]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/gpu/drm/i915/intel_pm.c
Merge tag 'drm-misc-next-2016-12-30' of git://anongit.freedesktop.org/git/drm-misc...
[mirror_ubuntu-focal-kernel.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34 #include <drm/drm_atomic_helper.h>
35
36 /**
37 * DOC: RC6
38 *
39 * RC6 is a special power stage which allows the GPU to enter an very
40 * low-voltage mode when idle, using down to 0V while at this stage. This
41 * stage is entered automatically when the GPU is idle when RC6 support is
42 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
43 *
44 * There are different RC6 modes available in Intel GPU, which differentiate
45 * among each other with the latency required to enter and leave RC6 and
46 * voltage consumed by the GPU in different states.
47 *
48 * The combination of the following flags define which states GPU is allowed
49 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
50 * RC6pp is deepest RC6. Their support by hardware varies according to the
51 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
52 * which brings the most power savings; deeper states save more power, but
53 * require higher latency to switch to and wake up.
54 */
55 #define INTEL_RC6_ENABLE (1<<0)
56 #define INTEL_RC6p_ENABLE (1<<1)
57 #define INTEL_RC6pp_ENABLE (1<<2)
58
59 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
60 {
61 /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
62 I915_WRITE(CHICKEN_PAR1_1,
63 I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
64
65 I915_WRITE(GEN8_CONFIG0,
66 I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
67
68 /* WaEnableChickenDCPR:skl,bxt,kbl */
69 I915_WRITE(GEN8_CHICKEN_DCPR_1,
70 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
71
72 /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
73 /* WaFbcWakeMemOn:skl,bxt,kbl */
74 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
75 DISP_FBC_WM_DIS |
76 DISP_FBC_MEMORY_WAKE);
77
78 /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
79 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
80 ILK_DPFC_DISABLE_DUMMY0);
81 }
82
83 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
84 {
85 gen9_init_clock_gating(dev_priv);
86
87 /* WaDisableSDEUnitClockGating:bxt */
88 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
89 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
90
91 /*
92 * FIXME:
93 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
94 */
95 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
96 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
97
98 /*
99 * Wa: Backlight PWM may stop in the asserted state, causing backlight
100 * to stay fully on.
101 */
102 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
103 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
104 PWM1_GATING_DIS | PWM2_GATING_DIS);
105 }
106
107 static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
108 {
109 u32 tmp;
110
111 tmp = I915_READ(CLKCFG);
112
113 switch (tmp & CLKCFG_FSB_MASK) {
114 case CLKCFG_FSB_533:
115 dev_priv->fsb_freq = 533; /* 133*4 */
116 break;
117 case CLKCFG_FSB_800:
118 dev_priv->fsb_freq = 800; /* 200*4 */
119 break;
120 case CLKCFG_FSB_667:
121 dev_priv->fsb_freq = 667; /* 167*4 */
122 break;
123 case CLKCFG_FSB_400:
124 dev_priv->fsb_freq = 400; /* 100*4 */
125 break;
126 }
127
128 switch (tmp & CLKCFG_MEM_MASK) {
129 case CLKCFG_MEM_533:
130 dev_priv->mem_freq = 533;
131 break;
132 case CLKCFG_MEM_667:
133 dev_priv->mem_freq = 667;
134 break;
135 case CLKCFG_MEM_800:
136 dev_priv->mem_freq = 800;
137 break;
138 }
139
140 /* detect pineview DDR3 setting */
141 tmp = I915_READ(CSHRDDR3CTL);
142 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
143 }
144
145 static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
146 {
147 u16 ddrpll, csipll;
148
149 ddrpll = I915_READ16(DDRMPLL1);
150 csipll = I915_READ16(CSIPLL0);
151
152 switch (ddrpll & 0xff) {
153 case 0xc:
154 dev_priv->mem_freq = 800;
155 break;
156 case 0x10:
157 dev_priv->mem_freq = 1066;
158 break;
159 case 0x14:
160 dev_priv->mem_freq = 1333;
161 break;
162 case 0x18:
163 dev_priv->mem_freq = 1600;
164 break;
165 default:
166 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
167 ddrpll & 0xff);
168 dev_priv->mem_freq = 0;
169 break;
170 }
171
172 dev_priv->ips.r_t = dev_priv->mem_freq;
173
174 switch (csipll & 0x3ff) {
175 case 0x00c:
176 dev_priv->fsb_freq = 3200;
177 break;
178 case 0x00e:
179 dev_priv->fsb_freq = 3733;
180 break;
181 case 0x010:
182 dev_priv->fsb_freq = 4266;
183 break;
184 case 0x012:
185 dev_priv->fsb_freq = 4800;
186 break;
187 case 0x014:
188 dev_priv->fsb_freq = 5333;
189 break;
190 case 0x016:
191 dev_priv->fsb_freq = 5866;
192 break;
193 case 0x018:
194 dev_priv->fsb_freq = 6400;
195 break;
196 default:
197 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
198 csipll & 0x3ff);
199 dev_priv->fsb_freq = 0;
200 break;
201 }
202
203 if (dev_priv->fsb_freq == 3200) {
204 dev_priv->ips.c_m = 0;
205 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
206 dev_priv->ips.c_m = 1;
207 } else {
208 dev_priv->ips.c_m = 2;
209 }
210 }
211
212 static const struct cxsr_latency cxsr_latency_table[] = {
213 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
214 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
215 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
216 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
217 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
218
219 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
220 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
221 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
222 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
223 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
224
225 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
226 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
227 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
228 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
229 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
230
231 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
232 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
233 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
234 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
235 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
236
237 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
238 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
239 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
240 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
241 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
242
243 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
244 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
245 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
246 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
247 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
248 };
249
250 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
251 bool is_ddr3,
252 int fsb,
253 int mem)
254 {
255 const struct cxsr_latency *latency;
256 int i;
257
258 if (fsb == 0 || mem == 0)
259 return NULL;
260
261 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
262 latency = &cxsr_latency_table[i];
263 if (is_desktop == latency->is_desktop &&
264 is_ddr3 == latency->is_ddr3 &&
265 fsb == latency->fsb_freq && mem == latency->mem_freq)
266 return latency;
267 }
268
269 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
270
271 return NULL;
272 }
273
274 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
275 {
276 u32 val;
277
278 mutex_lock(&dev_priv->rps.hw_lock);
279
280 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
281 if (enable)
282 val &= ~FORCE_DDR_HIGH_FREQ;
283 else
284 val |= FORCE_DDR_HIGH_FREQ;
285 val &= ~FORCE_DDR_LOW_FREQ;
286 val |= FORCE_DDR_FREQ_REQ_ACK;
287 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
288
289 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
290 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
291 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
292
293 mutex_unlock(&dev_priv->rps.hw_lock);
294 }
295
296 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
297 {
298 u32 val;
299
300 mutex_lock(&dev_priv->rps.hw_lock);
301
302 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
303 if (enable)
304 val |= DSP_MAXFIFO_PM5_ENABLE;
305 else
306 val &= ~DSP_MAXFIFO_PM5_ENABLE;
307 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
308
309 mutex_unlock(&dev_priv->rps.hw_lock);
310 }
311
312 #define FW_WM(value, plane) \
313 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
314
315 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
316 {
317 u32 val;
318
319 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
320 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
321 POSTING_READ(FW_BLC_SELF_VLV);
322 dev_priv->wm.vlv.cxsr = enable;
323 } else if (IS_G4X(dev_priv) || IS_CRESTLINE(dev_priv)) {
324 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
325 POSTING_READ(FW_BLC_SELF);
326 } else if (IS_PINEVIEW(dev_priv)) {
327 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
328 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
329 I915_WRITE(DSPFW3, val);
330 POSTING_READ(DSPFW3);
331 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
332 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
333 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
334 I915_WRITE(FW_BLC_SELF, val);
335 POSTING_READ(FW_BLC_SELF);
336 } else if (IS_I915GM(dev_priv)) {
337 /*
338 * FIXME can't find a bit like this for 915G, and
339 * and yet it does have the related watermark in
340 * FW_BLC_SELF. What's going on?
341 */
342 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
343 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
344 I915_WRITE(INSTPM, val);
345 POSTING_READ(INSTPM);
346 } else {
347 return;
348 }
349
350 DRM_DEBUG_KMS("memory self-refresh is %s\n", enableddisabled(enable));
351 }
352
353
354 /*
355 * Latency for FIFO fetches is dependent on several factors:
356 * - memory configuration (speed, channels)
357 * - chipset
358 * - current MCH state
359 * It can be fairly high in some situations, so here we assume a fairly
360 * pessimal value. It's a tradeoff between extra memory fetches (if we
361 * set this value too high, the FIFO will fetch frequently to stay full)
362 * and power consumption (set it too low to save power and we might see
363 * FIFO underruns and display "flicker").
