601 } else {
1602 wm = vlv_wm_method2(clock, htotal, width, cpp,
1603 dev_priv->wm.pri_latency[level] * 10);
1604 }
1605
1606 return min_t(int, wm, USHRT_MAX);
1607 }
1608
1609 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1610 {
1611 return (active_planes & (BIT(PLANE_SPRITE0) |
1612 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1613 }
1614
1615 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1616 {
1617 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1618 const struct g4x_pipe_wm *raw =
1619 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1620 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1621 unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1622 int num_active_planes = hweight32(active_planes);
1623 const int fifo_size = 511;
1624 int fifo_extra, fifo_left = fifo_size;
1625 int sprite0_fifo_extra = 0;
1626 unsigned int total_rate;
1627 enum plane_id plane_id;
1628
1629 /*
1630 * When enabling sprite0 after sprite1 has already been enabled
1631 * we tend to get an underrun unless sprite0 already has some
1632 * FIFO space allcoated. Hence we always allocate at least one
1633 * cacheline for sprite0 whenever sprite1 is enabled.
1634 *
1635 * All other plane enable sequences appear immune to this problem.
1636 */
1637 if (vlv_need_sprite0_fifo_workaround(active_planes))
1638 sprite0_fifo_extra = 1;
1639
1640 total_rate = raw->plane[PLANE_PRIMARY] +
1641 raw->plane[PLANE_SPRITE0] +
1642 raw->plane[PLANE_SPRITE1] +
1643 sprite0_fifo_extra;
1644
1645 if (total_rate > fifo_size)
1646 return -EINVAL;
1647
1648 if (total_rate == 0)
1649 total_rate = 1;
1650
1651 for_each_plane_id_on_crtc(crtc, plane_id) {
1652 unsigned int rate;
1653
1654 if ((active_planes & BIT(plane_id)) == 0) {
1655 fifo_state->plane[plane_id] = 0;
1656 continue;
1657 }
1658
1659 rate = raw->plane[plane_id];
1660 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1661 fifo_left -= fifo_state->plane[plane_id];
1662 }
1663
1664 fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1665 fifo_left -= sprite0_fifo_extra;
1666
1667 fifo_state->plane[PLANE_CURSOR] = 63;
1668
1669 fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1670
1671 /* spread the remainder evenly */
1672 for_each_plane_id_on_crtc(crtc, plane_id) {
1673 int plane_extra;
1674
1675 if (fifo_left == 0)
1676 break;
1677
1678 if ((active_planes & BIT(plane_id)) == 0)
1679 continue;
1680
1681 plane_extra = min(fifo_extra, fifo_left);
1682 fifo_state->plane[plane_id] += plane_extra;
1683 fifo_left -= plane_extra;
1684 }
1685
1686 WARN_ON(active_planes != 0 && fifo_left != 0);
1687
1688 /* give it all to the first plane if none are active */
1689 if (active_planes == 0) {
1690 WARN_ON(fifo_left != fifo_size);
1691 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1692 }
1693
1694 return 0;
1695 }
1696
1697 /* mark all levels starting from 'level' as invalid */
1698 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1699 struct vlv_wm_state *wm_state, int level)
1700 {
1701 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1702
1703 for (; level < intel_wm_num_levels(dev_priv); level++) {
1704 enum plane_id plane_id;
1705
1706 for_each_plane_id_on_crtc(crtc, plane_id)
1707 wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1708
1709 wm_state->sr[level].cursor = USHRT_MAX;
1710 wm_state->sr[level].plane = USHRT_MAX;
1711 }
1712 }
1713
1714 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1715 {
1716 if (wm > fifo_size)
1717 return USHRT_MAX;
1718 else
1719 return fifo_size - wm;
1720 }
1721
1722 /*
1723 * Starting from 'level' set all higher
1724 * levels to 'value' in the "raw" watermarks.
1725 */
1726 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1727 int level, enum plane_id plane_id, u16 value)
1728 {
1729 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1730 int num_levels = intel_wm_num_levels(dev_priv);
1731 bool dirty = false;
1732
1733 for (; level < num_levels; level++) {
1734 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1735
1736 dirty |= raw->plane[plane_id] != value;
1737 raw->plane[plane_id] = value;
1738 }
1739
1740 return dirty;
1741 }
1742
1743 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1744 const struct intel_plane_state *plane_state)
1745 {
1746 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1747 enum plane_id plane_id = plane->id;
1748 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1749 int level;
1750 bool dirty = false;
1751
1752 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1753 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1754 goto out;
1755 }
1756
1757 for (level = 0; level < num_levels; level++) {
1758 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1759 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1760 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1761
1762 if (wm > max_wm)
1763 break;
1764
1765 dirty |= raw->plane[plane_id] != wm;
1766 raw->plane[plane_id] = wm;
1767 }
1768
1769 /* mark all higher levels as invalid */
1770 dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1771
1772 out:
1773 if (dirty)
1774 DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1775 plane->base.name,
1776 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1777 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1778 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1779
1780 return dirty;
1781 }
1782
1783 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1784 enum plane_id plane_id, int level)
1785 {
1786 const struct g4x_pipe_wm *raw =
1787 &crtc_state->wm.vlv.raw[level];
1788 const struct vlv_fifo_state *fifo_state =
1789 &crtc_state->wm.vlv.fifo_state;
1790
1791 return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1792 }
1793
1794 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1795 {
1796 return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1797 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1798 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1799 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1800 }
1801
1802 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1803 {
1804 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1805 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1806 struct intel_atomic_state *state =
1807 to_intel_atomic_state(crtc_state->base.state);
1808 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1809 const struct vlv_fifo_state *fifo_state =
1810 &crtc_state->wm.vlv.fifo_state;
1811 int num_active_planes = hweight32(crtc_state->active_planes &
1812 ~BIT(PLANE_CURSOR));
1813 bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1814 struct intel_plane_state *plane_state;
1815 struct intel_plane *plane;
1816 enum plane_id plane_id;
1817 int level, ret, i;
1818 unsigned int dirty = 0;
1819
1820 for_each_intel_plane_in_state(state, plane, plane_state, i) {
1821 const struct intel_plane_state *old_plane_state =
1822 to_intel_plane_state(plane->base.state);
1823
1824 if (plane_state->base.crtc != &crtc->base &&
1825 old_plane_state->base.crtc != &crtc->base)
1826 continue;
1827
1828 if (vlv_raw_plane_wm_compute(crtc_state, plane_state))
1829 dirty |= BIT(plane->id);
1830 }
1831
1832 /*
1833 * DSPARB registers may have been reset due to the
1834 * power well being turned off. Make sure we restore
1835 * them to a consistent state even if no primary/sprite
1836 * planes are initially active.
1837 */
1838 if (needs_modeset)
1839 crtc_state->fifo_changed = true;
1840
1841 if (!dirty)
1842 return 0;
1843
1844 /* cursor changes don't warrant a FIFO recompute */
1845 if (dirty & ~BIT(PLANE_CURSOR)) {
1846 const struct intel_crtc_state *old_crtc_state =
1847 to_intel_crtc_state(crtc->base.state);
1848 const struct vlv_fifo_state *old_fifo_state =
1849 &old_crtc_state->wm.vlv.fifo_state;
1850
1851 ret = vlv_compute_fifo(crtc_state);
1852 if (ret)
1853 return ret;
1854
1855 if (needs_modeset ||
1856 memcmp(old_fifo_state, fifo_state,
1857 sizeof(*fifo_state)) != 0)
1858 crtc_state->fifo_changed = true;
1859 }
1860
1861 /* initially allow all levels */
1862 wm_state->num_levels = intel_wm_num_levels(dev_priv);
1863 /*
1864 * Note that enabling cxsr with no primary/sprite planes
1865 * enabled can wedge the pipe. Hence we only allow cxsr
1866 * with exactly one enabled primary/sprite plane.
1867 */
1868 wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1869
1870 for (level = 0; level < wm_state->num_levels; level++) {
1871 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1872 const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1873
1874 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1875 break;
1876
1877 for_each_plane_id_on_crtc(crtc, plane_id) {
1878 wm_state->wm[level].plane[plane_id] =
1879 vlv_invert_wm_value(raw->plane[plane_id],
1880 fifo_state->plane[plane_id]);
1881 }
1882
1883 wm_state->sr[level].plane =
1884 vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1885 raw->plane[PLANE_SPRITE0],
1886 raw->plane[PLANE_SPRITE1]),
1887 sr_fifo_size);
1888
1889 wm_state->sr[level].cursor =
1890 vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1891 63);
1892 }
1893
1894 if (level == 0)
1895 return -EINVAL;
1896
1897 /* limit to only levels we can actually handle */
1898 wm_state->num_levels = level;
1899
1900 /* invalidate the higher levels */
1901 vlv_invalidate_wms(crtc, wm_state, level);
1902
1903 return 0;
1904 }
1905
1906 #define VLV_FIFO(plane, value) \
1907 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1908
1909 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1910 struct intel_crtc_state *crtc_state)
1911 {
1912 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1913 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1914 const struct vlv_fifo_state *fifo_state =
1915 &crtc_state->wm.vlv.fifo_state;
1916 int sprite0_start, sprite1_start, fifo_size;
1917
1918 if (!crtc_state->fifo_changed)
1919 return;
1920
1921 sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1922 sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1923 fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1924
1925 WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
1926 WARN_ON(fifo_size != 511);
1927
1928 trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1929
1930 /*
1931 * uncore.lock serves a double purpose here. It allows us to
1932 * use the less expensive I915_{READ,WRITE}_FW() functions, and
1933 * it protects the DSPARB registers from getting clobbered by
1934 * parallel updates from multiple pipes.
1935 *
1936 * intel_pipe_update_start() has already disabled interrupts
1937 * for us, so a plain spin_lock() is sufficient here.
1938 */
1939 spin_lock(&dev_priv->uncore.lock);
1940
1941 switch (crtc->pipe) {
1942 uint32_t dsparb, dsparb2, dsparb3;
1943 case PIPE_A:
1944 dsparb = I915_READ_FW(DSPARB);
1945 dsparb2 = I915_READ_FW(DSPARB2);
1946
1947 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1948 VLV_FIFO(SPRITEB, 0xff));
1949 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1950 VLV_FIFO(SPRITEB, sprite1_start));
1951
1952 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1953 VLV_FIFO(SPRITEB_HI, 0x1));
1954 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1955 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1956
1957 I915_WRITE_FW(DSPARB, dsparb);
1958 I915_WRITE_FW(DSPARB2, dsparb2);
1959 break;
1960 case PIPE_B:
1961 dsparb = I915_READ_FW(DSPARB);
1962 dsparb2 = I915_READ_FW(DSPARB2);
1963
1964 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1965 VLV_FIFO(SPRITED, 0xff));
1966 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1967 VLV_FIFO(SPRITED, sprite1_start));
1968
1969 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1970 VLV_FIFO(SPRITED_HI, 0xff));
1971 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1972 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1973
1974 I915_WRITE_FW(DSPARB, dsparb);
1975 I915_WRITE_FW(DSPARB2, dsparb2);
1976 break;
1977 case PIPE_C:
1978 dsparb3 = I915_READ_FW(DSPARB3);
1979 dsparb2 = I915_READ_FW(DSPARB2);
1980
1981 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1982 VLV_FIFO(SPRITEF, 0xff));
1983 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1984 VLV_FIFO(SPRITEF, sprite1_start));
1985
1986 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1987 VLV_FIFO(SPRITEF_HI, 0xff));
1988 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1989 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1990
1991 I915_WRITE_FW(DSPARB3, dsparb3);
1992 I915_WRITE_FW(DSPARB2, dsparb2);
1993 break;
1994 default:
1995 break;
1996 }
1997
1998 POSTING_READ_FW(DSPARB);
1999
2000 spin_unlock(&dev_priv->uncore.lock);
2001 }
2002
2003 #undef VLV_FIFO
2004
2005 static int vlv_compute_intermediate_wm(struct drm_device *dev,
2006 struct intel_crtc *crtc,
2007 struct intel_crtc_state *crtc_state)
2008 {
2009 struct vlv_wm_state *intermediate = &crtc_state->wm.vlv.intermediate;
2010 const struct vlv_wm_state *optimal = &crtc_state->wm.vlv.optimal;
2011 const struct vlv_wm_state *active = &crtc->wm.active.vlv;
2012 int level;
2013
2014 intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2015 intermediate->cxsr = optimal->cxsr && active->cxsr &&
2016 !crtc_state->disable_cxsr;
2017
2018 for (level = 0; level < intermediate->num_levels; level++) {
2019 enum plane_id plane_id;
2020
2021 for_each_plane_id_on_crtc(crtc, plane_id) {
2022 intermediate->wm[level].plane[plane_id] =
2023 min(optimal->wm[level].plane[plane_id],
2024 active->wm[level].plane[plane_id]);
2025 }
2026
2027 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2028 active->sr[level].plane);
2029 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2030 active->sr[level].cursor);
2031 }
2032
2033 vlv_invalidate_wms(crtc, intermediate, level);
2034
2035 /*
2036 * If our intermediate WM are identical to the final WM, then we can
2037 * omit the post-vblank programming; only update if it's different.
2038 */
2039 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2040 crtc_state->wm.need_postvbl_update = true;
2041
2042 return 0;
2043 }
2044
2045 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2046 struct vlv_wm_values *wm)
2047 {
2048 struct intel_crtc *crtc;
2049 int num_active_crtcs = 0;
2050
2051 wm->level = dev_priv->wm.max_level;
2052 wm->cxsr = true;
2053
2054 for_each_intel_crtc(&dev_priv->drm, crtc) {
2055 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2056
2057 if (!crtc->active)
2058 continue;
2059
2060 if (!wm_state->cxsr)
2061 wm->cxsr = false;
2062
2063 num_active_crtcs++;
2064 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2065 }
2066
2067 if (num_active_crtcs != 1)
2068 wm->cxsr = false;
2069
2070 if (num_active_crtcs > 1)
2071 wm->level = VLV_WM_LEVEL_PM2;
2072
2073 for_each_intel_crtc(&dev_priv->drm, crtc) {
2074 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2075 enum pipe pipe = crtc->pipe;
2076
2077 wm->pipe[pipe] = wm_state->wm[wm->level];
2078 if (crtc->active && wm->cxsr)
2079 wm->sr = wm_state->sr[wm->level];
2080
2081 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2082 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2083 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2084 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2085 }
2086 }
2087
2088 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2089 {
2090 struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2091 struct vlv_wm_values new_wm = {};
2092
2093 vlv_merge_wm(dev_priv, &new_wm);
2094
2095 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2096 return;
2097
2098 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2099 chv_set_memory_dvfs(dev_priv, false);
2100
2101 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2102 chv_set_memory_pm5(dev_priv, false);
2103
2104 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2105 _intel_set_memory_cxsr(dev_priv, false);
2106
2107 vlv_write_wm_values(dev_priv, &new_wm);
2108
2109 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2110 _intel_set_memory_cxsr(dev_priv, true);
2111
2112 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2113 chv_set_memory_pm5(dev_priv, true);
2114
2115 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2116 chv_set_memory_dvfs(dev_priv, true);
2117
2118 *old_wm = new_wm;
2119 }
2120
2121 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2122 struct intel_crtc_state *crtc_state)
2123 {
2124 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2125 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2126
2127 mutex_lock(&dev_priv->wm.wm_mutex);
2128 crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2129 vlv_program_watermarks(dev_priv);
2130 mutex_unlock(&dev_priv->wm.wm_mutex);
2131 }
2132
2133 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2134 struct intel_crtc_state *crtc_state)
2135 {
2136 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2137 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2138
2139 if (!crtc_state->wm.need_postvbl_update)
2140 return;
2141
2142 mutex_lock(&dev_priv->wm.wm_mutex);
2143 intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2144 vlv_program_watermarks(dev_priv);
2145 mutex_unlock(&dev_priv->wm.wm_mutex);
2146 }
2147
2148 static void i965_update_wm(struct intel_crtc *unused_crtc)
2149 {
2150 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2151 struct intel_crtc *crtc;
2152 int srwm = 1;
2153 int cursor_sr = 16;
2154 bool cxsr_enabled;
2155
2156 /* Calc sr entries for one plane configs */
2157 crtc = single_enabled_crtc(dev_priv);
2158 if (crtc) {
2159 /* self-refresh has much higher latency */
2160 static const int sr_latency_ns = 12000;
2161 const struct drm_display_mode *adjusted_mode =
2162 &crtc->config->base.adjusted_mode;
2163 const struct drm_framebuffer *fb =
2164 crtc->base.primary->state->fb;
2165 int clock = adjusted_mode->crtc_clock;
2166 int htotal = adjusted_mode->crtc_htotal;
2167 int hdisplay = crtc->config->pipe_src_w;
2168 int cpp = fb->format->cpp[0];
2169 int entries;
2170
2171 entries = intel_wm_method2(clock, htotal,
2172 hdisplay, cpp, sr_latency_ns / 100);
2173 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2174 srwm = I965_FIFO_SIZE - entries;
2175 if (srwm < 0)
2176 srwm = 1;
2177 srwm &= 0x1ff;
2178 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
2179 entries, srwm);
2180
2181 entries = intel_wm_method2(clock, htotal,
2182 crtc->base.cursor->state->crtc_w, 4,
2183 sr_latency_ns / 100);
2184 entries = DIV_ROUND_UP(entries,
2185 i965_cursor_wm_info.cacheline_size) +
2186 i965_cursor_wm_info.guard_size;
2187
2188 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2189 if (cursor_sr > i965_cursor_wm_info.max_wm)
2190 cursor_sr = i965_cursor_wm_info.max_wm;
2191
2192 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
2193 "cursor %d\n", srwm, cursor_sr);
2194
2195 cxsr_enabled = true;
2196 } else {
2197 cxsr_enabled = false;
2198 /* Turn off self refresh if both pipes are enabled */
2199 intel_set_memory_cxsr(dev_priv, false);
2200 }
2201
2202 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2203 srwm);
2204
2205 /* 965 has limitations... */
2206 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2207 FW_WM(8, CURSORB) |
2208 FW_WM(8, PLANEB) |
2209 FW_WM(8, PLANEA));
2210 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2211 FW_WM(8, PLANEC_OLD));
2212 /* update cursor SR watermark */
2213 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2214
2215 if (cxsr_enabled)
2216 intel_set_memory_cxsr(dev_priv, true);
2217 }
2218
2219 #undef FW_WM
2220
2221 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2222 {
2223 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2224 const struct intel_watermark_params *wm_info;
2225 uint32_t fwater_lo;
2226 uint32_t fwater_hi;
2227 int cwm, srwm = 1;
2228 int fifo_size;
2229 int planea_wm, planeb_wm;
2230 struct intel_crtc *crtc, *enabled = NULL;
2231
2232 if (IS_I945GM(dev_priv))
2233 wm_info = &i945_wm_info;
2234 else if (!IS_GEN2(dev_priv))
2235 wm_info = &i915_wm_info;
2236 else
2237 wm_info = &i830_a_wm_info;
2238
2239 fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
2240 crtc = intel_get_crtc_for_plane(dev_priv, 0);
2241 if (intel_crtc_active(crtc)) {
2242 const struct drm_display_mode *adjusted_mode =
2243 &crtc->config->base.adjusted_mode;
2244 const struct drm_framebuffer *fb =
2245 crtc->base.primary->state->fb;
2246 int cpp;
2247
2248 if (IS_GEN2(dev_priv))
2249 cpp = 4;
2250 else
2251 cpp = fb->format->cpp[0];
2252
2253 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2254 wm_info, fifo_size, cpp,
2255 pessimal_latency_ns);
2256 enabled = crtc;
2257 } else {
2258 planea_wm = fifo_size - wm_info->guard_size;
2259 if (planea_wm > (long)wm_info->max_wm)
2260 planea_wm = wm_info->max_wm;
2261 }
2262
2263 if (IS_GEN2(dev_priv))
2264 wm_info = &i830_bc_wm_info;
2265
2266 fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
2267 crtc = intel_get_crtc_for_plane(dev_priv, 1);
2268 if (intel_crtc_active(crtc)) {
2269 const struct drm_display_mode *adjusted_mode =
2270 &crtc->config->base.adjusted_mode;
2271 const struct drm_framebuffer *fb =
2272 crtc->base.primary->state->fb;
2273 int cpp;
2274
2275 if (IS_GEN2(dev_priv))
2276 cpp = 4;
2277 else
2278 cpp = fb->format->cpp[0];
2279
2280 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2281 wm_info, fifo_size, cpp,
2282 pessimal_latency_ns);
2283 if (enabled == NULL)
2284 enabled = crtc;
2285 else
2286 enabled = NULL;
2287 } else {
2288 planeb_wm = fifo_size - wm_info->guard_size;
2289 if (planeb_wm > (long)wm_info->max_wm)
2290 planeb_wm = wm_info->max_wm;
2291 }
2292
2293 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2294
2295 if (IS_I915GM(dev_priv) && enabled) {
2296 struct drm_i915_gem_object *obj;
2297
2298 obj = intel_fb_obj(enabled->base.primary->state->fb);
2299
2300 /* self-refresh seems busted with untiled */
2301 if (!i915_gem_object_is_tiled(obj))
2302 enabled = NULL;
2303 }
2304
2305 /*
2306 * Overlay gets an aggressive default since video jitter is bad.
2307 */
2308 cwm = 2;
2309
2310 /* Play safe and disable self-refresh before adjusting watermarks. */
2311 intel_set_memory_cxsr(dev_priv, false);
2312
2313 /* Calc sr entries for one plane configs */
2314 if (HAS_FW_BLC(dev_priv) && enabled) {
2315 /* self-refresh has much higher latency */
2316 static const int sr_latency_ns = 6000;
2317 const struct drm_display_mode *adjusted_mode =
2318 &enabled->config->base.adjusted_mode;
2319 const struct drm_framebuffer *fb =
2320 enabled->base.primary->state->fb;
2321 int clock = adjusted_mode->crtc_clock;
2322 int htotal = adjusted_mode->crtc_htotal;
2323 int hdisplay = enabled->config->pipe_src_w;
2324 int cpp;
2325 int entries;
2326
2327 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2328 cpp = 4;
2329 else
2330 cpp = fb->format->cpp[0];
2331
2332 entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2333 sr_latency_ns / 100);
2334 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2335 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
2336 srwm = wm_info->fifo_size - entries;
2337 if (srwm < 0)
2338 srwm = 1;
2339
2340 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2341 I915_WRITE(FW_BLC_SELF,
2342 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2343 else
2344 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2345 }
2346
2347 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2348 planea_wm, planeb_wm, cwm, srwm);
2349
2350 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2351 fwater_hi = (cwm & 0x1f);
2352
2353 /* Set request length to 8 cachelines per fetch */
2354 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2355 fwater_hi = fwater_hi | (1 << 8);
2356
2357 I915_WRITE(FW_BLC, fwater_lo);
2358 I915_WRITE(FW_BLC2, fwater_hi);
2359
2360 if (enabled)
2361 intel_set_memory_cxsr(dev_priv, true);
2362 }
2363
2364 static void i845_update_wm(struct intel_crtc *unused_crtc)
2365 {
2366 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2367 struct intel_crtc *crtc;
2368 const struct drm_display_mode *adjusted_mode;
2369 uint32_t fwater_lo;
2370 int planea_wm;
2371
2372 crtc = single_enabled_crtc(dev_priv);
2373 if (crtc == NULL)
2374 return;
2375
2376 adjusted_mode = &crtc->config->base.adjusted_mode;
2377 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2378 &i845_wm_info,
2379 dev_priv->display.get_fifo_size(dev_priv, 0),
2380 4, pessimal_latency_ns);
2381 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2382 fwater_lo |= (3<<8) | planea_wm;
2383
2384 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2385
2386 I915_WRITE(FW_BLC, fwater_lo);
2387 }
2388
2389 /* latency must be in 0.1us units. */
2390 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2391 unsigned int cpp,
2392 unsigned int latency)
2393 {
2394 unsigned int ret;
2395
2396 ret = intel_wm_method1(pixel_rate, cpp, latency);
2397 ret = DIV_ROUND_UP(ret, 64) + 2;
2398
2399 return ret;
2400 }
2401
2402 /* latency must be in 0.1us units. */
2403 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2404 unsigned int htotal,
2405 unsigned int width,
2406 unsigned int cpp,
2407 unsigned int latency)
2408 {
2409 unsigned int ret;
2410
2411 ret = intel_wm_method2(pixel_rate, htotal,
2412 width, cpp, latency);
2413 ret = DIV_ROUND_UP(ret, 64) + 2;
2414
2415 return ret;
2416 }
2417
2418 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2419 uint8_t cpp)
2420 {
2421 /*
2422 * Neither of these should be possible since this function shouldn't be
2423 * called if the CRTC is off or the plane is invisible. But let's be
2424 * extra paranoid to avoid a potential divide-by-zero if we screw up
2425 * elsewhere in the driver.
2426 */
2427 if (WARN_ON(!cpp))
2428 return 0;
2429 if (WARN_ON(!horiz_pixels))
2430 return 0;
2431
2432 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2433 }
2434
2435 struct ilk_wm_maximums {
2436 uint16_t pri;
2437 uint16_t spr;
2438 uint16_t cur;
2439 uint16_t fbc;
2440 };
2441
2442 /*
2443 * For both WM_PIPE and WM_LP.
2444 * mem_value must be in 0.1us units.
2445 */
2446 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2447 const struct intel_plane_state *pstate,
2448 uint32_t mem_value,
2449 bool is_lp)
2450 {
2451 uint32_t method1, method2;
2452 int cpp;
2453
2454 if (!intel_wm_plane_visible(cstate, pstate))
2455 return 0;
2456
2457 cpp = pstate->base.fb->format->cpp[0];
2458
2459 method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2460
2461 if (!is_lp)
2462 return method1;
2463
2464 method2 = ilk_wm_method2(cstate->pixel_rate,
2465 cstate->base.adjusted_mode.crtc_htotal,
2466 drm_rect_width(&pstate->base.dst),
2467 cpp, mem_value);
2468
2469 return min(method1, method2);
2470 }
2471
2472 /*
2473 * For both WM_PIPE and WM_LP.
2474 * mem_value must be in 0.1us units.
2475 */
2476 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2477 const struct intel_plane_state *pstate,
2478 uint32_t mem_value)
2479 {
2480 uint32_t method1, method2;
2481 int cpp;
2482
2483 if (!intel_wm_plane_visible(cstate, pstate))
2484 return 0;
2485
2486 cpp = pstate->base.fb->format->cpp[0];
2487
2488 method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2489 method2 = ilk_wm_method2(cstate->pixel_rate,
2490 cstate->base.adjusted_mode.crtc_htotal,
2491 drm_rect_width(&pstate->base.dst),
2492 cpp, mem_value);
2493 return min(method1, method2);
2494 }
2495
2496 /*
2497 * For both WM_PIPE and WM_LP.
2498 * mem_value must be in 0.1us units.
2499 */
2500 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2501 const struct intel_plane_state *pstate,
2502 uint32_t mem_value)
2503 {
2504 int cpp;
2505
2506 if (!intel_wm_plane_visible(cstate, pstate))
2507 return 0;
2508
2509 cpp = pstate->base.fb->format->cpp[0];
2510
2511 return ilk_wm_method2(cstate->pixel_rate,
2512 cstate->base.adjusted_mode.crtc_htotal,
2513 pstate->base.crtc_w, cpp, mem_value);
2514 }
2515
2516 /* Only for WM_LP. */
2517 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2518 const struct intel_plane_state *pstate,
2519 uint32_t pri_val)
2520 {
2521 int cpp;
2522
2523 if (!intel_wm_plane_visible(cstate, pstate))
2524 return 0;
2525
2526 cpp = pstate->base.fb->format->cpp[0];
2527
2528 return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2529 }
2530
2531 static unsigned int
2532 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2533 {
2534 if (INTEL_GEN(dev_priv) >= 8)
2535 return 3072;
2536 else if (INTEL_GEN(dev_priv) >= 7)
2537 return 768;
2538 else
2539 return 512;
2540 }
2541
2542 static unsigned int
2543 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2544 int level, bool is_sprite)
2545 {
2546 if (INTEL_GEN(dev_priv) >= 8)
2547 /* BDW primary/sprite plane watermarks */
2548 return level == 0 ? 255 : 2047;
2549 else if (INTEL_GEN(dev_priv) >= 7)
2550 /* IVB/HSW primary/sprite plane watermarks */
2551 return level == 0 ? 127 : 1023;
2552 else if (!is_sprite)
2553 /* ILK/SNB primary plane watermarks */
2554 return level == 0 ? 127 : 511;
2555 else
2556 /* ILK/SNB sprite plane watermarks */
2557 return level == 0 ? 63 : 255;
2558 }
2559
2560 static unsigned int
2561 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2562 {
2563 if (INTEL_GEN(dev_priv) >= 7)
2564 return level == 0 ? 63 : 255;
2565 else
2566 return level == 0 ? 31 : 63;
2567 }
2568
2569 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2570 {
2571 if (INTEL_GEN(dev_priv) >= 8)
2572 return 31;
2573 else
2574 return 15;
2575 }
2576
2577 /* Calculate the maximum primary/sprite plane watermark */
2578 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2579 int level,
2580 const struct intel_wm_config *config,
2581 enum intel_ddb_partitioning ddb_partitioning,
2582 bool is_sprite)
2583 {
2584 struct drm_i915_private *dev_priv = to_i915(dev);
2585 unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2586
2587 /* if sprites aren't enabled, sprites get nothing */
2588 if (is_sprite && !config->sprites_enabled)
2589 return 0;
2590
2591 /* HSW allows LP1+ watermarks even with multiple pipes */
2592 if (level == 0 || config->num_pipes_active > 1) {
2593 fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2594
2595 /*
2596 * For some reason the non self refresh
2597 * FIFO size is only half of the self
2598 * refresh FIFO size on ILK/SNB.
