]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/intel_pm.c
Merge tag 'drm-intel-next-fixes-2016-08-05' of git://anongit.freedesktop.org/drm...
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34
35 /**
36 * DOC: RC6
37 *
38 * RC6 is a special power stage which allows the GPU to enter an very
39 * low-voltage mode when idle, using down to 0V while at this stage. This
40 * stage is entered automatically when the GPU is idle when RC6 support is
41 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42 *
43 * There are different RC6 modes available in Intel GPU, which differentiate
44 * among each other with the latency required to enter and leave RC6 and
45 * voltage consumed by the GPU in different states.
46 *
47 * The combination of the following flags define which states GPU is allowed
48 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49 * RC6pp is deepest RC6. Their support by hardware varies according to the
50 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51 * which brings the most power savings; deeper states save more power, but
52 * require higher latency to switch to and wake up.
53 */
54 #define INTEL_RC6_ENABLE (1<<0)
55 #define INTEL_RC6p_ENABLE (1<<1)
56 #define INTEL_RC6pp_ENABLE (1<<2)
57
58 static void gen9_init_clock_gating(struct drm_device *dev)
59 {
60 struct drm_i915_private *dev_priv = dev->dev_private;
61
62 /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
63 I915_WRITE(CHICKEN_PAR1_1,
64 I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
65
66 I915_WRITE(GEN8_CONFIG0,
67 I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
68
69 /* WaEnableChickenDCPR:skl,bxt,kbl */
70 I915_WRITE(GEN8_CHICKEN_DCPR_1,
71 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
72
73 /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
74 /* WaFbcWakeMemOn:skl,bxt,kbl */
75 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
76 DISP_FBC_WM_DIS |
77 DISP_FBC_MEMORY_WAKE);
78
79 /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
80 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
81 ILK_DPFC_DISABLE_DUMMY0);
82 }
83
84 static void bxt_init_clock_gating(struct drm_device *dev)
85 {
86 struct drm_i915_private *dev_priv = to_i915(dev);
87
88 gen9_init_clock_gating(dev);
89
90 /* WaDisableSDEUnitClockGating:bxt */
91 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
92 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
93
94 /*
95 * FIXME:
96 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
97 */
98 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
99 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
100
101 /*
102 * Wa: Backlight PWM may stop in the asserted state, causing backlight
103 * to stay fully on.
104 */
105 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
106 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
107 PWM1_GATING_DIS | PWM2_GATING_DIS);
108 }
109
110 static void i915_pineview_get_mem_freq(struct drm_device *dev)
111 {
112 struct drm_i915_private *dev_priv = to_i915(dev);
113 u32 tmp;
114
115 tmp = I915_READ(CLKCFG);
116
117 switch (tmp & CLKCFG_FSB_MASK) {
118 case CLKCFG_FSB_533:
119 dev_priv->fsb_freq = 533; /* 133*4 */
120 break;
121 case CLKCFG_FSB_800:
122 dev_priv->fsb_freq = 800; /* 200*4 */
123 break;
124 case CLKCFG_FSB_667:
125 dev_priv->fsb_freq = 667; /* 167*4 */
126 break;
127 case CLKCFG_FSB_400:
128 dev_priv->fsb_freq = 400; /* 100*4 */
129 break;
130 }
131
132 switch (tmp & CLKCFG_MEM_MASK) {
133 case CLKCFG_MEM_533:
134 dev_priv->mem_freq = 533;
135 break;
136 case CLKCFG_MEM_667:
137 dev_priv->mem_freq = 667;
138 break;
139 case CLKCFG_MEM_800:
140 dev_priv->mem_freq = 800;
141 break;
142 }
143
144 /* detect pineview DDR3 setting */
145 tmp = I915_READ(CSHRDDR3CTL);
146 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
147 }
148
149 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
150 {
151 struct drm_i915_private *dev_priv = to_i915(dev);
152 u16 ddrpll, csipll;
153
154 ddrpll = I915_READ16(DDRMPLL1);
155 csipll = I915_READ16(CSIPLL0);
156
157 switch (ddrpll & 0xff) {
158 case 0xc:
159 dev_priv->mem_freq = 800;
160 break;
161 case 0x10:
162 dev_priv->mem_freq = 1066;
163 break;
164 case 0x14:
165 dev_priv->mem_freq = 1333;
166 break;
167 case 0x18:
168 dev_priv->mem_freq = 1600;
169 break;
170 default:
171 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
172 ddrpll & 0xff);
173 dev_priv->mem_freq = 0;
174 break;
175 }
176
177 dev_priv->ips.r_t = dev_priv->mem_freq;
178
179 switch (csipll & 0x3ff) {
180 case 0x00c:
181 dev_priv->fsb_freq = 3200;
182 break;
183 case 0x00e:
184 dev_priv->fsb_freq = 3733;
185 break;
186 case 0x010:
187 dev_priv->fsb_freq = 4266;
188 break;
189 case 0x012:
190 dev_priv->fsb_freq = 4800;
191 break;
192 case 0x014:
193 dev_priv->fsb_freq = 5333;
194 break;
195 case 0x016:
196 dev_priv->fsb_freq = 5866;
197 break;
198 case 0x018:
199 dev_priv->fsb_freq = 6400;
200 break;
201 default:
202 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
203 csipll & 0x3ff);
204 dev_priv->fsb_freq = 0;
205 break;
206 }
207
208 if (dev_priv->fsb_freq == 3200) {
209 dev_priv->ips.c_m = 0;
210 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
211 dev_priv->ips.c_m = 1;
212 } else {
213 dev_priv->ips.c_m = 2;
214 }
215 }
216
217 static const struct cxsr_latency cxsr_latency_table[] = {
218 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
219 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
220 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
221 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
222 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
223
224 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
225 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
226 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
227 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
228 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
229
230 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
231 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
232 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
233 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
234 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
235
236 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
237 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
238 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
239 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
240 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
241
242 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
243 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
244 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
245 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
246 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
247
248 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
249 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
250 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
251 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
252 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
253 };
254
255 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
256 int is_ddr3,
257 int fsb,
258 int mem)
259 {
260 const struct cxsr_latency *latency;
261 int i;
262
263 if (fsb == 0 || mem == 0)
264 return NULL;
265
266 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
267 latency = &cxsr_latency_table[i];
268 if (is_desktop == latency->is_desktop &&
269 is_ddr3 == latency->is_ddr3 &&
270 fsb == latency->fsb_freq && mem == latency->mem_freq)
271 return latency;
272 }
273
274 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
275
276 return NULL;
277 }
278
279 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
280 {
281 u32 val;
282
283 mutex_lock(&dev_priv->rps.hw_lock);
284
285 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
286 if (enable)
287 val &= ~FORCE_DDR_HIGH_FREQ;
288 else
289 val |= FORCE_DDR_HIGH_FREQ;
290 val &= ~FORCE_DDR_LOW_FREQ;
291 val |= FORCE_DDR_FREQ_REQ_ACK;
292 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
293
294 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
295 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
296 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
297
298 mutex_unlock(&dev_priv->rps.hw_lock);
299 }
300
301 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
302 {
303 u32 val;
304
305 mutex_lock(&dev_priv->rps.hw_lock);
306
307 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
308 if (enable)
309 val |= DSP_MAXFIFO_PM5_ENABLE;
310 else
311 val &= ~DSP_MAXFIFO_PM5_ENABLE;
312 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
313
314 mutex_unlock(&dev_priv->rps.hw_lock);
315 }
316
317 #define FW_WM(value, plane) \
318 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
319
320 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
321 {
322 struct drm_device *dev = &dev_priv->drm;
323 u32 val;
324
325 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
326 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
327 POSTING_READ(FW_BLC_SELF_VLV);
328 dev_priv->wm.vlv.cxsr = enable;
329 } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
330 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
331 POSTING_READ(FW_BLC_SELF);
332 } else if (IS_PINEVIEW(dev)) {
333 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
334 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
335 I915_WRITE(DSPFW3, val);
336 POSTING_READ(DSPFW3);
337 } else if (IS_I945G(dev) || IS_I945GM(dev)) {
338 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
339 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
340 I915_WRITE(FW_BLC_SELF, val);
341 POSTING_READ(FW_BLC_SELF);
342 } else if (IS_I915GM(dev)) {
343 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
344 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
345 I915_WRITE(INSTPM, val);
346 POSTING_READ(INSTPM);
347 } else {
348 return;
349 }
350
351 DRM_DEBUG_KMS("memory self-refresh is %s\n",
352 enable ? "enabled" : "disabled");
353 }
354
355
356 /*
357 * Latency for FIFO fetches is dependent on several factors:
358 * - memory configuration (speed, channels)
359 * - chipset
360 * - current MCH state
361 * It can be fairly high in some situations, so here we assume a fairly
362 * pessimal value. It's a tradeoff between extra memory fetches (if we
363 * set this value too high, the FIFO will fetch frequently to stay full)
364 * and power consumption (set it too low to save power and we might see
365 * FIFO underruns and display "flicker").
366 *
367 * A value of 5us seems to be a good balance; safe for very low end
368 * platforms but not overly aggressive on lower latency configs.
369 */
370 static const int pessimal_latency_ns = 5000;
371
372 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
373 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
374
375 static int vlv_get_fifo_size(struct drm_device *dev,
376 enum pipe pipe, int plane)
377 {
378 struct drm_i915_private *dev_priv = to_i915(dev);
379 int sprite0_start, sprite1_start, size;
380
381 switch (pipe) {
382 uint32_t dsparb, dsparb2, dsparb3;
383 case PIPE_A:
384 dsparb = I915_READ(DSPARB);
385 dsparb2 = I915_READ(DSPARB2);
386 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
387 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
388 break;
389 case PIPE_B:
390 dsparb = I915_READ(DSPARB);
391 dsparb2 = I915_READ(DSPARB2);
392 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
393 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
394 break;
395 case PIPE_C:
396 dsparb2 = I915_READ(DSPARB2);
397 dsparb3 = I915_READ(DSPARB3);
398 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
399 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
400 break;
401 default:
402 return 0;
403 }
404
405 switch (plane) {
406 case 0:
407 size = sprite0_start;
408 break;
409 case 1:
410 size = sprite1_start - sprite0_start;
411 break;
412 case 2:
413 size = 512 - 1 - sprite1_start;
414 break;
415 default:
416 return 0;
417 }
418
419 DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
420 pipe_name(pipe), plane == 0 ? "primary" : "sprite",
421 plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
422 size);
423
424 return size;
425 }
426
427 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
428 {
429 struct drm_i915_private *dev_priv = to_i915(dev);
430 uint32_t dsparb = I915_READ(DSPARB);
431 int size;
432
433 size = dsparb & 0x7f;
434 if (plane)
435 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
436
437 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
438 plane ? "B" : "A", size);
439
440 return size;
441 }
442
443 static int i830_get_fifo_size(struct drm_device *dev, int plane)
444 {
445 struct drm_i915_private *dev_priv = to_i915(dev);
446 uint32_t dsparb = I915_READ(DSPARB);
447 int size;
448
449 size = dsparb & 0x1ff;
450 if (plane)
451 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
452 size >>= 1; /* Convert to cachelines */
453
454 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
455 plane ? "B" : "A", size);
456
457 return size;
458 }
459
460 static int i845_get_fifo_size(struct drm_device *dev, int plane)
461 {
462 struct drm_i915_private *dev_priv = to_i915(dev);
463 uint32_t dsparb = I915_READ(DSPARB);
464 int size;
465
466 size = dsparb & 0x7f;
467 size >>= 2; /* Convert to cachelines */
468
469 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
470 plane ? "B" : "A",
471 size);
472
473 return size;
474 }
475
476 /* Pineview has different values for various configs */
477 static const struct intel_watermark_params pineview_display_wm = {
478 .fifo_size = PINEVIEW_DISPLAY_FIFO,
479 .max_wm = PINEVIEW_MAX_WM,
480 .default_wm = PINEVIEW_DFT_WM,
481 .guard_size = PINEVIEW_GUARD_WM,
482 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
483 };
484 static const struct intel_watermark_params pineview_display_hplloff_wm = {
485 .fifo_size = PINEVIEW_DISPLAY_FIFO,
486 .max_wm = PINEVIEW_MAX_WM,
487 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
488 .guard_size = PINEVIEW_GUARD_WM,
489 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
490 };
491 static const struct intel_watermark_params pineview_cursor_wm = {
492 .fifo_size = PINEVIEW_CURSOR_FIFO,
493 .max_wm = PINEVIEW_CURSOR_MAX_WM,
494 .default_wm = PINEVIEW_CURSOR_DFT_WM,
495 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
496 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
497 };
498 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
499 .fifo_size = PINEVIEW_CURSOR_FIFO,
500 .max_wm = PINEVIEW_CURSOR_MAX_WM,
501 .default_wm = PINEVIEW_CURSOR_DFT_WM,
502 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
503 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
504 };
505 static const struct intel_watermark_params g4x_wm_info = {
506 .fifo_size = G4X_FIFO_SIZE,
507 .max_wm = G4X_MAX_WM,
508 .default_wm = G4X_MAX_WM,
509 .guard_size = 2,
510 .cacheline_size = G4X_FIFO_LINE_SIZE,
511 };
512 static const struct intel_watermark_params g4x_cursor_wm_info = {
513 .fifo_size = I965_CURSOR_FIFO,
514 .max_wm = I965_CURSOR_MAX_WM,
515 .default_wm = I965_CURSOR_DFT_WM,
516 .guard_size = 2,
517 .cacheline_size = G4X_FIFO_LINE_SIZE,
518 };
519 static const struct intel_watermark_params i965_cursor_wm_info = {
520 .fifo_size = I965_CURSOR_FIFO,
521 .max_wm = I965_CURSOR_MAX_WM,
522 .default_wm = I965_CURSOR_DFT_WM,
523 .guard_size = 2,
524 .cacheline_size = I915_FIFO_LINE_SIZE,
525 };
526 static const struct intel_watermark_params i945_wm_info = {
527 .fifo_size = I945_FIFO_SIZE,
528 .max_wm = I915_MAX_WM,
529 .default_wm = 1,
530 .guard_size = 2,
531 .cacheline_size = I915_FIFO_LINE_SIZE,
532 };
533 static const struct intel_watermark_params i915_wm_info = {
534 .fifo_size = I915_FIFO_SIZE,
535 .max_wm = I915_MAX_WM,
536 .default_wm = 1,
537 .guard_size = 2,
538 .cacheline_size = I915_FIFO_LINE_SIZE,
539 };
540 static const struct intel_watermark_params i830_a_wm_info = {
541 .fifo_size = I855GM_FIFO_SIZE,
542 .max_wm = I915_MAX_WM,
543 .default_wm = 1,
544 .guard_size = 2,
545 .cacheline_size = I830_FIFO_LINE_SIZE,
546 };
547 static const struct intel_watermark_params i830_bc_wm_info = {
548 .fifo_size = I855GM_FIFO_SIZE,
549 .max_wm = I915_MAX_WM/2,
550 .default_wm = 1,
551 .guard_size = 2,
552 .cacheline_size = I830_FIFO_LINE_SIZE,
553 };
554 static const struct intel_watermark_params i845_wm_info = {
555 .fifo_size = I830_FIFO_SIZE,
556 .max_wm = I915_MAX_WM,
557 .default_wm = 1,
558 .guard_size = 2,
559 .cacheline_size = I830_FIFO_LINE_SIZE,
560 };
561
562 /**
563 * intel_calculate_wm - calculate watermark level
564 * @clock_in_khz: pixel clock
565 * @wm: chip FIFO params
566 * @cpp: bytes per pixel
567 * @latency_ns: memory latency for the platform
568 *
569 * Calculate the watermark level (the level at which the display plane will
570 * start fetching from memory again). Each chip has a different display
571 * FIFO size and allocation, so the caller needs to figure that out and pass
572 * in the correct intel_watermark_params structure.
573 *
574 * As the pixel clock runs, the FIFO will be drained at a rate that depends
575 * on the pixel size. When it reaches the watermark level, it'll start
576 * fetching FIFO line sized based chunks from memory until the FIFO fills
577 * past the watermark point. If the FIFO drains completely, a FIFO underrun
578 * will occur, and a display engine hang could result.
579 */
580 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
581 const struct intel_watermark_params *wm,
582 int fifo_size, int cpp,
583 unsigned long latency_ns)
584 {
585 long entries_required, wm_size;
586
587 /*
588 * Note: we need to make sure we don't overflow for various clock &
589 * latency values.
590 * clocks go from a few thousand to several hundred thousand.
591 * latency is usually a few thousand
592 */
593 entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
594 1000;
595 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
596
597 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
598
599 wm_size = fifo_size - (entries_required + wm->guard_size);
600
601 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
602
603 /* Don't promote wm_size to unsigned... */
604 if (wm_size > (long)wm->max_wm)
605 wm_size = wm->max_wm;
606 if (wm_size <= 0)
607 wm_size = wm->default_wm;
608
609 /*
610 * Bspec seems to indicate that the value shouldn't be lower than
611 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
612 * Lets go for 8 which is the burst size since certain platforms
613 * already use a hardcoded 8 (which is what the spec says should be
614 * done).
615 */
616 if (wm_size <= 8)
617 wm_size = 8;
618
619 return wm_size;
620 }
621
622 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
623 {
624 struct drm_crtc *crtc, *enabled = NULL;
625
626 for_each_crtc(dev, crtc) {
627 if (intel_crtc_active(crtc)) {
628 if (enabled)
629 return NULL;
630 enabled = crtc;
631 }
632 }
633
634 return enabled;
635 }
636
637 static void pineview_update_wm(struct drm_crtc *unused_crtc)
638 {
639 struct drm_device *dev = unused_crtc->dev;
640 struct drm_i915_private *dev_priv = to_i915(dev);
641 struct drm_crtc *crtc;
642 const struct cxsr_latency *latency;
643 u32 reg;
644 unsigned long wm;
645
646 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
647 dev_priv->fsb_freq, dev_priv->mem_freq);
648 if (!latency) {
649 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
650 intel_set_memory_cxsr(dev_priv, false);
651 return;
652 }
653
654 crtc = single_enabled_crtc(dev);
655 if (crtc) {
656 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
657 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
658 int clock = adjusted_mode->crtc_clock;
659
660 /* Display SR */
661 wm = intel_calculate_wm(clock, &pineview_display_wm,
662 pineview_display_wm.fifo_size,
663 cpp, latency->display_sr);
664 reg = I915_READ(DSPFW1);
665 reg &= ~DSPFW_SR_MASK;
666 reg |= FW_WM(wm, SR);
667 I915_WRITE(DSPFW1, reg);
668 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
669
670 /* cursor SR */
671 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
672 pineview_display_wm.fifo_size,
673 cpp, latency->cursor_sr);
674 reg = I915_READ(DSPFW3);
675 reg &= ~DSPFW_CURSOR_SR_MASK;
676 reg |= FW_WM(wm, CURSOR_SR);
677 I915_WRITE(DSPFW3, reg);
678
679 /* Display HPLL off SR */
680 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
681 pineview_display_hplloff_wm.fifo_size,
682 cpp, latency->display_hpll_disable);
683 reg = I915_READ(DSPFW3);
684 reg &= ~DSPFW_HPLL_SR_MASK;
685 reg |= FW_WM(wm, HPLL_SR);
686 I915_WRITE(DSPFW3, reg);
687
688 /* cursor HPLL off SR */
689 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
690 pineview_display_hplloff_wm.fifo_size,
691 cpp, latency->cursor_hpll_disable);
692 reg = I915_READ(DSPFW3);
693 reg &= ~DSPFW_HPLL_CURSOR_MASK;
694 reg |= FW_WM(wm, HPLL_CURSOR);
695 I915_WRITE(DSPFW3, reg);
696 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
697
698 intel_set_memory_cxsr(dev_priv, true);
699 } else {
700 intel_set_memory_cxsr(dev_priv, false);
701 }
702 }
703
704 static bool g4x_compute_wm0(struct drm_device *dev,
705 int plane,
706 const struct intel_watermark_params *display,
707 int display_latency_ns,
708 const struct intel_watermark_params *cursor,
709 int cursor_latency_ns,
710 int *plane_wm,
711 int *cursor_wm)
712 {
713 struct drm_crtc *crtc;
714 const struct drm_display_mode *adjusted_mode;
715 int htotal, hdisplay, clock, cpp;
716 int line_time_us, line_count;
717 int entries, tlb_miss;
718
719 crtc = intel_get_crtc_for_plane(dev, plane);
720 if (!intel_crtc_active(crtc)) {
721 *cursor_wm = cursor->guard_size;
722 *plane_wm = display->guard_size;
723 return false;
724 }
725
726 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
727 clock = adjusted_mode->crtc_clock;
728 htotal = adjusted_mode->crtc_htotal;
729 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
730 cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
731
732 /* Use the small buffer method to calculate plane watermark */
733 entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
734 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
735 if (tlb_miss > 0)
736 entries += tlb_miss;
737 entries = DIV_ROUND_UP(entries, display->cacheline_size);
738 *plane_wm = entries + display->guard_size;
739 if (*plane_wm > (int)display->max_wm)
740 *plane_wm = display->max_wm;
741
742 /* Use the large buffer method to calculate cursor watermark */
743 line_time_us = max(htotal * 1000 / clock, 1);
744 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
745 entries = line_count * crtc->cursor->state->crtc_w * cpp;
746 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
747 if (tlb_miss > 0)
748 entries += tlb_miss;
749 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
750 *cursor_wm = entries + cursor->guard_size;
751 if (*cursor_wm > (int)cursor->max_wm)
752 *cursor_wm = (int)cursor->max_wm;
753
754 return true;
755 }
756
757 /*
758 * Check the wm result.
759 *
760 * If any calculated watermark values is larger than the maximum value that
761 * can be programmed into the associated watermark register, that watermark
762 * must be disabled.
763 */
764 static bool g4x_check_srwm(struct drm_device *dev,
765 int display_wm, int cursor_wm,
766 const struct intel_watermark_params *display,
767 const struct intel_watermark_params *cursor)
768 {
769 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
770 display_wm, cursor_wm);
771
772 if (display_wm > display->max_wm) {
773 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
774 display_wm, display->max_wm);
775 return false;
776 }
777
778 if (cursor_wm > cursor->max_wm) {
779 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
780 cursor_wm, cursor->max_wm);
781 return false;
782 }
783
784 if (!(display_wm || cursor_wm)) {
785 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
786 return false;
787 }
788
789 return true;
790 }
791
792 static bool g4x_compute_srwm(struct drm_device *dev,
793 int plane,
794 int latency_ns,
795 const struct intel_watermark_params *display,
796 const struct intel_watermark_params *cursor,
797 int *display_wm, int *cursor_wm)
798 {
799 struct drm_crtc *crtc;
800 const struct drm_display_mode *adjusted_mode;
801 int hdisplay, htotal, cpp, clock;
802 unsigned long line_time_us;
803 int line_count, line_size;
804 int small, large;
805 int entries;
806
807 if (!latency_ns) {
808 *display_wm = *cursor_wm = 0;
809 return false;
810 }
811
812 crtc = intel_get_crtc_for_plane(dev, plane);
813 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
814 clock = adjusted_mode->crtc_clock;
815 htotal = adjusted_mode->crtc_htotal;
816 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
817 cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
818
819 line_time_us = max(htotal * 1000 / clock, 1);
820 line_count = (latency_ns / line_time_us + 1000) / 1000;
821 line_size = hdisplay * cpp;
822
823 /* Use the minimum of the small and large buffer method for primary */
824 small = ((clock * cpp / 1000) * latency_ns) / 1000;
825 large = line_count * line_size;
826
827 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
828 *display_wm = entries + display->guard_size;
829
830 /* calculate the self-refresh watermark for display cursor */
831 entries = line_count * cpp * crtc->cursor->state->crtc_w;
832 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
833 *cursor_wm = entries + cursor->guard_size;
834
835 return g4x_check_srwm(dev,
836 *display_wm, *cursor_wm,
837 display, cursor);
838 }
839
840 #define FW_WM_VLV(value, plane) \
841 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
842
843 static void vlv_write_wm_values(struct intel_crtc *crtc,
844 const struct vlv_wm_values *wm)
845 {
846 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
847 enum pipe pipe = crtc->pipe;
848
849 I915_WRITE(VLV_DDL(pipe),
850 (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
851 (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
852 (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
853 (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
854
855 I915_WRITE(DSPFW1,
856 FW_WM(wm->sr.plane, SR) |
857 FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
858 FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
859 FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
860 I915_WRITE(DSPFW2,
861 FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
862 FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
863 FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
864 I915_WRITE(DSPFW3,
865 FW_WM(wm->sr.cursor, CURSOR_SR));
866
867 if (IS_CHERRYVIEW(dev_priv)) {
868 I915_WRITE(DSPFW7_CHV,
869 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
870 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
871 I915_WRITE(DSPFW8_CHV,
872 FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
873 FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
874 I915_WRITE(DSPFW9_CHV,
875 FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
876 FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
877 I915_WRITE(DSPHOWM,
878 FW_WM(wm->sr.plane >> 9, SR_HI) |
879 FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
880 FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
881 FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
882 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
883 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
884 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
885 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
886 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
887 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
888 } else {
889 I915_WRITE(DSPFW7,
890 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
891 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
892 I915_WRITE(DSPHOWM,
893 FW_WM(wm->sr.plane >> 9, SR_HI) |
894 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
895 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
896 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
897 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
898 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
899 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
900 }
901
902 /* zero (unused) WM1 watermarks */
903 I915_WRITE(DSPFW4, 0);
904 I915_WRITE(DSPFW5, 0);
905 I915_WRITE(DSPFW6, 0);
906 I915_WRITE(DSPHOWM1, 0);
907
908 POSTING_READ(DSPFW1);
909 }
910
911 #undef FW_WM_VLV
912
913 enum vlv_wm_level {
914 VLV_WM_LEVEL_PM2,
915 VLV_WM_LEVEL_PM5,
916 VLV_WM_LEVEL_DDR_DVFS,
917 };
918
919 /* latency must be in 0.1us units. */
920 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
921 unsigned int pipe_htotal,
922 unsigned int horiz_pixels,
923 unsigned int cpp,
924 unsigned int latency)
925 {
926 unsigned int ret;
927
928 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
929 ret = (ret + 1) * horiz_pixels * cpp;
930 ret = DIV_ROUND_UP(ret, 64);
931
932 return ret;
933 }
934
935 static void vlv_setup_wm_latency(struct drm_device *dev)
936 {
937 struct drm_i915_private *dev_priv = to_i915(dev);
938
939 /* all latencies in usec */
940 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
941
942 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
943
944 if (IS_CHERRYVIEW(dev_priv)) {
945 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
946 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
947
948 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
949 }
950 }
951
952 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
953 struct intel_crtc *crtc,
954 const struct intel_plane_state *state,
955 int level)
956 {
957 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
958 int clock, htotal, cpp, width, wm;
959
960 if (dev_priv->wm.pri_latency[level] == 0)
961 return USHRT_MAX;
962
963 if (!state->visible)
964 return 0;
965
966 cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
967 clock = crtc->config->base.adjusted_mode.crtc_clock;
968 htotal = crtc->config->base.adjusted_mode.crtc_htotal;
969 width = crtc->config->pipe_src_w;
970 if (WARN_ON(htotal == 0))
971 htotal = 1;
972
973 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
974 /*
975 * FIXME the formula gives values that are
976 * too big for the cursor FIFO, and hence we
977 * would never be able to use cursors. For
978 * now just hardcode the watermark.
