]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/intel_pm.c
Merge remote-tracking branches 'asoc/topic/sgtl5000', 'asoc/topic/simple', 'asoc...
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34
35 /**
36 * DOC: RC6
37 *
38 * RC6 is a special power stage which allows the GPU to enter an very
39 * low-voltage mode when idle, using down to 0V while at this stage. This
40 * stage is entered automatically when the GPU is idle when RC6 support is
41 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42 *
43 * There are different RC6 modes available in Intel GPU, which differentiate
44 * among each other with the latency required to enter and leave RC6 and
45 * voltage consumed by the GPU in different states.
46 *
47 * The combination of the following flags define which states GPU is allowed
48 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49 * RC6pp is deepest RC6. Their support by hardware varies according to the
50 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51 * which brings the most power savings; deeper states save more power, but
52 * require higher latency to switch to and wake up.
53 */
54 #define INTEL_RC6_ENABLE (1<<0)
55 #define INTEL_RC6p_ENABLE (1<<1)
56 #define INTEL_RC6pp_ENABLE (1<<2)
57
58 static void gen9_init_clock_gating(struct drm_device *dev)
59 {
60 struct drm_i915_private *dev_priv = dev->dev_private;
61
62 /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
63 I915_WRITE(CHICKEN_PAR1_1,
64 I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
65
66 I915_WRITE(GEN8_CONFIG0,
67 I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
68
69 /* WaEnableChickenDCPR:skl,bxt,kbl */
70 I915_WRITE(GEN8_CHICKEN_DCPR_1,
71 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
72
73 /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
74 /* WaFbcWakeMemOn:skl,bxt,kbl */
75 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
76 DISP_FBC_WM_DIS |
77 DISP_FBC_MEMORY_WAKE);
78
79 /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
80 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
81 ILK_DPFC_DISABLE_DUMMY0);
82 }
83
84 static void bxt_init_clock_gating(struct drm_device *dev)
85 {
86 struct drm_i915_private *dev_priv = to_i915(dev);
87
88 gen9_init_clock_gating(dev);
89
90 /* WaDisableSDEUnitClockGating:bxt */
91 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
92 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
93
94 /*
95 * FIXME:
96 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
97 */
98 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
99 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
100
101 /*
102 * Wa: Backlight PWM may stop in the asserted state, causing backlight
103 * to stay fully on.
104 */
105 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
106 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
107 PWM1_GATING_DIS | PWM2_GATING_DIS);
108 }
109
110 static void i915_pineview_get_mem_freq(struct drm_device *dev)
111 {
112 struct drm_i915_private *dev_priv = to_i915(dev);
113 u32 tmp;
114
115 tmp = I915_READ(CLKCFG);
116
117 switch (tmp & CLKCFG_FSB_MASK) {
118 case CLKCFG_FSB_533:
119 dev_priv->fsb_freq = 533; /* 133*4 */
120 break;
121 case CLKCFG_FSB_800:
122 dev_priv->fsb_freq = 800; /* 200*4 */
123 break;
124 case CLKCFG_FSB_667:
125 dev_priv->fsb_freq = 667; /* 167*4 */
126 break;
127 case CLKCFG_FSB_400:
128 dev_priv->fsb_freq = 400; /* 100*4 */
129 break;
130 }
131
132 switch (tmp & CLKCFG_MEM_MASK) {
133 case CLKCFG_MEM_533:
134 dev_priv->mem_freq = 533;
135 break;
136 case CLKCFG_MEM_667:
137 dev_priv->mem_freq = 667;
138 break;
139 case CLKCFG_MEM_800:
140 dev_priv->mem_freq = 800;
141 break;
142 }
143
144 /* detect pineview DDR3 setting */
145 tmp = I915_READ(CSHRDDR3CTL);
146 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
147 }
148
149 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
150 {
151 struct drm_i915_private *dev_priv = to_i915(dev);
152 u16 ddrpll, csipll;
153
154 ddrpll = I915_READ16(DDRMPLL1);
155 csipll = I915_READ16(CSIPLL0);
156
157 switch (ddrpll & 0xff) {
158 case 0xc:
159 dev_priv->mem_freq = 800;
160 break;
161 case 0x10:
162 dev_priv->mem_freq = 1066;
163 break;
164 case 0x14:
165 dev_priv->mem_freq = 1333;
166 break;
167 case 0x18:
168 dev_priv->mem_freq = 1600;
169 break;
170 default:
171 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
172 ddrpll & 0xff);
173 dev_priv->mem_freq = 0;
174 break;
175 }
176
177 dev_priv->ips.r_t = dev_priv->mem_freq;
178
179 switch (csipll & 0x3ff) {
180 case 0x00c:
181 dev_priv->fsb_freq = 3200;
182 break;
183 case 0x00e:
184 dev_priv->fsb_freq = 3733;
185 break;
186 case 0x010:
187 dev_priv->fsb_freq = 4266;
188 break;
189 case 0x012:
190 dev_priv->fsb_freq = 4800;
191 break;
192 case 0x014:
193 dev_priv->fsb_freq = 5333;
194 break;
195 case 0x016:
196 dev_priv->fsb_freq = 5866;
197 break;
198 case 0x018:
199 dev_priv->fsb_freq = 6400;
200 break;
201 default:
202 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
203 csipll & 0x3ff);
204 dev_priv->fsb_freq = 0;
205 break;
206 }
207
208 if (dev_priv->fsb_freq == 3200) {
209 dev_priv->ips.c_m = 0;
210 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
211 dev_priv->ips.c_m = 1;
212 } else {
213 dev_priv->ips.c_m = 2;
214 }
215 }
216
217 static const struct cxsr_latency cxsr_latency_table[] = {
218 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
219 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
220 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
221 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
222 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
223
224 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
225 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
226 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
227 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
228 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
229
230 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
231 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
232 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
233 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
234 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
235
236 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
237 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
238 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
239 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
240 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
241
242 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
243 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
244 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
245 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
246 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
247
248 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
249 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
250 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
251 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
252 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
253 };
254
255 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
256 int is_ddr3,
257 int fsb,
258 int mem)
259 {
260 const struct cxsr_latency *latency;
261 int i;
262
263 if (fsb == 0 || mem == 0)
264 return NULL;
265
266 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
267 latency = &cxsr_latency_table[i];
268 if (is_desktop == latency->is_desktop &&
269 is_ddr3 == latency->is_ddr3 &&
270 fsb == latency->fsb_freq && mem == latency->mem_freq)
271 return latency;
272 }
273
274 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
275
276 return NULL;
277 }
278
279 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
280 {
281 u32 val;
282
283 mutex_lock(&dev_priv->rps.hw_lock);
284
285 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
286 if (enable)
287 val &= ~FORCE_DDR_HIGH_FREQ;
288 else
289 val |= FORCE_DDR_HIGH_FREQ;
290 val &= ~FORCE_DDR_LOW_FREQ;
291 val |= FORCE_DDR_FREQ_REQ_ACK;
292 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
293
294 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
295 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
296 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
297
298 mutex_unlock(&dev_priv->rps.hw_lock);
299 }
300
301 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
302 {
303 u32 val;
304
305 mutex_lock(&dev_priv->rps.hw_lock);
306
307 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
308 if (enable)
309 val |= DSP_MAXFIFO_PM5_ENABLE;
310 else
311 val &= ~DSP_MAXFIFO_PM5_ENABLE;
312 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
313
314 mutex_unlock(&dev_priv->rps.hw_lock);
315 }
316
317 #define FW_WM(value, plane) \
318 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
319
320 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
321 {
322 struct drm_device *dev = &dev_priv->drm;
323 u32 val;
324
325 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
326 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
327 POSTING_READ(FW_BLC_SELF_VLV);
328 dev_priv->wm.vlv.cxsr = enable;
329 } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
330 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
331 POSTING_READ(FW_BLC_SELF);
332 } else if (IS_PINEVIEW(dev)) {
333 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
334 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
335 I915_WRITE(DSPFW3, val);
336 POSTING_READ(DSPFW3);
337 } else if (IS_I945G(dev) || IS_I945GM(dev)) {
338 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
339 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
340 I915_WRITE(FW_BLC_SELF, val);
341 POSTING_READ(FW_BLC_SELF);
342 } else if (IS_I915GM(dev)) {
343 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
344 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
345 I915_WRITE(INSTPM, val);
346 POSTING_READ(INSTPM);
347 } else {
348 return;
349 }
350
351 DRM_DEBUG_KMS("memory self-refresh is %s\n",
352 enable ? "enabled" : "disabled");
353 }
354
355
356 /*
357 * Latency for FIFO fetches is dependent on several factors:
358 * - memory configuration (speed, channels)
359 * - chipset
360 * - current MCH state
361 * It can be fairly high in some situations, so here we assume a fairly
362 * pessimal value. It's a tradeoff between extra memory fetches (if we
363 * set this value too high, the FIFO will fetch frequently to stay full)
364 * and power consumption (set it too low to save power and we might see
365 * FIFO underruns and display "flicker").
366 *
367 * A value of 5us seems to be a good balance; safe for very low end
368 * platforms but not overly aggressive on lower latency configs.
369 */
370 static const int pessimal_latency_ns = 5000;
371
372 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
373 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
374
375 static int vlv_get_fifo_size(struct drm_device *dev,
376 enum pipe pipe, int plane)
377 {
378 struct drm_i915_private *dev_priv = to_i915(dev);
379 int sprite0_start, sprite1_start, size;
380
381 switch (pipe) {
382 uint32_t dsparb, dsparb2, dsparb3;
383 case PIPE_A:
384 dsparb = I915_READ(DSPARB);
385 dsparb2 = I915_READ(DSPARB2);
386 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
387 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
388 break;
389 case PIPE_B:
390 dsparb = I915_READ(DSPARB);
391 dsparb2 = I915_READ(DSPARB2);
392 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
393 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
394 break;
395 case PIPE_C:
396 dsparb2 = I915_READ(DSPARB2);
397 dsparb3 = I915_READ(DSPARB3);
398 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
399 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
400 break;
401 default:
402 return 0;
403 }
404
405 switch (plane) {
406 case 0:
407 size = sprite0_start;
408 break;
409 case 1:
410 size = sprite1_start - sprite0_start;
411 break;
412 case 2:
413 size = 512 - 1 - sprite1_start;
414 break;
415 default:
416 return 0;
417 }
418
419 DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
420 pipe_name(pipe), plane == 0 ? "primary" : "sprite",
421 plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
422 size);
423
424 return size;
425 }
426
427 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
428 {
429 struct drm_i915_private *dev_priv = to_i915(dev);
430 uint32_t dsparb = I915_READ(DSPARB);
431 int size;
432
433 size = dsparb & 0x7f;
434 if (plane)
435 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
436
437 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
438 plane ? "B" : "A", size);
439
440 return size;
441 }
442
443 static int i830_get_fifo_size(struct drm_device *dev, int plane)
444 {
445 struct drm_i915_private *dev_priv = to_i915(dev);
446 uint32_t dsparb = I915_READ(DSPARB);
447 int size;
448
449 size = dsparb & 0x1ff;
450 if (plane)
451 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
452 size >>= 1; /* Convert to cachelines */
453
454 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
455 plane ? "B" : "A", size);
456
457 return size;
458 }
459
460 static int i845_get_fifo_size(struct drm_device *dev, int plane)
461 {
462 struct drm_i915_private *dev_priv = to_i915(dev);
463 uint32_t dsparb = I915_READ(DSPARB);
464 int size;
465
466 size = dsparb & 0x7f;
467 size >>= 2; /* Convert to cachelines */
468
469 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
470 plane ? "B" : "A",
471 size);
472
473 return size;
474 }
475
476 /* Pineview has different values for various configs */
477 static const struct intel_watermark_params pineview_display_wm = {
478 .fifo_size = PINEVIEW_DISPLAY_FIFO,
479 .max_wm = PINEVIEW_MAX_WM,
480 .default_wm = PINEVIEW_DFT_WM,
481 .guard_size = PINEVIEW_GUARD_WM,
482 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
483 };
484 static const struct intel_watermark_params pineview_display_hplloff_wm = {
485 .fifo_size = PINEVIEW_DISPLAY_FIFO,
486 .max_wm = PINEVIEW_MAX_WM,
487 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
488 .guard_size = PINEVIEW_GUARD_WM,
489 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
490 };
491 static const struct intel_watermark_params pineview_cursor_wm = {
492 .fifo_size = PINEVIEW_CURSOR_FIFO,
493 .max_wm = PINEVIEW_CURSOR_MAX_WM,
494 .default_wm = PINEVIEW_CURSOR_DFT_WM,
495 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
496 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
497 };
498 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
499 .fifo_size = PINEVIEW_CURSOR_FIFO,
500 .max_wm = PINEVIEW_CURSOR_MAX_WM,
501 .default_wm = PINEVIEW_CURSOR_DFT_WM,
502 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
503 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
504 };
505 static const struct intel_watermark_params g4x_wm_info = {
506 .fifo_size = G4X_FIFO_SIZE,
507 .max_wm = G4X_MAX_WM,
508 .default_wm = G4X_MAX_WM,
509 .guard_size = 2,
510 .cacheline_size = G4X_FIFO_LINE_SIZE,
511 };
512 static const struct intel_watermark_params g4x_cursor_wm_info = {
513 .fifo_size = I965_CURSOR_FIFO,
514 .max_wm = I965_CURSOR_MAX_WM,
515 .default_wm = I965_CURSOR_DFT_WM,
516 .guard_size = 2,
517 .cacheline_size = G4X_FIFO_LINE_SIZE,
518 };
519 static const struct intel_watermark_params i965_cursor_wm_info = {
520 .fifo_size = I965_CURSOR_FIFO,
521 .max_wm = I965_CURSOR_MAX_WM,
522 .default_wm = I965_CURSOR_DFT_WM,
523 .guard_size = 2,
524 .cacheline_size = I915_FIFO_LINE_SIZE,
525 };
526 static const struct intel_watermark_params i945_wm_info = {
527 .fifo_size = I945_FIFO_SIZE,
528 .max_wm = I915_MAX_WM,
529 .default_wm = 1,
530 .guard_size = 2,
531 .cacheline_size = I915_FIFO_LINE_SIZE,
532 };
533 static const struct intel_watermark_params i915_wm_info = {
534 .fifo_size = I915_FIFO_SIZE,
535 .max_wm = I915_MAX_WM,
536 .default_wm = 1,
537 .guard_size = 2,
538 .cacheline_size = I915_FIFO_LINE_SIZE,
539 };
540 static const struct intel_watermark_params i830_a_wm_info = {
541 .fifo_size = I855GM_FIFO_SIZE,
542 .max_wm = I915_MAX_WM,
543 .default_wm = 1,
544 .guard_size = 2,
545 .cacheline_size = I830_FIFO_LINE_SIZE,
546 };
547 static const struct intel_watermark_params i830_bc_wm_info = {
548 .fifo_size = I855GM_FIFO_SIZE,
549 .max_wm = I915_MAX_WM/2,
550 .default_wm = 1,
551 .guard_size = 2,
552 .cacheline_size = I830_FIFO_LINE_SIZE,
553 };
554 static const struct intel_watermark_params i845_wm_info = {
555 .fifo_size = I830_FIFO_SIZE,
556 .max_wm = I915_MAX_WM,
557 .default_wm = 1,
558 .guard_size = 2,
559 .cacheline_size = I830_FIFO_LINE_SIZE,
560 };
561
562 /**
563 * intel_calculate_wm - calculate watermark level
564 * @clock_in_khz: pixel clock
565 * @wm: chip FIFO params
566 * @cpp: bytes per pixel
567 * @latency_ns: memory latency for the platform
568 *
569 * Calculate the watermark level (the level at which the display plane will
570 * start fetching from memory again). Each chip has a different display
571 * FIFO size and allocation, so the caller needs to figure that out and pass
572 * in the correct intel_watermark_params structure.
573 *
574 * As the pixel clock runs, the FIFO will be drained at a rate that depends
575 * on the pixel size. When it reaches the watermark level, it'll start
576 * fetching FIFO line sized based chunks from memory until the FIFO fills
577 * past the watermark point. If the FIFO drains completely, a FIFO underrun
578 * will occur, and a display engine hang could result.
579 */
580 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
581 const struct intel_watermark_params *wm,
582 int fifo_size, int cpp,
583 unsigned long latency_ns)
584 {
585 long entries_required, wm_size;
586
587 /*
588 * Note: we need to make sure we don't overflow for various clock &
589 * latency values.
590 * clocks go from a few thousand to several hundred thousand.
591 * latency is usually a few thousand
592 */
593 entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
594 1000;
595 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
596
597 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
598
599 wm_size = fifo_size - (entries_required + wm->guard_size);
600
601 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
602
603 /* Don't promote wm_size to unsigned... */
604 if (wm_size > (long)wm->max_wm)
605 wm_size = wm->max_wm;
606 if (wm_size <= 0)
607 wm_size = wm->default_wm;
608
609 /*
610 * Bspec seems to indicate that the value shouldn't be lower than
611 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
612 * Lets go for 8 which is the burst size since certain platforms
613 * already use a hardcoded 8 (which is what the spec says should be
614 * done).
615 */
616 if (wm_size <= 8)
617 wm_size = 8;
618
619 return wm_size;
620 }
621
622 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
623 {
624 struct drm_crtc *crtc, *enabled = NULL;
625
626 for_each_crtc(dev, crtc) {
627 if (intel_crtc_active(crtc)) {
628 if (enabled)
629 return NULL;
630 enabled = crtc;
631 }
632 }
633
634 return enabled;
635 }
636
637 static void pineview_update_wm(struct drm_crtc *unused_crtc)
638 {
639 struct drm_device *dev = unused_crtc->dev;
640 struct drm_i915_private *dev_priv = to_i915(dev);
641 struct drm_crtc *crtc;
642 const struct cxsr_latency *latency;
643 u32 reg;
644 unsigned long wm;
645
646 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
647 dev_priv->fsb_freq, dev_priv->mem_freq);
648 if (!latency) {
649 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
650 intel_set_memory_cxsr(dev_priv, false);
651 return;
652 }
653
654 crtc = single_enabled_crtc(dev);
655 if (crtc) {
656 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
657 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
658 int clock = adjusted_mode->crtc_clock;
659
660 /* Display SR */
661 wm = intel_calculate_wm(clock, &pineview_display_wm,
662 pineview_display_wm.fifo_size,
663 cpp, latency->display_sr);
664 reg = I915_READ(DSPFW1);
665 reg &= ~DSPFW_SR_MASK;
666 reg |= FW_WM(wm, SR);
667 I915_WRITE(DSPFW1, reg);
668 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
669
670 /* cursor SR */
671 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
672 pineview_display_wm.fifo_size,
673 cpp, latency->cursor_sr);
674 reg = I915_READ(DSPFW3);
675 reg &= ~DSPFW_CURSOR_SR_MASK;
676 reg |= FW_WM(wm, CURSOR_SR);
677 I915_WRITE(DSPFW3, reg);
678
679 /* Display HPLL off SR */
680 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
681 pineview_display_hplloff_wm.fifo_size,
682 cpp, latency->display_hpll_disable);
683 reg = I915_READ(DSPFW3);
684 reg &= ~DSPFW_HPLL_SR_MASK;
685 reg |= FW_WM(wm, HPLL_SR);
686 I915_WRITE(DSPFW3, reg);
687
688 /* cursor HPLL off SR */
689 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
690 pineview_display_hplloff_wm.fifo_size,
691 cpp, latency->cursor_hpll_disable);
692 reg = I915_READ(DSPFW3);
693 reg &= ~DSPFW_HPLL_CURSOR_MASK;
694 reg |= FW_WM(wm, HPLL_CURSOR);
695 I915_WRITE(DSPFW3, reg);
696 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
697
698 intel_set_memory_cxsr(dev_priv, true);
699 } else {
700 intel_set_memory_cxsr(dev_priv, false);
701 }
702 }
703
704 static bool g4x_compute_wm0(struct drm_device *dev,
705 int plane,
706 const struct intel_watermark_params *display,
707 int display_latency_ns,
708 const struct intel_watermark_params *cursor,
709 int cursor_latency_ns,
710 int *plane_wm,
711 int *cursor_wm)
712 {
713 struct drm_crtc *crtc;
714 const struct drm_display_mode *adjusted_mode;
715 int htotal, hdisplay, clock, cpp;
716 int line_time_us, line_count;
717 int entries, tlb_miss;
718
719 crtc = intel_get_crtc_for_plane(dev, plane);
720 if (!intel_crtc_active(crtc)) {
721 *cursor_wm = cursor->guard_size;
722 *plane_wm = display->guard_size;
723 return false;
724 }
725
726 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
727 clock = adjusted_mode->crtc_clock;
728 htotal = adjusted_mode->crtc_htotal;
729 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
730 cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
731
732 /* Use the small buffer method to calculate plane watermark */
733 entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
734 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
735 if (tlb_miss > 0)
736 entries += tlb_miss;
737 entries = DIV_ROUND_UP(entries, display->cacheline_size);
738 *plane_wm = entries + display->guard_size;
739 if (*plane_wm > (int)display->max_wm)
740 *plane_wm = display->max_wm;
741
742 /* Use the large buffer method to calculate cursor watermark */
743 line_time_us = max(htotal * 1000 / clock, 1);
744 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
745 entries = line_count * crtc->cursor->state->crtc_w * cpp;
746 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
747 if (tlb_miss > 0)
748 entries += tlb_miss;
749 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
750 *cursor_wm = entries + cursor->guard_size;
751 if (*cursor_wm > (int)cursor->max_wm)
752 *cursor_wm = (int)cursor->max_wm;
753
754 return true;
755 }
756
757 /*
758 * Check the wm result.
759 *
760 * If any calculated watermark values is larger than the maximum value that
761 * can be programmed into the associated watermark register, that watermark
762 * must be disabled.
763 */
764 static bool g4x_check_srwm(struct drm_device *dev,
765 int display_wm, int cursor_wm,
766 const struct intel_watermark_params *display,
767 const struct intel_watermark_params *cursor)
768 {
769 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
770 display_wm, cursor_wm);
771
772 if (display_wm > display->max_wm) {
773 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
774 display_wm, display->max_wm);
775 return false;
776 }
777
778 if (cursor_wm > cursor->max_wm) {
779 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
780 cursor_wm, cursor->max_wm);
781 return false;
782 }
783
784 if (!(display_wm || cursor_wm)) {
785 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
786 return false;
787 }
788
789 return true;
790 }
791
792 static bool g4x_compute_srwm(struct drm_device *dev,
793 int plane,
794 int latency_ns,
795 const struct intel_watermark_params *display,
796 const struct intel_watermark_params *cursor,
797 int *display_wm, int *cursor_wm)
798 {
799 struct drm_crtc *crtc;
800 const struct drm_display_mode *adjusted_mode;
801 int hdisplay, htotal, cpp, clock;
802 unsigned long line_time_us;
803 int line_count, line_size;
804 int small, large;
805 int entries;
806
807 if (!latency_ns) {
808 *display_wm = *cursor_wm = 0;
809 return false;
810 }
811
812 crtc = intel_get_crtc_for_plane(dev, plane);
813 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
814 clock = adjusted_mode->crtc_clock;
815 htotal = adjusted_mode->crtc_htotal;
816 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
817 cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
818
819 line_time_us = max(htotal * 1000 / clock, 1);
820 line_count = (latency_ns / line_time_us + 1000) / 1000;
821 line_size = hdisplay * cpp;
822
823 /* Use the minimum of the small and large buffer method for primary */
824 small = ((clock * cpp / 1000) * latency_ns) / 1000;
825 large = line_count * line_size;
826
827 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
828 *display_wm = entries + display->guard_size;
829
830 /* calculate the self-refresh watermark for display cursor */
831 entries = line_count * cpp * crtc->cursor->state->crtc_w;
832 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
833 *cursor_wm = entries + cursor->guard_size;
834
835 return g4x_check_srwm(dev,
836 *display_wm, *cursor_wm,
837 display, cursor);
838 }
839
840 #define FW_WM_VLV(value, plane) \
841 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
842
843 static void vlv_write_wm_values(struct intel_crtc *crtc,
844 const struct vlv_wm_values *wm)
845 {
846 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
847 enum pipe pipe = crtc->pipe;
848
849 I915_WRITE(VLV_DDL(pipe),
850 (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
851 (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
852 (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
853 (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
854
855 I915_WRITE(DSPFW1,
856 FW_WM(wm->sr.plane, SR) |
857 FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
858 FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
859 FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
860 I915_WRITE(DSPFW2,
861 FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
862 FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
863 FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
864 I915_WRITE(DSPFW3,
865 FW_WM(wm->sr.cursor, CURSOR_SR));
866
867 if (IS_CHERRYVIEW(dev_priv)) {
868 I915_WRITE(DSPFW7_CHV,
869 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
870 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
871 I915_WRITE(DSPFW8_CHV,
872 FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
873 FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
874 I915_WRITE(DSPFW9_CHV,
875 FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
876 FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
877 I915_WRITE(DSPHOWM,
878 FW_WM(wm->sr.plane >> 9, SR_HI) |
879 FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
880 FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
881 FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
882 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
883 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
884 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
885 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
886 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
887 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
888 } else {
889 I915_WRITE(DSPFW7,
890 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
891 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
892 I915_WRITE(DSPHOWM,
893 FW_WM(wm->sr.plane >> 9, SR_HI) |
894 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
895 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
896 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
897 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
898 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
899 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
900 }
901
902 /* zero (unused) WM1 watermarks */
903 I915_WRITE(DSPFW4, 0);
904 I915_WRITE(DSPFW5, 0);
905 I915_WRITE(DSPFW6, 0);
906 I915_WRITE(DSPHOWM1, 0);
907
908 POSTING_READ(DSPFW1);
909 }
910
911 #undef FW_WM_VLV
912
913 enum vlv_wm_level {
914 VLV_WM_LEVEL_PM2,
915 VLV_WM_LEVEL_PM5,
916 VLV_WM_LEVEL_DDR_DVFS,
917 };
918
919 /* latency must be in 0.1us units. */
920 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
921 unsigned int pipe_htotal,
922 unsigned int horiz_pixels,
923 unsigned int cpp,
924 unsigned int latency)
925 {
926 unsigned int ret;
927
928 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
929 ret = (ret + 1) * horiz_pixels * cpp;
930 ret = DIV_ROUND_UP(ret, 64);
931
932 return ret;
933 }
934
935 static void vlv_setup_wm_latency(struct drm_device *dev)
936 {
937 struct drm_i915_private *dev_priv = to_i915(dev);
938
939 /* all latencies in usec */
940 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
941
942 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
943
944 if (IS_CHERRYVIEW(dev_priv)) {
945 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
946 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
947
948 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
949 }
950 }
951
952 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
953 struct intel_crtc *crtc,
954 const struct intel_plane_state *state,
955 int level)
956 {
957 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
958 int clock, htotal, cpp, width, wm;
959
960 if (dev_priv->wm.pri_latency[level] == 0)
961 return USHRT_MAX;
962
963 if (!state->visible)
964 return 0;
965
966 cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
967 clock = crtc->config->base.adjusted_mode.crtc_clock;
968 htotal = crtc->config->base.adjusted_mode.crtc_htotal;
969 width = crtc->config->pipe_src_w;
970 if (WARN_ON(htotal == 0))
971 htotal = 1;
972
973 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
974 /*
975 * FIXME the formula gives values that are
976 * too big for the cursor FIFO, and hence we
977 * would never be able to use cursors. For
978 * now just hardcode the watermark.