2599 */
2600 if (INTEL_GEN(dev_priv) <= 6)
2601 fifo_size /= 2;
2602 }
2603
2604 if (config->sprites_enabled) {
2605 /* level 0 is always calculated with 1:1 split */
2606 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2607 if (is_sprite)
2608 fifo_size *= 5;
2609 fifo_size /= 6;
2610 } else {
2611 fifo_size /= 2;
2612 }
2613 }
2614
2615 /* clamp to max that the registers can hold */
2616 return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2617 }
2618
2619 /* Calculate the maximum cursor plane watermark */
2620 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2621 int level,
2622 const struct intel_wm_config *config)
2623 {
2624 /* HSW LP1+ watermarks w/ multiple pipes */
2625 if (level > 0 && config->num_pipes_active > 1)
2626 return 64;
2627
2628 /* otherwise just report max that registers can hold */
2629 return ilk_cursor_wm_reg_max(to_i915(dev), level);
2630 }
2631
2632 static void ilk_compute_wm_maximums(const struct drm_device *dev,
2633 int level,
2634 const struct intel_wm_config *config,
2635 enum intel_ddb_partitioning ddb_partitioning,
2636 struct ilk_wm_maximums *max)
2637 {
2638 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2639 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2640 max->cur = ilk_cursor_wm_max(dev, level, config);
2641 max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2642 }
2643
2644 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2645 int level,
2646 struct ilk_wm_maximums *max)
2647 {
2648 max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2649 max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2650 max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2651 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2652 }
2653
2654 static bool ilk_validate_wm_level(int level,
2655 const struct ilk_wm_maximums *max,
2656 struct intel_wm_level *result)
2657 {
2658 bool ret;
2659
2660 /* already determined to be invalid? */
2661 if (!result->enable)
2662 return false;
2663
2664 result->enable = result->pri_val <= max->pri &&
2665 result->spr_val <= max->spr &&
2666 result->cur_val <= max->cur;
2667
2668 ret = result->enable;
2669
2670 /*
2671 * HACK until we can pre-compute everything,
2672 * and thus fail gracefully if LP0 watermarks
2673 * are exceeded...
2674 */
2675 if (level == 0 && !result->enable) {
2676 if (result->pri_val > max->pri)
2677 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2678 level, result->pri_val, max->pri);
2679 if (result->spr_val > max->spr)
2680 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2681 level, result->spr_val, max->spr);
2682 if (result->cur_val > max->cur)
2683 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2684 level, result->cur_val, max->cur);
2685
2686 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2687 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2688 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2689 result->enable = true;
2690 }
2691
2692 return ret;
2693 }
2694
2695 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2696 const struct intel_crtc *intel_crtc,
2697 int level,
2698 struct intel_crtc_state *cstate,
2699 const struct intel_plane_state *pristate,
2700 const struct intel_plane_state *sprstate,
2701 const struct intel_plane_state *curstate,
2702 struct intel_wm_level *result)
2703 {
2704 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2705 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2706 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2707
2708 /* WM1+ latency values stored in 0.5us units */
2709 if (level > 0) {
2710 pri_latency *= 5;
2711 spr_latency *= 5;
2712 cur_latency *= 5;
2713 }
2714
2715 if (pristate) {
2716 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2717 pri_latency, level);
2718 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2719 }
2720
2721 if (sprstate)
2722 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2723
2724 if (curstate)
2725 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2726
2727 result->enable = true;
2728 }
2729
2730 static uint32_t
2731 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2732 {
2733 const struct intel_atomic_state *intel_state =
2734 to_intel_atomic_state(cstate->base.state);
2735 const struct drm_display_mode *adjusted_mode =
2736 &cstate->base.adjusted_mode;
2737 u32 linetime, ips_linetime;
2738
2739 if (!cstate->base.active)
2740 return 0;
2741 if (WARN_ON(adjusted_mode->crtc_clock == 0))
2742 return 0;
2743 if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2744 return 0;
2745
2746 /* The WM are computed with base on how long it takes to fill a single
2747 * row at the given clock rate, multiplied by 8.
2748 * */
2749 linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2750 adjusted_mode->crtc_clock);
2751 ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2752 intel_state->cdclk.logical.cdclk);
2753
2754 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2755 PIPE_WM_LINETIME_TIME(linetime);
2756 }
2757
2758 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2759 uint16_t wm[8])
2760 {
2761 if (IS_GEN9(dev_priv)) {
2762 uint32_t val;
2763 int ret, i;
2764 int level, max_level = ilk_wm_max_level(dev_priv);
2765
2766 /* read the first set of memory latencies[0:3] */
2767 val = 0; /* data0 to be programmed to 0 for first set */
2768 mutex_lock(&dev_priv->rps.hw_lock);
2769 ret = sandybridge_pcode_read(dev_priv,
2770 GEN9_PCODE_READ_MEM_LATENCY,
2771 &val);
2772 mutex_unlock(&dev_priv->rps.hw_lock);
2773
2774 if (ret) {
2775 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2776 return;
2777 }
2778
2779 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2780 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2781 GEN9_MEM_LATENCY_LEVEL_MASK;
2782 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2783 GEN9_MEM_LATENCY_LEVEL_MASK;
2784 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2785 GEN9_MEM_LATENCY_LEVEL_MASK;
2786
2787 /* read the second set of memory latencies[4:7] */
2788 val = 1; /* data0 to be programmed to 1 for second set */
2789 mutex_lock(&dev_priv->rps.hw_lock);
2790 ret = sandybridge_pcode_read(dev_priv,
2791 GEN9_PCODE_READ_MEM_LATENCY,
2792 &val);
2793 mutex_unlock(&dev_priv->rps.hw_lock);
2794 if (ret) {
2795 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2796 return;
2797 }
2798
2799 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2800 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2801 GEN9_MEM_LATENCY_LEVEL_MASK;
2802 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2803 GEN9_MEM_LATENCY_LEVEL_MASK;
2804 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2805 GEN9_MEM_LATENCY_LEVEL_MASK;
2806
2807 /*
2808 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2809 * need to be disabled. We make sure to sanitize the values out
2810 * of the punit to satisfy this requirement.
2811 */
2812 for (level = 1; level <= max_level; level++) {
2813 if (wm[level] == 0) {
2814 for (i = level + 1; i <= max_level; i++)
2815 wm[i] = 0;
2816 break;
2817 }
2818 }
2819
2820 /*
2821 * WaWmMemoryReadLatency:skl,glk
2822 *
2823 * punit doesn't take into account the read latency so we need
2824 * to add 2us to the various latency levels we retrieve from the
2825 * punit when level 0 response data us 0us.
2826 */
2827 if (wm[0] == 0) {
2828 wm[0] += 2;
2829 for (level = 1; level <= max_level; level++) {
2830 if (wm[level] == 0)
2831 break;
2832 wm[level] += 2;
2833 }
2834 }
2835
2836 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2837 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2838
2839 wm[0] = (sskpd >> 56) & 0xFF;
2840 if (wm[0] == 0)
2841 wm[0] = sskpd & 0xF;
2842 wm[1] = (sskpd >> 4) & 0xFF;
2843 wm[2] = (sskpd >> 12) & 0xFF;
2844 wm[3] = (sskpd >> 20) & 0x1FF;
2845 wm[4] = (sskpd >> 32) & 0x1FF;
2846 } else if (INTEL_GEN(dev_priv) >= 6) {
2847 uint32_t sskpd = I915_READ(MCH_SSKPD);
2848
2849 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2850 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2851 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2852 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2853 } else if (INTEL_GEN(dev_priv) >= 5) {
2854 uint32_t mltr = I915_READ(MLTR_ILK);
2855
2856 /* ILK primary LP0 latency is 700 ns */
2857 wm[0] = 7;
2858 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2859 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2860 }
2861 }
2862
2863 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2864 uint16_t wm[5])
2865 {
2866 /* ILK sprite LP0 latency is 1300 ns */
2867 if (IS_GEN5(dev_priv))
2868 wm[0] = 13;
2869 }
2870
2871 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2872 uint16_t wm[5])
2873 {
2874 /* ILK cursor LP0 latency is 1300 ns */
2875 if (IS_GEN5(dev_priv))
2876 wm[0] = 13;
2877
2878 /* WaDoubleCursorLP3Latency:ivb */
2879 if (IS_IVYBRIDGE(dev_priv))
2880 wm[3] *= 2;
2881 }
2882
2883 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2884 {
2885 /* how many WM levels are we expecting */
2886 if (INTEL_GEN(dev_priv) >= 9)
2887 return 7;
2888 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2889 return 4;
2890 else if (INTEL_GEN(dev_priv) >= 6)
2891 return 3;
2892 else
2893 return 2;
2894 }
2895
2896 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2897 const char *name,
2898 const uint16_t wm[8])
2899 {
2900 int level, max_level = ilk_wm_max_level(dev_priv);
2901
2902 for (level = 0; level <= max_level; level++) {
2903 unsigned int latency = wm[level];
2904
2905 if (latency == 0) {
2906 DRM_ERROR("%s WM%d latency not provided\n",
2907 name, level);
2908 continue;
2909 }
2910
2911 /*
2912 * - latencies are in us on gen9.
2913 * - before then, WM1+ latency values are in 0.5us units
2914 */
2915 if (IS_GEN9(dev_priv))
2916 latency *= 10;
2917 else if (level > 0)
2918 latency *= 5;
2919
2920 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2921 name, level, wm[level],
2922 latency / 10, latency % 10);
2923 }
2924 }
2925
2926 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2927 uint16_t wm[5], uint16_t min)
2928 {
2929 int level, max_level = ilk_wm_max_level(dev_priv);
2930
2931 if (wm[0] >= min)
2932 return false;
2933
2934 wm[0] = max(wm[0], min);
2935 for (level = 1; level <= max_level; level++)
2936 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2937
2938 return true;
2939 }
2940
2941 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2942 {
2943 bool changed;
2944
2945 /*
2946 * The BIOS provided WM memory latency values are often
2947 * inadequate for high resolution displays. Adjust them.
2948 */
2949 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2950 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2951 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2952
2953 if (!changed)
2954 return;
2955
2956 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2957 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2958 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2959 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2960 }
2961
2962 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2963 {
2964 intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2965
2966 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2967 sizeof(dev_priv->wm.pri_latency));
2968 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2969 sizeof(dev_priv->wm.pri_latency));
2970
2971 intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2972 intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2973
2974 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2975 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2976 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2977
2978 if (IS_GEN6(dev_priv))
2979 snb_wm_latency_quirk(dev_priv);
2980 }
2981
2982 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2983 {
2984 intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2985 intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2986 }
2987
2988 static bool ilk_validate_pipe_wm(struct drm_device *dev,
2989 struct intel_pipe_wm *pipe_wm)
2990 {
2991 /* LP0 watermark maximums depend on this pipe alone */
2992 const struct intel_wm_config config = {
2993 .num_pipes_active = 1,
2994 .sprites_enabled = pipe_wm->sprites_enabled,
2995 .sprites_scaled = pipe_wm->sprites_scaled,
2996 };
2997 struct ilk_wm_maximums max;
2998
2999 /* LP0 watermarks always use 1/2 DDB partitioning */
3000 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
3001
3002 /* At least LP0 must be valid */
3003 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3004 DRM_DEBUG_KMS("LP0 watermark invalid\n");
3005 return false;
3006 }
3007
3008 return true;
3009 }
3010
3011 /* Compute new watermarks for the pipe */
3012 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3013 {
3014 struct drm_atomic_state *state = cstate->base.state;
3015 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3016 struct intel_pipe_wm *pipe_wm;
3017 struct drm_device *dev = state->dev;
3018 const struct drm_i915_private *dev_priv = to_i915(dev);
3019 struct drm_plane *plane;
3020 const struct drm_plane_state *plane_state;
3021 const struct intel_plane_state *pristate = NULL;
3022 const struct intel_plane_state *sprstate = NULL;
3023 const struct intel_plane_state *curstate = NULL;
3024 int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3025 struct ilk_wm_maximums max;
3026
3027 pipe_wm = &cstate->wm.ilk.optimal;
3028
3029 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
3030 const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3031
3032 if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3033 pristate = ps;
3034 else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3035 sprstate = ps;
3036 else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3037 curstate = ps;
3038 }
3039
3040 pipe_wm->pipe_enabled = cstate->base.active;
3041 if (sprstate) {
3042 pipe_wm->sprites_enabled = sprstate->base.visible;
3043 pipe_wm->sprites_scaled = sprstate->base.visible &&
3044 (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
3045 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3046 }
3047
3048 usable_level = max_level;
3049
3050 /* ILK/SNB: LP2+ watermarks only w/o sprites */
3051 if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3052 usable_level = 1;
3053
3054 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3055 if (pipe_wm->sprites_scaled)
3056 usable_level = 0;
3057
3058 memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3059 ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
3060 pristate, sprstate, curstate, &pipe_wm->wm[0]);
3061
3062 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3063 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3064
3065 if (!ilk_validate_pipe_wm(dev, pipe_wm))
3066 return -EINVAL;
3067
3068 ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3069
3070 for (level = 1; level <= usable_level; level++) {
3071 struct intel_wm_level *wm = &pipe_wm->wm[level];
3072
3073 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3074 pristate, sprstate, curstate, wm);
3075
3076 /*
3077 * Disable any watermark level that exceeds the
3078 * register maximums since such watermarks are
3079 * always invalid.
3080 */
3081 if (!ilk_validate_wm_level(level, &max, wm)) {
3082 memset(wm, 0, sizeof(*wm));
3083 break;
3084 }
3085 }
3086
3087 return 0;
3088 }
3089
3090 /*
3091 * Build a set of 'intermediate' watermark values that satisfy both the old
3092 * state and the new state. These can be programmed to the hardware
3093 * immediately.
3094 */
3095 static int ilk_compute_intermediate_wm(struct drm_device *dev,
3096 struct intel_crtc *intel_crtc,
3097 struct intel_crtc_state *newstate)
3098 {
3099 struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3100 struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
3101 int level, max_level = ilk_wm_max_level(to_i915(dev));
3102
3103 /*
3104 * Start with the final, target watermarks, then combine with the
3105 * currently active watermarks to get values that are safe both before
3106 * and after the vblank.
3107 */
3108 *a = newstate->wm.ilk.optimal;
3109 a->pipe_enabled |= b->pipe_enabled;
3110 a->sprites_enabled |= b->sprites_enabled;
3111 a->sprites_scaled |= b->sprites_scaled;
3112
3113 for (level = 0; level <= max_level; level++) {
3114 struct intel_wm_level *a_wm = &a->wm[level];
3115 const struct intel_wm_level *b_wm = &b->wm[level];
3116
3117 a_wm->enable &= b_wm->enable;
3118 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3119 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3120 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3121 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3122 }
3123
3124 /*
3125 * We need to make sure that these merged watermark values are
3126 * actually a valid configuration themselves. If they're not,
3127 * there's no safe way to transition from the old state to
3128 * the new state, so we need to fail the atomic transaction.
3129 */
3130 if (!ilk_validate_pipe_wm(dev, a))
3131 return -EINVAL;
3132
3133 /*
3134 * If our intermediate WM are identical to the final WM, then we can
3135 * omit the post-vblank programming; only update if it's different.
3136 */
3137 if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3138 newstate->wm.need_postvbl_update = true;
3139
3140 return 0;
3141 }
3142
3143 /*
3144 * Merge the watermarks from all active pipes for a specific level.
3145 */
3146 static void ilk_merge_wm_level(struct drm_device *dev,
3147 int level,
3148 struct intel_wm_level *ret_wm)
3149 {
3150 const struct intel_crtc *intel_crtc;
3151
3152 ret_wm->enable = true;
3153
3154 for_each_intel_crtc(dev, intel_crtc) {
3155 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3156 const struct intel_wm_level *wm = &active->wm[level];
3157
3158 if (!active->pipe_enabled)
3159 continue;
3160
3161 /*
3162 * The watermark values may have been used in the past,
3163 * so we must maintain them in the registers for some
3164 * time even if the level is now disabled.
3165 */
3166 if (!wm->enable)
3167 ret_wm->enable = false;
3168
3169 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3170 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3171 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3172 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3173 }
3174 }
3175
3176 /*
3177 * Merge all low power watermarks for all active pipes.
3178 */
3179 static void ilk_wm_merge(struct drm_device *dev,
3180 const struct intel_wm_config *config,
3181 const struct ilk_wm_maximums *max,
3182 struct intel_pipe_wm *merged)
3183 {
3184 struct drm_i915_private *dev_priv = to_i915(dev);
3185 int level, max_level = ilk_wm_max_level(dev_priv);
3186 int last_enabled_level = max_level;
3187
3188 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3189 if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3190 config->num_pipes_active > 1)
3191 last_enabled_level = 0;
3192
3193 /* ILK: FBC WM must be disabled always */
3194 merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3195
3196 /* merge each WM1+ level */
3197 for (level = 1; level <= max_level; level++) {
3198 struct intel_wm_level *wm = &merged->wm[level];
3199
3200 ilk_merge_wm_level(dev, level, wm);
3201
3202 if (level > last_enabled_level)
3203 wm->enable = false;
3204 else if (!ilk_validate_wm_level(level, max, wm))
3205 /* make sure all following levels get disabled */
3206 last_enabled_level = level - 1;
3207
3208 /*
3209 * The spec says it is preferred to disable
3210 * FBC WMs instead of disabling a WM level.
3211 */
3212 if (wm->fbc_val > max->fbc) {
3213 if (wm->enable)
3214 merged->fbc_wm_enabled = false;
3215 wm->fbc_val = 0;
3216 }
3217 }
3218
3219 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3220 /*
3221 * FIXME this is racy. FBC might get enabled later.
3222 * What we should check here is whether FBC can be
3223 * enabled sometime later.
3224 */
3225 if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
3226 intel_fbc_is_active(dev_priv)) {
3227 for (level = 2; level <= max_level; level++) {
3228 struct intel_wm_level *wm = &merged->wm[level];
3229
3230 wm->enable = false;
3231 }
3232 }
3233 }
3234
3235 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3236 {
3237 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3238 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3239 }
3240
3241 /* The value we need to program into the WM_LPx latency field */
3242 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
3243 {
3244 struct drm_i915_private *dev_priv = to_i915(dev);
3245
3246 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3247 return 2 * level;
3248 else
3249 return dev_priv->wm.pri_latency[level];
3250 }
3251
3252 static void ilk_compute_wm_results(struct drm_device *dev,
3253 const struct intel_pipe_wm *merged,
3254 enum intel_ddb_partitioning partitioning,
3255 struct ilk_wm_values *results)
3256 {
3257 struct drm_i915_private *dev_priv = to_i915(dev);
3258 struct intel_crtc *intel_crtc;
3259 int level, wm_lp;
3260
3261 results->enable_fbc_wm = merged->fbc_wm_enabled;
3262 results->partitioning = partitioning;
3263
3264 /* LP1+ register values */
3265 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3266 const struct intel_wm_level *r;
3267
3268 level = ilk_wm_lp_to_level(wm_lp, merged);
3269
3270 r = &merged->wm[level];
3271
3272 /*
3273 * Maintain the watermark values even if the level is
3274 * disabled. Doing otherwise could cause underruns.
3275 */
3276 results->wm_lp[wm_lp - 1] =
3277 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
3278 (r->pri_val << WM1_LP_SR_SHIFT) |
3279 r->cur_val;
3280
3281 if (r->enable)
3282 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3283
3284 if (INTEL_GEN(dev_priv) >= 8)
3285 results->wm_lp[wm_lp - 1] |=
3286 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3287 else
3288 results->wm_lp[wm_lp - 1] |=
3289 r->fbc_val << WM1_LP_FBC_SHIFT;
3290
3291 /*
3292 * Always set WM1S_LP_EN when spr_val != 0, even if the
3293 * level is disabled. Doing otherwise could cause underruns.
3294 */
3295 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3296 WARN_ON(wm_lp != 1);
3297 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3298 } else
3299 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3300 }
3301
3302 /* LP0 register values */
3303 for_each_intel_crtc(dev, intel_crtc) {
3304 enum pipe pipe = intel_crtc->pipe;
3305 const struct intel_wm_level *r =
3306 &intel_crtc->wm.active.ilk.wm[0];
3307
3308 if (WARN_ON(!r->enable))
3309 continue;
3310
3311 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3312
3313 results->wm_pipe[pipe] =
3314 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3315 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3316 r->cur_val;
3317 }
3318 }
3319
3320 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3321 * case both are at the same level. Prefer r1 in case they're the same. */
3322 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
3323 struct intel_pipe_wm *r1,
3324 struct intel_pipe_wm *r2)
3325 {
3326 int level, max_level = ilk_wm_max_level(to_i915(dev));
3327 int level1 = 0, level2 = 0;
3328
3329 for (level = 1; level <= max_level; level++) {
3330 if (r1->wm[level].enable)
3331 level1 = level;
3332 if (r2->wm[level].enable)
3333 level2 = level;
3334 }
3335
3336 if (level1 == level2) {
3337 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3338 return r2;
3339 else
3340 return r1;
3341 } else if (level1 > level2) {
3342 return r1;
3343 } else {
3344 return r2;
3345 }
3346 }
3347
3348 /* dirty bits used to track which watermarks need changes */
3349 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3350 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
3351 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3352 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3353 #define WM_DIRTY_FBC (1 << 24)
3354 #define WM_DIRTY_DDB (1 << 25)
3355
3356 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3357 const struct ilk_wm_values *old,
3358 const struct ilk_wm_values *new)
3359 {
3360 unsigned int dirty = 0;
3361 enum pipe pipe;
3362 int wm_lp;
3363
3364 for_each_pipe(dev_priv, pipe) {
3365 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
3366 dirty |= WM_DIRTY_LINETIME(pipe);
3367 /* Must disable LP1+ watermarks too */
3368 dirty |= WM_DIRTY_LP_ALL;
3369 }
3370
3371 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3372 dirty |= WM_DIRTY_PIPE(pipe);
3373 /* Must disable LP1+ watermarks too */
3374 dirty |= WM_DIRTY_LP_ALL;
3375 }
3376 }
3377
3378 if (old->enable_fbc_wm != new->enable_fbc_wm) {
3379 dirty |= WM_DIRTY_FBC;
3380 /* Must disable LP1+ watermarks too */
3381 dirty |= WM_DIRTY_LP_ALL;
3382 }
3383
3384 if (old->partitioning != new->partitioning) {
3385 dirty |= WM_DIRTY_DDB;
3386 /* Must disable LP1+ watermarks too */
3387 dirty |= WM_DIRTY_LP_ALL;
3388 }
3389
3390 /* LP1+ watermarks already deemed dirty, no need to continue */
3391 if (dirty & WM_DIRTY_LP_ALL)
3392 return dirty;
3393
3394 /* Find the lowest numbered LP1+ watermark in need of an update... */
3395 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3396 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3397 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3398 break;
3399 }
3400
3401 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3402 for (; wm_lp <= 3; wm_lp++)
3403 dirty |= WM_DIRTY_LP(wm_lp);
3404
3405 return dirty;
3406 }
3407
3408 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3409 unsigned int dirty)
3410 {
3411 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3412 bool changed = false;
3413
3414 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3415 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3416 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3417 changed = true;
3418 }
3419 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3420 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3421 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3422 changed = true;
3423 }
3424 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3425 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3426 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3427 changed = true;
3428 }
3429
3430 /*
3431 * Don't touch WM1S_LP_EN here.
3432 * Doing so could cause underruns.
3433 */
3434
3435 return changed;
3436 }
3437
3438 /*
3439 * The spec says we shouldn't write when we don't need, because every write
3440 * causes WMs to be re-evaluated, expending some power.
3441 */
3442 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3443 struct ilk_wm_values *results)
3444 {
3445 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3446 unsigned int dirty;
3447 uint32_t val;
3448
3449 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3450 if (!dirty)
3451 return;
3452
3453 _ilk_disable_lp_wm(dev_priv, dirty);
3454
3455 if (dirty & WM_DIRTY_PIPE(PIPE_A))
3456 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3457 if (dirty & WM_DIRTY_PIPE(PIPE_B))
3458 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3459 if (dirty & WM_DIRTY_PIPE(PIPE_C))
3460 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3461
3462 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3463 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3464 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3465 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3466 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3467 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
3468
3469 if (dirty & WM_DIRTY_DDB) {
3470 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3471 val = I915_READ(WM_MISC);
3472 if (results->partitioning == INTEL_DDB_PART_1_2)
3473 val &= ~WM_MISC_DATA_PARTITION_5_6;
3474 else
3475 val |= WM_MISC_DATA_PARTITION_5_6;
3476 I915_WRITE(WM_MISC, val);
3477 } else {
3478 val = I915_READ(DISP_ARB_CTL2);
3479 if (results->partitioning == INTEL_DDB_PART_1_2)
3480 val &= ~DISP_DATA_PARTITION_5_6;
3481 else
3482 val |= DISP_DATA_PARTITION_5_6;
3483 I915_WRITE(DISP_ARB_CTL2, val);
3484 }
3485 }
3486
3487 if (dirty & WM_DIRTY_FBC) {
3488 val = I915_READ(DISP_ARB_CTL);
3489 if (results->enable_fbc_wm)
3490 val &= ~DISP_FBC_WM_DIS;
3491 else
3492 val |= DISP_FBC_WM_DIS;
3493 I915_WRITE(DISP_ARB_CTL, val);
3494 }
3495
3496 if (dirty & WM_DIRTY_LP(1) &&
3497 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3498 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3499
3500 if (INTEL_GEN(dev_priv) >= 7) {
3501 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3502 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3503 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3504 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3505 }
3506
3507 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3508 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3509 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3510 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3511 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3512 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3513
3514 dev_priv->wm.hw = *results;
3515 }
3516
3517 bool ilk_disable_lp_wm(struct drm_device *dev)
3518 {
3519 struct drm_i915_private *dev_priv = to_i915(dev);
3520
3521 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3522 }
3523
3524 #define SKL_SAGV_BLOCK_TIME 30 /* µs */
3525
3526 /*
3527 * FIXME: We still don't have the proper code detect if we need to apply the WA,
3528 * so assume we'll always need it in order to avoid underruns.
3529 */
3530 static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
3531 {
3532 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3533
3534 if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3535 return true;
3536
3537 return false;
3538 }
3539
3540 static bool
3541 intel_has_sagv(struct drm_i915_private *dev_priv)
3542 {
3543 if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
3544 return true;
3545
3546 if (IS_SKYLAKE(dev_priv) &&
3547 dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
3548 return true;
3549
3550 return false;
3551 }
3552
3553 /*
3554 * SAGV dynamically adjusts the system agent voltage and clock frequencies
3555 * depending on power and performance requirements. The display engine access
3556 * to system memory is blocked during the adjustment time. Because of the
3557 * blocking time, having this enabled can cause full system hangs and/or pipe
3558 * underruns if we don't meet all of the following requirements:
3559 *
3560 * - <= 1 pipe enabled
3561 * - All planes can enable watermarks for latencies >= SAGV engine block time
3562 * - We're not using an interlaced display configuration
3563 */
3564 int
3565 intel_enable_sagv(struct drm_i915_private *dev_priv)
3566 {
3567 int ret;
3568
3569 if (!intel_has_sagv(dev_priv))
3570 return 0;
3571
3572 if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3573 return 0;
3574
3575 DRM_DEBUG_KMS("Enabling the SAGV\n");
3576 mutex_lock(&dev_priv->rps.hw_lock);
3577
3578 ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3579 GEN9_SAGV_ENABLE);
3580
3581 /* We don't need to wait for the SAGV when enabling */
3582 mutex_unlock(&dev_priv->rps.hw_lock);
3583
3584 /*
3585 * Some skl systems, pre-release machines in particular,
3586 * don't actually have an SAGV.