364 *
365 * A value of 5us seems to be a good balance; safe for very low end
366 * platforms but not overly aggressive on lower latency configs.
367 */
368 static const int pessimal_latency_ns = 5000;
369
370 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
371 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
372
373 static int vlv_get_fifo_size(struct drm_i915_private *dev_priv,
374 enum pipe pipe, int plane)
375 {
376 int sprite0_start, sprite1_start, size;
377
378 switch (pipe) {
379 uint32_t dsparb, dsparb2, dsparb3;
380 case PIPE_A:
381 dsparb = I915_READ(DSPARB);
382 dsparb2 = I915_READ(DSPARB2);
383 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
384 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
385 break;
386 case PIPE_B:
387 dsparb = I915_READ(DSPARB);
388 dsparb2 = I915_READ(DSPARB2);
389 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
390 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
391 break;
392 case PIPE_C:
393 dsparb2 = I915_READ(DSPARB2);
394 dsparb3 = I915_READ(DSPARB3);
395 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
396 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
397 break;
398 default:
399 return 0;
400 }
401
402 switch (plane) {
403 case 0:
404 size = sprite0_start;
405 break;
406 case 1:
407 size = sprite1_start - sprite0_start;
408 break;
409 case 2:
410 size = 512 - 1 - sprite1_start;
411 break;
412 default:
413 return 0;
414 }
415
416 DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
417 pipe_name(pipe), plane == 0 ? "primary" : "sprite",
418 plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
419 size);
420
421 return size;
422 }
423
424 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
425 {
426 uint32_t dsparb = I915_READ(DSPARB);
427 int size;
428
429 size = dsparb & 0x7f;
430 if (plane)
431 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
432
433 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
434 plane ? "B" : "A", size);
435
436 return size;
437 }
438
439 static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
440 {
441 uint32_t dsparb = I915_READ(DSPARB);
442 int size;
443
444 size = dsparb & 0x1ff;
445 if (plane)
446 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
447 size >>= 1; /* Convert to cachelines */
448
449 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
450 plane ? "B" : "A", size);
451
452 return size;
453 }
454
455 static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
456 {
457 uint32_t dsparb = I915_READ(DSPARB);
458 int size;
459
460 size = dsparb & 0x7f;
461 size >>= 2; /* Convert to cachelines */
462
463 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
464 plane ? "B" : "A",
465 size);
466
467 return size;
468 }
469
470 /* Pineview has different values for various configs */
471 static const struct intel_watermark_params pineview_display_wm = {
472 .fifo_size = PINEVIEW_DISPLAY_FIFO,
473 .max_wm = PINEVIEW_MAX_WM,
474 .default_wm = PINEVIEW_DFT_WM,
475 .guard_size = PINEVIEW_GUARD_WM,
476 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
477 };
478 static const struct intel_watermark_params pineview_display_hplloff_wm = {
479 .fifo_size = PINEVIEW_DISPLAY_FIFO,
480 .max_wm = PINEVIEW_MAX_WM,
481 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
482 .guard_size = PINEVIEW_GUARD_WM,
483 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
484 };
485 static const struct intel_watermark_params pineview_cursor_wm = {
486 .fifo_size = PINEVIEW_CURSOR_FIFO,
487 .max_wm = PINEVIEW_CURSOR_MAX_WM,
488 .default_wm = PINEVIEW_CURSOR_DFT_WM,
489 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
490 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
491 };
492 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
493 .fifo_size = PINEVIEW_CURSOR_FIFO,
494 .max_wm = PINEVIEW_CURSOR_MAX_WM,
495 .default_wm = PINEVIEW_CURSOR_DFT_WM,
496 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
497 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
498 };
499 static const struct intel_watermark_params g4x_wm_info = {
500 .fifo_size = G4X_FIFO_SIZE,
501 .max_wm = G4X_MAX_WM,
502 .default_wm = G4X_MAX_WM,
503 .guard_size = 2,
504 .cacheline_size = G4X_FIFO_LINE_SIZE,
505 };
506 static const struct intel_watermark_params g4x_cursor_wm_info = {
507 .fifo_size = I965_CURSOR_FIFO,
508 .max_wm = I965_CURSOR_MAX_WM,
509 .default_wm = I965_CURSOR_DFT_WM,
510 .guard_size = 2,
511 .cacheline_size = G4X_FIFO_LINE_SIZE,
512 };
513 static const struct intel_watermark_params i965_cursor_wm_info = {
514 .fifo_size = I965_CURSOR_FIFO,
515 .max_wm = I965_CURSOR_MAX_WM,
516 .default_wm = I965_CURSOR_DFT_WM,
517 .guard_size = 2,
518 .cacheline_size = I915_FIFO_LINE_SIZE,
519 };
520 static const struct intel_watermark_params i945_wm_info = {
521 .fifo_size = I945_FIFO_SIZE,
522 .max_wm = I915_MAX_WM,
523 .default_wm = 1,
524 .guard_size = 2,
525 .cacheline_size = I915_FIFO_LINE_SIZE,
526 };
527 static const struct intel_watermark_params i915_wm_info = {
528 .fifo_size = I915_FIFO_SIZE,
529 .max_wm = I915_MAX_WM,
530 .default_wm = 1,
531 .guard_size = 2,
532 .cacheline_size = I915_FIFO_LINE_SIZE,
533 };
534 static const struct intel_watermark_params i830_a_wm_info = {
535 .fifo_size = I855GM_FIFO_SIZE,
536 .max_wm = I915_MAX_WM,
537 .default_wm = 1,
538 .guard_size = 2,
539 .cacheline_size = I830_FIFO_LINE_SIZE,
540 };
541 static const struct intel_watermark_params i830_bc_wm_info = {
542 .fifo_size = I855GM_FIFO_SIZE,
543 .max_wm = I915_MAX_WM/2,
544 .default_wm = 1,
545 .guard_size = 2,
546 .cacheline_size = I830_FIFO_LINE_SIZE,
547 };
548 static const struct intel_watermark_params i845_wm_info = {
549 .fifo_size = I830_FIFO_SIZE,
550 .max_wm = I915_MAX_WM,
551 .default_wm = 1,
552 .guard_size = 2,
553 .cacheline_size = I830_FIFO_LINE_SIZE,
554 };
555
556 /**
557 * intel_calculate_wm - calculate watermark level
558 * @clock_in_khz: pixel clock
559 * @wm: chip FIFO params
560 * @cpp: bytes per pixel
561 * @latency_ns: memory latency for the platform
562 *
563 * Calculate the watermark level (the level at which the display plane will
564 * start fetching from memory again). Each chip has a different display
565 * FIFO size and allocation, so the caller needs to figure that out and pass
566 * in the correct intel_watermark_params structure.
567 *
568 * As the pixel clock runs, the FIFO will be drained at a rate that depends
569 * on the pixel size. When it reaches the watermark level, it'll start
570 * fetching FIFO line sized based chunks from memory until the FIFO fills
571 * past the watermark point. If the FIFO drains completely, a FIFO underrun
572 * will occur, and a display engine hang could result.
573 */
574 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
575 const struct intel_watermark_params *wm,
576 int fifo_size, int cpp,
577 unsigned long latency_ns)
578 {
579 long entries_required, wm_size;
580
581 /*
582 * Note: we need to make sure we don't overflow for various clock &
583 * latency values.
584 * clocks go from a few thousand to several hundred thousand.
585 * latency is usually a few thousand
586 */
587 entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
588 1000;
589 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
590
591 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
592
593 wm_size = fifo_size - (entries_required + wm->guard_size);
594
595 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
596
597 /* Don't promote wm_size to unsigned... */
598 if (wm_size > (long)wm->max_wm)
599 wm_size = wm->max_wm;
600 if (wm_size <= 0)
601 wm_size = wm->default_wm;
602
603 /*
604 * Bspec seems to indicate that the value shouldn't be lower than
605 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
606 * Lets go for 8 which is the burst size since certain platforms
607 * already use a hardcoded 8 (which is what the spec says should be
608 * done).