979 */
980 wm = 63;
981 } else {
982 wm = vlv_wm_method2(clock, htotal, width, cpp,
983 dev_priv->wm.pri_latency[level] * 10);
984 }
985
986 return min_t(int, wm, USHRT_MAX);
987 }
988
989 static void vlv_compute_fifo(struct intel_crtc *crtc)
990 {
991 struct drm_device *dev = crtc->base.dev;
992 struct vlv_wm_state *wm_state = &crtc->wm_state;
993 struct intel_plane *plane;
994 unsigned int total_rate = 0;
995 const int fifo_size = 512 - 1;
996 int fifo_extra, fifo_left = fifo_size;
997
998 for_each_intel_plane_on_crtc(dev, crtc, plane) {
999 struct intel_plane_state *state =
1000 to_intel_plane_state(plane->base.state);
1001
1002 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1003 continue;
1004
1005 if (state->visible) {
1006 wm_state->num_active_planes++;
1007 total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1008 }
1009 }
1010
1011 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1012 struct intel_plane_state *state =
1013 to_intel_plane_state(plane->base.state);
1014 unsigned int rate;
1015
1016 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1017 plane->wm.fifo_size = 63;
1018 continue;
1019 }
1020
1021 if (!state->visible) {
1022 plane->wm.fifo_size = 0;
1023 continue;
1024 }
1025
1026 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1027 plane->wm.fifo_size = fifo_size * rate / total_rate;
1028 fifo_left -= plane->wm.fifo_size;
1029 }
1030
1031 fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1032
1033 /* spread the remainder evenly */
1034 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1035 int plane_extra;
1036
1037 if (fifo_left == 0)
1038 break;
1039
1040 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1041 continue;
1042
1043 /* give it all to the first plane if none are active */
1044 if (plane->wm.fifo_size == 0 &&
1045 wm_state->num_active_planes)
1046 continue;
1047
1048 plane_extra = min(fifo_extra, fifo_left);
1049 plane->wm.fifo_size += plane_extra;
1050 fifo_left -= plane_extra;
1051 }
1052
1053 WARN_ON(fifo_left != 0);
1054 }
1055
1056 static void vlv_invert_wms(struct intel_crtc *crtc)
1057 {
1058 struct vlv_wm_state *wm_state = &crtc->wm_state;
1059 int level;
1060
1061 for (level = 0; level < wm_state->num_levels; level++) {
1062 struct drm_device *dev = crtc->base.dev;
1063 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1064 struct intel_plane *plane;
1065
1066 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1067 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1068
1069 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1070 switch (plane->base.type) {
1071 int sprite;
1072 case DRM_PLANE_TYPE_CURSOR:
1073 wm_state->wm[level].cursor = plane->wm.fifo_size -
1074 wm_state->wm[level].cursor;
1075 break;
1076 case DRM_PLANE_TYPE_PRIMARY:
1077 wm_state->wm[level].primary = plane->wm.fifo_size -
1078 wm_state->wm[level].primary;
1079 break;
1080 case DRM_PLANE_TYPE_OVERLAY:
1081 sprite = plane->plane;
1082 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1083 wm_state->wm[level].sprite[sprite];
1084 break;
1085 }
1086 }
1087 }
1088 }
1089
1090 static void vlv_compute_wm(struct intel_crtc *crtc)
1091 {
1092 struct drm_device *dev = crtc->base.dev;
1093 struct vlv_wm_state *wm_state = &crtc->wm_state;
1094 struct intel_plane *plane;
1095 int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1096 int level;
1097
1098 memset(wm_state, 0, sizeof(*wm_state));
1099
1100 wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1101 wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1102
1103 wm_state->num_active_planes = 0;
1104
1105 vlv_compute_fifo(crtc);
1106
1107 if (wm_state->num_active_planes != 1)
1108 wm_state->cxsr = false;
1109
1110 if (wm_state->cxsr) {
1111 for (level = 0; level < wm_state->num_levels; level++) {
1112 wm_state->sr[level].plane = sr_fifo_size;
1113 wm_state->sr[level].cursor = 63;
1114 }
1115 }
1116
1117 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1118 struct intel_plane_state *state =
1119 to_intel_plane_state(plane->base.state);
1120
1121 if (!state->visible)
1122 continue;
1123
1124 /* normal watermarks */
1125 for (level = 0; level < wm_state->num_levels; level++) {
1126 int wm = vlv_compute_wm_level(plane, crtc, state, level);
1127 int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1128
1129 /* hack */
1130 if (WARN_ON(level == 0 && wm > max_wm))
1131 wm = max_wm;
1132
1133 if (wm > plane->wm.fifo_size)
1134 break;
1135
1136 switch (plane->base.type) {
1137 int sprite;
1138 case DRM_PLANE_TYPE_CURSOR:
1139 wm_state->wm[level].cursor = wm;
1140 break;
1141 case DRM_PLANE_TYPE_PRIMARY:
1142 wm_state->wm[level].primary = wm;
1143 break;
1144 case DRM_PLANE_TYPE_OVERLAY:
1145 sprite = plane->plane;
1146 wm_state->wm[level].sprite[sprite] = wm;
1147 break;
1148 }
1149 }
1150
1151 wm_state->num_levels = level;
1152
1153 if (!wm_state->cxsr)
1154 continue;
1155
1156 /* maxfifo watermarks */
1157 switch (plane->base.type) {
1158 int sprite, level;
1159 case DRM_PLANE_TYPE_CURSOR:
1160 for (level = 0; level < wm_state->num_levels; level++)
1161 wm_state->sr[level].cursor =
1162 wm_state->wm[level].cursor;
1163 break;
1164 case DRM_PLANE_TYPE_PRIMARY:
1165 for (level = 0; level < wm_state->num_levels; level++)
1166 wm_state->sr[level].plane =
1167 min(wm_state->sr[level].plane,
1168 wm_state->wm[level].primary);
1169 break;
1170 case DRM_PLANE_TYPE_OVERLAY:
1171 sprite = plane->plane;
1172 for (level = 0; level < wm_state->num_levels; level++)
1173 wm_state->sr[level].plane =
1174 min(wm_state->sr[level].plane,
1175 wm_state->wm[level].sprite[sprite]);
1176 break;
1177 }
1178 }
1179
1180 /* clear any (partially) filled invalid levels */
1181 for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1182 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1183 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1184 }
1185
1186 vlv_invert_wms(crtc);
1187 }
1188
1189 #define VLV_FIFO(plane, value) \
1190 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1191
1192 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1193 {
1194 struct drm_device *dev = crtc->base.dev;
1195 struct drm_i915_private *dev_priv = to_i915(dev);
1196 struct intel_plane *plane;
1197 int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1198
1199 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1200 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1201 WARN_ON(plane->wm.fifo_size != 63);
1202 continue;
1203 }
1204
1205 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1206 sprite0_start = plane->wm.fifo_size;
1207 else if (plane->plane == 0)
1208 sprite1_start = sprite0_start + plane->wm.fifo_size;
1209 else
1210 fifo_size = sprite1_start + plane->wm.fifo_size;
1211 }
1212
1213 WARN_ON(fifo_size != 512 - 1);
1214
1215 DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1216 pipe_name(crtc->pipe), sprite0_start,
1217 sprite1_start, fifo_size);
1218
1219 switch (crtc->pipe) {
1220 uint32_t dsparb, dsparb2, dsparb3;
1221 case PIPE_A:
1222 dsparb = I915_READ(DSPARB);
1223 dsparb2 = I915_READ(DSPARB2);
1224
1225 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1226 VLV_FIFO(SPRITEB, 0xff));
1227 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1228 VLV_FIFO(SPRITEB, sprite1_start));
1229
1230 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1231 VLV_FIFO(SPRITEB_HI, 0x1));
1232 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1233 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1234
1235 I915_WRITE(DSPARB, dsparb);
1236 I915_WRITE(DSPARB2, dsparb2);
1237 break;
1238 case PIPE_B:
1239 dsparb = I915_READ(DSPARB);
1240 dsparb2 = I915_READ(DSPARB2);
1241
1242 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1243 VLV_FIFO(SPRITED, 0xff));
1244 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1245 VLV_FIFO(SPRITED, sprite1_start));
1246
1247 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1248 VLV_FIFO(SPRITED_HI, 0xff));
1249 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1250 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1251
1252 I915_WRITE(DSPARB, dsparb);
1253 I915_WRITE(DSPARB2, dsparb2);
1254 break;
1255 case PIPE_C:
1256 dsparb3 = I915_READ(DSPARB3);
1257 dsparb2 = I915_READ(DSPARB2);
1258
1259 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1260 VLV_FIFO(SPRITEF, 0xff));
1261 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1262 VLV_FIFO(SPRITEF, sprite1_start));
1263
1264 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1265 VLV_FIFO(SPRITEF_HI, 0xff));
1266 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1267 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1268
1269 I915_WRITE(DSPARB3, dsparb3);
1270 I915_WRITE(DSPARB2, dsparb2);
1271 break;
1272 default:
1273 break;
1274 }
1275 }
1276
1277 #undef VLV_FIFO
1278
1279 static void vlv_merge_wm(struct drm_device *dev,
1280 struct vlv_wm_values *wm)
1281 {
1282 struct intel_crtc *crtc;
1283 int num_active_crtcs = 0;
1284
1285 wm->level = to_i915(dev)->wm.max_level;
1286 wm->cxsr = true;
1287
1288 for_each_intel_crtc(dev, crtc) {
1289 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1290
1291 if (!crtc->active)
1292 continue;
1293
1294 if (!wm_state->cxsr)
1295 wm->cxsr = false;
1296
1297 num_active_crtcs++;
1298 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1299 }
1300
1301 if (num_active_crtcs != 1)
1302 wm->cxsr = false;
1303
1304 if (num_active_crtcs > 1)
1305 wm->level = VLV_WM_LEVEL_PM2;
1306
1307 for_each_intel_crtc(dev, crtc) {
1308 struct vlv_wm_state *wm_state = &crtc->wm_state;
1309 enum pipe pipe = crtc->pipe;
1310
1311 if (!crtc->active)
1312 continue;
1313
1314 wm->pipe[pipe] = wm_state->wm[wm->level];
1315 if (wm->cxsr)
1316 wm->sr = wm_state->sr[wm->level];
1317
1318 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1319 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1320 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1321 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1322 }
1323 }
1324
1325 static void vlv_update_wm(struct drm_crtc *crtc)
1326 {
1327 struct drm_device *dev = crtc->dev;
1328 struct drm_i915_private *dev_priv = to_i915(dev);
1329 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1330 enum pipe pipe = intel_crtc->pipe;
1331 struct vlv_wm_values wm = {};
1332
1333 vlv_compute_wm(intel_crtc);
1334 vlv_merge_wm(dev, &wm);
1335
1336 if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1337 /* FIXME should be part of crtc atomic commit */
1338 vlv_pipe_set_fifo_size(intel_crtc);
1339 return;
1340 }
1341
1342 if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1343 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1344 chv_set_memory_dvfs(dev_priv, false);
1345
1346 if (wm.level < VLV_WM_LEVEL_PM5 &&
1347 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1348 chv_set_memory_pm5(dev_priv, false);
1349
1350 if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1351 intel_set_memory_cxsr(dev_priv, false);
1352
1353 /* FIXME should be part of crtc atomic commit */
1354 vlv_pipe_set_fifo_size(intel_crtc);
1355
1356 vlv_write_wm_values(intel_crtc, &wm);
1357
1358 DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1359 "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1360 pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1361 wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1362 wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1363
1364 if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1365 intel_set_memory_cxsr(dev_priv, true);
1366
1367 if (wm.level >= VLV_WM_LEVEL_PM5 &&
1368 dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1369 chv_set_memory_pm5(dev_priv, true);
1370
1371 if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1372 dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1373 chv_set_memory_dvfs(dev_priv, true);
1374
1375 dev_priv->wm.vlv = wm;
1376 }
1377
1378 #define single_plane_enabled(mask) is_power_of_2(mask)
1379
1380 static void g4x_update_wm(struct drm_crtc *crtc)
1381 {
1382 struct drm_device *dev = crtc->dev;
1383 static const int sr_latency_ns = 12000;
1384 struct drm_i915_private *dev_priv = to_i915(dev);
1385 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1386 int plane_sr, cursor_sr;
1387 unsigned int enabled = 0;
1388 bool cxsr_enabled;
1389
1390 if (g4x_compute_wm0(dev, PIPE_A,
1391 &g4x_wm_info, pessimal_latency_ns,
1392 &g4x_cursor_wm_info, pessimal_latency_ns,
1393 &planea_wm, &cursora_wm))
1394 enabled |= 1 << PIPE_A;
1395
1396 if (g4x_compute_wm0(dev, PIPE_B,
1397 &g4x_wm_info, pessimal_latency_ns,
1398 &g4x_cursor_wm_info, pessimal_latency_ns,
1399 &planeb_wm, &cursorb_wm))
1400 enabled |= 1 << PIPE_B;
1401
1402 if (single_plane_enabled(enabled) &&
1403 g4x_compute_srwm(dev, ffs(enabled) - 1,
1404 sr_latency_ns,
1405 &g4x_wm_info,
1406 &g4x_cursor_wm_info,
1407 &plane_sr, &cursor_sr)) {
1408 cxsr_enabled = true;
1409 } else {
1410 cxsr_enabled = false;
1411 intel_set_memory_cxsr(dev_priv, false);
1412 plane_sr = cursor_sr = 0;
1413 }
1414
1415 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1416 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1417 planea_wm, cursora_wm,
1418 planeb_wm, cursorb_wm,
1419 plane_sr, cursor_sr);
1420
1421 I915_WRITE(DSPFW1,
1422 FW_WM(plane_sr, SR) |
1423 FW_WM(cursorb_wm, CURSORB) |
1424 FW_WM(planeb_wm, PLANEB) |
1425 FW_WM(planea_wm, PLANEA));
1426 I915_WRITE(DSPFW2,
1427 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1428 FW_WM(cursora_wm, CURSORA));
1429 /* HPLL off in SR has some issues on G4x... disable it */
1430 I915_WRITE(DSPFW3,
1431 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1432 FW_WM(cursor_sr, CURSOR_SR));
1433
1434 if (cxsr_enabled)
1435 intel_set_memory_cxsr(dev_priv, true);
1436 }
1437
1438 static void i965_update_wm(struct drm_crtc *unused_crtc)
1439 {
1440 struct drm_device *dev = unused_crtc->dev;
1441 struct drm_i915_private *dev_priv = to_i915(dev);
1442 struct drm_crtc *crtc;
1443 int srwm = 1;
1444 int cursor_sr = 16;
1445 bool cxsr_enabled;
1446
1447 /* Calc sr entries for one plane configs */
1448 crtc = single_enabled_crtc(dev);
1449 if (crtc) {
1450 /* self-refresh has much higher latency */
1451 static const int sr_latency_ns = 12000;
1452 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1453 int clock = adjusted_mode->crtc_clock;
1454 int htotal = adjusted_mode->crtc_htotal;
1455 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1456 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1457 unsigned long line_time_us;
1458 int entries;
1459
1460 line_time_us = max(htotal * 1000 / clock, 1);
1461
1462 /* Use ns/us then divide to preserve precision */
1463 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1464 cpp * hdisplay;
1465 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1466 srwm = I965_FIFO_SIZE - entries;
1467 if (srwm < 0)
1468 srwm = 1;
1469 srwm &= 0x1ff;
1470 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1471 entries, srwm);
1472
1473 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1474 cpp * crtc->cursor->state->crtc_w;
1475 entries = DIV_ROUND_UP(entries,
1476 i965_cursor_wm_info.cacheline_size);
1477 cursor_sr = i965_cursor_wm_info.fifo_size -
1478 (entries + i965_cursor_wm_info.guard_size);
1479
1480 if (cursor_sr > i965_cursor_wm_info.max_wm)
1481 cursor_sr = i965_cursor_wm_info.max_wm;
1482
1483 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1484 "cursor %d\n", srwm, cursor_sr);
1485
1486 cxsr_enabled = true;
1487 } else {
1488 cxsr_enabled = false;
1489 /* Turn off self refresh if both pipes are enabled */
1490 intel_set_memory_cxsr(dev_priv, false);
1491 }
1492
1493 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1494 srwm);
1495
1496 /* 965 has limitations... */
1497 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1498 FW_WM(8, CURSORB) |
1499 FW_WM(8, PLANEB) |
1500 FW_WM(8, PLANEA));
1501 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1502 FW_WM(8, PLANEC_OLD));
1503 /* update cursor SR watermark */
1504 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1505
1506 if (cxsr_enabled)
1507 intel_set_memory_cxsr(dev_priv, true);
1508 }
1509
1510 #undef FW_WM
1511
1512 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1513 {
1514 struct drm_device *dev = unused_crtc->dev;
1515 struct drm_i915_private *dev_priv = to_i915(dev);
1516 const struct intel_watermark_params *wm_info;
1517 uint32_t fwater_lo;
1518 uint32_t fwater_hi;
1519 int cwm, srwm = 1;
1520 int fifo_size;
1521 int planea_wm, planeb_wm;
1522 struct drm_crtc *crtc, *enabled = NULL;
1523
1524 if (IS_I945GM(dev))
1525 wm_info = &i945_wm_info;
1526 else if (!IS_GEN2(dev))
1527 wm_info = &i915_wm_info;
1528 else
1529 wm_info = &i830_a_wm_info;
1530
1531 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1532 crtc = intel_get_crtc_for_plane(dev, 0);
1533 if (intel_crtc_active(crtc)) {
1534 const struct drm_display_mode *adjusted_mode;
1535 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1536 if (IS_GEN2(dev))
1537 cpp = 4;
1538
1539 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1540 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1541 wm_info, fifo_size, cpp,
1542 pessimal_latency_ns);
1543 enabled = crtc;
1544 } else {
1545 planea_wm = fifo_size - wm_info->guard_size;
1546 if (planea_wm > (long)wm_info->max_wm)
1547 planea_wm = wm_info->max_wm;
1548 }
1549
1550 if (IS_GEN2(dev))
1551 wm_info = &i830_bc_wm_info;
1552
1553 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1554 crtc = intel_get_crtc_for_plane(dev, 1);
1555 if (intel_crtc_active(crtc)) {
1556 const struct drm_display_mode *adjusted_mode;
1557 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1558 if (IS_GEN2(dev))
1559 cpp = 4;
1560
1561 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1562 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1563 wm_info, fifo_size, cpp,
1564 pessimal_latency_ns);
1565 if (enabled == NULL)
1566 enabled = crtc;
1567 else
1568 enabled = NULL;
1569 } else {
1570 planeb_wm = fifo_size - wm_info->guard_size;
1571 if (planeb_wm > (long)wm_info->max_wm)
1572 planeb_wm = wm_info->max_wm;
1573 }
1574
1575 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1576
1577 if (IS_I915GM(dev) && enabled) {
1578 struct drm_i915_gem_object *obj;
1579
1580 obj = intel_fb_obj(enabled->primary->state->fb);
1581
1582 /* self-refresh seems busted with untiled */
1583 if (obj->tiling_mode == I915_TILING_NONE)
1584 enabled = NULL;
1585 }
1586
1587 /*
1588 * Overlay gets an aggressive default since video jitter is bad.
1589 */
1590 cwm = 2;
1591
1592 /* Play safe and disable self-refresh before adjusting watermarks. */
1593 intel_set_memory_cxsr(dev_priv, false);
1594
1595 /* Calc sr entries for one plane configs */
1596 if (HAS_FW_BLC(dev) && enabled) {
1597 /* self-refresh has much higher latency */
1598 static const int sr_latency_ns = 6000;
1599 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1600 int clock = adjusted_mode->crtc_clock;
1601 int htotal = adjusted_mode->crtc_htotal;
1602 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1603 int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1604 unsigned long line_time_us;
1605 int entries;
1606
1607 line_time_us = max(htotal * 1000 / clock, 1);
1608
1609 /* Use ns/us then divide to preserve precision */
1610 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1611 cpp * hdisplay;
1612 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1613 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1614 srwm = wm_info->fifo_size - entries;
1615 if (srwm < 0)
1616 srwm = 1;
1617
1618 if (IS_I945G(dev) || IS_I945GM(dev))
1619 I915_WRITE(FW_BLC_SELF,
1620 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1621 else if (IS_I915GM(dev))
1622 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1623 }
1624
1625 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1626 planea_wm, planeb_wm, cwm, srwm);
1627
1628 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1629 fwater_hi = (cwm & 0x1f);
1630
1631 /* Set request length to 8 cachelines per fetch */
1632 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1633 fwater_hi = fwater_hi | (1 << 8);
1634
1635 I915_WRITE(FW_BLC, fwater_lo);
1636 I915_WRITE(FW_BLC2, fwater_hi);
1637
1638 if (enabled)
1639 intel_set_memory_cxsr(dev_priv, true);
1640 }
1641
1642 static void i845_update_wm(struct drm_crtc *unused_crtc)
1643 {
1644 struct drm_device *dev = unused_crtc->dev;
1645 struct drm_i915_private *dev_priv = to_i915(dev);
1646 struct drm_crtc *crtc;
1647 const struct drm_display_mode *adjusted_mode;
1648 uint32_t fwater_lo;
1649 int planea_wm;
1650
1651 crtc = single_enabled_crtc(dev);
1652 if (crtc == NULL)
1653 return;
1654
1655 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1656 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1657 &i845_wm_info,
1658 dev_priv->display.get_fifo_size(dev, 0),
1659 4, pessimal_latency_ns);
1660 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1661 fwater_lo |= (3<<8) | planea_wm;
1662
1663 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1664
1665 I915_WRITE(FW_BLC, fwater_lo);
1666 }
1667
1668 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1669 {
1670 uint32_t pixel_rate;
1671
1672 pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1673
1674 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1675 * adjust the pixel_rate here. */
1676
1677 if (pipe_config->pch_pfit.enabled) {
1678 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1679 uint32_t pfit_size = pipe_config->pch_pfit.size;
1680
1681 pipe_w = pipe_config->pipe_src_w;
1682 pipe_h = pipe_config->pipe_src_h;
1683
1684 pfit_w = (pfit_size >> 16) & 0xFFFF;
1685 pfit_h = pfit_size & 0xFFFF;
1686 if (pipe_w < pfit_w)
1687 pipe_w = pfit_w;
1688 if (pipe_h < pfit_h)
1689 pipe_h = pfit_h;
1690
1691 if (WARN_ON(!pfit_w || !pfit_h))
1692 return pixel_rate;
1693
1694 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1695 pfit_w * pfit_h);
1696 }
1697
1698 return pixel_rate;
1699 }
1700
1701 /* latency must be in 0.1us units. */
1702 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1703 {
1704 uint64_t ret;
1705
1706 if (WARN(latency == 0, "Latency value missing\n"))
1707 return UINT_MAX;
1708
1709 ret = (uint64_t) pixel_rate * cpp * latency;
1710 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1711
1712 return ret;
1713 }
1714
1715 /* latency must be in 0.1us units. */
1716 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1717 uint32_t horiz_pixels, uint8_t cpp,
1718 uint32_t latency)
1719 {
1720 uint32_t ret;
1721
1722 if (WARN(latency == 0, "Latency value missing\n"))
1723 return UINT_MAX;
1724 if (WARN_ON(!pipe_htotal))
1725 return UINT_MAX;
1726
1727 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1728 ret = (ret + 1) * horiz_pixels * cpp;
1729 ret = DIV_ROUND_UP(ret, 64) + 2;
1730 return ret;
1731 }
1732
1733 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1734 uint8_t cpp)
1735 {
1736 /*
1737 * Neither of these should be possible since this function shouldn't be
1738 * called if the CRTC is off or the plane is invisible. But let's be
1739 * extra paranoid to avoid a potential divide-by-zero if we screw up
1740 * elsewhere in the driver.
1741 */
1742 if (WARN_ON(!cpp))
1743 return 0;
1744 if (WARN_ON(!horiz_pixels))
1745 return 0;
1746
1747 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1748 }
1749
1750 struct ilk_wm_maximums {
1751 uint16_t pri;
1752 uint16_t spr;
1753 uint16_t cur;
1754 uint16_t fbc;
1755 };
1756
1757 /*
1758 * For both WM_PIPE and WM_LP.
1759 * mem_value must be in 0.1us units.
1760 */
1761 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1762 const struct intel_plane_state *pstate,
1763 uint32_t mem_value,
1764 bool is_lp)
1765 {
1766 int cpp = pstate->base.fb ?
1767 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1768 uint32_t method1, method2;
1769
1770 if (!cstate->base.active || !pstate->visible)
1771 return 0;
1772
1773 method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1774
1775 if (!is_lp)
1776 return method1;
1777
1778 method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1779 cstate->base.adjusted_mode.crtc_htotal,
1780 drm_rect_width(&pstate->dst),
1781 cpp, mem_value);
1782
1783 return min(method1, method2);
1784 }
1785
1786 /*
1787 * For both WM_PIPE and WM_LP.
1788 * mem_value must be in 0.1us units.
1789 */
1790 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1791 const struct intel_plane_state *pstate,
1792 uint32_t mem_value)
1793 {
1794 int cpp = pstate->base.fb ?
1795 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1796 uint32_t method1, method2;
1797
1798 if (!cstate->base.active || !pstate->visible)
1799 return 0;
1800
1801 method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1802 method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1803 cstate->base.adjusted_mode.crtc_htotal,
1804 drm_rect_width(&pstate->dst),
1805 cpp, mem_value);
1806 return min(method1, method2);
1807 }
1808
1809 /*
1810 * For both WM_PIPE and WM_LP.
1811 * mem_value must be in 0.1us units.
1812 */
1813 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1814 const struct intel_plane_state *pstate,
1815 uint32_t mem_value)
1816 {
1817 /*
1818 * We treat the cursor plane as always-on for the purposes of watermark
1819 * calculation. Until we have two-stage watermark programming merged,
1820 * this is necessary to avoid flickering.
1821 */
1822 int cpp = 4;
1823 int width = pstate->visible ? pstate->base.crtc_w : 64;
1824
1825 if (!cstate->base.active)
1826 return 0;
1827
1828 return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1829 cstate->base.adjusted_mode.crtc_htotal,
1830 width, cpp, mem_value);
1831 }
1832
1833 /* Only for WM_LP. */
1834 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1835 const struct intel_plane_state *pstate,
1836 uint32_t pri_val)
1837 {
1838 int cpp = pstate->base.fb ?
1839 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1840
1841 if (!cstate->base.active || !pstate->visible)
1842 return 0;
1843
1844 return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1845 }
1846
1847 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1848 {
1849 if (INTEL_INFO(dev)->gen >= 8)
1850 return 3072;
1851 else if (INTEL_INFO(dev)->gen >= 7)
1852 return 768;
1853 else
1854 return 512;
1855 }
1856
1857 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1858 int level, bool is_sprite)
1859 {
1860 if (INTEL_INFO(dev)->gen >= 8)
1861 /* BDW primary/sprite plane watermarks */
1862 return level == 0 ? 255 : 2047;
1863 else if (INTEL_INFO(dev)->gen >= 7)
1864 /* IVB/HSW primary/sprite plane watermarks */
1865 return level == 0 ? 127 : 1023;
1866 else if (!is_sprite)
1867 /* ILK/SNB primary plane watermarks */
1868 return level == 0 ? 127 : 511;
1869 else
1870 /* ILK/SNB sprite plane watermarks */
1871 return level == 0 ? 63 : 255;
1872 }
1873
1874 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1875 int level)
1876 {
1877 if (INTEL_INFO(dev)->gen >= 7)
1878 return level == 0 ? 63 : 255;
1879 else
1880 return level == 0 ? 31 : 63;
1881 }
1882
1883 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1884 {
1885 if (INTEL_INFO(dev)->gen >= 8)
1886 return 31;
1887 else
1888 return 15;
1889 }
1890
1891 /* Calculate the maximum primary/sprite plane watermark */
1892 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1893 int level,
1894 const struct intel_wm_config *config,
1895 enum intel_ddb_partitioning ddb_partitioning,
1896 bool is_sprite)
1897 {
1898 unsigned int fifo_size = ilk_display_fifo_size(dev);
1899
1900 /* if sprites aren't enabled, sprites get nothing */
1901 if (is_sprite && !config->sprites_enabled)
1902 return 0;
1903
1904 /* HSW allows LP1+ watermarks even with multiple pipes */
1905 if (level == 0 || config->num_pipes_active > 1) {
1906 fifo_size /= INTEL_INFO(dev)->num_pipes;
1907
1908 /*
1909 * For some reason the non self refresh
1910 * FIFO size is only half of the self
1911 * refresh FIFO size on ILK/SNB.
1912 */
1913 if (INTEL_INFO(dev)->gen <= 6)
1914 fifo_size /= 2;
1915 }
1916
1917 if (config->sprites_enabled) {
1918 /* level 0 is always calculated with 1:1 split */
1919 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1920 if (is_sprite)
1921 fifo_size *= 5;
1922 fifo_size /= 6;
1923 } else {
1924 fifo_size /= 2;
1925 }
1926 }
1927
1928 /* clamp to max that the registers can hold */
1929 return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1930 }
1931
1932 /* Calculate the maximum cursor plane watermark */
1933 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1934 int level,
1935 const struct intel_wm_config *config)
1936 {
1937 /* HSW LP1+ watermarks w/ multiple pipes */
1938 if (level > 0 && config->num_pipes_active > 1)
1939 return 64;
1940
1941 /* otherwise just report max that registers can hold */
1942 return ilk_cursor_wm_reg_max(dev, level);
1943 }
1944
1945 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1946 int level,
1947 const struct intel_wm_config *config,
1948 enum intel_ddb_partitioning ddb_partitioning,
1949 struct ilk_wm_maximums *max)
1950 {
1951 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1952 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1953 max->cur = ilk_cursor_wm_max(dev, level, config);
1954 max->fbc = ilk_fbc_wm_reg_max(dev);
1955 }
1956
1957 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1958 int level,
1959 struct ilk_wm_maximums *max)
1960 {
1961 max->pri = ilk_plane_wm_reg_max(dev, level, false);
1962 max->spr = ilk_plane_wm_reg_max(dev, level, true);
1963 max->cur = ilk_cursor_wm_reg_max(dev, level);
1964 max->fbc = ilk_fbc_wm_reg_max(dev);
1965 }
1966
1967 static bool ilk_validate_wm_level(int level,
1968 const struct ilk_wm_maximums *max,
1969 struct intel_wm_level *result)
1970 {
1971 bool ret;
1972
1973 /* already determined to be invalid? */
1974 if (!result->enable)
1975 return false;
1976
1977 result->enable = result->pri_val <= max->pri &&
1978 result->spr_val <= max->spr &&
1979 result->cur_val <= max->cur;
1980
1981 ret = result->enable;
1982
1983 /*
1984 * HACK until we can pre-compute everything,
1985 * and thus fail gracefully if LP0 watermarks
1986 * are exceeded...
1987 */
1988 if (level == 0 && !result->enable) {
1989 if (result->pri_val > max->pri)
1990 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1991 level, result->pri_val, max->pri);
1992 if (result->spr_val > max->spr)
1993 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1994 level, result->spr_val, max->spr);
1995 if (result->cur_val > max->cur)
1996 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1997 level, result->cur_val, max->cur);
1998
1999 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2000 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2001 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2002 result->enable = true;
2003 }
2004
2005 return ret;
2006 }
2007
2008 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2009 const struct intel_crtc *intel_crtc,
2010 int level,
2011 struct intel_crtc_state *cstate,
2012 struct intel_plane_state *pristate,
2013 struct intel_plane_state *sprstate,
2014 struct intel_plane_state *curstate,
2015 struct intel_wm_level *result)
2016 {
2017 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2018 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2019 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2020
2021 /* WM1+ latency values stored in 0.5us units */
2022 if (level > 0) {
2023 pri_latency *= 5;
2024 spr_latency *= 5;
2025 cur_latency *= 5;
2026 }
2027
2028 if (pristate) {
2029 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2030 pri_latency, level);
2031 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2032 }
2033
2034 if (sprstate)
2035 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2036
2037 if (curstate)
2038 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2039
2040 result->enable = true;
2041 }
2042
2043 static uint32_t
2044 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2045 {
2046 const struct intel_atomic_state *intel_state =
2047 to_intel_atomic_state(cstate->base.state);
2048 const struct drm_display_mode *adjusted_mode =
2049 &cstate->base.adjusted_mode;
2050 u32 linetime, ips_linetime;
2051
2052 if (!cstate->base.active)
2053 return 0;
2054 if (WARN_ON(adjusted_mode->crtc_clock == 0))
2055 return 0;
2056 if (WARN_ON(intel_state->cdclk == 0))
2057 return 0;
2058
2059 /* The WM are computed with base on how long it takes to fill a single
2060 * row at the given clock rate, multiplied by 8.