979 */
980 wm = 63;
981 } else {
982 wm = vlv_wm_method2(clock, htotal, width, cpp,
983 dev_priv->wm.pri_latency[level] * 10);
984 }
985
986 return min_t(int, wm, USHRT_MAX);
987 }
988
989 static void vlv_compute_fifo(struct intel_crtc *crtc)
990 {
991 struct drm_device *dev = crtc->base.dev;
992 struct vlv_wm_state *wm_state = &crtc->wm_state;
993 struct intel_plane *plane;
994 unsigned int total_rate = 0;
995 const int fifo_size = 512 - 1;
996 int fifo_extra, fifo_left = fifo_size;
997
998 for_each_intel_plane_on_crtc(dev, crtc, plane) {
999 struct intel_plane_state *state =
1000 to_intel_plane_state(plane->base.state);
1001
1002 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1003 continue;
1004
1005 if (state->visible) {
1006 wm_state->num_active_planes++;
1007 total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1008 }
1009 }
1010
1011 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1012 struct intel_plane_state *state =
1013 to_intel_plane_state(plane->base.state);
1014 unsigned int rate;
1015
1016 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1017 plane->wm.fifo_size = 63;
1018 continue;
1019 }
1020
1021 if (!state->visible) {
1022 plane->wm.fifo_size = 0;
1023 continue;
1024 }
1025
1026 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1027 plane->wm.fifo_size = fifo_size * rate / total_rate;
1028 fifo_left -= plane->wm.fifo_size;
1029 }
1030
1031 fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1032
1033 /* spread the remainder evenly */
1034 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1035 int plane_extra;
1036
1037 if (fifo_left == 0)
1038 break;
1039
1040 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1041 continue;
1042
1043 /* give it all to the first plane if none are active */
1044 if (plane->wm.fifo_size == 0 &&
1045 wm_state->num_active_planes)
1046 continue;
1047
1048 plane_extra = min(fifo_extra, fifo_left);
1049 plane->wm.fifo_size += plane_extra;
1050 fifo_left -= plane_extra;
1051 }
1052
1053 WARN_ON(fifo_left != 0);
1054 }
1055
1056 static void vlv_invert_wms(struct intel_crtc *crtc)
1057 {
1058 struct vlv_wm_state *wm_state = &crtc->wm_state;
1059 int level;
1060
1061 for (level = 0; level < wm_state->num_levels; level++) {
1062 struct drm_device *dev = crtc->base.dev;
1063 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1064 struct intel_plane *plane;
1065
1066 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1067 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1068
1069 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1070 switch (plane->base.type) {
1071 int sprite;
1072 case DRM_PLANE_TYPE_CURSOR:
1073 wm_state->wm[level].cursor = plane->wm.fifo_size -
1074 wm_state->wm[level].cursor;
1075 break;
1076 case DRM_PLANE_TYPE_PRIMARY:
1077 wm_state->wm[level].primary = plane->wm.fifo_size -
1078 wm_state->wm[level].primary;
1079 break;
1080 case DRM_PLANE_TYPE_OVERLAY:
1081 sprite = plane->plane;
1082 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1083 wm_state->wm[level].sprite[sprite];
1084 break;
1085 }
1086 }
1087 }
1088 }
1089
1090 static void vlv_compute_wm(struct intel_crtc *crtc)
1091 {
1092 struct drm_device *dev = crtc->base.dev;
1093 struct vlv_wm_state *wm_state = &crtc->wm_state;
1094 struct intel_plane *plane;
1095 int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1096 int level;
1097
1098 memset(wm_state, 0, sizeof(*wm_state));
1099
1100 wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1101 wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1102
1103 wm_state->num_active_planes = 0;
1104
1105 vlv_compute_fifo(crtc);
1106
1107 if (wm_state->num_active_planes != 1)
1108 wm_state->cxsr = false;
1109
1110 if (wm_state->cxsr) {
1111 for (level = 0; level < wm_state->num_levels; level++) {
1112 wm_state->sr[level].plane = sr_fifo_size;
1113 wm_state->sr[level].cursor = 63;
1114 }
1115 }
1116
1117 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1118 struct intel_plane_state *state =
1119 to_intel_plane_state(plane->base.state);
1120
1121 if (!state->visible)
1122 continue;
1123
1124 /* normal watermarks */
1125 for (level = 0; level < wm_state->num_levels; level++) {
1126 int wm = vlv_compute_wm_level(plane, crtc, state, level);
1127 int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1128
1129 /* hack */
1130 if (WARN_ON(level == 0 && wm > max_wm))
1131 wm = max_wm;
1132
1133 if (wm > plane->wm.fifo_size)
1134 break;
1135
1136 switch (plane->base.type) {
1137 int sprite;
1138 case DRM_PLANE_TYPE_CURSOR:
1139 wm_state->wm[level].cursor = wm;
1140 break;
1141 case DRM_PLANE_TYPE_PRIMARY:
1142 wm_state->wm[level].primary = wm;
1143 break;
1144 case DRM_PLANE_TYPE_OVERLAY:
1145 sprite = plane->plane;
1146 wm_state->wm[level].sprite[sprite] = wm;
1147 break;
1148 }
1149 }
1150
1151 wm_state->num_levels = level;
1152
1153 if (!wm_state->cxsr)
1154 continue;
1155
1156 /* maxfifo watermarks */
1157 switch (plane->base.type) {
1158 int sprite, level;
1159 case DRM_PLANE_TYPE_CURSOR:
1160 for (level = 0; level < wm_state->num_levels; level++)
1161 wm_state->sr[level].cursor =
1162 wm_state->wm[level].cursor;
1163 break;
1164 case DRM_PLANE_TYPE_PRIMARY:
1165 for (level = 0; level < wm_state->num_levels; level++)
1166 wm_state->sr[level].plane =
1167 min(wm_state->sr[level].plane,
1168 wm_state->wm[level].primary);
1169 break;
1170 case DRM_PLANE_TYPE_OVERLAY:
1171 sprite = plane->plane;
1172 for (level = 0; level < wm_state->num_levels; level++)
1173 wm_state->sr[level].plane =
1174 min(wm_state->sr[level].plane,
1175 wm_state->wm[level].sprite[sprite]);
1176 break;
1177 }
1178 }
1179
1180 /* clear any (partially) filled invalid levels */
1181 for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1182 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1183 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1184 }
1185
1186 vlv_invert_wms(crtc);
1187 }
1188
1189 #define VLV_FIFO(plane, value) \
1190 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1191
1192 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1193 {
1194 struct drm_device *dev = crtc->base.dev;
1195 struct drm_i915_private *dev_priv = to_i915(dev);
1196 struct intel_plane *plane;
1197 int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1198
1199 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1200 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1201 WARN_ON(plane->wm.fifo_size != 63);
1202 continue;
1203 }
1204
1205 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1206 sprite0_start = plane->wm.fifo_size;
1207 else if (plane->plane == 0)
1208 sprite1_start = sprite0_start + plane->wm.fifo_size;
1209 else
1210 fifo_size = sprite1_start + plane->wm.fifo_size;
1211 }
1212
1213 WARN_ON(fifo_size != 512 - 1);
1214
1215 DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1216 pipe_name(crtc->pipe), sprite0_start,
1217 sprite1_start, fifo_size);
1218
1219 switch (crtc->pipe) {
1220 uint32_t dsparb, dsparb2, dsparb3;
1221 case PIPE_A:
1222 dsparb = I915_READ(DSPARB);
1223 dsparb2 = I915_READ(DSPARB2);
1224
1225 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1226 VLV_FIFO(SPRITEB, 0xff));
1227 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1228 VLV_FIFO(SPRITEB, sprite1_start));
1229
1230 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1231 VLV_FIFO(SPRITEB_HI, 0x1));
1232 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1233 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1234
1235 I915_WRITE(DSPARB, dsparb);
1236 I915_WRITE(DSPARB2, dsparb2);
1237 break;
1238 case PIPE_B:
1239 dsparb = I915_READ(DSPARB);
1240 dsparb2 = I915_READ(DSPARB2);
1241
1242 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1243 VLV_FIFO(SPRITED, 0xff));
1244 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1245 VLV_FIFO(SPRITED, sprite1_start));
1246
1247 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1248 VLV_FIFO(SPRITED_HI, 0xff));
1249 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1250 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1251
1252 I915_WRITE(DSPARB, dsparb);
1253 I915_WRITE(DSPARB2, dsparb2);
1254 break;
1255 case PIPE_C:
1256 dsparb3 = I915_READ(DSPARB3);
1257 dsparb2 = I915_READ(DSPARB2);
1258
1259 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1260 VLV_FIFO(SPRITEF, 0xff));
1261 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1262 VLV_FIFO(SPRITEF, sprite1_start));
1263
1264 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1265 VLV_FIFO(SPRITEF_HI, 0xff));
1266 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1267 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1268
1269 I915_WRITE(DSPARB3, dsparb3);
1270 I915_WRITE(DSPARB2, dsparb2);
1271 break;
1272 default:
1273 break;
1274 }
1275 }
1276
1277 #undef VLV_FIFO
1278
1279 static void vlv_merge_wm(struct drm_device *dev,
1280 struct vlv_wm_values *wm)
1281 {
1282 struct intel_crtc *crtc;
1283 int num_active_crtcs = 0;
1284
1285 wm->level = to_i915(dev)->wm.max_level;
1286 wm->cxsr = true;
1287
1288 for_each_intel_crtc(dev, crtc) {
1289 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1290
1291 if (!crtc->active)
1292 continue;
1293
1294 if (!wm_state->cxsr)
1295 wm->cxsr = false;
1296
1297 num_active_crtcs++;
1298 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1299 }
1300
1301 if (num_active_crtcs != 1)
1302 wm->cxsr = false;
1303
1304 if (num_active_crtcs > 1)
1305 wm->level = VLV_WM_LEVEL_PM2;
1306
1307 for_each_intel_crtc(dev, crtc) {
1308 struct vlv_wm_state *wm_state = &crtc->wm_state;
1309 enum pipe pipe = crtc->pipe;
1310
1311 if (!crtc->active)
1312 continue;
1313
1314 wm->pipe[pipe] = wm_state->wm[wm->level];
1315 if (wm->cxsr)
1316 wm->sr = wm_state->sr[wm->level];
1317
1318 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1319 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1320 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1321 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1322 }
1323 }
1324
1325 static void vlv_update_wm(struct drm_crtc *crtc)
1326 {
1327 struct drm_device *dev = crtc->dev;
1328 struct drm_i915_private *dev_priv = to_i915(dev);
1329 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1330 enum pipe pipe = intel_crtc->pipe;
1331 struct vlv_wm_values wm = {};
1332
1333 vlv_compute_wm(intel_crtc);
1334 vlv_merge_wm(dev, &wm);
1335
1336 if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1337 /* FIXME should be part of crtc atomic commit */
1338 vlv_pipe_set_fifo_size(intel_crtc);
1339 return;
1340 }
1341
1342 if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1343 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1344 chv_set_memory_dvfs(dev_priv, false);
1345
1346 if (wm.level < VLV_WM_LEVEL_PM5 &&
1347 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1348 chv_set_memory_pm5(dev_priv, false);
1349
1350 if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1351 intel_set_memory_cxsr(dev_priv, false);
1352
1353 /* FIXME should be part of crtc atomic commit */
1354 vlv_pipe_set_fifo_size(intel_crtc);
1355
1356 vlv_write_wm_values(intel_crtc, &wm);
1357
1358 DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1359 "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1360 pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1361 wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1362 wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1363
1364 if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1365 intel_set_memory_cxsr(dev_priv, true);
1366
1367 if (wm.level >= VLV_WM_LEVEL_PM5 &&
1368 dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1369 chv_set_memory_pm5(dev_priv, true);
1370
1371 if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1372 dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1373 chv_set_memory_dvfs(dev_priv, true);
1374
1375 dev_priv->wm.vlv = wm;
1376 }
1377
1378 #define single_plane_enabled(mask) is_power_of_2(mask)
1379
1380 static void g4x_update_wm(struct drm_crtc *crtc)
1381 {
1382 struct drm_device *dev = crtc->dev;
1383 static const int sr_latency_ns = 12000;
1384 struct drm_i915_private *dev_priv = to_i915(dev);
1385 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1386 int plane_sr, cursor_sr;
1387 unsigned int enabled = 0;
1388 bool cxsr_enabled;
1389
1390 if (g4x_compute_wm0(dev, PIPE_A,
1391 &g4x_wm_info, pessimal_latency_ns,
1392 &g4x_cursor_wm_info, pessimal_latency_ns,
1393 &planea_wm, &cursora_wm))
1394 enabled |= 1 << PIPE_A;
1395
1396 if (g4x_compute_wm0(dev, PIPE_B,
1397 &g4x_wm_info, pessimal_latency_ns,
1398 &g4x_cursor_wm_info, pessimal_latency_ns,
1399 &planeb_wm, &cursorb_wm))
1400 enabled |= 1 << PIPE_B;
1401
1402 if (single_plane_enabled(enabled) &&
1403 g4x_compute_srwm(dev, ffs(enabled) - 1,
1404 sr_latency_ns,
1405 &g4x_wm_info,
1406 &g4x_cursor_wm_info,
1407 &plane_sr, &cursor_sr)) {
1408 cxsr_enabled = true;
1409 } else {
1410 cxsr_enabled = false;
1411 intel_set_memory_cxsr(dev_priv, false);
1412 plane_sr = cursor_sr = 0;
1413 }
1414
1415 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1416 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1417 planea_wm, cursora_wm,
1418 planeb_wm, cursorb_wm,
1419 plane_sr, cursor_sr);
1420
1421 I915_WRITE(DSPFW1,
1422 FW_WM(plane_sr, SR) |
1423 FW_WM(cursorb_wm, CURSORB) |
1424 FW_WM(planeb_wm, PLANEB) |
1425 FW_WM(planea_wm, PLANEA));
1426 I915_WRITE(DSPFW2,
1427 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1428 FW_WM(cursora_wm, CURSORA));
1429 /* HPLL off in SR has some issues on G4x... disable it */
1430 I915_WRITE(DSPFW3,
1431 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1432 FW_WM(cursor_sr, CURSOR_SR));
1433
1434 if (cxsr_enabled)
1435 intel_set_memory_cxsr(dev_priv, true);
1436 }
1437
1438 static void i965_update_wm(struct drm_crtc *unused_crtc)
1439 {
1440 struct drm_device *dev = unused_crtc->dev;
1441 struct drm_i915_private *dev_priv = to_i915(dev);
1442 struct drm_crtc *crtc;
1443 int srwm = 1;
1444 int cursor_sr = 16;
1445 bool cxsr_enabled;
1446
1447 /* Calc sr entries for one plane configs */
1448 crtc = single_enabled_crtc(dev);
1449 if (crtc) {
1450 /* self-refresh has much higher latency */
1451 static const int sr_latency_ns = 12000;
1452 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1453 int clock = adjusted_mode->crtc_clock;
1454 int htotal = adjusted_mode->crtc_htotal;
1455 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1456 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1457 unsigned long line_time_us;
1458 int entries;
1459
1460 line_time_us = max(htotal * 1000 / clock, 1);
1461
1462 /* Use ns/us then divide to preserve precision */
1463 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1464 cpp * hdisplay;
1465 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1466 srwm = I965_FIFO_SIZE - entries;
1467 if (srwm < 0)
1468 srwm = 1;
1469 srwm &= 0x1ff;
1470 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1471 entries, srwm);
1472
1473 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1474 cpp * crtc->cursor->state->crtc_w;
1475 entries = DIV_ROUND_UP(entries,
1476 i965_cursor_wm_info.cacheline_size);
1477 cursor_sr = i965_cursor_wm_info.fifo_size -
1478 (entries + i965_cursor_wm_info.guard_size);
1479
1480 if (cursor_sr > i965_cursor_wm_info.max_wm)
1481 cursor_sr = i965_cursor_wm_info.max_wm;
1482
1483 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1484 "cursor %d\n", srwm, cursor_sr);
1485
1486 cxsr_enabled = true;
1487 } else {
1488 cxsr_enabled = false;
1489 /* Turn off self refresh if both pipes are enabled */
1490 intel_set_memory_cxsr(dev_priv, false);
1491 }
1492
1493 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1494 srwm);
1495
1496 /* 965 has limitations... */
1497 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1498 FW_WM(8, CURSORB) |
1499 FW_WM(8, PLANEB) |
1500 FW_WM(8, PLANEA));
1501 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1502 FW_WM(8, PLANEC_OLD));
1503 /* update cursor SR watermark */
1504 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1505
1506 if (cxsr_enabled)
1507 intel_set_memory_cxsr(dev_priv, true);
1508 }
1509
1510 #undef FW_WM
1511
1512 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1513 {
1514 struct drm_device *dev = unused_crtc->dev;
1515 struct drm_i915_private *dev_priv = to_i915(dev);
1516 const struct intel_watermark_params *wm_info;
1517 uint32_t fwater_lo;
1518 uint32_t fwater_hi;
1519 int cwm, srwm = 1;
1520 int fifo_size;
1521 int planea_wm, planeb_wm;
1522 struct drm_crtc *crtc, *enabled = NULL;
1523
1524 if (IS_I945GM(dev))
1525 wm_info = &i945_wm_info;
1526 else if (!IS_GEN2(dev))
1527 wm_info = &i915_wm_info;
1528 else
1529 wm_info = &i830_a_wm_info;
1530
1531 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1532 crtc = intel_get_crtc_for_plane(dev, 0);
1533 if (intel_crtc_active(crtc)) {
1534 const struct drm_display_mode *adjusted_mode;
1535 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1536 if (IS_GEN2(dev))
1537 cpp = 4;
1538
1539 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1540 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1541 wm_info, fifo_size, cpp,
1542 pessimal_latency_ns);
1543 enabled = crtc;
1544 } else {
1545 planea_wm = fifo_size - wm_info->guard_size;
1546 if (planea_wm > (long)wm_info->max_wm)
1547 planea_wm = wm_info->max_wm;
1548 }
1549
1550 if (IS_GEN2(dev))
1551 wm_info = &i830_bc_wm_info;
1552
1553 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1554 crtc = intel_get_crtc_for_plane(dev, 1);
1555 if (intel_crtc_active(crtc)) {
1556 const struct drm_display_mode *adjusted_mode;
1557 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1558 if (IS_GEN2(dev))
1559 cpp = 4;
1560
1561 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1562 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1563 wm_info, fifo_size, cpp,
1564 pessimal_latency_ns);
1565 if (enabled == NULL)
1566 enabled = crtc;
1567 else
1568 enabled = NULL;
1569 } else {
1570 planeb_wm = fifo_size - wm_info->guard_size;
1571 if (planeb_wm > (long)wm_info->max_wm)
1572 planeb_wm = wm_info->max_wm;
1573 }
1574
1575 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1576
1577 if (IS_I915GM(dev) && enabled) {
1578 struct drm_i915_gem_object *obj;
1579
1580 obj = intel_fb_obj(enabled->primary->state->fb);
1581
1582 /* self-refresh seems busted with untiled */
1583 if (obj->tiling_mode == I915_TILING_NONE)
1584 enabled = NULL;
1585 }
1586
1587 /*
1588 * Overlay gets an aggressive default since video jitter is bad.
1589 */
1590 cwm = 2;
1591
1592 /* Play safe and disable self-refresh before adjusting watermarks. */
1593 intel_set_memory_cxsr(dev_priv, false);
1594
1595 /* Calc sr entries for one plane configs */
1596 if (HAS_FW_BLC(dev) && enabled) {
1597 /* self-refresh has much higher latency */
1598 static const int sr_latency_ns = 6000;
1599 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1600 int clock = adjusted_mode->crtc_clock;
1601 int htotal = adjusted_mode->crtc_htotal;
1602 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1603 int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1604 unsigned long line_time_us;
1605 int entries;
1606
1607 line_time_us = max(htotal * 1000 / clock, 1);
1608
1609 /* Use ns/us then divide to preserve precision */
1610 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1611 cpp * hdisplay;
1612 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1613 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1614 srwm = wm_info->fifo_size - entries;
1615 if (srwm < 0)
1616 srwm = 1;
1617
1618 if (IS_I945G(dev) || IS_I945GM(dev))
1619 I915_WRITE(FW_BLC_SELF,
1620 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1621 else if (IS_I915GM(dev))
1622 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1623 }
1624
1625 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1626 planea_wm, planeb_wm, cwm, srwm);
1627
1628 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1629 fwater_hi = (cwm & 0x1f);
1630
1631 /* Set request length to 8 cachelines per fetch */
1632 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1633 fwater_hi = fwater_hi | (1 << 8);
1634
1635 I915_WRITE(FW_BLC, fwater_lo);
1636 I915_WRITE(FW_BLC2, fwater_hi);
1637
1638 if (enabled)
1639 intel_set_memory_cxsr(dev_priv, true);
1640 }
1641
1642 static void i845_update_wm(struct drm_crtc *unused_crtc)
1643 {
1644 struct drm_device *dev = unused_crtc->dev;
1645 struct drm_i915_private *dev_priv = to_i915(dev);
1646 struct drm_crtc *crtc;
1647 const struct drm_display_mode *adjusted_mode;
1648 uint32_t fwater_lo;
1649 int planea_wm;
1650
1651 crtc = single_enabled_crtc(dev);
1652 if (crtc == NULL)
1653 return;
1654
1655 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1656 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1657 &i845_wm_info,
1658 dev_priv->display.get_fifo_size(dev, 0),
1659 4, pessimal_latency_ns);
1660 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1661 fwater_lo |= (3<<8) | planea_wm;
1662
1663 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1664
1665 I915_WRITE(FW_BLC, fwater_lo);
1666 }
1667
1668 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1669 {
1670 uint32_t pixel_rate;
1671
1672 pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1673
1674 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1675 * adjust the pixel_rate here. */
1676
1677 if (pipe_config->pch_pfit.enabled) {
1678 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1679 uint32_t pfit_size = pipe_config->pch_pfit.size;
1680
1681 pipe_w = pipe_config->pipe_src_w;
1682 pipe_h = pipe_config->pipe_src_h;
1683
1684 pfit_w = (pfit_size >> 16) & 0xFFFF;
1685 pfit_h = pfit_size & 0xFFFF;
1686 if (pipe_w < pfit_w)
1687 pipe_w = pfit_w;
1688 if (pipe_h < pfit_h)
1689 pipe_h = pfit_h;
1690
1691 if (WARN_ON(!pfit_w || !pfit_h))
1692 return pixel_rate;
1693
1694 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1695 pfit_w * pfit_h);
1696 }
1697
1698 return pixel_rate;
1699 }
1700
1701 /* latency must be in 0.1us units. */
1702 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1703 {
1704 uint64_t ret;
1705
1706 if (WARN(latency == 0, "Latency value missing\n"))
1707 return UINT_MAX;
1708
1709 ret = (uint64_t) pixel_rate * cpp * latency;
1710 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1711
1712 return ret;
1713 }
1714
1715 /* latency must be in 0.1us units. */
1716 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1717 uint32_t horiz_pixels, uint8_t cpp,
1718 uint32_t latency)
1719 {
1720 uint32_t ret;
1721
1722 if (WARN(latency == 0, "Latency value missing\n"))
1723 return UINT_MAX;
1724 if (WARN_ON(!pipe_htotal))
1725 return UINT_MAX;
1726
1727 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1728 ret = (ret + 1) * horiz_pixels * cpp;
1729 ret = DIV_ROUND_UP(ret, 64) + 2;
1730 return ret;
1731 }
1732
1733 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1734 uint8_t cpp)
1735 {
1736 /*
1737 * Neither of these should be possible since this function shouldn't be
1738 * called if the CRTC is off or the plane is invisible. But let's be
1739 * extra paranoid to avoid a potential divide-by-zero if we screw up
1740 * elsewhere in the driver.
1741 */
1742 if (WARN_ON(!cpp))
1743 return 0;
1744 if (WARN_ON(!horiz_pixels))
1745 return 0;
1746
1747 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1748 }
1749
1750 struct ilk_wm_maximums {
1751 uint16_t pri;
1752 uint16_t spr;
1753 uint16_t cur;
1754 uint16_t fbc;
1755 };
1756
1757 /*
1758 * For both WM_PIPE and WM_LP.
1759 * mem_value must be in 0.1us units.
1760 */
1761 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1762 const struct intel_plane_state *pstate,
1763 uint32_t mem_value,
1764 bool is_lp)
1765 {
1766 int cpp = pstate->base.fb ?
1767 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1768 uint32_t method1, method2;
1769
1770 if (!cstate->base.active || !pstate->visible)
1771 return 0;
1772
1773 method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1774
1775 if (!is_lp)
1776 return method1;
1777
1778 method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1779 cstate->base.adjusted_mode.crtc_htotal,
1780 drm_rect_width(&pstate->dst),
1781 cpp, mem_value);
1782
1783 return min(method1, method2);
1784 }
1785
1786 /*
1787 * For both WM_PIPE and WM_LP.
1788 * mem_value must be in 0.1us units.
1789 */
1790 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1791 const struct intel_plane_state *pstate,
1792 uint32_t mem_value)
1793 {
1794 int cpp = pstate->base.fb ?
1795 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1796 uint32_t method1, method2;
1797
1798 if (!cstate->base.active || !pstate->visible)
1799 return 0;
1800
1801 method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1802 method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1803 cstate->base.adjusted_mode.crtc_htotal,
1804 drm_rect_width(&pstate->dst),
1805 cpp, mem_value);
1806 return min(method1, method2);
1807 }
1808
1809 /*
1810 * For both WM_PIPE and WM_LP.
1811 * mem_value must be in 0.1us units.
1812 */
1813 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1814 const struct intel_plane_state *pstate,
1815 uint32_t mem_value)
1816 {
1817 /*
1818 * We treat the cursor plane as always-on for the purposes of watermark
1819 * calculation. Until we have two-stage watermark programming merged,
1820 * this is necessary to avoid flickering.
1821 */
1822 int cpp = 4;
1823 int width = pstate->visible ? pstate->base.crtc_w : 64;
1824
1825 if (!cstate->base.active)
1826 return 0;
1827
1828 return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1829 cstate->base.adjusted_mode.crtc_htotal,
1830 width, cpp, mem_value);
1831 }
1832
1833 /* Only for WM_LP. */
1834 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1835 const struct intel_plane_state *pstate,
1836 uint32_t pri_val)
1837 {
1838 int cpp = pstate->base.fb ?
1839 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1840
1841 if (!cstate->base.active || !pstate->visible)
1842 return 0;
1843
1844 return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1845 }
1846
1847 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1848 {
1849 if (INTEL_INFO(dev)->gen >= 8)
1850 return 3072;
1851 else if (INTEL_INFO(dev)->gen >= 7)
1852 return 768;
1853 else
1854 return 512;
1855 }
1856
1857 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1858 int level, bool is_sprite)
1859 {
1860 if (INTEL_INFO(dev)->gen >= 8)
1861 /* BDW primary/sprite plane watermarks */
1862 return level == 0 ? 255 : 2047;
1863 else if (INTEL_INFO(dev)->gen >= 7)
1864 /* IVB/HSW primary/sprite plane watermarks */
1865 return level == 0 ? 127 : 1023;
1866 else if (!is_sprite)
1867 /* ILK/SNB primary plane watermarks */
1868 return level == 0 ? 127 : 511;
1869 else
1870 /* ILK/SNB sprite plane watermarks */
1871 return level == 0 ? 63 : 255;
1872 }
1873
1874 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1875 int level)
1876 {
1877 if (INTEL_INFO(dev)->gen >= 7)
1878 return level == 0 ? 63 : 255;
1879 else
1880 return level == 0 ? 31 : 63;
1881 }
1882
1883 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1884 {
1885 if (INTEL_INFO(dev)->gen >= 8)
1886 return 31;
1887 else
1888 return 15;
1889 }
1890
1891 /* Calculate the maximum primary/sprite plane watermark */
1892 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1893 int level,
1894 const struct intel_wm_config *config,
1895 enum intel_ddb_partitioning ddb_partitioning,
1896 bool is_sprite)
1897 {
1898 unsigned int fifo_size = ilk_display_fifo_size(dev);
1899
1900 /* if sprites aren't enabled, sprites get nothing */
1901 if (is_sprite && !config->sprites_enabled)
1902 return 0;
1903
1904 /* HSW allows LP1+ watermarks even with multiple pipes */
1905 if (level == 0 || config->num_pipes_active > 1) {
1906 fifo_size /= INTEL_INFO(dev)->num_pipes;
1907
1908 /*
1909 * For some reason the non self refresh
1910 * FIFO size is only half of the self
1911 * refresh FIFO size on ILK/SNB.
1912 */
1913 if (INTEL_INFO(dev)->gen <= 6)
1914 fifo_size /= 2;
1915 }
1916
1917 if (config->sprites_enabled) {
1918 /* level 0 is always calculated with 1:1 split */
1919 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1920 if (is_sprite)
1921 fifo_size *= 5;
1922 fifo_size /= 6;
1923 } else {
1924 fifo_size /= 2;
1925 }
1926 }
1927
1928 /* clamp to max that the registers can hold */
1929 return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1930 }
1931
1932 /* Calculate the maximum cursor plane watermark */
1933 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1934 int level,
1935 const struct intel_wm_config *config)
1936 {
1937 /* HSW LP1+ watermarks w/ multiple pipes */
1938 if (level > 0 && config->num_pipes_active > 1)
1939 return 64;
1940
1941 /* otherwise just report max that registers can hold */
1942 return ilk_cursor_wm_reg_max(dev, level);
1943 }
1944
1945 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1946 int level,
1947 const struct intel_wm_config *config,
1948 enum intel_ddb_partitioning ddb_partitioning,
1949 struct ilk_wm_maximums *max)
1950 {
1951 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1952 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1953 max->cur = ilk_cursor_wm_max(dev, level, config);
1954 max->fbc = ilk_fbc_wm_reg_max(dev);
1955 }
1956
1957 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1958 int level,
1959 struct ilk_wm_maximums *max)
1960 {
1961 max->pri = ilk_plane_wm_reg_max(dev, level, false);
1962 max->spr = ilk_plane_wm_reg_max(dev, level, true);
1963 max->cur = ilk_cursor_wm_reg_max(dev, level);
1964 max->fbc = ilk_fbc_wm_reg_max(dev);
1965 }
1966
1967 static bool ilk_validate_wm_level(int level,
1968 const struct ilk_wm_maximums *max,
1969 struct intel_wm_level *result)
1970 {
1971 bool ret;
1972
1973 /* already determined to be invalid? */
1974 if (!result->enable)
1975 return false;
1976
1977 result->enable = result->pri_val <= max->pri &&
1978 result->spr_val <= max->spr &&
1979 result->cur_val <= max->cur;
1980
1981 ret = result->enable;
1982
1983 /*
1984 * HACK until we can pre-compute everything,
1985 * and thus fail gracefully if LP0 watermarks
1986 * are exceeded...
