]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/intel_pm.c
Merge tag 'drm-intel-next-2015-02-27' of git://anongit.freedesktop.org/drm-intel...
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /**
35 * RC6 is a special power stage which allows the GPU to enter an very
36 * low-voltage mode when idle, using down to 0V while at this stage. This
37 * stage is entered automatically when the GPU is idle when RC6 support is
38 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39 *
40 * There are different RC6 modes available in Intel GPU, which differentiate
41 * among each other with the latency required to enter and leave RC6 and
42 * voltage consumed by the GPU in different states.
43 *
44 * The combination of the following flags define which states GPU is allowed
45 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46 * RC6pp is deepest RC6. Their support by hardware varies according to the
47 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48 * which brings the most power savings; deeper states save more power, but
49 * require higher latency to switch to and wake up.
50 */
51 #define INTEL_RC6_ENABLE (1<<0)
52 #define INTEL_RC6p_ENABLE (1<<1)
53 #define INTEL_RC6pp_ENABLE (1<<2)
54
55 static void gen9_init_clock_gating(struct drm_device *dev)
56 {
57 struct drm_i915_private *dev_priv = dev->dev_private;
58
59 /* WaEnableLbsSlaRetryTimerDecrement:skl */
60 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
61 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
62 }
63
64 static void skl_init_clock_gating(struct drm_device *dev)
65 {
66 struct drm_i915_private *dev_priv = dev->dev_private;
67
68 gen9_init_clock_gating(dev);
69
70 if (INTEL_REVID(dev) == SKL_REVID_A0) {
71 /*
72 * WaDisableSDEUnitClockGating:skl
73 * WaSetGAPSunitClckGateDisable:skl
74 */
75 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
76 GEN8_GAPSUNIT_CLOCK_GATE_DISABLE |
77 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
78 }
79
80 if (INTEL_REVID(dev) <= SKL_REVID_D0) {
81 /* WaDisableHDCInvalidation:skl */
82 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
83 BDW_DISABLE_HDC_INVALIDATION);
84
85 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
86 I915_WRITE(FF_SLICE_CS_CHICKEN2,
87 I915_READ(FF_SLICE_CS_CHICKEN2) |
88 GEN9_TSG_BARRIER_ACK_DISABLE);
89 }
90
91 if (INTEL_REVID(dev) <= SKL_REVID_E0)
92 /* WaDisableLSQCROPERFforOCL:skl */
93 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
94 GEN8_LQSC_RO_PERF_DIS);
95 }
96
97 static void i915_pineview_get_mem_freq(struct drm_device *dev)
98 {
99 struct drm_i915_private *dev_priv = dev->dev_private;
100 u32 tmp;
101
102 tmp = I915_READ(CLKCFG);
103
104 switch (tmp & CLKCFG_FSB_MASK) {
105 case CLKCFG_FSB_533:
106 dev_priv->fsb_freq = 533; /* 133*4 */
107 break;
108 case CLKCFG_FSB_800:
109 dev_priv->fsb_freq = 800; /* 200*4 */
110 break;
111 case CLKCFG_FSB_667:
112 dev_priv->fsb_freq = 667; /* 167*4 */
113 break;
114 case CLKCFG_FSB_400:
115 dev_priv->fsb_freq = 400; /* 100*4 */
116 break;
117 }
118
119 switch (tmp & CLKCFG_MEM_MASK) {
120 case CLKCFG_MEM_533:
121 dev_priv->mem_freq = 533;
122 break;
123 case CLKCFG_MEM_667:
124 dev_priv->mem_freq = 667;
125 break;
126 case CLKCFG_MEM_800:
127 dev_priv->mem_freq = 800;
128 break;
129 }
130
131 /* detect pineview DDR3 setting */
132 tmp = I915_READ(CSHRDDR3CTL);
133 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
134 }
135
136 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
137 {
138 struct drm_i915_private *dev_priv = dev->dev_private;
139 u16 ddrpll, csipll;
140
141 ddrpll = I915_READ16(DDRMPLL1);
142 csipll = I915_READ16(CSIPLL0);
143
144 switch (ddrpll & 0xff) {
145 case 0xc:
146 dev_priv->mem_freq = 800;
147 break;
148 case 0x10:
149 dev_priv->mem_freq = 1066;
150 break;
151 case 0x14:
152 dev_priv->mem_freq = 1333;
153 break;
154 case 0x18:
155 dev_priv->mem_freq = 1600;
156 break;
157 default:
158 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
159 ddrpll & 0xff);
160 dev_priv->mem_freq = 0;
161 break;
162 }
163
164 dev_priv->ips.r_t = dev_priv->mem_freq;
165
166 switch (csipll & 0x3ff) {
167 case 0x00c:
168 dev_priv->fsb_freq = 3200;
169 break;
170 case 0x00e:
171 dev_priv->fsb_freq = 3733;
172 break;
173 case 0x010:
174 dev_priv->fsb_freq = 4266;
175 break;
176 case 0x012:
177 dev_priv->fsb_freq = 4800;
178 break;
179 case 0x014:
180 dev_priv->fsb_freq = 5333;
181 break;
182 case 0x016:
183 dev_priv->fsb_freq = 5866;
184 break;
185 case 0x018:
186 dev_priv->fsb_freq = 6400;
187 break;
188 default:
189 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
190 csipll & 0x3ff);
191 dev_priv->fsb_freq = 0;
192 break;
193 }
194
195 if (dev_priv->fsb_freq == 3200) {
196 dev_priv->ips.c_m = 0;
197 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
198 dev_priv->ips.c_m = 1;
199 } else {
200 dev_priv->ips.c_m = 2;
201 }
202 }
203
204 static const struct cxsr_latency cxsr_latency_table[] = {
205 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
206 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
207 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
208 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
209 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
210
211 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
212 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
213 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
214 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
215 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
216
217 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
218 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
219 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
220 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
221 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
222
223 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
224 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
225 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
226 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
227 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
228
229 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
230 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
231 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
232 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
233 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
234
235 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
236 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
237 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
238 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
239 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
240 };
241
242 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
243 int is_ddr3,
244 int fsb,
245 int mem)
246 {
247 const struct cxsr_latency *latency;
248 int i;
249
250 if (fsb == 0 || mem == 0)
251 return NULL;
252
253 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
254 latency = &cxsr_latency_table[i];
255 if (is_desktop == latency->is_desktop &&
256 is_ddr3 == latency->is_ddr3 &&
257 fsb == latency->fsb_freq && mem == latency->mem_freq)
258 return latency;
259 }
260
261 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
262
263 return NULL;
264 }
265
266 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
267 {
268 struct drm_device *dev = dev_priv->dev;
269 u32 val;
270
271 if (IS_VALLEYVIEW(dev)) {
272 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
273 } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
274 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
275 } else if (IS_PINEVIEW(dev)) {
276 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
277 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
278 I915_WRITE(DSPFW3, val);
279 } else if (IS_I945G(dev) || IS_I945GM(dev)) {
280 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
281 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
282 I915_WRITE(FW_BLC_SELF, val);
283 } else if (IS_I915GM(dev)) {
284 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
285 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
286 I915_WRITE(INSTPM, val);
287 } else {
288 return;
289 }
290
291 DRM_DEBUG_KMS("memory self-refresh is %s\n",
292 enable ? "enabled" : "disabled");
293 }
294
295 /*
296 * Latency for FIFO fetches is dependent on several factors:
297 * - memory configuration (speed, channels)
298 * - chipset
299 * - current MCH state
300 * It can be fairly high in some situations, so here we assume a fairly
301 * pessimal value. It's a tradeoff between extra memory fetches (if we
302 * set this value too high, the FIFO will fetch frequently to stay full)
303 * and power consumption (set it too low to save power and we might see
304 * FIFO underruns and display "flicker").
305 *
306 * A value of 5us seems to be a good balance; safe for very low end
307 * platforms but not overly aggressive on lower latency configs.
308 */
309 static const int pessimal_latency_ns = 5000;
310
311 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
312 {
313 struct drm_i915_private *dev_priv = dev->dev_private;
314 uint32_t dsparb = I915_READ(DSPARB);
315 int size;
316
317 size = dsparb & 0x7f;
318 if (plane)
319 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
320
321 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
322 plane ? "B" : "A", size);
323
324 return size;
325 }
326
327 static int i830_get_fifo_size(struct drm_device *dev, int plane)
328 {
329 struct drm_i915_private *dev_priv = dev->dev_private;
330 uint32_t dsparb = I915_READ(DSPARB);
331 int size;
332
333 size = dsparb & 0x1ff;
334 if (plane)
335 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
336 size >>= 1; /* Convert to cachelines */
337
338 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
339 plane ? "B" : "A", size);
340
341 return size;
342 }
343
344 static int i845_get_fifo_size(struct drm_device *dev, int plane)
345 {
346 struct drm_i915_private *dev_priv = dev->dev_private;
347 uint32_t dsparb = I915_READ(DSPARB);
348 int size;
349
350 size = dsparb & 0x7f;
351 size >>= 2; /* Convert to cachelines */
352
353 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
354 plane ? "B" : "A",
355 size);
356
357 return size;
358 }
359
360 /* Pineview has different values for various configs */
361 static const struct intel_watermark_params pineview_display_wm = {
362 .fifo_size = PINEVIEW_DISPLAY_FIFO,
363 .max_wm = PINEVIEW_MAX_WM,
364 .default_wm = PINEVIEW_DFT_WM,
365 .guard_size = PINEVIEW_GUARD_WM,
366 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
367 };
368 static const struct intel_watermark_params pineview_display_hplloff_wm = {
369 .fifo_size = PINEVIEW_DISPLAY_FIFO,
370 .max_wm = PINEVIEW_MAX_WM,
371 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
372 .guard_size = PINEVIEW_GUARD_WM,
373 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
374 };
375 static const struct intel_watermark_params pineview_cursor_wm = {
376 .fifo_size = PINEVIEW_CURSOR_FIFO,
377 .max_wm = PINEVIEW_CURSOR_MAX_WM,
378 .default_wm = PINEVIEW_CURSOR_DFT_WM,
379 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
380 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
381 };
382 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
383 .fifo_size = PINEVIEW_CURSOR_FIFO,
384 .max_wm = PINEVIEW_CURSOR_MAX_WM,
385 .default_wm = PINEVIEW_CURSOR_DFT_WM,
386 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
387 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
388 };
389 static const struct intel_watermark_params g4x_wm_info = {
390 .fifo_size = G4X_FIFO_SIZE,
391 .max_wm = G4X_MAX_WM,
392 .default_wm = G4X_MAX_WM,
393 .guard_size = 2,
394 .cacheline_size = G4X_FIFO_LINE_SIZE,
395 };
396 static const struct intel_watermark_params g4x_cursor_wm_info = {
397 .fifo_size = I965_CURSOR_FIFO,
398 .max_wm = I965_CURSOR_MAX_WM,
399 .default_wm = I965_CURSOR_DFT_WM,
400 .guard_size = 2,
401 .cacheline_size = G4X_FIFO_LINE_SIZE,
402 };
403 static const struct intel_watermark_params valleyview_wm_info = {
404 .fifo_size = VALLEYVIEW_FIFO_SIZE,
405 .max_wm = VALLEYVIEW_MAX_WM,
406 .default_wm = VALLEYVIEW_MAX_WM,
407 .guard_size = 2,
408 .cacheline_size = G4X_FIFO_LINE_SIZE,
409 };
410 static const struct intel_watermark_params valleyview_cursor_wm_info = {
411 .fifo_size = I965_CURSOR_FIFO,
412 .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
413 .default_wm = I965_CURSOR_DFT_WM,
414 .guard_size = 2,
415 .cacheline_size = G4X_FIFO_LINE_SIZE,
416 };
417 static const struct intel_watermark_params i965_cursor_wm_info = {
418 .fifo_size = I965_CURSOR_FIFO,
419 .max_wm = I965_CURSOR_MAX_WM,
420 .default_wm = I965_CURSOR_DFT_WM,
421 .guard_size = 2,
422 .cacheline_size = I915_FIFO_LINE_SIZE,
423 };
424 static const struct intel_watermark_params i945_wm_info = {
425 .fifo_size = I945_FIFO_SIZE,
426 .max_wm = I915_MAX_WM,
427 .default_wm = 1,
428 .guard_size = 2,
429 .cacheline_size = I915_FIFO_LINE_SIZE,
430 };
431 static const struct intel_watermark_params i915_wm_info = {
432 .fifo_size = I915_FIFO_SIZE,
433 .max_wm = I915_MAX_WM,
434 .default_wm = 1,
435 .guard_size = 2,
436 .cacheline_size = I915_FIFO_LINE_SIZE,
437 };
438 static const struct intel_watermark_params i830_a_wm_info = {
439 .fifo_size = I855GM_FIFO_SIZE,
440 .max_wm = I915_MAX_WM,
441 .default_wm = 1,
442 .guard_size = 2,
443 .cacheline_size = I830_FIFO_LINE_SIZE,
444 };
445 static const struct intel_watermark_params i830_bc_wm_info = {
446 .fifo_size = I855GM_FIFO_SIZE,
447 .max_wm = I915_MAX_WM/2,
448 .default_wm = 1,
449 .guard_size = 2,
450 .cacheline_size = I830_FIFO_LINE_SIZE,
451 };
452 static const struct intel_watermark_params i845_wm_info = {
453 .fifo_size = I830_FIFO_SIZE,
454 .max_wm = I915_MAX_WM,
455 .default_wm = 1,
456 .guard_size = 2,
457 .cacheline_size = I830_FIFO_LINE_SIZE,
458 };
459
460 /**
461 * intel_calculate_wm - calculate watermark level
462 * @clock_in_khz: pixel clock
463 * @wm: chip FIFO params
464 * @pixel_size: display pixel size
465 * @latency_ns: memory latency for the platform
466 *
467 * Calculate the watermark level (the level at which the display plane will
468 * start fetching from memory again). Each chip has a different display
469 * FIFO size and allocation, so the caller needs to figure that out and pass
470 * in the correct intel_watermark_params structure.
471 *
472 * As the pixel clock runs, the FIFO will be drained at a rate that depends
473 * on the pixel size. When it reaches the watermark level, it'll start
474 * fetching FIFO line sized based chunks from memory until the FIFO fills
475 * past the watermark point. If the FIFO drains completely, a FIFO underrun
476 * will occur, and a display engine hang could result.
477 */
478 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
479 const struct intel_watermark_params *wm,
480 int fifo_size,
481 int pixel_size,
482 unsigned long latency_ns)
483 {
484 long entries_required, wm_size;
485
486 /*
487 * Note: we need to make sure we don't overflow for various clock &
488 * latency values.
489 * clocks go from a few thousand to several hundred thousand.
490 * latency is usually a few thousand
491 */
492 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
493 1000;
494 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
495
496 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
497
498 wm_size = fifo_size - (entries_required + wm->guard_size);
499
500 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
501
502 /* Don't promote wm_size to unsigned... */
503 if (wm_size > (long)wm->max_wm)
504 wm_size = wm->max_wm;
505 if (wm_size <= 0)
506 wm_size = wm->default_wm;
507
508 /*
509 * Bspec seems to indicate that the value shouldn't be lower than
510 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
511 * Lets go for 8 which is the burst size since certain platforms
512 * already use a hardcoded 8 (which is what the spec says should be
513 * done).
514 */
515 if (wm_size <= 8)
516 wm_size = 8;
517
518 return wm_size;
519 }
520
521 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
522 {
523 struct drm_crtc *crtc, *enabled = NULL;
524
525 for_each_crtc(dev, crtc) {
526 if (intel_crtc_active(crtc)) {
527 if (enabled)
528 return NULL;
529 enabled = crtc;
530 }
531 }
532
533 return enabled;
534 }
535
536 static void pineview_update_wm(struct drm_crtc *unused_crtc)
537 {
538 struct drm_device *dev = unused_crtc->dev;
539 struct drm_i915_private *dev_priv = dev->dev_private;
540 struct drm_crtc *crtc;
541 const struct cxsr_latency *latency;
542 u32 reg;
543 unsigned long wm;
544
545 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
546 dev_priv->fsb_freq, dev_priv->mem_freq);
547 if (!latency) {
548 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
549 intel_set_memory_cxsr(dev_priv, false);
550 return;
551 }
552
553 crtc = single_enabled_crtc(dev);
554 if (crtc) {
555 const struct drm_display_mode *adjusted_mode;
556 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
557 int clock;
558
559 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
560 clock = adjusted_mode->crtc_clock;
561
562 /* Display SR */
563 wm = intel_calculate_wm(clock, &pineview_display_wm,
564 pineview_display_wm.fifo_size,
565 pixel_size, latency->display_sr);
566 reg = I915_READ(DSPFW1);
567 reg &= ~DSPFW_SR_MASK;
568 reg |= wm << DSPFW_SR_SHIFT;
569 I915_WRITE(DSPFW1, reg);
570 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
571
572 /* cursor SR */
573 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
574 pineview_display_wm.fifo_size,
575 pixel_size, latency->cursor_sr);
576 reg = I915_READ(DSPFW3);
577 reg &= ~DSPFW_CURSOR_SR_MASK;
578 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
579 I915_WRITE(DSPFW3, reg);
580
581 /* Display HPLL off SR */
582 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
583 pineview_display_hplloff_wm.fifo_size,
584 pixel_size, latency->display_hpll_disable);
585 reg = I915_READ(DSPFW3);
586 reg &= ~DSPFW_HPLL_SR_MASK;
587 reg |= wm & DSPFW_HPLL_SR_MASK;
588 I915_WRITE(DSPFW3, reg);
589
590 /* cursor HPLL off SR */
591 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
592 pineview_display_hplloff_wm.fifo_size,
593 pixel_size, latency->cursor_hpll_disable);
594 reg = I915_READ(DSPFW3);
595 reg &= ~DSPFW_HPLL_CURSOR_MASK;
596 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
597 I915_WRITE(DSPFW3, reg);
598 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
599
600 intel_set_memory_cxsr(dev_priv, true);
601 } else {
602 intel_set_memory_cxsr(dev_priv, false);
603 }
604 }
605
606 static bool g4x_compute_wm0(struct drm_device *dev,
607 int plane,
608 const struct intel_watermark_params *display,
609 int display_latency_ns,
610 const struct intel_watermark_params *cursor,
611 int cursor_latency_ns,
612 int *plane_wm,
613 int *cursor_wm)
614 {
615 struct drm_crtc *crtc;
616 const struct drm_display_mode *adjusted_mode;
617 int htotal, hdisplay, clock, pixel_size;
618 int line_time_us, line_count;
619 int entries, tlb_miss;
620
621 crtc = intel_get_crtc_for_plane(dev, plane);
622 if (!intel_crtc_active(crtc)) {
623 *cursor_wm = cursor->guard_size;
624 *plane_wm = display->guard_size;
625 return false;
626 }
627
628 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
629 clock = adjusted_mode->crtc_clock;
630 htotal = adjusted_mode->crtc_htotal;
631 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
632 pixel_size = crtc->primary->fb->bits_per_pixel / 8;
633
634 /* Use the small buffer method to calculate plane watermark */
635 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
636 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
637 if (tlb_miss > 0)
638 entries += tlb_miss;
639 entries = DIV_ROUND_UP(entries, display->cacheline_size);
640 *plane_wm = entries + display->guard_size;
641 if (*plane_wm > (int)display->max_wm)
642 *plane_wm = display->max_wm;
643
644 /* Use the large buffer method to calculate cursor watermark */
645 line_time_us = max(htotal * 1000 / clock, 1);
646 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
647 entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
648 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
649 if (tlb_miss > 0)
650 entries += tlb_miss;
651 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
652 *cursor_wm = entries + cursor->guard_size;
653 if (*cursor_wm > (int)cursor->max_wm)
654 *cursor_wm = (int)cursor->max_wm;
655
656 return true;
657 }
658
659 /*
660 * Check the wm result.
661 *
662 * If any calculated watermark values is larger than the maximum value that
663 * can be programmed into the associated watermark register, that watermark
664 * must be disabled.
665 */
666 static bool g4x_check_srwm(struct drm_device *dev,
667 int display_wm, int cursor_wm,
668 const struct intel_watermark_params *display,
669 const struct intel_watermark_params *cursor)
670 {
671 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
672 display_wm, cursor_wm);
673
674 if (display_wm > display->max_wm) {
675 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
676 display_wm, display->max_wm);
677 return false;
678 }
679
680 if (cursor_wm > cursor->max_wm) {
681 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
682 cursor_wm, cursor->max_wm);
683 return false;
684 }
685
686 if (!(display_wm || cursor_wm)) {
687 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
688 return false;
689 }
690
691 return true;
692 }
693
694 static bool g4x_compute_srwm(struct drm_device *dev,
695 int plane,
696 int latency_ns,
697 const struct intel_watermark_params *display,
698 const struct intel_watermark_params *cursor,
699 int *display_wm, int *cursor_wm)
700 {
701 struct drm_crtc *crtc;
702 const struct drm_display_mode *adjusted_mode;
703 int hdisplay, htotal, pixel_size, clock;
704 unsigned long line_time_us;
705 int line_count, line_size;
706 int small, large;
707 int entries;
708
709 if (!latency_ns) {
710 *display_wm = *cursor_wm = 0;
711 return false;
712 }
713
714 crtc = intel_get_crtc_for_plane(dev, plane);
715 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
716 clock = adjusted_mode->crtc_clock;
717 htotal = adjusted_mode->crtc_htotal;
718 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
719 pixel_size = crtc->primary->fb->bits_per_pixel / 8;
720
721 line_time_us = max(htotal * 1000 / clock, 1);
722 line_count = (latency_ns / line_time_us + 1000) / 1000;
723 line_size = hdisplay * pixel_size;
724
725 /* Use the minimum of the small and large buffer method for primary */
726 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
727 large = line_count * line_size;
728
729 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
730 *display_wm = entries + display->guard_size;
731
732 /* calculate the self-refresh watermark for display cursor */
733 entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
734 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
735 *cursor_wm = entries + cursor->guard_size;
736
737 return g4x_check_srwm(dev,
738 *display_wm, *cursor_wm,
739 display, cursor);
740 }
741
742 static bool vlv_compute_drain_latency(struct drm_crtc *crtc,
743 int pixel_size,
744 int *prec_mult,
745 int *drain_latency)
746 {
747 struct drm_device *dev = crtc->dev;
748 int entries;
749 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
750
751 if (WARN(clock == 0, "Pixel clock is zero!\n"))
752 return false;
753
754 if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
755 return false;
756
757 entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
758 if (IS_CHERRYVIEW(dev))
759 *prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_32 :
760 DRAIN_LATENCY_PRECISION_16;
761 else
762 *prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_64 :
763 DRAIN_LATENCY_PRECISION_32;
764 *drain_latency = (64 * (*prec_mult) * 4) / entries;
765
766 if (*drain_latency > DRAIN_LATENCY_MASK)
767 *drain_latency = DRAIN_LATENCY_MASK;
768
769 return true;
770 }
771
772 /*
773 * Update drain latency registers of memory arbiter
774 *
775 * Valleyview SoC has a new memory arbiter and needs drain latency registers
776 * to be programmed. Each plane has a drain latency multiplier and a drain
777 * latency value.
778 */
779
780 static void vlv_update_drain_latency(struct drm_crtc *crtc)
781 {
782 struct drm_device *dev = crtc->dev;
783 struct drm_i915_private *dev_priv = dev->dev_private;
784 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
785 int pixel_size;
786 int drain_latency;
787 enum pipe pipe = intel_crtc->pipe;
788 int plane_prec, prec_mult, plane_dl;
789 const int high_precision = IS_CHERRYVIEW(dev) ?
790 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_64;
791
792 plane_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_PLANE_PRECISION_HIGH |
793 DRAIN_LATENCY_MASK | DDL_CURSOR_PRECISION_HIGH |
794 (DRAIN_LATENCY_MASK << DDL_CURSOR_SHIFT));
795
796 if (!intel_crtc_active(crtc)) {
797 I915_WRITE(VLV_DDL(pipe), plane_dl);
798 return;
799 }
800
801 /* Primary plane Drain Latency */
802 pixel_size = crtc->primary->fb->bits_per_pixel / 8; /* BPP */
803 if (vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
804 plane_prec = (prec_mult == high_precision) ?
805 DDL_PLANE_PRECISION_HIGH :
806 DDL_PLANE_PRECISION_LOW;
807 plane_dl |= plane_prec | drain_latency;
808 }
809
810 /* Cursor Drain Latency
811 * BPP is always 4 for cursor
812 */
813 pixel_size = 4;
814
815 /* Program cursor DL only if it is enabled */
816 if (intel_crtc->cursor_base &&
817 vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
818 plane_prec = (prec_mult == high_precision) ?