2061 * */
2062 linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2063 adjusted_mode->crtc_clock);
2064 ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2065 intel_state->cdclk);
2066
2067 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2068 PIPE_WM_LINETIME_TIME(linetime);
2069 }
2070
2071 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2072 {
2073 struct drm_i915_private *dev_priv = to_i915(dev);
2074
2075 if (IS_GEN9(dev)) {
2076 uint32_t val;
2077 int ret, i;
2078 int level, max_level = ilk_wm_max_level(dev);
2079
2080 /* read the first set of memory latencies[0:3] */
2081 val = 0; /* data0 to be programmed to 0 for first set */
2082 mutex_lock(&dev_priv->rps.hw_lock);
2083 ret = sandybridge_pcode_read(dev_priv,
2084 GEN9_PCODE_READ_MEM_LATENCY,
2085 &val);
2086 mutex_unlock(&dev_priv->rps.hw_lock);
2087
2088 if (ret) {
2089 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2090 return;
2091 }
2092
2093 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2094 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2095 GEN9_MEM_LATENCY_LEVEL_MASK;
2096 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2097 GEN9_MEM_LATENCY_LEVEL_MASK;
2098 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2099 GEN9_MEM_LATENCY_LEVEL_MASK;
2100
2101 /* read the second set of memory latencies[4:7] */
2102 val = 1; /* data0 to be programmed to 1 for second set */
2103 mutex_lock(&dev_priv->rps.hw_lock);
2104 ret = sandybridge_pcode_read(dev_priv,
2105 GEN9_PCODE_READ_MEM_LATENCY,
2106 &val);
2107 mutex_unlock(&dev_priv->rps.hw_lock);
2108 if (ret) {
2109 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2110 return;
2111 }
2112
2113 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2114 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2115 GEN9_MEM_LATENCY_LEVEL_MASK;
2116 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2117 GEN9_MEM_LATENCY_LEVEL_MASK;
2118 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2119 GEN9_MEM_LATENCY_LEVEL_MASK;
2120
2121 /*
2122 * WaWmMemoryReadLatency:skl
2123 *
2124 * punit doesn't take into account the read latency so we need
2125 * to add 2us to the various latency levels we retrieve from
2126 * the punit.
2127 * - W0 is a bit special in that it's the only level that
2128 * can't be disabled if we want to have display working, so
2129 * we always add 2us there.
2130 * - For levels >=1, punit returns 0us latency when they are
2131 * disabled, so we respect that and don't add 2us then
2132 *
2133 * Additionally, if a level n (n > 1) has a 0us latency, all
2134 * levels m (m >= n) need to be disabled. We make sure to
2135 * sanitize the values out of the punit to satisfy this
2136 * requirement.
2137 */
2138 wm[0] += 2;
2139 for (level = 1; level <= max_level; level++)
2140 if (wm[level] != 0)
2141 wm[level] += 2;
2142 else {
2143 for (i = level + 1; i <= max_level; i++)
2144 wm[i] = 0;
2145
2146 break;
2147 }
2148 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2149 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2150
2151 wm[0] = (sskpd >> 56) & 0xFF;
2152 if (wm[0] == 0)
2153 wm[0] = sskpd & 0xF;
2154 wm[1] = (sskpd >> 4) & 0xFF;
2155 wm[2] = (sskpd >> 12) & 0xFF;
2156 wm[3] = (sskpd >> 20) & 0x1FF;
2157 wm[4] = (sskpd >> 32) & 0x1FF;
2158 } else if (INTEL_INFO(dev)->gen >= 6) {
2159 uint32_t sskpd = I915_READ(MCH_SSKPD);
2160
2161 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2162 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2163 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2164 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2165 } else if (INTEL_INFO(dev)->gen >= 5) {
2166 uint32_t mltr = I915_READ(MLTR_ILK);
2167
2168 /* ILK primary LP0 latency is 700 ns */
2169 wm[0] = 7;
2170 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2171 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2172 }
2173 }
2174
2175 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2176 {
2177 /* ILK sprite LP0 latency is 1300 ns */
2178 if (IS_GEN5(dev))
2179 wm[0] = 13;
2180 }
2181
2182 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2183 {
2184 /* ILK cursor LP0 latency is 1300 ns */
2185 if (IS_GEN5(dev))
2186 wm[0] = 13;
2187
2188 /* WaDoubleCursorLP3Latency:ivb */
2189 if (IS_IVYBRIDGE(dev))
2190 wm[3] *= 2;
2191 }
2192
2193 int ilk_wm_max_level(const struct drm_device *dev)
2194 {
2195 /* how many WM levels are we expecting */
2196 if (INTEL_INFO(dev)->gen >= 9)
2197 return 7;
2198 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2199 return 4;
2200 else if (INTEL_INFO(dev)->gen >= 6)
2201 return 3;
2202 else
2203 return 2;
2204 }
2205
2206 static void intel_print_wm_latency(struct drm_device *dev,
2207 const char *name,
2208 const uint16_t wm[8])
2209 {
2210 int level, max_level = ilk_wm_max_level(dev);
2211
2212 for (level = 0; level <= max_level; level++) {
2213 unsigned int latency = wm[level];
2214
2215 if (latency == 0) {
2216 DRM_ERROR("%s WM%d latency not provided\n",
2217 name, level);
2218 continue;
2219 }
2220
2221 /*
2222 * - latencies are in us on gen9.
2223 * - before then, WM1+ latency values are in 0.5us units
2224 */
2225 if (IS_GEN9(dev))
2226 latency *= 10;
2227 else if (level > 0)
2228 latency *= 5;
2229
2230 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2231 name, level, wm[level],
2232 latency / 10, latency % 10);
2233 }
2234 }
2235
2236 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2237 uint16_t wm[5], uint16_t min)
2238 {
2239 int level, max_level = ilk_wm_max_level(&dev_priv->drm);
2240
2241 if (wm[0] >= min)
2242 return false;
2243
2244 wm[0] = max(wm[0], min);
2245 for (level = 1; level <= max_level; level++)
2246 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2247
2248 return true;
2249 }
2250
2251 static void snb_wm_latency_quirk(struct drm_device *dev)
2252 {
2253 struct drm_i915_private *dev_priv = to_i915(dev);
2254 bool changed;
2255
2256 /*
2257 * The BIOS provided WM memory latency values are often
2258 * inadequate for high resolution displays. Adjust them.
2259 */
2260 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2261 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2262 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2263
2264 if (!changed)
2265 return;
2266
2267 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2268 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2269 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2270 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2271 }
2272
2273 static void ilk_setup_wm_latency(struct drm_device *dev)
2274 {
2275 struct drm_i915_private *dev_priv = to_i915(dev);
2276
2277 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2278
2279 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2280 sizeof(dev_priv->wm.pri_latency));
2281 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2282 sizeof(dev_priv->wm.pri_latency));
2283
2284 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2285 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2286
2287 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2288 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2289 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2290
2291 if (IS_GEN6(dev))
2292 snb_wm_latency_quirk(dev);
2293 }
2294
2295 static void skl_setup_wm_latency(struct drm_device *dev)
2296 {
2297 struct drm_i915_private *dev_priv = to_i915(dev);
2298
2299 intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2300 intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2301 }
2302
2303 static bool ilk_validate_pipe_wm(struct drm_device *dev,
2304 struct intel_pipe_wm *pipe_wm)
2305 {
2306 /* LP0 watermark maximums depend on this pipe alone */
2307 const struct intel_wm_config config = {
2308 .num_pipes_active = 1,
2309 .sprites_enabled = pipe_wm->sprites_enabled,
2310 .sprites_scaled = pipe_wm->sprites_scaled,
2311 };
2312 struct ilk_wm_maximums max;
2313
2314 /* LP0 watermarks always use 1/2 DDB partitioning */
2315 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2316
2317 /* At least LP0 must be valid */
2318 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
2319 DRM_DEBUG_KMS("LP0 watermark invalid\n");
2320 return false;
2321 }
2322
2323 return true;
2324 }
2325
2326 /* Compute new watermarks for the pipe */
2327 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2328 {
2329 struct drm_atomic_state *state = cstate->base.state;
2330 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2331 struct intel_pipe_wm *pipe_wm;
2332 struct drm_device *dev = state->dev;
2333 const struct drm_i915_private *dev_priv = to_i915(dev);
2334 struct intel_plane *intel_plane;
2335 struct intel_plane_state *pristate = NULL;
2336 struct intel_plane_state *sprstate = NULL;
2337 struct intel_plane_state *curstate = NULL;
2338 int level, max_level = ilk_wm_max_level(dev), usable_level;
2339 struct ilk_wm_maximums max;
2340
2341 pipe_wm = &cstate->wm.ilk.optimal;
2342
2343 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2344 struct intel_plane_state *ps;
2345
2346 ps = intel_atomic_get_existing_plane_state(state,
2347 intel_plane);
2348 if (!ps)
2349 continue;
2350
2351 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2352 pristate = ps;
2353 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2354 sprstate = ps;
2355 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2356 curstate = ps;
2357 }
2358
2359 pipe_wm->pipe_enabled = cstate->base.active;
2360 if (sprstate) {
2361 pipe_wm->sprites_enabled = sprstate->visible;
2362 pipe_wm->sprites_scaled = sprstate->visible &&
2363 (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2364 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2365 }
2366
2367 usable_level = max_level;
2368
2369 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2370 if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2371 usable_level = 1;
2372
2373 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2374 if (pipe_wm->sprites_scaled)
2375 usable_level = 0;
2376
2377 ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2378 pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
2379
2380 memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2381 pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2382
2383 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2384 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2385
2386 if (!ilk_validate_pipe_wm(dev, pipe_wm))
2387 return -EINVAL;
2388
2389 ilk_compute_wm_reg_maximums(dev, 1, &max);
2390
2391 for (level = 1; level <= max_level; level++) {
2392 struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2393
2394 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2395 pristate, sprstate, curstate, wm);
2396
2397 /*
2398 * Disable any watermark level that exceeds the
2399 * register maximums since such watermarks are
2400 * always invalid.
2401 */
2402 if (level > usable_level)
2403 continue;
2404
2405 if (ilk_validate_wm_level(level, &max, wm))
2406 pipe_wm->wm[level] = *wm;
2407 else
2408 usable_level = level;
2409 }
2410
2411 return 0;
2412 }
2413
2414 /*
2415 * Build a set of 'intermediate' watermark values that satisfy both the old
2416 * state and the new state. These can be programmed to the hardware
2417 * immediately.
2418 */
2419 static int ilk_compute_intermediate_wm(struct drm_device *dev,
2420 struct intel_crtc *intel_crtc,
2421 struct intel_crtc_state *newstate)
2422 {
2423 struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2424 struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2425 int level, max_level = ilk_wm_max_level(dev);
2426
2427 /*
2428 * Start with the final, target watermarks, then combine with the
2429 * currently active watermarks to get values that are safe both before
2430 * and after the vblank.
2431 */
2432 *a = newstate->wm.ilk.optimal;
2433 a->pipe_enabled |= b->pipe_enabled;
2434 a->sprites_enabled |= b->sprites_enabled;
2435 a->sprites_scaled |= b->sprites_scaled;
2436
2437 for (level = 0; level <= max_level; level++) {
2438 struct intel_wm_level *a_wm = &a->wm[level];
2439 const struct intel_wm_level *b_wm = &b->wm[level];
2440
2441 a_wm->enable &= b_wm->enable;
2442 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
2443 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
2444 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
2445 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
2446 }
2447
2448 /*
2449 * We need to make sure that these merged watermark values are
2450 * actually a valid configuration themselves. If they're not,
2451 * there's no safe way to transition from the old state to
2452 * the new state, so we need to fail the atomic transaction.
2453 */
2454 if (!ilk_validate_pipe_wm(dev, a))
2455 return -EINVAL;
2456
2457 /*
2458 * If our intermediate WM are identical to the final WM, then we can
2459 * omit the post-vblank programming; only update if it's different.
2460 */
2461 if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2462 newstate->wm.need_postvbl_update = false;
2463
2464 return 0;
2465 }
2466
2467 /*
2468 * Merge the watermarks from all active pipes for a specific level.
2469 */
2470 static void ilk_merge_wm_level(struct drm_device *dev,
2471 int level,
2472 struct intel_wm_level *ret_wm)
2473 {
2474 const struct intel_crtc *intel_crtc;
2475
2476 ret_wm->enable = true;
2477
2478 for_each_intel_crtc(dev, intel_crtc) {
2479 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2480 const struct intel_wm_level *wm = &active->wm[level];
2481
2482 if (!active->pipe_enabled)
2483 continue;
2484
2485 /*
2486 * The watermark values may have been used in the past,
2487 * so we must maintain them in the registers for some
2488 * time even if the level is now disabled.
2489 */
2490 if (!wm->enable)
2491 ret_wm->enable = false;
2492
2493 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2494 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2495 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2496 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2497 }
2498 }
2499
2500 /*
2501 * Merge all low power watermarks for all active pipes.
2502 */
2503 static void ilk_wm_merge(struct drm_device *dev,
2504 const struct intel_wm_config *config,
2505 const struct ilk_wm_maximums *max,
2506 struct intel_pipe_wm *merged)
2507 {
2508 struct drm_i915_private *dev_priv = to_i915(dev);
2509 int level, max_level = ilk_wm_max_level(dev);
2510 int last_enabled_level = max_level;
2511
2512 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2513 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2514 config->num_pipes_active > 1)
2515 last_enabled_level = 0;
2516
2517 /* ILK: FBC WM must be disabled always */
2518 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2519
2520 /* merge each WM1+ level */
2521 for (level = 1; level <= max_level; level++) {
2522 struct intel_wm_level *wm = &merged->wm[level];
2523
2524 ilk_merge_wm_level(dev, level, wm);
2525
2526 if (level > last_enabled_level)
2527 wm->enable = false;
2528 else if (!ilk_validate_wm_level(level, max, wm))
2529 /* make sure all following levels get disabled */
2530 last_enabled_level = level - 1;
2531
2532 /*
2533 * The spec says it is preferred to disable
2534 * FBC WMs instead of disabling a WM level.
2535 */
2536 if (wm->fbc_val > max->fbc) {
2537 if (wm->enable)
2538 merged->fbc_wm_enabled = false;
2539 wm->fbc_val = 0;
2540 }
2541 }
2542
2543 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2544 /*
2545 * FIXME this is racy. FBC might get enabled later.
2546 * What we should check here is whether FBC can be
2547 * enabled sometime later.
2548 */
2549 if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2550 intel_fbc_is_active(dev_priv)) {
2551 for (level = 2; level <= max_level; level++) {
2552 struct intel_wm_level *wm = &merged->wm[level];
2553
2554 wm->enable = false;
2555 }
2556 }
2557 }
2558
2559 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2560 {
2561 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2562 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2563 }
2564
2565 /* The value we need to program into the WM_LPx latency field */
2566 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2567 {
2568 struct drm_i915_private *dev_priv = to_i915(dev);
2569
2570 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2571 return 2 * level;
2572 else
2573 return dev_priv->wm.pri_latency[level];
2574 }
2575
2576 static void ilk_compute_wm_results(struct drm_device *dev,
2577 const struct intel_pipe_wm *merged,
2578 enum intel_ddb_partitioning partitioning,
2579 struct ilk_wm_values *results)
2580 {
2581 struct intel_crtc *intel_crtc;
2582 int level, wm_lp;
2583
2584 results->enable_fbc_wm = merged->fbc_wm_enabled;
2585 results->partitioning = partitioning;
2586
2587 /* LP1+ register values */
2588 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2589 const struct intel_wm_level *r;
2590
2591 level = ilk_wm_lp_to_level(wm_lp, merged);
2592
2593 r = &merged->wm[level];
2594
2595 /*
2596 * Maintain the watermark values even if the level is
2597 * disabled. Doing otherwise could cause underruns.
2598 */
2599 results->wm_lp[wm_lp - 1] =
2600 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2601 (r->pri_val << WM1_LP_SR_SHIFT) |
2602 r->cur_val;
2603
2604 if (r->enable)
2605 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2606
2607 if (INTEL_INFO(dev)->gen >= 8)
2608 results->wm_lp[wm_lp - 1] |=
2609 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2610 else
2611 results->wm_lp[wm_lp - 1] |=
2612 r->fbc_val << WM1_LP_FBC_SHIFT;
2613
2614 /*
2615 * Always set WM1S_LP_EN when spr_val != 0, even if the
2616 * level is disabled. Doing otherwise could cause underruns.
2617 */
2618 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2619 WARN_ON(wm_lp != 1);
2620 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2621 } else
2622 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2623 }
2624
2625 /* LP0 register values */
2626 for_each_intel_crtc(dev, intel_crtc) {
2627 enum pipe pipe = intel_crtc->pipe;
2628 const struct intel_wm_level *r =
2629 &intel_crtc->wm.active.ilk.wm[0];
2630
2631 if (WARN_ON(!r->enable))
2632 continue;
2633
2634 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2635
2636 results->wm_pipe[pipe] =
2637 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2638 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2639 r->cur_val;
2640 }
2641 }
2642
2643 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2644 * case both are at the same level. Prefer r1 in case they're the same. */
2645 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2646 struct intel_pipe_wm *r1,
2647 struct intel_pipe_wm *r2)
2648 {
2649 int level, max_level = ilk_wm_max_level(dev);
2650 int level1 = 0, level2 = 0;
2651
2652 for (level = 1; level <= max_level; level++) {
2653 if (r1->wm[level].enable)
2654 level1 = level;
2655 if (r2->wm[level].enable)
2656 level2 = level;
2657 }
2658
2659 if (level1 == level2) {
2660 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2661 return r2;
2662 else
2663 return r1;
2664 } else if (level1 > level2) {
2665 return r1;
2666 } else {
2667 return r2;
2668 }
2669 }
2670
2671 /* dirty bits used to track which watermarks need changes */
2672 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2673 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2674 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2675 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2676 #define WM_DIRTY_FBC (1 << 24)
2677 #define WM_DIRTY_DDB (1 << 25)
2678
2679 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2680 const struct ilk_wm_values *old,
2681 const struct ilk_wm_values *new)
2682 {
2683 unsigned int dirty = 0;
2684 enum pipe pipe;
2685 int wm_lp;
2686
2687 for_each_pipe(dev_priv, pipe) {
2688 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2689 dirty |= WM_DIRTY_LINETIME(pipe);
2690 /* Must disable LP1+ watermarks too */
2691 dirty |= WM_DIRTY_LP_ALL;
2692 }
2693
2694 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2695 dirty |= WM_DIRTY_PIPE(pipe);
2696 /* Must disable LP1+ watermarks too */
2697 dirty |= WM_DIRTY_LP_ALL;
2698 }
2699 }
2700
2701 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2702 dirty |= WM_DIRTY_FBC;
2703 /* Must disable LP1+ watermarks too */
2704 dirty |= WM_DIRTY_LP_ALL;
2705 }
2706
2707 if (old->partitioning != new->partitioning) {
2708 dirty |= WM_DIRTY_DDB;
2709 /* Must disable LP1+ watermarks too */
2710 dirty |= WM_DIRTY_LP_ALL;
2711 }
2712
2713 /* LP1+ watermarks already deemed dirty, no need to continue */
2714 if (dirty & WM_DIRTY_LP_ALL)
2715 return dirty;
2716
2717 /* Find the lowest numbered LP1+ watermark in need of an update... */
2718 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2719 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2720 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2721 break;
2722 }
2723
2724 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2725 for (; wm_lp <= 3; wm_lp++)
2726 dirty |= WM_DIRTY_LP(wm_lp);
2727
2728 return dirty;
2729 }
2730
2731 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2732 unsigned int dirty)
2733 {
2734 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2735 bool changed = false;
2736
2737 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2738 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2739 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2740 changed = true;
2741 }
2742 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2743 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2744 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2745 changed = true;
2746 }
2747 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2748 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2749 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2750 changed = true;
2751 }
2752
2753 /*
2754 * Don't touch WM1S_LP_EN here.
2755 * Doing so could cause underruns.
2756 */
2757
2758 return changed;
2759 }
2760
2761 /*
2762 * The spec says we shouldn't write when we don't need, because every write
2763 * causes WMs to be re-evaluated, expending some power.
2764 */
2765 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2766 struct ilk_wm_values *results)
2767 {
2768 struct drm_device *dev = &dev_priv->drm;
2769 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2770 unsigned int dirty;
2771 uint32_t val;
2772
2773 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2774 if (!dirty)
2775 return;
2776
2777 _ilk_disable_lp_wm(dev_priv, dirty);
2778
2779 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2780 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2781 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2782 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2783 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2784 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2785
2786 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2787 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2788 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2789 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2790 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2791 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2792
2793 if (dirty & WM_DIRTY_DDB) {
2794 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2795 val = I915_READ(WM_MISC);
2796 if (results->partitioning == INTEL_DDB_PART_1_2)
2797 val &= ~WM_MISC_DATA_PARTITION_5_6;
2798 else
2799 val |= WM_MISC_DATA_PARTITION_5_6;
2800 I915_WRITE(WM_MISC, val);
2801 } else {
2802 val = I915_READ(DISP_ARB_CTL2);
2803 if (results->partitioning == INTEL_DDB_PART_1_2)
2804 val &= ~DISP_DATA_PARTITION_5_6;
2805 else
2806 val |= DISP_DATA_PARTITION_5_6;
2807 I915_WRITE(DISP_ARB_CTL2, val);
2808 }
2809 }
2810
2811 if (dirty & WM_DIRTY_FBC) {
2812 val = I915_READ(DISP_ARB_CTL);
2813 if (results->enable_fbc_wm)
2814 val &= ~DISP_FBC_WM_DIS;
2815 else
2816 val |= DISP_FBC_WM_DIS;
2817 I915_WRITE(DISP_ARB_CTL, val);
2818 }
2819
2820 if (dirty & WM_DIRTY_LP(1) &&
2821 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2822 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2823
2824 if (INTEL_INFO(dev)->gen >= 7) {
2825 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2826 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2827 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2828 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2829 }
2830
2831 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2832 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2833 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2834 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2835 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2836 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2837
2838 dev_priv->wm.hw = *results;
2839 }
2840
2841 bool ilk_disable_lp_wm(struct drm_device *dev)
2842 {
2843 struct drm_i915_private *dev_priv = to_i915(dev);
2844
2845 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2846 }
2847
2848 /*
2849 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2850 * different active planes.
2851 */
2852
2853 #define SKL_DDB_SIZE 896 /* in blocks */
2854 #define BXT_DDB_SIZE 512
2855 #define SKL_SAGV_BLOCK_TIME 30 /* µs */
2856
2857 /*
2858 * Return the index of a plane in the SKL DDB and wm result arrays. Primary
2859 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2860 * other universal planes are in indices 1..n. Note that this may leave unused
2861 * indices between the top "sprite" plane and the cursor.
2862 */
2863 static int
2864 skl_wm_plane_id(const struct intel_plane *plane)
2865 {
2866 switch (plane->base.type) {
2867 case DRM_PLANE_TYPE_PRIMARY:
2868 return 0;
2869 case DRM_PLANE_TYPE_CURSOR:
2870 return PLANE_CURSOR;
2871 case DRM_PLANE_TYPE_OVERLAY:
2872 return plane->plane + 1;
2873 default:
2874 MISSING_CASE(plane->base.type);
2875 return plane->plane;
2876 }
2877 }
2878
2879 /*
2880 * SAGV dynamically adjusts the system agent voltage and clock frequencies
2881 * depending on power and performance requirements. The display engine access
2882 * to system memory is blocked during the adjustment time. Because of the
2883 * blocking time, having this enabled can cause full system hangs and/or pipe
2884 * underruns if we don't meet all of the following requirements:
2885 *
2886 * - <= 1 pipe enabled
2887 * - All planes can enable watermarks for latencies >= SAGV engine block time
2888 * - We're not using an interlaced display configuration
2889 */
2890 int
2891 skl_enable_sagv(struct drm_i915_private *dev_priv)
2892 {
2893 int ret;
2894
2895 if (dev_priv->skl_sagv_status == I915_SKL_SAGV_NOT_CONTROLLED ||
2896 dev_priv->skl_sagv_status == I915_SKL_SAGV_ENABLED)
2897 return 0;
2898
2899 DRM_DEBUG_KMS("Enabling the SAGV\n");
2900 mutex_lock(&dev_priv->rps.hw_lock);
2901
2902 ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
2903 GEN9_SAGV_ENABLE);
2904
2905 /* We don't need to wait for the SAGV when enabling */
2906 mutex_unlock(&dev_priv->rps.hw_lock);
2907
2908 /*
2909 * Some skl systems, pre-release machines in particular,
2910 * don't actually have an SAGV.
2911 */
2912 if (ret == -ENXIO) {
2913 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2914 dev_priv->skl_sagv_status = I915_SKL_SAGV_NOT_CONTROLLED;
2915 return 0;
2916 } else if (ret < 0) {
2917 DRM_ERROR("Failed to enable the SAGV\n");
2918 return ret;
2919 }
2920
2921 dev_priv->skl_sagv_status = I915_SKL_SAGV_ENABLED;
2922 return 0;
2923 }
2924
2925 static int
2926 skl_do_sagv_disable(struct drm_i915_private *dev_priv)
2927 {
2928 int ret;
2929 uint32_t temp = GEN9_SAGV_DISABLE;
2930
2931 ret = sandybridge_pcode_read(dev_priv, GEN9_PCODE_SAGV_CONTROL,
2932 &temp);
2933 if (ret)
2934 return ret;
2935 else
2936 return temp & GEN9_SAGV_IS_DISABLED;
2937 }
2938
2939 int
2940 skl_disable_sagv(struct drm_i915_private *dev_priv)
2941 {
2942 int ret, result;
2943
2944 if (dev_priv->skl_sagv_status == I915_SKL_SAGV_NOT_CONTROLLED ||
2945 dev_priv->skl_sagv_status == I915_SKL_SAGV_DISABLED)
2946 return 0;
2947
2948 DRM_DEBUG_KMS("Disabling the SAGV\n");
2949 mutex_lock(&dev_priv->rps.hw_lock);
2950
2951 /* bspec says to keep retrying for at least 1 ms */
2952 ret = wait_for(result = skl_do_sagv_disable(dev_priv), 1);
2953 mutex_unlock(&dev_priv->rps.hw_lock);
2954
2955 if (ret == -ETIMEDOUT) {
2956 DRM_ERROR("Request to disable SAGV timed out\n");
2957 return -ETIMEDOUT;
2958 }
2959
2960 /*
2961 * Some skl systems, pre-release machines in particular,
2962 * don't actually have an SAGV.
2963 */
2964 if (result == -ENXIO) {
2965 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2966 dev_priv->skl_sagv_status = I915_SKL_SAGV_NOT_CONTROLLED;
2967 return 0;
2968 } else if (result < 0) {
2969 DRM_ERROR("Failed to disable the SAGV\n");
2970 return result;
2971 }
2972
2973 dev_priv->skl_sagv_status = I915_SKL_SAGV_DISABLED;
2974 return 0;
2975 }
2976
2977 bool skl_can_enable_sagv(struct drm_atomic_state *state)
2978 {
2979 struct drm_device *dev = state->dev;
2980 struct drm_i915_private *dev_priv = to_i915(dev);
2981 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
2982 struct drm_crtc *crtc;
2983 enum pipe pipe;
2984 int level, plane;
2985
2986 /*
2987 * SKL workaround: bspec recommends we disable the SAGV when we have
2988 * more then one pipe enabled
2989 *
2990 * If there are no active CRTCs, no additional checks need be performed
2991 */
2992 if (hweight32(intel_state->active_crtcs) == 0)
2993 return true;
2994 else if (hweight32(intel_state->active_crtcs) > 1)
2995 return false;
2996
2997 /* Since we're now guaranteed to only have one active CRTC... */
2998 pipe = ffs(intel_state->active_crtcs) - 1;
2999 crtc = dev_priv->pipe_to_crtc_mapping[pipe];
3000
3001 if (crtc->state->mode.flags & DRM_MODE_FLAG_INTERLACE)
3002 return false;
3003
3004 for_each_plane(dev_priv, pipe, plane) {
3005 /* Skip this plane if it's not enabled */
3006 if (intel_state->wm_results.plane[pipe][plane][0] == 0)
3007 continue;
3008
3009 /* Find the highest enabled wm level for this plane */
3010 for (level = ilk_wm_max_level(dev);
3011 intel_state->wm_results.plane[pipe][plane][level] == 0; --level)
3012 { }
3013
3014 /*
3015 * If any of the planes on this pipe don't enable wm levels
3016 * that incur memory latencies higher then 30µs we can't enable
3017 * the SAGV
3018 */
3019 if (dev_priv->wm.skl_latency[level] < SKL_SAGV_BLOCK_TIME)
3020 return false;
3021 }
3022
3023 return true;
3024 }
3025
3026 static void
3027 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3028 const struct intel_crtc_state *cstate,
3029 struct skl_ddb_entry *alloc, /* out */
3030 int *num_active /* out */)
3031 {
3032 struct drm_atomic_state *state = cstate->base.state;
3033 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3034 struct drm_i915_private *dev_priv = to_i915(dev);
3035 struct drm_crtc *for_crtc = cstate->base.crtc;
3036 unsigned int pipe_size, ddb_size;
3037 int nth_active_pipe;
3038 int pipe = to_intel_crtc(for_crtc)->pipe;
3039
3040 if (WARN_ON(!state) || !cstate->base.active) {
3041 alloc->start = 0;
3042 alloc->end = 0;
3043 *num_active = hweight32(dev_priv->active_crtcs);
3044 return;
3045 }
3046
3047 if (intel_state->active_pipe_changes)
3048 *num_active = hweight32(intel_state->active_crtcs);
3049 else
3050 *num_active = hweight32(dev_priv->active_crtcs);
3051
3052 if (IS_BROXTON(dev))
3053 ddb_size = BXT_DDB_SIZE;
3054 else
3055 ddb_size = SKL_DDB_SIZE;
3056
3057 ddb_size -= 4; /* 4 blocks for bypass path allocation */
3058
3059 /*
3060 * If the state doesn't change the active CRTC's, then there's
3061 * no need to recalculate; the existing pipe allocation limits
3062 * should remain unchanged. Note that we're safe from racing
3063 * commits since any racing commit that changes the active CRTC
3064 * list would need to grab _all_ crtc locks, including the one
3065 * we currently hold.
