]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_pm.c
ASoC: wm_adsp: add support for DSP region lock
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34 #include <drm/drm_atomic_helper.h>
35
36 /**
37 * DOC: RC6
38 *
39 * RC6 is a special power stage which allows the GPU to enter an very
40 * low-voltage mode when idle, using down to 0V while at this stage. This
41 * stage is entered automatically when the GPU is idle when RC6 support is
42 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
43 *
44 * There are different RC6 modes available in Intel GPU, which differentiate
45 * among each other with the latency required to enter and leave RC6 and
46 * voltage consumed by the GPU in different states.
47 *
48 * The combination of the following flags define which states GPU is allowed
49 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
50 * RC6pp is deepest RC6. Their support by hardware varies according to the
51 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
52 * which brings the most power savings; deeper states save more power, but
53 * require higher latency to switch to and wake up.
54 */
55 #define INTEL_RC6_ENABLE (1<<0)
56 #define INTEL_RC6p_ENABLE (1<<1)
57 #define INTEL_RC6pp_ENABLE (1<<2)
58
59 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60 {
61 /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
62 I915_WRITE(CHICKEN_PAR1_1,
63 I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
64
65 I915_WRITE(GEN8_CONFIG0,
66 I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67
68 /* WaEnableChickenDCPR:skl,bxt,kbl */
69 I915_WRITE(GEN8_CHICKEN_DCPR_1,
70 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71
72 /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
73 /* WaFbcWakeMemOn:skl,bxt,kbl */
74 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
75 DISP_FBC_WM_DIS |
76 DISP_FBC_MEMORY_WAKE);
77
78 /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
79 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
80 ILK_DPFC_DISABLE_DUMMY0);
81 }
82
83 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
84 {
85 gen9_init_clock_gating(dev_priv);
86
87 /* WaDisableSDEUnitClockGating:bxt */
88 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
89 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
90
91 /*
92 * FIXME:
93 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
94 */
95 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
96 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
97
98 /*
99 * Wa: Backlight PWM may stop in the asserted state, causing backlight
100 * to stay fully on.
101 */
102 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
103 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
104 PWM1_GATING_DIS | PWM2_GATING_DIS);
105 }
106
107 static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
108 {
109 u32 tmp;
110
111 tmp = I915_READ(CLKCFG);
112
113 switch (tmp & CLKCFG_FSB_MASK) {
114 case CLKCFG_FSB_533:
115 dev_priv->fsb_freq = 533; /* 133*4 */
116 break;
117 case CLKCFG_FSB_800:
118 dev_priv->fsb_freq = 800; /* 200*4 */
119 break;
120 case CLKCFG_FSB_667:
121 dev_priv->fsb_freq = 667; /* 167*4 */
122 break;
123 case CLKCFG_FSB_400:
124 dev_priv->fsb_freq = 400; /* 100*4 */
125 break;
126 }
127
128 switch (tmp & CLKCFG_MEM_MASK) {
129 case CLKCFG_MEM_533:
130 dev_priv->mem_freq = 533;
131 break;
132 case CLKCFG_MEM_667:
133 dev_priv->mem_freq = 667;
134 break;
135 case CLKCFG_MEM_800:
136 dev_priv->mem_freq = 800;
137 break;
138 }
139
140 /* detect pineview DDR3 setting */
141 tmp = I915_READ(CSHRDDR3CTL);
142 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
143 }
144
145 static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
146 {
147 u16 ddrpll, csipll;
148
149 ddrpll = I915_READ16(DDRMPLL1);
150 csipll = I915_READ16(CSIPLL0);
151
152 switch (ddrpll & 0xff) {
153 case 0xc:
154 dev_priv->mem_freq = 800;
155 break;
156 case 0x10:
157 dev_priv->mem_freq = 1066;
158 break;
159 case 0x14:
160 dev_priv->mem_freq = 1333;
161 break;
162 case 0x18:
163 dev_priv->mem_freq = 1600;
164 break;
165 default:
166 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
167 ddrpll & 0xff);
168 dev_priv->mem_freq = 0;
169 break;
170 }
171
172 dev_priv->ips.r_t = dev_priv->mem_freq;
173
174 switch (csipll & 0x3ff) {
175 case 0x00c:
176 dev_priv->fsb_freq = 3200;
177 break;
178 case 0x00e:
179 dev_priv->fsb_freq = 3733;
180 break;
181 case 0x010:
182 dev_priv->fsb_freq = 4266;
183 break;
184 case 0x012:
185 dev_priv->fsb_freq = 4800;
186 break;
187 case 0x014:
188 dev_priv->fsb_freq = 5333;
189 break;
190 case 0x016:
191 dev_priv->fsb_freq = 5866;
192 break;
193 case 0x018:
194 dev_priv->fsb_freq = 6400;
195 break;
196 default:
197 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
198 csipll & 0x3ff);
199 dev_priv->fsb_freq = 0;
200 break;
201 }
202
203 if (dev_priv->fsb_freq == 3200) {
204 dev_priv->ips.c_m = 0;
205 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
206 dev_priv->ips.c_m = 1;
207 } else {
208 dev_priv->ips.c_m = 2;
209 }
210 }
211
212 static const struct cxsr_latency cxsr_latency_table[] = {
213 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
214 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
215 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
216 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
217 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
218
219 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
220 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
221 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
222 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
223 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
224
225 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
226 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
227 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
228 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
229 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
230
231 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
232 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
233 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
234 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
235 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
236
237 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
238 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
239 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
240 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
241 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
242
243 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
244 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
245 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
246 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
247 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
248 };
249
250 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
251 bool is_ddr3,
252 int fsb,
253 int mem)
254 {
255 const struct cxsr_latency *latency;
256 int i;
257
258 if (fsb == 0 || mem == 0)
259 return NULL;
260
261 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
262 latency = &cxsr_latency_table[i];
263 if (is_desktop == latency->is_desktop &&
264 is_ddr3 == latency->is_ddr3 &&
265 fsb == latency->fsb_freq && mem == latency->mem_freq)
266 return latency;
267 }
268
269 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
270
271 return NULL;
272 }
273
274 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
275 {
276 u32 val;
277
278 mutex_lock(&dev_priv->rps.hw_lock);
279
280 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
281 if (enable)
282 val &= ~FORCE_DDR_HIGH_FREQ;
283 else
284 val |= FORCE_DDR_HIGH_FREQ;
285 val &= ~FORCE_DDR_LOW_FREQ;
286 val |= FORCE_DDR_FREQ_REQ_ACK;
287 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
288
289 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
290 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
291 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
292
293 mutex_unlock(&dev_priv->rps.hw_lock);
294 }
295
296 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
297 {
298 u32 val;
299
300 mutex_lock(&dev_priv->rps.hw_lock);
301
302 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
303 if (enable)
304 val |= DSP_MAXFIFO_PM5_ENABLE;
305 else
306 val &= ~DSP_MAXFIFO_PM5_ENABLE;
307 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
308
309 mutex_unlock(&dev_priv->rps.hw_lock);
310 }
311
312 #define FW_WM(value, plane) \
313 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
314
315 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
316 {
317 bool was_enabled;
318 u32 val;
319
320 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
321 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
322 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
323 POSTING_READ(FW_BLC_SELF_VLV);
324 } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
325 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
326 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
327 POSTING_READ(FW_BLC_SELF);
328 } else if (IS_PINEVIEW(dev_priv)) {
329 val = I915_READ(DSPFW3);
330 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
331 if (enable)
332 val |= PINEVIEW_SELF_REFRESH_EN;
333 else
334 val &= ~PINEVIEW_SELF_REFRESH_EN;
335 I915_WRITE(DSPFW3, val);
336 POSTING_READ(DSPFW3);
337 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
338 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
339 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
340 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
341 I915_WRITE(FW_BLC_SELF, val);
342 POSTING_READ(FW_BLC_SELF);
343 } else if (IS_I915GM(dev_priv)) {
344 /*
345 * FIXME can't find a bit like this for 915G, and
346 * and yet it does have the related watermark in
347 * FW_BLC_SELF. What's going on?
348 */
349 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
350 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
351 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
352 I915_WRITE(INSTPM, val);
353 POSTING_READ(INSTPM);
354 } else {
355 return false;
356 }
357
358 DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
359 enableddisabled(enable),
360 enableddisabled(was_enabled));
361
362 return was_enabled;
363 }
364
365 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
366 {
367 bool ret;
368
369 mutex_lock(&dev_priv->wm.wm_mutex);
370 ret = _intel_set_memory_cxsr(dev_priv, enable);
371 dev_priv->wm.vlv.cxsr = enable;
372 mutex_unlock(&dev_priv->wm.wm_mutex);
373
374 return ret;
375 }
376
377 /*
378 * Latency for FIFO fetches is dependent on several factors:
379 * - memory configuration (speed, channels)
380 * - chipset
381 * - current MCH state
382 * It can be fairly high in some situations, so here we assume a fairly
383 * pessimal value. It's a tradeoff between extra memory fetches (if we
384 * set this value too high, the FIFO will fetch frequently to stay full)
385 * and power consumption (set it too low to save power and we might see
386 * FIFO underruns and display "flicker").
387 *
388 * A value of 5us seems to be a good balance; safe for very low end
389 * platforms but not overly aggressive on lower latency configs.
390 */
391 static const int pessimal_latency_ns = 5000;
392
393 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
394 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
395
396 static int vlv_get_fifo_size(struct intel_plane *plane)
397 {
398 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
399 int sprite0_start, sprite1_start, size;
400
401 if (plane->id == PLANE_CURSOR)
402 return 63;
403
404 switch (plane->pipe) {
405 uint32_t dsparb, dsparb2, dsparb3;
406 case PIPE_A:
407 dsparb = I915_READ(DSPARB);
408 dsparb2 = I915_READ(DSPARB2);
409 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
410 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
411 break;
412 case PIPE_B:
413 dsparb = I915_READ(DSPARB);
414 dsparb2 = I915_READ(DSPARB2);
415 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
416 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
417 break;
418 case PIPE_C:
419 dsparb2 = I915_READ(DSPARB2);
420 dsparb3 = I915_READ(DSPARB3);
421 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
422 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
423 break;
424 default:
425 return 0;
426 }
427
428 switch (plane->id) {
429 case PLANE_PRIMARY:
430 size = sprite0_start;
431 break;
432 case PLANE_SPRITE0:
433 size = sprite1_start - sprite0_start;
434 break;
435 case PLANE_SPRITE1:
436 size = 512 - 1 - sprite1_start;
437 break;
438 default:
439 return 0;
440 }
441
442 DRM_DEBUG_KMS("%s FIFO size: %d\n", plane->base.name, size);
443
444 return size;
445 }
446
447 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
448 {
449 uint32_t dsparb = I915_READ(DSPARB);
450 int size;
451
452 size = dsparb & 0x7f;
453 if (plane)
454 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
455
456 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
457 plane ? "B" : "A", size);
458
459 return size;
460 }
461
462 static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
463 {
464 uint32_t dsparb = I915_READ(DSPARB);
465 int size;
466
467 size = dsparb & 0x1ff;
468 if (plane)
469 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
470 size >>= 1; /* Convert to cachelines */
471
472 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
473 plane ? "B" : "A", size);
474
475 return size;
476 }
477
478 static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
479 {
480 uint32_t dsparb = I915_READ(DSPARB);
481 int size;
482
483 size = dsparb & 0x7f;
484 size >>= 2; /* Convert to cachelines */
485
486 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
487 plane ? "B" : "A",
488 size);
489
490 return size;
491 }
492
493 /* Pineview has different values for various configs */
494 static const struct intel_watermark_params pineview_display_wm = {
495 .fifo_size = PINEVIEW_DISPLAY_FIFO,
496 .max_wm = PINEVIEW_MAX_WM,
497 .default_wm = PINEVIEW_DFT_WM,
498 .guard_size = PINEVIEW_GUARD_WM,
499 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
500 };
501 static const struct intel_watermark_params pineview_display_hplloff_wm = {
502 .fifo_size = PINEVIEW_DISPLAY_FIFO,
503 .max_wm = PINEVIEW_MAX_WM,
504 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
505 .guard_size = PINEVIEW_GUARD_WM,
506 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
507 };
508 static const struct intel_watermark_params pineview_cursor_wm = {
509 .fifo_size = PINEVIEW_CURSOR_FIFO,
510 .max_wm = PINEVIEW_CURSOR_MAX_WM,
511 .default_wm = PINEVIEW_CURSOR_DFT_WM,
512 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
513 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
514 };
515 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
516 .fifo_size = PINEVIEW_CURSOR_FIFO,
517 .max_wm = PINEVIEW_CURSOR_MAX_WM,
518 .default_wm = PINEVIEW_CURSOR_DFT_WM,
519 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
520 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
521 };
522 static const struct intel_watermark_params g4x_wm_info = {
523 .fifo_size = G4X_FIFO_SIZE,
524 .max_wm = G4X_MAX_WM,
525 .default_wm = G4X_MAX_WM,
526 .guard_size = 2,
527 .cacheline_size = G4X_FIFO_LINE_SIZE,
528 };
529 static const struct intel_watermark_params g4x_cursor_wm_info = {
530 .fifo_size = I965_CURSOR_FIFO,
531 .max_wm = I965_CURSOR_MAX_WM,
532 .default_wm = I965_CURSOR_DFT_WM,
533 .guard_size = 2,
534 .cacheline_size = G4X_FIFO_LINE_SIZE,
535 };
536 static const struct intel_watermark_params i965_cursor_wm_info = {
537 .fifo_size = I965_CURSOR_FIFO,
538 .max_wm = I965_CURSOR_MAX_WM,
539 .default_wm = I965_CURSOR_DFT_WM,
540 .guard_size = 2,
541 .cacheline_size = I915_FIFO_LINE_SIZE,
542 };
543 static const struct intel_watermark_params i945_wm_info = {
544 .fifo_size = I945_FIFO_SIZE,
545 .max_wm = I915_MAX_WM,
546 .default_wm = 1,
547 .guard_size = 2,
548 .cacheline_size = I915_FIFO_LINE_SIZE,
549 };
550 static const struct intel_watermark_params i915_wm_info = {
551 .fifo_size = I915_FIFO_SIZE,
552 .max_wm = I915_MAX_WM,
553 .default_wm = 1,
554 .guard_size = 2,
555 .cacheline_size = I915_FIFO_LINE_SIZE,
556 };
557 static const struct intel_watermark_params i830_a_wm_info = {
558 .fifo_size = I855GM_FIFO_SIZE,
559 .max_wm = I915_MAX_WM,
560 .default_wm = 1,
561 .guard_size = 2,
562 .cacheline_size = I830_FIFO_LINE_SIZE,
563 };
564 static const struct intel_watermark_params i830_bc_wm_info = {
565 .fifo_size = I855GM_FIFO_SIZE,
566 .max_wm = I915_MAX_WM/2,
567 .default_wm = 1,
568 .guard_size = 2,
569 .cacheline_size = I830_FIFO_LINE_SIZE,
570 };
571 static const struct intel_watermark_params i845_wm_info = {
572 .fifo_size = I830_FIFO_SIZE,
573 .max_wm = I915_MAX_WM,
574 .default_wm = 1,
575 .guard_size = 2,
576 .cacheline_size = I830_FIFO_LINE_SIZE,
577 };
578
579 /**
580 * intel_calculate_wm - calculate watermark level
581 * @clock_in_khz: pixel clock
582 * @wm: chip FIFO params
583 * @cpp: bytes per pixel
584 * @latency_ns: memory latency for the platform
585 *
586 * Calculate the watermark level (the level at which the display plane will
587 * start fetching from memory again). Each chip has a different display
588 * FIFO size and allocation, so the caller needs to figure that out and pass
589 * in the correct intel_watermark_params structure.
590 *
591 * As the pixel clock runs, the FIFO will be drained at a rate that depends
592 * on the pixel size. When it reaches the watermark level, it'll start
593 * fetching FIFO line sized based chunks from memory until the FIFO fills
594 * past the watermark point. If the FIFO drains completely, a FIFO underrun
595 * will occur, and a display engine hang could result.
596 */
597 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
598 const struct intel_watermark_params *wm,
599 int fifo_size, int cpp,
600 unsigned long latency_ns)
601 {
602 long entries_required, wm_size;
603
604 /*
605 * Note: we need to make sure we don't overflow for various clock &
606 * latency values.
607 * clocks go from a few thousand to several hundred thousand.
608 * latency is usually a few thousand
609 */
610 entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
611 1000;
612 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
613
614 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
615
616 wm_size = fifo_size - (entries_required + wm->guard_size);
617
618 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
619
620 /* Don't promote wm_size to unsigned... */
621 if (wm_size > (long)wm->max_wm)
622 wm_size = wm->max_wm;
623 if (wm_size <= 0)
624 wm_size = wm->default_wm;
625
626 /*
627 * Bspec seems to indicate that the value shouldn't be lower than
628 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
629 * Lets go for 8 which is the burst size since certain platforms
630 * already use a hardcoded 8 (which is what the spec says should be
631 * done).
632 */
633 if (wm_size <= 8)
634 wm_size = 8;
635
636 return wm_size;
637 }
638
639 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
640 {
641 struct intel_crtc *crtc, *enabled = NULL;
642
643 for_each_intel_crtc(&dev_priv->drm, crtc) {
644 if (intel_crtc_active(crtc)) {
645 if (enabled)
646 return NULL;
647 enabled = crtc;
648 }
649 }
650
651 return enabled;
652 }
653
654 static void pineview_update_wm(struct intel_crtc *unused_crtc)
655 {
656 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
657 struct intel_crtc *crtc;
658 const struct cxsr_latency *latency;
659 u32 reg;
660 unsigned long wm;
661
662 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
663 dev_priv->is_ddr3,
664 dev_priv->fsb_freq,
665 dev_priv->mem_freq);
666 if (!latency) {
667 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
668 intel_set_memory_cxsr(dev_priv, false);
669 return;
670 }
671
672 crtc = single_enabled_crtc(dev_priv);
673 if (crtc) {
674 const struct drm_display_mode *adjusted_mode =
675 &crtc->config->base.adjusted_mode;
676 const struct drm_framebuffer *fb =
677 crtc->base.primary->state->fb;
678 int cpp = fb->format->cpp[0];
679 int clock = adjusted_mode->crtc_clock;
680
681 /* Display SR */
682 wm = intel_calculate_wm(clock, &pineview_display_wm,
683 pineview_display_wm.fifo_size,
684 cpp, latency->display_sr);
685 reg = I915_READ(DSPFW1);
686 reg &= ~DSPFW_SR_MASK;
687 reg |= FW_WM(wm, SR);
688 I915_WRITE(DSPFW1, reg);
689 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
690
691 /* cursor SR */
692 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
693 pineview_display_wm.fifo_size,
694 cpp, latency->cursor_sr);
695 reg = I915_READ(DSPFW3);
696 reg &= ~DSPFW_CURSOR_SR_MASK;
697 reg |= FW_WM(wm, CURSOR_SR);
698 I915_WRITE(DSPFW3, reg);
699
700 /* Display HPLL off SR */
701 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
702 pineview_display_hplloff_wm.fifo_size,
703 cpp, latency->display_hpll_disable);
704 reg = I915_READ(DSPFW3);
705 reg &= ~DSPFW_HPLL_SR_MASK;
706 reg |= FW_WM(wm, HPLL_SR);
707 I915_WRITE(DSPFW3, reg);
708
709 /* cursor HPLL off SR */
710 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
711 pineview_display_hplloff_wm.fifo_size,
712 cpp, latency->cursor_hpll_disable);
713 reg = I915_READ(DSPFW3);
714 reg &= ~DSPFW_HPLL_CURSOR_MASK;
715 reg |= FW_WM(wm, HPLL_CURSOR);
716 I915_WRITE(DSPFW3, reg);
717 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
718
719 intel_set_memory_cxsr(dev_priv, true);
720 } else {
721 intel_set_memory_cxsr(dev_priv, false);
722 }
723 }
724
725 static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
726 int plane,
727 const struct intel_watermark_params *display,
728 int display_latency_ns,
729 const struct intel_watermark_params *cursor,
730 int cursor_latency_ns,
731 int *plane_wm,
732 int *cursor_wm)
733 {
734 struct intel_crtc *crtc;
735 const struct drm_display_mode *adjusted_mode;
736 const struct drm_framebuffer *fb;
737 int htotal, hdisplay, clock, cpp;
738 int line_time_us, line_count;
739 int entries, tlb_miss;
740
741 crtc = intel_get_crtc_for_plane(dev_priv, plane);
742 if (!intel_crtc_active(crtc)) {
743 *cursor_wm = cursor->guard_size;
744 *plane_wm = display->guard_size;
745 return false;
746 }
747
748 adjusted_mode = &crtc->config->base.adjusted_mode;
749 fb = crtc->base.primary->state->fb;
750 clock = adjusted_mode->crtc_clock;
751 htotal = adjusted_mode->crtc_htotal;
752 hdisplay = crtc->config->pipe_src_w;
753 cpp = fb->format->cpp[0];
754
755 /* Use the small buffer method to calculate plane watermark */
756 entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
757 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
758 if (tlb_miss > 0)
759 entries += tlb_miss;
760 entries = DIV_ROUND_UP(entries, display->cacheline_size);
761 *plane_wm = entries + display->guard_size;
762 if (*plane_wm > (int)display->max_wm)
763 *plane_wm = display->max_wm;
764
765 /* Use the large buffer method to calculate cursor watermark */
766 line_time_us = max(htotal * 1000 / clock, 1);
767 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
768 entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
769 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
770 if (tlb_miss > 0)
771 entries += tlb_miss;
772 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
773 *cursor_wm = entries + cursor->guard_size;
774 if (*cursor_wm > (int)cursor->max_wm)
775 *cursor_wm = (int)cursor->max_wm;
776
777 return true;
778 }
779
780 /*
781 * Check the wm result.
782 *
783 * If any calculated watermark values is larger than the maximum value that
784 * can be programmed into the associated watermark register, that watermark
785 * must be disabled.
786 */
787 static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
788 int display_wm, int cursor_wm,
789 const struct intel_watermark_params *display,
790 const struct intel_watermark_params *cursor)
791 {
792 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
793 display_wm, cursor_wm);
794
795 if (display_wm > display->max_wm) {
796 DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
797 display_wm, display->max_wm);
798 return false;
799 }
800
801 if (cursor_wm > cursor->max_wm) {
802 DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
803 cursor_wm, cursor->max_wm);
804 return false;
805 }
806
807 if (!(display_wm || cursor_wm)) {
808 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
809 return false;
810 }
811
812 return true;
813 }
814
815 static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
816 int plane,
817 int latency_ns,
818 const struct intel_watermark_params *display,
819 const struct intel_watermark_params *cursor,
820 int *display_wm, int *cursor_wm)
821 {
822 struct intel_crtc *crtc;
823 const struct drm_display_mode *adjusted_mode;
824 const struct drm_framebuffer *fb;
825 int hdisplay, htotal, cpp, clock;
826 unsigned long line_time_us;
827 int line_count, line_size;
828 int small, large;
829 int entries;
830
831 if (!latency_ns) {
832 *display_wm = *cursor_wm = 0;
833 return false;
834 }
835
836 crtc = intel_get_crtc_for_plane(dev_priv, plane);
837 adjusted_mode = &crtc->config->base.adjusted_mode;
838 fb = crtc->base.primary->state->fb;
839 clock = adjusted_mode->crtc_clock;
840 htotal = adjusted_mode->crtc_htotal;
841 hdisplay = crtc->config->pipe_src_w;
842 cpp = fb->format->cpp[0];
843
844 line_time_us = max(htotal * 1000 / clock, 1);
845 line_count = (latency_ns / line_time_us + 1000) / 1000;
846 line_size = hdisplay * cpp;
847
848 /* Use the minimum of the small and large buffer method for primary */
849 small = ((clock * cpp / 1000) * latency_ns) / 1000;
850 large = line_count * line_size;
851
852 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
853 *display_wm = entries + display->guard_size;
854
855 /* calculate the self-refresh watermark for display cursor */
856 entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
857 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
858 *cursor_wm = entries + cursor->guard_size;
859
860 return g4x_check_srwm(dev_priv,
861 *display_wm, *cursor_wm,
862 display, cursor);
863 }
864
865 #define FW_WM_VLV(value, plane) \
866 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
867
868 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
869 const struct vlv_wm_values *wm)
870 {
871 enum pipe pipe;
872
873 for_each_pipe(dev_priv, pipe) {
874 I915_WRITE(VLV_DDL(pipe),
875 (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
876 (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
877 (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
878 (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
879 }
880
881 /*
882 * Zero the (unused) WM1 watermarks, and also clear all the
883 * high order bits so that there are no out of bounds values
884 * present in the registers during the reprogramming.
885 */
886 I915_WRITE(DSPHOWM, 0);
887 I915_WRITE(DSPHOWM1, 0);
888 I915_WRITE(DSPFW4, 0);
889 I915_WRITE(DSPFW5, 0);
890 I915_WRITE(DSPFW6, 0);
891
892 I915_WRITE(DSPFW1,
893 FW_WM(wm->sr.plane, SR) |
894 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
895 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
896 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
897 I915_WRITE(DSPFW2,
898 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
899 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
900 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
901 I915_WRITE(DSPFW3,
902 FW_WM(wm->sr.cursor, CURSOR_SR));
903
904 if (IS_CHERRYVIEW(dev_priv)) {
905 I915_WRITE(DSPFW7_CHV,
906 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
907 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
908 I915_WRITE(DSPFW8_CHV,
909 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
910 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
911 I915_WRITE(DSPFW9_CHV,
912 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
913 FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
914 I915_WRITE(DSPHOWM,
915 FW_WM(wm->sr.plane >> 9, SR_HI) |
916 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
917 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
918 FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
919 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
920 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
921 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
922 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
923 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
924 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
925 } else {
926 I915_WRITE(DSPFW7,
927 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
928 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
929 I915_WRITE(DSPHOWM,
930 FW_WM(wm->sr.plane >> 9, SR_HI) |
931 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
932 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
933 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
934 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
935 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
936 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
937 }
938
939 POSTING_READ(DSPFW1);
940 }
941
942 #undef FW_WM_VLV
943
944 enum vlv_wm_level {
945 VLV_WM_LEVEL_PM2,
946 VLV_WM_LEVEL_PM5,
947 VLV_WM_LEVEL_DDR_DVFS,
948 };
949
950 /* latency must be in 0.1us units. */
951 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
952 unsigned int pipe_htotal,
953 unsigned int horiz_pixels,
954 unsigned int cpp,
955 unsigned int latency)
956 {
957 unsigned int ret;
958
959 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
960 ret = (ret + 1) * horiz_pixels * cpp;
961 ret = DIV_ROUND_UP(ret, 64);
962
963 return ret;
964 }
965
966 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
967 {
968 /* all latencies in usec */
969 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
970
971 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
972
973 if (IS_CHERRYVIEW(dev_priv)) {
974 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
975 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
976
977 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
978 }
979 }
980
981 static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
982 const struct intel_plane_state *plane_state,
983 int level)
984 {
985 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
986 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
987 const struct drm_display_mode *adjusted_mode =
988 &crtc_state->base.adjusted_mode;
989 int clock, htotal, cpp, width, wm;
990
991 if (dev_priv->wm.pri_latency[level] == 0)
992 return USHRT_MAX;
993
994 if (!plane_state->base.visible)
995 return 0;
996
997 cpp = plane_state->base.fb->format->cpp[0];
998 clock = adjusted_mode->crtc_clock;
999 htotal = adjusted_mode->crtc_htotal;
1000 width = crtc_state->pipe_src_w;
1001 if (WARN_ON(htotal == 0))
1002 htotal = 1;
1003
1004 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1005 /*
1006 * FIXME the formula gives values that are
1007 * too big for the cursor FIFO, and hence we
1008 * would never be able to use cursors. For
1009 * now just hardcode the watermark.