609 */
610 if (wm_size <= 8)
611 wm_size = 8;
612
613 return wm_size;
614 }
615
616 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
617 {
618 struct intel_crtc *crtc, *enabled = NULL;
619
620 for_each_intel_crtc(&dev_priv->drm, crtc) {
621 if (intel_crtc_active(crtc)) {
622 if (enabled)
623 return NULL;
624 enabled = crtc;
625 }
626 }
627
628 return enabled;
629 }
630
631 static void pineview_update_wm(struct intel_crtc *unused_crtc)
632 {
633 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
634 struct intel_crtc *crtc;
635 const struct cxsr_latency *latency;
636 u32 reg;
637 unsigned long wm;
638
639 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
640 dev_priv->is_ddr3,
641 dev_priv->fsb_freq,
642 dev_priv->mem_freq);
643 if (!latency) {
644 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
645 intel_set_memory_cxsr(dev_priv, false);
646 return;
647 }
648
649 crtc = single_enabled_crtc(dev_priv);
650 if (crtc) {
651 const struct drm_display_mode *adjusted_mode =
652 &crtc->config->base.adjusted_mode;
653 const struct drm_framebuffer *fb =
654 crtc->base.primary->state->fb;
655 int cpp = fb->format->cpp[0];
656 int clock = adjusted_mode->crtc_clock;
657
658 /* Display SR */
659 wm = intel_calculate_wm(clock, &pineview_display_wm,
660 pineview_display_wm.fifo_size,
661 cpp, latency->display_sr);
662 reg = I915_READ(DSPFW1);
663 reg &= ~DSPFW_SR_MASK;
664 reg |= FW_WM(wm, SR);
665 I915_WRITE(DSPFW1, reg);
666 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
667
668 /* cursor SR */
669 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
670 pineview_display_wm.fifo_size,
671 cpp, latency->cursor_sr);
672 reg = I915_READ(DSPFW3);
673 reg &= ~DSPFW_CURSOR_SR_MASK;
674 reg |= FW_WM(wm, CURSOR_SR);
675 I915_WRITE(DSPFW3, reg);
676
677 /* Display HPLL off SR */
678 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
679 pineview_display_hplloff_wm.fifo_size,
680 cpp, latency->display_hpll_disable);
681 reg = I915_READ(DSPFW3);
682 reg &= ~DSPFW_HPLL_SR_MASK;
683 reg |= FW_WM(wm, HPLL_SR);
684 I915_WRITE(DSPFW3, reg);
685
686 /* cursor HPLL off SR */
687 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
688 pineview_display_hplloff_wm.fifo_size,
689 cpp, latency->cursor_hpll_disable);
690 reg = I915_READ(DSPFW3);
691 reg &= ~DSPFW_HPLL_CURSOR_MASK;
692 reg |= FW_WM(wm, HPLL_CURSOR);
693 I915_WRITE(DSPFW3, reg);
694 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
695
696 intel_set_memory_cxsr(dev_priv, true);
697 } else {
698 intel_set_memory_cxsr(dev_priv, false);
699 }
700 }
701
702 static bool g4x_compute_wm0(struct drm_i915_private *dev_priv,
703 int plane,
704 const struct intel_watermark_params *display,
705 int display_latency_ns,
706 const struct intel_watermark_params *cursor,
707 int cursor_latency_ns,
708 int *plane_wm,
709 int *cursor_wm)
710 {
711 struct intel_crtc *crtc;
712 const struct drm_display_mode *adjusted_mode;
713 const struct drm_framebuffer *fb;
714 int htotal, hdisplay, clock, cpp;
715 int line_time_us, line_count;
716 int entries, tlb_miss;
717
718 crtc = intel_get_crtc_for_plane(dev_priv, plane);
719 if (!intel_crtc_active(crtc)) {
720 *cursor_wm = cursor->guard_size;
721 *plane_wm = display->guard_size;
722 return false;
723 }
724
725 adjusted_mode = &crtc->config->base.adjusted_mode;
726 fb = crtc->base.primary->state->fb;
727 clock = adjusted_mode->crtc_clock;
728 htotal = adjusted_mode->crtc_htotal;
729 hdisplay = crtc->config->pipe_src_w;
730 cpp = fb->format->cpp[0];
731
732 /* Use the small buffer method to calculate plane watermark */
733 entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
734 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
735 if (tlb_miss > 0)
736 entries += tlb_miss;
737 entries = DIV_ROUND_UP(entries, display->cacheline_size);
738 *plane_wm = entries + display->guard_size;
739 if (*plane_wm > (int)display->max_wm)
740 *plane_wm = display->max_wm;
741
742 /* Use the large buffer method to calculate cursor watermark */
743 line_time_us = max(htotal * 1000 / clock, 1);
744 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
745 entries = line_count * crtc->base.cursor->state->crtc_w * cpp;
746 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
747 if (tlb_miss > 0)
748 entries += tlb_miss;
749 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
750 *cursor_wm = entries + cursor->guard_size;
751 if (*cursor_wm > (int)cursor->max_wm)
752 *cursor_wm = (int)cursor->max_wm;
753
754 return true;
755 }
756
757 /*
758 * Check the wm result.
759 *
760 * If any calculated watermark values is larger than the maximum value that
761 * can be programmed into the associated watermark register, that watermark
762 * must be disabled.
763 */
764 static bool g4x_check_srwm(struct drm_i915_private *dev_priv,
765 int display_wm, int cursor_wm,
766 const struct intel_watermark_params *display,
767 const struct intel_watermark_params *cursor)
768 {
769 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
770 display_wm, cursor_wm);
771
772 if (display_wm > display->max_wm) {
773 DRM_DEBUG_KMS("display watermark is too large(%d/%u), disabling\n",
774 display_wm, display->max_wm);
775 return false;
776 }
777
778 if (cursor_wm > cursor->max_wm) {
779 DRM_DEBUG_KMS("cursor watermark is too large(%d/%u), disabling\n",
780 cursor_wm, cursor->max_wm);
781 return false;
782 }
783
784 if (!(display_wm || cursor_wm)) {
785 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
786 return false;
787 }
788
789 return true;
790 }
791
792 static bool g4x_compute_srwm(struct drm_i915_private *dev_priv,
793 int plane,
794 int latency_ns,
795 const struct intel_watermark_params *display,
796 const struct intel_watermark_params *cursor,
797 int *display_wm, int *cursor_wm)
798 {
799 struct intel_crtc *crtc;
800 const struct drm_display_mode *adjusted_mode;
801 const struct drm_framebuffer *fb;
802 int hdisplay, htotal, cpp, clock;
803 unsigned long line_time_us;
804 int line_count, line_size;
805 int small, large;
806 int entries;
807
808 if (!latency_ns) {
809 *display_wm = *cursor_wm = 0;
810 return false;
811 }
812
813 crtc = intel_get_crtc_for_plane(dev_priv, plane);
814 adjusted_mode = &crtc->config->base.adjusted_mode;
815 fb = crtc->base.primary->state->fb;
816 clock = adjusted_mode->crtc_clock;
817 htotal = adjusted_mode->crtc_htotal;
818 hdisplay = crtc->config->pipe_src_w;
819 cpp = fb->format->cpp[0];
820
821 line_time_us = max(htotal * 1000 / clock, 1);
822 line_count = (latency_ns / line_time_us + 1000) / 1000;
823 line_size = hdisplay * cpp;
824
825 /* Use the minimum of the small and large buffer method for primary */
826 small = ((clock * cpp / 1000) * latency_ns) / 1000;
827 large = line_count * line_size;
828
829 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
830 *display_wm = entries + display->guard_size;
831
832 /* calculate the self-refresh watermark for display cursor */
833 entries = line_count * cpp * crtc->base.cursor->state->crtc_w;
834 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
835 *cursor_wm = entries + cursor->guard_size;
836
837 return g4x_check_srwm(dev_priv,
838 *display_wm, *cursor_wm,
839 display, cursor);
840 }
841
842 #define FW_WM_VLV(value, plane) \
843 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
844
845 static void vlv_write_wm_values(struct intel_crtc *crtc,
846 const struct vlv_wm_values *wm)
847 {
848 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
849 enum pipe pipe = crtc->pipe;
850
851 I915_WRITE(VLV_DDL(pipe),
852 (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
853 (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
854 (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
855 (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
856
857 I915_WRITE(DSPFW1,
858 FW_WM(wm->sr.plane, SR) |
859 FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
860 FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
861 FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
862 I915_WRITE(DSPFW2,
863 FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
864 FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
865 FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
866 I915_WRITE(DSPFW3,
867 FW_WM(wm->sr.cursor, CURSOR_SR));
868
869 if (IS_CHERRYVIEW(dev_priv)) {
870 I915_WRITE(DSPFW7_CHV,
871 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
872 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
873 I915_WRITE(DSPFW8_CHV,
874 FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
875 FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
876 I915_WRITE(DSPFW9_CHV,
877 FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
878 FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
879 I915_WRITE(DSPHOWM,
880 FW_WM(wm->sr.plane >> 9, SR_HI) |
881 FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
882 FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
883 FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
884 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
885 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
886 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
887 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
888 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
889 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
890 } else {
891 I915_WRITE(DSPFW7,
892 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
893 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
894 I915_WRITE(DSPHOWM,
895 FW_WM(wm->sr.plane >> 9, SR_HI) |
896 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
897 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
898 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
899 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
900 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
901 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
902 }
903
904 /* zero (unused) WM1 watermarks */
905 I915_WRITE(DSPFW4, 0);
906 I915_WRITE(DSPFW5, 0);
907 I915_WRITE(DSPFW6, 0);
908 I915_WRITE(DSPHOWM1, 0);
909
910 POSTING_READ(DSPFW1);
911 }
912
913 #undef FW_WM_VLV
914
915 enum vlv_wm_level {
916 VLV_WM_LEVEL_PM2,
917 VLV_WM_LEVEL_PM5,
918 VLV_WM_LEVEL_DDR_DVFS,
919 };
920
921 /* latency must be in 0.1us units. */
922 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
923 unsigned int pipe_htotal,
924 unsigned int horiz_pixels,
925 unsigned int cpp,
926 unsigned int latency)
927 {
928 unsigned int ret;
929
930 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
931 ret = (ret + 1) * horiz_pixels * cpp;
932 ret = DIV_ROUND_UP(ret, 64);
933
934 return ret;
935 }
936
937 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
938 {
939 /* all latencies in usec */
940 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
941
942 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
943
944 if (IS_CHERRYVIEW(dev_priv)) {
945 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
946 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
947
948 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
949 }
950 }
951
952 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
953 struct intel_crtc *crtc,
954 const struct intel_plane_state *state,
955 int level)
956 {
957 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
958 int clock, htotal, cpp, width, wm;
959
960 if (dev_priv->wm.pri_latency[level] == 0)
961 return USHRT_MAX;
962
963 if (!state->base.visible)
964 return 0;
965
966 cpp = state->base.fb->format->cpp[0];
967 clock = crtc->config->base.adjusted_mode.crtc_clock;
968 htotal = crtc->config->base.adjusted_mode.crtc_htotal;
969 width = crtc->config->pipe_src_w;
970 if (WARN_ON(htotal == 0))
971 htotal = 1;
972
973 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
974 /*
975 * FIXME the formula gives values that are
976 * too big for the cursor FIFO, and hence we
977 * would never be able to use cursors. For
978 * now just hardcode the watermark.