1987 */
1988 if (level == 0 && !result->enable) {
1989 if (result->pri_val > max->pri)
1990 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1991 level, result->pri_val, max->pri);
1992 if (result->spr_val > max->spr)
1993 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1994 level, result->spr_val, max->spr);
1995 if (result->cur_val > max->cur)
1996 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1997 level, result->cur_val, max->cur);
1998
1999 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2000 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2001 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2002 result->enable = true;
2003 }
2004
2005 return ret;
2006 }
2007
2008 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2009 const struct intel_crtc *intel_crtc,
2010 int level,
2011 struct intel_crtc_state *cstate,
2012 struct intel_plane_state *pristate,
2013 struct intel_plane_state *sprstate,
2014 struct intel_plane_state *curstate,
2015 struct intel_wm_level *result)
2016 {
2017 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2018 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2019 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2020
2021 /* WM1+ latency values stored in 0.5us units */
2022 if (level > 0) {
2023 pri_latency *= 5;
2024 spr_latency *= 5;
2025 cur_latency *= 5;
2026 }
2027
2028 if (pristate) {
2029 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2030 pri_latency, level);
2031 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2032 }
2033
2034 if (sprstate)
2035 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2036
2037 if (curstate)
2038 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2039
2040 result->enable = true;
2041 }
2042
2043 static uint32_t
2044 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2045 {
2046 const struct intel_atomic_state *intel_state =
2047 to_intel_atomic_state(cstate->base.state);
2048 const struct drm_display_mode *adjusted_mode =
2049 &cstate->base.adjusted_mode;
2050 u32 linetime, ips_linetime;
2051
2052 if (!cstate->base.active)
2053 return 0;
2054 if (WARN_ON(adjusted_mode->crtc_clock == 0))
2055 return 0;
2056 if (WARN_ON(intel_state->cdclk == 0))
2057 return 0;
2058
2059 /* The WM are computed with base on how long it takes to fill a single
2060 * row at the given clock rate, multiplied by 8.
2061 * */
2062 linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2063 adjusted_mode->crtc_clock);
2064 ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2065 intel_state->cdclk);
2066
2067 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2068 PIPE_WM_LINETIME_TIME(linetime);
2069 }
2070
2071 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2072 {
2073 struct drm_i915_private *dev_priv = to_i915(dev);
2074
2075 if (IS_GEN9(dev)) {
2076 uint32_t val;
2077 int ret, i;
2078 int level, max_level = ilk_wm_max_level(dev);
2079
2080 /* read the first set of memory latencies[0:3] */
2081 val = 0; /* data0 to be programmed to 0 for first set */
2082 mutex_lock(&dev_priv->rps.hw_lock);
2083 ret = sandybridge_pcode_read(dev_priv,
2084 GEN9_PCODE_READ_MEM_LATENCY,
2085 &val);
2086 mutex_unlock(&dev_priv->rps.hw_lock);
2087
2088 if (ret) {
2089 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2090 return;
2091 }
2092
2093 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2094 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2095 GEN9_MEM_LATENCY_LEVEL_MASK;
2096 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2097 GEN9_MEM_LATENCY_LEVEL_MASK;
2098 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2099 GEN9_MEM_LATENCY_LEVEL_MASK;
2100
2101 /* read the second set of memory latencies[4:7] */
2102 val = 1; /* data0 to be programmed to 1 for second set */
2103 mutex_lock(&dev_priv->rps.hw_lock);
2104 ret = sandybridge_pcode_read(dev_priv,
2105 GEN9_PCODE_READ_MEM_LATENCY,
2106 &val);
2107 mutex_unlock(&dev_priv->rps.hw_lock);
2108 if (ret) {
2109 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2110 return;
2111 }
2112
2113 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2114 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2115 GEN9_MEM_LATENCY_LEVEL_MASK;
2116 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2117 GEN9_MEM_LATENCY_LEVEL_MASK;
2118 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2119 GEN9_MEM_LATENCY_LEVEL_MASK;
2120
2121 /*
2122 * WaWmMemoryReadLatency:skl
2123 *
2124 * punit doesn't take into account the read latency so we need
2125 * to add 2us to the various latency levels we retrieve from
2126 * the punit.
2127 * - W0 is a bit special in that it's the only level that
2128 * can't be disabled if we want to have display working, so
2129 * we always add 2us there.
2130 * - For levels >=1, punit returns 0us latency when they are
2131 * disabled, so we respect that and don't add 2us then
2132 *
2133 * Additionally, if a level n (n > 1) has a 0us latency, all
2134 * levels m (m >= n) need to be disabled. We make sure to
2135 * sanitize the values out of the punit to satisfy this
2136 * requirement.
2137 */
2138 wm[0] += 2;
2139 for (level = 1; level <= max_level; level++)
2140 if (wm[level] != 0)
2141 wm[level] += 2;
2142 else {
2143 for (i = level + 1; i <= max_level; i++)
2144 wm[i] = 0;
2145
2146 break;
2147 }
2148 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2149 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2150
2151 wm[0] = (sskpd >> 56) & 0xFF;
2152 if (wm[0] == 0)
2153 wm[0] = sskpd & 0xF;
2154 wm[1] = (sskpd >> 4) & 0xFF;
2155 wm[2] = (sskpd >> 12) & 0xFF;
2156 wm[3] = (sskpd >> 20) & 0x1FF;
2157 wm[4] = (sskpd >> 32) & 0x1FF;
2158 } else if (INTEL_INFO(dev)->gen >= 6) {
2159 uint32_t sskpd = I915_READ(MCH_SSKPD);
2160
2161 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2162 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2163 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2164 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2165 } else if (INTEL_INFO(dev)->gen >= 5) {
2166 uint32_t mltr = I915_READ(MLTR_ILK);
2167
2168 /* ILK primary LP0 latency is 700 ns */
2169 wm[0] = 7;
2170 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2171 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2172 }
2173 }
2174
2175 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2176 {
2177 /* ILK sprite LP0 latency is 1300 ns */
2178 if (IS_GEN5(dev))
2179 wm[0] = 13;
2180 }
2181
2182 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2183 {
2184 /* ILK cursor LP0 latency is 1300 ns */
2185 if (IS_GEN5(dev))
2186 wm[0] = 13;
2187
2188 /* WaDoubleCursorLP3Latency:ivb */
2189 if (IS_IVYBRIDGE(dev))
2190 wm[3] *= 2;
2191 }
2192
2193 int ilk_wm_max_level(const struct drm_device *dev)
2194 {
2195 /* how many WM levels are we expecting */
2196 if (INTEL_INFO(dev)->gen >= 9)
2197 return 7;
2198 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2199 return 4;
2200 else if (INTEL_INFO(dev)->gen >= 6)
2201 return 3;
2202 else
2203 return 2;
2204 }
2205
2206 static void intel_print_wm_latency(struct drm_device *dev,
2207 const char *name,
2208 const uint16_t wm[8])
2209 {
2210 int level, max_level = ilk_wm_max_level(dev);
2211
2212 for (level = 0; level <= max_level; level++) {
2213 unsigned int latency = wm[level];
2214
2215 if (latency == 0) {
2216 DRM_ERROR("%s WM%d latency not provided\n",
2217 name, level);
2218 continue;
2219 }
2220
2221 /*
2222 * - latencies are in us on gen9.
2223 * - before then, WM1+ latency values are in 0.5us units
2224 */
2225 if (IS_GEN9(dev))
2226 latency *= 10;
2227 else if (level > 0)
2228 latency *= 5;
2229
2230 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2231 name, level, wm[level],
2232 latency / 10, latency % 10);
2233 }
2234 }
2235
2236 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2237 uint16_t wm[5], uint16_t min)
2238 {
2239 int level, max_level = ilk_wm_max_level(&dev_priv->drm);
2240
2241 if (wm[0] >= min)
2242 return false;
2243
2244 wm[0] = max(wm[0], min);
2245 for (level = 1; level <= max_level; level++)
2246 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2247
2248 return true;
2249 }
2250
2251 static void snb_wm_latency_quirk(struct drm_device *dev)
2252 {
2253 struct drm_i915_private *dev_priv = to_i915(dev);
2254 bool changed;
2255
2256 /*
2257 * The BIOS provided WM memory latency values are often
2258 * inadequate for high resolution displays. Adjust them.
2259 */
2260 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2261 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2262 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2263
2264 if (!changed)
2265 return;
2266
2267 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2268 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2269 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2270 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2271 }
2272
2273 static void ilk_setup_wm_latency(struct drm_device *dev)
2274 {
2275 struct drm_i915_private *dev_priv = to_i915(dev);
2276
2277 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2278
2279 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2280 sizeof(dev_priv->wm.pri_latency));
2281 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2282 sizeof(dev_priv->wm.pri_latency));
2283
2284 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2285 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2286
2287 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2288 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2289 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2290
2291 if (IS_GEN6(dev))
2292 snb_wm_latency_quirk(dev);
2293 }
2294
2295 static void skl_setup_wm_latency(struct drm_device *dev)
2296 {
2297 struct drm_i915_private *dev_priv = to_i915(dev);
2298
2299 intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2300 intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2301 }
2302
2303 static bool ilk_validate_pipe_wm(struct drm_device *dev,
2304 struct intel_pipe_wm *pipe_wm)
2305 {
2306 /* LP0 watermark maximums depend on this pipe alone */
2307 const struct intel_wm_config config = {
2308 .num_pipes_active = 1,
2309 .sprites_enabled = pipe_wm->sprites_enabled,
2310 .sprites_scaled = pipe_wm->sprites_scaled,
2311 };
2312 struct ilk_wm_maximums max;
2313
2314 /* LP0 watermarks always use 1/2 DDB partitioning */
2315 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2316
2317 /* At least LP0 must be valid */
2318 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
2319 DRM_DEBUG_KMS("LP0 watermark invalid\n");
2320 return false;
2321 }
2322
2323 return true;
2324 }
2325
2326 /* Compute new watermarks for the pipe */
2327 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2328 {
2329 struct drm_atomic_state *state = cstate->base.state;
2330 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2331 struct intel_pipe_wm *pipe_wm;
2332 struct drm_device *dev = state->dev;
2333 const struct drm_i915_private *dev_priv = to_i915(dev);
2334 struct intel_plane *intel_plane;
2335 struct intel_plane_state *pristate = NULL;
2336 struct intel_plane_state *sprstate = NULL;
2337 struct intel_plane_state *curstate = NULL;
2338 int level, max_level = ilk_wm_max_level(dev), usable_level;
2339 struct ilk_wm_maximums max;
2340
2341 pipe_wm = &cstate->wm.ilk.optimal;
2342
2343 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2344 struct intel_plane_state *ps;
2345
2346 ps = intel_atomic_get_existing_plane_state(state,
2347 intel_plane);
2348 if (!ps)
2349 continue;
2350
2351 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2352 pristate = ps;
2353 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2354 sprstate = ps;
2355 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2356 curstate = ps;
2357 }
2358
2359 pipe_wm->pipe_enabled = cstate->base.active;
2360 if (sprstate) {
2361 pipe_wm->sprites_enabled = sprstate->visible;
2362 pipe_wm->sprites_scaled = sprstate->visible &&
2363 (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2364 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2365 }
2366
2367 usable_level = max_level;
2368
2369 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2370 if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2371 usable_level = 1;
2372
2373 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2374 if (pipe_wm->sprites_scaled)
2375 usable_level = 0;
2376
2377 ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2378 pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
2379
2380 memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2381 pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2382
2383 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2384 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2385
2386 if (!ilk_validate_pipe_wm(dev, pipe_wm))
2387 return -EINVAL;
2388
2389 ilk_compute_wm_reg_maximums(dev, 1, &max);
2390
2391 for (level = 1; level <= max_level; level++) {
2392 struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2393
2394 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2395 pristate, sprstate, curstate, wm);
2396
2397 /*
2398 * Disable any watermark level that exceeds the
2399 * register maximums since such watermarks are
2400 * always invalid.
2401 */
2402 if (level > usable_level)
2403 continue;
2404
2405 if (ilk_validate_wm_level(level, &max, wm))
2406 pipe_wm->wm[level] = *wm;
2407 else
2408 usable_level = level;
2409 }
2410
2411 return 0;
2412 }
2413
2414 /*
2415 * Build a set of 'intermediate' watermark values that satisfy both the old
2416 * state and the new state. These can be programmed to the hardware
2417 * immediately.
2418 */
2419 static int ilk_compute_intermediate_wm(struct drm_device *dev,
2420 struct intel_crtc *intel_crtc,
2421 struct intel_crtc_state *newstate)
2422 {
2423 struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2424 struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2425 int level, max_level = ilk_wm_max_level(dev);
2426
2427 /*
2428 * Start with the final, target watermarks, then combine with the
2429 * currently active watermarks to get values that are safe both before
2430 * and after the vblank.
2431 */
2432 *a = newstate->wm.ilk.optimal;
2433 a->pipe_enabled |= b->pipe_enabled;
2434 a->sprites_enabled |= b->sprites_enabled;
2435 a->sprites_scaled |= b->sprites_scaled;
2436
2437 for (level = 0; level <= max_level; level++) {
2438 struct intel_wm_level *a_wm = &a->wm[level];
2439 const struct intel_wm_level *b_wm = &b->wm[level];
2440
2441 a_wm->enable &= b_wm->enable;
2442 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
2443 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
2444 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
2445 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
2446 }
2447
2448 /*
2449 * We need to make sure that these merged watermark values are
2450 * actually a valid configuration themselves. If they're not,
2451 * there's no safe way to transition from the old state to
2452 * the new state, so we need to fail the atomic transaction.
2453 */
2454 if (!ilk_validate_pipe_wm(dev, a))
2455 return -EINVAL;
2456
2457 /*
2458 * If our intermediate WM are identical to the final WM, then we can
2459 * omit the post-vblank programming; only update if it's different.
2460 */
2461 if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2462 newstate->wm.need_postvbl_update = false;
2463
2464 return 0;
2465 }
2466
2467 /*
2468 * Merge the watermarks from all active pipes for a specific level.
2469 */
2470 static void ilk_merge_wm_level(struct drm_device *dev,
2471 int level,
2472 struct intel_wm_level *ret_wm)
2473 {
2474 const struct intel_crtc *intel_crtc;
2475
2476 ret_wm->enable = true;
2477
2478 for_each_intel_crtc(dev, intel_crtc) {
2479 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2480 const struct intel_wm_level *wm = &active->wm[level];
2481
2482 if (!active->pipe_enabled)
2483 continue;
2484
2485 /*
2486 * The watermark values may have been used in the past,
2487 * so we must maintain them in the registers for some
2488 * time even if the level is now disabled.
2489 */
2490 if (!wm->enable)
2491 ret_wm->enable = false;
2492
2493 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2494 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2495 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2496 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2497 }
2498 }
2499
2500 /*
2501 * Merge all low power watermarks for all active pipes.
2502 */
2503 static void ilk_wm_merge(struct drm_device *dev,
2504 const struct intel_wm_config *config,
2505 const struct ilk_wm_maximums *max,
2506 struct intel_pipe_wm *merged)
2507 {
2508 struct drm_i915_private *dev_priv = to_i915(dev);
2509 int level, max_level = ilk_wm_max_level(dev);
2510 int last_enabled_level = max_level;
2511
2512 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2513 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2514 config->num_pipes_active > 1)
2515 last_enabled_level = 0;
2516
2517 /* ILK: FBC WM must be disabled always */
2518 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2519
2520 /* merge each WM1+ level */
2521 for (level = 1; level <= max_level; level++) {
2522 struct intel_wm_level *wm = &merged->wm[level];
2523
2524 ilk_merge_wm_level(dev, level, wm);
2525
2526 if (level > last_enabled_level)
2527 wm->enable = false;
2528 else if (!ilk_validate_wm_level(level, max, wm))
2529 /* make sure all following levels get disabled */
2530 last_enabled_level = level - 1;
2531
2532 /*
2533 * The spec says it is preferred to disable
2534 * FBC WMs instead of disabling a WM level.
2535 */
2536 if (wm->fbc_val > max->fbc) {
2537 if (wm->enable)
2538 merged->fbc_wm_enabled = false;
2539 wm->fbc_val = 0;
2540 }
2541 }
2542
2543 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2544 /*
2545 * FIXME this is racy. FBC might get enabled later.
2546 * What we should check here is whether FBC can be
2547 * enabled sometime later.
2548 */
2549 if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2550 intel_fbc_is_active(dev_priv)) {
2551 for (level = 2; level <= max_level; level++) {
2552 struct intel_wm_level *wm = &merged->wm[level];
2553
2554 wm->enable = false;
2555 }
2556 }
2557 }
2558
2559 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2560 {
2561 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2562 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2563 }
2564
2565 /* The value we need to program into the WM_LPx latency field */
2566 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2567 {
2568 struct drm_i915_private *dev_priv = to_i915(dev);
2569
2570 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2571 return 2 * level;
2572 else
2573 return dev_priv->wm.pri_latency[level];
2574 }
2575
2576 static void ilk_compute_wm_results(struct drm_device *dev,
2577 const struct intel_pipe_wm *merged,
2578 enum intel_ddb_partitioning partitioning,
2579 struct ilk_wm_values *results)
2580 {
2581 struct intel_crtc *intel_crtc;
2582 int level, wm_lp;
2583
2584 results->enable_fbc_wm = merged->fbc_wm_enabled;
2585 results->partitioning = partitioning;
2586
2587 /* LP1+ register values */
2588 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2589 const struct intel_wm_level *r;
2590
2591 level = ilk_wm_lp_to_level(wm_lp, merged);
2592
2593 r = &merged->wm[level];
2594
2595 /*
2596 * Maintain the watermark values even if the level is
2597 * disabled. Doing otherwise could cause underruns.
2598 */
2599 results->wm_lp[wm_lp - 1] =
2600 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2601 (r->pri_val << WM1_LP_SR_SHIFT) |
2602 r->cur_val;
2603
2604 if (r->enable)
2605 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2606
2607 if (INTEL_INFO(dev)->gen >= 8)
2608 results->wm_lp[wm_lp - 1] |=
2609 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2610 else
2611 results->wm_lp[wm_lp - 1] |=
2612 r->fbc_val << WM1_LP_FBC_SHIFT;
2613
2614 /*
2615 * Always set WM1S_LP_EN when spr_val != 0, even if the
2616 * level is disabled. Doing otherwise could cause underruns.
2617 */
2618 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2619 WARN_ON(wm_lp != 1);
2620 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2621 } else
2622 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2623 }
2624
2625 /* LP0 register values */
2626 for_each_intel_crtc(dev, intel_crtc) {
2627 enum pipe pipe = intel_crtc->pipe;
2628 const struct intel_wm_level *r =
2629 &intel_crtc->wm.active.ilk.wm[0];
2630
2631 if (WARN_ON(!r->enable))
2632 continue;
2633
2634 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2635
2636 results->wm_pipe[pipe] =
2637 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2638 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2639 r->cur_val;
2640 }
2641 }
2642
2643 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2644 * case both are at the same level. Prefer r1 in case they're the same. */
2645 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2646 struct intel_pipe_wm *r1,
2647 struct intel_pipe_wm *r2)
2648 {
2649 int level, max_level = ilk_wm_max_level(dev);
2650 int level1 = 0, level2 = 0;
2651
2652 for (level = 1; level <= max_level; level++) {
2653 if (r1->wm[level].enable)
2654 level1 = level;
2655 if (r2->wm[level].enable)
2656 level2 = level;
2657 }
2658
2659 if (level1 == level2) {
2660 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2661 return r2;
2662 else
2663 return r1;
2664 } else if (level1 > level2) {
2665 return r1;
2666 } else {
2667 return r2;
2668 }
2669 }
2670
2671 /* dirty bits used to track which watermarks need changes */
2672 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2673 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2674 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2675 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2676 #define WM_DIRTY_FBC (1 << 24)
2677 #define WM_DIRTY_DDB (1 << 25)
2678
2679 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2680 const struct ilk_wm_values *old,
2681 const struct ilk_wm_values *new)
2682 {
2683 unsigned int dirty = 0;
2684 enum pipe pipe;
2685 int wm_lp;
2686
2687 for_each_pipe(dev_priv, pipe) {
2688 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2689 dirty |= WM_DIRTY_LINETIME(pipe);
2690 /* Must disable LP1+ watermarks too */
2691 dirty |= WM_DIRTY_LP_ALL;
2692 }
2693
2694 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2695 dirty |= WM_DIRTY_PIPE(pipe);
2696 /* Must disable LP1+ watermarks too */
2697 dirty |= WM_DIRTY_LP_ALL;
2698 }
2699 }
2700
2701 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2702 dirty |= WM_DIRTY_FBC;
2703 /* Must disable LP1+ watermarks too */
2704 dirty |= WM_DIRTY_LP_ALL;
2705 }
2706
2707 if (old->partitioning != new->partitioning) {
2708 dirty |= WM_DIRTY_DDB;
2709 /* Must disable LP1+ watermarks too */
2710 dirty |= WM_DIRTY_LP_ALL;
2711 }
2712
2713 /* LP1+ watermarks already deemed dirty, no need to continue */
2714 if (dirty & WM_DIRTY_LP_ALL)
2715 return dirty;
2716
2717 /* Find the lowest numbered LP1+ watermark in need of an update... */
2718 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2719 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2720 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2721 break;
2722 }
2723
2724 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2725 for (; wm_lp <= 3; wm_lp++)
2726 dirty |= WM_DIRTY_LP(wm_lp);
2727
2728 return dirty;
2729 }
2730
2731 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2732 unsigned int dirty)
2733 {
2734 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2735 bool changed = false;
2736
2737 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2738 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2739 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2740 changed = true;
2741 }
2742 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2743 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2744 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2745 changed = true;
2746 }
2747 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2748 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2749 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2750 changed = true;
2751 }
2752
2753 /*
2754 * Don't touch WM1S_LP_EN here.
2755 * Doing so could cause underruns.
2756 */
2757
2758 return changed;
2759 }
2760
2761 /*
2762 * The spec says we shouldn't write when we don't need, because every write
2763 * causes WMs to be re-evaluated, expending some power.
2764 */
2765 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2766 struct ilk_wm_values *results)
2767 {
2768 struct drm_device *dev = &dev_priv->drm;
2769 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2770 unsigned int dirty;
2771 uint32_t val;
2772
2773 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2774 if (!dirty)
2775 return;
2776
2777 _ilk_disable_lp_wm(dev_priv, dirty);
2778
2779 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2780 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2781 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2782 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2783 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2784 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2785
2786 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2787 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2788 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2789 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2790 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2791 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2792
2793 if (dirty & WM_DIRTY_DDB) {
2794 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2795 val = I915_READ(WM_MISC);
2796 if (results->partitioning == INTEL_DDB_PART_1_2)
2797 val &= ~WM_MISC_DATA_PARTITION_5_6;
2798 else
2799 val |= WM_MISC_DATA_PARTITION_5_6;
2800 I915_WRITE(WM_MISC, val);
2801 } else {
2802 val = I915_READ(DISP_ARB_CTL2);
2803 if (results->partitioning == INTEL_DDB_PART_1_2)
2804 val &= ~DISP_DATA_PARTITION_5_6;
2805 else
2806 val |= DISP_DATA_PARTITION_5_6;
2807 I915_WRITE(DISP_ARB_CTL2, val);
2808 }
2809 }
2810
2811 if (dirty & WM_DIRTY_FBC) {
2812 val = I915_READ(DISP_ARB_CTL);
2813 if (results->enable_fbc_wm)
2814 val &= ~DISP_FBC_WM_DIS;
2815 else
2816 val |= DISP_FBC_WM_DIS;
2817 I915_WRITE(DISP_ARB_CTL, val);
2818 }
2819
2820 if (dirty & WM_DIRTY_LP(1) &&
2821 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2822 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2823
2824 if (INTEL_INFO(dev)->gen >= 7) {
2825 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2826 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2827 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2828 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2829 }
2830
2831 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2832 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2833 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2834 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2835 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2836 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2837
2838 dev_priv->wm.hw = *results;
2839 }
2840
2841 bool ilk_disable_lp_wm(struct drm_device *dev)
2842 {
2843 struct drm_i915_private *dev_priv = to_i915(dev);
2844
2845 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2846 }
2847
2848 /*
2849 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2850 * different active planes.
2851 */
2852
2853 #define SKL_DDB_SIZE 896 /* in blocks */
2854 #define BXT_DDB_SIZE 512
2855
2856 /*
2857 * Return the index of a plane in the SKL DDB and wm result arrays. Primary
2858 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2859 * other universal planes are in indices 1..n. Note that this may leave unused
2860 * indices between the top "sprite" plane and the cursor.
2861 */
2862 static int
2863 skl_wm_plane_id(const struct intel_plane *plane)
2864 {
2865 switch (plane->base.type) {
2866 case DRM_PLANE_TYPE_PRIMARY:
2867 return 0;
2868 case DRM_PLANE_TYPE_CURSOR:
2869 return PLANE_CURSOR;
2870 case DRM_PLANE_TYPE_OVERLAY:
2871 return plane->plane + 1;
2872 default:
2873 MISSING_CASE(plane->base.type);
2874 return plane->plane;
2875 }
2876 }
2877
2878 static void
2879 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2880 const struct intel_crtc_state *cstate,
2881 struct skl_ddb_entry *alloc, /* out */
2882 int *num_active /* out */)
2883 {
2884 struct drm_atomic_state *state = cstate->base.state;
2885 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
2886 struct drm_i915_private *dev_priv = to_i915(dev);
2887 struct drm_crtc *for_crtc = cstate->base.crtc;
2888 unsigned int pipe_size, ddb_size;
2889 int nth_active_pipe;
2890 int pipe = to_intel_crtc(for_crtc)->pipe;
2891
2892 if (WARN_ON(!state) || !cstate->base.active) {
2893 alloc->start = 0;
2894 alloc->end = 0;
2895 *num_active = hweight32(dev_priv->active_crtcs);
2896 return;
2897 }
2898
2899 if (intel_state->active_pipe_changes)
2900 *num_active = hweight32(intel_state->active_crtcs);
2901 else
2902 *num_active = hweight32(dev_priv->active_crtcs);
2903
2904 if (IS_BROXTON(dev))
2905 ddb_size = BXT_DDB_SIZE;
2906 else
2907 ddb_size = SKL_DDB_SIZE;
2908
2909 ddb_size -= 4; /* 4 blocks for bypass path allocation */
2910
2911 /*
2912 * If the state doesn't change the active CRTC's, then there's
2913 * no need to recalculate; the existing pipe allocation limits
2914 * should remain unchanged. Note that we're safe from racing
2915 * commits since any racing commit that changes the active CRTC
2916 * list would need to grab _all_ crtc locks, including the one
2917 * we currently hold.
2918 */
2919 if (!intel_state->active_pipe_changes) {
2920 *alloc = dev_priv->wm.skl_hw.ddb.pipe[pipe];
2921 return;
2922 }
2923
2924 nth_active_pipe = hweight32(intel_state->active_crtcs &
2925 (drm_crtc_mask(for_crtc) - 1));
2926 pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
2927 alloc->start = nth_active_pipe * ddb_size / *num_active;
2928 alloc->end = alloc->start + pipe_size;
2929 }
2930
2931 static unsigned int skl_cursor_allocation(int num_active)
2932 {
2933 if (num_active == 1)
2934 return 32;
2935
2936 return 8;
2937 }
2938
2939 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2940 {
2941 entry->start = reg & 0x3ff;
2942 entry->end = (reg >> 16) & 0x3ff;
2943 if (entry->end)
2944 entry->end += 1;
2945 }
2946
2947 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2948 struct skl_ddb_allocation *ddb /* out */)
2949 {
2950 enum pipe pipe;
2951 int plane;
2952 u32 val;
2953
2954 memset(ddb, 0, sizeof(*ddb));
2955
2956 for_each_pipe(dev_priv, pipe) {
2957 enum intel_display_power_domain power_domain;
2958
2959 power_domain = POWER_DOMAIN_PIPE(pipe);
2960 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2961 continue;
2962
2963 for_each_plane(dev_priv, pipe, plane) {
2964 val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2965 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2966 val);
2967 }
2968
2969 val = I915_READ(CUR_BUF_CFG(pipe));
2970 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2971 val);
2972
2973 intel_display_power_put(dev_priv, power_domain);
2974 }
2975 }
2976
2977 /*
2978 * Determines the downscale amount of a plane for the purposes of watermark calculations.