1010 */
1011 wm = 63;
1012 } else {
1013 wm = vlv_wm_method2(clock, htotal, width, cpp,
1014 dev_priv->wm.pri_latency[level] * 10);
1015 }
1016
1017 return min_t(int, wm, USHRT_MAX);
1018 }
1019
1020 static void vlv_compute_fifo(struct intel_crtc *crtc)
1021 {
1022 struct drm_device *dev = crtc->base.dev;
1023 struct vlv_wm_state *wm_state = &crtc->wm_state;
1024 struct intel_plane *plane;
1025 unsigned int total_rate = 0;
1026 const int fifo_size = 512 - 1;
1027 int fifo_extra, fifo_left = fifo_size;
1028
1029 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1030 struct intel_plane_state *state =
1031 to_intel_plane_state(plane->base.state);
1032
1033 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1034 continue;
1035
1036 if (state->base.visible) {
1037 wm_state->num_active_planes++;
1038 total_rate += state->base.fb->format->cpp[0];
1039 }
1040 }
1041
1042 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1043 struct intel_plane_state *state =
1044 to_intel_plane_state(plane->base.state);
1045 unsigned int rate;
1046
1047 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1048 plane->wm.fifo_size = 63;
1049 continue;
1050 }
1051
1052 if (!state->base.visible) {
1053 plane->wm.fifo_size = 0;
1054 continue;
1055 }
1056
1057 rate = state->base.fb->format->cpp[0];
1058 plane->wm.fifo_size = fifo_size * rate / total_rate;
1059 fifo_left -= plane->wm.fifo_size;
1060 }
1061
1062 fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1063
1064 /* spread the remainder evenly */
1065 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1066 int plane_extra;
1067
1068 if (fifo_left == 0)
1069 break;
1070
1071 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1072 continue;
1073
1074 /* give it all to the first plane if none are active */
1075 if (plane->wm.fifo_size == 0 &&
1076 wm_state->num_active_planes)
1077 continue;
1078
1079 plane_extra = min(fifo_extra, fifo_left);
1080 plane->wm.fifo_size += plane_extra;
1081 fifo_left -= plane_extra;
1082 }
1083
1084 WARN_ON(fifo_left != 0);
1085 }
1086
1087 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1088 {
1089 if (wm > fifo_size)
1090 return USHRT_MAX;
1091 else
1092 return fifo_size - wm;
1093 }
1094
1095 static void vlv_invert_wms(struct intel_crtc *crtc)
1096 {
1097 struct vlv_wm_state *wm_state = &crtc->wm_state;
1098 int level;
1099
1100 for (level = 0; level < wm_state->num_levels; level++) {
1101 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1102 const int sr_fifo_size =
1103 INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1104 struct intel_plane *plane;
1105
1106 wm_state->sr[level].plane =
1107 vlv_invert_wm_value(wm_state->sr[level].plane,
1108 sr_fifo_size);
1109 wm_state->sr[level].cursor =
1110 vlv_invert_wm_value(wm_state->sr[level].cursor,
1111 63);
1112
1113 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
1114 wm_state->wm[level].plane[plane->id] =
1115 vlv_invert_wm_value(wm_state->wm[level].plane[plane->id],
1116 plane->wm.fifo_size);
1117 }
1118 }
1119 }
1120
1121 static void vlv_compute_wm(struct intel_crtc *crtc)
1122 {
1123 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1124 struct vlv_wm_state *wm_state = &crtc->wm_state;
1125 struct intel_plane *plane;
1126 int level;
1127
1128 memset(wm_state, 0, sizeof(*wm_state));
1129
1130 wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1131 wm_state->num_levels = dev_priv->wm.max_level + 1;
1132
1133 wm_state->num_active_planes = 0;
1134
1135 vlv_compute_fifo(crtc);
1136
1137 if (wm_state->num_active_planes != 1)
1138 wm_state->cxsr = false;
1139
1140 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
1141 struct intel_plane_state *state =
1142 to_intel_plane_state(plane->base.state);
1143 int level;
1144
1145 if (!state->base.visible)
1146 continue;
1147
1148 /* normal watermarks */
1149 for (level = 0; level < wm_state->num_levels; level++) {
1150 int wm = vlv_compute_wm_level(crtc->config, state, level);
1151 int max_wm = plane->wm.fifo_size;
1152
1153 /* hack */
1154 if (WARN_ON(level == 0 && wm > max_wm))
1155 wm = max_wm;
1156
1157 if (wm > max_wm)
1158 break;
1159
1160 wm_state->wm[level].plane[plane->id] = wm;
1161 }
1162
1163 wm_state->num_levels = level;
1164
1165 if (!wm_state->cxsr)
1166 continue;
1167
1168 /* maxfifo watermarks */
1169 if (plane->id == PLANE_CURSOR) {
1170 for (level = 0; level < wm_state->num_levels; level++)
1171 wm_state->sr[level].cursor =
1172 wm_state->wm[level].plane[PLANE_CURSOR];
1173 } else {
1174 for (level = 0; level < wm_state->num_levels; level++)
1175 wm_state->sr[level].plane =
1176 max(wm_state->sr[level].plane,
1177 wm_state->wm[level].plane[plane->id]);
1178 }
1179 }
1180
1181 /* clear any (partially) filled invalid levels */
1182 for (level = wm_state->num_levels; level < dev_priv->wm.max_level + 1; level++) {
1183 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1184 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1185 }
1186
1187 vlv_invert_wms(crtc);
1188 }
1189
1190 #define VLV_FIFO(plane, value) \
1191 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1192
1193 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1194 {
1195 struct drm_device *dev = crtc->base.dev;
1196 struct drm_i915_private *dev_priv = to_i915(dev);
1197 struct intel_plane *plane;
1198 int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1199
1200 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1201 switch (plane->id) {
1202 case PLANE_PRIMARY:
1203 sprite0_start = plane->wm.fifo_size;
1204 break;
1205 case PLANE_SPRITE0:
1206 sprite1_start = sprite0_start + plane->wm.fifo_size;
1207 break;
1208 case PLANE_SPRITE1:
1209 fifo_size = sprite1_start + plane->wm.fifo_size;
1210 break;
1211 case PLANE_CURSOR:
1212 WARN_ON(plane->wm.fifo_size != 63);
1213 break;
1214 default:
1215 MISSING_CASE(plane->id);
1216 break;
1217 }
1218 }
1219
1220 WARN_ON(fifo_size != 512 - 1);
1221
1222 DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1223 pipe_name(crtc->pipe), sprite0_start,
1224 sprite1_start, fifo_size);
1225
1226 spin_lock(&dev_priv->wm.dsparb_lock);
1227
1228 switch (crtc->pipe) {
1229 uint32_t dsparb, dsparb2, dsparb3;
1230 case PIPE_A:
1231 dsparb = I915_READ(DSPARB);
1232 dsparb2 = I915_READ(DSPARB2);
1233
1234 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1235 VLV_FIFO(SPRITEB, 0xff));
1236 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1237 VLV_FIFO(SPRITEB, sprite1_start));
1238
1239 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1240 VLV_FIFO(SPRITEB_HI, 0x1));
1241 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1242 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1243
1244 I915_WRITE(DSPARB, dsparb);
1245 I915_WRITE(DSPARB2, dsparb2);
1246 break;
1247 case PIPE_B:
1248 dsparb = I915_READ(DSPARB);
1249 dsparb2 = I915_READ(DSPARB2);
1250
1251 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1252 VLV_FIFO(SPRITED, 0xff));
1253 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1254 VLV_FIFO(SPRITED, sprite1_start));
1255
1256 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1257 VLV_FIFO(SPRITED_HI, 0xff));
1258 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1259 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1260
1261 I915_WRITE(DSPARB, dsparb);
1262 I915_WRITE(DSPARB2, dsparb2);
1263 break;
1264 case PIPE_C:
1265 dsparb3 = I915_READ(DSPARB3);
1266 dsparb2 = I915_READ(DSPARB2);
1267
1268 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1269 VLV_FIFO(SPRITEF, 0xff));
1270 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1271 VLV_FIFO(SPRITEF, sprite1_start));
1272
1273 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1274 VLV_FIFO(SPRITEF_HI, 0xff));
1275 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1276 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1277
1278 I915_WRITE(DSPARB3, dsparb3);
1279 I915_WRITE(DSPARB2, dsparb2);
1280 break;
1281 default:
1282 break;
1283 }
1284
1285 POSTING_READ(DSPARB);
1286
1287 spin_unlock(&dev_priv->wm.dsparb_lock);
1288 }
1289
1290 #undef VLV_FIFO
1291
1292 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
1293 struct vlv_wm_values *wm)
1294 {
1295 struct intel_crtc *crtc;
1296 int num_active_crtcs = 0;
1297
1298 wm->level = dev_priv->wm.max_level;
1299 wm->cxsr = true;
1300
1301 for_each_intel_crtc(&dev_priv->drm, crtc) {
1302 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1303
1304 if (!crtc->active)
1305 continue;
1306
1307 if (!wm_state->cxsr)
1308 wm->cxsr = false;
1309
1310 num_active_crtcs++;
1311 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1312 }
1313
1314 if (num_active_crtcs != 1)
1315 wm->cxsr = false;
1316
1317 if (num_active_crtcs > 1)
1318 wm->level = VLV_WM_LEVEL_PM2;
1319
1320 for_each_intel_crtc(&dev_priv->drm, crtc) {
1321 struct vlv_wm_state *wm_state = &crtc->wm_state;
1322 enum pipe pipe = crtc->pipe;
1323
1324 if (!crtc->active)
1325 continue;
1326
1327 wm->pipe[pipe] = wm_state->wm[wm->level];
1328 if (wm->cxsr)
1329 wm->sr = wm_state->sr[wm->level];
1330
1331 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
1332 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
1333 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
1334 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
1335 }
1336 }
1337
1338 static bool is_disabling(int old, int new, int threshold)
1339 {
1340 return old >= threshold && new < threshold;
1341 }
1342
1343 static bool is_enabling(int old, int new, int threshold)
1344 {
1345 return old < threshold && new >= threshold;
1346 }
1347
1348 static void vlv_update_wm(struct intel_crtc *crtc)
1349 {
1350 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1351 enum pipe pipe = crtc->pipe;
1352 struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
1353 struct vlv_wm_values new_wm = {};
1354
1355 vlv_compute_wm(crtc);
1356 vlv_merge_wm(dev_priv, &new_wm);
1357
1358 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0) {
1359 /* FIXME should be part of crtc atomic commit */
1360 vlv_pipe_set_fifo_size(crtc);
1361
1362 return;
1363 }
1364
1365 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1366 chv_set_memory_dvfs(dev_priv, false);
1367
1368 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1369 chv_set_memory_pm5(dev_priv, false);
1370
1371 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1372 _intel_set_memory_cxsr(dev_priv, false);
1373
1374 /* FIXME should be part of crtc atomic commit */
1375 vlv_pipe_set_fifo_size(crtc);
1376
1377 vlv_write_wm_values(dev_priv, &new_wm);
1378
1379 DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1380 "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1381 pipe_name(pipe), new_wm.pipe[pipe].plane[PLANE_PRIMARY], new_wm.pipe[pipe].plane[PLANE_CURSOR],
1382 new_wm.pipe[pipe].plane[PLANE_SPRITE0], new_wm.pipe[pipe].plane[PLANE_SPRITE1],
1383 new_wm.sr.plane, new_wm.sr.cursor, new_wm.level, new_wm.cxsr);
1384
1385 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1386 _intel_set_memory_cxsr(dev_priv, true);
1387
1388 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
1389 chv_set_memory_pm5(dev_priv, true);
1390
1391 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
1392 chv_set_memory_dvfs(dev_priv, true);
1393
1394 *old_wm = new_wm;
1395 }
1396
1397 #define single_plane_enabled(mask) is_power_of_2(mask)
1398
1399 static void g4x_update_wm(struct intel_crtc *crtc)
1400 {
1401 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1402 static const int sr_latency_ns = 12000;
1403 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1404 int plane_sr, cursor_sr;
1405 unsigned int enabled = 0;
1406 bool cxsr_enabled;
1407
1408 if (g4x_compute_wm0(dev_priv, PIPE_A,
1409 &g4x_wm_info, pessimal_latency_ns,
1410 &g4x_cursor_wm_info, pessimal_latency_ns,
1411 &planea_wm, &cursora_wm))
1412 enabled |= 1 << PIPE_A;
1413
1414 if (g4x_compute_wm0(dev_priv, PIPE_B,
1415 &g4x_wm_info, pessimal_latency_ns,
1416 &g4x_cursor_wm_info, pessimal_latency_ns,
1417 &planeb_wm, &cursorb_wm))
1418 enabled |= 1 << PIPE_B;
1419
1420 if (single_plane_enabled(enabled) &&
1421 g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1422 sr_latency_ns,
1423 &g4x_wm_info,
1424 &g4x_cursor_wm_info,
1425 &plane_sr, &cursor_sr)) {
1426 cxsr_enabled = true;
1427 } else {
1428 cxsr_enabled = false;
1429 intel_set_memory_cxsr(dev_priv, false);
1430 plane_sr = cursor_sr = 0;
1431 }
1432
1433 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1434 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1435 planea_wm, cursora_wm,
1436 planeb_wm, cursorb_wm,
1437 plane_sr, cursor_sr);
1438
1439 I915_WRITE(DSPFW1,
1440 FW_WM(plane_sr, SR) |
1441 FW_WM(cursorb_wm, CURSORB) |
1442 FW_WM(planeb_wm, PLANEB) |
1443 FW_WM(planea_wm, PLANEA));
1444 I915_WRITE(DSPFW2,
1445 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1446 FW_WM(cursora_wm, CURSORA));
1447 /* HPLL off in SR has some issues on G4x... disable it */
1448 I915_WRITE(DSPFW3,
1449 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1450 FW_WM(cursor_sr, CURSOR_SR));
1451
1452 if (cxsr_enabled)
1453 intel_set_memory_cxsr(dev_priv, true);
1454 }
1455
1456 static void i965_update_wm(struct intel_crtc *unused_crtc)
1457 {
1458 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1459 struct intel_crtc *crtc;
1460 int srwm = 1;
1461 int cursor_sr = 16;
1462 bool cxsr_enabled;
1463
1464 /* Calc sr entries for one plane configs */
1465 crtc = single_enabled_crtc(dev_priv);
1466 if (crtc) {
1467 /* self-refresh has much higher latency */
1468 static const int sr_latency_ns = 12000;
1469 const struct drm_display_mode *adjusted_mode =
1470 &crtc->config->base.adjusted_mode;
1471 const struct drm_framebuffer *fb =
1472 crtc->base.primary->state->fb;
1473 int clock = adjusted_mode->crtc_clock;
1474 int htotal = adjusted_mode->crtc_htotal;
1475 int hdisplay = crtc->config->pipe_src_w;
1476 int cpp = fb->format->cpp[0];
1477 unsigned long line_time_us;
1478 int entries;
1479
1480 line_time_us = max(htotal * 1000 / clock, 1);
1481
1482 /* Use ns/us then divide to preserve precision */
1483 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1484 cpp * hdisplay;
1485 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1486 srwm = I965_FIFO_SIZE - entries;
1487 if (srwm < 0)
1488 srwm = 1;
1489 srwm &= 0x1ff;
1490 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1491 entries, srwm);
1492
1493 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1494 cpp * crtc->base.cursor->state->crtc_w;
1495 entries = DIV_ROUND_UP(entries,
1496 i965_cursor_wm_info.cacheline_size);
1497 cursor_sr = i965_cursor_wm_info.fifo_size -
1498 (entries + i965_cursor_wm_info.guard_size);
1499
1500 if (cursor_sr > i965_cursor_wm_info.max_wm)
1501 cursor_sr = i965_cursor_wm_info.max_wm;
1502
1503 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1504 "cursor %d\n", srwm, cursor_sr);
1505
1506 cxsr_enabled = true;
1507 } else {
1508 cxsr_enabled = false;
1509 /* Turn off self refresh if both pipes are enabled */
1510 intel_set_memory_cxsr(dev_priv, false);
1511 }
1512
1513 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1514 srwm);
1515
1516 /* 965 has limitations... */
1517 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1518 FW_WM(8, CURSORB) |
1519 FW_WM(8, PLANEB) |
1520 FW_WM(8, PLANEA));
1521 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1522 FW_WM(8, PLANEC_OLD));
1523 /* update cursor SR watermark */
1524 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1525
1526 if (cxsr_enabled)
1527 intel_set_memory_cxsr(dev_priv, true);
1528 }
1529
1530 #undef FW_WM
1531
1532 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1533 {
1534 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1535 const struct intel_watermark_params *wm_info;
1536 uint32_t fwater_lo;
1537 uint32_t fwater_hi;
1538 int cwm, srwm = 1;
1539 int fifo_size;
1540 int planea_wm, planeb_wm;
1541 struct intel_crtc *crtc, *enabled = NULL;
1542
1543 if (IS_I945GM(dev_priv))
1544 wm_info = &i945_wm_info;
1545 else if (!IS_GEN2(dev_priv))
1546 wm_info = &i915_wm_info;
1547 else
1548 wm_info = &i830_a_wm_info;
1549
1550 fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
1551 crtc = intel_get_crtc_for_plane(dev_priv, 0);
1552 if (intel_crtc_active(crtc)) {
1553 const struct drm_display_mode *adjusted_mode =
1554 &crtc->config->base.adjusted_mode;
1555 const struct drm_framebuffer *fb =
1556 crtc->base.primary->state->fb;
1557 int cpp;
1558
1559 if (IS_GEN2(dev_priv))
1560 cpp = 4;
1561 else
1562 cpp = fb->format->cpp[0];
1563
1564 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1565 wm_info, fifo_size, cpp,
1566 pessimal_latency_ns);
1567 enabled = crtc;
1568 } else {
1569 planea_wm = fifo_size - wm_info->guard_size;
1570 if (planea_wm > (long)wm_info->max_wm)
1571 planea_wm = wm_info->max_wm;
1572 }
1573
1574 if (IS_GEN2(dev_priv))
1575 wm_info = &i830_bc_wm_info;
1576
1577 fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
1578 crtc = intel_get_crtc_for_plane(dev_priv, 1);
1579 if (intel_crtc_active(crtc)) {
1580 const struct drm_display_mode *adjusted_mode =
1581 &crtc->config->base.adjusted_mode;
1582 const struct drm_framebuffer *fb =
1583 crtc->base.primary->state->fb;
1584 int cpp;
1585
1586 if (IS_GEN2(dev_priv))
1587 cpp = 4;
1588 else
1589 cpp = fb->format->cpp[0];
1590
1591 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1592 wm_info, fifo_size, cpp,
1593 pessimal_latency_ns);
1594 if (enabled == NULL)
1595 enabled = crtc;
1596 else
1597 enabled = NULL;
1598 } else {
1599 planeb_wm = fifo_size - wm_info->guard_size;
1600 if (planeb_wm > (long)wm_info->max_wm)
1601 planeb_wm = wm_info->max_wm;
1602 }
1603
1604 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1605
1606 if (IS_I915GM(dev_priv) && enabled) {
1607 struct drm_i915_gem_object *obj;
1608
1609 obj = intel_fb_obj(enabled->base.primary->state->fb);
1610
1611 /* self-refresh seems busted with untiled */
1612 if (!i915_gem_object_is_tiled(obj))
1613 enabled = NULL;
1614 }
1615
1616 /*
1617 * Overlay gets an aggressive default since video jitter is bad.
1618 */
1619 cwm = 2;
1620
1621 /* Play safe and disable self-refresh before adjusting watermarks. */
1622 intel_set_memory_cxsr(dev_priv, false);
1623
1624 /* Calc sr entries for one plane configs */
1625 if (HAS_FW_BLC(dev_priv) && enabled) {
1626 /* self-refresh has much higher latency */
1627 static const int sr_latency_ns = 6000;
1628 const struct drm_display_mode *adjusted_mode =
1629 &enabled->config->base.adjusted_mode;
1630 const struct drm_framebuffer *fb =
1631 enabled->base.primary->state->fb;
1632 int clock = adjusted_mode->crtc_clock;
1633 int htotal = adjusted_mode->crtc_htotal;
1634 int hdisplay = enabled->config->pipe_src_w;
1635 int cpp;
1636 unsigned long line_time_us;
1637 int entries;
1638
1639 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1640 cpp = 4;
1641 else
1642 cpp = fb->format->cpp[0];
1643
1644 line_time_us = max(htotal * 1000 / clock, 1);
1645
1646 /* Use ns/us then divide to preserve precision */
1647 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1648 cpp * hdisplay;
1649 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1650 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1651 srwm = wm_info->fifo_size - entries;
1652 if (srwm < 0)
1653 srwm = 1;
1654
1655 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1656 I915_WRITE(FW_BLC_SELF,
1657 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1658 else
1659 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1660 }
1661
1662 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1663 planea_wm, planeb_wm, cwm, srwm);
1664
1665 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1666 fwater_hi = (cwm & 0x1f);
1667
1668 /* Set request length to 8 cachelines per fetch */
1669 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1670 fwater_hi = fwater_hi | (1 << 8);
1671
1672 I915_WRITE(FW_BLC, fwater_lo);
1673 I915_WRITE(FW_BLC2, fwater_hi);
1674
1675 if (enabled)
1676 intel_set_memory_cxsr(dev_priv, true);
1677 }
1678
1679 static void i845_update_wm(struct intel_crtc *unused_crtc)
1680 {
1681 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1682 struct intel_crtc *crtc;
1683 const struct drm_display_mode *adjusted_mode;
1684 uint32_t fwater_lo;
1685 int planea_wm;
1686
1687 crtc = single_enabled_crtc(dev_priv);
1688 if (crtc == NULL)
1689 return;
1690
1691 adjusted_mode = &crtc->config->base.adjusted_mode;
1692 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1693 &i845_wm_info,
1694 dev_priv->display.get_fifo_size(dev_priv, 0),
1695 4, pessimal_latency_ns);
1696 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1697 fwater_lo |= (3<<8) | planea_wm;
1698
1699 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1700
1701 I915_WRITE(FW_BLC, fwater_lo);
1702 }
1703
1704 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1705 {
1706 uint32_t pixel_rate;
1707
1708 pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1709
1710 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1711 * adjust the pixel_rate here. */
1712
1713 if (pipe_config->pch_pfit.enabled) {
1714 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1715 uint32_t pfit_size = pipe_config->pch_pfit.size;
1716
1717 pipe_w = pipe_config->pipe_src_w;
1718 pipe_h = pipe_config->pipe_src_h;
1719
1720 pfit_w = (pfit_size >> 16) & 0xFFFF;
1721 pfit_h = pfit_size & 0xFFFF;
1722 if (pipe_w < pfit_w)
1723 pipe_w = pfit_w;
1724 if (pipe_h < pfit_h)
1725 pipe_h = pfit_h;
1726
1727 if (WARN_ON(!pfit_w || !pfit_h))
1728 return pixel_rate;
1729
1730 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1731 pfit_w * pfit_h);
1732 }
1733
1734 return pixel_rate;
1735 }
1736
1737 /* latency must be in 0.1us units. */
1738 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1739 {
1740 uint64_t ret;
1741
1742 if (WARN(latency == 0, "Latency value missing\n"))
1743 return UINT_MAX;
1744
1745 ret = (uint64_t) pixel_rate * cpp * latency;
1746 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1747
1748 return ret;
1749 }
1750
1751 /* latency must be in 0.1us units. */
1752 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1753 uint32_t horiz_pixels, uint8_t cpp,
1754 uint32_t latency)
1755 {
1756 uint32_t ret;
1757
1758 if (WARN(latency == 0, "Latency value missing\n"))
1759 return UINT_MAX;
1760 if (WARN_ON(!pipe_htotal))
1761 return UINT_MAX;
1762
1763 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1764 ret = (ret + 1) * horiz_pixels * cpp;
1765 ret = DIV_ROUND_UP(ret, 64) + 2;
1766 return ret;
1767 }
1768
1769 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1770 uint8_t cpp)
1771 {
1772 /*
1773 * Neither of these should be possible since this function shouldn't be
1774 * called if the CRTC is off or the plane is invisible. But let's be
1775 * extra paranoid to avoid a potential divide-by-zero if we screw up
1776 * elsewhere in the driver.
1777 */
1778 if (WARN_ON(!cpp))
1779 return 0;
1780 if (WARN_ON(!horiz_pixels))
1781 return 0;
1782
1783 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1784 }
1785
1786 struct ilk_wm_maximums {
1787 uint16_t pri;
1788 uint16_t spr;
1789 uint16_t cur;
1790 uint16_t fbc;
1791 };
1792
1793 /*
1794 * For both WM_PIPE and WM_LP.
1795 * mem_value must be in 0.1us units.
1796 */
1797 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1798 const struct intel_plane_state *pstate,
1799 uint32_t mem_value,
1800 bool is_lp)
1801 {
1802 uint32_t method1, method2;
1803 int cpp;
1804
1805 if (!cstate->base.active || !pstate->base.visible)
1806 return 0;
1807
1808 cpp = pstate->base.fb->format->cpp[0];
1809
1810 method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1811
1812 if (!is_lp)
1813 return method1;
1814
1815 method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1816 cstate->base.adjusted_mode.crtc_htotal,
1817 drm_rect_width(&pstate->base.dst),
1818 cpp, mem_value);
1819
1820 return min(method1, method2);
1821 }
1822
1823 /*
1824 * For both WM_PIPE and WM_LP.
1825 * mem_value must be in 0.1us units.
1826 */
1827 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1828 const struct intel_plane_state *pstate,
1829 uint32_t mem_value)
1830 {
1831 uint32_t method1, method2;
1832 int cpp;
1833
1834 if (!cstate->base.active || !pstate->base.visible)
1835 return 0;
1836
1837 cpp = pstate->base.fb->format->cpp[0];
1838
1839 method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1840 method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1841 cstate->base.adjusted_mode.crtc_htotal,
1842 drm_rect_width(&pstate->base.dst),
1843 cpp, mem_value);
1844 return min(method1, method2);
1845 }
1846
1847 /*
1848 * For both WM_PIPE and WM_LP.
1849 * mem_value must be in 0.1us units.
1850 */
1851 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1852 const struct intel_plane_state *pstate,
1853 uint32_t mem_value)
1854 {
1855 /*
1856 * We treat the cursor plane as always-on for the purposes of watermark
1857 * calculation. Until we have two-stage watermark programming merged,
1858 * this is necessary to avoid flickering.
1859 */
1860 int cpp = 4;
1861 int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1862
1863 if (!cstate->base.active)
1864 return 0;
1865
1866 return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1867 cstate->base.adjusted_mode.crtc_htotal,
1868 width, cpp, mem_value);
1869 }
1870
1871 /* Only for WM_LP. */
1872 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1873 const struct intel_plane_state *pstate,
1874 uint32_t pri_val)
1875 {
1876 int cpp;
1877
1878 if (!cstate->base.active || !pstate->base.visible)
1879 return 0;
1880
1881 cpp = pstate->base.fb->format->cpp[0];
1882
1883 return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1884 }
1885
1886 static unsigned int
1887 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
1888 {
1889 if (INTEL_GEN(dev_priv) >= 8)
1890 return 3072;
1891 else if (INTEL_GEN(dev_priv) >= 7)
1892 return 768;
1893 else
1894 return 512;
1895 }
1896
1897 static unsigned int
1898 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
1899 int level, bool is_sprite)
1900 {
1901 if (INTEL_GEN(dev_priv) >= 8)
1902 /* BDW primary/sprite plane watermarks */
1903 return level == 0 ? 255 : 2047;
1904 else if (INTEL_GEN(dev_priv) >= 7)
1905 /* IVB/HSW primary/sprite plane watermarks */
1906 return level == 0 ? 127 : 1023;
1907 else if (!is_sprite)
1908 /* ILK/SNB primary plane watermarks */
1909 return level == 0 ? 127 : 511;
1910 else
1911 /* ILK/SNB sprite plane watermarks */
1912 return level == 0 ? 63 : 255;
1913 }
1914
1915 static unsigned int
1916 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
1917 {
1918 if (INTEL_GEN(dev_priv) >= 7)
1919 return level == 0 ? 63 : 255;
1920 else
1921 return level == 0 ? 31 : 63;
1922 }
1923
1924 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
1925 {
1926 if (INTEL_GEN(dev_priv) >= 8)
1927 return 31;
1928 else
1929 return 15;
1930 }
1931
1932 /* Calculate the maximum primary/sprite plane watermark */
1933 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1934 int level,
1935 const struct intel_wm_config *config,
1936 enum intel_ddb_partitioning ddb_partitioning,
1937 bool is_sprite)
1938 {
1939 struct drm_i915_private *dev_priv = to_i915(dev);
1940 unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
1941
1942 /* if sprites aren't enabled, sprites get nothing */
1943 if (is_sprite && !config->sprites_enabled)
1944 return 0;
1945
1946 /* HSW allows LP1+ watermarks even with multiple pipes */
1947 if (level == 0 || config->num_pipes_active > 1) {
1948 fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
1949
1950 /*
1951 * For some reason the non self refresh
1952 * FIFO size is only half of the self
1953 * refresh FIFO size on ILK/SNB.
1954 */
1955 if (INTEL_GEN(dev_priv) <= 6)
1956 fifo_size /= 2;
1957 }
1958
1959 if (config->sprites_enabled) {
1960 /* level 0 is always calculated with 1:1 split */
1961 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1962 if (is_sprite)
1963 fifo_size *= 5;
1964 fifo_size /= 6;
1965 } else {
1966 fifo_size /= 2;
1967 }
1968 }
1969
1970 /* clamp to max that the registers can hold */
1971 return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
1972 }
1973
1974 /* Calculate the maximum cursor plane watermark */
1975 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1976 int level,
1977 const struct intel_wm_config *config)
1978 {
1979 /* HSW LP1+ watermarks w/ multiple pipes */
1980 if (level > 0 && config->num_pipes_active > 1)
1981 return 64;
1982
1983 /* otherwise just report max that registers can hold */
1984 return ilk_cursor_wm_reg_max(to_i915(dev), level);
1985 }
1986
1987 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1988 int level,
1989 const struct intel_wm_config *config,
1990 enum intel_ddb_partitioning ddb_partitioning,
1991 struct ilk_wm_maximums *max)
1992 {
1993 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1994 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1995 max->cur = ilk_cursor_wm_max(dev, level, config);
1996 max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
1997 }
1998
1999 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2000 int level,
2001 struct ilk_wm_maximums *max)
2002 {
2003 max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2004 max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2005 max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2006 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2007 }
2008
2009 static bool ilk_validate_wm_level(int level,
2010 const struct ilk_wm_maximums *max,
2011 struct intel_wm_level *result)
2012 {
2013 bool ret;
2014
2015 /* already determined to be invalid? */
2016 if (!result->enable)
2017 return false;
2018
2019 result->enable = result->pri_val <= max->pri &&
2020 result->spr_val <= max->spr &&
2021 result->cur_val <= max->cur;
2022
2023 ret = result->enable;
2024
2025 /*
2026 * HACK until we can pre-compute everything,
2027 * and thus fail gracefully if LP0 watermarks
2028 * are exceeded...