819 DDL_CURSOR_PRECISION_HIGH :
820 DDL_CURSOR_PRECISION_LOW;
821 plane_dl |= plane_prec | (drain_latency << DDL_CURSOR_SHIFT);
822 }
823
824 I915_WRITE(VLV_DDL(pipe), plane_dl);
825 }
826
827 #define single_plane_enabled(mask) is_power_of_2(mask)
828
829 static void valleyview_update_wm(struct drm_crtc *crtc)
830 {
831 struct drm_device *dev = crtc->dev;
832 static const int sr_latency_ns = 12000;
833 struct drm_i915_private *dev_priv = dev->dev_private;
834 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
835 int plane_sr, cursor_sr;
836 int ignore_plane_sr, ignore_cursor_sr;
837 unsigned int enabled = 0;
838 bool cxsr_enabled;
839
840 vlv_update_drain_latency(crtc);
841
842 if (g4x_compute_wm0(dev, PIPE_A,
843 &valleyview_wm_info, pessimal_latency_ns,
844 &valleyview_cursor_wm_info, pessimal_latency_ns,
845 &planea_wm, &cursora_wm))
846 enabled |= 1 << PIPE_A;
847
848 if (g4x_compute_wm0(dev, PIPE_B,
849 &valleyview_wm_info, pessimal_latency_ns,
850 &valleyview_cursor_wm_info, pessimal_latency_ns,
851 &planeb_wm, &cursorb_wm))
852 enabled |= 1 << PIPE_B;
853
854 if (single_plane_enabled(enabled) &&
855 g4x_compute_srwm(dev, ffs(enabled) - 1,
856 sr_latency_ns,
857 &valleyview_wm_info,
858 &valleyview_cursor_wm_info,
859 &plane_sr, &ignore_cursor_sr) &&
860 g4x_compute_srwm(dev, ffs(enabled) - 1,
861 2*sr_latency_ns,
862 &valleyview_wm_info,
863 &valleyview_cursor_wm_info,
864 &ignore_plane_sr, &cursor_sr)) {
865 cxsr_enabled = true;
866 } else {
867 cxsr_enabled = false;
868 intel_set_memory_cxsr(dev_priv, false);
869 plane_sr = cursor_sr = 0;
870 }
871
872 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
873 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
874 planea_wm, cursora_wm,
875 planeb_wm, cursorb_wm,
876 plane_sr, cursor_sr);
877
878 I915_WRITE(DSPFW1,
879 (plane_sr << DSPFW_SR_SHIFT) |
880 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
881 (planeb_wm << DSPFW_PLANEB_SHIFT) |
882 (planea_wm << DSPFW_PLANEA_SHIFT));
883 I915_WRITE(DSPFW2,
884 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
885 (cursora_wm << DSPFW_CURSORA_SHIFT));
886 I915_WRITE(DSPFW3,
887 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
888 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
889
890 if (cxsr_enabled)
891 intel_set_memory_cxsr(dev_priv, true);
892 }
893
894 static void cherryview_update_wm(struct drm_crtc *crtc)
895 {
896 struct drm_device *dev = crtc->dev;
897 static const int sr_latency_ns = 12000;
898 struct drm_i915_private *dev_priv = dev->dev_private;
899 int planea_wm, planeb_wm, planec_wm;
900 int cursora_wm, cursorb_wm, cursorc_wm;
901 int plane_sr, cursor_sr;
902 int ignore_plane_sr, ignore_cursor_sr;
903 unsigned int enabled = 0;
904 bool cxsr_enabled;
905
906 vlv_update_drain_latency(crtc);
907
908 if (g4x_compute_wm0(dev, PIPE_A,
909 &valleyview_wm_info, pessimal_latency_ns,
910 &valleyview_cursor_wm_info, pessimal_latency_ns,
911 &planea_wm, &cursora_wm))
912 enabled |= 1 << PIPE_A;
913
914 if (g4x_compute_wm0(dev, PIPE_B,
915 &valleyview_wm_info, pessimal_latency_ns,
916 &valleyview_cursor_wm_info, pessimal_latency_ns,
917 &planeb_wm, &cursorb_wm))
918 enabled |= 1 << PIPE_B;
919
920 if (g4x_compute_wm0(dev, PIPE_C,
921 &valleyview_wm_info, pessimal_latency_ns,
922 &valleyview_cursor_wm_info, pessimal_latency_ns,
923 &planec_wm, &cursorc_wm))
924 enabled |= 1 << PIPE_C;
925
926 if (single_plane_enabled(enabled) &&
927 g4x_compute_srwm(dev, ffs(enabled) - 1,
928 sr_latency_ns,
929 &valleyview_wm_info,
930 &valleyview_cursor_wm_info,
931 &plane_sr, &ignore_cursor_sr) &&
932 g4x_compute_srwm(dev, ffs(enabled) - 1,
933 2*sr_latency_ns,
934 &valleyview_wm_info,
935 &valleyview_cursor_wm_info,
936 &ignore_plane_sr, &cursor_sr)) {
937 cxsr_enabled = true;
938 } else {
939 cxsr_enabled = false;
940 intel_set_memory_cxsr(dev_priv, false);
941 plane_sr = cursor_sr = 0;
942 }
943
944 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
945 "B: plane=%d, cursor=%d, C: plane=%d, cursor=%d, "
946 "SR: plane=%d, cursor=%d\n",
947 planea_wm, cursora_wm,
948 planeb_wm, cursorb_wm,
949 planec_wm, cursorc_wm,
950 plane_sr, cursor_sr);
951
952 I915_WRITE(DSPFW1,
953 (plane_sr << DSPFW_SR_SHIFT) |
954 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
955 (planeb_wm << DSPFW_PLANEB_SHIFT) |
956 (planea_wm << DSPFW_PLANEA_SHIFT));
957 I915_WRITE(DSPFW2,
958 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
959 (cursora_wm << DSPFW_CURSORA_SHIFT));
960 I915_WRITE(DSPFW3,
961 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
962 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
963 I915_WRITE(DSPFW9_CHV,
964 (I915_READ(DSPFW9_CHV) & ~(DSPFW_PLANEC_MASK |
965 DSPFW_CURSORC_MASK)) |
966 (planec_wm << DSPFW_PLANEC_SHIFT) |
967 (cursorc_wm << DSPFW_CURSORC_SHIFT));
968
969 if (cxsr_enabled)
970 intel_set_memory_cxsr(dev_priv, true);
971 }
972
973 static void valleyview_update_sprite_wm(struct drm_plane *plane,
974 struct drm_crtc *crtc,
975 uint32_t sprite_width,
976 uint32_t sprite_height,
977 int pixel_size,
978 bool enabled, bool scaled)
979 {
980 struct drm_device *dev = crtc->dev;
981 struct drm_i915_private *dev_priv = dev->dev_private;
982 int pipe = to_intel_plane(plane)->pipe;
983 int sprite = to_intel_plane(plane)->plane;
984 int drain_latency;
985 int plane_prec;
986 int sprite_dl;
987 int prec_mult;
988 const int high_precision = IS_CHERRYVIEW(dev) ?
989 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_64;
990
991 sprite_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_SPRITE_PRECISION_HIGH(sprite) |
992 (DRAIN_LATENCY_MASK << DDL_SPRITE_SHIFT(sprite)));
993
994 if (enabled && vlv_compute_drain_latency(crtc, pixel_size, &prec_mult,
995 &drain_latency)) {
996 plane_prec = (prec_mult == high_precision) ?
997 DDL_SPRITE_PRECISION_HIGH(sprite) :
998 DDL_SPRITE_PRECISION_LOW(sprite);
999 sprite_dl |= plane_prec |
1000 (drain_latency << DDL_SPRITE_SHIFT(sprite));
1001 }
1002
1003 I915_WRITE(VLV_DDL(pipe), sprite_dl);
1004 }
1005
1006 static void g4x_update_wm(struct drm_crtc *crtc)
1007 {
1008 struct drm_device *dev = crtc->dev;
1009 static const int sr_latency_ns = 12000;
1010 struct drm_i915_private *dev_priv = dev->dev_private;
1011 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1012 int plane_sr, cursor_sr;
1013 unsigned int enabled = 0;
1014 bool cxsr_enabled;
1015
1016 if (g4x_compute_wm0(dev, PIPE_A,
1017 &g4x_wm_info, pessimal_latency_ns,
1018 &g4x_cursor_wm_info, pessimal_latency_ns,
1019 &planea_wm, &cursora_wm))
1020 enabled |= 1 << PIPE_A;
1021
1022 if (g4x_compute_wm0(dev, PIPE_B,
1023 &g4x_wm_info, pessimal_latency_ns,
1024 &g4x_cursor_wm_info, pessimal_latency_ns,
1025 &planeb_wm, &cursorb_wm))
1026 enabled |= 1 << PIPE_B;
1027
1028 if (single_plane_enabled(enabled) &&
1029 g4x_compute_srwm(dev, ffs(enabled) - 1,
1030 sr_latency_ns,
1031 &g4x_wm_info,
1032 &g4x_cursor_wm_info,
1033 &plane_sr, &cursor_sr)) {
1034 cxsr_enabled = true;
1035 } else {
1036 cxsr_enabled = false;
1037 intel_set_memory_cxsr(dev_priv, false);
1038 plane_sr = cursor_sr = 0;
1039 }
1040
1041 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1042 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1043 planea_wm, cursora_wm,
1044 planeb_wm, cursorb_wm,
1045 plane_sr, cursor_sr);
1046
1047 I915_WRITE(DSPFW1,
1048 (plane_sr << DSPFW_SR_SHIFT) |
1049 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1050 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1051 (planea_wm << DSPFW_PLANEA_SHIFT));
1052 I915_WRITE(DSPFW2,
1053 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1054 (cursora_wm << DSPFW_CURSORA_SHIFT));
1055 /* HPLL off in SR has some issues on G4x... disable it */
1056 I915_WRITE(DSPFW3,
1057 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1058 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1059
1060 if (cxsr_enabled)
1061 intel_set_memory_cxsr(dev_priv, true);
1062 }
1063
1064 static void i965_update_wm(struct drm_crtc *unused_crtc)
1065 {
1066 struct drm_device *dev = unused_crtc->dev;
1067 struct drm_i915_private *dev_priv = dev->dev_private;
1068 struct drm_crtc *crtc;
1069 int srwm = 1;
1070 int cursor_sr = 16;
1071 bool cxsr_enabled;
1072
1073 /* Calc sr entries for one plane configs */
1074 crtc = single_enabled_crtc(dev);
1075 if (crtc) {
1076 /* self-refresh has much higher latency */
1077 static const int sr_latency_ns = 12000;
1078 const struct drm_display_mode *adjusted_mode =
1079 &to_intel_crtc(crtc)->config->base.adjusted_mode;
1080 int clock = adjusted_mode->crtc_clock;
1081 int htotal = adjusted_mode->crtc_htotal;
1082 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1083 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1084 unsigned long line_time_us;
1085 int entries;
1086
1087 line_time_us = max(htotal * 1000 / clock, 1);
1088
1089 /* Use ns/us then divide to preserve precision */
1090 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1091 pixel_size * hdisplay;
1092 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1093 srwm = I965_FIFO_SIZE - entries;
1094 if (srwm < 0)
1095 srwm = 1;
1096 srwm &= 0x1ff;
1097 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1098 entries, srwm);
1099
1100 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1101 pixel_size * to_intel_crtc(crtc)->cursor_width;
1102 entries = DIV_ROUND_UP(entries,
1103 i965_cursor_wm_info.cacheline_size);
1104 cursor_sr = i965_cursor_wm_info.fifo_size -
1105 (entries + i965_cursor_wm_info.guard_size);
1106
1107 if (cursor_sr > i965_cursor_wm_info.max_wm)
1108 cursor_sr = i965_cursor_wm_info.max_wm;
1109
1110 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1111 "cursor %d\n", srwm, cursor_sr);
1112
1113 cxsr_enabled = true;
1114 } else {
1115 cxsr_enabled = false;
1116 /* Turn off self refresh if both pipes are enabled */
1117 intel_set_memory_cxsr(dev_priv, false);
1118 }
1119
1120 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1121 srwm);
1122
1123 /* 965 has limitations... */
1124 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1125 (8 << DSPFW_CURSORB_SHIFT) |
1126 (8 << DSPFW_PLANEB_SHIFT) |
1127 (8 << DSPFW_PLANEA_SHIFT));
1128 I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
1129 (8 << DSPFW_PLANEC_SHIFT_OLD));
1130 /* update cursor SR watermark */
1131 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1132
1133 if (cxsr_enabled)
1134 intel_set_memory_cxsr(dev_priv, true);
1135 }
1136
1137 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1138 {
1139 struct drm_device *dev = unused_crtc->dev;
1140 struct drm_i915_private *dev_priv = dev->dev_private;
1141 const struct intel_watermark_params *wm_info;
1142 uint32_t fwater_lo;
1143 uint32_t fwater_hi;
1144 int cwm, srwm = 1;
1145 int fifo_size;
1146 int planea_wm, planeb_wm;
1147 struct drm_crtc *crtc, *enabled = NULL;
1148
1149 if (IS_I945GM(dev))
1150 wm_info = &i945_wm_info;
1151 else if (!IS_GEN2(dev))
1152 wm_info = &i915_wm_info;
1153 else
1154 wm_info = &i830_a_wm_info;
1155
1156 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1157 crtc = intel_get_crtc_for_plane(dev, 0);
1158 if (intel_crtc_active(crtc)) {
1159 const struct drm_display_mode *adjusted_mode;
1160 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1161 if (IS_GEN2(dev))
1162 cpp = 4;
1163
1164 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1165 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1166 wm_info, fifo_size, cpp,
1167 pessimal_latency_ns);
1168 enabled = crtc;
1169 } else {
1170 planea_wm = fifo_size - wm_info->guard_size;
1171 if (planea_wm > (long)wm_info->max_wm)
1172 planea_wm = wm_info->max_wm;
1173 }
1174
1175 if (IS_GEN2(dev))
1176 wm_info = &i830_bc_wm_info;
1177
1178 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1179 crtc = intel_get_crtc_for_plane(dev, 1);
1180 if (intel_crtc_active(crtc)) {
1181 const struct drm_display_mode *adjusted_mode;
1182 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1183 if (IS_GEN2(dev))
1184 cpp = 4;
1185
1186 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1187 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1188 wm_info, fifo_size, cpp,
1189 pessimal_latency_ns);
1190 if (enabled == NULL)
1191 enabled = crtc;
1192 else
1193 enabled = NULL;
1194 } else {
1195 planeb_wm = fifo_size - wm_info->guard_size;
1196 if (planeb_wm > (long)wm_info->max_wm)
1197 planeb_wm = wm_info->max_wm;
1198 }
1199
1200 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1201
1202 if (IS_I915GM(dev) && enabled) {
1203 struct drm_i915_gem_object *obj;
1204
1205 obj = intel_fb_obj(enabled->primary->fb);
1206
1207 /* self-refresh seems busted with untiled */
1208 if (obj->tiling_mode == I915_TILING_NONE)
1209 enabled = NULL;
1210 }
1211
1212 /*
1213 * Overlay gets an aggressive default since video jitter is bad.
1214 */
1215 cwm = 2;
1216
1217 /* Play safe and disable self-refresh before adjusting watermarks. */
1218 intel_set_memory_cxsr(dev_priv, false);
1219
1220 /* Calc sr entries for one plane configs */
1221 if (HAS_FW_BLC(dev) && enabled) {
1222 /* self-refresh has much higher latency */
1223 static const int sr_latency_ns = 6000;
1224 const struct drm_display_mode *adjusted_mode =
1225 &to_intel_crtc(enabled)->config->base.adjusted_mode;
1226 int clock = adjusted_mode->crtc_clock;
1227 int htotal = adjusted_mode->crtc_htotal;
1228 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1229 int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1230 unsigned long line_time_us;
1231 int entries;
1232
1233 line_time_us = max(htotal * 1000 / clock, 1);
1234
1235 /* Use ns/us then divide to preserve precision */
1236 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1237 pixel_size * hdisplay;
1238 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1239 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1240 srwm = wm_info->fifo_size - entries;
1241 if (srwm < 0)
1242 srwm = 1;
1243
1244 if (IS_I945G(dev) || IS_I945GM(dev))
1245 I915_WRITE(FW_BLC_SELF,
1246 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1247 else if (IS_I915GM(dev))
1248 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1249 }
1250
1251 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1252 planea_wm, planeb_wm, cwm, srwm);
1253
1254 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1255 fwater_hi = (cwm & 0x1f);
1256
1257 /* Set request length to 8 cachelines per fetch */
1258 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1259 fwater_hi = fwater_hi | (1 << 8);
1260
1261 I915_WRITE(FW_BLC, fwater_lo);
1262 I915_WRITE(FW_BLC2, fwater_hi);
1263
1264 if (enabled)
1265 intel_set_memory_cxsr(dev_priv, true);
1266 }
1267
1268 static void i845_update_wm(struct drm_crtc *unused_crtc)
1269 {
1270 struct drm_device *dev = unused_crtc->dev;
1271 struct drm_i915_private *dev_priv = dev->dev_private;
1272 struct drm_crtc *crtc;
1273 const struct drm_display_mode *adjusted_mode;
1274 uint32_t fwater_lo;
1275 int planea_wm;
1276
1277 crtc = single_enabled_crtc(dev);
1278 if (crtc == NULL)
1279 return;
1280
1281 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1282 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1283 &i845_wm_info,
1284 dev_priv->display.get_fifo_size(dev, 0),
1285 4, pessimal_latency_ns);
1286 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1287 fwater_lo |= (3<<8) | planea_wm;
1288
1289 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1290
1291 I915_WRITE(FW_BLC, fwater_lo);
1292 }
1293
1294 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1295 struct drm_crtc *crtc)
1296 {
1297 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1298 uint32_t pixel_rate;
1299
1300 pixel_rate = intel_crtc->config->base.adjusted_mode.crtc_clock;
1301
1302 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1303 * adjust the pixel_rate here. */
1304
1305 if (intel_crtc->config->pch_pfit.enabled) {
1306 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1307 uint32_t pfit_size = intel_crtc->config->pch_pfit.size;
1308
1309 pipe_w = intel_crtc->config->pipe_src_w;
1310 pipe_h = intel_crtc->config->pipe_src_h;
1311 pfit_w = (pfit_size >> 16) & 0xFFFF;
1312 pfit_h = pfit_size & 0xFFFF;
1313 if (pipe_w < pfit_w)
1314 pipe_w = pfit_w;
1315 if (pipe_h < pfit_h)
1316 pipe_h = pfit_h;
1317
1318 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1319 pfit_w * pfit_h);
1320 }
1321
1322 return pixel_rate;
1323 }
1324
1325 /* latency must be in 0.1us units. */
1326 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1327 uint32_t latency)
1328 {
1329 uint64_t ret;
1330
1331 if (WARN(latency == 0, "Latency value missing\n"))
1332 return UINT_MAX;
1333
1334 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1335 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1336
1337 return ret;
1338 }
1339
1340 /* latency must be in 0.1us units. */
1341 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1342 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1343 uint32_t latency)
1344 {
1345 uint32_t ret;
1346
1347 if (WARN(latency == 0, "Latency value missing\n"))
1348 return UINT_MAX;
1349
1350 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1351 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1352 ret = DIV_ROUND_UP(ret, 64) + 2;
1353 return ret;
1354 }
1355
1356 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1357 uint8_t bytes_per_pixel)
1358 {
1359 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1360 }
1361
1362 struct skl_pipe_wm_parameters {
1363 bool active;
1364 uint32_t pipe_htotal;
1365 uint32_t pixel_rate; /* in KHz */
1366 struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1367 struct intel_plane_wm_parameters cursor;
1368 };
1369
1370 struct ilk_pipe_wm_parameters {
1371 bool active;
1372 uint32_t pipe_htotal;
1373 uint32_t pixel_rate;
1374 struct intel_plane_wm_parameters pri;
1375 struct intel_plane_wm_parameters spr;
1376 struct intel_plane_wm_parameters cur;
1377 };
1378
1379 struct ilk_wm_maximums {
1380 uint16_t pri;
1381 uint16_t spr;
1382 uint16_t cur;
1383 uint16_t fbc;
1384 };
1385
1386 /* used in computing the new watermarks state */
1387 struct intel_wm_config {
1388 unsigned int num_pipes_active;
1389 bool sprites_enabled;
1390 bool sprites_scaled;
1391 };
1392
1393 /*
1394 * For both WM_PIPE and WM_LP.
1395 * mem_value must be in 0.1us units.
1396 */
1397 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1398 uint32_t mem_value,
1399 bool is_lp)
1400 {
1401 uint32_t method1, method2;
1402
1403 if (!params->active || !params->pri.enabled)
1404 return 0;
1405
1406 method1 = ilk_wm_method1(params->pixel_rate,
1407 params->pri.bytes_per_pixel,
1408 mem_value);
1409
1410 if (!is_lp)
1411 return method1;
1412
1413 method2 = ilk_wm_method2(params->pixel_rate,
1414 params->pipe_htotal,
1415 params->pri.horiz_pixels,
1416 params->pri.bytes_per_pixel,
1417 mem_value);
1418
1419 return min(method1, method2);
1420 }
1421
1422 /*
1423 * For both WM_PIPE and WM_LP.
1424 * mem_value must be in 0.1us units.
1425 */
1426 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1427 uint32_t mem_value)
1428 {
1429 uint32_t method1, method2;
1430
1431 if (!params->active || !params->spr.enabled)
1432 return 0;
1433
1434 method1 = ilk_wm_method1(params->pixel_rate,
1435 params->spr.bytes_per_pixel,
1436 mem_value);
1437 method2 = ilk_wm_method2(params->pixel_rate,
1438 params->pipe_htotal,
1439 params->spr.horiz_pixels,
1440 params->spr.bytes_per_pixel,
1441 mem_value);
1442 return min(method1, method2);
1443 }
1444
1445 /*
1446 * For both WM_PIPE and WM_LP.
1447 * mem_value must be in 0.1us units.
1448 */
1449 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1450 uint32_t mem_value)
1451 {
1452 if (!params->active || !params->cur.enabled)
1453 return 0;
1454
1455 return ilk_wm_method2(params->pixel_rate,
1456 params->pipe_htotal,
1457 params->cur.horiz_pixels,
1458 params->cur.bytes_per_pixel,
1459 mem_value);
1460 }
1461
1462 /* Only for WM_LP. */
1463 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1464 uint32_t pri_val)
1465 {
1466 if (!params->active || !params->pri.enabled)
1467 return 0;
1468
1469 return ilk_wm_fbc(pri_val,
1470 params->pri.horiz_pixels,
1471 params->pri.bytes_per_pixel);
1472 }
1473
1474 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1475 {
1476 if (INTEL_INFO(dev)->gen >= 8)
1477 return 3072;
1478 else if (INTEL_INFO(dev)->gen >= 7)
1479 return 768;
1480 else
1481 return 512;
1482 }
1483
1484 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1485 int level, bool is_sprite)
1486 {
1487 if (INTEL_INFO(dev)->gen >= 8)
1488 /* BDW primary/sprite plane watermarks */
1489 return level == 0 ? 255 : 2047;
1490 else if (INTEL_INFO(dev)->gen >= 7)
1491 /* IVB/HSW primary/sprite plane watermarks */
1492 return level == 0 ? 127 : 1023;
1493 else if (!is_sprite)
1494 /* ILK/SNB primary plane watermarks */
1495 return level == 0 ? 127 : 511;
1496 else
1497 /* ILK/SNB sprite plane watermarks */
1498 return level == 0 ? 63 : 255;
1499 }
1500
1501 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1502 int level)
1503 {
1504 if (INTEL_INFO(dev)->gen >= 7)
1505 return level == 0 ? 63 : 255;
1506 else
1507 return level == 0 ? 31 : 63;
1508 }
1509
1510 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1511 {
1512 if (INTEL_INFO(dev)->gen >= 8)
1513 return 31;
1514 else
1515 return 15;
1516 }
1517
1518 /* Calculate the maximum primary/sprite plane watermark */
1519 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1520 int level,
1521 const struct intel_wm_config *config,
1522 enum intel_ddb_partitioning ddb_partitioning,
1523 bool is_sprite)
1524 {
1525 unsigned int fifo_size = ilk_display_fifo_size(dev);
1526
1527 /* if sprites aren't enabled, sprites get nothing */
1528 if (is_sprite && !config->sprites_enabled)
1529 return 0;
1530
1531 /* HSW allows LP1+ watermarks even with multiple pipes */
1532 if (level == 0 || config->num_pipes_active > 1) {
1533 fifo_size /= INTEL_INFO(dev)->num_pipes;
1534
1535 /*
1536 * For some reason the non self refresh
1537 * FIFO size is only half of the self
1538 * refresh FIFO size on ILK/SNB.
1539 */
1540 if (INTEL_INFO(dev)->gen <= 6)
1541 fifo_size /= 2;
1542 }
1543
1544 if (config->sprites_enabled) {
1545 /* level 0 is always calculated with 1:1 split */
1546 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1547 if (is_sprite)
1548 fifo_size *= 5;
1549 fifo_size /= 6;
1550 } else {
1551 fifo_size /= 2;
1552 }
1553 }
1554
1555 /* clamp to max that the registers can hold */
1556 return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1557 }
1558
1559 /* Calculate the maximum cursor plane watermark */
1560 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1561 int level,
1562 const struct intel_wm_config *config)
1563 {
1564 /* HSW LP1+ watermarks w/ multiple pipes */
1565 if (level > 0 && config->num_pipes_active > 1)
1566 return 64;
1567
1568 /* otherwise just report max that registers can hold */
1569 return ilk_cursor_wm_reg_max(dev, level);
1570 }
1571
1572 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1573 int level,
1574 const struct intel_wm_config *config,
1575 enum intel_ddb_partitioning ddb_partitioning,
1576 struct ilk_wm_maximums *max)
1577 {
1578 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1579 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1580 max->cur = ilk_cursor_wm_max(dev, level, config);
1581 max->fbc = ilk_fbc_wm_reg_max(dev);
1582 }
1583
1584 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1585 int level,
1586 struct ilk_wm_maximums *max)
1587 {
1588 max->pri = ilk_plane_wm_reg_max(dev, level, false);
1589 max->spr = ilk_plane_wm_reg_max(dev, level, true);
1590 max->cur = ilk_cursor_wm_reg_max(dev, level);
1591 max->fbc = ilk_fbc_wm_reg_max(dev);
1592 }
1593
1594 static bool ilk_validate_wm_level(int level,
1595 const struct ilk_wm_maximums *max,
1596 struct intel_wm_level *result)
1597 {
1598 bool ret;
1599
1600 /* already determined to be invalid? */
1601 if (!result->enable)
1602 return false;
1603
1604 result->enable = result->pri_val <= max->pri &&
1605 result->spr_val <= max->spr &&
1606 result->cur_val <= max->cur;
1607
1608 ret = result->enable;
1609
1610 /*
1611 * HACK until we can pre-compute everything,
1612 * and thus fail gracefully if LP0 watermarks
1613 * are exceeded...
