]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_pm.c
drm/i915: Stop using long platform names on clock gating functions.
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34 #include <drm/drm_atomic_helper.h>
35
36 /**
37 * DOC: RC6
38 *
39 * RC6 is a special power stage which allows the GPU to enter an very
40 * low-voltage mode when idle, using down to 0V while at this stage. This
41 * stage is entered automatically when the GPU is idle when RC6 support is
42 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
43 *
44 * There are different RC6 modes available in Intel GPU, which differentiate
45 * among each other with the latency required to enter and leave RC6 and
46 * voltage consumed by the GPU in different states.
47 *
48 * The combination of the following flags define which states GPU is allowed
49 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
50 * RC6pp is deepest RC6. Their support by hardware varies according to the
51 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
52 * which brings the most power savings; deeper states save more power, but
53 * require higher latency to switch to and wake up.
54 */
55 #define INTEL_RC6_ENABLE (1<<0)
56 #define INTEL_RC6p_ENABLE (1<<1)
57 #define INTEL_RC6pp_ENABLE (1<<2)
58
59 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60 {
61 /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
62 I915_WRITE(CHICKEN_PAR1_1,
63 I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
64
65 /*
66 * Display WA#0390: skl,bxt,kbl,glk
67 *
68 * Must match Sampler, Pixel Back End, and Media
69 * (0xE194 bit 8, 0x7014 bit 13, 0x4DDC bits 27 and 31).
70 *
71 * Including bits outside the page in the hash would
72 * require 2 (or 4?) MiB alignment of resources. Just
73 * assume the defaul hashing mode which only uses bits
74 * within the page.
75 */
76 I915_WRITE(CHICKEN_PAR1_1,
77 I915_READ(CHICKEN_PAR1_1) & ~SKL_RC_HASH_OUTSIDE);
78
79 I915_WRITE(GEN8_CONFIG0,
80 I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
81
82 /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
83 I915_WRITE(GEN8_CHICKEN_DCPR_1,
84 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
85
86 /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
87 /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
88 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
89 DISP_FBC_WM_DIS |
90 DISP_FBC_MEMORY_WAKE);
91
92 /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
93 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
94 ILK_DPFC_DISABLE_DUMMY0);
95
96 if (IS_SKYLAKE(dev_priv)) {
97 /* WaDisableDopClockGating */
98 I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
99 & ~GEN7_DOP_CLOCK_GATE_ENABLE);
100 }
101 }
102
103 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
104 {
105 gen9_init_clock_gating(dev_priv);
106
107 /* WaDisableSDEUnitClockGating:bxt */
108 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
109 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
110
111 /*
112 * FIXME:
113 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
114 */
115 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
116 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
117
118 /*
119 * Wa: Backlight PWM may stop in the asserted state, causing backlight
120 * to stay fully on.
121 */
122 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
123 PWM1_GATING_DIS | PWM2_GATING_DIS);
124 }
125
126 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
127 {
128 gen9_init_clock_gating(dev_priv);
129
130 /*
131 * WaDisablePWMClockGating:glk
132 * Backlight PWM may stop in the asserted state, causing backlight
133 * to stay fully on.
134 */
135 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
136 PWM1_GATING_DIS | PWM2_GATING_DIS);
137
138 /* WaDDIIOTimeout:glk */
139 if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
140 u32 val = I915_READ(CHICKEN_MISC_2);
141 val &= ~(GLK_CL0_PWR_DOWN |
142 GLK_CL1_PWR_DOWN |
143 GLK_CL2_PWR_DOWN);
144 I915_WRITE(CHICKEN_MISC_2, val);
145 }
146
147 }
148
149 static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
150 {
151 u32 tmp;
152
153 tmp = I915_READ(CLKCFG);
154
155 switch (tmp & CLKCFG_FSB_MASK) {
156 case CLKCFG_FSB_533:
157 dev_priv->fsb_freq = 533; /* 133*4 */
158 break;
159 case CLKCFG_FSB_800:
160 dev_priv->fsb_freq = 800; /* 200*4 */
161 break;
162 case CLKCFG_FSB_667:
163 dev_priv->fsb_freq = 667; /* 167*4 */
164 break;
165 case CLKCFG_FSB_400:
166 dev_priv->fsb_freq = 400; /* 100*4 */
167 break;
168 }
169
170 switch (tmp & CLKCFG_MEM_MASK) {
171 case CLKCFG_MEM_533:
172 dev_priv->mem_freq = 533;
173 break;
174 case CLKCFG_MEM_667:
175 dev_priv->mem_freq = 667;
176 break;
177 case CLKCFG_MEM_800:
178 dev_priv->mem_freq = 800;
179 break;
180 }
181
182 /* detect pineview DDR3 setting */
183 tmp = I915_READ(CSHRDDR3CTL);
184 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
185 }
186
187 static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
188 {
189 u16 ddrpll, csipll;
190
191 ddrpll = I915_READ16(DDRMPLL1);
192 csipll = I915_READ16(CSIPLL0);
193
194 switch (ddrpll & 0xff) {
195 case 0xc:
196 dev_priv->mem_freq = 800;
197 break;
198 case 0x10:
199 dev_priv->mem_freq = 1066;
200 break;
201 case 0x14:
202 dev_priv->mem_freq = 1333;
203 break;
204 case 0x18:
205 dev_priv->mem_freq = 1600;
206 break;
207 default:
208 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
209 ddrpll & 0xff);
210 dev_priv->mem_freq = 0;
211 break;
212 }
213
214 dev_priv->ips.r_t = dev_priv->mem_freq;
215
216 switch (csipll & 0x3ff) {
217 case 0x00c:
218 dev_priv->fsb_freq = 3200;
219 break;
220 case 0x00e:
221 dev_priv->fsb_freq = 3733;
222 break;
223 case 0x010:
224 dev_priv->fsb_freq = 4266;
225 break;
226 case 0x012:
227 dev_priv->fsb_freq = 4800;
228 break;
229 case 0x014:
230 dev_priv->fsb_freq = 5333;
231 break;
232 case 0x016:
233 dev_priv->fsb_freq = 5866;
234 break;
235 case 0x018:
236 dev_priv->fsb_freq = 6400;
237 break;
238 default:
239 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
240 csipll & 0x3ff);
241 dev_priv->fsb_freq = 0;
242 break;
243 }
244
245 if (dev_priv->fsb_freq == 3200) {
246 dev_priv->ips.c_m = 0;
247 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
248 dev_priv->ips.c_m = 1;
249 } else {
250 dev_priv->ips.c_m = 2;
251 }
252 }
253
254 static const struct cxsr_latency cxsr_latency_table[] = {
255 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
256 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
257 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
258 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
259 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
260
261 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
262 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
263 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
264 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
265 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
266
267 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
268 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
269 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
270 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
271 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
272
273 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
274 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
275 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
276 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
277 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
278
279 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
280 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
281 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
282 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
283 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
284
285 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
286 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
287 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
288 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
289 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
290 };
291
292 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
293 bool is_ddr3,
294 int fsb,
295 int mem)
296 {
297 const struct cxsr_latency *latency;
298 int i;
299
300 if (fsb == 0 || mem == 0)
301 return NULL;
302
303 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
304 latency = &cxsr_latency_table[i];
305 if (is_desktop == latency->is_desktop &&
306 is_ddr3 == latency->is_ddr3 &&
307 fsb == latency->fsb_freq && mem == latency->mem_freq)
308 return latency;
309 }
310
311 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
312
313 return NULL;
314 }
315
316 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
317 {
318 u32 val;
319
320 mutex_lock(&dev_priv->rps.hw_lock);
321
322 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
323 if (enable)
324 val &= ~FORCE_DDR_HIGH_FREQ;
325 else
326 val |= FORCE_DDR_HIGH_FREQ;
327 val &= ~FORCE_DDR_LOW_FREQ;
328 val |= FORCE_DDR_FREQ_REQ_ACK;
329 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
330
331 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
332 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
333 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
334
335 mutex_unlock(&dev_priv->rps.hw_lock);
336 }
337
338 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
339 {
340 u32 val;
341
342 mutex_lock(&dev_priv->rps.hw_lock);
343
344 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
345 if (enable)
346 val |= DSP_MAXFIFO_PM5_ENABLE;
347 else
348 val &= ~DSP_MAXFIFO_PM5_ENABLE;
349 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
350
351 mutex_unlock(&dev_priv->rps.hw_lock);
352 }
353
354 #define FW_WM(value, plane) \
355 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
356
357 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
358 {
359 bool was_enabled;
360 u32 val;
361
362 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
363 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
364 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
365 POSTING_READ(FW_BLC_SELF_VLV);
366 } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
367 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
368 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
369 POSTING_READ(FW_BLC_SELF);
370 } else if (IS_PINEVIEW(dev_priv)) {
371 val = I915_READ(DSPFW3);
372 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
373 if (enable)
374 val |= PINEVIEW_SELF_REFRESH_EN;
375 else
376 val &= ~PINEVIEW_SELF_REFRESH_EN;
377 I915_WRITE(DSPFW3, val);
378 POSTING_READ(DSPFW3);
379 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
380 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
381 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
382 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
383 I915_WRITE(FW_BLC_SELF, val);
384 POSTING_READ(FW_BLC_SELF);
385 } else if (IS_I915GM(dev_priv)) {
386 /*
387 * FIXME can't find a bit like this for 915G, and
388 * and yet it does have the related watermark in
389 * FW_BLC_SELF. What's going on?
390 */
391 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
392 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
393 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
394 I915_WRITE(INSTPM, val);
395 POSTING_READ(INSTPM);
396 } else {
397 return false;
398 }
399
400 trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
401
402 DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
403 enableddisabled(enable),
404 enableddisabled(was_enabled));
405
406 return was_enabled;
407 }
408
409 /**
410 * intel_set_memory_cxsr - Configure CxSR state
411 * @dev_priv: i915 device
412 * @enable: Allow vs. disallow CxSR
413 *
414 * Allow or disallow the system to enter a special CxSR
415 * (C-state self refresh) state. What typically happens in CxSR mode
416 * is that several display FIFOs may get combined into a single larger
417 * FIFO for a particular plane (so called max FIFO mode) to allow the
418 * system to defer memory fetches longer, and the memory will enter
419 * self refresh.
420 *
421 * Note that enabling CxSR does not guarantee that the system enter
422 * this special mode, nor does it guarantee that the system stays
423 * in that mode once entered. So this just allows/disallows the system
424 * to autonomously utilize the CxSR mode. Other factors such as core
425 * C-states will affect when/if the system actually enters/exits the
426 * CxSR mode.
427 *
428 * Note that on VLV/CHV this actually only controls the max FIFO mode,
429 * and the system is free to enter/exit memory self refresh at any time
430 * even when the use of CxSR has been disallowed.
431 *
432 * While the system is actually in the CxSR/max FIFO mode, some plane
433 * control registers will not get latched on vblank. Thus in order to
434 * guarantee the system will respond to changes in the plane registers
435 * we must always disallow CxSR prior to making changes to those registers.
436 * Unfortunately the system will re-evaluate the CxSR conditions at
437 * frame start which happens after vblank start (which is when the plane
438 * registers would get latched), so we can't proceed with the plane update
439 * during the same frame where we disallowed CxSR.
440 *
441 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
442 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
443 * the hardware w.r.t. HPLL SR when writing to plane registers.
444 * Disallowing just CxSR is sufficient.
445 */
446 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
447 {
448 bool ret;
449
450 mutex_lock(&dev_priv->wm.wm_mutex);
451 ret = _intel_set_memory_cxsr(dev_priv, enable);
452 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
453 dev_priv->wm.vlv.cxsr = enable;
454 else if (IS_G4X(dev_priv))
455 dev_priv->wm.g4x.cxsr = enable;
456 mutex_unlock(&dev_priv->wm.wm_mutex);
457
458 return ret;
459 }
460
461 /*
462 * Latency for FIFO fetches is dependent on several factors:
463 * - memory configuration (speed, channels)
464 * - chipset
465 * - current MCH state
466 * It can be fairly high in some situations, so here we assume a fairly
467 * pessimal value. It's a tradeoff between extra memory fetches (if we
468 * set this value too high, the FIFO will fetch frequently to stay full)
469 * and power consumption (set it too low to save power and we might see
470 * FIFO underruns and display "flicker").
471 *
472 * A value of 5us seems to be a good balance; safe for very low end
473 * platforms but not overly aggressive on lower latency configs.
474 */
475 static const int pessimal_latency_ns = 5000;
476
477 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
478 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
479
480 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
481 {
482 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
483 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
484 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
485 enum pipe pipe = crtc->pipe;
486 int sprite0_start, sprite1_start;
487
488 switch (pipe) {
489 uint32_t dsparb, dsparb2, dsparb3;
490 case PIPE_A:
491 dsparb = I915_READ(DSPARB);
492 dsparb2 = I915_READ(DSPARB2);
493 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
494 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
495 break;
496 case PIPE_B:
497 dsparb = I915_READ(DSPARB);
498 dsparb2 = I915_READ(DSPARB2);
499 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
500 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
501 break;
502 case PIPE_C:
503 dsparb2 = I915_READ(DSPARB2);
504 dsparb3 = I915_READ(DSPARB3);
505 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
506 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
507 break;
508 default:
509 MISSING_CASE(pipe);
510 return;
511 }
512
513 fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
514 fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
515 fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
516 fifo_state->plane[PLANE_CURSOR] = 63;
517 }
518
519 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
520 {
521 uint32_t dsparb = I915_READ(DSPARB);
522 int size;
523
524 size = dsparb & 0x7f;
525 if (plane)
526 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
527
528 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
529 plane ? "B" : "A", size);
530
531 return size;
532 }
533
534 static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
535 {
536 uint32_t dsparb = I915_READ(DSPARB);
537 int size;
538
539 size = dsparb & 0x1ff;
540 if (plane)
541 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
542 size >>= 1; /* Convert to cachelines */
543
544 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
545 plane ? "B" : "A", size);
546
547 return size;
548 }
549
550 static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
551 {
552 uint32_t dsparb = I915_READ(DSPARB);
553 int size;
554
555 size = dsparb & 0x7f;
556 size >>= 2; /* Convert to cachelines */
557
558 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
559 plane ? "B" : "A",
560 size);
561
562 return size;
563 }
564
565 /* Pineview has different values for various configs */
566 static const struct intel_watermark_params pineview_display_wm = {
567 .fifo_size = PINEVIEW_DISPLAY_FIFO,
568 .max_wm = PINEVIEW_MAX_WM,
569 .default_wm = PINEVIEW_DFT_WM,
570 .guard_size = PINEVIEW_GUARD_WM,
571 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
572 };
573 static const struct intel_watermark_params pineview_display_hplloff_wm = {
574 .fifo_size = PINEVIEW_DISPLAY_FIFO,
575 .max_wm = PINEVIEW_MAX_WM,
576 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
577 .guard_size = PINEVIEW_GUARD_WM,
578 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
579 };
580 static const struct intel_watermark_params pineview_cursor_wm = {
581 .fifo_size = PINEVIEW_CURSOR_FIFO,
582 .max_wm = PINEVIEW_CURSOR_MAX_WM,
583 .default_wm = PINEVIEW_CURSOR_DFT_WM,
584 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
585 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
586 };
587 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
588 .fifo_size = PINEVIEW_CURSOR_FIFO,
589 .max_wm = PINEVIEW_CURSOR_MAX_WM,
590 .default_wm = PINEVIEW_CURSOR_DFT_WM,
591 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
592 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
593 };
594 static const struct intel_watermark_params i965_cursor_wm_info = {
595 .fifo_size = I965_CURSOR_FIFO,
596 .max_wm = I965_CURSOR_MAX_WM,
597 .default_wm = I965_CURSOR_DFT_WM,
598 .guard_size = 2,
599 .cacheline_size = I915_FIFO_LINE_SIZE,
600 };
601 static const struct intel_watermark_params i945_wm_info = {
602 .fifo_size = I945_FIFO_SIZE,
603 .max_wm = I915_MAX_WM,
604 .default_wm = 1,
605 .guard_size = 2,
606 .cacheline_size = I915_FIFO_LINE_SIZE,
607 };
608 static const struct intel_watermark_params i915_wm_info = {
609 .fifo_size = I915_FIFO_SIZE,
610 .max_wm = I915_MAX_WM,
611 .default_wm = 1,
612 .guard_size = 2,
613 .cacheline_size = I915_FIFO_LINE_SIZE,
614 };
615 static const struct intel_watermark_params i830_a_wm_info = {
616 .fifo_size = I855GM_FIFO_SIZE,
617 .max_wm = I915_MAX_WM,
618 .default_wm = 1,
619 .guard_size = 2,
620 .cacheline_size = I830_FIFO_LINE_SIZE,
621 };
622 static const struct intel_watermark_params i830_bc_wm_info = {
623 .fifo_size = I855GM_FIFO_SIZE,
624 .max_wm = I915_MAX_WM/2,
625 .default_wm = 1,
626 .guard_size = 2,
627 .cacheline_size = I830_FIFO_LINE_SIZE,
628 };
629 static const struct intel_watermark_params i845_wm_info = {
630 .fifo_size = I830_FIFO_SIZE,
631 .max_wm = I915_MAX_WM,
632 .default_wm = 1,
633 .guard_size = 2,
634 .cacheline_size = I830_FIFO_LINE_SIZE,
635 };
636
637 /**
638 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
639 * @pixel_rate: Pipe pixel rate in kHz
640 * @cpp: Plane bytes per pixel
641 * @latency: Memory wakeup latency in 0.1us units
642 *
643 * Compute the watermark using the method 1 or "small buffer"
644 * formula. The caller may additonally add extra cachelines
645 * to account for TLB misses and clock crossings.
646 *
647 * This method is concerned with the short term drain rate
648 * of the FIFO, ie. it does not account for blanking periods
649 * which would effectively reduce the average drain rate across
650 * a longer period. The name "small" refers to the fact the
651 * FIFO is relatively small compared to the amount of data
652 * fetched.
653 *
654 * The FIFO level vs. time graph might look something like:
655 *
656 * |\ |\
657 * | \ | \
658 * __---__---__ (- plane active, _ blanking)
659 * -> time
660 *
661 * or perhaps like this:
662 *
663 * |\|\ |\|\
664 * __----__----__ (- plane active, _ blanking)
665 * -> time
666 *
667 * Returns:
668 * The watermark in bytes
669 */
670 static unsigned int intel_wm_method1(unsigned int pixel_rate,
671 unsigned int cpp,
672 unsigned int latency)
673 {
674 uint64_t ret;
675
676 ret = (uint64_t) pixel_rate * cpp * latency;
677 ret = DIV_ROUND_UP_ULL(ret, 10000);
678
679 return ret;
680 }
681
682 /**
683 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
684 * @pixel_rate: Pipe pixel rate in kHz
685 * @htotal: Pipe horizontal total
686 * @width: Plane width in pixels
687 * @cpp: Plane bytes per pixel
688 * @latency: Memory wakeup latency in 0.1us units
689 *
690 * Compute the watermark using the method 2 or "large buffer"
691 * formula. The caller may additonally add extra cachelines
692 * to account for TLB misses and clock crossings.
693 *
694 * This method is concerned with the long term drain rate
695 * of the FIFO, ie. it does account for blanking periods
696 * which effectively reduce the average drain rate across
697 * a longer period. The name "large" refers to the fact the
698 * FIFO is relatively large compared to the amount of data
699 * fetched.
700 *
701 * The FIFO level vs. time graph might look something like:
702 *
703 * |\___ |\___
704 * | \___ | \___
705 * | \ | \
706 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
707 * -> time
708 *
709 * Returns:
710 * The watermark in bytes
711 */
712 static unsigned int intel_wm_method2(unsigned int pixel_rate,
713 unsigned int htotal,
714 unsigned int width,
715 unsigned int cpp,
716 unsigned int latency)
717 {
718 unsigned int ret;
719
720 /*
721 * FIXME remove once all users are computing
722 * watermarks in the correct place.
723 */
724 if (WARN_ON_ONCE(htotal == 0))
725 htotal = 1;
726
727 ret = (latency * pixel_rate) / (htotal * 10000);
728 ret = (ret + 1) * width * cpp;
729
730 return ret;
731 }
732
733 /**
734 * intel_calculate_wm - calculate watermark level
735 * @pixel_rate: pixel clock
736 * @wm: chip FIFO params
737 * @cpp: bytes per pixel
738 * @latency_ns: memory latency for the platform
739 *
740 * Calculate the watermark level (the level at which the display plane will
741 * start fetching from memory again). Each chip has a different display
742 * FIFO size and allocation, so the caller needs to figure that out and pass
743 * in the correct intel_watermark_params structure.
744 *
745 * As the pixel clock runs, the FIFO will be drained at a rate that depends
746 * on the pixel size. When it reaches the watermark level, it'll start
747 * fetching FIFO line sized based chunks from memory until the FIFO fills
748 * past the watermark point. If the FIFO drains completely, a FIFO underrun
749 * will occur, and a display engine hang could result.
750 */
751 static unsigned int intel_calculate_wm(int pixel_rate,
752 const struct intel_watermark_params *wm,
753 int fifo_size, int cpp,
754 unsigned int latency_ns)
755 {
756 int entries, wm_size;
757
758 /*
759 * Note: we need to make sure we don't overflow for various clock &
760 * latency values.
761 * clocks go from a few thousand to several hundred thousand.
762 * latency is usually a few thousand
763 */
764 entries = intel_wm_method1(pixel_rate, cpp,
765 latency_ns / 100);
766 entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
767 wm->guard_size;
768 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
769
770 wm_size = fifo_size - entries;
771 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
772
773 /* Don't promote wm_size to unsigned... */
774 if (wm_size > wm->max_wm)
775 wm_size = wm->max_wm;
776 if (wm_size <= 0)
777 wm_size = wm->default_wm;
778
779 /*
780 * Bspec seems to indicate that the value shouldn't be lower than
781 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
782 * Lets go for 8 which is the burst size since certain platforms
783 * already use a hardcoded 8 (which is what the spec says should be
784 * done).
785 */
786 if (wm_size <= 8)
787 wm_size = 8;
788
789 return wm_size;
790 }
791
792 static bool is_disabling(int old, int new, int threshold)
793 {
794 return old >= threshold && new < threshold;
795 }
796
797 static bool is_enabling(int old, int new, int threshold)
798 {
799 return old < threshold && new >= threshold;
800 }
801
802 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
803 {
804 return dev_priv->wm.max_level + 1;
805 }
806
807 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
808 const struct intel_plane_state *plane_state)
809 {
810 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
811
812 /* FIXME check the 'enable' instead */
813 if (!crtc_state->base.active)
814 return false;
815
816 /*
817 * Treat cursor with fb as always visible since cursor updates
818 * can happen faster than the vrefresh rate, and the current
819 * watermark code doesn't handle that correctly. Cursor updates
820 * which set/clear the fb or change the cursor size are going
821 * to get throttled by intel_legacy_cursor_update() to work
822 * around this problem with the watermark code.
823 */
824 if (plane->id == PLANE_CURSOR)
825 return plane_state->base.fb != NULL;
826 else
827 return plane_state->base.visible;
828 }
829
830 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
831 {
832 struct intel_crtc *crtc, *enabled = NULL;
833
834 for_each_intel_crtc(&dev_priv->drm, crtc) {
835 if (intel_crtc_active(crtc)) {
836 if (enabled)
837 return NULL;
838 enabled = crtc;
839 }
840 }
841
842 return enabled;
843 }
844
845 static void pineview_update_wm(struct intel_crtc *unused_crtc)
846 {
847 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
848 struct intel_crtc *crtc;
849 const struct cxsr_latency *latency;
850 u32 reg;
851 unsigned int wm;
852
853 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
854 dev_priv->is_ddr3,
855 dev_priv->fsb_freq,
856 dev_priv->mem_freq);
857 if (!latency) {
858 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
859 intel_set_memory_cxsr(dev_priv, false);
860 return;
861 }
862
863 crtc = single_enabled_crtc(dev_priv);
864 if (crtc) {
865 const struct drm_display_mode *adjusted_mode =
866 &crtc->config->base.adjusted_mode;
867 const struct drm_framebuffer *fb =
868 crtc->base.primary->state->fb;
869 int cpp = fb->format->cpp[0];
870 int clock = adjusted_mode->crtc_clock;
871
872 /* Display SR */
873 wm = intel_calculate_wm(clock, &pineview_display_wm,
874 pineview_display_wm.fifo_size,
875 cpp, latency->display_sr);
876 reg = I915_READ(DSPFW1);
877 reg &= ~DSPFW_SR_MASK;
878 reg |= FW_WM(wm, SR);
879 I915_WRITE(DSPFW1, reg);
880 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
881
882 /* cursor SR */
883 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
884 pineview_display_wm.fifo_size,
885 4, latency->cursor_sr);
886 reg = I915_READ(DSPFW3);
887 reg &= ~DSPFW_CURSOR_SR_MASK;
888 reg |= FW_WM(wm, CURSOR_SR);
889 I915_WRITE(DSPFW3, reg);
890
891 /* Display HPLL off SR */
892 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
893 pineview_display_hplloff_wm.fifo_size,
894 cpp, latency->display_hpll_disable);
895 reg = I915_READ(DSPFW3);
896 reg &= ~DSPFW_HPLL_SR_MASK;
897 reg |= FW_WM(wm, HPLL_SR);
898 I915_WRITE(DSPFW3, reg);
899
900 /* cursor HPLL off SR */
901 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
902 pineview_display_hplloff_wm.fifo_size,
903 4, latency->cursor_hpll_disable);
904 reg = I915_READ(DSPFW3);
905 reg &= ~DSPFW_HPLL_CURSOR_MASK;
906 reg |= FW_WM(wm, HPLL_CURSOR);
907 I915_WRITE(DSPFW3, reg);
908 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
909
910 intel_set_memory_cxsr(dev_priv, true);
911 } else {
912 intel_set_memory_cxsr(dev_priv, false);
913 }
914 }
915
916 /*
917 * Documentation says:
918 * "If the line size is small, the TLB fetches can get in the way of the
919 * data fetches, causing some lag in the pixel data return which is not
920 * accounted for in the above formulas. The following adjustment only
921 * needs to be applied if eight whole lines fit in the buffer at once.
922 * The WM is adjusted upwards by the difference between the FIFO size
923 * and the size of 8 whole lines. This adjustment is always performed
924 * in the actual pixel depth regardless of whether FBC is enabled or not."
925 */
926 static int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
927 {
928 int tlb_miss = fifo_size * 64 - width * cpp * 8;
929
930 return max(0, tlb_miss);
931 }
932
933 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
934 const struct g4x_wm_values *wm)
935 {
936 enum pipe pipe;
937
938 for_each_pipe(dev_priv, pipe)
939 trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
940
941 I915_WRITE(DSPFW1,
942 FW_WM(wm->sr.plane, SR) |
943 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
944 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
945 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
946 I915_WRITE(DSPFW2,
947 (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
948 FW_WM(wm->sr.fbc, FBC_SR) |
949 FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
950 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
951 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
952 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
953 I915_WRITE(DSPFW3,
954 (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
955 FW_WM(wm->sr.cursor, CURSOR_SR) |
956 FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
957 FW_WM(wm->hpll.plane, HPLL_SR));
958
959 POSTING_READ(DSPFW1);
960 }
961
962 #define FW_WM_VLV(value, plane) \
963 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
964
965 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
966 const struct vlv_wm_values *wm)
967 {
968 enum pipe pipe;
969
970 for_each_pipe(dev_priv, pipe) {
971 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
972
973 I915_WRITE(VLV_DDL(pipe),
974 (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
975 (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
976 (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
977 (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
978 }
979
980 /*
981 * Zero the (unused) WM1 watermarks, and also clear all the
982 * high order bits so that there are no out of bounds values
983 * present in the registers during the reprogramming.
984 */
985 I915_WRITE(DSPHOWM, 0);
986 I915_WRITE(DSPHOWM1, 0);
987 I915_WRITE(DSPFW4, 0);
988 I915_WRITE(DSPFW5, 0);
989 I915_WRITE(DSPFW6, 0);
990
991 I915_WRITE(DSPFW1,
992 FW_WM(wm->sr.plane, SR) |
993 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
994 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
995 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
996 I915_WRITE(DSPFW2,
997 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
998 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
999 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1000 I915_WRITE(DSPFW3,
1001 FW_WM(wm->sr.cursor, CURSOR_SR));
1002
1003 if (IS_CHERRYVIEW(dev_priv)) {
1004 I915_WRITE(DSPFW7_CHV,
1005 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1006 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1007 I915_WRITE(DSPFW8_CHV,
1008 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1009 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1010 I915_WRITE(DSPFW9_CHV,
1011 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1012 FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1013 I915_WRITE(DSPHOWM,
1014 FW_WM(wm->sr.plane >> 9, SR_HI) |
1015 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1016 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1017 FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1018 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1019 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1020 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1021 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1022 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1023 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1024 } else {
1025 I915_WRITE(DSPFW7,
1026 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1027 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1028 I915_WRITE(DSPHOWM,
1029 FW_WM(wm->sr.plane >> 9, SR_HI) |
1030 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1031 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1032 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1033 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1034 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1035 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1036 }
1037
1038 POSTING_READ(DSPFW1);
1039 }
1040
1041 #undef FW_WM_VLV
1042
1043 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1044 {
1045 /* all latencies in usec */
1046 dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1047 dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1048 dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1049
1050 dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1051 }
1052
1053 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1054 {
1055 /*
1056 * DSPCNTR[13] supposedly controls whether the
1057 * primary plane can use the FIFO space otherwise
1058 * reserved for the sprite plane. It's not 100% clear
1059 * what the actual FIFO size is, but it looks like we
1060 * can happily set both primary and sprite watermarks
1061 * up to 127 cachelines. So that would seem to mean
1062 * that either DSPCNTR[13] doesn't do anything, or that
1063 * the total FIFO is >= 256 cachelines in size. Either
1064 * way, we don't seem to have to worry about this
1065 * repartitioning as the maximum watermark value the
1066 * register can hold for each plane is lower than the
1067 * minimum FIFO size.
1068 */
1069 switch (plane_id) {
1070 case PLANE_CURSOR:
1071 return 63;
1072 case PLANE_PRIMARY:
1073 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1074 case PLANE_SPRITE0:
1075 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1076 default:
1077 MISSING_CASE(plane_id);
1078 return 0;
1079 }
1080 }
1081
1082 static int g4x_fbc_fifo_size(int level)
1083 {
1084 switch (level) {
1085 case G4X_WM_LEVEL_SR:
1086 return 7;
1087 case G4X_WM_LEVEL_HPLL:
1088 return 15;
1089 default:
1090 MISSING_CASE(level);
1091 return 0;
1092 }
1093 }
1094
1095 static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1096 const struct intel_plane_state *plane_state,
1097 int level)
1098 {
1099 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1100 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1101 const struct drm_display_mode *adjusted_mode =
1102 &crtc_state->base.adjusted_mode;
1103 int clock, htotal, cpp, width, wm;
1104 int latency = dev_priv->wm.pri_latency[level] * 10;
1105
1106 if (latency == 0)
1107 return USHRT_MAX;
1108
1109 if (!intel_wm_plane_visible(crtc_state, plane_state))
1110 return 0;
1111
1112 /*
1113 * Not 100% sure which way ELK should go here as the
1114 * spec only says CL/CTG should assume 32bpp and BW
1115 * doesn't need to. But as these things followed the
1116 * mobile vs. desktop lines on gen3 as well, let's
1117 * assume ELK doesn't need this.
1118 *
1119 * The spec also fails to list such a restriction for
1120 * the HPLL watermark, which seems a little strange.
1121 * Let's use 32bpp for the HPLL watermark as well.
1122 */
1123 if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1124 level != G4X_WM_LEVEL_NORMAL)
1125 cpp = 4;
1126 else
1127 cpp = plane_state->base.fb->format->cpp[0];
1128
1129 clock = adjusted_mode->crtc_clock;
1130 htotal = adjusted_mode->crtc_htotal;
1131
1132 if (plane->id == PLANE_CURSOR)
1133 width = plane_state->base.crtc_w;
1134 else
1135 width = drm_rect_width(&plane_state->base.dst);
1136
1137 if (plane->id == PLANE_CURSOR) {
1138 wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1139 } else if (plane->id == PLANE_PRIMARY &&
1140 level == G4X_WM_LEVEL_NORMAL) {
1141 wm = intel_wm_method1(clock, cpp, latency);
1142 } else {
1143 int small, large;
1144
1145 small = intel_wm_method1(clock, cpp, latency);
1146 large = intel_wm_method2(clock, htotal, width, cpp, latency);
1147
1148 wm = min(small, large);
1149 }
1150
1151 wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1152 width, cpp);
1153
1154 wm = DIV_ROUND_UP(wm, 64) + 2;
1155
1156 return min_t(int, wm, USHRT_MAX);
1157 }
1158
1159 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1160 int level, enum plane_id plane_id, u16 value)
1161 {
1162 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1163 bool dirty = false;
1164
1165 for (; level < intel_wm_num_levels(dev_priv); level++) {
1166 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1167
1168 dirty |= raw->plane[plane_id] != value;
1169 raw->plane[plane_id] = value;
1170 }
1171
1172 return dirty;
1173 }
1174
1175 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1176 int level, u16 value)
1177 {
1178 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1179 bool dirty = false;
1180
1181 /* NORMAL level doesn't have an FBC watermark */
1182 level = max(level, G4X_WM_LEVEL_SR);
1183
1184 for (; level < intel_wm_num_levels(dev_priv); level++) {
1185 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1186
1187 dirty |= raw->fbc != value;
1188 raw->fbc = value;
1189 }
1190
1191 return dirty;
1192 }
1193
1194 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1195 const struct intel_plane_state *pstate,
1196 uint32_t pri_val);
1197
1198 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1199 const struct intel_plane_state *plane_state)
1200 {
1201 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1202 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1203 enum plane_id plane_id = plane->id;
1204 bool dirty = false;
1205 int level;
1206
1207 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1208 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1209 if (plane_id == PLANE_PRIMARY)
1210 dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1211 goto out;
1212 }
1213
1214 for (level = 0; level < num_levels; level++) {
1215 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1216 int wm, max_wm;
1217
1218 wm = g4x_compute_wm(crtc_state, plane_state, level);
1219 max_wm = g4x_plane_fifo_size(plane_id, level);
1220
1221 if (wm > max_wm)
1222 break;
1223
1224 dirty |= raw->plane[plane_id] != wm;
1225 raw->plane[plane_id] = wm;
1226
1227 if (plane_id != PLANE_PRIMARY ||
1228 level == G4X_WM_LEVEL_NORMAL)
1229 continue;
1230
1231 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1232 raw->plane[plane_id]);
1233 max_wm = g4x_fbc_fifo_size(level);
1234
1235 /*
1236 * FBC wm is not mandatory as we
1237 * can always just disable its use.