3587 */
3588 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3589 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3590 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3591 return 0;
3592 } else if (ret < 0) {
3593 DRM_ERROR("Failed to enable the SAGV\n");
3594 return ret;
3595 }
3596
3597 dev_priv->sagv_status = I915_SAGV_ENABLED;
3598 return 0;
3599 }
3600
3601 int
3602 intel_disable_sagv(struct drm_i915_private *dev_priv)
3603 {
3604 int ret;
3605
3606 if (!intel_has_sagv(dev_priv))
3607 return 0;
3608
3609 if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3610 return 0;
3611
3612 DRM_DEBUG_KMS("Disabling the SAGV\n");
3613 mutex_lock(&dev_priv->rps.hw_lock);
3614
3615 /* bspec says to keep retrying for at least 1 ms */
3616 ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3617 GEN9_SAGV_DISABLE,
3618 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3619 1);
3620 mutex_unlock(&dev_priv->rps.hw_lock);
3621
3622 /*
3623 * Some skl systems, pre-release machines in particular,
3624 * don't actually have an SAGV.
3625 */
3626 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3627 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3628 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3629 return 0;
3630 } else if (ret < 0) {
3631 DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
3632 return ret;
3633 }
3634
3635 dev_priv->sagv_status = I915_SAGV_DISABLED;
3636 return 0;
3637 }
3638
3639 bool intel_can_enable_sagv(struct drm_atomic_state *state)
3640 {
3641 struct drm_device *dev = state->dev;
3642 struct drm_i915_private *dev_priv = to_i915(dev);
3643 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3644 struct intel_crtc *crtc;
3645 struct intel_plane *plane;
3646 struct intel_crtc_state *cstate;
3647 enum pipe pipe;
3648 int level, latency;
3649
3650 if (!intel_has_sagv(dev_priv))
3651 return false;
3652
3653 /*
3654 * SKL workaround: bspec recommends we disable the SAGV when we have
3655 * more then one pipe enabled
3656 *
3657 * If there are no active CRTCs, no additional checks need be performed
3658 */
3659 if (hweight32(intel_state->active_crtcs) == 0)
3660 return true;
3661 else if (hweight32(intel_state->active_crtcs) > 1)
3662 return false;
3663
3664 /* Since we're now guaranteed to only have one active CRTC... */
3665 pipe = ffs(intel_state->active_crtcs) - 1;
3666 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3667 cstate = to_intel_crtc_state(crtc->base.state);
3668
3669 if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3670 return false;
3671
3672 for_each_intel_plane_on_crtc(dev, crtc, plane) {
3673 struct skl_plane_wm *wm =
3674 &cstate->wm.skl.optimal.planes[plane->id];
3675
3676 /* Skip this plane if it's not enabled */
3677 if (!wm->wm[0].plane_en)
3678 continue;
3679
3680 /* Find the highest enabled wm level for this plane */
3681 for (level = ilk_wm_max_level(dev_priv);
3682 !wm->wm[level].plane_en; --level)
3683 { }
3684
3685 latency = dev_priv->wm.skl_latency[level];
3686
3687 if (skl_needs_memory_bw_wa(intel_state) &&
3688 plane->base.state->fb->modifier ==
3689 I915_FORMAT_MOD_X_TILED)
3690 latency += 15;
3691
3692 /*
3693 * If any of the planes on this pipe don't enable wm levels
3694 * that incur memory latencies higher then 30µs we can't enable
3695 * the SAGV
3696 */
3697 if (latency < SKL_SAGV_BLOCK_TIME)
3698 return false;
3699 }
3700
3701 return true;
3702 }
3703
3704 static void
3705 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3706 const struct intel_crtc_state *cstate,
3707 struct skl_ddb_entry *alloc, /* out */
3708 int *num_active /* out */)
3709 {
3710 struct drm_atomic_state *state = cstate->base.state;
3711 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3712 struct drm_i915_private *dev_priv = to_i915(dev);
3713 struct drm_crtc *for_crtc = cstate->base.crtc;
3714 unsigned int pipe_size, ddb_size;
3715 int nth_active_pipe;
3716
3717 if (WARN_ON(!state) || !cstate->base.active) {
3718 alloc->start = 0;
3719 alloc->end = 0;
3720 *num_active = hweight32(dev_priv->active_crtcs);
3721 return;
3722 }
3723
3724 if (intel_state->active_pipe_changes)
3725 *num_active = hweight32(intel_state->active_crtcs);
3726 else
3727 *num_active = hweight32(dev_priv->active_crtcs);
3728
3729 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3730 WARN_ON(ddb_size == 0);
3731
3732 ddb_size -= 4; /* 4 blocks for bypass path allocation */
3733
3734 /*
3735 * If the state doesn't change the active CRTC's, then there's
3736 * no need to recalculate; the existing pipe allocation limits
3737 * should remain unchanged. Note that we're safe from racing
3738 * commits since any racing commit that changes the active CRTC
3739 * list would need to grab _all_ crtc locks, including the one
3740 * we currently hold.
3741 */
3742 if (!intel_state->active_pipe_changes) {
3743 /*
3744 * alloc may be cleared by clear_intel_crtc_state,
3745 * copy from old state to be sure
3746 */
3747 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3748 return;
3749 }
3750
3751 nth_active_pipe = hweight32(intel_state->active_crtcs &
3752 (drm_crtc_mask(for_crtc) - 1));
3753 pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
3754 alloc->start = nth_active_pipe * ddb_size / *num_active;
3755 alloc->end = alloc->start + pipe_size;
3756 }
3757
3758 static unsigned int skl_cursor_allocation(int num_active)
3759 {
3760 if (num_active == 1)
3761 return 32;
3762
3763 return 8;
3764 }
3765
3766 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
3767 {
3768 entry->start = reg & 0x3ff;
3769 entry->end = (reg >> 16) & 0x3ff;
3770 if (entry->end)
3771 entry->end += 1;
3772 }
3773
3774 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3775 struct skl_ddb_allocation *ddb /* out */)
3776 {
3777 struct intel_crtc *crtc;
3778
3779 memset(ddb, 0, sizeof(*ddb));
3780
3781 for_each_intel_crtc(&dev_priv->drm, crtc) {
3782 enum intel_display_power_domain power_domain;
3783 enum plane_id plane_id;
3784 enum pipe pipe = crtc->pipe;
3785
3786 power_domain = POWER_DOMAIN_PIPE(pipe);
3787 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3788 continue;
3789
3790 for_each_plane_id_on_crtc(crtc, plane_id) {
3791 u32 val;
3792
3793 if (plane_id != PLANE_CURSOR)
3794 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3795 else
3796 val = I915_READ(CUR_BUF_CFG(pipe));
3797
3798 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
3799 }
3800
3801 intel_display_power_put(dev_priv, power_domain);
3802 }
3803 }
3804
3805 /*
3806 * Determines the downscale amount of a plane for the purposes of watermark calculations.
3807 * The bspec defines downscale amount as:
3808 *
3809 * """
3810 * Horizontal down scale amount = maximum[1, Horizontal source size /
3811 * Horizontal destination size]
3812 * Vertical down scale amount = maximum[1, Vertical source size /
3813 * Vertical destination size]
3814 * Total down scale amount = Horizontal down scale amount *
3815 * Vertical down scale amount
3816 * """
3817 *
3818 * Return value is provided in 16.16 fixed point form to retain fractional part.
3819 * Caller should take care of dividing & rounding off the value.
3820 */
3821 static uint_fixed_16_16_t
3822 skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
3823 const struct intel_plane_state *pstate)
3824 {
3825 struct intel_plane *plane = to_intel_plane(pstate->base.plane);
3826 uint32_t src_w, src_h, dst_w, dst_h;
3827 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
3828 uint_fixed_16_16_t downscale_h, downscale_w;
3829
3830 if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3831 return u32_to_fixed_16_16(0);
3832
3833 /* n.b., src is 16.16 fixed point, dst is whole integer */
3834 if (plane->id == PLANE_CURSOR) {
3835 /*
3836 * Cursors only support 0/180 degree rotation,
3837 * hence no need to account for rotation here.
3838 */
3839 src_w = pstate->base.src_w >> 16;
3840 src_h = pstate->base.src_h >> 16;
3841 dst_w = pstate->base.crtc_w;
3842 dst_h = pstate->base.crtc_h;
3843 } else {
3844 /*
3845 * Src coordinates are already rotated by 270 degrees for
3846 * the 90/270 degree plane rotation cases (to match the
3847 * GTT mapping), hence no need to account for rotation here.
3848 */
3849 src_w = drm_rect_width(&pstate->base.src) >> 16;
3850 src_h = drm_rect_height(&pstate->base.src) >> 16;
3851 dst_w = drm_rect_width(&pstate->base.dst);
3852 dst_h = drm_rect_height(&pstate->base.dst);
3853 }
3854
3855 fp_w_ratio = fixed_16_16_div(src_w, dst_w);
3856 fp_h_ratio = fixed_16_16_div(src_h, dst_h);
3857 downscale_w = max_fixed_16_16(fp_w_ratio, u32_to_fixed_16_16(1));
3858 downscale_h = max_fixed_16_16(fp_h_ratio, u32_to_fixed_16_16(1));
3859
3860 return mul_fixed16(downscale_w, downscale_h);
3861 }
3862
3863 static uint_fixed_16_16_t
3864 skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
3865 {
3866 uint_fixed_16_16_t pipe_downscale = u32_to_fixed_16_16(1);
3867
3868 if (!crtc_state->base.enable)
3869 return pipe_downscale;
3870
3871 if (crtc_state->pch_pfit.enabled) {
3872 uint32_t src_w, src_h, dst_w, dst_h;
3873 uint32_t pfit_size = crtc_state->pch_pfit.size;
3874 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
3875 uint_fixed_16_16_t downscale_h, downscale_w;
3876
3877 src_w = crtc_state->pipe_src_w;
3878 src_h = crtc_state->pipe_src_h;
3879 dst_w = pfit_size >> 16;
3880 dst_h = pfit_size & 0xffff;
3881
3882 if (!dst_w || !dst_h)
3883 return pipe_downscale;
3884
3885 fp_w_ratio = fixed_16_16_div(src_w, dst_w);
3886 fp_h_ratio = fixed_16_16_div(src_h, dst_h);
3887 downscale_w = max_fixed_16_16(fp_w_ratio, u32_to_fixed_16_16(1));
3888 downscale_h = max_fixed_16_16(fp_h_ratio, u32_to_fixed_16_16(1));
3889
3890 pipe_downscale = mul_fixed16(downscale_w, downscale_h);
3891 }
3892
3893 return pipe_downscale;
3894 }
3895
3896 int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
3897 struct intel_crtc_state *cstate)
3898 {
3899 struct drm_crtc_state *crtc_state = &cstate->base;
3900 struct drm_atomic_state *state = crtc_state->state;
3901 struct drm_plane *plane;
3902 const struct drm_plane_state *pstate;
3903 struct intel_plane_state *intel_pstate;
3904 int crtc_clock, dotclk;
3905 uint32_t pipe_max_pixel_rate;
3906 uint_fixed_16_16_t pipe_downscale;
3907 uint_fixed_16_16_t max_downscale = u32_to_fixed_16_16(1);
3908
3909 if (!cstate->base.enable)
3910 return 0;
3911
3912 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
3913 uint_fixed_16_16_t plane_downscale;
3914 uint_fixed_16_16_t fp_9_div_8 = fixed_16_16_div(9, 8);
3915 int bpp;
3916
3917 if (!intel_wm_plane_visible(cstate,
3918 to_intel_plane_state(pstate)))
3919 continue;
3920
3921 if (WARN_ON(!pstate->fb))
3922 return -EINVAL;
3923
3924 intel_pstate = to_intel_plane_state(pstate);
3925 plane_downscale = skl_plane_downscale_amount(cstate,
3926 intel_pstate);
3927 bpp = pstate->fb->format->cpp[0] * 8;
3928 if (bpp == 64)
3929 plane_downscale = mul_fixed16(plane_downscale,
3930 fp_9_div_8);
3931
3932 max_downscale = max_fixed_16_16(plane_downscale, max_downscale);
3933 }
3934 pipe_downscale = skl_pipe_downscale_amount(cstate);
3935
3936 pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);
3937
3938 crtc_clock = crtc_state->adjusted_mode.crtc_clock;
3939 dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;
3940
3941 if (IS_GEMINILAKE(to_i915(intel_crtc->base.dev)))
3942 dotclk *= 2;
3943
3944 pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
3945
3946 if (pipe_max_pixel_rate < crtc_clock) {
3947 DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
3948 return -EINVAL;
3949 }
3950
3951 return 0;
3952 }
3953
3954 static unsigned int
3955 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
3956 const struct drm_plane_state *pstate,
3957 int y)
3958 {
3959 struct intel_plane *plane = to_intel_plane(pstate->plane);
3960 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3961 uint32_t data_rate;
3962 uint32_t width = 0, height = 0;
3963 struct drm_framebuffer *fb;
3964 u32 format;
3965 uint_fixed_16_16_t down_scale_amount;
3966
3967 if (!intel_pstate->base.visible)
3968 return 0;
3969
3970 fb = pstate->fb;
3971 format = fb->format->format;
3972
3973 if (plane->id == PLANE_CURSOR)
3974 return 0;
3975 if (y && format != DRM_FORMAT_NV12)
3976 return 0;
3977
3978 /*
3979 * Src coordinates are already rotated by 270 degrees for
3980 * the 90/270 degree plane rotation cases (to match the
3981 * GTT mapping), hence no need to account for rotation here.
3982 */
3983 width = drm_rect_width(&intel_pstate->base.src) >> 16;
3984 height = drm_rect_height(&intel_pstate->base.src) >> 16;
3985
3986 /* for planar format */
3987 if (format == DRM_FORMAT_NV12) {
3988 if (y) /* y-plane data rate */
3989 data_rate = width * height *
3990 fb->format->cpp[0];
3991 else /* uv-plane data rate */
3992 data_rate = (width / 2) * (height / 2) *
3993 fb->format->cpp[1];
3994 } else {
3995 /* for packed formats */
3996 data_rate = width * height * fb->format->cpp[0];
3997 }
3998
3999 down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4000
4001 return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4002 }
4003
4004 /*
4005 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
4006 * a 8192x4096@32bpp framebuffer:
4007 * 3 * 4096 * 8192 * 4 < 2^32
4008 */
4009 static unsigned int
4010 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4011 unsigned *plane_data_rate,
4012 unsigned *plane_y_data_rate)
4013 {
4014 struct drm_crtc_state *cstate = &intel_cstate->base;
4015 struct drm_atomic_state *state = cstate->state;
4016 struct drm_plane *plane;
4017 const struct drm_plane_state *pstate;
4018 unsigned int total_data_rate = 0;
4019
4020 if (WARN_ON(!state))
4021 return 0;
4022
4023 /* Calculate and cache data rate for each plane */
4024 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4025 enum plane_id plane_id = to_intel_plane(plane)->id;
4026 unsigned int rate;
4027
4028 /* packed/uv */
4029 rate = skl_plane_relative_data_rate(intel_cstate,
4030 pstate, 0);
4031 plane_data_rate[plane_id] = rate;
4032
4033 total_data_rate += rate;
4034
4035 /* y-plane */
4036 rate = skl_plane_relative_data_rate(intel_cstate,
4037 pstate, 1);
4038 plane_y_data_rate[plane_id] = rate;
4039
4040 total_data_rate += rate;
4041 }
4042
4043 return total_data_rate;
4044 }
4045
4046 static uint16_t
4047 skl_ddb_min_alloc(const struct drm_plane_state *pstate,
4048 const int y)
4049 {
4050 struct drm_framebuffer *fb = pstate->fb;
4051 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4052 uint32_t src_w, src_h;
4053 uint32_t min_scanlines = 8;
4054 uint8_t plane_bpp;
4055
4056 if (WARN_ON(!fb))
4057 return 0;
4058
4059 /* For packed formats, no y-plane, return 0 */
4060 if (y && fb->format->format != DRM_FORMAT_NV12)
4061 return 0;
4062
4063 /* For Non Y-tile return 8-blocks */
4064 if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
4065 fb->modifier != I915_FORMAT_MOD_Yf_TILED)
4066 return 8;
4067
4068 /*
4069 * Src coordinates are already rotated by 270 degrees for
4070 * the 90/270 degree plane rotation cases (to match the
4071 * GTT mapping), hence no need to account for rotation here.
4072 */
4073 src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
4074 src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
4075
4076 /* Halve UV plane width and height for NV12 */
4077 if (fb->format->format == DRM_FORMAT_NV12 && !y) {
4078 src_w /= 2;
4079 src_h /= 2;
4080 }
4081
4082 if (fb->format->format == DRM_FORMAT_NV12 && !y)
4083 plane_bpp = fb->format->cpp[1];
4084 else
4085 plane_bpp = fb->format->cpp[0];
4086
4087 if (drm_rotation_90_or_270(pstate->rotation)) {
4088 switch (plane_bpp) {
4089 case 1:
4090 min_scanlines = 32;
4091 break;
4092 case 2:
4093 min_scanlines = 16;
4094 break;
4095 case 4:
4096 min_scanlines = 8;
4097 break;
4098 case 8:
4099 min_scanlines = 4;
4100 break;
4101 default:
4102 WARN(1, "Unsupported pixel depth %u for rotation",
4103 plane_bpp);
4104 min_scanlines = 32;
4105 }
4106 }
4107
4108 return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
4109 }
4110
4111 static void
4112 skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
4113 uint16_t *minimum, uint16_t *y_minimum)
4114 {
4115 const struct drm_plane_state *pstate;
4116 struct drm_plane *plane;
4117
4118 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
4119 enum plane_id plane_id = to_intel_plane(plane)->id;
4120
4121 if (plane_id == PLANE_CURSOR)
4122 continue;
4123
4124 if (!pstate->visible)
4125 continue;
4126
4127 minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
4128 y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4129 }
4130
4131 minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
4132 }
4133
4134 static int
4135 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4136 struct skl_ddb_allocation *ddb /* out */)
4137 {
4138 struct drm_atomic_state *state = cstate->base.state;
4139 struct drm_crtc *crtc = cstate->base.crtc;
4140 struct drm_device *dev = crtc->dev;
4141 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4142 enum pipe pipe = intel_crtc->pipe;
4143 struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4144 uint16_t alloc_size, start;
4145 uint16_t minimum[I915_MAX_PLANES] = {};
4146 uint16_t y_minimum[I915_MAX_PLANES] = {};
4147 unsigned int total_data_rate;
4148 enum plane_id plane_id;
4149 int num_active;
4150 unsigned plane_data_rate[I915_MAX_PLANES] = {};
4151 unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
4152 uint16_t total_min_blocks = 0;
4153
4154 /* Clear the partitioning for disabled planes. */
4155 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
4156 memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
4157
4158 if (WARN_ON(!state))
4159 return 0;
4160
4161 if (!cstate->base.active) {
4162 alloc->start = alloc->end = 0;
4163 return 0;
4164 }
4165
4166 skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
4167 alloc_size = skl_ddb_entry_size(alloc);
4168 if (alloc_size == 0)
4169 return 0;
4170
4171 skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
4172
4173 /*
4174 * 1. Allocate the mininum required blocks for each active plane
4175 * and allocate the cursor, it doesn't require extra allocation
4176 * proportional to the data rate.
4177 */
4178
4179 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4180 total_min_blocks += minimum[plane_id];
4181 total_min_blocks += y_minimum[plane_id];
4182 }
4183
4184 if (total_min_blocks > alloc_size) {
4185 DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4186 DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
4187 alloc_size);
4188 return -EINVAL;
4189 }
4190
4191 alloc_size -= total_min_blocks;
4192 ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
4193 ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
4194
4195 /*
4196 * 2. Distribute the remaining space in proportion to the amount of
4197 * data each plane needs to fetch from memory.
4198 *
4199 * FIXME: we may not allocate every single block here.
4200 */
4201 total_data_rate = skl_get_total_relative_data_rate(cstate,
4202 plane_data_rate,
4203 plane_y_data_rate);
4204 if (total_data_rate == 0)
4205 return 0;
4206
4207 start = alloc->start;
4208 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4209 unsigned int data_rate, y_data_rate;
4210 uint16_t plane_blocks, y_plane_blocks = 0;
4211
4212 if (plane_id == PLANE_CURSOR)
4213 continue;
4214
4215 data_rate = plane_data_rate[plane_id];
4216
4217 /*
4218 * allocation for (packed formats) or (uv-plane part of planar format):
4219 * promote the expression to 64 bits to avoid overflowing, the
4220 * result is < available as data_rate / total_data_rate < 1
4221 */
4222 plane_blocks = minimum[plane_id];
4223 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
4224 total_data_rate);
4225
4226 /* Leave disabled planes at (0,0) */
4227 if (data_rate) {
4228 ddb->plane[pipe][plane_id].start = start;
4229 ddb->plane[pipe][plane_id].end = start + plane_blocks;
4230 }
4231
4232 start += plane_blocks;
4233
4234 /*
4235 * allocation for y_plane part of planar format:
4236 */
4237 y_data_rate = plane_y_data_rate[plane_id];
4238
4239 y_plane_blocks = y_minimum[plane_id];
4240 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
4241 total_data_rate);
4242
4243 if (y_data_rate) {
4244 ddb->y_plane[pipe][plane_id].start = start;
4245 ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
4246 }
4247
4248 start += y_plane_blocks;
4249 }
4250
4251 return 0;
4252 }
4253
4254 /*
4255 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4256 * for the read latency) and cpp should always be <= 8, so that
4257 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4258 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4259 */
4260 static uint_fixed_16_16_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp,
4261 uint32_t latency)
4262 {
4263 uint32_t wm_intermediate_val;
4264 uint_fixed_16_16_t ret;
4265
4266 if (latency == 0)
4267 return FP_16_16_MAX;
4268
4269 wm_intermediate_val = latency * pixel_rate * cpp;
4270 ret = fixed_16_16_div_u64(wm_intermediate_val, 1000 * 512);
4271 return ret;
4272 }
4273
4274 static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
4275 uint32_t pipe_htotal,
4276 uint32_t latency,
4277 uint_fixed_16_16_t plane_blocks_per_line)
4278 {
4279 uint32_t wm_intermediate_val;
4280 uint_fixed_16_16_t ret;
4281
4282 if (latency == 0)
4283 return FP_16_16_MAX;
4284
4285 wm_intermediate_val = latency * pixel_rate;
4286 wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4287 pipe_htotal * 1000);
4288 ret = mul_u32_fixed_16_16(wm_intermediate_val, plane_blocks_per_line);
4289 return ret;
4290 }
4291
4292 static uint_fixed_16_16_t
4293 intel_get_linetime_us(struct intel_crtc_state *cstate)
4294 {
4295 uint32_t pixel_rate;
4296 uint32_t crtc_htotal;
4297 uint_fixed_16_16_t linetime_us;
4298
4299 if (!cstate->base.active)
4300 return u32_to_fixed_16_16(0);
4301
4302 pixel_rate = cstate->pixel_rate;
4303
4304 if (WARN_ON(pixel_rate == 0))
4305 return u32_to_fixed_16_16(0);
4306
4307 crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4308 linetime_us = fixed_16_16_div_u64(crtc_htotal * 1000, pixel_rate);
4309
4310 return linetime_us;
4311 }
4312
4313 static uint32_t
4314 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
4315 const struct intel_plane_state *pstate)
4316 {
4317 uint64_t adjusted_pixel_rate;
4318 uint_fixed_16_16_t downscale_amount;
4319
4320 /* Shouldn't reach here on disabled planes... */
4321 if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4322 return 0;
4323
4324 /*
4325 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
4326 * with additional adjustments for plane-specific scaling.
4327 */
4328 adjusted_pixel_rate = cstate->pixel_rate;
4329 downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4330
4331 return mul_round_up_u32_fixed16(adjusted_pixel_rate,
4332 downscale_amount);
4333 }
4334
4335 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
4336 struct intel_crtc_state *cstate,
4337 const struct intel_plane_state *intel_pstate,
4338 uint16_t ddb_allocation,
4339 int level,
4340 uint16_t *out_blocks, /* out */
4341 uint8_t *out_lines, /* out */
4342 bool *enabled /* out */)
4343 {
4344 struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4345 const struct drm_plane_state *pstate = &intel_pstate->base;
4346 const struct drm_framebuffer *fb = pstate->fb;
4347 uint32_t latency = dev_priv->wm.skl_latency[level];
4348 uint_fixed_16_16_t method1, method2;
4349 uint_fixed_16_16_t plane_blocks_per_line;
4350 uint_fixed_16_16_t selected_result;
4351 uint32_t interm_pbpl;
4352 uint32_t plane_bytes_per_line;
4353 uint32_t res_blocks, res_lines;
4354 uint8_t cpp;
4355 uint32_t width = 0, height = 0;
4356 uint32_t plane_pixel_rate;
4357 uint_fixed_16_16_t y_tile_minimum;
4358 uint32_t y_min_scanlines;
4359 struct intel_atomic_state *state =
4360 to_intel_atomic_state(cstate->base.state);
4361 bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4362 bool y_tiled, x_tiled;
4363
4364 if (latency == 0 ||
4365 !intel_wm_plane_visible(cstate, intel_pstate)) {
4366 *enabled = false;
4367 return 0;
4368 }
4369
4370 y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
4371 fb->modifier == I915_FORMAT_MOD_Yf_TILED;
4372 x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
4373
4374 /* Display WA #1141: kbl,cfl */
4375 if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) &&
4376 dev_priv->ipc_enabled)
4377 latency += 4;
4378
4379 if (apply_memory_bw_wa && x_tiled)
4380 latency += 15;
4381
4382 if (plane->id == PLANE_CURSOR) {
4383 width = intel_pstate->base.crtc_w;
4384 height = intel_pstate->base.crtc_h;
4385 } else {
4386 /*
4387 * Src coordinates are already rotated by 270 degrees for
4388 * the 90/270 degree plane rotation cases (to match the
4389 * GTT mapping), hence no need to account for rotation here.
4390 */
4391 width = drm_rect_width(&intel_pstate->base.src) >> 16;
4392 height = drm_rect_height(&intel_pstate->base.src) >> 16;
4393 }
4394
4395 cpp = fb->format->cpp[0];
4396 plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
4397
4398 if (drm_rotation_90_or_270(pstate->rotation)) {
4399 int cpp = (fb->format->format == DRM_FORMAT_NV12) ?
4400 fb->format->cpp[1] :
4401 fb->format->cpp[0];
4402
4403 switch (cpp) {
4404 case 1:
4405 y_min_scanlines = 16;
4406 break;
4407 case 2:
4408 y_min_scanlines = 8;
4409 break;
4410 case 4:
4411 y_min_scanlines = 4;
4412 break;
4413 default:
4414 MISSING_CASE(cpp);
4415 return -EINVAL;
4416 }
4417 } else {
4418 y_min_scanlines = 4;
4419 }
4420
4421 if (apply_memory_bw_wa)
4422 y_min_scanlines *= 2;
4423
4424 plane_bytes_per_line = width * cpp;
4425 if (y_tiled) {
4426 interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line *
4427 y_min_scanlines, 512);
4428 plane_blocks_per_line = fixed_16_16_div(interm_pbpl,
4429 y_min_scanlines);
4430 } else if (x_tiled) {
4431 interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512);
4432 plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
4433 } else {
4434 interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
4435 plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
4436 }
4437
4438 method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
4439 method2 = skl_wm_method2(plane_pixel_rate,
4440 cstate->base.adjusted_mode.crtc_htotal,
4441 latency,
4442 plane_blocks_per_line);
4443
4444 y_tile_minimum = mul_u32_fixed_16_16(y_min_scanlines,
4445 plane_blocks_per_line);
4446
4447 if (y_tiled) {
4448 selected_result = max_fixed_16_16(method2, y_tile_minimum);
4449 } else {
4450 uint32_t linetime_us;
4451
4452 linetime_us = fixed_16_16_to_u32_round_up(
4453 intel_get_linetime_us(cstate));
4454 if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
4455 (plane_bytes_per_line / 512 < 1))
4456 selected_result = method2;
4457 else if (ddb_allocation >=
4458 fixed_16_16_to_u32_round_up(plane_blocks_per_line))
4459 selected_result = min_fixed_16_16(method1, method2);
4460 else if (latency >= linetime_us)
4461 selected_result = min_fixed_16_16(method1, method2);
4462 else
4463 selected_result = method1;
4464 }
4465
4466 res_blocks = fixed_16_16_to_u32_round_up(selected_result) + 1;
4467 res_lines = div_round_up_fixed16(selected_result,
4468 plane_blocks_per_line);
4469
4470 if (level >= 1 && level <= 7) {
4471 if (y_tiled) {
4472 res_blocks += fixed_16_16_to_u32_round_up(y_tile_minimum);
4473 res_lines += y_min_scanlines;
4474 } else {
4475 res_blocks++;
4476 }
4477 }
4478
4479 if (res_blocks >= ddb_allocation || res_lines > 31) {
4480 *enabled = false;
4481
4482 /*
4483 * If there are no valid level 0 watermarks, then we can't
4484 * support this display configuration.