2979 * The bspec defines downscale amount as:
2980 *
2981 * """
2982 * Horizontal down scale amount = maximum[1, Horizontal source size /
2983 * Horizontal destination size]
2984 * Vertical down scale amount = maximum[1, Vertical source size /
2985 * Vertical destination size]
2986 * Total down scale amount = Horizontal down scale amount *
2987 * Vertical down scale amount
2988 * """
2989 *
2990 * Return value is provided in 16.16 fixed point form to retain fractional part.
2991 * Caller should take care of dividing & rounding off the value.
2992 */
2993 static uint32_t
2994 skl_plane_downscale_amount(const struct intel_plane_state *pstate)
2995 {
2996 uint32_t downscale_h, downscale_w;
2997 uint32_t src_w, src_h, dst_w, dst_h;
2998
2999 if (WARN_ON(!pstate->visible))
3000 return DRM_PLANE_HELPER_NO_SCALING;
3001
3002 /* n.b., src is 16.16 fixed point, dst is whole integer */
3003 src_w = drm_rect_width(&pstate->src);
3004 src_h = drm_rect_height(&pstate->src);
3005 dst_w = drm_rect_width(&pstate->dst);
3006 dst_h = drm_rect_height(&pstate->dst);
3007 if (intel_rotation_90_or_270(pstate->base.rotation))
3008 swap(dst_w, dst_h);
3009
3010 downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3011 downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3012
3013 /* Provide result in 16.16 fixed point */
3014 return (uint64_t)downscale_w * downscale_h >> 16;
3015 }
3016
3017 static unsigned int
3018 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
3019 const struct drm_plane_state *pstate,
3020 int y)
3021 {
3022 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3023 struct drm_framebuffer *fb = pstate->fb;
3024 uint32_t down_scale_amount, data_rate;
3025 uint32_t width = 0, height = 0;
3026 unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;
3027
3028 if (!intel_pstate->visible)
3029 return 0;
3030 if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
3031 return 0;
3032 if (y && format != DRM_FORMAT_NV12)
3033 return 0;
3034
3035 width = drm_rect_width(&intel_pstate->src) >> 16;
3036 height = drm_rect_height(&intel_pstate->src) >> 16;
3037
3038 if (intel_rotation_90_or_270(pstate->rotation))
3039 swap(width, height);
3040
3041 /* for planar format */
3042 if (format == DRM_FORMAT_NV12) {
3043 if (y) /* y-plane data rate */
3044 data_rate = width * height *
3045 drm_format_plane_cpp(format, 0);
3046 else /* uv-plane data rate */
3047 data_rate = (width / 2) * (height / 2) *
3048 drm_format_plane_cpp(format, 1);
3049 } else {
3050 /* for packed formats */
3051 data_rate = width * height * drm_format_plane_cpp(format, 0);
3052 }
3053
3054 down_scale_amount = skl_plane_downscale_amount(intel_pstate);
3055
3056 return (uint64_t)data_rate * down_scale_amount >> 16;
3057 }
3058
3059 /*
3060 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
3061 * a 8192x4096@32bpp framebuffer:
3062 * 3 * 4096 * 8192 * 4 < 2^32
3063 */
3064 static unsigned int
3065 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
3066 {
3067 struct drm_crtc_state *cstate = &intel_cstate->base;
3068 struct drm_atomic_state *state = cstate->state;
3069 struct drm_crtc *crtc = cstate->crtc;
3070 struct drm_device *dev = crtc->dev;
3071 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3072 const struct drm_plane *plane;
3073 const struct intel_plane *intel_plane;
3074 struct drm_plane_state *pstate;
3075 unsigned int rate, total_data_rate = 0;
3076 int id;
3077 int i;
3078
3079 if (WARN_ON(!state))
3080 return 0;
3081
3082 /* Calculate and cache data rate for each plane */
3083 for_each_plane_in_state(state, plane, pstate, i) {
3084 id = skl_wm_plane_id(to_intel_plane(plane));
3085 intel_plane = to_intel_plane(plane);
3086
3087 if (intel_plane->pipe != intel_crtc->pipe)
3088 continue;
3089
3090 /* packed/uv */
3091 rate = skl_plane_relative_data_rate(intel_cstate,
3092 pstate, 0);
3093 intel_cstate->wm.skl.plane_data_rate[id] = rate;
3094
3095 /* y-plane */
3096 rate = skl_plane_relative_data_rate(intel_cstate,
3097 pstate, 1);
3098 intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3099 }
3100
3101 /* Calculate CRTC's total data rate from cached values */
3102 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3103 int id = skl_wm_plane_id(intel_plane);
3104
3105 /* packed/uv */
3106 total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
3107 total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3108 }
3109
3110 WARN_ON(cstate->plane_mask && total_data_rate == 0);
3111
3112 return total_data_rate;
3113 }
3114
3115 static uint16_t
3116 skl_ddb_min_alloc(const struct drm_plane_state *pstate,
3117 const int y)
3118 {
3119 struct drm_framebuffer *fb = pstate->fb;
3120 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3121 uint32_t src_w, src_h;
3122 uint32_t min_scanlines = 8;
3123 uint8_t plane_bpp;
3124
3125 if (WARN_ON(!fb))
3126 return 0;
3127
3128 /* For packed formats, no y-plane, return 0 */
3129 if (y && fb->pixel_format != DRM_FORMAT_NV12)
3130 return 0;
3131
3132 /* For Non Y-tile return 8-blocks */
3133 if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
3134 fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
3135 return 8;
3136
3137 src_w = drm_rect_width(&intel_pstate->src) >> 16;
3138 src_h = drm_rect_height(&intel_pstate->src) >> 16;
3139
3140 if (intel_rotation_90_or_270(pstate->rotation))
3141 swap(src_w, src_h);
3142
3143 /* Halve UV plane width and height for NV12 */
3144 if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
3145 src_w /= 2;
3146 src_h /= 2;
3147 }
3148
3149 if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
3150 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
3151 else
3152 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);
3153
3154 if (intel_rotation_90_or_270(pstate->rotation)) {
3155 switch (plane_bpp) {
3156 case 1:
3157 min_scanlines = 32;
3158 break;
3159 case 2:
3160 min_scanlines = 16;
3161 break;
3162 case 4:
3163 min_scanlines = 8;
3164 break;
3165 case 8:
3166 min_scanlines = 4;
3167 break;
3168 default:
3169 WARN(1, "Unsupported pixel depth %u for rotation",
3170 plane_bpp);
3171 min_scanlines = 32;
3172 }
3173 }
3174
3175 return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
3176 }
3177
3178 static int
3179 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3180 struct skl_ddb_allocation *ddb /* out */)
3181 {
3182 struct drm_atomic_state *state = cstate->base.state;
3183 struct drm_crtc *crtc = cstate->base.crtc;
3184 struct drm_device *dev = crtc->dev;
3185 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3186 struct intel_plane *intel_plane;
3187 struct drm_plane *plane;
3188 struct drm_plane_state *pstate;
3189 enum pipe pipe = intel_crtc->pipe;
3190 struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3191 uint16_t alloc_size, start, cursor_blocks;
3192 uint16_t *minimum = cstate->wm.skl.minimum_blocks;
3193 uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3194 unsigned int total_data_rate;
3195 int num_active;
3196 int id, i;
3197
3198 if (WARN_ON(!state))
3199 return 0;
3200
3201 if (!cstate->base.active) {
3202 ddb->pipe[pipe].start = ddb->pipe[pipe].end = 0;
3203 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3204 memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
3205 return 0;
3206 }
3207
3208 skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3209 alloc_size = skl_ddb_entry_size(alloc);
3210 if (alloc_size == 0) {
3211 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3212 return 0;
3213 }
3214
3215 cursor_blocks = skl_cursor_allocation(num_active);
3216 ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
3217 ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3218
3219 alloc_size -= cursor_blocks;
3220
3221 /* 1. Allocate the mininum required blocks for each active plane */
3222 for_each_plane_in_state(state, plane, pstate, i) {
3223 intel_plane = to_intel_plane(plane);
3224 id = skl_wm_plane_id(intel_plane);
3225
3226 if (intel_plane->pipe != pipe)
3227 continue;
3228
3229 if (!to_intel_plane_state(pstate)->visible) {
3230 minimum[id] = 0;
3231 y_minimum[id] = 0;
3232 continue;
3233 }
3234 if (plane->type == DRM_PLANE_TYPE_CURSOR) {
3235 minimum[id] = 0;
3236 y_minimum[id] = 0;
3237 continue;
3238 }
3239
3240 minimum[id] = skl_ddb_min_alloc(pstate, 0);
3241 y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3242 }
3243
3244 for (i = 0; i < PLANE_CURSOR; i++) {
3245 alloc_size -= minimum[i];
3246 alloc_size -= y_minimum[i];
3247 }
3248
3249 /*
3250 * 2. Distribute the remaining space in proportion to the amount of
3251 * data each plane needs to fetch from memory.
3252 *
3253 * FIXME: we may not allocate every single block here.
3254 */
3255 total_data_rate = skl_get_total_relative_data_rate(cstate);
3256 if (total_data_rate == 0)
3257 return 0;
3258
3259 start = alloc->start;
3260 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3261 unsigned int data_rate, y_data_rate;
3262 uint16_t plane_blocks, y_plane_blocks = 0;
3263 int id = skl_wm_plane_id(intel_plane);
3264
3265 data_rate = cstate->wm.skl.plane_data_rate[id];
3266
3267 /*
3268 * allocation for (packed formats) or (uv-plane part of planar format):
3269 * promote the expression to 64 bits to avoid overflowing, the
3270 * result is < available as data_rate / total_data_rate < 1
3271 */
3272 plane_blocks = minimum[id];
3273 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3274 total_data_rate);
3275
3276 /* Leave disabled planes at (0,0) */
3277 if (data_rate) {
3278 ddb->plane[pipe][id].start = start;
3279 ddb->plane[pipe][id].end = start + plane_blocks;
3280 }
3281
3282 start += plane_blocks;
3283
3284 /*
3285 * allocation for y_plane part of planar format:
3286 */
3287 y_data_rate = cstate->wm.skl.plane_y_data_rate[id];
3288
3289 y_plane_blocks = y_minimum[id];
3290 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3291 total_data_rate);
3292
3293 if (y_data_rate) {
3294 ddb->y_plane[pipe][id].start = start;
3295 ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3296 }
3297
3298 start += y_plane_blocks;
3299 }
3300
3301 return 0;
3302 }
3303
3304 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3305 {
3306 /* TODO: Take into account the scalers once we support them */
3307 return config->base.adjusted_mode.crtc_clock;
3308 }
3309
3310 /*
3311 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3312 * for the read latency) and cpp should always be <= 8, so that
3313 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3314 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3315 */
3316 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3317 {
3318 uint32_t wm_intermediate_val, ret;
3319
3320 if (latency == 0)
3321 return UINT_MAX;
3322
3323 wm_intermediate_val = latency * pixel_rate * cpp / 512;
3324 ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3325
3326 return ret;
3327 }
3328
3329 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3330 uint32_t horiz_pixels, uint8_t cpp,
3331 uint64_t tiling, uint32_t latency)
3332 {
3333 uint32_t ret;
3334 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3335 uint32_t wm_intermediate_val;
3336
3337 if (latency == 0)
3338 return UINT_MAX;
3339
3340 plane_bytes_per_line = horiz_pixels * cpp;
3341
3342 if (tiling == I915_FORMAT_MOD_Y_TILED ||
3343 tiling == I915_FORMAT_MOD_Yf_TILED) {
3344 plane_bytes_per_line *= 4;
3345 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3346 plane_blocks_per_line /= 4;
3347 } else {
3348 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3349 }
3350
3351 wm_intermediate_val = latency * pixel_rate;
3352 ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3353 plane_blocks_per_line;
3354
3355 return ret;
3356 }
3357
3358 static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
3359 struct intel_plane_state *pstate)
3360 {
3361 uint64_t adjusted_pixel_rate;
3362 uint64_t downscale_amount;
3363 uint64_t pixel_rate;
3364
3365 /* Shouldn't reach here on disabled planes... */
3366 if (WARN_ON(!pstate->visible))
3367 return 0;
3368
3369 /*
3370 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
3371 * with additional adjustments for plane-specific scaling.
3372 */
3373 adjusted_pixel_rate = skl_pipe_pixel_rate(cstate);
3374 downscale_amount = skl_plane_downscale_amount(pstate);
3375
3376 pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
3377 WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));
3378
3379 return pixel_rate;
3380 }
3381
3382 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3383 struct intel_crtc_state *cstate,
3384 struct intel_plane_state *intel_pstate,
3385 uint16_t ddb_allocation,
3386 int level,
3387 uint16_t *out_blocks, /* out */
3388 uint8_t *out_lines, /* out */
3389 bool *enabled /* out */)
3390 {
3391 struct drm_plane_state *pstate = &intel_pstate->base;
3392 struct drm_framebuffer *fb = pstate->fb;
3393 uint32_t latency = dev_priv->wm.skl_latency[level];
3394 uint32_t method1, method2;
3395 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3396 uint32_t res_blocks, res_lines;
3397 uint32_t selected_result;
3398 uint8_t cpp;
3399 uint32_t width = 0, height = 0;
3400 uint32_t plane_pixel_rate;
3401
3402 if (latency == 0 || !cstate->base.active || !intel_pstate->visible) {
3403 *enabled = false;
3404 return 0;
3405 }
3406
3407 width = drm_rect_width(&intel_pstate->src) >> 16;
3408 height = drm_rect_height(&intel_pstate->src) >> 16;
3409
3410 if (intel_rotation_90_or_270(pstate->rotation))
3411 swap(width, height);
3412
3413 cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3414 plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
3415
3416 method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
3417 method2 = skl_wm_method2(plane_pixel_rate,
3418 cstate->base.adjusted_mode.crtc_htotal,
3419 width,
3420 cpp,
3421 fb->modifier[0],
3422 latency);
3423
3424 plane_bytes_per_line = width * cpp;
3425 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3426
3427 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3428 fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3429 uint32_t min_scanlines = 4;
3430 uint32_t y_tile_minimum;
3431 if (intel_rotation_90_or_270(pstate->rotation)) {
3432 int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3433 drm_format_plane_cpp(fb->pixel_format, 1) :
3434 drm_format_plane_cpp(fb->pixel_format, 0);
3435
3436 switch (cpp) {
3437 case 1:
3438 min_scanlines = 16;
3439 break;
3440 case 2:
3441 min_scanlines = 8;
3442 break;
3443 case 8:
3444 WARN(1, "Unsupported pixel depth for rotation");
3445 }
3446 }
3447 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3448 selected_result = max(method2, y_tile_minimum);
3449 } else {
3450 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3451 selected_result = min(method1, method2);
3452 else
3453 selected_result = method1;
3454 }
3455
3456 res_blocks = selected_result + 1;
3457 res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3458
3459 if (level >= 1 && level <= 7) {
3460 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3461 fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3462 res_lines += 4;
3463 else
3464 res_blocks++;
3465 }
3466
3467 if (res_blocks >= ddb_allocation || res_lines > 31) {
3468 *enabled = false;
3469
3470 /*
3471 * If there are no valid level 0 watermarks, then we can't
3472 * support this display configuration.
3473 */
3474 if (level) {
3475 return 0;
3476 } else {
3477 DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3478 DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
3479 to_intel_crtc(cstate->base.crtc)->pipe,
3480 skl_wm_plane_id(to_intel_plane(pstate->plane)),
3481 res_blocks, ddb_allocation, res_lines);
3482
3483 return -EINVAL;
3484 }
3485 }
3486
3487 *out_blocks = res_blocks;
3488 *out_lines = res_lines;
3489 *enabled = true;
3490
3491 return 0;
3492 }
3493
3494 static int
3495 skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3496 struct skl_ddb_allocation *ddb,
3497 struct intel_crtc_state *cstate,
3498 int level,
3499 struct skl_wm_level *result)
3500 {
3501 struct drm_atomic_state *state = cstate->base.state;
3502 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3503 struct drm_plane *plane;
3504 struct intel_plane *intel_plane;
3505 struct intel_plane_state *intel_pstate;
3506 uint16_t ddb_blocks;
3507 enum pipe pipe = intel_crtc->pipe;
3508 int ret;
3509
3510 /*
3511 * We'll only calculate watermarks for planes that are actually
3512 * enabled, so make sure all other planes are set as disabled.
3513 */
3514 memset(result, 0, sizeof(*result));
3515
3516 for_each_intel_plane_mask(&dev_priv->drm,
3517 intel_plane,
3518 cstate->base.plane_mask) {
3519 int i = skl_wm_plane_id(intel_plane);
3520
3521 plane = &intel_plane->base;
3522 intel_pstate = NULL;
3523 if (state)
3524 intel_pstate =
3525 intel_atomic_get_existing_plane_state(state,
3526 intel_plane);
3527
3528 /*
3529 * Note: If we start supporting multiple pending atomic commits
3530 * against the same planes/CRTC's in the future, plane->state
3531 * will no longer be the correct pre-state to use for the
3532 * calculations here and we'll need to change where we get the
3533 * 'unchanged' plane data from.
3534 *
3535 * For now this is fine because we only allow one queued commit
3536 * against a CRTC. Even if the plane isn't modified by this
3537 * transaction and we don't have a plane lock, we still have
3538 * the CRTC's lock, so we know that no other transactions are
3539 * racing with us to update it.
3540 */
3541 if (!intel_pstate)
3542 intel_pstate = to_intel_plane_state(plane->state);
3543
3544 WARN_ON(!intel_pstate->base.fb);
3545
3546 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3547
3548 ret = skl_compute_plane_wm(dev_priv,
3549 cstate,
3550 intel_pstate,
3551 ddb_blocks,
3552 level,
3553 &result->plane_res_b[i],
3554 &result->plane_res_l[i],
3555 &result->plane_en[i]);
3556 if (ret)
3557 return ret;
3558 }
3559
3560 return 0;
3561 }
3562
3563 static uint32_t
3564 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3565 {
3566 if (!cstate->base.active)
3567 return 0;
3568
3569 if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3570 return 0;
3571
3572 return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3573 skl_pipe_pixel_rate(cstate));
3574 }
3575
3576 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3577 struct skl_wm_level *trans_wm /* out */)
3578 {
3579 struct drm_crtc *crtc = cstate->base.crtc;
3580 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3581 struct intel_plane *intel_plane;
3582
3583 if (!cstate->base.active)
3584 return;
3585
3586 /* Until we know more, just disable transition WMs */
3587 for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3588 int i = skl_wm_plane_id(intel_plane);
3589
3590 trans_wm->plane_en[i] = false;
3591 }
3592 }
3593
3594 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
3595 struct skl_ddb_allocation *ddb,
3596 struct skl_pipe_wm *pipe_wm)
3597 {
3598 struct drm_device *dev = cstate->base.crtc->dev;
3599 const struct drm_i915_private *dev_priv = to_i915(dev);
3600 int level, max_level = ilk_wm_max_level(dev);
3601 int ret;
3602
3603 for (level = 0; level <= max_level; level++) {
3604 ret = skl_compute_wm_level(dev_priv, ddb, cstate,
3605 level, &pipe_wm->wm[level]);
3606 if (ret)
3607 return ret;
3608 }
3609 pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3610
3611 skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3612
3613 return 0;
3614 }
3615
3616 static void skl_compute_wm_results(struct drm_device *dev,
3617 struct skl_pipe_wm *p_wm,
3618 struct skl_wm_values *r,
3619 struct intel_crtc *intel_crtc)
3620 {
3621 int level, max_level = ilk_wm_max_level(dev);
3622 enum pipe pipe = intel_crtc->pipe;
3623 uint32_t temp;
3624 int i;
3625
3626 for (level = 0; level <= max_level; level++) {
3627 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3628 temp = 0;
3629
3630 temp |= p_wm->wm[level].plane_res_l[i] <<
3631 PLANE_WM_LINES_SHIFT;
3632 temp |= p_wm->wm[level].plane_res_b[i];
3633 if (p_wm->wm[level].plane_en[i])
3634 temp |= PLANE_WM_EN;
3635
3636 r->plane[pipe][i][level] = temp;
3637 }
3638
3639 temp = 0;
3640
3641 temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3642 temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3643
3644 if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3645 temp |= PLANE_WM_EN;
3646
3647 r->plane[pipe][PLANE_CURSOR][level] = temp;
3648
3649 }
3650
3651 /* transition WMs */
3652 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3653 temp = 0;
3654 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3655 temp |= p_wm->trans_wm.plane_res_b[i];
3656 if (p_wm->trans_wm.plane_en[i])
3657 temp |= PLANE_WM_EN;
3658
3659 r->plane_trans[pipe][i] = temp;
3660 }
3661
3662 temp = 0;
3663 temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3664 temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3665 if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3666 temp |= PLANE_WM_EN;
3667
3668 r->plane_trans[pipe][PLANE_CURSOR] = temp;
3669
3670 r->wm_linetime[pipe] = p_wm->linetime;
3671 }
3672
3673 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3674 i915_reg_t reg,
3675 const struct skl_ddb_entry *entry)
3676 {
3677 if (entry->end)
3678 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3679 else
3680 I915_WRITE(reg, 0);
3681 }
3682
3683 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3684 const struct skl_wm_values *new)
3685 {
3686 struct drm_device *dev = &dev_priv->drm;
3687 struct intel_crtc *crtc;
3688
3689 for_each_intel_crtc(dev, crtc) {
3690 int i, level, max_level = ilk_wm_max_level(dev);
3691 enum pipe pipe = crtc->pipe;
3692
3693 if ((new->dirty_pipes & drm_crtc_mask(&crtc->base)) == 0)
3694 continue;
3695 if (!crtc->active)
3696 continue;
3697
3698 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3699
3700 for (level = 0; level <= max_level; level++) {
3701 for (i = 0; i < intel_num_planes(crtc); i++)
3702 I915_WRITE(PLANE_WM(pipe, i, level),
3703 new->plane[pipe][i][level]);
3704 I915_WRITE(CUR_WM(pipe, level),
3705 new->plane[pipe][PLANE_CURSOR][level]);
3706 }
3707 for (i = 0; i < intel_num_planes(crtc); i++)
3708 I915_WRITE(PLANE_WM_TRANS(pipe, i),
3709 new->plane_trans[pipe][i]);
3710 I915_WRITE(CUR_WM_TRANS(pipe),
3711 new->plane_trans[pipe][PLANE_CURSOR]);
3712
3713 for (i = 0; i < intel_num_planes(crtc); i++) {
3714 skl_ddb_entry_write(dev_priv,
3715 PLANE_BUF_CFG(pipe, i),
3716 &new->ddb.plane[pipe][i]);
3717 skl_ddb_entry_write(dev_priv,
3718 PLANE_NV12_BUF_CFG(pipe, i),
3719 &new->ddb.y_plane[pipe][i]);
3720 }
3721
3722 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3723 &new->ddb.plane[pipe][PLANE_CURSOR]);
3724 }
3725 }
3726
3727 /*
3728 * When setting up a new DDB allocation arrangement, we need to correctly
3729 * sequence the times at which the new allocations for the pipes are taken into
3730 * account or we'll have pipes fetching from space previously allocated to
3731 * another pipe.
3732 *
3733 * Roughly the sequence looks like:
3734 * 1. re-allocate the pipe(s) with the allocation being reduced and not
3735 * overlapping with a previous light-up pipe (another way to put it is:
3736 * pipes with their new allocation strickly included into their old ones).
3737 * 2. re-allocate the other pipes that get their allocation reduced
3738 * 3. allocate the pipes having their allocation increased
3739 *
3740 * Steps 1. and 2. are here to take care of the following case:
3741 * - Initially DDB looks like this:
3742 * | B | C |
3743 * - enable pipe A.
3744 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3745 * allocation
3746 * | A | B | C |
3747 *
3748 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3749 */
3750
3751 static void
3752 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3753 {
3754 int plane;
3755
3756 DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3757
3758 for_each_plane(dev_priv, pipe, plane) {
3759 I915_WRITE(PLANE_SURF(pipe, plane),
3760 I915_READ(PLANE_SURF(pipe, plane)));
3761 }
3762 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3763 }
3764
3765 static bool
3766 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3767 const struct skl_ddb_allocation *new,
3768 enum pipe pipe)
3769 {
3770 uint16_t old_size, new_size;
3771
3772 old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3773 new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3774
3775 return old_size != new_size &&
3776 new->pipe[pipe].start >= old->pipe[pipe].start &&
3777 new->pipe[pipe].end <= old->pipe[pipe].end;
3778 }
3779
3780 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3781 struct skl_wm_values *new_values)
3782 {
3783 struct drm_device *dev = &dev_priv->drm;
3784 struct skl_ddb_allocation *cur_ddb, *new_ddb;
3785 bool reallocated[I915_MAX_PIPES] = {};
3786 struct intel_crtc *crtc;
3787 enum pipe pipe;
3788
3789 new_ddb = &new_values->ddb;
3790 cur_ddb = &dev_priv->wm.skl_hw.ddb;
3791
3792 /*
3793 * First pass: flush the pipes with the new allocation contained into
3794 * the old space.
3795 *
3796 * We'll wait for the vblank on those pipes to ensure we can safely
3797 * re-allocate the freed space without this pipe fetching from it.
3798 */
3799 for_each_intel_crtc(dev, crtc) {
3800 if (!crtc->active)
3801 continue;
3802
3803 pipe = crtc->pipe;
3804
3805 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3806 continue;
3807
3808 skl_wm_flush_pipe(dev_priv, pipe, 1);
3809 intel_wait_for_vblank(dev, pipe);
3810
3811 reallocated[pipe] = true;
3812 }
3813
3814
3815 /*
3816 * Second pass: flush the pipes that are having their allocation
3817 * reduced, but overlapping with a previous allocation.
3818 *
3819 * Here as well we need to wait for the vblank to make sure the freed
3820 * space is not used anymore.
3821 */
3822 for_each_intel_crtc(dev, crtc) {
3823 if (!crtc->active)
3824 continue;
3825
3826 pipe = crtc->pipe;
3827
3828 if (reallocated[pipe])
3829 continue;
3830
3831 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3832 skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3833 skl_wm_flush_pipe(dev_priv, pipe, 2);
3834 intel_wait_for_vblank(dev, pipe);
3835 reallocated[pipe] = true;
3836 }
3837 }
3838
3839 /*
3840 * Third pass: flush the pipes that got more space allocated.
3841 *
3842 * We don't need to actively wait for the update here, next vblank
3843 * will just get more DDB space with the correct WM values.
3844 */
3845 for_each_intel_crtc(dev, crtc) {
3846 if (!crtc->active)
3847 continue;
3848
3849 pipe = crtc->pipe;
3850
3851 /*
3852 * At this point, only the pipes more space than before are
3853 * left to re-allocate.
3854 */
3855 if (reallocated[pipe])
3856 continue;
3857
3858 skl_wm_flush_pipe(dev_priv, pipe, 3);
3859 }
3860 }
3861
3862 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3863 struct skl_ddb_allocation *ddb, /* out */
3864 struct skl_pipe_wm *pipe_wm, /* out */
3865 bool *changed /* out */)
3866 {
3867 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
3868 struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3869 int ret;
3870
3871 ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
3872 if (ret)
3873 return ret;
3874
3875 if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3876 *changed = false;
3877 else
3878 *changed = true;
3879
3880 return 0;
3881 }
3882
3883 static uint32_t
3884 pipes_modified(struct drm_atomic_state *state)
3885 {
3886 struct drm_crtc *crtc;
3887 struct drm_crtc_state *cstate;
3888 uint32_t i, ret = 0;
3889
3890 for_each_crtc_in_state(state, crtc, cstate, i)
3891 ret |= drm_crtc_mask(crtc);
3892
3893 return ret;
3894 }
3895
3896 static int
3897 skl_compute_ddb(struct drm_atomic_state *state)
3898 {
3899 struct drm_device *dev = state->dev;
3900 struct drm_i915_private *dev_priv = to_i915(dev);
3901 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3902 struct intel_crtc *intel_crtc;
3903 struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
3904 uint32_t realloc_pipes = pipes_modified(state);
3905 int ret;
3906
3907 /*
3908 * If this is our first atomic update following hardware readout,
3909 * we can't trust the DDB that the BIOS programmed for us. Let's
3910 * pretend that all pipes switched active status so that we'll
3911 * ensure a full DDB recompute.
3912 */
3913 if (dev_priv->wm.distrust_bios_wm)
3914 intel_state->active_pipe_changes = ~0;
3915
3916 /*
3917 * If the modeset changes which CRTC's are active, we need to
3918 * recompute the DDB allocation for *all* active pipes, even
3919 * those that weren't otherwise being modified in any way by this
3920 * atomic commit. Due to the shrinking of the per-pipe allocations
3921 * when new active CRTC's are added, it's possible for a pipe that
3922 * we were already using and aren't changing at all here to suddenly
3923 * become invalid if its DDB needs exceeds its new allocation.