1238 */
1239 if (wm > max_wm)
1240 wm = USHRT_MAX;
1241
1242 dirty |= raw->fbc != wm;
1243 raw->fbc = wm;
1244 }
1245
1246 /* mark watermarks as invalid */
1247 dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1248
1249 if (plane_id == PLANE_PRIMARY)
1250 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1251
1252 out:
1253 if (dirty) {
1254 DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1255 plane->base.name,
1256 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1257 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1258 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1259
1260 if (plane_id == PLANE_PRIMARY)
1261 DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
1262 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1263 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1264 }
1265
1266 return dirty;
1267 }
1268
1269 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1270 enum plane_id plane_id, int level)
1271 {
1272 const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1273
1274 return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1275 }
1276
1277 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1278 int level)
1279 {
1280 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1281
1282 if (level > dev_priv->wm.max_level)
1283 return false;
1284
1285 return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1286 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1287 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1288 }
1289
1290 /* mark all levels starting from 'level' as invalid */
1291 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1292 struct g4x_wm_state *wm_state, int level)
1293 {
1294 if (level <= G4X_WM_LEVEL_NORMAL) {
1295 enum plane_id plane_id;
1296
1297 for_each_plane_id_on_crtc(crtc, plane_id)
1298 wm_state->wm.plane[plane_id] = USHRT_MAX;
1299 }
1300
1301 if (level <= G4X_WM_LEVEL_SR) {
1302 wm_state->cxsr = false;
1303 wm_state->sr.cursor = USHRT_MAX;
1304 wm_state->sr.plane = USHRT_MAX;
1305 wm_state->sr.fbc = USHRT_MAX;
1306 }
1307
1308 if (level <= G4X_WM_LEVEL_HPLL) {
1309 wm_state->hpll_en = false;
1310 wm_state->hpll.cursor = USHRT_MAX;
1311 wm_state->hpll.plane = USHRT_MAX;
1312 wm_state->hpll.fbc = USHRT_MAX;
1313 }
1314 }
1315
1316 static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1317 {
1318 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1319 struct intel_atomic_state *state =
1320 to_intel_atomic_state(crtc_state->base.state);
1321 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1322 int num_active_planes = hweight32(crtc_state->active_planes &
1323 ~BIT(PLANE_CURSOR));
1324 const struct g4x_pipe_wm *raw;
1325 struct intel_plane_state *plane_state;
1326 struct intel_plane *plane;
1327 enum plane_id plane_id;
1328 int i, level;
1329 unsigned int dirty = 0;
1330
1331 for_each_intel_plane_in_state(state, plane, plane_state, i) {
1332 const struct intel_plane_state *old_plane_state =
1333 to_intel_plane_state(plane->base.state);
1334
1335 if (plane_state->base.crtc != &crtc->base &&
1336 old_plane_state->base.crtc != &crtc->base)
1337 continue;
1338
1339 if (g4x_raw_plane_wm_compute(crtc_state, plane_state))
1340 dirty |= BIT(plane->id);
1341 }
1342
1343 if (!dirty)
1344 return 0;
1345
1346 level = G4X_WM_LEVEL_NORMAL;
1347 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1348 goto out;
1349
1350 raw = &crtc_state->wm.g4x.raw[level];
1351 for_each_plane_id_on_crtc(crtc, plane_id)
1352 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1353
1354 level = G4X_WM_LEVEL_SR;
1355
1356 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1357 goto out;
1358
1359 raw = &crtc_state->wm.g4x.raw[level];
1360 wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1361 wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1362 wm_state->sr.fbc = raw->fbc;
1363
1364 wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1365
1366 level = G4X_WM_LEVEL_HPLL;
1367
1368 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1369 goto out;
1370
1371 raw = &crtc_state->wm.g4x.raw[level];
1372 wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1373 wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1374 wm_state->hpll.fbc = raw->fbc;
1375
1376 wm_state->hpll_en = wm_state->cxsr;
1377
1378 level++;
1379
1380 out:
1381 if (level == G4X_WM_LEVEL_NORMAL)
1382 return -EINVAL;
1383
1384 /* invalidate the higher levels */
1385 g4x_invalidate_wms(crtc, wm_state, level);
1386
1387 /*
1388 * Determine if the FBC watermark(s) can be used. IF
1389 * this isn't the case we prefer to disable the FBC
1390 ( watermark(s) rather than disable the SR/HPLL
1391 * level(s) entirely.
1392 */
1393 wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1394
1395 if (level >= G4X_WM_LEVEL_SR &&
1396 wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1397 wm_state->fbc_en = false;
1398 else if (level >= G4X_WM_LEVEL_HPLL &&
1399 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1400 wm_state->fbc_en = false;
1401
1402 return 0;
1403 }
1404
1405 static int g4x_compute_intermediate_wm(struct drm_device *dev,
1406 struct intel_crtc *crtc,
1407 struct intel_crtc_state *crtc_state)
1408 {
1409 struct g4x_wm_state *intermediate = &crtc_state->wm.g4x.intermediate;
1410 const struct g4x_wm_state *optimal = &crtc_state->wm.g4x.optimal;
1411 const struct g4x_wm_state *active = &crtc->wm.active.g4x;
1412 enum plane_id plane_id;
1413
1414 intermediate->cxsr = optimal->cxsr && active->cxsr &&
1415 !crtc_state->disable_cxsr;
1416 intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1417 !crtc_state->disable_cxsr;
1418 intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1419
1420 for_each_plane_id_on_crtc(crtc, plane_id) {
1421 intermediate->wm.plane[plane_id] =
1422 max(optimal->wm.plane[plane_id],
1423 active->wm.plane[plane_id]);
1424
1425 WARN_ON(intermediate->wm.plane[plane_id] >
1426 g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1427 }
1428
1429 intermediate->sr.plane = max(optimal->sr.plane,
1430 active->sr.plane);
1431 intermediate->sr.cursor = max(optimal->sr.cursor,
1432 active->sr.cursor);
1433 intermediate->sr.fbc = max(optimal->sr.fbc,
1434 active->sr.fbc);
1435
1436 intermediate->hpll.plane = max(optimal->hpll.plane,
1437 active->hpll.plane);
1438 intermediate->hpll.cursor = max(optimal->hpll.cursor,
1439 active->hpll.cursor);
1440 intermediate->hpll.fbc = max(optimal->hpll.fbc,
1441 active->hpll.fbc);
1442
1443 WARN_ON((intermediate->sr.plane >
1444 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1445 intermediate->sr.cursor >
1446 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1447 intermediate->cxsr);
1448 WARN_ON((intermediate->sr.plane >
1449 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1450 intermediate->sr.cursor >
1451 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1452 intermediate->hpll_en);
1453
1454 WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1455 intermediate->fbc_en && intermediate->cxsr);
1456 WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1457 intermediate->fbc_en && intermediate->hpll_en);
1458
1459 /*
1460 * If our intermediate WM are identical to the final WM, then we can
1461 * omit the post-vblank programming; only update if it's different.
1462 */
1463 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1464 crtc_state->wm.need_postvbl_update = true;
1465
1466 return 0;
1467 }
1468
1469 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1470 struct g4x_wm_values *wm)
1471 {
1472 struct intel_crtc *crtc;
1473 int num_active_crtcs = 0;
1474
1475 wm->cxsr = true;
1476 wm->hpll_en = true;
1477 wm->fbc_en = true;
1478
1479 for_each_intel_crtc(&dev_priv->drm, crtc) {
1480 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1481
1482 if (!crtc->active)
1483 continue;
1484
1485 if (!wm_state->cxsr)
1486 wm->cxsr = false;
1487 if (!wm_state->hpll_en)
1488 wm->hpll_en = false;
1489 if (!wm_state->fbc_en)
1490 wm->fbc_en = false;
1491
1492 num_active_crtcs++;
1493 }
1494
1495 if (num_active_crtcs != 1) {
1496 wm->cxsr = false;
1497 wm->hpll_en = false;
1498 wm->fbc_en = false;
1499 }
1500
1501 for_each_intel_crtc(&dev_priv->drm, crtc) {
1502 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1503 enum pipe pipe = crtc->pipe;
1504
1505 wm->pipe[pipe] = wm_state->wm;
1506 if (crtc->active && wm->cxsr)
1507 wm->sr = wm_state->sr;
1508 if (crtc->active && wm->hpll_en)
1509 wm->hpll = wm_state->hpll;
1510 }
1511 }
1512
1513 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1514 {
1515 struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1516 struct g4x_wm_values new_wm = {};
1517
1518 g4x_merge_wm(dev_priv, &new_wm);
1519
1520 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1521 return;
1522
1523 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1524 _intel_set_memory_cxsr(dev_priv, false);
1525
1526 g4x_write_wm_values(dev_priv, &new_wm);
1527
1528 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1529 _intel_set_memory_cxsr(dev_priv, true);
1530
1531 *old_wm = new_wm;
1532 }
1533
1534 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1535 struct intel_crtc_state *crtc_state)
1536 {
1537 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1538 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1539
1540 mutex_lock(&dev_priv->wm.wm_mutex);
1541 crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1542 g4x_program_watermarks(dev_priv);
1543 mutex_unlock(&dev_priv->wm.wm_mutex);
1544 }
1545
1546 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1547 struct intel_crtc_state *crtc_state)
1548 {
1549 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1550 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
1551
1552 if (!crtc_state->wm.need_postvbl_update)
1553 return;
1554
1555 mutex_lock(&dev_priv->wm.wm_mutex);
1556 intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1557 g4x_program_watermarks(dev_priv);
1558 mutex_unlock(&dev_priv->wm.wm_mutex);
1559 }
1560
1561 /* latency must be in 0.1us units. */
1562 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1563 unsigned int htotal,
1564 unsigned int width,
1565 unsigned int cpp,
1566 unsigned int latency)
1567 {
1568 unsigned int ret;
1569
1570 ret = intel_wm_method2(pixel_rate, htotal,
1571 width, cpp, latency);
1572 ret = DIV_ROUND_UP(ret, 64);
1573
1574 return ret;
1575 }
1576
1577 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1578 {
1579 /* all latencies in usec */
1580 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1581
1582 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1583
1584 if (IS_CHERRYVIEW(dev_priv)) {
1585 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1586 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1587
1588 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1589 }
1590 }
1591
1592 static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1593 const struct intel_plane_state *plane_state,
1594 int level)
1595 {
1596 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1597 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1598 const struct drm_display_mode *adjusted_mode =
1599 &crtc_state->base.adjusted_mode;
1600 int clock, htotal, cpp, width, wm;
1601
1602 if (dev_priv->wm.pri_latency[level] == 0)
1603 return USHRT_MAX;
1604
1605 if (!intel_wm_plane_visible(crtc_state, plane_state))
1606 return 0;
1607
1608 cpp = plane_state->base.fb->format->cpp[0];
1609 clock = adjusted_mode->crtc_clock;
1610 htotal = adjusted_mode->crtc_htotal;
1611 width = crtc_state->pipe_src_w;
1612
1613 if (plane->id == PLANE_CURSOR) {
1614 /*
1615 * FIXME the formula gives values that are
1616 * too big for the cursor FIFO, and hence we
1617 * would never be able to use cursors. For
1618 * now just hardcode the watermark.
1619 */
1620 wm = 63;
1621 } else {
1622 wm = vlv_wm_method2(clock, htotal, width, cpp,
1623 dev_priv->wm.pri_latency[level] * 10);
1624 }
1625
1626 return min_t(int, wm, USHRT_MAX);
1627 }
1628
1629 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1630 {
1631 return (active_planes & (BIT(PLANE_SPRITE0) |
1632 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1633 }
1634
1635 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1636 {
1637 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1638 const struct g4x_pipe_wm *raw =
1639 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1640 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1641 unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1642 int num_active_planes = hweight32(active_planes);
1643 const int fifo_size = 511;
1644 int fifo_extra, fifo_left = fifo_size;
1645 int sprite0_fifo_extra = 0;
1646 unsigned int total_rate;
1647 enum plane_id plane_id;
1648
1649 /*
1650 * When enabling sprite0 after sprite1 has already been enabled
1651 * we tend to get an underrun unless sprite0 already has some
1652 * FIFO space allcoated. Hence we always allocate at least one
1653 * cacheline for sprite0 whenever sprite1 is enabled.
1654 *
1655 * All other plane enable sequences appear immune to this problem.
1656 */
1657 if (vlv_need_sprite0_fifo_workaround(active_planes))
1658 sprite0_fifo_extra = 1;
1659
1660 total_rate = raw->plane[PLANE_PRIMARY] +
1661 raw->plane[PLANE_SPRITE0] +
1662 raw->plane[PLANE_SPRITE1] +
1663 sprite0_fifo_extra;
1664
1665 if (total_rate > fifo_size)
1666 return -EINVAL;
1667
1668 if (total_rate == 0)
1669 total_rate = 1;
1670
1671 for_each_plane_id_on_crtc(crtc, plane_id) {
1672 unsigned int rate;
1673
1674 if ((active_planes & BIT(plane_id)) == 0) {
1675 fifo_state->plane[plane_id] = 0;
1676 continue;
1677 }
1678
1679 rate = raw->plane[plane_id];
1680 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1681 fifo_left -= fifo_state->plane[plane_id];
1682 }
1683
1684 fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1685 fifo_left -= sprite0_fifo_extra;
1686
1687 fifo_state->plane[PLANE_CURSOR] = 63;
1688
1689 fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1690
1691 /* spread the remainder evenly */
1692 for_each_plane_id_on_crtc(crtc, plane_id) {
1693 int plane_extra;
1694
1695 if (fifo_left == 0)
1696 break;
1697
1698 if ((active_planes & BIT(plane_id)) == 0)
1699 continue;
1700
1701 plane_extra = min(fifo_extra, fifo_left);
1702 fifo_state->plane[plane_id] += plane_extra;
1703 fifo_left -= plane_extra;
1704 }
1705
1706 WARN_ON(active_planes != 0 && fifo_left != 0);
1707
1708 /* give it all to the first plane if none are active */
1709 if (active_planes == 0) {
1710 WARN_ON(fifo_left != fifo_size);
1711 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1712 }
1713
1714 return 0;
1715 }
1716
1717 /* mark all levels starting from 'level' as invalid */
1718 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1719 struct vlv_wm_state *wm_state, int level)
1720 {
1721 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1722
1723 for (; level < intel_wm_num_levels(dev_priv); level++) {
1724 enum plane_id plane_id;
1725
1726 for_each_plane_id_on_crtc(crtc, plane_id)
1727 wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1728
1729 wm_state->sr[level].cursor = USHRT_MAX;
1730 wm_state->sr[level].plane = USHRT_MAX;
1731 }
1732 }
1733
1734 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1735 {
1736 if (wm > fifo_size)
1737 return USHRT_MAX;
1738 else
1739 return fifo_size - wm;
1740 }
1741
1742 /*
1743 * Starting from 'level' set all higher
1744 * levels to 'value' in the "raw" watermarks.
1745 */
1746 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1747 int level, enum plane_id plane_id, u16 value)
1748 {
1749 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1750 int num_levels = intel_wm_num_levels(dev_priv);
1751 bool dirty = false;
1752
1753 for (; level < num_levels; level++) {
1754 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1755
1756 dirty |= raw->plane[plane_id] != value;
1757 raw->plane[plane_id] = value;
1758 }
1759
1760 return dirty;
1761 }
1762
1763 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1764 const struct intel_plane_state *plane_state)
1765 {
1766 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1767 enum plane_id plane_id = plane->id;
1768 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1769 int level;
1770 bool dirty = false;
1771
1772 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1773 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1774 goto out;
1775 }
1776
1777 for (level = 0; level < num_levels; level++) {
1778 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1779 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1780 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1781
1782 if (wm > max_wm)
1783 break;
1784
1785 dirty |= raw->plane[plane_id] != wm;
1786 raw->plane[plane_id] = wm;
1787 }
1788
1789 /* mark all higher levels as invalid */
1790 dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1791
1792 out:
1793 if (dirty)
1794 DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1795 plane->base.name,
1796 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1797 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1798 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1799
1800 return dirty;
1801 }
1802
1803 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1804 enum plane_id plane_id, int level)
1805 {
1806 const struct g4x_pipe_wm *raw =
1807 &crtc_state->wm.vlv.raw[level];
1808 const struct vlv_fifo_state *fifo_state =
1809 &crtc_state->wm.vlv.fifo_state;
1810
1811 return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1812 }
1813
1814 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1815 {
1816 return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1817 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1818 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1819 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1820 }
1821
1822 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1823 {
1824 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1825 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1826 struct intel_atomic_state *state =
1827 to_intel_atomic_state(crtc_state->base.state);
1828 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1829 const struct vlv_fifo_state *fifo_state =
1830 &crtc_state->wm.vlv.fifo_state;
1831 int num_active_planes = hweight32(crtc_state->active_planes &
1832 ~BIT(PLANE_CURSOR));
1833 bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1834 struct intel_plane_state *plane_state;
1835 struct intel_plane *plane;
1836 enum plane_id plane_id;
1837 int level, ret, i;
1838 unsigned int dirty = 0;
1839
1840 for_each_intel_plane_in_state(state, plane, plane_state, i) {
1841 const struct intel_plane_state *old_plane_state =
1842 to_intel_plane_state(plane->base.state);
1843
1844 if (plane_state->base.crtc != &crtc->base &&
1845 old_plane_state->base.crtc != &crtc->base)
1846 continue;
1847
1848 if (vlv_raw_plane_wm_compute(crtc_state, plane_state))
1849 dirty |= BIT(plane->id);
1850 }
1851
1852 /*
1853 * DSPARB registers may have been reset due to the
1854 * power well being turned off. Make sure we restore
1855 * them to a consistent state even if no primary/sprite
1856 * planes are initially active.
1857 */
1858 if (needs_modeset)
1859 crtc_state->fifo_changed = true;
1860
1861 if (!dirty)
1862 return 0;
1863
1864 /* cursor changes don't warrant a FIFO recompute */
1865 if (dirty & ~BIT(PLANE_CURSOR)) {
1866 const struct intel_crtc_state *old_crtc_state =
1867 to_intel_crtc_state(crtc->base.state);
1868 const struct vlv_fifo_state *old_fifo_state =
1869 &old_crtc_state->wm.vlv.fifo_state;
1870
1871 ret = vlv_compute_fifo(crtc_state);
1872 if (ret)
1873 return ret;
1874
1875 if (needs_modeset ||
1876 memcmp(old_fifo_state, fifo_state,
1877 sizeof(*fifo_state)) != 0)
1878 crtc_state->fifo_changed = true;
1879 }
1880
1881 /* initially allow all levels */
1882 wm_state->num_levels = intel_wm_num_levels(dev_priv);
1883 /*
1884 * Note that enabling cxsr with no primary/sprite planes
1885 * enabled can wedge the pipe. Hence we only allow cxsr
1886 * with exactly one enabled primary/sprite plane.
1887 */
1888 wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1889
1890 for (level = 0; level < wm_state->num_levels; level++) {
1891 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1892 const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1893
1894 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1895 break;
1896
1897 for_each_plane_id_on_crtc(crtc, plane_id) {
1898 wm_state->wm[level].plane[plane_id] =
1899 vlv_invert_wm_value(raw->plane[plane_id],
1900 fifo_state->plane[plane_id]);
1901 }
1902
1903 wm_state->sr[level].plane =
1904 vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1905 raw->plane[PLANE_SPRITE0],
1906 raw->plane[PLANE_SPRITE1]),
1907 sr_fifo_size);
1908
1909 wm_state->sr[level].cursor =
1910 vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1911 63);
1912 }
1913
1914 if (level == 0)
1915 return -EINVAL;
1916
1917 /* limit to only levels we can actually handle */
1918 wm_state->num_levels = level;
1919
1920 /* invalidate the higher levels */
1921 vlv_invalidate_wms(crtc, wm_state, level);
1922
1923 return 0;
1924 }
1925
1926 #define VLV_FIFO(plane, value) \
1927 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1928
1929 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1930 struct intel_crtc_state *crtc_state)
1931 {
1932 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1933 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1934 const struct vlv_fifo_state *fifo_state =
1935 &crtc_state->wm.vlv.fifo_state;
1936 int sprite0_start, sprite1_start, fifo_size;
1937
1938 if (!crtc_state->fifo_changed)
1939 return;
1940
1941 sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1942 sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1943 fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1944
1945 WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
1946 WARN_ON(fifo_size != 511);
1947
1948 trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1949
1950 /*
1951 * uncore.lock serves a double purpose here. It allows us to
1952 * use the less expensive I915_{READ,WRITE}_FW() functions, and
1953 * it protects the DSPARB registers from getting clobbered by
1954 * parallel updates from multiple pipes.
1955 *
1956 * intel_pipe_update_start() has already disabled interrupts
1957 * for us, so a plain spin_lock() is sufficient here.
1958 */
1959 spin_lock(&dev_priv->uncore.lock);
1960
1961 switch (crtc->pipe) {
1962 uint32_t dsparb, dsparb2, dsparb3;
1963 case PIPE_A:
1964 dsparb = I915_READ_FW(DSPARB);
1965 dsparb2 = I915_READ_FW(DSPARB2);
1966
1967 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1968 VLV_FIFO(SPRITEB, 0xff));
1969 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1970 VLV_FIFO(SPRITEB, sprite1_start));
1971
1972 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1973 VLV_FIFO(SPRITEB_HI, 0x1));
1974 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1975 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1976
1977 I915_WRITE_FW(DSPARB, dsparb);
1978 I915_WRITE_FW(DSPARB2, dsparb2);
1979 break;
1980 case PIPE_B:
1981 dsparb = I915_READ_FW(DSPARB);
1982 dsparb2 = I915_READ_FW(DSPARB2);
1983
1984 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1985 VLV_FIFO(SPRITED, 0xff));
1986 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1987 VLV_FIFO(SPRITED, sprite1_start));
1988
1989 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1990 VLV_FIFO(SPRITED_HI, 0xff));
1991 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1992 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1993
1994 I915_WRITE_FW(DSPARB, dsparb);
1995 I915_WRITE_FW(DSPARB2, dsparb2);
1996 break;
1997 case PIPE_C:
1998 dsparb3 = I915_READ_FW(DSPARB3);
1999 dsparb2 = I915_READ_FW(DSPARB2);
2000
2001 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2002 VLV_FIFO(SPRITEF, 0xff));
2003 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2004 VLV_FIFO(SPRITEF, sprite1_start));
2005
2006 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2007 VLV_FIFO(SPRITEF_HI, 0xff));
2008 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2009 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2010
2011 I915_WRITE_FW(DSPARB3, dsparb3);
2012 I915_WRITE_FW(DSPARB2, dsparb2);
2013 break;
2014 default:
2015 break;
2016 }
2017
2018 POSTING_READ_FW(DSPARB);
2019
2020 spin_unlock(&dev_priv->uncore.lock);
2021 }
2022
2023 #undef VLV_FIFO
2024
2025 static int vlv_compute_intermediate_wm(struct drm_device *dev,
2026 struct intel_crtc *crtc,
2027 struct intel_crtc_state *crtc_state)
2028 {
2029 struct vlv_wm_state *intermediate = &crtc_state->wm.vlv.intermediate;
2030 const struct vlv_wm_state *optimal = &crtc_state->wm.vlv.optimal;
2031 const struct vlv_wm_state *active = &crtc->wm.active.vlv;
2032 int level;
2033
2034 intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2035 intermediate->cxsr = optimal->cxsr && active->cxsr &&
2036 !crtc_state->disable_cxsr;
2037
2038 for (level = 0; level < intermediate->num_levels; level++) {
2039 enum plane_id plane_id;
2040
2041 for_each_plane_id_on_crtc(crtc, plane_id) {
2042 intermediate->wm[level].plane[plane_id] =
2043 min(optimal->wm[level].plane[plane_id],
2044 active->wm[level].plane[plane_id]);
2045 }
2046
2047 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2048 active->sr[level].plane);
2049 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2050 active->sr[level].cursor);
2051 }
2052
2053 vlv_invalidate_wms(crtc, intermediate, level);
2054
2055 /*
2056 * If our intermediate WM are identical to the final WM, then we can
2057 * omit the post-vblank programming; only update if it's different.
2058 */
2059 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2060 crtc_state->wm.need_postvbl_update = true;
2061
2062 return 0;
2063 }
2064
2065 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2066 struct vlv_wm_values *wm)
2067 {
2068 struct intel_crtc *crtc;
2069 int num_active_crtcs = 0;
2070
2071 wm->level = dev_priv->wm.max_level;
2072 wm->cxsr = true;
2073
2074 for_each_intel_crtc(&dev_priv->drm, crtc) {
2075 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2076
2077 if (!crtc->active)
2078 continue;
2079
2080 if (!wm_state->cxsr)
2081 wm->cxsr = false;
2082
2083 num_active_crtcs++;
2084 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2085 }
2086
2087 if (num_active_crtcs != 1)
2088 wm->cxsr = false;
2089
2090 if (num_active_crtcs > 1)
2091 wm->level = VLV_WM_LEVEL_PM2;
2092
2093 for_each_intel_crtc(&dev_priv->drm, crtc) {
2094 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2095 enum pipe pipe = crtc->pipe;
2096
2097 wm->pipe[pipe] = wm_state->wm[wm->level];
2098 if (crtc->active && wm->cxsr)
2099 wm->sr = wm_state->sr[wm->level];
2100
2101 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2102 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2103 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2104 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2105 }
2106 }
2107
2108 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2109 {
2110 struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2111 struct vlv_wm_values new_wm = {};
2112
2113 vlv_merge_wm(dev_priv, &new_wm);
2114
2115 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2116 return;
2117
2118 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2119 chv_set_memory_dvfs(dev_priv, false);
2120
2121 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2122 chv_set_memory_pm5(dev_priv, false);
2123
2124 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2125 _intel_set_memory_cxsr(dev_priv, false);
2126
2127 vlv_write_wm_values(dev_priv, &new_wm);
2128
2129 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2130 _intel_set_memory_cxsr(dev_priv, true);
2131
2132 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2133 chv_set_memory_pm5(dev_priv, true);
2134
2135 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2136 chv_set_memory_dvfs(dev_priv, true);
2137
2138 *old_wm = new_wm;
2139 }
2140
2141 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2142 struct intel_crtc_state *crtc_state)
2143 {
2144 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2145 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2146
2147 mutex_lock(&dev_priv->wm.wm_mutex);
2148 crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2149 vlv_program_watermarks(dev_priv);
2150 mutex_unlock(&dev_priv->wm.wm_mutex);
2151 }
2152
2153 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2154 struct intel_crtc_state *crtc_state)
2155 {
2156 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2157 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2158
2159 if (!crtc_state->wm.need_postvbl_update)
2160 return;
2161
2162 mutex_lock(&dev_priv->wm.wm_mutex);
2163 intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2164 vlv_program_watermarks(dev_priv);
2165 mutex_unlock(&dev_priv->wm.wm_mutex);
2166 }
2167
2168 static void i965_update_wm(struct intel_crtc *unused_crtc)
2169 {
2170 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2171 struct intel_crtc *crtc;
2172 int srwm = 1;
2173 int cursor_sr = 16;
2174 bool cxsr_enabled;
2175
2176 /* Calc sr entries for one plane configs */
2177 crtc = single_enabled_crtc(dev_priv);
2178 if (crtc) {
2179 /* self-refresh has much higher latency */
2180 static const int sr_latency_ns = 12000;
2181 const struct drm_display_mode *adjusted_mode =
2182 &crtc->config->base.adjusted_mode;
2183 const struct drm_framebuffer *fb =
2184 crtc->base.primary->state->fb;
2185 int clock = adjusted_mode->crtc_clock;
2186 int htotal = adjusted_mode->crtc_htotal;
2187 int hdisplay = crtc->config->pipe_src_w;
2188 int cpp = fb->format->cpp[0];
2189 int entries;
2190
2191 entries = intel_wm_method2(clock, htotal,
2192 hdisplay, cpp, sr_latency_ns / 100);
2193 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2194 srwm = I965_FIFO_SIZE - entries;
2195 if (srwm < 0)
2196 srwm = 1;
2197 srwm &= 0x1ff;
2198 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
2199 entries, srwm);
2200
2201 entries = intel_wm_method2(clock, htotal,
2202 crtc->base.cursor->state->crtc_w, 4,
2203 sr_latency_ns / 100);
2204 entries = DIV_ROUND_UP(entries,
2205 i965_cursor_wm_info.cacheline_size) +
2206 i965_cursor_wm_info.guard_size;
2207
2208 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2209 if (cursor_sr > i965_cursor_wm_info.max_wm)
2210 cursor_sr = i965_cursor_wm_info.max_wm;
2211
2212 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
2213 "cursor %d\n", srwm, cursor_sr);
2214
2215 cxsr_enabled = true;
2216 } else {
2217 cxsr_enabled = false;
2218 /* Turn off self refresh if both pipes are enabled */
2219 intel_set_memory_cxsr(dev_priv, false);
2220 }
2221
2222 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2223 srwm);
2224
2225 /* 965 has limitations... */
2226 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2227 FW_WM(8, CURSORB) |
2228 FW_WM(8, PLANEB) |
2229 FW_WM(8, PLANEA));
2230 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2231 FW_WM(8, PLANEC_OLD));
2232 /* update cursor SR watermark */
2233 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2234
2235 if (cxsr_enabled)
2236 intel_set_memory_cxsr(dev_priv, true);
2237 }
2238
2239 #undef FW_WM
2240
2241 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2242 {
2243 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2244 const struct intel_watermark_params *wm_info;
2245 uint32_t fwater_lo;
2246 uint32_t fwater_hi;
2247 int cwm, srwm = 1;
2248 int fifo_size;
2249 int planea_wm, planeb_wm;
2250 struct intel_crtc *crtc, *enabled = NULL;
2251
2252 if (IS_I945GM(dev_priv))
2253 wm_info = &i945_wm_info;
2254 else if (!IS_GEN2(dev_priv))
2255 wm_info = &i915_wm_info;
2256 else
2257 wm_info = &i830_a_wm_info;
2258
2259 fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
2260 crtc = intel_get_crtc_for_plane(dev_priv, 0);
2261 if (intel_crtc_active(crtc)) {
2262 const struct drm_display_mode *adjusted_mode =
2263 &crtc->config->base.adjusted_mode;
2264 const struct drm_framebuffer *fb =
2265 crtc->base.primary->state->fb;
2266 int cpp;
2267
2268 if (IS_GEN2(dev_priv))
2269 cpp = 4;
2270 else
2271 cpp = fb->format->cpp[0];
2272
2273 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2274 wm_info, fifo_size, cpp,
2275 pessimal_latency_ns);
2276 enabled = crtc;
2277 } else {
2278 planea_wm = fifo_size - wm_info->guard_size;
2279 if (planea_wm > (long)wm_info->max_wm)
2280 planea_wm = wm_info->max_wm;
2281 }
2282
2283 if (IS_GEN2(dev_priv))
2284 wm_info = &i830_bc_wm_info;
2285
2286 fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
2287 crtc = intel_get_crtc_for_plane(dev_priv, 1);
2288 if (intel_crtc_active(crtc)) {
2289 const struct drm_display_mode *adjusted_mode =
2290 &crtc->config->base.adjusted_mode;
2291 const struct drm_framebuffer *fb =
2292 crtc->base.primary->state->fb;
2293 int cpp;
2294
2295 if (IS_GEN2(dev_priv))
2296 cpp = 4;
2297 else
2298 cpp = fb->format->cpp[0];
2299
2300 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2301 wm_info, fifo_size, cpp,
2302 pessimal_latency_ns);
2303 if (enabled == NULL)
2304 enabled = crtc;
2305 else
2306 enabled = NULL;
2307 } else {
2308 planeb_wm = fifo_size - wm_info->guard_size;
2309 if (planeb_wm > (long)wm_info->max_wm)
2310 planeb_wm = wm_info->max_wm;
2311 }
2312
2313 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2314
2315 if (IS_I915GM(dev_priv) && enabled) {
2316 struct drm_i915_gem_object *obj;
2317
2318 obj = intel_fb_obj(enabled->base.primary->state->fb);
2319
2320 /* self-refresh seems busted with untiled */
2321 if (!i915_gem_object_is_tiled(obj))
2322 enabled = NULL;
2323 }
2324
2325 /*
2326 * Overlay gets an aggressive default since video jitter is bad.