4485 */
4486 if (level) {
4487 return 0;
4488 } else {
4489 struct drm_plane *plane = pstate->plane;
4490
4491 DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
4492 DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
4493 plane->base.id, plane->name,
4494 res_blocks, ddb_allocation, res_lines);
4495 return -EINVAL;
4496 }
4497 }
4498
4499 *out_blocks = res_blocks;
4500 *out_lines = res_lines;
4501 *enabled = true;
4502
4503 return 0;
4504 }
4505
4506 static int
4507 skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
4508 struct skl_ddb_allocation *ddb,
4509 struct intel_crtc_state *cstate,
4510 const struct intel_plane_state *intel_pstate,
4511 struct skl_plane_wm *wm)
4512 {
4513 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4514 struct drm_plane *plane = intel_pstate->base.plane;
4515 struct intel_plane *intel_plane = to_intel_plane(plane);
4516 uint16_t ddb_blocks;
4517 enum pipe pipe = intel_crtc->pipe;
4518 int level, max_level = ilk_wm_max_level(dev_priv);
4519 int ret;
4520
4521 if (WARN_ON(!intel_pstate->base.fb))
4522 return -EINVAL;
4523
4524 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
4525
4526 for (level = 0; level <= max_level; level++) {
4527 struct skl_wm_level *result = &wm->wm[level];
4528
4529 ret = skl_compute_plane_wm(dev_priv,
4530 cstate,
4531 intel_pstate,
4532 ddb_blocks,
4533 level,
4534 &result->plane_res_b,
4535 &result->plane_res_l,
4536 &result->plane_en);
4537 if (ret)
4538 return ret;
4539 }
4540
4541 return 0;
4542 }
4543
4544 static uint32_t
4545 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
4546 {
4547 struct drm_atomic_state *state = cstate->base.state;
4548 struct drm_i915_private *dev_priv = to_i915(state->dev);
4549 uint_fixed_16_16_t linetime_us;
4550 uint32_t linetime_wm;
4551
4552 linetime_us = intel_get_linetime_us(cstate);
4553
4554 if (is_fixed16_zero(linetime_us))
4555 return 0;
4556
4557 linetime_wm = fixed_16_16_to_u32_round_up(mul_u32_fixed_16_16(8,
4558 linetime_us));
4559
4560 /* Display WA #1135: bxt. */
4561 if (IS_BROXTON(dev_priv) && dev_priv->ipc_enabled)
4562 linetime_wm = DIV_ROUND_UP(linetime_wm, 2);
4563
4564 return linetime_wm;
4565 }
4566
4567 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4568 struct skl_wm_level *trans_wm /* out */)
4569 {
4570 if (!cstate->base.active)
4571 return;
4572
4573 /* Until we know more, just disable transition WMs */
4574 trans_wm->plane_en = false;
4575 }
4576
4577 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
4578 struct skl_ddb_allocation *ddb,
4579 struct skl_pipe_wm *pipe_wm)
4580 {
4581 struct drm_device *dev = cstate->base.crtc->dev;
4582 struct drm_crtc_state *crtc_state = &cstate->base;
4583 const struct drm_i915_private *dev_priv = to_i915(dev);
4584 struct drm_plane *plane;
4585 const struct drm_plane_state *pstate;
4586 struct skl_plane_wm *wm;
4587 int ret;
4588
4589 /*
4590 * We'll only calculate watermarks for planes that are actually
4591 * enabled, so make sure all other planes are set as disabled.
4592 */
4593 memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
4594
4595 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
4596 const struct intel_plane_state *intel_pstate =
4597 to_intel_plane_state(pstate);
4598 enum plane_id plane_id = to_intel_plane(plane)->id;
4599
4600 wm = &pipe_wm->planes[plane_id];
4601
4602 ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4603 intel_pstate, wm);
4604 if (ret)
4605 return ret;
4606 skl_compute_transition_wm(cstate, &wm->trans_wm);
4607 }
4608 pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4609
4610 return 0;
4611 }
4612
4613 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
4614 i915_reg_t reg,
4615 const struct skl_ddb_entry *entry)
4616 {
4617 if (entry->end)
4618 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
4619 else
4620 I915_WRITE(reg, 0);
4621 }
4622
4623 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
4624 i915_reg_t reg,
4625 const struct skl_wm_level *level)
4626 {
4627 uint32_t val = 0;
4628
4629 if (level->plane_en) {
4630 val |= PLANE_WM_EN;
4631 val |= level->plane_res_b;
4632 val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
4633 }
4634
4635 I915_WRITE(reg, val);
4636 }
4637
4638 static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
4639 const struct skl_plane_wm *wm,
4640 const struct skl_ddb_allocation *ddb,
4641 enum plane_id plane_id)
4642 {
4643 struct drm_crtc *crtc = &intel_crtc->base;
4644 struct drm_device *dev = crtc->dev;
4645 struct drm_i915_private *dev_priv = to_i915(dev);
4646 int level, max_level = ilk_wm_max_level(dev_priv);
4647 enum pipe pipe = intel_crtc->pipe;
4648
4649 for (level = 0; level <= max_level; level++) {
4650 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4651 &wm->wm[level]);
4652 }
4653 skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4654 &wm->trans_wm);
4655
4656 skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
4657 &ddb->plane[pipe][plane_id]);
4658 skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
4659 &ddb->y_plane[pipe][plane_id]);
4660 }
4661
4662 static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
4663 const struct skl_plane_wm *wm,
4664 const struct skl_ddb_allocation *ddb)
4665 {
4666 struct drm_crtc *crtc = &intel_crtc->base;
4667 struct drm_device *dev = crtc->dev;
4668 struct drm_i915_private *dev_priv = to_i915(dev);
4669 int level, max_level = ilk_wm_max_level(dev_priv);
4670 enum pipe pipe = intel_crtc->pipe;
4671
4672 for (level = 0; level <= max_level; level++) {
4673 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
4674 &wm->wm[level]);
4675 }
4676 skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
4677
4678 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
4679 &ddb->plane[pipe][PLANE_CURSOR]);
4680 }
4681
4682 bool skl_wm_level_equals(const struct skl_wm_level *l1,
4683 const struct skl_wm_level *l2)
4684 {
4685 if (l1->plane_en != l2->plane_en)
4686 return false;
4687
4688 /* If both planes aren't enabled, the rest shouldn't matter */
4689 if (!l1->plane_en)
4690 return true;
4691
4692 return (l1->plane_res_l == l2->plane_res_l &&
4693 l1->plane_res_b == l2->plane_res_b);
4694 }
4695
4696 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
4697 const struct skl_ddb_entry *b)
4698 {
4699 return a->start < b->end && b->start < a->end;
4700 }
4701
4702 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
4703 const struct skl_ddb_entry *ddb,
4704 int ignore)
4705 {
4706 int i;
4707
4708 for (i = 0; i < I915_MAX_PIPES; i++)
4709 if (i != ignore && entries[i] &&
4710 skl_ddb_entries_overlap(ddb, entries[i]))
4711 return true;
4712
4713 return false;
4714 }
4715
4716 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
4717 const struct skl_pipe_wm *old_pipe_wm,
4718 struct skl_pipe_wm *pipe_wm, /* out */
4719 struct skl_ddb_allocation *ddb, /* out */
4720 bool *changed /* out */)
4721 {
4722 struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
4723 int ret;
4724
4725 ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
4726 if (ret)
4727 return ret;
4728
4729 if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
4730 *changed = false;
4731 else
4732 *changed = true;
4733
4734 return 0;
4735 }
4736
4737 static uint32_t
4738 pipes_modified(struct drm_atomic_state *state)
4739 {
4740 struct drm_crtc *crtc;
4741 struct drm_crtc_state *cstate;
4742 uint32_t i, ret = 0;
4743
4744 for_each_new_crtc_in_state(state, crtc, cstate, i)
4745 ret |= drm_crtc_mask(crtc);
4746
4747 return ret;
4748 }
4749
4750 static int
4751 skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
4752 {
4753 struct drm_atomic_state *state = cstate->base.state;
4754 struct drm_device *dev = state->dev;
4755 struct drm_crtc *crtc = cstate->base.crtc;
4756 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4757 struct drm_i915_private *dev_priv = to_i915(dev);
4758 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4759 struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4760 struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
4761 struct drm_plane_state *plane_state;
4762 struct drm_plane *plane;
4763 enum pipe pipe = intel_crtc->pipe;
4764
4765 WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));
4766
4767 drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
4768 enum plane_id plane_id = to_intel_plane(plane)->id;
4769
4770 if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
4771 &new_ddb->plane[pipe][plane_id]) &&
4772 skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
4773 &new_ddb->y_plane[pipe][plane_id]))
4774 continue;
4775
4776 plane_state = drm_atomic_get_plane_state(state, plane);
4777 if (IS_ERR(plane_state))
4778 return PTR_ERR(plane_state);
4779 }
4780
4781 return 0;
4782 }
4783
4784 static int
4785 skl_compute_ddb(struct drm_atomic_state *state)
4786 {
4787 struct drm_device *dev = state->dev;
4788 struct drm_i915_private *dev_priv = to_i915(dev);
4789 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4790 struct intel_crtc *intel_crtc;
4791 struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4792 uint32_t realloc_pipes = pipes_modified(state);
4793 int ret;
4794
4795 /*
4796 * If this is our first atomic update following hardware readout,
4797 * we can't trust the DDB that the BIOS programmed for us. Let's
4798 * pretend that all pipes switched active status so that we'll
4799 * ensure a full DDB recompute.
4800 */
4801 if (dev_priv->wm.distrust_bios_wm) {
4802 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
4803 state->acquire_ctx);
4804 if (ret)
4805 return ret;
4806
4807 intel_state->active_pipe_changes = ~0;
4808
4809 /*
4810 * We usually only initialize intel_state->active_crtcs if we
4811 * we're doing a modeset; make sure this field is always
4812 * initialized during the sanitization process that happens
4813 * on the first commit too.
4814 */
4815 if (!intel_state->modeset)
4816 intel_state->active_crtcs = dev_priv->active_crtcs;
4817 }
4818
4819 /*
4820 * If the modeset changes which CRTC's are active, we need to
4821 * recompute the DDB allocation for *all* active pipes, even
4822 * those that weren't otherwise being modified in any way by this
4823 * atomic commit. Due to the shrinking of the per-pipe allocations
4824 * when new active CRTC's are added, it's possible for a pipe that
4825 * we were already using and aren't changing at all here to suddenly
4826 * become invalid if its DDB needs exceeds its new allocation.
4827 *
4828 * Note that if we wind up doing a full DDB recompute, we can't let
4829 * any other display updates race with this transaction, so we need
4830 * to grab the lock on *all* CRTC's.
4831 */
4832 if (intel_state->active_pipe_changes) {
4833 realloc_pipes = ~0;
4834 intel_state->wm_results.dirty_pipes = ~0;
4835 }
4836
4837 /*
4838 * We're not recomputing for the pipes not included in the commit, so
4839 * make sure we start with the current state.
4840 */
4841 memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
4842
4843 for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
4844 struct intel_crtc_state *cstate;
4845
4846 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
4847 if (IS_ERR(cstate))
4848 return PTR_ERR(cstate);
4849
4850 ret = skl_allocate_pipe_ddb(cstate, ddb);
4851 if (ret)
4852 return ret;
4853
4854 ret = skl_ddb_add_affected_planes(cstate);
4855 if (ret)
4856 return ret;
4857 }
4858
4859 return 0;
4860 }
4861
4862 static void
4863 skl_copy_wm_for_pipe(struct skl_wm_values *dst,
4864 struct skl_wm_values *src,
4865 enum pipe pipe)
4866 {
4867 memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
4868 sizeof(dst->ddb.y_plane[pipe]));
4869 memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
4870 sizeof(dst->ddb.plane[pipe]));
4871 }
4872
4873 static void
4874 skl_print_wm_changes(const struct drm_atomic_state *state)
4875 {
4876 const struct drm_device *dev = state->dev;
4877 const struct drm_i915_private *dev_priv = to_i915(dev);
4878 const struct intel_atomic_state *intel_state =
4879 to_intel_atomic_state(state);
4880 const struct drm_crtc *crtc;
4881 const struct drm_crtc_state *cstate;
4882 const struct intel_plane *intel_plane;
4883 const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
4884 const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4885 int i;
4886
4887 for_each_new_crtc_in_state(state, crtc, cstate, i) {
4888 const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4889 enum pipe pipe = intel_crtc->pipe;
4890
4891 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4892 enum plane_id plane_id = intel_plane->id;
4893 const struct skl_ddb_entry *old, *new;
4894
4895 old = &old_ddb->plane[pipe][plane_id];
4896 new = &new_ddb->plane[pipe][plane_id];
4897
4898 if (skl_ddb_entry_equal(old, new))
4899 continue;
4900
4901 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
4902 intel_plane->base.base.id,
4903 intel_plane->base.name,
4904 old->start, old->end,
4905 new->start, new->end);
4906 }
4907 }
4908 }
4909
4910 static int
4911 skl_compute_wm(struct drm_atomic_state *state)
4912 {
4913 struct drm_crtc *crtc;
4914 struct drm_crtc_state *cstate;
4915 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4916 struct skl_wm_values *results = &intel_state->wm_results;
4917 struct drm_device *dev = state->dev;
4918 struct skl_pipe_wm *pipe_wm;
4919 bool changed = false;
4920 int ret, i;
4921
4922 /*
4923 * When we distrust bios wm we always need to recompute to set the
4924 * expected DDB allocations for each CRTC.
4925 */
4926 if (to_i915(dev)->wm.distrust_bios_wm)
4927 changed = true;
4928
4929 /*
4930 * If this transaction isn't actually touching any CRTC's, don't
4931 * bother with watermark calculation. Note that if we pass this
4932 * test, we're guaranteed to hold at least one CRTC state mutex,
4933 * which means we can safely use values like dev_priv->active_crtcs
4934 * since any racing commits that want to update them would need to
4935 * hold _all_ CRTC state mutexes.
4936 */
4937 for_each_new_crtc_in_state(state, crtc, cstate, i)
4938 changed = true;
4939
4940 if (!changed)
4941 return 0;
4942
4943 /* Clear all dirty flags */
4944 results->dirty_pipes = 0;
4945
4946 ret = skl_compute_ddb(state);
4947 if (ret)
4948 return ret;
4949
4950 /*
4951 * Calculate WM's for all pipes that are part of this transaction.
4952 * Note that the DDB allocation above may have added more CRTC's that
4953 * weren't otherwise being modified (and set bits in dirty_pipes) if
4954 * pipe allocations had to change.
4955 *
4956 * FIXME: Now that we're doing this in the atomic check phase, we
4957 * should allow skl_update_pipe_wm() to return failure in cases where
4958 * no suitable watermark values can be found.
4959 */
4960 for_each_new_crtc_in_state(state, crtc, cstate, i) {
4961 struct intel_crtc_state *intel_cstate =
4962 to_intel_crtc_state(cstate);
4963 const struct skl_pipe_wm *old_pipe_wm =
4964 &to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4965
4966 pipe_wm = &intel_cstate->wm.skl.optimal;
4967 ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
4968 &results->ddb, &changed);
4969 if (ret)
4970 return ret;
4971
4972 if (changed)
4973 results->dirty_pipes |= drm_crtc_mask(crtc);
4974
4975 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4976 /* This pipe's WM's did not change */
4977 continue;
4978
4979 intel_cstate->update_wm_pre = true;
4980 }
4981
4982 skl_print_wm_changes(state);
4983
4984 return 0;
4985 }
4986
4987 static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
4988 struct intel_crtc_state *cstate)
4989 {
4990 struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
4991 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
4992 struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4993 const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
4994 enum pipe pipe = crtc->pipe;
4995 enum plane_id plane_id;
4996
4997 if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
4998 return;
4999
5000 I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5001
5002 for_each_plane_id_on_crtc(crtc, plane_id) {
5003 if (plane_id != PLANE_CURSOR)
5004 skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
5005 ddb, plane_id);
5006 else
5007 skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
5008 ddb);
5009 }
5010 }
5011
5012 static void skl_initial_wm(struct intel_atomic_state *state,
5013 struct intel_crtc_state *cstate)
5014 {
5015 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5016 struct drm_device *dev = intel_crtc->base.dev;
5017 struct drm_i915_private *dev_priv = to_i915(dev);
5018 struct skl_wm_values *results = &state->wm_results;
5019 struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
5020 enum pipe pipe = intel_crtc->pipe;
5021
5022 if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5023 return;
5024
5025 mutex_lock(&dev_priv->wm.wm_mutex);
5026
5027 if (cstate->base.active_changed)
5028 skl_atomic_update_crtc_wm(state, cstate);
5029
5030 skl_copy_wm_for_pipe(hw_vals, results, pipe);
5031
5032 mutex_unlock(&dev_priv->wm.wm_mutex);
5033 }
5034
5035 static void ilk_compute_wm_config(struct drm_device *dev,
5036 struct intel_wm_config *config)
5037 {
5038 struct intel_crtc *crtc;
5039
5040 /* Compute the currently _active_ config */
5041 for_each_intel_crtc(dev, crtc) {
5042 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5043
5044 if (!wm->pipe_enabled)
5045 continue;
5046
5047 config->sprites_enabled |= wm->sprites_enabled;
5048 config->sprites_scaled |= wm->sprites_scaled;
5049 config->num_pipes_active++;
5050 }
5051 }
5052
5053 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5054 {
5055 struct drm_device *dev = &dev_priv->drm;
5056 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5057 struct ilk_wm_maximums max;
5058 struct intel_wm_config config = {};
5059 struct ilk_wm_values results = {};
5060 enum intel_ddb_partitioning partitioning;
5061
5062 ilk_compute_wm_config(dev, &config);
5063
5064 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
5065 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
5066
5067 /* 5/6 split only in single pipe config on IVB+ */
5068 if (INTEL_GEN(dev_priv) >= 7 &&
5069 config.num_pipes_active == 1 && config.sprites_enabled) {
5070 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
5071 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
5072
5073 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
5074 } else {
5075 best_lp_wm = &lp_wm_1_2;
5076 }
5077
5078 partitioning = (best_lp_wm == &lp_wm_1_2) ?
5079 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5080
5081 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
5082
5083 ilk_write_wm_values(dev_priv, &results);
5084 }
5085
5086 static void ilk_initial_watermarks(struct intel_atomic_state *state,
5087 struct intel_crtc_state *cstate)
5088 {
5089 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5090 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5091
5092 mutex_lock(&dev_priv->wm.wm_mutex);
5093 intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5094 ilk_program_watermarks(dev_priv);
5095 mutex_unlock(&dev_priv->wm.wm_mutex);
5096 }
5097
5098 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5099 struct intel_crtc_state *cstate)
5100 {
5101 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5102 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5103
5104 mutex_lock(&dev_priv->wm.wm_mutex);
5105 if (cstate->wm.need_postvbl_update) {
5106 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5107 ilk_program_watermarks(dev_priv);
5108 }
5109 mutex_unlock(&dev_priv->wm.wm_mutex);
5110 }
5111
5112 static inline void skl_wm_level_from_reg_val(uint32_t val,
5113 struct skl_wm_level *level)
5114 {
5115 level->plane_en = val & PLANE_WM_EN;
5116 level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
5117 level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
5118 PLANE_WM_LINES_MASK;
5119 }
5120
5121 void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
5122 struct skl_pipe_wm *out)
5123 {
5124 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5125 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5126 enum pipe pipe = intel_crtc->pipe;
5127 int level, max_level;
5128 enum plane_id plane_id;
5129 uint32_t val;
5130
5131 max_level = ilk_wm_max_level(dev_priv);
5132
5133 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
5134 struct skl_plane_wm *wm = &out->planes[plane_id];
5135
5136 for (level = 0; level <= max_level; level++) {
5137 if (plane_id != PLANE_CURSOR)
5138 val = I915_READ(PLANE_WM(pipe, plane_id, level));
5139 else
5140 val = I915_READ(CUR_WM(pipe, level));
5141
5142 skl_wm_level_from_reg_val(val, &wm->wm[level]);
5143 }
5144
5145 if (plane_id != PLANE_CURSOR)
5146 val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5147 else
5148 val = I915_READ(CUR_WM_TRANS(pipe));
5149
5150 skl_wm_level_from_reg_val(val, &wm->trans_wm);
5151 }
5152
5153 if (!intel_crtc->active)
5154 return;
5155
5156 out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5157 }
5158
5159 void skl_wm_get_hw_state(struct drm_device *dev)
5160 {
5161 struct drm_i915_private *dev_priv = to_i915(dev);
5162 struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
5163 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5164 struct drm_crtc *crtc;
5165 struct intel_crtc *intel_crtc;
5166 struct intel_crtc_state *cstate;
5167
5168 skl_ddb_get_hw_state(dev_priv, ddb);
5169 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5170 intel_crtc = to_intel_crtc(crtc);
5171 cstate = to_intel_crtc_state(crtc->state);
5172
5173 skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
5174
5175 if (intel_crtc->active)
5176 hw->dirty_pipes |= drm_crtc_mask(crtc);
5177 }
5178
5179 if (dev_priv->active_crtcs) {
5180 /* Fully recompute DDB on first atomic commit */
5181 dev_priv->wm.distrust_bios_wm = true;
5182 } else {
5183 /* Easy/common case; just sanitize DDB now if everything off */
5184 memset(ddb, 0, sizeof(*ddb));
5185 }
5186 }
5187
5188 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
5189 {
5190 struct drm_device *dev = crtc->dev;
5191 struct drm_i915_private *dev_priv = to_i915(dev);
5192 struct ilk_wm_values *hw = &dev_priv->wm.hw;
5193 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5194 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5195 struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5196 enum pipe pipe = intel_crtc->pipe;
5197 static const i915_reg_t wm0_pipe_reg[] = {
5198 [PIPE_A] = WM0_PIPEA_ILK,
5199 [PIPE_B] = WM0_PIPEB_ILK,
5200 [PIPE_C] = WM0_PIPEC_IVB,
5201 };
5202
5203 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5204 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5205 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5206
5207 memset(active, 0, sizeof(*active));
5208
5209 active->pipe_enabled = intel_crtc->active;
5210
5211 if (active->pipe_enabled) {
5212 u32 tmp = hw->wm_pipe[pipe];
5213
5214 /*
5215 * For active pipes LP0 watermark is marked as
5216 * enabled, and LP1+ watermaks as disabled since
5217 * we can't really reverse compute them in case
5218 * multiple pipes are active.
5219 */
5220 active->wm[0].enable = true;
5221 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
5222 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
5223 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
5224 active->linetime = hw->wm_linetime[pipe];
5225 } else {
5226 int level, max_level = ilk_wm_max_level(dev_priv);
5227
5228 /*
5229 * For inactive pipes, all watermark levels
5230 * should be marked as enabled but zeroed,
5231 * which is what we'd compute them to.
5232 */
5233 for (level = 0; level <= max_level; level++)
5234 active->wm[level].enable = true;
5235 }
5236
5237 intel_crtc->wm.active.ilk = *active;
5238 }
5239
5240 #define _FW_WM(value, plane) \
5241 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
5242 #define _FW_WM_VLV(value, plane) \
5243 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
5244
5245 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
5246 struct g4x_wm_values *wm)
5247 {
5248 uint32_t tmp;
5249
5250 tmp = I915_READ(DSPFW1);
5251 wm->sr.plane = _FW_WM(tmp, SR);
5252 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5253 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
5254 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
5255
5256 tmp = I915_READ(DSPFW2);
5257 wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
5258 wm->sr.fbc = _FW_WM(tmp, FBC_SR);
5259 wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
5260 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
5261 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5262 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
5263
5264 tmp = I915_READ(DSPFW3);
5265 wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
5266 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5267 wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
5268 wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
5269 }
5270
5271 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
5272 struct vlv_wm_values *wm)
5273 {
5274 enum pipe pipe;
5275 uint32_t tmp;
5276
5277 for_each_pipe(dev_priv, pipe) {
5278 tmp = I915_READ(VLV_DDL(pipe));
5279
5280 wm->ddl[pipe].plane[PLANE_PRIMARY] =
5281 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5282 wm->ddl[pipe].plane[PLANE_CURSOR] =
5283 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5284 wm->ddl[pipe].plane[PLANE_SPRITE0] =
5285 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5286 wm->ddl[pipe].plane[PLANE_SPRITE1] =
5287 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5288 }
5289
5290 tmp = I915_READ(DSPFW1);
5291 wm->sr.plane = _FW_WM(tmp, SR);
5292 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5293 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
5294 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5295
5296 tmp = I915_READ(DSPFW2);
5297 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
5298 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5299 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5300
5301 tmp = I915_READ(DSPFW3);
5302 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5303
5304 if (IS_CHERRYVIEW(dev_priv)) {
5305 tmp = I915_READ(DSPFW7_CHV);
5306 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5307 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5308
5309 tmp = I915_READ(DSPFW8_CHV);
5310 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
5311 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5312
5313 tmp = I915_READ(DSPFW9_CHV);
5314 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
5315 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5316
5317 tmp = I915_READ(DSPHOWM);
5318 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5319 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
5320 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
5321 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
5322 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5323 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5324 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5325 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5326 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5327 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5328 } else {
5329 tmp = I915_READ(DSPFW7);
5330 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5331 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5332
5333 tmp = I915_READ(DSPHOWM);
5334 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5335 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5336 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5337 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5338 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5339 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5340 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5341 }
5342 }
5343
5344 #undef _FW_WM
5345 #undef _FW_WM_VLV
5346
5347 void g4x_wm_get_hw_state(struct drm_device *dev)
5348 {
5349 struct drm_i915_private *dev_priv = to_i915(dev);
5350 struct g4x_wm_values *wm = &dev_priv->wm.g4x;
5351 struct intel_crtc *crtc;
5352
5353 g4x_read_wm_values(dev_priv, wm);
5354
5355 wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
5356
5357 for_each_intel_crtc(dev, crtc) {
5358 struct intel_crtc_state *crtc_state =
5359 to_intel_crtc_state(crtc->base.state);
5360 struct g4x_wm_state *active = &crtc->wm.active.g4x;
5361 struct g4x_pipe_wm *raw;
5362 enum pipe pipe = crtc->pipe;
5363 enum plane_id plane_id;
5364 int level, max_level;
5365
5366 active->cxsr = wm->cxsr;
5367 active->hpll_en = wm->hpll_en;
5368 active->fbc_en = wm->fbc_en;
5369
5370 active->sr = wm->sr;
5371 active->hpll = wm->hpll;
5372
5373 for_each_plane_id_on_crtc(crtc, plane_id) {
5374 active->wm.plane[plane_id] =
5375 wm->pipe[pipe].plane[plane_id];
5376 }
5377
5378 if (wm->cxsr && wm->hpll_en)
5379 max_level = G4X_WM_LEVEL_HPLL;
5380 else if (wm->cxsr)
5381 max_level = G4X_WM_LEVEL_SR;
5382 else
5383 max_level = G4X_WM_LEVEL_NORMAL;
5384
5385 level = G4X_WM_LEVEL_NORMAL;
5386 raw = &crtc_state->wm.g4x.raw[level];
5387 for_each_plane_id_on_crtc(crtc, plane_id)
5388 raw->plane[plane_id] = active->wm.plane[plane_id];
5389
5390 if (++level > max_level)
5391 goto out;
5392
5393 raw = &crtc_state->wm.g4x.raw[level];
5394 raw->plane[PLANE_PRIMARY] = active->sr.plane;
5395 raw->plane[PLANE_CURSOR] = active->sr.cursor;
5396 raw->plane[PLANE_SPRITE0] = 0;
5397 raw->fbc = active->sr.fbc;
5398
5399 if (++level > max_level)
5400 goto out;
5401
5402 raw = &crtc_state->wm.g4x.raw[level];
5403 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
5404 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
5405 raw->plane[PLANE_SPRITE0] = 0;
5406 raw->fbc = active->hpll.fbc;
5407
5408 out:
5409 for_each_plane_id_on_crtc(crtc, plane_id)
5410 g4x_raw_plane_wm_set(crtc_state, level,
5411 plane_id, USHRT_MAX);
5412 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
5413
5414 crtc_state->wm.g4x.optimal = *active;
5415 crtc_state->wm.g4x.intermediate = *active;
5416
5417 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
5418 pipe_name(pipe),
5419 wm->pipe[pipe].plane[PLANE_PRIMARY],
5420 wm->pipe[pipe].plane[PLANE_CURSOR],
5421 wm->pipe[pipe].plane[PLANE_SPRITE0]);
5422 }
5423
5424 DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
5425 wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
5426 DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
5427 wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
5428 DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
5429 yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
5430 }
5431
5432 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
5433 {
5434 struct intel_plane *plane;
5435 struct intel_crtc *crtc;
5436
5437 mutex_lock(&dev_priv->wm.wm_mutex);
5438
5439 for_each_intel_plane(&dev_priv->drm, plane) {
5440 struct intel_crtc *crtc =
5441 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5442 struct intel_crtc_state *crtc_state =
5443 to_intel_crtc_state(crtc->base.state);
5444 struct intel_plane_state *plane_state =
5445 to_intel_plane_state(plane->base.state);
5446 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
5447 enum plane_id plane_id = plane->id;
5448 int level;
5449
5450 if (plane_state->base.visible)
5451 continue;
5452
5453 for (level = 0; level < 3; level++) {
5454 struct g4x_pipe_wm *raw =
5455 &crtc_state->wm.g4x.raw[level];
5456
5457 raw->plane[plane_id] = 0;
5458 wm_state->wm.plane[plane_id] = 0;
5459 }
5460
5461 if (plane_id == PLANE_PRIMARY) {
5462 for (level = 0; level < 3; level++) {
5463 struct g4x_pipe_wm *raw =
5464 &crtc_state->wm.g4x.raw[level];
5465 raw->fbc = 0;
5466 }
5467
5468 wm_state->sr.fbc = 0;
5469 wm_state->hpll.fbc = 0;
5470 wm_state->fbc_en = false;
5471 }
5472 }
5473
5474 for_each_intel_crtc(&dev_priv->drm, crtc) {
5475 struct intel_crtc_state *crtc_state =
5476 to_intel_crtc_state(crtc->base.state);
5477
5478 crtc_state->wm.g4x.intermediate =
5479 crtc_state->wm.g4x.optimal;
5480 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
5481 }
5482
5483 g4x_program_watermarks(dev_priv);
5484
5485 mutex_unlock(&dev_priv->wm.wm_mutex);
5486 }
5487
5488 void vlv_wm_get_hw_state(struct drm_device *dev)
5489 {
5490 struct drm_i915_private *dev_priv = to_i915(dev);
5491 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5492 struct intel_crtc *crtc;
5493 u32 val;
5494
5495 vlv_read_wm_values(dev_priv, wm);
5496
5497 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
5498 wm->level = VLV_WM_LEVEL_PM2;
5499
5500 if (IS_CHERRYVIEW(dev_priv)) {
5501 mutex_lock(&dev_priv->rps.hw_lock);
5502
5503 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5504 if (val & DSP_MAXFIFO_PM5_ENABLE)
5505 wm->level = VLV_WM_LEVEL_PM5;
5506
5507 /*
5508 * If DDR DVFS is disabled in the BIOS, Punit
5509 * will never ack the request. So if that happens
5510 * assume we don't have to enable/disable DDR DVFS
5511 * dynamically. To test that just set the REQ_ACK
5512 * bit to poke the Punit, but don't change the
5513 * HIGH/LOW bits so that we don't actually change
5514 * the current state.