3924 *
3925 * Note that if we wind up doing a full DDB recompute, we can't let
3926 * any other display updates race with this transaction, so we need
3927 * to grab the lock on *all* CRTC's.
3928 */
3929 if (intel_state->active_pipe_changes) {
3930 realloc_pipes = ~0;
3931 intel_state->wm_results.dirty_pipes = ~0;
3932 }
3933
3934 for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
3935 struct intel_crtc_state *cstate;
3936
3937 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
3938 if (IS_ERR(cstate))
3939 return PTR_ERR(cstate);
3940
3941 ret = skl_allocate_pipe_ddb(cstate, ddb);
3942 if (ret)
3943 return ret;
3944 }
3945
3946 return 0;
3947 }
3948
3949 static int
3950 skl_compute_wm(struct drm_atomic_state *state)
3951 {
3952 struct drm_crtc *crtc;
3953 struct drm_crtc_state *cstate;
3954 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3955 struct skl_wm_values *results = &intel_state->wm_results;
3956 struct skl_pipe_wm *pipe_wm;
3957 bool changed = false;
3958 int ret, i;
3959
3960 /*
3961 * If this transaction isn't actually touching any CRTC's, don't
3962 * bother with watermark calculation. Note that if we pass this
3963 * test, we're guaranteed to hold at least one CRTC state mutex,
3964 * which means we can safely use values like dev_priv->active_crtcs
3965 * since any racing commits that want to update them would need to
3966 * hold _all_ CRTC state mutexes.
3967 */
3968 for_each_crtc_in_state(state, crtc, cstate, i)
3969 changed = true;
3970 if (!changed)
3971 return 0;
3972
3973 /* Clear all dirty flags */
3974 results->dirty_pipes = 0;
3975
3976 ret = skl_compute_ddb(state);
3977 if (ret)
3978 return ret;
3979
3980 /*
3981 * Calculate WM's for all pipes that are part of this transaction.
3982 * Note that the DDB allocation above may have added more CRTC's that
3983 * weren't otherwise being modified (and set bits in dirty_pipes) if
3984 * pipe allocations had to change.
3985 *
3986 * FIXME: Now that we're doing this in the atomic check phase, we
3987 * should allow skl_update_pipe_wm() to return failure in cases where
3988 * no suitable watermark values can be found.
3989 */
3990 for_each_crtc_in_state(state, crtc, cstate, i) {
3991 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3992 struct intel_crtc_state *intel_cstate =
3993 to_intel_crtc_state(cstate);
3994
3995 pipe_wm = &intel_cstate->wm.skl.optimal;
3996 ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
3997 &changed);
3998 if (ret)
3999 return ret;
4000
4001 if (changed)
4002 results->dirty_pipes |= drm_crtc_mask(crtc);
4003
4004 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4005 /* This pipe's WM's did not change */
4006 continue;
4007
4008 intel_cstate->update_wm_pre = true;
4009 skl_compute_wm_results(crtc->dev, pipe_wm, results, intel_crtc);
4010 }
4011
4012 return 0;
4013 }
4014
4015 static void skl_update_wm(struct drm_crtc *crtc)
4016 {
4017 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4018 struct drm_device *dev = crtc->dev;
4019 struct drm_i915_private *dev_priv = to_i915(dev);
4020 struct skl_wm_values *results = &dev_priv->wm.skl_results;
4021 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4022 struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4023
4024 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4025 return;
4026
4027 intel_crtc->wm.active.skl = *pipe_wm;
4028
4029 mutex_lock(&dev_priv->wm.wm_mutex);
4030
4031 skl_write_wm_values(dev_priv, results);
4032 skl_flush_wm_values(dev_priv, results);
4033
4034 /* store the new configuration */
4035 dev_priv->wm.skl_hw = *results;
4036
4037 mutex_unlock(&dev_priv->wm.wm_mutex);
4038 }
4039
4040 static void ilk_compute_wm_config(struct drm_device *dev,
4041 struct intel_wm_config *config)
4042 {
4043 struct intel_crtc *crtc;
4044
4045 /* Compute the currently _active_ config */
4046 for_each_intel_crtc(dev, crtc) {
4047 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
4048
4049 if (!wm->pipe_enabled)
4050 continue;
4051
4052 config->sprites_enabled |= wm->sprites_enabled;
4053 config->sprites_scaled |= wm->sprites_scaled;
4054 config->num_pipes_active++;
4055 }
4056 }
4057
4058 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4059 {
4060 struct drm_device *dev = &dev_priv->drm;
4061 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4062 struct ilk_wm_maximums max;
4063 struct intel_wm_config config = {};
4064 struct ilk_wm_values results = {};
4065 enum intel_ddb_partitioning partitioning;
4066
4067 ilk_compute_wm_config(dev, &config);
4068
4069 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
4070 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4071
4072 /* 5/6 split only in single pipe config on IVB+ */
4073 if (INTEL_INFO(dev)->gen >= 7 &&
4074 config.num_pipes_active == 1 && config.sprites_enabled) {
4075 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
4076 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4077
4078 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4079 } else {
4080 best_lp_wm = &lp_wm_1_2;
4081 }
4082
4083 partitioning = (best_lp_wm == &lp_wm_1_2) ?
4084 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4085
4086 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4087
4088 ilk_write_wm_values(dev_priv, &results);
4089 }
4090
4091 static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4092 {
4093 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4094 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4095
4096 mutex_lock(&dev_priv->wm.wm_mutex);
4097 intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4098 ilk_program_watermarks(dev_priv);
4099 mutex_unlock(&dev_priv->wm.wm_mutex);
4100 }
4101
4102 static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
4103 {
4104 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4105 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4106
4107 mutex_lock(&dev_priv->wm.wm_mutex);
4108 if (cstate->wm.need_postvbl_update) {
4109 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4110 ilk_program_watermarks(dev_priv);
4111 }
4112 mutex_unlock(&dev_priv->wm.wm_mutex);
4113 }
4114
4115 static void skl_pipe_wm_active_state(uint32_t val,
4116 struct skl_pipe_wm *active,
4117 bool is_transwm,
4118 bool is_cursor,
4119 int i,
4120 int level)
4121 {
4122 bool is_enabled = (val & PLANE_WM_EN) != 0;
4123
4124 if (!is_transwm) {
4125 if (!is_cursor) {
4126 active->wm[level].plane_en[i] = is_enabled;
4127 active->wm[level].plane_res_b[i] =
4128 val & PLANE_WM_BLOCKS_MASK;
4129 active->wm[level].plane_res_l[i] =
4130 (val >> PLANE_WM_LINES_SHIFT) &
4131 PLANE_WM_LINES_MASK;
4132 } else {
4133 active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
4134 active->wm[level].plane_res_b[PLANE_CURSOR] =
4135 val & PLANE_WM_BLOCKS_MASK;
4136 active->wm[level].plane_res_l[PLANE_CURSOR] =
4137 (val >> PLANE_WM_LINES_SHIFT) &
4138 PLANE_WM_LINES_MASK;
4139 }
4140 } else {
4141 if (!is_cursor) {
4142 active->trans_wm.plane_en[i] = is_enabled;
4143 active->trans_wm.plane_res_b[i] =
4144 val & PLANE_WM_BLOCKS_MASK;
4145 active->trans_wm.plane_res_l[i] =
4146 (val >> PLANE_WM_LINES_SHIFT) &
4147 PLANE_WM_LINES_MASK;
4148 } else {
4149 active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
4150 active->trans_wm.plane_res_b[PLANE_CURSOR] =
4151 val & PLANE_WM_BLOCKS_MASK;
4152 active->trans_wm.plane_res_l[PLANE_CURSOR] =
4153 (val >> PLANE_WM_LINES_SHIFT) &
4154 PLANE_WM_LINES_MASK;
4155 }
4156 }
4157 }
4158
4159 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4160 {
4161 struct drm_device *dev = crtc->dev;
4162 struct drm_i915_private *dev_priv = to_i915(dev);
4163 struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4164 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4165 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4166 struct skl_pipe_wm *active = &cstate->wm.skl.optimal;
4167 enum pipe pipe = intel_crtc->pipe;
4168 int level, i, max_level;
4169 uint32_t temp;
4170
4171 max_level = ilk_wm_max_level(dev);
4172
4173 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4174
4175 for (level = 0; level <= max_level; level++) {
4176 for (i = 0; i < intel_num_planes(intel_crtc); i++)
4177 hw->plane[pipe][i][level] =
4178 I915_READ(PLANE_WM(pipe, i, level));
4179 hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
4180 }
4181
4182 for (i = 0; i < intel_num_planes(intel_crtc); i++)
4183 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
4184 hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
4185
4186 if (!intel_crtc->active)
4187 return;
4188
4189 hw->dirty_pipes |= drm_crtc_mask(crtc);
4190
4191 active->linetime = hw->wm_linetime[pipe];
4192
4193 for (level = 0; level <= max_level; level++) {
4194 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4195 temp = hw->plane[pipe][i][level];
4196 skl_pipe_wm_active_state(temp, active, false,
4197 false, i, level);
4198 }
4199 temp = hw->plane[pipe][PLANE_CURSOR][level];
4200 skl_pipe_wm_active_state(temp, active, false, true, i, level);
4201 }
4202
4203 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4204 temp = hw->plane_trans[pipe][i];
4205 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
4206 }
4207
4208 temp = hw->plane_trans[pipe][PLANE_CURSOR];
4209 skl_pipe_wm_active_state(temp, active, true, true, i, 0);
4210
4211 intel_crtc->wm.active.skl = *active;
4212 }
4213
4214 void skl_wm_get_hw_state(struct drm_device *dev)
4215 {
4216 struct drm_i915_private *dev_priv = to_i915(dev);
4217 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4218 struct drm_crtc *crtc;
4219
4220 skl_ddb_get_hw_state(dev_priv, ddb);
4221 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
4222 skl_pipe_wm_get_hw_state(crtc);
4223
4224 if (dev_priv->active_crtcs) {
4225 /* Fully recompute DDB on first atomic commit */
4226 dev_priv->wm.distrust_bios_wm = true;
4227 } else {
4228 /* Easy/common case; just sanitize DDB now if everything off */
4229 memset(ddb, 0, sizeof(*ddb));
4230 }
4231 }
4232
4233 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4234 {
4235 struct drm_device *dev = crtc->dev;
4236 struct drm_i915_private *dev_priv = to_i915(dev);
4237 struct ilk_wm_values *hw = &dev_priv->wm.hw;
4238 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4239 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4240 struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4241 enum pipe pipe = intel_crtc->pipe;
4242 static const i915_reg_t wm0_pipe_reg[] = {
4243 [PIPE_A] = WM0_PIPEA_ILK,
4244 [PIPE_B] = WM0_PIPEB_ILK,
4245 [PIPE_C] = WM0_PIPEC_IVB,
4246 };
4247
4248 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4249 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4250 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4251
4252 memset(active, 0, sizeof(*active));
4253
4254 active->pipe_enabled = intel_crtc->active;
4255
4256 if (active->pipe_enabled) {
4257 u32 tmp = hw->wm_pipe[pipe];
4258
4259 /*
4260 * For active pipes LP0 watermark is marked as
4261 * enabled, and LP1+ watermaks as disabled since
4262 * we can't really reverse compute them in case
4263 * multiple pipes are active.
4264 */
4265 active->wm[0].enable = true;
4266 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
4267 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
4268 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
4269 active->linetime = hw->wm_linetime[pipe];
4270 } else {
4271 int level, max_level = ilk_wm_max_level(dev);
4272
4273 /*
4274 * For inactive pipes, all watermark levels
4275 * should be marked as enabled but zeroed,
4276 * which is what we'd compute them to.
4277 */
4278 for (level = 0; level <= max_level; level++)
4279 active->wm[level].enable = true;
4280 }
4281
4282 intel_crtc->wm.active.ilk = *active;
4283 }
4284
4285 #define _FW_WM(value, plane) \
4286 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
4287 #define _FW_WM_VLV(value, plane) \
4288 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
4289
4290 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
4291 struct vlv_wm_values *wm)
4292 {
4293 enum pipe pipe;
4294 uint32_t tmp;
4295
4296 for_each_pipe(dev_priv, pipe) {
4297 tmp = I915_READ(VLV_DDL(pipe));
4298
4299 wm->ddl[pipe].primary =
4300 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4301 wm->ddl[pipe].cursor =
4302 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4303 wm->ddl[pipe].sprite[0] =
4304 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4305 wm->ddl[pipe].sprite[1] =
4306 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4307 }
4308
4309 tmp = I915_READ(DSPFW1);
4310 wm->sr.plane = _FW_WM(tmp, SR);
4311 wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
4312 wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
4313 wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
4314
4315 tmp = I915_READ(DSPFW2);
4316 wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
4317 wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
4318 wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
4319
4320 tmp = I915_READ(DSPFW3);
4321 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4322
4323 if (IS_CHERRYVIEW(dev_priv)) {
4324 tmp = I915_READ(DSPFW7_CHV);
4325 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4326 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4327
4328 tmp = I915_READ(DSPFW8_CHV);
4329 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
4330 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
4331
4332 tmp = I915_READ(DSPFW9_CHV);
4333 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
4334 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
4335
4336 tmp = I915_READ(DSPHOWM);
4337 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4338 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4339 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4340 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
4341 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4342 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4343 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4344 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4345 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4346 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4347 } else {
4348 tmp = I915_READ(DSPFW7);
4349 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4350 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4351
4352 tmp = I915_READ(DSPHOWM);
4353 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4354 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4355 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4356 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4357 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4358 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4359 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4360 }
4361 }
4362
4363 #undef _FW_WM
4364 #undef _FW_WM_VLV
4365
4366 void vlv_wm_get_hw_state(struct drm_device *dev)
4367 {
4368 struct drm_i915_private *dev_priv = to_i915(dev);
4369 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4370 struct intel_plane *plane;
4371 enum pipe pipe;
4372 u32 val;
4373
4374 vlv_read_wm_values(dev_priv, wm);
4375
4376 for_each_intel_plane(dev, plane) {
4377 switch (plane->base.type) {
4378 int sprite;
4379 case DRM_PLANE_TYPE_CURSOR:
4380 plane->wm.fifo_size = 63;
4381 break;
4382 case DRM_PLANE_TYPE_PRIMARY:
4383 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4384 break;
4385 case DRM_PLANE_TYPE_OVERLAY:
4386 sprite = plane->plane;
4387 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4388 break;
4389 }
4390 }
4391
4392 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4393 wm->level = VLV_WM_LEVEL_PM2;
4394
4395 if (IS_CHERRYVIEW(dev_priv)) {
4396 mutex_lock(&dev_priv->rps.hw_lock);
4397
4398 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4399 if (val & DSP_MAXFIFO_PM5_ENABLE)
4400 wm->level = VLV_WM_LEVEL_PM5;
4401
4402 /*
4403 * If DDR DVFS is disabled in the BIOS, Punit
4404 * will never ack the request. So if that happens
4405 * assume we don't have to enable/disable DDR DVFS
4406 * dynamically. To test that just set the REQ_ACK
4407 * bit to poke the Punit, but don't change the
4408 * HIGH/LOW bits so that we don't actually change
4409 * the current state.
4410 */
4411 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4412 val |= FORCE_DDR_FREQ_REQ_ACK;
4413 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4414
4415 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4416 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4417 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4418 "assuming DDR DVFS is disabled\n");
4419 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4420 } else {
4421 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4422 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4423 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4424 }
4425
4426 mutex_unlock(&dev_priv->rps.hw_lock);
4427 }
4428
4429 for_each_pipe(dev_priv, pipe)
4430 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4431 pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4432 wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4433
4434 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4435 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4436 }
4437
4438 void ilk_wm_get_hw_state(struct drm_device *dev)
4439 {
4440 struct drm_i915_private *dev_priv = to_i915(dev);
4441 struct ilk_wm_values *hw = &dev_priv->wm.hw;
4442 struct drm_crtc *crtc;
4443
4444 for_each_crtc(dev, crtc)
4445 ilk_pipe_wm_get_hw_state(crtc);
4446
4447 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4448 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4449 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4450
4451 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4452 if (INTEL_INFO(dev)->gen >= 7) {
4453 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4454 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4455 }
4456
4457 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4458 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4459 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4460 else if (IS_IVYBRIDGE(dev))
4461 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4462 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4463
4464 hw->enable_fbc_wm =
4465 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4466 }
4467
4468 /**
4469 * intel_update_watermarks - update FIFO watermark values based on current modes
4470 *
4471 * Calculate watermark values for the various WM regs based on current mode
4472 * and plane configuration.
4473 *
4474 * There are several cases to deal with here:
4475 * - normal (i.e. non-self-refresh)
4476 * - self-refresh (SR) mode
4477 * - lines are large relative to FIFO size (buffer can hold up to 2)
4478 * - lines are small relative to FIFO size (buffer can hold more than 2
4479 * lines), so need to account for TLB latency
4480 *
4481 * The normal calculation is:
4482 * watermark = dotclock * bytes per pixel * latency
4483 * where latency is platform & configuration dependent (we assume pessimal
4484 * values here).
4485 *
4486 * The SR calculation is:
4487 * watermark = (trunc(latency/line time)+1) * surface width *
4488 * bytes per pixel
4489 * where
4490 * line time = htotal / dotclock
4491 * surface width = hdisplay for normal plane and 64 for cursor
4492 * and latency is assumed to be high, as above.
4493 *
4494 * The final value programmed to the register should always be rounded up,
4495 * and include an extra 2 entries to account for clock crossings.
4496 *
4497 * We don't use the sprite, so we can ignore that. And on Crestline we have
4498 * to set the non-SR watermarks to 8.
4499 */
4500 void intel_update_watermarks(struct drm_crtc *crtc)
4501 {
4502 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4503
4504 if (dev_priv->display.update_wm)
4505 dev_priv->display.update_wm(crtc);
4506 }
4507
4508 /*
4509 * Lock protecting IPS related data structures
4510 */
4511 DEFINE_SPINLOCK(mchdev_lock);
4512
4513 /* Global for IPS driver to get at the current i915 device. Protected by
4514 * mchdev_lock. */
4515 static struct drm_i915_private *i915_mch_dev;
4516
4517 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4518 {
4519 u16 rgvswctl;
4520
4521 assert_spin_locked(&mchdev_lock);
4522
4523 rgvswctl = I915_READ16(MEMSWCTL);
4524 if (rgvswctl & MEMCTL_CMD_STS) {
4525 DRM_DEBUG("gpu busy, RCS change rejected\n");
4526 return false; /* still busy with another command */
4527 }
4528
4529 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4530 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4531 I915_WRITE16(MEMSWCTL, rgvswctl);
4532 POSTING_READ16(MEMSWCTL);
4533
4534 rgvswctl |= MEMCTL_CMD_STS;
4535 I915_WRITE16(MEMSWCTL, rgvswctl);
4536
4537 return true;
4538 }
4539
4540 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4541 {
4542 u32 rgvmodectl;
4543 u8 fmax, fmin, fstart, vstart;
4544
4545 spin_lock_irq(&mchdev_lock);
4546
4547 rgvmodectl = I915_READ(MEMMODECTL);
4548
4549 /* Enable temp reporting */
4550 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4551 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4552
4553 /* 100ms RC evaluation intervals */
4554 I915_WRITE(RCUPEI, 100000);
4555 I915_WRITE(RCDNEI, 100000);
4556
4557 /* Set max/min thresholds to 90ms and 80ms respectively */
4558 I915_WRITE(RCBMAXAVG, 90000);
4559 I915_WRITE(RCBMINAVG, 80000);
4560
4561 I915_WRITE(MEMIHYST, 1);
4562
4563 /* Set up min, max, and cur for interrupt handling */
4564 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4565 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4566 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4567 MEMMODE_FSTART_SHIFT;
4568
4569 vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4570 PXVFREQ_PX_SHIFT;
4571
4572 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4573 dev_priv->ips.fstart = fstart;
4574
4575 dev_priv->ips.max_delay = fstart;
4576 dev_priv->ips.min_delay = fmin;
4577 dev_priv->ips.cur_delay = fstart;
4578
4579 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4580 fmax, fmin, fstart);
4581
4582 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4583
4584 /*
4585 * Interrupts will be enabled in ironlake_irq_postinstall
4586 */
4587
4588 I915_WRITE(VIDSTART, vstart);
4589 POSTING_READ(VIDSTART);
4590
4591 rgvmodectl |= MEMMODE_SWMODE_EN;
4592 I915_WRITE(MEMMODECTL, rgvmodectl);
4593
4594 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4595 DRM_ERROR("stuck trying to change perf mode\n");
4596 mdelay(1);
4597
4598 ironlake_set_drps(dev_priv, fstart);
4599
4600 dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4601 I915_READ(DDREC) + I915_READ(CSIEC);
4602 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4603 dev_priv->ips.last_count2 = I915_READ(GFXEC);
4604 dev_priv->ips.last_time2 = ktime_get_raw_ns();
4605
4606 spin_unlock_irq(&mchdev_lock);
4607 }
4608
4609 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4610 {
4611 u16 rgvswctl;
4612
4613 spin_lock_irq(&mchdev_lock);
4614
4615 rgvswctl = I915_READ16(MEMSWCTL);
4616
4617 /* Ack interrupts, disable EFC interrupt */
4618 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4619 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4620 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4621 I915_WRITE(DEIIR, DE_PCU_EVENT);
4622 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4623
4624 /* Go back to the starting frequency */
4625 ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4626 mdelay(1);
4627 rgvswctl |= MEMCTL_CMD_STS;
4628 I915_WRITE(MEMSWCTL, rgvswctl);
4629 mdelay(1);
4630
4631 spin_unlock_irq(&mchdev_lock);
4632 }
4633
4634 /* There's a funny hw issue where the hw returns all 0 when reading from
4635 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4636 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4637 * all limits and the gpu stuck at whatever frequency it is at atm).
4638 */
4639 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4640 {
4641 u32 limits;
4642
4643 /* Only set the down limit when we've reached the lowest level to avoid
4644 * getting more interrupts, otherwise leave this clear. This prevents a
4645 * race in the hw when coming out of rc6: There's a tiny window where
4646 * the hw runs at the minimal clock before selecting the desired
4647 * frequency, if the down threshold expires in that window we will not
4648 * receive a down interrupt. */
4649 if (IS_GEN9(dev_priv)) {
4650 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4651 if (val <= dev_priv->rps.min_freq_softlimit)
4652 limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4653 } else {
4654 limits = dev_priv->rps.max_freq_softlimit << 24;
4655 if (val <= dev_priv->rps.min_freq_softlimit)
4656 limits |= dev_priv->rps.min_freq_softlimit << 16;
4657 }
4658
4659 return limits;
4660 }
4661
4662 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4663 {
4664 int new_power;
4665 u32 threshold_up = 0, threshold_down = 0; /* in % */
4666 u32 ei_up = 0, ei_down = 0;
4667
4668 new_power = dev_priv->rps.power;
4669 switch (dev_priv->rps.power) {
4670 case LOW_POWER:
4671 if (val > dev_priv->rps.efficient_freq + 1 &&
4672 val > dev_priv->rps.cur_freq)
4673 new_power = BETWEEN;
4674 break;
4675
4676 case BETWEEN:
4677 if (val <= dev_priv->rps.efficient_freq &&
4678 val < dev_priv->rps.cur_freq)
4679 new_power = LOW_POWER;
4680 else if (val >= dev_priv->rps.rp0_freq &&
4681 val > dev_priv->rps.cur_freq)
4682 new_power = HIGH_POWER;
4683 break;
4684
4685 case HIGH_POWER:
4686 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
4687 val < dev_priv->rps.cur_freq)
4688 new_power = BETWEEN;
4689 break;
4690 }
4691 /* Max/min bins are special */
4692 if (val <= dev_priv->rps.min_freq_softlimit)
4693 new_power = LOW_POWER;
4694 if (val >= dev_priv->rps.max_freq_softlimit)
4695 new_power = HIGH_POWER;
4696 if (new_power == dev_priv->rps.power)
4697 return;
4698
4699 /* Note the units here are not exactly 1us, but 1280ns. */
4700 switch (new_power) {
4701 case LOW_POWER:
4702 /* Upclock if more than 95% busy over 16ms */
4703 ei_up = 16000;
4704 threshold_up = 95;
4705
4706 /* Downclock if less than 85% busy over 32ms */
4707 ei_down = 32000;
4708 threshold_down = 85;
4709 break;
4710
4711 case BETWEEN:
4712 /* Upclock if more than 90% busy over 13ms */
4713 ei_up = 13000;
4714 threshold_up = 90;
4715
4716 /* Downclock if less than 75% busy over 32ms */
4717 ei_down = 32000;
4718 threshold_down = 75;
4719 break;
4720
4721 case HIGH_POWER:
4722 /* Upclock if more than 85% busy over 10ms */
4723 ei_up = 10000;
4724 threshold_up = 85;
4725
4726 /* Downclock if less than 60% busy over 32ms */
4727 ei_down = 32000;
4728 threshold_down = 60;
4729 break;
4730 }
4731
4732 I915_WRITE(GEN6_RP_UP_EI,
4733 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4734 I915_WRITE(GEN6_RP_UP_THRESHOLD,
4735 GT_INTERVAL_FROM_US(dev_priv,
4736 ei_up * threshold_up / 100));
4737
4738 I915_WRITE(GEN6_RP_DOWN_EI,
4739 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4740 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4741 GT_INTERVAL_FROM_US(dev_priv,
4742 ei_down * threshold_down / 100));
4743
4744 I915_WRITE(GEN6_RP_CONTROL,
4745 GEN6_RP_MEDIA_TURBO |
4746 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4747 GEN6_RP_MEDIA_IS_GFX |
4748 GEN6_RP_ENABLE |
4749 GEN6_RP_UP_BUSY_AVG |
4750 GEN6_RP_DOWN_IDLE_AVG);
4751
4752 dev_priv->rps.power = new_power;
4753 dev_priv->rps.up_threshold = threshold_up;
4754 dev_priv->rps.down_threshold = threshold_down;
4755 dev_priv->rps.last_adj = 0;
4756 }
4757
4758 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4759 {
4760 u32 mask = 0;
4761
4762 if (val > dev_priv->rps.min_freq_softlimit)
4763 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4764 if (val < dev_priv->rps.max_freq_softlimit)
4765 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4766
4767 mask &= dev_priv->pm_rps_events;
4768
4769 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4770 }
4771
4772 /* gen6_set_rps is called to update the frequency request, but should also be
4773 * called when the range (min_delay and max_delay) is modified so that we can
4774 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4775 static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4776 {
4777 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4778 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4779 return;
4780
4781 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4782 WARN_ON(val > dev_priv->rps.max_freq);
4783 WARN_ON(val < dev_priv->rps.min_freq);
4784
4785 /* min/max delay may still have been modified so be sure to
4786 * write the limits value.
4787 */
4788 if (val != dev_priv->rps.cur_freq) {
4789 gen6_set_rps_thresholds(dev_priv, val);
4790
4791 if (IS_GEN9(dev_priv))
4792 I915_WRITE(GEN6_RPNSWREQ,
4793 GEN9_FREQUENCY(val));
4794 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4795 I915_WRITE(GEN6_RPNSWREQ,
4796 HSW_FREQUENCY(val));
4797 else
4798 I915_WRITE(GEN6_RPNSWREQ,
4799 GEN6_FREQUENCY(val) |
4800 GEN6_OFFSET(0) |
4801 GEN6_AGGRESSIVE_TURBO);
4802 }
4803
4804 /* Make sure we continue to get interrupts
4805 * until we hit the minimum or maximum frequencies.
4806 */
4807 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4808 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4809
4810 POSTING_READ(GEN6_RPNSWREQ);
4811
4812 dev_priv->rps.cur_freq = val;
4813 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4814 }
4815
4816 static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4817 {
4818 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4819 WARN_ON(val > dev_priv->rps.max_freq);
4820 WARN_ON(val < dev_priv->rps.min_freq);
4821
4822 if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4823 "Odd GPU freq value\n"))
4824 val &= ~1;
4825
4826 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4827
4828 if (val != dev_priv->rps.cur_freq) {
4829 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4830 if (!IS_CHERRYVIEW(dev_priv))
4831 gen6_set_rps_thresholds(dev_priv, val);
4832 }
4833
4834 dev_priv->rps.cur_freq = val;
4835 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4836 }
4837
4838 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4839 *
4840 * * If Gfx is Idle, then
4841 * 1. Forcewake Media well.
4842 * 2. Request idle freq.
4843 * 3. Release Forcewake of Media well.