1614 */
1615 if (level == 0 && !result->enable) {
1616 if (result->pri_val > max->pri)
1617 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1618 level, result->pri_val, max->pri);
1619 if (result->spr_val > max->spr)
1620 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1621 level, result->spr_val, max->spr);
1622 if (result->cur_val > max->cur)
1623 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1624 level, result->cur_val, max->cur);
1625
1626 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1627 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1628 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1629 result->enable = true;
1630 }
1631
1632 return ret;
1633 }
1634
1635 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1636 int level,
1637 const struct ilk_pipe_wm_parameters *p,
1638 struct intel_wm_level *result)
1639 {
1640 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1641 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1642 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1643
1644 /* WM1+ latency values stored in 0.5us units */
1645 if (level > 0) {
1646 pri_latency *= 5;
1647 spr_latency *= 5;
1648 cur_latency *= 5;
1649 }
1650
1651 result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
1652 result->spr_val = ilk_compute_spr_wm(p, spr_latency);
1653 result->cur_val = ilk_compute_cur_wm(p, cur_latency);
1654 result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
1655 result->enable = true;
1656 }
1657
1658 static uint32_t
1659 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1660 {
1661 struct drm_i915_private *dev_priv = dev->dev_private;
1662 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1663 struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
1664 u32 linetime, ips_linetime;
1665
1666 if (!intel_crtc_active(crtc))
1667 return 0;
1668
1669 /* The WM are computed with base on how long it takes to fill a single
1670 * row at the given clock rate, multiplied by 8.
1671 * */
1672 linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1673 mode->crtc_clock);
1674 ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1675 intel_ddi_get_cdclk_freq(dev_priv));
1676
1677 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
1678 PIPE_WM_LINETIME_TIME(linetime);
1679 }
1680
1681 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
1682 {
1683 struct drm_i915_private *dev_priv = dev->dev_private;
1684
1685 if (IS_GEN9(dev)) {
1686 uint32_t val;
1687 int ret, i;
1688 int level, max_level = ilk_wm_max_level(dev);
1689
1690 /* read the first set of memory latencies[0:3] */
1691 val = 0; /* data0 to be programmed to 0 for first set */
1692 mutex_lock(&dev_priv->rps.hw_lock);
1693 ret = sandybridge_pcode_read(dev_priv,
1694 GEN9_PCODE_READ_MEM_LATENCY,
1695 &val);
1696 mutex_unlock(&dev_priv->rps.hw_lock);
1697
1698 if (ret) {
1699 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
1700 return;
1701 }
1702
1703 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
1704 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
1705 GEN9_MEM_LATENCY_LEVEL_MASK;
1706 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
1707 GEN9_MEM_LATENCY_LEVEL_MASK;
1708 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
1709 GEN9_MEM_LATENCY_LEVEL_MASK;
1710
1711 /* read the second set of memory latencies[4:7] */
1712 val = 1; /* data0 to be programmed to 1 for second set */
1713 mutex_lock(&dev_priv->rps.hw_lock);
1714 ret = sandybridge_pcode_read(dev_priv,
1715 GEN9_PCODE_READ_MEM_LATENCY,
1716 &val);
1717 mutex_unlock(&dev_priv->rps.hw_lock);
1718 if (ret) {
1719 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
1720 return;
1721 }
1722
1723 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
1724 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
1725 GEN9_MEM_LATENCY_LEVEL_MASK;
1726 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
1727 GEN9_MEM_LATENCY_LEVEL_MASK;
1728 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
1729 GEN9_MEM_LATENCY_LEVEL_MASK;
1730
1731 /*
1732 * WaWmMemoryReadLatency:skl
1733 *
1734 * punit doesn't take into account the read latency so we need
1735 * to add 2us to the various latency levels we retrieve from
1736 * the punit.
1737 * - W0 is a bit special in that it's the only level that
1738 * can't be disabled if we want to have display working, so
1739 * we always add 2us there.
1740 * - For levels >=1, punit returns 0us latency when they are
1741 * disabled, so we respect that and don't add 2us then
1742 *
1743 * Additionally, if a level n (n > 1) has a 0us latency, all
1744 * levels m (m >= n) need to be disabled. We make sure to
1745 * sanitize the values out of the punit to satisfy this
1746 * requirement.
1747 */
1748 wm[0] += 2;
1749 for (level = 1; level <= max_level; level++)
1750 if (wm[level] != 0)
1751 wm[level] += 2;
1752 else {
1753 for (i = level + 1; i <= max_level; i++)
1754 wm[i] = 0;
1755
1756 break;
1757 }
1758 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1759 uint64_t sskpd = I915_READ64(MCH_SSKPD);
1760
1761 wm[0] = (sskpd >> 56) & 0xFF;
1762 if (wm[0] == 0)
1763 wm[0] = sskpd & 0xF;
1764 wm[1] = (sskpd >> 4) & 0xFF;
1765 wm[2] = (sskpd >> 12) & 0xFF;
1766 wm[3] = (sskpd >> 20) & 0x1FF;
1767 wm[4] = (sskpd >> 32) & 0x1FF;
1768 } else if (INTEL_INFO(dev)->gen >= 6) {
1769 uint32_t sskpd = I915_READ(MCH_SSKPD);
1770
1771 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
1772 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
1773 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
1774 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
1775 } else if (INTEL_INFO(dev)->gen >= 5) {
1776 uint32_t mltr = I915_READ(MLTR_ILK);
1777
1778 /* ILK primary LP0 latency is 700 ns */
1779 wm[0] = 7;
1780 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
1781 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
1782 }
1783 }
1784
1785 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
1786 {
1787 /* ILK sprite LP0 latency is 1300 ns */
1788 if (INTEL_INFO(dev)->gen == 5)
1789 wm[0] = 13;
1790 }
1791
1792 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
1793 {
1794 /* ILK cursor LP0 latency is 1300 ns */
1795 if (INTEL_INFO(dev)->gen == 5)
1796 wm[0] = 13;
1797
1798 /* WaDoubleCursorLP3Latency:ivb */
1799 if (IS_IVYBRIDGE(dev))
1800 wm[3] *= 2;
1801 }
1802
1803 int ilk_wm_max_level(const struct drm_device *dev)
1804 {
1805 /* how many WM levels are we expecting */
1806 if (IS_GEN9(dev))
1807 return 7;
1808 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1809 return 4;
1810 else if (INTEL_INFO(dev)->gen >= 6)
1811 return 3;
1812 else
1813 return 2;
1814 }
1815
1816 static void intel_print_wm_latency(struct drm_device *dev,
1817 const char *name,
1818 const uint16_t wm[8])
1819 {
1820 int level, max_level = ilk_wm_max_level(dev);
1821
1822 for (level = 0; level <= max_level; level++) {
1823 unsigned int latency = wm[level];
1824
1825 if (latency == 0) {
1826 DRM_ERROR("%s WM%d latency not provided\n",
1827 name, level);
1828 continue;
1829 }
1830
1831 /*
1832 * - latencies are in us on gen9.
1833 * - before then, WM1+ latency values are in 0.5us units
1834 */
1835 if (IS_GEN9(dev))
1836 latency *= 10;
1837 else if (level > 0)
1838 latency *= 5;
1839
1840 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
1841 name, level, wm[level],
1842 latency / 10, latency % 10);
1843 }
1844 }
1845
1846 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
1847 uint16_t wm[5], uint16_t min)
1848 {
1849 int level, max_level = ilk_wm_max_level(dev_priv->dev);
1850
1851 if (wm[0] >= min)
1852 return false;
1853
1854 wm[0] = max(wm[0], min);
1855 for (level = 1; level <= max_level; level++)
1856 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
1857
1858 return true;
1859 }
1860
1861 static void snb_wm_latency_quirk(struct drm_device *dev)
1862 {
1863 struct drm_i915_private *dev_priv = dev->dev_private;
1864 bool changed;
1865
1866 /*
1867 * The BIOS provided WM memory latency values are often
1868 * inadequate for high resolution displays. Adjust them.
1869 */
1870 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
1871 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
1872 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
1873
1874 if (!changed)
1875 return;
1876
1877 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
1878 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
1879 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
1880 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
1881 }
1882
1883 static void ilk_setup_wm_latency(struct drm_device *dev)
1884 {
1885 struct drm_i915_private *dev_priv = dev->dev_private;
1886
1887 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
1888
1889 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
1890 sizeof(dev_priv->wm.pri_latency));
1891 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
1892 sizeof(dev_priv->wm.pri_latency));
1893
1894 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
1895 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
1896
1897 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
1898 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
1899 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
1900
1901 if (IS_GEN6(dev))
1902 snb_wm_latency_quirk(dev);
1903 }
1904
1905 static void skl_setup_wm_latency(struct drm_device *dev)
1906 {
1907 struct drm_i915_private *dev_priv = dev->dev_private;
1908
1909 intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
1910 intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
1911 }
1912
1913 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
1914 struct ilk_pipe_wm_parameters *p)
1915 {
1916 struct drm_device *dev = crtc->dev;
1917 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1918 enum pipe pipe = intel_crtc->pipe;
1919 struct drm_plane *plane;
1920
1921 if (!intel_crtc_active(crtc))
1922 return;
1923
1924 p->active = true;
1925 p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
1926 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
1927 p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
1928 p->cur.bytes_per_pixel = 4;
1929 p->pri.horiz_pixels = intel_crtc->config->pipe_src_w;
1930 p->cur.horiz_pixels = intel_crtc->cursor_width;
1931 /* TODO: for now, assume primary and cursor planes are always enabled. */
1932 p->pri.enabled = true;
1933 p->cur.enabled = true;
1934
1935 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
1936 struct intel_plane *intel_plane = to_intel_plane(plane);
1937
1938 if (intel_plane->pipe == pipe) {
1939 p->spr = intel_plane->wm;
1940 break;
1941 }
1942 }
1943 }
1944
1945 static void ilk_compute_wm_config(struct drm_device *dev,
1946 struct intel_wm_config *config)
1947 {
1948 struct intel_crtc *intel_crtc;
1949
1950 /* Compute the currently _active_ config */
1951 for_each_intel_crtc(dev, intel_crtc) {
1952 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
1953
1954 if (!wm->pipe_enabled)
1955 continue;
1956
1957 config->sprites_enabled |= wm->sprites_enabled;
1958 config->sprites_scaled |= wm->sprites_scaled;
1959 config->num_pipes_active++;
1960 }
1961 }
1962
1963 /* Compute new watermarks for the pipe */
1964 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
1965 const struct ilk_pipe_wm_parameters *params,
1966 struct intel_pipe_wm *pipe_wm)
1967 {
1968 struct drm_device *dev = crtc->dev;
1969 const struct drm_i915_private *dev_priv = dev->dev_private;
1970 int level, max_level = ilk_wm_max_level(dev);
1971 /* LP0 watermark maximums depend on this pipe alone */
1972 struct intel_wm_config config = {
1973 .num_pipes_active = 1,
1974 .sprites_enabled = params->spr.enabled,
1975 .sprites_scaled = params->spr.scaled,
1976 };
1977 struct ilk_wm_maximums max;
1978
1979 pipe_wm->pipe_enabled = params->active;
1980 pipe_wm->sprites_enabled = params->spr.enabled;
1981 pipe_wm->sprites_scaled = params->spr.scaled;
1982
1983 /* ILK/SNB: LP2+ watermarks only w/o sprites */
1984 if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
1985 max_level = 1;
1986
1987 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
1988 if (params->spr.scaled)
1989 max_level = 0;
1990
1991 ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
1992
1993 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1994 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
1995
1996 /* LP0 watermarks always use 1/2 DDB partitioning */
1997 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
1998
1999 /* At least LP0 must be valid */
2000 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2001 return false;
2002
2003 ilk_compute_wm_reg_maximums(dev, 1, &max);
2004
2005 for (level = 1; level <= max_level; level++) {
2006 struct intel_wm_level wm = {};
2007
2008 ilk_compute_wm_level(dev_priv, level, params, &wm);
2009
2010 /*
2011 * Disable any watermark level that exceeds the
2012 * register maximums since such watermarks are
2013 * always invalid.
2014 */
2015 if (!ilk_validate_wm_level(level, &max, &wm))
2016 break;
2017
2018 pipe_wm->wm[level] = wm;
2019 }
2020
2021 return true;
2022 }
2023
2024 /*
2025 * Merge the watermarks from all active pipes for a specific level.
2026 */
2027 static void ilk_merge_wm_level(struct drm_device *dev,
2028 int level,
2029 struct intel_wm_level *ret_wm)
2030 {
2031 const struct intel_crtc *intel_crtc;
2032
2033 ret_wm->enable = true;
2034
2035 for_each_intel_crtc(dev, intel_crtc) {
2036 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2037 const struct intel_wm_level *wm = &active->wm[level];
2038
2039 if (!active->pipe_enabled)
2040 continue;
2041
2042 /*
2043 * The watermark values may have been used in the past,
2044 * so we must maintain them in the registers for some
2045 * time even if the level is now disabled.
2046 */
2047 if (!wm->enable)
2048 ret_wm->enable = false;
2049
2050 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2051 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2052 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2053 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2054 }
2055 }
2056
2057 /*
2058 * Merge all low power watermarks for all active pipes.
2059 */
2060 static void ilk_wm_merge(struct drm_device *dev,
2061 const struct intel_wm_config *config,
2062 const struct ilk_wm_maximums *max,
2063 struct intel_pipe_wm *merged)
2064 {
2065 int level, max_level = ilk_wm_max_level(dev);
2066 int last_enabled_level = max_level;
2067
2068 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2069 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2070 config->num_pipes_active > 1)
2071 return;
2072
2073 /* ILK: FBC WM must be disabled always */
2074 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2075
2076 /* merge each WM1+ level */
2077 for (level = 1; level <= max_level; level++) {
2078 struct intel_wm_level *wm = &merged->wm[level];
2079
2080 ilk_merge_wm_level(dev, level, wm);
2081
2082 if (level > last_enabled_level)
2083 wm->enable = false;
2084 else if (!ilk_validate_wm_level(level, max, wm))
2085 /* make sure all following levels get disabled */
2086 last_enabled_level = level - 1;
2087
2088 /*
2089 * The spec says it is preferred to disable
2090 * FBC WMs instead of disabling a WM level.
2091 */
2092 if (wm->fbc_val > max->fbc) {
2093 if (wm->enable)
2094 merged->fbc_wm_enabled = false;
2095 wm->fbc_val = 0;
2096 }
2097 }
2098
2099 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2100 /*
2101 * FIXME this is racy. FBC might get enabled later.
2102 * What we should check here is whether FBC can be
2103 * enabled sometime later.
2104 */
2105 if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2106 for (level = 2; level <= max_level; level++) {
2107 struct intel_wm_level *wm = &merged->wm[level];
2108
2109 wm->enable = false;
2110 }
2111 }
2112 }
2113
2114 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2115 {
2116 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2117 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2118 }
2119
2120 /* The value we need to program into the WM_LPx latency field */
2121 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2122 {
2123 struct drm_i915_private *dev_priv = dev->dev_private;
2124
2125 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2126 return 2 * level;
2127 else
2128 return dev_priv->wm.pri_latency[level];
2129 }
2130
2131 static void ilk_compute_wm_results(struct drm_device *dev,
2132 const struct intel_pipe_wm *merged,
2133 enum intel_ddb_partitioning partitioning,
2134 struct ilk_wm_values *results)
2135 {
2136 struct intel_crtc *intel_crtc;
2137 int level, wm_lp;
2138
2139 results->enable_fbc_wm = merged->fbc_wm_enabled;
2140 results->partitioning = partitioning;
2141
2142 /* LP1+ register values */
2143 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2144 const struct intel_wm_level *r;
2145
2146 level = ilk_wm_lp_to_level(wm_lp, merged);
2147
2148 r = &merged->wm[level];
2149
2150 /*
2151 * Maintain the watermark values even if the level is
2152 * disabled. Doing otherwise could cause underruns.
2153 */
2154 results->wm_lp[wm_lp - 1] =
2155 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2156 (r->pri_val << WM1_LP_SR_SHIFT) |
2157 r->cur_val;
2158
2159 if (r->enable)
2160 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2161
2162 if (INTEL_INFO(dev)->gen >= 8)
2163 results->wm_lp[wm_lp - 1] |=
2164 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2165 else
2166 results->wm_lp[wm_lp - 1] |=
2167 r->fbc_val << WM1_LP_FBC_SHIFT;
2168
2169 /*
2170 * Always set WM1S_LP_EN when spr_val != 0, even if the
2171 * level is disabled. Doing otherwise could cause underruns.
2172 */
2173 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2174 WARN_ON(wm_lp != 1);
2175 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2176 } else
2177 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2178 }
2179
2180 /* LP0 register values */
2181 for_each_intel_crtc(dev, intel_crtc) {
2182 enum pipe pipe = intel_crtc->pipe;
2183 const struct intel_wm_level *r =
2184 &intel_crtc->wm.active.wm[0];
2185
2186 if (WARN_ON(!r->enable))
2187 continue;
2188
2189 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2190
2191 results->wm_pipe[pipe] =
2192 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2193 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2194 r->cur_val;
2195 }
2196 }
2197
2198 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2199 * case both are at the same level. Prefer r1 in case they're the same. */
2200 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2201 struct intel_pipe_wm *r1,
2202 struct intel_pipe_wm *r2)
2203 {
2204 int level, max_level = ilk_wm_max_level(dev);
2205 int level1 = 0, level2 = 0;
2206
2207 for (level = 1; level <= max_level; level++) {
2208 if (r1->wm[level].enable)
2209 level1 = level;
2210 if (r2->wm[level].enable)
2211 level2 = level;
2212 }
2213
2214 if (level1 == level2) {
2215 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2216 return r2;
2217 else
2218 return r1;
2219 } else if (level1 > level2) {
2220 return r1;
2221 } else {
2222 return r2;
2223 }
2224 }
2225
2226 /* dirty bits used to track which watermarks need changes */
2227 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2228 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2229 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2230 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2231 #define WM_DIRTY_FBC (1 << 24)
2232 #define WM_DIRTY_DDB (1 << 25)
2233
2234 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2235 const struct ilk_wm_values *old,
2236 const struct ilk_wm_values *new)
2237 {
2238 unsigned int dirty = 0;
2239 enum pipe pipe;
2240 int wm_lp;
2241
2242 for_each_pipe(dev_priv, pipe) {
2243 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2244 dirty |= WM_DIRTY_LINETIME(pipe);
2245 /* Must disable LP1+ watermarks too */
2246 dirty |= WM_DIRTY_LP_ALL;
2247 }
2248
2249 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2250 dirty |= WM_DIRTY_PIPE(pipe);
2251 /* Must disable LP1+ watermarks too */
2252 dirty |= WM_DIRTY_LP_ALL;
2253 }
2254 }
2255
2256 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2257 dirty |= WM_DIRTY_FBC;
2258 /* Must disable LP1+ watermarks too */
2259 dirty |= WM_DIRTY_LP_ALL;
2260 }
2261
2262 if (old->partitioning != new->partitioning) {
2263 dirty |= WM_DIRTY_DDB;
2264 /* Must disable LP1+ watermarks too */
2265 dirty |= WM_DIRTY_LP_ALL;
2266 }
2267
2268 /* LP1+ watermarks already deemed dirty, no need to continue */
2269 if (dirty & WM_DIRTY_LP_ALL)
2270 return dirty;
2271
2272 /* Find the lowest numbered LP1+ watermark in need of an update... */
2273 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2274 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2275 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2276 break;
2277 }
2278
2279 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2280 for (; wm_lp <= 3; wm_lp++)
2281 dirty |= WM_DIRTY_LP(wm_lp);
2282
2283 return dirty;
2284 }
2285
2286 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2287 unsigned int dirty)
2288 {
2289 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2290 bool changed = false;
2291
2292 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2293 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2294 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2295 changed = true;
2296 }
2297 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2298 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2299 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2300 changed = true;
2301 }
2302 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2303 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2304 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2305 changed = true;
2306 }
2307
2308 /*
2309 * Don't touch WM1S_LP_EN here.
2310 * Doing so could cause underruns.
2311 */
2312
2313 return changed;
2314 }
2315
2316 /*
2317 * The spec says we shouldn't write when we don't need, because every write
2318 * causes WMs to be re-evaluated, expending some power.
2319 */
2320 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2321 struct ilk_wm_values *results)
2322 {
2323 struct drm_device *dev = dev_priv->dev;
2324 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2325 unsigned int dirty;
2326 uint32_t val;
2327
2328 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2329 if (!dirty)
2330 return;
2331
2332 _ilk_disable_lp_wm(dev_priv, dirty);
2333
2334 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2335 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2336 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2337 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2338 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2339 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2340
2341 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2342 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2343 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2344 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2345 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2346 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2347
2348 if (dirty & WM_DIRTY_DDB) {
2349 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2350 val = I915_READ(WM_MISC);
2351 if (results->partitioning == INTEL_DDB_PART_1_2)
2352 val &= ~WM_MISC_DATA_PARTITION_5_6;
2353 else
2354 val |= WM_MISC_DATA_PARTITION_5_6;
2355 I915_WRITE(WM_MISC, val);
2356 } else {
2357 val = I915_READ(DISP_ARB_CTL2);
2358 if (results->partitioning == INTEL_DDB_PART_1_2)
2359 val &= ~DISP_DATA_PARTITION_5_6;
2360 else
2361 val |= DISP_DATA_PARTITION_5_6;
2362 I915_WRITE(DISP_ARB_CTL2, val);
2363 }
2364 }
2365
2366 if (dirty & WM_DIRTY_FBC) {
2367 val = I915_READ(DISP_ARB_CTL);
2368 if (results->enable_fbc_wm)
2369 val &= ~DISP_FBC_WM_DIS;
2370 else
2371 val |= DISP_FBC_WM_DIS;
2372 I915_WRITE(DISP_ARB_CTL, val);
2373 }
2374
2375 if (dirty & WM_DIRTY_LP(1) &&
2376 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2377 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2378
2379 if (INTEL_INFO(dev)->gen >= 7) {
2380 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2381 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2382 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2383 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2384 }
2385
2386 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2387 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2388 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2389 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2390 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2391 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2392
2393 dev_priv->wm.hw = *results;
2394 }
2395
2396 static bool ilk_disable_lp_wm(struct drm_device *dev)
2397 {
2398 struct drm_i915_private *dev_priv = dev->dev_private;
2399
2400 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2401 }
2402
2403 /*
2404 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2405 * different active planes.
2406 */
2407
2408 #define SKL_DDB_SIZE 896 /* in blocks */
2409
2410 static void
2411 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2412 struct drm_crtc *for_crtc,
2413 const struct intel_wm_config *config,
2414 const struct skl_pipe_wm_parameters *params,
2415 struct skl_ddb_entry *alloc /* out */)
2416 {
2417 struct drm_crtc *crtc;
2418 unsigned int pipe_size, ddb_size;
2419 int nth_active_pipe;
2420
2421 if (!params->active) {
2422 alloc->start = 0;
2423 alloc->end = 0;
2424 return;
2425 }
2426
2427 ddb_size = SKL_DDB_SIZE;
2428
2429 ddb_size -= 4; /* 4 blocks for bypass path allocation */
2430
2431 nth_active_pipe = 0;
2432 for_each_crtc(dev, crtc) {
2433 if (!intel_crtc_active(crtc))
2434 continue;
2435
2436 if (crtc == for_crtc)
2437 break;
2438
2439 nth_active_pipe++;
2440 }
2441
2442 pipe_size = ddb_size / config->num_pipes_active;
2443 alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2444 alloc->end = alloc->start + pipe_size;
2445 }
2446
2447 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2448 {
2449 if (config->num_pipes_active == 1)
2450 return 32;
2451
2452 return 8;
2453 }
2454
2455 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2456 {
2457 entry->start = reg & 0x3ff;
2458 entry->end = (reg >> 16) & 0x3ff;
2459 if (entry->end)
2460 entry->end += 1;
2461 }
2462
2463 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2464 struct skl_ddb_allocation *ddb /* out */)
2465 {
2466 struct drm_device *dev = dev_priv->dev;
2467 enum pipe pipe;
2468 int plane;
2469 u32 val;
2470
2471 for_each_pipe(dev_priv, pipe) {
2472 for_each_plane(pipe, plane) {
2473 val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2474 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2475 val);
2476 }
2477
2478 val = I915_READ(CUR_BUF_CFG(pipe));
2479 skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
2480 }
2481 }
2482
2483 static unsigned int
2484 skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p)
2485 {
2486 return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2487 }
2488
2489 /*
2490 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2491 * a 8192x4096@32bpp framebuffer:
2492 * 3 * 4096 * 8192 * 4 < 2^32
2493 */
2494 static unsigned int
2495 skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
2496 const struct skl_pipe_wm_parameters *params)
2497 {
2498 unsigned int total_data_rate = 0;
2499 int plane;
2500
2501 for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2502 const struct intel_plane_wm_parameters *p;
2503
2504 p = &params->plane[plane];
2505 if (!p->enabled)
2506 continue;
2507
2508 total_data_rate += skl_plane_relative_data_rate(p);
2509 }
2510
2511 return total_data_rate;
2512 }
2513
2514 static void
2515 skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2516 const struct intel_wm_config *config,
2517 const struct skl_pipe_wm_parameters *params,
2518 struct skl_ddb_allocation *ddb /* out */)
2519 {
2520 struct drm_device *dev = crtc->dev;
2521 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2522 enum pipe pipe = intel_crtc->pipe;
2523 struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2524 uint16_t alloc_size, start, cursor_blocks;
2525 uint16_t minimum[I915_MAX_PLANES];
2526 unsigned int total_data_rate;
2527 int plane;
2528
2529 skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2530 alloc_size = skl_ddb_entry_size(alloc);
2531 if (alloc_size == 0) {
2532 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2533 memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
2534 return;
2535 }
2536
2537 cursor_blocks = skl_cursor_allocation(config);
2538 ddb->cursor[pipe].start = alloc->end - cursor_blocks;
2539 ddb->cursor[pipe].end = alloc->end;
2540
2541 alloc_size -= cursor_blocks;
2542 alloc->end -= cursor_blocks;
2543
2544 /* 1. Allocate the mininum required blocks for each active plane */
2545 for_each_plane(pipe, plane) {
2546 const struct intel_plane_wm_parameters *p;
2547
2548 p = &params->plane[plane];
2549 if (!p->enabled)
2550 continue;
2551
2552 minimum[plane] = 8;
2553 alloc_size -= minimum[plane];
2554 }
2555
2556 /*
2557 * 2. Distribute the remaining space in proportion to the amount of
2558 * data each plane needs to fetch from memory.