2327 */
2328 cwm = 2;
2329
2330 /* Play safe and disable self-refresh before adjusting watermarks. */
2331 intel_set_memory_cxsr(dev_priv, false);
2332
2333 /* Calc sr entries for one plane configs */
2334 if (HAS_FW_BLC(dev_priv) && enabled) {
2335 /* self-refresh has much higher latency */
2336 static const int sr_latency_ns = 6000;
2337 const struct drm_display_mode *adjusted_mode =
2338 &enabled->config->base.adjusted_mode;
2339 const struct drm_framebuffer *fb =
2340 enabled->base.primary->state->fb;
2341 int clock = adjusted_mode->crtc_clock;
2342 int htotal = adjusted_mode->crtc_htotal;
2343 int hdisplay = enabled->config->pipe_src_w;
2344 int cpp;
2345 int entries;
2346
2347 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2348 cpp = 4;
2349 else
2350 cpp = fb->format->cpp[0];
2351
2352 entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2353 sr_latency_ns / 100);
2354 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2355 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
2356 srwm = wm_info->fifo_size - entries;
2357 if (srwm < 0)
2358 srwm = 1;
2359
2360 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2361 I915_WRITE(FW_BLC_SELF,
2362 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2363 else
2364 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2365 }
2366
2367 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2368 planea_wm, planeb_wm, cwm, srwm);
2369
2370 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2371 fwater_hi = (cwm & 0x1f);
2372
2373 /* Set request length to 8 cachelines per fetch */
2374 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2375 fwater_hi = fwater_hi | (1 << 8);
2376
2377 I915_WRITE(FW_BLC, fwater_lo);
2378 I915_WRITE(FW_BLC2, fwater_hi);
2379
2380 if (enabled)
2381 intel_set_memory_cxsr(dev_priv, true);
2382 }
2383
2384 static void i845_update_wm(struct intel_crtc *unused_crtc)
2385 {
2386 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2387 struct intel_crtc *crtc;
2388 const struct drm_display_mode *adjusted_mode;
2389 uint32_t fwater_lo;
2390 int planea_wm;
2391
2392 crtc = single_enabled_crtc(dev_priv);
2393 if (crtc == NULL)
2394 return;
2395
2396 adjusted_mode = &crtc->config->base.adjusted_mode;
2397 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2398 &i845_wm_info,
2399 dev_priv->display.get_fifo_size(dev_priv, 0),
2400 4, pessimal_latency_ns);
2401 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2402 fwater_lo |= (3<<8) | planea_wm;
2403
2404 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2405
2406 I915_WRITE(FW_BLC, fwater_lo);
2407 }
2408
2409 /* latency must be in 0.1us units. */
2410 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2411 unsigned int cpp,
2412 unsigned int latency)
2413 {
2414 unsigned int ret;
2415
2416 ret = intel_wm_method1(pixel_rate, cpp, latency);
2417 ret = DIV_ROUND_UP(ret, 64) + 2;
2418
2419 return ret;
2420 }
2421
2422 /* latency must be in 0.1us units. */
2423 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2424 unsigned int htotal,
2425 unsigned int width,
2426 unsigned int cpp,
2427 unsigned int latency)
2428 {
2429 unsigned int ret;
2430
2431 ret = intel_wm_method2(pixel_rate, htotal,
2432 width, cpp, latency);
2433 ret = DIV_ROUND_UP(ret, 64) + 2;
2434
2435 return ret;
2436 }
2437
2438 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2439 uint8_t cpp)
2440 {
2441 /*
2442 * Neither of these should be possible since this function shouldn't be
2443 * called if the CRTC is off or the plane is invisible. But let's be
2444 * extra paranoid to avoid a potential divide-by-zero if we screw up
2445 * elsewhere in the driver.
2446 */
2447 if (WARN_ON(!cpp))
2448 return 0;
2449 if (WARN_ON(!horiz_pixels))
2450 return 0;
2451
2452 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2453 }
2454
2455 struct ilk_wm_maximums {
2456 uint16_t pri;
2457 uint16_t spr;
2458 uint16_t cur;
2459 uint16_t fbc;
2460 };
2461
2462 /*
2463 * For both WM_PIPE and WM_LP.
2464 * mem_value must be in 0.1us units.
2465 */
2466 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2467 const struct intel_plane_state *pstate,
2468 uint32_t mem_value,
2469 bool is_lp)
2470 {
2471 uint32_t method1, method2;
2472 int cpp;
2473
2474 if (!intel_wm_plane_visible(cstate, pstate))
2475 return 0;
2476
2477 cpp = pstate->base.fb->format->cpp[0];
2478
2479 method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2480
2481 if (!is_lp)
2482 return method1;
2483
2484 method2 = ilk_wm_method2(cstate->pixel_rate,
2485 cstate->base.adjusted_mode.crtc_htotal,
2486 drm_rect_width(&pstate->base.dst),
2487 cpp, mem_value);
2488
2489 return min(method1, method2);
2490 }
2491
2492 /*
2493 * For both WM_PIPE and WM_LP.
2494 * mem_value must be in 0.1us units.
2495 */
2496 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2497 const struct intel_plane_state *pstate,
2498 uint32_t mem_value)
2499 {
2500 uint32_t method1, method2;
2501 int cpp;
2502
2503 if (!intel_wm_plane_visible(cstate, pstate))
2504 return 0;
2505
2506 cpp = pstate->base.fb->format->cpp[0];
2507
2508 method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2509 method2 = ilk_wm_method2(cstate->pixel_rate,
2510 cstate->base.adjusted_mode.crtc_htotal,
2511 drm_rect_width(&pstate->base.dst),
2512 cpp, mem_value);
2513 return min(method1, method2);
2514 }
2515
2516 /*
2517 * For both WM_PIPE and WM_LP.
2518 * mem_value must be in 0.1us units.
2519 */
2520 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2521 const struct intel_plane_state *pstate,
2522 uint32_t mem_value)
2523 {
2524 int cpp;
2525
2526 if (!intel_wm_plane_visible(cstate, pstate))
2527 return 0;
2528
2529 cpp = pstate->base.fb->format->cpp[0];
2530
2531 return ilk_wm_method2(cstate->pixel_rate,
2532 cstate->base.adjusted_mode.crtc_htotal,
2533 pstate->base.crtc_w, cpp, mem_value);
2534 }
2535
2536 /* Only for WM_LP. */
2537 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2538 const struct intel_plane_state *pstate,
2539 uint32_t pri_val)
2540 {
2541 int cpp;
2542
2543 if (!intel_wm_plane_visible(cstate, pstate))
2544 return 0;
2545
2546 cpp = pstate->base.fb->format->cpp[0];
2547
2548 return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2549 }
2550
2551 static unsigned int
2552 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2553 {
2554 if (INTEL_GEN(dev_priv) >= 8)
2555 return 3072;
2556 else if (INTEL_GEN(dev_priv) >= 7)
2557 return 768;
2558 else
2559 return 512;
2560 }
2561
2562 static unsigned int
2563 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2564 int level, bool is_sprite)
2565 {
2566 if (INTEL_GEN(dev_priv) >= 8)
2567 /* BDW primary/sprite plane watermarks */
2568 return level == 0 ? 255 : 2047;
2569 else if (INTEL_GEN(dev_priv) >= 7)
2570 /* IVB/HSW primary/sprite plane watermarks */
2571 return level == 0 ? 127 : 1023;
2572 else if (!is_sprite)
2573 /* ILK/SNB primary plane watermarks */
2574 return level == 0 ? 127 : 511;
2575 else
2576 /* ILK/SNB sprite plane watermarks */
2577 return level == 0 ? 63 : 255;
2578 }
2579
2580 static unsigned int
2581 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2582 {
2583 if (INTEL_GEN(dev_priv) >= 7)
2584 return level == 0 ? 63 : 255;
2585 else
2586 return level == 0 ? 31 : 63;
2587 }
2588
2589 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2590 {
2591 if (INTEL_GEN(dev_priv) >= 8)
2592 return 31;
2593 else
2594 return 15;
2595 }
2596
2597 /* Calculate the maximum primary/sprite plane watermark */
2598 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2599 int level,
2600 const struct intel_wm_config *config,
2601 enum intel_ddb_partitioning ddb_partitioning,
2602 bool is_sprite)
2603 {
2604 struct drm_i915_private *dev_priv = to_i915(dev);
2605 unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2606
2607 /* if sprites aren't enabled, sprites get nothing */
2608 if (is_sprite && !config->sprites_enabled)
2609 return 0;
2610
2611 /* HSW allows LP1+ watermarks even with multiple pipes */
2612 if (level == 0 || config->num_pipes_active > 1) {
2613 fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2614
2615 /*
2616 * For some reason the non self refresh
2617 * FIFO size is only half of the self
2618 * refresh FIFO size on ILK/SNB.
2619 */
2620 if (INTEL_GEN(dev_priv) <= 6)
2621 fifo_size /= 2;
2622 }
2623
2624 if (config->sprites_enabled) {
2625 /* level 0 is always calculated with 1:1 split */
2626 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2627 if (is_sprite)
2628 fifo_size *= 5;
2629 fifo_size /= 6;
2630 } else {
2631 fifo_size /= 2;
2632 }
2633 }
2634
2635 /* clamp to max that the registers can hold */
2636 return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2637 }
2638
2639 /* Calculate the maximum cursor plane watermark */
2640 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2641 int level,
2642 const struct intel_wm_config *config)
2643 {
2644 /* HSW LP1+ watermarks w/ multiple pipes */
2645 if (level > 0 && config->num_pipes_active > 1)
2646 return 64;
2647
2648 /* otherwise just report max that registers can hold */
2649 return ilk_cursor_wm_reg_max(to_i915(dev), level);
2650 }
2651
2652 static void ilk_compute_wm_maximums(const struct drm_device *dev,
2653 int level,
2654 const struct intel_wm_config *config,
2655 enum intel_ddb_partitioning ddb_partitioning,
2656 struct ilk_wm_maximums *max)
2657 {
2658 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2659 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2660 max->cur = ilk_cursor_wm_max(dev, level, config);
2661 max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2662 }
2663
2664 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2665 int level,
2666 struct ilk_wm_maximums *max)
2667 {
2668 max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2669 max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2670 max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2671 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2672 }
2673
2674 static bool ilk_validate_wm_level(int level,
2675 const struct ilk_wm_maximums *max,
2676 struct intel_wm_level *result)
2677 {
2678 bool ret;
2679
2680 /* already determined to be invalid? */
2681 if (!result->enable)
2682 return false;
2683
2684 result->enable = result->pri_val <= max->pri &&
2685 result->spr_val <= max->spr &&
2686 result->cur_val <= max->cur;
2687
2688 ret = result->enable;
2689
2690 /*
2691 * HACK until we can pre-compute everything,
2692 * and thus fail gracefully if LP0 watermarks
2693 * are exceeded...
2694 */
2695 if (level == 0 && !result->enable) {
2696 if (result->pri_val > max->pri)
2697 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2698 level, result->pri_val, max->pri);
2699 if (result->spr_val > max->spr)
2700 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2701 level, result->spr_val, max->spr);
2702 if (result->cur_val > max->cur)
2703 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2704 level, result->cur_val, max->cur);
2705
2706 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2707 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2708 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2709 result->enable = true;
2710 }
2711
2712 return ret;
2713 }
2714
2715 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2716 const struct intel_crtc *intel_crtc,
2717 int level,
2718 struct intel_crtc_state *cstate,
2719 struct intel_plane_state *pristate,
2720 struct intel_plane_state *sprstate,
2721 struct intel_plane_state *curstate,
2722 struct intel_wm_level *result)
2723 {
2724 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2725 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2726 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2727
2728 /* WM1+ latency values stored in 0.5us units */
2729 if (level > 0) {
2730 pri_latency *= 5;
2731 spr_latency *= 5;
2732 cur_latency *= 5;
2733 }
2734
2735 if (pristate) {
2736 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2737 pri_latency, level);
2738 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2739 }
2740
2741 if (sprstate)
2742 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2743
2744 if (curstate)
2745 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2746
2747 result->enable = true;
2748 }
2749
2750 static uint32_t
2751 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2752 {
2753 const struct intel_atomic_state *intel_state =
2754 to_intel_atomic_state(cstate->base.state);
2755 const struct drm_display_mode *adjusted_mode =
2756 &cstate->base.adjusted_mode;
2757 u32 linetime, ips_linetime;
2758
2759 if (!cstate->base.active)
2760 return 0;
2761 if (WARN_ON(adjusted_mode->crtc_clock == 0))
2762 return 0;
2763 if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2764 return 0;
2765
2766 /* The WM are computed with base on how long it takes to fill a single
2767 * row at the given clock rate, multiplied by 8.
2768 * */
2769 linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2770 adjusted_mode->crtc_clock);
2771 ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2772 intel_state->cdclk.logical.cdclk);
2773
2774 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2775 PIPE_WM_LINETIME_TIME(linetime);
2776 }
2777
2778 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2779 uint16_t wm[8])
2780 {
2781 if (INTEL_GEN(dev_priv) >= 9) {
2782 uint32_t val;
2783 int ret, i;
2784 int level, max_level = ilk_wm_max_level(dev_priv);
2785
2786 /* read the first set of memory latencies[0:3] */
2787 val = 0; /* data0 to be programmed to 0 for first set */
2788 mutex_lock(&dev_priv->rps.hw_lock);
2789 ret = sandybridge_pcode_read(dev_priv,
2790 GEN9_PCODE_READ_MEM_LATENCY,
2791 &val);
2792 mutex_unlock(&dev_priv->rps.hw_lock);
2793
2794 if (ret) {
2795 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2796 return;
2797 }
2798
2799 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2800 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2801 GEN9_MEM_LATENCY_LEVEL_MASK;
2802 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2803 GEN9_MEM_LATENCY_LEVEL_MASK;
2804 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2805 GEN9_MEM_LATENCY_LEVEL_MASK;
2806
2807 /* read the second set of memory latencies[4:7] */
2808 val = 1; /* data0 to be programmed to 1 for second set */
2809 mutex_lock(&dev_priv->rps.hw_lock);
2810 ret = sandybridge_pcode_read(dev_priv,
2811 GEN9_PCODE_READ_MEM_LATENCY,
2812 &val);
2813 mutex_unlock(&dev_priv->rps.hw_lock);
2814 if (ret) {
2815 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2816 return;
2817 }
2818
2819 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2820 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2821 GEN9_MEM_LATENCY_LEVEL_MASK;
2822 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2823 GEN9_MEM_LATENCY_LEVEL_MASK;
2824 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2825 GEN9_MEM_LATENCY_LEVEL_MASK;
2826
2827 /*
2828 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2829 * need to be disabled. We make sure to sanitize the values out
2830 * of the punit to satisfy this requirement.
2831 */
2832 for (level = 1; level <= max_level; level++) {
2833 if (wm[level] == 0) {
2834 for (i = level + 1; i <= max_level; i++)
2835 wm[i] = 0;
2836 break;
2837 }
2838 }
2839
2840 /*
2841 * WaWmMemoryReadLatency:skl+,glk
2842 *
2843 * punit doesn't take into account the read latency so we need
2844 * to add 2us to the various latency levels we retrieve from the
2845 * punit when level 0 response data us 0us.
2846 */
2847 if (wm[0] == 0) {
2848 wm[0] += 2;
2849 for (level = 1; level <= max_level; level++) {
2850 if (wm[level] == 0)
2851 break;
2852 wm[level] += 2;
2853 }
2854 }
2855
2856 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2857 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2858
2859 wm[0] = (sskpd >> 56) & 0xFF;
2860 if (wm[0] == 0)
2861 wm[0] = sskpd & 0xF;
2862 wm[1] = (sskpd >> 4) & 0xFF;
2863 wm[2] = (sskpd >> 12) & 0xFF;
2864 wm[3] = (sskpd >> 20) & 0x1FF;
2865 wm[4] = (sskpd >> 32) & 0x1FF;
2866 } else if (INTEL_GEN(dev_priv) >= 6) {
2867 uint32_t sskpd = I915_READ(MCH_SSKPD);
2868
2869 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2870 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2871 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2872 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2873 } else if (INTEL_GEN(dev_priv) >= 5) {
2874 uint32_t mltr = I915_READ(MLTR_ILK);
2875
2876 /* ILK primary LP0 latency is 700 ns */
2877 wm[0] = 7;
2878 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2879 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2880 } else {
2881 MISSING_CASE(INTEL_DEVID(dev_priv));
2882 }
2883 }
2884
2885 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2886 uint16_t wm[5])
2887 {
2888 /* ILK sprite LP0 latency is 1300 ns */
2889 if (IS_GEN5(dev_priv))
2890 wm[0] = 13;
2891 }
2892
2893 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2894 uint16_t wm[5])
2895 {
2896 /* ILK cursor LP0 latency is 1300 ns */
2897 if (IS_GEN5(dev_priv))
2898 wm[0] = 13;
2899
2900 /* WaDoubleCursorLP3Latency:ivb */
2901 if (IS_IVYBRIDGE(dev_priv))
2902 wm[3] *= 2;
2903 }
2904
2905 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2906 {
2907 /* how many WM levels are we expecting */
2908 if (INTEL_GEN(dev_priv) >= 9)
2909 return 7;
2910 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2911 return 4;
2912 else if (INTEL_GEN(dev_priv) >= 6)
2913 return 3;
2914 else
2915 return 2;
2916 }
2917
2918 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2919 const char *name,
2920 const uint16_t wm[8])
2921 {
2922 int level, max_level = ilk_wm_max_level(dev_priv);
2923
2924 for (level = 0; level <= max_level; level++) {
2925 unsigned int latency = wm[level];
2926
2927 if (latency == 0) {
2928 DRM_ERROR("%s WM%d latency not provided\n",
2929 name, level);
2930 continue;
2931 }
2932
2933 /*
2934 * - latencies are in us on gen9.
2935 * - before then, WM1+ latency values are in 0.5us units
2936 */
2937 if (INTEL_GEN(dev_priv) >= 9)
2938 latency *= 10;
2939 else if (level > 0)
2940 latency *= 5;
2941
2942 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2943 name, level, wm[level],
2944 latency / 10, latency % 10);
2945 }
2946 }
2947
2948 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2949 uint16_t wm[5], uint16_t min)
2950 {
2951 int level, max_level = ilk_wm_max_level(dev_priv);
2952
2953 if (wm[0] >= min)
2954 return false;
2955
2956 wm[0] = max(wm[0], min);
2957 for (level = 1; level <= max_level; level++)
2958 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2959
2960 return true;
2961 }
2962
2963 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2964 {
2965 bool changed;
2966
2967 /*
2968 * The BIOS provided WM memory latency values are often
2969 * inadequate for high resolution displays. Adjust them.
2970 */
2971 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2972 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2973 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2974
2975 if (!changed)
2976 return;
2977
2978 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2979 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2980 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2981 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2982 }
2983
2984 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2985 {
2986 intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2987
2988 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2989 sizeof(dev_priv->wm.pri_latency));
2990 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2991 sizeof(dev_priv->wm.pri_latency));
2992
2993 intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2994 intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2995
2996 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2997 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2998 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2999
3000 if (IS_GEN6(dev_priv))
3001 snb_wm_latency_quirk(dev_priv);
3002 }
3003
3004 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3005 {
3006 intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3007 intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3008 }
3009
3010 static bool ilk_validate_pipe_wm(struct drm_device *dev,
3011 struct intel_pipe_wm *pipe_wm)
3012 {
3013 /* LP0 watermark maximums depend on this pipe alone */
3014 const struct intel_wm_config config = {
3015 .num_pipes_active = 1,
3016 .sprites_enabled = pipe_wm->sprites_enabled,
3017 .sprites_scaled = pipe_wm->sprites_scaled,
3018 };
3019 struct ilk_wm_maximums max;
3020
3021 /* LP0 watermarks always use 1/2 DDB partitioning */
3022 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
3023
3024 /* At least LP0 must be valid */
3025 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3026 DRM_DEBUG_KMS("LP0 watermark invalid\n");
3027 return false;
3028 }
3029
3030 return true;
3031 }
3032
3033 /* Compute new watermarks for the pipe */
3034 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3035 {
3036 struct drm_atomic_state *state = cstate->base.state;
3037 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3038 struct intel_pipe_wm *pipe_wm;
3039 struct drm_device *dev = state->dev;
3040 const struct drm_i915_private *dev_priv = to_i915(dev);
3041 struct intel_plane *intel_plane;
3042 struct intel_plane_state *pristate = NULL;
3043 struct intel_plane_state *sprstate = NULL;
3044 struct intel_plane_state *curstate = NULL;
3045 int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3046 struct ilk_wm_maximums max;
3047
3048 pipe_wm = &cstate->wm.ilk.optimal;
3049
3050 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3051 struct intel_plane_state *ps;
3052
3053 ps = intel_atomic_get_existing_plane_state(state,
3054 intel_plane);
3055 if (!ps)
3056 continue;
3057
3058 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
3059 pristate = ps;
3060 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
3061 sprstate = ps;
3062 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
3063 curstate = ps;
3064 }
3065
3066 pipe_wm->pipe_enabled = cstate->base.active;
3067 if (sprstate) {
3068 pipe_wm->sprites_enabled = sprstate->base.visible;
3069 pipe_wm->sprites_scaled = sprstate->base.visible &&
3070 (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
3071 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3072 }
3073
3074 usable_level = max_level;
3075
3076 /* ILK/SNB: LP2+ watermarks only w/o sprites */
3077 if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3078 usable_level = 1;
3079
3080 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3081 if (pipe_wm->sprites_scaled)
3082 usable_level = 0;
3083
3084 ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
3085 pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
3086
3087 memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3088 pipe_wm->wm[0] = pipe_wm->raw_wm[0];
3089
3090 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3091 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3092
3093 if (!ilk_validate_pipe_wm(dev, pipe_wm))
3094 return -EINVAL;
3095
3096 ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3097
3098 for (level = 1; level <= max_level; level++) {
3099 struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
3100
3101 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3102 pristate, sprstate, curstate, wm);
3103
3104 /*
3105 * Disable any watermark level that exceeds the
3106 * register maximums since such watermarks are
3107 * always invalid.
3108 */
3109 if (level > usable_level)
3110 continue;
3111
3112 if (ilk_validate_wm_level(level, &max, wm))
3113 pipe_wm->wm[level] = *wm;
3114 else
3115 usable_level = level;
3116 }
3117
3118 return 0;
3119 }
3120
3121 /*
3122 * Build a set of 'intermediate' watermark values that satisfy both the old
3123 * state and the new state. These can be programmed to the hardware
3124 * immediately.
3125 */
3126 static int ilk_compute_intermediate_wm(struct drm_device *dev,
3127 struct intel_crtc *intel_crtc,
3128 struct intel_crtc_state *newstate)
3129 {
3130 struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3131 struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
3132 int level, max_level = ilk_wm_max_level(to_i915(dev));
3133
3134 /*
3135 * Start with the final, target watermarks, then combine with the
3136 * currently active watermarks to get values that are safe both before
3137 * and after the vblank.
3138 */
3139 *a = newstate->wm.ilk.optimal;
3140 a->pipe_enabled |= b->pipe_enabled;
3141 a->sprites_enabled |= b->sprites_enabled;
3142 a->sprites_scaled |= b->sprites_scaled;
3143
3144 for (level = 0; level <= max_level; level++) {
3145 struct intel_wm_level *a_wm = &a->wm[level];
3146 const struct intel_wm_level *b_wm = &b->wm[level];
3147
3148 a_wm->enable &= b_wm->enable;
3149 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3150 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3151 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3152 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3153 }
3154
3155 /*
3156 * We need to make sure that these merged watermark values are
3157 * actually a valid configuration themselves. If they're not,
3158 * there's no safe way to transition from the old state to
3159 * the new state, so we need to fail the atomic transaction.
3160 */
3161 if (!ilk_validate_pipe_wm(dev, a))
3162 return -EINVAL;
3163
3164 /*
3165 * If our intermediate WM are identical to the final WM, then we can
3166 * omit the post-vblank programming; only update if it's different.
3167 */
3168 if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3169 newstate->wm.need_postvbl_update = true;
3170
3171 return 0;
3172 }
3173
3174 /*
3175 * Merge the watermarks from all active pipes for a specific level.
3176 */
3177 static void ilk_merge_wm_level(struct drm_device *dev,
3178 int level,
3179 struct intel_wm_level *ret_wm)
3180 {
3181 const struct intel_crtc *intel_crtc;
3182
3183 ret_wm->enable = true;
3184
3185 for_each_intel_crtc(dev, intel_crtc) {
3186 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3187 const struct intel_wm_level *wm = &active->wm[level];
3188
3189 if (!active->pipe_enabled)
3190 continue;
3191
3192 /*
3193 * The watermark values may have been used in the past,
3194 * so we must maintain them in the registers for some
3195 * time even if the level is now disabled.
3196 */
3197 if (!wm->enable)
3198 ret_wm->enable = false;
3199
3200 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3201 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3202 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3203 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3204 }
3205 }
3206
3207 /*
3208 * Merge all low power watermarks for all active pipes.
3209 */
3210 static void ilk_wm_merge(struct drm_device *dev,
3211 const struct intel_wm_config *config,
3212 const struct ilk_wm_maximums *max,
3213 struct intel_pipe_wm *merged)
3214 {
3215 struct drm_i915_private *dev_priv = to_i915(dev);
3216 int level, max_level = ilk_wm_max_level(dev_priv);
3217 int last_enabled_level = max_level;
3218
3219 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3220 if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3221 config->num_pipes_active > 1)
3222 last_enabled_level = 0;
3223
3224 /* ILK: FBC WM must be disabled always */
3225 merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3226
3227 /* merge each WM1+ level */
3228 for (level = 1; level <= max_level; level++) {
3229 struct intel_wm_level *wm = &merged->wm[level];
3230
3231 ilk_merge_wm_level(dev, level, wm);
3232
3233 if (level > last_enabled_level)
3234 wm->enable = false;
3235 else if (!ilk_validate_wm_level(level, max, wm))
3236 /* make sure all following levels get disabled */
3237 last_enabled_level = level - 1;
3238
3239 /*
3240 * The spec says it is preferred to disable
3241 * FBC WMs instead of disabling a WM level.
3242 */
3243 if (wm->fbc_val > max->fbc) {
3244 if (wm->enable)
3245 merged->fbc_wm_enabled = false;
3246 wm->fbc_val = 0;
3247 }
3248 }
3249
3250 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3251 /*
3252 * FIXME this is racy. FBC might get enabled later.
3253 * What we should check here is whether FBC can be
3254 * enabled sometime later.
3255 */
3256 if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
3257 intel_fbc_is_active(dev_priv)) {
3258 for (level = 2; level <= max_level; level++) {
3259 struct intel_wm_level *wm = &merged->wm[level];
3260
3261 wm->enable = false;
3262 }
3263 }
3264 }
3265
3266 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3267 {
3268 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3269 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3270 }
3271
3272 /* The value we need to program into the WM_LPx latency field */
3273 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
3274 {
3275 struct drm_i915_private *dev_priv = to_i915(dev);
3276
3277 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3278 return 2 * level;
3279 else
3280 return dev_priv->wm.pri_latency[level];
3281 }
3282
3283 static void ilk_compute_wm_results(struct drm_device *dev,
3284 const struct intel_pipe_wm *merged,
3285 enum intel_ddb_partitioning partitioning,
3286 struct ilk_wm_values *results)
3287 {
3288 struct drm_i915_private *dev_priv = to_i915(dev);
3289 struct intel_crtc *intel_crtc;
3290 int level, wm_lp;
3291
3292 results->enable_fbc_wm = merged->fbc_wm_enabled;
3293 results->partitioning = partitioning;
3294
3295 /* LP1+ register values */
3296 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3297 const struct intel_wm_level *r;
3298
3299 level = ilk_wm_lp_to_level(wm_lp, merged);
3300
3301 r = &merged->wm[level];
3302
3303 /*
3304 * Maintain the watermark values even if the level is
3305 * disabled. Doing otherwise could cause underruns.
3306 */
3307 results->wm_lp[wm_lp - 1] =
3308 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
3309 (r->pri_val << WM1_LP_SR_SHIFT) |
3310 r->cur_val;
3311
3312 if (r->enable)
3313 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3314
3315 if (INTEL_GEN(dev_priv) >= 8)
3316 results->wm_lp[wm_lp - 1] |=
3317 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3318 else
3319 results->wm_lp[wm_lp - 1] |=
3320 r->fbc_val << WM1_LP_FBC_SHIFT;
3321
3322 /*
3323 * Always set WM1S_LP_EN when spr_val != 0, even if the
3324 * level is disabled. Doing otherwise could cause underruns.
3325 */
3326 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3327 WARN_ON(wm_lp != 1);
3328 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3329 } else
3330 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3331 }
3332
3333 /* LP0 register values */
3334 for_each_intel_crtc(dev, intel_crtc) {
3335 enum pipe pipe = intel_crtc->pipe;
3336 const struct intel_wm_level *r =
3337 &intel_crtc->wm.active.ilk.wm[0];
3338
3339 if (WARN_ON(!r->enable))
3340 continue;
3341
3342 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3343
3344 results->wm_pipe[pipe] =
3345 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3346 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3347 r->cur_val;
3348 }
3349 }
3350
3351 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3352 * case both are at the same level. Prefer r1 in case they're the same. */
3353 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
3354 struct intel_pipe_wm *r1,
3355 struct intel_pipe_wm *r2)
3356 {
3357 int level, max_level = ilk_wm_max_level(to_i915(dev));
3358 int level1 = 0, level2 = 0;
3359
3360 for (level = 1; level <= max_level; level++) {
3361 if (r1->wm[level].enable)
3362 level1 = level;
3363 if (r2->wm[level].enable)
3364 level2 = level;
3365 }
3366
3367 if (level1 == level2) {
3368 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3369 return r2;
3370 else
3371 return r1;
3372 } else if (level1 > level2) {
3373 return r1;
3374 } else {
3375 return r2;
3376 }
3377 }
3378
3379 /* dirty bits used to track which watermarks need changes */
3380 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3381 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
3382 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3383 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3384 #define WM_DIRTY_FBC (1 << 24)
3385 #define WM_DIRTY_DDB (1 << 25)
3386
3387 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3388 const struct ilk_wm_values *old,
3389 const struct ilk_wm_values *new)
3390 {
3391 unsigned int dirty = 0;
3392 enum pipe pipe;
3393 int wm_lp;
3394
3395 for_each_pipe(dev_priv, pipe) {
3396 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
3397 dirty |= WM_DIRTY_LINETIME(pipe);
3398 /* Must disable LP1+ watermarks too */
3399 dirty |= WM_DIRTY_LP_ALL;
3400 }
3401
3402 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3403 dirty |= WM_DIRTY_PIPE(pipe);
3404 /* Must disable LP1+ watermarks too */
3405 dirty |= WM_DIRTY_LP_ALL;
3406 }
3407 }
3408
3409 if (old->enable_fbc_wm != new->enable_fbc_wm) {
3410 dirty |= WM_DIRTY_FBC;
3411 /* Must disable LP1+ watermarks too */
3412 dirty |= WM_DIRTY_LP_ALL;
3413 }
3414
3415 if (old->partitioning != new->partitioning) {
3416 dirty |= WM_DIRTY_DDB;
3417 /* Must disable LP1+ watermarks too */
3418 dirty |= WM_DIRTY_LP_ALL;
3419 }
3420
3421 /* LP1+ watermarks already deemed dirty, no need to continue */
3422 if (dirty & WM_DIRTY_LP_ALL)
3423 return dirty;
3424
3425 /* Find the lowest numbered LP1+ watermark in need of an update... */
3426 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3427 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3428 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3429 break;
3430 }
3431
3432 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3433 for (; wm_lp <= 3; wm_lp++)
3434 dirty |= WM_DIRTY_LP(wm_lp);
3435
3436 return dirty;
3437 }
3438
3439 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3440 unsigned int dirty)
3441 {
3442 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3443 bool changed = false;
3444
3445 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3446 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3447 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3448 changed = true;
3449 }
3450 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3451 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3452 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3453 changed = true;
3454 }
3455 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3456 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3457 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3458 changed = true;
3459 }
3460
3461 /*
3462 * Don't touch WM1S_LP_EN here.
3463 * Doing so could cause underruns.
3464 */
3465
3466 return changed;
3467 }
3468
3469 /*
3470 * The spec says we shouldn't write when we don't need, because every write
3471 * causes WMs to be re-evaluated, expending some power.
3472 */
3473 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3474 struct ilk_wm_values *results)
3475 {
3476 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3477 unsigned int dirty;
3478 uint32_t val;
3479
3480 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3481 if (!dirty)
3482 return;
3483
3484 _ilk_disable_lp_wm(dev_priv, dirty);
3485
3486 if (dirty & WM_DIRTY_PIPE(PIPE_A))
3487 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3488 if (dirty & WM_DIRTY_PIPE(PIPE_B))
3489 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3490 if (dirty & WM_DIRTY_PIPE(PIPE_C))
3491 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3492
3493 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3494 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3495 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3496 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3497 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3498 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
3499
3500 if (dirty & WM_DIRTY_DDB) {
3501 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3502 val = I915_READ(WM_MISC);
3503 if (results->partitioning == INTEL_DDB_PART_1_2)
3504 val &= ~WM_MISC_DATA_PARTITION_5_6;
3505 else
3506 val |= WM_MISC_DATA_PARTITION_5_6;
3507 I915_WRITE(WM_MISC, val);
3508 } else {
3509 val = I915_READ(DISP_ARB_CTL2);
3510 if (results->partitioning == INTEL_DDB_PART_1_2)
3511 val &= ~DISP_DATA_PARTITION_5_6;
3512 else
3513 val |= DISP_DATA_PARTITION_5_6;
3514 I915_WRITE(DISP_ARB_CTL2, val);
3515 }
3516 }
3517
3518 if (dirty & WM_DIRTY_FBC) {
3519 val = I915_READ(DISP_ARB_CTL);
3520 if (results->enable_fbc_wm)
3521 val &= ~DISP_FBC_WM_DIS;
3522 else
3523 val |= DISP_FBC_WM_DIS;
3524 I915_WRITE(DISP_ARB_CTL, val);
3525 }
3526
3527 if (dirty & WM_DIRTY_LP(1) &&
3528 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3529 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3530
3531 if (INTEL_GEN(dev_priv) >= 7) {
3532 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3533 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3534 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3535 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3536 }
3537
3538 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3539 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3540 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3541 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3542 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3543 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3544
3545 dev_priv->wm.hw = *results;
3546 }
3547
3548 bool ilk_disable_lp_wm(struct drm_device *dev)
3549 {
3550 struct drm_i915_private *dev_priv = to_i915(dev);
3551
3552 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3553 }
3554
3555 /*
3556 * FIXME: We still don't have the proper code detect if we need to apply the WA,
3557 * so assume we'll always need it in order to avoid underruns.
3558 */
3559 static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
3560 {
3561 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3562
3563 if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3564 return true;
3565
3566 return false;
3567 }
3568
3569 static bool
3570 intel_has_sagv(struct drm_i915_private *dev_priv)
3571 {
3572 if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
3573 IS_CANNONLAKE(dev_priv))
3574 return true;
3575
3576 if (IS_SKYLAKE(dev_priv) &&
3577 dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
3578 return true;
3579
3580 return false;
3581 }
3582
3583 /*
3584 * SAGV dynamically adjusts the system agent voltage and clock frequencies
3585 * depending on power and performance requirements. The display engine access
3586 * to system memory is blocked during the adjustment time. Because of the
3587 * blocking time, having this enabled can cause full system hangs and/or pipe
3588 * underruns if we don't meet all of the following requirements:
3589 *
3590 * - <= 1 pipe enabled
3591 * - All planes can enable watermarks for latencies >= SAGV engine block time
3592 * - We're not using an interlaced display configuration
3593 */
3594 int
3595 intel_enable_sagv(struct drm_i915_private *dev_priv)
3596 {
3597 int ret;
3598
3599 if (!intel_has_sagv(dev_priv))
3600 return 0;
3601
3602 if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3603 return 0;
3604
3605 DRM_DEBUG_KMS("Enabling the SAGV\n");
3606 mutex_lock(&dev_priv->rps.hw_lock);
3607
3608 ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3609 GEN9_SAGV_ENABLE);
3610
3611 /* We don't need to wait for the SAGV when enabling */
3612 mutex_unlock(&dev_priv->rps.hw_lock);
3613
3614 /*
3615 * Some skl systems, pre-release machines in particular,
3616 * don't actually have an SAGV.