2029 */
2030 if (level == 0 && !result->enable) {
2031 if (result->pri_val > max->pri)
2032 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2033 level, result->pri_val, max->pri);
2034 if (result->spr_val > max->spr)
2035 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2036 level, result->spr_val, max->spr);
2037 if (result->cur_val > max->cur)
2038 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2039 level, result->cur_val, max->cur);
2040
2041 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2042 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2043 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2044 result->enable = true;
2045 }
2046
2047 return ret;
2048 }
2049
2050 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2051 const struct intel_crtc *intel_crtc,
2052 int level,
2053 struct intel_crtc_state *cstate,
2054 struct intel_plane_state *pristate,
2055 struct intel_plane_state *sprstate,
2056 struct intel_plane_state *curstate,
2057 struct intel_wm_level *result)
2058 {
2059 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2060 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2061 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2062
2063 /* WM1+ latency values stored in 0.5us units */
2064 if (level > 0) {
2065 pri_latency *= 5;
2066 spr_latency *= 5;
2067 cur_latency *= 5;
2068 }
2069
2070 if (pristate) {
2071 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2072 pri_latency, level);
2073 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2074 }
2075
2076 if (sprstate)
2077 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2078
2079 if (curstate)
2080 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2081
2082 result->enable = true;
2083 }
2084
2085 static uint32_t
2086 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2087 {
2088 const struct intel_atomic_state *intel_state =
2089 to_intel_atomic_state(cstate->base.state);
2090 const struct drm_display_mode *adjusted_mode =
2091 &cstate->base.adjusted_mode;
2092 u32 linetime, ips_linetime;
2093
2094 if (!cstate->base.active)
2095 return 0;
2096 if (WARN_ON(adjusted_mode->crtc_clock == 0))
2097 return 0;
2098 if (WARN_ON(intel_state->cdclk == 0))
2099 return 0;
2100
2101 /* The WM are computed with base on how long it takes to fill a single
2102 * row at the given clock rate, multiplied by 8.
2103 * */
2104 linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2105 adjusted_mode->crtc_clock);
2106 ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2107 intel_state->cdclk);
2108
2109 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2110 PIPE_WM_LINETIME_TIME(linetime);
2111 }
2112
2113 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2114 uint16_t wm[8])
2115 {
2116 if (IS_GEN9(dev_priv)) {
2117 uint32_t val;
2118 int ret, i;
2119 int level, max_level = ilk_wm_max_level(dev_priv);
2120
2121 /* read the first set of memory latencies[0:3] */
2122 val = 0; /* data0 to be programmed to 0 for first set */
2123 mutex_lock(&dev_priv->rps.hw_lock);
2124 ret = sandybridge_pcode_read(dev_priv,
2125 GEN9_PCODE_READ_MEM_LATENCY,
2126 &val);
2127 mutex_unlock(&dev_priv->rps.hw_lock);
2128
2129 if (ret) {
2130 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2131 return;
2132 }
2133
2134 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2135 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2136 GEN9_MEM_LATENCY_LEVEL_MASK;
2137 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2138 GEN9_MEM_LATENCY_LEVEL_MASK;
2139 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2140 GEN9_MEM_LATENCY_LEVEL_MASK;
2141
2142 /* read the second set of memory latencies[4:7] */
2143 val = 1; /* data0 to be programmed to 1 for second set */
2144 mutex_lock(&dev_priv->rps.hw_lock);
2145 ret = sandybridge_pcode_read(dev_priv,
2146 GEN9_PCODE_READ_MEM_LATENCY,
2147 &val);
2148 mutex_unlock(&dev_priv->rps.hw_lock);
2149 if (ret) {
2150 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2151 return;
2152 }
2153
2154 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2155 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2156 GEN9_MEM_LATENCY_LEVEL_MASK;
2157 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2158 GEN9_MEM_LATENCY_LEVEL_MASK;
2159 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2160 GEN9_MEM_LATENCY_LEVEL_MASK;
2161
2162 /*
2163 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2164 * need to be disabled. We make sure to sanitize the values out
2165 * of the punit to satisfy this requirement.
2166 */
2167 for (level = 1; level <= max_level; level++) {
2168 if (wm[level] == 0) {
2169 for (i = level + 1; i <= max_level; i++)
2170 wm[i] = 0;
2171 break;
2172 }
2173 }
2174
2175 /*
2176 * WaWmMemoryReadLatency:skl
2177 *
2178 * punit doesn't take into account the read latency so we need
2179 * to add 2us to the various latency levels we retrieve from the
2180 * punit when level 0 response data us 0us.
2181 */
2182 if (wm[0] == 0) {
2183 wm[0] += 2;
2184 for (level = 1; level <= max_level; level++) {
2185 if (wm[level] == 0)
2186 break;
2187 wm[level] += 2;
2188 }
2189 }
2190
2191 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2192 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2193
2194 wm[0] = (sskpd >> 56) & 0xFF;
2195 if (wm[0] == 0)
2196 wm[0] = sskpd & 0xF;
2197 wm[1] = (sskpd >> 4) & 0xFF;
2198 wm[2] = (sskpd >> 12) & 0xFF;
2199 wm[3] = (sskpd >> 20) & 0x1FF;
2200 wm[4] = (sskpd >> 32) & 0x1FF;
2201 } else if (INTEL_GEN(dev_priv) >= 6) {
2202 uint32_t sskpd = I915_READ(MCH_SSKPD);
2203
2204 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2205 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2206 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2207 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2208 } else if (INTEL_GEN(dev_priv) >= 5) {
2209 uint32_t mltr = I915_READ(MLTR_ILK);
2210
2211 /* ILK primary LP0 latency is 700 ns */
2212 wm[0] = 7;
2213 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2214 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2215 }
2216 }
2217
2218 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2219 uint16_t wm[5])
2220 {
2221 /* ILK sprite LP0 latency is 1300 ns */
2222 if (IS_GEN5(dev_priv))
2223 wm[0] = 13;
2224 }
2225
2226 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2227 uint16_t wm[5])
2228 {
2229 /* ILK cursor LP0 latency is 1300 ns */
2230 if (IS_GEN5(dev_priv))
2231 wm[0] = 13;
2232
2233 /* WaDoubleCursorLP3Latency:ivb */
2234 if (IS_IVYBRIDGE(dev_priv))
2235 wm[3] *= 2;
2236 }
2237
2238 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2239 {
2240 /* how many WM levels are we expecting */
2241 if (INTEL_GEN(dev_priv) >= 9)
2242 return 7;
2243 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2244 return 4;
2245 else if (INTEL_GEN(dev_priv) >= 6)
2246 return 3;
2247 else
2248 return 2;
2249 }
2250
2251 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2252 const char *name,
2253 const uint16_t wm[8])
2254 {
2255 int level, max_level = ilk_wm_max_level(dev_priv);
2256
2257 for (level = 0; level <= max_level; level++) {
2258 unsigned int latency = wm[level];
2259
2260 if (latency == 0) {
2261 DRM_ERROR("%s WM%d latency not provided\n",
2262 name, level);
2263 continue;
2264 }
2265
2266 /*
2267 * - latencies are in us on gen9.
2268 * - before then, WM1+ latency values are in 0.5us units
2269 */
2270 if (IS_GEN9(dev_priv))
2271 latency *= 10;
2272 else if (level > 0)
2273 latency *= 5;
2274
2275 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2276 name, level, wm[level],
2277 latency / 10, latency % 10);
2278 }
2279 }
2280
2281 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2282 uint16_t wm[5], uint16_t min)
2283 {
2284 int level, max_level = ilk_wm_max_level(dev_priv);
2285
2286 if (wm[0] >= min)
2287 return false;
2288
2289 wm[0] = max(wm[0], min);
2290 for (level = 1; level <= max_level; level++)
2291 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2292
2293 return true;
2294 }
2295
2296 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2297 {
2298 bool changed;
2299
2300 /*
2301 * The BIOS provided WM memory latency values are often
2302 * inadequate for high resolution displays. Adjust them.
2303 */
2304 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2305 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2306 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2307
2308 if (!changed)
2309 return;
2310
2311 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2312 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2313 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2314 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2315 }
2316
2317 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2318 {
2319 intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2320
2321 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2322 sizeof(dev_priv->wm.pri_latency));
2323 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2324 sizeof(dev_priv->wm.pri_latency));
2325
2326 intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2327 intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2328
2329 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2330 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2331 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2332
2333 if (IS_GEN6(dev_priv))
2334 snb_wm_latency_quirk(dev_priv);
2335 }
2336
2337 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2338 {
2339 intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2340 intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2341 }
2342
2343 static bool ilk_validate_pipe_wm(struct drm_device *dev,
2344 struct intel_pipe_wm *pipe_wm)
2345 {
2346 /* LP0 watermark maximums depend on this pipe alone */
2347 const struct intel_wm_config config = {
2348 .num_pipes_active = 1,
2349 .sprites_enabled = pipe_wm->sprites_enabled,
2350 .sprites_scaled = pipe_wm->sprites_scaled,
2351 };
2352 struct ilk_wm_maximums max;
2353
2354 /* LP0 watermarks always use 1/2 DDB partitioning */
2355 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2356
2357 /* At least LP0 must be valid */
2358 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
2359 DRM_DEBUG_KMS("LP0 watermark invalid\n");
2360 return false;
2361 }
2362
2363 return true;
2364 }
2365
2366 /* Compute new watermarks for the pipe */
2367 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2368 {
2369 struct drm_atomic_state *state = cstate->base.state;
2370 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2371 struct intel_pipe_wm *pipe_wm;
2372 struct drm_device *dev = state->dev;
2373 const struct drm_i915_private *dev_priv = to_i915(dev);
2374 struct intel_plane *intel_plane;
2375 struct intel_plane_state *pristate = NULL;
2376 struct intel_plane_state *sprstate = NULL;
2377 struct intel_plane_state *curstate = NULL;
2378 int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2379 struct ilk_wm_maximums max;
2380
2381 pipe_wm = &cstate->wm.ilk.optimal;
2382
2383 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2384 struct intel_plane_state *ps;
2385
2386 ps = intel_atomic_get_existing_plane_state(state,
2387 intel_plane);
2388 if (!ps)
2389 continue;
2390
2391 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2392 pristate = ps;
2393 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2394 sprstate = ps;
2395 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2396 curstate = ps;
2397 }
2398
2399 pipe_wm->pipe_enabled = cstate->base.active;
2400 if (sprstate) {
2401 pipe_wm->sprites_enabled = sprstate->base.visible;
2402 pipe_wm->sprites_scaled = sprstate->base.visible &&
2403 (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
2404 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2405 }
2406
2407 usable_level = max_level;
2408
2409 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2410 if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
2411 usable_level = 1;
2412
2413 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2414 if (pipe_wm->sprites_scaled)
2415 usable_level = 0;
2416
2417 ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2418 pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
2419
2420 memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2421 pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2422
2423 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2424 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2425
2426 if (!ilk_validate_pipe_wm(dev, pipe_wm))
2427 return -EINVAL;
2428
2429 ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
2430
2431 for (level = 1; level <= max_level; level++) {
2432 struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2433
2434 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2435 pristate, sprstate, curstate, wm);
2436
2437 /*
2438 * Disable any watermark level that exceeds the
2439 * register maximums since such watermarks are
2440 * always invalid.
2441 */
2442 if (level > usable_level)
2443 continue;
2444
2445 if (ilk_validate_wm_level(level, &max, wm))
2446 pipe_wm->wm[level] = *wm;
2447 else
2448 usable_level = level;
2449 }
2450
2451 return 0;
2452 }
2453
2454 /*
2455 * Build a set of 'intermediate' watermark values that satisfy both the old
2456 * state and the new state. These can be programmed to the hardware
2457 * immediately.
2458 */
2459 static int ilk_compute_intermediate_wm(struct drm_device *dev,
2460 struct intel_crtc *intel_crtc,
2461 struct intel_crtc_state *newstate)
2462 {
2463 struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2464 struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2465 int level, max_level = ilk_wm_max_level(to_i915(dev));
2466
2467 /*
2468 * Start with the final, target watermarks, then combine with the
2469 * currently active watermarks to get values that are safe both before
2470 * and after the vblank.
2471 */
2472 *a = newstate->wm.ilk.optimal;
2473 a->pipe_enabled |= b->pipe_enabled;
2474 a->sprites_enabled |= b->sprites_enabled;
2475 a->sprites_scaled |= b->sprites_scaled;
2476
2477 for (level = 0; level <= max_level; level++) {
2478 struct intel_wm_level *a_wm = &a->wm[level];
2479 const struct intel_wm_level *b_wm = &b->wm[level];
2480
2481 a_wm->enable &= b_wm->enable;
2482 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
2483 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
2484 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
2485 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
2486 }
2487
2488 /*
2489 * We need to make sure that these merged watermark values are
2490 * actually a valid configuration themselves. If they're not,
2491 * there's no safe way to transition from the old state to
2492 * the new state, so we need to fail the atomic transaction.
2493 */
2494 if (!ilk_validate_pipe_wm(dev, a))
2495 return -EINVAL;
2496
2497 /*
2498 * If our intermediate WM are identical to the final WM, then we can
2499 * omit the post-vblank programming; only update if it's different.
2500 */
2501 if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2502 newstate->wm.need_postvbl_update = false;
2503
2504 return 0;
2505 }
2506
2507 /*
2508 * Merge the watermarks from all active pipes for a specific level.
2509 */
2510 static void ilk_merge_wm_level(struct drm_device *dev,
2511 int level,
2512 struct intel_wm_level *ret_wm)
2513 {
2514 const struct intel_crtc *intel_crtc;
2515
2516 ret_wm->enable = true;
2517
2518 for_each_intel_crtc(dev, intel_crtc) {
2519 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2520 const struct intel_wm_level *wm = &active->wm[level];
2521
2522 if (!active->pipe_enabled)
2523 continue;
2524
2525 /*
2526 * The watermark values may have been used in the past,
2527 * so we must maintain them in the registers for some
2528 * time even if the level is now disabled.
2529 */
2530 if (!wm->enable)
2531 ret_wm->enable = false;
2532
2533 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2534 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2535 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2536 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2537 }
2538 }
2539
2540 /*
2541 * Merge all low power watermarks for all active pipes.
2542 */
2543 static void ilk_wm_merge(struct drm_device *dev,
2544 const struct intel_wm_config *config,
2545 const struct ilk_wm_maximums *max,
2546 struct intel_pipe_wm *merged)
2547 {
2548 struct drm_i915_private *dev_priv = to_i915(dev);
2549 int level, max_level = ilk_wm_max_level(dev_priv);
2550 int last_enabled_level = max_level;
2551
2552 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2553 if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2554 config->num_pipes_active > 1)
2555 last_enabled_level = 0;
2556
2557 /* ILK: FBC WM must be disabled always */
2558 merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
2559
2560 /* merge each WM1+ level */
2561 for (level = 1; level <= max_level; level++) {
2562 struct intel_wm_level *wm = &merged->wm[level];
2563
2564 ilk_merge_wm_level(dev, level, wm);
2565
2566 if (level > last_enabled_level)
2567 wm->enable = false;
2568 else if (!ilk_validate_wm_level(level, max, wm))
2569 /* make sure all following levels get disabled */
2570 last_enabled_level = level - 1;
2571
2572 /*
2573 * The spec says it is preferred to disable
2574 * FBC WMs instead of disabling a WM level.
2575 */
2576 if (wm->fbc_val > max->fbc) {
2577 if (wm->enable)
2578 merged->fbc_wm_enabled = false;
2579 wm->fbc_val = 0;
2580 }
2581 }
2582
2583 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2584 /*
2585 * FIXME this is racy. FBC might get enabled later.
2586 * What we should check here is whether FBC can be
2587 * enabled sometime later.
2588 */
2589 if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2590 intel_fbc_is_active(dev_priv)) {
2591 for (level = 2; level <= max_level; level++) {
2592 struct intel_wm_level *wm = &merged->wm[level];
2593
2594 wm->enable = false;
2595 }
2596 }
2597 }
2598
2599 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2600 {
2601 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2602 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2603 }
2604
2605 /* The value we need to program into the WM_LPx latency field */
2606 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2607 {
2608 struct drm_i915_private *dev_priv = to_i915(dev);
2609
2610 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2611 return 2 * level;
2612 else
2613 return dev_priv->wm.pri_latency[level];
2614 }
2615
2616 static void ilk_compute_wm_results(struct drm_device *dev,
2617 const struct intel_pipe_wm *merged,
2618 enum intel_ddb_partitioning partitioning,
2619 struct ilk_wm_values *results)
2620 {
2621 struct drm_i915_private *dev_priv = to_i915(dev);
2622 struct intel_crtc *intel_crtc;
2623 int level, wm_lp;
2624
2625 results->enable_fbc_wm = merged->fbc_wm_enabled;
2626 results->partitioning = partitioning;
2627
2628 /* LP1+ register values */
2629 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2630 const struct intel_wm_level *r;
2631
2632 level = ilk_wm_lp_to_level(wm_lp, merged);
2633
2634 r = &merged->wm[level];
2635
2636 /*
2637 * Maintain the watermark values even if the level is
2638 * disabled. Doing otherwise could cause underruns.
2639 */
2640 results->wm_lp[wm_lp - 1] =
2641 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2642 (r->pri_val << WM1_LP_SR_SHIFT) |
2643 r->cur_val;
2644
2645 if (r->enable)
2646 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2647
2648 if (INTEL_GEN(dev_priv) >= 8)
2649 results->wm_lp[wm_lp - 1] |=
2650 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2651 else
2652 results->wm_lp[wm_lp - 1] |=
2653 r->fbc_val << WM1_LP_FBC_SHIFT;
2654
2655 /*
2656 * Always set WM1S_LP_EN when spr_val != 0, even if the
2657 * level is disabled. Doing otherwise could cause underruns.
2658 */
2659 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
2660 WARN_ON(wm_lp != 1);
2661 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2662 } else
2663 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2664 }
2665
2666 /* LP0 register values */
2667 for_each_intel_crtc(dev, intel_crtc) {
2668 enum pipe pipe = intel_crtc->pipe;
2669 const struct intel_wm_level *r =
2670 &intel_crtc->wm.active.ilk.wm[0];
2671
2672 if (WARN_ON(!r->enable))
2673 continue;
2674
2675 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2676
2677 results->wm_pipe[pipe] =
2678 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2679 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2680 r->cur_val;
2681 }
2682 }
2683
2684 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2685 * case both are at the same level. Prefer r1 in case they're the same. */
2686 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2687 struct intel_pipe_wm *r1,
2688 struct intel_pipe_wm *r2)
2689 {
2690 int level, max_level = ilk_wm_max_level(to_i915(dev));
2691 int level1 = 0, level2 = 0;
2692
2693 for (level = 1; level <= max_level; level++) {
2694 if (r1->wm[level].enable)
2695 level1 = level;
2696 if (r2->wm[level].enable)
2697 level2 = level;
2698 }
2699
2700 if (level1 == level2) {
2701 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2702 return r2;
2703 else
2704 return r1;
2705 } else if (level1 > level2) {
2706 return r1;
2707 } else {
2708 return r2;
2709 }
2710 }
2711
2712 /* dirty bits used to track which watermarks need changes */
2713 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2714 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2715 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2716 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2717 #define WM_DIRTY_FBC (1 << 24)
2718 #define WM_DIRTY_DDB (1 << 25)
2719
2720 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2721 const struct ilk_wm_values *old,
2722 const struct ilk_wm_values *new)
2723 {
2724 unsigned int dirty = 0;
2725 enum pipe pipe;
2726 int wm_lp;
2727
2728 for_each_pipe(dev_priv, pipe) {
2729 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2730 dirty |= WM_DIRTY_LINETIME(pipe);
2731 /* Must disable LP1+ watermarks too */
2732 dirty |= WM_DIRTY_LP_ALL;
2733 }
2734
2735 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2736 dirty |= WM_DIRTY_PIPE(pipe);
2737 /* Must disable LP1+ watermarks too */
2738 dirty |= WM_DIRTY_LP_ALL;
2739 }
2740 }
2741
2742 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2743 dirty |= WM_DIRTY_FBC;
2744 /* Must disable LP1+ watermarks too */
2745 dirty |= WM_DIRTY_LP_ALL;
2746 }
2747
2748 if (old->partitioning != new->partitioning) {
2749 dirty |= WM_DIRTY_DDB;
2750 /* Must disable LP1+ watermarks too */
2751 dirty |= WM_DIRTY_LP_ALL;
2752 }
2753
2754 /* LP1+ watermarks already deemed dirty, no need to continue */
2755 if (dirty & WM_DIRTY_LP_ALL)
2756 return dirty;
2757
2758 /* Find the lowest numbered LP1+ watermark in need of an update... */
2759 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2760 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2761 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2762 break;
2763 }
2764
2765 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2766 for (; wm_lp <= 3; wm_lp++)
2767 dirty |= WM_DIRTY_LP(wm_lp);
2768
2769 return dirty;
2770 }
2771
2772 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2773 unsigned int dirty)
2774 {
2775 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2776 bool changed = false;
2777
2778 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2779 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2780 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2781 changed = true;
2782 }
2783 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2784 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2785 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2786 changed = true;
2787 }
2788 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2789 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2790 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2791 changed = true;
2792 }
2793
2794 /*
2795 * Don't touch WM1S_LP_EN here.
2796 * Doing so could cause underruns.
2797 */
2798
2799 return changed;
2800 }
2801
2802 /*
2803 * The spec says we shouldn't write when we don't need, because every write
2804 * causes WMs to be re-evaluated, expending some power.
2805 */
2806 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2807 struct ilk_wm_values *results)
2808 {
2809 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2810 unsigned int dirty;
2811 uint32_t val;
2812
2813 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2814 if (!dirty)
2815 return;
2816
2817 _ilk_disable_lp_wm(dev_priv, dirty);
2818
2819 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2820 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2821 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2822 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2823 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2824 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2825
2826 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2827 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2828 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2829 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2830 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2831 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2832
2833 if (dirty & WM_DIRTY_DDB) {
2834 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2835 val = I915_READ(WM_MISC);
2836 if (results->partitioning == INTEL_DDB_PART_1_2)
2837 val &= ~WM_MISC_DATA_PARTITION_5_6;
2838 else
2839 val |= WM_MISC_DATA_PARTITION_5_6;
2840 I915_WRITE(WM_MISC, val);
2841 } else {
2842 val = I915_READ(DISP_ARB_CTL2);
2843 if (results->partitioning == INTEL_DDB_PART_1_2)
2844 val &= ~DISP_DATA_PARTITION_5_6;
2845 else
2846 val |= DISP_DATA_PARTITION_5_6;
2847 I915_WRITE(DISP_ARB_CTL2, val);
2848 }
2849 }
2850
2851 if (dirty & WM_DIRTY_FBC) {
2852 val = I915_READ(DISP_ARB_CTL);
2853 if (results->enable_fbc_wm)
2854 val &= ~DISP_FBC_WM_DIS;
2855 else
2856 val |= DISP_FBC_WM_DIS;
2857 I915_WRITE(DISP_ARB_CTL, val);
2858 }
2859
2860 if (dirty & WM_DIRTY_LP(1) &&
2861 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2862 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2863
2864 if (INTEL_GEN(dev_priv) >= 7) {
2865 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2866 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2867 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2868 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2869 }
2870
2871 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2872 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2873 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2874 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2875 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2876 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2877
2878 dev_priv->wm.hw = *results;
2879 }
2880
2881 bool ilk_disable_lp_wm(struct drm_device *dev)
2882 {
2883 struct drm_i915_private *dev_priv = to_i915(dev);
2884
2885 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2886 }
2887
2888 #define SKL_SAGV_BLOCK_TIME 30 /* µs */
2889
2890 /*
2891 * FIXME: We still don't have the proper code detect if we need to apply the WA,
2892 * so assume we'll always need it in order to avoid underruns.
2893 */
2894 static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
2895 {
2896 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2897
2898 if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
2899 IS_KABYLAKE(dev_priv))
2900 return true;
2901
2902 return false;
2903 }
2904
2905 static bool
2906 intel_has_sagv(struct drm_i915_private *dev_priv)
2907 {
2908 if (IS_KABYLAKE(dev_priv))
2909 return true;
2910
2911 if (IS_SKYLAKE(dev_priv) &&
2912 dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
2913 return true;
2914
2915 return false;
2916 }
2917
2918 /*
2919 * SAGV dynamically adjusts the system agent voltage and clock frequencies
2920 * depending on power and performance requirements. The display engine access
2921 * to system memory is blocked during the adjustment time. Because of the
2922 * blocking time, having this enabled can cause full system hangs and/or pipe
2923 * underruns if we don't meet all of the following requirements:
2924 *
2925 * - <= 1 pipe enabled
2926 * - All planes can enable watermarks for latencies >= SAGV engine block time
2927 * - We're not using an interlaced display configuration
2928 */
2929 int
2930 intel_enable_sagv(struct drm_i915_private *dev_priv)
2931 {
2932 int ret;
2933
2934 if (!intel_has_sagv(dev_priv))
2935 return 0;
2936
2937 if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2938 return 0;
2939
2940 DRM_DEBUG_KMS("Enabling the SAGV\n");
2941 mutex_lock(&dev_priv->rps.hw_lock);
2942
2943 ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
2944 GEN9_SAGV_ENABLE);
2945
2946 /* We don't need to wait for the SAGV when enabling */
2947 mutex_unlock(&dev_priv->rps.hw_lock);
2948
2949 /*
2950 * Some skl systems, pre-release machines in particular,
2951 * don't actually have an SAGV.
2952 */
2953 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2954 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2955 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2956 return 0;
2957 } else if (ret < 0) {
2958 DRM_ERROR("Failed to enable the SAGV\n");
2959 return ret;
2960 }
2961
2962 dev_priv->sagv_status = I915_SAGV_ENABLED;
2963 return 0;
2964 }
2965
2966 int
2967 intel_disable_sagv(struct drm_i915_private *dev_priv)
2968 {
2969 int ret;
2970
2971 if (!intel_has_sagv(dev_priv))
2972 return 0;
2973
2974 if (dev_priv->sagv_status == I915_SAGV_DISABLED)
2975 return 0;
2976
2977 DRM_DEBUG_KMS("Disabling the SAGV\n");
2978 mutex_lock(&dev_priv->rps.hw_lock);
2979
2980 /* bspec says to keep retrying for at least 1 ms */
2981 ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
2982 GEN9_SAGV_DISABLE,
2983 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
2984 1);
2985 mutex_unlock(&dev_priv->rps.hw_lock);
2986
2987 /*
2988 * Some skl systems, pre-release machines in particular,
2989 * don't actually have an SAGV.
2990 */
2991 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2992 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2993 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2994 return 0;
2995 } else if (ret < 0) {
2996 DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
2997 return ret;
2998 }
2999
3000 dev_priv->sagv_status = I915_SAGV_DISABLED;
3001 return 0;
3002 }
3003
3004 bool intel_can_enable_sagv(struct drm_atomic_state *state)
3005 {
3006 struct drm_device *dev = state->dev;
3007 struct drm_i915_private *dev_priv = to_i915(dev);
3008 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3009 struct intel_crtc *crtc;
3010 struct intel_plane *plane;
3011 struct intel_crtc_state *cstate;
3012 enum pipe pipe;
3013 int level, latency;
3014
3015 if (!intel_has_sagv(dev_priv))
3016 return false;
3017
3018 /*
3019 * SKL workaround: bspec recommends we disable the SAGV when we have
3020 * more then one pipe enabled
3021 *
3022 * If there are no active CRTCs, no additional checks need be performed
3023 */
3024 if (hweight32(intel_state->active_crtcs) == 0)
3025 return true;
3026 else if (hweight32(intel_state->active_crtcs) > 1)
3027 return false;
3028
3029 /* Since we're now guaranteed to only have one active CRTC... */
3030 pipe = ffs(intel_state->active_crtcs) - 1;
3031 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3032 cstate = to_intel_crtc_state(crtc->base.state);
3033
3034 if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3035 return false;
3036
3037 for_each_intel_plane_on_crtc(dev, crtc, plane) {
3038 struct skl_plane_wm *wm =
3039 &cstate->wm.skl.optimal.planes[plane->id];
3040
3041 /* Skip this plane if it's not enabled */
3042 if (!wm->wm[0].plane_en)
3043 continue;
3044
3045 /* Find the highest enabled wm level for this plane */
3046 for (level = ilk_wm_max_level(dev_priv);
3047 !wm->wm[level].plane_en; --level)
3048 { }
3049
3050 latency = dev_priv->wm.skl_latency[level];
3051
3052 if (skl_needs_memory_bw_wa(intel_state) &&
3053 plane->base.state->fb->modifier ==
3054 I915_FORMAT_MOD_X_TILED)
3055 latency += 15;
3056
3057 /*
3058 * If any of the planes on this pipe don't enable wm levels
3059 * that incur memory latencies higher then 30µs we can't enable
3060 * the SAGV
3061 */
3062 if (latency < SKL_SAGV_BLOCK_TIME)
3063 return false;
3064 }
3065
3066 return true;
3067 }
3068
3069 static void
3070 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3071 const struct intel_crtc_state *cstate,
3072 struct skl_ddb_entry *alloc, /* out */
3073 int *num_active /* out */)
3074 {
3075 struct drm_atomic_state *state = cstate->base.state;
3076 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3077 struct drm_i915_private *dev_priv = to_i915(dev);
3078 struct drm_crtc *for_crtc = cstate->base.crtc;
3079 unsigned int pipe_size, ddb_size;
3080 int nth_active_pipe;
3081
3082 if (WARN_ON(!state) || !cstate->base.active) {
3083 alloc->start = 0;
3084 alloc->end = 0;
3085 *num_active = hweight32(dev_priv->active_crtcs);
3086 return;
3087 }
3088
3089 if (intel_state->active_pipe_changes)
3090 *num_active = hweight32(intel_state->active_crtcs);
3091 else
3092 *num_active = hweight32(dev_priv->active_crtcs);
3093
3094 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3095 WARN_ON(ddb_size == 0);
3096
3097 ddb_size -= 4; /* 4 blocks for bypass path allocation */
3098
3099 /*
3100 * If the state doesn't change the active CRTC's, then there's
3101 * no need to recalculate; the existing pipe allocation limits
3102 * should remain unchanged. Note that we're safe from racing
3103 * commits since any racing commit that changes the active CRTC
3104 * list would need to grab _all_ crtc locks, including the one
3105 * we currently hold.