2559 *
2560 * FIXME: we may not allocate every single block here.
2561 */
2562 total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
2563
2564 start = alloc->start;
2565 for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2566 const struct intel_plane_wm_parameters *p;
2567 unsigned int data_rate;
2568 uint16_t plane_blocks;
2569
2570 p = &params->plane[plane];
2571 if (!p->enabled)
2572 continue;
2573
2574 data_rate = skl_plane_relative_data_rate(p);
2575
2576 /*
2577 * promote the expression to 64 bits to avoid overflowing, the
2578 * result is < available as data_rate / total_data_rate < 1
2579 */
2580 plane_blocks = minimum[plane];
2581 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
2582 total_data_rate);
2583
2584 ddb->plane[pipe][plane].start = start;
2585 ddb->plane[pipe][plane].end = start + plane_blocks;
2586
2587 start += plane_blocks;
2588 }
2589
2590 }
2591
2592 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
2593 {
2594 /* TODO: Take into account the scalers once we support them */
2595 return config->base.adjusted_mode.crtc_clock;
2596 }
2597
2598 /*
2599 * The max latency should be 257 (max the punit can code is 255 and we add 2us
2600 * for the read latency) and bytes_per_pixel should always be <= 8, so that
2601 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
2602 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
2603 */
2604 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2605 uint32_t latency)
2606 {
2607 uint32_t wm_intermediate_val, ret;
2608
2609 if (latency == 0)
2610 return UINT_MAX;
2611
2612 wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
2613 ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
2614
2615 return ret;
2616 }
2617
2618 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2619 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2620 uint64_t tiling, uint32_t latency)
2621 {
2622 uint32_t ret;
2623 uint32_t plane_bytes_per_line, plane_blocks_per_line;
2624 uint32_t wm_intermediate_val;
2625
2626 if (latency == 0)
2627 return UINT_MAX;
2628
2629 plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
2630
2631 if (tiling == I915_FORMAT_MOD_Y_TILED ||
2632 tiling == I915_FORMAT_MOD_Yf_TILED) {
2633 plane_bytes_per_line *= 4;
2634 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2635 plane_blocks_per_line /= 4;
2636 } else {
2637 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2638 }
2639
2640 wm_intermediate_val = latency * pixel_rate;
2641 ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
2642 plane_blocks_per_line;
2643
2644 return ret;
2645 }
2646
2647 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
2648 const struct intel_crtc *intel_crtc)
2649 {
2650 struct drm_device *dev = intel_crtc->base.dev;
2651 struct drm_i915_private *dev_priv = dev->dev_private;
2652 const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
2653 enum pipe pipe = intel_crtc->pipe;
2654
2655 if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
2656 sizeof(new_ddb->plane[pipe])))
2657 return true;
2658
2659 if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
2660 sizeof(new_ddb->cursor[pipe])))
2661 return true;
2662
2663 return false;
2664 }
2665
2666 static void skl_compute_wm_global_parameters(struct drm_device *dev,
2667 struct intel_wm_config *config)
2668 {
2669 struct drm_crtc *crtc;
2670 struct drm_plane *plane;
2671
2672 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2673 config->num_pipes_active += intel_crtc_active(crtc);
2674
2675 /* FIXME: I don't think we need those two global parameters on SKL */
2676 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2677 struct intel_plane *intel_plane = to_intel_plane(plane);
2678
2679 config->sprites_enabled |= intel_plane->wm.enabled;
2680 config->sprites_scaled |= intel_plane->wm.scaled;
2681 }
2682 }
2683
2684 static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
2685 struct skl_pipe_wm_parameters *p)
2686 {
2687 struct drm_device *dev = crtc->dev;
2688 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2689 enum pipe pipe = intel_crtc->pipe;
2690 struct drm_plane *plane;
2691 struct drm_framebuffer *fb;
2692 int i = 1; /* Index for sprite planes start */
2693
2694 p->active = intel_crtc_active(crtc);
2695 if (p->active) {
2696 p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
2697 p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
2698
2699 /*
2700 * For now, assume primary and cursor planes are always enabled.
2701 */
2702 p->plane[0].enabled = true;
2703 p->plane[0].bytes_per_pixel =
2704 crtc->primary->fb->bits_per_pixel / 8;
2705 p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
2706 p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
2707 p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
2708 fb = crtc->primary->state->fb;
2709 /*
2710 * Framebuffer can be NULL on plane disable, but it does not
2711 * matter for watermarks if we assume no tiling in that case.
2712 */
2713 if (fb)
2714 p->plane[0].tiling = fb->modifier[0];
2715
2716 p->cursor.enabled = true;
2717 p->cursor.bytes_per_pixel = 4;
2718 p->cursor.horiz_pixels = intel_crtc->cursor_width ?
2719 intel_crtc->cursor_width : 64;
2720 }
2721
2722 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2723 struct intel_plane *intel_plane = to_intel_plane(plane);
2724
2725 if (intel_plane->pipe == pipe &&
2726 plane->type == DRM_PLANE_TYPE_OVERLAY)
2727 p->plane[i++] = intel_plane->wm;
2728 }
2729 }
2730
2731 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
2732 struct skl_pipe_wm_parameters *p,
2733 struct intel_plane_wm_parameters *p_params,
2734 uint16_t ddb_allocation,
2735 int level,
2736 uint16_t *out_blocks, /* out */
2737 uint8_t *out_lines /* out */)
2738 {
2739 uint32_t latency = dev_priv->wm.skl_latency[level];
2740 uint32_t method1, method2;
2741 uint32_t plane_bytes_per_line, plane_blocks_per_line;
2742 uint32_t res_blocks, res_lines;
2743 uint32_t selected_result;
2744
2745 if (latency == 0 || !p->active || !p_params->enabled)
2746 return false;
2747
2748 method1 = skl_wm_method1(p->pixel_rate,
2749 p_params->bytes_per_pixel,
2750 latency);
2751 method2 = skl_wm_method2(p->pixel_rate,
2752 p->pipe_htotal,
2753 p_params->horiz_pixels,
2754 p_params->bytes_per_pixel,
2755 p_params->tiling,
2756 latency);
2757
2758 plane_bytes_per_line = p_params->horiz_pixels *
2759 p_params->bytes_per_pixel;
2760 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2761
2762 if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
2763 p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
2764 uint32_t y_tile_minimum = plane_blocks_per_line * 4;
2765 selected_result = max(method2, y_tile_minimum);
2766 } else {
2767 if ((ddb_allocation / plane_blocks_per_line) >= 1)
2768 selected_result = min(method1, method2);
2769 else
2770 selected_result = method1;
2771 }
2772
2773 res_blocks = selected_result + 1;
2774 res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
2775
2776 if (level >= 1 && level <= 7) {
2777 if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
2778 p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
2779 res_lines += 4;
2780 else
2781 res_blocks++;
2782 }
2783
2784 if (res_blocks >= ddb_allocation || res_lines > 31)
2785 return false;
2786
2787 *out_blocks = res_blocks;
2788 *out_lines = res_lines;
2789
2790 return true;
2791 }
2792
2793 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
2794 struct skl_ddb_allocation *ddb,
2795 struct skl_pipe_wm_parameters *p,
2796 enum pipe pipe,
2797 int level,
2798 int num_planes,
2799 struct skl_wm_level *result)
2800 {
2801 uint16_t ddb_blocks;
2802 int i;
2803
2804 for (i = 0; i < num_planes; i++) {
2805 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
2806
2807 result->plane_en[i] = skl_compute_plane_wm(dev_priv,
2808 p, &p->plane[i],
2809 ddb_blocks,
2810 level,
2811 &result->plane_res_b[i],
2812 &result->plane_res_l[i]);
2813 }
2814
2815 ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
2816 result->cursor_en = skl_compute_plane_wm(dev_priv, p, &p->cursor,
2817 ddb_blocks, level,
2818 &result->cursor_res_b,
2819 &result->cursor_res_l);
2820 }
2821
2822 static uint32_t
2823 skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
2824 {
2825 if (!intel_crtc_active(crtc))
2826 return 0;
2827
2828 return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
2829
2830 }
2831
2832 static void skl_compute_transition_wm(struct drm_crtc *crtc,
2833 struct skl_pipe_wm_parameters *params,
2834 struct skl_wm_level *trans_wm /* out */)
2835 {
2836 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2837 int i;
2838
2839 if (!params->active)
2840 return;
2841
2842 /* Until we know more, just disable transition WMs */
2843 for (i = 0; i < intel_num_planes(intel_crtc); i++)
2844 trans_wm->plane_en[i] = false;
2845 trans_wm->cursor_en = false;
2846 }
2847
2848 static void skl_compute_pipe_wm(struct drm_crtc *crtc,
2849 struct skl_ddb_allocation *ddb,
2850 struct skl_pipe_wm_parameters *params,
2851 struct skl_pipe_wm *pipe_wm)
2852 {
2853 struct drm_device *dev = crtc->dev;
2854 const struct drm_i915_private *dev_priv = dev->dev_private;
2855 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2856 int level, max_level = ilk_wm_max_level(dev);
2857
2858 for (level = 0; level <= max_level; level++) {
2859 skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
2860 level, intel_num_planes(intel_crtc),
2861 &pipe_wm->wm[level]);
2862 }
2863 pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
2864
2865 skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
2866 }
2867
2868 static void skl_compute_wm_results(struct drm_device *dev,
2869 struct skl_pipe_wm_parameters *p,
2870 struct skl_pipe_wm *p_wm,
2871 struct skl_wm_values *r,
2872 struct intel_crtc *intel_crtc)
2873 {
2874 int level, max_level = ilk_wm_max_level(dev);
2875 enum pipe pipe = intel_crtc->pipe;
2876 uint32_t temp;
2877 int i;
2878
2879 for (level = 0; level <= max_level; level++) {
2880 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
2881 temp = 0;
2882
2883 temp |= p_wm->wm[level].plane_res_l[i] <<
2884 PLANE_WM_LINES_SHIFT;
2885 temp |= p_wm->wm[level].plane_res_b[i];
2886 if (p_wm->wm[level].plane_en[i])
2887 temp |= PLANE_WM_EN;
2888
2889 r->plane[pipe][i][level] = temp;
2890 }
2891
2892 temp = 0;
2893
2894 temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
2895 temp |= p_wm->wm[level].cursor_res_b;
2896
2897 if (p_wm->wm[level].cursor_en)
2898 temp |= PLANE_WM_EN;
2899
2900 r->cursor[pipe][level] = temp;
2901
2902 }
2903
2904 /* transition WMs */
2905 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
2906 temp = 0;
2907 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
2908 temp |= p_wm->trans_wm.plane_res_b[i];
2909 if (p_wm->trans_wm.plane_en[i])
2910 temp |= PLANE_WM_EN;
2911
2912 r->plane_trans[pipe][i] = temp;
2913 }
2914
2915 temp = 0;
2916 temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
2917 temp |= p_wm->trans_wm.cursor_res_b;
2918 if (p_wm->trans_wm.cursor_en)
2919 temp |= PLANE_WM_EN;
2920
2921 r->cursor_trans[pipe] = temp;
2922
2923 r->wm_linetime[pipe] = p_wm->linetime;
2924 }
2925
2926 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
2927 const struct skl_ddb_entry *entry)
2928 {
2929 if (entry->end)
2930 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
2931 else
2932 I915_WRITE(reg, 0);
2933 }
2934
2935 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
2936 const struct skl_wm_values *new)
2937 {
2938 struct drm_device *dev = dev_priv->dev;
2939 struct intel_crtc *crtc;
2940
2941 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
2942 int i, level, max_level = ilk_wm_max_level(dev);
2943 enum pipe pipe = crtc->pipe;
2944
2945 if (!new->dirty[pipe])
2946 continue;
2947
2948 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
2949
2950 for (level = 0; level <= max_level; level++) {
2951 for (i = 0; i < intel_num_planes(crtc); i++)
2952 I915_WRITE(PLANE_WM(pipe, i, level),
2953 new->plane[pipe][i][level]);
2954 I915_WRITE(CUR_WM(pipe, level),
2955 new->cursor[pipe][level]);
2956 }
2957 for (i = 0; i < intel_num_planes(crtc); i++)
2958 I915_WRITE(PLANE_WM_TRANS(pipe, i),
2959 new->plane_trans[pipe][i]);
2960 I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);
2961
2962 for (i = 0; i < intel_num_planes(crtc); i++)
2963 skl_ddb_entry_write(dev_priv,
2964 PLANE_BUF_CFG(pipe, i),
2965 &new->ddb.plane[pipe][i]);
2966
2967 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
2968 &new->ddb.cursor[pipe]);
2969 }
2970 }
2971
2972 /*
2973 * When setting up a new DDB allocation arrangement, we need to correctly
2974 * sequence the times at which the new allocations for the pipes are taken into
2975 * account or we'll have pipes fetching from space previously allocated to
2976 * another pipe.
2977 *
2978 * Roughly the sequence looks like:
2979 * 1. re-allocate the pipe(s) with the allocation being reduced and not
2980 * overlapping with a previous light-up pipe (another way to put it is:
2981 * pipes with their new allocation strickly included into their old ones).
2982 * 2. re-allocate the other pipes that get their allocation reduced
2983 * 3. allocate the pipes having their allocation increased
2984 *
2985 * Steps 1. and 2. are here to take care of the following case:
2986 * - Initially DDB looks like this:
2987 * | B | C |
2988 * - enable pipe A.
2989 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
2990 * allocation
2991 * | A | B | C |
2992 *
2993 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
2994 */
2995
2996 static void
2997 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
2998 {
2999 struct drm_device *dev = dev_priv->dev;
3000 int plane;
3001
3002 DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3003
3004 for_each_plane(pipe, plane) {
3005 I915_WRITE(PLANE_SURF(pipe, plane),
3006 I915_READ(PLANE_SURF(pipe, plane)));
3007 }
3008 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3009 }
3010
3011 static bool
3012 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3013 const struct skl_ddb_allocation *new,
3014 enum pipe pipe)
3015 {
3016 uint16_t old_size, new_size;
3017
3018 old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3019 new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3020
3021 return old_size != new_size &&
3022 new->pipe[pipe].start >= old->pipe[pipe].start &&
3023 new->pipe[pipe].end <= old->pipe[pipe].end;
3024 }
3025
3026 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3027 struct skl_wm_values *new_values)
3028 {
3029 struct drm_device *dev = dev_priv->dev;
3030 struct skl_ddb_allocation *cur_ddb, *new_ddb;
3031 bool reallocated[I915_MAX_PIPES] = {false, false, false};
3032 struct intel_crtc *crtc;
3033 enum pipe pipe;
3034
3035 new_ddb = &new_values->ddb;
3036 cur_ddb = &dev_priv->wm.skl_hw.ddb;
3037
3038 /*
3039 * First pass: flush the pipes with the new allocation contained into
3040 * the old space.
3041 *
3042 * We'll wait for the vblank on those pipes to ensure we can safely
3043 * re-allocate the freed space without this pipe fetching from it.
3044 */
3045 for_each_intel_crtc(dev, crtc) {
3046 if (!crtc->active)
3047 continue;
3048
3049 pipe = crtc->pipe;
3050
3051 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3052 continue;
3053
3054 skl_wm_flush_pipe(dev_priv, pipe, 1);
3055 intel_wait_for_vblank(dev, pipe);
3056
3057 reallocated[pipe] = true;
3058 }
3059
3060
3061 /*
3062 * Second pass: flush the pipes that are having their allocation
3063 * reduced, but overlapping with a previous allocation.
3064 *
3065 * Here as well we need to wait for the vblank to make sure the freed
3066 * space is not used anymore.
3067 */
3068 for_each_intel_crtc(dev, crtc) {
3069 if (!crtc->active)
3070 continue;
3071
3072 pipe = crtc->pipe;
3073
3074 if (reallocated[pipe])
3075 continue;
3076
3077 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3078 skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3079 skl_wm_flush_pipe(dev_priv, pipe, 2);
3080 intel_wait_for_vblank(dev, pipe);
3081 reallocated[pipe] = true;
3082 }
3083 }
3084
3085 /*
3086 * Third pass: flush the pipes that got more space allocated.
3087 *
3088 * We don't need to actively wait for the update here, next vblank
3089 * will just get more DDB space with the correct WM values.
3090 */
3091 for_each_intel_crtc(dev, crtc) {
3092 if (!crtc->active)
3093 continue;
3094
3095 pipe = crtc->pipe;
3096
3097 /*
3098 * At this point, only the pipes more space than before are
3099 * left to re-allocate.
3100 */
3101 if (reallocated[pipe])
3102 continue;
3103
3104 skl_wm_flush_pipe(dev_priv, pipe, 3);
3105 }
3106 }
3107
3108 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3109 struct skl_pipe_wm_parameters *params,
3110 struct intel_wm_config *config,
3111 struct skl_ddb_allocation *ddb, /* out */
3112 struct skl_pipe_wm *pipe_wm /* out */)
3113 {
3114 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3115
3116 skl_compute_wm_pipe_parameters(crtc, params);
3117 skl_allocate_pipe_ddb(crtc, config, params, ddb);
3118 skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3119
3120 if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3121 return false;
3122
3123 intel_crtc->wm.skl_active = *pipe_wm;
3124 return true;
3125 }
3126
3127 static void skl_update_other_pipe_wm(struct drm_device *dev,
3128 struct drm_crtc *crtc,
3129 struct intel_wm_config *config,
3130 struct skl_wm_values *r)
3131 {
3132 struct intel_crtc *intel_crtc;
3133 struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3134
3135 /*
3136 * If the WM update hasn't changed the allocation for this_crtc (the
3137 * crtc we are currently computing the new WM values for), other
3138 * enabled crtcs will keep the same allocation and we don't need to
3139 * recompute anything for them.
3140 */
3141 if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3142 return;
3143
3144 /*
3145 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3146 * other active pipes need new DDB allocation and WM values.
3147 */
3148 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3149 base.head) {
3150 struct skl_pipe_wm_parameters params = {};
3151 struct skl_pipe_wm pipe_wm = {};
3152 bool wm_changed;
3153
3154 if (this_crtc->pipe == intel_crtc->pipe)
3155 continue;
3156
3157 if (!intel_crtc->active)
3158 continue;
3159
3160 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3161 &params, config,
3162 &r->ddb, &pipe_wm);
3163
3164 /*
3165 * If we end up re-computing the other pipe WM values, it's
3166 * because it was really needed, so we expect the WM values to
3167 * be different.
3168 */
3169 WARN_ON(!wm_changed);
3170
3171 skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
3172 r->dirty[intel_crtc->pipe] = true;
3173 }
3174 }
3175
3176 static void skl_update_wm(struct drm_crtc *crtc)
3177 {
3178 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3179 struct drm_device *dev = crtc->dev;
3180 struct drm_i915_private *dev_priv = dev->dev_private;
3181 struct skl_pipe_wm_parameters params = {};
3182 struct skl_wm_values *results = &dev_priv->wm.skl_results;
3183 struct skl_pipe_wm pipe_wm = {};
3184 struct intel_wm_config config = {};
3185
3186 memset(results, 0, sizeof(*results));
3187
3188 skl_compute_wm_global_parameters(dev, &config);
3189
3190 if (!skl_update_pipe_wm(crtc, &params, &config,
3191 &results->ddb, &pipe_wm))
3192 return;
3193
3194 skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
3195 results->dirty[intel_crtc->pipe] = true;
3196
3197 skl_update_other_pipe_wm(dev, crtc, &config, results);
3198 skl_write_wm_values(dev_priv, results);
3199 skl_flush_wm_values(dev_priv, results);
3200
3201 /* store the new configuration */
3202 dev_priv->wm.skl_hw = *results;
3203 }
3204
3205 static void
3206 skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3207 uint32_t sprite_width, uint32_t sprite_height,
3208 int pixel_size, bool enabled, bool scaled)
3209 {
3210 struct intel_plane *intel_plane = to_intel_plane(plane);
3211 struct drm_framebuffer *fb = plane->state->fb;
3212
3213 intel_plane->wm.enabled = enabled;
3214 intel_plane->wm.scaled = scaled;
3215 intel_plane->wm.horiz_pixels = sprite_width;
3216 intel_plane->wm.vert_pixels = sprite_height;
3217 intel_plane->wm.bytes_per_pixel = pixel_size;
3218 intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
3219 /*
3220 * Framebuffer can be NULL on plane disable, but it does not
3221 * matter for watermarks if we assume no tiling in that case.
3222 */
3223 if (fb)
3224 intel_plane->wm.tiling = fb->modifier[0];
3225
3226 skl_update_wm(crtc);
3227 }
3228
3229 static void ilk_update_wm(struct drm_crtc *crtc)
3230 {
3231 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3232 struct drm_device *dev = crtc->dev;
3233 struct drm_i915_private *dev_priv = dev->dev_private;
3234 struct ilk_wm_maximums max;
3235 struct ilk_pipe_wm_parameters params = {};
3236 struct ilk_wm_values results = {};
3237 enum intel_ddb_partitioning partitioning;
3238 struct intel_pipe_wm pipe_wm = {};
3239 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3240 struct intel_wm_config config = {};
3241
3242 ilk_compute_wm_parameters(crtc, &params);
3243
3244 intel_compute_pipe_wm(crtc, &params, &pipe_wm);
3245
3246 if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3247 return;
3248
3249 intel_crtc->wm.active = pipe_wm;
3250
3251 ilk_compute_wm_config(dev, &config);
3252
3253 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3254 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3255
3256 /* 5/6 split only in single pipe config on IVB+ */
3257 if (INTEL_INFO(dev)->gen >= 7 &&
3258 config.num_pipes_active == 1 && config.sprites_enabled) {
3259 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3260 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3261
3262 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3263 } else {
3264 best_lp_wm = &lp_wm_1_2;
3265 }
3266
3267 partitioning = (best_lp_wm == &lp_wm_1_2) ?
3268 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3269
3270 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3271
3272 ilk_write_wm_values(dev_priv, &results);
3273 }
3274
3275 static void
3276 ilk_update_sprite_wm(struct drm_plane *plane,
3277 struct drm_crtc *crtc,
3278 uint32_t sprite_width, uint32_t sprite_height,
3279 int pixel_size, bool enabled, bool scaled)
3280 {
3281 struct drm_device *dev = plane->dev;
3282 struct intel_plane *intel_plane = to_intel_plane(plane);
3283
3284 intel_plane->wm.enabled = enabled;
3285 intel_plane->wm.scaled = scaled;
3286 intel_plane->wm.horiz_pixels = sprite_width;
3287 intel_plane->wm.vert_pixels = sprite_width;
3288 intel_plane->wm.bytes_per_pixel = pixel_size;
3289
3290 /*
3291 * IVB workaround: must disable low power watermarks for at least
3292 * one frame before enabling scaling. LP watermarks can be re-enabled
3293 * when scaling is disabled.