3066 */
3067 if (!intel_state->active_pipe_changes) {
3068 *alloc = dev_priv->wm.skl_hw.ddb.pipe[pipe];
3069 return;
3070 }
3071
3072 nth_active_pipe = hweight32(intel_state->active_crtcs &
3073 (drm_crtc_mask(for_crtc) - 1));
3074 pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
3075 alloc->start = nth_active_pipe * ddb_size / *num_active;
3076 alloc->end = alloc->start + pipe_size;
3077 }
3078
3079 static unsigned int skl_cursor_allocation(int num_active)
3080 {
3081 if (num_active == 1)
3082 return 32;
3083
3084 return 8;
3085 }
3086
3087 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
3088 {
3089 entry->start = reg & 0x3ff;
3090 entry->end = (reg >> 16) & 0x3ff;
3091 if (entry->end)
3092 entry->end += 1;
3093 }
3094
3095 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3096 struct skl_ddb_allocation *ddb /* out */)
3097 {
3098 enum pipe pipe;
3099 int plane;
3100 u32 val;
3101
3102 memset(ddb, 0, sizeof(*ddb));
3103
3104 for_each_pipe(dev_priv, pipe) {
3105 enum intel_display_power_domain power_domain;
3106
3107 power_domain = POWER_DOMAIN_PIPE(pipe);
3108 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3109 continue;
3110
3111 for_each_plane(dev_priv, pipe, plane) {
3112 val = I915_READ(PLANE_BUF_CFG(pipe, plane));
3113 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
3114 val);
3115 }
3116
3117 val = I915_READ(CUR_BUF_CFG(pipe));
3118 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
3119 val);
3120
3121 intel_display_power_put(dev_priv, power_domain);
3122 }
3123 }
3124
3125 /*
3126 * Determines the downscale amount of a plane for the purposes of watermark calculations.
3127 * The bspec defines downscale amount as:
3128 *
3129 * """
3130 * Horizontal down scale amount = maximum[1, Horizontal source size /
3131 * Horizontal destination size]
3132 * Vertical down scale amount = maximum[1, Vertical source size /
3133 * Vertical destination size]
3134 * Total down scale amount = Horizontal down scale amount *
3135 * Vertical down scale amount
3136 * """
3137 *
3138 * Return value is provided in 16.16 fixed point form to retain fractional part.
3139 * Caller should take care of dividing & rounding off the value.
3140 */
3141 static uint32_t
3142 skl_plane_downscale_amount(const struct intel_plane_state *pstate)
3143 {
3144 uint32_t downscale_h, downscale_w;
3145 uint32_t src_w, src_h, dst_w, dst_h;
3146
3147 if (WARN_ON(!pstate->visible))
3148 return DRM_PLANE_HELPER_NO_SCALING;
3149
3150 /* n.b., src is 16.16 fixed point, dst is whole integer */
3151 src_w = drm_rect_width(&pstate->src);
3152 src_h = drm_rect_height(&pstate->src);
3153 dst_w = drm_rect_width(&pstate->dst);
3154 dst_h = drm_rect_height(&pstate->dst);
3155 if (intel_rotation_90_or_270(pstate->base.rotation))
3156 swap(dst_w, dst_h);
3157
3158 downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3159 downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3160
3161 /* Provide result in 16.16 fixed point */
3162 return (uint64_t)downscale_w * downscale_h >> 16;
3163 }
3164
3165 static unsigned int
3166 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
3167 const struct drm_plane_state *pstate,
3168 int y)
3169 {
3170 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3171 struct drm_framebuffer *fb = pstate->fb;
3172 uint32_t down_scale_amount, data_rate;
3173 uint32_t width = 0, height = 0;
3174 unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;
3175
3176 if (!intel_pstate->visible)
3177 return 0;
3178 if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
3179 return 0;
3180 if (y && format != DRM_FORMAT_NV12)
3181 return 0;
3182
3183 width = drm_rect_width(&intel_pstate->src) >> 16;
3184 height = drm_rect_height(&intel_pstate->src) >> 16;
3185
3186 if (intel_rotation_90_or_270(pstate->rotation))
3187 swap(width, height);
3188
3189 /* for planar format */
3190 if (format == DRM_FORMAT_NV12) {
3191 if (y) /* y-plane data rate */
3192 data_rate = width * height *
3193 drm_format_plane_cpp(format, 0);
3194 else /* uv-plane data rate */
3195 data_rate = (width / 2) * (height / 2) *
3196 drm_format_plane_cpp(format, 1);
3197 } else {
3198 /* for packed formats */
3199 data_rate = width * height * drm_format_plane_cpp(format, 0);
3200 }
3201
3202 down_scale_amount = skl_plane_downscale_amount(intel_pstate);
3203
3204 return (uint64_t)data_rate * down_scale_amount >> 16;
3205 }
3206
3207 /*
3208 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
3209 * a 8192x4096@32bpp framebuffer:
3210 * 3 * 4096 * 8192 * 4 < 2^32
3211 */
3212 static unsigned int
3213 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
3214 {
3215 struct drm_crtc_state *cstate = &intel_cstate->base;
3216 struct drm_atomic_state *state = cstate->state;
3217 struct drm_crtc *crtc = cstate->crtc;
3218 struct drm_device *dev = crtc->dev;
3219 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3220 const struct drm_plane *plane;
3221 const struct intel_plane *intel_plane;
3222 struct drm_plane_state *pstate;
3223 unsigned int rate, total_data_rate = 0;
3224 int id;
3225 int i;
3226
3227 if (WARN_ON(!state))
3228 return 0;
3229
3230 /* Calculate and cache data rate for each plane */
3231 for_each_plane_in_state(state, plane, pstate, i) {
3232 id = skl_wm_plane_id(to_intel_plane(plane));
3233 intel_plane = to_intel_plane(plane);
3234
3235 if (intel_plane->pipe != intel_crtc->pipe)
3236 continue;
3237
3238 /* packed/uv */
3239 rate = skl_plane_relative_data_rate(intel_cstate,
3240 pstate, 0);
3241 intel_cstate->wm.skl.plane_data_rate[id] = rate;
3242
3243 /* y-plane */
3244 rate = skl_plane_relative_data_rate(intel_cstate,
3245 pstate, 1);
3246 intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3247 }
3248
3249 /* Calculate CRTC's total data rate from cached values */
3250 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3251 int id = skl_wm_plane_id(intel_plane);
3252
3253 /* packed/uv */
3254 total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
3255 total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3256 }
3257
3258 return total_data_rate;
3259 }
3260
3261 static uint16_t
3262 skl_ddb_min_alloc(const struct drm_plane_state *pstate,
3263 const int y)
3264 {
3265 struct drm_framebuffer *fb = pstate->fb;
3266 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3267 uint32_t src_w, src_h;
3268 uint32_t min_scanlines = 8;
3269 uint8_t plane_bpp;
3270
3271 if (WARN_ON(!fb))
3272 return 0;
3273
3274 /* For packed formats, no y-plane, return 0 */
3275 if (y && fb->pixel_format != DRM_FORMAT_NV12)
3276 return 0;
3277
3278 /* For Non Y-tile return 8-blocks */
3279 if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
3280 fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
3281 return 8;
3282
3283 src_w = drm_rect_width(&intel_pstate->src) >> 16;
3284 src_h = drm_rect_height(&intel_pstate->src) >> 16;
3285
3286 if (intel_rotation_90_or_270(pstate->rotation))
3287 swap(src_w, src_h);
3288
3289 /* Halve UV plane width and height for NV12 */
3290 if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
3291 src_w /= 2;
3292 src_h /= 2;
3293 }
3294
3295 if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
3296 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
3297 else
3298 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);
3299
3300 if (intel_rotation_90_or_270(pstate->rotation)) {
3301 switch (plane_bpp) {
3302 case 1:
3303 min_scanlines = 32;
3304 break;
3305 case 2:
3306 min_scanlines = 16;
3307 break;
3308 case 4:
3309 min_scanlines = 8;
3310 break;
3311 case 8:
3312 min_scanlines = 4;
3313 break;
3314 default:
3315 WARN(1, "Unsupported pixel depth %u for rotation",
3316 plane_bpp);
3317 min_scanlines = 32;
3318 }
3319 }
3320
3321 return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
3322 }
3323
3324 static int
3325 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3326 struct skl_ddb_allocation *ddb /* out */)
3327 {
3328 struct drm_atomic_state *state = cstate->base.state;
3329 struct drm_crtc *crtc = cstate->base.crtc;
3330 struct drm_device *dev = crtc->dev;
3331 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3332 struct intel_plane *intel_plane;
3333 struct drm_plane *plane;
3334 struct drm_plane_state *pstate;
3335 enum pipe pipe = intel_crtc->pipe;
3336 struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3337 uint16_t alloc_size, start, cursor_blocks;
3338 uint16_t *minimum = cstate->wm.skl.minimum_blocks;
3339 uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3340 unsigned int total_data_rate;
3341 int num_active;
3342 int id, i;
3343
3344 if (WARN_ON(!state))
3345 return 0;
3346
3347 if (!cstate->base.active) {
3348 ddb->pipe[pipe].start = ddb->pipe[pipe].end = 0;
3349 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3350 memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
3351 return 0;
3352 }
3353
3354 skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3355 alloc_size = skl_ddb_entry_size(alloc);
3356 if (alloc_size == 0) {
3357 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3358 return 0;
3359 }
3360
3361 cursor_blocks = skl_cursor_allocation(num_active);
3362 ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
3363 ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3364
3365 alloc_size -= cursor_blocks;
3366
3367 /* 1. Allocate the mininum required blocks for each active plane */
3368 for_each_plane_in_state(state, plane, pstate, i) {
3369 intel_plane = to_intel_plane(plane);
3370 id = skl_wm_plane_id(intel_plane);
3371
3372 if (intel_plane->pipe != pipe)
3373 continue;
3374
3375 if (!to_intel_plane_state(pstate)->visible) {
3376 minimum[id] = 0;
3377 y_minimum[id] = 0;
3378 continue;
3379 }
3380 if (plane->type == DRM_PLANE_TYPE_CURSOR) {
3381 minimum[id] = 0;
3382 y_minimum[id] = 0;
3383 continue;
3384 }
3385
3386 minimum[id] = skl_ddb_min_alloc(pstate, 0);
3387 y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3388 }
3389
3390 for (i = 0; i < PLANE_CURSOR; i++) {
3391 alloc_size -= minimum[i];
3392 alloc_size -= y_minimum[i];
3393 }
3394
3395 /*
3396 * 2. Distribute the remaining space in proportion to the amount of
3397 * data each plane needs to fetch from memory.
3398 *
3399 * FIXME: we may not allocate every single block here.
3400 */
3401 total_data_rate = skl_get_total_relative_data_rate(cstate);
3402 if (total_data_rate == 0)
3403 return 0;
3404
3405 start = alloc->start;
3406 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3407 unsigned int data_rate, y_data_rate;
3408 uint16_t plane_blocks, y_plane_blocks = 0;
3409 int id = skl_wm_plane_id(intel_plane);
3410
3411 data_rate = cstate->wm.skl.plane_data_rate[id];
3412
3413 /*
3414 * allocation for (packed formats) or (uv-plane part of planar format):
3415 * promote the expression to 64 bits to avoid overflowing, the
3416 * result is < available as data_rate / total_data_rate < 1
3417 */
3418 plane_blocks = minimum[id];
3419 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3420 total_data_rate);
3421
3422 /* Leave disabled planes at (0,0) */
3423 if (data_rate) {
3424 ddb->plane[pipe][id].start = start;
3425 ddb->plane[pipe][id].end = start + plane_blocks;
3426 }
3427
3428 start += plane_blocks;
3429
3430 /*
3431 * allocation for y_plane part of planar format:
3432 */
3433 y_data_rate = cstate->wm.skl.plane_y_data_rate[id];
3434
3435 y_plane_blocks = y_minimum[id];
3436 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3437 total_data_rate);
3438
3439 if (y_data_rate) {
3440 ddb->y_plane[pipe][id].start = start;
3441 ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3442 }
3443
3444 start += y_plane_blocks;
3445 }
3446
3447 return 0;
3448 }
3449
3450 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3451 {
3452 /* TODO: Take into account the scalers once we support them */
3453 return config->base.adjusted_mode.crtc_clock;
3454 }
3455
3456 /*
3457 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3458 * for the read latency) and cpp should always be <= 8, so that
3459 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3460 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3461 */
3462 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3463 {
3464 uint32_t wm_intermediate_val, ret;
3465
3466 if (latency == 0)
3467 return UINT_MAX;
3468
3469 wm_intermediate_val = latency * pixel_rate * cpp / 512;
3470 ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3471
3472 return ret;
3473 }
3474
3475 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3476 uint32_t horiz_pixels, uint8_t cpp,
3477 uint64_t tiling, uint32_t latency)
3478 {
3479 uint32_t ret;
3480 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3481 uint32_t wm_intermediate_val;
3482
3483 if (latency == 0)
3484 return UINT_MAX;
3485
3486 plane_bytes_per_line = horiz_pixels * cpp;
3487
3488 if (tiling == I915_FORMAT_MOD_Y_TILED ||
3489 tiling == I915_FORMAT_MOD_Yf_TILED) {
3490 plane_bytes_per_line *= 4;
3491 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3492 plane_blocks_per_line /= 4;
3493 } else if (tiling == DRM_FORMAT_MOD_NONE) {
3494 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
3495 } else {
3496 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3497 }
3498
3499 wm_intermediate_val = latency * pixel_rate;
3500 ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3501 plane_blocks_per_line;
3502
3503 return ret;
3504 }
3505
3506 static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
3507 struct intel_plane_state *pstate)
3508 {
3509 uint64_t adjusted_pixel_rate;
3510 uint64_t downscale_amount;
3511 uint64_t pixel_rate;
3512
3513 /* Shouldn't reach here on disabled planes... */
3514 if (WARN_ON(!pstate->visible))
3515 return 0;
3516
3517 /*
3518 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
3519 * with additional adjustments for plane-specific scaling.
3520 */
3521 adjusted_pixel_rate = skl_pipe_pixel_rate(cstate);
3522 downscale_amount = skl_plane_downscale_amount(pstate);
3523
3524 pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
3525 WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));
3526
3527 return pixel_rate;
3528 }
3529
3530 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3531 struct intel_crtc_state *cstate,
3532 struct intel_plane_state *intel_pstate,
3533 uint16_t ddb_allocation,
3534 int level,
3535 uint16_t *out_blocks, /* out */
3536 uint8_t *out_lines, /* out */
3537 bool *enabled /* out */)
3538 {
3539 struct drm_plane_state *pstate = &intel_pstate->base;
3540 struct drm_framebuffer *fb = pstate->fb;
3541 uint32_t latency = dev_priv->wm.skl_latency[level];
3542 uint32_t method1, method2;
3543 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3544 uint32_t res_blocks, res_lines;
3545 uint32_t selected_result;
3546 uint8_t cpp;
3547 uint32_t width = 0, height = 0;
3548 uint32_t plane_pixel_rate;
3549
3550 if (latency == 0 || !cstate->base.active || !intel_pstate->visible) {
3551 *enabled = false;
3552 return 0;
3553 }
3554
3555 width = drm_rect_width(&intel_pstate->src) >> 16;
3556 height = drm_rect_height(&intel_pstate->src) >> 16;
3557
3558 if (intel_rotation_90_or_270(pstate->rotation))
3559 swap(width, height);
3560
3561 cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3562 plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
3563
3564 method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
3565 method2 = skl_wm_method2(plane_pixel_rate,
3566 cstate->base.adjusted_mode.crtc_htotal,
3567 width,
3568 cpp,
3569 fb->modifier[0],
3570 latency);
3571
3572 plane_bytes_per_line = width * cpp;
3573 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3574
3575 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3576 fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3577 uint32_t min_scanlines = 4;
3578 uint32_t y_tile_minimum;
3579 if (intel_rotation_90_or_270(pstate->rotation)) {
3580 int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3581 drm_format_plane_cpp(fb->pixel_format, 1) :
3582 drm_format_plane_cpp(fb->pixel_format, 0);
3583
3584 switch (cpp) {
3585 case 1:
3586 min_scanlines = 16;
3587 break;
3588 case 2:
3589 min_scanlines = 8;
3590 break;
3591 case 8:
3592 WARN(1, "Unsupported pixel depth for rotation");
3593 }
3594 }
3595 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3596 selected_result = max(method2, y_tile_minimum);
3597 } else {
3598 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3599 selected_result = min(method1, method2);
3600 else
3601 selected_result = method1;
3602 }
3603
3604 res_blocks = selected_result + 1;
3605 res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3606
3607 if (level >= 1 && level <= 7) {
3608 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3609 fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3610 res_lines += 4;
3611 else
3612 res_blocks++;
3613 }
3614
3615 if (res_blocks >= ddb_allocation || res_lines > 31) {
3616 *enabled = false;
3617
3618 /*
3619 * If there are no valid level 0 watermarks, then we can't
3620 * support this display configuration.
3621 */
3622 if (level) {
3623 return 0;
3624 } else {
3625 DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3626 DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
3627 to_intel_crtc(cstate->base.crtc)->pipe,
3628 skl_wm_plane_id(to_intel_plane(pstate->plane)),
3629 res_blocks, ddb_allocation, res_lines);
3630
3631 return -EINVAL;
3632 }
3633 }
3634
3635 *out_blocks = res_blocks;
3636 *out_lines = res_lines;
3637 *enabled = true;
3638
3639 return 0;
3640 }
3641
3642 static int
3643 skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3644 struct skl_ddb_allocation *ddb,
3645 struct intel_crtc_state *cstate,
3646 int level,
3647 struct skl_wm_level *result)
3648 {
3649 struct drm_atomic_state *state = cstate->base.state;
3650 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3651 struct drm_plane *plane;
3652 struct intel_plane *intel_plane;
3653 struct intel_plane_state *intel_pstate;
3654 uint16_t ddb_blocks;
3655 enum pipe pipe = intel_crtc->pipe;
3656 int ret;
3657
3658 /*
3659 * We'll only calculate watermarks for planes that are actually
3660 * enabled, so make sure all other planes are set as disabled.
3661 */
3662 memset(result, 0, sizeof(*result));
3663
3664 for_each_intel_plane_mask(&dev_priv->drm,
3665 intel_plane,
3666 cstate->base.plane_mask) {
3667 int i = skl_wm_plane_id(intel_plane);
3668
3669 plane = &intel_plane->base;
3670 intel_pstate = NULL;
3671 if (state)
3672 intel_pstate =
3673 intel_atomic_get_existing_plane_state(state,
3674 intel_plane);
3675
3676 /*
3677 * Note: If we start supporting multiple pending atomic commits
3678 * against the same planes/CRTC's in the future, plane->state
3679 * will no longer be the correct pre-state to use for the
3680 * calculations here and we'll need to change where we get the
3681 * 'unchanged' plane data from.
3682 *
3683 * For now this is fine because we only allow one queued commit
3684 * against a CRTC. Even if the plane isn't modified by this
3685 * transaction and we don't have a plane lock, we still have
3686 * the CRTC's lock, so we know that no other transactions are
3687 * racing with us to update it.
3688 */
3689 if (!intel_pstate)
3690 intel_pstate = to_intel_plane_state(plane->state);
3691
3692 WARN_ON(!intel_pstate->base.fb);
3693
3694 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3695
3696 ret = skl_compute_plane_wm(dev_priv,
3697 cstate,
3698 intel_pstate,
3699 ddb_blocks,
3700 level,
3701 &result->plane_res_b[i],
3702 &result->plane_res_l[i],
3703 &result->plane_en[i]);
3704 if (ret)
3705 return ret;
3706 }
3707
3708 return 0;
3709 }
3710
3711 static uint32_t
3712 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3713 {
3714 if (!cstate->base.active)
3715 return 0;
3716
3717 if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3718 return 0;
3719
3720 return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3721 skl_pipe_pixel_rate(cstate));
3722 }
3723
3724 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3725 struct skl_wm_level *trans_wm /* out */)
3726 {
3727 struct drm_crtc *crtc = cstate->base.crtc;
3728 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3729 struct intel_plane *intel_plane;
3730
3731 if (!cstate->base.active)
3732 return;
3733
3734 /* Until we know more, just disable transition WMs */
3735 for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3736 int i = skl_wm_plane_id(intel_plane);
3737
3738 trans_wm->plane_en[i] = false;
3739 }
3740 }
3741
3742 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
3743 struct skl_ddb_allocation *ddb,
3744 struct skl_pipe_wm *pipe_wm)
3745 {
3746 struct drm_device *dev = cstate->base.crtc->dev;
3747 const struct drm_i915_private *dev_priv = to_i915(dev);
3748 int level, max_level = ilk_wm_max_level(dev);
3749 int ret;
3750
3751 for (level = 0; level <= max_level; level++) {
3752 ret = skl_compute_wm_level(dev_priv, ddb, cstate,
3753 level, &pipe_wm->wm[level]);
3754 if (ret)
3755 return ret;
3756 }
3757 pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3758
3759 skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3760
3761 return 0;
3762 }
3763
3764 static void skl_compute_wm_results(struct drm_device *dev,
3765 struct skl_pipe_wm *p_wm,
3766 struct skl_wm_values *r,
3767 struct intel_crtc *intel_crtc)
3768 {
3769 int level, max_level = ilk_wm_max_level(dev);
3770 enum pipe pipe = intel_crtc->pipe;
3771 uint32_t temp;
3772 int i;
3773
3774 for (level = 0; level <= max_level; level++) {
3775 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3776 temp = 0;
3777
3778 temp |= p_wm->wm[level].plane_res_l[i] <<
3779 PLANE_WM_LINES_SHIFT;
3780 temp |= p_wm->wm[level].plane_res_b[i];
3781 if (p_wm->wm[level].plane_en[i])
3782 temp |= PLANE_WM_EN;
3783
3784 r->plane[pipe][i][level] = temp;
3785 }
3786
3787 temp = 0;
3788
3789 temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3790 temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3791
3792 if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3793 temp |= PLANE_WM_EN;
3794
3795 r->plane[pipe][PLANE_CURSOR][level] = temp;
3796
3797 }
3798
3799 /* transition WMs */
3800 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3801 temp = 0;
3802 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3803 temp |= p_wm->trans_wm.plane_res_b[i];
3804 if (p_wm->trans_wm.plane_en[i])
3805 temp |= PLANE_WM_EN;
3806
3807 r->plane_trans[pipe][i] = temp;
3808 }
3809
3810 temp = 0;
3811 temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3812 temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3813 if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3814 temp |= PLANE_WM_EN;
3815
3816 r->plane_trans[pipe][PLANE_CURSOR] = temp;
3817
3818 r->wm_linetime[pipe] = p_wm->linetime;
3819 }
3820
3821 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3822 i915_reg_t reg,
3823 const struct skl_ddb_entry *entry)
3824 {
3825 if (entry->end)
3826 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3827 else
3828 I915_WRITE(reg, 0);
3829 }
3830
3831 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3832 const struct skl_wm_values *new)
3833 {
3834 struct drm_device *dev = &dev_priv->drm;
3835 struct intel_crtc *crtc;
3836
3837 for_each_intel_crtc(dev, crtc) {
3838 int i, level, max_level = ilk_wm_max_level(dev);
3839 enum pipe pipe = crtc->pipe;
3840
3841 if ((new->dirty_pipes & drm_crtc_mask(&crtc->base)) == 0)
3842 continue;
3843 if (!crtc->active)
3844 continue;
3845
3846 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3847
3848 for (level = 0; level <= max_level; level++) {
3849 for (i = 0; i < intel_num_planes(crtc); i++)
3850 I915_WRITE(PLANE_WM(pipe, i, level),
3851 new->plane[pipe][i][level]);
3852 I915_WRITE(CUR_WM(pipe, level),
3853 new->plane[pipe][PLANE_CURSOR][level]);
3854 }
3855 for (i = 0; i < intel_num_planes(crtc); i++)
3856 I915_WRITE(PLANE_WM_TRANS(pipe, i),
3857 new->plane_trans[pipe][i]);
3858 I915_WRITE(CUR_WM_TRANS(pipe),
3859 new->plane_trans[pipe][PLANE_CURSOR]);
3860
3861 for (i = 0; i < intel_num_planes(crtc); i++) {
3862 skl_ddb_entry_write(dev_priv,
3863 PLANE_BUF_CFG(pipe, i),
3864 &new->ddb.plane[pipe][i]);
3865 skl_ddb_entry_write(dev_priv,
3866 PLANE_NV12_BUF_CFG(pipe, i),
3867 &new->ddb.y_plane[pipe][i]);
3868 }
3869
3870 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3871 &new->ddb.plane[pipe][PLANE_CURSOR]);
3872 }
3873 }
3874
3875 /*
3876 * When setting up a new DDB allocation arrangement, we need to correctly
3877 * sequence the times at which the new allocations for the pipes are taken into
3878 * account or we'll have pipes fetching from space previously allocated to
3879 * another pipe.
3880 *
3881 * Roughly the sequence looks like:
3882 * 1. re-allocate the pipe(s) with the allocation being reduced and not
3883 * overlapping with a previous light-up pipe (another way to put it is:
3884 * pipes with their new allocation strickly included into their old ones).
3885 * 2. re-allocate the other pipes that get their allocation reduced
3886 * 3. allocate the pipes having their allocation increased
3887 *
3888 * Steps 1. and 2. are here to take care of the following case:
3889 * - Initially DDB looks like this:
3890 * | B | C |
3891 * - enable pipe A.
3892 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3893 * allocation
3894 * | A | B | C |
3895 *
3896 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3897 */
3898
3899 static void
3900 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3901 {
3902 int plane;
3903
3904 DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3905
3906 for_each_plane(dev_priv, pipe, plane) {
3907 I915_WRITE(PLANE_SURF(pipe, plane),
3908 I915_READ(PLANE_SURF(pipe, plane)));
3909 }
3910 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3911 }
3912
3913 static bool
3914 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3915 const struct skl_ddb_allocation *new,
3916 enum pipe pipe)
3917 {
3918 uint16_t old_size, new_size;
3919
3920 old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3921 new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3922
3923 return old_size != new_size &&
3924 new->pipe[pipe].start >= old->pipe[pipe].start &&
3925 new->pipe[pipe].end <= old->pipe[pipe].end;
3926 }
3927
3928 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3929 struct skl_wm_values *new_values)
3930 {
3931 struct drm_device *dev = &dev_priv->drm;
3932 struct skl_ddb_allocation *cur_ddb, *new_ddb;
3933 bool reallocated[I915_MAX_PIPES] = {};
3934 struct intel_crtc *crtc;
3935 enum pipe pipe;
3936
3937 new_ddb = &new_values->ddb;
3938 cur_ddb = &dev_priv->wm.skl_hw.ddb;
3939
3940 /*
3941 * First pass: flush the pipes with the new allocation contained into
3942 * the old space.
3943 *
3944 * We'll wait for the vblank on those pipes to ensure we can safely
3945 * re-allocate the freed space without this pipe fetching from it.
3946 */
3947 for_each_intel_crtc(dev, crtc) {
3948 if (!crtc->active)
3949 continue;
3950
3951 pipe = crtc->pipe;
3952
3953 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3954 continue;
3955
3956 skl_wm_flush_pipe(dev_priv, pipe, 1);
3957 intel_wait_for_vblank(dev, pipe);
3958
3959 reallocated[pipe] = true;
3960 }
3961
3962
3963 /*
3964 * Second pass: flush the pipes that are having their allocation
3965 * reduced, but overlapping with a previous allocation.
3966 *
3967 * Here as well we need to wait for the vblank to make sure the freed
3968 * space is not used anymore.
3969 */
3970 for_each_intel_crtc(dev, crtc) {
3971 if (!crtc->active)
3972 continue;
3973
3974 pipe = crtc->pipe;
3975
3976 if (reallocated[pipe])
3977 continue;
3978
3979 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3980 skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3981 skl_wm_flush_pipe(dev_priv, pipe, 2);
3982 intel_wait_for_vblank(dev, pipe);
3983 reallocated[pipe] = true;
3984 }
3985 }
3986
3987 /*
3988 * Third pass: flush the pipes that got more space allocated.
3989 *
3990 * We don't need to actively wait for the update here, next vblank
3991 * will just get more DDB space with the correct WM values.
3992 */
3993 for_each_intel_crtc(dev, crtc) {
3994 if (!crtc->active)
3995 continue;
3996
3997 pipe = crtc->pipe;
3998
3999 /*
4000 * At this point, only the pipes more space than before are
4001 * left to re-allocate.
4002 */
4003 if (reallocated[pipe])
4004 continue;
4005
4006 skl_wm_flush_pipe(dev_priv, pipe, 3);
4007 }
4008 }
4009
4010 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
4011 struct skl_ddb_allocation *ddb, /* out */
4012 struct skl_pipe_wm *pipe_wm, /* out */
4013 bool *changed /* out */)
4014 {
4015 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
4016 struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
4017 int ret;
4018
4019 ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
4020 if (ret)
4021 return ret;
4022
4023 if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
4024 *changed = false;
4025 else
4026 *changed = true;
4027
4028 return 0;
4029 }
4030
4031 static uint32_t
4032 pipes_modified(struct drm_atomic_state *state)
4033 {
4034 struct drm_crtc *crtc;
4035 struct drm_crtc_state *cstate;
4036 uint32_t i, ret = 0;
4037
4038 for_each_crtc_in_state(state, crtc, cstate, i)
4039 ret |= drm_crtc_mask(crtc);
4040
4041 return ret;
4042 }
4043
4044 static int
4045 skl_compute_ddb(struct drm_atomic_state *state)
4046 {
4047 struct drm_device *dev = state->dev;
4048 struct drm_i915_private *dev_priv = to_i915(dev);
4049 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4050 struct intel_crtc *intel_crtc;
4051 struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4052 uint32_t realloc_pipes = pipes_modified(state);
4053 int ret;
4054
4055 /*
4056 * If this is our first atomic update following hardware readout,
4057 * we can't trust the DDB that the BIOS programmed for us. Let's
4058 * pretend that all pipes switched active status so that we'll
4059 * ensure a full DDB recompute.