979 */
980 wm = 63;
981 } else {
982 wm = vlv_wm_method2(clock, htotal, width, cpp,
983 dev_priv->wm.pri_latency[level] * 10);
984 }
985
986 return min_t(int, wm, USHRT_MAX);
987 }
988
989 static void vlv_compute_fifo(struct intel_crtc *crtc)
990 {
991 struct drm_device *dev = crtc->base.dev;
992 struct vlv_wm_state *wm_state = &crtc->wm_state;
993 struct intel_plane *plane;
994 unsigned int total_rate = 0;
995 const int fifo_size = 512 - 1;
996 int fifo_extra, fifo_left = fifo_size;
997
998 for_each_intel_plane_on_crtc(dev, crtc, plane) {
999 struct intel_plane_state *state =
1000 to_intel_plane_state(plane->base.state);
1001
1002 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1003 continue;
1004
1005 if (state->base.visible) {
1006 wm_state->num_active_planes++;
1007 total_rate += state->base.fb->format->cpp[0];
1008 }
1009 }
1010
1011 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1012 struct intel_plane_state *state =
1013 to_intel_plane_state(plane->base.state);
1014 unsigned int rate;
1015
1016 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1017 plane->wm.fifo_size = 63;
1018 continue;
1019 }
1020
1021 if (!state->base.visible) {
1022 plane->wm.fifo_size = 0;
1023 continue;
1024 }
1025
1026 rate = state->base.fb->format->cpp[0];
1027 plane->wm.fifo_size = fifo_size * rate / total_rate;
1028 fifo_left -= plane->wm.fifo_size;
1029 }
1030
1031 fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1032
1033 /* spread the remainder evenly */
1034 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1035 int plane_extra;
1036
1037 if (fifo_left == 0)
1038 break;
1039
1040 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1041 continue;
1042
1043 /* give it all to the first plane if none are active */
1044 if (plane->wm.fifo_size == 0 &&
1045 wm_state->num_active_planes)
1046 continue;
1047
1048 plane_extra = min(fifo_extra, fifo_left);
1049 plane->wm.fifo_size += plane_extra;
1050 fifo_left -= plane_extra;
1051 }
1052
1053 WARN_ON(fifo_left != 0);
1054 }
1055
1056 static void vlv_invert_wms(struct intel_crtc *crtc)
1057 {
1058 struct vlv_wm_state *wm_state = &crtc->wm_state;
1059 int level;
1060
1061 for (level = 0; level < wm_state->num_levels; level++) {
1062 struct drm_device *dev = crtc->base.dev;
1063 const int sr_fifo_size =
1064 INTEL_INFO(to_i915(dev))->num_pipes * 512 - 1;
1065 struct intel_plane *plane;
1066
1067 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1068 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1069
1070 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1071 switch (plane->base.type) {
1072 int sprite;
1073 case DRM_PLANE_TYPE_CURSOR:
1074 wm_state->wm[level].cursor = plane->wm.fifo_size -
1075 wm_state->wm[level].cursor;
1076 break;
1077 case DRM_PLANE_TYPE_PRIMARY:
1078 wm_state->wm[level].primary = plane->wm.fifo_size -
1079 wm_state->wm[level].primary;
1080 break;
1081 case DRM_PLANE_TYPE_OVERLAY:
1082 sprite = plane->plane;
1083 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1084 wm_state->wm[level].sprite[sprite];
1085 break;
1086 }
1087 }
1088 }
1089 }
1090
1091 static void vlv_compute_wm(struct intel_crtc *crtc)
1092 {
1093 struct drm_device *dev = crtc->base.dev;
1094 struct drm_i915_private *dev_priv = to_i915(dev);
1095 struct vlv_wm_state *wm_state = &crtc->wm_state;
1096 struct intel_plane *plane;
1097 int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1098 int level;
1099
1100 memset(wm_state, 0, sizeof(*wm_state));
1101
1102 wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1103 wm_state->num_levels = dev_priv->wm.max_level + 1;
1104
1105 wm_state->num_active_planes = 0;
1106
1107 vlv_compute_fifo(crtc);
1108
1109 if (wm_state->num_active_planes != 1)
1110 wm_state->cxsr = false;
1111
1112 if (wm_state->cxsr) {
1113 for (level = 0; level < wm_state->num_levels; level++) {
1114 wm_state->sr[level].plane = sr_fifo_size;
1115 wm_state->sr[level].cursor = 63;
1116 }
1117 }
1118
1119 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1120 struct intel_plane_state *state =
1121 to_intel_plane_state(plane->base.state);
1122
1123 if (!state->base.visible)
1124 continue;
1125
1126 /* normal watermarks */
1127 for (level = 0; level < wm_state->num_levels; level++) {
1128 int wm = vlv_compute_wm_level(plane, crtc, state, level);
1129 int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1130
1131 /* hack */
1132 if (WARN_ON(level == 0 && wm > max_wm))
1133 wm = max_wm;
1134
1135 if (wm > plane->wm.fifo_size)
1136 break;
1137
1138 switch (plane->base.type) {
1139 int sprite;
1140 case DRM_PLANE_TYPE_CURSOR:
1141 wm_state->wm[level].cursor = wm;
1142 break;
1143 case DRM_PLANE_TYPE_PRIMARY:
1144 wm_state->wm[level].primary = wm;
1145 break;
1146 case DRM_PLANE_TYPE_OVERLAY:
1147 sprite = plane->plane;
1148 wm_state->wm[level].sprite[sprite] = wm;
1149 break;
1150 }
1151 }
1152
1153 wm_state->num_levels = level;
1154
1155 if (!wm_state->cxsr)
1156 continue;
1157
1158 /* maxfifo watermarks */
1159 switch (plane->base.type) {
1160 int sprite, level;
1161 case DRM_PLANE_TYPE_CURSOR:
1162 for (level = 0; level < wm_state->num_levels; level++)
1163 wm_state->sr[level].cursor =
1164 wm_state->wm[level].cursor;
1165 break;
1166 case DRM_PLANE_TYPE_PRIMARY:
1167 for (level = 0; level < wm_state->num_levels; level++)
1168 wm_state->sr[level].plane =
1169 min(wm_state->sr[level].plane,
1170 wm_state->wm[level].primary);
1171 break;
1172 case DRM_PLANE_TYPE_OVERLAY:
1173 sprite = plane->plane;
1174 for (level = 0; level < wm_state->num_levels; level++)
1175 wm_state->sr[level].plane =
1176 min(wm_state->sr[level].plane,
1177 wm_state->wm[level].sprite[sprite]);
1178 break;
1179 }
1180 }
1181
1182 /* clear any (partially) filled invalid levels */
1183 for (level = wm_state->num_levels; level < dev_priv->wm.max_level + 1; level++) {
1184 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1185 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1186 }
1187
1188 vlv_invert_wms(crtc);
1189 }
1190
1191 #define VLV_FIFO(plane, value) \
1192 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1193
1194 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1195 {
1196 struct drm_device *dev = crtc->base.dev;
1197 struct drm_i915_private *dev_priv = to_i915(dev);
1198 struct intel_plane *plane;
1199 int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1200
1201 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1202 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1203 WARN_ON(plane->wm.fifo_size != 63);
1204 continue;
1205 }
1206
1207 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1208 sprite0_start = plane->wm.fifo_size;
1209 else if (plane->plane == 0)
1210 sprite1_start = sprite0_start + plane->wm.fifo_size;
1211 else
1212 fifo_size = sprite1_start + plane->wm.fifo_size;
1213 }
1214
1215 WARN_ON(fifo_size != 512 - 1);
1216
1217 DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1218 pipe_name(crtc->pipe), sprite0_start,
1219 sprite1_start, fifo_size);
1220
1221 switch (crtc->pipe) {
1222 uint32_t dsparb, dsparb2, dsparb3;
1223 case PIPE_A:
1224 dsparb = I915_READ(DSPARB);
1225 dsparb2 = I915_READ(DSPARB2);
1226
1227 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1228 VLV_FIFO(SPRITEB, 0xff));
1229 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1230 VLV_FIFO(SPRITEB, sprite1_start));
1231
1232 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1233 VLV_FIFO(SPRITEB_HI, 0x1));
1234 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1235 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1236
1237 I915_WRITE(DSPARB, dsparb);
1238 I915_WRITE(DSPARB2, dsparb2);
1239 break;
1240 case PIPE_B:
1241 dsparb = I915_READ(DSPARB);
1242 dsparb2 = I915_READ(DSPARB2);
1243
1244 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1245 VLV_FIFO(SPRITED, 0xff));