4844 */
4845 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4846 {
4847 u32 val = dev_priv->rps.idle_freq;
4848
4849 if (dev_priv->rps.cur_freq <= val)
4850 return;
4851
4852 /* Wake up the media well, as that takes a lot less
4853 * power than the Render well. */
4854 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4855 valleyview_set_rps(dev_priv, val);
4856 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4857 }
4858
4859 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4860 {
4861 mutex_lock(&dev_priv->rps.hw_lock);
4862 if (dev_priv->rps.enabled) {
4863 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4864 gen6_rps_reset_ei(dev_priv);
4865 I915_WRITE(GEN6_PMINTRMSK,
4866 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4867
4868 gen6_enable_rps_interrupts(dev_priv);
4869
4870 /* Ensure we start at the user's desired frequency */
4871 intel_set_rps(dev_priv,
4872 clamp(dev_priv->rps.cur_freq,
4873 dev_priv->rps.min_freq_softlimit,
4874 dev_priv->rps.max_freq_softlimit));
4875 }
4876 mutex_unlock(&dev_priv->rps.hw_lock);
4877 }
4878
4879 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4880 {
4881 /* Flush our bottom-half so that it does not race with us
4882 * setting the idle frequency and so that it is bounded by
4883 * our rpm wakeref. And then disable the interrupts to stop any
4884 * futher RPS reclocking whilst we are asleep.
4885 */
4886 gen6_disable_rps_interrupts(dev_priv);
4887
4888 mutex_lock(&dev_priv->rps.hw_lock);
4889 if (dev_priv->rps.enabled) {
4890 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4891 vlv_set_rps_idle(dev_priv);
4892 else
4893 gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
4894 dev_priv->rps.last_adj = 0;
4895 I915_WRITE(GEN6_PMINTRMSK,
4896 gen6_sanitize_rps_pm_mask(dev_priv, ~0));
4897 }
4898 mutex_unlock(&dev_priv->rps.hw_lock);
4899
4900 spin_lock(&dev_priv->rps.client_lock);
4901 while (!list_empty(&dev_priv->rps.clients))
4902 list_del_init(dev_priv->rps.clients.next);
4903 spin_unlock(&dev_priv->rps.client_lock);
4904 }
4905
4906 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4907 struct intel_rps_client *rps,
4908 unsigned long submitted)
4909 {
4910 /* This is intentionally racy! We peek at the state here, then
4911 * validate inside the RPS worker.
4912 */
4913 if (!(dev_priv->gt.awake &&
4914 dev_priv->rps.enabled &&
4915 dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4916 return;
4917
4918 /* Force a RPS boost (and don't count it against the client) if
4919 * the GPU is severely congested.
4920 */
4921 if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4922 rps = NULL;
4923
4924 spin_lock(&dev_priv->rps.client_lock);
4925 if (rps == NULL || list_empty(&rps->link)) {
4926 spin_lock_irq(&dev_priv->irq_lock);
4927 if (dev_priv->rps.interrupts_enabled) {
4928 dev_priv->rps.client_boost = true;
4929 schedule_work(&dev_priv->rps.work);
4930 }
4931 spin_unlock_irq(&dev_priv->irq_lock);
4932
4933 if (rps != NULL) {
4934 list_add(&rps->link, &dev_priv->rps.clients);
4935 rps->boosts++;
4936 } else
4937 dev_priv->rps.boosts++;
4938 }
4939 spin_unlock(&dev_priv->rps.client_lock);
4940 }
4941
4942 void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
4943 {
4944 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4945 valleyview_set_rps(dev_priv, val);
4946 else
4947 gen6_set_rps(dev_priv, val);
4948 }
4949
4950 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
4951 {
4952 I915_WRITE(GEN6_RC_CONTROL, 0);
4953 I915_WRITE(GEN9_PG_ENABLE, 0);
4954 }
4955
4956 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
4957 {
4958 I915_WRITE(GEN6_RP_CONTROL, 0);
4959 }
4960
4961 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
4962 {
4963 I915_WRITE(GEN6_RC_CONTROL, 0);
4964 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4965 I915_WRITE(GEN6_RP_CONTROL, 0);
4966 }
4967
4968 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
4969 {
4970 I915_WRITE(GEN6_RC_CONTROL, 0);
4971 }
4972
4973 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
4974 {
4975 /* we're doing forcewake before Disabling RC6,
4976 * This what the BIOS expects when going into suspend */
4977 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4978
4979 I915_WRITE(GEN6_RC_CONTROL, 0);
4980
4981 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4982 }
4983
4984 static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
4985 {
4986 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4987 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4988 mode = GEN6_RC_CTL_RC6_ENABLE;
4989 else
4990 mode = 0;
4991 }
4992 if (HAS_RC6p(dev_priv))
4993 DRM_DEBUG_DRIVER("Enabling RC6 states: "
4994 "RC6 %s RC6p %s RC6pp %s\n",
4995 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
4996 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
4997 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
4998
4999 else
5000 DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
5001 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
5002 }
5003
5004 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5005 {
5006 struct i915_ggtt *ggtt = &dev_priv->ggtt;
5007 bool enable_rc6 = true;
5008 unsigned long rc6_ctx_base;
5009 u32 rc_ctl;
5010 int rc_sw_target;
5011
5012 rc_ctl = I915_READ(GEN6_RC_CONTROL);
5013 rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
5014 RC_SW_TARGET_STATE_SHIFT;
5015 DRM_DEBUG_DRIVER("BIOS enabled RC states: "
5016 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
5017 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
5018 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
5019 rc_sw_target);
5020
5021 if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5022 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5023 enable_rc6 = false;
5024 }
5025
5026 /*
5027 * The exact context size is not known for BXT, so assume a page size
5028 * for this check.
5029 */
5030 rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5031 if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
5032 (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
5033 ggtt->stolen_reserved_size))) {
5034 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5035 enable_rc6 = false;
5036 }
5037
5038 if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
5039 ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
5040 ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
5041 ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5042 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5043 enable_rc6 = false;
5044 }
5045
5046 if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
5047 !I915_READ(GEN8_PUSHBUS_ENABLE) ||
5048 !I915_READ(GEN8_PUSHBUS_SHIFT)) {
5049 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
5050 enable_rc6 = false;
5051 }
5052
5053 if (!I915_READ(GEN6_GFXPAUSE)) {
5054 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
5055 enable_rc6 = false;
5056 }
5057
5058 if (!I915_READ(GEN8_MISC_CTRL0)) {
5059 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5060 enable_rc6 = false;
5061 }
5062
5063 return enable_rc6;
5064 }
5065
5066 int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5067 {
5068 /* No RC6 before Ironlake and code is gone for ilk. */
5069 if (INTEL_INFO(dev_priv)->gen < 6)
5070 return 0;
5071
5072 if (!enable_rc6)
5073 return 0;
5074
5075 if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5076 DRM_INFO("RC6 disabled by BIOS\n");
5077 return 0;
5078 }
5079
5080 /* Respect the kernel parameter if it is set */
5081 if (enable_rc6 >= 0) {
5082 int mask;
5083
5084 if (HAS_RC6p(dev_priv))
5085 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
5086 INTEL_RC6pp_ENABLE;
5087 else
5088 mask = INTEL_RC6_ENABLE;
5089
5090 if ((enable_rc6 & mask) != enable_rc6)
5091 DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
5092 "(requested %d, valid %d)\n",
5093 enable_rc6 & mask, enable_rc6, mask);
5094
5095 return enable_rc6 & mask;
5096 }
5097
5098 if (IS_IVYBRIDGE(dev_priv))
5099 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5100
5101 return INTEL_RC6_ENABLE;
5102 }
5103
5104 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5105 {
5106 uint32_t rp_state_cap;
5107 u32 ddcc_status = 0;
5108 int ret;
5109
5110 /* All of these values are in units of 50MHz */
5111 dev_priv->rps.cur_freq = 0;
5112 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
5113 if (IS_BROXTON(dev_priv)) {
5114 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5115 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
5116 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
5117 dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
5118 } else {
5119 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5120 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
5121 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
5122 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
5123 }
5124
5125 /* hw_max = RP0 until we check for overclocking */
5126 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5127
5128 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5129 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
5130 IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5131 ret = sandybridge_pcode_read(dev_priv,
5132 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
5133 &ddcc_status);
5134 if (0 == ret)
5135 dev_priv->rps.efficient_freq =
5136 clamp_t(u8,
5137 ((ddcc_status >> 8) & 0xff),
5138 dev_priv->rps.min_freq,
5139 dev_priv->rps.max_freq);
5140 }
5141
5142 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5143 /* Store the frequency values in 16.66 MHZ units, which is
5144 the natural hardware unit for SKL */
5145 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
5146 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
5147 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
5148 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
5149 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
5150 }
5151
5152 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5153
5154 /* Preserve min/max settings in case of re-init */
5155 if (dev_priv->rps.max_freq_softlimit == 0)
5156 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5157
5158 if (dev_priv->rps.min_freq_softlimit == 0) {
5159 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5160 dev_priv->rps.min_freq_softlimit =
5161 max_t(int, dev_priv->rps.efficient_freq,
5162 intel_freq_opcode(dev_priv, 450));
5163 else
5164 dev_priv->rps.min_freq_softlimit =
5165 dev_priv->rps.min_freq;
5166 }
5167 }
5168
5169 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
5170 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
5171 {
5172 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5173
5174 gen6_init_rps_frequencies(dev_priv);
5175
5176 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5177 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5178 /*
5179 * BIOS could leave the Hw Turbo enabled, so need to explicitly
5180 * clear out the Control register just to avoid inconsitency
5181 * with debugfs interface, which will show Turbo as enabled
5182 * only and that is not expected by the User after adding the
5183 * WaGsvDisableTurbo. Apart from this there is no problem even
5184 * if the Turbo is left enabled in the Control register, as the
5185 * Up/Down interrupts would remain masked.
5186 */
5187 gen9_disable_rps(dev_priv);
5188 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5189 return;
5190 }
5191
5192 /* Program defaults and thresholds for RPS*/
5193 I915_WRITE(GEN6_RC_VIDEO_FREQ,
5194 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
5195
5196 /* 1 second timeout*/
5197 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
5198 GT_INTERVAL_FROM_US(dev_priv, 1000000));
5199
5200 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
5201
5202 /* Leaning on the below call to gen6_set_rps to program/setup the
5203 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
5204 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5205 dev_priv->rps.power = HIGH_POWER; /* force a reset */
5206 gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5207
5208 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5209 }
5210
5211 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
5212 {
5213 struct intel_engine_cs *engine;
5214 uint32_t rc6_mask = 0;
5215
5216 /* 1a: Software RC state - RC0 */
5217 I915_WRITE(GEN6_RC_STATE, 0);
5218
5219 /* 1b: Get forcewake during program sequence. Although the driver
5220 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5221 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5222
5223 /* 2a: Disable RC states. */
5224 I915_WRITE(GEN6_RC_CONTROL, 0);
5225
5226 /* 2b: Program RC6 thresholds.*/
5227
5228 /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5229 if (IS_SKYLAKE(dev_priv))
5230 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
5231 else
5232 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
5233 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5234 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5235 for_each_engine(engine, dev_priv)
5236 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5237
5238 if (HAS_GUC(dev_priv))
5239 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
5240
5241 I915_WRITE(GEN6_RC_SLEEP, 0);
5242
5243 /* 2c: Program Coarse Power Gating Policies. */
5244 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
5245 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
5246
5247 /* 3a: Enable RC6 */
5248 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5249 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5250 DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5251 /* WaRsUseTimeoutMode */
5252 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
5253 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5254 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
5255 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5256 GEN7_RC_CTL_TO_MODE |
5257 rc6_mask);
5258 } else {
5259 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
5260 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5261 GEN6_RC_CTL_EI_MODE(1) |
5262 rc6_mask);
5263 }
5264
5265 /*
5266 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5267 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5268 */
5269 if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5270 I915_WRITE(GEN9_PG_ENABLE, 0);
5271 else
5272 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
5273 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5274
5275 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5276 }
5277
5278 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5279 {
5280 struct intel_engine_cs *engine;
5281 uint32_t rc6_mask = 0;
5282
5283 /* 1a: Software RC state - RC0 */
5284 I915_WRITE(GEN6_RC_STATE, 0);
5285
5286 /* 1c & 1d: Get forcewake during program sequence. Although the driver
5287 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5288 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5289
5290 /* 2a: Disable RC states. */
5291 I915_WRITE(GEN6_RC_CONTROL, 0);
5292
5293 /* Initialize rps frequencies */
5294 gen6_init_rps_frequencies(dev_priv);
5295
5296 /* 2b: Program RC6 thresholds.*/
5297 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5298 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5299 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5300 for_each_engine(engine, dev_priv)
5301 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5302 I915_WRITE(GEN6_RC_SLEEP, 0);
5303 if (IS_BROADWELL(dev_priv))
5304 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
5305 else
5306 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5307
5308 /* 3: Enable RC6 */
5309 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5310 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5311 intel_print_rc6_info(dev_priv, rc6_mask);
5312 if (IS_BROADWELL(dev_priv))
5313 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5314 GEN7_RC_CTL_TO_MODE |
5315 rc6_mask);
5316 else
5317 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5318 GEN6_RC_CTL_EI_MODE(1) |
5319 rc6_mask);
5320
5321 /* 4 Program defaults and thresholds for RPS*/
5322 I915_WRITE(GEN6_RPNSWREQ,
5323 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5324 I915_WRITE(GEN6_RC_VIDEO_FREQ,
5325 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5326 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
5327 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
5328
5329 /* Docs recommend 900MHz, and 300 MHz respectively */
5330 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5331 dev_priv->rps.max_freq_softlimit << 24 |
5332 dev_priv->rps.min_freq_softlimit << 16);
5333
5334 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
5335 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
5336 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
5337 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
5338
5339 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5340
5341 /* 5: Enable RPS */
5342 I915_WRITE(GEN6_RP_CONTROL,
5343 GEN6_RP_MEDIA_TURBO |
5344 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5345 GEN6_RP_MEDIA_IS_GFX |
5346 GEN6_RP_ENABLE |
5347 GEN6_RP_UP_BUSY_AVG |
5348 GEN6_RP_DOWN_IDLE_AVG);
5349
5350 /* 6: Ring frequency + overclocking (our driver does this later */
5351
5352 dev_priv->rps.power = HIGH_POWER; /* force a reset */
5353 gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5354
5355 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5356 }
5357
5358 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5359 {
5360 struct intel_engine_cs *engine;
5361 u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
5362 u32 gtfifodbg;
5363 int rc6_mode;
5364 int ret;
5365
5366 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5367
5368 /* Here begins a magic sequence of register writes to enable
5369 * auto-downclocking.
5370 *
5371 * Perhaps there might be some value in exposing these to
5372 * userspace...
5373 */
5374 I915_WRITE(GEN6_RC_STATE, 0);
5375
5376 /* Clear the DBG now so we don't confuse earlier errors */
5377 gtfifodbg = I915_READ(GTFIFODBG);
5378 if (gtfifodbg) {
5379 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5380 I915_WRITE(GTFIFODBG, gtfifodbg);
5381 }
5382
5383 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5384
5385 /* Initialize rps frequencies */
5386 gen6_init_rps_frequencies(dev_priv);
5387
5388 /* disable the counters and set deterministic thresholds */
5389 I915_WRITE(GEN6_RC_CONTROL, 0);
5390
5391 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5392 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5393 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5394 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5395 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5396
5397 for_each_engine(engine, dev_priv)
5398 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5399
5400 I915_WRITE(GEN6_RC_SLEEP, 0);
5401 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5402 if (IS_IVYBRIDGE(dev_priv))
5403 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5404 else
5405 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5406 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5407 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5408
5409 /* Check if we are enabling RC6 */
5410 rc6_mode = intel_enable_rc6();
5411 if (rc6_mode & INTEL_RC6_ENABLE)
5412 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5413
5414 /* We don't use those on Haswell */
5415 if (!IS_HASWELL(dev_priv)) {
5416 if (rc6_mode & INTEL_RC6p_ENABLE)
5417 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5418
5419 if (rc6_mode & INTEL_RC6pp_ENABLE)
5420 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5421 }
5422
5423 intel_print_rc6_info(dev_priv, rc6_mask);
5424
5425 I915_WRITE(GEN6_RC_CONTROL,
5426 rc6_mask |
5427 GEN6_RC_CTL_EI_MODE(1) |
5428 GEN6_RC_CTL_HW_ENABLE);
5429
5430 /* Power down if completely idle for over 50ms */
5431 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5432 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5433
5434 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5435 if (ret)
5436 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5437
5438 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5439 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5440 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5441 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5442 (pcu_mbox & 0xff) * 50);
5443 dev_priv->rps.max_freq = pcu_mbox & 0xff;
5444 }
5445
5446 dev_priv->rps.power = HIGH_POWER; /* force a reset */
5447 gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5448
5449 rc6vids = 0;
5450 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5451 if (IS_GEN6(dev_priv) && ret) {
5452 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5453 } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5454 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5455 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5456 rc6vids &= 0xffff00;
5457 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5458 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5459 if (ret)
5460 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5461 }
5462
5463 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5464 }
5465
5466 static void __gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5467 {
5468 int min_freq = 15;
5469 unsigned int gpu_freq;
5470 unsigned int max_ia_freq, min_ring_freq;
5471 unsigned int max_gpu_freq, min_gpu_freq;
5472 int scaling_factor = 180;
5473 struct cpufreq_policy *policy;
5474
5475 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5476
5477 policy = cpufreq_cpu_get(0);
5478 if (policy) {
5479 max_ia_freq = policy->cpuinfo.max_freq;
5480 cpufreq_cpu_put(policy);
5481 } else {
5482 /*
5483 * Default to measured freq if none found, PCU will ensure we
5484 * don't go over
5485 */
5486 max_ia_freq = tsc_khz;
5487 }
5488
5489 /* Convert from kHz to MHz */
5490 max_ia_freq /= 1000;
5491
5492 min_ring_freq = I915_READ(DCLK) & 0xf;
5493 /* convert DDR frequency from units of 266.6MHz to bandwidth */
5494 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5495
5496 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5497 /* Convert GT frequency to 50 HZ units */
5498 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5499 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5500 } else {
5501 min_gpu_freq = dev_priv->rps.min_freq;
5502 max_gpu_freq = dev_priv->rps.max_freq;
5503 }
5504
5505 /*
5506 * For each potential GPU frequency, load a ring frequency we'd like
5507 * to use for memory access. We do this by specifying the IA frequency
5508 * the PCU should use as a reference to determine the ring frequency.
5509 */
5510 for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5511 int diff = max_gpu_freq - gpu_freq;
5512 unsigned int ia_freq = 0, ring_freq = 0;
5513
5514 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5515 /*
5516 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5517 * No floor required for ring frequency on SKL.
5518 */
5519 ring_freq = gpu_freq;
5520 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
5521 /* max(2 * GT, DDR). NB: GT is 50MHz units */
5522 ring_freq = max(min_ring_freq, gpu_freq);
5523 } else if (IS_HASWELL(dev_priv)) {
5524 ring_freq = mult_frac(gpu_freq, 5, 4);
5525 ring_freq = max(min_ring_freq, ring_freq);
5526 /* leave ia_freq as the default, chosen by cpufreq */
5527 } else {
5528 /* On older processors, there is no separate ring
5529 * clock domain, so in order to boost the bandwidth
5530 * of the ring, we need to upclock the CPU (ia_freq).
5531 *
5532 * For GPU frequencies less than 750MHz,
5533 * just use the lowest ring freq.
5534 */
5535 if (gpu_freq < min_freq)
5536 ia_freq = 800;
5537 else
5538 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5539 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5540 }
5541
5542 sandybridge_pcode_write(dev_priv,
5543 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5544 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5545 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5546 gpu_freq);
5547 }
5548 }
5549
5550 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5551 {
5552 if (!HAS_CORE_RING_FREQ(dev_priv))
5553 return;
5554
5555 mutex_lock(&dev_priv->rps.hw_lock);
5556 __gen6_update_ring_freq(dev_priv);
5557 mutex_unlock(&dev_priv->rps.hw_lock);
5558 }
5559
5560 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5561 {
5562 u32 val, rp0;
5563
5564 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5565
5566 switch (INTEL_INFO(dev_priv)->eu_total) {
5567 case 8:
5568 /* (2 * 4) config */
5569 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5570 break;
5571 case 12:
5572 /* (2 * 6) config */
5573 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5574 break;
5575 case 16:
5576 /* (2 * 8) config */
5577 default:
5578 /* Setting (2 * 8) Min RP0 for any other combination */
5579 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5580 break;
5581 }
5582
5583 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5584
5585 return rp0;
5586 }
5587
5588 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5589 {
5590 u32 val, rpe;
5591
5592 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5593 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5594
5595 return rpe;
5596 }
5597
5598 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5599 {
5600 u32 val, rp1;
5601
5602 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5603 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5604
5605 return rp1;
5606 }
5607
5608 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5609 {
5610 u32 val, rp1;
5611
5612 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5613
5614 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5615
5616 return rp1;
5617 }
5618
5619 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5620 {
5621 u32 val, rp0;
5622
5623 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5624
5625 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5626 /* Clamp to max */
5627 rp0 = min_t(u32, rp0, 0xea);
5628
5629 return rp0;
5630 }
5631
5632 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5633 {
5634 u32 val, rpe;
5635
5636 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5637 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5638 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5639 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5640
5641 return rpe;
5642 }
5643
5644 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5645 {
5646 u32 val;
5647
5648 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5649 /*
5650 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5651 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5652 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5653 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5654 * to make sure it matches what Punit accepts.
5655 */
5656 return max_t(u32, val, 0xc0);
5657 }
5658
5659 /* Check that the pctx buffer wasn't move under us. */
5660 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5661 {
5662 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5663
5664 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5665 dev_priv->vlv_pctx->stolen->start);
5666 }
5667
5668
5669 /* Check that the pcbr address is not empty. */
5670 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5671 {
5672 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5673
5674 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5675 }
5676
5677 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5678 {
5679 struct i915_ggtt *ggtt = &dev_priv->ggtt;
5680 unsigned long pctx_paddr, paddr;
5681 u32 pcbr;
5682 int pctx_size = 32*1024;
5683
5684 pcbr = I915_READ(VLV_PCBR);
5685 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5686 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5687 paddr = (dev_priv->mm.stolen_base +
5688 (ggtt->stolen_size - pctx_size));
5689
5690 pctx_paddr = (paddr & (~4095));
5691 I915_WRITE(VLV_PCBR, pctx_paddr);
5692 }
5693
5694 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5695 }
5696
5697 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5698 {
5699 struct drm_i915_gem_object *pctx;
5700 unsigned long pctx_paddr;
5701 u32 pcbr;
5702 int pctx_size = 24*1024;
5703
5704 mutex_lock(&dev_priv->drm.struct_mutex);
5705
5706 pcbr = I915_READ(VLV_PCBR);
5707 if (pcbr) {
5708 /* BIOS set it up already, grab the pre-alloc'd space */
5709 int pcbr_offset;
5710
5711 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5712 pctx = i915_gem_object_create_stolen_for_preallocated(&dev_priv->drm,
5713 pcbr_offset,
5714 I915_GTT_OFFSET_NONE,
5715 pctx_size);
5716 goto out;
5717 }
5718
5719 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5720
5721 /*
5722 * From the Gunit register HAS:
5723 * The Gfx driver is expected to program this register and ensure
5724 * proper allocation within Gfx stolen memory. For example, this
5725 * register should be programmed such than the PCBR range does not
5726 * overlap with other ranges, such as the frame buffer, protected
5727 * memory, or any other relevant ranges.
5728 */
5729 pctx = i915_gem_object_create_stolen(&dev_priv->drm, pctx_size);
5730 if (!pctx) {
5731 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5732 goto out;
5733 }
5734
5735 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5736 I915_WRITE(VLV_PCBR, pctx_paddr);
5737
5738 out:
5739 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5740 dev_priv->vlv_pctx = pctx;
5741 mutex_unlock(&dev_priv->drm.struct_mutex);
5742 }
5743
5744 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5745 {
5746 if (WARN_ON(!dev_priv->vlv_pctx))
5747 return;
5748
5749 drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5750 dev_priv->vlv_pctx = NULL;
5751 }
5752
5753 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
5754 {
5755 dev_priv->rps.gpll_ref_freq =
5756 vlv_get_cck_clock(dev_priv, "GPLL ref",
5757 CCK_GPLL_CLOCK_CONTROL,
5758 dev_priv->czclk_freq);
5759
5760 DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
5761 dev_priv->rps.gpll_ref_freq);
5762 }
5763
5764 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5765 {
5766 u32 val;
5767
5768 valleyview_setup_pctx(dev_priv);
5769
5770 vlv_init_gpll_ref_freq(dev_priv);
5771
5772 mutex_lock(&dev_priv->rps.hw_lock);
5773
5774 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5775 switch ((val >> 6) & 3) {
5776 case 0:
5777 case 1:
5778 dev_priv->mem_freq = 800;
5779 break;
5780 case 2:
5781 dev_priv->mem_freq = 1066;
5782 break;
5783 case 3:
5784 dev_priv->mem_freq = 1333;
5785 break;
5786 }
5787 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5788
5789 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5790 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5791 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5792 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5793 dev_priv->rps.max_freq);
5794
5795 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5796 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5797 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5798 dev_priv->rps.efficient_freq);
5799
5800 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5801 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5802 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5803 dev_priv->rps.rp1_freq);
5804
5805 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5806 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5807 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5808 dev_priv->rps.min_freq);
5809
5810 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5811
5812 /* Preserve min/max settings in case of re-init */
5813 if (dev_priv->rps.max_freq_softlimit == 0)
5814 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5815
5816 if (dev_priv->rps.min_freq_softlimit == 0)
5817 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5818
5819 mutex_unlock(&dev_priv->rps.hw_lock);
5820 }
5821
5822 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5823 {
5824 u32 val;
5825
5826 cherryview_setup_pctx(dev_priv);
5827
5828 vlv_init_gpll_ref_freq(dev_priv);
5829
5830 mutex_lock(&dev_priv->rps.hw_lock);
5831
5832 mutex_lock(&dev_priv->sb_lock);
5833 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5834 mutex_unlock(&dev_priv->sb_lock);
5835
5836 switch ((val >> 2) & 0x7) {
5837 case 3:
5838 dev_priv->mem_freq = 2000;
5839 break;
5840 default:
5841 dev_priv->mem_freq = 1600;
5842 break;
5843 }
5844 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5845
5846 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5847 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5848 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5849 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5850 dev_priv->rps.max_freq);
5851
5852 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5853 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5854 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5855 dev_priv->rps.efficient_freq);
5856
5857 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5858 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5859 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5860 dev_priv->rps.rp1_freq);
5861
5862 /* PUnit validated range is only [RPe, RP0] */
5863 dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5864 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5865 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5866 dev_priv->rps.min_freq);
5867
5868 WARN_ONCE((dev_priv->rps.max_freq |
5869 dev_priv->rps.efficient_freq |
5870 dev_priv->rps.rp1_freq |
5871 dev_priv->rps.min_freq) & 1,
5872 "Odd GPU freq values\n");
5873
5874 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5875
5876 /* Preserve min/max settings in case of re-init */
5877 if (dev_priv->rps.max_freq_softlimit == 0)
5878 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5879
5880 if (dev_priv->rps.min_freq_softlimit == 0)
5881 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5882
5883 mutex_unlock(&dev_priv->rps.hw_lock);
5884 }
5885
5886 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5887 {
5888 valleyview_cleanup_pctx(dev_priv);
5889 }
5890
5891 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5892 {
5893 struct intel_engine_cs *engine;
5894 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5895
5896 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5897
5898 gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
5899 GT_FIFO_FREE_ENTRIES_CHV);
5900 if (gtfifodbg) {
5901 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5902 gtfifodbg);
5903 I915_WRITE(GTFIFODBG, gtfifodbg);
5904 }
5905
5906 cherryview_check_pctx(dev_priv);
5907
5908 /* 1a & 1b: Get forcewake during program sequence. Although the driver
5909 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5910 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5911
5912 /* Disable RC states. */
5913 I915_WRITE(GEN6_RC_CONTROL, 0);
5914
5915 /* 2a: Program RC6 thresholds.*/
5916 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5917 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5918 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5919
5920 for_each_engine(engine, dev_priv)
5921 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5922 I915_WRITE(GEN6_RC_SLEEP, 0);
5923
5924 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5925 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5926
5927 /* allows RC6 residency counter to work */
5928 I915_WRITE(VLV_COUNTER_CONTROL,
5929 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5930 VLV_MEDIA_RC6_COUNT_EN |
5931 VLV_RENDER_RC6_COUNT_EN));
5932
5933 /* For now we assume BIOS is allocating and populating the PCBR */
5934 pcbr = I915_READ(VLV_PCBR);
5935
5936 /* 3: Enable RC6 */
5937 if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
5938 (pcbr >> VLV_PCBR_ADDR_SHIFT))
5939 rc6_mode = GEN7_RC_CTL_TO_MODE;
5940
5941 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5942
5943 /* 4 Program defaults and thresholds for RPS*/
5944 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5945 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5946 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5947 I915_WRITE(GEN6_RP_UP_EI, 66000);
5948 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5949
5950 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5951
5952 /* 5: Enable RPS */
5953 I915_WRITE(GEN6_RP_CONTROL,
5954 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5955 GEN6_RP_MEDIA_IS_GFX |
5956 GEN6_RP_ENABLE |
5957 GEN6_RP_UP_BUSY_AVG |
5958 GEN6_RP_DOWN_IDLE_AVG);
5959
5960 /* Setting Fixed Bias */
5961 val = VLV_OVERRIDE_EN |
5962 VLV_SOC_TDP_EN |
5963 CHV_BIAS_CPU_50_SOC_50;
5964 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5965
5966 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5967
5968 /* RPS code assumes GPLL is used */
5969 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5970
5971 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5972 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5973
5974 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5975 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5976 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5977 dev_priv->rps.cur_freq);
5978
5979 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5980 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
5981 dev_priv->rps.idle_freq);
5982
5983 valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
5984
5985 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5986 }
5987
5988 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
5989 {
5990 struct intel_engine_cs *engine;
5991 u32 gtfifodbg, val, rc6_mode = 0;
5992
5993 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5994
5995 valleyview_check_pctx(dev_priv);
5996
5997 gtfifodbg = I915_READ(GTFIFODBG);
5998 if (gtfifodbg) {
5999 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
6000 gtfifodbg);
6001 I915_WRITE(GTFIFODBG, gtfifodbg);
6002 }
6003
6004 /* If VLV, Forcewake all wells, else re-direct to regular path */
6005 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6006
6007 /* Disable RC states. */
6008 I915_WRITE(GEN6_RC_CONTROL, 0);
6009
6010 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6011 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
6012 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
6013 I915_WRITE(GEN6_RP_UP_EI, 66000);
6014 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
6015
6016 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6017
6018 I915_WRITE(GEN6_RP_CONTROL,
6019 GEN6_RP_MEDIA_TURBO |
6020 GEN6_RP_MEDIA_HW_NORMAL_MODE |
6021 GEN6_RP_MEDIA_IS_GFX |
6022 GEN6_RP_ENABLE |
6023 GEN6_RP_UP_BUSY_AVG |
6024 GEN6_RP_DOWN_IDLE_CONT);
6025
6026 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
6027 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6028 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6029
6030 for_each_engine(engine, dev_priv)
6031 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6032
6033 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6034
6035 /* allows RC6 residency counter to work */
6036 I915_WRITE(VLV_COUNTER_CONTROL,
6037 _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
6038 VLV_RENDER_RC0_COUNT_EN |
6039 VLV_MEDIA_RC6_COUNT_EN |
6040 VLV_RENDER_RC6_COUNT_EN));
6041
6042 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6043 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
6044
6045 intel_print_rc6_info(dev_priv, rc6_mode);
6046
6047 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6048
6049 /* Setting Fixed Bias */
6050 val = VLV_OVERRIDE_EN |
6051 VLV_SOC_TDP_EN |
6052 VLV_BIAS_CPU_125_SOC_875;
6053 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
6054
6055 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6056
6057 /* RPS code assumes GPLL is used */
6058 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
6059
6060 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6061 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6062
6063 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
6064 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
6065 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
6066 dev_priv->rps.cur_freq);
6067
6068 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
6069 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
6070 dev_priv->rps.idle_freq);
6071
6072 valleyview_set_rps(dev_priv, dev_priv->rps.idle_freq);
6073
6074 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6075 }
6076
6077 static unsigned long intel_pxfreq(u32 vidfreq)
6078 {
6079 unsigned long freq;
6080 int div = (vidfreq & 0x3f0000) >> 16;
6081 int post = (vidfreq & 0x3000) >> 12;
6082 int pre = (vidfreq & 0x7);
6083
6084 if (!pre)
6085 return 0;
6086
6087 freq = ((div * 133333) / ((1<<post) * pre));
6088
6089 return freq;
6090 }
6091
6092 static const struct cparams {
6093 u16 i;
6094 u16 t;
6095 u16 m;
6096 u16 c;
6097 } cparams[] = {
6098 { 1, 1333, 301, 28664 },
6099 { 1, 1066, 294, 24460 },
6100 { 1, 800, 294, 25192 },
6101 { 0, 1333, 276, 27605 },
6102 { 0, 1066, 276, 27605 },
6103 { 0, 800, 231, 23784 },
6104 };
6105
6106 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6107 {
6108 u64 total_count, diff, ret;
6109 u32 count1, count2, count3, m = 0, c = 0;
6110 unsigned long now = jiffies_to_msecs(jiffies), diff1;
6111 int i;
6112
6113 assert_spin_locked(&mchdev_lock);
6114
6115 diff1 = now - dev_priv->ips.last_time1;
6116
6117 /* Prevent division-by-zero if we are asking too fast.