4060 */
4061 if (dev_priv->wm.distrust_bios_wm) {
4062 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
4063 state->acquire_ctx);
4064 if (ret)
4065 return ret;
4066
4067 intel_state->active_pipe_changes = ~0;
4068
4069 /*
4070 * We usually only initialize intel_state->active_crtcs if we
4071 * we're doing a modeset; make sure this field is always
4072 * initialized during the sanitization process that happens
4073 * on the first commit too.
4074 */
4075 if (!intel_state->modeset)
4076 intel_state->active_crtcs = dev_priv->active_crtcs;
4077 }
4078
4079 /*
4080 * If the modeset changes which CRTC's are active, we need to
4081 * recompute the DDB allocation for *all* active pipes, even
4082 * those that weren't otherwise being modified in any way by this
4083 * atomic commit. Due to the shrinking of the per-pipe allocations
4084 * when new active CRTC's are added, it's possible for a pipe that
4085 * we were already using and aren't changing at all here to suddenly
4086 * become invalid if its DDB needs exceeds its new allocation.
4087 *
4088 * Note that if we wind up doing a full DDB recompute, we can't let
4089 * any other display updates race with this transaction, so we need
4090 * to grab the lock on *all* CRTC's.
4091 */
4092 if (intel_state->active_pipe_changes) {
4093 realloc_pipes = ~0;
4094 intel_state->wm_results.dirty_pipes = ~0;
4095 }
4096
4097 for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
4098 struct intel_crtc_state *cstate;
4099
4100 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
4101 if (IS_ERR(cstate))
4102 return PTR_ERR(cstate);
4103
4104 ret = skl_allocate_pipe_ddb(cstate, ddb);
4105 if (ret)
4106 return ret;
4107
4108 ret = drm_atomic_add_affected_planes(state, &intel_crtc->base);
4109 if (ret)
4110 return ret;
4111 }
4112
4113 return 0;
4114 }
4115
4116 static void
4117 skl_copy_wm_for_pipe(struct skl_wm_values *dst,
4118 struct skl_wm_values *src,
4119 enum pipe pipe)
4120 {
4121 dst->wm_linetime[pipe] = src->wm_linetime[pipe];
4122 memcpy(dst->plane[pipe], src->plane[pipe],
4123 sizeof(dst->plane[pipe]));
4124 memcpy(dst->plane_trans[pipe], src->plane_trans[pipe],
4125 sizeof(dst->plane_trans[pipe]));
4126
4127 dst->ddb.pipe[pipe] = src->ddb.pipe[pipe];
4128 memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
4129 sizeof(dst->ddb.y_plane[pipe]));
4130 memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
4131 sizeof(dst->ddb.plane[pipe]));
4132 }
4133
4134 static int
4135 skl_compute_wm(struct drm_atomic_state *state)
4136 {
4137 struct drm_crtc *crtc;
4138 struct drm_crtc_state *cstate;
4139 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4140 struct skl_wm_values *results = &intel_state->wm_results;
4141 struct skl_pipe_wm *pipe_wm;
4142 bool changed = false;
4143 int ret, i;
4144
4145 /*
4146 * If this transaction isn't actually touching any CRTC's, don't
4147 * bother with watermark calculation. Note that if we pass this
4148 * test, we're guaranteed to hold at least one CRTC state mutex,
4149 * which means we can safely use values like dev_priv->active_crtcs
4150 * since any racing commits that want to update them would need to
4151 * hold _all_ CRTC state mutexes.
4152 */
4153 for_each_crtc_in_state(state, crtc, cstate, i)
4154 changed = true;
4155 if (!changed)
4156 return 0;
4157
4158 /* Clear all dirty flags */
4159 results->dirty_pipes = 0;
4160
4161 ret = skl_compute_ddb(state);
4162 if (ret)
4163 return ret;
4164
4165 /*
4166 * Calculate WM's for all pipes that are part of this transaction.
4167 * Note that the DDB allocation above may have added more CRTC's that
4168 * weren't otherwise being modified (and set bits in dirty_pipes) if
4169 * pipe allocations had to change.
4170 *
4171 * FIXME: Now that we're doing this in the atomic check phase, we
4172 * should allow skl_update_pipe_wm() to return failure in cases where
4173 * no suitable watermark values can be found.
4174 */
4175 for_each_crtc_in_state(state, crtc, cstate, i) {
4176 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4177 struct intel_crtc_state *intel_cstate =
4178 to_intel_crtc_state(cstate);
4179
4180 pipe_wm = &intel_cstate->wm.skl.optimal;
4181 ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
4182 &changed);
4183 if (ret)
4184 return ret;
4185
4186 if (changed)
4187 results->dirty_pipes |= drm_crtc_mask(crtc);
4188
4189 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4190 /* This pipe's WM's did not change */
4191 continue;
4192
4193 intel_cstate->update_wm_pre = true;
4194 skl_compute_wm_results(crtc->dev, pipe_wm, results, intel_crtc);
4195 }
4196
4197 return 0;
4198 }
4199
4200 static void skl_update_wm(struct drm_crtc *crtc)
4201 {
4202 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4203 struct drm_device *dev = crtc->dev;
4204 struct drm_i915_private *dev_priv = to_i915(dev);
4205 struct skl_wm_values *results = &dev_priv->wm.skl_results;
4206 struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4207 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4208 struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4209 int pipe;
4210
4211 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4212 return;
4213
4214 intel_crtc->wm.active.skl = *pipe_wm;
4215
4216 mutex_lock(&dev_priv->wm.wm_mutex);
4217
4218 skl_write_wm_values(dev_priv, results);
4219 skl_flush_wm_values(dev_priv, results);
4220
4221 /*
4222 * Store the new configuration (but only for the pipes that have
4223 * changed; the other values weren't recomputed).
4224 */
4225 for_each_pipe_masked(dev_priv, pipe, results->dirty_pipes)
4226 skl_copy_wm_for_pipe(hw_vals, results, pipe);
4227
4228 mutex_unlock(&dev_priv->wm.wm_mutex);
4229 }
4230
4231 static void ilk_compute_wm_config(struct drm_device *dev,
4232 struct intel_wm_config *config)
4233 {
4234 struct intel_crtc *crtc;
4235
4236 /* Compute the currently _active_ config */
4237 for_each_intel_crtc(dev, crtc) {
4238 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
4239
4240 if (!wm->pipe_enabled)
4241 continue;
4242
4243 config->sprites_enabled |= wm->sprites_enabled;
4244 config->sprites_scaled |= wm->sprites_scaled;
4245 config->num_pipes_active++;
4246 }
4247 }
4248
4249 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4250 {
4251 struct drm_device *dev = &dev_priv->drm;
4252 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4253 struct ilk_wm_maximums max;
4254 struct intel_wm_config config = {};
4255 struct ilk_wm_values results = {};
4256 enum intel_ddb_partitioning partitioning;
4257
4258 ilk_compute_wm_config(dev, &config);
4259
4260 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
4261 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4262
4263 /* 5/6 split only in single pipe config on IVB+ */
4264 if (INTEL_INFO(dev)->gen >= 7 &&
4265 config.num_pipes_active == 1 && config.sprites_enabled) {
4266 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
4267 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4268
4269 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4270 } else {
4271 best_lp_wm = &lp_wm_1_2;
4272 }
4273
4274 partitioning = (best_lp_wm == &lp_wm_1_2) ?
4275 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4276
4277 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4278
4279 ilk_write_wm_values(dev_priv, &results);
4280 }
4281
4282 static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4283 {
4284 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4285 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4286
4287 mutex_lock(&dev_priv->wm.wm_mutex);
4288 intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4289 ilk_program_watermarks(dev_priv);
4290 mutex_unlock(&dev_priv->wm.wm_mutex);
4291 }
4292
4293 static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
4294 {
4295 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4296 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4297
4298 mutex_lock(&dev_priv->wm.wm_mutex);
4299 if (cstate->wm.need_postvbl_update) {
4300 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4301 ilk_program_watermarks(dev_priv);
4302 }
4303 mutex_unlock(&dev_priv->wm.wm_mutex);
4304 }
4305
4306 static void skl_pipe_wm_active_state(uint32_t val,
4307 struct skl_pipe_wm *active,
4308 bool is_transwm,
4309 bool is_cursor,
4310 int i,
4311 int level)
4312 {
4313 bool is_enabled = (val & PLANE_WM_EN) != 0;
4314
4315 if (!is_transwm) {
4316 if (!is_cursor) {
4317 active->wm[level].plane_en[i] = is_enabled;
4318 active->wm[level].plane_res_b[i] =
4319 val & PLANE_WM_BLOCKS_MASK;
4320 active->wm[level].plane_res_l[i] =
4321 (val >> PLANE_WM_LINES_SHIFT) &
4322 PLANE_WM_LINES_MASK;
4323 } else {
4324 active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
4325 active->wm[level].plane_res_b[PLANE_CURSOR] =
4326 val & PLANE_WM_BLOCKS_MASK;
4327 active->wm[level].plane_res_l[PLANE_CURSOR] =
4328 (val >> PLANE_WM_LINES_SHIFT) &
4329 PLANE_WM_LINES_MASK;
4330 }
4331 } else {
4332 if (!is_cursor) {
4333 active->trans_wm.plane_en[i] = is_enabled;
4334 active->trans_wm.plane_res_b[i] =
4335 val & PLANE_WM_BLOCKS_MASK;
4336 active->trans_wm.plane_res_l[i] =
4337 (val >> PLANE_WM_LINES_SHIFT) &
4338 PLANE_WM_LINES_MASK;
4339 } else {
4340 active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
4341 active->trans_wm.plane_res_b[PLANE_CURSOR] =
4342 val & PLANE_WM_BLOCKS_MASK;
4343 active->trans_wm.plane_res_l[PLANE_CURSOR] =
4344 (val >> PLANE_WM_LINES_SHIFT) &
4345 PLANE_WM_LINES_MASK;
4346 }
4347 }
4348 }
4349
4350 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4351 {
4352 struct drm_device *dev = crtc->dev;
4353 struct drm_i915_private *dev_priv = to_i915(dev);
4354 struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4355 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4356 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4357 struct skl_pipe_wm *active = &cstate->wm.skl.optimal;
4358 enum pipe pipe = intel_crtc->pipe;
4359 int level, i, max_level;
4360 uint32_t temp;
4361
4362 max_level = ilk_wm_max_level(dev);
4363
4364 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4365
4366 for (level = 0; level <= max_level; level++) {
4367 for (i = 0; i < intel_num_planes(intel_crtc); i++)
4368 hw->plane[pipe][i][level] =
4369 I915_READ(PLANE_WM(pipe, i, level));
4370 hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
4371 }
4372
4373 for (i = 0; i < intel_num_planes(intel_crtc); i++)
4374 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
4375 hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
4376
4377 if (!intel_crtc->active)
4378 return;
4379
4380 hw->dirty_pipes |= drm_crtc_mask(crtc);
4381
4382 active->linetime = hw->wm_linetime[pipe];
4383
4384 for (level = 0; level <= max_level; level++) {
4385 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4386 temp = hw->plane[pipe][i][level];
4387 skl_pipe_wm_active_state(temp, active, false,
4388 false, i, level);
4389 }
4390 temp = hw->plane[pipe][PLANE_CURSOR][level];
4391 skl_pipe_wm_active_state(temp, active, false, true, i, level);
4392 }
4393
4394 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4395 temp = hw->plane_trans[pipe][i];
4396 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
4397 }
4398
4399 temp = hw->plane_trans[pipe][PLANE_CURSOR];
4400 skl_pipe_wm_active_state(temp, active, true, true, i, 0);
4401
4402 intel_crtc->wm.active.skl = *active;
4403 }
4404
4405 void skl_wm_get_hw_state(struct drm_device *dev)
4406 {
4407 struct drm_i915_private *dev_priv = to_i915(dev);
4408 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4409 struct drm_crtc *crtc;
4410
4411 skl_ddb_get_hw_state(dev_priv, ddb);
4412 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
4413 skl_pipe_wm_get_hw_state(crtc);
4414
4415 if (dev_priv->active_crtcs) {
4416 /* Fully recompute DDB on first atomic commit */
4417 dev_priv->wm.distrust_bios_wm = true;
4418 } else {
4419 /* Easy/common case; just sanitize DDB now if everything off */
4420 memset(ddb, 0, sizeof(*ddb));
4421 }
4422 }
4423
4424 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4425 {
4426 struct drm_device *dev = crtc->dev;
4427 struct drm_i915_private *dev_priv = to_i915(dev);
4428 struct ilk_wm_values *hw = &dev_priv->wm.hw;
4429 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4430 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4431 struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4432 enum pipe pipe = intel_crtc->pipe;
4433 static const i915_reg_t wm0_pipe_reg[] = {
4434 [PIPE_A] = WM0_PIPEA_ILK,
4435 [PIPE_B] = WM0_PIPEB_ILK,
4436 [PIPE_C] = WM0_PIPEC_IVB,
4437 };
4438
4439 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4440 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4441 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4442
4443 memset(active, 0, sizeof(*active));
4444
4445 active->pipe_enabled = intel_crtc->active;
4446
4447 if (active->pipe_enabled) {
4448 u32 tmp = hw->wm_pipe[pipe];
4449
4450 /*
4451 * For active pipes LP0 watermark is marked as
4452 * enabled, and LP1+ watermaks as disabled since
4453 * we can't really reverse compute them in case
4454 * multiple pipes are active.
4455 */
4456 active->wm[0].enable = true;
4457 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
4458 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
4459 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
4460 active->linetime = hw->wm_linetime[pipe];
4461 } else {
4462 int level, max_level = ilk_wm_max_level(dev);
4463
4464 /*
4465 * For inactive pipes, all watermark levels
4466 * should be marked as enabled but zeroed,
4467 * which is what we'd compute them to.
4468 */
4469 for (level = 0; level <= max_level; level++)
4470 active->wm[level].enable = true;
4471 }
4472
4473 intel_crtc->wm.active.ilk = *active;
4474 }
4475
4476 #define _FW_WM(value, plane) \
4477 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
4478 #define _FW_WM_VLV(value, plane) \
4479 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
4480
4481 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
4482 struct vlv_wm_values *wm)
4483 {
4484 enum pipe pipe;
4485 uint32_t tmp;
4486
4487 for_each_pipe(dev_priv, pipe) {
4488 tmp = I915_READ(VLV_DDL(pipe));
4489
4490 wm->ddl[pipe].primary =
4491 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4492 wm->ddl[pipe].cursor =
4493 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4494 wm->ddl[pipe].sprite[0] =
4495 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4496 wm->ddl[pipe].sprite[1] =
4497 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4498 }
4499
4500 tmp = I915_READ(DSPFW1);
4501 wm->sr.plane = _FW_WM(tmp, SR);
4502 wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
4503 wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
4504 wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
4505
4506 tmp = I915_READ(DSPFW2);
4507 wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
4508 wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
4509 wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
4510
4511 tmp = I915_READ(DSPFW3);
4512 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4513
4514 if (IS_CHERRYVIEW(dev_priv)) {
4515 tmp = I915_READ(DSPFW7_CHV);
4516 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4517 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4518
4519 tmp = I915_READ(DSPFW8_CHV);
4520 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
4521 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
4522
4523 tmp = I915_READ(DSPFW9_CHV);
4524 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
4525 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
4526
4527 tmp = I915_READ(DSPHOWM);
4528 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4529 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4530 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4531 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
4532 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4533 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4534 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4535 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4536 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4537 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4538 } else {
4539 tmp = I915_READ(DSPFW7);
4540 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4541 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4542
4543 tmp = I915_READ(DSPHOWM);
4544 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4545 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4546 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4547 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4548 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4549 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4550 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4551 }
4552 }
4553
4554 #undef _FW_WM
4555 #undef _FW_WM_VLV
4556
4557 void vlv_wm_get_hw_state(struct drm_device *dev)
4558 {
4559 struct drm_i915_private *dev_priv = to_i915(dev);
4560 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4561 struct intel_plane *plane;
4562 enum pipe pipe;
4563 u32 val;
4564
4565 vlv_read_wm_values(dev_priv, wm);
4566
4567 for_each_intel_plane(dev, plane) {
4568 switch (plane->base.type) {
4569 int sprite;
4570 case DRM_PLANE_TYPE_CURSOR:
4571 plane->wm.fifo_size = 63;
4572 break;
4573 case DRM_PLANE_TYPE_PRIMARY:
4574 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4575 break;
4576 case DRM_PLANE_TYPE_OVERLAY:
4577 sprite = plane->plane;
4578 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4579 break;
4580 }
4581 }
4582
4583 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4584 wm->level = VLV_WM_LEVEL_PM2;
4585
4586 if (IS_CHERRYVIEW(dev_priv)) {
4587 mutex_lock(&dev_priv->rps.hw_lock);
4588
4589 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4590 if (val & DSP_MAXFIFO_PM5_ENABLE)
4591 wm->level = VLV_WM_LEVEL_PM5;
4592
4593 /*
4594 * If DDR DVFS is disabled in the BIOS, Punit
4595 * will never ack the request. So if that happens
4596 * assume we don't have to enable/disable DDR DVFS
4597 * dynamically. To test that just set the REQ_ACK
4598 * bit to poke the Punit, but don't change the
4599 * HIGH/LOW bits so that we don't actually change
4600 * the current state.
4601 */
4602 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4603 val |= FORCE_DDR_FREQ_REQ_ACK;
4604 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4605
4606 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4607 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4608 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4609 "assuming DDR DVFS is disabled\n");
4610 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4611 } else {
4612 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4613 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4614 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4615 }
4616
4617 mutex_unlock(&dev_priv->rps.hw_lock);
4618 }
4619
4620 for_each_pipe(dev_priv, pipe)
4621 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4622 pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4623 wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4624
4625 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4626 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4627 }
4628
4629 void ilk_wm_get_hw_state(struct drm_device *dev)
4630 {
4631 struct drm_i915_private *dev_priv = to_i915(dev);
4632 struct ilk_wm_values *hw = &dev_priv->wm.hw;
4633 struct drm_crtc *crtc;
4634
4635 for_each_crtc(dev, crtc)
4636 ilk_pipe_wm_get_hw_state(crtc);
4637
4638 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4639 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4640 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4641
4642 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4643 if (INTEL_INFO(dev)->gen >= 7) {
4644 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4645 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4646 }
4647
4648 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4649 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4650 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4651 else if (IS_IVYBRIDGE(dev))
4652 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4653 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4654
4655 hw->enable_fbc_wm =
4656 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4657 }
4658
4659 /**
4660 * intel_update_watermarks - update FIFO watermark values based on current modes
4661 *
4662 * Calculate watermark values for the various WM regs based on current mode
4663 * and plane configuration.
4664 *
4665 * There are several cases to deal with here:
4666 * - normal (i.e. non-self-refresh)
4667 * - self-refresh (SR) mode
4668 * - lines are large relative to FIFO size (buffer can hold up to 2)
4669 * - lines are small relative to FIFO size (buffer can hold more than 2
4670 * lines), so need to account for TLB latency
4671 *
4672 * The normal calculation is:
4673 * watermark = dotclock * bytes per pixel * latency
4674 * where latency is platform & configuration dependent (we assume pessimal
4675 * values here).
4676 *
4677 * The SR calculation is:
4678 * watermark = (trunc(latency/line time)+1) * surface width *
4679 * bytes per pixel
4680 * where
4681 * line time = htotal / dotclock
4682 * surface width = hdisplay for normal plane and 64 for cursor
4683 * and latency is assumed to be high, as above.
4684 *
4685 * The final value programmed to the register should always be rounded up,
4686 * and include an extra 2 entries to account for clock crossings.
4687 *
4688 * We don't use the sprite, so we can ignore that. And on Crestline we have
4689 * to set the non-SR watermarks to 8.
4690 */
4691 void intel_update_watermarks(struct drm_crtc *crtc)
4692 {
4693 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4694
4695 if (dev_priv->display.update_wm)
4696 dev_priv->display.update_wm(crtc);
4697 }
4698
4699 /*
4700 * Lock protecting IPS related data structures
4701 */
4702 DEFINE_SPINLOCK(mchdev_lock);
4703
4704 /* Global for IPS driver to get at the current i915 device. Protected by
4705 * mchdev_lock. */
4706 static struct drm_i915_private *i915_mch_dev;
4707
4708 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4709 {
4710 u16 rgvswctl;
4711
4712 assert_spin_locked(&mchdev_lock);
4713
4714 rgvswctl = I915_READ16(MEMSWCTL);
4715 if (rgvswctl & MEMCTL_CMD_STS) {
4716 DRM_DEBUG("gpu busy, RCS change rejected\n");
4717 return false; /* still busy with another command */
4718 }
4719
4720 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4721 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4722 I915_WRITE16(MEMSWCTL, rgvswctl);
4723 POSTING_READ16(MEMSWCTL);
4724
4725 rgvswctl |= MEMCTL_CMD_STS;
4726 I915_WRITE16(MEMSWCTL, rgvswctl);
4727
4728 return true;
4729 }
4730
4731 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4732 {
4733 u32 rgvmodectl;
4734 u8 fmax, fmin, fstart, vstart;
4735
4736 spin_lock_irq(&mchdev_lock);
4737
4738 rgvmodectl = I915_READ(MEMMODECTL);
4739
4740 /* Enable temp reporting */
4741 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4742 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4743
4744 /* 100ms RC evaluation intervals */
4745 I915_WRITE(RCUPEI, 100000);
4746 I915_WRITE(RCDNEI, 100000);
4747
4748 /* Set max/min thresholds to 90ms and 80ms respectively */
4749 I915_WRITE(RCBMAXAVG, 90000);
4750 I915_WRITE(RCBMINAVG, 80000);
4751
4752 I915_WRITE(MEMIHYST, 1);
4753
4754 /* Set up min, max, and cur for interrupt handling */
4755 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4756 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4757 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4758 MEMMODE_FSTART_SHIFT;
4759
4760 vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4761 PXVFREQ_PX_SHIFT;
4762
4763 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4764 dev_priv->ips.fstart = fstart;
4765
4766 dev_priv->ips.max_delay = fstart;
4767 dev_priv->ips.min_delay = fmin;
4768 dev_priv->ips.cur_delay = fstart;
4769
4770 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4771 fmax, fmin, fstart);
4772
4773 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4774
4775 /*
4776 * Interrupts will be enabled in ironlake_irq_postinstall
4777 */
4778
4779 I915_WRITE(VIDSTART, vstart);
4780 POSTING_READ(VIDSTART);
4781
4782 rgvmodectl |= MEMMODE_SWMODE_EN;
4783 I915_WRITE(MEMMODECTL, rgvmodectl);
4784
4785 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4786 DRM_ERROR("stuck trying to change perf mode\n");
4787 mdelay(1);
4788
4789 ironlake_set_drps(dev_priv, fstart);
4790
4791 dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4792 I915_READ(DDREC) + I915_READ(CSIEC);
4793 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4794 dev_priv->ips.last_count2 = I915_READ(GFXEC);
4795 dev_priv->ips.last_time2 = ktime_get_raw_ns();
4796
4797 spin_unlock_irq(&mchdev_lock);
4798 }
4799
4800 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4801 {
4802 u16 rgvswctl;
4803
4804 spin_lock_irq(&mchdev_lock);
4805
4806 rgvswctl = I915_READ16(MEMSWCTL);
4807
4808 /* Ack interrupts, disable EFC interrupt */
4809 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4810 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4811 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4812 I915_WRITE(DEIIR, DE_PCU_EVENT);
4813 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4814
4815 /* Go back to the starting frequency */
4816 ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4817 mdelay(1);
4818 rgvswctl |= MEMCTL_CMD_STS;
4819 I915_WRITE(MEMSWCTL, rgvswctl);
4820 mdelay(1);
4821
4822 spin_unlock_irq(&mchdev_lock);
4823 }
4824
4825 /* There's a funny hw issue where the hw returns all 0 when reading from
4826 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4827 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4828 * all limits and the gpu stuck at whatever frequency it is at atm).
4829 */
4830 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4831 {
4832 u32 limits;
4833
4834 /* Only set the down limit when we've reached the lowest level to avoid
4835 * getting more interrupts, otherwise leave this clear. This prevents a
4836 * race in the hw when coming out of rc6: There's a tiny window where
4837 * the hw runs at the minimal clock before selecting the desired
4838 * frequency, if the down threshold expires in that window we will not
4839 * receive a down interrupt. */
4840 if (IS_GEN9(dev_priv)) {
4841 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4842 if (val <= dev_priv->rps.min_freq_softlimit)
4843 limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4844 } else {
4845 limits = dev_priv->rps.max_freq_softlimit << 24;
4846 if (val <= dev_priv->rps.min_freq_softlimit)
4847 limits |= dev_priv->rps.min_freq_softlimit << 16;
4848 }
4849
4850 return limits;
4851 }
4852
4853 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4854 {
4855 int new_power;
4856 u32 threshold_up = 0, threshold_down = 0; /* in % */
4857 u32 ei_up = 0, ei_down = 0;
4858
4859 new_power = dev_priv->rps.power;
4860 switch (dev_priv->rps.power) {
4861 case LOW_POWER:
4862 if (val > dev_priv->rps.efficient_freq + 1 &&
4863 val > dev_priv->rps.cur_freq)
4864 new_power = BETWEEN;
4865 break;
4866
4867 case BETWEEN:
4868 if (val <= dev_priv->rps.efficient_freq &&
4869 val < dev_priv->rps.cur_freq)
4870 new_power = LOW_POWER;
4871 else if (val >= dev_priv->rps.rp0_freq &&
4872 val > dev_priv->rps.cur_freq)
4873 new_power = HIGH_POWER;
4874 break;
4875
4876 case HIGH_POWER:
4877 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
4878 val < dev_priv->rps.cur_freq)
4879 new_power = BETWEEN;
4880 break;
4881 }
4882 /* Max/min bins are special */
4883 if (val <= dev_priv->rps.min_freq_softlimit)
4884 new_power = LOW_POWER;
4885 if (val >= dev_priv->rps.max_freq_softlimit)
4886 new_power = HIGH_POWER;
4887 if (new_power == dev_priv->rps.power)
4888 return;
4889
4890 /* Note the units here are not exactly 1us, but 1280ns. */
4891 switch (new_power) {
4892 case LOW_POWER:
4893 /* Upclock if more than 95% busy over 16ms */
4894 ei_up = 16000;
4895 threshold_up = 95;
4896
4897 /* Downclock if less than 85% busy over 32ms */
4898 ei_down = 32000;
4899 threshold_down = 85;
4900 break;
4901
4902 case BETWEEN:
4903 /* Upclock if more than 90% busy over 13ms */
4904 ei_up = 13000;
4905 threshold_up = 90;
4906
4907 /* Downclock if less than 75% busy over 32ms */
4908 ei_down = 32000;
4909 threshold_down = 75;
4910 break;
4911
4912 case HIGH_POWER:
4913 /* Upclock if more than 85% busy over 10ms */
4914 ei_up = 10000;
4915 threshold_up = 85;
4916
4917 /* Downclock if less than 60% busy over 32ms */
4918 ei_down = 32000;
4919 threshold_down = 60;
4920 break;
4921 }
4922
4923 I915_WRITE(GEN6_RP_UP_EI,
4924 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4925 I915_WRITE(GEN6_RP_UP_THRESHOLD,
4926 GT_INTERVAL_FROM_US(dev_priv,
4927 ei_up * threshold_up / 100));
4928
4929 I915_WRITE(GEN6_RP_DOWN_EI,
4930 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4931 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4932 GT_INTERVAL_FROM_US(dev_priv,
4933 ei_down * threshold_down / 100));
4934
4935 I915_WRITE(GEN6_RP_CONTROL,
4936 GEN6_RP_MEDIA_TURBO |
4937 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4938 GEN6_RP_MEDIA_IS_GFX |
4939 GEN6_RP_ENABLE |
4940 GEN6_RP_UP_BUSY_AVG |
4941 GEN6_RP_DOWN_IDLE_AVG);
4942
4943 dev_priv->rps.power = new_power;
4944 dev_priv->rps.up_threshold = threshold_up;
4945 dev_priv->rps.down_threshold = threshold_down;
4946 dev_priv->rps.last_adj = 0;
4947 }
4948
4949 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4950 {
4951 u32 mask = 0;
4952
4953 if (val > dev_priv->rps.min_freq_softlimit)
4954 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4955 if (val < dev_priv->rps.max_freq_softlimit)
4956 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4957
4958 mask &= dev_priv->pm_rps_events;
4959
4960 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4961 }
4962
4963 /* gen6_set_rps is called to update the frequency request, but should also be
4964 * called when the range (min_delay and max_delay) is modified so that we can
4965 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4966 static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4967 {
4968 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4969 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4970 return;
4971
4972 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4973 WARN_ON(val > dev_priv->rps.max_freq);
4974 WARN_ON(val < dev_priv->rps.min_freq);
4975
4976 /* min/max delay may still have been modified so be sure to
4977 * write the limits value.
4978 */
4979 if (val != dev_priv->rps.cur_freq) {
4980 gen6_set_rps_thresholds(dev_priv, val);
4981
4982 if (IS_GEN9(dev_priv))
4983 I915_WRITE(GEN6_RPNSWREQ,
4984 GEN9_FREQUENCY(val));
4985 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4986 I915_WRITE(GEN6_RPNSWREQ,
4987 HSW_FREQUENCY(val));
4988 else
4989 I915_WRITE(GEN6_RPNSWREQ,
4990 GEN6_FREQUENCY(val) |
4991 GEN6_OFFSET(0) |
4992 GEN6_AGGRESSIVE_TURBO);
4993 }
4994
4995 /* Make sure we continue to get interrupts
4996 * until we hit the minimum or maximum frequencies.