3294 *
3295 * WaCxSRDisabledForSpriteScaling:ivb
3296 */
3297 if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3298 intel_wait_for_vblank(dev, intel_plane->pipe);
3299
3300 ilk_update_wm(crtc);
3301 }
3302
3303 static void skl_pipe_wm_active_state(uint32_t val,
3304 struct skl_pipe_wm *active,
3305 bool is_transwm,
3306 bool is_cursor,
3307 int i,
3308 int level)
3309 {
3310 bool is_enabled = (val & PLANE_WM_EN) != 0;
3311
3312 if (!is_transwm) {
3313 if (!is_cursor) {
3314 active->wm[level].plane_en[i] = is_enabled;
3315 active->wm[level].plane_res_b[i] =
3316 val & PLANE_WM_BLOCKS_MASK;
3317 active->wm[level].plane_res_l[i] =
3318 (val >> PLANE_WM_LINES_SHIFT) &
3319 PLANE_WM_LINES_MASK;
3320 } else {
3321 active->wm[level].cursor_en = is_enabled;
3322 active->wm[level].cursor_res_b =
3323 val & PLANE_WM_BLOCKS_MASK;
3324 active->wm[level].cursor_res_l =
3325 (val >> PLANE_WM_LINES_SHIFT) &
3326 PLANE_WM_LINES_MASK;
3327 }
3328 } else {
3329 if (!is_cursor) {
3330 active->trans_wm.plane_en[i] = is_enabled;
3331 active->trans_wm.plane_res_b[i] =
3332 val & PLANE_WM_BLOCKS_MASK;
3333 active->trans_wm.plane_res_l[i] =
3334 (val >> PLANE_WM_LINES_SHIFT) &
3335 PLANE_WM_LINES_MASK;
3336 } else {
3337 active->trans_wm.cursor_en = is_enabled;
3338 active->trans_wm.cursor_res_b =
3339 val & PLANE_WM_BLOCKS_MASK;
3340 active->trans_wm.cursor_res_l =
3341 (val >> PLANE_WM_LINES_SHIFT) &
3342 PLANE_WM_LINES_MASK;
3343 }
3344 }
3345 }
3346
3347 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3348 {
3349 struct drm_device *dev = crtc->dev;
3350 struct drm_i915_private *dev_priv = dev->dev_private;
3351 struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3352 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3353 struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3354 enum pipe pipe = intel_crtc->pipe;
3355 int level, i, max_level;
3356 uint32_t temp;
3357
3358 max_level = ilk_wm_max_level(dev);
3359
3360 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3361
3362 for (level = 0; level <= max_level; level++) {
3363 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3364 hw->plane[pipe][i][level] =
3365 I915_READ(PLANE_WM(pipe, i, level));
3366 hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
3367 }
3368
3369 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3370 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3371 hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));
3372
3373 if (!intel_crtc_active(crtc))
3374 return;
3375
3376 hw->dirty[pipe] = true;
3377
3378 active->linetime = hw->wm_linetime[pipe];
3379
3380 for (level = 0; level <= max_level; level++) {
3381 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3382 temp = hw->plane[pipe][i][level];
3383 skl_pipe_wm_active_state(temp, active, false,
3384 false, i, level);
3385 }
3386 temp = hw->cursor[pipe][level];
3387 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3388 }
3389
3390 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3391 temp = hw->plane_trans[pipe][i];
3392 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3393 }
3394
3395 temp = hw->cursor_trans[pipe];
3396 skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3397 }
3398
3399 void skl_wm_get_hw_state(struct drm_device *dev)
3400 {
3401 struct drm_i915_private *dev_priv = dev->dev_private;
3402 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3403 struct drm_crtc *crtc;
3404
3405 skl_ddb_get_hw_state(dev_priv, ddb);
3406 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3407 skl_pipe_wm_get_hw_state(crtc);
3408 }
3409
3410 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3411 {
3412 struct drm_device *dev = crtc->dev;
3413 struct drm_i915_private *dev_priv = dev->dev_private;
3414 struct ilk_wm_values *hw = &dev_priv->wm.hw;
3415 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3416 struct intel_pipe_wm *active = &intel_crtc->wm.active;
3417 enum pipe pipe = intel_crtc->pipe;
3418 static const unsigned int wm0_pipe_reg[] = {
3419 [PIPE_A] = WM0_PIPEA_ILK,
3420 [PIPE_B] = WM0_PIPEB_ILK,
3421 [PIPE_C] = WM0_PIPEC_IVB,
3422 };
3423
3424 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3425 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3426 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3427
3428 active->pipe_enabled = intel_crtc_active(crtc);
3429
3430 if (active->pipe_enabled) {
3431 u32 tmp = hw->wm_pipe[pipe];
3432
3433 /*
3434 * For active pipes LP0 watermark is marked as
3435 * enabled, and LP1+ watermaks as disabled since
3436 * we can't really reverse compute them in case
3437 * multiple pipes are active.
3438 */
3439 active->wm[0].enable = true;
3440 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3441 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3442 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3443 active->linetime = hw->wm_linetime[pipe];
3444 } else {
3445 int level, max_level = ilk_wm_max_level(dev);
3446
3447 /*
3448 * For inactive pipes, all watermark levels
3449 * should be marked as enabled but zeroed,
3450 * which is what we'd compute them to.
3451 */
3452 for (level = 0; level <= max_level; level++)
3453 active->wm[level].enable = true;
3454 }
3455 }
3456
3457 void ilk_wm_get_hw_state(struct drm_device *dev)
3458 {
3459 struct drm_i915_private *dev_priv = dev->dev_private;
3460 struct ilk_wm_values *hw = &dev_priv->wm.hw;
3461 struct drm_crtc *crtc;
3462
3463 for_each_crtc(dev, crtc)
3464 ilk_pipe_wm_get_hw_state(crtc);
3465
3466 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
3467 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
3468 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3469
3470 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3471 if (INTEL_INFO(dev)->gen >= 7) {
3472 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
3473 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
3474 }
3475
3476 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3477 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
3478 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3479 else if (IS_IVYBRIDGE(dev))
3480 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
3481 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3482
3483 hw->enable_fbc_wm =
3484 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3485 }
3486
3487 /**
3488 * intel_update_watermarks - update FIFO watermark values based on current modes
3489 *
3490 * Calculate watermark values for the various WM regs based on current mode
3491 * and plane configuration.
3492 *
3493 * There are several cases to deal with here:
3494 * - normal (i.e. non-self-refresh)
3495 * - self-refresh (SR) mode
3496 * - lines are large relative to FIFO size (buffer can hold up to 2)
3497 * - lines are small relative to FIFO size (buffer can hold more than 2
3498 * lines), so need to account for TLB latency
3499 *
3500 * The normal calculation is:
3501 * watermark = dotclock * bytes per pixel * latency
3502 * where latency is platform & configuration dependent (we assume pessimal
3503 * values here).
3504 *
3505 * The SR calculation is:
3506 * watermark = (trunc(latency/line time)+1) * surface width *
3507 * bytes per pixel
3508 * where
3509 * line time = htotal / dotclock
3510 * surface width = hdisplay for normal plane and 64 for cursor
3511 * and latency is assumed to be high, as above.
3512 *
3513 * The final value programmed to the register should always be rounded up,
3514 * and include an extra 2 entries to account for clock crossings.
3515 *
3516 * We don't use the sprite, so we can ignore that. And on Crestline we have
3517 * to set the non-SR watermarks to 8.
3518 */
3519 void intel_update_watermarks(struct drm_crtc *crtc)
3520 {
3521 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3522
3523 if (dev_priv->display.update_wm)
3524 dev_priv->display.update_wm(crtc);
3525 }
3526
3527 void intel_update_sprite_watermarks(struct drm_plane *plane,
3528 struct drm_crtc *crtc,
3529 uint32_t sprite_width,
3530 uint32_t sprite_height,
3531 int pixel_size,
3532 bool enabled, bool scaled)
3533 {
3534 struct drm_i915_private *dev_priv = plane->dev->dev_private;
3535
3536 if (dev_priv->display.update_sprite_wm)
3537 dev_priv->display.update_sprite_wm(plane, crtc,
3538 sprite_width, sprite_height,
3539 pixel_size, enabled, scaled);
3540 }
3541
3542 static struct drm_i915_gem_object *
3543 intel_alloc_context_page(struct drm_device *dev)
3544 {
3545 struct drm_i915_gem_object *ctx;
3546 int ret;
3547
3548 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3549
3550 ctx = i915_gem_alloc_object(dev, 4096);
3551 if (!ctx) {
3552 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
3553 return NULL;
3554 }
3555
3556 ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
3557 if (ret) {
3558 DRM_ERROR("failed to pin power context: %d\n", ret);
3559 goto err_unref;
3560 }
3561
3562 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
3563 if (ret) {
3564 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
3565 goto err_unpin;
3566 }
3567
3568 return ctx;
3569
3570 err_unpin:
3571 i915_gem_object_ggtt_unpin(ctx);
3572 err_unref:
3573 drm_gem_object_unreference(&ctx->base);
3574 return NULL;
3575 }
3576
3577 /**
3578 * Lock protecting IPS related data structures
3579 */
3580 DEFINE_SPINLOCK(mchdev_lock);
3581
3582 /* Global for IPS driver to get at the current i915 device. Protected by
3583 * mchdev_lock. */
3584 static struct drm_i915_private *i915_mch_dev;
3585
3586 bool ironlake_set_drps(struct drm_device *dev, u8 val)
3587 {
3588 struct drm_i915_private *dev_priv = dev->dev_private;
3589 u16 rgvswctl;
3590
3591 assert_spin_locked(&mchdev_lock);
3592
3593 rgvswctl = I915_READ16(MEMSWCTL);
3594 if (rgvswctl & MEMCTL_CMD_STS) {
3595 DRM_DEBUG("gpu busy, RCS change rejected\n");
3596 return false; /* still busy with another command */
3597 }
3598
3599 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3600 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3601 I915_WRITE16(MEMSWCTL, rgvswctl);
3602 POSTING_READ16(MEMSWCTL);
3603
3604 rgvswctl |= MEMCTL_CMD_STS;
3605 I915_WRITE16(MEMSWCTL, rgvswctl);
3606
3607 return true;
3608 }
3609
3610 static void ironlake_enable_drps(struct drm_device *dev)
3611 {
3612 struct drm_i915_private *dev_priv = dev->dev_private;
3613 u32 rgvmodectl = I915_READ(MEMMODECTL);
3614 u8 fmax, fmin, fstart, vstart;
3615
3616 spin_lock_irq(&mchdev_lock);
3617
3618 /* Enable temp reporting */
3619 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3620 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3621
3622 /* 100ms RC evaluation intervals */
3623 I915_WRITE(RCUPEI, 100000);
3624 I915_WRITE(RCDNEI, 100000);
3625
3626 /* Set max/min thresholds to 90ms and 80ms respectively */
3627 I915_WRITE(RCBMAXAVG, 90000);
3628 I915_WRITE(RCBMINAVG, 80000);
3629
3630 I915_WRITE(MEMIHYST, 1);
3631
3632 /* Set up min, max, and cur for interrupt handling */
3633 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3634 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3635 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3636 MEMMODE_FSTART_SHIFT;
3637
3638 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3639 PXVFREQ_PX_SHIFT;
3640
3641 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3642 dev_priv->ips.fstart = fstart;
3643
3644 dev_priv->ips.max_delay = fstart;
3645 dev_priv->ips.min_delay = fmin;
3646 dev_priv->ips.cur_delay = fstart;
3647
3648 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3649 fmax, fmin, fstart);
3650
3651 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3652
3653 /*
3654 * Interrupts will be enabled in ironlake_irq_postinstall
3655 */
3656
3657 I915_WRITE(VIDSTART, vstart);
3658 POSTING_READ(VIDSTART);
3659
3660 rgvmodectl |= MEMMODE_SWMODE_EN;
3661 I915_WRITE(MEMMODECTL, rgvmodectl);
3662
3663 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3664 DRM_ERROR("stuck trying to change perf mode\n");
3665 mdelay(1);
3666
3667 ironlake_set_drps(dev, fstart);
3668
3669 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3670 I915_READ(0x112e0);
3671 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3672 dev_priv->ips.last_count2 = I915_READ(0x112f4);
3673 dev_priv->ips.last_time2 = ktime_get_raw_ns();
3674
3675 spin_unlock_irq(&mchdev_lock);
3676 }
3677
3678 static void ironlake_disable_drps(struct drm_device *dev)
3679 {
3680 struct drm_i915_private *dev_priv = dev->dev_private;
3681 u16 rgvswctl;
3682
3683 spin_lock_irq(&mchdev_lock);
3684
3685 rgvswctl = I915_READ16(MEMSWCTL);
3686
3687 /* Ack interrupts, disable EFC interrupt */
3688 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3689 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3690 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3691 I915_WRITE(DEIIR, DE_PCU_EVENT);
3692 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3693
3694 /* Go back to the starting frequency */
3695 ironlake_set_drps(dev, dev_priv->ips.fstart);
3696 mdelay(1);
3697 rgvswctl |= MEMCTL_CMD_STS;
3698 I915_WRITE(MEMSWCTL, rgvswctl);
3699 mdelay(1);
3700
3701 spin_unlock_irq(&mchdev_lock);
3702 }
3703
3704 /* There's a funny hw issue where the hw returns all 0 when reading from
3705 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3706 * ourselves, instead of doing a rmw cycle (which might result in us clearing
3707 * all limits and the gpu stuck at whatever frequency it is at atm).
3708 */
3709 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3710 {
3711 u32 limits;
3712
3713 /* Only set the down limit when we've reached the lowest level to avoid
3714 * getting more interrupts, otherwise leave this clear. This prevents a
3715 * race in the hw when coming out of rc6: There's a tiny window where
3716 * the hw runs at the minimal clock before selecting the desired
3717 * frequency, if the down threshold expires in that window we will not
3718 * receive a down interrupt. */
3719 limits = dev_priv->rps.max_freq_softlimit << 24;
3720 if (val <= dev_priv->rps.min_freq_softlimit)
3721 limits |= dev_priv->rps.min_freq_softlimit << 16;
3722
3723 return limits;
3724 }
3725
3726 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3727 {
3728 int new_power;
3729
3730 new_power = dev_priv->rps.power;
3731 switch (dev_priv->rps.power) {
3732 case LOW_POWER:
3733 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3734 new_power = BETWEEN;
3735 break;
3736
3737 case BETWEEN:
3738 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3739 new_power = LOW_POWER;
3740 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3741 new_power = HIGH_POWER;
3742 break;
3743
3744 case HIGH_POWER:
3745 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3746 new_power = BETWEEN;
3747 break;
3748 }
3749 /* Max/min bins are special */
3750 if (val == dev_priv->rps.min_freq_softlimit)
3751 new_power = LOW_POWER;
3752 if (val == dev_priv->rps.max_freq_softlimit)
3753 new_power = HIGH_POWER;
3754 if (new_power == dev_priv->rps.power)
3755 return;
3756
3757 /* Note the units here are not exactly 1us, but 1280ns. */
3758 switch (new_power) {
3759 case LOW_POWER:
3760 /* Upclock if more than 95% busy over 16ms */
3761 I915_WRITE(GEN6_RP_UP_EI, 12500);
3762 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3763
3764 /* Downclock if less than 85% busy over 32ms */
3765 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3766 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3767
3768 I915_WRITE(GEN6_RP_CONTROL,
3769 GEN6_RP_MEDIA_TURBO |
3770 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3771 GEN6_RP_MEDIA_IS_GFX |
3772 GEN6_RP_ENABLE |
3773 GEN6_RP_UP_BUSY_AVG |
3774 GEN6_RP_DOWN_IDLE_AVG);
3775 break;
3776
3777 case BETWEEN:
3778 /* Upclock if more than 90% busy over 13ms */
3779 I915_WRITE(GEN6_RP_UP_EI, 10250);
3780 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3781
3782 /* Downclock if less than 75% busy over 32ms */
3783 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3784 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3785
3786 I915_WRITE(GEN6_RP_CONTROL,
3787 GEN6_RP_MEDIA_TURBO |
3788 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3789 GEN6_RP_MEDIA_IS_GFX |
3790 GEN6_RP_ENABLE |
3791 GEN6_RP_UP_BUSY_AVG |
3792 GEN6_RP_DOWN_IDLE_AVG);
3793 break;
3794
3795 case HIGH_POWER:
3796 /* Upclock if more than 85% busy over 10ms */
3797 I915_WRITE(GEN6_RP_UP_EI, 8000);
3798 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3799
3800 /* Downclock if less than 60% busy over 32ms */
3801 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3802 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3803
3804 I915_WRITE(GEN6_RP_CONTROL,
3805 GEN6_RP_MEDIA_TURBO |
3806 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3807 GEN6_RP_MEDIA_IS_GFX |
3808 GEN6_RP_ENABLE |
3809 GEN6_RP_UP_BUSY_AVG |
3810 GEN6_RP_DOWN_IDLE_AVG);
3811 break;
3812 }
3813
3814 dev_priv->rps.power = new_power;
3815 dev_priv->rps.last_adj = 0;
3816 }
3817
3818 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3819 {
3820 u32 mask = 0;
3821
3822 if (val > dev_priv->rps.min_freq_softlimit)
3823 mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3824 if (val < dev_priv->rps.max_freq_softlimit)
3825 mask |= GEN6_PM_RP_UP_THRESHOLD;
3826
3827 mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
3828 mask &= dev_priv->pm_rps_events;
3829
3830 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
3831 }
3832
3833 /* gen6_set_rps is called to update the frequency request, but should also be
3834 * called when the range (min_delay and max_delay) is modified so that we can
3835 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3836 static void gen6_set_rps(struct drm_device *dev, u8 val)
3837 {
3838 struct drm_i915_private *dev_priv = dev->dev_private;
3839
3840 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3841 WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3842 WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3843
3844 /* min/max delay may still have been modified so be sure to
3845 * write the limits value.
3846 */
3847 if (val != dev_priv->rps.cur_freq) {
3848 gen6_set_rps_thresholds(dev_priv, val);
3849
3850 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3851 I915_WRITE(GEN6_RPNSWREQ,
3852 HSW_FREQUENCY(val));
3853 else
3854 I915_WRITE(GEN6_RPNSWREQ,
3855 GEN6_FREQUENCY(val) |
3856 GEN6_OFFSET(0) |
3857 GEN6_AGGRESSIVE_TURBO);
3858 }
3859
3860 /* Make sure we continue to get interrupts
3861 * until we hit the minimum or maximum frequencies.
3862 */
3863 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3864 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3865
3866 POSTING_READ(GEN6_RPNSWREQ);
3867
3868 dev_priv->rps.cur_freq = val;
3869 trace_intel_gpu_freq_change(val * 50);
3870 }
3871
3872 static void valleyview_set_rps(struct drm_device *dev, u8 val)
3873 {
3874 struct drm_i915_private *dev_priv = dev->dev_private;
3875
3876 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3877 WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3878 WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3879
3880 if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
3881 "Odd GPU freq value\n"))
3882 val &= ~1;
3883
3884 if (val != dev_priv->rps.cur_freq)
3885 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3886
3887 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3888
3889 dev_priv->rps.cur_freq = val;
3890 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
3891 }
3892
3893 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3894 *
3895 * * If Gfx is Idle, then
3896 * 1. Mask Turbo interrupts
3897 * 2. Bring up Gfx clock
3898 * 3. Change the freq to Rpn and wait till P-Unit updates freq
3899 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3900 * 5. Unmask Turbo interrupts
3901 */
3902 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3903 {
3904 struct drm_device *dev = dev_priv->dev;
3905
3906 /* CHV and latest VLV don't need to force the gfx clock */
3907 if (IS_CHERRYVIEW(dev) || dev->pdev->revision >= 0xd) {
3908 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3909 return;
3910 }
3911
3912 /*
3913 * When we are idle. Drop to min voltage state.
3914 */
3915
3916 if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3917 return;
3918
3919 /* Mask turbo interrupt so that they will not come in between */
3920 I915_WRITE(GEN6_PMINTRMSK,
3921 gen6_sanitize_rps_pm_mask(dev_priv, ~0));
3922
3923 vlv_force_gfx_clock(dev_priv, true);
3924
3925 dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3926
3927 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3928 dev_priv->rps.min_freq_softlimit);
3929
3930 if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3931 & GENFREQSTATUS) == 0, 100))
3932 DRM_ERROR("timed out waiting for Punit\n");
3933
3934 vlv_force_gfx_clock(dev_priv, false);
3935
3936 I915_WRITE(GEN6_PMINTRMSK,
3937 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3938 }
3939
3940 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3941 {
3942 struct drm_device *dev = dev_priv->dev;
3943
3944 mutex_lock(&dev_priv->rps.hw_lock);
3945 if (dev_priv->rps.enabled) {
3946 if (IS_VALLEYVIEW(dev))
3947 vlv_set_rps_idle(dev_priv);
3948 else
3949 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3950 dev_priv->rps.last_adj = 0;
3951 }
3952 mutex_unlock(&dev_priv->rps.hw_lock);
3953 }
3954
3955 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3956 {
3957 mutex_lock(&dev_priv->rps.hw_lock);
3958 if (dev_priv->rps.enabled) {
3959 intel_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3960 dev_priv->rps.last_adj = 0;
3961 }
3962 mutex_unlock(&dev_priv->rps.hw_lock);
3963 }
3964
3965 void intel_set_rps(struct drm_device *dev, u8 val)
3966 {
3967 if (IS_VALLEYVIEW(dev))
3968 valleyview_set_rps(dev, val);
3969 else
3970 gen6_set_rps(dev, val);
3971 }
3972
3973 static void gen9_disable_rps(struct drm_device *dev)
3974 {
3975 struct drm_i915_private *dev_priv = dev->dev_private;
3976
3977 I915_WRITE(GEN6_RC_CONTROL, 0);
3978 I915_WRITE(GEN9_PG_ENABLE, 0);
3979 }
3980
3981 static void gen6_disable_rps(struct drm_device *dev)
3982 {
3983 struct drm_i915_private *dev_priv = dev->dev_private;
3984
3985 I915_WRITE(GEN6_RC_CONTROL, 0);
3986 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3987 }
3988
3989 static void cherryview_disable_rps(struct drm_device *dev)
3990 {
3991 struct drm_i915_private *dev_priv = dev->dev_private;
3992
3993 I915_WRITE(GEN6_RC_CONTROL, 0);
3994 }
3995
3996 static void valleyview_disable_rps(struct drm_device *dev)
3997 {
3998 struct drm_i915_private *dev_priv = dev->dev_private;
3999
4000 /* we're doing forcewake before Disabling RC6,
4001 * This what the BIOS expects when going into suspend */
4002 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4003
4004 I915_WRITE(GEN6_RC_CONTROL, 0);
4005
4006 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4007 }
4008
4009 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4010 {
4011 if (IS_VALLEYVIEW(dev)) {
4012 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4013 mode = GEN6_RC_CTL_RC6_ENABLE;
4014 else
4015 mode = 0;
4016 }
4017 if (HAS_RC6p(dev))
4018 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4019 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4020 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4021 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
4022
4023 else
4024 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4025 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4026 }
4027
4028 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4029 {
4030 /* No RC6 before Ironlake */
4031 if (INTEL_INFO(dev)->gen < 5)
4032 return 0;
4033
4034 /* RC6 is only on Ironlake mobile not on desktop */
4035 if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
4036 return 0;
4037
4038 /* Respect the kernel parameter if it is set */
4039 if (enable_rc6 >= 0) {
4040 int mask;
4041
4042 if (HAS_RC6p(dev))
4043 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4044 INTEL_RC6pp_ENABLE;
4045 else
4046 mask = INTEL_RC6_ENABLE;
4047
4048 if ((enable_rc6 & mask) != enable_rc6)
4049 DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4050 enable_rc6 & mask, enable_rc6, mask);
4051
4052 return enable_rc6 & mask;
4053 }
4054
4055 /* Disable RC6 on Ironlake */
4056 if (INTEL_INFO(dev)->gen == 5)
4057 return 0;
4058
4059 if (IS_IVYBRIDGE(dev))
4060 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4061
4062 return INTEL_RC6_ENABLE;
4063 }
4064
4065 int intel_enable_rc6(const struct drm_device *dev)
4066 {
4067 return i915.enable_rc6;
4068 }
4069
4070 static void gen6_init_rps_frequencies(struct drm_device *dev)
4071 {
4072 struct drm_i915_private *dev_priv = dev->dev_private;
4073 uint32_t rp_state_cap;
4074 u32 ddcc_status = 0;
4075 int ret;
4076
4077 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4078 /* All of these values are in units of 50MHz */
4079 dev_priv->rps.cur_freq = 0;
4080 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4081 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
4082 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
4083 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4084 /* hw_max = RP0 until we check for overclocking */
4085 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
4086
4087 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4088 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4089 ret = sandybridge_pcode_read(dev_priv,
4090 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4091 &ddcc_status);
4092 if (0 == ret)
4093 dev_priv->rps.efficient_freq =
4094 clamp_t(u8,
4095 ((ddcc_status >> 8) & 0xff),
4096 dev_priv->rps.min_freq,
4097 dev_priv->rps.max_freq);
4098 }
4099
4100 /* Preserve min/max settings in case of re-init */
4101 if (dev_priv->rps.max_freq_softlimit == 0)
4102 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4103
4104 if (dev_priv->rps.min_freq_softlimit == 0) {
4105 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4106 dev_priv->rps.min_freq_softlimit =
4107 /* max(RPe, 450 MHz) */
4108 max(dev_priv->rps.efficient_freq, (u8) 9);
4109 else
4110 dev_priv->rps.min_freq_softlimit =
4111 dev_priv->rps.min_freq;
4112 }
4113 }
4114
4115 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4116 static void gen9_enable_rps(struct drm_device *dev)
4117 {
4118 struct drm_i915_private *dev_priv = dev->dev_private;
4119
4120 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4121
4122 gen6_init_rps_frequencies(dev);
4123
4124 I915_WRITE(GEN6_RPNSWREQ, 0xc800000);
4125 I915_WRITE(GEN6_RC_VIDEO_FREQ, 0xc800000);
4126
4127 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
4128 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, 0x12060000);
4129 I915_WRITE(GEN6_RP_UP_THRESHOLD, 0xe808);
4130 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 0x3bd08);
4131 I915_WRITE(GEN6_RP_UP_EI, 0x101d0);
4132 I915_WRITE(GEN6_RP_DOWN_EI, 0x55730);
4133 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4134 I915_WRITE(GEN6_PMINTRMSK, 0x6);
4135 I915_WRITE(GEN6_RP_CONTROL, GEN6_RP_MEDIA_TURBO |
4136 GEN6_RP_MEDIA_HW_MODE | GEN6_RP_MEDIA_IS_GFX |
4137 GEN6_RP_ENABLE | GEN6_RP_UP_BUSY_AVG |
4138 GEN6_RP_DOWN_IDLE_AVG);
4139
4140 gen6_enable_rps_interrupts(dev);
4141
4142 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4143 }
4144
4145 static void gen9_enable_rc6(struct drm_device *dev)
4146 {
4147 struct drm_i915_private *dev_priv = dev->dev_private;
4148 struct intel_engine_cs *ring;
4149 uint32_t rc6_mask = 0;
4150 int unused;
4151
4152 /* 1a: Software RC state - RC0 */
4153 I915_WRITE(GEN6_RC_STATE, 0);
4154
4155 /* 1b: Get forcewake during program sequence. Although the driver
4156 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4157 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4158
4159 /* 2a: Disable RC states. */
4160 I915_WRITE(GEN6_RC_CONTROL, 0);
4161
4162 /* 2b: Program RC6 thresholds.*/
4163 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4164 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4165 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4166 for_each_ring(ring, dev_priv, unused)
4167 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4168 I915_WRITE(GEN6_RC_SLEEP, 0);
4169 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4170
4171 /* 2c: Program Coarse Power Gating Policies. */
4172 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4173 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4174
4175 /* 3a: Enable RC6 */
4176 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4177 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4178 DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4179 "on" : "off");
4180 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4181 GEN6_RC_CTL_EI_MODE(1) |
4182 rc6_mask);
4183
4184 /* 3b: Enable Coarse Power Gating only when RC6 is enabled */
4185 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? 3 : 0);
4186
4187 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4188
4189 }
4190
4191 static void gen8_enable_rps(struct drm_device *dev)
4192 {
4193 struct drm_i915_private *dev_priv = dev->dev_private;
4194 struct intel_engine_cs *ring;
4195 uint32_t rc6_mask = 0;
4196 int unused;
4197
4198 /* 1a: Software RC state - RC0 */
4199 I915_WRITE(GEN6_RC_STATE, 0);
4200
4201 /* 1c & 1d: Get forcewake during program sequence. Although the driver
4202 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4203 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4204
4205 /* 2a: Disable RC states. */
4206 I915_WRITE(GEN6_RC_CONTROL, 0);
4207
4208 /* Initialize rps frequencies */
4209 gen6_init_rps_frequencies(dev);
4210
4211 /* 2b: Program RC6 thresholds.*/
4212 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4213 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4214 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4215 for_each_ring(ring, dev_priv, unused)
4216 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4217 I915_WRITE(GEN6_RC_SLEEP, 0);
4218 if (IS_BROADWELL(dev))
4219 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4220 else
4221 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4222
4223 /* 3: Enable RC6 */
4224 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4225 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4226 intel_print_rc6_info(dev, rc6_mask);
4227 if (IS_BROADWELL(dev))
4228 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4229 GEN7_RC_CTL_TO_MODE |
4230 rc6_mask);
4231 else
4232 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4233 GEN6_RC_CTL_EI_MODE(1) |
4234 rc6_mask);
4235
4236 /* 4 Program defaults and thresholds for RPS*/
4237 I915_WRITE(GEN6_RPNSWREQ,
4238 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4239 I915_WRITE(GEN6_RC_VIDEO_FREQ,
4240 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4241 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4242 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4243
4244 /* Docs recommend 900MHz, and 300 MHz respectively */
4245 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4246 dev_priv->rps.max_freq_softlimit << 24 |
4247 dev_priv->rps.min_freq_softlimit << 16);
4248
4249 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4250 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4251 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4252 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4253
4254 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4255
4256 /* 5: Enable RPS */
4257 I915_WRITE(GEN6_RP_CONTROL,
4258 GEN6_RP_MEDIA_TURBO |
4259 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4260 GEN6_RP_MEDIA_IS_GFX |
4261 GEN6_RP_ENABLE |
4262 GEN6_RP_UP_BUSY_AVG |
4263 GEN6_RP_DOWN_IDLE_AVG);
4264
4265 /* 6: Ring frequency + overclocking (our driver does this later */
4266
4267 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4268 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4269
4270 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4271 }
4272
4273 static void gen6_enable_rps(struct drm_device *dev)
4274 {
4275 struct drm_i915_private *dev_priv = dev->dev_private;
4276 struct intel_engine_cs *ring;
4277 u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4278 u32 gtfifodbg;
4279 int rc6_mode;
4280 int i, ret;
4281
4282 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4283
4284 /* Here begins a magic sequence of register writes to enable
4285 * auto-downclocking.