6118 * Also, we don't get interesting results if we are polling
6119 * faster than once in 10ms, so just return the saved value
6120 * in such cases.
6121 */
6122 if (diff1 <= 10)
6123 return dev_priv->ips.chipset_power;
6124
6125 count1 = I915_READ(DMIEC);
6126 count2 = I915_READ(DDREC);
6127 count3 = I915_READ(CSIEC);
6128
6129 total_count = count1 + count2 + count3;
6130
6131 /* FIXME: handle per-counter overflow */
6132 if (total_count < dev_priv->ips.last_count1) {
6133 diff = ~0UL - dev_priv->ips.last_count1;
6134 diff += total_count;
6135 } else {
6136 diff = total_count - dev_priv->ips.last_count1;
6137 }
6138
6139 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6140 if (cparams[i].i == dev_priv->ips.c_m &&
6141 cparams[i].t == dev_priv->ips.r_t) {
6142 m = cparams[i].m;
6143 c = cparams[i].c;
6144 break;
6145 }
6146 }
6147
6148 diff = div_u64(diff, diff1);
6149 ret = ((m * diff) + c);
6150 ret = div_u64(ret, 10);
6151
6152 dev_priv->ips.last_count1 = total_count;
6153 dev_priv->ips.last_time1 = now;
6154
6155 dev_priv->ips.chipset_power = ret;
6156
6157 return ret;
6158 }
6159
6160 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
6161 {
6162 unsigned long val;
6163
6164 if (INTEL_INFO(dev_priv)->gen != 5)
6165 return 0;
6166
6167 spin_lock_irq(&mchdev_lock);
6168
6169 val = __i915_chipset_val(dev_priv);
6170
6171 spin_unlock_irq(&mchdev_lock);
6172
6173 return val;
6174 }
6175
6176 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
6177 {
6178 unsigned long m, x, b;
6179 u32 tsfs;
6180
6181 tsfs = I915_READ(TSFS);
6182
6183 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
6184 x = I915_READ8(TR1);
6185
6186 b = tsfs & TSFS_INTR_MASK;
6187
6188 return ((m * x) / 127) - b;
6189 }
6190
6191 static int _pxvid_to_vd(u8 pxvid)
6192 {
6193 if (pxvid == 0)
6194 return 0;
6195
6196 if (pxvid >= 8 && pxvid < 31)
6197 pxvid = 31;
6198
6199 return (pxvid + 2) * 125;
6200 }
6201
6202 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6203 {
6204 const int vd = _pxvid_to_vd(pxvid);
6205 const int vm = vd - 1125;
6206
6207 if (INTEL_INFO(dev_priv)->is_mobile)
6208 return vm > 0 ? vm : 0;
6209
6210 return vd;
6211 }
6212
6213 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6214 {
6215 u64 now, diff, diffms;
6216 u32 count;
6217
6218 assert_spin_locked(&mchdev_lock);
6219
6220 now = ktime_get_raw_ns();
6221 diffms = now - dev_priv->ips.last_time2;
6222 do_div(diffms, NSEC_PER_MSEC);
6223
6224 /* Don't divide by 0 */
6225 if (!diffms)
6226 return;
6227
6228 count = I915_READ(GFXEC);
6229
6230 if (count < dev_priv->ips.last_count2) {
6231 diff = ~0UL - dev_priv->ips.last_count2;
6232 diff += count;
6233 } else {
6234 diff = count - dev_priv->ips.last_count2;
6235 }
6236
6237 dev_priv->ips.last_count2 = count;
6238 dev_priv->ips.last_time2 = now;
6239
6240 /* More magic constants... */
6241 diff = diff * 1181;
6242 diff = div_u64(diff, diffms * 10);
6243 dev_priv->ips.gfx_power = diff;
6244 }
6245
6246 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
6247 {
6248 if (INTEL_INFO(dev_priv)->gen != 5)
6249 return;
6250
6251 spin_lock_irq(&mchdev_lock);
6252
6253 __i915_update_gfx_val(dev_priv);
6254
6255 spin_unlock_irq(&mchdev_lock);
6256 }
6257
6258 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6259 {
6260 unsigned long t, corr, state1, corr2, state2;
6261 u32 pxvid, ext_v;
6262
6263 assert_spin_locked(&mchdev_lock);
6264
6265 pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6266 pxvid = (pxvid >> 24) & 0x7f;
6267 ext_v = pvid_to_extvid(dev_priv, pxvid);
6268
6269 state1 = ext_v;
6270
6271 t = i915_mch_val(dev_priv);
6272
6273 /* Revel in the empirically derived constants */
6274
6275 /* Correction factor in 1/100000 units */
6276 if (t > 80)
6277 corr = ((t * 2349) + 135940);
6278 else if (t >= 50)
6279 corr = ((t * 964) + 29317);
6280 else /* < 50 */
6281 corr = ((t * 301) + 1004);
6282
6283 corr = corr * ((150142 * state1) / 10000 - 78642);
6284 corr /= 100000;
6285 corr2 = (corr * dev_priv->ips.corr);
6286
6287 state2 = (corr2 * state1) / 10000;
6288 state2 /= 100; /* convert to mW */
6289
6290 __i915_update_gfx_val(dev_priv);
6291
6292 return dev_priv->ips.gfx_power + state2;
6293 }
6294
6295 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
6296 {
6297 unsigned long val;
6298
6299 if (INTEL_INFO(dev_priv)->gen != 5)
6300 return 0;
6301
6302 spin_lock_irq(&mchdev_lock);
6303
6304 val = __i915_gfx_val(dev_priv);
6305
6306 spin_unlock_irq(&mchdev_lock);
6307
6308 return val;
6309 }
6310
6311 /**
6312 * i915_read_mch_val - return value for IPS use
6313 *
6314 * Calculate and return a value for the IPS driver to use when deciding whether
6315 * we have thermal and power headroom to increase CPU or GPU power budget.
6316 */
6317 unsigned long i915_read_mch_val(void)
6318 {
6319 struct drm_i915_private *dev_priv;
6320 unsigned long chipset_val, graphics_val, ret = 0;
6321
6322 spin_lock_irq(&mchdev_lock);
6323 if (!i915_mch_dev)
6324 goto out_unlock;
6325 dev_priv = i915_mch_dev;
6326
6327 chipset_val = __i915_chipset_val(dev_priv);
6328 graphics_val = __i915_gfx_val(dev_priv);
6329
6330 ret = chipset_val + graphics_val;
6331
6332 out_unlock:
6333 spin_unlock_irq(&mchdev_lock);
6334
6335 return ret;
6336 }
6337 EXPORT_SYMBOL_GPL(i915_read_mch_val);
6338
6339 /**
6340 * i915_gpu_raise - raise GPU frequency limit
6341 *
6342 * Raise the limit; IPS indicates we have thermal headroom.
6343 */
6344 bool i915_gpu_raise(void)
6345 {
6346 struct drm_i915_private *dev_priv;
6347 bool ret = true;
6348
6349 spin_lock_irq(&mchdev_lock);
6350 if (!i915_mch_dev) {
6351 ret = false;
6352 goto out_unlock;
6353 }
6354 dev_priv = i915_mch_dev;
6355
6356 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
6357 dev_priv->ips.max_delay--;
6358
6359 out_unlock:
6360 spin_unlock_irq(&mchdev_lock);
6361
6362 return ret;
6363 }
6364 EXPORT_SYMBOL_GPL(i915_gpu_raise);
6365
6366 /**
6367 * i915_gpu_lower - lower GPU frequency limit
6368 *
6369 * IPS indicates we're close to a thermal limit, so throttle back the GPU
6370 * frequency maximum.
6371 */
6372 bool i915_gpu_lower(void)
6373 {
6374 struct drm_i915_private *dev_priv;
6375 bool ret = true;
6376
6377 spin_lock_irq(&mchdev_lock);
6378 if (!i915_mch_dev) {
6379 ret = false;
6380 goto out_unlock;
6381 }
6382 dev_priv = i915_mch_dev;
6383
6384 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6385 dev_priv->ips.max_delay++;
6386
6387 out_unlock:
6388 spin_unlock_irq(&mchdev_lock);
6389
6390 return ret;
6391 }
6392 EXPORT_SYMBOL_GPL(i915_gpu_lower);
6393
6394 /**
6395 * i915_gpu_busy - indicate GPU business to IPS
6396 *
6397 * Tell the IPS driver whether or not the GPU is busy.
6398 */
6399 bool i915_gpu_busy(void)
6400 {
6401 struct drm_i915_private *dev_priv;
6402 struct intel_engine_cs *engine;
6403 bool ret = false;
6404
6405 spin_lock_irq(&mchdev_lock);
6406 if (!i915_mch_dev)
6407 goto out_unlock;
6408 dev_priv = i915_mch_dev;
6409
6410 for_each_engine(engine, dev_priv)
6411 ret |= !list_empty(&engine->request_list);
6412
6413 out_unlock:
6414 spin_unlock_irq(&mchdev_lock);
6415
6416 return ret;
6417 }
6418 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6419
6420 /**
6421 * i915_gpu_turbo_disable - disable graphics turbo
6422 *
6423 * Disable graphics turbo by resetting the max frequency and setting the
6424 * current frequency to the default.
6425 */
6426 bool i915_gpu_turbo_disable(void)
6427 {
6428 struct drm_i915_private *dev_priv;
6429 bool ret = true;
6430
6431 spin_lock_irq(&mchdev_lock);
6432 if (!i915_mch_dev) {
6433 ret = false;
6434 goto out_unlock;
6435 }
6436 dev_priv = i915_mch_dev;
6437
6438 dev_priv->ips.max_delay = dev_priv->ips.fstart;
6439
6440 if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6441 ret = false;
6442
6443 out_unlock:
6444 spin_unlock_irq(&mchdev_lock);
6445
6446 return ret;
6447 }
6448 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6449
6450 /**
6451 * Tells the intel_ips driver that the i915 driver is now loaded, if
6452 * IPS got loaded first.
6453 *
6454 * This awkward dance is so that neither module has to depend on the
6455 * other in order for IPS to do the appropriate communication of
6456 * GPU turbo limits to i915.
6457 */
6458 static void
6459 ips_ping_for_i915_load(void)
6460 {
6461 void (*link)(void);
6462
6463 link = symbol_get(ips_link_to_i915_driver);
6464 if (link) {
6465 link();
6466 symbol_put(ips_link_to_i915_driver);
6467 }
6468 }
6469
6470 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6471 {
6472 /* We only register the i915 ips part with intel-ips once everything is
6473 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6474 spin_lock_irq(&mchdev_lock);
6475 i915_mch_dev = dev_priv;
6476 spin_unlock_irq(&mchdev_lock);
6477
6478 ips_ping_for_i915_load();
6479 }
6480
6481 void intel_gpu_ips_teardown(void)
6482 {
6483 spin_lock_irq(&mchdev_lock);
6484 i915_mch_dev = NULL;
6485 spin_unlock_irq(&mchdev_lock);
6486 }
6487
6488 static void intel_init_emon(struct drm_i915_private *dev_priv)
6489 {
6490 u32 lcfuse;
6491 u8 pxw[16];
6492 int i;
6493
6494 /* Disable to program */
6495 I915_WRITE(ECR, 0);
6496 POSTING_READ(ECR);
6497
6498 /* Program energy weights for various events */
6499 I915_WRITE(SDEW, 0x15040d00);
6500 I915_WRITE(CSIEW0, 0x007f0000);
6501 I915_WRITE(CSIEW1, 0x1e220004);
6502 I915_WRITE(CSIEW2, 0x04000004);
6503
6504 for (i = 0; i < 5; i++)
6505 I915_WRITE(PEW(i), 0);
6506 for (i = 0; i < 3; i++)
6507 I915_WRITE(DEW(i), 0);
6508
6509 /* Program P-state weights to account for frequency power adjustment */
6510 for (i = 0; i < 16; i++) {
6511 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6512 unsigned long freq = intel_pxfreq(pxvidfreq);
6513 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6514 PXVFREQ_PX_SHIFT;
6515 unsigned long val;
6516
6517 val = vid * vid;
6518 val *= (freq / 1000);
6519 val *= 255;
6520 val /= (127*127*900);
6521 if (val > 0xff)
6522 DRM_ERROR("bad pxval: %ld\n", val);
6523 pxw[i] = val;
6524 }
6525 /* Render standby states get 0 weight */
6526 pxw[14] = 0;
6527 pxw[15] = 0;
6528
6529 for (i = 0; i < 4; i++) {
6530 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6531 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6532 I915_WRITE(PXW(i), val);
6533 }
6534
6535 /* Adjust magic regs to magic values (more experimental results) */
6536 I915_WRITE(OGW0, 0);
6537 I915_WRITE(OGW1, 0);
6538 I915_WRITE(EG0, 0x00007f00);
6539 I915_WRITE(EG1, 0x0000000e);
6540 I915_WRITE(EG2, 0x000e0000);
6541 I915_WRITE(EG3, 0x68000300);
6542 I915_WRITE(EG4, 0x42000000);
6543 I915_WRITE(EG5, 0x00140031);
6544 I915_WRITE(EG6, 0);
6545 I915_WRITE(EG7, 0);
6546
6547 for (i = 0; i < 8; i++)
6548 I915_WRITE(PXWL(i), 0);
6549
6550 /* Enable PMON + select events */
6551 I915_WRITE(ECR, 0x80000019);
6552
6553 lcfuse = I915_READ(LCFUSE02);
6554
6555 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6556 }
6557
6558 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6559 {
6560 /*
6561 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6562 * requirement.
6563 */
6564 if (!i915.enable_rc6) {
6565 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6566 intel_runtime_pm_get(dev_priv);
6567 }
6568
6569 if (IS_CHERRYVIEW(dev_priv))
6570 cherryview_init_gt_powersave(dev_priv);
6571 else if (IS_VALLEYVIEW(dev_priv))
6572 valleyview_init_gt_powersave(dev_priv);
6573 }
6574
6575 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6576 {
6577 if (IS_CHERRYVIEW(dev_priv))
6578 return;
6579 else if (IS_VALLEYVIEW(dev_priv))
6580 valleyview_cleanup_gt_powersave(dev_priv);
6581
6582 if (!i915.enable_rc6)
6583 intel_runtime_pm_put(dev_priv);
6584 }
6585
6586 static void gen6_suspend_rps(struct drm_i915_private *dev_priv)
6587 {
6588 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6589
6590 gen6_disable_rps_interrupts(dev_priv);
6591 }
6592
6593 /**
6594 * intel_suspend_gt_powersave - suspend PM work and helper threads
6595 * @dev_priv: i915 device
6596 *
6597 * We don't want to disable RC6 or other features here, we just want
6598 * to make sure any work we've queued has finished and won't bother
6599 * us while we're suspended.
6600 */
6601 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
6602 {
6603 if (INTEL_GEN(dev_priv) < 6)
6604 return;
6605
6606 gen6_suspend_rps(dev_priv);
6607
6608 /* Force GPU to min freq during suspend */
6609 gen6_rps_idle(dev_priv);
6610 }
6611
6612 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6613 {
6614 if (IS_IRONLAKE_M(dev_priv)) {
6615 ironlake_disable_drps(dev_priv);
6616 } else if (INTEL_INFO(dev_priv)->gen >= 6) {
6617 intel_suspend_gt_powersave(dev_priv);
6618
6619 mutex_lock(&dev_priv->rps.hw_lock);
6620 if (INTEL_INFO(dev_priv)->gen >= 9) {
6621 gen9_disable_rc6(dev_priv);
6622 gen9_disable_rps(dev_priv);
6623 } else if (IS_CHERRYVIEW(dev_priv))
6624 cherryview_disable_rps(dev_priv);
6625 else if (IS_VALLEYVIEW(dev_priv))
6626 valleyview_disable_rps(dev_priv);
6627 else
6628 gen6_disable_rps(dev_priv);
6629
6630 dev_priv->rps.enabled = false;
6631 mutex_unlock(&dev_priv->rps.hw_lock);
6632 }
6633 }
6634
6635 static void intel_gen6_powersave_work(struct work_struct *work)
6636 {
6637 struct drm_i915_private *dev_priv =
6638 container_of(work, struct drm_i915_private,
6639 rps.delayed_resume_work.work);
6640
6641 mutex_lock(&dev_priv->rps.hw_lock);
6642
6643 gen6_reset_rps_interrupts(dev_priv);
6644
6645 if (IS_CHERRYVIEW(dev_priv)) {
6646 cherryview_enable_rps(dev_priv);
6647 } else if (IS_VALLEYVIEW(dev_priv)) {
6648 valleyview_enable_rps(dev_priv);
6649 } else if (INTEL_INFO(dev_priv)->gen >= 9) {
6650 gen9_enable_rc6(dev_priv);
6651 gen9_enable_rps(dev_priv);
6652 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6653 __gen6_update_ring_freq(dev_priv);
6654 } else if (IS_BROADWELL(dev_priv)) {
6655 gen8_enable_rps(dev_priv);
6656 __gen6_update_ring_freq(dev_priv);
6657 } else {
6658 gen6_enable_rps(dev_priv);
6659 __gen6_update_ring_freq(dev_priv);
6660 }
6661
6662 WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6663 WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6664
6665 WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6666 WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6667
6668 dev_priv->rps.enabled = true;
6669
6670 gen6_enable_rps_interrupts(dev_priv);
6671
6672 mutex_unlock(&dev_priv->rps.hw_lock);
6673
6674 intel_runtime_pm_put(dev_priv);
6675 }
6676
6677 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6678 {
6679 /* Powersaving is controlled by the host when inside a VM */
6680 if (intel_vgpu_active(dev_priv))
6681 return;
6682
6683 if (IS_IRONLAKE_M(dev_priv)) {
6684 ironlake_enable_drps(dev_priv);
6685 mutex_lock(&dev_priv->drm.struct_mutex);
6686 intel_init_emon(dev_priv);
6687 mutex_unlock(&dev_priv->drm.struct_mutex);
6688 } else if (INTEL_INFO(dev_priv)->gen >= 6) {
6689 /*
6690 * PCU communication is slow and this doesn't need to be
6691 * done at any specific time, so do this out of our fast path
6692 * to make resume and init faster.
6693 *
6694 * We depend on the HW RC6 power context save/restore
6695 * mechanism when entering D3 through runtime PM suspend. So
6696 * disable RPM until RPS/RC6 is properly setup. We can only
6697 * get here via the driver load/system resume/runtime resume
6698 * paths, so the _noresume version is enough (and in case of
6699 * runtime resume it's necessary).
6700 */
6701 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6702 round_jiffies_up_relative(HZ)))
6703 intel_runtime_pm_get_noresume(dev_priv);
6704 }
6705 }
6706
6707 void intel_reset_gt_powersave(struct drm_i915_private *dev_priv)
6708 {
6709 if (INTEL_INFO(dev_priv)->gen < 6)
6710 return;
6711
6712 gen6_suspend_rps(dev_priv);
6713 dev_priv->rps.enabled = false;
6714 }
6715
6716 static void ibx_init_clock_gating(struct drm_device *dev)
6717 {
6718 struct drm_i915_private *dev_priv = to_i915(dev);
6719
6720 /*
6721 * On Ibex Peak and Cougar Point, we need to disable clock
6722 * gating for the panel power sequencer or it will fail to
6723 * start up when no ports are active.
6724 */
6725 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6726 }
6727
6728 static void g4x_disable_trickle_feed(struct drm_device *dev)
6729 {
6730 struct drm_i915_private *dev_priv = to_i915(dev);
6731 enum pipe pipe;
6732
6733 for_each_pipe(dev_priv, pipe) {
6734 I915_WRITE(DSPCNTR(pipe),
6735 I915_READ(DSPCNTR(pipe)) |
6736 DISPPLANE_TRICKLE_FEED_DISABLE);
6737
6738 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6739 POSTING_READ(DSPSURF(pipe));
6740 }
6741 }
6742
6743 static void ilk_init_lp_watermarks(struct drm_device *dev)
6744 {
6745 struct drm_i915_private *dev_priv = to_i915(dev);
6746
6747 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6748 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6749 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6750
6751 /*
6752 * Don't touch WM1S_LP_EN here.
6753 * Doing so could cause underruns.
6754 */
6755 }
6756
6757 static void ironlake_init_clock_gating(struct drm_device *dev)
6758 {
6759 struct drm_i915_private *dev_priv = to_i915(dev);
6760 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6761
6762 /*
6763 * Required for FBC
6764 * WaFbcDisableDpfcClockGating:ilk
6765 */
6766 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6767 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6768 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6769
6770 I915_WRITE(PCH_3DCGDIS0,
6771 MARIUNIT_CLOCK_GATE_DISABLE |
6772 SVSMUNIT_CLOCK_GATE_DISABLE);
6773 I915_WRITE(PCH_3DCGDIS1,
6774 VFMUNIT_CLOCK_GATE_DISABLE);
6775
6776 /*
6777 * According to the spec the following bits should be set in
6778 * order to enable memory self-refresh
6779 * The bit 22/21 of 0x42004
6780 * The bit 5 of 0x42020
6781 * The bit 15 of 0x45000
6782 */
6783 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6784 (I915_READ(ILK_DISPLAY_CHICKEN2) |
6785 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6786 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6787 I915_WRITE(DISP_ARB_CTL,
6788 (I915_READ(DISP_ARB_CTL) |
6789 DISP_FBC_WM_DIS));
6790
6791 ilk_init_lp_watermarks(dev);
6792
6793 /*
6794 * Based on the document from hardware guys the following bits
6795 * should be set unconditionally in order to enable FBC.
6796 * The bit 22 of 0x42000
6797 * The bit 22 of 0x42004
6798 * The bit 7,8,9 of 0x42020.
6799 */
6800 if (IS_IRONLAKE_M(dev)) {
6801 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6802 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6803 I915_READ(ILK_DISPLAY_CHICKEN1) |
6804 ILK_FBCQ_DIS);
6805 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6806 I915_READ(ILK_DISPLAY_CHICKEN2) |
6807 ILK_DPARB_GATE);
6808 }
6809
6810 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6811
6812 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6813 I915_READ(ILK_DISPLAY_CHICKEN2) |
6814 ILK_ELPIN_409_SELECT);
6815 I915_WRITE(_3D_CHICKEN2,
6816 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6817 _3D_CHICKEN2_WM_READ_PIPELINED);
6818
6819 /* WaDisableRenderCachePipelinedFlush:ilk */
6820 I915_WRITE(CACHE_MODE_0,
6821 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6822
6823 /* WaDisable_RenderCache_OperationalFlush:ilk */
6824 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6825
6826 g4x_disable_trickle_feed(dev);
6827
6828 ibx_init_clock_gating(dev);
6829 }
6830
6831 static void cpt_init_clock_gating(struct drm_device *dev)
6832 {
6833 struct drm_i915_private *dev_priv = to_i915(dev);
6834 int pipe;
6835 uint32_t val;
6836
6837 /*
6838 * On Ibex Peak and Cougar Point, we need to disable clock
6839 * gating for the panel power sequencer or it will fail to
6840 * start up when no ports are active.
6841 */
6842 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6843 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6844 PCH_CPUNIT_CLOCK_GATE_DISABLE);
6845 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6846 DPLS_EDP_PPS_FIX_DIS);
6847 /* The below fixes the weird display corruption, a few pixels shifted
6848 * downward, on (only) LVDS of some HP laptops with IVY.
6849 */
6850 for_each_pipe(dev_priv, pipe) {
6851 val = I915_READ(TRANS_CHICKEN2(pipe));
6852 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6853 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6854 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6855 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6856 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6857 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6858 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6859 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6860 }
6861 /* WADP0ClockGatingDisable */
6862 for_each_pipe(dev_priv, pipe) {
6863 I915_WRITE(TRANS_CHICKEN1(pipe),
6864 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6865 }
6866 }
6867
6868 static void gen6_check_mch_setup(struct drm_device *dev)
6869 {
6870 struct drm_i915_private *dev_priv = to_i915(dev);
6871 uint32_t tmp;
6872
6873 tmp = I915_READ(MCH_SSKPD);
6874 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6875 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6876 tmp);
6877 }
6878
6879 static void gen6_init_clock_gating(struct drm_device *dev)
6880 {
6881 struct drm_i915_private *dev_priv = to_i915(dev);
6882 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6883
6884 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6885
6886 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6887 I915_READ(ILK_DISPLAY_CHICKEN2) |
6888 ILK_ELPIN_409_SELECT);
6889
6890 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6891 I915_WRITE(_3D_CHICKEN,
6892 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6893
6894 /* WaDisable_RenderCache_OperationalFlush:snb */
6895 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6896
6897 /*
6898 * BSpec recoomends 8x4 when MSAA is used,
6899 * however in practice 16x4 seems fastest.