4997 */
4998 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4999 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
5000
5001 POSTING_READ(GEN6_RPNSWREQ);
5002
5003 dev_priv->rps.cur_freq = val;
5004 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
5005 }
5006
5007 static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
5008 {
5009 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5010 WARN_ON(val > dev_priv->rps.max_freq);
5011 WARN_ON(val < dev_priv->rps.min_freq);
5012
5013 if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
5014 "Odd GPU freq value\n"))
5015 val &= ~1;
5016
5017 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
5018
5019 if (val != dev_priv->rps.cur_freq) {
5020 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
5021 if (!IS_CHERRYVIEW(dev_priv))
5022 gen6_set_rps_thresholds(dev_priv, val);
5023 }
5024
5025 dev_priv->rps.cur_freq = val;
5026 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
5027 }
5028
5029 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
5030 *
5031 * * If Gfx is Idle, then
5032 * 1. Forcewake Media well.
5033 * 2. Request idle freq.
5034 * 3. Release Forcewake of Media well.
5035 */
5036 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
5037 {
5038 u32 val = dev_priv->rps.idle_freq;
5039
5040 if (dev_priv->rps.cur_freq <= val)
5041 return;
5042
5043 /* Wake up the media well, as that takes a lot less
5044 * power than the Render well. */
5045 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5046 valleyview_set_rps(dev_priv, val);
5047 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5048 }
5049
5050 void gen6_rps_busy(struct drm_i915_private *dev_priv)
5051 {
5052 mutex_lock(&dev_priv->rps.hw_lock);
5053 if (dev_priv->rps.enabled) {
5054 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
5055 gen6_rps_reset_ei(dev_priv);
5056 I915_WRITE(GEN6_PMINTRMSK,
5057 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5058
5059 gen6_enable_rps_interrupts(dev_priv);
5060
5061 /* Ensure we start at the user's desired frequency */
5062 intel_set_rps(dev_priv,
5063 clamp(dev_priv->rps.cur_freq,
5064 dev_priv->rps.min_freq_softlimit,
5065 dev_priv->rps.max_freq_softlimit));
5066 }
5067 mutex_unlock(&dev_priv->rps.hw_lock);
5068 }
5069
5070 void gen6_rps_idle(struct drm_i915_private *dev_priv)
5071 {
5072 /* Flush our bottom-half so that it does not race with us
5073 * setting the idle frequency and so that it is bounded by
5074 * our rpm wakeref. And then disable the interrupts to stop any
5075 * futher RPS reclocking whilst we are asleep.
5076 */
5077 gen6_disable_rps_interrupts(dev_priv);
5078
5079 mutex_lock(&dev_priv->rps.hw_lock);
5080 if (dev_priv->rps.enabled) {
5081 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5082 vlv_set_rps_idle(dev_priv);
5083 else
5084 gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5085 dev_priv->rps.last_adj = 0;
5086 I915_WRITE(GEN6_PMINTRMSK,
5087 gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5088 }
5089 mutex_unlock(&dev_priv->rps.hw_lock);
5090
5091 spin_lock(&dev_priv->rps.client_lock);
5092 while (!list_empty(&dev_priv->rps.clients))
5093 list_del_init(dev_priv->rps.clients.next);
5094 spin_unlock(&dev_priv->rps.client_lock);
5095 }
5096
5097 void gen6_rps_boost(struct drm_i915_private *dev_priv,
5098 struct intel_rps_client *rps,
5099 unsigned long submitted)
5100 {
5101 /* This is intentionally racy! We peek at the state here, then
5102 * validate inside the RPS worker.
5103 */
5104 if (!(dev_priv->gt.awake &&
5105 dev_priv->rps.enabled &&
5106 dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
5107 return;
5108
5109 /* Force a RPS boost (and don't count it against the client) if
5110 * the GPU is severely congested.
5111 */
5112 if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5113 rps = NULL;
5114
5115 spin_lock(&dev_priv->rps.client_lock);
5116 if (rps == NULL || list_empty(&rps->link)) {
5117 spin_lock_irq(&dev_priv->irq_lock);
5118 if (dev_priv->rps.interrupts_enabled) {
5119 dev_priv->rps.client_boost = true;
5120 schedule_work(&dev_priv->rps.work);
5121 }
5122 spin_unlock_irq(&dev_priv->irq_lock);
5123
5124 if (rps != NULL) {
5125 list_add(&rps->link, &dev_priv->rps.clients);
5126 rps->boosts++;
5127 } else
5128 dev_priv->rps.boosts++;
5129 }
5130 spin_unlock(&dev_priv->rps.client_lock);
5131 }
5132
5133 void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5134 {
5135 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5136 valleyview_set_rps(dev_priv, val);
5137 else
5138 gen6_set_rps(dev_priv, val);
5139 }
5140
5141 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
5142 {
5143 I915_WRITE(GEN6_RC_CONTROL, 0);
5144 I915_WRITE(GEN9_PG_ENABLE, 0);
5145 }
5146
5147 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5148 {
5149 I915_WRITE(GEN6_RP_CONTROL, 0);
5150 }
5151
5152 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5153 {
5154 I915_WRITE(GEN6_RC_CONTROL, 0);
5155 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5156 I915_WRITE(GEN6_RP_CONTROL, 0);
5157 }
5158
5159 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5160 {
5161 I915_WRITE(GEN6_RC_CONTROL, 0);
5162 }
5163
5164 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5165 {
5166 /* we're doing forcewake before Disabling RC6,
5167 * This what the BIOS expects when going into suspend */
5168 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5169
5170 I915_WRITE(GEN6_RC_CONTROL, 0);
5171
5172 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5173 }
5174
5175 static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
5176 {
5177 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5178 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
5179 mode = GEN6_RC_CTL_RC6_ENABLE;
5180 else
5181 mode = 0;
5182 }
5183 if (HAS_RC6p(dev_priv))
5184 DRM_DEBUG_DRIVER("Enabling RC6 states: "
5185 "RC6 %s RC6p %s RC6pp %s\n",
5186 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
5187 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
5188 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5189
5190 else
5191 DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
5192 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
5193 }
5194
5195 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5196 {
5197 struct i915_ggtt *ggtt = &dev_priv->ggtt;
5198 bool enable_rc6 = true;
5199 unsigned long rc6_ctx_base;
5200 u32 rc_ctl;
5201 int rc_sw_target;
5202
5203 rc_ctl = I915_READ(GEN6_RC_CONTROL);
5204 rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
5205 RC_SW_TARGET_STATE_SHIFT;
5206 DRM_DEBUG_DRIVER("BIOS enabled RC states: "
5207 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
5208 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
5209 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
5210 rc_sw_target);
5211
5212 if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5213 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5214 enable_rc6 = false;
5215 }
5216
5217 /*
5218 * The exact context size is not known for BXT, so assume a page size
5219 * for this check.
5220 */
5221 rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5222 if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
5223 (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
5224 ggtt->stolen_reserved_size))) {
5225 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5226 enable_rc6 = false;
5227 }
5228
5229 if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
5230 ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
5231 ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
5232 ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5233 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5234 enable_rc6 = false;
5235 }
5236
5237 if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
5238 !I915_READ(GEN8_PUSHBUS_ENABLE) ||
5239 !I915_READ(GEN8_PUSHBUS_SHIFT)) {
5240 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
5241 enable_rc6 = false;
5242 }
5243
5244 if (!I915_READ(GEN6_GFXPAUSE)) {
5245 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
5246 enable_rc6 = false;
5247 }
5248
5249 if (!I915_READ(GEN8_MISC_CTRL0)) {
5250 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5251 enable_rc6 = false;
5252 }
5253
5254 return enable_rc6;
5255 }
5256
5257 int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5258 {
5259 /* No RC6 before Ironlake and code is gone for ilk. */
5260 if (INTEL_INFO(dev_priv)->gen < 6)
5261 return 0;
5262
5263 if (!enable_rc6)
5264 return 0;
5265
5266 if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5267 DRM_INFO("RC6 disabled by BIOS\n");
5268 return 0;
5269 }
5270
5271 /* Respect the kernel parameter if it is set */
5272 if (enable_rc6 >= 0) {
5273 int mask;
5274
5275 if (HAS_RC6p(dev_priv))
5276 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
5277 INTEL_RC6pp_ENABLE;
5278 else
5279 mask = INTEL_RC6_ENABLE;
5280
5281 if ((enable_rc6 & mask) != enable_rc6)
5282 DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
5283 "(requested %d, valid %d)\n",
5284 enable_rc6 & mask, enable_rc6, mask);
5285
5286 return enable_rc6 & mask;
5287 }
5288
5289 if (IS_IVYBRIDGE(dev_priv))
5290 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5291
5292 return INTEL_RC6_ENABLE;
5293 }
5294
5295 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5296 {
5297 uint32_t rp_state_cap;
5298 u32 ddcc_status = 0;
5299 int ret;
5300
5301 /* All of these values are in units of 50MHz */
5302 dev_priv->rps.cur_freq = 0;
5303 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
5304 if (IS_BROXTON(dev_priv)) {
5305 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5306 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
5307 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
5308 dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
5309 } else {
5310 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5311 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
5312 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
5313 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
5314 }
5315
5316 /* hw_max = RP0 until we check for overclocking */
5317 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5318
5319 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5320 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
5321 IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5322 ret = sandybridge_pcode_read(dev_priv,
5323 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
5324 &ddcc_status);
5325 if (0 == ret)
5326 dev_priv->rps.efficient_freq =
5327 clamp_t(u8,
5328 ((ddcc_status >> 8) & 0xff),
5329 dev_priv->rps.min_freq,
5330 dev_priv->rps.max_freq);
5331 }
5332
5333 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5334 /* Store the frequency values in 16.66 MHZ units, which is
5335 the natural hardware unit for SKL */
5336 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
5337 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
5338 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
5339 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
5340 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
5341 }
5342
5343 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5344
5345 /* Preserve min/max settings in case of re-init */
5346 if (dev_priv->rps.max_freq_softlimit == 0)
5347 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5348
5349 if (dev_priv->rps.min_freq_softlimit == 0) {
5350 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5351 dev_priv->rps.min_freq_softlimit =
5352 max_t(int, dev_priv->rps.efficient_freq,
5353 intel_freq_opcode(dev_priv, 450));
5354 else
5355 dev_priv->rps.min_freq_softlimit =
5356 dev_priv->rps.min_freq;
5357 }
5358 }
5359
5360 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
5361 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
5362 {
5363 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5364
5365 gen6_init_rps_frequencies(dev_priv);
5366
5367 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5368 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5369 /*
5370 * BIOS could leave the Hw Turbo enabled, so need to explicitly
5371 * clear out the Control register just to avoid inconsitency
5372 * with debugfs interface, which will show Turbo as enabled
5373 * only and that is not expected by the User after adding the
5374 * WaGsvDisableTurbo. Apart from this there is no problem even
5375 * if the Turbo is left enabled in the Control register, as the
5376 * Up/Down interrupts would remain masked.
5377 */
5378 gen9_disable_rps(dev_priv);
5379 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5380 return;
5381 }
5382
5383 /* Program defaults and thresholds for RPS*/
5384 I915_WRITE(GEN6_RC_VIDEO_FREQ,
5385 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
5386
5387 /* 1 second timeout*/
5388 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
5389 GT_INTERVAL_FROM_US(dev_priv, 1000000));
5390
5391 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
5392
5393 /* Leaning on the below call to gen6_set_rps to program/setup the
5394 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
5395 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5396 dev_priv->rps.power = HIGH_POWER; /* force a reset */
5397 gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5398
5399 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5400 }
5401
5402 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
5403 {
5404 struct intel_engine_cs *engine;
5405 uint32_t rc6_mask = 0;
5406
5407 /* 1a: Software RC state - RC0 */
5408 I915_WRITE(GEN6_RC_STATE, 0);
5409
5410 /* 1b: Get forcewake during program sequence. Although the driver
5411 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5412 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5413
5414 /* 2a: Disable RC states. */
5415 I915_WRITE(GEN6_RC_CONTROL, 0);
5416
5417 /* 2b: Program RC6 thresholds.*/
5418
5419 /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5420 if (IS_SKYLAKE(dev_priv))
5421 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
5422 else
5423 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
5424 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5425 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5426 for_each_engine(engine, dev_priv)
5427 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5428
5429 if (HAS_GUC(dev_priv))
5430 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
5431
5432 I915_WRITE(GEN6_RC_SLEEP, 0);
5433
5434 /* 2c: Program Coarse Power Gating Policies. */
5435 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
5436 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
5437
5438 /* 3a: Enable RC6 */
5439 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5440 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5441 DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5442 /* WaRsUseTimeoutMode */
5443 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
5444 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5445 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
5446 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5447 GEN7_RC_CTL_TO_MODE |
5448 rc6_mask);
5449 } else {
5450 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
5451 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5452 GEN6_RC_CTL_EI_MODE(1) |
5453 rc6_mask);
5454 }
5455
5456 /*
5457 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5458 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5459 */
5460 if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5461 I915_WRITE(GEN9_PG_ENABLE, 0);
5462 else
5463 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
5464 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5465
5466 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5467 }
5468
5469 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5470 {
5471 struct intel_engine_cs *engine;
5472 uint32_t rc6_mask = 0;
5473
5474 /* 1a: Software RC state - RC0 */
5475 I915_WRITE(GEN6_RC_STATE, 0);
5476
5477 /* 1c & 1d: Get forcewake during program sequence. Although the driver
5478 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5479 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5480
5481 /* 2a: Disable RC states. */
5482 I915_WRITE(GEN6_RC_CONTROL, 0);
5483
5484 /* Initialize rps frequencies */
5485 gen6_init_rps_frequencies(dev_priv);
5486
5487 /* 2b: Program RC6 thresholds.*/
5488 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5489 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5490 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5491 for_each_engine(engine, dev_priv)
5492 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5493 I915_WRITE(GEN6_RC_SLEEP, 0);
5494 if (IS_BROADWELL(dev_priv))
5495 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
5496 else
5497 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5498
5499 /* 3: Enable RC6 */
5500 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5501 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5502 intel_print_rc6_info(dev_priv, rc6_mask);
5503 if (IS_BROADWELL(dev_priv))
5504 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5505 GEN7_RC_CTL_TO_MODE |
5506 rc6_mask);
5507 else
5508 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5509 GEN6_RC_CTL_EI_MODE(1) |
5510 rc6_mask);
5511
5512 /* 4 Program defaults and thresholds for RPS*/
5513 I915_WRITE(GEN6_RPNSWREQ,
5514 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5515 I915_WRITE(GEN6_RC_VIDEO_FREQ,
5516 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5517 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
5518 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
5519
5520 /* Docs recommend 900MHz, and 300 MHz respectively */
5521 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5522 dev_priv->rps.max_freq_softlimit << 24 |
5523 dev_priv->rps.min_freq_softlimit << 16);
5524
5525 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
5526 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
5527 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
5528 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
5529
5530 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5531
5532 /* 5: Enable RPS */
5533 I915_WRITE(GEN6_RP_CONTROL,
5534 GEN6_RP_MEDIA_TURBO |
5535 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5536 GEN6_RP_MEDIA_IS_GFX |
5537 GEN6_RP_ENABLE |
5538 GEN6_RP_UP_BUSY_AVG |
5539 GEN6_RP_DOWN_IDLE_AVG);
5540
5541 /* 6: Ring frequency + overclocking (our driver does this later */
5542
5543 dev_priv->rps.power = HIGH_POWER; /* force a reset */
5544 gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5545
5546 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5547 }
5548
5549 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5550 {
5551 struct intel_engine_cs *engine;
5552 u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
5553 u32 gtfifodbg;
5554 int rc6_mode;
5555 int ret;
5556
5557 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5558
5559 /* Here begins a magic sequence of register writes to enable
5560 * auto-downclocking.
5561 *
5562 * Perhaps there might be some value in exposing these to
5563 * userspace...
5564 */
5565 I915_WRITE(GEN6_RC_STATE, 0);
5566
5567 /* Clear the DBG now so we don't confuse earlier errors */
5568 gtfifodbg = I915_READ(GTFIFODBG);
5569 if (gtfifodbg) {
5570 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5571 I915_WRITE(GTFIFODBG, gtfifodbg);
5572 }
5573
5574 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5575
5576 /* Initialize rps frequencies */
5577 gen6_init_rps_frequencies(dev_priv);
5578
5579 /* disable the counters and set deterministic thresholds */
5580 I915_WRITE(GEN6_RC_CONTROL, 0);
5581
5582 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5583 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5584 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5585 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5586 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5587
5588 for_each_engine(engine, dev_priv)
5589 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5590
5591 I915_WRITE(GEN6_RC_SLEEP, 0);
5592 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5593 if (IS_IVYBRIDGE(dev_priv))
5594 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5595 else
5596 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5597 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5598 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5599
5600 /* Check if we are enabling RC6 */
5601 rc6_mode = intel_enable_rc6();
5602 if (rc6_mode & INTEL_RC6_ENABLE)
5603 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5604
5605 /* We don't use those on Haswell */
5606 if (!IS_HASWELL(dev_priv)) {
5607 if (rc6_mode & INTEL_RC6p_ENABLE)
5608 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5609
5610 if (rc6_mode & INTEL_RC6pp_ENABLE)
5611 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5612 }
5613
5614 intel_print_rc6_info(dev_priv, rc6_mask);
5615
5616 I915_WRITE(GEN6_RC_CONTROL,
5617 rc6_mask |
5618 GEN6_RC_CTL_EI_MODE(1) |
5619 GEN6_RC_CTL_HW_ENABLE);
5620
5621 /* Power down if completely idle for over 50ms */
5622 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5623 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5624
5625 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5626 if (ret)
5627 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5628
5629 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5630 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5631 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5632 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5633 (pcu_mbox & 0xff) * 50);
5634 dev_priv->rps.max_freq = pcu_mbox & 0xff;
5635 }
5636
5637 dev_priv->rps.power = HIGH_POWER; /* force a reset */
5638 gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5639
5640 rc6vids = 0;
5641 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5642 if (IS_GEN6(dev_priv) && ret) {
5643 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5644 } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5645 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5646 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5647 rc6vids &= 0xffff00;
5648 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5649 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5650 if (ret)
5651 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5652 }
5653
5654 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5655 }
5656
5657 static void __gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5658 {
5659 int min_freq = 15;
5660 unsigned int gpu_freq;
5661 unsigned int max_ia_freq, min_ring_freq;
5662 unsigned int max_gpu_freq, min_gpu_freq;
5663 int scaling_factor = 180;
5664 struct cpufreq_policy *policy;
5665
5666 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5667
5668 policy = cpufreq_cpu_get(0);
5669 if (policy) {
5670 max_ia_freq = policy->cpuinfo.max_freq;
5671 cpufreq_cpu_put(policy);
5672 } else {
5673 /*
5674 * Default to measured freq if none found, PCU will ensure we
5675 * don't go over
5676 */
5677 max_ia_freq = tsc_khz;
5678 }
5679
5680 /* Convert from kHz to MHz */
5681 max_ia_freq /= 1000;
5682
5683 min_ring_freq = I915_READ(DCLK) & 0xf;
5684 /* convert DDR frequency from units of 266.6MHz to bandwidth */
5685 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5686
5687 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5688 /* Convert GT frequency to 50 HZ units */
5689 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5690 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5691 } else {
5692 min_gpu_freq = dev_priv->rps.min_freq;
5693 max_gpu_freq = dev_priv->rps.max_freq;
5694 }
5695
5696 /*
5697 * For each potential GPU frequency, load a ring frequency we'd like
5698 * to use for memory access. We do this by specifying the IA frequency
5699 * the PCU should use as a reference to determine the ring frequency.
5700 */
5701 for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5702 int diff = max_gpu_freq - gpu_freq;
5703 unsigned int ia_freq = 0, ring_freq = 0;
5704
5705 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5706 /*
5707 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5708 * No floor required for ring frequency on SKL.
5709 */
5710 ring_freq = gpu_freq;
5711 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
5712 /* max(2 * GT, DDR). NB: GT is 50MHz units */
5713 ring_freq = max(min_ring_freq, gpu_freq);
5714 } else if (IS_HASWELL(dev_priv)) {
5715 ring_freq = mult_frac(gpu_freq, 5, 4);
5716 ring_freq = max(min_ring_freq, ring_freq);
5717 /* leave ia_freq as the default, chosen by cpufreq */
5718 } else {
5719 /* On older processors, there is no separate ring
5720 * clock domain, so in order to boost the bandwidth
5721 * of the ring, we need to upclock the CPU (ia_freq).
5722 *
5723 * For GPU frequencies less than 750MHz,
5724 * just use the lowest ring freq.
5725 */
5726 if (gpu_freq < min_freq)
5727 ia_freq = 800;
5728 else
5729 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5730 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5731 }
5732
5733 sandybridge_pcode_write(dev_priv,
5734 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5735 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5736 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5737 gpu_freq);
5738 }
5739 }
5740
5741 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5742 {
5743 if (!HAS_CORE_RING_FREQ(dev_priv))
5744 return;
5745
5746 mutex_lock(&dev_priv->rps.hw_lock);
5747 __gen6_update_ring_freq(dev_priv);
5748 mutex_unlock(&dev_priv->rps.hw_lock);
5749 }
5750
5751 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5752 {
5753 u32 val, rp0;
5754
5755 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5756
5757 switch (INTEL_INFO(dev_priv)->eu_total) {
5758 case 8:
5759 /* (2 * 4) config */
5760 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5761 break;
5762 case 12:
5763 /* (2 * 6) config */
5764 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5765 break;
5766 case 16:
5767 /* (2 * 8) config */
5768 default:
5769 /* Setting (2 * 8) Min RP0 for any other combination */
5770 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5771 break;
5772 }
5773
5774 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5775
5776 return rp0;
5777 }
5778
5779 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5780 {
5781 u32 val, rpe;
5782
5783 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5784 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5785
5786 return rpe;
5787 }
5788
5789 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5790 {
5791 u32 val, rp1;
5792
5793 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5794 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5795
5796 return rp1;
5797 }
5798
5799 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5800 {
5801 u32 val, rp1;
5802
5803 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5804
5805 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5806
5807 return rp1;
5808 }
5809
5810 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5811 {
5812 u32 val, rp0;
5813
5814 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5815
5816 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5817 /* Clamp to max */
5818 rp0 = min_t(u32, rp0, 0xea);
5819
5820 return rp0;
5821 }
5822
5823 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5824 {
5825 u32 val, rpe;
5826
5827 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5828 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5829 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5830 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5831
5832 return rpe;
5833 }
5834
5835 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5836 {
5837 u32 val;
5838
5839 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5840 /*
5841 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5842 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5843 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5844 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5845 * to make sure it matches what Punit accepts.
5846 */
5847 return max_t(u32, val, 0xc0);
5848 }
5849
5850 /* Check that the pctx buffer wasn't move under us. */
5851 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5852 {
5853 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5854
5855 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5856 dev_priv->vlv_pctx->stolen->start);
5857 }
5858
5859
5860 /* Check that the pcbr address is not empty. */
5861 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5862 {
5863 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5864
5865 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5866 }
5867
5868 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5869 {
5870 struct i915_ggtt *ggtt = &dev_priv->ggtt;
5871 unsigned long pctx_paddr, paddr;
5872 u32 pcbr;
5873 int pctx_size = 32*1024;
5874
5875 pcbr = I915_READ(VLV_PCBR);
5876 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5877 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5878 paddr = (dev_priv->mm.stolen_base +
5879 (ggtt->stolen_size - pctx_size));
5880
5881 pctx_paddr = (paddr & (~4095));
5882 I915_WRITE(VLV_PCBR, pctx_paddr);
5883 }
5884
5885 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5886 }
5887
5888 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5889 {
5890 struct drm_i915_gem_object *pctx;
5891 unsigned long pctx_paddr;
5892 u32 pcbr;
5893 int pctx_size = 24*1024;
5894
5895 mutex_lock(&dev_priv->drm.struct_mutex);
5896
5897 pcbr = I915_READ(VLV_PCBR);
5898 if (pcbr) {
5899 /* BIOS set it up already, grab the pre-alloc'd space */
5900 int pcbr_offset;
5901
5902 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5903 pctx = i915_gem_object_create_stolen_for_preallocated(&dev_priv->drm,
5904 pcbr_offset,
5905 I915_GTT_OFFSET_NONE,
5906 pctx_size);
5907 goto out;
5908 }
5909
5910 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5911
5912 /*
5913 * From the Gunit register HAS:
5914 * The Gfx driver is expected to program this register and ensure
5915 * proper allocation within Gfx stolen memory. For example, this
5916 * register should be programmed such than the PCBR range does not
5917 * overlap with other ranges, such as the frame buffer, protected
5918 * memory, or any other relevant ranges.
5919 */
5920 pctx = i915_gem_object_create_stolen(&dev_priv->drm, pctx_size);
5921 if (!pctx) {
5922 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5923 goto out;
5924 }
5925
5926 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5927 I915_WRITE(VLV_PCBR, pctx_paddr);
5928
5929 out:
5930 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5931 dev_priv->vlv_pctx = pctx;
5932 mutex_unlock(&dev_priv->drm.struct_mutex);
5933 }
5934
5935 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5936 {
5937 if (WARN_ON(!dev_priv->vlv_pctx))
5938 return;
5939
5940 drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5941 dev_priv->vlv_pctx = NULL;
5942 }
5943
5944 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
5945 {
5946 dev_priv->rps.gpll_ref_freq =
5947 vlv_get_cck_clock(dev_priv, "GPLL ref",
5948 CCK_GPLL_CLOCK_CONTROL,
5949 dev_priv->czclk_freq);
5950
5951 DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
5952 dev_priv->rps.gpll_ref_freq);
5953 }
5954
5955 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5956 {
5957 u32 val;
5958
5959 valleyview_setup_pctx(dev_priv);
5960
5961 vlv_init_gpll_ref_freq(dev_priv);
5962
5963 mutex_lock(&dev_priv->rps.hw_lock);
5964
5965 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5966 switch ((val >> 6) & 3) {
5967 case 0:
5968 case 1:
5969 dev_priv->mem_freq = 800;
5970 break;
5971 case 2:
5972 dev_priv->mem_freq = 1066;
5973 break;
5974 case 3:
5975 dev_priv->mem_freq = 1333;
5976 break;
5977 }
5978 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5979
5980 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5981 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5982 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5983 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5984 dev_priv->rps.max_freq);
5985
5986 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5987 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5988 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5989 dev_priv->rps.efficient_freq);
5990
5991 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5992 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5993 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5994 dev_priv->rps.rp1_freq);
5995
5996 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5997 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5998 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5999 dev_priv->rps.min_freq);
6000
6001 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
6002
6003 /* Preserve min/max settings in case of re-init */
6004 if (dev_priv->rps.max_freq_softlimit == 0)
6005 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
6006
6007 if (dev_priv->rps.min_freq_softlimit == 0)
6008 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
6009
6010 mutex_unlock(&dev_priv->rps.hw_lock);
6011 }
6012
6013 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
6014 {
6015 u32 val;
6016
6017 cherryview_setup_pctx(dev_priv);
6018
6019 vlv_init_gpll_ref_freq(dev_priv);
6020
6021 mutex_lock(&dev_priv->rps.hw_lock);
6022
6023 mutex_lock(&dev_priv->sb_lock);
6024 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
6025 mutex_unlock(&dev_priv->sb_lock);
6026
6027 switch ((val >> 2) & 0x7) {
6028 case 3:
6029 dev_priv->mem_freq = 2000;
6030 break;
6031 default:
6032 dev_priv->mem_freq = 1600;
6033 break;
6034 }
6035 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
6036
6037 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
6038 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
6039 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6040 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
6041 dev_priv->rps.max_freq);
6042
6043 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
6044 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6045 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
6046 dev_priv->rps.efficient_freq);
6047
6048 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
6049 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
6050 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
6051 dev_priv->rps.rp1_freq);
6052
6053 /* PUnit validated range is only [RPe, RP0] */
6054 dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
6055 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6056 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
6057 dev_priv->rps.min_freq);
6058
6059 WARN_ONCE((dev_priv->rps.max_freq |
6060 dev_priv->rps.efficient_freq |
6061 dev_priv->rps.rp1_freq |
6062 dev_priv->rps.min_freq) & 1,
6063 "Odd GPU freq values\n");
6064
6065 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
6066
6067 /* Preserve min/max settings in case of re-init */
6068 if (dev_priv->rps.max_freq_softlimit == 0)
6069 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
6070
6071 if (dev_priv->rps.min_freq_softlimit == 0)
6072 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
6073
6074 mutex_unlock(&dev_priv->rps.hw_lock);
6075 }
6076
6077 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6078 {
6079 valleyview_cleanup_pctx(dev_priv);
6080 }
6081
6082 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
6083 {
6084 struct intel_engine_cs *engine;
6085 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
6086
6087 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6088
6089 gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
6090 GT_FIFO_FREE_ENTRIES_CHV);
6091 if (gtfifodbg) {
6092 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
6093 gtfifodbg);
6094 I915_WRITE(GTFIFODBG, gtfifodbg);
6095 }
6096
6097 cherryview_check_pctx(dev_priv);
6098
6099 /* 1a & 1b: Get forcewake during program sequence. Although the driver
6100 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6101 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6102
6103 /* Disable RC states. */
6104 I915_WRITE(GEN6_RC_CONTROL, 0);
6105
6106 /* 2a: Program RC6 thresholds.*/
6107 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
6108 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6109 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6110
6111 for_each_engine(engine, dev_priv)
6112 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6113 I915_WRITE(GEN6_RC_SLEEP, 0);
6114
6115 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
6116 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6117
6118 /* allows RC6 residency counter to work */
6119 I915_WRITE(VLV_COUNTER_CONTROL,
6120 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
6121 VLV_MEDIA_RC6_COUNT_EN |
6122 VLV_RENDER_RC6_COUNT_EN));
6123
6124 /* For now we assume BIOS is allocating and populating the PCBR */
6125 pcbr = I915_READ(VLV_PCBR);
6126
6127 /* 3: Enable RC6 */
6128 if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
6129 (pcbr >> VLV_PCBR_ADDR_SHIFT))
6130 rc6_mode = GEN7_RC_CTL_TO_MODE;
6131
6132 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6133
6134 /* 4 Program defaults and thresholds for RPS*/
6135 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6136 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
6137 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
6138 I915_WRITE(GEN6_RP_UP_EI, 66000);
6139 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
6140
6141 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6142
6143 /* 5: Enable RPS */
6144 I915_WRITE(GEN6_RP_CONTROL,
6145 GEN6_RP_MEDIA_HW_NORMAL_MODE |
6146 GEN6_RP_MEDIA_IS_GFX |
6147 GEN6_RP_ENABLE |
6148 GEN6_RP_UP_BUSY_AVG |
6149 GEN6_RP_DOWN_IDLE_AVG);
6150
6151 /* Setting Fixed Bias */
6152 val = VLV_OVERRIDE_EN |
6153 VLV_SOC_TDP_EN |
6154 CHV_BIAS_CPU_50_SOC_50;
6155 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
6156
6157 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6158
6159 /* RPS code assumes GPLL is used */
6160 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
6161
6162 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6163 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6164
6165 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
6166 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
6167 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
6168 dev_priv->rps.cur_freq);
6169
6170 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
6171 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
6172 dev_priv->rps.idle_freq);
6173
6174 valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
6175
6176 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6177 }
6178
6179 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6180 {
6181 struct intel_engine_cs *engine;
6182 u32 gtfifodbg, val, rc6_mode = 0;
6183
6184 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6185
6186 valleyview_check_pctx(dev_priv);
6187
6188 gtfifodbg = I915_READ(GTFIFODBG);
6189 if (gtfifodbg) {
6190 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
6191 gtfifodbg);
6192 I915_WRITE(GTFIFODBG, gtfifodbg);
6193 }
6194
6195 /* If VLV, Forcewake all wells, else re-direct to regular path */
6196 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6197
6198 /* Disable RC states. */
6199 I915_WRITE(GEN6_RC_CONTROL, 0);
6200
6201 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6202 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
6203 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
6204 I915_WRITE(GEN6_RP_UP_EI, 66000);
6205 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
6206
6207 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6208
6209 I915_WRITE(GEN6_RP_CONTROL,
6210 GEN6_RP_MEDIA_TURBO |
6211 GEN6_RP_MEDIA_HW_NORMAL_MODE |
6212 GEN6_RP_MEDIA_IS_GFX |
6213 GEN6_RP_ENABLE |
6214 GEN6_RP_UP_BUSY_AVG |
6215 GEN6_RP_DOWN_IDLE_CONT);
6216
6217 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
6218 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6219 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6220
6221 for_each_engine(engine, dev_priv)
6222 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6223
6224 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6225
6226 /* allows RC6 residency counter to work */
6227 I915_WRITE(VLV_COUNTER_CONTROL,
6228 _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
6229 VLV_RENDER_RC0_COUNT_EN |
6230 VLV_MEDIA_RC6_COUNT_EN |
6231 VLV_RENDER_RC6_COUNT_EN));
6232
6233 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6234 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
6235
6236 intel_print_rc6_info(dev_priv, rc6_mode);
6237
6238 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6239
6240 /* Setting Fixed Bias */
6241 val = VLV_OVERRIDE_EN |
6242 VLV_SOC_TDP_EN |
6243 VLV_BIAS_CPU_125_SOC_875;
6244 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
6245
6246 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6247
6248 /* RPS code assumes GPLL is used */
6249 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
6250
6251 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6252 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6253
6254 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
6255 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
6256 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
6257 dev_priv->rps.cur_freq);
6258
6259 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
6260 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
6261 dev_priv->rps.idle_freq);
6262
6263 valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
6264
6265 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6266 }
6267
6268 static unsigned long intel_pxfreq(u32 vidfreq)
6269 {
6270 unsigned long freq;
6271 int div = (vidfreq & 0x3f0000) >> 16;
6272 int post = (vidfreq & 0x3000) >> 12;
6273 int pre = (vidfreq & 0x7);
6274
6275 if (!pre)
6276 return 0;
6277
6278 freq = ((div * 133333) / ((1<<post) * pre));
6279
6280 return freq;
6281 }
6282
6283 static const struct cparams {
6284 u16 i;
6285 u16 t;
6286 u16 m;
6287 u16 c;
6288 } cparams[] = {
6289 { 1, 1333, 301, 28664 },
6290 { 1, 1066, 294, 24460 },
6291 { 1, 800, 294, 25192 },
6292 { 0, 1333, 276, 27605 },
6293 { 0, 1066, 276, 27605 },
6294 { 0, 800, 231, 23784 },
6295 };
6296
6297 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6298 {
6299 u64 total_count, diff, ret;
6300 u32 count1, count2, count3, m = 0, c = 0;
6301 unsigned long now = jiffies_to_msecs(jiffies), diff1;
6302 int i;
6303
6304 assert_spin_locked(&mchdev_lock);
6305
6306 diff1 = now - dev_priv->ips.last_time1;
6307
6308 /* Prevent division-by-zero if we are asking too fast.