3617 */
3618 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3619 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3620 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3621 return 0;
3622 } else if (ret < 0) {
3623 DRM_ERROR("Failed to enable the SAGV\n");
3624 return ret;
3625 }
3626
3627 dev_priv->sagv_status = I915_SAGV_ENABLED;
3628 return 0;
3629 }
3630
3631 int
3632 intel_disable_sagv(struct drm_i915_private *dev_priv)
3633 {
3634 int ret;
3635
3636 if (!intel_has_sagv(dev_priv))
3637 return 0;
3638
3639 if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3640 return 0;
3641
3642 DRM_DEBUG_KMS("Disabling the SAGV\n");
3643 mutex_lock(&dev_priv->rps.hw_lock);
3644
3645 /* bspec says to keep retrying for at least 1 ms */
3646 ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3647 GEN9_SAGV_DISABLE,
3648 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3649 1);
3650 mutex_unlock(&dev_priv->rps.hw_lock);
3651
3652 /*
3653 * Some skl systems, pre-release machines in particular,
3654 * don't actually have an SAGV.
3655 */
3656 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3657 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3658 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3659 return 0;
3660 } else if (ret < 0) {
3661 DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
3662 return ret;
3663 }
3664
3665 dev_priv->sagv_status = I915_SAGV_DISABLED;
3666 return 0;
3667 }
3668
3669 bool intel_can_enable_sagv(struct drm_atomic_state *state)
3670 {
3671 struct drm_device *dev = state->dev;
3672 struct drm_i915_private *dev_priv = to_i915(dev);
3673 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3674 struct intel_crtc *crtc;
3675 struct intel_plane *plane;
3676 struct intel_crtc_state *cstate;
3677 enum pipe pipe;
3678 int level, latency;
3679 int sagv_block_time_us = IS_GEN9(dev_priv) ? 30 : 20;
3680
3681 if (!intel_has_sagv(dev_priv))
3682 return false;
3683
3684 /*
3685 * SKL+ workaround: bspec recommends we disable the SAGV when we have
3686 * more then one pipe enabled
3687 *
3688 * If there are no active CRTCs, no additional checks need be performed
3689 */
3690 if (hweight32(intel_state->active_crtcs) == 0)
3691 return true;
3692 else if (hweight32(intel_state->active_crtcs) > 1)
3693 return false;
3694
3695 /* Since we're now guaranteed to only have one active CRTC... */
3696 pipe = ffs(intel_state->active_crtcs) - 1;
3697 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3698 cstate = to_intel_crtc_state(crtc->base.state);
3699
3700 if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3701 return false;
3702
3703 for_each_intel_plane_on_crtc(dev, crtc, plane) {
3704 struct skl_plane_wm *wm =
3705 &cstate->wm.skl.optimal.planes[plane->id];
3706
3707 /* Skip this plane if it's not enabled */
3708 if (!wm->wm[0].plane_en)
3709 continue;
3710
3711 /* Find the highest enabled wm level for this plane */
3712 for (level = ilk_wm_max_level(dev_priv);
3713 !wm->wm[level].plane_en; --level)
3714 { }
3715
3716 latency = dev_priv->wm.skl_latency[level];
3717
3718 if (skl_needs_memory_bw_wa(intel_state) &&
3719 plane->base.state->fb->modifier ==
3720 I915_FORMAT_MOD_X_TILED)
3721 latency += 15;
3722
3723 /*
3724 * If any of the planes on this pipe don't enable wm levels that
3725 * incur memory latencies higher than sagv_block_time_us we
3726 * can't enable the SAGV.
3727 */
3728 if (latency < sagv_block_time_us)
3729 return false;
3730 }
3731
3732 return true;
3733 }
3734
3735 static void
3736 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3737 const struct intel_crtc_state *cstate,
3738 struct skl_ddb_entry *alloc, /* out */
3739 int *num_active /* out */)
3740 {
3741 struct drm_atomic_state *state = cstate->base.state;
3742 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3743 struct drm_i915_private *dev_priv = to_i915(dev);
3744 struct drm_crtc *for_crtc = cstate->base.crtc;
3745 unsigned int pipe_size, ddb_size;
3746 int nth_active_pipe;
3747
3748 if (WARN_ON(!state) || !cstate->base.active) {
3749 alloc->start = 0;
3750 alloc->end = 0;
3751 *num_active = hweight32(dev_priv->active_crtcs);
3752 return;
3753 }
3754
3755 if (intel_state->active_pipe_changes)
3756 *num_active = hweight32(intel_state->active_crtcs);
3757 else
3758 *num_active = hweight32(dev_priv->active_crtcs);
3759
3760 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3761 WARN_ON(ddb_size == 0);
3762
3763 ddb_size -= 4; /* 4 blocks for bypass path allocation */
3764
3765 /*
3766 * If the state doesn't change the active CRTC's, then there's
3767 * no need to recalculate; the existing pipe allocation limits
3768 * should remain unchanged. Note that we're safe from racing
3769 * commits since any racing commit that changes the active CRTC
3770 * list would need to grab _all_ crtc locks, including the one
3771 * we currently hold.
3772 */
3773 if (!intel_state->active_pipe_changes) {
3774 /*
3775 * alloc may be cleared by clear_intel_crtc_state,
3776 * copy from old state to be sure
3777 */
3778 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3779 return;
3780 }
3781
3782 nth_active_pipe = hweight32(intel_state->active_crtcs &
3783 (drm_crtc_mask(for_crtc) - 1));
3784 pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
3785 alloc->start = nth_active_pipe * ddb_size / *num_active;
3786 alloc->end = alloc->start + pipe_size;
3787 }
3788
3789 static unsigned int skl_cursor_allocation(int num_active)
3790 {
3791 if (num_active == 1)
3792 return 32;
3793
3794 return 8;
3795 }
3796
3797 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
3798 {
3799 entry->start = reg & 0x3ff;
3800 entry->end = (reg >> 16) & 0x3ff;
3801 if (entry->end)
3802 entry->end += 1;
3803 }
3804
3805 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3806 struct skl_ddb_allocation *ddb /* out */)
3807 {
3808 struct intel_crtc *crtc;
3809
3810 memset(ddb, 0, sizeof(*ddb));
3811
3812 for_each_intel_crtc(&dev_priv->drm, crtc) {
3813 enum intel_display_power_domain power_domain;
3814 enum plane_id plane_id;
3815 enum pipe pipe = crtc->pipe;
3816
3817 power_domain = POWER_DOMAIN_PIPE(pipe);
3818 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3819 continue;
3820
3821 for_each_plane_id_on_crtc(crtc, plane_id) {
3822 u32 val;
3823
3824 if (plane_id != PLANE_CURSOR)
3825 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3826 else
3827 val = I915_READ(CUR_BUF_CFG(pipe));
3828
3829 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
3830 }
3831
3832 intel_display_power_put(dev_priv, power_domain);
3833 }
3834 }
3835
3836 /*
3837 * Determines the downscale amount of a plane for the purposes of watermark calculations.
3838 * The bspec defines downscale amount as:
3839 *
3840 * """
3841 * Horizontal down scale amount = maximum[1, Horizontal source size /
3842 * Horizontal destination size]
3843 * Vertical down scale amount = maximum[1, Vertical source size /
3844 * Vertical destination size]
3845 * Total down scale amount = Horizontal down scale amount *
3846 * Vertical down scale amount
3847 * """
3848 *
3849 * Return value is provided in 16.16 fixed point form to retain fractional part.
3850 * Caller should take care of dividing & rounding off the value.
3851 */
3852 static uint_fixed_16_16_t
3853 skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
3854 const struct intel_plane_state *pstate)
3855 {
3856 struct intel_plane *plane = to_intel_plane(pstate->base.plane);
3857 uint32_t src_w, src_h, dst_w, dst_h;
3858 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
3859 uint_fixed_16_16_t downscale_h, downscale_w;
3860
3861 if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3862 return u32_to_fixed16(0);
3863
3864 /* n.b., src is 16.16 fixed point, dst is whole integer */
3865 if (plane->id == PLANE_CURSOR) {
3866 /*
3867 * Cursors only support 0/180 degree rotation,
3868 * hence no need to account for rotation here.
3869 */
3870 src_w = pstate->base.src_w >> 16;
3871 src_h = pstate->base.src_h >> 16;
3872 dst_w = pstate->base.crtc_w;
3873 dst_h = pstate->base.crtc_h;
3874 } else {
3875 /*
3876 * Src coordinates are already rotated by 270 degrees for
3877 * the 90/270 degree plane rotation cases (to match the
3878 * GTT mapping), hence no need to account for rotation here.
3879 */
3880 src_w = drm_rect_width(&pstate->base.src) >> 16;
3881 src_h = drm_rect_height(&pstate->base.src) >> 16;
3882 dst_w = drm_rect_width(&pstate->base.dst);
3883 dst_h = drm_rect_height(&pstate->base.dst);
3884 }
3885
3886 fp_w_ratio = div_fixed16(src_w, dst_w);
3887 fp_h_ratio = div_fixed16(src_h, dst_h);
3888 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
3889 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
3890
3891 return mul_fixed16(downscale_w, downscale_h);
3892 }
3893
3894 static uint_fixed_16_16_t
3895 skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
3896 {
3897 uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
3898
3899 if (!crtc_state->base.enable)
3900 return pipe_downscale;
3901
3902 if (crtc_state->pch_pfit.enabled) {
3903 uint32_t src_w, src_h, dst_w, dst_h;
3904 uint32_t pfit_size = crtc_state->pch_pfit.size;
3905 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
3906 uint_fixed_16_16_t downscale_h, downscale_w;
3907
3908 src_w = crtc_state->pipe_src_w;
3909 src_h = crtc_state->pipe_src_h;
3910 dst_w = pfit_size >> 16;
3911 dst_h = pfit_size & 0xffff;
3912
3913 if (!dst_w || !dst_h)
3914 return pipe_downscale;
3915
3916 fp_w_ratio = div_fixed16(src_w, dst_w);
3917 fp_h_ratio = div_fixed16(src_h, dst_h);
3918 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
3919 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
3920
3921 pipe_downscale = mul_fixed16(downscale_w, downscale_h);
3922 }
3923
3924 return pipe_downscale;
3925 }
3926
3927 int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
3928 struct intel_crtc_state *cstate)
3929 {
3930 struct drm_crtc_state *crtc_state = &cstate->base;
3931 struct drm_atomic_state *state = crtc_state->state;
3932 struct drm_plane *plane;
3933 const struct drm_plane_state *pstate;
3934 struct intel_plane_state *intel_pstate;
3935 int crtc_clock, dotclk;
3936 uint32_t pipe_max_pixel_rate;
3937 uint_fixed_16_16_t pipe_downscale;
3938 uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
3939
3940 if (!cstate->base.enable)
3941 return 0;
3942
3943 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
3944 uint_fixed_16_16_t plane_downscale;
3945 uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
3946 int bpp;
3947
3948 if (!intel_wm_plane_visible(cstate,
3949 to_intel_plane_state(pstate)))
3950 continue;
3951
3952 if (WARN_ON(!pstate->fb))
3953 return -EINVAL;
3954
3955 intel_pstate = to_intel_plane_state(pstate);
3956 plane_downscale = skl_plane_downscale_amount(cstate,
3957 intel_pstate);
3958 bpp = pstate->fb->format->cpp[0] * 8;
3959 if (bpp == 64)
3960 plane_downscale = mul_fixed16(plane_downscale,
3961 fp_9_div_8);
3962
3963 max_downscale = max_fixed16(plane_downscale, max_downscale);
3964 }
3965 pipe_downscale = skl_pipe_downscale_amount(cstate);
3966
3967 pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);
3968
3969 crtc_clock = crtc_state->adjusted_mode.crtc_clock;
3970 dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;
3971
3972 if (IS_GEMINILAKE(to_i915(intel_crtc->base.dev)))
3973 dotclk *= 2;
3974
3975 pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
3976
3977 if (pipe_max_pixel_rate < crtc_clock) {
3978 DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
3979 return -EINVAL;
3980 }
3981
3982 return 0;
3983 }
3984
3985 static unsigned int
3986 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
3987 const struct drm_plane_state *pstate,
3988 int y)
3989 {
3990 struct intel_plane *plane = to_intel_plane(pstate->plane);
3991 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3992 uint32_t data_rate;
3993 uint32_t width = 0, height = 0;
3994 struct drm_framebuffer *fb;
3995 u32 format;
3996 uint_fixed_16_16_t down_scale_amount;
3997
3998 if (!intel_pstate->base.visible)
3999 return 0;
4000
4001 fb = pstate->fb;
4002 format = fb->format->format;
4003
4004 if (plane->id == PLANE_CURSOR)
4005 return 0;
4006 if (y && format != DRM_FORMAT_NV12)
4007 return 0;
4008
4009 /*
4010 * Src coordinates are already rotated by 270 degrees for
4011 * the 90/270 degree plane rotation cases (to match the
4012 * GTT mapping), hence no need to account for rotation here.
4013 */
4014 width = drm_rect_width(&intel_pstate->base.src) >> 16;
4015 height = drm_rect_height(&intel_pstate->base.src) >> 16;
4016
4017 /* for planar format */
4018 if (format == DRM_FORMAT_NV12) {
4019 if (y) /* y-plane data rate */
4020 data_rate = width * height *
4021 fb->format->cpp[0];
4022 else /* uv-plane data rate */
4023 data_rate = (width / 2) * (height / 2) *
4024 fb->format->cpp[1];
4025 } else {
4026 /* for packed formats */
4027 data_rate = width * height * fb->format->cpp[0];
4028 }
4029
4030 down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4031
4032 return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4033 }
4034
4035 /*
4036 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
4037 * a 8192x4096@32bpp framebuffer:
4038 * 3 * 4096 * 8192 * 4 < 2^32
4039 */
4040 static unsigned int
4041 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4042 unsigned *plane_data_rate,
4043 unsigned *plane_y_data_rate)
4044 {
4045 struct drm_crtc_state *cstate = &intel_cstate->base;
4046 struct drm_atomic_state *state = cstate->state;
4047 struct drm_plane *plane;
4048 const struct drm_plane_state *pstate;
4049 unsigned int total_data_rate = 0;
4050
4051 if (WARN_ON(!state))
4052 return 0;
4053
4054 /* Calculate and cache data rate for each plane */
4055 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4056 enum plane_id plane_id = to_intel_plane(plane)->id;
4057 unsigned int rate;
4058
4059 /* packed/uv */
4060 rate = skl_plane_relative_data_rate(intel_cstate,
4061 pstate, 0);
4062 plane_data_rate[plane_id] = rate;
4063
4064 total_data_rate += rate;
4065
4066 /* y-plane */
4067 rate = skl_plane_relative_data_rate(intel_cstate,
4068 pstate, 1);
4069 plane_y_data_rate[plane_id] = rate;
4070
4071 total_data_rate += rate;
4072 }
4073
4074 return total_data_rate;
4075 }
4076
4077 static uint16_t
4078 skl_ddb_min_alloc(const struct drm_plane_state *pstate,
4079 const int y)
4080 {
4081 struct drm_framebuffer *fb = pstate->fb;
4082 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4083 uint32_t src_w, src_h;
4084 uint32_t min_scanlines = 8;
4085 uint8_t plane_bpp;
4086
4087 if (WARN_ON(!fb))
4088 return 0;
4089
4090 /* For packed formats, no y-plane, return 0 */
4091 if (y && fb->format->format != DRM_FORMAT_NV12)
4092 return 0;
4093
4094 /* For Non Y-tile return 8-blocks */
4095 if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
4096 fb->modifier != I915_FORMAT_MOD_Yf_TILED &&
4097 fb->modifier != I915_FORMAT_MOD_Y_TILED_CCS &&
4098 fb->modifier != I915_FORMAT_MOD_Yf_TILED_CCS)
4099 return 8;
4100
4101 /*
4102 * Src coordinates are already rotated by 270 degrees for
4103 * the 90/270 degree plane rotation cases (to match the
4104 * GTT mapping), hence no need to account for rotation here.
4105 */
4106 src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
4107 src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
4108
4109 /* Halve UV plane width and height for NV12 */
4110 if (fb->format->format == DRM_FORMAT_NV12 && !y) {
4111 src_w /= 2;
4112 src_h /= 2;
4113 }
4114
4115 if (fb->format->format == DRM_FORMAT_NV12 && !y)
4116 plane_bpp = fb->format->cpp[1];
4117 else
4118 plane_bpp = fb->format->cpp[0];
4119
4120 if (drm_rotation_90_or_270(pstate->rotation)) {
4121 switch (plane_bpp) {
4122 case 1:
4123 min_scanlines = 32;
4124 break;
4125 case 2:
4126 min_scanlines = 16;
4127 break;
4128 case 4:
4129 min_scanlines = 8;
4130 break;
4131 case 8:
4132 min_scanlines = 4;
4133 break;
4134 default:
4135 WARN(1, "Unsupported pixel depth %u for rotation",
4136 plane_bpp);
4137 min_scanlines = 32;
4138 }
4139 }
4140
4141 return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
4142 }
4143
4144 static void
4145 skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
4146 uint16_t *minimum, uint16_t *y_minimum)
4147 {
4148 const struct drm_plane_state *pstate;
4149 struct drm_plane *plane;
4150
4151 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
4152 enum plane_id plane_id = to_intel_plane(plane)->id;
4153
4154 if (plane_id == PLANE_CURSOR)
4155 continue;
4156
4157 if (!pstate->visible)
4158 continue;
4159
4160 minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
4161 y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4162 }
4163
4164 minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
4165 }
4166
4167 static int
4168 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4169 struct skl_ddb_allocation *ddb /* out */)
4170 {
4171 struct drm_atomic_state *state = cstate->base.state;
4172 struct drm_crtc *crtc = cstate->base.crtc;
4173 struct drm_device *dev = crtc->dev;
4174 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4175 enum pipe pipe = intel_crtc->pipe;
4176 struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4177 uint16_t alloc_size, start;
4178 uint16_t minimum[I915_MAX_PLANES] = {};
4179 uint16_t y_minimum[I915_MAX_PLANES] = {};
4180 unsigned int total_data_rate;
4181 enum plane_id plane_id;
4182 int num_active;
4183 unsigned plane_data_rate[I915_MAX_PLANES] = {};
4184 unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
4185 uint16_t total_min_blocks = 0;
4186
4187 /* Clear the partitioning for disabled planes. */
4188 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
4189 memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
4190
4191 if (WARN_ON(!state))
4192 return 0;
4193
4194 if (!cstate->base.active) {
4195 alloc->start = alloc->end = 0;
4196 return 0;
4197 }
4198
4199 skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
4200 alloc_size = skl_ddb_entry_size(alloc);
4201 if (alloc_size == 0)
4202 return 0;
4203
4204 skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
4205
4206 /*
4207 * 1. Allocate the mininum required blocks for each active plane
4208 * and allocate the cursor, it doesn't require extra allocation
4209 * proportional to the data rate.
4210 */
4211
4212 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4213 total_min_blocks += minimum[plane_id];
4214 total_min_blocks += y_minimum[plane_id];
4215 }
4216
4217 if (total_min_blocks > alloc_size) {
4218 DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4219 DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
4220 alloc_size);
4221 return -EINVAL;
4222 }
4223
4224 alloc_size -= total_min_blocks;
4225 ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
4226 ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
4227
4228 /*
4229 * 2. Distribute the remaining space in proportion to the amount of
4230 * data each plane needs to fetch from memory.
4231 *
4232 * FIXME: we may not allocate every single block here.
4233 */
4234 total_data_rate = skl_get_total_relative_data_rate(cstate,
4235 plane_data_rate,
4236 plane_y_data_rate);
4237 if (total_data_rate == 0)
4238 return 0;
4239
4240 start = alloc->start;
4241 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4242 unsigned int data_rate, y_data_rate;
4243 uint16_t plane_blocks, y_plane_blocks = 0;
4244
4245 if (plane_id == PLANE_CURSOR)
4246 continue;
4247
4248 data_rate = plane_data_rate[plane_id];
4249
4250 /*
4251 * allocation for (packed formats) or (uv-plane part of planar format):
4252 * promote the expression to 64 bits to avoid overflowing, the
4253 * result is < available as data_rate / total_data_rate < 1
4254 */
4255 plane_blocks = minimum[plane_id];
4256 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
4257 total_data_rate);
4258
4259 /* Leave disabled planes at (0,0) */
4260 if (data_rate) {
4261 ddb->plane[pipe][plane_id].start = start;
4262 ddb->plane[pipe][plane_id].end = start + plane_blocks;
4263 }
4264
4265 start += plane_blocks;
4266
4267 /*
4268 * allocation for y_plane part of planar format:
4269 */
4270 y_data_rate = plane_y_data_rate[plane_id];
4271
4272 y_plane_blocks = y_minimum[plane_id];
4273 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
4274 total_data_rate);
4275
4276 if (y_data_rate) {
4277 ddb->y_plane[pipe][plane_id].start = start;
4278 ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
4279 }
4280
4281 start += y_plane_blocks;
4282 }
4283
4284 return 0;
4285 }
4286
4287 /*
4288 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4289 * for the read latency) and cpp should always be <= 8, so that
4290 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4291 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4292 */
4293 static uint_fixed_16_16_t
4294 skl_wm_method1(const struct drm_i915_private *dev_priv, uint32_t pixel_rate,
4295 uint8_t cpp, uint32_t latency)
4296 {
4297 uint32_t wm_intermediate_val;
4298 uint_fixed_16_16_t ret;
4299
4300 if (latency == 0)
4301 return FP_16_16_MAX;
4302
4303 wm_intermediate_val = latency * pixel_rate * cpp;
4304 ret = div_fixed16(wm_intermediate_val, 1000 * 512);
4305
4306 if (INTEL_GEN(dev_priv) >= 10)
4307 ret = add_fixed16_u32(ret, 1);
4308
4309 return ret;
4310 }
4311
4312 static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
4313 uint32_t pipe_htotal,
4314 uint32_t latency,
4315 uint_fixed_16_16_t plane_blocks_per_line)
4316 {
4317 uint32_t wm_intermediate_val;
4318 uint_fixed_16_16_t ret;
4319
4320 if (latency == 0)
4321 return FP_16_16_MAX;
4322
4323 wm_intermediate_val = latency * pixel_rate;
4324 wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4325 pipe_htotal * 1000);
4326 ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4327 return ret;
4328 }
4329
4330 static uint_fixed_16_16_t
4331 intel_get_linetime_us(struct intel_crtc_state *cstate)
4332 {
4333 uint32_t pixel_rate;
4334 uint32_t crtc_htotal;
4335 uint_fixed_16_16_t linetime_us;
4336
4337 if (!cstate->base.active)
4338 return u32_to_fixed16(0);
4339
4340 pixel_rate = cstate->pixel_rate;
4341
4342 if (WARN_ON(pixel_rate == 0))
4343 return u32_to_fixed16(0);
4344
4345 crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4346 linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4347
4348 return linetime_us;
4349 }
4350
4351 static uint32_t
4352 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
4353 const struct intel_plane_state *pstate)
4354 {
4355 uint64_t adjusted_pixel_rate;
4356 uint_fixed_16_16_t downscale_amount;
4357
4358 /* Shouldn't reach here on disabled planes... */
4359 if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4360 return 0;
4361
4362 /*
4363 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
4364 * with additional adjustments for plane-specific scaling.
4365 */
4366 adjusted_pixel_rate = cstate->pixel_rate;
4367 downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4368
4369 return mul_round_up_u32_fixed16(adjusted_pixel_rate,
4370 downscale_amount);
4371 }
4372
4373 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
4374 struct intel_crtc_state *cstate,
4375 const struct intel_plane_state *intel_pstate,
4376 uint16_t ddb_allocation,
4377 int level,
4378 uint16_t *out_blocks, /* out */
4379 uint8_t *out_lines, /* out */
4380 bool *enabled /* out */)
4381 {
4382 struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4383 const struct drm_plane_state *pstate = &intel_pstate->base;
4384 const struct drm_framebuffer *fb = pstate->fb;
4385 uint32_t latency = dev_priv->wm.skl_latency[level];
4386 uint_fixed_16_16_t method1, method2;
4387 uint_fixed_16_16_t plane_blocks_per_line;
4388 uint_fixed_16_16_t selected_result;
4389 uint32_t interm_pbpl;
4390 uint32_t plane_bytes_per_line;
4391 uint32_t res_blocks, res_lines;
4392 uint8_t cpp;
4393 uint32_t width = 0;
4394 uint32_t plane_pixel_rate;
4395 uint_fixed_16_16_t y_tile_minimum;
4396 uint32_t y_min_scanlines;
4397 struct intel_atomic_state *state =
4398 to_intel_atomic_state(cstate->base.state);
4399 bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4400 bool y_tiled, x_tiled;
4401
4402 if (latency == 0 ||
4403 !intel_wm_plane_visible(cstate, intel_pstate)) {
4404 *enabled = false;
4405 return 0;
4406 }
4407
4408 y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
4409 fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
4410 fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4411 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4412 x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
4413
4414 /* Display WA #1141: kbl,cfl */
4415 if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) &&
4416 dev_priv->ipc_enabled)
4417 latency += 4;
4418
4419 if (apply_memory_bw_wa && x_tiled)
4420 latency += 15;
4421
4422 if (plane->id == PLANE_CURSOR) {
4423 width = intel_pstate->base.crtc_w;
4424 } else {
4425 /*
4426 * Src coordinates are already rotated by 270 degrees for
4427 * the 90/270 degree plane rotation cases (to match the
4428 * GTT mapping), hence no need to account for rotation here.
4429 */
4430 width = drm_rect_width(&intel_pstate->base.src) >> 16;
4431 }
4432
4433 cpp = (fb->format->format == DRM_FORMAT_NV12) ? fb->format->cpp[1] :
4434 fb->format->cpp[0];
4435 plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
4436
4437 if (drm_rotation_90_or_270(pstate->rotation)) {
4438
4439 switch (cpp) {
4440 case 1:
4441 y_min_scanlines = 16;
4442 break;
4443 case 2:
4444 y_min_scanlines = 8;
4445 break;
4446 case 4:
4447 y_min_scanlines = 4;
4448 break;
4449 default:
4450 MISSING_CASE(cpp);
4451 return -EINVAL;
4452 }
4453 } else {
4454 y_min_scanlines = 4;
4455 }
4456
4457 if (apply_memory_bw_wa)
4458 y_min_scanlines *= 2;
4459
4460 plane_bytes_per_line = width * cpp;
4461 if (y_tiled) {
4462 interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line *
4463 y_min_scanlines, 512);
4464
4465 if (INTEL_GEN(dev_priv) >= 10)
4466 interm_pbpl++;
4467
4468 plane_blocks_per_line = div_fixed16(interm_pbpl,
4469 y_min_scanlines);
4470 } else if (x_tiled && INTEL_GEN(dev_priv) == 9) {
4471 interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512);
4472 plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4473 } else {
4474 interm_pbpl = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
4475 plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4476 }
4477
4478 method1 = skl_wm_method1(dev_priv, plane_pixel_rate, cpp, latency);
4479 method2 = skl_wm_method2(plane_pixel_rate,
4480 cstate->base.adjusted_mode.crtc_htotal,
4481 latency,
4482 plane_blocks_per_line);
4483
4484 y_tile_minimum = mul_u32_fixed16(y_min_scanlines,
4485 plane_blocks_per_line);
4486
4487 if (y_tiled) {
4488 selected_result = max_fixed16(method2, y_tile_minimum);
4489 } else {
4490 uint32_t linetime_us;
4491
4492 linetime_us = fixed16_to_u32_round_up(
4493 intel_get_linetime_us(cstate));
4494 if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
4495 (plane_bytes_per_line / 512 < 1))
4496 selected_result = method2;
4497 else if (ddb_allocation >=
4498 fixed16_to_u32_round_up(plane_blocks_per_line))
4499 selected_result = min_fixed16(method1, method2);
4500 else if (latency >= linetime_us)
4501 selected_result = min_fixed16(method1, method2);
4502 else
4503 selected_result = method1;
4504 }
4505
4506 res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4507 res_lines = div_round_up_fixed16(selected_result,
4508 plane_blocks_per_line);
4509
4510 /* Display WA #1125: skl,bxt,kbl,glk */
4511 if (level == 0 &&
4512 (fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4513 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS))
4514 res_blocks += fixed16_to_u32_round_up(y_tile_minimum);
4515
4516 /* Display WA #1126: skl,bxt,kbl,glk */
4517 if (level >= 1 && level <= 7) {
4518 if (y_tiled) {
4519 res_blocks += fixed16_to_u32_round_up(y_tile_minimum);
4520 res_lines += y_min_scanlines;
4521 } else {
4522 res_blocks++;
4523 }
4524 }
4525
4526 if (res_blocks >= ddb_allocation || res_lines > 31) {
4527 *enabled = false;
4528
4529 /*
4530 * If there are no valid level 0 watermarks, then we can't
4531 * support this display configuration.
4532 */
4533 if (level) {
4534 return 0;
4535 } else {
4536 struct drm_plane *plane = pstate->plane;
4537
4538 DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
4539 DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
4540 plane->base.id, plane->name,
4541 res_blocks, ddb_allocation, res_lines);
4542 return -EINVAL;
4543 }
4544 }
4545
4546 *out_blocks = res_blocks;
4547 *out_lines = res_lines;
4548 *enabled = true;
4549
4550 return 0;
4551 }
4552
4553 static int
4554 skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
4555 struct skl_ddb_allocation *ddb,
4556 struct intel_crtc_state *cstate,
4557 const struct intel_plane_state *intel_pstate,
4558 struct skl_plane_wm *wm)
4559 {
4560 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4561 struct drm_plane *plane = intel_pstate->base.plane;
4562 struct intel_plane *intel_plane = to_intel_plane(plane);
4563 uint16_t ddb_blocks;
4564 enum pipe pipe = intel_crtc->pipe;
4565 int level, max_level = ilk_wm_max_level(dev_priv);
4566 int ret;
4567
4568 if (WARN_ON(!intel_pstate->base.fb))
4569 return -EINVAL;
4570
4571 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
4572
4573 for (level = 0; level <= max_level; level++) {
4574 struct skl_wm_level *result = &wm->wm[level];
4575
4576 ret = skl_compute_plane_wm(dev_priv,
4577 cstate,
4578 intel_pstate,
4579 ddb_blocks,
4580 level,
4581 &result->plane_res_b,
4582 &result->plane_res_l,
4583 &result->plane_en);
4584 if (ret)
4585 return ret;
4586 }
4587
4588 return 0;
4589 }
4590
4591 static uint32_t
4592 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
4593 {
4594 struct drm_atomic_state *state = cstate->base.state;
4595 struct drm_i915_private *dev_priv = to_i915(state->dev);
4596 uint_fixed_16_16_t linetime_us;
4597 uint32_t linetime_wm;
4598
4599 linetime_us = intel_get_linetime_us(cstate);
4600
4601 if (is_fixed16_zero(linetime_us))
4602 return 0;
4603
4604 linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
4605
4606 /* Display WA #1135: bxt. */
4607 if (IS_BROXTON(dev_priv) && dev_priv->ipc_enabled)
4608 linetime_wm = DIV_ROUND_UP(linetime_wm, 2);
4609
4610 return linetime_wm;
4611 }
4612
4613 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4614 struct skl_wm_level *trans_wm /* out */)
4615 {
4616 if (!cstate->base.active)
4617 return;
4618
4619 /* Until we know more, just disable transition WMs */
4620 trans_wm->plane_en = false;
4621 }
4622
4623 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
4624 struct skl_ddb_allocation *ddb,
4625 struct skl_pipe_wm *pipe_wm)
4626 {
4627 struct drm_device *dev = cstate->base.crtc->dev;
4628 struct drm_crtc_state *crtc_state = &cstate->base;
4629 const struct drm_i915_private *dev_priv = to_i915(dev);
4630 struct drm_plane *plane;
4631 const struct drm_plane_state *pstate;
4632 struct skl_plane_wm *wm;
4633 int ret;
4634
4635 /*
4636 * We'll only calculate watermarks for planes that are actually
4637 * enabled, so make sure all other planes are set as disabled.