1246 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1247 VLV_FIFO(SPRITED, sprite1_start));
1248
1249 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1250 VLV_FIFO(SPRITED_HI, 0xff));
1251 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1252 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1253
1254 I915_WRITE(DSPARB, dsparb);
1255 I915_WRITE(DSPARB2, dsparb2);
1256 break;
1257 case PIPE_C:
1258 dsparb3 = I915_READ(DSPARB3);
1259 dsparb2 = I915_READ(DSPARB2);
1260
1261 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1262 VLV_FIFO(SPRITEF, 0xff));
1263 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1264 VLV_FIFO(SPRITEF, sprite1_start));
1265
1266 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1267 VLV_FIFO(SPRITEF_HI, 0xff));
1268 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1269 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1270
1271 I915_WRITE(DSPARB3, dsparb3);
1272 I915_WRITE(DSPARB2, dsparb2);
1273 break;
1274 default:
1275 break;
1276 }
1277 }
1278
1279 #undef VLV_FIFO
1280
1281 static void vlv_merge_wm(struct drm_device *dev,
1282 struct vlv_wm_values *wm)
1283 {
1284 struct intel_crtc *crtc;
1285 int num_active_crtcs = 0;
1286
1287 wm->level = to_i915(dev)->wm.max_level;
1288 wm->cxsr = true;
1289
1290 for_each_intel_crtc(dev, crtc) {
1291 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1292
1293 if (!crtc->active)
1294 continue;
1295
1296 if (!wm_state->cxsr)
1297 wm->cxsr = false;
1298
1299 num_active_crtcs++;
1300 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1301 }
1302
1303 if (num_active_crtcs != 1)
1304 wm->cxsr = false;
1305
1306 if (num_active_crtcs > 1)
1307 wm->level = VLV_WM_LEVEL_PM2;
1308
1309 for_each_intel_crtc(dev, crtc) {
1310 struct vlv_wm_state *wm_state = &crtc->wm_state;
1311 enum pipe pipe = crtc->pipe;
1312
1313 if (!crtc->active)
1314 continue;
1315
1316 wm->pipe[pipe] = wm_state->wm[wm->level];
1317 if (wm->cxsr)
1318 wm->sr = wm_state->sr[wm->level];
1319
1320 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1321 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1322 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1323 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1324 }
1325 }
1326
1327 static void vlv_update_wm(struct intel_crtc *crtc)
1328 {
1329 struct drm_device *dev = crtc->base.dev;
1330 struct drm_i915_private *dev_priv = to_i915(dev);
1331 enum pipe pipe = crtc->pipe;
1332 struct vlv_wm_values wm = {};
1333
1334 vlv_compute_wm(crtc);
1335 vlv_merge_wm(dev, &wm);
1336
1337 if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1338 /* FIXME should be part of crtc atomic commit */
1339 vlv_pipe_set_fifo_size(crtc);
1340 return;
1341 }
1342
1343 if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1344 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1345 chv_set_memory_dvfs(dev_priv, false);
1346
1347 if (wm.level < VLV_WM_LEVEL_PM5 &&
1348 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1349 chv_set_memory_pm5(dev_priv, false);
1350
1351 if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1352 intel_set_memory_cxsr(dev_priv, false);
1353
1354 /* FIXME should be part of crtc atomic commit */
1355 vlv_pipe_set_fifo_size(crtc);
1356
1357 vlv_write_wm_values(crtc, &wm);
1358
1359 DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1360 "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1361 pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1362 wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1363 wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1364
1365 if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1366 intel_set_memory_cxsr(dev_priv, true);
1367
1368 if (wm.level >= VLV_WM_LEVEL_PM5 &&
1369 dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1370 chv_set_memory_pm5(dev_priv, true);
1371
1372 if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1373 dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1374 chv_set_memory_dvfs(dev_priv, true);
1375
1376 dev_priv->wm.vlv = wm;
1377 }
1378
1379 #define single_plane_enabled(mask) is_power_of_2(mask)
1380
1381 static void g4x_update_wm(struct intel_crtc *crtc)
1382 {
1383 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1384 static const int sr_latency_ns = 12000;
1385 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1386 int plane_sr, cursor_sr;
1387 unsigned int enabled = 0;
1388 bool cxsr_enabled;
1389
1390 if (g4x_compute_wm0(dev_priv, PIPE_A,
1391 &g4x_wm_info, pessimal_latency_ns,
1392 &g4x_cursor_wm_info, pessimal_latency_ns,
1393 &planea_wm, &cursora_wm))
1394 enabled |= 1 << PIPE_A;
1395
1396 if (g4x_compute_wm0(dev_priv, PIPE_B,
1397 &g4x_wm_info, pessimal_latency_ns,
1398 &g4x_cursor_wm_info, pessimal_latency_ns,
1399 &planeb_wm, &cursorb_wm))
1400 enabled |= 1 << PIPE_B;
1401
1402 if (single_plane_enabled(enabled) &&
1403 g4x_compute_srwm(dev_priv, ffs(enabled) - 1,
1404 sr_latency_ns,
1405 &g4x_wm_info,
1406 &g4x_cursor_wm_info,
1407 &plane_sr, &cursor_sr)) {
1408 cxsr_enabled = true;
1409 } else {
1410 cxsr_enabled = false;
1411 intel_set_memory_cxsr(dev_priv, false);
1412 plane_sr = cursor_sr = 0;
1413 }
1414
1415 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1416 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1417 planea_wm, cursora_wm,
1418 planeb_wm, cursorb_wm,
1419 plane_sr, cursor_sr);
1420
1421 I915_WRITE(DSPFW1,
1422 FW_WM(plane_sr, SR) |
1423 FW_WM(cursorb_wm, CURSORB) |
1424 FW_WM(planeb_wm, PLANEB) |
1425 FW_WM(planea_wm, PLANEA));
1426 I915_WRITE(DSPFW2,
1427 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1428 FW_WM(cursora_wm, CURSORA));
1429 /* HPLL off in SR has some issues on G4x... disable it */
1430 I915_WRITE(DSPFW3,
1431 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1432 FW_WM(cursor_sr, CURSOR_SR));
1433
1434 if (cxsr_enabled)
1435 intel_set_memory_cxsr(dev_priv, true);
1436 }
1437
1438 static void i965_update_wm(struct intel_crtc *unused_crtc)
1439 {
1440 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1441 struct intel_crtc *crtc;
1442 int srwm = 1;
1443 int cursor_sr = 16;
1444 bool cxsr_enabled;
1445
1446 /* Calc sr entries for one plane configs */
1447 crtc = single_enabled_crtc(dev_priv);
1448 if (crtc) {
1449 /* self-refresh has much higher latency */
1450 static const int sr_latency_ns = 12000;
1451 const struct drm_display_mode *adjusted_mode =
1452 &crtc->config->base.adjusted_mode;
1453 const struct drm_framebuffer *fb =
1454 crtc->base.primary->state->fb;
1455 int clock = adjusted_mode->crtc_clock;
1456 int htotal = adjusted_mode->crtc_htotal;
1457 int hdisplay = crtc->config->pipe_src_w;
1458 int cpp = fb->format->cpp[0];
1459 unsigned long line_time_us;
1460 int entries;
1461
1462 line_time_us = max(htotal * 1000 / clock, 1);
1463
1464 /* Use ns/us then divide to preserve precision */
1465 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1466 cpp * hdisplay;
1467 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1468 srwm = I965_FIFO_SIZE - entries;
1469 if (srwm < 0)
1470 srwm = 1;
1471 srwm &= 0x1ff;
1472 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1473 entries, srwm);
1474
1475 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1476 cpp * crtc->base.cursor->state->crtc_w;
1477 entries = DIV_ROUND_UP(entries,
1478 i965_cursor_wm_info.cacheline_size);
1479 cursor_sr = i965_cursor_wm_info.fifo_size -
1480 (entries + i965_cursor_wm_info.guard_size);
1481
1482 if (cursor_sr > i965_cursor_wm_info.max_wm)
1483 cursor_sr = i965_cursor_wm_info.max_wm;
1484
1485 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1486 "cursor %d\n", srwm, cursor_sr);
1487
1488 cxsr_enabled = true;
1489 } else {
1490 cxsr_enabled = false;
1491 /* Turn off self refresh if both pipes are enabled */
1492 intel_set_memory_cxsr(dev_priv, false);
1493 }
1494