3106 */
3107 if (!intel_state->active_pipe_changes) {
3108 /*
3109 * alloc may be cleared by clear_intel_crtc_state,
3110 * copy from old state to be sure
3111 */
3112 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3113 return;
3114 }
3115
3116 nth_active_pipe = hweight32(intel_state->active_crtcs &
3117 (drm_crtc_mask(for_crtc) - 1));
3118 pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
3119 alloc->start = nth_active_pipe * ddb_size / *num_active;
3120 alloc->end = alloc->start + pipe_size;
3121 }
3122
3123 static unsigned int skl_cursor_allocation(int num_active)
3124 {
3125 if (num_active == 1)
3126 return 32;
3127
3128 return 8;
3129 }
3130
3131 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
3132 {
3133 entry->start = reg & 0x3ff;
3134 entry->end = (reg >> 16) & 0x3ff;
3135 if (entry->end)
3136 entry->end += 1;
3137 }
3138
3139 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3140 struct skl_ddb_allocation *ddb /* out */)
3141 {
3142 struct intel_crtc *crtc;
3143
3144 memset(ddb, 0, sizeof(*ddb));
3145
3146 for_each_intel_crtc(&dev_priv->drm, crtc) {
3147 enum intel_display_power_domain power_domain;
3148 enum plane_id plane_id;
3149 enum pipe pipe = crtc->pipe;
3150
3151 power_domain = POWER_DOMAIN_PIPE(pipe);
3152 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3153 continue;
3154
3155 for_each_plane_id_on_crtc(crtc, plane_id) {
3156 u32 val;
3157
3158 if (plane_id != PLANE_CURSOR)
3159 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3160 else
3161 val = I915_READ(CUR_BUF_CFG(pipe));
3162
3163 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
3164 }
3165
3166 intel_display_power_put(dev_priv, power_domain);
3167 }
3168 }
3169
3170 /*
3171 * Determines the downscale amount of a plane for the purposes of watermark calculations.
3172 * The bspec defines downscale amount as:
3173 *
3174 * """
3175 * Horizontal down scale amount = maximum[1, Horizontal source size /
3176 * Horizontal destination size]
3177 * Vertical down scale amount = maximum[1, Vertical source size /
3178 * Vertical destination size]
3179 * Total down scale amount = Horizontal down scale amount *
3180 * Vertical down scale amount
3181 * """
3182 *
3183 * Return value is provided in 16.16 fixed point form to retain fractional part.
3184 * Caller should take care of dividing & rounding off the value.
3185 */
3186 static uint32_t
3187 skl_plane_downscale_amount(const struct intel_plane_state *pstate)
3188 {
3189 uint32_t downscale_h, downscale_w;
3190 uint32_t src_w, src_h, dst_w, dst_h;
3191
3192 if (WARN_ON(!pstate->base.visible))
3193 return DRM_PLANE_HELPER_NO_SCALING;
3194
3195 /* n.b., src is 16.16 fixed point, dst is whole integer */
3196 src_w = drm_rect_width(&pstate->base.src);
3197 src_h = drm_rect_height(&pstate->base.src);
3198 dst_w = drm_rect_width(&pstate->base.dst);
3199 dst_h = drm_rect_height(&pstate->base.dst);
3200 if (drm_rotation_90_or_270(pstate->base.rotation))
3201 swap(dst_w, dst_h);
3202
3203 downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3204 downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3205
3206 /* Provide result in 16.16 fixed point */
3207 return (uint64_t)downscale_w * downscale_h >> 16;
3208 }
3209
3210 static unsigned int
3211 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
3212 const struct drm_plane_state *pstate,
3213 int y)
3214 {
3215 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3216 uint32_t down_scale_amount, data_rate;
3217 uint32_t width = 0, height = 0;
3218 struct drm_framebuffer *fb;
3219 u32 format;
3220
3221 if (!intel_pstate->base.visible)
3222 return 0;
3223
3224 fb = pstate->fb;
3225 format = fb->format->format;
3226
3227 if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
3228 return 0;
3229 if (y && format != DRM_FORMAT_NV12)
3230 return 0;
3231
3232 width = drm_rect_width(&intel_pstate->base.src) >> 16;
3233 height = drm_rect_height(&intel_pstate->base.src) >> 16;
3234
3235 if (drm_rotation_90_or_270(pstate->rotation))
3236 swap(width, height);
3237
3238 /* for planar format */
3239 if (format == DRM_FORMAT_NV12) {
3240 if (y) /* y-plane data rate */
3241 data_rate = width * height *
3242 fb->format->cpp[0];
3243 else /* uv-plane data rate */
3244 data_rate = (width / 2) * (height / 2) *
3245 fb->format->cpp[1];
3246 } else {
3247 /* for packed formats */
3248 data_rate = width * height * fb->format->cpp[0];
3249 }
3250
3251 down_scale_amount = skl_plane_downscale_amount(intel_pstate);
3252
3253 return (uint64_t)data_rate * down_scale_amount >> 16;
3254 }
3255
3256 /*
3257 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
3258 * a 8192x4096@32bpp framebuffer:
3259 * 3 * 4096 * 8192 * 4 < 2^32
3260 */
3261 static unsigned int
3262 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
3263 unsigned *plane_data_rate,
3264 unsigned *plane_y_data_rate)
3265 {
3266 struct drm_crtc_state *cstate = &intel_cstate->base;
3267 struct drm_atomic_state *state = cstate->state;
3268 struct drm_plane *plane;
3269 const struct drm_plane_state *pstate;
3270 unsigned int total_data_rate = 0;
3271
3272 if (WARN_ON(!state))
3273 return 0;
3274
3275 /* Calculate and cache data rate for each plane */
3276 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3277 enum plane_id plane_id = to_intel_plane(plane)->id;
3278 unsigned int rate;
3279
3280 /* packed/uv */
3281 rate = skl_plane_relative_data_rate(intel_cstate,
3282 pstate, 0);
3283 plane_data_rate[plane_id] = rate;
3284
3285 total_data_rate += rate;
3286
3287 /* y-plane */
3288 rate = skl_plane_relative_data_rate(intel_cstate,
3289 pstate, 1);
3290 plane_y_data_rate[plane_id] = rate;
3291
3292 total_data_rate += rate;
3293 }
3294
3295 return total_data_rate;
3296 }
3297
3298 static uint16_t
3299 skl_ddb_min_alloc(const struct drm_plane_state *pstate,
3300 const int y)
3301 {
3302 struct drm_framebuffer *fb = pstate->fb;
3303 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3304 uint32_t src_w, src_h;
3305 uint32_t min_scanlines = 8;
3306 uint8_t plane_bpp;
3307
3308 if (WARN_ON(!fb))
3309 return 0;
3310
3311 /* For packed formats, no y-plane, return 0 */
3312 if (y && fb->format->format != DRM_FORMAT_NV12)
3313 return 0;
3314
3315 /* For Non Y-tile return 8-blocks */
3316 if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
3317 fb->modifier != I915_FORMAT_MOD_Yf_TILED)
3318 return 8;
3319
3320 src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
3321 src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3322
3323 if (drm_rotation_90_or_270(pstate->rotation))
3324 swap(src_w, src_h);
3325
3326 /* Halve UV plane width and height for NV12 */
3327 if (fb->format->format == DRM_FORMAT_NV12 && !y) {
3328 src_w /= 2;
3329 src_h /= 2;
3330 }
3331
3332 if (fb->format->format == DRM_FORMAT_NV12 && !y)
3333 plane_bpp = fb->format->cpp[1];
3334 else
3335 plane_bpp = fb->format->cpp[0];
3336
3337 if (drm_rotation_90_or_270(pstate->rotation)) {
3338 switch (plane_bpp) {
3339 case 1:
3340 min_scanlines = 32;
3341 break;
3342 case 2:
3343 min_scanlines = 16;
3344 break;
3345 case 4:
3346 min_scanlines = 8;
3347 break;
3348 case 8:
3349 min_scanlines = 4;
3350 break;
3351 default:
3352 WARN(1, "Unsupported pixel depth %u for rotation",
3353 plane_bpp);
3354 min_scanlines = 32;
3355 }
3356 }
3357
3358 return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
3359 }
3360
3361 static void
3362 skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
3363 uint16_t *minimum, uint16_t *y_minimum)
3364 {
3365 const struct drm_plane_state *pstate;
3366 struct drm_plane *plane;
3367
3368 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
3369 enum plane_id plane_id = to_intel_plane(plane)->id;
3370
3371 if (plane_id == PLANE_CURSOR)
3372 continue;
3373
3374 if (!pstate->visible)
3375 continue;
3376
3377 minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
3378 y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
3379 }
3380
3381 minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
3382 }
3383
3384 static int
3385 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3386 struct skl_ddb_allocation *ddb /* out */)
3387 {
3388 struct drm_atomic_state *state = cstate->base.state;
3389 struct drm_crtc *crtc = cstate->base.crtc;
3390 struct drm_device *dev = crtc->dev;
3391 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3392 enum pipe pipe = intel_crtc->pipe;
3393 struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3394 uint16_t alloc_size, start;
3395 uint16_t minimum[I915_MAX_PLANES] = {};
3396 uint16_t y_minimum[I915_MAX_PLANES] = {};
3397 unsigned int total_data_rate;
3398 enum plane_id plane_id;
3399 int num_active;
3400 unsigned plane_data_rate[I915_MAX_PLANES] = {};
3401 unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3402
3403 /* Clear the partitioning for disabled planes. */
3404 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3405 memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
3406
3407 if (WARN_ON(!state))
3408 return 0;
3409
3410 if (!cstate->base.active) {
3411 alloc->start = alloc->end = 0;
3412 return 0;
3413 }
3414
3415 skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3416 alloc_size = skl_ddb_entry_size(alloc);
3417 if (alloc_size == 0) {
3418 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3419 return 0;
3420 }
3421
3422 skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
3423
3424 /*
3425 * 1. Allocate the mininum required blocks for each active plane
3426 * and allocate the cursor, it doesn't require extra allocation
3427 * proportional to the data rate.
3428 */
3429
3430 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
3431 alloc_size -= minimum[plane_id];
3432 alloc_size -= y_minimum[plane_id];
3433 }
3434
3435 ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
3436 ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3437
3438 /*
3439 * 2. Distribute the remaining space in proportion to the amount of
3440 * data each plane needs to fetch from memory.
3441 *
3442 * FIXME: we may not allocate every single block here.
3443 */
3444 total_data_rate = skl_get_total_relative_data_rate(cstate,
3445 plane_data_rate,
3446 plane_y_data_rate);
3447 if (total_data_rate == 0)
3448 return 0;
3449
3450 start = alloc->start;
3451 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
3452 unsigned int data_rate, y_data_rate;
3453 uint16_t plane_blocks, y_plane_blocks = 0;
3454
3455 if (plane_id == PLANE_CURSOR)
3456 continue;
3457
3458 data_rate = plane_data_rate[plane_id];
3459
3460 /*
3461 * allocation for (packed formats) or (uv-plane part of planar format):
3462 * promote the expression to 64 bits to avoid overflowing, the
3463 * result is < available as data_rate / total_data_rate < 1
3464 */
3465 plane_blocks = minimum[plane_id];
3466 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3467 total_data_rate);
3468
3469 /* Leave disabled planes at (0,0) */
3470 if (data_rate) {
3471 ddb->plane[pipe][plane_id].start = start;
3472 ddb->plane[pipe][plane_id].end = start + plane_blocks;
3473 }
3474
3475 start += plane_blocks;
3476
3477 /*
3478 * allocation for y_plane part of planar format:
3479 */
3480 y_data_rate = plane_y_data_rate[plane_id];
3481
3482 y_plane_blocks = y_minimum[plane_id];
3483 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3484 total_data_rate);
3485
3486 if (y_data_rate) {
3487 ddb->y_plane[pipe][plane_id].start = start;
3488 ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
3489 }
3490
3491 start += y_plane_blocks;
3492 }
3493
3494 return 0;
3495 }
3496
3497 /*
3498 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3499 * for the read latency) and cpp should always be <= 8, so that
3500 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3501 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3502 */
3503 static uint_fixed_16_16_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp,
3504 uint32_t latency)
3505 {
3506 uint32_t wm_intermediate_val;
3507 uint_fixed_16_16_t ret;
3508
3509 if (latency == 0)
3510 return FP_16_16_MAX;
3511
3512 wm_intermediate_val = latency * pixel_rate * cpp;
3513 ret = fixed_16_16_div_round_up_u64(wm_intermediate_val, 1000 * 512);
3514 return ret;
3515 }
3516
3517 static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
3518 uint32_t pipe_htotal,
3519 uint32_t latency,
3520 uint_fixed_16_16_t plane_blocks_per_line)
3521 {
3522 uint32_t wm_intermediate_val;
3523 uint_fixed_16_16_t ret;
3524
3525 if (latency == 0)
3526 return FP_16_16_MAX;
3527
3528 wm_intermediate_val = latency * pixel_rate;
3529 wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
3530 pipe_htotal * 1000);
3531 ret = mul_u32_fixed_16_16(wm_intermediate_val, plane_blocks_per_line);
3532 return ret;
3533 }
3534
3535 static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
3536 struct intel_plane_state *pstate)
3537 {
3538 uint64_t adjusted_pixel_rate;
3539 uint64_t downscale_amount;
3540 uint64_t pixel_rate;
3541
3542 /* Shouldn't reach here on disabled planes... */
3543 if (WARN_ON(!pstate->base.visible))
3544 return 0;
3545
3546 /*
3547 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
3548 * with additional adjustments for plane-specific scaling.
3549 */
3550 adjusted_pixel_rate = ilk_pipe_pixel_rate(cstate);
3551 downscale_amount = skl_plane_downscale_amount(pstate);
3552
3553 pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
3554 WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));
3555
3556 return pixel_rate;
3557 }
3558
3559 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3560 struct intel_crtc_state *cstate,
3561 struct intel_plane_state *intel_pstate,
3562 uint16_t ddb_allocation,
3563 int level,
3564 uint16_t *out_blocks, /* out */
3565 uint8_t *out_lines, /* out */
3566 bool *enabled /* out */)
3567 {
3568 struct drm_plane_state *pstate = &intel_pstate->base;
3569 struct drm_framebuffer *fb = pstate->fb;
3570 uint32_t latency = dev_priv->wm.skl_latency[level];
3571 uint_fixed_16_16_t method1, method2;
3572 uint_fixed_16_16_t plane_blocks_per_line;
3573 uint_fixed_16_16_t selected_result;
3574 uint32_t interm_pbpl;
3575 uint32_t plane_bytes_per_line;
3576 uint32_t res_blocks, res_lines;
3577 uint8_t cpp;
3578 uint32_t width = 0, height = 0;
3579 uint32_t plane_pixel_rate;
3580 uint_fixed_16_16_t y_tile_minimum;
3581 uint32_t y_min_scanlines;
3582 struct intel_atomic_state *state =
3583 to_intel_atomic_state(cstate->base.state);
3584 bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3585 bool y_tiled, x_tiled;
3586
3587 if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3588 *enabled = false;
3589 return 0;
3590 }
3591
3592 y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
3593 fb->modifier == I915_FORMAT_MOD_Yf_TILED;
3594 x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
3595
3596 /* Display WA #1141: kbl. */
3597 if (IS_KABYLAKE(dev_priv) && dev_priv->ipc_enabled)
3598 latency += 4;
3599
3600 if (apply_memory_bw_wa && x_tiled)
3601 latency += 15;
3602
3603 width = drm_rect_width(&intel_pstate->base.src) >> 16;
3604 height = drm_rect_height(&intel_pstate->base.src) >> 16;
3605
3606 if (drm_rotation_90_or_270(pstate->rotation))
3607 swap(width, height);
3608
3609 cpp = fb->format->cpp[0];
3610 plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
3611
3612 if (drm_rotation_90_or_270(pstate->rotation)) {
3613 int cpp = (fb->format->format == DRM_FORMAT_NV12) ?
3614 fb->format->cpp[1] :
3615 fb->format->cpp[0];
3616
3617 switch (cpp) {
3618 case 1:
3619 y_min_scanlines = 16;
3620 break;
3621 case 2:
3622 y_min_scanlines = 8;
3623 break;
3624 case 4:
3625 y_min_scanlines = 4;
3626 break;
3627 default:
3628 MISSING_CASE(cpp);
3629 return -EINVAL;
3630 }
3631 } else {
3632 y_min_scanlines = 4;
3633 }
3634
3635 if (apply_memory_bw_wa)
3636 y_min_scanlines *= 2;
3637
3638 plane_bytes_per_line = width * cpp;
3639 if (y_tiled) {
3640 interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line *
3641 y_min_scanlines, 512);
3642 plane_blocks_per_line =
3643 fixed_16_16_div_round_up(interm_pbpl, y_min_scanlines);
3644 } else if (x_tiled) {
3645 interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512);
3646 plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
3647 } else {
3648 interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
3649 plane_blocks_per_line = u32_to_fixed_16_16(interm_pbpl);
3650 }
3651
3652 method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
3653 method2 = skl_wm_method2(plane_pixel_rate,
3654 cstate->base.adjusted_mode.crtc_htotal,
3655 latency,
3656 plane_blocks_per_line);
3657
3658 y_tile_minimum = mul_u32_fixed_16_16(y_min_scanlines,
3659 plane_blocks_per_line);
3660
3661 if (y_tiled) {
3662 selected_result = max_fixed_16_16(method2, y_tile_minimum);
3663 } else {
3664 if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
3665 (plane_bytes_per_line / 512 < 1))
3666 selected_result = method2;
3667 else if ((ddb_allocation /
3668 fixed_16_16_to_u32_round_up(plane_blocks_per_line)) >= 1)
3669 selected_result = min_fixed_16_16(method1, method2);
3670 else
3671 selected_result = method1;
3672 }
3673
3674 res_blocks = fixed_16_16_to_u32_round_up(selected_result) + 1;
3675 res_lines = DIV_ROUND_UP(selected_result.val,
3676 plane_blocks_per_line.val);
3677
3678 if (level >= 1 && level <= 7) {
3679 if (y_tiled) {
3680 res_blocks += fixed_16_16_to_u32_round_up(y_tile_minimum);
3681 res_lines += y_min_scanlines;
3682 } else {
3683 res_blocks++;
3684 }
3685 }
3686
3687 if (res_blocks >= ddb_allocation || res_lines > 31) {
3688 *enabled = false;
3689
3690 /*
3691 * If there are no valid level 0 watermarks, then we can't
3692 * support this display configuration.
3693 */
3694 if (level) {
3695 return 0;
3696 } else {
3697 struct drm_plane *plane = pstate->plane;
3698
3699 DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3700 DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
3701 plane->base.id, plane->name,
3702 res_blocks, ddb_allocation, res_lines);
3703 return -EINVAL;
3704 }
3705 }
3706
3707 *out_blocks = res_blocks;
3708 *out_lines = res_lines;
3709 *enabled = true;
3710
3711 return 0;
3712 }
3713
3714 static int
3715 skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3716 struct skl_ddb_allocation *ddb,
3717 struct intel_crtc_state *cstate,
3718 struct intel_plane *intel_plane,
3719 int level,
3720 struct skl_wm_level *result)
3721 {
3722 struct drm_atomic_state *state = cstate->base.state;
3723 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3724 struct drm_plane *plane = &intel_plane->base;
3725 struct intel_plane_state *intel_pstate = NULL;
3726 uint16_t ddb_blocks;
3727 enum pipe pipe = intel_crtc->pipe;
3728 int ret;
3729
3730 if (state)
3731 intel_pstate =
3732 intel_atomic_get_existing_plane_state(state,
3733 intel_plane);
3734
3735 /*
3736 * Note: If we start supporting multiple pending atomic commits against
3737 * the same planes/CRTC's in the future, plane->state will no longer be
3738 * the correct pre-state to use for the calculations here and we'll
3739 * need to change where we get the 'unchanged' plane data from.
3740 *
3741 * For now this is fine because we only allow one queued commit against
3742 * a CRTC. Even if the plane isn't modified by this transaction and we
3743 * don't have a plane lock, we still have the CRTC's lock, so we know
3744 * that no other transactions are racing with us to update it.
3745 */
3746 if (!intel_pstate)
3747 intel_pstate = to_intel_plane_state(plane->state);
3748
3749 WARN_ON(!intel_pstate->base.fb);
3750
3751 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
3752
3753 ret = skl_compute_plane_wm(dev_priv,
3754 cstate,
3755 intel_pstate,
3756 ddb_blocks,
3757 level,
3758 &result->plane_res_b,
3759 &result->plane_res_l,
3760 &result->plane_en);
3761 if (ret)
3762 return ret;
3763
3764 return 0;
3765 }
3766
3767 static uint32_t
3768 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3769 {
3770 struct drm_atomic_state *state = cstate->base.state;
3771 struct drm_i915_private *dev_priv = to_i915(state->dev);
3772 uint32_t pixel_rate;
3773 uint32_t linetime_wm;
3774
3775 if (!cstate->base.active)
3776 return 0;
3777
3778 pixel_rate = ilk_pipe_pixel_rate(cstate);
3779
3780 if (WARN_ON(pixel_rate == 0))
3781 return 0;
3782
3783 linetime_wm = DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal *
3784 1000, pixel_rate);
3785
3786 /* Display WA #1135: bxt. */
3787 if (IS_BROXTON(dev_priv) && dev_priv->ipc_enabled)
3788 linetime_wm = DIV_ROUND_UP(linetime_wm, 2);
3789
3790 return linetime_wm;
3791 }
3792
3793 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3794 struct skl_wm_level *trans_wm /* out */)
3795 {
3796 if (!cstate->base.active)
3797 return;
3798
3799 /* Until we know more, just disable transition WMs */
3800 trans_wm->plane_en = false;
3801 }
3802
3803 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
3804 struct skl_ddb_allocation *ddb,
3805 struct skl_pipe_wm *pipe_wm)
3806 {
3807 struct drm_device *dev = cstate->base.crtc->dev;
3808 const struct drm_i915_private *dev_priv = to_i915(dev);
3809 struct intel_plane *intel_plane;
3810 struct skl_plane_wm *wm;
3811 int level, max_level = ilk_wm_max_level(dev_priv);
3812 int ret;
3813
3814 /*
3815 * We'll only calculate watermarks for planes that are actually
3816 * enabled, so make sure all other planes are set as disabled.
3817 */
3818 memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
3819
3820 for_each_intel_plane_mask(&dev_priv->drm,
3821 intel_plane,
3822 cstate->base.plane_mask) {
3823 wm = &pipe_wm->planes[intel_plane->id];
3824
3825 for (level = 0; level <= max_level; level++) {
3826 ret = skl_compute_wm_level(dev_priv, ddb, cstate,
3827 intel_plane, level,
3828 &wm->wm[level]);
3829 if (ret)
3830 return ret;
3831 }
3832 skl_compute_transition_wm(cstate, &wm->trans_wm);
3833 }
3834 pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3835
3836 return 0;
3837 }
3838
3839 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3840 i915_reg_t reg,
3841 const struct skl_ddb_entry *entry)
3842 {
3843 if (entry->end)
3844 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3845 else
3846 I915_WRITE(reg, 0);
3847 }
3848
3849 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
3850 i915_reg_t reg,
3851 const struct skl_wm_level *level)
3852 {
3853 uint32_t val = 0;
3854
3855 if (level->plane_en) {
3856 val |= PLANE_WM_EN;
3857 val |= level->plane_res_b;
3858 val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
3859 }
3860
3861 I915_WRITE(reg, val);
3862 }
3863
3864 static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
3865 const struct skl_plane_wm *wm,
3866 const struct skl_ddb_allocation *ddb,
3867 enum plane_id plane_id)
3868 {
3869 struct drm_crtc *crtc = &intel_crtc->base;
3870 struct drm_device *dev = crtc->dev;
3871 struct drm_i915_private *dev_priv = to_i915(dev);
3872 int level, max_level = ilk_wm_max_level(dev_priv);
3873 enum pipe pipe = intel_crtc->pipe;
3874
3875 for (level = 0; level <= max_level; level++) {
3876 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
3877 &wm->wm[level]);
3878 }
3879 skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
3880 &wm->trans_wm);
3881
3882 skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
3883 &ddb->plane[pipe][plane_id]);
3884 skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
3885 &ddb->y_plane[pipe][plane_id]);
3886 }
3887
3888 static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
3889 const struct skl_plane_wm *wm,
3890 const struct skl_ddb_allocation *ddb)
3891 {
3892 struct drm_crtc *crtc = &intel_crtc->base;
3893 struct drm_device *dev = crtc->dev;
3894 struct drm_i915_private *dev_priv = to_i915(dev);
3895 int level, max_level = ilk_wm_max_level(dev_priv);
3896 enum pipe pipe = intel_crtc->pipe;
3897
3898 for (level = 0; level <= max_level; level++) {
3899 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
3900 &wm->wm[level]);
3901 }
3902 skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
3903
3904 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3905 &ddb->plane[pipe][PLANE_CURSOR]);
3906 }
3907
3908 bool skl_wm_level_equals(const struct skl_wm_level *l1,
3909 const struct skl_wm_level *l2)
3910 {
3911 if (l1->plane_en != l2->plane_en)
3912 return false;
3913
3914 /* If both planes aren't enabled, the rest shouldn't matter */
3915 if (!l1->plane_en)
3916 return true;
3917
3918 return (l1->plane_res_l == l2->plane_res_l &&
3919 l1->plane_res_b == l2->plane_res_b);
3920 }
3921
3922 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
3923 const struct skl_ddb_entry *b)
3924 {
3925 return a->start < b->end && b->start < a->end;
3926 }
3927
3928 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
3929 const struct skl_ddb_entry *ddb,
3930 int ignore)
3931 {
3932 int i;
3933
3934 for (i = 0; i < I915_MAX_PIPES; i++)
3935 if (i != ignore && entries[i] &&
3936 skl_ddb_entries_overlap(ddb, entries[i]))
3937 return true;
3938
3939 return false;
3940 }
3941
3942 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3943 const struct skl_pipe_wm *old_pipe_wm,
3944 struct skl_pipe_wm *pipe_wm, /* out */
3945 struct skl_ddb_allocation *ddb, /* out */
3946 bool *changed /* out */)
3947 {
3948 struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3949 int ret;
3950
3951 ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
3952 if (ret)
3953 return ret;
3954
3955 if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
3956 *changed = false;
3957 else
3958 *changed = true;
3959
3960 return 0;
3961 }
3962
3963 static uint32_t
3964 pipes_modified(struct drm_atomic_state *state)
3965 {
3966 struct drm_crtc *crtc;
3967 struct drm_crtc_state *cstate;
3968 uint32_t i, ret = 0;
3969
3970 for_each_crtc_in_state(state, crtc, cstate, i)
3971 ret |= drm_crtc_mask(crtc);
3972
3973 return ret;
3974 }
3975
3976 static int
3977 skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
3978 {
3979 struct drm_atomic_state *state = cstate->base.state;
3980 struct drm_device *dev = state->dev;
3981 struct drm_crtc *crtc = cstate->base.crtc;
3982 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3983 struct drm_i915_private *dev_priv = to_i915(dev);
3984 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3985 struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
3986 struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3987 struct drm_plane_state *plane_state;
3988 struct drm_plane *plane;
3989 enum pipe pipe = intel_crtc->pipe;
3990
3991 WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));
3992
3993 drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
3994 enum plane_id plane_id = to_intel_plane(plane)->id;
3995
3996 if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
3997 &new_ddb->plane[pipe][plane_id]) &&
3998 skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
3999 &new_ddb->y_plane[pipe][plane_id]))
4000 continue;
4001
4002 plane_state = drm_atomic_get_plane_state(state, plane);
4003 if (IS_ERR(plane_state))
4004 return PTR_ERR(plane_state);
4005 }
4006
4007 return 0;
4008 }
4009
4010 static int
4011 skl_compute_ddb(struct drm_atomic_state *state)
4012 {
4013 struct drm_device *dev = state->dev;
4014 struct drm_i915_private *dev_priv = to_i915(dev);
4015 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4016 struct intel_crtc *intel_crtc;
4017 struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4018 uint32_t realloc_pipes = pipes_modified(state);
4019 int ret;
4020
4021 /*
4022 * If this is our first atomic update following hardware readout,
4023 * we can't trust the DDB that the BIOS programmed for us. Let's
4024 * pretend that all pipes switched active status so that we'll
4025 * ensure a full DDB recompute.
4026 */
4027 if (dev_priv->wm.distrust_bios_wm) {
4028 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
4029 state->acquire_ctx);
4030 if (ret)
4031 return ret;
4032
4033 intel_state->active_pipe_changes = ~0;
4034
4035 /*
4036 * We usually only initialize intel_state->active_crtcs if we
4037 * we're doing a modeset; make sure this field is always
4038 * initialized during the sanitization process that happens
4039 * on the first commit too.