4638 */
4639 memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
4640
4641 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
4642 const struct intel_plane_state *intel_pstate =
4643 to_intel_plane_state(pstate);
4644 enum plane_id plane_id = to_intel_plane(plane)->id;
4645
4646 wm = &pipe_wm->planes[plane_id];
4647
4648 ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4649 intel_pstate, wm);
4650 if (ret)
4651 return ret;
4652 skl_compute_transition_wm(cstate, &wm->trans_wm);
4653 }
4654 pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4655
4656 return 0;
4657 }
4658
4659 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
4660 i915_reg_t reg,
4661 const struct skl_ddb_entry *entry)
4662 {
4663 if (entry->end)
4664 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
4665 else
4666 I915_WRITE(reg, 0);
4667 }
4668
4669 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
4670 i915_reg_t reg,
4671 const struct skl_wm_level *level)
4672 {
4673 uint32_t val = 0;
4674
4675 if (level->plane_en) {
4676 val |= PLANE_WM_EN;
4677 val |= level->plane_res_b;
4678 val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
4679 }
4680
4681 I915_WRITE(reg, val);
4682 }
4683
4684 static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
4685 const struct skl_plane_wm *wm,
4686 const struct skl_ddb_allocation *ddb,
4687 enum plane_id plane_id)
4688 {
4689 struct drm_crtc *crtc = &intel_crtc->base;
4690 struct drm_device *dev = crtc->dev;
4691 struct drm_i915_private *dev_priv = to_i915(dev);
4692 int level, max_level = ilk_wm_max_level(dev_priv);
4693 enum pipe pipe = intel_crtc->pipe;
4694
4695 for (level = 0; level <= max_level; level++) {
4696 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4697 &wm->wm[level]);
4698 }
4699 skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4700 &wm->trans_wm);
4701
4702 skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
4703 &ddb->plane[pipe][plane_id]);
4704 skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
4705 &ddb->y_plane[pipe][plane_id]);
4706 }
4707
4708 static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
4709 const struct skl_plane_wm *wm,
4710 const struct skl_ddb_allocation *ddb)
4711 {
4712 struct drm_crtc *crtc = &intel_crtc->base;
4713 struct drm_device *dev = crtc->dev;
4714 struct drm_i915_private *dev_priv = to_i915(dev);
4715 int level, max_level = ilk_wm_max_level(dev_priv);
4716 enum pipe pipe = intel_crtc->pipe;
4717
4718 for (level = 0; level <= max_level; level++) {
4719 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
4720 &wm->wm[level]);
4721 }
4722 skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
4723
4724 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
4725 &ddb->plane[pipe][PLANE_CURSOR]);
4726 }
4727
4728 bool skl_wm_level_equals(const struct skl_wm_level *l1,
4729 const struct skl_wm_level *l2)
4730 {
4731 if (l1->plane_en != l2->plane_en)
4732 return false;
4733
4734 /* If both planes aren't enabled, the rest shouldn't matter */
4735 if (!l1->plane_en)
4736 return true;
4737
4738 return (l1->plane_res_l == l2->plane_res_l &&
4739 l1->plane_res_b == l2->plane_res_b);
4740 }
4741
4742 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
4743 const struct skl_ddb_entry *b)
4744 {
4745 return a->start < b->end && b->start < a->end;
4746 }
4747
4748 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
4749 const struct skl_ddb_entry *ddb,
4750 int ignore)
4751 {
4752 int i;
4753
4754 for (i = 0; i < I915_MAX_PIPES; i++)
4755 if (i != ignore && entries[i] &&
4756 skl_ddb_entries_overlap(ddb, entries[i]))
4757 return true;
4758
4759 return false;
4760 }
4761
4762 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
4763 const struct skl_pipe_wm *old_pipe_wm,
4764 struct skl_pipe_wm *pipe_wm, /* out */
4765 struct skl_ddb_allocation *ddb, /* out */
4766 bool *changed /* out */)
4767 {
4768 struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
4769 int ret;
4770
4771 ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
4772 if (ret)
4773 return ret;
4774
4775 if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
4776 *changed = false;
4777 else
4778 *changed = true;
4779
4780 return 0;
4781 }
4782
4783 static uint32_t
4784 pipes_modified(struct drm_atomic_state *state)
4785 {
4786 struct drm_crtc *crtc;
4787 struct drm_crtc_state *cstate;
4788 uint32_t i, ret = 0;
4789
4790 for_each_new_crtc_in_state(state, crtc, cstate, i)
4791 ret |= drm_crtc_mask(crtc);
4792
4793 return ret;
4794 }
4795
4796 static int
4797 skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
4798 {
4799 struct drm_atomic_state *state = cstate->base.state;
4800 struct drm_device *dev = state->dev;
4801 struct drm_crtc *crtc = cstate->base.crtc;
4802 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4803 struct drm_i915_private *dev_priv = to_i915(dev);
4804 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4805 struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4806 struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
4807 struct drm_plane_state *plane_state;
4808 struct drm_plane *plane;
4809 enum pipe pipe = intel_crtc->pipe;
4810
4811 WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));
4812
4813 drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
4814 enum plane_id plane_id = to_intel_plane(plane)->id;
4815
4816 if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
4817 &new_ddb->plane[pipe][plane_id]) &&
4818 skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
4819 &new_ddb->y_plane[pipe][plane_id]))
4820 continue;
4821
4822 plane_state = drm_atomic_get_plane_state(state, plane);
4823 if (IS_ERR(plane_state))
4824 return PTR_ERR(plane_state);
4825 }
4826
4827 return 0;
4828 }
4829
4830 static int
4831 skl_compute_ddb(struct drm_atomic_state *state)
4832 {
4833 struct drm_device *dev = state->dev;
4834 struct drm_i915_private *dev_priv = to_i915(dev);
4835 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4836 struct intel_crtc *intel_crtc;
4837 struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4838 uint32_t realloc_pipes = pipes_modified(state);
4839 int ret;
4840
4841 /*
4842 * If this is our first atomic update following hardware readout,
4843 * we can't trust the DDB that the BIOS programmed for us. Let's
4844 * pretend that all pipes switched active status so that we'll
4845 * ensure a full DDB recompute.
4846 */
4847 if (dev_priv->wm.distrust_bios_wm) {
4848 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
4849 state->acquire_ctx);
4850 if (ret)
4851 return ret;
4852
4853 intel_state->active_pipe_changes = ~0;
4854
4855 /*
4856 * We usually only initialize intel_state->active_crtcs if we
4857 * we're doing a modeset; make sure this field is always
4858 * initialized during the sanitization process that happens
4859 * on the first commit too.
4860 */
4861 if (!intel_state->modeset)
4862 intel_state->active_crtcs = dev_priv->active_crtcs;
4863 }
4864
4865 /*
4866 * If the modeset changes which CRTC's are active, we need to
4867 * recompute the DDB allocation for *all* active pipes, even
4868 * those that weren't otherwise being modified in any way by this
4869 * atomic commit. Due to the shrinking of the per-pipe allocations
4870 * when new active CRTC's are added, it's possible for a pipe that
4871 * we were already using and aren't changing at all here to suddenly
4872 * become invalid if its DDB needs exceeds its new allocation.
4873 *
4874 * Note that if we wind up doing a full DDB recompute, we can't let
4875 * any other display updates race with this transaction, so we need
4876 * to grab the lock on *all* CRTC's.
4877 */
4878 if (intel_state->active_pipe_changes) {
4879 realloc_pipes = ~0;
4880 intel_state->wm_results.dirty_pipes = ~0;
4881 }
4882
4883 /*
4884 * We're not recomputing for the pipes not included in the commit, so
4885 * make sure we start with the current state.
4886 */
4887 memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
4888
4889 for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
4890 struct intel_crtc_state *cstate;
4891
4892 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
4893 if (IS_ERR(cstate))
4894 return PTR_ERR(cstate);
4895
4896 ret = skl_allocate_pipe_ddb(cstate, ddb);
4897 if (ret)
4898 return ret;
4899
4900 ret = skl_ddb_add_affected_planes(cstate);
4901 if (ret)
4902 return ret;
4903 }
4904
4905 return 0;
4906 }
4907
4908 static void
4909 skl_copy_wm_for_pipe(struct skl_wm_values *dst,
4910 struct skl_wm_values *src,
4911 enum pipe pipe)
4912 {
4913 memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
4914 sizeof(dst->ddb.y_plane[pipe]));
4915 memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
4916 sizeof(dst->ddb.plane[pipe]));
4917 }
4918
4919 static void
4920 skl_print_wm_changes(const struct drm_atomic_state *state)
4921 {
4922 const struct drm_device *dev = state->dev;
4923 const struct drm_i915_private *dev_priv = to_i915(dev);
4924 const struct intel_atomic_state *intel_state =
4925 to_intel_atomic_state(state);
4926 const struct drm_crtc *crtc;
4927 const struct drm_crtc_state *cstate;
4928 const struct intel_plane *intel_plane;
4929 const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
4930 const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4931 int i;
4932
4933 for_each_new_crtc_in_state(state, crtc, cstate, i) {
4934 const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4935 enum pipe pipe = intel_crtc->pipe;
4936
4937 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4938 enum plane_id plane_id = intel_plane->id;
4939 const struct skl_ddb_entry *old, *new;
4940
4941 old = &old_ddb->plane[pipe][plane_id];
4942 new = &new_ddb->plane[pipe][plane_id];
4943
4944 if (skl_ddb_entry_equal(old, new))
4945 continue;
4946
4947 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
4948 intel_plane->base.base.id,
4949 intel_plane->base.name,
4950 old->start, old->end,
4951 new->start, new->end);
4952 }
4953 }
4954 }
4955
4956 static int
4957 skl_compute_wm(struct drm_atomic_state *state)
4958 {
4959 struct drm_crtc *crtc;
4960 struct drm_crtc_state *cstate;
4961 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4962 struct skl_wm_values *results = &intel_state->wm_results;
4963 struct drm_device *dev = state->dev;
4964 struct skl_pipe_wm *pipe_wm;
4965 bool changed = false;
4966 int ret, i;
4967
4968 /*
4969 * When we distrust bios wm we always need to recompute to set the
4970 * expected DDB allocations for each CRTC.
4971 */
4972 if (to_i915(dev)->wm.distrust_bios_wm)
4973 changed = true;
4974
4975 /*
4976 * If this transaction isn't actually touching any CRTC's, don't
4977 * bother with watermark calculation. Note that if we pass this
4978 * test, we're guaranteed to hold at least one CRTC state mutex,
4979 * which means we can safely use values like dev_priv->active_crtcs
4980 * since any racing commits that want to update them would need to
4981 * hold _all_ CRTC state mutexes.
4982 */
4983 for_each_new_crtc_in_state(state, crtc, cstate, i)
4984 changed = true;
4985
4986 if (!changed)
4987 return 0;
4988
4989 /* Clear all dirty flags */
4990 results->dirty_pipes = 0;
4991
4992 ret = skl_compute_ddb(state);
4993 if (ret)
4994 return ret;
4995
4996 /*
4997 * Calculate WM's for all pipes that are part of this transaction.
4998 * Note that the DDB allocation above may have added more CRTC's that
4999 * weren't otherwise being modified (and set bits in dirty_pipes) if
5000 * pipe allocations had to change.
5001 *
5002 * FIXME: Now that we're doing this in the atomic check phase, we
5003 * should allow skl_update_pipe_wm() to return failure in cases where
5004 * no suitable watermark values can be found.
5005 */
5006 for_each_new_crtc_in_state(state, crtc, cstate, i) {
5007 struct intel_crtc_state *intel_cstate =
5008 to_intel_crtc_state(cstate);
5009 const struct skl_pipe_wm *old_pipe_wm =
5010 &to_intel_crtc_state(crtc->state)->wm.skl.optimal;
5011
5012 pipe_wm = &intel_cstate->wm.skl.optimal;
5013 ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
5014 &results->ddb, &changed);
5015 if (ret)
5016 return ret;
5017
5018 if (changed)
5019 results->dirty_pipes |= drm_crtc_mask(crtc);
5020
5021 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
5022 /* This pipe's WM's did not change */
5023 continue;
5024
5025 intel_cstate->update_wm_pre = true;
5026 }
5027
5028 skl_print_wm_changes(state);
5029
5030 return 0;
5031 }
5032
5033 static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
5034 struct intel_crtc_state *cstate)
5035 {
5036 struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
5037 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5038 struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5039 const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5040 enum pipe pipe = crtc->pipe;
5041 enum plane_id plane_id;
5042
5043 if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
5044 return;
5045
5046 I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5047
5048 for_each_plane_id_on_crtc(crtc, plane_id) {
5049 if (plane_id != PLANE_CURSOR)
5050 skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
5051 ddb, plane_id);
5052 else
5053 skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
5054 ddb);
5055 }
5056 }
5057
5058 static void skl_initial_wm(struct intel_atomic_state *state,
5059 struct intel_crtc_state *cstate)
5060 {
5061 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5062 struct drm_device *dev = intel_crtc->base.dev;
5063 struct drm_i915_private *dev_priv = to_i915(dev);
5064 struct skl_wm_values *results = &state->wm_results;
5065 struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
5066 enum pipe pipe = intel_crtc->pipe;
5067
5068 if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5069 return;
5070
5071 mutex_lock(&dev_priv->wm.wm_mutex);
5072
5073 if (cstate->base.active_changed)
5074 skl_atomic_update_crtc_wm(state, cstate);
5075
5076 skl_copy_wm_for_pipe(hw_vals, results, pipe);
5077
5078 mutex_unlock(&dev_priv->wm.wm_mutex);
5079 }
5080
5081 static void ilk_compute_wm_config(struct drm_device *dev,
5082 struct intel_wm_config *config)
5083 {
5084 struct intel_crtc *crtc;
5085
5086 /* Compute the currently _active_ config */
5087 for_each_intel_crtc(dev, crtc) {
5088 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5089
5090 if (!wm->pipe_enabled)
5091 continue;
5092
5093 config->sprites_enabled |= wm->sprites_enabled;
5094 config->sprites_scaled |= wm->sprites_scaled;
5095 config->num_pipes_active++;
5096 }
5097 }
5098
5099 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5100 {
5101 struct drm_device *dev = &dev_priv->drm;
5102 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5103 struct ilk_wm_maximums max;
5104 struct intel_wm_config config = {};
5105 struct ilk_wm_values results = {};
5106 enum intel_ddb_partitioning partitioning;
5107
5108 ilk_compute_wm_config(dev, &config);
5109
5110 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
5111 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
5112
5113 /* 5/6 split only in single pipe config on IVB+ */
5114 if (INTEL_GEN(dev_priv) >= 7 &&
5115 config.num_pipes_active == 1 && config.sprites_enabled) {
5116 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
5117 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
5118
5119 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
5120 } else {
5121 best_lp_wm = &lp_wm_1_2;
5122 }
5123
5124 partitioning = (best_lp_wm == &lp_wm_1_2) ?
5125 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5126
5127 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
5128
5129 ilk_write_wm_values(dev_priv, &results);
5130 }
5131
5132 static void ilk_initial_watermarks(struct intel_atomic_state *state,
5133 struct intel_crtc_state *cstate)
5134 {
5135 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5136 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5137
5138 mutex_lock(&dev_priv->wm.wm_mutex);
5139 intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5140 ilk_program_watermarks(dev_priv);
5141 mutex_unlock(&dev_priv->wm.wm_mutex);
5142 }
5143
5144 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5145 struct intel_crtc_state *cstate)
5146 {
5147 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5148 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5149
5150 mutex_lock(&dev_priv->wm.wm_mutex);
5151 if (cstate->wm.need_postvbl_update) {
5152 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5153 ilk_program_watermarks(dev_priv);
5154 }
5155 mutex_unlock(&dev_priv->wm.wm_mutex);
5156 }
5157
5158 static inline void skl_wm_level_from_reg_val(uint32_t val,
5159 struct skl_wm_level *level)
5160 {
5161 level->plane_en = val & PLANE_WM_EN;
5162 level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
5163 level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
5164 PLANE_WM_LINES_MASK;
5165 }
5166
5167 void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
5168 struct skl_pipe_wm *out)
5169 {
5170 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5171 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5172 enum pipe pipe = intel_crtc->pipe;
5173 int level, max_level;
5174 enum plane_id plane_id;
5175 uint32_t val;
5176
5177 max_level = ilk_wm_max_level(dev_priv);
5178
5179 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
5180 struct skl_plane_wm *wm = &out->planes[plane_id];
5181
5182 for (level = 0; level <= max_level; level++) {
5183 if (plane_id != PLANE_CURSOR)
5184 val = I915_READ(PLANE_WM(pipe, plane_id, level));
5185 else
5186 val = I915_READ(CUR_WM(pipe, level));
5187
5188 skl_wm_level_from_reg_val(val, &wm->wm[level]);
5189 }
5190
5191 if (plane_id != PLANE_CURSOR)
5192 val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5193 else
5194 val = I915_READ(CUR_WM_TRANS(pipe));
5195
5196 skl_wm_level_from_reg_val(val, &wm->trans_wm);
5197 }
5198
5199 if (!intel_crtc->active)
5200 return;
5201
5202 out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5203 }
5204
5205 void skl_wm_get_hw_state(struct drm_device *dev)
5206 {
5207 struct drm_i915_private *dev_priv = to_i915(dev);
5208 struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
5209 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5210 struct drm_crtc *crtc;
5211 struct intel_crtc *intel_crtc;
5212 struct intel_crtc_state *cstate;
5213
5214 skl_ddb_get_hw_state(dev_priv, ddb);
5215 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5216 intel_crtc = to_intel_crtc(crtc);
5217 cstate = to_intel_crtc_state(crtc->state);
5218
5219 skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
5220
5221 if (intel_crtc->active)
5222 hw->dirty_pipes |= drm_crtc_mask(crtc);
5223 }
5224
5225 if (dev_priv->active_crtcs) {
5226 /* Fully recompute DDB on first atomic commit */
5227 dev_priv->wm.distrust_bios_wm = true;
5228 } else {
5229 /* Easy/common case; just sanitize DDB now if everything off */
5230 memset(ddb, 0, sizeof(*ddb));
5231 }
5232 }
5233
5234 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
5235 {
5236 struct drm_device *dev = crtc->dev;
5237 struct drm_i915_private *dev_priv = to_i915(dev);
5238 struct ilk_wm_values *hw = &dev_priv->wm.hw;
5239 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5240 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5241 struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5242 enum pipe pipe = intel_crtc->pipe;
5243 static const i915_reg_t wm0_pipe_reg[] = {
5244 [PIPE_A] = WM0_PIPEA_ILK,
5245 [PIPE_B] = WM0_PIPEB_ILK,
5246 [PIPE_C] = WM0_PIPEC_IVB,
5247 };
5248
5249 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5250 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5251 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5252
5253 memset(active, 0, sizeof(*active));
5254
5255 active->pipe_enabled = intel_crtc->active;
5256
5257 if (active->pipe_enabled) {
5258 u32 tmp = hw->wm_pipe[pipe];
5259
5260 /*
5261 * For active pipes LP0 watermark is marked as
5262 * enabled, and LP1+ watermaks as disabled since
5263 * we can't really reverse compute them in case
5264 * multiple pipes are active.
5265 */
5266 active->wm[0].enable = true;
5267 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
5268 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
5269 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
5270 active->linetime = hw->wm_linetime[pipe];
5271 } else {
5272 int level, max_level = ilk_wm_max_level(dev_priv);
5273
5274 /*
5275 * For inactive pipes, all watermark levels
5276 * should be marked as enabled but zeroed,
5277 * which is what we'd compute them to.
5278 */
5279 for (level = 0; level <= max_level; level++)
5280 active->wm[level].enable = true;
5281 }
5282
5283 intel_crtc->wm.active.ilk = *active;
5284 }
5285
5286 #define _FW_WM(value, plane) \
5287 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
5288 #define _FW_WM_VLV(value, plane) \
5289 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
5290
5291 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
5292 struct g4x_wm_values *wm)
5293 {
5294 uint32_t tmp;
5295
5296 tmp = I915_READ(DSPFW1);
5297 wm->sr.plane = _FW_WM(tmp, SR);
5298 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5299 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
5300 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
5301
5302 tmp = I915_READ(DSPFW2);
5303 wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
5304 wm->sr.fbc = _FW_WM(tmp, FBC_SR);
5305 wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
5306 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
5307 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5308 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
5309
5310 tmp = I915_READ(DSPFW3);
5311 wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
5312 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5313 wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
5314 wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
5315 }
5316
5317 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
5318 struct vlv_wm_values *wm)
5319 {
5320 enum pipe pipe;
5321 uint32_t tmp;
5322
5323 for_each_pipe(dev_priv, pipe) {
5324 tmp = I915_READ(VLV_DDL(pipe));
5325
5326 wm->ddl[pipe].plane[PLANE_PRIMARY] =
5327 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5328 wm->ddl[pipe].plane[PLANE_CURSOR] =
5329 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5330 wm->ddl[pipe].plane[PLANE_SPRITE0] =
5331 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5332 wm->ddl[pipe].plane[PLANE_SPRITE1] =
5333 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5334 }
5335
5336 tmp = I915_READ(DSPFW1);
5337 wm->sr.plane = _FW_WM(tmp, SR);
5338 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5339 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
5340 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5341
5342 tmp = I915_READ(DSPFW2);
5343 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
5344 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5345 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5346
5347 tmp = I915_READ(DSPFW3);
5348 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5349
5350 if (IS_CHERRYVIEW(dev_priv)) {
5351 tmp = I915_READ(DSPFW7_CHV);
5352 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5353 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5354
5355 tmp = I915_READ(DSPFW8_CHV);
5356 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
5357 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5358
5359 tmp = I915_READ(DSPFW9_CHV);
5360 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
5361 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5362
5363 tmp = I915_READ(DSPHOWM);
5364 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5365 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
5366 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
5367 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
5368 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5369 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5370 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5371 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5372 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5373 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5374 } else {
5375 tmp = I915_READ(DSPFW7);
5376 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5377 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5378
5379 tmp = I915_READ(DSPHOWM);
5380 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5381 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5382 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5383 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5384 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5385 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5386 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5387 }
5388 }
5389
5390 #undef _FW_WM
5391 #undef _FW_WM_VLV
5392
5393 void g4x_wm_get_hw_state(struct drm_device *dev)
5394 {
5395 struct drm_i915_private *dev_priv = to_i915(dev);
5396 struct g4x_wm_values *wm = &dev_priv->wm.g4x;
5397 struct intel_crtc *crtc;
5398
5399 g4x_read_wm_values(dev_priv, wm);
5400
5401 wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
5402
5403 for_each_intel_crtc(dev, crtc) {
5404 struct intel_crtc_state *crtc_state =
5405 to_intel_crtc_state(crtc->base.state);
5406 struct g4x_wm_state *active = &crtc->wm.active.g4x;
5407 struct g4x_pipe_wm *raw;
5408 enum pipe pipe = crtc->pipe;
5409 enum plane_id plane_id;
5410 int level, max_level;
5411
5412 active->cxsr = wm->cxsr;
5413 active->hpll_en = wm->hpll_en;
5414 active->fbc_en = wm->fbc_en;
5415
5416 active->sr = wm->sr;
5417 active->hpll = wm->hpll;
5418
5419 for_each_plane_id_on_crtc(crtc, plane_id) {
5420 active->wm.plane[plane_id] =
5421 wm->pipe[pipe].plane[plane_id];
5422 }
5423
5424 if (wm->cxsr && wm->hpll_en)
5425 max_level = G4X_WM_LEVEL_HPLL;
5426 else if (wm->cxsr)
5427 max_level = G4X_WM_LEVEL_SR;
5428 else
5429 max_level = G4X_WM_LEVEL_NORMAL;
5430
5431 level = G4X_WM_LEVEL_NORMAL;
5432 raw = &crtc_state->wm.g4x.raw[level];
5433 for_each_plane_id_on_crtc(crtc, plane_id)
5434 raw->plane[plane_id] = active->wm.plane[plane_id];
5435
5436 if (++level > max_level)
5437 goto out;
5438
5439 raw = &crtc_state->wm.g4x.raw[level];
5440 raw->plane[PLANE_PRIMARY] = active->sr.plane;
5441 raw->plane[PLANE_CURSOR] = active->sr.cursor;
5442 raw->plane[PLANE_SPRITE0] = 0;
5443 raw->fbc = active->sr.fbc;
5444
5445 if (++level > max_level)
5446 goto out;
5447
5448 raw = &crtc_state->wm.g4x.raw[level];
5449 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
5450 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
5451 raw->plane[PLANE_SPRITE0] = 0;
5452 raw->fbc = active->hpll.fbc;
5453
5454 out:
5455 for_each_plane_id_on_crtc(crtc, plane_id)
5456 g4x_raw_plane_wm_set(crtc_state, level,
5457 plane_id, USHRT_MAX);
5458 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
5459
5460 crtc_state->wm.g4x.optimal = *active;
5461 crtc_state->wm.g4x.intermediate = *active;
5462
5463 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
5464 pipe_name(pipe),
5465 wm->pipe[pipe].plane[PLANE_PRIMARY],
5466 wm->pipe[pipe].plane[PLANE_CURSOR],
5467 wm->pipe[pipe].plane[PLANE_SPRITE0]);
5468 }
5469
5470 DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
5471 wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
5472 DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
5473 wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
5474 DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
5475 yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
5476 }
5477
5478 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
5479 {
5480 struct intel_plane *plane;
5481 struct intel_crtc *crtc;
5482
5483 mutex_lock(&dev_priv->wm.wm_mutex);
5484
5485 for_each_intel_plane(&dev_priv->drm, plane) {
5486 struct intel_crtc *crtc =
5487 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5488 struct intel_crtc_state *crtc_state =
5489 to_intel_crtc_state(crtc->base.state);
5490 struct intel_plane_state *plane_state =
5491 to_intel_plane_state(plane->base.state);
5492 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
5493 enum plane_id plane_id = plane->id;
5494 int level;
5495
5496 if (plane_state->base.visible)
5497 continue;
5498
5499 for (level = 0; level < 3; level++) {
5500 struct g4x_pipe_wm *raw =
5501 &crtc_state->wm.g4x.raw[level];
5502
5503 raw->plane[plane_id] = 0;
5504 wm_state->wm.plane[plane_id] = 0;
5505 }
5506
5507 if (plane_id == PLANE_PRIMARY) {
5508 for (level = 0; level < 3; level++) {
5509 struct g4x_pipe_wm *raw =
5510 &crtc_state->wm.g4x.raw[level];
5511 raw->fbc = 0;
5512 }
5513
5514 wm_state->sr.fbc = 0;
5515 wm_state->hpll.fbc = 0;
5516 wm_state->fbc_en = false;
5517 }
5518 }
5519
5520 for_each_intel_crtc(&dev_priv->drm, crtc) {
5521 struct intel_crtc_state *crtc_state =
5522 to_intel_crtc_state(crtc->base.state);
5523
5524 crtc_state->wm.g4x.intermediate =
5525 crtc_state->wm.g4x.optimal;
5526 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
5527 }
5528
5529 g4x_program_watermarks(dev_priv);
5530
5531 mutex_unlock(&dev_priv->wm.wm_mutex);
5532 }
5533
5534 void vlv_wm_get_hw_state(struct drm_device *dev)
5535 {
5536 struct drm_i915_private *dev_priv = to_i915(dev);
5537 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5538 struct intel_crtc *crtc;
5539 u32 val;
5540
5541 vlv_read_wm_values(dev_priv, wm);
5542
5543 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
5544 wm->level = VLV_WM_LEVEL_PM2;
5545
5546 if (IS_CHERRYVIEW(dev_priv)) {
5547 mutex_lock(&dev_priv->rps.hw_lock);
5548
5549 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5550 if (val & DSP_MAXFIFO_PM5_ENABLE)
5551 wm->level = VLV_WM_LEVEL_PM5;
5552
5553 /*
5554 * If DDR DVFS is disabled in the BIOS, Punit
5555 * will never ack the request. So if that happens
5556 * assume we don't have to enable/disable DDR DVFS
5557 * dynamically. To test that just set the REQ_ACK
5558 * bit to poke the Punit, but don't change the
5559 * HIGH/LOW bits so that we don't actually change
5560 * the current state.
5561 */
5562 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5563 val |= FORCE_DDR_FREQ_REQ_ACK;
5564 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
5565
5566 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
5567 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
5568 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
5569 "assuming DDR DVFS is disabled\n");
5570 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
5571 } else {
5572 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5573 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
5574 wm->level = VLV_WM_LEVEL_DDR_DVFS;
5575 }
5576
5577 mutex_unlock(&dev_priv->rps.hw_lock);
5578 }
5579
5580 for_each_intel_crtc(dev, crtc) {
5581 struct intel_crtc_state *crtc_state =
5582 to_intel_crtc_state(crtc->base.state);
5583 struct vlv_wm_state *active = &crtc->wm.active.vlv;
5584 const struct vlv_fifo_state *fifo_state =
5585 &crtc_state->wm.vlv.fifo_state;
5586 enum pipe pipe = crtc->pipe;
5587 enum plane_id plane_id;
5588 int level;
5589
5590 vlv_get_fifo_size(crtc_state);
5591
5592 active->num_levels = wm->level + 1;
5593 active->cxsr = wm->cxsr;
5594
5595 for (level = 0; level < active->num_levels; level++) {
5596 struct g4x_pipe_wm *raw =
5597 &crtc_state->wm.vlv.raw[level];
5598
5599 active->sr[level].plane = wm->sr.plane;
5600 active->sr[level].cursor = wm->sr.cursor;
5601
5602 for_each_plane_id_on_crtc(crtc, plane_id) {
5603 active->wm[level].plane[plane_id] =
5604 wm->pipe[pipe].plane[plane_id];
5605
5606 raw->plane[plane_id] =
5607 vlv_invert_wm_value(active->wm[level].plane[plane_id],
5608 fifo_state->plane[plane_id]);
5609 }
5610 }
5611
5612 for_each_plane_id_on_crtc(crtc, plane_id)
5613 vlv_raw_plane_wm_set(crtc_state, level,
5614 plane_id, USHRT_MAX);
5615 vlv_invalidate_wms(crtc, active, level);
5616
5617 crtc_state->wm.vlv.optimal = *active;
5618 crtc_state->wm.vlv.intermediate = *active;
5619
5620 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
5621 pipe_name(pipe),
5622 wm->pipe[pipe].plane[PLANE_PRIMARY],
5623 wm->pipe[pipe].plane[PLANE_CURSOR],
5624 wm->pipe[pipe].plane[PLANE_SPRITE0],
5625 wm->pipe[pipe].plane[PLANE_SPRITE1]);
5626 }
5627
5628 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
5629 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
5630 }
5631
5632 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
5633 {
5634 struct intel_plane *plane;
5635 struct intel_crtc *crtc;
5636
5637 mutex_lock(&dev_priv->wm.wm_mutex);
5638
5639 for_each_intel_plane(&dev_priv->drm, plane) {
5640 struct intel_crtc *crtc =
5641 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5642 struct intel_crtc_state *crtc_state =
5643 to_intel_crtc_state(crtc->base.state);
5644 struct intel_plane_state *plane_state =
5645 to_intel_plane_state(plane->base.state);
5646 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
5647 const struct vlv_fifo_state *fifo_state =
5648 &crtc_state->wm.vlv.fifo_state;
5649 enum plane_id plane_id = plane->id;
5650 int level;
5651
5652 if (plane_state->base.visible)
5653 continue;
5654
5655 for (level = 0; level < wm_state->num_levels; level++) {
5656 struct g4x_pipe_wm *raw =
5657 &crtc_state->wm.vlv.raw[level];
5658
5659 raw->plane[plane_id] = 0;
5660
5661 wm_state->wm[level].plane[plane_id] =
5662 vlv_invert_wm_value(raw->plane[plane_id],
5663 fifo_state->plane[plane_id]);
5664 }
5665 }
5666
5667 for_each_intel_crtc(&dev_priv->drm, crtc) {
5668 struct intel_crtc_state *crtc_state =
5669 to_intel_crtc_state(crtc->base.state);
5670
5671 crtc_state->wm.vlv.intermediate =
5672 crtc_state->wm.vlv.optimal;
5673 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
5674 }
5675
5676 vlv_program_watermarks(dev_priv);
5677
5678 mutex_unlock(&dev_priv->wm.wm_mutex);
5679 }
5680
5681 void ilk_wm_get_hw_state(struct drm_device *dev)
5682 {
5683 struct drm_i915_private *dev_priv = to_i915(dev);
5684 struct ilk_wm_values *hw = &dev_priv->wm.hw;
5685 struct drm_crtc *crtc;
5686
5687 for_each_crtc(dev, crtc)
5688 ilk_pipe_wm_get_hw_state(crtc);
5689
5690 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
5691 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
5692 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
5693
5694 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
5695 if (INTEL_GEN(dev_priv) >= 7) {
5696 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
5697 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
5698 }
5699
5700 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5701 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
5702 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5703 else if (IS_IVYBRIDGE(dev_priv))
5704 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
5705 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
5706
5707 hw->enable_fbc_wm =
5708 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
5709 }
5710
5711 /**
5712 * intel_update_watermarks - update FIFO watermark values based on current modes
5713 *
5714 * Calculate watermark values for the various WM regs based on current mode
5715 * and plane configuration.
5716 *
5717 * There are several cases to deal with here:
5718 * - normal (i.e. non-self-refresh)
5719 * - self-refresh (SR) mode
5720 * - lines are large relative to FIFO size (buffer can hold up to 2)
5721 * - lines are small relative to FIFO size (buffer can hold more than 2
5722 * lines), so need to account for TLB latency
5723 *
5724 * The normal calculation is:
5725 * watermark = dotclock * bytes per pixel * latency
5726 * where latency is platform & configuration dependent (we assume pessimal
5727 * values here).
5728 *
5729 * The SR calculation is:
5730 * watermark = (trunc(latency/line time)+1) * surface width *
5731 * bytes per pixel
5732 * where
5733 * line time = htotal / dotclock
5734 * surface width = hdisplay for normal plane and 64 for cursor
5735 * and latency is assumed to be high, as above.
5736 *
5737 * The final value programmed to the register should always be rounded up,
5738 * and include an extra 2 entries to account for clock crossings.
5739 *
5740 * We don't use the sprite, so we can ignore that. And on Crestline we have
5741 * to set the non-SR watermarks to 8.