4286 *
4287 * Perhaps there might be some value in exposing these to
4288 * userspace...
4289 */
4290 I915_WRITE(GEN6_RC_STATE, 0);
4291
4292 /* Clear the DBG now so we don't confuse earlier errors */
4293 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4294 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4295 I915_WRITE(GTFIFODBG, gtfifodbg);
4296 }
4297
4298 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4299
4300 /* Initialize rps frequencies */
4301 gen6_init_rps_frequencies(dev);
4302
4303 /* disable the counters and set deterministic thresholds */
4304 I915_WRITE(GEN6_RC_CONTROL, 0);
4305
4306 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4307 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4308 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4309 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4310 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4311
4312 for_each_ring(ring, dev_priv, i)
4313 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4314
4315 I915_WRITE(GEN6_RC_SLEEP, 0);
4316 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4317 if (IS_IVYBRIDGE(dev))
4318 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4319 else
4320 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4321 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4322 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4323
4324 /* Check if we are enabling RC6 */
4325 rc6_mode = intel_enable_rc6(dev_priv->dev);
4326 if (rc6_mode & INTEL_RC6_ENABLE)
4327 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4328
4329 /* We don't use those on Haswell */
4330 if (!IS_HASWELL(dev)) {
4331 if (rc6_mode & INTEL_RC6p_ENABLE)
4332 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4333
4334 if (rc6_mode & INTEL_RC6pp_ENABLE)
4335 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4336 }
4337
4338 intel_print_rc6_info(dev, rc6_mask);
4339
4340 I915_WRITE(GEN6_RC_CONTROL,
4341 rc6_mask |
4342 GEN6_RC_CTL_EI_MODE(1) |
4343 GEN6_RC_CTL_HW_ENABLE);
4344
4345 /* Power down if completely idle for over 50ms */
4346 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4347 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4348
4349 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4350 if (ret)
4351 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4352
4353 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
4354 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
4355 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4356 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4357 (pcu_mbox & 0xff) * 50);
4358 dev_priv->rps.max_freq = pcu_mbox & 0xff;
4359 }
4360
4361 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4362 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4363
4364 rc6vids = 0;
4365 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
4366 if (IS_GEN6(dev) && ret) {
4367 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
4368 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
4369 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
4370 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
4371 rc6vids &= 0xffff00;
4372 rc6vids |= GEN6_ENCODE_RC6_VID(450);
4373 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
4374 if (ret)
4375 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
4376 }
4377
4378 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4379 }
4380
4381 static void __gen6_update_ring_freq(struct drm_device *dev)
4382 {
4383 struct drm_i915_private *dev_priv = dev->dev_private;
4384 int min_freq = 15;
4385 unsigned int gpu_freq;
4386 unsigned int max_ia_freq, min_ring_freq;
4387 int scaling_factor = 180;
4388 struct cpufreq_policy *policy;
4389
4390 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4391
4392 policy = cpufreq_cpu_get(0);
4393 if (policy) {
4394 max_ia_freq = policy->cpuinfo.max_freq;
4395 cpufreq_cpu_put(policy);
4396 } else {
4397 /*
4398 * Default to measured freq if none found, PCU will ensure we
4399 * don't go over
4400 */
4401 max_ia_freq = tsc_khz;
4402 }
4403
4404 /* Convert from kHz to MHz */
4405 max_ia_freq /= 1000;
4406
4407 min_ring_freq = I915_READ(DCLK) & 0xf;
4408 /* convert DDR frequency from units of 266.6MHz to bandwidth */
4409 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4410
4411 /*
4412 * For each potential GPU frequency, load a ring frequency we'd like
4413 * to use for memory access. We do this by specifying the IA frequency
4414 * the PCU should use as a reference to determine the ring frequency.
4415 */
4416 for (gpu_freq = dev_priv->rps.max_freq; gpu_freq >= dev_priv->rps.min_freq;
4417 gpu_freq--) {
4418 int diff = dev_priv->rps.max_freq - gpu_freq;
4419 unsigned int ia_freq = 0, ring_freq = 0;
4420
4421 if (INTEL_INFO(dev)->gen >= 8) {
4422 /* max(2 * GT, DDR). NB: GT is 50MHz units */
4423 ring_freq = max(min_ring_freq, gpu_freq);
4424 } else if (IS_HASWELL(dev)) {
4425 ring_freq = mult_frac(gpu_freq, 5, 4);
4426 ring_freq = max(min_ring_freq, ring_freq);
4427 /* leave ia_freq as the default, chosen by cpufreq */
4428 } else {
4429 /* On older processors, there is no separate ring
4430 * clock domain, so in order to boost the bandwidth
4431 * of the ring, we need to upclock the CPU (ia_freq).
4432 *
4433 * For GPU frequencies less than 750MHz,
4434 * just use the lowest ring freq.
4435 */
4436 if (gpu_freq < min_freq)
4437 ia_freq = 800;
4438 else
4439 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
4440 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
4441 }
4442
4443 sandybridge_pcode_write(dev_priv,
4444 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4445 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
4446 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
4447 gpu_freq);
4448 }
4449 }
4450
4451 void gen6_update_ring_freq(struct drm_device *dev)
4452 {
4453 struct drm_i915_private *dev_priv = dev->dev_private;
4454
4455 if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
4456 return;
4457
4458 mutex_lock(&dev_priv->rps.hw_lock);
4459 __gen6_update_ring_freq(dev);
4460 mutex_unlock(&dev_priv->rps.hw_lock);
4461 }
4462
4463 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4464 {
4465 struct drm_device *dev = dev_priv->dev;
4466 u32 val, rp0;
4467
4468 if (dev->pdev->revision >= 0x20) {
4469 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4470
4471 switch (INTEL_INFO(dev)->eu_total) {
4472 case 8:
4473 /* (2 * 4) config */
4474 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
4475 break;
4476 case 12:
4477 /* (2 * 6) config */
4478 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
4479 break;
4480 case 16:
4481 /* (2 * 8) config */
4482 default:
4483 /* Setting (2 * 8) Min RP0 for any other combination */
4484 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
4485 break;
4486 }
4487 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
4488 } else {
4489 /* For pre-production hardware */
4490 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4491 rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
4492 PUNIT_GPU_STATUS_MAX_FREQ_MASK;
4493 }
4494 return rp0;
4495 }
4496
4497 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4498 {
4499 u32 val, rpe;
4500
4501 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
4502 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
4503
4504 return rpe;
4505 }
4506
4507 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
4508 {
4509 struct drm_device *dev = dev_priv->dev;
4510 u32 val, rp1;
4511
4512 if (dev->pdev->revision >= 0x20) {
4513 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4514 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
4515 } else {
4516 /* For pre-production hardware */
4517 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4518 rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
4519 PUNIT_GPU_STATUS_MAX_FREQ_MASK);
4520 }
4521 return rp1;
4522 }
4523
4524 static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
4525 {
4526 struct drm_device *dev = dev_priv->dev;
4527 u32 val, rpn;
4528
4529 if (dev->pdev->revision >= 0x20) {
4530 val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
4531 rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
4532 FB_GFX_FREQ_FUSE_MASK);
4533 } else { /* For pre-production hardware */
4534 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4535 rpn = ((val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) &
4536 PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK);
4537 }
4538
4539 return rpn;
4540 }
4541
4542 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
4543 {
4544 u32 val, rp1;
4545
4546 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4547
4548 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
4549
4550 return rp1;
4551 }
4552
4553 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4554 {
4555 u32 val, rp0;
4556
4557 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4558
4559 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
4560 /* Clamp to max */
4561 rp0 = min_t(u32, rp0, 0xea);
4562
4563 return rp0;
4564 }
4565
4566 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4567 {
4568 u32 val, rpe;
4569
4570 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4571 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4572 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4573 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
4574
4575 return rpe;
4576 }
4577
4578 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4579 {
4580 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4581 }
4582
4583 /* Check that the pctx buffer wasn't move under us. */
4584 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
4585 {
4586 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4587
4588 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
4589 dev_priv->vlv_pctx->stolen->start);
4590 }
4591
4592
4593 /* Check that the pcbr address is not empty. */
4594 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
4595 {
4596 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4597
4598 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
4599 }
4600
4601 static void cherryview_setup_pctx(struct drm_device *dev)
4602 {
4603 struct drm_i915_private *dev_priv = dev->dev_private;
4604 unsigned long pctx_paddr, paddr;
4605 struct i915_gtt *gtt = &dev_priv->gtt;
4606 u32 pcbr;
4607 int pctx_size = 32*1024;
4608
4609 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4610
4611 pcbr = I915_READ(VLV_PCBR);
4612 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
4613 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4614 paddr = (dev_priv->mm.stolen_base +
4615 (gtt->stolen_size - pctx_size));
4616
4617 pctx_paddr = (paddr & (~4095));
4618 I915_WRITE(VLV_PCBR, pctx_paddr);
4619 }
4620
4621 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4622 }
4623
4624 static void valleyview_setup_pctx(struct drm_device *dev)
4625 {
4626 struct drm_i915_private *dev_priv = dev->dev_private;
4627 struct drm_i915_gem_object *pctx;
4628 unsigned long pctx_paddr;
4629 u32 pcbr;
4630 int pctx_size = 24*1024;
4631
4632 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4633
4634 pcbr = I915_READ(VLV_PCBR);
4635 if (pcbr) {
4636 /* BIOS set it up already, grab the pre-alloc'd space */
4637 int pcbr_offset;
4638
4639 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
4640 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
4641 pcbr_offset,
4642 I915_GTT_OFFSET_NONE,
4643 pctx_size);
4644 goto out;
4645 }
4646
4647 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4648
4649 /*
4650 * From the Gunit register HAS:
4651 * The Gfx driver is expected to program this register and ensure
4652 * proper allocation within Gfx stolen memory. For example, this
4653 * register should be programmed such than the PCBR range does not
4654 * overlap with other ranges, such as the frame buffer, protected
4655 * memory, or any other relevant ranges.
4656 */
4657 pctx = i915_gem_object_create_stolen(dev, pctx_size);
4658 if (!pctx) {
4659 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
4660 return;
4661 }
4662
4663 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
4664 I915_WRITE(VLV_PCBR, pctx_paddr);
4665
4666 out:
4667 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4668 dev_priv->vlv_pctx = pctx;
4669 }
4670
4671 static void valleyview_cleanup_pctx(struct drm_device *dev)
4672 {
4673 struct drm_i915_private *dev_priv = dev->dev_private;
4674
4675 if (WARN_ON(!dev_priv->vlv_pctx))
4676 return;
4677
4678 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
4679 dev_priv->vlv_pctx = NULL;
4680 }
4681
4682 static void valleyview_init_gt_powersave(struct drm_device *dev)
4683 {
4684 struct drm_i915_private *dev_priv = dev->dev_private;
4685 u32 val;
4686
4687 valleyview_setup_pctx(dev);
4688
4689 mutex_lock(&dev_priv->rps.hw_lock);
4690
4691 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4692 switch ((val >> 6) & 3) {
4693 case 0:
4694 case 1:
4695 dev_priv->mem_freq = 800;
4696 break;
4697 case 2:
4698 dev_priv->mem_freq = 1066;
4699 break;
4700 case 3:
4701 dev_priv->mem_freq = 1333;
4702 break;
4703 }
4704 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4705
4706 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
4707 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4708 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4709 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4710 dev_priv->rps.max_freq);
4711
4712 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
4713 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4714 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4715 dev_priv->rps.efficient_freq);
4716
4717 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
4718 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
4719 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4720 dev_priv->rps.rp1_freq);
4721
4722 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
4723 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4724 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4725 dev_priv->rps.min_freq);
4726
4727 /* Preserve min/max settings in case of re-init */
4728 if (dev_priv->rps.max_freq_softlimit == 0)
4729 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4730
4731 if (dev_priv->rps.min_freq_softlimit == 0)
4732 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4733
4734 mutex_unlock(&dev_priv->rps.hw_lock);
4735 }
4736
4737 static void cherryview_init_gt_powersave(struct drm_device *dev)
4738 {
4739 struct drm_i915_private *dev_priv = dev->dev_private;
4740 u32 val;
4741
4742 cherryview_setup_pctx(dev);
4743
4744 mutex_lock(&dev_priv->rps.hw_lock);
4745
4746 mutex_lock(&dev_priv->dpio_lock);
4747 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
4748 mutex_unlock(&dev_priv->dpio_lock);
4749
4750 switch ((val >> 2) & 0x7) {
4751 case 0:
4752 case 1:
4753 dev_priv->rps.cz_freq = 200;
4754 dev_priv->mem_freq = 1600;
4755 break;
4756 case 2:
4757 dev_priv->rps.cz_freq = 267;
4758 dev_priv->mem_freq = 1600;
4759 break;
4760 case 3:
4761 dev_priv->rps.cz_freq = 333;
4762 dev_priv->mem_freq = 2000;
4763 break;
4764 case 4:
4765 dev_priv->rps.cz_freq = 320;
4766 dev_priv->mem_freq = 1600;
4767 break;
4768 case 5:
4769 dev_priv->rps.cz_freq = 400;
4770 dev_priv->mem_freq = 1600;
4771 break;
4772 }
4773 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4774
4775 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
4776 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4777 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4778 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4779 dev_priv->rps.max_freq);
4780
4781 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
4782 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4783 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4784 dev_priv->rps.efficient_freq);
4785
4786 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
4787 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4788 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4789 dev_priv->rps.rp1_freq);
4790
4791 dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
4792 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4793 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4794 dev_priv->rps.min_freq);
4795
4796 WARN_ONCE((dev_priv->rps.max_freq |
4797 dev_priv->rps.efficient_freq |
4798 dev_priv->rps.rp1_freq |
4799 dev_priv->rps.min_freq) & 1,
4800 "Odd GPU freq values\n");
4801
4802 /* Preserve min/max settings in case of re-init */
4803 if (dev_priv->rps.max_freq_softlimit == 0)
4804 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4805
4806 if (dev_priv->rps.min_freq_softlimit == 0)
4807 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4808
4809 mutex_unlock(&dev_priv->rps.hw_lock);
4810 }
4811
4812 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
4813 {
4814 valleyview_cleanup_pctx(dev);
4815 }
4816
4817 static void cherryview_enable_rps(struct drm_device *dev)
4818 {
4819 struct drm_i915_private *dev_priv = dev->dev_private;
4820 struct intel_engine_cs *ring;
4821 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4822 int i;
4823
4824 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4825
4826 gtfifodbg = I915_READ(GTFIFODBG);
4827 if (gtfifodbg) {
4828 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4829 gtfifodbg);
4830 I915_WRITE(GTFIFODBG, gtfifodbg);
4831 }
4832
4833 cherryview_check_pctx(dev_priv);
4834
4835 /* 1a & 1b: Get forcewake during program sequence. Although the driver
4836 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4837 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4838
4839 /* Disable RC states. */
4840 I915_WRITE(GEN6_RC_CONTROL, 0);
4841
4842 /* 2a: Program RC6 thresholds.*/
4843 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4844 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4845 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4846
4847 for_each_ring(ring, dev_priv, i)
4848 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4849 I915_WRITE(GEN6_RC_SLEEP, 0);
4850
4851 /* TO threshold set to 1750 us ( 0x557 * 1.28 us) */
4852 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4853
4854 /* allows RC6 residency counter to work */
4855 I915_WRITE(VLV_COUNTER_CONTROL,
4856 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
4857 VLV_MEDIA_RC6_COUNT_EN |
4858 VLV_RENDER_RC6_COUNT_EN));
4859
4860 /* For now we assume BIOS is allocating and populating the PCBR */
4861 pcbr = I915_READ(VLV_PCBR);
4862
4863 /* 3: Enable RC6 */
4864 if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
4865 (pcbr >> VLV_PCBR_ADDR_SHIFT))
4866 rc6_mode = GEN7_RC_CTL_TO_MODE;
4867
4868 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4869
4870 /* 4 Program defaults and thresholds for RPS*/
4871 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
4872 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4873 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4874 I915_WRITE(GEN6_RP_UP_EI, 66000);
4875 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4876
4877 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4878
4879 /* 5: Enable RPS */
4880 I915_WRITE(GEN6_RP_CONTROL,
4881 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4882 GEN6_RP_MEDIA_IS_GFX |
4883 GEN6_RP_ENABLE |
4884 GEN6_RP_UP_BUSY_AVG |
4885 GEN6_RP_DOWN_IDLE_AVG);
4886
4887 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4888
4889 /* RPS code assumes GPLL is used */
4890 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
4891
4892 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
4893 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4894
4895 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4896 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4897 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4898 dev_priv->rps.cur_freq);
4899
4900 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4901 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4902 dev_priv->rps.efficient_freq);
4903
4904 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4905
4906 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4907 }
4908
4909 static void valleyview_enable_rps(struct drm_device *dev)
4910 {
4911 struct drm_i915_private *dev_priv = dev->dev_private;
4912 struct intel_engine_cs *ring;
4913 u32 gtfifodbg, val, rc6_mode = 0;
4914 int i;
4915
4916 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4917
4918 valleyview_check_pctx(dev_priv);
4919
4920 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4921 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4922 gtfifodbg);
4923 I915_WRITE(GTFIFODBG, gtfifodbg);
4924 }
4925
4926 /* If VLV, Forcewake all wells, else re-direct to regular path */
4927 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4928
4929 /* Disable RC states. */
4930 I915_WRITE(GEN6_RC_CONTROL, 0);
4931
4932 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
4933 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4934 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4935 I915_WRITE(GEN6_RP_UP_EI, 66000);
4936 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4937
4938 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4939
4940 I915_WRITE(GEN6_RP_CONTROL,
4941 GEN6_RP_MEDIA_TURBO |
4942 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4943 GEN6_RP_MEDIA_IS_GFX |
4944 GEN6_RP_ENABLE |
4945 GEN6_RP_UP_BUSY_AVG |
4946 GEN6_RP_DOWN_IDLE_CONT);
4947
4948 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
4949 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4950 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4951
4952 for_each_ring(ring, dev_priv, i)
4953 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4954
4955 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4956
4957 /* allows RC6 residency counter to work */
4958 I915_WRITE(VLV_COUNTER_CONTROL,
4959 _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
4960 VLV_RENDER_RC0_COUNT_EN |
4961 VLV_MEDIA_RC6_COUNT_EN |
4962 VLV_RENDER_RC6_COUNT_EN));
4963
4964 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4965 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
4966
4967 intel_print_rc6_info(dev, rc6_mode);
4968
4969 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4970
4971 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4972
4973 /* RPS code assumes GPLL is used */
4974 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
4975
4976 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
4977 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4978
4979 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4980 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4981 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4982 dev_priv->rps.cur_freq);
4983
4984 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4985 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4986 dev_priv->rps.efficient_freq);
4987
4988 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4989
4990 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4991 }
4992
4993 void ironlake_teardown_rc6(struct drm_device *dev)
4994 {
4995 struct drm_i915_private *dev_priv = dev->dev_private;
4996
4997 if (dev_priv->ips.renderctx) {
4998 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
4999 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
5000 dev_priv->ips.renderctx = NULL;
5001 }
5002
5003 if (dev_priv->ips.pwrctx) {
5004 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
5005 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
5006 dev_priv->ips.pwrctx = NULL;
5007 }
5008 }
5009
5010 static void ironlake_disable_rc6(struct drm_device *dev)
5011 {
5012 struct drm_i915_private *dev_priv = dev->dev_private;
5013
5014 if (I915_READ(PWRCTXA)) {
5015 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
5016 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
5017 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
5018 50);
5019
5020 I915_WRITE(PWRCTXA, 0);
5021 POSTING_READ(PWRCTXA);
5022
5023 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
5024 POSTING_READ(RSTDBYCTL);
5025 }
5026 }
5027
5028 static int ironlake_setup_rc6(struct drm_device *dev)
5029 {
5030 struct drm_i915_private *dev_priv = dev->dev_private;
5031
5032 if (dev_priv->ips.renderctx == NULL)
5033 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
5034 if (!dev_priv->ips.renderctx)
5035 return -ENOMEM;
5036
5037 if (dev_priv->ips.pwrctx == NULL)
5038 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
5039 if (!dev_priv->ips.pwrctx) {
5040 ironlake_teardown_rc6(dev);
5041 return -ENOMEM;
5042 }
5043
5044 return 0;
5045 }
5046
5047 static void ironlake_enable_rc6(struct drm_device *dev)
5048 {
5049 struct drm_i915_private *dev_priv = dev->dev_private;
5050 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
5051 bool was_interruptible;
5052 int ret;
5053
5054 /* rc6 disabled by default due to repeated reports of hanging during
5055 * boot and resume.
5056 */
5057 if (!intel_enable_rc6(dev))
5058 return;
5059
5060 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5061
5062 ret = ironlake_setup_rc6(dev);
5063 if (ret)
5064 return;
5065
5066 was_interruptible = dev_priv->mm.interruptible;
5067 dev_priv->mm.interruptible = false;
5068
5069 /*
5070 * GPU can automatically power down the render unit if given a page
5071 * to save state.