5515 */
5516 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5517 val |= FORCE_DDR_FREQ_REQ_ACK;
5518 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
5519
5520 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
5521 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
5522 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
5523 "assuming DDR DVFS is disabled\n");
5524 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
5525 } else {
5526 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5527 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
5528 wm->level = VLV_WM_LEVEL_DDR_DVFS;
5529 }
5530
5531 mutex_unlock(&dev_priv->rps.hw_lock);
5532 }
5533
5534 for_each_intel_crtc(dev, crtc) {
5535 struct intel_crtc_state *crtc_state =
5536 to_intel_crtc_state(crtc->base.state);
5537 struct vlv_wm_state *active = &crtc->wm.active.vlv;
5538 const struct vlv_fifo_state *fifo_state =
5539 &crtc_state->wm.vlv.fifo_state;
5540 enum pipe pipe = crtc->pipe;
5541 enum plane_id plane_id;
5542 int level;
5543
5544 vlv_get_fifo_size(crtc_state);
5545
5546 active->num_levels = wm->level + 1;
5547 active->cxsr = wm->cxsr;
5548
5549 for (level = 0; level < active->num_levels; level++) {
5550 struct g4x_pipe_wm *raw =
5551 &crtc_state->wm.vlv.raw[level];
5552
5553 active->sr[level].plane = wm->sr.plane;
5554 active->sr[level].cursor = wm->sr.cursor;
5555
5556 for_each_plane_id_on_crtc(crtc, plane_id) {
5557 active->wm[level].plane[plane_id] =
5558 wm->pipe[pipe].plane[plane_id];
5559
5560 raw->plane[plane_id] =
5561 vlv_invert_wm_value(active->wm[level].plane[plane_id],
5562 fifo_state->plane[plane_id]);
5563 }
5564 }
5565
5566 for_each_plane_id_on_crtc(crtc, plane_id)
5567 vlv_raw_plane_wm_set(crtc_state, level,
5568 plane_id, USHRT_MAX);
5569 vlv_invalidate_wms(crtc, active, level);
5570
5571 crtc_state->wm.vlv.optimal = *active;
5572 crtc_state->wm.vlv.intermediate = *active;
5573
5574 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
5575 pipe_name(pipe),
5576 wm->pipe[pipe].plane[PLANE_PRIMARY],
5577 wm->pipe[pipe].plane[PLANE_CURSOR],
5578 wm->pipe[pipe].plane[PLANE_SPRITE0],
5579 wm->pipe[pipe].plane[PLANE_SPRITE1]);
5580 }
5581
5582 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
5583 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
5584 }
5585
5586 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
5587 {
5588 struct intel_plane *plane;
5589 struct intel_crtc *crtc;
5590
5591 mutex_lock(&dev_priv->wm.wm_mutex);
5592
5593 for_each_intel_plane(&dev_priv->drm, plane) {
5594 struct intel_crtc *crtc =
5595 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5596 struct intel_crtc_state *crtc_state =
5597 to_intel_crtc_state(crtc->base.state);
5598 struct intel_plane_state *plane_state =
5599 to_intel_plane_state(plane->base.state);
5600 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
5601 const struct vlv_fifo_state *fifo_state =
5602 &crtc_state->wm.vlv.fifo_state;
5603 enum plane_id plane_id = plane->id;
5604 int level;
5605
5606 if (plane_state->base.visible)
5607 continue;
5608
5609 for (level = 0; level < wm_state->num_levels; level++) {
5610 struct g4x_pipe_wm *raw =
5611 &crtc_state->wm.vlv.raw[level];
5612
5613 raw->plane[plane_id] = 0;
5614
5615 wm_state->wm[level].plane[plane_id] =
5616 vlv_invert_wm_value(raw->plane[plane_id],
5617 fifo_state->plane[plane_id]);
5618 }
5619 }
5620
5621 for_each_intel_crtc(&dev_priv->drm, crtc) {
5622 struct intel_crtc_state *crtc_state =
5623 to_intel_crtc_state(crtc->base.state);
5624
5625 crtc_state->wm.vlv.intermediate =
5626 crtc_state->wm.vlv.optimal;
5627 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
5628 }
5629
5630 vlv_program_watermarks(dev_priv);
5631
5632 mutex_unlock(&dev_priv->wm.wm_mutex);
5633 }
5634
5635 void ilk_wm_get_hw_state(struct drm_device *dev)
5636 {
5637 struct drm_i915_private *dev_priv = to_i915(dev);
5638 struct ilk_wm_values *hw = &dev_priv->wm.hw;
5639 struct drm_crtc *crtc;
5640
5641 for_each_crtc(dev, crtc)
5642 ilk_pipe_wm_get_hw_state(crtc);
5643
5644 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
5645 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
5646 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
5647
5648 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
5649 if (INTEL_GEN(dev_priv) >= 7) {
5650 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
5651 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
5652 }
5653
5654 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5655 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
5656 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5657 else if (IS_IVYBRIDGE(dev_priv))
5658 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
5659 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5660
5661 hw->enable_fbc_wm =
5662 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
5663 }
5664
5665 /**
5666 * intel_update_watermarks - update FIFO watermark values based on current modes
5667 *
5668 * Calculate watermark values for the various WM regs based on current mode
5669 * and plane configuration.
5670 *
5671 * There are several cases to deal with here:
5672 * - normal (i.e. non-self-refresh)
5673 * - self-refresh (SR) mode
5674 * - lines are large relative to FIFO size (buffer can hold up to 2)
5675 * - lines are small relative to FIFO size (buffer can hold more than 2
5676 * lines), so need to account for TLB latency
5677 *
5678 * The normal calculation is:
5679 * watermark = dotclock * bytes per pixel * latency
5680 * where latency is platform & configuration dependent (we assume pessimal
5681 * values here).
5682 *
5683 * The SR calculation is:
5684 * watermark = (trunc(latency/line time)+1) * surface width *
5685 * bytes per pixel
5686 * where
5687 * line time = htotal / dotclock
5688 * surface width = hdisplay for normal plane and 64 for cursor
5689 * and latency is assumed to be high, as above.
5690 *
5691 * The final value programmed to the register should always be rounded up,
5692 * and include an extra 2 entries to account for clock crossings.
5693 *
5694 * We don't use the sprite, so we can ignore that. And on Crestline we have
5695 * to set the non-SR watermarks to 8.
5696 */
5697 void intel_update_watermarks(struct intel_crtc *crtc)
5698 {
5699 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5700
5701 if (dev_priv->display.update_wm)
5702 dev_priv->display.update_wm(crtc);
5703 }
5704
5705 /*
5706 * Lock protecting IPS related data structures
5707 */
5708 DEFINE_SPINLOCK(mchdev_lock);
5709
5710 /* Global for IPS driver to get at the current i915 device. Protected by
5711 * mchdev_lock. */
5712 static struct drm_i915_private *i915_mch_dev;
5713
5714 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
5715 {
5716 u16 rgvswctl;
5717
5718 lockdep_assert_held(&mchdev_lock);
5719
5720 rgvswctl = I915_READ16(MEMSWCTL);
5721 if (rgvswctl & MEMCTL_CMD_STS) {
5722 DRM_DEBUG("gpu busy, RCS change rejected\n");
5723 return false; /* still busy with another command */
5724 }
5725
5726 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5727 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5728 I915_WRITE16(MEMSWCTL, rgvswctl);
5729 POSTING_READ16(MEMSWCTL);
5730
5731 rgvswctl |= MEMCTL_CMD_STS;
5732 I915_WRITE16(MEMSWCTL, rgvswctl);
5733
5734 return true;
5735 }
5736
5737 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
5738 {
5739 u32 rgvmodectl;
5740 u8 fmax, fmin, fstart, vstart;
5741
5742 spin_lock_irq(&mchdev_lock);
5743
5744 rgvmodectl = I915_READ(MEMMODECTL);
5745
5746 /* Enable temp reporting */
5747 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
5748 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
5749
5750 /* 100ms RC evaluation intervals */
5751 I915_WRITE(RCUPEI, 100000);
5752 I915_WRITE(RCDNEI, 100000);
5753
5754 /* Set max/min thresholds to 90ms and 80ms respectively */
5755 I915_WRITE(RCBMAXAVG, 90000);
5756 I915_WRITE(RCBMINAVG, 80000);
5757
5758 I915_WRITE(MEMIHYST, 1);
5759
5760 /* Set up min, max, and cur for interrupt handling */
5761 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5762 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5763 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5764 MEMMODE_FSTART_SHIFT;
5765
5766 vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
5767 PXVFREQ_PX_SHIFT;
5768
5769 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
5770 dev_priv->ips.fstart = fstart;
5771
5772 dev_priv->ips.max_delay = fstart;
5773 dev_priv->ips.min_delay = fmin;
5774 dev_priv->ips.cur_delay = fstart;
5775
5776 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
5777 fmax, fmin, fstart);
5778
5779 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5780
5781 /*
5782 * Interrupts will be enabled in ironlake_irq_postinstall
5783 */
5784
5785 I915_WRITE(VIDSTART, vstart);
5786 POSTING_READ(VIDSTART);
5787
5788 rgvmodectl |= MEMMODE_SWMODE_EN;
5789 I915_WRITE(MEMMODECTL, rgvmodectl);
5790
5791 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5792 DRM_ERROR("stuck trying to change perf mode\n");
5793 mdelay(1);
5794
5795 ironlake_set_drps(dev_priv, fstart);
5796
5797 dev_priv->ips.last_count1 = I915_READ(DMIEC) +
5798 I915_READ(DDREC) + I915_READ(CSIEC);
5799 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
5800 dev_priv->ips.last_count2 = I915_READ(GFXEC);
5801 dev_priv->ips.last_time2 = ktime_get_raw_ns();
5802
5803 spin_unlock_irq(&mchdev_lock);
5804 }
5805
5806 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
5807 {
5808 u16 rgvswctl;
5809
5810 spin_lock_irq(&mchdev_lock);
5811
5812 rgvswctl = I915_READ16(MEMSWCTL);
5813
5814 /* Ack interrupts, disable EFC interrupt */
5815 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5816 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5817 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5818 I915_WRITE(DEIIR, DE_PCU_EVENT);
5819 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5820
5821 /* Go back to the starting frequency */
5822 ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
5823 mdelay(1);
5824 rgvswctl |= MEMCTL_CMD_STS;
5825 I915_WRITE(MEMSWCTL, rgvswctl);
5826 mdelay(1);
5827
5828 spin_unlock_irq(&mchdev_lock);
5829 }
5830
5831 /* There's a funny hw issue where the hw returns all 0 when reading from
5832 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
5833 * ourselves, instead of doing a rmw cycle (which might result in us clearing
5834 * all limits and the gpu stuck at whatever frequency it is at atm).
5835 */
5836 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
5837 {
5838 u32 limits;
5839
5840 /* Only set the down limit when we've reached the lowest level to avoid
5841 * getting more interrupts, otherwise leave this clear. This prevents a
5842 * race in the hw when coming out of rc6: There's a tiny window where
5843 * the hw runs at the minimal clock before selecting the desired
5844 * frequency, if the down threshold expires in that window we will not
5845 * receive a down interrupt. */
5846 if (IS_GEN9(dev_priv)) {
5847 limits = (dev_priv->rps.max_freq_softlimit) << 23;
5848 if (val <= dev_priv->rps.min_freq_softlimit)
5849 limits |= (dev_priv->rps.min_freq_softlimit) << 14;
5850 } else {
5851 limits = dev_priv->rps.max_freq_softlimit << 24;
5852 if (val <= dev_priv->rps.min_freq_softlimit)
5853 limits |= dev_priv->rps.min_freq_softlimit << 16;
5854 }
5855
5856 return limits;
5857 }
5858
5859 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
5860 {
5861 int new_power;
5862 u32 threshold_up = 0, threshold_down = 0; /* in % */
5863 u32 ei_up = 0, ei_down = 0;
5864
5865 new_power = dev_priv->rps.power;
5866 switch (dev_priv->rps.power) {
5867 case LOW_POWER:
5868 if (val > dev_priv->rps.efficient_freq + 1 &&
5869 val > dev_priv->rps.cur_freq)
5870 new_power = BETWEEN;
5871 break;
5872
5873 case BETWEEN:
5874 if (val <= dev_priv->rps.efficient_freq &&
5875 val < dev_priv->rps.cur_freq)
5876 new_power = LOW_POWER;
5877 else if (val >= dev_priv->rps.rp0_freq &&
5878 val > dev_priv->rps.cur_freq)
5879 new_power = HIGH_POWER;
5880 break;
5881
5882 case HIGH_POWER:
5883 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
5884 val < dev_priv->rps.cur_freq)
5885 new_power = BETWEEN;
5886 break;
5887 }
5888 /* Max/min bins are special */
5889 if (val <= dev_priv->rps.min_freq_softlimit)
5890 new_power = LOW_POWER;
5891 if (val >= dev_priv->rps.max_freq_softlimit)
5892 new_power = HIGH_POWER;
5893 if (new_power == dev_priv->rps.power)
5894 return;
5895
5896 /* Note the units here are not exactly 1us, but 1280ns. */
5897 switch (new_power) {
5898 case LOW_POWER:
5899 /* Upclock if more than 95% busy over 16ms */
5900 ei_up = 16000;
5901 threshold_up = 95;
5902
5903 /* Downclock if less than 85% busy over 32ms */
5904 ei_down = 32000;
5905 threshold_down = 85;
5906 break;
5907
5908 case BETWEEN:
5909 /* Upclock if more than 90% busy over 13ms */
5910 ei_up = 13000;
5911 threshold_up = 90;
5912
5913 /* Downclock if less than 75% busy over 32ms */
5914 ei_down = 32000;
5915 threshold_down = 75;
5916 break;
5917
5918 case HIGH_POWER:
5919 /* Upclock if more than 85% busy over 10ms */
5920 ei_up = 10000;
5921 threshold_up = 85;
5922
5923 /* Downclock if less than 60% busy over 32ms */
5924 ei_down = 32000;
5925 threshold_down = 60;
5926 break;
5927 }
5928
5929 /* When byt can survive without system hang with dynamic
5930 * sw freq adjustments, this restriction can be lifted.
5931 */
5932 if (IS_VALLEYVIEW(dev_priv))
5933 goto skip_hw_write;
5934
5935 I915_WRITE(GEN6_RP_UP_EI,
5936 GT_INTERVAL_FROM_US(dev_priv, ei_up));
5937 I915_WRITE(GEN6_RP_UP_THRESHOLD,
5938 GT_INTERVAL_FROM_US(dev_priv,
5939 ei_up * threshold_up / 100));
5940
5941 I915_WRITE(GEN6_RP_DOWN_EI,
5942 GT_INTERVAL_FROM_US(dev_priv, ei_down));
5943 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
5944 GT_INTERVAL_FROM_US(dev_priv,
5945 ei_down * threshold_down / 100));
5946
5947 I915_WRITE(GEN6_RP_CONTROL,
5948 GEN6_RP_MEDIA_TURBO |
5949 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5950 GEN6_RP_MEDIA_IS_GFX |
5951 GEN6_RP_ENABLE |
5952 GEN6_RP_UP_BUSY_AVG |
5953 GEN6_RP_DOWN_IDLE_AVG);
5954
5955 skip_hw_write:
5956 dev_priv->rps.power = new_power;
5957 dev_priv->rps.up_threshold = threshold_up;
5958 dev_priv->rps.down_threshold = threshold_down;
5959 dev_priv->rps.last_adj = 0;
5960 }
5961
5962 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
5963 {
5964 u32 mask = 0;
5965
5966 /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
5967 if (val > dev_priv->rps.min_freq_softlimit)
5968 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
5969 if (val < dev_priv->rps.max_freq_softlimit)
5970 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
5971
5972 mask &= dev_priv->pm_rps_events;
5973
5974 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
5975 }
5976
5977 /* gen6_set_rps is called to update the frequency request, but should also be
5978 * called when the range (min_delay and max_delay) is modified so that we can
5979 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
5980 static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
5981 {
5982 /* min/max delay may still have been modified so be sure to
5983 * write the limits value.
5984 */
5985 if (val != dev_priv->rps.cur_freq) {
5986 gen6_set_rps_thresholds(dev_priv, val);
5987
5988 if (IS_GEN9(dev_priv))
5989 I915_WRITE(GEN6_RPNSWREQ,
5990 GEN9_FREQUENCY(val));
5991 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5992 I915_WRITE(GEN6_RPNSWREQ,
5993 HSW_FREQUENCY(val));
5994 else
5995 I915_WRITE(GEN6_RPNSWREQ,
5996 GEN6_FREQUENCY(val) |
5997 GEN6_OFFSET(0) |
5998 GEN6_AGGRESSIVE_TURBO);
5999 }
6000
6001 /* Make sure we continue to get interrupts
6002 * until we hit the minimum or maximum frequencies.
6003 */
6004 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6005 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6006
6007 dev_priv->rps.cur_freq = val;
6008 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6009
6010 return 0;
6011 }
6012
6013 static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6014 {
6015 int err;
6016
6017 if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6018 "Odd GPU freq value\n"))
6019 val &= ~1;
6020
6021 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6022
6023 if (val != dev_priv->rps.cur_freq) {
6024 err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6025 if (err)
6026 return err;
6027
6028 gen6_set_rps_thresholds(dev_priv, val);
6029 }
6030
6031 dev_priv->rps.cur_freq = val;
6032 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6033
6034 return 0;
6035 }
6036
6037 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6038 *
6039 * * If Gfx is Idle, then
6040 * 1. Forcewake Media well.
6041 * 2. Request idle freq.
6042 * 3. Release Forcewake of Media well.
6043 */
6044 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
6045 {
6046 u32 val = dev_priv->rps.idle_freq;
6047 int err;
6048
6049 if (dev_priv->rps.cur_freq <= val)
6050 return;
6051
6052 /* The punit delays the write of the frequency and voltage until it
6053 * determines the GPU is awake. During normal usage we don't want to
6054 * waste power changing the frequency if the GPU is sleeping (rc6).
6055 * However, the GPU and driver is now idle and we do not want to delay
6056 * switching to minimum voltage (reducing power whilst idle) as we do
6057 * not expect to be woken in the near future and so must flush the
6058 * change by waking the device.
6059 *
6060 * We choose to take the media powerwell (either would do to trick the
6061 * punit into committing the voltage change) as that takes a lot less
6062 * power than the render powerwell.
6063 */
6064 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6065 err = valleyview_set_rps(dev_priv, val);
6066 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6067
6068 if (err)
6069 DRM_ERROR("Failed to set RPS for idle\n");
6070 }
6071
6072 void gen6_rps_busy(struct drm_i915_private *dev_priv)
6073 {
6074 mutex_lock(&dev_priv->rps.hw_lock);
6075 if (dev_priv->rps.enabled) {
6076 u8 freq;
6077
6078 if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6079 gen6_rps_reset_ei(dev_priv);
6080 I915_WRITE(GEN6_PMINTRMSK,
6081 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
6082
6083 gen6_enable_rps_interrupts(dev_priv);
6084
6085 /* Use the user's desired frequency as a guide, but for better
6086 * performance, jump directly to RPe as our starting frequency.
6087 */
6088 freq = max(dev_priv->rps.cur_freq,
6089 dev_priv->rps.efficient_freq);
6090
6091 if (intel_set_rps(dev_priv,
6092 clamp(freq,
6093 dev_priv->rps.min_freq_softlimit,
6094 dev_priv->rps.max_freq_softlimit)))
6095 DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6096 }
6097 mutex_unlock(&dev_priv->rps.hw_lock);
6098 }
6099
6100 void gen6_rps_idle(struct drm_i915_private *dev_priv)
6101 {
6102 /* Flush our bottom-half so that it does not race with us
6103 * setting the idle frequency and so that it is bounded by
6104 * our rpm wakeref. And then disable the interrupts to stop any
6105 * futher RPS reclocking whilst we are asleep.
6106 */
6107 gen6_disable_rps_interrupts(dev_priv);
6108
6109 mutex_lock(&dev_priv->rps.hw_lock);
6110 if (dev_priv->rps.enabled) {
6111 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6112 vlv_set_rps_idle(dev_priv);
6113 else
6114 gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
6115 dev_priv->rps.last_adj = 0;
6116 I915_WRITE(GEN6_PMINTRMSK,
6117 gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6118 }
6119 mutex_unlock(&dev_priv->rps.hw_lock);
6120
6121 spin_lock(&dev_priv->rps.client_lock);
6122 while (!list_empty(&dev_priv->rps.clients))
6123 list_del_init(dev_priv->rps.clients.next);
6124 spin_unlock(&dev_priv->rps.client_lock);
6125 }
6126
6127 void gen6_rps_boost(struct drm_i915_private *dev_priv,
6128 struct intel_rps_client *rps,
6129 unsigned long submitted)
6130 {
6131 /* This is intentionally racy! We peek at the state here, then
6132 * validate inside the RPS worker.
6133 */
6134 if (!(dev_priv->gt.awake &&
6135 dev_priv->rps.enabled &&
6136 dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
6137 return;
6138
6139 /* Force a RPS boost (and don't count it against the client) if
6140 * the GPU is severely congested.
6141 */
6142 if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
6143 rps = NULL;
6144
6145 spin_lock(&dev_priv->rps.client_lock);
6146 if (rps == NULL || list_empty(&rps->link)) {
6147 spin_lock_irq(&dev_priv->irq_lock);
6148 if (dev_priv->rps.interrupts_enabled) {
6149 dev_priv->rps.client_boost = true;
6150 schedule_work(&dev_priv->rps.work);
6151 }
6152 spin_unlock_irq(&dev_priv->irq_lock);
6153
6154 if (rps != NULL) {
6155 list_add(&rps->link, &dev_priv->rps.clients);
6156 rps->boosts++;
6157 } else
6158 dev_priv->rps.boosts++;
6159 }
6160 spin_unlock(&dev_priv->rps.client_lock);
6161 }
6162
6163 int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6164 {
6165 int err;
6166
6167 lockdep_assert_held(&dev_priv->rps.hw_lock);
6168 GEM_BUG_ON(val > dev_priv->rps.max_freq);
6169 GEM_BUG_ON(val < dev_priv->rps.min_freq);
6170
6171 if (!dev_priv->rps.enabled) {
6172 dev_priv->rps.cur_freq = val;
6173 return 0;
6174 }
6175
6176 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6177 err = valleyview_set_rps(dev_priv, val);
6178 else
6179 err = gen6_set_rps(dev_priv, val);
6180
6181 return err;
6182 }
6183
6184 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
6185 {
6186 I915_WRITE(GEN6_RC_CONTROL, 0);
6187 I915_WRITE(GEN9_PG_ENABLE, 0);
6188 }
6189
6190 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6191 {
6192 I915_WRITE(GEN6_RP_CONTROL, 0);
6193 }
6194
6195 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
6196 {
6197 I915_WRITE(GEN6_RC_CONTROL, 0);
6198 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6199 I915_WRITE(GEN6_RP_CONTROL, 0);
6200 }
6201
6202 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
6203 {
6204 I915_WRITE(GEN6_RC_CONTROL, 0);
6205 }
6206
6207 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
6208 {
6209 /* we're doing forcewake before Disabling RC6,
6210 * This what the BIOS expects when going into suspend */
6211 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6212
6213 I915_WRITE(GEN6_RC_CONTROL, 0);
6214
6215 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6216 }
6217
6218 static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
6219 {
6220 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6221 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
6222 mode = GEN6_RC_CTL_RC6_ENABLE;
6223 else
6224 mode = 0;
6225 }
6226 if (HAS_RC6p(dev_priv))
6227 DRM_DEBUG_DRIVER("Enabling RC6 states: "
6228 "RC6 %s RC6p %s RC6pp %s\n",
6229 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
6230 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
6231 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
6232
6233 else
6234 DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
6235 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
6236 }
6237
6238 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6239 {
6240 struct i915_ggtt *ggtt = &dev_priv->ggtt;
6241 bool enable_rc6 = true;
6242 unsigned long rc6_ctx_base;
6243 u32 rc_ctl;
6244 int rc_sw_target;
6245
6246 rc_ctl = I915_READ(GEN6_RC_CONTROL);
6247 rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
6248 RC_SW_TARGET_STATE_SHIFT;
6249 DRM_DEBUG_DRIVER("BIOS enabled RC states: "
6250 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
6251 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
6252 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
6253 rc_sw_target);
6254
6255 if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6256 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6257 enable_rc6 = false;
6258 }
6259
6260 /*
6261 * The exact context size is not known for BXT, so assume a page size
6262 * for this check.