5742 */
5743 void intel_update_watermarks(struct intel_crtc *crtc)
5744 {
5745 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5746
5747 if (dev_priv->display.update_wm)
5748 dev_priv->display.update_wm(crtc);
5749 }
5750
5751 /*
5752 * Lock protecting IPS related data structures
5753 */
5754 DEFINE_SPINLOCK(mchdev_lock);
5755
5756 /* Global for IPS driver to get at the current i915 device. Protected by
5757 * mchdev_lock. */
5758 static struct drm_i915_private *i915_mch_dev;
5759
5760 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
5761 {
5762 u16 rgvswctl;
5763
5764 lockdep_assert_held(&mchdev_lock);
5765
5766 rgvswctl = I915_READ16(MEMSWCTL);
5767 if (rgvswctl & MEMCTL_CMD_STS) {
5768 DRM_DEBUG("gpu busy, RCS change rejected\n");
5769 return false; /* still busy with another command */
5770 }
5771
5772 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5773 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5774 I915_WRITE16(MEMSWCTL, rgvswctl);
5775 POSTING_READ16(MEMSWCTL);
5776
5777 rgvswctl |= MEMCTL_CMD_STS;
5778 I915_WRITE16(MEMSWCTL, rgvswctl);
5779
5780 return true;
5781 }
5782
5783 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
5784 {
5785 u32 rgvmodectl;
5786 u8 fmax, fmin, fstart, vstart;
5787
5788 spin_lock_irq(&mchdev_lock);
5789
5790 rgvmodectl = I915_READ(MEMMODECTL);
5791
5792 /* Enable temp reporting */
5793 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
5794 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
5795
5796 /* 100ms RC evaluation intervals */
5797 I915_WRITE(RCUPEI, 100000);
5798 I915_WRITE(RCDNEI, 100000);
5799
5800 /* Set max/min thresholds to 90ms and 80ms respectively */
5801 I915_WRITE(RCBMAXAVG, 90000);
5802 I915_WRITE(RCBMINAVG, 80000);
5803
5804 I915_WRITE(MEMIHYST, 1);
5805
5806 /* Set up min, max, and cur for interrupt handling */
5807 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5808 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5809 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5810 MEMMODE_FSTART_SHIFT;
5811
5812 vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
5813 PXVFREQ_PX_SHIFT;
5814
5815 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
5816 dev_priv->ips.fstart = fstart;
5817
5818 dev_priv->ips.max_delay = fstart;
5819 dev_priv->ips.min_delay = fmin;
5820 dev_priv->ips.cur_delay = fstart;
5821
5822 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
5823 fmax, fmin, fstart);
5824
5825 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5826
5827 /*
5828 * Interrupts will be enabled in ironlake_irq_postinstall
5829 */
5830
5831 I915_WRITE(VIDSTART, vstart);
5832 POSTING_READ(VIDSTART);
5833
5834 rgvmodectl |= MEMMODE_SWMODE_EN;
5835 I915_WRITE(MEMMODECTL, rgvmodectl);
5836
5837 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5838 DRM_ERROR("stuck trying to change perf mode\n");
5839 mdelay(1);
5840
5841 ironlake_set_drps(dev_priv, fstart);
5842
5843 dev_priv->ips.last_count1 = I915_READ(DMIEC) +
5844 I915_READ(DDREC) + I915_READ(CSIEC);
5845 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
5846 dev_priv->ips.last_count2 = I915_READ(GFXEC);
5847 dev_priv->ips.last_time2 = ktime_get_raw_ns();
5848
5849 spin_unlock_irq(&mchdev_lock);
5850 }
5851
5852 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
5853 {
5854 u16 rgvswctl;
5855
5856 spin_lock_irq(&mchdev_lock);
5857
5858 rgvswctl = I915_READ16(MEMSWCTL);
5859
5860 /* Ack interrupts, disable EFC interrupt */
5861 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5862 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5863 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5864 I915_WRITE(DEIIR, DE_PCU_EVENT);
5865 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5866
5867 /* Go back to the starting frequency */
5868 ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
5869 mdelay(1);
5870 rgvswctl |= MEMCTL_CMD_STS;
5871 I915_WRITE(MEMSWCTL, rgvswctl);
5872 mdelay(1);
5873
5874 spin_unlock_irq(&mchdev_lock);
5875 }
5876
5877 /* There's a funny hw issue where the hw returns all 0 when reading from
5878 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
5879 * ourselves, instead of doing a rmw cycle (which might result in us clearing
5880 * all limits and the gpu stuck at whatever frequency it is at atm).
5881 */
5882 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
5883 {
5884 u32 limits;
5885
5886 /* Only set the down limit when we've reached the lowest level to avoid
5887 * getting more interrupts, otherwise leave this clear. This prevents a
5888 * race in the hw when coming out of rc6: There's a tiny window where
5889 * the hw runs at the minimal clock before selecting the desired
5890 * frequency, if the down threshold expires in that window we will not
5891 * receive a down interrupt. */
5892 if (INTEL_GEN(dev_priv) >= 9) {
5893 limits = (dev_priv->rps.max_freq_softlimit) << 23;
5894 if (val <= dev_priv->rps.min_freq_softlimit)
5895 limits |= (dev_priv->rps.min_freq_softlimit) << 14;
5896 } else {
5897 limits = dev_priv->rps.max_freq_softlimit << 24;
5898 if (val <= dev_priv->rps.min_freq_softlimit)
5899 limits |= dev_priv->rps.min_freq_softlimit << 16;
5900 }
5901
5902 return limits;
5903 }
5904
5905 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
5906 {
5907 int new_power;
5908 u32 threshold_up = 0, threshold_down = 0; /* in % */
5909 u32 ei_up = 0, ei_down = 0;
5910
5911 new_power = dev_priv->rps.power;
5912 switch (dev_priv->rps.power) {
5913 case LOW_POWER:
5914 if (val > dev_priv->rps.efficient_freq + 1 &&
5915 val > dev_priv->rps.cur_freq)
5916 new_power = BETWEEN;
5917 break;
5918
5919 case BETWEEN:
5920 if (val <= dev_priv->rps.efficient_freq &&
5921 val < dev_priv->rps.cur_freq)
5922 new_power = LOW_POWER;
5923 else if (val >= dev_priv->rps.rp0_freq &&
5924 val > dev_priv->rps.cur_freq)
5925 new_power = HIGH_POWER;
5926 break;
5927
5928 case HIGH_POWER:
5929 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
5930 val < dev_priv->rps.cur_freq)
5931 new_power = BETWEEN;
5932 break;
5933 }
5934 /* Max/min bins are special */
5935 if (val <= dev_priv->rps.min_freq_softlimit)
5936 new_power = LOW_POWER;
5937 if (val >= dev_priv->rps.max_freq_softlimit)
5938 new_power = HIGH_POWER;
5939 if (new_power == dev_priv->rps.power)
5940 return;
5941
5942 /* Note the units here are not exactly 1us, but 1280ns. */
5943 switch (new_power) {
5944 case LOW_POWER:
5945 /* Upclock if more than 95% busy over 16ms */
5946 ei_up = 16000;
5947 threshold_up = 95;
5948
5949 /* Downclock if less than 85% busy over 32ms */
5950 ei_down = 32000;
5951 threshold_down = 85;
5952 break;
5953
5954 case BETWEEN:
5955 /* Upclock if more than 90% busy over 13ms */
5956 ei_up = 13000;
5957 threshold_up = 90;
5958
5959 /* Downclock if less than 75% busy over 32ms */
5960 ei_down = 32000;
5961 threshold_down = 75;
5962 break;
5963
5964 case HIGH_POWER:
5965 /* Upclock if more than 85% busy over 10ms */
5966 ei_up = 10000;
5967 threshold_up = 85;
5968
5969 /* Downclock if less than 60% busy over 32ms */
5970 ei_down = 32000;
5971 threshold_down = 60;
5972 break;
5973 }
5974
5975 /* When byt can survive without system hang with dynamic
5976 * sw freq adjustments, this restriction can be lifted.
5977 */
5978 if (IS_VALLEYVIEW(dev_priv))
5979 goto skip_hw_write;
5980
5981 I915_WRITE(GEN6_RP_UP_EI,
5982 GT_INTERVAL_FROM_US(dev_priv, ei_up));
5983 I915_WRITE(GEN6_RP_UP_THRESHOLD,
5984 GT_INTERVAL_FROM_US(dev_priv,
5985 ei_up * threshold_up / 100));
5986
5987 I915_WRITE(GEN6_RP_DOWN_EI,
5988 GT_INTERVAL_FROM_US(dev_priv, ei_down));
5989 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
5990 GT_INTERVAL_FROM_US(dev_priv,
5991 ei_down * threshold_down / 100));
5992
5993 I915_WRITE(GEN6_RP_CONTROL,
5994 GEN6_RP_MEDIA_TURBO |
5995 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5996 GEN6_RP_MEDIA_IS_GFX |
5997 GEN6_RP_ENABLE |
5998 GEN6_RP_UP_BUSY_AVG |
5999 GEN6_RP_DOWN_IDLE_AVG);
6000
6001 skip_hw_write:
6002 dev_priv->rps.power = new_power;
6003 dev_priv->rps.up_threshold = threshold_up;
6004 dev_priv->rps.down_threshold = threshold_down;
6005 dev_priv->rps.last_adj = 0;
6006 }
6007
6008 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
6009 {
6010 u32 mask = 0;
6011
6012 /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6013 if (val > dev_priv->rps.min_freq_softlimit)
6014 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6015 if (val < dev_priv->rps.max_freq_softlimit)
6016 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6017
6018 mask &= dev_priv->pm_rps_events;
6019
6020 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6021 }
6022
6023 /* gen6_set_rps is called to update the frequency request, but should also be
6024 * called when the range (min_delay and max_delay) is modified so that we can
6025 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6026 static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6027 {
6028 /* min/max delay may still have been modified so be sure to
6029 * write the limits value.
6030 */
6031 if (val != dev_priv->rps.cur_freq) {
6032 gen6_set_rps_thresholds(dev_priv, val);
6033
6034 if (INTEL_GEN(dev_priv) >= 9)
6035 I915_WRITE(GEN6_RPNSWREQ,
6036 GEN9_FREQUENCY(val));
6037 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6038 I915_WRITE(GEN6_RPNSWREQ,
6039 HSW_FREQUENCY(val));
6040 else
6041 I915_WRITE(GEN6_RPNSWREQ,
6042 GEN6_FREQUENCY(val) |
6043 GEN6_OFFSET(0) |
6044 GEN6_AGGRESSIVE_TURBO);
6045 }
6046
6047 /* Make sure we continue to get interrupts
6048 * until we hit the minimum or maximum frequencies.
6049 */
6050 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6051 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6052
6053 dev_priv->rps.cur_freq = val;
6054 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6055
6056 return 0;
6057 }
6058
6059 static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6060 {
6061 int err;
6062
6063 if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6064 "Odd GPU freq value\n"))
6065 val &= ~1;
6066
6067 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6068
6069 if (val != dev_priv->rps.cur_freq) {
6070 err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6071 if (err)
6072 return err;
6073
6074 gen6_set_rps_thresholds(dev_priv, val);
6075 }
6076
6077 dev_priv->rps.cur_freq = val;
6078 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6079
6080 return 0;
6081 }
6082
6083 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6084 *
6085 * * If Gfx is Idle, then
6086 * 1. Forcewake Media well.
6087 * 2. Request idle freq.
6088 * 3. Release Forcewake of Media well.
6089 */
6090 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
6091 {
6092 u32 val = dev_priv->rps.idle_freq;
6093 int err;
6094
6095 if (dev_priv->rps.cur_freq <= val)
6096 return;
6097
6098 /* The punit delays the write of the frequency and voltage until it
6099 * determines the GPU is awake. During normal usage we don't want to
6100 * waste power changing the frequency if the GPU is sleeping (rc6).
6101 * However, the GPU and driver is now idle and we do not want to delay
6102 * switching to minimum voltage (reducing power whilst idle) as we do
6103 * not expect to be woken in the near future and so must flush the
6104 * change by waking the device.
6105 *
6106 * We choose to take the media powerwell (either would do to trick the
6107 * punit into committing the voltage change) as that takes a lot less
6108 * power than the render powerwell.
6109 */
6110 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6111 err = valleyview_set_rps(dev_priv, val);
6112 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6113
6114 if (err)
6115 DRM_ERROR("Failed to set RPS for idle\n");
6116 }
6117
6118 void gen6_rps_busy(struct drm_i915_private *dev_priv)
6119 {
6120 mutex_lock(&dev_priv->rps.hw_lock);
6121 if (dev_priv->rps.enabled) {
6122 u8 freq;
6123
6124 if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6125 gen6_rps_reset_ei(dev_priv);
6126 I915_WRITE(GEN6_PMINTRMSK,
6127 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
6128
6129 gen6_enable_rps_interrupts(dev_priv);
6130
6131 /* Use the user's desired frequency as a guide, but for better
6132 * performance, jump directly to RPe as our starting frequency.
6133 */
6134 freq = max(dev_priv->rps.cur_freq,
6135 dev_priv->rps.efficient_freq);
6136
6137 if (intel_set_rps(dev_priv,
6138 clamp(freq,
6139 dev_priv->rps.min_freq_softlimit,
6140 dev_priv->rps.max_freq_softlimit)))
6141 DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6142 }
6143 mutex_unlock(&dev_priv->rps.hw_lock);
6144 }
6145
6146 void gen6_rps_idle(struct drm_i915_private *dev_priv)
6147 {
6148 /* Flush our bottom-half so that it does not race with us
6149 * setting the idle frequency and so that it is bounded by
6150 * our rpm wakeref. And then disable the interrupts to stop any
6151 * futher RPS reclocking whilst we are asleep.
6152 */
6153 gen6_disable_rps_interrupts(dev_priv);
6154
6155 mutex_lock(&dev_priv->rps.hw_lock);
6156 if (dev_priv->rps.enabled) {
6157 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6158 vlv_set_rps_idle(dev_priv);
6159 else
6160 gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
6161 dev_priv->rps.last_adj = 0;
6162 I915_WRITE(GEN6_PMINTRMSK,
6163 gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6164 }
6165 mutex_unlock(&dev_priv->rps.hw_lock);
6166 }
6167
6168 void gen6_rps_boost(struct drm_i915_gem_request *rq,
6169 struct intel_rps_client *rps)
6170 {
6171 struct drm_i915_private *i915 = rq->i915;
6172 unsigned long flags;
6173 bool boost;
6174
6175 /* This is intentionally racy! We peek at the state here, then
6176 * validate inside the RPS worker.
6177 */
6178 if (!i915->rps.enabled)
6179 return;
6180
6181 boost = false;
6182 spin_lock_irqsave(&rq->lock, flags);
6183 if (!rq->waitboost && !i915_gem_request_completed(rq)) {
6184 atomic_inc(&i915->rps.num_waiters);
6185 rq->waitboost = true;
6186 boost = true;
6187 }
6188 spin_unlock_irqrestore(&rq->lock, flags);
6189 if (!boost)
6190 return;
6191
6192 if (READ_ONCE(i915->rps.cur_freq) < i915->rps.boost_freq)
6193 schedule_work(&i915->rps.work);
6194
6195 atomic_inc(rps ? &rps->boosts : &i915->rps.boosts);
6196 }
6197
6198 int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6199 {
6200 int err;
6201
6202 lockdep_assert_held(&dev_priv->rps.hw_lock);
6203 GEM_BUG_ON(val > dev_priv->rps.max_freq);
6204 GEM_BUG_ON(val < dev_priv->rps.min_freq);
6205
6206 if (!dev_priv->rps.enabled) {
6207 dev_priv->rps.cur_freq = val;
6208 return 0;
6209 }
6210
6211 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6212 err = valleyview_set_rps(dev_priv, val);
6213 else
6214 err = gen6_set_rps(dev_priv, val);
6215
6216 return err;
6217 }
6218
6219 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
6220 {
6221 I915_WRITE(GEN6_RC_CONTROL, 0);
6222 I915_WRITE(GEN9_PG_ENABLE, 0);
6223 }
6224
6225 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6226 {
6227 I915_WRITE(GEN6_RP_CONTROL, 0);
6228 }
6229
6230 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
6231 {
6232 I915_WRITE(GEN6_RC_CONTROL, 0);
6233 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6234 I915_WRITE(GEN6_RP_CONTROL, 0);
6235 }
6236
6237 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
6238 {
6239 I915_WRITE(GEN6_RC_CONTROL, 0);
6240 }
6241
6242 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
6243 {
6244 /* we're doing forcewake before Disabling RC6,
6245 * This what the BIOS expects when going into suspend */
6246 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6247
6248 I915_WRITE(GEN6_RC_CONTROL, 0);
6249
6250 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6251 }
6252
6253 static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
6254 {
6255 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6256 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
6257 mode = GEN6_RC_CTL_RC6_ENABLE;
6258 else
6259 mode = 0;
6260 }
6261 if (HAS_RC6p(dev_priv))
6262 DRM_DEBUG_DRIVER("Enabling RC6 states: "
6263 "RC6 %s RC6p %s RC6pp %s\n",
6264 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
6265 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
6266 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
6267
6268 else
6269 DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
6270 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
6271 }
6272
6273 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6274 {
6275 struct i915_ggtt *ggtt = &dev_priv->ggtt;
6276 bool enable_rc6 = true;
6277 unsigned long rc6_ctx_base;
6278 u32 rc_ctl;
6279 int rc_sw_target;
6280
6281 rc_ctl = I915_READ(GEN6_RC_CONTROL);
6282 rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
6283 RC_SW_TARGET_STATE_SHIFT;
6284 DRM_DEBUG_DRIVER("BIOS enabled RC states: "
6285 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
6286 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
6287 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
6288 rc_sw_target);
6289
6290 if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6291 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6292 enable_rc6 = false;
6293 }
6294
6295 /*
6296 * The exact context size is not known for BXT, so assume a page size
6297 * for this check.
6298 */
6299 rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6300 if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
6301 (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
6302 ggtt->stolen_reserved_size))) {
6303 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6304 enable_rc6 = false;
6305 }
6306
6307 if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
6308 ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
6309 ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
6310 ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6311 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6312 enable_rc6 = false;
6313 }
6314
6315 if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
6316 !I915_READ(GEN8_PUSHBUS_ENABLE) ||
6317 !I915_READ(GEN8_PUSHBUS_SHIFT)) {
6318 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
6319 enable_rc6 = false;
6320 }
6321
6322 if (!I915_READ(GEN6_GFXPAUSE)) {
6323 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
6324 enable_rc6 = false;
6325 }
6326
6327 if (!I915_READ(GEN8_MISC_CTRL0)) {
6328 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6329 enable_rc6 = false;
6330 }
6331
6332 return enable_rc6;
6333 }
6334
6335 int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
6336 {
6337 /* No RC6 before Ironlake and code is gone for ilk. */
6338 if (INTEL_INFO(dev_priv)->gen < 6)
6339 return 0;
6340
6341 if (!enable_rc6)
6342 return 0;
6343
6344 if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
6345 DRM_INFO("RC6 disabled by BIOS\n");
6346 return 0;
6347 }
6348
6349 /* Respect the kernel parameter if it is set */
6350 if (enable_rc6 >= 0) {
6351 int mask;
6352
6353 if (HAS_RC6p(dev_priv))
6354 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
6355 INTEL_RC6pp_ENABLE;
6356 else
6357 mask = INTEL_RC6_ENABLE;
6358
6359 if ((enable_rc6 & mask) != enable_rc6)
6360 DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
6361 "(requested %d, valid %d)\n",
6362 enable_rc6 & mask, enable_rc6, mask);
6363
6364 return enable_rc6 & mask;
6365 }
6366
6367 if (IS_IVYBRIDGE(dev_priv))
6368 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
6369
6370 return INTEL_RC6_ENABLE;
6371 }
6372
6373 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6374 {
6375 /* All of these values are in units of 50MHz */
6376
6377 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
6378 if (IS_GEN9_LP(dev_priv)) {
6379 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6380 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
6381 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
6382 dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
6383 } else {
6384 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6385 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
6386 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
6387 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
6388 }
6389 /* hw_max = RP0 until we check for overclocking */
6390 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
6391
6392 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
6393 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6394 IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6395 u32 ddcc_status = 0;
6396
6397 if (sandybridge_pcode_read(dev_priv,
6398 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
6399 &ddcc_status) == 0)
6400 dev_priv->rps.efficient_freq =
6401 clamp_t(u8,
6402 ((ddcc_status >> 8) & 0xff),
6403 dev_priv->rps.min_freq,
6404 dev_priv->rps.max_freq);
6405 }
6406
6407 if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6408 /* Store the frequency values in 16.66 MHZ units, which is
6409 * the natural hardware unit for SKL
6410 */
6411 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
6412 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
6413 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
6414 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
6415 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
6416 }
6417 }
6418
6419 static void reset_rps(struct drm_i915_private *dev_priv,
6420 int (*set)(struct drm_i915_private *, u8))
6421 {
6422 u8 freq = dev_priv->rps.cur_freq;
6423
6424 /* force a reset */
6425 dev_priv->rps.power = -1;
6426 dev_priv->rps.cur_freq = -1;
6427
6428 if (set(dev_priv, freq))
6429 DRM_ERROR("Failed to reset RPS to initial values\n");
6430 }
6431
6432 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
6433 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
6434 {
6435 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6436
6437 /* Program defaults and thresholds for RPS*/
6438 I915_WRITE(GEN6_RC_VIDEO_FREQ,
6439 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
6440
6441 /* 1 second timeout*/
6442 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
6443 GT_INTERVAL_FROM_US(dev_priv, 1000000));
6444
6445 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
6446
6447 /* Leaning on the below call to gen6_set_rps to program/setup the
6448 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
6449 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6450 reset_rps(dev_priv, gen6_set_rps);
6451
6452 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6453 }
6454
6455 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
6456 {
6457 struct intel_engine_cs *engine;
6458 enum intel_engine_id id;
6459 uint32_t rc6_mask = 0;
6460
6461 /* 1a: Software RC state - RC0 */
6462 I915_WRITE(GEN6_RC_STATE, 0);
6463
6464 /* 1b: Get forcewake during program sequence. Although the driver
6465 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6466 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6467
6468 /* 2a: Disable RC states. */
6469 I915_WRITE(GEN6_RC_CONTROL, 0);
6470
6471 /* 2b: Program RC6 thresholds.*/
6472
6473 /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
6474 if (IS_SKYLAKE(dev_priv))
6475 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
6476 else
6477 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
6478 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6479 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6480 for_each_engine(engine, dev_priv, id)
6481 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6482
6483 if (HAS_GUC(dev_priv))
6484 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
6485
6486 I915_WRITE(GEN6_RC_SLEEP, 0);
6487
6488 /* 2c: Program Coarse Power Gating Policies. */
6489 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
6490 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
6491
6492 /* 3a: Enable RC6 */
6493 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6494 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6495 DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
6496 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
6497 I915_WRITE(GEN6_RC_CONTROL,
6498 GEN6_RC_CTL_HW_ENABLE | GEN6_RC_CTL_EI_MODE(1) | rc6_mask);
6499
6500 /*
6501 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
6502 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
6503 */
6504 if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
6505 I915_WRITE(GEN9_PG_ENABLE, 0);
6506 else
6507 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
6508 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
6509
6510 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6511 }
6512
6513 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
6514 {
6515 struct intel_engine_cs *engine;
6516 enum intel_engine_id id;
6517 uint32_t rc6_mask = 0;
6518
6519 /* 1a: Software RC state - RC0 */
6520 I915_WRITE(GEN6_RC_STATE, 0);
6521
6522 /* 1c & 1d: Get forcewake during program sequence. Although the driver
6523 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6524 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6525
6526 /* 2a: Disable RC states. */
6527 I915_WRITE(GEN6_RC_CONTROL, 0);
6528
6529 /* 2b: Program RC6 thresholds.*/
6530 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
6531 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6532 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6533 for_each_engine(engine, dev_priv, id)
6534 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6535 I915_WRITE(GEN6_RC_SLEEP, 0);
6536 if (IS_BROADWELL(dev_priv))
6537 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
6538 else
6539 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
6540
6541 /* 3: Enable RC6 */
6542 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6543 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
6544 intel_print_rc6_info(dev_priv, rc6_mask);
6545 if (IS_BROADWELL(dev_priv))
6546 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
6547 GEN7_RC_CTL_TO_MODE |
6548 rc6_mask);
6549 else
6550 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
6551 GEN6_RC_CTL_EI_MODE(1) |
6552 rc6_mask);
6553
6554 /* 4 Program defaults and thresholds for RPS*/
6555 I915_WRITE(GEN6_RPNSWREQ,
6556 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
6557 I915_WRITE(GEN6_RC_VIDEO_FREQ,
6558 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
6559 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
6560 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
6561
6562 /* Docs recommend 900MHz, and 300 MHz respectively */
6563 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
6564 dev_priv->rps.max_freq_softlimit << 24 |
6565 dev_priv->rps.min_freq_softlimit << 16);
6566
6567 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
6568 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
6569 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
6570 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
6571
6572 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6573
6574 /* 5: Enable RPS */
6575 I915_WRITE(GEN6_RP_CONTROL,
6576 GEN6_RP_MEDIA_TURBO |
6577 GEN6_RP_MEDIA_HW_NORMAL_MODE |
6578 GEN6_RP_MEDIA_IS_GFX |
6579 GEN6_RP_ENABLE |
6580 GEN6_RP_UP_BUSY_AVG |
6581 GEN6_RP_DOWN_IDLE_AVG);
6582
6583 /* 6: Ring frequency + overclocking (our driver does this later */
6584
6585 reset_rps(dev_priv, gen6_set_rps);
6586
6587 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6588 }
6589
6590 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
6591 {
6592 struct intel_engine_cs *engine;
6593 enum intel_engine_id id;
6594 u32 rc6vids, rc6_mask = 0;
6595 u32 gtfifodbg;
6596 int rc6_mode;
6597 int ret;
6598
6599 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6600
6601 /* Here begins a magic sequence of register writes to enable
6602 * auto-downclocking.
6603 *
6604 * Perhaps there might be some value in exposing these to
6605 * userspace...
6606 */
6607 I915_WRITE(GEN6_RC_STATE, 0);
6608
6609 /* Clear the DBG now so we don't confuse earlier errors */
6610 gtfifodbg = I915_READ(GTFIFODBG);
6611 if (gtfifodbg) {
6612 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
6613 I915_WRITE(GTFIFODBG, gtfifodbg);
6614 }
6615
6616 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6617
6618 /* disable the counters and set deterministic thresholds */
6619 I915_WRITE(GEN6_RC_CONTROL, 0);
6620
6621 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
6622 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
6623 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
6624 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6625 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6626
6627 for_each_engine(engine, dev_priv, id)
6628 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6629
6630 I915_WRITE(GEN6_RC_SLEEP, 0);
6631 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
6632 if (IS_IVYBRIDGE(dev_priv))
6633 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
6634 else
6635 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
6636 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
6637 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
6638
6639 /* Check if we are enabling RC6 */
6640 rc6_mode = intel_enable_rc6();
6641 if (rc6_mode & INTEL_RC6_ENABLE)
6642 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
6643
6644 /* We don't use those on Haswell */
6645 if (!IS_HASWELL(dev_priv)) {
6646 if (rc6_mode & INTEL_RC6p_ENABLE)
6647 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
6648
6649 if (rc6_mode & INTEL_RC6pp_ENABLE)
6650 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
6651 }
6652
6653 intel_print_rc6_info(dev_priv, rc6_mask);
6654
6655 I915_WRITE(GEN6_RC_CONTROL,
6656 rc6_mask |
6657 GEN6_RC_CTL_EI_MODE(1) |
6658 GEN6_RC_CTL_HW_ENABLE);
6659
6660 /* Power down if completely idle for over 50ms */
6661 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
6662 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6663
6664 reset_rps(dev_priv, gen6_set_rps);
6665
6666 rc6vids = 0;
6667 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
6668 if (IS_GEN6(dev_priv) && ret) {
6669 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
6670 } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
6671 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
6672 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
6673 rc6vids &= 0xffff00;
6674 rc6vids |= GEN6_ENCODE_RC6_VID(450);
6675 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
6676 if (ret)
6677 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
6678 }
6679
6680 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6681 }
6682
6683 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
6684 {
6685 int min_freq = 15;
6686 unsigned int gpu_freq;
6687 unsigned int max_ia_freq, min_ring_freq;
6688 unsigned int max_gpu_freq, min_gpu_freq;
6689 int scaling_factor = 180;
6690 struct cpufreq_policy *policy;
6691
6692 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6693
6694 policy = cpufreq_cpu_get(0);
6695 if (policy) {
6696 max_ia_freq = policy->cpuinfo.max_freq;
6697 cpufreq_cpu_put(policy);
6698 } else {
6699 /*
6700 * Default to measured freq if none found, PCU will ensure we
6701 * don't go over
6702 */
6703 max_ia_freq = tsc_khz;
6704 }
6705
6706 /* Convert from kHz to MHz */
6707 max_ia_freq /= 1000;
6708
6709 min_ring_freq = I915_READ(DCLK) & 0xf;
6710 /* convert DDR frequency from units of 266.6MHz to bandwidth */
6711 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
6712
6713 if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6714 /* Convert GT frequency to 50 HZ units */
6715 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
6716 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
6717 } else {
6718 min_gpu_freq = dev_priv->rps.min_freq;
6719 max_gpu_freq = dev_priv->rps.max_freq;
6720 }
6721
6722 /*
6723 * For each potential GPU frequency, load a ring frequency we'd like
6724 * to use for memory access. We do this by specifying the IA frequency
6725 * the PCU should use as a reference to determine the ring frequency.
6726 */
6727 for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
6728 int diff = max_gpu_freq - gpu_freq;
6729 unsigned int ia_freq = 0, ring_freq = 0;
6730
6731 if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
6732 /*
6733 * ring_freq = 2 * GT. ring_freq is in 100MHz units
6734 * No floor required for ring frequency on SKL.
6735 */
6736 ring_freq = gpu_freq;
6737 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
6738 /* max(2 * GT, DDR). NB: GT is 50MHz units */
6739 ring_freq = max(min_ring_freq, gpu_freq);
6740 } else if (IS_HASWELL(dev_priv)) {
6741 ring_freq = mult_frac(gpu_freq, 5, 4);
6742 ring_freq = max(min_ring_freq, ring_freq);
6743 /* leave ia_freq as the default, chosen by cpufreq */
6744 } else {
6745 /* On older processors, there is no separate ring
6746 * clock domain, so in order to boost the bandwidth
6747 * of the ring, we need to upclock the CPU (ia_freq).
6748 *
6749 * For GPU frequencies less than 750MHz,
6750 * just use the lowest ring freq.
6751 */
6752 if (gpu_freq < min_freq)
6753 ia_freq = 800;
6754 else
6755 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
6756 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
6757 }
6758
6759 sandybridge_pcode_write(dev_priv,
6760 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
6761 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
6762 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
6763 gpu_freq);
6764 }
6765 }
6766
6767 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
6768 {
6769 u32 val, rp0;
6770
6771 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6772
6773 switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
6774 case 8:
6775 /* (2 * 4) config */
6776 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
6777 break;
6778 case 12:
6779 /* (2 * 6) config */
6780 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
6781 break;
6782 case 16:
6783 /* (2 * 8) config */
6784 default:
6785 /* Setting (2 * 8) Min RP0 for any other combination */
6786 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
6787 break;
6788 }
6789
6790 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
6791
6792 return rp0;
6793 }
6794
6795 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
6796 {
6797 u32 val, rpe;
6798
6799 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
6800 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
6801
6802 return rpe;
6803 }
6804
6805 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
6806 {
6807 u32 val, rp1;
6808
6809 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
6810 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
6811
6812 return rp1;
6813 }
6814
6815 static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
6816 {
6817 u32 val, rpn;
6818
6819 val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
6820 rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
6821 FB_GFX_FREQ_FUSE_MASK);
6822
6823 return rpn;
6824 }
6825
6826 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
6827 {
6828 u32 val, rp1;
6829
6830 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
6831
6832 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
6833
6834 return rp1;
6835 }
6836
6837 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
6838 {
6839 u32 val, rp0;
6840
6841 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
6842
6843 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
6844 /* Clamp to max */
6845 rp0 = min_t(u32, rp0, 0xea);
6846
6847 return rp0;
6848 }
6849
6850 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
6851 {
6852 u32 val, rpe;
6853
6854 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
6855 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
6856 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
6857 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
6858
6859 return rpe;
6860 }
6861
6862 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
6863 {
6864 u32 val;
6865
6866 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
6867 /*
6868 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
6869 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
6870 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
6871 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
6872 * to make sure it matches what Punit accepts.
6873 */
6874 return max_t(u32, val, 0xc0);
6875 }
6876
6877 /* Check that the pctx buffer wasn't move under us. */
6878 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
6879 {
6880 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
6881
6882 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
6883 dev_priv->vlv_pctx->stolen->start);
6884 }
6885
6886
6887 /* Check that the pcbr address is not empty. */
6888 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
6889 {
6890 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
6891
6892 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
6893 }
6894
6895 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
6896 {
6897 struct i915_ggtt *ggtt = &dev_priv->ggtt;
6898 unsigned long pctx_paddr, paddr;
6899 u32 pcbr;
6900 int pctx_size = 32*1024;
6901
6902 pcbr = I915_READ(VLV_PCBR);
6903 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
6904 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
6905 paddr = (dev_priv->mm.stolen_base +
6906 (ggtt->stolen_size - pctx_size));
6907
6908 pctx_paddr = (paddr & (~4095));
6909 I915_WRITE(VLV_PCBR, pctx_paddr);
6910 }
6911
6912 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6913 }
6914
6915 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
6916 {
6917 struct drm_i915_gem_object *pctx;
6918 unsigned long pctx_paddr;
6919 u32 pcbr;
6920 int pctx_size = 24*1024;
6921
6922 pcbr = I915_READ(VLV_PCBR);
6923 if (pcbr) {
6924 /* BIOS set it up already, grab the pre-alloc'd space */
6925 int pcbr_offset;
6926
6927 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
6928 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
6929 pcbr_offset,
6930 I915_GTT_OFFSET_NONE,
6931 pctx_size);
6932 goto out;
6933 }
6934
6935 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
6936
6937 /*
6938 * From the Gunit register HAS:
6939 * The Gfx driver is expected to program this register and ensure
6940 * proper allocation within Gfx stolen memory. For example, this
6941 * register should be programmed such than the PCBR range does not
6942 * overlap with other ranges, such as the frame buffer, protected
6943 * memory, or any other relevant ranges.