6900 *
6901 * Note that PS/WM thread counts depend on the WIZ hashing
6902 * disable bit, which we don't touch here, but it's good
6903 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6904 */
6905 I915_WRITE(GEN6_GT_MODE,
6906 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6907
6908 ilk_init_lp_watermarks(dev);
6909
6910 I915_WRITE(CACHE_MODE_0,
6911 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6912
6913 I915_WRITE(GEN6_UCGCTL1,
6914 I915_READ(GEN6_UCGCTL1) |
6915 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6916 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6917
6918 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6919 * gating disable must be set. Failure to set it results in
6920 * flickering pixels due to Z write ordering failures after
6921 * some amount of runtime in the Mesa "fire" demo, and Unigine
6922 * Sanctuary and Tropics, and apparently anything else with
6923 * alpha test or pixel discard.
6924 *
6925 * According to the spec, bit 11 (RCCUNIT) must also be set,
6926 * but we didn't debug actual testcases to find it out.
6927 *
6928 * WaDisableRCCUnitClockGating:snb
6929 * WaDisableRCPBUnitClockGating:snb
6930 */
6931 I915_WRITE(GEN6_UCGCTL2,
6932 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6933 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6934
6935 /* WaStripsFansDisableFastClipPerformanceFix:snb */
6936 I915_WRITE(_3D_CHICKEN3,
6937 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6938
6939 /*
6940 * Bspec says:
6941 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6942 * 3DSTATE_SF number of SF output attributes is more than 16."
6943 */
6944 I915_WRITE(_3D_CHICKEN3,
6945 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6946
6947 /*
6948 * According to the spec the following bits should be
6949 * set in order to enable memory self-refresh and fbc:
6950 * The bit21 and bit22 of 0x42000
6951 * The bit21 and bit22 of 0x42004
6952 * The bit5 and bit7 of 0x42020
6953 * The bit14 of 0x70180
6954 * The bit14 of 0x71180
6955 *
6956 * WaFbcAsynchFlipDisableFbcQueue:snb
6957 */
6958 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6959 I915_READ(ILK_DISPLAY_CHICKEN1) |
6960 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6961 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6962 I915_READ(ILK_DISPLAY_CHICKEN2) |
6963 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6964 I915_WRITE(ILK_DSPCLK_GATE_D,
6965 I915_READ(ILK_DSPCLK_GATE_D) |
6966 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
6967 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6968
6969 g4x_disable_trickle_feed(dev);
6970
6971 cpt_init_clock_gating(dev);
6972
6973 gen6_check_mch_setup(dev);
6974 }
6975
6976 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6977 {
6978 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6979
6980 /*
6981 * WaVSThreadDispatchOverride:ivb,vlv
6982 *
6983 * This actually overrides the dispatch
6984 * mode for all thread types.
6985 */
6986 reg &= ~GEN7_FF_SCHED_MASK;
6987 reg |= GEN7_FF_TS_SCHED_HW;
6988 reg |= GEN7_FF_VS_SCHED_HW;
6989 reg |= GEN7_FF_DS_SCHED_HW;
6990
6991 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6992 }
6993
6994 static void lpt_init_clock_gating(struct drm_device *dev)
6995 {
6996 struct drm_i915_private *dev_priv = to_i915(dev);
6997
6998 /*
6999 * TODO: this bit should only be enabled when really needed, then
7000 * disabled when not needed anymore in order to save power.
7001 */
7002 if (HAS_PCH_LPT_LP(dev))
7003 I915_WRITE(SOUTH_DSPCLK_GATE_D,
7004 I915_READ(SOUTH_DSPCLK_GATE_D) |
7005 PCH_LP_PARTITION_LEVEL_DISABLE);
7006
7007 /* WADPOClockGatingDisable:hsw */
7008 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
7009 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7010 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7011 }
7012
7013 static void lpt_suspend_hw(struct drm_device *dev)
7014 {
7015 struct drm_i915_private *dev_priv = to_i915(dev);
7016
7017 if (HAS_PCH_LPT_LP(dev)) {
7018 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
7019
7020 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7021 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7022 }
7023 }
7024
7025 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
7026 int general_prio_credits,
7027 int high_prio_credits)
7028 {
7029 u32 misccpctl;
7030
7031 /* WaTempDisableDOPClkGating:bdw */
7032 misccpctl = I915_READ(GEN7_MISCCPCTL);
7033 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
7034
7035 I915_WRITE(GEN8_L3SQCREG1,
7036 L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
7037 L3_HIGH_PRIO_CREDITS(high_prio_credits));
7038
7039 /*
7040 * Wait at least 100 clocks before re-enabling clock gating.
7041 * See the definition of L3SQCREG1 in BSpec.
7042 */
7043 POSTING_READ(GEN8_L3SQCREG1);
7044 udelay(1);
7045 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
7046 }
7047
7048 static void kabylake_init_clock_gating(struct drm_device *dev)
7049 {
7050 struct drm_i915_private *dev_priv = dev->dev_private;
7051
7052 gen9_init_clock_gating(dev);
7053
7054 /* WaDisableSDEUnitClockGating:kbl */
7055 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7056 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7057 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7058
7059 /* WaDisableGamClockGating:kbl */
7060 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7061 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7062 GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7063
7064 /* WaFbcNukeOnHostModify:kbl */
7065 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7066 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7067 }
7068
7069 static void skylake_init_clock_gating(struct drm_device *dev)
7070 {
7071 struct drm_i915_private *dev_priv = dev->dev_private;
7072
7073 gen9_init_clock_gating(dev);
7074
7075 /* WAC6entrylatency:skl */
7076 I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
7077 FBC_LLC_FULLY_OPEN);
7078
7079 /* WaFbcNukeOnHostModify:skl */
7080 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7081 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7082 }
7083
7084 static void broadwell_init_clock_gating(struct drm_device *dev)
7085 {
7086 struct drm_i915_private *dev_priv = to_i915(dev);
7087 enum pipe pipe;
7088
7089 ilk_init_lp_watermarks(dev);
7090
7091 /* WaSwitchSolVfFArbitrationPriority:bdw */
7092 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7093
7094 /* WaPsrDPAMaskVBlankInSRD:bdw */
7095 I915_WRITE(CHICKEN_PAR1_1,
7096 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7097
7098 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7099 for_each_pipe(dev_priv, pipe) {
7100 I915_WRITE(CHICKEN_PIPESL_1(pipe),
7101 I915_READ(CHICKEN_PIPESL_1(pipe)) |
7102 BDW_DPRS_MASK_VBLANK_SRD);
7103 }
7104
7105 /* WaVSRefCountFullforceMissDisable:bdw */
7106 /* WaDSRefCountFullforceMissDisable:bdw */
7107 I915_WRITE(GEN7_FF_THREAD_MODE,
7108 I915_READ(GEN7_FF_THREAD_MODE) &
7109 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7110
7111 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7112 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7113
7114 /* WaDisableSDEUnitClockGating:bdw */
7115 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7116 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7117
7118 /* WaProgramL3SqcReg1Default:bdw */
7119 gen8_set_l3sqc_credits(dev_priv, 30, 2);
7120
7121 /*
7122 * WaGttCachingOffByDefault:bdw
7123 * GTT cache may not work with big pages, so if those
7124 * are ever enabled GTT cache may need to be disabled.
7125 */
7126 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7127
7128 /* WaKVMNotificationOnConfigChange:bdw */
7129 I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
7130 | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7131
7132 lpt_init_clock_gating(dev);
7133 }
7134
7135 static void haswell_init_clock_gating(struct drm_device *dev)
7136 {
7137 struct drm_i915_private *dev_priv = to_i915(dev);
7138
7139 ilk_init_lp_watermarks(dev);
7140
7141 /* L3 caching of data atomics doesn't work -- disable it. */
7142 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
7143 I915_WRITE(HSW_ROW_CHICKEN3,
7144 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
7145
7146 /* This is required by WaCatErrorRejectionIssue:hsw */
7147 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7148 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7149 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7150
7151 /* WaVSRefCountFullforceMissDisable:hsw */
7152 I915_WRITE(GEN7_FF_THREAD_MODE,
7153 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7154
7155 /* WaDisable_RenderCache_OperationalFlush:hsw */
7156 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7157
7158 /* enable HiZ Raw Stall Optimization */
7159 I915_WRITE(CACHE_MODE_0_GEN7,
7160 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7161
7162 /* WaDisable4x2SubspanOptimization:hsw */
7163 I915_WRITE(CACHE_MODE_1,
7164 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7165
7166 /*
7167 * BSpec recommends 8x4 when MSAA is used,
7168 * however in practice 16x4 seems fastest.
7169 *
7170 * Note that PS/WM thread counts depend on the WIZ hashing
7171 * disable bit, which we don't touch here, but it's good
7172 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7173 */
7174 I915_WRITE(GEN7_GT_MODE,
7175 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7176
7177 /* WaSampleCChickenBitEnable:hsw */
7178 I915_WRITE(HALF_SLICE_CHICKEN3,
7179 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
7180
7181 /* WaSwitchSolVfFArbitrationPriority:hsw */
7182 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7183
7184 /* WaRsPkgCStateDisplayPMReq:hsw */
7185 I915_WRITE(CHICKEN_PAR1_1,
7186 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7187
7188 lpt_init_clock_gating(dev);
7189 }
7190
7191 static void ivybridge_init_clock_gating(struct drm_device *dev)
7192 {
7193 struct drm_i915_private *dev_priv = to_i915(dev);
7194 uint32_t snpcr;
7195
7196 ilk_init_lp_watermarks(dev);
7197
7198 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7199
7200 /* WaDisableEarlyCull:ivb */
7201 I915_WRITE(_3D_CHICKEN3,
7202 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7203
7204 /* WaDisableBackToBackFlipFix:ivb */
7205 I915_WRITE(IVB_CHICKEN3,
7206 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7207 CHICKEN3_DGMG_DONE_FIX_DISABLE);
7208
7209 /* WaDisablePSDDualDispatchEnable:ivb */
7210 if (IS_IVB_GT1(dev))
7211 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7212 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7213
7214 /* WaDisable_RenderCache_OperationalFlush:ivb */
7215 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7216
7217 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7218 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
7219 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
7220
7221 /* WaApplyL3ControlAndL3ChickenMode:ivb */
7222 I915_WRITE(GEN7_L3CNTLREG1,
7223 GEN7_WA_FOR_GEN7_L3_CONTROL);
7224 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7225 GEN7_WA_L3_CHICKEN_MODE);
7226 if (IS_IVB_GT1(dev))
7227 I915_WRITE(GEN7_ROW_CHICKEN2,
7228 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7229 else {
7230 /* must write both registers */
7231 I915_WRITE(GEN7_ROW_CHICKEN2,
7232 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7233 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
7234 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7235 }
7236
7237 /* WaForceL3Serialization:ivb */
7238 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7239 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7240
7241 /*
7242 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7243 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7244 */
7245 I915_WRITE(GEN6_UCGCTL2,
7246 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7247
7248 /* This is required by WaCatErrorRejectionIssue:ivb */
7249 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7250 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7251 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7252
7253 g4x_disable_trickle_feed(dev);
7254
7255 gen7_setup_fixed_func_scheduler(dev_priv);
7256
7257 if (0) { /* causes HiZ corruption on ivb:gt1 */
7258 /* enable HiZ Raw Stall Optimization */
7259 I915_WRITE(CACHE_MODE_0_GEN7,
7260 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7261 }
7262
7263 /* WaDisable4x2SubspanOptimization:ivb */
7264 I915_WRITE(CACHE_MODE_1,
7265 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7266
7267 /*
7268 * BSpec recommends 8x4 when MSAA is used,
7269 * however in practice 16x4 seems fastest.
7270 *
7271 * Note that PS/WM thread counts depend on the WIZ hashing
7272 * disable bit, which we don't touch here, but it's good
7273 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7274 */
7275 I915_WRITE(GEN7_GT_MODE,
7276 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7277
7278 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
7279 snpcr &= ~GEN6_MBC_SNPCR_MASK;
7280 snpcr |= GEN6_MBC_SNPCR_MED;
7281 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7282
7283 if (!HAS_PCH_NOP(dev))
7284 cpt_init_clock_gating(dev);
7285
7286 gen6_check_mch_setup(dev);
7287 }
7288
7289 static void valleyview_init_clock_gating(struct drm_device *dev)
7290 {
7291 struct drm_i915_private *dev_priv = to_i915(dev);
7292
7293 /* WaDisableEarlyCull:vlv */
7294 I915_WRITE(_3D_CHICKEN3,
7295 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7296
7297 /* WaDisableBackToBackFlipFix:vlv */
7298 I915_WRITE(IVB_CHICKEN3,
7299 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7300 CHICKEN3_DGMG_DONE_FIX_DISABLE);
7301
7302 /* WaPsdDispatchEnable:vlv */
7303 /* WaDisablePSDDualDispatchEnable:vlv */
7304 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7305 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
7306 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7307
7308 /* WaDisable_RenderCache_OperationalFlush:vlv */
7309 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7310
7311 /* WaForceL3Serialization:vlv */
7312 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7313 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7314
7315 /* WaDisableDopClockGating:vlv */
7316 I915_WRITE(GEN7_ROW_CHICKEN2,
7317 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7318
7319 /* This is required by WaCatErrorRejectionIssue:vlv */
7320 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7321 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7322 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7323
7324 gen7_setup_fixed_func_scheduler(dev_priv);
7325
7326 /*
7327 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7328 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7329 */
7330 I915_WRITE(GEN6_UCGCTL2,
7331 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7332
7333 /* WaDisableL3Bank2xClockGate:vlv
7334 * Disabling L3 clock gating- MMIO 940c[25] = 1
7335 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7336 I915_WRITE(GEN7_UCGCTL4,
7337 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7338
7339 /*
7340 * BSpec says this must be set, even though
7341 * WaDisable4x2SubspanOptimization isn't listed for VLV.
7342 */
7343 I915_WRITE(CACHE_MODE_1,
7344 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7345
7346 /*
7347 * BSpec recommends 8x4 when MSAA is used,
7348 * however in practice 16x4 seems fastest.
7349 *
7350 * Note that PS/WM thread counts depend on the WIZ hashing
7351 * disable bit, which we don't touch here, but it's good
7352 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7353 */
7354 I915_WRITE(GEN7_GT_MODE,
7355 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7356
7357 /*
7358 * WaIncreaseL3CreditsForVLVB0:vlv
7359 * This is the hardware default actually.
7360 */
7361 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7362
7363 /*
7364 * WaDisableVLVClockGating_VBIIssue:vlv
7365 * Disable clock gating on th GCFG unit to prevent a delay
7366 * in the reporting of vblank events.
7367 */
7368 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7369 }
7370
7371 static void cherryview_init_clock_gating(struct drm_device *dev)
7372 {
7373 struct drm_i915_private *dev_priv = to_i915(dev);
7374
7375 /* WaVSRefCountFullforceMissDisable:chv */
7376 /* WaDSRefCountFullforceMissDisable:chv */
7377 I915_WRITE(GEN7_FF_THREAD_MODE,
7378 I915_READ(GEN7_FF_THREAD_MODE) &
7379 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7380
7381 /* WaDisableSemaphoreAndSyncFlipWait:chv */
7382 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7383 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7384
7385 /* WaDisableCSUnitClockGating:chv */
7386 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7387 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7388
7389 /* WaDisableSDEUnitClockGating:chv */
7390 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7391 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7392
7393 /*
7394 * WaProgramL3SqcReg1Default:chv
7395 * See gfxspecs/Related Documents/Performance Guide/
7396 * LSQC Setting Recommendations.
7397 */
7398 gen8_set_l3sqc_credits(dev_priv, 38, 2);
7399
7400 /*
7401 * GTT cache may not work with big pages, so if those
7402 * are ever enabled GTT cache may need to be disabled.
7403 */
7404 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7405 }
7406
7407 static void g4x_init_clock_gating(struct drm_device *dev)
7408 {
7409 struct drm_i915_private *dev_priv = to_i915(dev);
7410 uint32_t dspclk_gate;
7411
7412 I915_WRITE(RENCLK_GATE_D1, 0);
7413 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7414 GS_UNIT_CLOCK_GATE_DISABLE |
7415 CL_UNIT_CLOCK_GATE_DISABLE);
7416 I915_WRITE(RAMCLK_GATE_D, 0);
7417 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7418 OVRUNIT_CLOCK_GATE_DISABLE |
7419 OVCUNIT_CLOCK_GATE_DISABLE;
7420 if (IS_GM45(dev))
7421 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7422 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7423
7424 /* WaDisableRenderCachePipelinedFlush */
7425 I915_WRITE(CACHE_MODE_0,
7426 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7427
7428 /* WaDisable_RenderCache_OperationalFlush:g4x */
7429 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7430
7431 g4x_disable_trickle_feed(dev);
7432 }
7433
7434 static void crestline_init_clock_gating(struct drm_device *dev)
7435 {
7436 struct drm_i915_private *dev_priv = to_i915(dev);
7437
7438 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7439 I915_WRITE(RENCLK_GATE_D2, 0);
7440 I915_WRITE(DSPCLK_GATE_D, 0);
7441 I915_WRITE(RAMCLK_GATE_D, 0);
7442 I915_WRITE16(DEUC, 0);
7443 I915_WRITE(MI_ARB_STATE,
7444 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7445
7446 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7447 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7448 }
7449
7450 static void broadwater_init_clock_gating(struct drm_device *dev)
7451 {
7452 struct drm_i915_private *dev_priv = to_i915(dev);
7453
7454 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7455 I965_RCC_CLOCK_GATE_DISABLE |
7456 I965_RCPB_CLOCK_GATE_DISABLE |
7457 I965_ISC_CLOCK_GATE_DISABLE |
7458 I965_FBC_CLOCK_GATE_DISABLE);
7459 I915_WRITE(RENCLK_GATE_D2, 0);
7460 I915_WRITE(MI_ARB_STATE,
7461 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7462
7463 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7464 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7465 }
7466
7467 static void gen3_init_clock_gating(struct drm_device *dev)
7468 {
7469 struct drm_i915_private *dev_priv = to_i915(dev);
7470 u32 dstate = I915_READ(D_STATE);
7471
7472 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7473 DSTATE_DOT_CLOCK_GATING;
7474 I915_WRITE(D_STATE, dstate);
7475
7476 if (IS_PINEVIEW(dev))
7477 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7478
7479 /* IIR "flip pending" means done if this bit is set */
7480 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7481
7482 /* interrupts should cause a wake up from C3 */
7483 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7484
7485 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7486 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7487
7488 I915_WRITE(MI_ARB_STATE,
7489 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7490 }
7491
7492 static void i85x_init_clock_gating(struct drm_device *dev)
7493 {
7494 struct drm_i915_private *dev_priv = to_i915(dev);
7495
7496 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7497
7498 /* interrupts should cause a wake up from C3 */
7499 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7500 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7501
7502 I915_WRITE(MEM_MODE,
7503 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7504 }
7505
7506 static void i830_init_clock_gating(struct drm_device *dev)
7507 {
7508 struct drm_i915_private *dev_priv = to_i915(dev);
7509
7510 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7511
7512 I915_WRITE(MEM_MODE,
7513 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7514 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7515 }
7516
7517 void intel_init_clock_gating(struct drm_device *dev)
7518 {
7519 struct drm_i915_private *dev_priv = to_i915(dev);
7520
7521 dev_priv->display.init_clock_gating(dev);
7522 }
7523
7524 void intel_suspend_hw(struct drm_device *dev)
7525 {
7526 if (HAS_PCH_LPT(dev))
7527 lpt_suspend_hw(dev);
7528 }
7529
7530 static void nop_init_clock_gating(struct drm_device *dev)
7531 {
7532 DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
7533 }
7534
7535 /**
7536 * intel_init_clock_gating_hooks - setup the clock gating hooks
7537 * @dev_priv: device private
7538 *
7539 * Setup the hooks that configure which clocks of a given platform can be
7540 * gated and also apply various GT and display specific workarounds for these
7541 * platforms. Note that some GT specific workarounds are applied separately
7542 * when GPU contexts or batchbuffers start their execution.
7543 */
7544 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7545 {
7546 if (IS_SKYLAKE(dev_priv))
7547 dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7548 else if (IS_KABYLAKE(dev_priv))
7549 dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7550 else if (IS_BROXTON(dev_priv))
7551 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7552 else if (IS_BROADWELL(dev_priv))
7553 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7554 else if (IS_CHERRYVIEW(dev_priv))
7555 dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
7556 else if (IS_HASWELL(dev_priv))
7557 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7558 else if (IS_IVYBRIDGE(dev_priv))
7559 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7560 else if (IS_VALLEYVIEW(dev_priv))
7561 dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
7562 else if (IS_GEN6(dev_priv))
7563 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7564 else if (IS_GEN5(dev_priv))
7565 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7566 else if (IS_G4X(dev_priv))
7567 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7568 else if (IS_CRESTLINE(dev_priv))
7569 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7570 else if (IS_BROADWATER(dev_priv))
7571 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7572 else if (IS_GEN3(dev_priv))
7573 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7574 else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7575 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7576 else if (IS_GEN2(dev_priv))
7577 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7578 else {
7579 MISSING_CASE(INTEL_DEVID(dev_priv));
7580 dev_priv->display.init_clock_gating = nop_init_clock_gating;
7581 }
7582 }
7583
7584 /* Set up chip specific power management-related functions */
7585 void intel_init_pm(struct drm_device *dev)
7586 {
7587 struct drm_i915_private *dev_priv = to_i915(dev);
7588
7589 intel_fbc_init(dev_priv);
7590
7591 /* For cxsr */
7592 if (IS_PINEVIEW(dev))
7593 i915_pineview_get_mem_freq(dev);
7594 else if (IS_GEN5(dev))
7595 i915_ironlake_get_mem_freq(dev);
7596
7597 /* For FIFO watermark updates */
7598 if (INTEL_INFO(dev)->gen >= 9) {
7599 skl_setup_wm_latency(dev);
7600 dev_priv->display.update_wm = skl_update_wm;
7601 dev_priv->display.compute_global_watermarks = skl_compute_wm;
7602 } else if (HAS_PCH_SPLIT(dev)) {
7603 ilk_setup_wm_latency(dev);
7604
7605 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7606 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7607 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7608 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7609 dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7610 dev_priv->display.compute_intermediate_wm =
7611 ilk_compute_intermediate_wm;
7612 dev_priv->display.initial_watermarks =
7613 ilk_initial_watermarks;
7614 dev_priv->display.optimize_watermarks =
7615 ilk_optimize_watermarks;
7616 } else {
7617 DRM_DEBUG_KMS("Failed to read display plane latency. "
7618 "Disable CxSR\n");
7619 }
7620 } else if (IS_CHERRYVIEW(dev)) {
7621 vlv_setup_wm_latency(dev);
7622 dev_priv->display.update_wm = vlv_update_wm;
7623 } else if (IS_VALLEYVIEW(dev)) {
7624 vlv_setup_wm_latency(dev);
7625 dev_priv->display.update_wm = vlv_update_wm;
7626 } else if (IS_PINEVIEW(dev)) {
7627 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7628 dev_priv->is_ddr3,
7629 dev_priv->fsb_freq,
7630 dev_priv->mem_freq)) {
7631 DRM_INFO("failed to find known CxSR latency "
7632 "(found ddr%s fsb freq %d, mem freq %d), "
7633 "disabling CxSR\n",
7634 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7635 dev_priv->fsb_freq, dev_priv->mem_freq);
7636 /* Disable CxSR and never update its watermark again */
7637 intel_set_memory_cxsr(dev_priv, false);
7638 dev_priv->display.update_wm = NULL;
7639 } else
7640 dev_priv->display.update_wm = pineview_update_wm;
7641 } else if (IS_G4X(dev)) {
7642 dev_priv->display.update_wm = g4x_update_wm;
7643 } else if (IS_GEN4(dev)) {
7644 dev_priv->display.update_wm = i965_update_wm;
7645 } else if (IS_GEN3(dev)) {
7646 dev_priv->display.update_wm = i9xx_update_wm;
7647 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7648 } else if (IS_GEN2(dev)) {
7649 if (INTEL_INFO(dev)->num_pipes == 1) {
7650 dev_priv->display.update_wm = i845_update_wm;
7651 dev_priv->display.get_fifo_size = i845_get_fifo_size;
7652 } else {
7653 dev_priv->display.update_wm = i9xx_update_wm;
7654 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7655 }
7656 } else {
7657 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7658 }
7659 }
7660
7661 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7662 {
7663 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7664
7665 /* GEN6_PCODE_* are outside of the forcewake domain, we can
7666 * use te fw I915_READ variants to reduce the amount of work
7667 * required when reading/writing.
7668 */
7669
7670 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7671 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7672 return -EAGAIN;
7673 }
7674
7675 I915_WRITE_FW(GEN6_PCODE_DATA, *val);
7676 I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
7677 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7678
7679 if (intel_wait_for_register_fw(dev_priv,
7680 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7681 500)) {
7682 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7683 return -ETIMEDOUT;
7684 }
7685
7686 *val = I915_READ_FW(GEN6_PCODE_DATA);
7687 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7688
7689 return 0;
7690 }
7691
7692 int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7693 u32 mbox, u32 val)
7694 {
7695 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7696
7697 /* GEN6_PCODE_* are outside of the forcewake domain, we can
7698 * use te fw I915_READ variants to reduce the amount of work
7699 * required when reading/writing.
7700 */
7701
7702 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7703 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7704 return -EAGAIN;
7705 }
7706
7707 I915_WRITE_FW(GEN6_PCODE_DATA, val);
7708 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7709
7710 if (intel_wait_for_register_fw(dev_priv,
7711 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7712 500)) {
7713 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7714 return -ETIMEDOUT;
7715 }
7716
7717 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7718
7719 return 0;
7720 }
7721
7722 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7723 {
7724 /*
7725 * N = val - 0xb7
7726 * Slow = Fast = GPLL ref * N
7727 */
7728 return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7729 }
7730
7731 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7732 {
7733 return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7734 }
7735
7736 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7737 {
7738 /*
7739 * N = val / 2
7740 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
7741 */
7742 return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7743 }
7744
7745 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7746 {
7747 /* CHV needs even values */
7748 return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7749 }
7750
7751 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7752 {
7753 if (IS_GEN9(dev_priv))
7754 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7755 GEN9_FREQ_SCALER);
7756 else if (IS_CHERRYVIEW(dev_priv))
7757 return chv_gpu_freq(dev_priv, val);
7758 else if (IS_VALLEYVIEW(dev_priv))
7759 return byt_gpu_freq(dev_priv, val);
7760 else
7761 return val * GT_FREQUENCY_MULTIPLIER;
7762 }
7763
7764 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7765 {
7766 if (IS_GEN9(dev_priv))
7767 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7768 GT_FREQUENCY_MULTIPLIER);
7769 else if (IS_CHERRYVIEW(dev_priv))
7770 return chv_freq_opcode(dev_priv, val);
7771 else if (IS_VALLEYVIEW(dev_priv))
7772 return byt_freq_opcode(dev_priv, val);
7773 else
7774 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7775 }
7776
7777 struct request_boost {
7778 struct work_struct work;
7779 struct drm_i915_gem_request *req;
7780 };
7781
7782 static void __intel_rps_boost_work(struct work_struct *work)
7783 {
7784 struct request_boost *boost = container_of(work, struct request_boost, work);
7785 struct drm_i915_gem_request *req = boost->req;
7786
7787 if (!i915_gem_request_completed(req))
7788 gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7789
7790 i915_gem_request_unreference(req);
7791 kfree(boost);
7792 }
7793
7794 void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7795 {
7796 struct request_boost *boost;
7797
7798 if (req == NULL || INTEL_GEN(req->i915) < 6)
7799 return;
7800
7801 if (i915_gem_request_completed(req))
7802 return;
7803
7804 boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7805 if (boost == NULL)
7806 return;
7807
7808 i915_gem_request_reference(req);
7809 boost->req = req;
7810
7811 INIT_WORK(&boost->work, __intel_rps_boost_work);
7812 queue_work(req->i915->wq, &boost->work);
7813 }
7814
7815 void intel_pm_setup(struct drm_device *dev)
7816 {
7817 struct drm_i915_private *dev_priv = to_i915(dev);
7818
7819 mutex_init(&dev_priv->rps.hw_lock);
7820 spin_lock_init(&dev_priv->rps.client_lock);
7821
7822 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7823 intel_gen6_powersave_work);
7824 INIT_LIST_HEAD(&dev_priv->rps.clients);
7825 INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7826 INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7827
7828 dev_priv->pm.suspended = false;
7829 atomic_set(&dev_priv->pm.wakeref_count, 0);
7830 atomic_set(&dev_priv->pm.atomic_seq, 0);
7831 }