4040 */
4041 if (!intel_state->modeset)
4042 intel_state->active_crtcs = dev_priv->active_crtcs;
4043 }
4044
4045 /*
4046 * If the modeset changes which CRTC's are active, we need to
4047 * recompute the DDB allocation for *all* active pipes, even
4048 * those that weren't otherwise being modified in any way by this
4049 * atomic commit. Due to the shrinking of the per-pipe allocations
4050 * when new active CRTC's are added, it's possible for a pipe that
4051 * we were already using and aren't changing at all here to suddenly
4052 * become invalid if its DDB needs exceeds its new allocation.
4053 *
4054 * Note that if we wind up doing a full DDB recompute, we can't let
4055 * any other display updates race with this transaction, so we need
4056 * to grab the lock on *all* CRTC's.
4057 */
4058 if (intel_state->active_pipe_changes) {
4059 realloc_pipes = ~0;
4060 intel_state->wm_results.dirty_pipes = ~0;
4061 }
4062
4063 /*
4064 * We're not recomputing for the pipes not included in the commit, so
4065 * make sure we start with the current state.
4066 */
4067 memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
4068
4069 for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
4070 struct intel_crtc_state *cstate;
4071
4072 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
4073 if (IS_ERR(cstate))
4074 return PTR_ERR(cstate);
4075
4076 ret = skl_allocate_pipe_ddb(cstate, ddb);
4077 if (ret)
4078 return ret;
4079
4080 ret = skl_ddb_add_affected_planes(cstate);
4081 if (ret)
4082 return ret;
4083 }
4084
4085 return 0;
4086 }
4087
4088 static void
4089 skl_copy_wm_for_pipe(struct skl_wm_values *dst,
4090 struct skl_wm_values *src,
4091 enum pipe pipe)
4092 {
4093 memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
4094 sizeof(dst->ddb.y_plane[pipe]));
4095 memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
4096 sizeof(dst->ddb.plane[pipe]));
4097 }
4098
4099 static void
4100 skl_print_wm_changes(const struct drm_atomic_state *state)
4101 {
4102 const struct drm_device *dev = state->dev;
4103 const struct drm_i915_private *dev_priv = to_i915(dev);
4104 const struct intel_atomic_state *intel_state =
4105 to_intel_atomic_state(state);
4106 const struct drm_crtc *crtc;
4107 const struct drm_crtc_state *cstate;
4108 const struct intel_plane *intel_plane;
4109 const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
4110 const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4111 int i;
4112
4113 for_each_crtc_in_state(state, crtc, cstate, i) {
4114 const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4115 enum pipe pipe = intel_crtc->pipe;
4116
4117 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4118 enum plane_id plane_id = intel_plane->id;
4119 const struct skl_ddb_entry *old, *new;
4120
4121 old = &old_ddb->plane[pipe][plane_id];
4122 new = &new_ddb->plane[pipe][plane_id];
4123
4124 if (skl_ddb_entry_equal(old, new))
4125 continue;
4126
4127 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
4128 intel_plane->base.base.id,
4129 intel_plane->base.name,
4130 old->start, old->end,
4131 new->start, new->end);
4132 }
4133 }
4134 }
4135
4136 static int
4137 skl_compute_wm(struct drm_atomic_state *state)
4138 {
4139 struct drm_crtc *crtc;
4140 struct drm_crtc_state *cstate;
4141 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4142 struct skl_wm_values *results = &intel_state->wm_results;
4143 struct skl_pipe_wm *pipe_wm;
4144 bool changed = false;
4145 int ret, i;
4146
4147 /*
4148 * If this transaction isn't actually touching any CRTC's, don't
4149 * bother with watermark calculation. Note that if we pass this
4150 * test, we're guaranteed to hold at least one CRTC state mutex,
4151 * which means we can safely use values like dev_priv->active_crtcs
4152 * since any racing commits that want to update them would need to
4153 * hold _all_ CRTC state mutexes.
4154 */
4155 for_each_crtc_in_state(state, crtc, cstate, i)
4156 changed = true;
4157 if (!changed)
4158 return 0;
4159
4160 /* Clear all dirty flags */
4161 results->dirty_pipes = 0;
4162
4163 ret = skl_compute_ddb(state);
4164 if (ret)
4165 return ret;
4166
4167 /*
4168 * Calculate WM's for all pipes that are part of this transaction.
4169 * Note that the DDB allocation above may have added more CRTC's that
4170 * weren't otherwise being modified (and set bits in dirty_pipes) if
4171 * pipe allocations had to change.
4172 *
4173 * FIXME: Now that we're doing this in the atomic check phase, we
4174 * should allow skl_update_pipe_wm() to return failure in cases where
4175 * no suitable watermark values can be found.
4176 */
4177 for_each_crtc_in_state(state, crtc, cstate, i) {
4178 struct intel_crtc_state *intel_cstate =
4179 to_intel_crtc_state(cstate);
4180 const struct skl_pipe_wm *old_pipe_wm =
4181 &to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4182
4183 pipe_wm = &intel_cstate->wm.skl.optimal;
4184 ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
4185 &results->ddb, &changed);
4186 if (ret)
4187 return ret;
4188
4189 if (changed)
4190 results->dirty_pipes |= drm_crtc_mask(crtc);
4191
4192 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4193 /* This pipe's WM's did not change */
4194 continue;
4195
4196 intel_cstate->update_wm_pre = true;
4197 }
4198
4199 skl_print_wm_changes(state);
4200
4201 return 0;
4202 }
4203
4204 static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
4205 struct intel_crtc_state *cstate)
4206 {
4207 struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
4208 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
4209 struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4210 const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
4211 enum pipe pipe = crtc->pipe;
4212 enum plane_id plane_id;
4213
4214 if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
4215 return;
4216
4217 I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
4218
4219 for_each_plane_id_on_crtc(crtc, plane_id) {
4220 if (plane_id != PLANE_CURSOR)
4221 skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
4222 ddb, plane_id);
4223 else
4224 skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
4225 ddb);
4226 }
4227 }
4228
4229 static void skl_initial_wm(struct intel_atomic_state *state,
4230 struct intel_crtc_state *cstate)
4231 {
4232 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4233 struct drm_device *dev = intel_crtc->base.dev;
4234 struct drm_i915_private *dev_priv = to_i915(dev);
4235 struct skl_wm_values *results = &state->wm_results;
4236 struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4237 enum pipe pipe = intel_crtc->pipe;
4238
4239 if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4240 return;
4241
4242 mutex_lock(&dev_priv->wm.wm_mutex);
4243
4244 if (cstate->base.active_changed)
4245 skl_atomic_update_crtc_wm(state, cstate);
4246
4247 skl_copy_wm_for_pipe(hw_vals, results, pipe);
4248
4249 mutex_unlock(&dev_priv->wm.wm_mutex);
4250 }
4251
4252 static void ilk_compute_wm_config(struct drm_device *dev,
4253 struct intel_wm_config *config)
4254 {
4255 struct intel_crtc *crtc;
4256
4257 /* Compute the currently _active_ config */
4258 for_each_intel_crtc(dev, crtc) {
4259 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
4260
4261 if (!wm->pipe_enabled)
4262 continue;
4263
4264 config->sprites_enabled |= wm->sprites_enabled;
4265 config->sprites_scaled |= wm->sprites_scaled;
4266 config->num_pipes_active++;
4267 }
4268 }
4269
4270 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4271 {
4272 struct drm_device *dev = &dev_priv->drm;
4273 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4274 struct ilk_wm_maximums max;
4275 struct intel_wm_config config = {};
4276 struct ilk_wm_values results = {};
4277 enum intel_ddb_partitioning partitioning;
4278
4279 ilk_compute_wm_config(dev, &config);
4280
4281 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
4282 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4283
4284 /* 5/6 split only in single pipe config on IVB+ */
4285 if (INTEL_GEN(dev_priv) >= 7 &&
4286 config.num_pipes_active == 1 && config.sprites_enabled) {
4287 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
4288 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4289
4290 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4291 } else {
4292 best_lp_wm = &lp_wm_1_2;
4293 }
4294
4295 partitioning = (best_lp_wm == &lp_wm_1_2) ?
4296 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4297
4298 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4299
4300 ilk_write_wm_values(dev_priv, &results);
4301 }
4302
4303 static void ilk_initial_watermarks(struct intel_atomic_state *state,
4304 struct intel_crtc_state *cstate)
4305 {
4306 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4307 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4308
4309 mutex_lock(&dev_priv->wm.wm_mutex);
4310 intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4311 ilk_program_watermarks(dev_priv);
4312 mutex_unlock(&dev_priv->wm.wm_mutex);
4313 }
4314
4315 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
4316 struct intel_crtc_state *cstate)
4317 {
4318 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4319 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4320
4321 mutex_lock(&dev_priv->wm.wm_mutex);
4322 if (cstate->wm.need_postvbl_update) {
4323 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4324 ilk_program_watermarks(dev_priv);
4325 }
4326 mutex_unlock(&dev_priv->wm.wm_mutex);
4327 }
4328
4329 static inline void skl_wm_level_from_reg_val(uint32_t val,
4330 struct skl_wm_level *level)
4331 {
4332 level->plane_en = val & PLANE_WM_EN;
4333 level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
4334 level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
4335 PLANE_WM_LINES_MASK;
4336 }
4337
4338 void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
4339 struct skl_pipe_wm *out)
4340 {
4341 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4342 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4343 enum pipe pipe = intel_crtc->pipe;
4344 int level, max_level;
4345 enum plane_id plane_id;
4346 uint32_t val;
4347
4348 max_level = ilk_wm_max_level(dev_priv);
4349
4350 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4351 struct skl_plane_wm *wm = &out->planes[plane_id];
4352
4353 for (level = 0; level <= max_level; level++) {
4354 if (plane_id != PLANE_CURSOR)
4355 val = I915_READ(PLANE_WM(pipe, plane_id, level));
4356 else
4357 val = I915_READ(CUR_WM(pipe, level));
4358
4359 skl_wm_level_from_reg_val(val, &wm->wm[level]);
4360 }
4361
4362 if (plane_id != PLANE_CURSOR)
4363 val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
4364 else
4365 val = I915_READ(CUR_WM_TRANS(pipe));
4366
4367 skl_wm_level_from_reg_val(val, &wm->trans_wm);
4368 }
4369
4370 if (!intel_crtc->active)
4371 return;
4372
4373 out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4374 }
4375
4376 void skl_wm_get_hw_state(struct drm_device *dev)
4377 {
4378 struct drm_i915_private *dev_priv = to_i915(dev);
4379 struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4380 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4381 struct drm_crtc *crtc;
4382 struct intel_crtc *intel_crtc;
4383 struct intel_crtc_state *cstate;
4384
4385 skl_ddb_get_hw_state(dev_priv, ddb);
4386 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4387 intel_crtc = to_intel_crtc(crtc);
4388 cstate = to_intel_crtc_state(crtc->state);
4389
4390 skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
4391
4392 if (intel_crtc->active)
4393 hw->dirty_pipes |= drm_crtc_mask(crtc);
4394 }
4395
4396 if (dev_priv->active_crtcs) {
4397 /* Fully recompute DDB on first atomic commit */
4398 dev_priv->wm.distrust_bios_wm = true;
4399 } else {
4400 /* Easy/common case; just sanitize DDB now if everything off */
4401 memset(ddb, 0, sizeof(*ddb));
4402 }
4403 }
4404
4405 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4406 {
4407 struct drm_device *dev = crtc->dev;
4408 struct drm_i915_private *dev_priv = to_i915(dev);
4409 struct ilk_wm_values *hw = &dev_priv->wm.hw;
4410 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4411 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4412 struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4413 enum pipe pipe = intel_crtc->pipe;
4414 static const i915_reg_t wm0_pipe_reg[] = {
4415 [PIPE_A] = WM0_PIPEA_ILK,
4416 [PIPE_B] = WM0_PIPEB_ILK,
4417 [PIPE_C] = WM0_PIPEC_IVB,
4418 };
4419
4420 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4421 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4422 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4423
4424 memset(active, 0, sizeof(*active));
4425
4426 active->pipe_enabled = intel_crtc->active;
4427
4428 if (active->pipe_enabled) {
4429 u32 tmp = hw->wm_pipe[pipe];
4430
4431 /*
4432 * For active pipes LP0 watermark is marked as
4433 * enabled, and LP1+ watermaks as disabled since
4434 * we can't really reverse compute them in case
4435 * multiple pipes are active.
4436 */
4437 active->wm[0].enable = true;
4438 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
4439 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
4440 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
4441 active->linetime = hw->wm_linetime[pipe];
4442 } else {
4443 int level, max_level = ilk_wm_max_level(dev_priv);
4444
4445 /*
4446 * For inactive pipes, all watermark levels
4447 * should be marked as enabled but zeroed,
4448 * which is what we'd compute them to.
4449 */
4450 for (level = 0; level <= max_level; level++)
4451 active->wm[level].enable = true;
4452 }
4453
4454 intel_crtc->wm.active.ilk = *active;
4455 }
4456
4457 #define _FW_WM(value, plane) \
4458 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
4459 #define _FW_WM_VLV(value, plane) \
4460 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
4461
4462 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
4463 struct vlv_wm_values *wm)
4464 {
4465 enum pipe pipe;
4466 uint32_t tmp;
4467
4468 for_each_pipe(dev_priv, pipe) {
4469 tmp = I915_READ(VLV_DDL(pipe));
4470
4471 wm->ddl[pipe].plane[PLANE_PRIMARY] =
4472 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4473 wm->ddl[pipe].plane[PLANE_CURSOR] =
4474 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4475 wm->ddl[pipe].plane[PLANE_SPRITE0] =
4476 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4477 wm->ddl[pipe].plane[PLANE_SPRITE1] =
4478 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4479 }
4480
4481 tmp = I915_READ(DSPFW1);
4482 wm->sr.plane = _FW_WM(tmp, SR);
4483 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
4484 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
4485 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
4486
4487 tmp = I915_READ(DSPFW2);
4488 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
4489 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
4490 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
4491
4492 tmp = I915_READ(DSPFW3);
4493 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4494
4495 if (IS_CHERRYVIEW(dev_priv)) {
4496 tmp = I915_READ(DSPFW7_CHV);
4497 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
4498 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4499
4500 tmp = I915_READ(DSPFW8_CHV);
4501 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
4502 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
4503
4504 tmp = I915_READ(DSPFW9_CHV);
4505 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
4506 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
4507
4508 tmp = I915_READ(DSPHOWM);
4509 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4510 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4511 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4512 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
4513 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4514 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4515 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
4516 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4517 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4518 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4519 } else {
4520 tmp = I915_READ(DSPFW7);
4521 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
4522 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
4523
4524 tmp = I915_READ(DSPHOWM);
4525 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4526 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4527 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4528 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
4529 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4530 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4531 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
4532 }
4533 }
4534
4535 #undef _FW_WM
4536 #undef _FW_WM_VLV
4537
4538 void vlv_wm_get_hw_state(struct drm_device *dev)
4539 {
4540 struct drm_i915_private *dev_priv = to_i915(dev);
4541 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4542 struct intel_plane *plane;
4543 enum pipe pipe;
4544 u32 val;
4545
4546 vlv_read_wm_values(dev_priv, wm);
4547
4548 for_each_intel_plane(dev, plane)
4549 plane->wm.fifo_size = vlv_get_fifo_size(plane);
4550
4551 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4552 wm->level = VLV_WM_LEVEL_PM2;
4553
4554 if (IS_CHERRYVIEW(dev_priv)) {
4555 mutex_lock(&dev_priv->rps.hw_lock);
4556
4557 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4558 if (val & DSP_MAXFIFO_PM5_ENABLE)
4559 wm->level = VLV_WM_LEVEL_PM5;
4560
4561 /*
4562 * If DDR DVFS is disabled in the BIOS, Punit
4563 * will never ack the request. So if that happens
4564 * assume we don't have to enable/disable DDR DVFS
4565 * dynamically. To test that just set the REQ_ACK
4566 * bit to poke the Punit, but don't change the
4567 * HIGH/LOW bits so that we don't actually change
4568 * the current state.
4569 */
4570 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4571 val |= FORCE_DDR_FREQ_REQ_ACK;
4572 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4573
4574 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4575 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4576 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4577 "assuming DDR DVFS is disabled\n");
4578 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4579 } else {
4580 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4581 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4582 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4583 }
4584
4585 mutex_unlock(&dev_priv->rps.hw_lock);
4586 }
4587
4588 for_each_pipe(dev_priv, pipe)
4589 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4590 pipe_name(pipe),
4591 wm->pipe[pipe].plane[PLANE_PRIMARY],
4592 wm->pipe[pipe].plane[PLANE_CURSOR],
4593 wm->pipe[pipe].plane[PLANE_SPRITE0],
4594 wm->pipe[pipe].plane[PLANE_SPRITE1]);
4595
4596 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4597 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4598 }
4599
4600 void ilk_wm_get_hw_state(struct drm_device *dev)
4601 {
4602 struct drm_i915_private *dev_priv = to_i915(dev);
4603 struct ilk_wm_values *hw = &dev_priv->wm.hw;
4604 struct drm_crtc *crtc;
4605
4606 for_each_crtc(dev, crtc)
4607 ilk_pipe_wm_get_hw_state(crtc);
4608
4609 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4610 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4611 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4612
4613 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4614 if (INTEL_GEN(dev_priv) >= 7) {
4615 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4616 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4617 }
4618
4619 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4620 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4621 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4622 else if (IS_IVYBRIDGE(dev_priv))
4623 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4624 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4625
4626 hw->enable_fbc_wm =
4627 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4628 }
4629
4630 /**
4631 * intel_update_watermarks - update FIFO watermark values based on current modes
4632 *
4633 * Calculate watermark values for the various WM regs based on current mode
4634 * and plane configuration.
4635 *
4636 * There are several cases to deal with here:
4637 * - normal (i.e. non-self-refresh)
4638 * - self-refresh (SR) mode
4639 * - lines are large relative to FIFO size (buffer can hold up to 2)
4640 * - lines are small relative to FIFO size (buffer can hold more than 2
4641 * lines), so need to account for TLB latency
4642 *
4643 * The normal calculation is:
4644 * watermark = dotclock * bytes per pixel * latency
4645 * where latency is platform & configuration dependent (we assume pessimal
4646 * values here).
4647 *
4648 * The SR calculation is:
4649 * watermark = (trunc(latency/line time)+1) * surface width *
4650 * bytes per pixel
4651 * where
4652 * line time = htotal / dotclock
4653 * surface width = hdisplay for normal plane and 64 for cursor
4654 * and latency is assumed to be high, as above.
4655 *
4656 * The final value programmed to the register should always be rounded up,
4657 * and include an extra 2 entries to account for clock crossings.
4658 *
4659 * We don't use the sprite, so we can ignore that. And on Crestline we have
4660 * to set the non-SR watermarks to 8.
4661 */
4662 void intel_update_watermarks(struct intel_crtc *crtc)
4663 {
4664 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4665
4666 if (dev_priv->display.update_wm)
4667 dev_priv->display.update_wm(crtc);
4668 }
4669
4670 /*
4671 * Lock protecting IPS related data structures
4672 */
4673 DEFINE_SPINLOCK(mchdev_lock);
4674
4675 /* Global for IPS driver to get at the current i915 device. Protected by
4676 * mchdev_lock. */
4677 static struct drm_i915_private *i915_mch_dev;
4678
4679 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4680 {
4681 u16 rgvswctl;
4682
4683 assert_spin_locked(&mchdev_lock);
4684
4685 rgvswctl = I915_READ16(MEMSWCTL);
4686 if (rgvswctl & MEMCTL_CMD_STS) {
4687 DRM_DEBUG("gpu busy, RCS change rejected\n");
4688 return false; /* still busy with another command */
4689 }
4690
4691 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4692 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4693 I915_WRITE16(MEMSWCTL, rgvswctl);
4694 POSTING_READ16(MEMSWCTL);
4695
4696 rgvswctl |= MEMCTL_CMD_STS;
4697 I915_WRITE16(MEMSWCTL, rgvswctl);
4698
4699 return true;
4700 }
4701
4702 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4703 {
4704 u32 rgvmodectl;
4705 u8 fmax, fmin, fstart, vstart;
4706
4707 spin_lock_irq(&mchdev_lock);
4708
4709 rgvmodectl = I915_READ(MEMMODECTL);
4710
4711 /* Enable temp reporting */
4712 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4713 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4714
4715 /* 100ms RC evaluation intervals */
4716 I915_WRITE(RCUPEI, 100000);
4717 I915_WRITE(RCDNEI, 100000);
4718
4719 /* Set max/min thresholds to 90ms and 80ms respectively */
4720 I915_WRITE(RCBMAXAVG, 90000);
4721 I915_WRITE(RCBMINAVG, 80000);
4722
4723 I915_WRITE(MEMIHYST, 1);
4724
4725 /* Set up min, max, and cur for interrupt handling */
4726 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4727 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4728 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4729 MEMMODE_FSTART_SHIFT;
4730
4731 vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4732 PXVFREQ_PX_SHIFT;
4733
4734 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4735 dev_priv->ips.fstart = fstart;
4736
4737 dev_priv->ips.max_delay = fstart;
4738 dev_priv->ips.min_delay = fmin;
4739 dev_priv->ips.cur_delay = fstart;
4740
4741 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4742 fmax, fmin, fstart);
4743
4744 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4745
4746 /*
4747 * Interrupts will be enabled in ironlake_irq_postinstall
4748 */
4749
4750 I915_WRITE(VIDSTART, vstart);
4751 POSTING_READ(VIDSTART);
4752
4753 rgvmodectl |= MEMMODE_SWMODE_EN;
4754 I915_WRITE(MEMMODECTL, rgvmodectl);
4755
4756 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4757 DRM_ERROR("stuck trying to change perf mode\n");
4758 mdelay(1);
4759
4760 ironlake_set_drps(dev_priv, fstart);
4761
4762 dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4763 I915_READ(DDREC) + I915_READ(CSIEC);
4764 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4765 dev_priv->ips.last_count2 = I915_READ(GFXEC);
4766 dev_priv->ips.last_time2 = ktime_get_raw_ns();
4767
4768 spin_unlock_irq(&mchdev_lock);
4769 }
4770
4771 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4772 {
4773 u16 rgvswctl;
4774
4775 spin_lock_irq(&mchdev_lock);
4776
4777 rgvswctl = I915_READ16(MEMSWCTL);
4778
4779 /* Ack interrupts, disable EFC interrupt */
4780 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4781 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4782 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4783 I915_WRITE(DEIIR, DE_PCU_EVENT);
4784 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4785
4786 /* Go back to the starting frequency */
4787 ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4788 mdelay(1);
4789 rgvswctl |= MEMCTL_CMD_STS;
4790 I915_WRITE(MEMSWCTL, rgvswctl);
4791 mdelay(1);
4792
4793 spin_unlock_irq(&mchdev_lock);
4794 }
4795
4796 /* There's a funny hw issue where the hw returns all 0 when reading from
4797 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4798 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4799 * all limits and the gpu stuck at whatever frequency it is at atm).
4800 */
4801 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4802 {
4803 u32 limits;
4804
4805 /* Only set the down limit when we've reached the lowest level to avoid
4806 * getting more interrupts, otherwise leave this clear. This prevents a
4807 * race in the hw when coming out of rc6: There's a tiny window where
4808 * the hw runs at the minimal clock before selecting the desired
4809 * frequency, if the down threshold expires in that window we will not
4810 * receive a down interrupt. */
4811 if (IS_GEN9(dev_priv)) {
4812 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4813 if (val <= dev_priv->rps.min_freq_softlimit)
4814 limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4815 } else {
4816 limits = dev_priv->rps.max_freq_softlimit << 24;
4817 if (val <= dev_priv->rps.min_freq_softlimit)
4818 limits |= dev_priv->rps.min_freq_softlimit << 16;
4819 }
4820
4821 return limits;
4822 }
4823
4824 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4825 {
4826 int new_power;
4827 u32 threshold_up = 0, threshold_down = 0; /* in % */
4828 u32 ei_up = 0, ei_down = 0;
4829
4830 new_power = dev_priv->rps.power;
4831 switch (dev_priv->rps.power) {
4832 case LOW_POWER:
4833 if (val > dev_priv->rps.efficient_freq + 1 &&
4834 val > dev_priv->rps.cur_freq)
4835 new_power = BETWEEN;
4836 break;
4837
4838 case BETWEEN:
4839 if (val <= dev_priv->rps.efficient_freq &&
4840 val < dev_priv->rps.cur_freq)
4841 new_power = LOW_POWER;
4842 else if (val >= dev_priv->rps.rp0_freq &&
4843 val > dev_priv->rps.cur_freq)
4844 new_power = HIGH_POWER;
4845 break;
4846
4847 case HIGH_POWER:
4848 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
4849 val < dev_priv->rps.cur_freq)
4850 new_power = BETWEEN;
4851 break;
4852 }
4853 /* Max/min bins are special */
4854 if (val <= dev_priv->rps.min_freq_softlimit)
4855 new_power = LOW_POWER;
4856 if (val >= dev_priv->rps.max_freq_softlimit)
4857 new_power = HIGH_POWER;
4858 if (new_power == dev_priv->rps.power)
4859 return;
4860
4861 /* Note the units here are not exactly 1us, but 1280ns. */
4862 switch (new_power) {
4863 case LOW_POWER:
4864 /* Upclock if more than 95% busy over 16ms */
4865 ei_up = 16000;
4866 threshold_up = 95;
4867
4868 /* Downclock if less than 85% busy over 32ms */
4869 ei_down = 32000;
4870 threshold_down = 85;
4871 break;
4872
4873 case BETWEEN:
4874 /* Upclock if more than 90% busy over 13ms */
4875 ei_up = 13000;
4876 threshold_up = 90;
4877
4878 /* Downclock if less than 75% busy over 32ms */
4879 ei_down = 32000;
4880 threshold_down = 75;
4881 break;
4882
4883 case HIGH_POWER:
4884 /* Upclock if more than 85% busy over 10ms */
4885 ei_up = 10000;
4886 threshold_up = 85;
4887
4888 /* Downclock if less than 60% busy over 32ms */
4889 ei_down = 32000;
4890 threshold_down = 60;
4891 break;
4892 }
4893
4894 I915_WRITE(GEN6_RP_UP_EI,
4895 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4896 I915_WRITE(GEN6_RP_UP_THRESHOLD,
4897 GT_INTERVAL_FROM_US(dev_priv,
4898 ei_up * threshold_up / 100));
4899
4900 I915_WRITE(GEN6_RP_DOWN_EI,
4901 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4902 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4903 GT_INTERVAL_FROM_US(dev_priv,
4904 ei_down * threshold_down / 100));
4905
4906 I915_WRITE(GEN6_RP_CONTROL,
4907 GEN6_RP_MEDIA_TURBO |
4908 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4909 GEN6_RP_MEDIA_IS_GFX |
4910 GEN6_RP_ENABLE |
4911 GEN6_RP_UP_BUSY_AVG |
4912 GEN6_RP_DOWN_IDLE_AVG);
4913
4914 dev_priv->rps.power = new_power;
4915 dev_priv->rps.up_threshold = threshold_up;
4916 dev_priv->rps.down_threshold = threshold_down;
4917 dev_priv->rps.last_adj = 0;
4918 }
4919
4920 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4921 {
4922 u32 mask = 0;
4923
4924 if (val > dev_priv->rps.min_freq_softlimit)
4925 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4926 if (val < dev_priv->rps.max_freq_softlimit)
4927 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4928
4929 mask &= dev_priv->pm_rps_events;
4930
4931 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4932 }
4933
4934 /* gen6_set_rps is called to update the frequency request, but should also be
4935 * called when the range (min_delay and max_delay) is modified so that we can
4936 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4937 static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4938 {
4939 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4940 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4941 return;
4942
4943 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4944 WARN_ON(val > dev_priv->rps.max_freq);
4945 WARN_ON(val < dev_priv->rps.min_freq);
4946
4947 /* min/max delay may still have been modified so be sure to
4948 * write the limits value.
4949 */
4950 if (val != dev_priv->rps.cur_freq) {
4951 gen6_set_rps_thresholds(dev_priv, val);
4952
4953 if (IS_GEN9(dev_priv))
4954 I915_WRITE(GEN6_RPNSWREQ,
4955 GEN9_FREQUENCY(val));
4956 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4957 I915_WRITE(GEN6_RPNSWREQ,
4958 HSW_FREQUENCY(val));
4959 else
4960 I915_WRITE(GEN6_RPNSWREQ,
4961 GEN6_FREQUENCY(val) |
4962 GEN6_OFFSET(0) |
4963 GEN6_AGGRESSIVE_TURBO);
4964 }
4965
4966 /* Make sure we continue to get interrupts
4967 * until we hit the minimum or maximum frequencies.
4968 */
4969 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4970 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4971
4972 POSTING_READ(GEN6_RPNSWREQ);
4973
4974 dev_priv->rps.cur_freq = val;
4975 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4976 }
4977
4978 static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4979 {
4980 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4981 WARN_ON(val > dev_priv->rps.max_freq);
4982 WARN_ON(val < dev_priv->rps.min_freq);
4983
4984 if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4985 "Odd GPU freq value\n"))
4986 val &= ~1;
4987
4988 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4989
4990 if (val != dev_priv->rps.cur_freq) {
4991 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4992 if (!IS_CHERRYVIEW(dev_priv))
4993 gen6_set_rps_thresholds(dev_priv, val);
4994 }
4995
4996 dev_priv->rps.cur_freq = val;
4997 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4998 }
4999
5000 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
5001 *
5002 * * If Gfx is Idle, then
5003 * 1. Forcewake Media well.
5004 * 2. Request idle freq.
5005 * 3. Release Forcewake of Media well.