5072 */
5073 ret = intel_ring_begin(ring, 6);
5074 if (ret) {
5075 ironlake_teardown_rc6(dev);
5076 dev_priv->mm.interruptible = was_interruptible;
5077 return;
5078 }
5079
5080 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
5081 intel_ring_emit(ring, MI_SET_CONTEXT);
5082 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
5083 MI_MM_SPACE_GTT |
5084 MI_SAVE_EXT_STATE_EN |
5085 MI_RESTORE_EXT_STATE_EN |
5086 MI_RESTORE_INHIBIT);
5087 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
5088 intel_ring_emit(ring, MI_NOOP);
5089 intel_ring_emit(ring, MI_FLUSH);
5090 intel_ring_advance(ring);
5091
5092 /*
5093 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
5094 * does an implicit flush, combined with MI_FLUSH above, it should be
5095 * safe to assume that renderctx is valid
5096 */
5097 ret = intel_ring_idle(ring);
5098 dev_priv->mm.interruptible = was_interruptible;
5099 if (ret) {
5100 DRM_ERROR("failed to enable ironlake power savings\n");
5101 ironlake_teardown_rc6(dev);
5102 return;
5103 }
5104
5105 I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
5106 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
5107
5108 intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
5109 }
5110
5111 static unsigned long intel_pxfreq(u32 vidfreq)
5112 {
5113 unsigned long freq;
5114 int div = (vidfreq & 0x3f0000) >> 16;
5115 int post = (vidfreq & 0x3000) >> 12;
5116 int pre = (vidfreq & 0x7);
5117
5118 if (!pre)
5119 return 0;
5120
5121 freq = ((div * 133333) / ((1<<post) * pre));
5122
5123 return freq;
5124 }
5125
5126 static const struct cparams {
5127 u16 i;
5128 u16 t;
5129 u16 m;
5130 u16 c;
5131 } cparams[] = {
5132 { 1, 1333, 301, 28664 },
5133 { 1, 1066, 294, 24460 },
5134 { 1, 800, 294, 25192 },
5135 { 0, 1333, 276, 27605 },
5136 { 0, 1066, 276, 27605 },
5137 { 0, 800, 231, 23784 },
5138 };
5139
5140 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5141 {
5142 u64 total_count, diff, ret;
5143 u32 count1, count2, count3, m = 0, c = 0;
5144 unsigned long now = jiffies_to_msecs(jiffies), diff1;
5145 int i;
5146
5147 assert_spin_locked(&mchdev_lock);
5148
5149 diff1 = now - dev_priv->ips.last_time1;
5150
5151 /* Prevent division-by-zero if we are asking too fast.
5152 * Also, we don't get interesting results if we are polling
5153 * faster than once in 10ms, so just return the saved value
5154 * in such cases.
5155 */
5156 if (diff1 <= 10)
5157 return dev_priv->ips.chipset_power;
5158
5159 count1 = I915_READ(DMIEC);
5160 count2 = I915_READ(DDREC);
5161 count3 = I915_READ(CSIEC);
5162
5163 total_count = count1 + count2 + count3;
5164
5165 /* FIXME: handle per-counter overflow */
5166 if (total_count < dev_priv->ips.last_count1) {
5167 diff = ~0UL - dev_priv->ips.last_count1;
5168 diff += total_count;
5169 } else {
5170 diff = total_count - dev_priv->ips.last_count1;
5171 }
5172
5173 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5174 if (cparams[i].i == dev_priv->ips.c_m &&
5175 cparams[i].t == dev_priv->ips.r_t) {
5176 m = cparams[i].m;
5177 c = cparams[i].c;
5178 break;
5179 }
5180 }
5181
5182 diff = div_u64(diff, diff1);
5183 ret = ((m * diff) + c);
5184 ret = div_u64(ret, 10);
5185
5186 dev_priv->ips.last_count1 = total_count;
5187 dev_priv->ips.last_time1 = now;
5188
5189 dev_priv->ips.chipset_power = ret;
5190
5191 return ret;
5192 }
5193
5194 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5195 {
5196 struct drm_device *dev = dev_priv->dev;
5197 unsigned long val;
5198
5199 if (INTEL_INFO(dev)->gen != 5)
5200 return 0;
5201
5202 spin_lock_irq(&mchdev_lock);
5203
5204 val = __i915_chipset_val(dev_priv);
5205
5206 spin_unlock_irq(&mchdev_lock);
5207
5208 return val;
5209 }
5210
5211 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5212 {
5213 unsigned long m, x, b;
5214 u32 tsfs;
5215
5216 tsfs = I915_READ(TSFS);
5217
5218 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5219 x = I915_READ8(TR1);
5220
5221 b = tsfs & TSFS_INTR_MASK;
5222
5223 return ((m * x) / 127) - b;
5224 }
5225
5226 static int _pxvid_to_vd(u8 pxvid)
5227 {
5228 if (pxvid == 0)
5229 return 0;
5230
5231 if (pxvid >= 8 && pxvid < 31)
5232 pxvid = 31;
5233
5234 return (pxvid + 2) * 125;
5235 }
5236
5237 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5238 {
5239 struct drm_device *dev = dev_priv->dev;
5240 const int vd = _pxvid_to_vd(pxvid);
5241 const int vm = vd - 1125;
5242
5243 if (INTEL_INFO(dev)->is_mobile)
5244 return vm > 0 ? vm : 0;
5245
5246 return vd;
5247 }
5248
5249 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5250 {
5251 u64 now, diff, diffms;
5252 u32 count;
5253
5254 assert_spin_locked(&mchdev_lock);
5255
5256 now = ktime_get_raw_ns();
5257 diffms = now - dev_priv->ips.last_time2;
5258 do_div(diffms, NSEC_PER_MSEC);
5259
5260 /* Don't divide by 0 */
5261 if (!diffms)
5262 return;
5263
5264 count = I915_READ(GFXEC);
5265
5266 if (count < dev_priv->ips.last_count2) {
5267 diff = ~0UL - dev_priv->ips.last_count2;
5268 diff += count;
5269 } else {
5270 diff = count - dev_priv->ips.last_count2;
5271 }
5272
5273 dev_priv->ips.last_count2 = count;
5274 dev_priv->ips.last_time2 = now;
5275
5276 /* More magic constants... */
5277 diff = diff * 1181;
5278 diff = div_u64(diff, diffms * 10);
5279 dev_priv->ips.gfx_power = diff;
5280 }
5281
5282 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5283 {
5284 struct drm_device *dev = dev_priv->dev;
5285
5286 if (INTEL_INFO(dev)->gen != 5)
5287 return;
5288
5289 spin_lock_irq(&mchdev_lock);
5290
5291 __i915_update_gfx_val(dev_priv);
5292
5293 spin_unlock_irq(&mchdev_lock);
5294 }
5295
5296 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5297 {
5298 unsigned long t, corr, state1, corr2, state2;
5299 u32 pxvid, ext_v;
5300
5301 assert_spin_locked(&mchdev_lock);
5302
5303 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5304 pxvid = (pxvid >> 24) & 0x7f;
5305 ext_v = pvid_to_extvid(dev_priv, pxvid);
5306
5307 state1 = ext_v;
5308
5309 t = i915_mch_val(dev_priv);
5310
5311 /* Revel in the empirically derived constants */
5312
5313 /* Correction factor in 1/100000 units */
5314 if (t > 80)
5315 corr = ((t * 2349) + 135940);
5316 else if (t >= 50)
5317 corr = ((t * 964) + 29317);
5318 else /* < 50 */
5319 corr = ((t * 301) + 1004);
5320
5321 corr = corr * ((150142 * state1) / 10000 - 78642);
5322 corr /= 100000;
5323 corr2 = (corr * dev_priv->ips.corr);
5324
5325 state2 = (corr2 * state1) / 10000;
5326 state2 /= 100; /* convert to mW */
5327
5328 __i915_update_gfx_val(dev_priv);
5329
5330 return dev_priv->ips.gfx_power + state2;
5331 }
5332
5333 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5334 {
5335 struct drm_device *dev = dev_priv->dev;
5336 unsigned long val;
5337
5338 if (INTEL_INFO(dev)->gen != 5)
5339 return 0;
5340
5341 spin_lock_irq(&mchdev_lock);
5342
5343 val = __i915_gfx_val(dev_priv);
5344
5345 spin_unlock_irq(&mchdev_lock);
5346
5347 return val;
5348 }
5349
5350 /**
5351 * i915_read_mch_val - return value for IPS use
5352 *
5353 * Calculate and return a value for the IPS driver to use when deciding whether
5354 * we have thermal and power headroom to increase CPU or GPU power budget.
5355 */
5356 unsigned long i915_read_mch_val(void)
5357 {
5358 struct drm_i915_private *dev_priv;
5359 unsigned long chipset_val, graphics_val, ret = 0;
5360
5361 spin_lock_irq(&mchdev_lock);
5362 if (!i915_mch_dev)
5363 goto out_unlock;
5364 dev_priv = i915_mch_dev;
5365
5366 chipset_val = __i915_chipset_val(dev_priv);
5367 graphics_val = __i915_gfx_val(dev_priv);
5368
5369 ret = chipset_val + graphics_val;
5370
5371 out_unlock:
5372 spin_unlock_irq(&mchdev_lock);
5373
5374 return ret;
5375 }
5376 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5377
5378 /**
5379 * i915_gpu_raise - raise GPU frequency limit
5380 *
5381 * Raise the limit; IPS indicates we have thermal headroom.
5382 */
5383 bool i915_gpu_raise(void)
5384 {
5385 struct drm_i915_private *dev_priv;
5386 bool ret = true;
5387
5388 spin_lock_irq(&mchdev_lock);
5389 if (!i915_mch_dev) {
5390 ret = false;
5391 goto out_unlock;
5392 }
5393 dev_priv = i915_mch_dev;
5394
5395 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5396 dev_priv->ips.max_delay--;
5397
5398 out_unlock:
5399 spin_unlock_irq(&mchdev_lock);
5400
5401 return ret;
5402 }
5403 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5404
5405 /**
5406 * i915_gpu_lower - lower GPU frequency limit
5407 *
5408 * IPS indicates we're close to a thermal limit, so throttle back the GPU
5409 * frequency maximum.
5410 */
5411 bool i915_gpu_lower(void)
5412 {
5413 struct drm_i915_private *dev_priv;
5414 bool ret = true;
5415
5416 spin_lock_irq(&mchdev_lock);
5417 if (!i915_mch_dev) {
5418 ret = false;
5419 goto out_unlock;
5420 }
5421 dev_priv = i915_mch_dev;
5422
5423 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5424 dev_priv->ips.max_delay++;
5425
5426 out_unlock:
5427 spin_unlock_irq(&mchdev_lock);
5428
5429 return ret;
5430 }
5431 EXPORT_SYMBOL_GPL(i915_gpu_lower);
5432
5433 /**
5434 * i915_gpu_busy - indicate GPU business to IPS
5435 *
5436 * Tell the IPS driver whether or not the GPU is busy.
5437 */
5438 bool i915_gpu_busy(void)
5439 {
5440 struct drm_i915_private *dev_priv;
5441 struct intel_engine_cs *ring;
5442 bool ret = false;
5443 int i;
5444
5445 spin_lock_irq(&mchdev_lock);
5446 if (!i915_mch_dev)
5447 goto out_unlock;
5448 dev_priv = i915_mch_dev;
5449
5450 for_each_ring(ring, dev_priv, i)
5451 ret |= !list_empty(&ring->request_list);
5452
5453 out_unlock:
5454 spin_unlock_irq(&mchdev_lock);
5455
5456 return ret;
5457 }
5458 EXPORT_SYMBOL_GPL(i915_gpu_busy);
5459
5460 /**
5461 * i915_gpu_turbo_disable - disable graphics turbo
5462 *
5463 * Disable graphics turbo by resetting the max frequency and setting the
5464 * current frequency to the default.
5465 */
5466 bool i915_gpu_turbo_disable(void)
5467 {
5468 struct drm_i915_private *dev_priv;
5469 bool ret = true;
5470
5471 spin_lock_irq(&mchdev_lock);
5472 if (!i915_mch_dev) {
5473 ret = false;
5474 goto out_unlock;
5475 }
5476 dev_priv = i915_mch_dev;
5477
5478 dev_priv->ips.max_delay = dev_priv->ips.fstart;
5479
5480 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5481 ret = false;
5482
5483 out_unlock:
5484 spin_unlock_irq(&mchdev_lock);
5485
5486 return ret;
5487 }
5488 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
5489
5490 /**
5491 * Tells the intel_ips driver that the i915 driver is now loaded, if
5492 * IPS got loaded first.
5493 *
5494 * This awkward dance is so that neither module has to depend on the
5495 * other in order for IPS to do the appropriate communication of
5496 * GPU turbo limits to i915.
5497 */
5498 static void
5499 ips_ping_for_i915_load(void)
5500 {
5501 void (*link)(void);
5502
5503 link = symbol_get(ips_link_to_i915_driver);
5504 if (link) {
5505 link();
5506 symbol_put(ips_link_to_i915_driver);
5507 }
5508 }
5509
5510 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
5511 {
5512 /* We only register the i915 ips part with intel-ips once everything is
5513 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5514 spin_lock_irq(&mchdev_lock);
5515 i915_mch_dev = dev_priv;
5516 spin_unlock_irq(&mchdev_lock);
5517
5518 ips_ping_for_i915_load();
5519 }
5520
5521 void intel_gpu_ips_teardown(void)
5522 {
5523 spin_lock_irq(&mchdev_lock);
5524 i915_mch_dev = NULL;
5525 spin_unlock_irq(&mchdev_lock);
5526 }
5527
5528 static void intel_init_emon(struct drm_device *dev)
5529 {
5530 struct drm_i915_private *dev_priv = dev->dev_private;
5531 u32 lcfuse;
5532 u8 pxw[16];
5533 int i;
5534
5535 /* Disable to program */
5536 I915_WRITE(ECR, 0);
5537 POSTING_READ(ECR);
5538
5539 /* Program energy weights for various events */
5540 I915_WRITE(SDEW, 0x15040d00);
5541 I915_WRITE(CSIEW0, 0x007f0000);
5542 I915_WRITE(CSIEW1, 0x1e220004);
5543 I915_WRITE(CSIEW2, 0x04000004);
5544
5545 for (i = 0; i < 5; i++)
5546 I915_WRITE(PEW + (i * 4), 0);
5547 for (i = 0; i < 3; i++)
5548 I915_WRITE(DEW + (i * 4), 0);
5549
5550 /* Program P-state weights to account for frequency power adjustment */
5551 for (i = 0; i < 16; i++) {
5552 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5553 unsigned long freq = intel_pxfreq(pxvidfreq);
5554 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5555 PXVFREQ_PX_SHIFT;
5556 unsigned long val;
5557
5558 val = vid * vid;
5559 val *= (freq / 1000);
5560 val *= 255;
5561 val /= (127*127*900);
5562 if (val > 0xff)
5563 DRM_ERROR("bad pxval: %ld\n", val);
5564 pxw[i] = val;
5565 }
5566 /* Render standby states get 0 weight */
5567 pxw[14] = 0;
5568 pxw[15] = 0;
5569
5570 for (i = 0; i < 4; i++) {
5571 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5572 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5573 I915_WRITE(PXW + (i * 4), val);
5574 }
5575
5576 /* Adjust magic regs to magic values (more experimental results) */
5577 I915_WRITE(OGW0, 0);
5578 I915_WRITE(OGW1, 0);
5579 I915_WRITE(EG0, 0x00007f00);
5580 I915_WRITE(EG1, 0x0000000e);
5581 I915_WRITE(EG2, 0x000e0000);
5582 I915_WRITE(EG3, 0x68000300);
5583 I915_WRITE(EG4, 0x42000000);
5584 I915_WRITE(EG5, 0x00140031);
5585 I915_WRITE(EG6, 0);
5586 I915_WRITE(EG7, 0);
5587
5588 for (i = 0; i < 8; i++)
5589 I915_WRITE(PXWL + (i * 4), 0);
5590
5591 /* Enable PMON + select events */
5592 I915_WRITE(ECR, 0x80000019);
5593
5594 lcfuse = I915_READ(LCFUSE02);
5595
5596 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5597 }
5598
5599 void intel_init_gt_powersave(struct drm_device *dev)
5600 {
5601 i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
5602
5603 if (IS_CHERRYVIEW(dev))
5604 cherryview_init_gt_powersave(dev);
5605 else if (IS_VALLEYVIEW(dev))
5606 valleyview_init_gt_powersave(dev);
5607 }
5608
5609 void intel_cleanup_gt_powersave(struct drm_device *dev)
5610 {
5611 if (IS_CHERRYVIEW(dev))
5612 return;
5613 else if (IS_VALLEYVIEW(dev))
5614 valleyview_cleanup_gt_powersave(dev);
5615 }
5616
5617 static void gen6_suspend_rps(struct drm_device *dev)
5618 {
5619 struct drm_i915_private *dev_priv = dev->dev_private;
5620
5621 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5622
5623 /*
5624 * TODO: disable RPS interrupts on GEN9+ too once RPS support
5625 * is added for it.
5626 */
5627 if (INTEL_INFO(dev)->gen < 9)
5628 gen6_disable_rps_interrupts(dev);
5629 }
5630
5631 /**
5632 * intel_suspend_gt_powersave - suspend PM work and helper threads
5633 * @dev: drm device
5634 *
5635 * We don't want to disable RC6 or other features here, we just want
5636 * to make sure any work we've queued has finished and won't bother
5637 * us while we're suspended.
5638 */
5639 void intel_suspend_gt_powersave(struct drm_device *dev)
5640 {
5641 struct drm_i915_private *dev_priv = dev->dev_private;
5642
5643 if (INTEL_INFO(dev)->gen < 6)
5644 return;
5645
5646 gen6_suspend_rps(dev);
5647
5648 /* Force GPU to min freq during suspend */
5649 gen6_rps_idle(dev_priv);
5650 }
5651
5652 void intel_disable_gt_powersave(struct drm_device *dev)
5653 {
5654 struct drm_i915_private *dev_priv = dev->dev_private;
5655
5656 if (IS_IRONLAKE_M(dev)) {
5657 ironlake_disable_drps(dev);
5658 ironlake_disable_rc6(dev);
5659 } else if (INTEL_INFO(dev)->gen >= 6) {
5660 intel_suspend_gt_powersave(dev);
5661
5662 mutex_lock(&dev_priv->rps.hw_lock);
5663 if (INTEL_INFO(dev)->gen >= 9)
5664 gen9_disable_rps(dev);
5665 else if (IS_CHERRYVIEW(dev))
5666 cherryview_disable_rps(dev);
5667 else if (IS_VALLEYVIEW(dev))
5668 valleyview_disable_rps(dev);
5669 else
5670 gen6_disable_rps(dev);
5671
5672 dev_priv->rps.enabled = false;
5673 mutex_unlock(&dev_priv->rps.hw_lock);
5674 }
5675 }
5676
5677 static void intel_gen6_powersave_work(struct work_struct *work)
5678 {
5679 struct drm_i915_private *dev_priv =
5680 container_of(work, struct drm_i915_private,
5681 rps.delayed_resume_work.work);
5682 struct drm_device *dev = dev_priv->dev;
5683
5684 mutex_lock(&dev_priv->rps.hw_lock);
5685
5686 /*
5687 * TODO: reset/enable RPS interrupts on GEN9+ too, once RPS support is
5688 * added for it.
5689 */
5690 if (INTEL_INFO(dev)->gen < 9)
5691 gen6_reset_rps_interrupts(dev);
5692
5693 if (IS_CHERRYVIEW(dev)) {
5694 cherryview_enable_rps(dev);
5695 } else if (IS_VALLEYVIEW(dev)) {
5696 valleyview_enable_rps(dev);
5697 } else if (INTEL_INFO(dev)->gen >= 9) {
5698 gen9_enable_rc6(dev);
5699 gen9_enable_rps(dev);
5700 __gen6_update_ring_freq(dev);
5701 } else if (IS_BROADWELL(dev)) {
5702 gen8_enable_rps(dev);
5703 __gen6_update_ring_freq(dev);
5704 } else {
5705 gen6_enable_rps(dev);
5706 __gen6_update_ring_freq(dev);
5707 }
5708 dev_priv->rps.enabled = true;
5709
5710 if (INTEL_INFO(dev)->gen < 9)
5711 gen6_enable_rps_interrupts(dev);
5712
5713 mutex_unlock(&dev_priv->rps.hw_lock);
5714
5715 intel_runtime_pm_put(dev_priv);
5716 }
5717
5718 void intel_enable_gt_powersave(struct drm_device *dev)
5719 {
5720 struct drm_i915_private *dev_priv = dev->dev_private;
5721
5722 /* Powersaving is controlled by the host when inside a VM */
5723 if (intel_vgpu_active(dev))
5724 return;
5725
5726 if (IS_IRONLAKE_M(dev)) {
5727 mutex_lock(&dev->struct_mutex);
5728 ironlake_enable_drps(dev);
5729 ironlake_enable_rc6(dev);
5730 intel_init_emon(dev);
5731 mutex_unlock(&dev->struct_mutex);
5732 } else if (INTEL_INFO(dev)->gen >= 6) {
5733 /*
5734 * PCU communication is slow and this doesn't need to be
5735 * done at any specific time, so do this out of our fast path
5736 * to make resume and init faster.
5737 *
5738 * We depend on the HW RC6 power context save/restore
5739 * mechanism when entering D3 through runtime PM suspend. So
5740 * disable RPM until RPS/RC6 is properly setup. We can only
5741 * get here via the driver load/system resume/runtime resume
5742 * paths, so the _noresume version is enough (and in case of
5743 * runtime resume it's necessary).
5744 */
5745 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
5746 round_jiffies_up_relative(HZ)))
5747 intel_runtime_pm_get_noresume(dev_priv);
5748 }
5749 }
5750
5751 void intel_reset_gt_powersave(struct drm_device *dev)
5752 {
5753 struct drm_i915_private *dev_priv = dev->dev_private;
5754
5755 if (INTEL_INFO(dev)->gen < 6)
5756 return;
5757
5758 gen6_suspend_rps(dev);
5759 dev_priv->rps.enabled = false;
5760 }
5761
5762 static void ibx_init_clock_gating(struct drm_device *dev)
5763 {
5764 struct drm_i915_private *dev_priv = dev->dev_private;
5765
5766 /*
5767 * On Ibex Peak and Cougar Point, we need to disable clock
5768 * gating for the panel power sequencer or it will fail to
5769 * start up when no ports are active.
5770 */
5771 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5772 }
5773
5774 static void g4x_disable_trickle_feed(struct drm_device *dev)
5775 {
5776 struct drm_i915_private *dev_priv = dev->dev_private;
5777 int pipe;
5778
5779 for_each_pipe(dev_priv, pipe) {
5780 I915_WRITE(DSPCNTR(pipe),
5781 I915_READ(DSPCNTR(pipe)) |
5782 DISPPLANE_TRICKLE_FEED_DISABLE);
5783 intel_flush_primary_plane(dev_priv, pipe);
5784 }
5785 }
5786
5787 static void ilk_init_lp_watermarks(struct drm_device *dev)
5788 {
5789 struct drm_i915_private *dev_priv = dev->dev_private;
5790
5791 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5792 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5793 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5794
5795 /*
5796 * Don't touch WM1S_LP_EN here.
5797 * Doing so could cause underruns.
5798 */
5799 }
5800
5801 static void ironlake_init_clock_gating(struct drm_device *dev)
5802 {
5803 struct drm_i915_private *dev_priv = dev->dev_private;
5804 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5805
5806 /*
5807 * Required for FBC
5808 * WaFbcDisableDpfcClockGating:ilk
5809 */
5810 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
5811 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
5812 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5813
5814 I915_WRITE(PCH_3DCGDIS0,
5815 MARIUNIT_CLOCK_GATE_DISABLE |
5816 SVSMUNIT_CLOCK_GATE_DISABLE);
5817 I915_WRITE(PCH_3DCGDIS1,
5818 VFMUNIT_CLOCK_GATE_DISABLE);
5819
5820 /*
5821 * According to the spec the following bits should be set in
5822 * order to enable memory self-refresh
5823 * The bit 22/21 of 0x42004
5824 * The bit 5 of 0x42020
5825 * The bit 15 of 0x45000
5826 */
5827 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5828 (I915_READ(ILK_DISPLAY_CHICKEN2) |
5829 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5830 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5831 I915_WRITE(DISP_ARB_CTL,
5832 (I915_READ(DISP_ARB_CTL) |
5833 DISP_FBC_WM_DIS));
5834
5835 ilk_init_lp_watermarks(dev);
5836
5837 /*
5838 * Based on the document from hardware guys the following bits
5839 * should be set unconditionally in order to enable FBC.
5840 * The bit 22 of 0x42000
5841 * The bit 22 of 0x42004
5842 * The bit 7,8,9 of 0x42020.
5843 */
5844 if (IS_IRONLAKE_M(dev)) {
5845 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
5846 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5847 I915_READ(ILK_DISPLAY_CHICKEN1) |
5848 ILK_FBCQ_DIS);
5849 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5850 I915_READ(ILK_DISPLAY_CHICKEN2) |
5851 ILK_DPARB_GATE);
5852 }
5853
5854 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5855
5856 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5857 I915_READ(ILK_DISPLAY_CHICKEN2) |
5858 ILK_ELPIN_409_SELECT);
5859 I915_WRITE(_3D_CHICKEN2,
5860 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5861 _3D_CHICKEN2_WM_READ_PIPELINED);
5862
5863 /* WaDisableRenderCachePipelinedFlush:ilk */
5864 I915_WRITE(CACHE_MODE_0,
5865 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5866
5867 /* WaDisable_RenderCache_OperationalFlush:ilk */
5868 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5869
5870 g4x_disable_trickle_feed(dev);
5871
5872 ibx_init_clock_gating(dev);
5873 }
5874
5875 static void cpt_init_clock_gating(struct drm_device *dev)
5876 {
5877 struct drm_i915_private *dev_priv = dev->dev_private;
5878 int pipe;
5879 uint32_t val;
5880
5881 /*
5882 * On Ibex Peak and Cougar Point, we need to disable clock
5883 * gating for the panel power sequencer or it will fail to
5884 * start up when no ports are active.
5885 */
5886 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5887 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
5888 PCH_CPUNIT_CLOCK_GATE_DISABLE);
5889 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5890 DPLS_EDP_PPS_FIX_DIS);
5891 /* The below fixes the weird display corruption, a few pixels shifted
5892 * downward, on (only) LVDS of some HP laptops with IVY.