1495 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1496 srwm);
1497
1498 /* 965 has limitations... */
1499 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1500 FW_WM(8, CURSORB) |
1501 FW_WM(8, PLANEB) |
1502 FW_WM(8, PLANEA));
1503 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1504 FW_WM(8, PLANEC_OLD));
1505 /* update cursor SR watermark */
1506 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1507
1508 if (cxsr_enabled)
1509 intel_set_memory_cxsr(dev_priv, true);
1510 }
1511
1512 #undef FW_WM
1513
1514 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
1515 {
1516 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1517 const struct intel_watermark_params *wm_info;
1518 uint32_t fwater_lo;
1519 uint32_t fwater_hi;
1520 int cwm, srwm = 1;
1521 int fifo_size;
1522 int planea_wm, planeb_wm;
1523 struct intel_crtc *crtc, *enabled = NULL;
1524
1525 if (IS_I945GM(dev_priv))
1526 wm_info = &i945_wm_info;
1527 else if (!IS_GEN2(dev_priv))
1528 wm_info = &i915_wm_info;
1529 else
1530 wm_info = &i830_a_wm_info;
1531
1532 fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
1533 crtc = intel_get_crtc_for_plane(dev_priv, 0);
1534 if (intel_crtc_active(crtc)) {
1535 const struct drm_display_mode *adjusted_mode =
1536 &crtc->config->base.adjusted_mode;
1537 const struct drm_framebuffer *fb =
1538 crtc->base.primary->state->fb;
1539 int cpp;
1540
1541 if (IS_GEN2(dev_priv))
1542 cpp = 4;
1543 else
1544 cpp = fb->format->cpp[0];
1545
1546 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1547 wm_info, fifo_size, cpp,
1548 pessimal_latency_ns);
1549 enabled = crtc;
1550 } else {
1551 planea_wm = fifo_size - wm_info->guard_size;
1552 if (planea_wm > (long)wm_info->max_wm)
1553 planea_wm = wm_info->max_wm;
1554 }
1555
1556 if (IS_GEN2(dev_priv))
1557 wm_info = &i830_bc_wm_info;
1558
1559 fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
1560 crtc = intel_get_crtc_for_plane(dev_priv, 1);
1561 if (intel_crtc_active(crtc)) {
1562 const struct drm_display_mode *adjusted_mode =
1563 &crtc->config->base.adjusted_mode;
1564 const struct drm_framebuffer *fb =
1565 crtc->base.primary->state->fb;
1566 int cpp;
1567
1568 if (IS_GEN2(dev_priv))
1569 cpp = 4;
1570 else
1571 cpp = fb->format->cpp[0];
1572
1573 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1574 wm_info, fifo_size, cpp,
1575 pessimal_latency_ns);
1576 if (enabled == NULL)
1577 enabled = crtc;
1578 else
1579 enabled = NULL;
1580 } else {
1581 planeb_wm = fifo_size - wm_info->guard_size;
1582 if (planeb_wm > (long)wm_info->max_wm)
1583 planeb_wm = wm_info->max_wm;
1584 }
1585
1586 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1587
1588 if (IS_I915GM(dev_priv) && enabled) {
1589 struct drm_i915_gem_object *obj;
1590
1591 obj = intel_fb_obj(enabled->base.primary->state->fb);
1592
1593 /* self-refresh seems busted with untiled */
1594 if (!i915_gem_object_is_tiled(obj))
1595 enabled = NULL;
1596 }
1597
1598 /*
1599 * Overlay gets an aggressive default since video jitter is bad.
1600 */
1601 cwm = 2;
1602
1603 /* Play safe and disable self-refresh before adjusting watermarks. */
1604 intel_set_memory_cxsr(dev_priv, false);
1605
1606 /* Calc sr entries for one plane configs */
1607 if (HAS_FW_BLC(dev_priv) && enabled) {
1608 /* self-refresh has much higher latency */
1609 static const int sr_latency_ns = 6000;
1610 const struct drm_display_mode *adjusted_mode =
1611 &enabled->config->base.adjusted_mode;
1612 const struct drm_framebuffer *fb =
1613 enabled->base.primary->state->fb;
1614 int clock = adjusted_mode->crtc_clock;
1615 int htotal = adjusted_mode->crtc_htotal;
1616 int hdisplay = enabled->config->pipe_src_w;
1617 int cpp;
1618 unsigned long line_time_us;
1619 int entries;
1620
1621 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
1622 cpp = 4;
1623 else
1624 cpp = fb->format->cpp[0];
1625
1626 line_time_us = max(htotal * 1000 / clock, 1);
1627
1628 /* Use ns/us then divide to preserve precision */
1629 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1630 cpp * hdisplay;
1631 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1632 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1633 srwm = wm_info->fifo_size - entries;
1634 if (srwm < 0)
1635 srwm = 1;
1636
1637 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1638 I915_WRITE(FW_BLC_SELF,
1639 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1640 else
1641 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1642 }
1643
1644 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1645 planea_wm, planeb_wm, cwm, srwm);
1646
1647 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1648 fwater_hi = (cwm & 0x1f);
1649
1650 /* Set request length to 8 cachelines per fetch */
1651 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1652 fwater_hi = fwater_hi | (1 << 8);
1653
1654 I915_WRITE(FW_BLC, fwater_lo);
1655 I915_WRITE(FW_BLC2, fwater_hi);
1656
1657 if (enabled)
1658 intel_set_memory_cxsr(dev_priv, true);
1659 }
1660
1661 static void i845_update_wm(struct intel_crtc *unused_crtc)
1662 {
1663 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
1664 struct intel_crtc *crtc;
1665 const struct drm_display_mode *adjusted_mode;
1666 uint32_t fwater_lo;
1667 int planea_wm;
1668
1669 crtc = single_enabled_crtc(dev_priv);
1670 if (crtc == NULL)
1671 return;
1672
1673 adjusted_mode = &crtc->config->base.adjusted_mode;
1674 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1675 &i845_wm_info,
1676 dev_priv->display.get_fifo_size(dev_priv, 0),
1677 4, pessimal_latency_ns);
1678 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1679 fwater_lo |= (3<<8) | planea_wm;
1680
1681 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1682
1683 I915_WRITE(FW_BLC, fwater_lo);
1684 }
1685
1686 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1687 {
1688 uint32_t pixel_rate;
1689
1690 pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1691
1692 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1693 * adjust the pixel_rate here. */
1694
1695 if (pipe_config->pch_pfit.enabled) {
1696 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1697 uint32_t pfit_size = pipe_config->pch_pfit.size;
1698
1699 pipe_w = pipe_config->pipe_src_w;
1700 pipe_h = pipe_config->pipe_src_h;
1701
1702 pfit_w = (pfit_size >> 16) & 0xFFFF;
1703 pfit_h = pfit_size & 0xFFFF;
1704 if (pipe_w < pfit_w)
1705 pipe_w = pfit_w;
1706 if (pipe_h < pfit_h)
1707 pipe_h = pfit_h;
1708
1709 if (WARN_ON(!pfit_w || !pfit_h))
1710 return pixel_rate;
1711
1712 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1713 pfit_w * pfit_h);
1714 }
1715
1716 return pixel_rate;
1717 }
1718
1719 /* latency must be in 0.1us units. */
1720 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1721 {
1722 uint64_t ret;
1723
1724 if (WARN(latency == 0, "Latency value missing\n"))
1725 return UINT_MAX;
1726
1727 ret = (uint64_t) pixel_rate * cpp * latency;
1728 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1729
1730 return ret;
1731 }
1732
1733 /* latency must be in 0.1us units. */
1734 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1735 uint32_t horiz_pixels, uint8_t cpp,
1736 uint32_t latency)
1737 {
1738 uint32_t ret;
1739
1740 if (WARN(latency == 0, "Latency value missing\n"))
1741 return UINT_MAX;
1742 if (WARN_ON(!pipe_htotal))
1743 return UINT_MAX;
1744
1745 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1746 ret = (ret + 1) * horiz_pixels * cpp;
1747 ret = DIV_ROUND_UP(ret, 64) + 2;
1748 return ret;
1749 }
1750
1751 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1752 uint8_t cpp)
1753 {
1754 /*
1755 * Neither of these should be possible since this function shouldn't be
1756 * called if the CRTC is off or the plane is invisible. But let's be
1757 * extra paranoid to avoid a potential divide-by-zero if we screw up
1758 * elsewhere in the driver.