6309 * Also, we don't get interesting results if we are polling
6310 * faster than once in 10ms, so just return the saved value
6311 * in such cases.
6312 */
6313 if (diff1 <= 10)
6314 return dev_priv->ips.chipset_power;
6315
6316 count1 = I915_READ(DMIEC);
6317 count2 = I915_READ(DDREC);
6318 count3 = I915_READ(CSIEC);
6319
6320 total_count = count1 + count2 + count3;
6321
6322 /* FIXME: handle per-counter overflow */
6323 if (total_count < dev_priv->ips.last_count1) {
6324 diff = ~0UL - dev_priv->ips.last_count1;
6325 diff += total_count;
6326 } else {
6327 diff = total_count - dev_priv->ips.last_count1;
6328 }
6329
6330 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6331 if (cparams[i].i == dev_priv->ips.c_m &&
6332 cparams[i].t == dev_priv->ips.r_t) {
6333 m = cparams[i].m;
6334 c = cparams[i].c;
6335 break;
6336 }
6337 }
6338
6339 diff = div_u64(diff, diff1);
6340 ret = ((m * diff) + c);
6341 ret = div_u64(ret, 10);
6342
6343 dev_priv->ips.last_count1 = total_count;
6344 dev_priv->ips.last_time1 = now;
6345
6346 dev_priv->ips.chipset_power = ret;
6347
6348 return ret;
6349 }
6350
6351 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
6352 {
6353 unsigned long val;
6354
6355 if (INTEL_INFO(dev_priv)->gen != 5)
6356 return 0;
6357
6358 spin_lock_irq(&mchdev_lock);
6359
6360 val = __i915_chipset_val(dev_priv);
6361
6362 spin_unlock_irq(&mchdev_lock);
6363
6364 return val;
6365 }
6366
6367 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
6368 {
6369 unsigned long m, x, b;
6370 u32 tsfs;
6371
6372 tsfs = I915_READ(TSFS);
6373
6374 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
6375 x = I915_READ8(TR1);
6376
6377 b = tsfs & TSFS_INTR_MASK;
6378
6379 return ((m * x) / 127) - b;
6380 }
6381
6382 static int _pxvid_to_vd(u8 pxvid)
6383 {
6384 if (pxvid == 0)
6385 return 0;
6386
6387 if (pxvid >= 8 && pxvid < 31)
6388 pxvid = 31;
6389
6390 return (pxvid + 2) * 125;
6391 }
6392
6393 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6394 {
6395 const int vd = _pxvid_to_vd(pxvid);
6396 const int vm = vd - 1125;
6397
6398 if (INTEL_INFO(dev_priv)->is_mobile)
6399 return vm > 0 ? vm : 0;
6400
6401 return vd;
6402 }
6403
6404 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6405 {
6406 u64 now, diff, diffms;
6407 u32 count;
6408
6409 assert_spin_locked(&mchdev_lock);
6410
6411 now = ktime_get_raw_ns();
6412 diffms = now - dev_priv->ips.last_time2;
6413 do_div(diffms, NSEC_PER_MSEC);
6414
6415 /* Don't divide by 0 */
6416 if (!diffms)
6417 return;
6418
6419 count = I915_READ(GFXEC);
6420
6421 if (count < dev_priv->ips.last_count2) {
6422 diff = ~0UL - dev_priv->ips.last_count2;
6423 diff += count;
6424 } else {
6425 diff = count - dev_priv->ips.last_count2;
6426 }
6427
6428 dev_priv->ips.last_count2 = count;
6429 dev_priv->ips.last_time2 = now;
6430
6431 /* More magic constants... */
6432 diff = diff * 1181;
6433 diff = div_u64(diff, diffms * 10);
6434 dev_priv->ips.gfx_power = diff;
6435 }
6436
6437 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
6438 {
6439 if (INTEL_INFO(dev_priv)->gen != 5)
6440 return;
6441
6442 spin_lock_irq(&mchdev_lock);
6443
6444 __i915_update_gfx_val(dev_priv);
6445
6446 spin_unlock_irq(&mchdev_lock);
6447 }
6448
6449 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6450 {
6451 unsigned long t, corr, state1, corr2, state2;
6452 u32 pxvid, ext_v;
6453
6454 assert_spin_locked(&mchdev_lock);
6455
6456 pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6457 pxvid = (pxvid >> 24) & 0x7f;
6458 ext_v = pvid_to_extvid(dev_priv, pxvid);
6459
6460 state1 = ext_v;
6461
6462 t = i915_mch_val(dev_priv);
6463
6464 /* Revel in the empirically derived constants */
6465
6466 /* Correction factor in 1/100000 units */
6467 if (t > 80)
6468 corr = ((t * 2349) + 135940);
6469 else if (t >= 50)
6470 corr = ((t * 964) + 29317);
6471 else /* < 50 */
6472 corr = ((t * 301) + 1004);
6473
6474 corr = corr * ((150142 * state1) / 10000 - 78642);
6475 corr /= 100000;
6476 corr2 = (corr * dev_priv->ips.corr);
6477
6478 state2 = (corr2 * state1) / 10000;
6479 state2 /= 100; /* convert to mW */
6480
6481 __i915_update_gfx_val(dev_priv);
6482
6483 return dev_priv->ips.gfx_power + state2;
6484 }
6485
6486 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
6487 {
6488 unsigned long val;
6489
6490 if (INTEL_INFO(dev_priv)->gen != 5)
6491 return 0;
6492
6493 spin_lock_irq(&mchdev_lock);
6494
6495 val = __i915_gfx_val(dev_priv);
6496
6497 spin_unlock_irq(&mchdev_lock);
6498
6499 return val;
6500 }
6501
6502 /**
6503 * i915_read_mch_val - return value for IPS use
6504 *
6505 * Calculate and return a value for the IPS driver to use when deciding whether
6506 * we have thermal and power headroom to increase CPU or GPU power budget.
6507 */
6508 unsigned long i915_read_mch_val(void)
6509 {
6510 struct drm_i915_private *dev_priv;
6511 unsigned long chipset_val, graphics_val, ret = 0;
6512
6513 spin_lock_irq(&mchdev_lock);
6514 if (!i915_mch_dev)
6515 goto out_unlock;
6516 dev_priv = i915_mch_dev;
6517
6518 chipset_val = __i915_chipset_val(dev_priv);
6519 graphics_val = __i915_gfx_val(dev_priv);
6520
6521 ret = chipset_val + graphics_val;
6522
6523 out_unlock:
6524 spin_unlock_irq(&mchdev_lock);
6525
6526 return ret;
6527 }
6528 EXPORT_SYMBOL_GPL(i915_read_mch_val);
6529
6530 /**
6531 * i915_gpu_raise - raise GPU frequency limit
6532 *
6533 * Raise the limit; IPS indicates we have thermal headroom.
6534 */
6535 bool i915_gpu_raise(void)
6536 {
6537 struct drm_i915_private *dev_priv;
6538 bool ret = true;
6539
6540 spin_lock_irq(&mchdev_lock);
6541 if (!i915_mch_dev) {
6542 ret = false;
6543 goto out_unlock;
6544 }
6545 dev_priv = i915_mch_dev;
6546
6547 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
6548 dev_priv->ips.max_delay--;
6549
6550 out_unlock:
6551 spin_unlock_irq(&mchdev_lock);
6552
6553 return ret;
6554 }
6555 EXPORT_SYMBOL_GPL(i915_gpu_raise);
6556
6557 /**
6558 * i915_gpu_lower - lower GPU frequency limit
6559 *
6560 * IPS indicates we're close to a thermal limit, so throttle back the GPU
6561 * frequency maximum.
6562 */
6563 bool i915_gpu_lower(void)
6564 {
6565 struct drm_i915_private *dev_priv;
6566 bool ret = true;
6567
6568 spin_lock_irq(&mchdev_lock);
6569 if (!i915_mch_dev) {
6570 ret = false;
6571 goto out_unlock;
6572 }
6573 dev_priv = i915_mch_dev;
6574
6575 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6576 dev_priv->ips.max_delay++;
6577
6578 out_unlock:
6579 spin_unlock_irq(&mchdev_lock);
6580
6581 return ret;
6582 }
6583 EXPORT_SYMBOL_GPL(i915_gpu_lower);
6584
6585 /**
6586 * i915_gpu_busy - indicate GPU business to IPS
6587 *
6588 * Tell the IPS driver whether or not the GPU is busy.
6589 */
6590 bool i915_gpu_busy(void)
6591 {
6592 struct drm_i915_private *dev_priv;
6593 struct intel_engine_cs *engine;
6594 bool ret = false;
6595
6596 spin_lock_irq(&mchdev_lock);
6597 if (!i915_mch_dev)
6598 goto out_unlock;
6599 dev_priv = i915_mch_dev;
6600
6601 for_each_engine(engine, dev_priv)
6602 ret |= !list_empty(&engine->request_list);
6603
6604 out_unlock:
6605 spin_unlock_irq(&mchdev_lock);
6606
6607 return ret;
6608 }
6609 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6610
6611 /**
6612 * i915_gpu_turbo_disable - disable graphics turbo
6613 *
6614 * Disable graphics turbo by resetting the max frequency and setting the
6615 * current frequency to the default.
6616 */
6617 bool i915_gpu_turbo_disable(void)
6618 {
6619 struct drm_i915_private *dev_priv;
6620 bool ret = true;
6621
6622 spin_lock_irq(&mchdev_lock);
6623 if (!i915_mch_dev) {
6624 ret = false;
6625 goto out_unlock;
6626 }
6627 dev_priv = i915_mch_dev;
6628
6629 dev_priv->ips.max_delay = dev_priv->ips.fstart;
6630
6631 if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6632 ret = false;
6633
6634 out_unlock:
6635 spin_unlock_irq(&mchdev_lock);
6636
6637 return ret;
6638 }
6639 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6640
6641 /**
6642 * Tells the intel_ips driver that the i915 driver is now loaded, if
6643 * IPS got loaded first.
6644 *
6645 * This awkward dance is so that neither module has to depend on the
6646 * other in order for IPS to do the appropriate communication of
6647 * GPU turbo limits to i915.
6648 */
6649 static void
6650 ips_ping_for_i915_load(void)
6651 {
6652 void (*link)(void);
6653
6654 link = symbol_get(ips_link_to_i915_driver);
6655 if (link) {
6656 link();
6657 symbol_put(ips_link_to_i915_driver);
6658 }
6659 }
6660
6661 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6662 {
6663 /* We only register the i915 ips part with intel-ips once everything is
6664 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6665 spin_lock_irq(&mchdev_lock);
6666 i915_mch_dev = dev_priv;
6667 spin_unlock_irq(&mchdev_lock);
6668
6669 ips_ping_for_i915_load();
6670 }
6671
6672 void intel_gpu_ips_teardown(void)
6673 {
6674 spin_lock_irq(&mchdev_lock);
6675 i915_mch_dev = NULL;
6676 spin_unlock_irq(&mchdev_lock);
6677 }
6678
6679 static void intel_init_emon(struct drm_i915_private *dev_priv)
6680 {
6681 u32 lcfuse;
6682 u8 pxw[16];
6683 int i;
6684
6685 /* Disable to program */
6686 I915_WRITE(ECR, 0);
6687 POSTING_READ(ECR);
6688
6689 /* Program energy weights for various events */
6690 I915_WRITE(SDEW, 0x15040d00);
6691 I915_WRITE(CSIEW0, 0x007f0000);
6692 I915_WRITE(CSIEW1, 0x1e220004);
6693 I915_WRITE(CSIEW2, 0x04000004);
6694
6695 for (i = 0; i < 5; i++)
6696 I915_WRITE(PEW(i), 0);
6697 for (i = 0; i < 3; i++)
6698 I915_WRITE(DEW(i), 0);
6699
6700 /* Program P-state weights to account for frequency power adjustment */
6701 for (i = 0; i < 16; i++) {
6702 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6703 unsigned long freq = intel_pxfreq(pxvidfreq);
6704 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6705 PXVFREQ_PX_SHIFT;
6706 unsigned long val;
6707
6708 val = vid * vid;
6709 val *= (freq / 1000);
6710 val *= 255;
6711 val /= (127*127*900);
6712 if (val > 0xff)
6713 DRM_ERROR("bad pxval: %ld\n", val);
6714 pxw[i] = val;
6715 }
6716 /* Render standby states get 0 weight */
6717 pxw[14] = 0;
6718 pxw[15] = 0;
6719
6720 for (i = 0; i < 4; i++) {
6721 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6722 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6723 I915_WRITE(PXW(i), val);
6724 }
6725
6726 /* Adjust magic regs to magic values (more experimental results) */
6727 I915_WRITE(OGW0, 0);
6728 I915_WRITE(OGW1, 0);
6729 I915_WRITE(EG0, 0x00007f00);
6730 I915_WRITE(EG1, 0x0000000e);
6731 I915_WRITE(EG2, 0x000e0000);
6732 I915_WRITE(EG3, 0x68000300);
6733 I915_WRITE(EG4, 0x42000000);
6734 I915_WRITE(EG5, 0x00140031);
6735 I915_WRITE(EG6, 0);
6736 I915_WRITE(EG7, 0);
6737
6738 for (i = 0; i < 8; i++)
6739 I915_WRITE(PXWL(i), 0);
6740
6741 /* Enable PMON + select events */
6742 I915_WRITE(ECR, 0x80000019);
6743
6744 lcfuse = I915_READ(LCFUSE02);
6745
6746 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6747 }
6748
6749 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6750 {
6751 /*
6752 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6753 * requirement.
6754 */
6755 if (!i915.enable_rc6) {
6756 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6757 intel_runtime_pm_get(dev_priv);
6758 }
6759
6760 if (IS_CHERRYVIEW(dev_priv))
6761 cherryview_init_gt_powersave(dev_priv);
6762 else if (IS_VALLEYVIEW(dev_priv))
6763 valleyview_init_gt_powersave(dev_priv);
6764 }
6765
6766 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6767 {
6768 if (IS_VALLEYVIEW(dev_priv))
6769 valleyview_cleanup_gt_powersave(dev_priv);
6770
6771 if (!i915.enable_rc6)
6772 intel_runtime_pm_put(dev_priv);
6773 }
6774
6775 static void gen6_suspend_rps(struct drm_i915_private *dev_priv)
6776 {
6777 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6778
6779 gen6_disable_rps_interrupts(dev_priv);
6780 }
6781
6782 /**
6783 * intel_suspend_gt_powersave - suspend PM work and helper threads
6784 * @dev_priv: i915 device
6785 *
6786 * We don't want to disable RC6 or other features here, we just want
6787 * to make sure any work we've queued has finished and won't bother
6788 * us while we're suspended.
6789 */
6790 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
6791 {
6792 if (INTEL_GEN(dev_priv) < 6)
6793 return;
6794
6795 gen6_suspend_rps(dev_priv);
6796
6797 /* Force GPU to min freq during suspend */
6798 gen6_rps_idle(dev_priv);
6799 }
6800
6801 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6802 {
6803 if (IS_IRONLAKE_M(dev_priv)) {
6804 ironlake_disable_drps(dev_priv);
6805 } else if (INTEL_INFO(dev_priv)->gen >= 6) {
6806 intel_suspend_gt_powersave(dev_priv);
6807
6808 mutex_lock(&dev_priv->rps.hw_lock);
6809 if (INTEL_INFO(dev_priv)->gen >= 9) {
6810 gen9_disable_rc6(dev_priv);
6811 gen9_disable_rps(dev_priv);
6812 } else if (IS_CHERRYVIEW(dev_priv))
6813 cherryview_disable_rps(dev_priv);
6814 else if (IS_VALLEYVIEW(dev_priv))
6815 valleyview_disable_rps(dev_priv);
6816 else
6817 gen6_disable_rps(dev_priv);
6818
6819 dev_priv->rps.enabled = false;
6820 mutex_unlock(&dev_priv->rps.hw_lock);
6821 }
6822 }
6823
6824 static void intel_gen6_powersave_work(struct work_struct *work)
6825 {
6826 struct drm_i915_private *dev_priv =
6827 container_of(work, struct drm_i915_private,
6828 rps.delayed_resume_work.work);
6829
6830 mutex_lock(&dev_priv->rps.hw_lock);
6831
6832 gen6_reset_rps_interrupts(dev_priv);
6833
6834 if (IS_CHERRYVIEW(dev_priv)) {
6835 cherryview_enable_rps(dev_priv);
6836 } else if (IS_VALLEYVIEW(dev_priv)) {
6837 valleyview_enable_rps(dev_priv);
6838 } else if (INTEL_INFO(dev_priv)->gen >= 9) {
6839 gen9_enable_rc6(dev_priv);
6840 gen9_enable_rps(dev_priv);
6841 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6842 __gen6_update_ring_freq(dev_priv);
6843 } else if (IS_BROADWELL(dev_priv)) {
6844 gen8_enable_rps(dev_priv);
6845 __gen6_update_ring_freq(dev_priv);
6846 } else {
6847 gen6_enable_rps(dev_priv);
6848 __gen6_update_ring_freq(dev_priv);
6849 }
6850
6851 WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6852 WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6853
6854 WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6855 WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6856
6857 dev_priv->rps.enabled = true;
6858
6859 gen6_enable_rps_interrupts(dev_priv);
6860
6861 mutex_unlock(&dev_priv->rps.hw_lock);
6862
6863 intel_runtime_pm_put(dev_priv);
6864 }
6865
6866 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6867 {
6868 /* Powersaving is controlled by the host when inside a VM */
6869 if (intel_vgpu_active(dev_priv))
6870 return;
6871
6872 if (IS_IRONLAKE_M(dev_priv)) {
6873 ironlake_enable_drps(dev_priv);
6874 mutex_lock(&dev_priv->drm.struct_mutex);
6875 intel_init_emon(dev_priv);
6876 mutex_unlock(&dev_priv->drm.struct_mutex);
6877 } else if (INTEL_INFO(dev_priv)->gen >= 6) {
6878 /*
6879 * PCU communication is slow and this doesn't need to be
6880 * done at any specific time, so do this out of our fast path
6881 * to make resume and init faster.
6882 *
6883 * We depend on the HW RC6 power context save/restore
6884 * mechanism when entering D3 through runtime PM suspend. So
6885 * disable RPM until RPS/RC6 is properly setup. We can only
6886 * get here via the driver load/system resume/runtime resume
6887 * paths, so the _noresume version is enough (and in case of
6888 * runtime resume it's necessary).
6889 */
6890 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6891 round_jiffies_up_relative(HZ)))
6892 intel_runtime_pm_get_noresume(dev_priv);
6893 }
6894 }
6895
6896 void intel_reset_gt_powersave(struct drm_i915_private *dev_priv)
6897 {
6898 if (INTEL_INFO(dev_priv)->gen < 6)
6899 return;
6900
6901 gen6_suspend_rps(dev_priv);
6902 dev_priv->rps.enabled = false;
6903 }
6904
6905 static void ibx_init_clock_gating(struct drm_device *dev)
6906 {
6907 struct drm_i915_private *dev_priv = to_i915(dev);
6908
6909 /*
6910 * On Ibex Peak and Cougar Point, we need to disable clock
6911 * gating for the panel power sequencer or it will fail to
6912 * start up when no ports are active.
6913 */
6914 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6915 }
6916
6917 static void g4x_disable_trickle_feed(struct drm_device *dev)
6918 {
6919 struct drm_i915_private *dev_priv = to_i915(dev);
6920 enum pipe pipe;
6921
6922 for_each_pipe(dev_priv, pipe) {
6923 I915_WRITE(DSPCNTR(pipe),
6924 I915_READ(DSPCNTR(pipe)) |
6925 DISPPLANE_TRICKLE_FEED_DISABLE);
6926
6927 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6928 POSTING_READ(DSPSURF(pipe));
6929 }
6930 }
6931
6932 static void ilk_init_lp_watermarks(struct drm_device *dev)
6933 {
6934 struct drm_i915_private *dev_priv = to_i915(dev);
6935
6936 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6937 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6938 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6939
6940 /*
6941 * Don't touch WM1S_LP_EN here.
6942 * Doing so could cause underruns.
6943 */
6944 }
6945
6946 static void ironlake_init_clock_gating(struct drm_device *dev)
6947 {
6948 struct drm_i915_private *dev_priv = to_i915(dev);
6949 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6950
6951 /*
6952 * Required for FBC
6953 * WaFbcDisableDpfcClockGating:ilk
6954 */
6955 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6956 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6957 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6958
6959 I915_WRITE(PCH_3DCGDIS0,
6960 MARIUNIT_CLOCK_GATE_DISABLE |
6961 SVSMUNIT_CLOCK_GATE_DISABLE);
6962 I915_WRITE(PCH_3DCGDIS1,
6963 VFMUNIT_CLOCK_GATE_DISABLE);
6964
6965 /*
6966 * According to the spec the following bits should be set in
6967 * order to enable memory self-refresh
6968 * The bit 22/21 of 0x42004
6969 * The bit 5 of 0x42020
6970 * The bit 15 of 0x45000
6971 */
6972 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6973 (I915_READ(ILK_DISPLAY_CHICKEN2) |
6974 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6975 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6976 I915_WRITE(DISP_ARB_CTL,
6977 (I915_READ(DISP_ARB_CTL) |
6978 DISP_FBC_WM_DIS));
6979
6980 ilk_init_lp_watermarks(dev);
6981
6982 /*
6983 * Based on the document from hardware guys the following bits
6984 * should be set unconditionally in order to enable FBC.
6985 * The bit 22 of 0x42000
6986 * The bit 22 of 0x42004
6987 * The bit 7,8,9 of 0x42020.
6988 */
6989 if (IS_IRONLAKE_M(dev)) {
6990 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6991 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6992 I915_READ(ILK_DISPLAY_CHICKEN1) |
6993 ILK_FBCQ_DIS);
6994 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6995 I915_READ(ILK_DISPLAY_CHICKEN2) |
6996 ILK_DPARB_GATE);
6997 }
6998
6999 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7000
7001 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7002 I915_READ(ILK_DISPLAY_CHICKEN2) |
7003 ILK_ELPIN_409_SELECT);
7004 I915_WRITE(_3D_CHICKEN2,
7005 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
7006 _3D_CHICKEN2_WM_READ_PIPELINED);
7007
7008 /* WaDisableRenderCachePipelinedFlush:ilk */
7009 I915_WRITE(CACHE_MODE_0,
7010 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7011
7012 /* WaDisable_RenderCache_OperationalFlush:ilk */
7013 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7014
7015 g4x_disable_trickle_feed(dev);
7016
7017 ibx_init_clock_gating(dev);
7018 }
7019
7020 static void cpt_init_clock_gating(struct drm_device *dev)
7021 {
7022 struct drm_i915_private *dev_priv = to_i915(dev);
7023 int pipe;
7024 uint32_t val;
7025
7026 /*
7027 * On Ibex Peak and Cougar Point, we need to disable clock
7028 * gating for the panel power sequencer or it will fail to
7029 * start up when no ports are active.
7030 */
7031 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
7032 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
7033 PCH_CPUNIT_CLOCK_GATE_DISABLE);
7034 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
7035 DPLS_EDP_PPS_FIX_DIS);
7036 /* The below fixes the weird display corruption, a few pixels shifted
7037 * downward, on (only) LVDS of some HP laptops with IVY.
7038 */
7039 for_each_pipe(dev_priv, pipe) {
7040 val = I915_READ(TRANS_CHICKEN2(pipe));
7041 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
7042 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7043 if (dev_priv->vbt.fdi_rx_polarity_inverted)
7044 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7045 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
7046 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
7047 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7048 I915_WRITE(TRANS_CHICKEN2(pipe), val);
7049 }
7050 /* WADP0ClockGatingDisable */
7051 for_each_pipe(dev_priv, pipe) {
7052 I915_WRITE(TRANS_CHICKEN1(pipe),
7053 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7054 }
7055 }
7056
7057 static void gen6_check_mch_setup(struct drm_device *dev)
7058 {
7059 struct drm_i915_private *dev_priv = to_i915(dev);
7060 uint32_t tmp;
7061
7062 tmp = I915_READ(MCH_SSKPD);
7063 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
7064 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
7065 tmp);
7066 }
7067
7068 static void gen6_init_clock_gating(struct drm_device *dev)
7069 {
7070 struct drm_i915_private *dev_priv = to_i915(dev);
7071 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7072
7073 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7074
7075 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7076 I915_READ(ILK_DISPLAY_CHICKEN2) |
7077 ILK_ELPIN_409_SELECT);
7078
7079 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7080 I915_WRITE(_3D_CHICKEN,
7081 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
7082
7083 /* WaDisable_RenderCache_OperationalFlush:snb */
7084 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7085
7086 /*
7087 * BSpec recoomends 8x4 when MSAA is used,
7088 * however in practice 16x4 seems fastest.
7089 *
7090 * Note that PS/WM thread counts depend on the WIZ hashing
7091 * disable bit, which we don't touch here, but it's good
7092 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7093 */
7094 I915_WRITE(GEN6_GT_MODE,
7095 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7096
7097 ilk_init_lp_watermarks(dev);
7098
7099 I915_WRITE(CACHE_MODE_0,
7100 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7101
7102 I915_WRITE(GEN6_UCGCTL1,
7103 I915_READ(GEN6_UCGCTL1) |
7104 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
7105 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7106
7107 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
7108 * gating disable must be set. Failure to set it results in
7109 * flickering pixels due to Z write ordering failures after
7110 * some amount of runtime in the Mesa "fire" demo, and Unigine
7111 * Sanctuary and Tropics, and apparently anything else with
7112 * alpha test or pixel discard.