6263 */
6264 rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6265 if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
6266 (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
6267 ggtt->stolen_reserved_size))) {
6268 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6269 enable_rc6 = false;
6270 }
6271
6272 if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
6273 ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
6274 ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
6275 ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6276 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6277 enable_rc6 = false;
6278 }
6279
6280 if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
6281 !I915_READ(GEN8_PUSHBUS_ENABLE) ||
6282 !I915_READ(GEN8_PUSHBUS_SHIFT)) {
6283 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
6284 enable_rc6 = false;
6285 }
6286
6287 if (!I915_READ(GEN6_GFXPAUSE)) {
6288 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
6289 enable_rc6 = false;
6290 }
6291
6292 if (!I915_READ(GEN8_MISC_CTRL0)) {
6293 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6294 enable_rc6 = false;
6295 }
6296
6297 return enable_rc6;
6298 }
6299
6300 int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
6301 {
6302 /* No RC6 before Ironlake and code is gone for ilk. */
6303 if (INTEL_INFO(dev_priv)->gen < 6)
6304 return 0;
6305
6306 if (!enable_rc6)
6307 return 0;
6308
6309 if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
6310 DRM_INFO("RC6 disabled by BIOS\n");
6311 return 0;
6312 }
6313
6314 /* Respect the kernel parameter if it is set */
6315 if (enable_rc6 >= 0) {
6316 int mask;
6317
6318 if (HAS_RC6p(dev_priv))
6319 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
6320 INTEL_RC6pp_ENABLE;
6321 else
6322 mask = INTEL_RC6_ENABLE;
6323
6324 if ((enable_rc6 & mask) != enable_rc6)
6325 DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
6326 "(requested %d, valid %d)\n",
6327 enable_rc6 & mask, enable_rc6, mask);
6328
6329 return enable_rc6 & mask;
6330 }
6331
6332 if (IS_IVYBRIDGE(dev_priv))
6333 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
6334
6335 return INTEL_RC6_ENABLE;
6336 }
6337
6338 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6339 {
6340 /* All of these values are in units of 50MHz */
6341
6342 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
6343 if (IS_GEN9_LP(dev_priv)) {
6344 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6345 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
6346 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
6347 dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
6348 } else {
6349 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6350 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
6351 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
6352 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
6353 }
6354 /* hw_max = RP0 until we check for overclocking */
6355 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
6356
6357 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
6358 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6359 IS_GEN9_BC(dev_priv)) {
6360 u32 ddcc_status = 0;
6361
6362 if (sandybridge_pcode_read(dev_priv,
6363 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
6364 &ddcc_status) == 0)
6365 dev_priv->rps.efficient_freq =
6366 clamp_t(u8,
6367 ((ddcc_status >> 8) & 0xff),
6368 dev_priv->rps.min_freq,
6369 dev_priv->rps.max_freq);
6370 }
6371
6372 if (IS_GEN9_BC(dev_priv)) {
6373 /* Store the frequency values in 16.66 MHZ units, which is
6374 * the natural hardware unit for SKL
6375 */
6376 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
6377 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
6378 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
6379 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
6380 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
6381 }
6382 }
6383
6384 static void reset_rps(struct drm_i915_private *dev_priv,
6385 int (*set)(struct drm_i915_private *, u8))
6386 {
6387 u8 freq = dev_priv->rps.cur_freq;
6388
6389 /* force a reset */
6390 dev_priv->rps.power = -1;
6391 dev_priv->rps.cur_freq = -1;
6392
6393 if (set(dev_priv, freq))
6394 DRM_ERROR("Failed to reset RPS to initial values\n");
6395 }
6396
6397 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
6398 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
6399 {
6400 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6401
6402 /* Program defaults and thresholds for RPS*/
6403 I915_WRITE(GEN6_RC_VIDEO_FREQ,
6404 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
6405
6406 /* 1 second timeout*/
6407 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
6408 GT_INTERVAL_FROM_US(dev_priv, 1000000));
6409
6410 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
6411
6412 /* Leaning on the below call to gen6_set_rps to program/setup the
6413 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
6414 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6415 reset_rps(dev_priv, gen6_set_rps);
6416
6417 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6418 }
6419
6420 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
6421 {
6422 struct intel_engine_cs *engine;
6423 enum intel_engine_id id;
6424 uint32_t rc6_mask = 0;
6425
6426 /* 1a: Software RC state - RC0 */
6427 I915_WRITE(GEN6_RC_STATE, 0);
6428
6429 /* 1b: Get forcewake during program sequence. Although the driver
6430 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6431 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6432
6433 /* 2a: Disable RC states. */
6434 I915_WRITE(GEN6_RC_CONTROL, 0);
6435
6436 /* 2b: Program RC6 thresholds.*/
6437
6438 /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
6439 if (IS_SKYLAKE(dev_priv))
6440 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
6441 else
6442 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
6443 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6444 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6445 for_each_engine(engine, dev_priv, id)
6446 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6447
6448 if (HAS_GUC(dev_priv))
6449 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
6450
6451 I915_WRITE(GEN6_RC_SLEEP, 0);
6452
6453 /* 2c: Program Coarse Power Gating Policies. */
6454 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
6455 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
6456
6457 /* 3a: Enable RC6 */
6458 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6459 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6460 DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
6461 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
6462 I915_WRITE(GEN6_RC_CONTROL,
6463 GEN6_RC_CTL_HW_ENABLE | GEN6_RC_CTL_EI_MODE(1) | rc6_mask);
6464
6465 /*
6466 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
6467 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
6468 */
6469 if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
6470 I915_WRITE(GEN9_PG_ENABLE, 0);
6471 else
6472 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
6473 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
6474
6475 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6476 }
6477
6478 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
6479 {
6480 struct intel_engine_cs *engine;
6481 enum intel_engine_id id;
6482 uint32_t rc6_mask = 0;
6483
6484 /* 1a: Software RC state - RC0 */
6485 I915_WRITE(GEN6_RC_STATE, 0);
6486
6487 /* 1c & 1d: Get forcewake during program sequence. Although the driver
6488 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6489 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6490
6491 /* 2a: Disable RC states. */
6492 I915_WRITE(GEN6_RC_CONTROL, 0);
6493
6494 /* 2b: Program RC6 thresholds.*/
6495 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
6496 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6497 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6498 for_each_engine(engine, dev_priv, id)
6499 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6500 I915_WRITE(GEN6_RC_SLEEP, 0);
6501 if (IS_BROADWELL(dev_priv))
6502 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
6503 else
6504 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
6505
6506 /* 3: Enable RC6 */
6507 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6508 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6509 intel_print_rc6_info(dev_priv, rc6_mask);
6510 if (IS_BROADWELL(dev_priv))
6511 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
6512 GEN7_RC_CTL_TO_MODE |
6513 rc6_mask);
6514 else
6515 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
6516 GEN6_RC_CTL_EI_MODE(1) |
6517 rc6_mask);
6518
6519 /* 4 Program defaults and thresholds for RPS*/
6520 I915_WRITE(GEN6_RPNSWREQ,
6521 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
6522 I915_WRITE(GEN6_RC_VIDEO_FREQ,
6523 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
6524 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
6525 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
6526
6527 /* Docs recommend 900MHz, and 300 MHz respectively */
6528 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
6529 dev_priv->rps.max_freq_softlimit << 24 |
6530 dev_priv->rps.min_freq_softlimit << 16);
6531
6532 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
6533 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
6534 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
6535 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
6536
6537 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6538
6539 /* 5: Enable RPS */
6540 I915_WRITE(GEN6_RP_CONTROL,
6541 GEN6_RP_MEDIA_TURBO |
6542 GEN6_RP_MEDIA_HW_NORMAL_MODE |
6543 GEN6_RP_MEDIA_IS_GFX |
6544 GEN6_RP_ENABLE |
6545 GEN6_RP_UP_BUSY_AVG |
6546 GEN6_RP_DOWN_IDLE_AVG);
6547
6548 /* 6: Ring frequency + overclocking (our driver does this later */
6549
6550 reset_rps(dev_priv, gen6_set_rps);
6551
6552 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6553 }
6554
6555 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
6556 {
6557 struct intel_engine_cs *engine;
6558 enum intel_engine_id id;
6559 u32 rc6vids, rc6_mask = 0;
6560 u32 gtfifodbg;
6561 int rc6_mode;
6562 int ret;
6563
6564 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6565
6566 /* Here begins a magic sequence of register writes to enable
6567 * auto-downclocking.
6568 *
6569 * Perhaps there might be some value in exposing these to
6570 * userspace...
6571 */
6572 I915_WRITE(GEN6_RC_STATE, 0);
6573
6574 /* Clear the DBG now so we don't confuse earlier errors */
6575 gtfifodbg = I915_READ(GTFIFODBG);
6576 if (gtfifodbg) {
6577 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
6578 I915_WRITE(GTFIFODBG, gtfifodbg);
6579 }
6580
6581 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6582
6583 /* disable the counters and set deterministic thresholds */
6584 I915_WRITE(GEN6_RC_CONTROL, 0);
6585
6586 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
6587 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
6588 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
6589 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6590 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6591
6592 for_each_engine(engine, dev_priv, id)
6593 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6594
6595 I915_WRITE(GEN6_RC_SLEEP, 0);
6596 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
6597 if (IS_IVYBRIDGE(dev_priv))
6598 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
6599 else
6600 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
6601 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
6602 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
6603
6604 /* Check if we are enabling RC6 */
6605 rc6_mode = intel_enable_rc6();
6606 if (rc6_mode & INTEL_RC6_ENABLE)
6607 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
6608
6609 /* We don't use those on Haswell */
6610 if (!IS_HASWELL(dev_priv)) {
6611 if (rc6_mode & INTEL_RC6p_ENABLE)
6612 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
6613
6614 if (rc6_mode & INTEL_RC6pp_ENABLE)
6615 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
6616 }
6617
6618 intel_print_rc6_info(dev_priv, rc6_mask);
6619
6620 I915_WRITE(GEN6_RC_CONTROL,
6621 rc6_mask |
6622 GEN6_RC_CTL_EI_MODE(1) |
6623 GEN6_RC_CTL_HW_ENABLE);
6624
6625 /* Power down if completely idle for over 50ms */
6626 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
6627 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6628
6629 reset_rps(dev_priv, gen6_set_rps);
6630
6631 rc6vids = 0;
6632 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
6633 if (IS_GEN6(dev_priv) && ret) {
6634 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
6635 } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
6636 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
6637 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
6638 rc6vids &= 0xffff00;
6639 rc6vids |= GEN6_ENCODE_RC6_VID(450);
6640 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
6641 if (ret)
6642 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
6643 }
6644
6645 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6646 }
6647
6648 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
6649 {
6650 int min_freq = 15;
6651 unsigned int gpu_freq;
6652 unsigned int max_ia_freq, min_ring_freq;
6653 unsigned int max_gpu_freq, min_gpu_freq;
6654 int scaling_factor = 180;
6655 struct cpufreq_policy *policy;
6656
6657 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6658
6659 policy = cpufreq_cpu_get(0);
6660 if (policy) {
6661 max_ia_freq = policy->cpuinfo.max_freq;
6662 cpufreq_cpu_put(policy);
6663 } else {
6664 /*
6665 * Default to measured freq if none found, PCU will ensure we
6666 * don't go over
6667 */
6668 max_ia_freq = tsc_khz;
6669 }
6670
6671 /* Convert from kHz to MHz */
6672 max_ia_freq /= 1000;
6673
6674 min_ring_freq = I915_READ(DCLK) & 0xf;
6675 /* convert DDR frequency from units of 266.6MHz to bandwidth */
6676 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
6677
6678 if (IS_GEN9_BC(dev_priv)) {
6679 /* Convert GT frequency to 50 HZ units */
6680 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
6681 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
6682 } else {
6683 min_gpu_freq = dev_priv->rps.min_freq;
6684 max_gpu_freq = dev_priv->rps.max_freq;
6685 }
6686
6687 /*
6688 * For each potential GPU frequency, load a ring frequency we'd like
6689 * to use for memory access. We do this by specifying the IA frequency
6690 * the PCU should use as a reference to determine the ring frequency.
6691 */
6692 for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
6693 int diff = max_gpu_freq - gpu_freq;
6694 unsigned int ia_freq = 0, ring_freq = 0;
6695
6696 if (IS_GEN9_BC(dev_priv)) {
6697 /*
6698 * ring_freq = 2 * GT. ring_freq is in 100MHz units
6699 * No floor required for ring frequency on SKL.
6700 */
6701 ring_freq = gpu_freq;
6702 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
6703 /* max(2 * GT, DDR). NB: GT is 50MHz units */
6704 ring_freq = max(min_ring_freq, gpu_freq);
6705 } else if (IS_HASWELL(dev_priv)) {
6706 ring_freq = mult_frac(gpu_freq, 5, 4);
6707 ring_freq = max(min_ring_freq, ring_freq);
6708 /* leave ia_freq as the default, chosen by cpufreq */
6709 } else {
6710 /* On older processors, there is no separate ring
6711 * clock domain, so in order to boost the bandwidth
6712 * of the ring, we need to upclock the CPU (ia_freq).
6713 *
6714 * For GPU frequencies less than 750MHz,
6715 * just use the lowest ring freq.
6716 */
6717 if (gpu_freq < min_freq)
6718 ia_freq = 800;
6719 else
6720 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
6721 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
6722 }
6723
6724 sandybridge_pcode_write(dev_priv,
6725 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
6726 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
6727 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
6728 gpu_freq);
6729 }
6730 }
6731
6732 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
6733 {
6734 u32 val, rp0;
6735
6736 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6737
6738 switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
6739 case 8:
6740 /* (2 * 4) config */
6741 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
6742 break;
6743 case 12:
6744 /* (2 * 6) config */
6745 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
6746 break;
6747 case 16:
6748 /* (2 * 8) config */
6749 default:
6750 /* Setting (2 * 8) Min RP0 for any other combination */
6751 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
6752 break;
6753 }
6754
6755 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
6756
6757 return rp0;
6758 }
6759
6760 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
6761 {
6762 u32 val, rpe;
6763
6764 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
6765 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
6766
6767 return rpe;
6768 }
6769
6770 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
6771 {
6772 u32 val, rp1;
6773
6774 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6775 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
6776
6777 return rp1;
6778 }
6779
6780 static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
6781 {
6782 u32 val, rpn;
6783
6784 val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
6785 rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
6786 FB_GFX_FREQ_FUSE_MASK);
6787
6788 return rpn;
6789 }
6790
6791 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
6792 {
6793 u32 val, rp1;
6794
6795 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
6796
6797 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
6798
6799 return rp1;
6800 }
6801
6802 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
6803 {
6804 u32 val, rp0;
6805
6806 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
6807
6808 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
6809 /* Clamp to max */
6810 rp0 = min_t(u32, rp0, 0xea);
6811
6812 return rp0;
6813 }
6814
6815 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
6816 {
6817 u32 val, rpe;
6818
6819 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
6820 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
6821 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
6822 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
6823
6824 return rpe;
6825 }
6826
6827 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
6828 {
6829 u32 val;
6830
6831 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
6832 /*
6833 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
6834 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
6835 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
6836 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
6837 * to make sure it matches what Punit accepts.
6838 */
6839 return max_t(u32, val, 0xc0);
6840 }
6841
6842 /* Check that the pctx buffer wasn't move under us. */
6843 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
6844 {
6845 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
6846
6847 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
6848 dev_priv->vlv_pctx->stolen->start);
6849 }
6850
6851
6852 /* Check that the pcbr address is not empty. */
6853 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
6854 {
6855 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
6856
6857 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
6858 }
6859
6860 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
6861 {
6862 struct i915_ggtt *ggtt = &dev_priv->ggtt;
6863 unsigned long pctx_paddr, paddr;
6864 u32 pcbr;
6865 int pctx_size = 32*1024;
6866
6867 pcbr = I915_READ(VLV_PCBR);
6868 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
6869 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
6870 paddr = (dev_priv->mm.stolen_base +
6871 (ggtt->stolen_size - pctx_size));
6872
6873 pctx_paddr = (paddr & (~4095));
6874 I915_WRITE(VLV_PCBR, pctx_paddr);
6875 }
6876
6877 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6878 }
6879
6880 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
6881 {
6882 struct drm_i915_gem_object *pctx;
6883 unsigned long pctx_paddr;
6884 u32 pcbr;
6885 int pctx_size = 24*1024;
6886
6887 pcbr = I915_READ(VLV_PCBR);
6888 if (pcbr) {
6889 /* BIOS set it up already, grab the pre-alloc'd space */
6890 int pcbr_offset;
6891
6892 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
6893 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
6894 pcbr_offset,
6895 I915_GTT_OFFSET_NONE,
6896 pctx_size);
6897 goto out;
6898 }
6899
6900 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
6901
6902 /*
6903 * From the Gunit register HAS:
6904 * The Gfx driver is expected to program this register and ensure
6905 * proper allocation within Gfx stolen memory. For example, this
6906 * register should be programmed such than the PCBR range does not
6907 * overlap with other ranges, such as the frame buffer, protected
6908 * memory, or any other relevant ranges.
6909 */
6910 pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
6911 if (!pctx) {
6912 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
6913 goto out;
6914 }
6915
6916 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
6917 I915_WRITE(VLV_PCBR, pctx_paddr);
6918
6919 out:
6920 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6921 dev_priv->vlv_pctx = pctx;
6922 }
6923
6924 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
6925 {
6926 if (WARN_ON(!dev_priv->vlv_pctx))
6927 return;
6928
6929 i915_gem_object_put(dev_priv->vlv_pctx);
6930 dev_priv->vlv_pctx = NULL;
6931 }
6932
6933 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
6934 {
6935 dev_priv->rps.gpll_ref_freq =
6936 vlv_get_cck_clock(dev_priv, "GPLL ref",
6937 CCK_GPLL_CLOCK_CONTROL,
6938 dev_priv->czclk_freq);
6939
6940 DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
6941 dev_priv->rps.gpll_ref_freq);
6942 }
6943
6944 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
6945 {
6946 u32 val;
6947
6948 valleyview_setup_pctx(dev_priv);
6949
6950 vlv_init_gpll_ref_freq(dev_priv);
6951
6952 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6953 switch ((val >> 6) & 3) {
6954 case 0:
6955 case 1:
6956 dev_priv->mem_freq = 800;
6957 break;
6958 case 2:
6959 dev_priv->mem_freq = 1066;
6960 break;
6961 case 3:
6962 dev_priv->mem_freq = 1333;
6963 break;
6964 }
6965 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
6966
6967 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
6968 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
6969 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6970 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
6971 dev_priv->rps.max_freq);
6972
6973 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
6974 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6975 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
6976 dev_priv->rps.efficient_freq);
6977
6978 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
6979 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
6980 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
6981 dev_priv->rps.rp1_freq);
6982
6983 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
6984 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6985 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
6986 dev_priv->rps.min_freq);
6987 }
6988
6989 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
6990 {
6991 u32 val;
6992
6993 cherryview_setup_pctx(dev_priv);
6994
6995 vlv_init_gpll_ref_freq(dev_priv);
6996
6997 mutex_lock(&dev_priv->sb_lock);
6998 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
6999 mutex_unlock(&dev_priv->sb_lock);
7000
7001 switch ((val >> 2) & 0x7) {
7002 case 3:
7003 dev_priv->mem_freq = 2000;
7004 break;
7005 default:
7006 dev_priv->mem_freq = 1600;
7007 break;
7008 }
7009 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7010
7011 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
7012 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
7013 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7014 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
7015 dev_priv->rps.max_freq);
7016
7017 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7018 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7019 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
7020 dev_priv->rps.efficient_freq);
7021
7022 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
7023 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7024 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
7025 dev_priv->rps.rp1_freq);
7026
7027 dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
7028 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7029 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
7030 dev_priv->rps.min_freq);
7031
7032 WARN_ONCE((dev_priv->rps.max_freq |
7033 dev_priv->rps.efficient_freq |
7034 dev_priv->rps.rp1_freq |
7035 dev_priv->rps.min_freq) & 1,
7036 "Odd GPU freq values\n");
7037 }
7038
7039 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7040 {
7041 valleyview_cleanup_pctx(dev_priv);
7042 }
7043
7044 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
7045 {
7046 struct intel_engine_cs *engine;
7047 enum intel_engine_id id;
7048 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
7049
7050 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7051
7052 gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
7053 GT_FIFO_FREE_ENTRIES_CHV);
7054 if (gtfifodbg) {
7055 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7056 gtfifodbg);
7057 I915_WRITE(GTFIFODBG, gtfifodbg);
7058 }
7059
7060 cherryview_check_pctx(dev_priv);
7061
7062 /* 1a & 1b: Get forcewake during program sequence. Although the driver
7063 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7064 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7065
7066 /* Disable RC states. */
7067 I915_WRITE(GEN6_RC_CONTROL, 0);
7068
7069 /* 2a: Program RC6 thresholds.*/
7070 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7071 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7072 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7073
7074 for_each_engine(engine, dev_priv, id)
7075 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7076 I915_WRITE(GEN6_RC_SLEEP, 0);
7077
7078 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
7079 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7080
7081 /* allows RC6 residency counter to work */
7082 I915_WRITE(VLV_COUNTER_CONTROL,
7083 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7084 VLV_MEDIA_RC6_COUNT_EN |
7085 VLV_RENDER_RC6_COUNT_EN));
7086
7087 /* For now we assume BIOS is allocating and populating the PCBR */
7088 pcbr = I915_READ(VLV_PCBR);
7089
7090 /* 3: Enable RC6 */
7091 if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
7092 (pcbr >> VLV_PCBR_ADDR_SHIFT))
7093 rc6_mode = GEN7_RC_CTL_TO_MODE;
7094
7095 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7096
7097 /* 4 Program defaults and thresholds for RPS*/
7098 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7099 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7100 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7101 I915_WRITE(GEN6_RP_UP_EI, 66000);
7102 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7103
7104 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7105
7106 /* 5: Enable RPS */
7107 I915_WRITE(GEN6_RP_CONTROL,
7108 GEN6_RP_MEDIA_HW_NORMAL_MODE |
7109 GEN6_RP_MEDIA_IS_GFX |
7110 GEN6_RP_ENABLE |
7111 GEN6_RP_UP_BUSY_AVG |
7112 GEN6_RP_DOWN_IDLE_AVG);
7113
7114 /* Setting Fixed Bias */
7115 val = VLV_OVERRIDE_EN |
7116 VLV_SOC_TDP_EN |
7117 CHV_BIAS_CPU_50_SOC_50;
7118 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7119
7120 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7121
7122 /* RPS code assumes GPLL is used */
7123 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7124
7125 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7126 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7127
7128 reset_rps(dev_priv, valleyview_set_rps);
7129
7130 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7131 }
7132
7133 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
7134 {
7135 struct intel_engine_cs *engine;
7136 enum intel_engine_id id;
7137 u32 gtfifodbg, val, rc6_mode = 0;
7138
7139 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7140
7141 valleyview_check_pctx(dev_priv);
7142
7143 gtfifodbg = I915_READ(GTFIFODBG);
7144 if (gtfifodbg) {
7145 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7146 gtfifodbg);
7147 I915_WRITE(GTFIFODBG, gtfifodbg);
7148 }
7149
7150 /* If VLV, Forcewake all wells, else re-direct to regular path */
7151 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7152
7153 /* Disable RC states. */
7154 I915_WRITE(GEN6_RC_CONTROL, 0);
7155
7156 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7157 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7158 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7159 I915_WRITE(GEN6_RP_UP_EI, 66000);
7160 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7161
7162 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7163
7164 I915_WRITE(GEN6_RP_CONTROL,
7165 GEN6_RP_MEDIA_TURBO |
7166 GEN6_RP_MEDIA_HW_NORMAL_MODE |
7167 GEN6_RP_MEDIA_IS_GFX |
7168 GEN6_RP_ENABLE |
7169 GEN6_RP_UP_BUSY_AVG |
7170 GEN6_RP_DOWN_IDLE_CONT);
7171
7172 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
7173 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7174 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7175
7176 for_each_engine(engine, dev_priv, id)
7177 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7178
7179 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7180
7181 /* allows RC6 residency counter to work */
7182 I915_WRITE(VLV_COUNTER_CONTROL,
7183 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7184 VLV_MEDIA_RC0_COUNT_EN |
7185 VLV_RENDER_RC0_COUNT_EN |
7186 VLV_MEDIA_RC6_COUNT_EN |
7187 VLV_RENDER_RC6_COUNT_EN));
7188
7189 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
7190 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
7191
7192 intel_print_rc6_info(dev_priv, rc6_mode);
7193
7194 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7195
7196 /* Setting Fixed Bias */
7197 val = VLV_OVERRIDE_EN |
7198 VLV_SOC_TDP_EN |
7199 VLV_BIAS_CPU_125_SOC_875;
7200 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7201
7202 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7203
7204 /* RPS code assumes GPLL is used */
7205 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7206
7207 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7208 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7209
7210 reset_rps(dev_priv, valleyview_set_rps);
7211
7212 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7213 }
7214
7215 static unsigned long intel_pxfreq(u32 vidfreq)
7216 {
7217 unsigned long freq;
7218 int div = (vidfreq & 0x3f0000) >> 16;
7219 int post = (vidfreq & 0x3000) >> 12;
7220 int pre = (vidfreq & 0x7);
7221
7222 if (!pre)
7223 return 0;
7224
7225 freq = ((div * 133333) / ((1<<post) * pre));
7226
7227 return freq;
7228 }
7229
7230 static const struct cparams {
7231 u16 i;
7232 u16 t;
7233 u16 m;
7234 u16 c;
7235 } cparams[] = {
7236 { 1, 1333, 301, 28664 },
7237 { 1, 1066, 294, 24460 },
7238 { 1, 800, 294, 25192 },
7239 { 0, 1333, 276, 27605 },
7240 { 0, 1066, 276, 27605 },
7241 { 0, 800, 231, 23784 },
7242 };
7243
7244 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7245 {
7246 u64 total_count, diff, ret;
7247 u32 count1, count2, count3, m = 0, c = 0;
7248 unsigned long now = jiffies_to_msecs(jiffies), diff1;
7249 int i;
7250
7251 lockdep_assert_held(&mchdev_lock);
7252
7253 diff1 = now - dev_priv->ips.last_time1;
7254
7255 /* Prevent division-by-zero if we are asking too fast.
7256 * Also, we don't get interesting results if we are polling
7257 * faster than once in 10ms, so just return the saved value
7258 * in such cases.