6944 */
6945 pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
6946 if (!pctx) {
6947 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
6948 goto out;
6949 }
6950
6951 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
6952 I915_WRITE(VLV_PCBR, pctx_paddr);
6953
6954 out:
6955 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
6956 dev_priv->vlv_pctx = pctx;
6957 }
6958
6959 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
6960 {
6961 if (WARN_ON(!dev_priv->vlv_pctx))
6962 return;
6963
6964 i915_gem_object_put(dev_priv->vlv_pctx);
6965 dev_priv->vlv_pctx = NULL;
6966 }
6967
6968 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
6969 {
6970 dev_priv->rps.gpll_ref_freq =
6971 vlv_get_cck_clock(dev_priv, "GPLL ref",
6972 CCK_GPLL_CLOCK_CONTROL,
6973 dev_priv->czclk_freq);
6974
6975 DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
6976 dev_priv->rps.gpll_ref_freq);
6977 }
6978
6979 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
6980 {
6981 u32 val;
6982
6983 valleyview_setup_pctx(dev_priv);
6984
6985 vlv_init_gpll_ref_freq(dev_priv);
6986
6987 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6988 switch ((val >> 6) & 3) {
6989 case 0:
6990 case 1:
6991 dev_priv->mem_freq = 800;
6992 break;
6993 case 2:
6994 dev_priv->mem_freq = 1066;
6995 break;
6996 case 3:
6997 dev_priv->mem_freq = 1333;
6998 break;
6999 }
7000 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7001
7002 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
7003 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
7004 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7005 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
7006 dev_priv->rps.max_freq);
7007
7008 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7009 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7010 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
7011 dev_priv->rps.efficient_freq);
7012
7013 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
7014 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7015 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
7016 dev_priv->rps.rp1_freq);
7017
7018 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
7019 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7020 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
7021 dev_priv->rps.min_freq);
7022 }
7023
7024 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7025 {
7026 u32 val;
7027
7028 cherryview_setup_pctx(dev_priv);
7029
7030 vlv_init_gpll_ref_freq(dev_priv);
7031
7032 mutex_lock(&dev_priv->sb_lock);
7033 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
7034 mutex_unlock(&dev_priv->sb_lock);
7035
7036 switch ((val >> 2) & 0x7) {
7037 case 3:
7038 dev_priv->mem_freq = 2000;
7039 break;
7040 default:
7041 dev_priv->mem_freq = 1600;
7042 break;
7043 }
7044 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7045
7046 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
7047 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
7048 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7049 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
7050 dev_priv->rps.max_freq);
7051
7052 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7053 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7054 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
7055 dev_priv->rps.efficient_freq);
7056
7057 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
7058 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7059 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
7060 dev_priv->rps.rp1_freq);
7061
7062 dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
7063 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7064 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
7065 dev_priv->rps.min_freq);
7066
7067 WARN_ONCE((dev_priv->rps.max_freq |
7068 dev_priv->rps.efficient_freq |
7069 dev_priv->rps.rp1_freq |
7070 dev_priv->rps.min_freq) & 1,
7071 "Odd GPU freq values\n");
7072 }
7073
7074 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7075 {
7076 valleyview_cleanup_pctx(dev_priv);
7077 }
7078
7079 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
7080 {
7081 struct intel_engine_cs *engine;
7082 enum intel_engine_id id;
7083 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
7084
7085 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7086
7087 gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
7088 GT_FIFO_FREE_ENTRIES_CHV);
7089 if (gtfifodbg) {
7090 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7091 gtfifodbg);
7092 I915_WRITE(GTFIFODBG, gtfifodbg);
7093 }
7094
7095 cherryview_check_pctx(dev_priv);
7096
7097 /* 1a & 1b: Get forcewake during program sequence. Although the driver
7098 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7099 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7100
7101 /* Disable RC states. */
7102 I915_WRITE(GEN6_RC_CONTROL, 0);
7103
7104 /* 2a: Program RC6 thresholds.*/
7105 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7106 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7107 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7108
7109 for_each_engine(engine, dev_priv, id)
7110 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7111 I915_WRITE(GEN6_RC_SLEEP, 0);
7112
7113 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
7114 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7115
7116 /* allows RC6 residency counter to work */
7117 I915_WRITE(VLV_COUNTER_CONTROL,
7118 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7119 VLV_MEDIA_RC6_COUNT_EN |
7120 VLV_RENDER_RC6_COUNT_EN));
7121
7122 /* For now we assume BIOS is allocating and populating the PCBR */
7123 pcbr = I915_READ(VLV_PCBR);
7124
7125 /* 3: Enable RC6 */
7126 if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
7127 (pcbr >> VLV_PCBR_ADDR_SHIFT))
7128 rc6_mode = GEN7_RC_CTL_TO_MODE;
7129
7130 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7131
7132 /* 4 Program defaults and thresholds for RPS*/
7133 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7134 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7135 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7136 I915_WRITE(GEN6_RP_UP_EI, 66000);
7137 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7138
7139 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7140
7141 /* 5: Enable RPS */
7142 I915_WRITE(GEN6_RP_CONTROL,
7143 GEN6_RP_MEDIA_HW_NORMAL_MODE |
7144 GEN6_RP_MEDIA_IS_GFX |
7145 GEN6_RP_ENABLE |
7146 GEN6_RP_UP_BUSY_AVG |
7147 GEN6_RP_DOWN_IDLE_AVG);
7148
7149 /* Setting Fixed Bias */
7150 val = VLV_OVERRIDE_EN |
7151 VLV_SOC_TDP_EN |
7152 CHV_BIAS_CPU_50_SOC_50;
7153 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7154
7155 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7156
7157 /* RPS code assumes GPLL is used */
7158 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7159
7160 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7161 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7162
7163 reset_rps(dev_priv, valleyview_set_rps);
7164
7165 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7166 }
7167
7168 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
7169 {
7170 struct intel_engine_cs *engine;
7171 enum intel_engine_id id;
7172 u32 gtfifodbg, val, rc6_mode = 0;
7173
7174 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7175
7176 valleyview_check_pctx(dev_priv);
7177
7178 gtfifodbg = I915_READ(GTFIFODBG);
7179 if (gtfifodbg) {
7180 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7181 gtfifodbg);
7182 I915_WRITE(GTFIFODBG, gtfifodbg);
7183 }
7184
7185 /* If VLV, Forcewake all wells, else re-direct to regular path */
7186 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7187
7188 /* Disable RC states. */
7189 I915_WRITE(GEN6_RC_CONTROL, 0);
7190
7191 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7192 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7193 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7194 I915_WRITE(GEN6_RP_UP_EI, 66000);
7195 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7196
7197 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7198
7199 I915_WRITE(GEN6_RP_CONTROL,
7200 GEN6_RP_MEDIA_TURBO |
7201 GEN6_RP_MEDIA_HW_NORMAL_MODE |
7202 GEN6_RP_MEDIA_IS_GFX |
7203 GEN6_RP_ENABLE |
7204 GEN6_RP_UP_BUSY_AVG |
7205 GEN6_RP_DOWN_IDLE_CONT);
7206
7207 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
7208 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7209 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7210
7211 for_each_engine(engine, dev_priv, id)
7212 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7213
7214 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7215
7216 /* allows RC6 residency counter to work */
7217 I915_WRITE(VLV_COUNTER_CONTROL,
7218 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7219 VLV_MEDIA_RC0_COUNT_EN |
7220 VLV_RENDER_RC0_COUNT_EN |
7221 VLV_MEDIA_RC6_COUNT_EN |
7222 VLV_RENDER_RC6_COUNT_EN));
7223
7224 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
7225 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
7226
7227 intel_print_rc6_info(dev_priv, rc6_mode);
7228
7229 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7230
7231 /* Setting Fixed Bias */
7232 val = VLV_OVERRIDE_EN |
7233 VLV_SOC_TDP_EN |
7234 VLV_BIAS_CPU_125_SOC_875;
7235 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7236
7237 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7238
7239 /* RPS code assumes GPLL is used */
7240 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7241
7242 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7243 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7244
7245 reset_rps(dev_priv, valleyview_set_rps);
7246
7247 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7248 }
7249
7250 static unsigned long intel_pxfreq(u32 vidfreq)
7251 {
7252 unsigned long freq;
7253 int div = (vidfreq & 0x3f0000) >> 16;
7254 int post = (vidfreq & 0x3000) >> 12;
7255 int pre = (vidfreq & 0x7);
7256
7257 if (!pre)
7258 return 0;
7259
7260 freq = ((div * 133333) / ((1<<post) * pre));
7261
7262 return freq;
7263 }
7264
7265 static const struct cparams {
7266 u16 i;
7267 u16 t;
7268 u16 m;
7269 u16 c;
7270 } cparams[] = {
7271 { 1, 1333, 301, 28664 },
7272 { 1, 1066, 294, 24460 },
7273 { 1, 800, 294, 25192 },
7274 { 0, 1333, 276, 27605 },
7275 { 0, 1066, 276, 27605 },
7276 { 0, 800, 231, 23784 },
7277 };
7278
7279 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7280 {
7281 u64 total_count, diff, ret;
7282 u32 count1, count2, count3, m = 0, c = 0;
7283 unsigned long now = jiffies_to_msecs(jiffies), diff1;
7284 int i;
7285
7286 lockdep_assert_held(&mchdev_lock);
7287
7288 diff1 = now - dev_priv->ips.last_time1;
7289
7290 /* Prevent division-by-zero if we are asking too fast.
7291 * Also, we don't get interesting results if we are polling
7292 * faster than once in 10ms, so just return the saved value
7293 * in such cases.
7294 */
7295 if (diff1 <= 10)
7296 return dev_priv->ips.chipset_power;
7297
7298 count1 = I915_READ(DMIEC);
7299 count2 = I915_READ(DDREC);
7300 count3 = I915_READ(CSIEC);
7301
7302 total_count = count1 + count2 + count3;
7303
7304 /* FIXME: handle per-counter overflow */
7305 if (total_count < dev_priv->ips.last_count1) {
7306 diff = ~0UL - dev_priv->ips.last_count1;
7307 diff += total_count;
7308 } else {
7309 diff = total_count - dev_priv->ips.last_count1;
7310 }
7311
7312 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7313 if (cparams[i].i == dev_priv->ips.c_m &&
7314 cparams[i].t == dev_priv->ips.r_t) {
7315 m = cparams[i].m;
7316 c = cparams[i].c;
7317 break;
7318 }
7319 }
7320
7321 diff = div_u64(diff, diff1);
7322 ret = ((m * diff) + c);
7323 ret = div_u64(ret, 10);
7324
7325 dev_priv->ips.last_count1 = total_count;
7326 dev_priv->ips.last_time1 = now;
7327
7328 dev_priv->ips.chipset_power = ret;
7329
7330 return ret;
7331 }
7332
7333 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
7334 {
7335 unsigned long val;
7336
7337 if (INTEL_INFO(dev_priv)->gen != 5)
7338 return 0;
7339
7340 spin_lock_irq(&mchdev_lock);
7341
7342 val = __i915_chipset_val(dev_priv);
7343
7344 spin_unlock_irq(&mchdev_lock);
7345
7346 return val;
7347 }
7348
7349 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
7350 {
7351 unsigned long m, x, b;
7352 u32 tsfs;
7353
7354 tsfs = I915_READ(TSFS);
7355
7356 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
7357 x = I915_READ8(TR1);
7358
7359 b = tsfs & TSFS_INTR_MASK;
7360
7361 return ((m * x) / 127) - b;
7362 }
7363
7364 static int _pxvid_to_vd(u8 pxvid)
7365 {
7366 if (pxvid == 0)
7367 return 0;
7368
7369 if (pxvid >= 8 && pxvid < 31)
7370 pxvid = 31;
7371
7372 return (pxvid + 2) * 125;
7373 }
7374
7375 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7376 {
7377 const int vd = _pxvid_to_vd(pxvid);
7378 const int vm = vd - 1125;
7379
7380 if (INTEL_INFO(dev_priv)->is_mobile)
7381 return vm > 0 ? vm : 0;
7382
7383 return vd;
7384 }
7385
7386 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7387 {
7388 u64 now, diff, diffms;
7389 u32 count;
7390
7391 lockdep_assert_held(&mchdev_lock);
7392
7393 now = ktime_get_raw_ns();
7394 diffms = now - dev_priv->ips.last_time2;
7395 do_div(diffms, NSEC_PER_MSEC);
7396
7397 /* Don't divide by 0 */
7398 if (!diffms)
7399 return;
7400
7401 count = I915_READ(GFXEC);
7402
7403 if (count < dev_priv->ips.last_count2) {
7404 diff = ~0UL - dev_priv->ips.last_count2;
7405 diff += count;
7406 } else {
7407 diff = count - dev_priv->ips.last_count2;
7408 }
7409
7410 dev_priv->ips.last_count2 = count;
7411 dev_priv->ips.last_time2 = now;
7412
7413 /* More magic constants... */
7414 diff = diff * 1181;
7415 diff = div_u64(diff, diffms * 10);
7416 dev_priv->ips.gfx_power = diff;
7417 }
7418
7419 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
7420 {
7421 if (INTEL_INFO(dev_priv)->gen != 5)
7422 return;
7423
7424 spin_lock_irq(&mchdev_lock);
7425
7426 __i915_update_gfx_val(dev_priv);
7427
7428 spin_unlock_irq(&mchdev_lock);
7429 }
7430
7431 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7432 {
7433 unsigned long t, corr, state1, corr2, state2;
7434 u32 pxvid, ext_v;
7435
7436 lockdep_assert_held(&mchdev_lock);
7437
7438 pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
7439 pxvid = (pxvid >> 24) & 0x7f;
7440 ext_v = pvid_to_extvid(dev_priv, pxvid);
7441
7442 state1 = ext_v;
7443
7444 t = i915_mch_val(dev_priv);
7445
7446 /* Revel in the empirically derived constants */
7447
7448 /* Correction factor in 1/100000 units */
7449 if (t > 80)
7450 corr = ((t * 2349) + 135940);
7451 else if (t >= 50)
7452 corr = ((t * 964) + 29317);
7453 else /* < 50 */
7454 corr = ((t * 301) + 1004);
7455
7456 corr = corr * ((150142 * state1) / 10000 - 78642);
7457 corr /= 100000;
7458 corr2 = (corr * dev_priv->ips.corr);
7459
7460 state2 = (corr2 * state1) / 10000;
7461 state2 /= 100; /* convert to mW */
7462
7463 __i915_update_gfx_val(dev_priv);
7464
7465 return dev_priv->ips.gfx_power + state2;
7466 }
7467
7468 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
7469 {
7470 unsigned long val;
7471
7472 if (INTEL_INFO(dev_priv)->gen != 5)
7473 return 0;
7474
7475 spin_lock_irq(&mchdev_lock);
7476
7477 val = __i915_gfx_val(dev_priv);
7478
7479 spin_unlock_irq(&mchdev_lock);
7480
7481 return val;
7482 }
7483
7484 /**
7485 * i915_read_mch_val - return value for IPS use
7486 *
7487 * Calculate and return a value for the IPS driver to use when deciding whether
7488 * we have thermal and power headroom to increase CPU or GPU power budget.
7489 */
7490 unsigned long i915_read_mch_val(void)
7491 {
7492 struct drm_i915_private *dev_priv;
7493 unsigned long chipset_val, graphics_val, ret = 0;
7494
7495 spin_lock_irq(&mchdev_lock);
7496 if (!i915_mch_dev)
7497 goto out_unlock;
7498 dev_priv = i915_mch_dev;
7499
7500 chipset_val = __i915_chipset_val(dev_priv);
7501 graphics_val = __i915_gfx_val(dev_priv);
7502
7503 ret = chipset_val + graphics_val;
7504
7505 out_unlock:
7506 spin_unlock_irq(&mchdev_lock);
7507
7508 return ret;
7509 }
7510 EXPORT_SYMBOL_GPL(i915_read_mch_val);
7511
7512 /**
7513 * i915_gpu_raise - raise GPU frequency limit
7514 *
7515 * Raise the limit; IPS indicates we have thermal headroom.
7516 */
7517 bool i915_gpu_raise(void)
7518 {
7519 struct drm_i915_private *dev_priv;
7520 bool ret = true;
7521
7522 spin_lock_irq(&mchdev_lock);
7523 if (!i915_mch_dev) {
7524 ret = false;
7525 goto out_unlock;
7526 }
7527 dev_priv = i915_mch_dev;
7528
7529 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
7530 dev_priv->ips.max_delay--;
7531
7532 out_unlock:
7533 spin_unlock_irq(&mchdev_lock);
7534
7535 return ret;
7536 }
7537 EXPORT_SYMBOL_GPL(i915_gpu_raise);
7538
7539 /**
7540 * i915_gpu_lower - lower GPU frequency limit
7541 *
7542 * IPS indicates we're close to a thermal limit, so throttle back the GPU
7543 * frequency maximum.
7544 */
7545 bool i915_gpu_lower(void)
7546 {
7547 struct drm_i915_private *dev_priv;
7548 bool ret = true;
7549
7550 spin_lock_irq(&mchdev_lock);
7551 if (!i915_mch_dev) {
7552 ret = false;
7553 goto out_unlock;
7554 }
7555 dev_priv = i915_mch_dev;
7556
7557 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
7558 dev_priv->ips.max_delay++;
7559
7560 out_unlock:
7561 spin_unlock_irq(&mchdev_lock);
7562
7563 return ret;
7564 }
7565 EXPORT_SYMBOL_GPL(i915_gpu_lower);
7566
7567 /**
7568 * i915_gpu_busy - indicate GPU business to IPS
7569 *
7570 * Tell the IPS driver whether or not the GPU is busy.
7571 */
7572 bool i915_gpu_busy(void)
7573 {
7574 bool ret = false;
7575
7576 spin_lock_irq(&mchdev_lock);
7577 if (i915_mch_dev)
7578 ret = i915_mch_dev->gt.awake;
7579 spin_unlock_irq(&mchdev_lock);
7580
7581 return ret;
7582 }
7583 EXPORT_SYMBOL_GPL(i915_gpu_busy);
7584
7585 /**
7586 * i915_gpu_turbo_disable - disable graphics turbo
7587 *
7588 * Disable graphics turbo by resetting the max frequency and setting the
7589 * current frequency to the default.
7590 */
7591 bool i915_gpu_turbo_disable(void)
7592 {
7593 struct drm_i915_private *dev_priv;
7594 bool ret = true;
7595
7596 spin_lock_irq(&mchdev_lock);
7597 if (!i915_mch_dev) {
7598 ret = false;
7599 goto out_unlock;
7600 }
7601 dev_priv = i915_mch_dev;
7602
7603 dev_priv->ips.max_delay = dev_priv->ips.fstart;
7604
7605 if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
7606 ret = false;
7607
7608 out_unlock:
7609 spin_unlock_irq(&mchdev_lock);
7610
7611 return ret;
7612 }
7613 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
7614
7615 /**
7616 * Tells the intel_ips driver that the i915 driver is now loaded, if
7617 * IPS got loaded first.
7618 *
7619 * This awkward dance is so that neither module has to depend on the
7620 * other in order for IPS to do the appropriate communication of
7621 * GPU turbo limits to i915.
7622 */
7623 static void
7624 ips_ping_for_i915_load(void)
7625 {
7626 void (*link)(void);
7627
7628 link = symbol_get(ips_link_to_i915_driver);
7629 if (link) {
7630 link();
7631 symbol_put(ips_link_to_i915_driver);
7632 }
7633 }
7634
7635 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
7636 {
7637 /* We only register the i915 ips part with intel-ips once everything is
7638 * set up, to avoid intel-ips sneaking in and reading bogus values. */
7639 spin_lock_irq(&mchdev_lock);
7640 i915_mch_dev = dev_priv;
7641 spin_unlock_irq(&mchdev_lock);
7642
7643 ips_ping_for_i915_load();
7644 }
7645
7646 void intel_gpu_ips_teardown(void)
7647 {
7648 spin_lock_irq(&mchdev_lock);
7649 i915_mch_dev = NULL;
7650 spin_unlock_irq(&mchdev_lock);
7651 }
7652
7653 static void intel_init_emon(struct drm_i915_private *dev_priv)
7654 {
7655 u32 lcfuse;
7656 u8 pxw[16];
7657 int i;
7658
7659 /* Disable to program */
7660 I915_WRITE(ECR, 0);
7661 POSTING_READ(ECR);
7662
7663 /* Program energy weights for various events */
7664 I915_WRITE(SDEW, 0x15040d00);
7665 I915_WRITE(CSIEW0, 0x007f0000);
7666 I915_WRITE(CSIEW1, 0x1e220004);
7667 I915_WRITE(CSIEW2, 0x04000004);
7668
7669 for (i = 0; i < 5; i++)
7670 I915_WRITE(PEW(i), 0);
7671 for (i = 0; i < 3; i++)
7672 I915_WRITE(DEW(i), 0);
7673
7674 /* Program P-state weights to account for frequency power adjustment */
7675 for (i = 0; i < 16; i++) {
7676 u32 pxvidfreq = I915_READ(PXVFREQ(i));
7677 unsigned long freq = intel_pxfreq(pxvidfreq);
7678 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7679 PXVFREQ_PX_SHIFT;
7680 unsigned long val;
7681
7682 val = vid * vid;
7683 val *= (freq / 1000);
7684 val *= 255;
7685 val /= (127*127*900);
7686 if (val > 0xff)
7687 DRM_ERROR("bad pxval: %ld\n", val);
7688 pxw[i] = val;
7689 }
7690 /* Render standby states get 0 weight */
7691 pxw[14] = 0;
7692 pxw[15] = 0;
7693
7694 for (i = 0; i < 4; i++) {
7695 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7696 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7697 I915_WRITE(PXW(i), val);
7698 }
7699
7700 /* Adjust magic regs to magic values (more experimental results) */
7701 I915_WRITE(OGW0, 0);
7702 I915_WRITE(OGW1, 0);
7703 I915_WRITE(EG0, 0x00007f00);
7704 I915_WRITE(EG1, 0x0000000e);
7705 I915_WRITE(EG2, 0x000e0000);
7706 I915_WRITE(EG3, 0x68000300);
7707 I915_WRITE(EG4, 0x42000000);
7708 I915_WRITE(EG5, 0x00140031);
7709 I915_WRITE(EG6, 0);
7710 I915_WRITE(EG7, 0);
7711
7712 for (i = 0; i < 8; i++)
7713 I915_WRITE(PXWL(i), 0);
7714
7715 /* Enable PMON + select events */
7716 I915_WRITE(ECR, 0x80000019);
7717
7718 lcfuse = I915_READ(LCFUSE02);
7719
7720 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
7721 }
7722
7723 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
7724 {
7725 /*
7726 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
7727 * requirement.
7728 */
7729 if (!i915.enable_rc6) {
7730 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
7731 intel_runtime_pm_get(dev_priv);
7732 }
7733
7734 mutex_lock(&dev_priv->drm.struct_mutex);
7735 mutex_lock(&dev_priv->rps.hw_lock);
7736
7737 /* Initialize RPS limits (for userspace) */
7738 if (IS_CHERRYVIEW(dev_priv))
7739 cherryview_init_gt_powersave(dev_priv);
7740 else if (IS_VALLEYVIEW(dev_priv))
7741 valleyview_init_gt_powersave(dev_priv);
7742 else if (INTEL_GEN(dev_priv) >= 6)
7743 gen6_init_rps_frequencies(dev_priv);
7744
7745 /* Derive initial user preferences/limits from the hardware limits */
7746 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
7747 dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;
7748
7749 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
7750 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
7751
7752 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
7753 dev_priv->rps.min_freq_softlimit =
7754 max_t(int,
7755 dev_priv->rps.efficient_freq,
7756 intel_freq_opcode(dev_priv, 450));
7757
7758 /* After setting max-softlimit, find the overclock max freq */
7759 if (IS_GEN6(dev_priv) ||
7760 IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
7761 u32 params = 0;
7762
7763 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
7764 if (params & BIT(31)) { /* OC supported */
7765 DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
7766 (dev_priv->rps.max_freq & 0xff) * 50,
7767 (params & 0xff) * 50);
7768 dev_priv->rps.max_freq = params & 0xff;
7769 }
7770 }
7771
7772 /* Finally allow us to boost to max by default */
7773 dev_priv->rps.boost_freq = dev_priv->rps.max_freq;
7774
7775 mutex_unlock(&dev_priv->rps.hw_lock);
7776 mutex_unlock(&dev_priv->drm.struct_mutex);
7777
7778 intel_autoenable_gt_powersave(dev_priv);
7779 }
7780
7781 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7782 {
7783 if (IS_VALLEYVIEW(dev_priv))
7784 valleyview_cleanup_gt_powersave(dev_priv);
7785
7786 if (!i915.enable_rc6)
7787 intel_runtime_pm_put(dev_priv);
7788 }
7789
7790 /**
7791 * intel_suspend_gt_powersave - suspend PM work and helper threads
7792 * @dev_priv: i915 device
7793 *
7794 * We don't want to disable RC6 or other features here, we just want
7795 * to make sure any work we've queued has finished and won't bother
7796 * us while we're suspended.
7797 */
7798 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
7799 {
7800 if (INTEL_GEN(dev_priv) < 6)
7801 return;
7802
7803 if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
7804 intel_runtime_pm_put(dev_priv);
7805
7806 /* gen6_rps_idle() will be called later to disable interrupts */
7807 }
7808
7809 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
7810 {
7811 dev_priv->rps.enabled = true; /* force disabling */
7812 intel_disable_gt_powersave(dev_priv);
7813
7814 gen6_reset_rps_interrupts(dev_priv);
7815 }
7816
7817 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
7818 {
7819 if (!READ_ONCE(dev_priv->rps.enabled))
7820 return;
7821
7822 mutex_lock(&dev_priv->rps.hw_lock);
7823
7824 if (INTEL_GEN(dev_priv) >= 9) {
7825 gen9_disable_rc6(dev_priv);
7826 gen9_disable_rps(dev_priv);
7827 } else if (IS_CHERRYVIEW(dev_priv)) {
7828 cherryview_disable_rps(dev_priv);
7829 } else if (IS_VALLEYVIEW(dev_priv)) {
7830 valleyview_disable_rps(dev_priv);
7831 } else if (INTEL_GEN(dev_priv) >= 6) {
7832 gen6_disable_rps(dev_priv);
7833 } else if (IS_IRONLAKE_M(dev_priv)) {
7834 ironlake_disable_drps(dev_priv);
7835 }
7836
7837 dev_priv->rps.enabled = false;
7838 mutex_unlock(&dev_priv->rps.hw_lock);
7839 }
7840
7841 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
7842 {
7843 /* We shouldn't be disabling as we submit, so this should be less
7844 * racy than it appears!
7845 */
7846 if (READ_ONCE(dev_priv->rps.enabled))
7847 return;
7848
7849 /* Powersaving is controlled by the host when inside a VM */
7850 if (intel_vgpu_active(dev_priv))
7851 return;
7852
7853 mutex_lock(&dev_priv->rps.hw_lock);
7854
7855 if (IS_CHERRYVIEW(dev_priv)) {
7856 cherryview_enable_rps(dev_priv);
7857 } else if (IS_VALLEYVIEW(dev_priv)) {
7858 valleyview_enable_rps(dev_priv);
7859 } else if (INTEL_GEN(dev_priv) >= 9) {
7860 gen9_enable_rc6(dev_priv);
7861 gen9_enable_rps(dev_priv);
7862 if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv))
7863 gen6_update_ring_freq(dev_priv);
7864 } else if (IS_BROADWELL(dev_priv)) {
7865 gen8_enable_rps(dev_priv);
7866 gen6_update_ring_freq(dev_priv);
7867 } else if (INTEL_GEN(dev_priv) >= 6) {
7868 gen6_enable_rps(dev_priv);
7869 gen6_update_ring_freq(dev_priv);
7870 } else if (IS_IRONLAKE_M(dev_priv)) {
7871 ironlake_enable_drps(dev_priv);
7872 intel_init_emon(dev_priv);
7873 }
7874
7875 WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
7876 WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
7877
7878 WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
7879 WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
7880
7881 dev_priv->rps.enabled = true;
7882 mutex_unlock(&dev_priv->rps.hw_lock);
7883 }
7884
7885 static void __intel_autoenable_gt_powersave(struct work_struct *work)
7886 {
7887 struct drm_i915_private *dev_priv =
7888 container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
7889 struct intel_engine_cs *rcs;
7890 struct drm_i915_gem_request *req;
7891
7892 if (READ_ONCE(dev_priv->rps.enabled))
7893 goto out;
7894
7895 rcs = dev_priv->engine[RCS];
7896 if (rcs->last_retired_context)
7897 goto out;
7898
7899 if (!rcs->init_context)
7900 goto out;
7901
7902 mutex_lock(&dev_priv->drm.struct_mutex);
7903
7904 req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
7905 if (IS_ERR(req))
7906 goto unlock;
7907
7908 if (!i915.enable_execlists && i915_switch_context(req) == 0)
7909 rcs->init_context(req);
7910
7911 /* Mark the device busy, calling intel_enable_gt_powersave() */
7912 i915_add_request(req);
7913
7914 unlock:
7915 mutex_unlock(&dev_priv->drm.struct_mutex);
7916 out:
7917 intel_runtime_pm_put(dev_priv);
7918 }
7919
7920 void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
7921 {
7922 if (READ_ONCE(dev_priv->rps.enabled))
7923 return;
7924
7925 if (IS_IRONLAKE_M(dev_priv)) {
7926 ironlake_enable_drps(dev_priv);
7927 intel_init_emon(dev_priv);
7928 } else if (INTEL_INFO(dev_priv)->gen >= 6) {
7929 /*
7930 * PCU communication is slow and this doesn't need to be
7931 * done at any specific time, so do this out of our fast path
7932 * to make resume and init faster.
7933 *
7934 * We depend on the HW RC6 power context save/restore
7935 * mechanism when entering D3 through runtime PM suspend. So
7936 * disable RPM until RPS/RC6 is properly setup. We can only
7937 * get here via the driver load/system resume/runtime resume
7938 * paths, so the _noresume version is enough (and in case of
7939 * runtime resume it's necessary).
7940 */
7941 if (queue_delayed_work(dev_priv->wq,
7942 &dev_priv->rps.autoenable_work,
7943 round_jiffies_up_relative(HZ)))
7944 intel_runtime_pm_get_noresume(dev_priv);
7945 }
7946 }
7947
7948 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
7949 {
7950 /*
7951 * On Ibex Peak and Cougar Point, we need to disable clock
7952 * gating for the panel power sequencer or it will fail to
7953 * start up when no ports are active.
7954 */
7955 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7956 }
7957
7958 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
7959 {
7960 enum pipe pipe;
7961
7962 for_each_pipe(dev_priv, pipe) {
7963 I915_WRITE(DSPCNTR(pipe),
7964 I915_READ(DSPCNTR(pipe)) |
7965 DISPPLANE_TRICKLE_FEED_DISABLE);
7966
7967 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
7968 POSTING_READ(DSPSURF(pipe));
7969 }
7970 }
7971
7972 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
7973 {
7974 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
7975 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
7976 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
7977
7978 /*
7979 * Don't touch WM1S_LP_EN here.
7980 * Doing so could cause underruns.
7981 */
7982 }
7983
7984 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
7985 {
7986 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7987
7988 /*
7989 * Required for FBC
7990 * WaFbcDisableDpfcClockGating:ilk
7991 */
7992 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
7993 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
7994 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
7995
7996 I915_WRITE(PCH_3DCGDIS0,
7997 MARIUNIT_CLOCK_GATE_DISABLE |
7998 SVSMUNIT_CLOCK_GATE_DISABLE);
7999 I915_WRITE(PCH_3DCGDIS1,
8000 VFMUNIT_CLOCK_GATE_DISABLE);
8001
8002 /*
8003 * According to the spec the following bits should be set in
8004 * order to enable memory self-refresh
8005 * The bit 22/21 of 0x42004
8006 * The bit 5 of 0x42020
8007 * The bit 15 of 0x45000
8008 */
8009 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8010 (I915_READ(ILK_DISPLAY_CHICKEN2) |
8011 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8012 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8013 I915_WRITE(DISP_ARB_CTL,
8014 (I915_READ(DISP_ARB_CTL) |
8015 DISP_FBC_WM_DIS));
8016
8017 ilk_init_lp_watermarks(dev_priv);
8018
8019 /*
8020 * Based on the document from hardware guys the following bits
8021 * should be set unconditionally in order to enable FBC.
8022 * The bit 22 of 0x42000
8023 * The bit 22 of 0x42004
8024 * The bit 7,8,9 of 0x42020.
8025 */
8026 if (IS_IRONLAKE_M(dev_priv)) {
8027 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
8028 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8029 I915_READ(ILK_DISPLAY_CHICKEN1) |
8030 ILK_FBCQ_DIS);
8031 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8032 I915_READ(ILK_DISPLAY_CHICKEN2) |
8033 ILK_DPARB_GATE);
8034 }
8035
8036 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8037
8038 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8039 I915_READ(ILK_DISPLAY_CHICKEN2) |
8040 ILK_ELPIN_409_SELECT);
8041 I915_WRITE(_3D_CHICKEN2,
8042 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8043 _3D_CHICKEN2_WM_READ_PIPELINED);
8044
8045 /* WaDisableRenderCachePipelinedFlush:ilk */
8046 I915_WRITE(CACHE_MODE_0,
8047 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8048
8049 /* WaDisable_RenderCache_OperationalFlush:ilk */
8050 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8051
8052 g4x_disable_trickle_feed(dev_priv);
8053
8054 ibx_init_clock_gating(dev_priv);
8055 }
8056
8057 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8058 {
8059 int pipe;
8060 uint32_t val;
8061
8062 /*
8063 * On Ibex Peak and Cougar Point, we need to disable clock
8064 * gating for the panel power sequencer or it will fail to
8065 * start up when no ports are active.
8066 */
8067 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
8068 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
8069 PCH_CPUNIT_CLOCK_GATE_DISABLE);
8070 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8071 DPLS_EDP_PPS_FIX_DIS);
8072 /* The below fixes the weird display corruption, a few pixels shifted
8073 * downward, on (only) LVDS of some HP laptops with IVY.
8074 */
8075 for_each_pipe(dev_priv, pipe) {
8076 val = I915_READ(TRANS_CHICKEN2(pipe));
8077 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
8078 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8079 if (dev_priv->vbt.fdi_rx_polarity_inverted)
8080 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8081 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
8082 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
8083 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8084 I915_WRITE(TRANS_CHICKEN2(pipe), val);
8085 }
8086 /* WADP0ClockGatingDisable */
8087 for_each_pipe(dev_priv, pipe) {
8088 I915_WRITE(TRANS_CHICKEN1(pipe),
8089 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8090 }
8091 }
8092
8093 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8094 {
8095 uint32_t tmp;
8096
8097 tmp = I915_READ(MCH_SSKPD);
8098 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
8099 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
8100 tmp);
8101 }
8102
8103 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8104 {
8105 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8106
8107 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8108
8109 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8110 I915_READ(ILK_DISPLAY_CHICKEN2) |
8111 ILK_ELPIN_409_SELECT);
8112
8113 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8114 I915_WRITE(_3D_CHICKEN,
8115 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
8116
8117 /* WaDisable_RenderCache_OperationalFlush:snb */
8118 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8119
8120 /*
8121 * BSpec recoomends 8x4 when MSAA is used,
8122 * however in practice 16x4 seems fastest.