7113 *
7114 * According to the spec, bit 11 (RCCUNIT) must also be set,
7115 * but we didn't debug actual testcases to find it out.
7116 *
7117 * WaDisableRCCUnitClockGating:snb
7118 * WaDisableRCPBUnitClockGating:snb
7119 */
7120 I915_WRITE(GEN6_UCGCTL2,
7121 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
7122 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
7123
7124 /* WaStripsFansDisableFastClipPerformanceFix:snb */
7125 I915_WRITE(_3D_CHICKEN3,
7126 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7127
7128 /*
7129 * Bspec says:
7130 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
7131 * 3DSTATE_SF number of SF output attributes is more than 16."
7132 */
7133 I915_WRITE(_3D_CHICKEN3,
7134 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
7135
7136 /*
7137 * According to the spec the following bits should be
7138 * set in order to enable memory self-refresh and fbc:
7139 * The bit21 and bit22 of 0x42000
7140 * The bit21 and bit22 of 0x42004
7141 * The bit5 and bit7 of 0x42020
7142 * The bit14 of 0x70180
7143 * The bit14 of 0x71180
7144 *
7145 * WaFbcAsynchFlipDisableFbcQueue:snb
7146 */
7147 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7148 I915_READ(ILK_DISPLAY_CHICKEN1) |
7149 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7150 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7151 I915_READ(ILK_DISPLAY_CHICKEN2) |
7152 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7153 I915_WRITE(ILK_DSPCLK_GATE_D,
7154 I915_READ(ILK_DSPCLK_GATE_D) |
7155 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
7156 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7157
7158 g4x_disable_trickle_feed(dev);
7159
7160 cpt_init_clock_gating(dev);
7161
7162 gen6_check_mch_setup(dev);
7163 }
7164
7165 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
7166 {
7167 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
7168
7169 /*
7170 * WaVSThreadDispatchOverride:ivb,vlv
7171 *
7172 * This actually overrides the dispatch
7173 * mode for all thread types.
7174 */
7175 reg &= ~GEN7_FF_SCHED_MASK;
7176 reg |= GEN7_FF_TS_SCHED_HW;
7177 reg |= GEN7_FF_VS_SCHED_HW;
7178 reg |= GEN7_FF_DS_SCHED_HW;
7179
7180 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
7181 }
7182
7183 static void lpt_init_clock_gating(struct drm_device *dev)
7184 {
7185 struct drm_i915_private *dev_priv = to_i915(dev);
7186
7187 /*
7188 * TODO: this bit should only be enabled when really needed, then
7189 * disabled when not needed anymore in order to save power.
7190 */
7191 if (HAS_PCH_LPT_LP(dev))
7192 I915_WRITE(SOUTH_DSPCLK_GATE_D,
7193 I915_READ(SOUTH_DSPCLK_GATE_D) |
7194 PCH_LP_PARTITION_LEVEL_DISABLE);
7195
7196 /* WADPOClockGatingDisable:hsw */
7197 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
7198 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7199 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7200 }
7201
7202 static void lpt_suspend_hw(struct drm_device *dev)
7203 {
7204 struct drm_i915_private *dev_priv = to_i915(dev);
7205
7206 if (HAS_PCH_LPT_LP(dev)) {
7207 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
7208
7209 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7210 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7211 }
7212 }
7213
7214 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
7215 int general_prio_credits,
7216 int high_prio_credits)
7217 {
7218 u32 misccpctl;
7219
7220 /* WaTempDisableDOPClkGating:bdw */
7221 misccpctl = I915_READ(GEN7_MISCCPCTL);
7222 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
7223
7224 I915_WRITE(GEN8_L3SQCREG1,
7225 L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
7226 L3_HIGH_PRIO_CREDITS(high_prio_credits));
7227
7228 /*
7229 * Wait at least 100 clocks before re-enabling clock gating.
7230 * See the definition of L3SQCREG1 in BSpec.
7231 */
7232 POSTING_READ(GEN8_L3SQCREG1);
7233 udelay(1);
7234 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
7235 }
7236
7237 static void kabylake_init_clock_gating(struct drm_device *dev)
7238 {
7239 struct drm_i915_private *dev_priv = dev->dev_private;
7240
7241 gen9_init_clock_gating(dev);
7242
7243 /* WaDisableSDEUnitClockGating:kbl */
7244 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7245 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7246 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7247
7248 /* WaDisableGamClockGating:kbl */
7249 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7250 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7251 GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7252
7253 /* WaFbcNukeOnHostModify:kbl */
7254 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7255 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7256 }
7257
7258 static void skylake_init_clock_gating(struct drm_device *dev)
7259 {
7260 struct drm_i915_private *dev_priv = dev->dev_private;
7261
7262 gen9_init_clock_gating(dev);
7263
7264 /* WAC6entrylatency:skl */
7265 I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
7266 FBC_LLC_FULLY_OPEN);
7267
7268 /* WaFbcNukeOnHostModify:skl */
7269 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7270 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7271 }
7272
7273 static void broadwell_init_clock_gating(struct drm_device *dev)
7274 {
7275 struct drm_i915_private *dev_priv = to_i915(dev);
7276 enum pipe pipe;
7277
7278 ilk_init_lp_watermarks(dev);
7279
7280 /* WaSwitchSolVfFArbitrationPriority:bdw */
7281 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7282
7283 /* WaPsrDPAMaskVBlankInSRD:bdw */
7284 I915_WRITE(CHICKEN_PAR1_1,
7285 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7286
7287 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7288 for_each_pipe(dev_priv, pipe) {
7289 I915_WRITE(CHICKEN_PIPESL_1(pipe),
7290 I915_READ(CHICKEN_PIPESL_1(pipe)) |
7291 BDW_DPRS_MASK_VBLANK_SRD);
7292 }
7293
7294 /* WaVSRefCountFullforceMissDisable:bdw */
7295 /* WaDSRefCountFullforceMissDisable:bdw */
7296 I915_WRITE(GEN7_FF_THREAD_MODE,
7297 I915_READ(GEN7_FF_THREAD_MODE) &
7298 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7299
7300 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7301 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7302
7303 /* WaDisableSDEUnitClockGating:bdw */
7304 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7305 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7306
7307 /* WaProgramL3SqcReg1Default:bdw */
7308 gen8_set_l3sqc_credits(dev_priv, 30, 2);
7309
7310 /*
7311 * WaGttCachingOffByDefault:bdw
7312 * GTT cache may not work with big pages, so if those
7313 * are ever enabled GTT cache may need to be disabled.
7314 */
7315 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7316
7317 /* WaKVMNotificationOnConfigChange:bdw */
7318 I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
7319 | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7320
7321 lpt_init_clock_gating(dev);
7322 }
7323
7324 static void haswell_init_clock_gating(struct drm_device *dev)
7325 {
7326 struct drm_i915_private *dev_priv = to_i915(dev);
7327
7328 ilk_init_lp_watermarks(dev);
7329
7330 /* L3 caching of data atomics doesn't work -- disable it. */
7331 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
7332 I915_WRITE(HSW_ROW_CHICKEN3,
7333 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
7334
7335 /* This is required by WaCatErrorRejectionIssue:hsw */
7336 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7337 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7338 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7339
7340 /* WaVSRefCountFullforceMissDisable:hsw */
7341 I915_WRITE(GEN7_FF_THREAD_MODE,
7342 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7343
7344 /* WaDisable_RenderCache_OperationalFlush:hsw */
7345 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7346
7347 /* enable HiZ Raw Stall Optimization */
7348 I915_WRITE(CACHE_MODE_0_GEN7,
7349 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7350
7351 /* WaDisable4x2SubspanOptimization:hsw */
7352 I915_WRITE(CACHE_MODE_1,
7353 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7354
7355 /*
7356 * BSpec recommends 8x4 when MSAA is used,
7357 * however in practice 16x4 seems fastest.
7358 *
7359 * Note that PS/WM thread counts depend on the WIZ hashing
7360 * disable bit, which we don't touch here, but it's good
7361 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7362 */
7363 I915_WRITE(GEN7_GT_MODE,
7364 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7365
7366 /* WaSampleCChickenBitEnable:hsw */
7367 I915_WRITE(HALF_SLICE_CHICKEN3,
7368 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
7369
7370 /* WaSwitchSolVfFArbitrationPriority:hsw */
7371 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7372
7373 /* WaRsPkgCStateDisplayPMReq:hsw */
7374 I915_WRITE(CHICKEN_PAR1_1,
7375 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7376
7377 lpt_init_clock_gating(dev);
7378 }
7379
7380 static void ivybridge_init_clock_gating(struct drm_device *dev)
7381 {
7382 struct drm_i915_private *dev_priv = to_i915(dev);
7383 uint32_t snpcr;
7384
7385 ilk_init_lp_watermarks(dev);
7386
7387 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7388
7389 /* WaDisableEarlyCull:ivb */
7390 I915_WRITE(_3D_CHICKEN3,
7391 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7392
7393 /* WaDisableBackToBackFlipFix:ivb */
7394 I915_WRITE(IVB_CHICKEN3,
7395 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7396 CHICKEN3_DGMG_DONE_FIX_DISABLE);
7397
7398 /* WaDisablePSDDualDispatchEnable:ivb */
7399 if (IS_IVB_GT1(dev))
7400 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7401 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7402
7403 /* WaDisable_RenderCache_OperationalFlush:ivb */
7404 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7405
7406 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7407 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
7408 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
7409
7410 /* WaApplyL3ControlAndL3ChickenMode:ivb */
7411 I915_WRITE(GEN7_L3CNTLREG1,
7412 GEN7_WA_FOR_GEN7_L3_CONTROL);
7413 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7414 GEN7_WA_L3_CHICKEN_MODE);
7415 if (IS_IVB_GT1(dev))
7416 I915_WRITE(GEN7_ROW_CHICKEN2,
7417 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7418 else {
7419 /* must write both registers */
7420 I915_WRITE(GEN7_ROW_CHICKEN2,
7421 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7422 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
7423 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7424 }
7425
7426 /* WaForceL3Serialization:ivb */
7427 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7428 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7429
7430 /*
7431 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7432 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7433 */
7434 I915_WRITE(GEN6_UCGCTL2,
7435 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7436
7437 /* This is required by WaCatErrorRejectionIssue:ivb */
7438 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7439 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7440 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7441
7442 g4x_disable_trickle_feed(dev);
7443
7444 gen7_setup_fixed_func_scheduler(dev_priv);
7445
7446 if (0) { /* causes HiZ corruption on ivb:gt1 */
7447 /* enable HiZ Raw Stall Optimization */
7448 I915_WRITE(CACHE_MODE_0_GEN7,
7449 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7450 }
7451
7452 /* WaDisable4x2SubspanOptimization:ivb */
7453 I915_WRITE(CACHE_MODE_1,
7454 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7455
7456 /*
7457 * BSpec recommends 8x4 when MSAA is used,
7458 * however in practice 16x4 seems fastest.
7459 *
7460 * Note that PS/WM thread counts depend on the WIZ hashing
7461 * disable bit, which we don't touch here, but it's good
7462 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7463 */
7464 I915_WRITE(GEN7_GT_MODE,
7465 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7466
7467 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
7468 snpcr &= ~GEN6_MBC_SNPCR_MASK;
7469 snpcr |= GEN6_MBC_SNPCR_MED;
7470 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7471
7472 if (!HAS_PCH_NOP(dev))
7473 cpt_init_clock_gating(dev);
7474
7475 gen6_check_mch_setup(dev);
7476 }
7477
7478 static void valleyview_init_clock_gating(struct drm_device *dev)
7479 {
7480 struct drm_i915_private *dev_priv = to_i915(dev);
7481
7482 /* WaDisableEarlyCull:vlv */
7483 I915_WRITE(_3D_CHICKEN3,
7484 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7485
7486 /* WaDisableBackToBackFlipFix:vlv */
7487 I915_WRITE(IVB_CHICKEN3,
7488 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7489 CHICKEN3_DGMG_DONE_FIX_DISABLE);
7490
7491 /* WaPsdDispatchEnable:vlv */
7492 /* WaDisablePSDDualDispatchEnable:vlv */
7493 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7494 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
7495 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7496
7497 /* WaDisable_RenderCache_OperationalFlush:vlv */
7498 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7499
7500 /* WaForceL3Serialization:vlv */
7501 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7502 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7503
7504 /* WaDisableDopClockGating:vlv */
7505 I915_WRITE(GEN7_ROW_CHICKEN2,
7506 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7507
7508 /* This is required by WaCatErrorRejectionIssue:vlv */
7509 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7510 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7511 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7512
7513 gen7_setup_fixed_func_scheduler(dev_priv);
7514
7515 /*
7516 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7517 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7518 */
7519 I915_WRITE(GEN6_UCGCTL2,
7520 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7521
7522 /* WaDisableL3Bank2xClockGate:vlv
7523 * Disabling L3 clock gating- MMIO 940c[25] = 1
7524 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7525 I915_WRITE(GEN7_UCGCTL4,
7526 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7527
7528 /*
7529 * BSpec says this must be set, even though
7530 * WaDisable4x2SubspanOptimization isn't listed for VLV.
7531 */
7532 I915_WRITE(CACHE_MODE_1,
7533 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7534
7535 /*
7536 * BSpec recommends 8x4 when MSAA is used,
7537 * however in practice 16x4 seems fastest.
7538 *
7539 * Note that PS/WM thread counts depend on the WIZ hashing
7540 * disable bit, which we don't touch here, but it's good
7541 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7542 */
7543 I915_WRITE(GEN7_GT_MODE,
7544 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7545
7546 /*
7547 * WaIncreaseL3CreditsForVLVB0:vlv
7548 * This is the hardware default actually.
7549 */
7550 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7551
7552 /*
7553 * WaDisableVLVClockGating_VBIIssue:vlv
7554 * Disable clock gating on th GCFG unit to prevent a delay
7555 * in the reporting of vblank events.
7556 */
7557 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7558 }
7559
7560 static void cherryview_init_clock_gating(struct drm_device *dev)
7561 {
7562 struct drm_i915_private *dev_priv = to_i915(dev);
7563
7564 /* WaVSRefCountFullforceMissDisable:chv */
7565 /* WaDSRefCountFullforceMissDisable:chv */
7566 I915_WRITE(GEN7_FF_THREAD_MODE,
7567 I915_READ(GEN7_FF_THREAD_MODE) &
7568 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7569
7570 /* WaDisableSemaphoreAndSyncFlipWait:chv */
7571 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7572 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7573
7574 /* WaDisableCSUnitClockGating:chv */
7575 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7576 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7577
7578 /* WaDisableSDEUnitClockGating:chv */
7579 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7580 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7581
7582 /*
7583 * WaProgramL3SqcReg1Default:chv
7584 * See gfxspecs/Related Documents/Performance Guide/
7585 * LSQC Setting Recommendations.
7586 */
7587 gen8_set_l3sqc_credits(dev_priv, 38, 2);
7588
7589 /*
7590 * GTT cache may not work with big pages, so if those
7591 * are ever enabled GTT cache may need to be disabled.
7592 */
7593 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7594 }
7595
7596 static void g4x_init_clock_gating(struct drm_device *dev)
7597 {
7598 struct drm_i915_private *dev_priv = to_i915(dev);
7599 uint32_t dspclk_gate;
7600
7601 I915_WRITE(RENCLK_GATE_D1, 0);
7602 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7603 GS_UNIT_CLOCK_GATE_DISABLE |
7604 CL_UNIT_CLOCK_GATE_DISABLE);
7605 I915_WRITE(RAMCLK_GATE_D, 0);
7606 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7607 OVRUNIT_CLOCK_GATE_DISABLE |
7608 OVCUNIT_CLOCK_GATE_DISABLE;
7609 if (IS_GM45(dev))
7610 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7611 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7612
7613 /* WaDisableRenderCachePipelinedFlush */
7614 I915_WRITE(CACHE_MODE_0,
7615 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7616
7617 /* WaDisable_RenderCache_OperationalFlush:g4x */
7618 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7619
7620 g4x_disable_trickle_feed(dev);
7621 }
7622
7623 static void crestline_init_clock_gating(struct drm_device *dev)
7624 {
7625 struct drm_i915_private *dev_priv = to_i915(dev);
7626
7627 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7628 I915_WRITE(RENCLK_GATE_D2, 0);
7629 I915_WRITE(DSPCLK_GATE_D, 0);
7630 I915_WRITE(RAMCLK_GATE_D, 0);
7631 I915_WRITE16(DEUC, 0);
7632 I915_WRITE(MI_ARB_STATE,
7633 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7634
7635 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7636 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7637 }
7638
7639 static void broadwater_init_clock_gating(struct drm_device *dev)
7640 {
7641 struct drm_i915_private *dev_priv = to_i915(dev);
7642
7643 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7644 I965_RCC_CLOCK_GATE_DISABLE |
7645 I965_RCPB_CLOCK_GATE_DISABLE |
7646 I965_ISC_CLOCK_GATE_DISABLE |
7647 I965_FBC_CLOCK_GATE_DISABLE);
7648 I915_WRITE(RENCLK_GATE_D2, 0);
7649 I915_WRITE(MI_ARB_STATE,
7650 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7651
7652 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7653 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7654 }
7655
7656 static void gen3_init_clock_gating(struct drm_device *dev)
7657 {
7658 struct drm_i915_private *dev_priv = to_i915(dev);
7659 u32 dstate = I915_READ(D_STATE);
7660
7661 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7662 DSTATE_DOT_CLOCK_GATING;
7663 I915_WRITE(D_STATE, dstate);
7664
7665 if (IS_PINEVIEW(dev))
7666 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7667
7668 /* IIR "flip pending" means done if this bit is set */
7669 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7670
7671 /* interrupts should cause a wake up from C3 */
7672 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7673
7674 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7675 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7676
7677 I915_WRITE(MI_ARB_STATE,
7678 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7679 }
7680
7681 static void i85x_init_clock_gating(struct drm_device *dev)
7682 {
7683 struct drm_i915_private *dev_priv = to_i915(dev);
7684
7685 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7686
7687 /* interrupts should cause a wake up from C3 */
7688 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7689 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7690
7691 I915_WRITE(MEM_MODE,
7692 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7693 }
7694
7695 static void i830_init_clock_gating(struct drm_device *dev)
7696 {
7697 struct drm_i915_private *dev_priv = to_i915(dev);
7698
7699 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7700
7701 I915_WRITE(MEM_MODE,
7702 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7703 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7704 }
7705
7706 void intel_init_clock_gating(struct drm_device *dev)
7707 {
7708 struct drm_i915_private *dev_priv = to_i915(dev);
7709
7710 dev_priv->display.init_clock_gating(dev);
7711 }
7712
7713 void intel_suspend_hw(struct drm_device *dev)
7714 {
7715 if (HAS_PCH_LPT(dev))
7716 lpt_suspend_hw(dev);
7717 }
7718
7719 static void nop_init_clock_gating(struct drm_device *dev)
7720 {
7721 DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
7722 }
7723
7724 /**
7725 * intel_init_clock_gating_hooks - setup the clock gating hooks
7726 * @dev_priv: device private
7727 *
7728 * Setup the hooks that configure which clocks of a given platform can be
7729 * gated and also apply various GT and display specific workarounds for these
7730 * platforms. Note that some GT specific workarounds are applied separately
7731 * when GPU contexts or batchbuffers start their execution.
7732 */
7733 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7734 {
7735 if (IS_SKYLAKE(dev_priv))
7736 dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7737 else if (IS_KABYLAKE(dev_priv))
7738 dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7739 else if (IS_BROXTON(dev_priv))
7740 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7741 else if (IS_BROADWELL(dev_priv))
7742 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7743 else if (IS_CHERRYVIEW(dev_priv))
7744 dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
7745 else if (IS_HASWELL(dev_priv))
7746 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7747 else if (IS_IVYBRIDGE(dev_priv))
7748 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7749 else if (IS_VALLEYVIEW(dev_priv))
7750 dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
7751 else if (IS_GEN6(dev_priv))
7752 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7753 else if (IS_GEN5(dev_priv))
7754 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7755 else if (IS_G4X(dev_priv))
7756 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7757 else if (IS_CRESTLINE(dev_priv))
7758 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7759 else if (IS_BROADWATER(dev_priv))
7760 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7761 else if (IS_GEN3(dev_priv))
7762 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7763 else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7764 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7765 else if (IS_GEN2(dev_priv))
7766 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7767 else {
7768 MISSING_CASE(INTEL_DEVID(dev_priv));
7769 dev_priv->display.init_clock_gating = nop_init_clock_gating;
7770 }
7771 }
7772
7773 /* Set up chip specific power management-related functions */
7774 void intel_init_pm(struct drm_device *dev)
7775 {
7776 struct drm_i915_private *dev_priv = to_i915(dev);
7777
7778 intel_fbc_init(dev_priv);
7779
7780 /* For cxsr */
7781 if (IS_PINEVIEW(dev))
7782 i915_pineview_get_mem_freq(dev);
7783 else if (IS_GEN5(dev))
7784 i915_ironlake_get_mem_freq(dev);
7785
7786 /* For FIFO watermark updates */
7787 if (INTEL_INFO(dev)->gen >= 9) {
7788 skl_setup_wm_latency(dev);
7789 dev_priv->display.update_wm = skl_update_wm;
7790 dev_priv->display.compute_global_watermarks = skl_compute_wm;
7791 } else if (HAS_PCH_SPLIT(dev)) {
7792 ilk_setup_wm_latency(dev);
7793
7794 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7795 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7796 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7797 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7798 dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7799 dev_priv->display.compute_intermediate_wm =
7800 ilk_compute_intermediate_wm;
7801 dev_priv->display.initial_watermarks =
7802 ilk_initial_watermarks;
7803 dev_priv->display.optimize_watermarks =
7804 ilk_optimize_watermarks;
7805 } else {
7806 DRM_DEBUG_KMS("Failed to read display plane latency. "
7807 "Disable CxSR\n");
7808 }
7809 } else if (IS_CHERRYVIEW(dev)) {
7810 vlv_setup_wm_latency(dev);
7811 dev_priv->display.update_wm = vlv_update_wm;
7812 } else if (IS_VALLEYVIEW(dev)) {
7813 vlv_setup_wm_latency(dev);
7814 dev_priv->display.update_wm = vlv_update_wm;
7815 } else if (IS_PINEVIEW(dev)) {
7816 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7817 dev_priv->is_ddr3,
7818 dev_priv->fsb_freq,
7819 dev_priv->mem_freq)) {
7820 DRM_INFO("failed to find known CxSR latency "
7821 "(found ddr%s fsb freq %d, mem freq %d), "
7822 "disabling CxSR\n",
7823 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7824 dev_priv->fsb_freq, dev_priv->mem_freq);
7825 /* Disable CxSR and never update its watermark again */
7826 intel_set_memory_cxsr(dev_priv, false);
7827 dev_priv->display.update_wm = NULL;
7828 } else
7829 dev_priv->display.update_wm = pineview_update_wm;
7830 } else if (IS_G4X(dev)) {
7831 dev_priv->display.update_wm = g4x_update_wm;
7832 } else if (IS_GEN4(dev)) {
7833 dev_priv->display.update_wm = i965_update_wm;
7834 } else if (IS_GEN3(dev)) {
7835 dev_priv->display.update_wm = i9xx_update_wm;
7836 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7837 } else if (IS_GEN2(dev)) {
7838 if (INTEL_INFO(dev)->num_pipes == 1) {
7839 dev_priv->display.update_wm = i845_update_wm;
7840 dev_priv->display.get_fifo_size = i845_get_fifo_size;
7841 } else {
7842 dev_priv->display.update_wm = i9xx_update_wm;
7843 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7844 }
7845 } else {
7846 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7847 }
7848 }
7849
7850 static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
7851 {
7852 uint32_t flags =
7853 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
7854
7855 switch (flags) {
7856 case GEN6_PCODE_SUCCESS:
7857 return 0;
7858 case GEN6_PCODE_UNIMPLEMENTED_CMD:
7859 case GEN6_PCODE_ILLEGAL_CMD:
7860 return -ENXIO;
7861 case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7862 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7863 return -EOVERFLOW;
7864 case GEN6_PCODE_TIMEOUT:
7865 return -ETIMEDOUT;
7866 default:
7867 MISSING_CASE(flags)
7868 return 0;
7869 }
7870 }
7871
7872 static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
7873 {
7874 uint32_t flags =
7875 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
7876
7877 switch (flags) {
7878 case GEN6_PCODE_SUCCESS:
7879 return 0;
7880 case GEN6_PCODE_ILLEGAL_CMD:
7881 return -ENXIO;
7882 case GEN7_PCODE_TIMEOUT:
7883 return -ETIMEDOUT;
7884 case GEN7_PCODE_ILLEGAL_DATA:
7885 return -EINVAL;
7886 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7887 return -EOVERFLOW;
7888 default:
7889 MISSING_CASE(flags);
7890 return 0;
7891 }
7892 }
7893
7894 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7895 {
7896 int status;
7897
7898 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7899
7900 /* GEN6_PCODE_* are outside of the forcewake domain, we can
7901 * use te fw I915_READ variants to reduce the amount of work
7902 * required when reading/writing.
7903 */
7904
7905 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7906 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7907 return -EAGAIN;
7908 }
7909
7910 I915_WRITE_FW(GEN6_PCODE_DATA, *val);
7911 I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
7912 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7913
7914 if (intel_wait_for_register_fw(dev_priv,
7915 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7916 500)) {
7917 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7918 return -ETIMEDOUT;
7919 }
7920
7921 *val = I915_READ_FW(GEN6_PCODE_DATA);
7922 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7923
7924 if (INTEL_GEN(dev_priv) > 6)
7925 status = gen7_check_mailbox_status(dev_priv);
7926 else
7927 status = gen6_check_mailbox_status(dev_priv);
7928
7929 if (status) {
7930 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
7931 status);
7932 return status;
7933 }
7934
7935 return 0;
7936 }
7937
7938 int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7939 u32 mbox, u32 val)
7940 {
7941 int status;
7942
7943 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7944
7945 /* GEN6_PCODE_* are outside of the forcewake domain, we can
7946 * use te fw I915_READ variants to reduce the amount of work
7947 * required when reading/writing.
7948 */
7949
7950 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7951 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7952 return -EAGAIN;
7953 }
7954
7955 I915_WRITE_FW(GEN6_PCODE_DATA, val);
7956 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7957
7958 if (intel_wait_for_register_fw(dev_priv,
7959 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7960 500)) {
7961 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7962 return -ETIMEDOUT;
7963 }
7964
7965 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7966
7967 if (INTEL_GEN(dev_priv) > 6)
7968 status = gen7_check_mailbox_status(dev_priv);
7969 else
7970 status = gen6_check_mailbox_status(dev_priv);
7971
7972 if (status) {
7973 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
7974 status);
7975 return status;
7976 }
7977
7978 return 0;
7979 }
7980
7981 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7982 {
7983 /*
7984 * N = val - 0xb7
7985 * Slow = Fast = GPLL ref * N
7986 */
7987 return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7988 }
7989
7990 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7991 {
7992 return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7993 }
7994
7995 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7996 {
7997 /*
7998 * N = val / 2
7999 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
8000 */
8001 return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
8002 }
8003
8004 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
8005 {
8006 /* CHV needs even values */
8007 return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
8008 }
8009
8010 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
8011 {
8012 if (IS_GEN9(dev_priv))
8013 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
8014 GEN9_FREQ_SCALER);
8015 else if (IS_CHERRYVIEW(dev_priv))
8016 return chv_gpu_freq(dev_priv, val);
8017 else if (IS_VALLEYVIEW(dev_priv))
8018 return byt_gpu_freq(dev_priv, val);
8019 else
8020 return val * GT_FREQUENCY_MULTIPLIER;
8021 }
8022
8023 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
8024 {
8025 if (IS_GEN9(dev_priv))
8026 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
8027 GT_FREQUENCY_MULTIPLIER);
8028 else if (IS_CHERRYVIEW(dev_priv))
8029 return chv_freq_opcode(dev_priv, val);
8030 else if (IS_VALLEYVIEW(dev_priv))
8031 return byt_freq_opcode(dev_priv, val);
8032 else
8033 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
8034 }
8035
8036 struct request_boost {
8037 struct work_struct work;
8038 struct drm_i915_gem_request *req;
8039 };
8040
8041 static void __intel_rps_boost_work(struct work_struct *work)
8042 {
8043 struct request_boost *boost = container_of(work, struct request_boost, work);
8044 struct drm_i915_gem_request *req = boost->req;
8045
8046 if (!i915_gem_request_completed(req))
8047 gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
8048
8049 i915_gem_request_unreference(req);
8050 kfree(boost);
8051 }
8052
8053 void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
8054 {
8055 struct request_boost *boost;
8056
8057 if (req == NULL || INTEL_GEN(req->i915) < 6)
8058 return;
8059
8060 if (i915_gem_request_completed(req))
8061 return;
8062
8063 boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
8064 if (boost == NULL)
8065 return;
8066
8067 i915_gem_request_reference(req);
8068 boost->req = req;
8069
8070 INIT_WORK(&boost->work, __intel_rps_boost_work);
8071 queue_work(req->i915->wq, &boost->work);
8072 }
8073
8074 void intel_pm_setup(struct drm_device *dev)
8075 {
8076 struct drm_i915_private *dev_priv = to_i915(dev);
8077
8078 mutex_init(&dev_priv->rps.hw_lock);
8079 spin_lock_init(&dev_priv->rps.client_lock);
8080
8081 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
8082 intel_gen6_powersave_work);
8083 INIT_LIST_HEAD(&dev_priv->rps.clients);
8084 INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
8085 INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
8086
8087 dev_priv->pm.suspended = false;
8088 atomic_set(&dev_priv->pm.wakeref_count, 0);
8089 atomic_set(&dev_priv->pm.atomic_seq, 0);
8090 }