7259 */
7260 if (diff1 <= 10)
7261 return dev_priv->ips.chipset_power;
7262
7263 count1 = I915_READ(DMIEC);
7264 count2 = I915_READ(DDREC);
7265 count3 = I915_READ(CSIEC);
7266
7267 total_count = count1 + count2 + count3;
7268
7269 /* FIXME: handle per-counter overflow */
7270 if (total_count < dev_priv->ips.last_count1) {
7271 diff = ~0UL - dev_priv->ips.last_count1;
7272 diff += total_count;
7273 } else {
7274 diff = total_count - dev_priv->ips.last_count1;
7275 }
7276
7277 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7278 if (cparams[i].i == dev_priv->ips.c_m &&
7279 cparams[i].t == dev_priv->ips.r_t) {
7280 m = cparams[i].m;
7281 c = cparams[i].c;
7282 break;
7283 }
7284 }
7285
7286 diff = div_u64(diff, diff1);
7287 ret = ((m * diff) + c);
7288 ret = div_u64(ret, 10);
7289
7290 dev_priv->ips.last_count1 = total_count;
7291 dev_priv->ips.last_time1 = now;
7292
7293 dev_priv->ips.chipset_power = ret;
7294
7295 return ret;
7296 }
7297
7298 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
7299 {
7300 unsigned long val;
7301
7302 if (INTEL_INFO(dev_priv)->gen != 5)
7303 return 0;
7304
7305 spin_lock_irq(&mchdev_lock);
7306
7307 val = __i915_chipset_val(dev_priv);
7308
7309 spin_unlock_irq(&mchdev_lock);
7310
7311 return val;
7312 }
7313
7314 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
7315 {
7316 unsigned long m, x, b;
7317 u32 tsfs;
7318
7319 tsfs = I915_READ(TSFS);
7320
7321 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
7322 x = I915_READ8(TR1);
7323
7324 b = tsfs & TSFS_INTR_MASK;
7325
7326 return ((m * x) / 127) - b;
7327 }
7328
7329 static int _pxvid_to_vd(u8 pxvid)
7330 {
7331 if (pxvid == 0)
7332 return 0;
7333
7334 if (pxvid >= 8 && pxvid < 31)
7335 pxvid = 31;
7336
7337 return (pxvid + 2) * 125;
7338 }
7339
7340 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7341 {
7342 const int vd = _pxvid_to_vd(pxvid);
7343 const int vm = vd - 1125;
7344
7345 if (INTEL_INFO(dev_priv)->is_mobile)
7346 return vm > 0 ? vm : 0;
7347
7348 return vd;
7349 }
7350
7351 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7352 {
7353 u64 now, diff, diffms;
7354 u32 count;
7355
7356 lockdep_assert_held(&mchdev_lock);
7357
7358 now = ktime_get_raw_ns();
7359 diffms = now - dev_priv->ips.last_time2;
7360 do_div(diffms, NSEC_PER_MSEC);
7361
7362 /* Don't divide by 0 */
7363 if (!diffms)
7364 return;
7365
7366 count = I915_READ(GFXEC);
7367
7368 if (count < dev_priv->ips.last_count2) {
7369 diff = ~0UL - dev_priv->ips.last_count2;
7370 diff += count;
7371 } else {
7372 diff = count - dev_priv->ips.last_count2;
7373 }
7374
7375 dev_priv->ips.last_count2 = count;
7376 dev_priv->ips.last_time2 = now;
7377
7378 /* More magic constants... */
7379 diff = diff * 1181;
7380 diff = div_u64(diff, diffms * 10);
7381 dev_priv->ips.gfx_power = diff;
7382 }
7383
7384 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
7385 {
7386 if (INTEL_INFO(dev_priv)->gen != 5)
7387 return;
7388
7389 spin_lock_irq(&mchdev_lock);
7390
7391 __i915_update_gfx_val(dev_priv);
7392
7393 spin_unlock_irq(&mchdev_lock);
7394 }
7395
7396 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7397 {
7398 unsigned long t, corr, state1, corr2, state2;
7399 u32 pxvid, ext_v;
7400
7401 lockdep_assert_held(&mchdev_lock);
7402
7403 pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
7404 pxvid = (pxvid >> 24) & 0x7f;
7405 ext_v = pvid_to_extvid(dev_priv, pxvid);
7406
7407 state1 = ext_v;
7408
7409 t = i915_mch_val(dev_priv);
7410
7411 /* Revel in the empirically derived constants */
7412
7413 /* Correction factor in 1/100000 units */
7414 if (t > 80)
7415 corr = ((t * 2349) + 135940);
7416 else if (t >= 50)
7417 corr = ((t * 964) + 29317);
7418 else /* < 50 */
7419 corr = ((t * 301) + 1004);
7420
7421 corr = corr * ((150142 * state1) / 10000 - 78642);
7422 corr /= 100000;
7423 corr2 = (corr * dev_priv->ips.corr);
7424
7425 state2 = (corr2 * state1) / 10000;
7426 state2 /= 100; /* convert to mW */
7427
7428 __i915_update_gfx_val(dev_priv);
7429
7430 return dev_priv->ips.gfx_power + state2;
7431 }
7432
7433 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
7434 {
7435 unsigned long val;
7436
7437 if (INTEL_INFO(dev_priv)->gen != 5)
7438 return 0;
7439
7440 spin_lock_irq(&mchdev_lock);
7441
7442 val = __i915_gfx_val(dev_priv);
7443
7444 spin_unlock_irq(&mchdev_lock);
7445
7446 return val;
7447 }
7448
7449 /**
7450 * i915_read_mch_val - return value for IPS use
7451 *
7452 * Calculate and return a value for the IPS driver to use when deciding whether
7453 * we have thermal and power headroom to increase CPU or GPU power budget.
7454 */
7455 unsigned long i915_read_mch_val(void)
7456 {
7457 struct drm_i915_private *dev_priv;
7458 unsigned long chipset_val, graphics_val, ret = 0;
7459
7460 spin_lock_irq(&mchdev_lock);
7461 if (!i915_mch_dev)
7462 goto out_unlock;
7463 dev_priv = i915_mch_dev;
7464
7465 chipset_val = __i915_chipset_val(dev_priv);
7466 graphics_val = __i915_gfx_val(dev_priv);
7467
7468 ret = chipset_val + graphics_val;
7469
7470 out_unlock:
7471 spin_unlock_irq(&mchdev_lock);
7472
7473 return ret;
7474 }
7475 EXPORT_SYMBOL_GPL(i915_read_mch_val);
7476
7477 /**
7478 * i915_gpu_raise - raise GPU frequency limit
7479 *
7480 * Raise the limit; IPS indicates we have thermal headroom.
7481 */
7482 bool i915_gpu_raise(void)
7483 {
7484 struct drm_i915_private *dev_priv;
7485 bool ret = true;
7486
7487 spin_lock_irq(&mchdev_lock);
7488 if (!i915_mch_dev) {
7489 ret = false;
7490 goto out_unlock;
7491 }
7492 dev_priv = i915_mch_dev;
7493
7494 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
7495 dev_priv->ips.max_delay--;
7496
7497 out_unlock:
7498 spin_unlock_irq(&mchdev_lock);
7499
7500 return ret;
7501 }
7502 EXPORT_SYMBOL_GPL(i915_gpu_raise);
7503
7504 /**
7505 * i915_gpu_lower - lower GPU frequency limit
7506 *
7507 * IPS indicates we're close to a thermal limit, so throttle back the GPU
7508 * frequency maximum.
7509 */
7510 bool i915_gpu_lower(void)
7511 {
7512 struct drm_i915_private *dev_priv;
7513 bool ret = true;
7514
7515 spin_lock_irq(&mchdev_lock);
7516 if (!i915_mch_dev) {
7517 ret = false;
7518 goto out_unlock;
7519 }
7520 dev_priv = i915_mch_dev;
7521
7522 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
7523 dev_priv->ips.max_delay++;
7524
7525 out_unlock:
7526 spin_unlock_irq(&mchdev_lock);
7527
7528 return ret;
7529 }
7530 EXPORT_SYMBOL_GPL(i915_gpu_lower);
7531
7532 /**
7533 * i915_gpu_busy - indicate GPU business to IPS
7534 *
7535 * Tell the IPS driver whether or not the GPU is busy.
7536 */
7537 bool i915_gpu_busy(void)
7538 {
7539 bool ret = false;
7540
7541 spin_lock_irq(&mchdev_lock);
7542 if (i915_mch_dev)
7543 ret = i915_mch_dev->gt.awake;
7544 spin_unlock_irq(&mchdev_lock);
7545
7546 return ret;
7547 }
7548 EXPORT_SYMBOL_GPL(i915_gpu_busy);
7549
7550 /**
7551 * i915_gpu_turbo_disable - disable graphics turbo
7552 *
7553 * Disable graphics turbo by resetting the max frequency and setting the
7554 * current frequency to the default.
7555 */
7556 bool i915_gpu_turbo_disable(void)
7557 {
7558 struct drm_i915_private *dev_priv;
7559 bool ret = true;
7560
7561 spin_lock_irq(&mchdev_lock);
7562 if (!i915_mch_dev) {
7563 ret = false;
7564 goto out_unlock;
7565 }
7566 dev_priv = i915_mch_dev;
7567
7568 dev_priv->ips.max_delay = dev_priv->ips.fstart;
7569
7570 if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
7571 ret = false;
7572
7573 out_unlock:
7574 spin_unlock_irq(&mchdev_lock);
7575
7576 return ret;
7577 }
7578 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
7579
7580 /**
7581 * Tells the intel_ips driver that the i915 driver is now loaded, if
7582 * IPS got loaded first.
7583 *
7584 * This awkward dance is so that neither module has to depend on the
7585 * other in order for IPS to do the appropriate communication of
7586 * GPU turbo limits to i915.
7587 */
7588 static void
7589 ips_ping_for_i915_load(void)
7590 {
7591 void (*link)(void);
7592
7593 link = symbol_get(ips_link_to_i915_driver);
7594 if (link) {
7595 link();
7596 symbol_put(ips_link_to_i915_driver);
7597 }
7598 }
7599
7600 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
7601 {
7602 /* We only register the i915 ips part with intel-ips once everything is
7603 * set up, to avoid intel-ips sneaking in and reading bogus values. */
7604 spin_lock_irq(&mchdev_lock);
7605 i915_mch_dev = dev_priv;
7606 spin_unlock_irq(&mchdev_lock);
7607
7608 ips_ping_for_i915_load();
7609 }
7610
7611 void intel_gpu_ips_teardown(void)
7612 {
7613 spin_lock_irq(&mchdev_lock);
7614 i915_mch_dev = NULL;
7615 spin_unlock_irq(&mchdev_lock);
7616 }
7617
7618 static void intel_init_emon(struct drm_i915_private *dev_priv)
7619 {
7620 u32 lcfuse;
7621 u8 pxw[16];
7622 int i;
7623
7624 /* Disable to program */
7625 I915_WRITE(ECR, 0);
7626 POSTING_READ(ECR);
7627
7628 /* Program energy weights for various events */
7629 I915_WRITE(SDEW, 0x15040d00);
7630 I915_WRITE(CSIEW0, 0x007f0000);
7631 I915_WRITE(CSIEW1, 0x1e220004);
7632 I915_WRITE(CSIEW2, 0x04000004);
7633
7634 for (i = 0; i < 5; i++)
7635 I915_WRITE(PEW(i), 0);
7636 for (i = 0; i < 3; i++)
7637 I915_WRITE(DEW(i), 0);
7638
7639 /* Program P-state weights to account for frequency power adjustment */
7640 for (i = 0; i < 16; i++) {
7641 u32 pxvidfreq = I915_READ(PXVFREQ(i));
7642 unsigned long freq = intel_pxfreq(pxvidfreq);
7643 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7644 PXVFREQ_PX_SHIFT;
7645 unsigned long val;
7646
7647 val = vid * vid;
7648 val *= (freq / 1000);
7649 val *= 255;
7650 val /= (127*127*900);
7651 if (val > 0xff)
7652 DRM_ERROR("bad pxval: %ld\n", val);
7653 pxw[i] = val;
7654 }
7655 /* Render standby states get 0 weight */
7656 pxw[14] = 0;
7657 pxw[15] = 0;
7658
7659 for (i = 0; i < 4; i++) {
7660 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7661 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7662 I915_WRITE(PXW(i), val);
7663 }
7664
7665 /* Adjust magic regs to magic values (more experimental results) */
7666 I915_WRITE(OGW0, 0);
7667 I915_WRITE(OGW1, 0);
7668 I915_WRITE(EG0, 0x00007f00);
7669 I915_WRITE(EG1, 0x0000000e);
7670 I915_WRITE(EG2, 0x000e0000);
7671 I915_WRITE(EG3, 0x68000300);
7672 I915_WRITE(EG4, 0x42000000);
7673 I915_WRITE(EG5, 0x00140031);
7674 I915_WRITE(EG6, 0);
7675 I915_WRITE(EG7, 0);
7676
7677 for (i = 0; i < 8; i++)
7678 I915_WRITE(PXWL(i), 0);
7679
7680 /* Enable PMON + select events */
7681 I915_WRITE(ECR, 0x80000019);
7682
7683 lcfuse = I915_READ(LCFUSE02);
7684
7685 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
7686 }
7687
7688 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
7689 {
7690 /*
7691 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
7692 * requirement.
7693 */
7694 if (!i915.enable_rc6) {
7695 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
7696 intel_runtime_pm_get(dev_priv);
7697 }
7698
7699 mutex_lock(&dev_priv->drm.struct_mutex);
7700 mutex_lock(&dev_priv->rps.hw_lock);
7701
7702 /* Initialize RPS limits (for userspace) */
7703 if (IS_CHERRYVIEW(dev_priv))
7704 cherryview_init_gt_powersave(dev_priv);
7705 else if (IS_VALLEYVIEW(dev_priv))
7706 valleyview_init_gt_powersave(dev_priv);
7707 else if (INTEL_GEN(dev_priv) >= 6)
7708 gen6_init_rps_frequencies(dev_priv);
7709
7710 /* Derive initial user preferences/limits from the hardware limits */
7711 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
7712 dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;
7713
7714 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
7715 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
7716
7717 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
7718 dev_priv->rps.min_freq_softlimit =
7719 max_t(int,
7720 dev_priv->rps.efficient_freq,
7721 intel_freq_opcode(dev_priv, 450));
7722
7723 /* After setting max-softlimit, find the overclock max freq */
7724 if (IS_GEN6(dev_priv) ||
7725 IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
7726 u32 params = 0;
7727
7728 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
7729 if (params & BIT(31)) { /* OC supported */
7730 DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
7731 (dev_priv->rps.max_freq & 0xff) * 50,
7732 (params & 0xff) * 50);
7733 dev_priv->rps.max_freq = params & 0xff;
7734 }
7735 }
7736
7737 /* Finally allow us to boost to max by default */
7738 dev_priv->rps.boost_freq = dev_priv->rps.max_freq;
7739
7740 mutex_unlock(&dev_priv->rps.hw_lock);
7741 mutex_unlock(&dev_priv->drm.struct_mutex);
7742
7743 intel_autoenable_gt_powersave(dev_priv);
7744 }
7745
7746 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7747 {
7748 if (IS_VALLEYVIEW(dev_priv))
7749 valleyview_cleanup_gt_powersave(dev_priv);
7750
7751 if (!i915.enable_rc6)
7752 intel_runtime_pm_put(dev_priv);
7753 }
7754
7755 /**
7756 * intel_suspend_gt_powersave - suspend PM work and helper threads
7757 * @dev_priv: i915 device
7758 *
7759 * We don't want to disable RC6 or other features here, we just want
7760 * to make sure any work we've queued has finished and won't bother
7761 * us while we're suspended.
7762 */
7763 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
7764 {
7765 if (INTEL_GEN(dev_priv) < 6)
7766 return;
7767
7768 if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
7769 intel_runtime_pm_put(dev_priv);
7770
7771 /* gen6_rps_idle() will be called later to disable interrupts */
7772 }
7773
7774 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
7775 {
7776 dev_priv->rps.enabled = true; /* force disabling */
7777 intel_disable_gt_powersave(dev_priv);
7778
7779 gen6_reset_rps_interrupts(dev_priv);
7780 }
7781
7782 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
7783 {
7784 if (!READ_ONCE(dev_priv->rps.enabled))
7785 return;
7786
7787 mutex_lock(&dev_priv->rps.hw_lock);
7788
7789 if (INTEL_GEN(dev_priv) >= 9) {
7790 gen9_disable_rc6(dev_priv);
7791 gen9_disable_rps(dev_priv);
7792 } else if (IS_CHERRYVIEW(dev_priv)) {
7793 cherryview_disable_rps(dev_priv);
7794 } else if (IS_VALLEYVIEW(dev_priv)) {
7795 valleyview_disable_rps(dev_priv);
7796 } else if (INTEL_GEN(dev_priv) >= 6) {
7797 gen6_disable_rps(dev_priv);
7798 } else if (IS_IRONLAKE_M(dev_priv)) {
7799 ironlake_disable_drps(dev_priv);
7800 }
7801
7802 dev_priv->rps.enabled = false;
7803 mutex_unlock(&dev_priv->rps.hw_lock);
7804 }
7805
7806 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
7807 {
7808 /* We shouldn't be disabling as we submit, so this should be less
7809 * racy than it appears!
7810 */
7811 if (READ_ONCE(dev_priv->rps.enabled))
7812 return;
7813
7814 /* Powersaving is controlled by the host when inside a VM */
7815 if (intel_vgpu_active(dev_priv))
7816 return;
7817
7818 mutex_lock(&dev_priv->rps.hw_lock);
7819
7820 if (IS_CHERRYVIEW(dev_priv)) {
7821 cherryview_enable_rps(dev_priv);
7822 } else if (IS_VALLEYVIEW(dev_priv)) {
7823 valleyview_enable_rps(dev_priv);
7824 } else if (INTEL_GEN(dev_priv) >= 9) {
7825 gen9_enable_rc6(dev_priv);
7826 gen9_enable_rps(dev_priv);
7827 if (IS_GEN9_BC(dev_priv))
7828 gen6_update_ring_freq(dev_priv);
7829 } else if (IS_BROADWELL(dev_priv)) {
7830 gen8_enable_rps(dev_priv);
7831 gen6_update_ring_freq(dev_priv);
7832 } else if (INTEL_GEN(dev_priv) >= 6) {
7833 gen6_enable_rps(dev_priv);
7834 gen6_update_ring_freq(dev_priv);
7835 } else if (IS_IRONLAKE_M(dev_priv)) {
7836 ironlake_enable_drps(dev_priv);
7837 intel_init_emon(dev_priv);
7838 }
7839
7840 WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
7841 WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
7842
7843 WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
7844 WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
7845
7846 dev_priv->rps.enabled = true;
7847 mutex_unlock(&dev_priv->rps.hw_lock);
7848 }
7849
7850 static void __intel_autoenable_gt_powersave(struct work_struct *work)
7851 {
7852 struct drm_i915_private *dev_priv =
7853 container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
7854 struct intel_engine_cs *rcs;
7855 struct drm_i915_gem_request *req;
7856
7857 if (READ_ONCE(dev_priv->rps.enabled))
7858 goto out;
7859
7860 rcs = dev_priv->engine[RCS];
7861 if (rcs->last_retired_context)
7862 goto out;
7863
7864 if (!rcs->init_context)
7865 goto out;
7866
7867 mutex_lock(&dev_priv->drm.struct_mutex);
7868
7869 req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
7870 if (IS_ERR(req))
7871 goto unlock;
7872
7873 if (!i915.enable_execlists && i915_switch_context(req) == 0)
7874 rcs->init_context(req);
7875
7876 /* Mark the device busy, calling intel_enable_gt_powersave() */
7877 i915_add_request(req);
7878
7879 unlock:
7880 mutex_unlock(&dev_priv->drm.struct_mutex);
7881 out:
7882 intel_runtime_pm_put(dev_priv);
7883 }
7884
7885 void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
7886 {
7887 if (READ_ONCE(dev_priv->rps.enabled))
7888 return;
7889
7890 if (IS_IRONLAKE_M(dev_priv)) {
7891 ironlake_enable_drps(dev_priv);
7892 intel_init_emon(dev_priv);
7893 } else if (INTEL_INFO(dev_priv)->gen >= 6) {
7894 /*
7895 * PCU communication is slow and this doesn't need to be
7896 * done at any specific time, so do this out of our fast path
7897 * to make resume and init faster.
7898 *
7899 * We depend on the HW RC6 power context save/restore
7900 * mechanism when entering D3 through runtime PM suspend. So
7901 * disable RPM until RPS/RC6 is properly setup. We can only
7902 * get here via the driver load/system resume/runtime resume
7903 * paths, so the _noresume version is enough (and in case of
7904 * runtime resume it's necessary).
7905 */
7906 if (queue_delayed_work(dev_priv->wq,
7907 &dev_priv->rps.autoenable_work,
7908 round_jiffies_up_relative(HZ)))
7909 intel_runtime_pm_get_noresume(dev_priv);
7910 }
7911 }
7912
7913 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
7914 {
7915 /*
7916 * On Ibex Peak and Cougar Point, we need to disable clock
7917 * gating for the panel power sequencer or it will fail to
7918 * start up when no ports are active.
7919 */
7920 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7921 }
7922
7923 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
7924 {
7925 enum pipe pipe;
7926
7927 for_each_pipe(dev_priv, pipe) {
7928 I915_WRITE(DSPCNTR(pipe),
7929 I915_READ(DSPCNTR(pipe)) |
7930 DISPPLANE_TRICKLE_FEED_DISABLE);
7931
7932 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
7933 POSTING_READ(DSPSURF(pipe));
7934 }
7935 }
7936
7937 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
7938 {
7939 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
7940 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
7941 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
7942
7943 /*
7944 * Don't touch WM1S_LP_EN here.
7945 * Doing so could cause underruns.
7946 */
7947 }
7948
7949 static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
7950 {
7951 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7952
7953 /*
7954 * Required for FBC
7955 * WaFbcDisableDpfcClockGating:ilk
7956 */
7957 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
7958 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
7959 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
7960
7961 I915_WRITE(PCH_3DCGDIS0,
7962 MARIUNIT_CLOCK_GATE_DISABLE |
7963 SVSMUNIT_CLOCK_GATE_DISABLE);
7964 I915_WRITE(PCH_3DCGDIS1,
7965 VFMUNIT_CLOCK_GATE_DISABLE);
7966
7967 /*
7968 * According to the spec the following bits should be set in
7969 * order to enable memory self-refresh
7970 * The bit 22/21 of 0x42004
7971 * The bit 5 of 0x42020
7972 * The bit 15 of 0x45000
7973 */
7974 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7975 (I915_READ(ILK_DISPLAY_CHICKEN2) |
7976 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7977 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
7978 I915_WRITE(DISP_ARB_CTL,
7979 (I915_READ(DISP_ARB_CTL) |
7980 DISP_FBC_WM_DIS));
7981
7982 ilk_init_lp_watermarks(dev_priv);
7983
7984 /*
7985 * Based on the document from hardware guys the following bits
7986 * should be set unconditionally in order to enable FBC.
7987 * The bit 22 of 0x42000
7988 * The bit 22 of 0x42004
7989 * The bit 7,8,9 of 0x42020.
7990 */
7991 if (IS_IRONLAKE_M(dev_priv)) {
7992 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
7993 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7994 I915_READ(ILK_DISPLAY_CHICKEN1) |
7995 ILK_FBCQ_DIS);
7996 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7997 I915_READ(ILK_DISPLAY_CHICKEN2) |
7998 ILK_DPARB_GATE);
7999 }
8000
8001 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8002
8003 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8004 I915_READ(ILK_DISPLAY_CHICKEN2) |
8005 ILK_ELPIN_409_SELECT);
8006 I915_WRITE(_3D_CHICKEN2,
8007 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8008 _3D_CHICKEN2_WM_READ_PIPELINED);
8009
8010 /* WaDisableRenderCachePipelinedFlush:ilk */
8011 I915_WRITE(CACHE_MODE_0,
8012 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8013
8014 /* WaDisable_RenderCache_OperationalFlush:ilk */
8015 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8016
8017 g4x_disable_trickle_feed(dev_priv);
8018
8019 ibx_init_clock_gating(dev_priv);
8020 }
8021
8022 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8023 {
8024 int pipe;
8025 uint32_t val;
8026
8027 /*
8028 * On Ibex Peak and Cougar Point, we need to disable clock
8029 * gating for the panel power sequencer or it will fail to
8030 * start up when no ports are active.
8031 */
8032 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
8033 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
8034 PCH_CPUNIT_CLOCK_GATE_DISABLE);
8035 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8036 DPLS_EDP_PPS_FIX_DIS);
8037 /* The below fixes the weird display corruption, a few pixels shifted
8038 * downward, on (only) LVDS of some HP laptops with IVY.
8039 */
8040 for_each_pipe(dev_priv, pipe) {
8041 val = I915_READ(TRANS_CHICKEN2(pipe));
8042 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
8043 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8044 if (dev_priv->vbt.fdi_rx_polarity_inverted)
8045 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8046 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
8047 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
8048 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8049 I915_WRITE(TRANS_CHICKEN2(pipe), val);
8050 }
8051 /* WADP0ClockGatingDisable */
8052 for_each_pipe(dev_priv, pipe) {
8053 I915_WRITE(TRANS_CHICKEN1(pipe),
8054 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8055 }
8056 }
8057
8058 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8059 {
8060 uint32_t tmp;
8061
8062 tmp = I915_READ(MCH_SSKPD);
8063 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
8064 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
8065 tmp);
8066 }
8067
8068 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8069 {
8070 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8071
8072 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8073
8074 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8075 I915_READ(ILK_DISPLAY_CHICKEN2) |
8076 ILK_ELPIN_409_SELECT);
8077
8078 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8079 I915_WRITE(_3D_CHICKEN,
8080 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
8081
8082 /* WaDisable_RenderCache_OperationalFlush:snb */
8083 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8084
8085 /*
8086 * BSpec recoomends 8x4 when MSAA is used,
8087 * however in practice 16x4 seems fastest.
8088 *
8089 * Note that PS/WM thread counts depend on the WIZ hashing
8090 * disable bit, which we don't touch here, but it's good
8091 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8092 */
8093 I915_WRITE(GEN6_GT_MODE,
8094 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8095
8096 ilk_init_lp_watermarks(dev_priv);
8097
8098 I915_WRITE(CACHE_MODE_0,
8099 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8100
8101 I915_WRITE(GEN6_UCGCTL1,
8102 I915_READ(GEN6_UCGCTL1) |
8103 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
8104 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8105
8106 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8107 * gating disable must be set. Failure to set it results in
8108 * flickering pixels due to Z write ordering failures after
8109 * some amount of runtime in the Mesa "fire" demo, and Unigine
8110 * Sanctuary and Tropics, and apparently anything else with
8111 * alpha test or pixel discard.
8112 *
8113 * According to the spec, bit 11 (RCCUNIT) must also be set,
8114 * but we didn't debug actual testcases to find it out.
8115 *
8116 * WaDisableRCCUnitClockGating:snb
8117 * WaDisableRCPBUnitClockGating:snb
8118 */
8119 I915_WRITE(GEN6_UCGCTL2,
8120 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8121 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8122
8123 /* WaStripsFansDisableFastClipPerformanceFix:snb */
8124 I915_WRITE(_3D_CHICKEN3,
8125 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8126
8127 /*
8128 * Bspec says:
8129 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
8130 * 3DSTATE_SF number of SF output attributes is more than 16."
8131 */
8132 I915_WRITE(_3D_CHICKEN3,
8133 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
8134
8135 /*
8136 * According to the spec the following bits should be
8137 * set in order to enable memory self-refresh and fbc:
8138 * The bit21 and bit22 of 0x42000
8139 * The bit21 and bit22 of 0x42004
8140 * The bit5 and bit7 of 0x42020
8141 * The bit14 of 0x70180
8142 * The bit14 of 0x71180
8143 *
8144 * WaFbcAsynchFlipDisableFbcQueue:snb
8145 */
8146 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8147 I915_READ(ILK_DISPLAY_CHICKEN1) |
8148 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8149 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8150 I915_READ(ILK_DISPLAY_CHICKEN2) |
8151 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8152 I915_WRITE(ILK_DSPCLK_GATE_D,
8153 I915_READ(ILK_DSPCLK_GATE_D) |
8154 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
8155 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8156
8157 g4x_disable_trickle_feed(dev_priv);
8158
8159 cpt_init_clock_gating(dev_priv);
8160
8161 gen6_check_mch_setup(dev_priv);
8162 }
8163
8164 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
8165 {
8166 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
8167
8168 /*
8169 * WaVSThreadDispatchOverride:ivb,vlv
8170 *
8171 * This actually overrides the dispatch
8172 * mode for all thread types.
8173 */
8174 reg &= ~GEN7_FF_SCHED_MASK;
8175 reg |= GEN7_FF_TS_SCHED_HW;
8176 reg |= GEN7_FF_VS_SCHED_HW;
8177 reg |= GEN7_FF_DS_SCHED_HW;
8178
8179 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
8180 }
8181
8182 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8183 {
8184 /*
8185 * TODO: this bit should only be enabled when really needed, then
8186 * disabled when not needed anymore in order to save power.
8187 */
8188 if (HAS_PCH_LPT_LP(dev_priv))
8189 I915_WRITE(SOUTH_DSPCLK_GATE_D,
8190 I915_READ(SOUTH_DSPCLK_GATE_D) |
8191 PCH_LP_PARTITION_LEVEL_DISABLE);
8192
8193 /* WADPOClockGatingDisable:hsw */
8194 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
8195 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8196 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8197 }
8198
8199 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8200 {
8201 if (HAS_PCH_LPT_LP(dev_priv)) {
8202 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
8203
8204 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8205 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8206 }
8207 }
8208
8209 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
8210 int general_prio_credits,
8211 int high_prio_credits)
8212 {
8213 u32 misccpctl;
8214
8215 /* WaTempDisableDOPClkGating:bdw */
8216 misccpctl = I915_READ(GEN7_MISCCPCTL);
8217 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
8218
8219 I915_WRITE(GEN8_L3SQCREG1,
8220 L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
8221 L3_HIGH_PRIO_CREDITS(high_prio_credits));
8222
8223 /*
8224 * Wait at least 100 clocks before re-enabling clock gating.
8225 * See the definition of L3SQCREG1 in BSpec.