5006 */
5007 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
5008 {
5009 u32 val = dev_priv->rps.idle_freq;
5010
5011 if (dev_priv->rps.cur_freq <= val)
5012 return;
5013
5014 /* The punit delays the write of the frequency and voltage until it
5015 * determines the GPU is awake. During normal usage we don't want to
5016 * waste power changing the frequency if the GPU is sleeping (rc6).
5017 * However, the GPU and driver is now idle and we do not want to delay
5018 * switching to minimum voltage (reducing power whilst idle) as we do
5019 * not expect to be woken in the near future and so must flush the
5020 * change by waking the device.
5021 *
5022 * We choose to take the media powerwell (either would do to trick the
5023 * punit into committing the voltage change) as that takes a lot less
5024 * power than the render powerwell.
5025 */
5026 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5027 valleyview_set_rps(dev_priv, val);
5028 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5029 }
5030
5031 void gen6_rps_busy(struct drm_i915_private *dev_priv)
5032 {
5033 mutex_lock(&dev_priv->rps.hw_lock);
5034 if (dev_priv->rps.enabled) {
5035 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
5036 gen6_rps_reset_ei(dev_priv);
5037 I915_WRITE(GEN6_PMINTRMSK,
5038 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5039
5040 gen6_enable_rps_interrupts(dev_priv);
5041
5042 /* Ensure we start at the user's desired frequency */
5043 intel_set_rps(dev_priv,
5044 clamp(dev_priv->rps.cur_freq,
5045 dev_priv->rps.min_freq_softlimit,
5046 dev_priv->rps.max_freq_softlimit));
5047 }
5048 mutex_unlock(&dev_priv->rps.hw_lock);
5049 }
5050
5051 void gen6_rps_idle(struct drm_i915_private *dev_priv)
5052 {
5053 /* Flush our bottom-half so that it does not race with us
5054 * setting the idle frequency and so that it is bounded by
5055 * our rpm wakeref. And then disable the interrupts to stop any
5056 * futher RPS reclocking whilst we are asleep.
5057 */
5058 gen6_disable_rps_interrupts(dev_priv);
5059
5060 mutex_lock(&dev_priv->rps.hw_lock);
5061 if (dev_priv->rps.enabled) {
5062 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5063 vlv_set_rps_idle(dev_priv);
5064 else
5065 gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5066 dev_priv->rps.last_adj = 0;
5067 I915_WRITE(GEN6_PMINTRMSK,
5068 gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5069 }
5070 mutex_unlock(&dev_priv->rps.hw_lock);
5071
5072 spin_lock(&dev_priv->rps.client_lock);
5073 while (!list_empty(&dev_priv->rps.clients))
5074 list_del_init(dev_priv->rps.clients.next);
5075 spin_unlock(&dev_priv->rps.client_lock);
5076 }
5077
5078 void gen6_rps_boost(struct drm_i915_private *dev_priv,
5079 struct intel_rps_client *rps,
5080 unsigned long submitted)
5081 {
5082 /* This is intentionally racy! We peek at the state here, then
5083 * validate inside the RPS worker.
5084 */
5085 if (!(dev_priv->gt.awake &&
5086 dev_priv->rps.enabled &&
5087 dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5088 return;
5089
5090 /* Force a RPS boost (and don't count it against the client) if
5091 * the GPU is severely congested.
5092 */
5093 if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5094 rps = NULL;
5095
5096 spin_lock(&dev_priv->rps.client_lock);
5097 if (rps == NULL || list_empty(&rps->link)) {
5098 spin_lock_irq(&dev_priv->irq_lock);
5099 if (dev_priv->rps.interrupts_enabled) {
5100 dev_priv->rps.client_boost = true;
5101 schedule_work(&dev_priv->rps.work);
5102 }
5103 spin_unlock_irq(&dev_priv->irq_lock);
5104
5105 if (rps != NULL) {
5106 list_add(&rps->link, &dev_priv->rps.clients);
5107 rps->boosts++;
5108 } else
5109 dev_priv->rps.boosts++;
5110 }
5111 spin_unlock(&dev_priv->rps.client_lock);
5112 }
5113
5114 void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5115 {
5116 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5117 valleyview_set_rps(dev_priv, val);
5118 else
5119 gen6_set_rps(dev_priv, val);
5120 }
5121
5122 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
5123 {
5124 I915_WRITE(GEN6_RC_CONTROL, 0);
5125 I915_WRITE(GEN9_PG_ENABLE, 0);
5126 }
5127
5128 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5129 {
5130 I915_WRITE(GEN6_RP_CONTROL, 0);
5131 }
5132
5133 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5134 {
5135 I915_WRITE(GEN6_RC_CONTROL, 0);
5136 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5137 I915_WRITE(GEN6_RP_CONTROL, 0);
5138 }
5139
5140 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5141 {
5142 I915_WRITE(GEN6_RC_CONTROL, 0);
5143 }
5144
5145 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5146 {
5147 /* we're doing forcewake before Disabling RC6,
5148 * This what the BIOS expects when going into suspend */
5149 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5150
5151 I915_WRITE(GEN6_RC_CONTROL, 0);
5152
5153 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5154 }
5155
5156 static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
5157 {
5158 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5159 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
5160 mode = GEN6_RC_CTL_RC6_ENABLE;
5161 else
5162 mode = 0;
5163 }
5164 if (HAS_RC6p(dev_priv))
5165 DRM_DEBUG_DRIVER("Enabling RC6 states: "
5166 "RC6 %s RC6p %s RC6pp %s\n",
5167 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
5168 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
5169 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5170
5171 else
5172 DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
5173 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
5174 }
5175
5176 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5177 {
5178 struct i915_ggtt *ggtt = &dev_priv->ggtt;
5179 bool enable_rc6 = true;
5180 unsigned long rc6_ctx_base;
5181 u32 rc_ctl;
5182 int rc_sw_target;
5183
5184 rc_ctl = I915_READ(GEN6_RC_CONTROL);
5185 rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
5186 RC_SW_TARGET_STATE_SHIFT;
5187 DRM_DEBUG_DRIVER("BIOS enabled RC states: "
5188 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
5189 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
5190 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
5191 rc_sw_target);
5192
5193 if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5194 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5195 enable_rc6 = false;
5196 }
5197
5198 /*
5199 * The exact context size is not known for BXT, so assume a page size
5200 * for this check.
5201 */
5202 rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5203 if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
5204 (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
5205 ggtt->stolen_reserved_size))) {
5206 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5207 enable_rc6 = false;
5208 }
5209
5210 if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
5211 ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
5212 ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
5213 ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5214 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5215 enable_rc6 = false;
5216 }
5217
5218 if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
5219 !I915_READ(GEN8_PUSHBUS_ENABLE) ||
5220 !I915_READ(GEN8_PUSHBUS_SHIFT)) {
5221 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
5222 enable_rc6 = false;
5223 }
5224
5225 if (!I915_READ(GEN6_GFXPAUSE)) {
5226 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
5227 enable_rc6 = false;
5228 }
5229
5230 if (!I915_READ(GEN8_MISC_CTRL0)) {
5231 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5232 enable_rc6 = false;
5233 }
5234
5235 return enable_rc6;
5236 }
5237
5238 int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5239 {
5240 /* No RC6 before Ironlake and code is gone for ilk. */
5241 if (INTEL_INFO(dev_priv)->gen < 6)
5242 return 0;
5243
5244 if (!enable_rc6)
5245 return 0;
5246
5247 if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5248 DRM_INFO("RC6 disabled by BIOS\n");
5249 return 0;
5250 }
5251
5252 /* Respect the kernel parameter if it is set */
5253 if (enable_rc6 >= 0) {
5254 int mask;
5255
5256 if (HAS_RC6p(dev_priv))
5257 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
5258 INTEL_RC6pp_ENABLE;
5259 else
5260 mask = INTEL_RC6_ENABLE;
5261
5262 if ((enable_rc6 & mask) != enable_rc6)
5263 DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
5264 "(requested %d, valid %d)\n",
5265 enable_rc6 & mask, enable_rc6, mask);
5266
5267 return enable_rc6 & mask;
5268 }
5269
5270 if (IS_IVYBRIDGE(dev_priv))
5271 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5272
5273 return INTEL_RC6_ENABLE;
5274 }
5275
5276 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5277 {
5278 /* All of these values are in units of 50MHz */
5279
5280 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
5281 if (IS_GEN9_LP(dev_priv)) {
5282 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5283 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
5284 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
5285 dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
5286 } else {
5287 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5288 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
5289 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
5290 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
5291 }
5292 /* hw_max = RP0 until we check for overclocking */
5293 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5294
5295 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5296 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
5297 IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5298 u32 ddcc_status = 0;
5299
5300 if (sandybridge_pcode_read(dev_priv,
5301 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
5302 &ddcc_status) == 0)
5303 dev_priv->rps.efficient_freq =
5304 clamp_t(u8,
5305 ((ddcc_status >> 8) & 0xff),
5306 dev_priv->rps.min_freq,
5307 dev_priv->rps.max_freq);
5308 }
5309
5310 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5311 /* Store the frequency values in 16.66 MHZ units, which is
5312 * the natural hardware unit for SKL
5313 */
5314 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
5315 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
5316 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
5317 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
5318 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
5319 }
5320 }
5321
5322 static void reset_rps(struct drm_i915_private *dev_priv,
5323 void (*set)(struct drm_i915_private *, u8))
5324 {
5325 u8 freq = dev_priv->rps.cur_freq;
5326
5327 /* force a reset */
5328 dev_priv->rps.power = -1;
5329 dev_priv->rps.cur_freq = -1;
5330
5331 set(dev_priv, freq);
5332 }
5333
5334 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
5335 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
5336 {
5337 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5338
5339 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5340 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5341 /*
5342 * BIOS could leave the Hw Turbo enabled, so need to explicitly
5343 * clear out the Control register just to avoid inconsitency
5344 * with debugfs interface, which will show Turbo as enabled
5345 * only and that is not expected by the User after adding the
5346 * WaGsvDisableTurbo. Apart from this there is no problem even
5347 * if the Turbo is left enabled in the Control register, as the
5348 * Up/Down interrupts would remain masked.
5349 */
5350 gen9_disable_rps(dev_priv);
5351 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5352 return;
5353 }
5354
5355 /* Program defaults and thresholds for RPS*/
5356 I915_WRITE(GEN6_RC_VIDEO_FREQ,
5357 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
5358
5359 /* 1 second timeout*/
5360 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
5361 GT_INTERVAL_FROM_US(dev_priv, 1000000));
5362
5363 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
5364
5365 /* Leaning on the below call to gen6_set_rps to program/setup the
5366 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
5367 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5368 reset_rps(dev_priv, gen6_set_rps);
5369
5370 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5371 }
5372
5373 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
5374 {
5375 struct intel_engine_cs *engine;
5376 enum intel_engine_id id;
5377 uint32_t rc6_mask = 0;
5378
5379 /* 1a: Software RC state - RC0 */
5380 I915_WRITE(GEN6_RC_STATE, 0);
5381
5382 /* 1b: Get forcewake during program sequence. Although the driver
5383 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5384 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5385
5386 /* 2a: Disable RC states. */
5387 I915_WRITE(GEN6_RC_CONTROL, 0);
5388
5389 /* 2b: Program RC6 thresholds.*/
5390
5391 /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5392 if (IS_SKYLAKE(dev_priv))
5393 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
5394 else
5395 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
5396 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5397 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5398 for_each_engine(engine, dev_priv, id)
5399 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5400
5401 if (HAS_GUC(dev_priv))
5402 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
5403
5404 I915_WRITE(GEN6_RC_SLEEP, 0);
5405
5406 /* 2c: Program Coarse Power Gating Policies. */
5407 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
5408 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
5409
5410 /* 3a: Enable RC6 */
5411 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5412 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5413 DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5414 /* WaRsUseTimeoutMode:bxt */
5415 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5416 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
5417 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5418 GEN7_RC_CTL_TO_MODE |
5419 rc6_mask);
5420 } else {
5421 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
5422 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5423 GEN6_RC_CTL_EI_MODE(1) |
5424 rc6_mask);
5425 }
5426
5427 /*
5428 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5429 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5430 */
5431 if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5432 I915_WRITE(GEN9_PG_ENABLE, 0);
5433 else
5434 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
5435 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5436
5437 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5438 }
5439
5440 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5441 {
5442 struct intel_engine_cs *engine;
5443 enum intel_engine_id id;
5444 uint32_t rc6_mask = 0;
5445
5446 /* 1a: Software RC state - RC0 */
5447 I915_WRITE(GEN6_RC_STATE, 0);
5448
5449 /* 1c & 1d: Get forcewake during program sequence. Although the driver
5450 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5451 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5452
5453 /* 2a: Disable RC states. */
5454 I915_WRITE(GEN6_RC_CONTROL, 0);
5455
5456 /* 2b: Program RC6 thresholds.*/
5457 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5458 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5459 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5460 for_each_engine(engine, dev_priv, id)
5461 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5462 I915_WRITE(GEN6_RC_SLEEP, 0);
5463 if (IS_BROADWELL(dev_priv))
5464 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
5465 else
5466 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5467
5468 /* 3: Enable RC6 */
5469 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5470 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5471 intel_print_rc6_info(dev_priv, rc6_mask);
5472 if (IS_BROADWELL(dev_priv))
5473 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5474 GEN7_RC_CTL_TO_MODE |
5475 rc6_mask);
5476 else
5477 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5478 GEN6_RC_CTL_EI_MODE(1) |
5479 rc6_mask);
5480
5481 /* 4 Program defaults and thresholds for RPS*/
5482 I915_WRITE(GEN6_RPNSWREQ,
5483 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5484 I915_WRITE(GEN6_RC_VIDEO_FREQ,
5485 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5486 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
5487 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
5488
5489 /* Docs recommend 900MHz, and 300 MHz respectively */
5490 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5491 dev_priv->rps.max_freq_softlimit << 24 |
5492 dev_priv->rps.min_freq_softlimit << 16);
5493
5494 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
5495 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
5496 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
5497 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
5498
5499 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5500
5501 /* 5: Enable RPS */
5502 I915_WRITE(GEN6_RP_CONTROL,
5503 GEN6_RP_MEDIA_TURBO |
5504 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5505 GEN6_RP_MEDIA_IS_GFX |
5506 GEN6_RP_ENABLE |
5507 GEN6_RP_UP_BUSY_AVG |
5508 GEN6_RP_DOWN_IDLE_AVG);
5509
5510 /* 6: Ring frequency + overclocking (our driver does this later */
5511
5512 reset_rps(dev_priv, gen6_set_rps);
5513
5514 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5515 }
5516
5517 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5518 {
5519 struct intel_engine_cs *engine;
5520 enum intel_engine_id id;
5521 u32 rc6vids, rc6_mask = 0;
5522 u32 gtfifodbg;
5523 int rc6_mode;
5524 int ret;
5525
5526 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5527
5528 /* Here begins a magic sequence of register writes to enable
5529 * auto-downclocking.
5530 *
5531 * Perhaps there might be some value in exposing these to
5532 * userspace...
5533 */
5534 I915_WRITE(GEN6_RC_STATE, 0);
5535
5536 /* Clear the DBG now so we don't confuse earlier errors */
5537 gtfifodbg = I915_READ(GTFIFODBG);
5538 if (gtfifodbg) {
5539 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5540 I915_WRITE(GTFIFODBG, gtfifodbg);
5541 }
5542
5543 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5544
5545 /* disable the counters and set deterministic thresholds */
5546 I915_WRITE(GEN6_RC_CONTROL, 0);
5547
5548 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5549 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5550 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5551 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5552 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5553
5554 for_each_engine(engine, dev_priv, id)
5555 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5556
5557 I915_WRITE(GEN6_RC_SLEEP, 0);
5558 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5559 if (IS_IVYBRIDGE(dev_priv))
5560 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5561 else
5562 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5563 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5564 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5565
5566 /* Check if we are enabling RC6 */
5567 rc6_mode = intel_enable_rc6();
5568 if (rc6_mode & INTEL_RC6_ENABLE)
5569 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5570
5571 /* We don't use those on Haswell */
5572 if (!IS_HASWELL(dev_priv)) {
5573 if (rc6_mode & INTEL_RC6p_ENABLE)
5574 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5575
5576 if (rc6_mode & INTEL_RC6pp_ENABLE)
5577 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5578 }
5579
5580 intel_print_rc6_info(dev_priv, rc6_mask);
5581
5582 I915_WRITE(GEN6_RC_CONTROL,
5583 rc6_mask |
5584 GEN6_RC_CTL_EI_MODE(1) |
5585 GEN6_RC_CTL_HW_ENABLE);
5586
5587 /* Power down if completely idle for over 50ms */
5588 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5589 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5590
5591 reset_rps(dev_priv, gen6_set_rps);
5592
5593 rc6vids = 0;
5594 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5595 if (IS_GEN6(dev_priv) && ret) {
5596 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5597 } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5598 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5599 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5600 rc6vids &= 0xffff00;
5601 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5602 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5603 if (ret)
5604 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5605 }
5606
5607 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5608 }
5609
5610 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5611 {
5612 int min_freq = 15;
5613 unsigned int gpu_freq;
5614 unsigned int max_ia_freq, min_ring_freq;
5615 unsigned int max_gpu_freq, min_gpu_freq;
5616 int scaling_factor = 180;
5617 struct cpufreq_policy *policy;
5618
5619 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5620
5621 policy = cpufreq_cpu_get(0);
5622 if (policy) {
5623 max_ia_freq = policy->cpuinfo.max_freq;
5624 cpufreq_cpu_put(policy);
5625 } else {
5626 /*
5627 * Default to measured freq if none found, PCU will ensure we
5628 * don't go over
5629 */
5630 max_ia_freq = tsc_khz;
5631 }
5632
5633 /* Convert from kHz to MHz */
5634 max_ia_freq /= 1000;
5635
5636 min_ring_freq = I915_READ(DCLK) & 0xf;
5637 /* convert DDR frequency from units of 266.6MHz to bandwidth */
5638 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5639
5640 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5641 /* Convert GT frequency to 50 HZ units */
5642 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5643 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5644 } else {
5645 min_gpu_freq = dev_priv->rps.min_freq;
5646 max_gpu_freq = dev_priv->rps.max_freq;
5647 }
5648
5649 /*
5650 * For each potential GPU frequency, load a ring frequency we'd like
5651 * to use for memory access. We do this by specifying the IA frequency
5652 * the PCU should use as a reference to determine the ring frequency.
5653 */
5654 for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5655 int diff = max_gpu_freq - gpu_freq;
5656 unsigned int ia_freq = 0, ring_freq = 0;
5657
5658 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5659 /*
5660 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5661 * No floor required for ring frequency on SKL.
5662 */
5663 ring_freq = gpu_freq;
5664 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
5665 /* max(2 * GT, DDR). NB: GT is 50MHz units */
5666 ring_freq = max(min_ring_freq, gpu_freq);
5667 } else if (IS_HASWELL(dev_priv)) {
5668 ring_freq = mult_frac(gpu_freq, 5, 4);
5669 ring_freq = max(min_ring_freq, ring_freq);
5670 /* leave ia_freq as the default, chosen by cpufreq */
5671 } else {
5672 /* On older processors, there is no separate ring
5673 * clock domain, so in order to boost the bandwidth
5674 * of the ring, we need to upclock the CPU (ia_freq).
5675 *
5676 * For GPU frequencies less than 750MHz,
5677 * just use the lowest ring freq.
5678 */
5679 if (gpu_freq < min_freq)
5680 ia_freq = 800;
5681 else
5682 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5683 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5684 }
5685
5686 sandybridge_pcode_write(dev_priv,
5687 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5688 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5689 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5690 gpu_freq);
5691 }
5692 }
5693
5694 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5695 {
5696 u32 val, rp0;
5697
5698 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5699
5700 switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5701 case 8:
5702 /* (2 * 4) config */
5703 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5704 break;
5705 case 12:
5706 /* (2 * 6) config */
5707 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5708 break;
5709 case 16:
5710 /* (2 * 8) config */
5711 default:
5712 /* Setting (2 * 8) Min RP0 for any other combination */
5713 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5714 break;
5715 }
5716
5717 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5718
5719 return rp0;
5720 }
5721
5722 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5723 {
5724 u32 val, rpe;
5725
5726 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5727 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5728
5729 return rpe;
5730 }
5731
5732 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5733 {
5734 u32 val, rp1;
5735
5736 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5737 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5738
5739 return rp1;
5740 }
5741
5742 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5743 {
5744 u32 val, rp1;
5745
5746 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5747
5748 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5749
5750 return rp1;
5751 }
5752
5753 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5754 {
5755 u32 val, rp0;
5756
5757 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5758
5759 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5760 /* Clamp to max */
5761 rp0 = min_t(u32, rp0, 0xea);
5762
5763 return rp0;
5764 }
5765
5766 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5767 {
5768 u32 val, rpe;
5769
5770 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5771 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5772 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5773 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5774
5775 return rpe;
5776 }
5777
5778 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5779 {
5780 u32 val;
5781
5782 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5783 /*
5784 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5785 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5786 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5787 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5788 * to make sure it matches what Punit accepts.
5789 */
5790 return max_t(u32, val, 0xc0);
5791 }
5792
5793 /* Check that the pctx buffer wasn't move under us. */
5794 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5795 {
5796 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5797
5798 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5799 dev_priv->vlv_pctx->stolen->start);
5800 }
5801
5802
5803 /* Check that the pcbr address is not empty. */
5804 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5805 {
5806 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5807
5808 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5809 }
5810
5811 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5812 {
5813 struct i915_ggtt *ggtt = &dev_priv->ggtt;
5814 unsigned long pctx_paddr, paddr;
5815 u32 pcbr;
5816 int pctx_size = 32*1024;
5817
5818 pcbr = I915_READ(VLV_PCBR);
5819 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5820 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5821 paddr = (dev_priv->mm.stolen_base +
5822 (ggtt->stolen_size - pctx_size));
5823
5824 pctx_paddr = (paddr & (~4095));
5825 I915_WRITE(VLV_PCBR, pctx_paddr);
5826 }
5827
5828 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5829 }
5830
5831 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5832 {
5833 struct drm_i915_gem_object *pctx;
5834 unsigned long pctx_paddr;
5835 u32 pcbr;
5836 int pctx_size = 24*1024;
5837
5838 pcbr = I915_READ(VLV_PCBR);
5839 if (pcbr) {
5840 /* BIOS set it up already, grab the pre-alloc'd space */
5841 int pcbr_offset;
5842
5843 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5844 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
5845 pcbr_offset,
5846 I915_GTT_OFFSET_NONE,
5847 pctx_size);
5848 goto out;
5849 }
5850
5851 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5852
5853 /*
5854 * From the Gunit register HAS:
5855 * The Gfx driver is expected to program this register and ensure
5856 * proper allocation within Gfx stolen memory. For example, this
5857 * register should be programmed such than the PCBR range does not
5858 * overlap with other ranges, such as the frame buffer, protected
5859 * memory, or any other relevant ranges.
5860 */
5861 pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
5862 if (!pctx) {
5863 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5864 goto out;
5865 }
5866
5867 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5868 I915_WRITE(VLV_PCBR, pctx_paddr);
5869
5870 out:
5871 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5872 dev_priv->vlv_pctx = pctx;
5873 }
5874
5875 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5876 {
5877 if (WARN_ON(!dev_priv->vlv_pctx))
5878 return;
5879
5880 i915_gem_object_put(dev_priv->vlv_pctx);
5881 dev_priv->vlv_pctx = NULL;
5882 }
5883
5884 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
5885 {
5886 dev_priv->rps.gpll_ref_freq =
5887 vlv_get_cck_clock(dev_priv, "GPLL ref",
5888 CCK_GPLL_CLOCK_CONTROL,
5889 dev_priv->czclk_freq);
5890
5891 DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
5892 dev_priv->rps.gpll_ref_freq);
5893 }
5894
5895 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5896 {
5897 u32 val;
5898
5899 valleyview_setup_pctx(dev_priv);
5900
5901 vlv_init_gpll_ref_freq(dev_priv);
5902
5903 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5904 switch ((val >> 6) & 3) {
5905 case 0:
5906 case 1:
5907 dev_priv->mem_freq = 800;
5908 break;
5909 case 2:
5910 dev_priv->mem_freq = 1066;
5911 break;
5912 case 3:
5913 dev_priv->mem_freq = 1333;
5914 break;
5915 }
5916 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5917
5918 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5919 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5920 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5921 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5922 dev_priv->rps.max_freq);
5923
5924 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5925 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5926 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5927 dev_priv->rps.efficient_freq);
5928
5929 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5930 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5931 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5932 dev_priv->rps.rp1_freq);
5933
5934 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5935 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5936 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5937 dev_priv->rps.min_freq);
5938 }
5939
5940 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5941 {
5942 u32 val;
5943
5944 cherryview_setup_pctx(dev_priv);
5945
5946 vlv_init_gpll_ref_freq(dev_priv);
5947
5948 mutex_lock(&dev_priv->sb_lock);
5949 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5950 mutex_unlock(&dev_priv->sb_lock);
5951
5952 switch ((val >> 2) & 0x7) {
5953 case 3:
5954 dev_priv->mem_freq = 2000;
5955 break;
5956 default:
5957 dev_priv->mem_freq = 1600;
5958 break;
5959 }
5960 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5961
5962 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5963 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5964 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5965 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5966 dev_priv->rps.max_freq);
5967
5968 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5969 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5970 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5971 dev_priv->rps.efficient_freq);
5972
5973 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5974 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5975 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5976 dev_priv->rps.rp1_freq);
5977
5978 /* PUnit validated range is only [RPe, RP0] */
5979 dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5980 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5981 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5982 dev_priv->rps.min_freq);
5983
5984 WARN_ONCE((dev_priv->rps.max_freq |
5985 dev_priv->rps.efficient_freq |
5986 dev_priv->rps.rp1_freq |
5987 dev_priv->rps.min_freq) & 1,
5988 "Odd GPU freq values\n");
5989 }
5990
5991 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5992 {
5993 valleyview_cleanup_pctx(dev_priv);
5994 }
5995
5996 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5997 {
5998 struct intel_engine_cs *engine;
5999 enum intel_engine_id id;
6000 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
6001
6002 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6003
6004 gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
6005 GT_FIFO_FREE_ENTRIES_CHV);
6006 if (gtfifodbg) {
6007 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
6008 gtfifodbg);
6009 I915_WRITE(GTFIFODBG, gtfifodbg);
6010 }
6011
6012 cherryview_check_pctx(dev_priv);
6013
6014 /* 1a & 1b: Get forcewake during program sequence. Although the driver
6015 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6016 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6017
6018 /* Disable RC states. */
6019 I915_WRITE(GEN6_RC_CONTROL, 0);
6020
6021 /* 2a: Program RC6 thresholds.*/
6022 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
6023 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6024 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6025
6026 for_each_engine(engine, dev_priv, id)
6027 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6028 I915_WRITE(GEN6_RC_SLEEP, 0);
6029
6030 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
6031 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6032
6033 /* allows RC6 residency counter to work */
6034 I915_WRITE(VLV_COUNTER_CONTROL,
6035 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
6036 VLV_MEDIA_RC6_COUNT_EN |
6037 VLV_RENDER_RC6_COUNT_EN));
6038
6039 /* For now we assume BIOS is allocating and populating the PCBR */
6040 pcbr = I915_READ(VLV_PCBR);
6041
6042 /* 3: Enable RC6 */
6043 if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
6044 (pcbr >> VLV_PCBR_ADDR_SHIFT))
6045 rc6_mode = GEN7_RC_CTL_TO_MODE;
6046
6047 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6048
6049 /* 4 Program defaults and thresholds for RPS*/
6050 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6051 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
6052 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
6053 I915_WRITE(GEN6_RP_UP_EI, 66000);
6054 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
6055
6056 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6057
6058 /* 5: Enable RPS */
6059 I915_WRITE(GEN6_RP_CONTROL,
6060 GEN6_RP_MEDIA_HW_NORMAL_MODE |
6061 GEN6_RP_MEDIA_IS_GFX |
6062 GEN6_RP_ENABLE |
6063 GEN6_RP_UP_BUSY_AVG |
6064 GEN6_RP_DOWN_IDLE_AVG);
6065
6066 /* Setting Fixed Bias */
6067 val = VLV_OVERRIDE_EN |
6068 VLV_SOC_TDP_EN |
6069 CHV_BIAS_CPU_50_SOC_50;
6070 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
6071
6072 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6073
6074 /* RPS code assumes GPLL is used */
6075 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
6076
6077 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6078 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6079
6080 reset_rps(dev_priv, valleyview_set_rps);
6081
6082 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6083 }
6084
6085 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6086 {
6087 struct intel_engine_cs *engine;
6088 enum intel_engine_id id;
6089 u32 gtfifodbg, val, rc6_mode = 0;
6090
6091 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6092
6093 valleyview_check_pctx(dev_priv);
6094
6095 gtfifodbg = I915_READ(GTFIFODBG);
6096 if (gtfifodbg) {
6097 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
6098 gtfifodbg);
6099 I915_WRITE(GTFIFODBG, gtfifodbg);
6100 }
6101
6102 /* If VLV, Forcewake all wells, else re-direct to regular path */
6103 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6104
6105 /* Disable RC states. */
6106 I915_WRITE(GEN6_RC_CONTROL, 0);
6107
6108 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6109 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
6110 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
6111 I915_WRITE(GEN6_RP_UP_EI, 66000);
6112 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
6113
6114 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6115
6116 I915_WRITE(GEN6_RP_CONTROL,
6117 GEN6_RP_MEDIA_TURBO |
6118 GEN6_RP_MEDIA_HW_NORMAL_MODE |
6119 GEN6_RP_MEDIA_IS_GFX |
6120 GEN6_RP_ENABLE |
6121 GEN6_RP_UP_BUSY_AVG |
6122 GEN6_RP_DOWN_IDLE_CONT);
6123
6124 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
6125 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6126 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6127
6128 for_each_engine(engine, dev_priv, id)
6129 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6130
6131 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6132
6133 /* allows RC6 residency counter to work */
6134 I915_WRITE(VLV_COUNTER_CONTROL,
6135 _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
6136 VLV_RENDER_RC0_COUNT_EN |
6137 VLV_MEDIA_RC6_COUNT_EN |
6138 VLV_RENDER_RC6_COUNT_EN));
6139
6140 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6141 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
6142
6143 intel_print_rc6_info(dev_priv, rc6_mode);
6144
6145 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6146
6147 /* Setting Fixed Bias */
6148 val = VLV_OVERRIDE_EN |
6149 VLV_SOC_TDP_EN |
6150 VLV_BIAS_CPU_125_SOC_875;
6151 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
6152
6153 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6154
6155 /* RPS code assumes GPLL is used */
6156 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
6157
6158 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6159 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6160
6161 reset_rps(dev_priv, valleyview_set_rps);
6162
6163 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6164 }
6165
6166 static unsigned long intel_pxfreq(u32 vidfreq)
6167 {
6168 unsigned long freq;
6169 int div = (vidfreq & 0x3f0000) >> 16;
6170 int post = (vidfreq & 0x3000) >> 12;
6171 int pre = (vidfreq & 0x7);
6172
6173 if (!pre)
6174 return 0;
6175
6176 freq = ((div * 133333) / ((1<<post) * pre));
6177
6178 return freq;
6179 }
6180
6181 static const struct cparams {
6182 u16 i;
6183 u16 t;
6184 u16 m;
6185 u16 c;
6186 } cparams[] = {
6187 { 1, 1333, 301, 28664 },
6188 { 1, 1066, 294, 24460 },
6189 { 1, 800, 294, 25192 },
6190 { 0, 1333, 276, 27605 },
6191 { 0, 1066, 276, 27605 },
6192 { 0, 800, 231, 23784 },
6193 };
6194
6195 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6196 {
6197 u64 total_count, diff, ret;
6198 u32 count1, count2, count3, m = 0, c = 0;
6199 unsigned long now = jiffies_to_msecs(jiffies), diff1;
6200 int i;
6201
6202 assert_spin_locked(&mchdev_lock);
6203
6204 diff1 = now - dev_priv->ips.last_time1;
6205
6206 /* Prevent division-by-zero if we are asking too fast.