1759 */
1760 if (WARN_ON(!cpp))
1761 return 0;
1762 if (WARN_ON(!horiz_pixels))
1763 return 0;
1764
1765 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1766 }
1767
1768 struct ilk_wm_maximums {
1769 uint16_t pri;
1770 uint16_t spr;
1771 uint16_t cur;
1772 uint16_t fbc;
1773 };
1774
1775 /*
1776 * For both WM_PIPE and WM_LP.
1777 * mem_value must be in 0.1us units.
1778 */
1779 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1780 const struct intel_plane_state *pstate,
1781 uint32_t mem_value,
1782 bool is_lp)
1783 {
1784 uint32_t method1, method2;
1785 int cpp;
1786
1787 if (!cstate->base.active || !pstate->base.visible)
1788 return 0;
1789
1790 cpp = pstate->base.fb->format->cpp[0];
1791
1792 method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1793
1794 if (!is_lp)
1795 return method1;
1796
1797 method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1798 cstate->base.adjusted_mode.crtc_htotal,
1799 drm_rect_width(&pstate->base.dst),
1800 cpp, mem_value);
1801
1802 return min(method1, method2);
1803 }
1804
1805 /*
1806 * For both WM_PIPE and WM_LP.
1807 * mem_value must be in 0.1us units.
1808 */
1809 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1810 const struct intel_plane_state *pstate,
1811 uint32_t mem_value)
1812 {
1813 uint32_t method1, method2;
1814 int cpp;
1815
1816 if (!cstate->base.active || !pstate->base.visible)
1817 return 0;
1818
1819 cpp = pstate->base.fb->format->cpp[0];
1820
1821 method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1822 method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1823 cstate->base.adjusted_mode.crtc_htotal,
1824 drm_rect_width(&pstate->base.dst),
1825 cpp, mem_value);
1826 return min(method1, method2);
1827 }
1828
1829 /*
1830 * For both WM_PIPE and WM_LP.
1831 * mem_value must be in 0.1us units.
1832 */
1833 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1834 const struct intel_plane_state *pstate,
1835 uint32_t mem_value)
1836 {
1837 /*
1838 * We treat the cursor plane as always-on for the purposes of watermark
1839 * calculation. Until we have two-stage watermark programming merged,
1840 * this is necessary to avoid flickering.
1841 */
1842 int cpp = 4;
1843 int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1844
1845 if (!cstate->base.active)
1846 return 0;
1847
1848 return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1849 cstate->base.adjusted_mode.crtc_htotal,
1850 width, cpp, mem_value);
1851 }
1852
1853 /* Only for WM_LP. */
1854 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1855 const struct intel_plane_state *pstate,
1856 uint32_t pri_val)
1857 {
1858 int cpp;
1859
1860 if (!cstate->base.active || !pstate->base.visible)
1861 return 0;
1862
1863 cpp = pstate->base.fb->format->cpp[0];
1864
1865 return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1866 }
1867
1868 static unsigned int
1869 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
1870 {
1871 if (INTEL_GEN(dev_priv) >= 8)
1872 return 3072;
1873 else if (INTEL_GEN(dev_priv) >= 7)
1874 return 768;
1875 else
1876 return 512;
1877 }
1878
1879 static unsigned int
1880 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
1881 int level, bool is_sprite)
1882 {
1883 if (INTEL_GEN(dev_priv) >= 8)
1884 /* BDW primary/sprite plane watermarks */
1885 return level == 0 ? 255 : 2047;
1886 else if (INTEL_GEN(dev_priv) >= 7)
1887 /* IVB/HSW primary/sprite plane watermarks */
1888 return level == 0 ? 127 : 1023;
1889 else if (!is_sprite)
1890 /* ILK/SNB primary plane watermarks */
1891 return level == 0 ? 127 : 511;
1892 else
1893 /* ILK/SNB sprite plane watermarks */
1894 return level == 0 ? 63 : 255;
1895 }
1896
1897 static unsigned int
1898 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
1899 {
1900 if (INTEL_GEN(dev_priv) >= 7)
1901 return level == 0 ? 63 : 255;
1902 else
1903 return level == 0 ? 31 : 63;
1904 }
1905
1906 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
1907 {
1908 if (INTEL_GEN(dev_priv) >= 8)
1909 return 31;
1910 else
1911 return 15;
1912 }
1913
1914 /* Calculate the maximum primary/sprite plane watermark */
1915 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1916 int level,
1917 const struct intel_wm_config *config,
1918 enum intel_ddb_partitioning ddb_partitioning,
1919 bool is_sprite)
1920 {
1921 struct drm_i915_private *dev_priv = to_i915(dev);
1922 unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
1923
1924 /* if sprites aren't enabled, sprites get nothing */
1925 if (is_sprite && !config->sprites_enabled)
1926 return 0;
1927
1928 /* HSW allows LP1+ watermarks even with multiple pipes */
1929 if (level == 0 || config->num_pipes_active > 1) {
1930 fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
1931
1932 /*
1933 * For some reason the non self refresh
1934 * FIFO size is only half of the self
1935 * refresh FIFO size on ILK/SNB.
1936 */
1937 if (INTEL_GEN(dev_priv) <= 6)
1938 fifo_size /= 2;
1939 }
1940
1941 if (config->sprites_enabled) {
1942 /* level 0 is always calculated with 1:1 split */
1943 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1944 if (is_sprite)
1945 fifo_size *= 5;
1946 fifo_size /= 6;
1947 } else {
1948 fifo_size /= 2;
1949 }
1950 }
1951
1952 /* clamp to max that the registers can hold */
1953 return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
1954 }
1955
1956 /* Calculate the maximum cursor plane watermark */
1957 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1958 int level,
1959 const struct intel_wm_config *config)
1960 {
1961 /* HSW LP1+ watermarks w/ multiple pipes */
1962 if (level > 0 && config->num_pipes_active > 1)
1963 return 64;
1964
1965 /* otherwise just report max that registers can hold */
1966 return ilk_cursor_wm_reg_max(to_i915(dev), level);
1967 }
1968
1969 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1970 int level,
1971 const struct intel_wm_config *config,
1972 enum intel_ddb_partitioning ddb_partitioning,
1973 struct ilk_wm_maximums *max)
1974 {
1975 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1976 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1977 max->cur = ilk_cursor_wm_max(dev, level, config);
1978 max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
1979 }
1980
1981 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
1982 int level,
1983 struct ilk_wm_maximums *max)
1984 {
1985 max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
1986 max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
1987 max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
1988 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
1989 }
1990
1991 static bool ilk_validate_wm_level(int level,
1992 const struct ilk_wm_maximums *max,
1993 struct intel_wm_level *result)
1994 {
1995 bool ret;
1996
1997 /* already determined to be invalid? */
1998 if (!result->enable)
1999 return false;
2000
2001 result->enable = result->pri_val <= max->pri &&
2002 result->spr_val <= max->spr &&
2003 result->cur_val <= max->cur;
2004
2005 ret = result->enable;
2006
2007 /*
2008 * HACK until we can pre-compute everything,
2009 * and thus fail gracefully if LP0 watermarks
2010 * are exceeded...