8226 */
8227 POSTING_READ(GEN8_L3SQCREG1);
8228 udelay(1);
8229 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
8230 }
8231
8232 static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
8233 {
8234 gen9_init_clock_gating(dev_priv);
8235
8236 /* WaDisableSDEUnitClockGating:kbl */
8237 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8238 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8239 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8240
8241 /* WaDisableGamClockGating:kbl */
8242 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8243 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
8244 GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8245
8246 /* WaFbcNukeOnHostModify:kbl,cfl */
8247 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8248 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8249 }
8250
8251 static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
8252 {
8253 gen9_init_clock_gating(dev_priv);
8254
8255 /* WAC6entrylatency:skl */
8256 I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
8257 FBC_LLC_FULLY_OPEN);
8258
8259 /* WaFbcNukeOnHostModify:skl */
8260 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8261 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8262 }
8263
8264 static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
8265 {
8266 enum pipe pipe;
8267
8268 ilk_init_lp_watermarks(dev_priv);
8269
8270 /* WaSwitchSolVfFArbitrationPriority:bdw */
8271 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8272
8273 /* WaPsrDPAMaskVBlankInSRD:bdw */
8274 I915_WRITE(CHICKEN_PAR1_1,
8275 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
8276
8277 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8278 for_each_pipe(dev_priv, pipe) {
8279 I915_WRITE(CHICKEN_PIPESL_1(pipe),
8280 I915_READ(CHICKEN_PIPESL_1(pipe)) |
8281 BDW_DPRS_MASK_VBLANK_SRD);
8282 }
8283
8284 /* WaVSRefCountFullforceMissDisable:bdw */
8285 /* WaDSRefCountFullforceMissDisable:bdw */
8286 I915_WRITE(GEN7_FF_THREAD_MODE,
8287 I915_READ(GEN7_FF_THREAD_MODE) &
8288 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8289
8290 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
8291 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8292
8293 /* WaDisableSDEUnitClockGating:bdw */
8294 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8295 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8296
8297 /* WaProgramL3SqcReg1Default:bdw */
8298 gen8_set_l3sqc_credits(dev_priv, 30, 2);
8299
8300 /*
8301 * WaGttCachingOffByDefault:bdw
8302 * GTT cache may not work with big pages, so if those
8303 * are ever enabled GTT cache may need to be disabled.
8304 */
8305 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
8306
8307 /* WaKVMNotificationOnConfigChange:bdw */
8308 I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
8309 | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
8310
8311 lpt_init_clock_gating(dev_priv);
8312
8313 /* WaDisableDopClockGating:bdw
8314 *
8315 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
8316 * clock gating.
8317 */
8318 I915_WRITE(GEN6_UCGCTL1,
8319 I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
8320 }
8321
8322 static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
8323 {
8324 ilk_init_lp_watermarks(dev_priv);
8325
8326 /* L3 caching of data atomics doesn't work -- disable it. */
8327 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
8328 I915_WRITE(HSW_ROW_CHICKEN3,
8329 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
8330
8331 /* This is required by WaCatErrorRejectionIssue:hsw */
8332 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8333 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8334 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8335
8336 /* WaVSRefCountFullforceMissDisable:hsw */
8337 I915_WRITE(GEN7_FF_THREAD_MODE,
8338 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8339
8340 /* WaDisable_RenderCache_OperationalFlush:hsw */
8341 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8342
8343 /* enable HiZ Raw Stall Optimization */
8344 I915_WRITE(CACHE_MODE_0_GEN7,
8345 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8346
8347 /* WaDisable4x2SubspanOptimization:hsw */
8348 I915_WRITE(CACHE_MODE_1,
8349 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8350
8351 /*
8352 * BSpec recommends 8x4 when MSAA is used,
8353 * however in practice 16x4 seems fastest.
8354 *
8355 * Note that PS/WM thread counts depend on the WIZ hashing
8356 * disable bit, which we don't touch here, but it's good
8357 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8358 */
8359 I915_WRITE(GEN7_GT_MODE,
8360 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8361
8362 /* WaSampleCChickenBitEnable:hsw */
8363 I915_WRITE(HALF_SLICE_CHICKEN3,
8364 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
8365
8366 /* WaSwitchSolVfFArbitrationPriority:hsw */
8367 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8368
8369 /* WaRsPkgCStateDisplayPMReq:hsw */
8370 I915_WRITE(CHICKEN_PAR1_1,
8371 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
8372
8373 lpt_init_clock_gating(dev_priv);
8374 }
8375
8376 static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
8377 {
8378 uint32_t snpcr;
8379
8380 ilk_init_lp_watermarks(dev_priv);
8381
8382 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8383
8384 /* WaDisableEarlyCull:ivb */
8385 I915_WRITE(_3D_CHICKEN3,
8386 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8387
8388 /* WaDisableBackToBackFlipFix:ivb */
8389 I915_WRITE(IVB_CHICKEN3,
8390 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8391 CHICKEN3_DGMG_DONE_FIX_DISABLE);
8392
8393 /* WaDisablePSDDualDispatchEnable:ivb */
8394 if (IS_IVB_GT1(dev_priv))
8395 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8396 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8397
8398 /* WaDisable_RenderCache_OperationalFlush:ivb */
8399 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8400
8401 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8402 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8403 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8404
8405 /* WaApplyL3ControlAndL3ChickenMode:ivb */
8406 I915_WRITE(GEN7_L3CNTLREG1,
8407 GEN7_WA_FOR_GEN7_L3_CONTROL);
8408 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8409 GEN7_WA_L3_CHICKEN_MODE);
8410 if (IS_IVB_GT1(dev_priv))
8411 I915_WRITE(GEN7_ROW_CHICKEN2,
8412 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8413 else {
8414 /* must write both registers */
8415 I915_WRITE(GEN7_ROW_CHICKEN2,
8416 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8417 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
8418 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8419 }
8420
8421 /* WaForceL3Serialization:ivb */
8422 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
8423 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
8424
8425 /*
8426 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8427 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8428 */
8429 I915_WRITE(GEN6_UCGCTL2,
8430 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8431
8432 /* This is required by WaCatErrorRejectionIssue:ivb */
8433 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8434 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8435 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8436
8437 g4x_disable_trickle_feed(dev_priv);
8438
8439 gen7_setup_fixed_func_scheduler(dev_priv);
8440
8441 if (0) { /* causes HiZ corruption on ivb:gt1 */
8442 /* enable HiZ Raw Stall Optimization */
8443 I915_WRITE(CACHE_MODE_0_GEN7,
8444 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8445 }
8446
8447 /* WaDisable4x2SubspanOptimization:ivb */
8448 I915_WRITE(CACHE_MODE_1,
8449 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8450
8451 /*
8452 * BSpec recommends 8x4 when MSAA is used,
8453 * however in practice 16x4 seems fastest.
8454 *
8455 * Note that PS/WM thread counts depend on the WIZ hashing
8456 * disable bit, which we don't touch here, but it's good
8457 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8458 */
8459 I915_WRITE(GEN7_GT_MODE,
8460 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8461
8462 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
8463 snpcr &= ~GEN6_MBC_SNPCR_MASK;
8464 snpcr |= GEN6_MBC_SNPCR_MED;
8465 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
8466
8467 if (!HAS_PCH_NOP(dev_priv))
8468 cpt_init_clock_gating(dev_priv);
8469
8470 gen6_check_mch_setup(dev_priv);
8471 }
8472
8473 static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
8474 {
8475 /* WaDisableEarlyCull:vlv */
8476 I915_WRITE(_3D_CHICKEN3,
8477 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8478
8479 /* WaDisableBackToBackFlipFix:vlv */
8480 I915_WRITE(IVB_CHICKEN3,
8481 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8482 CHICKEN3_DGMG_DONE_FIX_DISABLE);
8483
8484 /* WaPsdDispatchEnable:vlv */
8485 /* WaDisablePSDDualDispatchEnable:vlv */
8486 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8487 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
8488 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8489
8490 /* WaDisable_RenderCache_OperationalFlush:vlv */
8491 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8492
8493 /* WaForceL3Serialization:vlv */
8494 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
8495 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
8496
8497 /* WaDisableDopClockGating:vlv */
8498 I915_WRITE(GEN7_ROW_CHICKEN2,
8499 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8500
8501 /* This is required by WaCatErrorRejectionIssue:vlv */
8502 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8503 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8504 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8505
8506 gen7_setup_fixed_func_scheduler(dev_priv);
8507
8508 /*
8509 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8510 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
8511 */
8512 I915_WRITE(GEN6_UCGCTL2,
8513 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8514
8515 /* WaDisableL3Bank2xClockGate:vlv
8516 * Disabling L3 clock gating- MMIO 940c[25] = 1
8517 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
8518 I915_WRITE(GEN7_UCGCTL4,
8519 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
8520
8521 /*
8522 * BSpec says this must be set, even though
8523 * WaDisable4x2SubspanOptimization isn't listed for VLV.
8524 */
8525 I915_WRITE(CACHE_MODE_1,
8526 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8527
8528 /*
8529 * BSpec recommends 8x4 when MSAA is used,
8530 * however in practice 16x4 seems fastest.
8531 *
8532 * Note that PS/WM thread counts depend on the WIZ hashing
8533 * disable bit, which we don't touch here, but it's good
8534 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8535 */
8536 I915_WRITE(GEN7_GT_MODE,
8537 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8538
8539 /*
8540 * WaIncreaseL3CreditsForVLVB0:vlv
8541 * This is the hardware default actually.
8542 */
8543 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
8544
8545 /*
8546 * WaDisableVLVClockGating_VBIIssue:vlv
8547 * Disable clock gating on th GCFG unit to prevent a delay
8548 * in the reporting of vblank events.
8549 */
8550 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
8551 }
8552
8553 static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
8554 {
8555 /* WaVSRefCountFullforceMissDisable:chv */
8556 /* WaDSRefCountFullforceMissDisable:chv */
8557 I915_WRITE(GEN7_FF_THREAD_MODE,
8558 I915_READ(GEN7_FF_THREAD_MODE) &
8559 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8560
8561 /* WaDisableSemaphoreAndSyncFlipWait:chv */
8562 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
8563 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8564
8565 /* WaDisableCSUnitClockGating:chv */
8566 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
8567 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8568
8569 /* WaDisableSDEUnitClockGating:chv */
8570 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8571 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8572
8573 /*
8574 * WaProgramL3SqcReg1Default:chv
8575 * See gfxspecs/Related Documents/Performance Guide/
8576 * LSQC Setting Recommendations.
8577 */
8578 gen8_set_l3sqc_credits(dev_priv, 38, 2);
8579
8580 /*
8581 * GTT cache may not work with big pages, so if those
8582 * are ever enabled GTT cache may need to be disabled.
8583 */
8584 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
8585 }
8586
8587 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
8588 {
8589 uint32_t dspclk_gate;
8590
8591 I915_WRITE(RENCLK_GATE_D1, 0);
8592 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8593 GS_UNIT_CLOCK_GATE_DISABLE |
8594 CL_UNIT_CLOCK_GATE_DISABLE);
8595 I915_WRITE(RAMCLK_GATE_D, 0);
8596 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8597 OVRUNIT_CLOCK_GATE_DISABLE |
8598 OVCUNIT_CLOCK_GATE_DISABLE;
8599 if (IS_GM45(dev_priv))
8600 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8601 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8602
8603 /* WaDisableRenderCachePipelinedFlush */
8604 I915_WRITE(CACHE_MODE_0,
8605 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8606
8607 /* WaDisable_RenderCache_OperationalFlush:g4x */
8608 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8609
8610 g4x_disable_trickle_feed(dev_priv);
8611 }
8612
8613 static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
8614 {
8615 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8616 I915_WRITE(RENCLK_GATE_D2, 0);
8617 I915_WRITE(DSPCLK_GATE_D, 0);
8618 I915_WRITE(RAMCLK_GATE_D, 0);
8619 I915_WRITE16(DEUC, 0);
8620 I915_WRITE(MI_ARB_STATE,
8621 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8622
8623 /* WaDisable_RenderCache_OperationalFlush:gen4 */
8624 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8625 }
8626
8627 static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
8628 {
8629 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8630 I965_RCC_CLOCK_GATE_DISABLE |
8631 I965_RCPB_CLOCK_GATE_DISABLE |
8632 I965_ISC_CLOCK_GATE_DISABLE |
8633 I965_FBC_CLOCK_GATE_DISABLE);
8634 I915_WRITE(RENCLK_GATE_D2, 0);
8635 I915_WRITE(MI_ARB_STATE,
8636 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8637
8638 /* WaDisable_RenderCache_OperationalFlush:gen4 */
8639 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8640 }
8641
8642 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
8643 {
8644 u32 dstate = I915_READ(D_STATE);
8645
8646 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8647 DSTATE_DOT_CLOCK_GATING;
8648 I915_WRITE(D_STATE, dstate);
8649
8650 if (IS_PINEVIEW(dev_priv))
8651 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
8652
8653 /* IIR "flip pending" means done if this bit is set */
8654 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
8655
8656 /* interrupts should cause a wake up from C3 */
8657 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
8658
8659 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
8660 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
8661
8662 I915_WRITE(MI_ARB_STATE,
8663 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8664 }
8665
8666 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
8667 {
8668 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8669
8670 /* interrupts should cause a wake up from C3 */
8671 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
8672 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
8673
8674 I915_WRITE(MEM_MODE,
8675 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
8676 }
8677
8678 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
8679 {
8680 I915_WRITE(MEM_MODE,
8681 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
8682 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
8683 }
8684
8685 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
8686 {
8687 dev_priv->display.init_clock_gating(dev_priv);
8688 }
8689
8690 void intel_suspend_hw(struct drm_i915_private *dev_priv)
8691 {
8692 if (HAS_PCH_LPT(dev_priv))
8693 lpt_suspend_hw(dev_priv);
8694 }
8695
8696 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
8697 {
8698 DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
8699 }
8700
8701 /**
8702 * intel_init_clock_gating_hooks - setup the clock gating hooks
8703 * @dev_priv: device private
8704 *
8705 * Setup the hooks that configure which clocks of a given platform can be
8706 * gated and also apply various GT and display specific workarounds for these
8707 * platforms. Note that some GT specific workarounds are applied separately
8708 * when GPU contexts or batchbuffers start their execution.
8709 */
8710 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
8711 {
8712 if (IS_SKYLAKE(dev_priv))
8713 dev_priv->display.init_clock_gating = skylake_init_clock_gating;
8714 else if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
8715 dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
8716 else if (IS_BROXTON(dev_priv))
8717 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
8718 else if (IS_GEMINILAKE(dev_priv))
8719 dev_priv->display.init_clock_gating = glk_init_clock_gating;
8720 else if (IS_BROADWELL(dev_priv))
8721 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
8722 else if (IS_CHERRYVIEW(dev_priv))
8723 dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
8724 else if (IS_HASWELL(dev_priv))
8725 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
8726 else if (IS_IVYBRIDGE(dev_priv))
8727 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
8728 else if (IS_VALLEYVIEW(dev_priv))
8729 dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
8730 else if (IS_GEN6(dev_priv))
8731 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
8732 else if (IS_GEN5(dev_priv))
8733 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
8734 else if (IS_G4X(dev_priv))
8735 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8736 else if (IS_I965GM(dev_priv))
8737 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8738 else if (IS_I965G(dev_priv))
8739 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8740 else if (IS_GEN3(dev_priv))
8741 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8742 else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
8743 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8744 else if (IS_GEN2(dev_priv))
8745 dev_priv->display.init_clock_gating = i830_init_clock_gating;
8746 else {
8747 MISSING_CASE(INTEL_DEVID(dev_priv));
8748 dev_priv->display.init_clock_gating = nop_init_clock_gating;
8749 }
8750 }
8751
8752 /* Set up chip specific power management-related functions */
8753 void intel_init_pm(struct drm_i915_private *dev_priv)
8754 {
8755 intel_fbc_init(dev_priv);
8756
8757 /* For cxsr */
8758 if (IS_PINEVIEW(dev_priv))
8759 i915_pineview_get_mem_freq(dev_priv);
8760 else if (IS_GEN5(dev_priv))
8761 i915_ironlake_get_mem_freq(dev_priv);
8762
8763 /* For FIFO watermark updates */
8764 if (INTEL_GEN(dev_priv) >= 9) {
8765 skl_setup_wm_latency(dev_priv);
8766 dev_priv->display.initial_watermarks = skl_initial_wm;
8767 dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
8768 dev_priv->display.compute_global_watermarks = skl_compute_wm;
8769 } else if (HAS_PCH_SPLIT(dev_priv)) {
8770 ilk_setup_wm_latency(dev_priv);
8771
8772 if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
8773 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
8774 (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
8775 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
8776 dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
8777 dev_priv->display.compute_intermediate_wm =
8778 ilk_compute_intermediate_wm;
8779 dev_priv->display.initial_watermarks =
8780 ilk_initial_watermarks;
8781 dev_priv->display.optimize_watermarks =
8782 ilk_optimize_watermarks;
8783 } else {
8784 DRM_DEBUG_KMS("Failed to read display plane latency. "
8785 "Disable CxSR\n");
8786 }
8787 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8788 vlv_setup_wm_latency(dev_priv);
8789 dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
8790 dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
8791 dev_priv->display.initial_watermarks = vlv_initial_watermarks;
8792 dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
8793 dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
8794 } else if (IS_G4X(dev_priv)) {
8795 g4x_setup_wm_latency(dev_priv);
8796 dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
8797 dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
8798 dev_priv->display.initial_watermarks = g4x_initial_watermarks;
8799 dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
8800 } else if (IS_PINEVIEW(dev_priv)) {
8801 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
8802 dev_priv->is_ddr3,
8803 dev_priv->fsb_freq,
8804 dev_priv->mem_freq)) {
8805 DRM_INFO("failed to find known CxSR latency "
8806 "(found ddr%s fsb freq %d, mem freq %d), "
8807 "disabling CxSR\n",
8808 (dev_priv->is_ddr3 == 1) ? "3" : "2",
8809 dev_priv->fsb_freq, dev_priv->mem_freq);
8810 /* Disable CxSR and never update its watermark again */
8811 intel_set_memory_cxsr(dev_priv, false);
8812 dev_priv->display.update_wm = NULL;
8813 } else
8814 dev_priv->display.update_wm = pineview_update_wm;
8815 } else if (IS_GEN4(dev_priv)) {
8816 dev_priv->display.update_wm = i965_update_wm;
8817 } else if (IS_GEN3(dev_priv)) {
8818 dev_priv->display.update_wm = i9xx_update_wm;
8819 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8820 } else if (IS_GEN2(dev_priv)) {
8821 if (INTEL_INFO(dev_priv)->num_pipes == 1) {
8822 dev_priv->display.update_wm = i845_update_wm;
8823 dev_priv->display.get_fifo_size = i845_get_fifo_size;
8824 } else {
8825 dev_priv->display.update_wm = i9xx_update_wm;
8826 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8827 }
8828 } else {
8829 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
8830 }
8831 }
8832
8833 static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
8834 {
8835 uint32_t flags =
8836 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
8837
8838 switch (flags) {
8839 case GEN6_PCODE_SUCCESS:
8840 return 0;
8841 case GEN6_PCODE_UNIMPLEMENTED_CMD:
8842 case GEN6_PCODE_ILLEGAL_CMD:
8843 return -ENXIO;
8844 case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8845 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8846 return -EOVERFLOW;
8847 case GEN6_PCODE_TIMEOUT:
8848 return -ETIMEDOUT;
8849 default:
8850 MISSING_CASE(flags);
8851 return 0;
8852 }
8853 }
8854
8855 static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
8856 {
8857 uint32_t flags =
8858 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
8859
8860 switch (flags) {
8861 case GEN6_PCODE_SUCCESS:
8862 return 0;
8863 case GEN6_PCODE_ILLEGAL_CMD:
8864 return -ENXIO;
8865 case GEN7_PCODE_TIMEOUT:
8866 return -ETIMEDOUT;
8867 case GEN7_PCODE_ILLEGAL_DATA:
8868 return -EINVAL;
8869 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8870 return -EOVERFLOW;
8871 default:
8872 MISSING_CASE(flags);
8873 return 0;
8874 }
8875 }
8876
8877 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
8878 {
8879 int status;
8880
8881 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
8882
8883 /* GEN6_PCODE_* are outside of the forcewake domain, we can
8884 * use te fw I915_READ variants to reduce the amount of work
8885 * required when reading/writing.
8886 */
8887
8888 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
8889 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
8890 return -EAGAIN;
8891 }
8892
8893 I915_WRITE_FW(GEN6_PCODE_DATA, *val);
8894 I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
8895 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
8896
8897 if (__intel_wait_for_register_fw(dev_priv,
8898 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
8899 500, 0, NULL)) {
8900 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
8901 return -ETIMEDOUT;
8902 }
8903
8904 *val = I915_READ_FW(GEN6_PCODE_DATA);
8905 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
8906
8907 if (INTEL_GEN(dev_priv) > 6)
8908 status = gen7_check_mailbox_status(dev_priv);
8909 else
8910 status = gen6_check_mailbox_status(dev_priv);
8911
8912 if (status) {
8913 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
8914 status);
8915 return status;
8916 }
8917
8918 return 0;
8919 }
8920
8921 int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
8922 u32 mbox, u32 val)
8923 {
8924 int status;
8925
8926 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
8927
8928 /* GEN6_PCODE_* are outside of the forcewake domain, we can
8929 * use te fw I915_READ variants to reduce the amount of work
8930 * required when reading/writing.
8931 */
8932
8933 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
8934 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
8935 return -EAGAIN;
8936 }
8937
8938 I915_WRITE_FW(GEN6_PCODE_DATA, val);
8939 I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
8940 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
8941
8942 if (__intel_wait_for_register_fw(dev_priv,
8943 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
8944 500, 0, NULL)) {
8945 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
8946 return -ETIMEDOUT;
8947 }
8948
8949 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
8950
8951 if (INTEL_GEN(dev_priv) > 6)
8952 status = gen7_check_mailbox_status(dev_priv);
8953 else
8954 status = gen6_check_mailbox_status(dev_priv);
8955
8956 if (status) {
8957 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
8958 status);
8959 return status;
8960 }
8961
8962 return 0;
8963 }
8964
8965 static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
8966 u32 request, u32 reply_mask, u32 reply,
8967 u32 *status)
8968 {
8969 u32 val = request;
8970
8971 *status = sandybridge_pcode_read(dev_priv, mbox, &val);
8972
8973 return *status || ((val & reply_mask) == reply);
8974 }
8975
8976 /**
8977 * skl_pcode_request - send PCODE request until acknowledgment
8978 * @dev_priv: device private
8979 * @mbox: PCODE mailbox ID the request is targeted for
8980 * @request: request ID
8981 * @reply_mask: mask used to check for request acknowledgment
8982 * @reply: value used to check for request acknowledgment
8983 * @timeout_base_ms: timeout for polling with preemption enabled
8984 *
8985 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
8986 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
8987 * The request is acknowledged once the PCODE reply dword equals @reply after
8988 * applying @reply_mask. Polling is first attempted with preemption enabled
8989 * for @timeout_base_ms and if this times out for another 50 ms with
8990 * preemption disabled.
8991 *
8992 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
8993 * other error as reported by PCODE.
8994 */
8995 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
8996 u32 reply_mask, u32 reply, int timeout_base_ms)
8997 {
8998 u32 status;
8999 int ret;
9000
9001 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
9002
9003 #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
9004 &status)
9005
9006 /*
9007 * Prime the PCODE by doing a request first. Normally it guarantees
9008 * that a subsequent request, at most @timeout_base_ms later, succeeds.
9009 * _wait_for() doesn't guarantee when its passed condition is evaluated
9010 * first, so send the first request explicitly.
9011 */
9012 if (COND) {
9013 ret = 0;
9014 goto out;
9015 }
9016 ret = _wait_for(COND, timeout_base_ms * 1000, 10);
9017 if (!ret)
9018 goto out;
9019
9020 /*
9021 * The above can time out if the number of requests was low (2 in the
9022 * worst case) _and_ PCODE was busy for some reason even after a
9023 * (queued) request and @timeout_base_ms delay. As a workaround retry
9024 * the poll with preemption disabled to maximize the number of
9025 * requests. Increase the timeout from @timeout_base_ms to 50ms to
9026 * account for interrupts that could reduce the number of these
9027 * requests, and for any quirks of the PCODE firmware that delays
9028 * the request completion.
9029 */
9030 DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
9031 WARN_ON_ONCE(timeout_base_ms > 3);
9032 preempt_disable();
9033 ret = wait_for_atomic(COND, 50);
9034 preempt_enable();
9035
9036 out:
9037 return ret ? ret : status;
9038 #undef COND
9039 }
9040
9041 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
9042 {
9043 /*
9044 * N = val - 0xb7
9045 * Slow = Fast = GPLL ref * N
9046 */
9047 return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
9048 }
9049
9050 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9051 {
9052 return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
9053 }
9054
9055 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9056 {
9057 /*
9058 * N = val / 2
9059 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
9060 */
9061 return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
9062 }
9063
9064 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9065 {
9066 /* CHV needs even values */
9067 return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
9068 }
9069
9070 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9071 {
9072 if (IS_GEN9(dev_priv))
9073 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
9074 GEN9_FREQ_SCALER);
9075 else if (IS_CHERRYVIEW(dev_priv))
9076 return chv_gpu_freq(dev_priv, val);
9077 else if (IS_VALLEYVIEW(dev_priv))
9078 return byt_gpu_freq(dev_priv, val);
9079 else
9080 return val * GT_FREQUENCY_MULTIPLIER;
9081 }
9082
9083 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
9084 {
9085 if (IS_GEN9(dev_priv))
9086 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
9087 GT_FREQUENCY_MULTIPLIER);
9088 else if (IS_CHERRYVIEW(dev_priv))
9089 return chv_freq_opcode(dev_priv, val);
9090 else if (IS_VALLEYVIEW(dev_priv))
9091 return byt_freq_opcode(dev_priv, val);
9092 else
9093 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9094 }
9095
9096 struct request_boost {
9097 struct work_struct work;
9098 struct drm_i915_gem_request *req;
9099 };
9100
9101 static void __intel_rps_boost_work(struct work_struct *work)
9102 {
9103 struct request_boost *boost = container_of(work, struct request_boost, work);
9104 struct drm_i915_gem_request *req = boost->req;
9105
9106 if (!i915_gem_request_completed(req))
9107 gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
9108
9109 i915_gem_request_put(req);
9110 kfree(boost);
9111 }
9112
9113 void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
9114 {
9115 struct request_boost *boost;
9116
9117 if (req == NULL || INTEL_GEN(req->i915) < 6)
9118 return;
9119
9120 if (i915_gem_request_completed(req))
9121 return;
9122
9123 boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
9124 if (boost == NULL)
9125 return;
9126
9127 boost->req = i915_gem_request_get(req);
9128
9129 INIT_WORK(&boost->work, __intel_rps_boost_work);
9130 queue_work(req->i915->wq, &boost->work);
9131 }
9132
9133 void intel_pm_setup(struct drm_i915_private *dev_priv)
9134 {
9135 mutex_init(&dev_priv->rps.hw_lock);
9136 spin_lock_init(&dev_priv->rps.client_lock);
9137
9138 INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
9139 __intel_autoenable_gt_powersave);
9140 INIT_LIST_HEAD(&dev_priv->rps.clients);
9141
9142 dev_priv->pm.suspended = false;
9143 atomic_set(&dev_priv->pm.wakeref_count, 0);
9144 }
9145
9146 static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
9147 const i915_reg_t reg)
9148 {
9149 u32 lower, upper, tmp;
9150 int loop = 2;
9151
9152 /* The register accessed do not need forcewake. We borrow
9153 * uncore lock to prevent concurrent access to range reg.
9154 */
9155 spin_lock_irq(&dev_priv->uncore.lock);
9156
9157 /* vlv and chv residency counters are 40 bits in width.
9158 * With a control bit, we can choose between upper or lower
9159 * 32bit window into this counter.
9160 *
9161 * Although we always use the counter in high-range mode elsewhere,
9162 * userspace may attempt to read the value before rc6 is initialised,
9163 * before we have set the default VLV_COUNTER_CONTROL value. So always
9164 * set the high bit to be safe.
9165 */
9166 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9167 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9168 upper = I915_READ_FW(reg);
9169 do {
9170 tmp = upper;
9171
9172 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9173 _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
9174 lower = I915_READ_FW(reg);
9175
9176 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9177 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9178 upper = I915_READ_FW(reg);
9179 } while (upper != tmp && --loop);
9180
9181 /* Everywhere else we always use VLV_COUNTER_CONTROL with the
9182 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
9183 * now.
9184 */
9185
9186 spin_unlock_irq(&dev_priv->uncore.lock);
9187
9188 return lower | (u64)upper << 8;
9189 }
9190
9191 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
9192 const i915_reg_t reg)
9193 {
9194 u64 time_hw, units, div;
9195
9196 if (!intel_enable_rc6())
9197 return 0;
9198
9199 intel_runtime_pm_get(dev_priv);
9200
9201 /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
9202 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9203 units = 1000;
9204 div = dev_priv->czclk_freq;
9205
9206 time_hw = vlv_residency_raw(dev_priv, reg);
9207 } else if (IS_GEN9_LP(dev_priv)) {
9208 units = 1000;
9209 div = 1200; /* 833.33ns */
9210
9211 time_hw = I915_READ(reg);
9212 } else {
9213 units = 128000; /* 1.28us */
9214 div = 100000;
9215
9216 time_hw = I915_READ(reg);
9217 }
9218
9219 intel_runtime_pm_put(dev_priv);
9220 return DIV_ROUND_UP_ULL(time_hw * units, div);
9221 }