6207 * Also, we don't get interesting results if we are polling
6208 * faster than once in 10ms, so just return the saved value
6209 * in such cases.
6210 */
6211 if (diff1 <= 10)
6212 return dev_priv->ips.chipset_power;
6213
6214 count1 = I915_READ(DMIEC);
6215 count2 = I915_READ(DDREC);
6216 count3 = I915_READ(CSIEC);
6217
6218 total_count = count1 + count2 + count3;
6219
6220 /* FIXME: handle per-counter overflow */
6221 if (total_count < dev_priv->ips.last_count1) {
6222 diff = ~0UL - dev_priv->ips.last_count1;
6223 diff += total_count;
6224 } else {
6225 diff = total_count - dev_priv->ips.last_count1;
6226 }
6227
6228 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6229 if (cparams[i].i == dev_priv->ips.c_m &&
6230 cparams[i].t == dev_priv->ips.r_t) {
6231 m = cparams[i].m;
6232 c = cparams[i].c;
6233 break;
6234 }
6235 }
6236
6237 diff = div_u64(diff, diff1);
6238 ret = ((m * diff) + c);
6239 ret = div_u64(ret, 10);
6240
6241 dev_priv->ips.last_count1 = total_count;
6242 dev_priv->ips.last_time1 = now;
6243
6244 dev_priv->ips.chipset_power = ret;
6245
6246 return ret;
6247 }
6248
6249 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
6250 {
6251 unsigned long val;
6252
6253 if (INTEL_INFO(dev_priv)->gen != 5)
6254 return 0;
6255
6256 spin_lock_irq(&mchdev_lock);
6257
6258 val = __i915_chipset_val(dev_priv);
6259
6260 spin_unlock_irq(&mchdev_lock);
6261
6262 return val;
6263 }
6264
6265 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
6266 {
6267 unsigned long m, x, b;
6268 u32 tsfs;
6269
6270 tsfs = I915_READ(TSFS);
6271
6272 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
6273 x = I915_READ8(TR1);
6274
6275 b = tsfs & TSFS_INTR_MASK;
6276
6277 return ((m * x) / 127) - b;
6278 }
6279
6280 static int _pxvid_to_vd(u8 pxvid)
6281 {
6282 if (pxvid == 0)
6283 return 0;
6284
6285 if (pxvid >= 8 && pxvid < 31)
6286 pxvid = 31;
6287
6288 return (pxvid + 2) * 125;
6289 }
6290
6291 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6292 {
6293 const int vd = _pxvid_to_vd(pxvid);
6294 const int vm = vd - 1125;
6295
6296 if (INTEL_INFO(dev_priv)->is_mobile)
6297 return vm > 0 ? vm : 0;
6298
6299 return vd;
6300 }
6301
6302 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6303 {
6304 u64 now, diff, diffms;
6305 u32 count;
6306
6307 assert_spin_locked(&mchdev_lock);
6308
6309 now = ktime_get_raw_ns();
6310 diffms = now - dev_priv->ips.last_time2;
6311 do_div(diffms, NSEC_PER_MSEC);
6312
6313 /* Don't divide by 0 */
6314 if (!diffms)
6315 return;
6316
6317 count = I915_READ(GFXEC);
6318
6319 if (count < dev_priv->ips.last_count2) {
6320 diff = ~0UL - dev_priv->ips.last_count2;
6321 diff += count;
6322 } else {
6323 diff = count - dev_priv->ips.last_count2;
6324 }
6325
6326 dev_priv->ips.last_count2 = count;
6327 dev_priv->ips.last_time2 = now;
6328
6329 /* More magic constants... */
6330 diff = diff * 1181;
6331 diff = div_u64(diff, diffms * 10);
6332 dev_priv->ips.gfx_power = diff;
6333 }
6334
6335 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
6336 {
6337 if (INTEL_INFO(dev_priv)->gen != 5)
6338 return;
6339
6340 spin_lock_irq(&mchdev_lock);
6341
6342 __i915_update_gfx_val(dev_priv);
6343
6344 spin_unlock_irq(&mchdev_lock);
6345 }
6346
6347 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6348 {
6349 unsigned long t, corr, state1, corr2, state2;
6350 u32 pxvid, ext_v;
6351
6352 assert_spin_locked(&mchdev_lock);
6353
6354 pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6355 pxvid = (pxvid >> 24) & 0x7f;
6356 ext_v = pvid_to_extvid(dev_priv, pxvid);
6357
6358 state1 = ext_v;
6359
6360 t = i915_mch_val(dev_priv);
6361
6362 /* Revel in the empirically derived constants */
6363
6364 /* Correction factor in 1/100000 units */
6365 if (t > 80)
6366 corr = ((t * 2349) + 135940);
6367 else if (t >= 50)
6368 corr = ((t * 964) + 29317);
6369 else /* < 50 */
6370 corr = ((t * 301) + 1004);
6371
6372 corr = corr * ((150142 * state1) / 10000 - 78642);
6373 corr /= 100000;
6374 corr2 = (corr * dev_priv->ips.corr);
6375
6376 state2 = (corr2 * state1) / 10000;
6377 state2 /= 100; /* convert to mW */
6378
6379 __i915_update_gfx_val(dev_priv);
6380
6381 return dev_priv->ips.gfx_power + state2;
6382 }
6383
6384 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
6385 {
6386 unsigned long val;
6387
6388 if (INTEL_INFO(dev_priv)->gen != 5)
6389 return 0;
6390
6391 spin_lock_irq(&mchdev_lock);
6392
6393 val = __i915_gfx_val(dev_priv);
6394
6395 spin_unlock_irq(&mchdev_lock);
6396
6397 return val;
6398 }
6399
6400 /**
6401 * i915_read_mch_val - return value for IPS use
6402 *
6403 * Calculate and return a value for the IPS driver to use when deciding whether
6404 * we have thermal and power headroom to increase CPU or GPU power budget.
6405 */
6406 unsigned long i915_read_mch_val(void)
6407 {
6408 struct drm_i915_private *dev_priv;
6409 unsigned long chipset_val, graphics_val, ret = 0;
6410
6411 spin_lock_irq(&mchdev_lock);
6412 if (!i915_mch_dev)
6413 goto out_unlock;
6414 dev_priv = i915_mch_dev;
6415
6416 chipset_val = __i915_chipset_val(dev_priv);
6417 graphics_val = __i915_gfx_val(dev_priv);
6418
6419 ret = chipset_val + graphics_val;
6420
6421 out_unlock:
6422 spin_unlock_irq(&mchdev_lock);
6423
6424 return ret;
6425 }
6426 EXPORT_SYMBOL_GPL(i915_read_mch_val);
6427
6428 /**
6429 * i915_gpu_raise - raise GPU frequency limit
6430 *
6431 * Raise the limit; IPS indicates we have thermal headroom.
6432 */
6433 bool i915_gpu_raise(void)
6434 {
6435 struct drm_i915_private *dev_priv;
6436 bool ret = true;
6437
6438 spin_lock_irq(&mchdev_lock);
6439 if (!i915_mch_dev) {
6440 ret = false;
6441 goto out_unlock;
6442 }
6443 dev_priv = i915_mch_dev;
6444
6445 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
6446 dev_priv->ips.max_delay--;
6447
6448 out_unlock:
6449 spin_unlock_irq(&mchdev_lock);
6450
6451 return ret;
6452 }
6453 EXPORT_SYMBOL_GPL(i915_gpu_raise);
6454
6455 /**
6456 * i915_gpu_lower - lower GPU frequency limit
6457 *
6458 * IPS indicates we're close to a thermal limit, so throttle back the GPU
6459 * frequency maximum.
6460 */
6461 bool i915_gpu_lower(void)
6462 {
6463 struct drm_i915_private *dev_priv;
6464 bool ret = true;
6465
6466 spin_lock_irq(&mchdev_lock);
6467 if (!i915_mch_dev) {
6468 ret = false;
6469 goto out_unlock;
6470 }
6471 dev_priv = i915_mch_dev;
6472
6473 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6474 dev_priv->ips.max_delay++;
6475
6476 out_unlock:
6477 spin_unlock_irq(&mchdev_lock);
6478
6479 return ret;
6480 }
6481 EXPORT_SYMBOL_GPL(i915_gpu_lower);
6482
6483 /**
6484 * i915_gpu_busy - indicate GPU business to IPS
6485 *
6486 * Tell the IPS driver whether or not the GPU is busy.
6487 */
6488 bool i915_gpu_busy(void)
6489 {
6490 bool ret = false;
6491
6492 spin_lock_irq(&mchdev_lock);
6493 if (i915_mch_dev)
6494 ret = i915_mch_dev->gt.awake;
6495 spin_unlock_irq(&mchdev_lock);
6496
6497 return ret;
6498 }
6499 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6500
6501 /**
6502 * i915_gpu_turbo_disable - disable graphics turbo
6503 *
6504 * Disable graphics turbo by resetting the max frequency and setting the
6505 * current frequency to the default.
6506 */
6507 bool i915_gpu_turbo_disable(void)
6508 {
6509 struct drm_i915_private *dev_priv;
6510 bool ret = true;
6511
6512 spin_lock_irq(&mchdev_lock);
6513 if (!i915_mch_dev) {
6514 ret = false;
6515 goto out_unlock;
6516 }
6517 dev_priv = i915_mch_dev;
6518
6519 dev_priv->ips.max_delay = dev_priv->ips.fstart;
6520
6521 if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6522 ret = false;
6523
6524 out_unlock:
6525 spin_unlock_irq(&mchdev_lock);
6526
6527 return ret;
6528 }
6529 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6530
6531 /**
6532 * Tells the intel_ips driver that the i915 driver is now loaded, if
6533 * IPS got loaded first.
6534 *
6535 * This awkward dance is so that neither module has to depend on the
6536 * other in order for IPS to do the appropriate communication of
6537 * GPU turbo limits to i915.
6538 */
6539 static void
6540 ips_ping_for_i915_load(void)
6541 {
6542 void (*link)(void);
6543
6544 link = symbol_get(ips_link_to_i915_driver);
6545 if (link) {
6546 link();
6547 symbol_put(ips_link_to_i915_driver);
6548 }
6549 }
6550
6551 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6552 {
6553 /* We only register the i915 ips part with intel-ips once everything is
6554 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6555 spin_lock_irq(&mchdev_lock);
6556 i915_mch_dev = dev_priv;
6557 spin_unlock_irq(&mchdev_lock);
6558
6559 ips_ping_for_i915_load();
6560 }
6561
6562 void intel_gpu_ips_teardown(void)
6563 {
6564 spin_lock_irq(&mchdev_lock);
6565 i915_mch_dev = NULL;
6566 spin_unlock_irq(&mchdev_lock);
6567 }
6568
6569 static void intel_init_emon(struct drm_i915_private *dev_priv)
6570 {
6571 u32 lcfuse;
6572 u8 pxw[16];
6573 int i;
6574
6575 /* Disable to program */
6576 I915_WRITE(ECR, 0);
6577 POSTING_READ(ECR);
6578
6579 /* Program energy weights for various events */
6580 I915_WRITE(SDEW, 0x15040d00);
6581 I915_WRITE(CSIEW0, 0x007f0000);
6582 I915_WRITE(CSIEW1, 0x1e220004);
6583 I915_WRITE(CSIEW2, 0x04000004);
6584
6585 for (i = 0; i < 5; i++)
6586 I915_WRITE(PEW(i), 0);
6587 for (i = 0; i < 3; i++)
6588 I915_WRITE(DEW(i), 0);
6589
6590 /* Program P-state weights to account for frequency power adjustment */
6591 for (i = 0; i < 16; i++) {
6592 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6593 unsigned long freq = intel_pxfreq(pxvidfreq);
6594 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6595 PXVFREQ_PX_SHIFT;
6596 unsigned long val;
6597
6598 val = vid * vid;
6599 val *= (freq / 1000);
6600 val *= 255;
6601 val /= (127*127*900);
6602 if (val > 0xff)
6603 DRM_ERROR("bad pxval: %ld\n", val);
6604 pxw[i] = val;
6605 }
6606 /* Render standby states get 0 weight */
6607 pxw[14] = 0;
6608 pxw[15] = 0;
6609
6610 for (i = 0; i < 4; i++) {
6611 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6612 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6613 I915_WRITE(PXW(i), val);
6614 }
6615
6616 /* Adjust magic regs to magic values (more experimental results) */
6617 I915_WRITE(OGW0, 0);
6618 I915_WRITE(OGW1, 0);
6619 I915_WRITE(EG0, 0x00007f00);
6620 I915_WRITE(EG1, 0x0000000e);
6621 I915_WRITE(EG2, 0x000e0000);
6622 I915_WRITE(EG3, 0x68000300);
6623 I915_WRITE(EG4, 0x42000000);
6624 I915_WRITE(EG5, 0x00140031);
6625 I915_WRITE(EG6, 0);
6626 I915_WRITE(EG7, 0);
6627
6628 for (i = 0; i < 8; i++)
6629 I915_WRITE(PXWL(i), 0);
6630
6631 /* Enable PMON + select events */
6632 I915_WRITE(ECR, 0x80000019);
6633
6634 lcfuse = I915_READ(LCFUSE02);
6635
6636 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6637 }
6638
6639 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6640 {
6641 /*
6642 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6643 * requirement.
6644 */
6645 if (!i915.enable_rc6) {
6646 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6647 intel_runtime_pm_get(dev_priv);
6648 }
6649
6650 mutex_lock(&dev_priv->drm.struct_mutex);
6651 mutex_lock(&dev_priv->rps.hw_lock);
6652
6653 /* Initialize RPS limits (for userspace) */
6654 if (IS_CHERRYVIEW(dev_priv))
6655 cherryview_init_gt_powersave(dev_priv);
6656 else if (IS_VALLEYVIEW(dev_priv))
6657 valleyview_init_gt_powersave(dev_priv);
6658 else if (INTEL_GEN(dev_priv) >= 6)
6659 gen6_init_rps_frequencies(dev_priv);
6660
6661 /* Derive initial user preferences/limits from the hardware limits */
6662 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
6663 dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;
6664
6665 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
6666 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
6667
6668 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6669 dev_priv->rps.min_freq_softlimit =
6670 max_t(int,
6671 dev_priv->rps.efficient_freq,
6672 intel_freq_opcode(dev_priv, 450));
6673
6674 /* After setting max-softlimit, find the overclock max freq */
6675 if (IS_GEN6(dev_priv) ||
6676 IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
6677 u32 params = 0;
6678
6679 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
6680 if (params & BIT(31)) { /* OC supported */
6681 DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
6682 (dev_priv->rps.max_freq & 0xff) * 50,
6683 (params & 0xff) * 50);
6684 dev_priv->rps.max_freq = params & 0xff;
6685 }
6686 }
6687
6688 /* Finally allow us to boost to max by default */
6689 dev_priv->rps.boost_freq = dev_priv->rps.max_freq;
6690
6691 mutex_unlock(&dev_priv->rps.hw_lock);
6692 mutex_unlock(&dev_priv->drm.struct_mutex);
6693
6694 intel_autoenable_gt_powersave(dev_priv);
6695 }
6696
6697 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6698 {
6699 if (IS_VALLEYVIEW(dev_priv))
6700 valleyview_cleanup_gt_powersave(dev_priv);
6701
6702 if (!i915.enable_rc6)
6703 intel_runtime_pm_put(dev_priv);
6704 }
6705
6706 /**
6707 * intel_suspend_gt_powersave - suspend PM work and helper threads
6708 * @dev_priv: i915 device
6709 *
6710 * We don't want to disable RC6 or other features here, we just want
6711 * to make sure any work we've queued has finished and won't bother
6712 * us while we're suspended.
6713 */
6714 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
6715 {
6716 if (INTEL_GEN(dev_priv) < 6)
6717 return;
6718
6719 if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
6720 intel_runtime_pm_put(dev_priv);
6721
6722 /* gen6_rps_idle() will be called later to disable interrupts */
6723 }
6724
6725 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
6726 {
6727 dev_priv->rps.enabled = true; /* force disabling */
6728 intel_disable_gt_powersave(dev_priv);
6729
6730 gen6_reset_rps_interrupts(dev_priv);
6731 }
6732
6733 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6734 {
6735 if (!READ_ONCE(dev_priv->rps.enabled))
6736 return;
6737
6738 mutex_lock(&dev_priv->rps.hw_lock);
6739
6740 if (INTEL_GEN(dev_priv) >= 9) {
6741 gen9_disable_rc6(dev_priv);
6742 gen9_disable_rps(dev_priv);
6743 } else if (IS_CHERRYVIEW(dev_priv)) {
6744 cherryview_disable_rps(dev_priv);
6745 } else if (IS_VALLEYVIEW(dev_priv)) {
6746 valleyview_disable_rps(dev_priv);
6747 } else if (INTEL_GEN(dev_priv) >= 6) {
6748 gen6_disable_rps(dev_priv);
6749 } else if (IS_IRONLAKE_M(dev_priv)) {
6750 ironlake_disable_drps(dev_priv);
6751 }
6752
6753 dev_priv->rps.enabled = false;
6754 mutex_unlock(&dev_priv->rps.hw_lock);
6755 }
6756
6757 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6758 {
6759 /* We shouldn't be disabling as we submit, so this should be less
6760 * racy than it appears!
6761 */
6762 if (READ_ONCE(dev_priv->rps.enabled))
6763 return;
6764
6765 /* Powersaving is controlled by the host when inside a VM */
6766 if (intel_vgpu_active(dev_priv))
6767 return;
6768
6769 mutex_lock(&dev_priv->rps.hw_lock);
6770
6771 if (IS_CHERRYVIEW(dev_priv)) {
6772 cherryview_enable_rps(dev_priv);
6773 } else if (IS_VALLEYVIEW(dev_priv)) {
6774 valleyview_enable_rps(dev_priv);
6775 } else if (INTEL_GEN(dev_priv) >= 9) {
6776 gen9_enable_rc6(dev_priv);
6777 gen9_enable_rps(dev_priv);
6778 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6779 gen6_update_ring_freq(dev_priv);
6780 } else if (IS_BROADWELL(dev_priv)) {
6781 gen8_enable_rps(dev_priv);
6782 gen6_update_ring_freq(dev_priv);
6783 } else if (INTEL_GEN(dev_priv) >= 6) {
6784 gen6_enable_rps(dev_priv);
6785 gen6_update_ring_freq(dev_priv);
6786 } else if (IS_IRONLAKE_M(dev_priv)) {
6787 ironlake_enable_drps(dev_priv);
6788 intel_init_emon(dev_priv);
6789 }
6790
6791 WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6792 WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6793
6794 WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6795 WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6796
6797 dev_priv->rps.enabled = true;
6798 mutex_unlock(&dev_priv->rps.hw_lock);
6799 }
6800
6801 static void __intel_autoenable_gt_powersave(struct work_struct *work)
6802 {
6803 struct drm_i915_private *dev_priv =
6804 container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
6805 struct intel_engine_cs *rcs;
6806 struct drm_i915_gem_request *req;
6807
6808 if (READ_ONCE(dev_priv->rps.enabled))
6809 goto out;
6810
6811 rcs = dev_priv->engine[RCS];
6812 if (rcs->last_retired_context)
6813 goto out;
6814
6815 if (!rcs->init_context)
6816 goto out;
6817
6818 mutex_lock(&dev_priv->drm.struct_mutex);
6819
6820 req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
6821 if (IS_ERR(req))
6822 goto unlock;
6823
6824 if (!i915.enable_execlists && i915_switch_context(req) == 0)
6825 rcs->init_context(req);
6826
6827 /* Mark the device busy, calling intel_enable_gt_powersave() */
6828 i915_add_request_no_flush(req);
6829
6830 unlock:
6831 mutex_unlock(&dev_priv->drm.struct_mutex);
6832 out:
6833 intel_runtime_pm_put(dev_priv);
6834 }
6835
6836 void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
6837 {
6838 if (READ_ONCE(dev_priv->rps.enabled))
6839 return;
6840
6841 if (IS_IRONLAKE_M(dev_priv)) {
6842 ironlake_enable_drps(dev_priv);
6843 intel_init_emon(dev_priv);
6844 } else if (INTEL_INFO(dev_priv)->gen >= 6) {
6845 /*
6846 * PCU communication is slow and this doesn't need to be
6847 * done at any specific time, so do this out of our fast path
6848 * to make resume and init faster.
6849 *
6850 * We depend on the HW RC6 power context save/restore
6851 * mechanism when entering D3 through runtime PM suspend. So
6852 * disable RPM until RPS/RC6 is properly setup. We can only
6853 * get here via the driver load/system resume/runtime resume
6854 * paths, so the _noresume version is enough (and in case of
6855 * runtime resume it's necessary).
6856 */
6857 if (queue_delayed_work(dev_priv->wq,
6858 &dev_priv->rps.autoenable_work,
6859 round_jiffies_up_relative(HZ)))
6860 intel_runtime_pm_get_noresume(dev_priv);
6861 }
6862 }
6863
6864 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
6865 {
6866 /*
6867 * On Ibex Peak and Cougar Point, we need to disable clock
6868 * gating for the panel power sequencer or it will fail to
6869 * start up when no ports are active.
6870 */
6871 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6872 }
6873
6874 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6875 {
6876 enum pipe pipe;
6877
6878 for_each_pipe(dev_priv, pipe) {
6879 I915_WRITE(DSPCNTR(pipe),
6880 I915_READ(DSPCNTR(pipe)) |
6881 DISPPLANE_TRICKLE_FEED_DISABLE);
6882
6883 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6884 POSTING_READ(DSPSURF(pipe));
6885 }
6886 }
6887
6888 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6889 {
6890 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6891 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6892 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6893
6894 /*
6895 * Don't touch WM1S_LP_EN here.
6896 * Doing so could cause underruns.
6897 */
6898 }
6899
6900 static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
6901 {
6902 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6903
6904 /*
6905 * Required for FBC
6906 * WaFbcDisableDpfcClockGating:ilk
6907 */
6908 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6909 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6910 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6911
6912 I915_WRITE(PCH_3DCGDIS0,
6913 MARIUNIT_CLOCK_GATE_DISABLE |
6914 SVSMUNIT_CLOCK_GATE_DISABLE);
6915 I915_WRITE(PCH_3DCGDIS1,
6916 VFMUNIT_CLOCK_GATE_DISABLE);
6917
6918 /*
6919 * According to the spec the following bits should be set in
6920 * order to enable memory self-refresh
6921 * The bit 22/21 of 0x42004
6922 * The bit 5 of 0x42020
6923 * The bit 15 of 0x45000
6924 */
6925 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6926 (I915_READ(ILK_DISPLAY_CHICKEN2) |
6927 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6928 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6929 I915_WRITE(DISP_ARB_CTL,
6930 (I915_READ(DISP_ARB_CTL) |
6931 DISP_FBC_WM_DIS));
6932
6933 ilk_init_lp_watermarks(dev_priv);
6934
6935 /*
6936 * Based on the document from hardware guys the following bits
6937 * should be set unconditionally in order to enable FBC.
6938 * The bit 22 of 0x42000
6939 * The bit 22 of 0x42004
6940 * The bit 7,8,9 of 0x42020.
6941 */
6942 if (IS_IRONLAKE_M(dev_priv)) {
6943 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6944 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6945 I915_READ(ILK_DISPLAY_CHICKEN1) |
6946 ILK_FBCQ_DIS);
6947 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6948 I915_READ(ILK_DISPLAY_CHICKEN2) |
6949 ILK_DPARB_GATE);
6950 }
6951
6952 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6953
6954 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6955 I915_READ(ILK_DISPLAY_CHICKEN2) |
6956 ILK_ELPIN_409_SELECT);
6957 I915_WRITE(_3D_CHICKEN2,
6958 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6959 _3D_CHICKEN2_WM_READ_PIPELINED);
6960
6961 /* WaDisableRenderCachePipelinedFlush:ilk */
6962 I915_WRITE(CACHE_MODE_0,
6963 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6964
6965 /* WaDisable_RenderCache_OperationalFlush:ilk */
6966 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6967
6968 g4x_disable_trickle_feed(dev_priv);
6969
6970 ibx_init_clock_gating(dev_priv);
6971 }
6972
6973 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6974 {
6975 int pipe;
6976 uint32_t val;
6977
6978 /*
6979 * On Ibex Peak and Cougar Point, we need to disable clock
6980 * gating for the panel power sequencer or it will fail to
6981 * start up when no ports are active.
6982 */
6983 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6984 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6985 PCH_CPUNIT_CLOCK_GATE_DISABLE);
6986 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6987 DPLS_EDP_PPS_FIX_DIS);
6988 /* The below fixes the weird display corruption, a few pixels shifted
6989 * downward, on (only) LVDS of some HP laptops with IVY.
6990 */
6991 for_each_pipe(dev_priv, pipe) {
6992 val = I915_READ(TRANS_CHICKEN2(pipe));
6993 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6994 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6995 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6996 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6997 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6998 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6999 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7000 I915_WRITE(TRANS_CHICKEN2(pipe), val);
7001 }
7002 /* WADP0ClockGatingDisable */
7003 for_each_pipe(dev_priv, pipe) {
7004 I915_WRITE(TRANS_CHICKEN1(pipe),
7005 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7006 }
7007 }
7008
7009 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
7010 {
7011 uint32_t tmp;
7012
7013 tmp = I915_READ(MCH_SSKPD);
7014 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
7015 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
7016 tmp);
7017 }
7018
7019 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
7020 {
7021 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7022
7023 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7024
7025 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7026 I915_READ(ILK_DISPLAY_CHICKEN2) |
7027 ILK_ELPIN_409_SELECT);
7028
7029 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7030 I915_WRITE(_3D_CHICKEN,
7031 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
7032
7033 /* WaDisable_RenderCache_OperationalFlush:snb */
7034 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7035
7036 /*
7037 * BSpec recoomends 8x4 when MSAA is used,
7038 * however in practice 16x4 seems fastest.
7039 *
7040 * Note that PS/WM thread counts depend on the WIZ hashing
7041 * disable bit, which we don't touch here, but it's good
7042 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7043 */
7044 I915_WRITE(GEN6_GT_MODE,
7045 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7046
7047 ilk_init_lp_watermarks(dev_priv);
7048
7049 I915_WRITE(CACHE_MODE_0,
7050 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7051
7052 I915_WRITE(GEN6_UCGCTL1,
7053 I915_READ(GEN6_UCGCTL1) |
7054 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
7055 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7056
7057 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
7058 * gating disable must be set. Failure to set it results in
7059 * flickering pixels due to Z write ordering failures after
7060 * some amount of runtime in the Mesa "fire" demo, and Unigine
7061 * Sanctuary and Tropics, and apparently anything else with
7062 * alpha test or pixel discard.
7063 *
7064 * According to the spec, bit 11 (RCCUNIT) must also be set,
7065 * but we didn't debug actual testcases to find it out.
7066 *
7067 * WaDisableRCCUnitClockGating:snb
7068 * WaDisableRCPBUnitClockGating:snb
7069 */
7070 I915_WRITE(GEN6_UCGCTL2,
7071 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
7072 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
7073
7074 /* WaStripsFansDisableFastClipPerformanceFix:snb */
7075 I915_WRITE(_3D_CHICKEN3,
7076 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7077
7078 /*
7079 * Bspec says:
7080 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
7081 * 3DSTATE_SF number of SF output attributes is more than 16."