8123 *
8124 * Note that PS/WM thread counts depend on the WIZ hashing
8125 * disable bit, which we don't touch here, but it's good
8126 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8127 */
8128 I915_WRITE(GEN6_GT_MODE,
8129 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8130
8131 ilk_init_lp_watermarks(dev_priv);
8132
8133 I915_WRITE(CACHE_MODE_0,
8134 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8135
8136 I915_WRITE(GEN6_UCGCTL1,
8137 I915_READ(GEN6_UCGCTL1) |
8138 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
8139 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8140
8141 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8142 * gating disable must be set. Failure to set it results in
8143 * flickering pixels due to Z write ordering failures after
8144 * some amount of runtime in the Mesa "fire" demo, and Unigine
8145 * Sanctuary and Tropics, and apparently anything else with
8146 * alpha test or pixel discard.
8147 *
8148 * According to the spec, bit 11 (RCCUNIT) must also be set,
8149 * but we didn't debug actual testcases to find it out.
8150 *
8151 * WaDisableRCCUnitClockGating:snb
8152 * WaDisableRCPBUnitClockGating:snb
8153 */
8154 I915_WRITE(GEN6_UCGCTL2,
8155 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8156 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8157
8158 /* WaStripsFansDisableFastClipPerformanceFix:snb */
8159 I915_WRITE(_3D_CHICKEN3,
8160 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8161
8162 /*
8163 * Bspec says:
8164 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
8165 * 3DSTATE_SF number of SF output attributes is more than 16."
8166 */
8167 I915_WRITE(_3D_CHICKEN3,
8168 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
8169
8170 /*
8171 * According to the spec the following bits should be
8172 * set in order to enable memory self-refresh and fbc:
8173 * The bit21 and bit22 of 0x42000
8174 * The bit21 and bit22 of 0x42004
8175 * The bit5 and bit7 of 0x42020
8176 * The bit14 of 0x70180
8177 * The bit14 of 0x71180
8178 *
8179 * WaFbcAsynchFlipDisableFbcQueue:snb
8180 */
8181 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8182 I915_READ(ILK_DISPLAY_CHICKEN1) |
8183 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8184 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8185 I915_READ(ILK_DISPLAY_CHICKEN2) |
8186 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8187 I915_WRITE(ILK_DSPCLK_GATE_D,
8188 I915_READ(ILK_DSPCLK_GATE_D) |
8189 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
8190 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8191
8192 g4x_disable_trickle_feed(dev_priv);
8193
8194 cpt_init_clock_gating(dev_priv);
8195
8196 gen6_check_mch_setup(dev_priv);
8197 }
8198
8199 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
8200 {
8201 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
8202
8203 /*
8204 * WaVSThreadDispatchOverride:ivb,vlv
8205 *
8206 * This actually overrides the dispatch
8207 * mode for all thread types.
8208 */
8209 reg &= ~GEN7_FF_SCHED_MASK;
8210 reg |= GEN7_FF_TS_SCHED_HW;
8211 reg |= GEN7_FF_VS_SCHED_HW;
8212 reg |= GEN7_FF_DS_SCHED_HW;
8213
8214 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
8215 }
8216
8217 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8218 {
8219 /*
8220 * TODO: this bit should only be enabled when really needed, then
8221 * disabled when not needed anymore in order to save power.
8222 */
8223 if (HAS_PCH_LPT_LP(dev_priv))
8224 I915_WRITE(SOUTH_DSPCLK_GATE_D,
8225 I915_READ(SOUTH_DSPCLK_GATE_D) |
8226 PCH_LP_PARTITION_LEVEL_DISABLE);
8227
8228 /* WADPOClockGatingDisable:hsw */
8229 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
8230 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8231 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8232 }
8233
8234 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8235 {
8236 if (HAS_PCH_LPT_LP(dev_priv)) {
8237 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
8238
8239 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8240 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8241 }
8242 }
8243
8244 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
8245 int general_prio_credits,
8246 int high_prio_credits)
8247 {
8248 u32 misccpctl;
8249
8250 /* WaTempDisableDOPClkGating:bdw */
8251 misccpctl = I915_READ(GEN7_MISCCPCTL);
8252 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
8253
8254 I915_WRITE(GEN8_L3SQCREG1,
8255 L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
8256 L3_HIGH_PRIO_CREDITS(high_prio_credits));
8257
8258 /*
8259 * Wait at least 100 clocks before re-enabling clock gating.
8260 * See the definition of L3SQCREG1 in BSpec.
8261 */
8262 POSTING_READ(GEN8_L3SQCREG1);
8263 udelay(1);
8264 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
8265 }
8266
8267 static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8268 {
8269 /* This is not an Wa. Enable for better image quality */
8270 I915_WRITE(_3D_CHICKEN3,
8271 _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
8272
8273 /* WaEnableChickenDCPR:cnl */
8274 I915_WRITE(GEN8_CHICKEN_DCPR_1,
8275 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
8276
8277 /* WaFbcWakeMemOn:cnl */
8278 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
8279 DISP_FBC_MEMORY_WAKE);
8280
8281 /* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
8282 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
8283 I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE,
8284 I915_READ(SLICE_UNIT_LEVEL_CLKGATE) |
8285 SARBUNIT_CLKGATE_DIS);
8286 }
8287
8288 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
8289 {
8290 gen9_init_clock_gating(dev_priv);
8291
8292 /* WaDisableSDEUnitClockGating:kbl */
8293 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8294 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8295 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8296
8297 /* WaDisableGamClockGating:kbl */
8298 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8299 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
8300 GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8301
8302 /* WaFbcNukeOnHostModify:kbl,cfl */
8303 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8304 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8305 }
8306
8307 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
8308 {
8309 gen9_init_clock_gating(dev_priv);
8310
8311 /* WAC6entrylatency:skl */
8312 I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
8313 FBC_LLC_FULLY_OPEN);
8314
8315 /* WaFbcNukeOnHostModify:skl */
8316 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8317 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8318 }
8319
8320 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
8321 {
8322 enum pipe pipe;
8323
8324 ilk_init_lp_watermarks(dev_priv);
8325
8326 /* WaSwitchSolVfFArbitrationPriority:bdw */
8327 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8328
8329 /* WaPsrDPAMaskVBlankInSRD:bdw */
8330 I915_WRITE(CHICKEN_PAR1_1,
8331 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
8332
8333 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8334 for_each_pipe(dev_priv, pipe) {
8335 I915_WRITE(CHICKEN_PIPESL_1(pipe),
8336 I915_READ(CHICKEN_PIPESL_1(pipe)) |
8337 BDW_DPRS_MASK_VBLANK_SRD);
8338 }
8339
8340 /* WaVSRefCountFullforceMissDisable:bdw */
8341 /* WaDSRefCountFullforceMissDisable:bdw */
8342 I915_WRITE(GEN7_FF_THREAD_MODE,
8343 I915_READ(GEN7_FF_THREAD_MODE) &
8344 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8345
8346 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
8347 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8348
8349 /* WaDisableSDEUnitClockGating:bdw */
8350 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8351 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8352
8353 /* WaProgramL3SqcReg1Default:bdw */
8354 gen8_set_l3sqc_credits(dev_priv, 30, 2);
8355
8356 /*
8357 * WaGttCachingOffByDefault:bdw
8358 * GTT cache may not work with big pages, so if those
8359 * are ever enabled GTT cache may need to be disabled.
8360 */
8361 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
8362
8363 /* WaKVMNotificationOnConfigChange:bdw */
8364 I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
8365 | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
8366
8367 lpt_init_clock_gating(dev_priv);
8368
8369 /* WaDisableDopClockGating:bdw
8370 *
8371 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
8372 * clock gating.
8373 */
8374 I915_WRITE(GEN6_UCGCTL1,
8375 I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
8376 }
8377
8378 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
8379 {
8380 ilk_init_lp_watermarks(dev_priv);
8381
8382 /* L3 caching of data atomics doesn't work -- disable it. */
8383 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
8384 I915_WRITE(HSW_ROW_CHICKEN3,
8385 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
8386
8387 /* This is required by WaCatErrorRejectionIssue:hsw */
8388 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8389 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8390 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8391
8392 /* WaVSRefCountFullforceMissDisable:hsw */
8393 I915_WRITE(GEN7_FF_THREAD_MODE,
8394 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8395
8396 /* WaDisable_RenderCache_OperationalFlush:hsw */
8397 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8398
8399 /* enable HiZ Raw Stall Optimization */
8400 I915_WRITE(CACHE_MODE_0_GEN7,
8401 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8402
8403 /* WaDisable4x2SubspanOptimization:hsw */
8404 I915_WRITE(CACHE_MODE_1,
8405 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8406
8407 /*
8408 * BSpec recommends 8x4 when MSAA is used,
8409 * however in practice 16x4 seems fastest.
8410 *
8411 * Note that PS/WM thread counts depend on the WIZ hashing
8412 * disable bit, which we don't touch here, but it's good
8413 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8414 */
8415 I915_WRITE(GEN7_GT_MODE,
8416 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8417
8418 /* WaSampleCChickenBitEnable:hsw */
8419 I915_WRITE(HALF_SLICE_CHICKEN3,
8420 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
8421
8422 /* WaSwitchSolVfFArbitrationPriority:hsw */
8423 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8424
8425 /* WaRsPkgCStateDisplayPMReq:hsw */
8426 I915_WRITE(CHICKEN_PAR1_1,
8427 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
8428
8429 lpt_init_clock_gating(dev_priv);
8430 }
8431
8432 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
8433 {
8434 uint32_t snpcr;
8435
8436 ilk_init_lp_watermarks(dev_priv);
8437
8438 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8439
8440 /* WaDisableEarlyCull:ivb */
8441 I915_WRITE(_3D_CHICKEN3,
8442 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8443
8444 /* WaDisableBackToBackFlipFix:ivb */
8445 I915_WRITE(IVB_CHICKEN3,
8446 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8447 CHICKEN3_DGMG_DONE_FIX_DISABLE);
8448
8449 /* WaDisablePSDDualDispatchEnable:ivb */
8450 if (IS_IVB_GT1(dev_priv))
8451 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8452 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8453
8454 /* WaDisable_RenderCache_OperationalFlush:ivb */
8455 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8456
8457 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8458 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8459 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8460
8461 /* WaApplyL3ControlAndL3ChickenMode:ivb */
8462 I915_WRITE(GEN7_L3CNTLREG1,
8463 GEN7_WA_FOR_GEN7_L3_CONTROL);
8464 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8465 GEN7_WA_L3_CHICKEN_MODE);
8466 if (IS_IVB_GT1(dev_priv))
8467 I915_WRITE(GEN7_ROW_CHICKEN2,
8468 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8469 else {
8470 /* must write both registers */
8471 I915_WRITE(GEN7_ROW_CHICKEN2,
8472 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8473 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
8474 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8475 }
8476
8477 /* WaForceL3Serialization:ivb */
8478 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
8479 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
8480
8481 /*
8482 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8483 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8484 */
8485 I915_WRITE(GEN6_UCGCTL2,
8486 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8487
8488 /* This is required by WaCatErrorRejectionIssue:ivb */
8489 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8490 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8491 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8492
8493 g4x_disable_trickle_feed(dev_priv);
8494
8495 gen7_setup_fixed_func_scheduler(dev_priv);
8496
8497 if (0) { /* causes HiZ corruption on ivb:gt1 */
8498 /* enable HiZ Raw Stall Optimization */
8499 I915_WRITE(CACHE_MODE_0_GEN7,
8500 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8501 }
8502
8503 /* WaDisable4x2SubspanOptimization:ivb */
8504 I915_WRITE(CACHE_MODE_1,
8505 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8506
8507 /*
8508 * BSpec recommends 8x4 when MSAA is used,
8509 * however in practice 16x4 seems fastest.
8510 *
8511 * Note that PS/WM thread counts depend on the WIZ hashing
8512 * disable bit, which we don't touch here, but it's good
8513 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8514 */
8515 I915_WRITE(GEN7_GT_MODE,
8516 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8517
8518 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
8519 snpcr &= ~GEN6_MBC_SNPCR_MASK;
8520 snpcr |= GEN6_MBC_SNPCR_MED;
8521 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
8522
8523 if (!HAS_PCH_NOP(dev_priv))
8524 cpt_init_clock_gating(dev_priv);
8525
8526 gen6_check_mch_setup(dev_priv);
8527 }
8528
8529 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
8530 {
8531 /* WaDisableEarlyCull:vlv */
8532 I915_WRITE(_3D_CHICKEN3,
8533 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8534
8535 /* WaDisableBackToBackFlipFix:vlv */
8536 I915_WRITE(IVB_CHICKEN3,
8537 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8538 CHICKEN3_DGMG_DONE_FIX_DISABLE);
8539
8540 /* WaPsdDispatchEnable:vlv */
8541 /* WaDisablePSDDualDispatchEnable:vlv */
8542 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8543 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
8544 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8545
8546 /* WaDisable_RenderCache_OperationalFlush:vlv */
8547 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8548
8549 /* WaForceL3Serialization:vlv */
8550 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
8551 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
8552
8553 /* WaDisableDopClockGating:vlv */
8554 I915_WRITE(GEN7_ROW_CHICKEN2,
8555 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8556
8557 /* This is required by WaCatErrorRejectionIssue:vlv */
8558 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8559 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8560 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8561
8562 gen7_setup_fixed_func_scheduler(dev_priv);
8563
8564 /*
8565 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8566 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
8567 */
8568 I915_WRITE(GEN6_UCGCTL2,
8569 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8570
8571 /* WaDisableL3Bank2xClockGate:vlv
8572 * Disabling L3 clock gating- MMIO 940c[25] = 1
8573 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
8574 I915_WRITE(GEN7_UCGCTL4,
8575 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
8576
8577 /*
8578 * BSpec says this must be set, even though
8579 * WaDisable4x2SubspanOptimization isn't listed for VLV.
8580 */
8581 I915_WRITE(CACHE_MODE_1,
8582 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8583
8584 /*
8585 * BSpec recommends 8x4 when MSAA is used,
8586 * however in practice 16x4 seems fastest.
8587 *
8588 * Note that PS/WM thread counts depend on the WIZ hashing
8589 * disable bit, which we don't touch here, but it's good
8590 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8591 */
8592 I915_WRITE(GEN7_GT_MODE,
8593 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8594
8595 /*
8596 * WaIncreaseL3CreditsForVLVB0:vlv
8597 * This is the hardware default actually.
8598 */
8599 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
8600
8601 /*
8602 * WaDisableVLVClockGating_VBIIssue:vlv
8603 * Disable clock gating on th GCFG unit to prevent a delay
8604 * in the reporting of vblank events.
8605 */
8606 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
8607 }
8608
8609 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
8610 {
8611 /* WaVSRefCountFullforceMissDisable:chv */
8612 /* WaDSRefCountFullforceMissDisable:chv */
8613 I915_WRITE(GEN7_FF_THREAD_MODE,
8614 I915_READ(GEN7_FF_THREAD_MODE) &
8615 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8616
8617 /* WaDisableSemaphoreAndSyncFlipWait:chv */
8618 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
8619 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8620
8621 /* WaDisableCSUnitClockGating:chv */
8622 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
8623 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8624
8625 /* WaDisableSDEUnitClockGating:chv */
8626 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8627 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8628
8629 /*
8630 * WaProgramL3SqcReg1Default:chv
8631 * See gfxspecs/Related Documents/Performance Guide/
8632 * LSQC Setting Recommendations.
8633 */
8634 gen8_set_l3sqc_credits(dev_priv, 38, 2);
8635
8636 /*
8637 * GTT cache may not work with big pages, so if those
8638 * are ever enabled GTT cache may need to be disabled.
8639 */
8640 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
8641 }
8642
8643 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
8644 {
8645 uint32_t dspclk_gate;
8646
8647 I915_WRITE(RENCLK_GATE_D1, 0);
8648 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8649 GS_UNIT_CLOCK_GATE_DISABLE |
8650 CL_UNIT_CLOCK_GATE_DISABLE);
8651 I915_WRITE(RAMCLK_GATE_D, 0);
8652 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8653 OVRUNIT_CLOCK_GATE_DISABLE |
8654 OVCUNIT_CLOCK_GATE_DISABLE;
8655 if (IS_GM45(dev_priv))
8656 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8657 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8658
8659 /* WaDisableRenderCachePipelinedFlush */
8660 I915_WRITE(CACHE_MODE_0,
8661 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8662
8663 /* WaDisable_RenderCache_OperationalFlush:g4x */
8664 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8665
8666 g4x_disable_trickle_feed(dev_priv);
8667 }
8668
8669 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
8670 {
8671 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8672 I915_WRITE(RENCLK_GATE_D2, 0);
8673 I915_WRITE(DSPCLK_GATE_D, 0);
8674 I915_WRITE(RAMCLK_GATE_D, 0);
8675 I915_WRITE16(DEUC, 0);
8676 I915_WRITE(MI_ARB_STATE,
8677 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8678
8679 /* WaDisable_RenderCache_OperationalFlush:gen4 */
8680 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8681 }
8682
8683 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
8684 {
8685 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8686 I965_RCC_CLOCK_GATE_DISABLE |
8687 I965_RCPB_CLOCK_GATE_DISABLE |
8688 I965_ISC_CLOCK_GATE_DISABLE |
8689 I965_FBC_CLOCK_GATE_DISABLE);
8690 I915_WRITE(RENCLK_GATE_D2, 0);
8691 I915_WRITE(MI_ARB_STATE,
8692 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8693
8694 /* WaDisable_RenderCache_OperationalFlush:gen4 */
8695 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8696 }
8697
8698 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
8699 {
8700 u32 dstate = I915_READ(D_STATE);
8701
8702 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8703 DSTATE_DOT_CLOCK_GATING;
8704 I915_WRITE(D_STATE, dstate);
8705
8706 if (IS_PINEVIEW(dev_priv))
8707 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
8708
8709 /* IIR "flip pending" means done if this bit is set */
8710 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
8711
8712 /* interrupts should cause a wake up from C3 */
8713 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
8714
8715 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
8716 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
8717
8718 I915_WRITE(MI_ARB_STATE,
8719 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
8720 }
8721
8722 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
8723 {
8724 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8725
8726 /* interrupts should cause a wake up from C3 */
8727 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
8728 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
8729
8730 I915_WRITE(MEM_MODE,
8731 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
8732 }
8733
8734 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
8735 {
8736 I915_WRITE(MEM_MODE,
8737 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
8738 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
8739 }
8740
8741 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
8742 {
8743 dev_priv->display.init_clock_gating(dev_priv);
8744 }
8745
8746 void intel_suspend_hw(struct drm_i915_private *dev_priv)
8747 {
8748 if (HAS_PCH_LPT(dev_priv))
8749 lpt_suspend_hw(dev_priv);
8750 }
8751
8752 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
8753 {
8754 DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
8755 }
8756
8757 /**
8758 * intel_init_clock_gating_hooks - setup the clock gating hooks
8759 * @dev_priv: device private
8760 *
8761 * Setup the hooks that configure which clocks of a given platform can be
8762 * gated and also apply various GT and display specific workarounds for these
8763 * platforms. Note that some GT specific workarounds are applied separately
8764 * when GPU contexts or batchbuffers start their execution.
8765 */
8766 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
8767 {
8768 if (IS_CANNONLAKE(dev_priv))
8769 dev_priv->display.init_clock_gating = cnl_init_clock_gating;
8770 else if (IS_SKYLAKE(dev_priv))
8771 dev_priv->display.init_clock_gating = skl_init_clock_gating;
8772 else if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
8773 dev_priv->display.init_clock_gating = kbl_init_clock_gating;
8774 else if (IS_BROXTON(dev_priv))
8775 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
8776 else if (IS_GEMINILAKE(dev_priv))
8777 dev_priv->display.init_clock_gating = glk_init_clock_gating;
8778 else if (IS_BROADWELL(dev_priv))
8779 dev_priv->display.init_clock_gating = bdw_init_clock_gating;
8780 else if (IS_CHERRYVIEW(dev_priv))
8781 dev_priv->display.init_clock_gating = chv_init_clock_gating;
8782 else if (IS_HASWELL(dev_priv))
8783 dev_priv->display.init_clock_gating = hsw_init_clock_gating;
8784 else if (IS_IVYBRIDGE(dev_priv))
8785 dev_priv->display.init_clock_gating = ivb_init_clock_gating;
8786 else if (IS_VALLEYVIEW(dev_priv))
8787 dev_priv->display.init_clock_gating = vlv_init_clock_gating;
8788 else if (IS_GEN6(dev_priv))
8789 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
8790 else if (IS_GEN5(dev_priv))
8791 dev_priv->display.init_clock_gating = ilk_init_clock_gating;
8792 else if (IS_G4X(dev_priv))
8793 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8794 else if (IS_I965GM(dev_priv))
8795 dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
8796 else if (IS_I965G(dev_priv))
8797 dev_priv->display.init_clock_gating = i965g_init_clock_gating;
8798 else if (IS_GEN3(dev_priv))
8799 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8800 else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
8801 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8802 else if (IS_GEN2(dev_priv))
8803 dev_priv->display.init_clock_gating = i830_init_clock_gating;
8804 else {
8805 MISSING_CASE(INTEL_DEVID(dev_priv));
8806 dev_priv->display.init_clock_gating = nop_init_clock_gating;
8807 }
8808 }
8809
8810 /* Set up chip specific power management-related functions */
8811 void intel_init_pm(struct drm_i915_private *dev_priv)
8812 {
8813 intel_fbc_init(dev_priv);
8814
8815 /* For cxsr */
8816 if (IS_PINEVIEW(dev_priv))
8817 i915_pineview_get_mem_freq(dev_priv);
8818 else if (IS_GEN5(dev_priv))
8819 i915_ironlake_get_mem_freq(dev_priv);
8820
8821 /* For FIFO watermark updates */
8822 if (INTEL_GEN(dev_priv) >= 9) {
8823 skl_setup_wm_latency(dev_priv);
8824 dev_priv->display.initial_watermarks = skl_initial_wm;
8825 dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
8826 dev_priv->display.compute_global_watermarks = skl_compute_wm;
8827 } else if (HAS_PCH_SPLIT(dev_priv)) {
8828 ilk_setup_wm_latency(dev_priv);
8829
8830 if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
8831 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
8832 (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
8833 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
8834 dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
8835 dev_priv->display.compute_intermediate_wm =
8836 ilk_compute_intermediate_wm;
8837 dev_priv->display.initial_watermarks =
8838 ilk_initial_watermarks;
8839 dev_priv->display.optimize_watermarks =
8840 ilk_optimize_watermarks;
8841 } else {
8842 DRM_DEBUG_KMS("Failed to read display plane latency. "
8843 "Disable CxSR\n");
8844 }
8845 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8846 vlv_setup_wm_latency(dev_priv);
8847 dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
8848 dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
8849 dev_priv->display.initial_watermarks = vlv_initial_watermarks;
8850 dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
8851 dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
8852 } else if (IS_G4X(dev_priv)) {
8853 g4x_setup_wm_latency(dev_priv);
8854 dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
8855 dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
8856 dev_priv->display.initial_watermarks = g4x_initial_watermarks;
8857 dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
8858 } else if (IS_PINEVIEW(dev_priv)) {
8859 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
8860 dev_priv->is_ddr3,
8861 dev_priv->fsb_freq,
8862 dev_priv->mem_freq)) {
8863 DRM_INFO("failed to find known CxSR latency "
8864 "(found ddr%s fsb freq %d, mem freq %d), "
8865 "disabling CxSR\n",
8866 (dev_priv->is_ddr3 == 1) ? "3" : "2",
8867 dev_priv->fsb_freq, dev_priv->mem_freq);
8868 /* Disable CxSR and never update its watermark again */
8869 intel_set_memory_cxsr(dev_priv, false);
8870 dev_priv->display.update_wm = NULL;
8871 } else
8872 dev_priv->display.update_wm = pineview_update_wm;
8873 } else if (IS_GEN4(dev_priv)) {
8874 dev_priv->display.update_wm = i965_update_wm;
8875 } else if (IS_GEN3(dev_priv)) {
8876 dev_priv->display.update_wm = i9xx_update_wm;
8877 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8878 } else if (IS_GEN2(dev_priv)) {
8879 if (INTEL_INFO(dev_priv)->num_pipes == 1) {
8880 dev_priv->display.update_wm = i845_update_wm;
8881 dev_priv->display.get_fifo_size = i845_get_fifo_size;
8882 } else {
8883 dev_priv->display.update_wm = i9xx_update_wm;
8884 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8885 }
8886 } else {
8887 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
8888 }
8889 }
8890
8891 static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
8892 {
8893 uint32_t flags =
8894 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
8895
8896 switch (flags) {
8897 case GEN6_PCODE_SUCCESS:
8898 return 0;
8899 case GEN6_PCODE_UNIMPLEMENTED_CMD:
8900 return -ENODEV;
8901 case GEN6_PCODE_ILLEGAL_CMD:
8902 return -ENXIO;
8903 case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8904 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8905 return -EOVERFLOW;
8906 case GEN6_PCODE_TIMEOUT:
8907 return -ETIMEDOUT;
8908 default:
8909 MISSING_CASE(flags);
8910 return 0;
8911 }
8912 }
8913
8914 static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
8915 {
8916 uint32_t flags =
8917 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
8918
8919 switch (flags) {
8920 case GEN6_PCODE_SUCCESS:
8921 return 0;
8922 case GEN6_PCODE_ILLEGAL_CMD:
8923 return -ENXIO;
8924 case GEN7_PCODE_TIMEOUT:
8925 return -ETIMEDOUT;
8926 case GEN7_PCODE_ILLEGAL_DATA:
8927 return -EINVAL;
8928 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
8929 return -EOVERFLOW;
8930 default:
8931 MISSING_CASE(flags);
8932 return 0;
8933 }
8934 }
8935
8936 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
8937 {
8938 int status;
8939
8940 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
8941
8942 /* GEN6_PCODE_* are outside of the forcewake domain, we can
8943 * use te fw I915_READ variants to reduce the amount of work
8944 * required when reading/writing.
8945 */
8946
8947 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
8948 DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
8949 mbox, __builtin_return_address(0));
8950 return -EAGAIN;
8951 }
8952
8953 I915_WRITE_FW(GEN6_PCODE_DATA, *val);
8954 I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
8955 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
8956
8957 if (__intel_wait_for_register_fw(dev_priv,
8958 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
8959 500, 0, NULL)) {
8960 DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
8961 mbox, __builtin_return_address(0));
8962 return -ETIMEDOUT;
8963 }
8964
8965 *val = I915_READ_FW(GEN6_PCODE_DATA);
8966 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
8967
8968 if (INTEL_GEN(dev_priv) > 6)
8969 status = gen7_check_mailbox_status(dev_priv);
8970 else
8971 status = gen6_check_mailbox_status(dev_priv);
8972
8973 if (status) {
8974 DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
8975 mbox, __builtin_return_address(0), status);
8976 return status;
8977 }
8978
8979 return 0;
8980 }
8981
8982 int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
8983 u32 mbox, u32 val)
8984 {
8985 int status;
8986
8987 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
8988
8989 /* GEN6_PCODE_* are outside of the forcewake domain, we can
8990 * use te fw I915_READ variants to reduce the amount of work
8991 * required when reading/writing.
8992 */
8993
8994 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
8995 DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
8996 val, mbox, __builtin_return_address(0));
8997 return -EAGAIN;
8998 }
8999
9000 I915_WRITE_FW(GEN6_PCODE_DATA, val);
9001 I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9002 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9003
9004 if (__intel_wait_for_register_fw(dev_priv,
9005 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9006 500, 0, NULL)) {
9007 DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
9008 val, mbox, __builtin_return_address(0));
9009 return -ETIMEDOUT;
9010 }
9011
9012 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9013
9014 if (INTEL_GEN(dev_priv) > 6)
9015 status = gen7_check_mailbox_status(dev_priv);
9016 else
9017 status = gen6_check_mailbox_status(dev_priv);
9018
9019 if (status) {
9020 DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
9021 val, mbox, __builtin_return_address(0), status);
9022 return status;
9023 }
9024
9025 return 0;
9026 }
9027
9028 static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
9029 u32 request, u32 reply_mask, u32 reply,
9030 u32 *status)
9031 {
9032 u32 val = request;
9033
9034 *status = sandybridge_pcode_read(dev_priv, mbox, &val);
9035
9036 return *status || ((val & reply_mask) == reply);
9037 }
9038
9039 /**
9040 * skl_pcode_request - send PCODE request until acknowledgment
9041 * @dev_priv: device private
9042 * @mbox: PCODE mailbox ID the request is targeted for
9043 * @request: request ID
9044 * @reply_mask: mask used to check for request acknowledgment
9045 * @reply: value used to check for request acknowledgment
9046 * @timeout_base_ms: timeout for polling with preemption enabled
9047 *
9048 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9049 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9050 * The request is acknowledged once the PCODE reply dword equals @reply after
9051 * applying @reply_mask. Polling is first attempted with preemption enabled
9052 * for @timeout_base_ms and if this times out for another 50 ms with
9053 * preemption disabled.
9054 *
9055 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
9056 * other error as reported by PCODE.
9057 */
9058 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
9059 u32 reply_mask, u32 reply, int timeout_base_ms)
9060 {
9061 u32 status;
9062 int ret;
9063
9064 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
9065
9066 #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
9067 &status)
9068
9069 /*
9070 * Prime the PCODE by doing a request first. Normally it guarantees
9071 * that a subsequent request, at most @timeout_base_ms later, succeeds.
9072 * _wait_for() doesn't guarantee when its passed condition is evaluated
9073 * first, so send the first request explicitly.
9074 */
9075 if (COND) {
9076 ret = 0;
9077 goto out;
9078 }
9079 ret = _wait_for(COND, timeout_base_ms * 1000, 10);
9080 if (!ret)
9081 goto out;
9082
9083 /*
9084 * The above can time out if the number of requests was low (2 in the
9085 * worst case) _and_ PCODE was busy for some reason even after a
9086 * (queued) request and @timeout_base_ms delay. As a workaround retry
9087 * the poll with preemption disabled to maximize the number of
9088 * requests. Increase the timeout from @timeout_base_ms to 50ms to
9089 * account for interrupts that could reduce the number of these
9090 * requests, and for any quirks of the PCODE firmware that delays
9091 * the request completion.
9092 */
9093 DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
9094 WARN_ON_ONCE(timeout_base_ms > 3);
9095 preempt_disable();
9096 ret = wait_for_atomic(COND, 50);
9097 preempt_enable();
9098
9099 out:
9100 return ret ? ret : status;
9101 #undef COND
9102 }
9103
9104 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
9105 {
9106 /*
9107 * N = val - 0xb7
9108 * Slow = Fast = GPLL ref * N
9109 */
9110 return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
9111 }
9112
9113 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9114 {
9115 return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
9116 }
9117
9118 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9119 {
9120 /*
9121 * N = val / 2
9122 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
9123 */
9124 return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
9125 }
9126
9127 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9128 {
9129 /* CHV needs even values */
9130 return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
9131 }
9132
9133 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9134 {
9135 if (INTEL_GEN(dev_priv) >= 9)
9136 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
9137 GEN9_FREQ_SCALER);
9138 else if (IS_CHERRYVIEW(dev_priv))
9139 return chv_gpu_freq(dev_priv, val);
9140 else if (IS_VALLEYVIEW(dev_priv))
9141 return byt_gpu_freq(dev_priv, val);
9142 else
9143 return val * GT_FREQUENCY_MULTIPLIER;
9144 }
9145
9146 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
9147 {
9148 if (INTEL_GEN(dev_priv) >= 9)
9149 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
9150 GT_FREQUENCY_MULTIPLIER);
9151 else if (IS_CHERRYVIEW(dev_priv))
9152 return chv_freq_opcode(dev_priv, val);
9153 else if (IS_VALLEYVIEW(dev_priv))
9154 return byt_freq_opcode(dev_priv, val);
9155 else
9156 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9157 }
9158
9159 void intel_pm_setup(struct drm_i915_private *dev_priv)
9160 {
9161 mutex_init(&dev_priv->rps.hw_lock);
9162
9163 INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
9164 __intel_autoenable_gt_powersave);
9165 atomic_set(&dev_priv->rps.num_waiters, 0);
9166
9167 dev_priv->pm.suspended = false;
9168 atomic_set(&dev_priv->pm.wakeref_count, 0);
9169 }
9170
9171 static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
9172 const i915_reg_t reg)
9173 {
9174 u32 lower, upper, tmp;
9175 int loop = 2;
9176
9177 /* The register accessed do not need forcewake. We borrow
9178 * uncore lock to prevent concurrent access to range reg.
9179 */
9180 spin_lock_irq(&dev_priv->uncore.lock);
9181
9182 /* vlv and chv residency counters are 40 bits in width.
9183 * With a control bit, we can choose between upper or lower
9184 * 32bit window into this counter.
9185 *
9186 * Although we always use the counter in high-range mode elsewhere,
9187 * userspace may attempt to read the value before rc6 is initialised,
9188 * before we have set the default VLV_COUNTER_CONTROL value. So always
9189 * set the high bit to be safe.
9190 */
9191 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9192 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9193 upper = I915_READ_FW(reg);
9194 do {
9195 tmp = upper;
9196
9197 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9198 _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
9199 lower = I915_READ_FW(reg);
9200
9201 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9202 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9203 upper = I915_READ_FW(reg);
9204 } while (upper != tmp && --loop);
9205
9206 /* Everywhere else we always use VLV_COUNTER_CONTROL with the
9207 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
9208 * now.
9209 */
9210
9211 spin_unlock_irq(&dev_priv->uncore.lock);
9212
9213 return lower | (u64)upper << 8;
9214 }
9215
9216 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
9217 const i915_reg_t reg)
9218 {
9219 u64 time_hw, units, div;
9220
9221 if (!intel_enable_rc6())
9222 return 0;
9223
9224 intel_runtime_pm_get(dev_priv);
9225
9226 /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
9227 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9228 units = 1000;
9229 div = dev_priv->czclk_freq;
9230
9231 time_hw = vlv_residency_raw(dev_priv, reg);
9232 } else if (IS_GEN9_LP(dev_priv)) {
9233 units = 1000;
9234 div = 1200; /* 833.33ns */
9235
9236 time_hw = I915_READ(reg);
9237 } else {
9238 units = 128000; /* 1.28us */
9239 div = 100000;
9240
9241 time_hw = I915_READ(reg);
9242 }
9243
9244 intel_runtime_pm_put(dev_priv);
9245 return DIV_ROUND_UP_ULL(time_hw * units, div);
9246 }