5893 */
5894 for_each_pipe(dev_priv, pipe) {
5895 val = I915_READ(TRANS_CHICKEN2(pipe));
5896 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5897 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5898 if (dev_priv->vbt.fdi_rx_polarity_inverted)
5899 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5900 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5901 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5902 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5903 I915_WRITE(TRANS_CHICKEN2(pipe), val);
5904 }
5905 /* WADP0ClockGatingDisable */
5906 for_each_pipe(dev_priv, pipe) {
5907 I915_WRITE(TRANS_CHICKEN1(pipe),
5908 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5909 }
5910 }
5911
5912 static void gen6_check_mch_setup(struct drm_device *dev)
5913 {
5914 struct drm_i915_private *dev_priv = dev->dev_private;
5915 uint32_t tmp;
5916
5917 tmp = I915_READ(MCH_SSKPD);
5918 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
5919 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
5920 tmp);
5921 }
5922
5923 static void gen6_init_clock_gating(struct drm_device *dev)
5924 {
5925 struct drm_i915_private *dev_priv = dev->dev_private;
5926 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5927
5928 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5929
5930 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5931 I915_READ(ILK_DISPLAY_CHICKEN2) |
5932 ILK_ELPIN_409_SELECT);
5933
5934 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5935 I915_WRITE(_3D_CHICKEN,
5936 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5937
5938 /* WaDisable_RenderCache_OperationalFlush:snb */
5939 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5940
5941 /*
5942 * BSpec recoomends 8x4 when MSAA is used,
5943 * however in practice 16x4 seems fastest.
5944 *
5945 * Note that PS/WM thread counts depend on the WIZ hashing
5946 * disable bit, which we don't touch here, but it's good
5947 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5948 */
5949 I915_WRITE(GEN6_GT_MODE,
5950 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5951
5952 ilk_init_lp_watermarks(dev);
5953
5954 I915_WRITE(CACHE_MODE_0,
5955 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5956
5957 I915_WRITE(GEN6_UCGCTL1,
5958 I915_READ(GEN6_UCGCTL1) |
5959 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5960 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5961
5962 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5963 * gating disable must be set. Failure to set it results in
5964 * flickering pixels due to Z write ordering failures after
5965 * some amount of runtime in the Mesa "fire" demo, and Unigine
5966 * Sanctuary and Tropics, and apparently anything else with
5967 * alpha test or pixel discard.
5968 *
5969 * According to the spec, bit 11 (RCCUNIT) must also be set,
5970 * but we didn't debug actual testcases to find it out.
5971 *
5972 * WaDisableRCCUnitClockGating:snb
5973 * WaDisableRCPBUnitClockGating:snb
5974 */
5975 I915_WRITE(GEN6_UCGCTL2,
5976 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5977 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5978
5979 /* WaStripsFansDisableFastClipPerformanceFix:snb */
5980 I915_WRITE(_3D_CHICKEN3,
5981 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5982
5983 /*
5984 * Bspec says:
5985 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
5986 * 3DSTATE_SF number of SF output attributes is more than 16."
5987 */
5988 I915_WRITE(_3D_CHICKEN3,
5989 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
5990
5991 /*
5992 * According to the spec the following bits should be
5993 * set in order to enable memory self-refresh and fbc:
5994 * The bit21 and bit22 of 0x42000
5995 * The bit21 and bit22 of 0x42004
5996 * The bit5 and bit7 of 0x42020
5997 * The bit14 of 0x70180
5998 * The bit14 of 0x71180
5999 *
6000 * WaFbcAsynchFlipDisableFbcQueue:snb
6001 */
6002 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6003 I915_READ(ILK_DISPLAY_CHICKEN1) |
6004 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6005 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6006 I915_READ(ILK_DISPLAY_CHICKEN2) |
6007 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6008 I915_WRITE(ILK_DSPCLK_GATE_D,
6009 I915_READ(ILK_DSPCLK_GATE_D) |
6010 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
6011 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6012
6013 g4x_disable_trickle_feed(dev);
6014
6015 cpt_init_clock_gating(dev);
6016
6017 gen6_check_mch_setup(dev);
6018 }
6019
6020 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6021 {
6022 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6023
6024 /*
6025 * WaVSThreadDispatchOverride:ivb,vlv
6026 *
6027 * This actually overrides the dispatch
6028 * mode for all thread types.
6029 */
6030 reg &= ~GEN7_FF_SCHED_MASK;
6031 reg |= GEN7_FF_TS_SCHED_HW;
6032 reg |= GEN7_FF_VS_SCHED_HW;
6033 reg |= GEN7_FF_DS_SCHED_HW;
6034
6035 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6036 }
6037
6038 static void lpt_init_clock_gating(struct drm_device *dev)
6039 {
6040 struct drm_i915_private *dev_priv = dev->dev_private;
6041
6042 /*
6043 * TODO: this bit should only be enabled when really needed, then
6044 * disabled when not needed anymore in order to save power.
6045 */
6046 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
6047 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6048 I915_READ(SOUTH_DSPCLK_GATE_D) |
6049 PCH_LP_PARTITION_LEVEL_DISABLE);
6050
6051 /* WADPOClockGatingDisable:hsw */
6052 I915_WRITE(_TRANSA_CHICKEN1,
6053 I915_READ(_TRANSA_CHICKEN1) |
6054 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6055 }
6056
6057 static void lpt_suspend_hw(struct drm_device *dev)
6058 {
6059 struct drm_i915_private *dev_priv = dev->dev_private;
6060
6061 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6062 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6063
6064 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6065 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6066 }
6067 }
6068
6069 static void broadwell_init_clock_gating(struct drm_device *dev)
6070 {
6071 struct drm_i915_private *dev_priv = dev->dev_private;
6072 enum pipe pipe;
6073
6074 I915_WRITE(WM3_LP_ILK, 0);
6075 I915_WRITE(WM2_LP_ILK, 0);
6076 I915_WRITE(WM1_LP_ILK, 0);
6077
6078 /* WaSwitchSolVfFArbitrationPriority:bdw */
6079 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6080
6081 /* WaPsrDPAMaskVBlankInSRD:bdw */
6082 I915_WRITE(CHICKEN_PAR1_1,
6083 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6084
6085 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6086 for_each_pipe(dev_priv, pipe) {
6087 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6088 I915_READ(CHICKEN_PIPESL_1(pipe)) |
6089 BDW_DPRS_MASK_VBLANK_SRD);
6090 }
6091
6092 /* WaVSRefCountFullforceMissDisable:bdw */
6093 /* WaDSRefCountFullforceMissDisable:bdw */
6094 I915_WRITE(GEN7_FF_THREAD_MODE,
6095 I915_READ(GEN7_FF_THREAD_MODE) &
6096 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6097
6098 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6099 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6100
6101 /* WaDisableSDEUnitClockGating:bdw */
6102 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6103 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6104
6105 lpt_init_clock_gating(dev);
6106 }
6107
6108 static void haswell_init_clock_gating(struct drm_device *dev)
6109 {
6110 struct drm_i915_private *dev_priv = dev->dev_private;
6111
6112 ilk_init_lp_watermarks(dev);
6113
6114 /* L3 caching of data atomics doesn't work -- disable it. */
6115 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6116 I915_WRITE(HSW_ROW_CHICKEN3,
6117 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6118
6119 /* This is required by WaCatErrorRejectionIssue:hsw */
6120 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6121 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6122 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6123
6124 /* WaVSRefCountFullforceMissDisable:hsw */
6125 I915_WRITE(GEN7_FF_THREAD_MODE,
6126 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6127
6128 /* WaDisable_RenderCache_OperationalFlush:hsw */
6129 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6130
6131 /* enable HiZ Raw Stall Optimization */
6132 I915_WRITE(CACHE_MODE_0_GEN7,
6133 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6134
6135 /* WaDisable4x2SubspanOptimization:hsw */
6136 I915_WRITE(CACHE_MODE_1,
6137 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6138
6139 /*
6140 * BSpec recommends 8x4 when MSAA is used,
6141 * however in practice 16x4 seems fastest.
6142 *
6143 * Note that PS/WM thread counts depend on the WIZ hashing
6144 * disable bit, which we don't touch here, but it's good
6145 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6146 */
6147 I915_WRITE(GEN7_GT_MODE,
6148 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6149
6150 /* WaSampleCChickenBitEnable:hsw */
6151 I915_WRITE(HALF_SLICE_CHICKEN3,
6152 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6153
6154 /* WaSwitchSolVfFArbitrationPriority:hsw */
6155 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6156
6157 /* WaRsPkgCStateDisplayPMReq:hsw */
6158 I915_WRITE(CHICKEN_PAR1_1,
6159 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6160
6161 lpt_init_clock_gating(dev);
6162 }
6163
6164 static void ivybridge_init_clock_gating(struct drm_device *dev)
6165 {
6166 struct drm_i915_private *dev_priv = dev->dev_private;
6167 uint32_t snpcr;
6168
6169 ilk_init_lp_watermarks(dev);
6170
6171 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6172
6173 /* WaDisableEarlyCull:ivb */
6174 I915_WRITE(_3D_CHICKEN3,
6175 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6176
6177 /* WaDisableBackToBackFlipFix:ivb */
6178 I915_WRITE(IVB_CHICKEN3,
6179 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6180 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6181
6182 /* WaDisablePSDDualDispatchEnable:ivb */
6183 if (IS_IVB_GT1(dev))
6184 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6185 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6186
6187 /* WaDisable_RenderCache_OperationalFlush:ivb */
6188 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6189
6190 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6191 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6192 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6193
6194 /* WaApplyL3ControlAndL3ChickenMode:ivb */
6195 I915_WRITE(GEN7_L3CNTLREG1,
6196 GEN7_WA_FOR_GEN7_L3_CONTROL);
6197 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6198 GEN7_WA_L3_CHICKEN_MODE);
6199 if (IS_IVB_GT1(dev))
6200 I915_WRITE(GEN7_ROW_CHICKEN2,
6201 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6202 else {
6203 /* must write both registers */
6204 I915_WRITE(GEN7_ROW_CHICKEN2,
6205 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6206 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6207 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6208 }
6209
6210 /* WaForceL3Serialization:ivb */
6211 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6212 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6213
6214 /*
6215 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6216 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6217 */
6218 I915_WRITE(GEN6_UCGCTL2,
6219 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6220
6221 /* This is required by WaCatErrorRejectionIssue:ivb */
6222 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6223 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6224 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6225
6226 g4x_disable_trickle_feed(dev);
6227
6228 gen7_setup_fixed_func_scheduler(dev_priv);
6229
6230 if (0) { /* causes HiZ corruption on ivb:gt1 */
6231 /* enable HiZ Raw Stall Optimization */
6232 I915_WRITE(CACHE_MODE_0_GEN7,
6233 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6234 }
6235
6236 /* WaDisable4x2SubspanOptimization:ivb */
6237 I915_WRITE(CACHE_MODE_1,
6238 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6239
6240 /*
6241 * BSpec recommends 8x4 when MSAA is used,
6242 * however in practice 16x4 seems fastest.
6243 *
6244 * Note that PS/WM thread counts depend on the WIZ hashing
6245 * disable bit, which we don't touch here, but it's good
6246 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6247 */
6248 I915_WRITE(GEN7_GT_MODE,
6249 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6250
6251 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6252 snpcr &= ~GEN6_MBC_SNPCR_MASK;
6253 snpcr |= GEN6_MBC_SNPCR_MED;
6254 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6255
6256 if (!HAS_PCH_NOP(dev))
6257 cpt_init_clock_gating(dev);
6258
6259 gen6_check_mch_setup(dev);
6260 }
6261
6262 static void valleyview_init_clock_gating(struct drm_device *dev)
6263 {
6264 struct drm_i915_private *dev_priv = dev->dev_private;
6265
6266 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6267
6268 /* WaDisableEarlyCull:vlv */
6269 I915_WRITE(_3D_CHICKEN3,
6270 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6271
6272 /* WaDisableBackToBackFlipFix:vlv */
6273 I915_WRITE(IVB_CHICKEN3,
6274 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6275 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6276
6277 /* WaPsdDispatchEnable:vlv */
6278 /* WaDisablePSDDualDispatchEnable:vlv */
6279 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6280 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6281 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6282
6283 /* WaDisable_RenderCache_OperationalFlush:vlv */
6284 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6285
6286 /* WaForceL3Serialization:vlv */
6287 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6288 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6289
6290 /* WaDisableDopClockGating:vlv */
6291 I915_WRITE(GEN7_ROW_CHICKEN2,
6292 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6293
6294 /* This is required by WaCatErrorRejectionIssue:vlv */
6295 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6296 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6297 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6298
6299 gen7_setup_fixed_func_scheduler(dev_priv);
6300
6301 /*
6302 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6303 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6304 */
6305 I915_WRITE(GEN6_UCGCTL2,
6306 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6307
6308 /* WaDisableL3Bank2xClockGate:vlv
6309 * Disabling L3 clock gating- MMIO 940c[25] = 1
6310 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6311 I915_WRITE(GEN7_UCGCTL4,
6312 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6313
6314 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6315
6316 /*
6317 * BSpec says this must be set, even though
6318 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6319 */
6320 I915_WRITE(CACHE_MODE_1,
6321 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6322
6323 /*
6324 * BSpec recommends 8x4 when MSAA is used,
6325 * however in practice 16x4 seems fastest.
6326 *
6327 * Note that PS/WM thread counts depend on the WIZ hashing
6328 * disable bit, which we don't touch here, but it's good
6329 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6330 */
6331 I915_WRITE(GEN7_GT_MODE,
6332 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6333
6334 /*
6335 * WaIncreaseL3CreditsForVLVB0:vlv
6336 * This is the hardware default actually.
6337 */
6338 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6339
6340 /*
6341 * WaDisableVLVClockGating_VBIIssue:vlv
6342 * Disable clock gating on th GCFG unit to prevent a delay
6343 * in the reporting of vblank events.
6344 */
6345 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6346 }
6347
6348 static void cherryview_init_clock_gating(struct drm_device *dev)
6349 {
6350 struct drm_i915_private *dev_priv = dev->dev_private;
6351
6352 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6353
6354 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6355
6356 /* WaVSRefCountFullforceMissDisable:chv */
6357 /* WaDSRefCountFullforceMissDisable:chv */
6358 I915_WRITE(GEN7_FF_THREAD_MODE,
6359 I915_READ(GEN7_FF_THREAD_MODE) &
6360 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6361
6362 /* WaDisableSemaphoreAndSyncFlipWait:chv */
6363 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6364 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6365
6366 /* WaDisableCSUnitClockGating:chv */
6367 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6368 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6369
6370 /* WaDisableSDEUnitClockGating:chv */
6371 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6372 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6373 }
6374
6375 static void g4x_init_clock_gating(struct drm_device *dev)
6376 {
6377 struct drm_i915_private *dev_priv = dev->dev_private;
6378 uint32_t dspclk_gate;
6379
6380 I915_WRITE(RENCLK_GATE_D1, 0);
6381 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6382 GS_UNIT_CLOCK_GATE_DISABLE |
6383 CL_UNIT_CLOCK_GATE_DISABLE);
6384 I915_WRITE(RAMCLK_GATE_D, 0);
6385 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6386 OVRUNIT_CLOCK_GATE_DISABLE |
6387 OVCUNIT_CLOCK_GATE_DISABLE;
6388 if (IS_GM45(dev))
6389 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6390 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6391
6392 /* WaDisableRenderCachePipelinedFlush */
6393 I915_WRITE(CACHE_MODE_0,
6394 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6395
6396 /* WaDisable_RenderCache_OperationalFlush:g4x */
6397 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6398
6399 g4x_disable_trickle_feed(dev);
6400 }
6401
6402 static void crestline_init_clock_gating(struct drm_device *dev)
6403 {
6404 struct drm_i915_private *dev_priv = dev->dev_private;
6405
6406 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6407 I915_WRITE(RENCLK_GATE_D2, 0);
6408 I915_WRITE(DSPCLK_GATE_D, 0);
6409 I915_WRITE(RAMCLK_GATE_D, 0);
6410 I915_WRITE16(DEUC, 0);
6411 I915_WRITE(MI_ARB_STATE,
6412 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6413
6414 /* WaDisable_RenderCache_OperationalFlush:gen4 */
6415 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6416 }
6417
6418 static void broadwater_init_clock_gating(struct drm_device *dev)
6419 {
6420 struct drm_i915_private *dev_priv = dev->dev_private;
6421
6422 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6423 I965_RCC_CLOCK_GATE_DISABLE |
6424 I965_RCPB_CLOCK_GATE_DISABLE |
6425 I965_ISC_CLOCK_GATE_DISABLE |
6426 I965_FBC_CLOCK_GATE_DISABLE);
6427 I915_WRITE(RENCLK_GATE_D2, 0);
6428 I915_WRITE(MI_ARB_STATE,
6429 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6430
6431 /* WaDisable_RenderCache_OperationalFlush:gen4 */
6432 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6433 }
6434
6435 static void gen3_init_clock_gating(struct drm_device *dev)
6436 {
6437 struct drm_i915_private *dev_priv = dev->dev_private;
6438 u32 dstate = I915_READ(D_STATE);
6439
6440 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6441 DSTATE_DOT_CLOCK_GATING;
6442 I915_WRITE(D_STATE, dstate);
6443
6444 if (IS_PINEVIEW(dev))
6445 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6446
6447 /* IIR "flip pending" means done if this bit is set */
6448 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6449
6450 /* interrupts should cause a wake up from C3 */
6451 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6452
6453 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
6454 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6455
6456 I915_WRITE(MI_ARB_STATE,
6457 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6458 }
6459
6460 static void i85x_init_clock_gating(struct drm_device *dev)
6461 {
6462 struct drm_i915_private *dev_priv = dev->dev_private;
6463
6464 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6465
6466 /* interrupts should cause a wake up from C3 */
6467 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
6468 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6469
6470 I915_WRITE(MEM_MODE,
6471 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6472 }
6473
6474 static void i830_init_clock_gating(struct drm_device *dev)
6475 {
6476 struct drm_i915_private *dev_priv = dev->dev_private;
6477
6478 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6479
6480 I915_WRITE(MEM_MODE,
6481 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
6482 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6483 }
6484
6485 void intel_init_clock_gating(struct drm_device *dev)
6486 {
6487 struct drm_i915_private *dev_priv = dev->dev_private;
6488
6489 if (dev_priv->display.init_clock_gating)
6490 dev_priv->display.init_clock_gating(dev);
6491 }
6492
6493 void intel_suspend_hw(struct drm_device *dev)
6494 {
6495 if (HAS_PCH_LPT(dev))
6496 lpt_suspend_hw(dev);
6497 }
6498
6499 /* Set up chip specific power management-related functions */
6500 void intel_init_pm(struct drm_device *dev)
6501 {
6502 struct drm_i915_private *dev_priv = dev->dev_private;
6503
6504 intel_fbc_init(dev_priv);
6505
6506 /* For cxsr */
6507 if (IS_PINEVIEW(dev))
6508 i915_pineview_get_mem_freq(dev);
6509 else if (IS_GEN5(dev))
6510 i915_ironlake_get_mem_freq(dev);
6511
6512 /* For FIFO watermark updates */
6513 if (INTEL_INFO(dev)->gen >= 9) {
6514 skl_setup_wm_latency(dev);
6515
6516 dev_priv->display.init_clock_gating = skl_init_clock_gating;
6517 dev_priv->display.update_wm = skl_update_wm;
6518 dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
6519 } else if (HAS_PCH_SPLIT(dev)) {
6520 ilk_setup_wm_latency(dev);
6521
6522 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6523 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6524 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6525 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6526 dev_priv->display.update_wm = ilk_update_wm;
6527 dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6528 } else {
6529 DRM_DEBUG_KMS("Failed to read display plane latency. "
6530 "Disable CxSR\n");
6531 }
6532
6533 if (IS_GEN5(dev))
6534 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6535 else if (IS_GEN6(dev))
6536 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6537 else if (IS_IVYBRIDGE(dev))
6538 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6539 else if (IS_HASWELL(dev))
6540 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6541 else if (INTEL_INFO(dev)->gen == 8)
6542 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
6543 } else if (IS_CHERRYVIEW(dev)) {
6544 dev_priv->display.update_wm = cherryview_update_wm;
6545 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6546 dev_priv->display.init_clock_gating =
6547 cherryview_init_clock_gating;
6548 } else if (IS_VALLEYVIEW(dev)) {
6549 dev_priv->display.update_wm = valleyview_update_wm;
6550 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6551 dev_priv->display.init_clock_gating =
6552 valleyview_init_clock_gating;
6553 } else if (IS_PINEVIEW(dev)) {
6554 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6555 dev_priv->is_ddr3,
6556 dev_priv->fsb_freq,
6557 dev_priv->mem_freq)) {
6558 DRM_INFO("failed to find known CxSR latency "
6559 "(found ddr%s fsb freq %d, mem freq %d), "
6560 "disabling CxSR\n",
6561 (dev_priv->is_ddr3 == 1) ? "3" : "2",
6562 dev_priv->fsb_freq, dev_priv->mem_freq);
6563 /* Disable CxSR and never update its watermark again */
6564 intel_set_memory_cxsr(dev_priv, false);
6565 dev_priv->display.update_wm = NULL;
6566 } else
6567 dev_priv->display.update_wm = pineview_update_wm;
6568 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6569 } else if (IS_G4X(dev)) {
6570 dev_priv->display.update_wm = g4x_update_wm;
6571 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6572 } else if (IS_GEN4(dev)) {
6573 dev_priv->display.update_wm = i965_update_wm;
6574 if (IS_CRESTLINE(dev))
6575 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6576 else if (IS_BROADWATER(dev))
6577 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6578 } else if (IS_GEN3(dev)) {
6579 dev_priv->display.update_wm = i9xx_update_wm;
6580 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6581 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6582 } else if (IS_GEN2(dev)) {
6583 if (INTEL_INFO(dev)->num_pipes == 1) {
6584 dev_priv->display.update_wm = i845_update_wm;
6585 dev_priv->display.get_fifo_size = i845_get_fifo_size;
6586 } else {
6587 dev_priv->display.update_wm = i9xx_update_wm;
6588 dev_priv->display.get_fifo_size = i830_get_fifo_size;
6589 }
6590
6591 if (IS_I85X(dev) || IS_I865G(dev))
6592 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6593 else
6594 dev_priv->display.init_clock_gating = i830_init_clock_gating;
6595 } else {
6596 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6597 }
6598 }
6599
6600 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
6601 {
6602 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6603
6604 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6605 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6606 return -EAGAIN;
6607 }
6608
6609 I915_WRITE(GEN6_PCODE_DATA, *val);
6610 I915_WRITE(GEN6_PCODE_DATA1, 0);
6611 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6612
6613 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6614 500)) {
6615 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6616 return -ETIMEDOUT;
6617 }
6618
6619 *val = I915_READ(GEN6_PCODE_DATA);
6620 I915_WRITE(GEN6_PCODE_DATA, 0);
6621
6622 return 0;
6623 }
6624
6625 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
6626 {
6627 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6628
6629 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6630 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6631 return -EAGAIN;
6632 }
6633
6634 I915_WRITE(GEN6_PCODE_DATA, val);
6635 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6636
6637 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6638 500)) {
6639 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6640 return -ETIMEDOUT;
6641 }
6642
6643 I915_WRITE(GEN6_PCODE_DATA, 0);
6644
6645 return 0;
6646 }
6647
6648 static int vlv_gpu_freq_div(unsigned int czclk_freq)
6649 {
6650 switch (czclk_freq) {
6651 case 200:
6652 return 10;
6653 case 267:
6654 return 12;
6655 case 320:
6656 case 333:
6657 return 16;
6658 case 400:
6659 return 20;
6660 default:
6661 return -1;
6662 }
6663 }
6664
6665 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
6666 {
6667 int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6668
6669 div = vlv_gpu_freq_div(czclk_freq);
6670 if (div < 0)
6671 return div;
6672
6673 return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
6674 }
6675
6676 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
6677 {
6678 int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6679
6680 mul = vlv_gpu_freq_div(czclk_freq);
6681 if (mul < 0)
6682 return mul;
6683
6684 return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
6685 }
6686
6687 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6688 {
6689 int div, czclk_freq = dev_priv->rps.cz_freq;
6690
6691 div = vlv_gpu_freq_div(czclk_freq) / 2;
6692 if (div < 0)
6693 return div;
6694
6695 return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
6696 }
6697
6698 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6699 {
6700 int mul, czclk_freq = dev_priv->rps.cz_freq;
6701
6702 mul = vlv_gpu_freq_div(czclk_freq) / 2;
6703 if (mul < 0)
6704 return mul;
6705
6706 /* CHV needs even values */
6707 return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
6708 }
6709
6710 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
6711 {
6712 if (IS_CHERRYVIEW(dev_priv->dev))
6713 return chv_gpu_freq(dev_priv, val);
6714 else if (IS_VALLEYVIEW(dev_priv->dev))
6715 return byt_gpu_freq(dev_priv, val);
6716 else
6717 return val * GT_FREQUENCY_MULTIPLIER;
6718 }
6719
6720 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
6721 {
6722 if (IS_CHERRYVIEW(dev_priv->dev))
6723 return chv_freq_opcode(dev_priv, val);
6724 else if (IS_VALLEYVIEW(dev_priv->dev))
6725 return byt_freq_opcode(dev_priv, val);
6726 else
6727 return val / GT_FREQUENCY_MULTIPLIER;
6728 }
6729
6730 void intel_pm_setup(struct drm_device *dev)
6731 {
6732 struct drm_i915_private *dev_priv = dev->dev_private;
6733
6734 mutex_init(&dev_priv->rps.hw_lock);
6735
6736 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6737 intel_gen6_powersave_work);
6738
6739 dev_priv->pm.suspended = false;
6740 }