7082 */
7083 I915_WRITE(_3D_CHICKEN3,
7084 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
7085
7086 /*
7087 * According to the spec the following bits should be
7088 * set in order to enable memory self-refresh and fbc:
7089 * The bit21 and bit22 of 0x42000
7090 * The bit21 and bit22 of 0x42004
7091 * The bit5 and bit7 of 0x42020
7092 * The bit14 of 0x70180
7093 * The bit14 of 0x71180
7094 *
7095 * WaFbcAsynchFlipDisableFbcQueue:snb
7096 */
7097 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7098 I915_READ(ILK_DISPLAY_CHICKEN1) |
7099 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7100 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7101 I915_READ(ILK_DISPLAY_CHICKEN2) |
7102 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7103 I915_WRITE(ILK_DSPCLK_GATE_D,
7104 I915_READ(ILK_DSPCLK_GATE_D) |
7105 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
7106 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7107
7108 g4x_disable_trickle_feed(dev_priv);
7109
7110 cpt_init_clock_gating(dev_priv);
7111
7112 gen6_check_mch_setup(dev_priv);
7113 }
7114
7115 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
7116 {
7117 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
7118
7119 /*
7120 * WaVSThreadDispatchOverride:ivb,vlv
7121 *
7122 * This actually overrides the dispatch
7123 * mode for all thread types.
7124 */
7125 reg &= ~GEN7_FF_SCHED_MASK;
7126 reg |= GEN7_FF_TS_SCHED_HW;
7127 reg |= GEN7_FF_VS_SCHED_HW;
7128 reg |= GEN7_FF_DS_SCHED_HW;
7129
7130 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
7131 }
7132
7133 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7134 {
7135 /*
7136 * TODO: this bit should only be enabled when really needed, then
7137 * disabled when not needed anymore in order to save power.
7138 */
7139 if (HAS_PCH_LPT_LP(dev_priv))
7140 I915_WRITE(SOUTH_DSPCLK_GATE_D,
7141 I915_READ(SOUTH_DSPCLK_GATE_D) |
7142 PCH_LP_PARTITION_LEVEL_DISABLE);
7143
7144 /* WADPOClockGatingDisable:hsw */
7145 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
7146 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7147 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7148 }
7149
7150 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7151 {
7152 if (HAS_PCH_LPT_LP(dev_priv)) {
7153 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
7154
7155 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7156 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7157 }
7158 }
7159
7160 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
7161 int general_prio_credits,
7162 int high_prio_credits)
7163 {
7164 u32 misccpctl;
7165
7166 /* WaTempDisableDOPClkGating:bdw */
7167 misccpctl = I915_READ(GEN7_MISCCPCTL);
7168 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
7169
7170 I915_WRITE(GEN8_L3SQCREG1,
7171 L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
7172 L3_HIGH_PRIO_CREDITS(high_prio_credits));
7173
7174 /*
7175 * Wait at least 100 clocks before re-enabling clock gating.
7176 * See the definition of L3SQCREG1 in BSpec.
7177 */
7178 POSTING_READ(GEN8_L3SQCREG1);
7179 udelay(1);
7180 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
7181 }
7182
7183 static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
7184 {
7185 gen9_init_clock_gating(dev_priv);
7186
7187 /* WaDisableSDEUnitClockGating:kbl */
7188 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7189 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7190 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7191
7192 /* WaDisableGamClockGating:kbl */
7193 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7194 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7195 GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7196
7197 /* WaFbcNukeOnHostModify:kbl */
7198 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7199 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7200 }
7201
7202 static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
7203 {
7204 gen9_init_clock_gating(dev_priv);
7205
7206 /* WAC6entrylatency:skl */
7207 I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
7208 FBC_LLC_FULLY_OPEN);
7209
7210 /* WaFbcNukeOnHostModify:skl */
7211 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7212 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7213 }
7214
7215 static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
7216 {
7217 enum pipe pipe;
7218
7219 ilk_init_lp_watermarks(dev_priv);
7220
7221 /* WaSwitchSolVfFArbitrationPriority:bdw */
7222 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7223
7224 /* WaPsrDPAMaskVBlankInSRD:bdw */
7225 I915_WRITE(CHICKEN_PAR1_1,
7226 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7227
7228 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7229 for_each_pipe(dev_priv, pipe) {
7230 I915_WRITE(CHICKEN_PIPESL_1(pipe),
7231 I915_READ(CHICKEN_PIPESL_1(pipe)) |
7232 BDW_DPRS_MASK_VBLANK_SRD);
7233 }
7234
7235 /* WaVSRefCountFullforceMissDisable:bdw */
7236 /* WaDSRefCountFullforceMissDisable:bdw */
7237 I915_WRITE(GEN7_FF_THREAD_MODE,
7238 I915_READ(GEN7_FF_THREAD_MODE) &
7239 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7240
7241 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7242 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7243
7244 /* WaDisableSDEUnitClockGating:bdw */
7245 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7246 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7247
7248 /* WaProgramL3SqcReg1Default:bdw */
7249 gen8_set_l3sqc_credits(dev_priv, 30, 2);
7250
7251 /*
7252 * WaGttCachingOffByDefault:bdw
7253 * GTT cache may not work with big pages, so if those
7254 * are ever enabled GTT cache may need to be disabled.
7255 */
7256 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7257
7258 /* WaKVMNotificationOnConfigChange:bdw */
7259 I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
7260 | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7261
7262 lpt_init_clock_gating(dev_priv);
7263 }
7264
7265 static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
7266 {
7267 ilk_init_lp_watermarks(dev_priv);
7268
7269 /* L3 caching of data atomics doesn't work -- disable it. */
7270 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
7271 I915_WRITE(HSW_ROW_CHICKEN3,
7272 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
7273
7274 /* This is required by WaCatErrorRejectionIssue:hsw */
7275 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7276 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7277 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7278
7279 /* WaVSRefCountFullforceMissDisable:hsw */
7280 I915_WRITE(GEN7_FF_THREAD_MODE,
7281 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7282
7283 /* WaDisable_RenderCache_OperationalFlush:hsw */
7284 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7285
7286 /* enable HiZ Raw Stall Optimization */
7287 I915_WRITE(CACHE_MODE_0_GEN7,
7288 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7289
7290 /* WaDisable4x2SubspanOptimization:hsw */
7291 I915_WRITE(CACHE_MODE_1,
7292 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7293
7294 /*
7295 * BSpec recommends 8x4 when MSAA is used,
7296 * however in practice 16x4 seems fastest.
7297 *
7298 * Note that PS/WM thread counts depend on the WIZ hashing
7299 * disable bit, which we don't touch here, but it's good
7300 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7301 */
7302 I915_WRITE(GEN7_GT_MODE,
7303 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7304
7305 /* WaSampleCChickenBitEnable:hsw */
7306 I915_WRITE(HALF_SLICE_CHICKEN3,
7307 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
7308
7309 /* WaSwitchSolVfFArbitrationPriority:hsw */
7310 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7311
7312 /* WaRsPkgCStateDisplayPMReq:hsw */
7313 I915_WRITE(CHICKEN_PAR1_1,
7314 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7315
7316 lpt_init_clock_gating(dev_priv);
7317 }
7318
7319 static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
7320 {
7321 uint32_t snpcr;
7322
7323 ilk_init_lp_watermarks(dev_priv);
7324
7325 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7326
7327 /* WaDisableEarlyCull:ivb */
7328 I915_WRITE(_3D_CHICKEN3,
7329 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7330
7331 /* WaDisableBackToBackFlipFix:ivb */
7332 I915_WRITE(IVB_CHICKEN3,
7333 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7334 CHICKEN3_DGMG_DONE_FIX_DISABLE);
7335
7336 /* WaDisablePSDDualDispatchEnable:ivb */
7337 if (IS_IVB_GT1(dev_priv))
7338 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7339 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7340
7341 /* WaDisable_RenderCache_OperationalFlush:ivb */
7342 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7343
7344 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7345 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
7346 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
7347
7348 /* WaApplyL3ControlAndL3ChickenMode:ivb */
7349 I915_WRITE(GEN7_L3CNTLREG1,
7350 GEN7_WA_FOR_GEN7_L3_CONTROL);
7351 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7352 GEN7_WA_L3_CHICKEN_MODE);
7353 if (IS_IVB_GT1(dev_priv))
7354 I915_WRITE(GEN7_ROW_CHICKEN2,
7355 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7356 else {
7357 /* must write both registers */
7358 I915_WRITE(GEN7_ROW_CHICKEN2,
7359 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7360 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
7361 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7362 }
7363
7364 /* WaForceL3Serialization:ivb */
7365 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7366 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7367
7368 /*
7369 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7370 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7371 */
7372 I915_WRITE(GEN6_UCGCTL2,
7373 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7374
7375 /* This is required by WaCatErrorRejectionIssue:ivb */
7376 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7377 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7378 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7379
7380 g4x_disable_trickle_feed(dev_priv);
7381
7382 gen7_setup_fixed_func_scheduler(dev_priv);
7383
7384 if (0) { /* causes HiZ corruption on ivb:gt1 */
7385 /* enable HiZ Raw Stall Optimization */
7386 I915_WRITE(CACHE_MODE_0_GEN7,
7387 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7388 }
7389
7390 /* WaDisable4x2SubspanOptimization:ivb */
7391 I915_WRITE(CACHE_MODE_1,
7392 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7393
7394 /*
7395 * BSpec recommends 8x4 when MSAA is used,
7396 * however in practice 16x4 seems fastest.
7397 *
7398 * Note that PS/WM thread counts depend on the WIZ hashing
7399 * disable bit, which we don't touch here, but it's good
7400 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7401 */
7402 I915_WRITE(GEN7_GT_MODE,
7403 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7404
7405 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
7406 snpcr &= ~GEN6_MBC_SNPCR_MASK;
7407 snpcr |= GEN6_MBC_SNPCR_MED;
7408 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7409
7410 if (!HAS_PCH_NOP(dev_priv))
7411 cpt_init_clock_gating(dev_priv);
7412
7413 gen6_check_mch_setup(dev_priv);
7414 }
7415
7416 static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
7417 {
7418 /* WaDisableEarlyCull:vlv */
7419 I915_WRITE(_3D_CHICKEN3,
7420 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7421
7422 /* WaDisableBackToBackFlipFix:vlv */
7423 I915_WRITE(IVB_CHICKEN3,
7424 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7425 CHICKEN3_DGMG_DONE_FIX_DISABLE);
7426
7427 /* WaPsdDispatchEnable:vlv */
7428 /* WaDisablePSDDualDispatchEnable:vlv */
7429 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7430 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
7431 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7432
7433 /* WaDisable_RenderCache_OperationalFlush:vlv */
7434 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7435
7436 /* WaForceL3Serialization:vlv */
7437 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7438 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7439
7440 /* WaDisableDopClockGating:vlv */
7441 I915_WRITE(GEN7_ROW_CHICKEN2,
7442 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7443
7444 /* This is required by WaCatErrorRejectionIssue:vlv */
7445 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7446 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7447 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7448
7449 gen7_setup_fixed_func_scheduler(dev_priv);
7450
7451 /*
7452 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7453 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7454 */
7455 I915_WRITE(GEN6_UCGCTL2,
7456 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7457
7458 /* WaDisableL3Bank2xClockGate:vlv
7459 * Disabling L3 clock gating- MMIO 940c[25] = 1
7460 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7461 I915_WRITE(GEN7_UCGCTL4,
7462 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7463
7464 /*
7465 * BSpec says this must be set, even though
7466 * WaDisable4x2SubspanOptimization isn't listed for VLV.
7467 */
7468 I915_WRITE(CACHE_MODE_1,
7469 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7470
7471 /*
7472 * BSpec recommends 8x4 when MSAA is used,
7473 * however in practice 16x4 seems fastest.
7474 *
7475 * Note that PS/WM thread counts depend on the WIZ hashing
7476 * disable bit, which we don't touch here, but it's good
7477 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7478 */
7479 I915_WRITE(GEN7_GT_MODE,
7480 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7481
7482 /*
7483 * WaIncreaseL3CreditsForVLVB0:vlv
7484 * This is the hardware default actually.
7485 */
7486 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7487
7488 /*
7489 * WaDisableVLVClockGating_VBIIssue:vlv
7490 * Disable clock gating on th GCFG unit to prevent a delay
7491 * in the reporting of vblank events.
7492 */
7493 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7494 }
7495
7496 static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
7497 {
7498 /* WaVSRefCountFullforceMissDisable:chv */
7499 /* WaDSRefCountFullforceMissDisable:chv */
7500 I915_WRITE(GEN7_FF_THREAD_MODE,
7501 I915_READ(GEN7_FF_THREAD_MODE) &
7502 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7503
7504 /* WaDisableSemaphoreAndSyncFlipWait:chv */
7505 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7506 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7507
7508 /* WaDisableCSUnitClockGating:chv */
7509 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7510 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7511
7512 /* WaDisableSDEUnitClockGating:chv */
7513 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7514 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7515
7516 /*
7517 * WaProgramL3SqcReg1Default:chv
7518 * See gfxspecs/Related Documents/Performance Guide/
7519 * LSQC Setting Recommendations.
7520 */
7521 gen8_set_l3sqc_credits(dev_priv, 38, 2);
7522
7523 /*
7524 * GTT cache may not work with big pages, so if those
7525 * are ever enabled GTT cache may need to be disabled.
7526 */
7527 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7528 }
7529
7530 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7531 {
7532 uint32_t dspclk_gate;
7533
7534 I915_WRITE(RENCLK_GATE_D1, 0);
7535 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7536 GS_UNIT_CLOCK_GATE_DISABLE |
7537 CL_UNIT_CLOCK_GATE_DISABLE);
7538 I915_WRITE(RAMCLK_GATE_D, 0);
7539 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7540 OVRUNIT_CLOCK_GATE_DISABLE |
7541 OVCUNIT_CLOCK_GATE_DISABLE;
7542 if (IS_GM45(dev_priv))
7543 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7544 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7545
7546 /* WaDisableRenderCachePipelinedFlush */
7547 I915_WRITE(CACHE_MODE_0,
7548 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7549
7550 /* WaDisable_RenderCache_OperationalFlush:g4x */
7551 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7552
7553 g4x_disable_trickle_feed(dev_priv);
7554 }
7555
7556 static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
7557 {
7558 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7559 I915_WRITE(RENCLK_GATE_D2, 0);
7560 I915_WRITE(DSPCLK_GATE_D, 0);
7561 I915_WRITE(RAMCLK_GATE_D, 0);
7562 I915_WRITE16(DEUC, 0);
7563 I915_WRITE(MI_ARB_STATE,
7564 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7565
7566 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7567 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7568 }
7569
7570 static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
7571 {
7572 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7573 I965_RCC_CLOCK_GATE_DISABLE |
7574 I965_RCPB_CLOCK_GATE_DISABLE |
7575 I965_ISC_CLOCK_GATE_DISABLE |
7576 I965_FBC_CLOCK_GATE_DISABLE);
7577 I915_WRITE(RENCLK_GATE_D2, 0);
7578 I915_WRITE(MI_ARB_STATE,
7579 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7580
7581 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7582 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7583 }
7584
7585 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7586 {
7587 u32 dstate = I915_READ(D_STATE);
7588
7589 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7590 DSTATE_DOT_CLOCK_GATING;
7591 I915_WRITE(D_STATE, dstate);
7592
7593 if (IS_PINEVIEW(dev_priv))
7594 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7595
7596 /* IIR "flip pending" means done if this bit is set */
7597 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7598
7599 /* interrupts should cause a wake up from C3 */
7600 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7601
7602 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7603 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7604
7605 I915_WRITE(MI_ARB_STATE,
7606 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7607 }
7608
7609 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7610 {
7611 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7612
7613 /* interrupts should cause a wake up from C3 */
7614 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7615 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7616
7617 I915_WRITE(MEM_MODE,
7618 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7619 }
7620
7621 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7622 {
7623 I915_WRITE(MEM_MODE,
7624 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7625 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7626 }
7627
7628 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7629 {
7630 dev_priv->display.init_clock_gating(dev_priv);
7631 }
7632
7633 void intel_suspend_hw(struct drm_i915_private *dev_priv)
7634 {
7635 if (HAS_PCH_LPT(dev_priv))
7636 lpt_suspend_hw(dev_priv);
7637 }
7638
7639 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7640 {
7641 DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
7642 }
7643
7644 /**
7645 * intel_init_clock_gating_hooks - setup the clock gating hooks
7646 * @dev_priv: device private
7647 *
7648 * Setup the hooks that configure which clocks of a given platform can be
7649 * gated and also apply various GT and display specific workarounds for these
7650 * platforms. Note that some GT specific workarounds are applied separately
7651 * when GPU contexts or batchbuffers start their execution.
7652 */
7653 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7654 {
7655 if (IS_SKYLAKE(dev_priv))
7656 dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7657 else if (IS_KABYLAKE(dev_priv))
7658 dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7659 else if (IS_GEN9_LP(dev_priv))
7660 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7661 else if (IS_BROADWELL(dev_priv))
7662 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7663 else if (IS_CHERRYVIEW(dev_priv))
7664 dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
7665 else if (IS_HASWELL(dev_priv))
7666 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7667 else if (IS_IVYBRIDGE(dev_priv))
7668 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7669 else if (IS_VALLEYVIEW(dev_priv))
7670 dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
7671 else if (IS_GEN6(dev_priv))
7672 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7673 else if (IS_GEN5(dev_priv))
7674 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7675 else if (IS_G4X(dev_priv))
7676 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7677 else if (IS_I965GM(dev_priv))
7678 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7679 else if (IS_I965G(dev_priv))
7680 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7681 else if (IS_GEN3(dev_priv))
7682 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7683 else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7684 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7685 else if (IS_GEN2(dev_priv))
7686 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7687 else {
7688 MISSING_CASE(INTEL_DEVID(dev_priv));
7689 dev_priv->display.init_clock_gating = nop_init_clock_gating;
7690 }
7691 }
7692
7693 /* Set up chip specific power management-related functions */
7694 void intel_init_pm(struct drm_i915_private *dev_priv)
7695 {
7696 intel_fbc_init(dev_priv);
7697
7698 /* For cxsr */
7699 if (IS_PINEVIEW(dev_priv))
7700 i915_pineview_get_mem_freq(dev_priv);
7701 else if (IS_GEN5(dev_priv))
7702 i915_ironlake_get_mem_freq(dev_priv);
7703
7704 /* For FIFO watermark updates */
7705 if (INTEL_GEN(dev_priv) >= 9) {
7706 skl_setup_wm_latency(dev_priv);
7707 dev_priv->display.initial_watermarks = skl_initial_wm;
7708 dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
7709 dev_priv->display.compute_global_watermarks = skl_compute_wm;
7710 } else if (HAS_PCH_SPLIT(dev_priv)) {
7711 ilk_setup_wm_latency(dev_priv);
7712
7713 if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
7714 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7715 (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
7716 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7717 dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7718 dev_priv->display.compute_intermediate_wm =
7719 ilk_compute_intermediate_wm;
7720 dev_priv->display.initial_watermarks =
7721 ilk_initial_watermarks;
7722 dev_priv->display.optimize_watermarks =
7723 ilk_optimize_watermarks;
7724 } else {
7725 DRM_DEBUG_KMS("Failed to read display plane latency. "
7726 "Disable CxSR\n");
7727 }
7728 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7729 vlv_setup_wm_latency(dev_priv);
7730 dev_priv->display.update_wm = vlv_update_wm;
7731 } else if (IS_PINEVIEW(dev_priv)) {
7732 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
7733 dev_priv->is_ddr3,
7734 dev_priv->fsb_freq,
7735 dev_priv->mem_freq)) {
7736 DRM_INFO("failed to find known CxSR latency "
7737 "(found ddr%s fsb freq %d, mem freq %d), "
7738 "disabling CxSR\n",
7739 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7740 dev_priv->fsb_freq, dev_priv->mem_freq);
7741 /* Disable CxSR and never update its watermark again */
7742 intel_set_memory_cxsr(dev_priv, false);
7743 dev_priv->display.update_wm = NULL;
7744 } else
7745 dev_priv->display.update_wm = pineview_update_wm;
7746 } else if (IS_G4X(dev_priv)) {
7747 dev_priv->display.update_wm = g4x_update_wm;
7748 } else if (IS_GEN4(dev_priv)) {
7749 dev_priv->display.update_wm = i965_update_wm;
7750 } else if (IS_GEN3(dev_priv)) {
7751 dev_priv->display.update_wm = i9xx_update_wm;
7752 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7753 } else if (IS_GEN2(dev_priv)) {
7754 if (INTEL_INFO(dev_priv)->num_pipes == 1) {
7755 dev_priv->display.update_wm = i845_update_wm;
7756 dev_priv->display.get_fifo_size = i845_get_fifo_size;
7757 } else {
7758 dev_priv->display.update_wm = i9xx_update_wm;
7759 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7760 }
7761 } else {
7762 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7763 }
7764 }
7765
7766 static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
7767 {
7768 uint32_t flags =
7769 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
7770
7771 switch (flags) {
7772 case GEN6_PCODE_SUCCESS:
7773 return 0;
7774 case GEN6_PCODE_UNIMPLEMENTED_CMD:
7775 case GEN6_PCODE_ILLEGAL_CMD:
7776 return -ENXIO;
7777 case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7778 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7779 return -EOVERFLOW;
7780 case GEN6_PCODE_TIMEOUT:
7781 return -ETIMEDOUT;
7782 default:
7783 MISSING_CASE(flags)
7784 return 0;
7785 }
7786 }
7787
7788 static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
7789 {
7790 uint32_t flags =
7791 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
7792
7793 switch (flags) {
7794 case GEN6_PCODE_SUCCESS:
7795 return 0;
7796 case GEN6_PCODE_ILLEGAL_CMD:
7797 return -ENXIO;
7798 case GEN7_PCODE_TIMEOUT:
7799 return -ETIMEDOUT;
7800 case GEN7_PCODE_ILLEGAL_DATA:
7801 return -EINVAL;
7802 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7803 return -EOVERFLOW;
7804 default:
7805 MISSING_CASE(flags);
7806 return 0;
7807 }
7808 }
7809
7810 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7811 {
7812 int status;
7813
7814 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7815
7816 /* GEN6_PCODE_* are outside of the forcewake domain, we can
7817 * use te fw I915_READ variants to reduce the amount of work
7818 * required when reading/writing.
7819 */
7820
7821 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7822 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7823 return -EAGAIN;
7824 }
7825
7826 I915_WRITE_FW(GEN6_PCODE_DATA, *val);
7827 I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
7828 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7829
7830 if (intel_wait_for_register_fw(dev_priv,
7831 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7832 500)) {
7833 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7834 return -ETIMEDOUT;
7835 }
7836
7837 *val = I915_READ_FW(GEN6_PCODE_DATA);
7838 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7839
7840 if (INTEL_GEN(dev_priv) > 6)
7841 status = gen7_check_mailbox_status(dev_priv);
7842 else
7843 status = gen6_check_mailbox_status(dev_priv);
7844
7845 if (status) {
7846 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
7847 status);
7848 return status;
7849 }
7850
7851 return 0;
7852 }
7853
7854 int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7855 u32 mbox, u32 val)
7856 {
7857 int status;
7858
7859 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7860
7861 /* GEN6_PCODE_* are outside of the forcewake domain, we can
7862 * use te fw I915_READ variants to reduce the amount of work
7863 * required when reading/writing.
7864 */
7865
7866 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7867 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7868 return -EAGAIN;
7869 }
7870
7871 I915_WRITE_FW(GEN6_PCODE_DATA, val);
7872 I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
7873 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7874
7875 if (intel_wait_for_register_fw(dev_priv,
7876 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7877 500)) {
7878 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7879 return -ETIMEDOUT;
7880 }
7881
7882 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7883
7884 if (INTEL_GEN(dev_priv) > 6)
7885 status = gen7_check_mailbox_status(dev_priv);
7886 else
7887 status = gen6_check_mailbox_status(dev_priv);
7888
7889 if (status) {
7890 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
7891 status);
7892 return status;
7893 }
7894
7895 return 0;
7896 }
7897
7898 static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
7899 u32 request, u32 reply_mask, u32 reply,
7900 u32 *status)
7901 {
7902 u32 val = request;
7903
7904 *status = sandybridge_pcode_read(dev_priv, mbox, &val);
7905
7906 return *status || ((val & reply_mask) == reply);
7907 }
7908
7909 /**
7910 * skl_pcode_request - send PCODE request until acknowledgment
7911 * @dev_priv: device private
7912 * @mbox: PCODE mailbox ID the request is targeted for
7913 * @request: request ID
7914 * @reply_mask: mask used to check for request acknowledgment
7915 * @reply: value used to check for request acknowledgment
7916 * @timeout_base_ms: timeout for polling with preemption enabled
7917 *
7918 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
7919 * reports an error or an overall timeout of @timeout_base_ms+10 ms expires.
7920 * The request is acknowledged once the PCODE reply dword equals @reply after
7921 * applying @reply_mask. Polling is first attempted with preemption enabled
7922 * for @timeout_base_ms and if this times out for another 10 ms with
7923 * preemption disabled.
7924 *
7925 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
7926 * other error as reported by PCODE.
7927 */
7928 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
7929 u32 reply_mask, u32 reply, int timeout_base_ms)
7930 {
7931 u32 status;
7932 int ret;
7933
7934 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7935
7936 #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
7937 &status)
7938
7939 /*
7940 * Prime the PCODE by doing a request first. Normally it guarantees
7941 * that a subsequent request, at most @timeout_base_ms later, succeeds.
7942 * _wait_for() doesn't guarantee when its passed condition is evaluated
7943 * first, so send the first request explicitly.
7944 */
7945 if (COND) {
7946 ret = 0;
7947 goto out;
7948 }
7949 ret = _wait_for(COND, timeout_base_ms * 1000, 10);
7950 if (!ret)
7951 goto out;
7952
7953 /*
7954 * The above can time out if the number of requests was low (2 in the
7955 * worst case) _and_ PCODE was busy for some reason even after a
7956 * (queued) request and @timeout_base_ms delay. As a workaround retry
7957 * the poll with preemption disabled to maximize the number of
7958 * requests. Increase the timeout from @timeout_base_ms to 10ms to
7959 * account for interrupts that could reduce the number of these
7960 * requests.
7961 */
7962 DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
7963 WARN_ON_ONCE(timeout_base_ms > 3);
7964 preempt_disable();
7965 ret = wait_for_atomic(COND, 10);
7966 preempt_enable();
7967
7968 out:
7969 return ret ? ret : status;
7970 #undef COND
7971 }
7972
7973 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7974 {
7975 /*
7976 * N = val - 0xb7
7977 * Slow = Fast = GPLL ref * N
7978 */
7979 return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7980 }
7981
7982 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7983 {
7984 return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7985 }
7986
7987 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7988 {
7989 /*
7990 * N = val / 2
7991 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
7992 */
7993 return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7994 }
7995
7996 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7997 {
7998 /* CHV needs even values */
7999 return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
8000 }
8001
8002 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
8003 {
8004 if (IS_GEN9(dev_priv))
8005 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
8006 GEN9_FREQ_SCALER);
8007 else if (IS_CHERRYVIEW(dev_priv))
8008 return chv_gpu_freq(dev_priv, val);
8009 else if (IS_VALLEYVIEW(dev_priv))
8010 return byt_gpu_freq(dev_priv, val);
8011 else
8012 return val * GT_FREQUENCY_MULTIPLIER;
8013 }
8014
8015 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
8016 {
8017 if (IS_GEN9(dev_priv))
8018 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
8019 GT_FREQUENCY_MULTIPLIER);
8020 else if (IS_CHERRYVIEW(dev_priv))
8021 return chv_freq_opcode(dev_priv, val);
8022 else if (IS_VALLEYVIEW(dev_priv))
8023 return byt_freq_opcode(dev_priv, val);
8024 else
8025 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
8026 }
8027
8028 struct request_boost {
8029 struct work_struct work;
8030 struct drm_i915_gem_request *req;
8031 };
8032
8033 static void __intel_rps_boost_work(struct work_struct *work)
8034 {
8035 struct request_boost *boost = container_of(work, struct request_boost, work);
8036 struct drm_i915_gem_request *req = boost->req;
8037
8038 if (!i915_gem_request_completed(req))
8039 gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
8040
8041 i915_gem_request_put(req);
8042 kfree(boost);
8043 }
8044
8045 void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
8046 {
8047 struct request_boost *boost;
8048
8049 if (req == NULL || INTEL_GEN(req->i915) < 6)
8050 return;
8051
8052 if (i915_gem_request_completed(req))
8053 return;
8054
8055 boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
8056 if (boost == NULL)
8057 return;
8058
8059 boost->req = i915_gem_request_get(req);
8060
8061 INIT_WORK(&boost->work, __intel_rps_boost_work);
8062 queue_work(req->i915->wq, &boost->work);
8063 }
8064
8065 void intel_pm_setup(struct drm_i915_private *dev_priv)
8066 {
8067 mutex_init(&dev_priv->rps.hw_lock);
8068 spin_lock_init(&dev_priv->rps.client_lock);
8069
8070 INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
8071 __intel_autoenable_gt_powersave);
8072 INIT_LIST_HEAD(&dev_priv->rps.clients);
8073
8074 dev_priv->pm.suspended = false;
8075 atomic_set(&dev_priv->pm.wakeref_count, 0);
8076 }