2011 */
2012 if (level == 0 && !result->enable) {
2013 if (result->pri_val > max->pri)
2014 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2015 level, result->pri_val, max->pri);
2016 if (result->spr_val > max->spr)
2017 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2018 level, result->spr_val, max->spr);
2019 if (result->cur_val > max->cur)
2020 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2021 level, result->cur_val, max->cur);
2022
2023 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2024 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2025 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2026 result->enable = true;
2027 }
2028
2029 return ret;
2030 }
2031
2032 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2033 const struct intel_crtc *intel_crtc,
2034 int level,
2035 struct intel_crtc_state *cstate,
2036 struct intel_plane_state *pristate,
2037 struct intel_plane_state *sprstate,
2038 struct intel_plane_state *curstate,
2039 struct intel_wm_level *result)
2040 {
2041 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2042 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2043 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2044
2045 /* WM1+ latency values stored in 0.5us units */
2046 if (level > 0) {
2047 pri_latency *= 5;
2048 spr_latency *= 5;
2049 cur_latency *= 5;
2050 }
2051
2052 if (pristate) {
2053 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2054 pri_latency, level);
2055 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2056 }
2057
2058 if (sprstate)
2059 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2060
2061 if (curstate)
2062 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2063
2064 result->enable = true;
2065 }
2066
2067 static uint32_t
2068 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2069 {
2070 const struct intel_atomic_state *intel_state =
2071 to_intel_atomic_state(cstate->base.state);
2072 const struct drm_display_mode *adjusted_mode =
2073 &cstate->base.adjusted_mode;
2074 u32 linetime, ips_linetime;
2075
2076 if (!cstate->base.active)
2077 return 0;
2078 if (WARN_ON(adjusted_mode->crtc_clock == 0))
2079 return 0;
2080 if (WARN_ON(intel_state->cdclk == 0))
2081 return 0;
2082
2083 /* The WM are computed with base on how long it takes to fill a single
2084 * row at the given clock rate, multiplied by 8.
2085 * */
2086 linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2087 adjusted_mode->crtc_clock);
2088 ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2089 intel_state->cdclk);
2090
2091 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2092 PIPE_WM_LINETIME_TIME(linetime);
2093 }
2094
2095 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2096 uint16_t wm[8])
2097 {
2098 if (IS_GEN9(dev_priv)) {
2099 uint32_t val;
2100 int ret, i;
2101 int level, max_level = ilk_wm_max_level(dev_priv);
2102
2103 /* read the first set of memory latencies[0:3] */
2104 val = 0; /* data0 to be programmed to 0 for first set */
2105 mutex_lock(&dev_priv->rps.hw_lock);
2106 ret = sandybridge_pcode_read(dev_priv,
2107 GEN9_PCODE_READ_MEM_LATENCY,
2108 &val);
2109 mutex_unlock(&dev_priv->rps.hw_lock);
2110
2111 if (ret) {
2112 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2113 return;
2114 }
2115
2116 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2117 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2118 GEN9_MEM_LATENCY_LEVEL_MASK;
2119 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2120 GEN9_MEM_LATENCY_LEVEL_MASK;
2121 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2122 GEN9_MEM_LATENCY_LEVEL_MASK;
2123
2124 /* read the second set of memory latencies[4:7] */
2125 val = 1; /* data0 to be programmed to 1 for second set */
2126 mutex_lock(&dev_priv->rps.hw_lock);
2127 ret = sandybridge_pcode_read(dev_priv,
2128 GEN9_PCODE_READ_MEM_LATENCY,
2129 &val);
2130 mutex_unlock(&dev_priv->rps.hw_lock);
2131 if (ret) {
2132 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2133 return;
2134 }
2135
2136 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2137 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2138 GEN9_MEM_LATENCY_LEVEL_MASK;
2139 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2140 GEN9_MEM_LATENCY_LEVEL_MASK;
2141 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2142 GEN9_MEM_LATENCY_LEVEL_MASK;
2143
2144 /*
2145 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2146 * need to be disabled. We make sure to sanitize the values out
2147 * of the punit to satisfy this requirement.
2148 */
2149 for (level = 1; level <= max_level; level++) {
2150 if (wm[level] == 0) {
2151 for (i = level + 1; i <= max_level; i++)
2152 wm[i] = 0;
2153 break;
2154 }
2155 }
2156
2157 /*
2158 * WaWmMemoryReadLatency:skl
2159 *
2160 * punit doesn't take into account the read latency so we need
2161 * to add 2us to the various latency levels we retrieve from the
2162 * punit when level 0 response data us 0us.
2163 */
2164 if (wm[0] == 0) {
2165 wm[0] += 2;
2166 for (level = 1; level <= max_level; level++) {
2167 if (wm[level] == 0)
2168 break;
2169 wm[level] += 2;
2170 }
2171 }
2172
2173 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2174 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2175
2176 wm[0] = (sskpd >> 56) & 0xFF;
2177 if (wm[0] == 0)
2178 wm[0] = sskpd & 0xF;
2179 wm[1] = (sskpd >> 4) & 0xFF;
2180 wm[2] = (sskpd >> 12) & 0xFF;
2181 wm[3] = (sskpd >> 20) & 0x1FF;
2182 wm[4] = (sskpd >> 32) & 0x1FF;
2183 } else if (INTEL_GEN(dev_priv) >= 6) {
2184 uint32_t sskpd = I915_READ(MCH_SSKPD);
2185
2186 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2187 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2188 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2189 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2190 } else if (INTEL_GEN(dev_priv) >= 5) {
2191 uint32_t mltr = I915_READ(MLTR_ILK);
2192
2193 /* ILK primary LP0 latency is 700 ns */
2194 wm[0] = 7;
2195 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2196 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2197 }
2198 }
2199
2200 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2201 uint16_t wm[5])
2202 {
2203 /* ILK sprite LP0 latency is 1300 ns */
2204 if (IS_GEN5(dev_priv))
2205 wm[0] = 13;
2206 }
2207
2208 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2209 uint16_t wm[5])
2210 {
2211 /* ILK cursor LP0 latency is 1300 ns */
2212 if (IS_GEN5(dev_priv))
2213 wm[0] = 13;
2214
2215 /* WaDoubleCursorLP3Latency:ivb */
2216 if (IS_IVYBRIDGE(dev_priv))
2217 wm[3] *= 2;
2218 }
2219
2220 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2221 {
2222 /* how many WM levels are we expecting */
2223 if (INTEL_GEN(dev_priv) >= 9)
2224 return 7;
2225 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2226 return 4;
2227 else if (INTEL_GEN(dev_priv) >= 6)
2228 return 3;
2229 else
2230 return 2;
2231 }
2232
2233 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2234 const char *name,
2235 const uint16_t wm[8])
2236 {
2237 int level, max_level = ilk_wm_max_level(dev_priv);
2238
2239 for (level = 0; level <= max_level; level++) {
2240 unsigned int latency = wm[level];
2241
2242 if (latency == 0) {
2243 DRM_ERROR("%s WM%d latency not provided\n",
2244 name, level);
2245 continue;
2246 }
2247
2248 /*
2249 * - latencies are in us on gen9.
2250 * - before then, WM1+ latency values are in 0.5us units
2251 */
2252 if (IS_GEN9(dev_priv))
2253 latency *= 10;
2254 else if (level > 0)
2255 latency *= 5;
2256
2257 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2258 name, level, wm[level],
2259 latency / 10, latency % 10);
2260 }
2261 }
2262
2263 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2264 uint16_t wm[5], uint16_t min)
2265 {
2266 int level, max_level = ilk_wm_max_level(dev_priv);
2267
2268 if (wm[0] >= min)
2269 return false;
2270
2271 wm[0] = max(wm[0], min);
2272 for (level = 1; level <= max_level; level++)
2273 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2274
2275 return true;
2276 }
2277
2278 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2279 {
2280 bool changed;
2281
2282 /*
2283 * The BIOS provided WM memory latency values are often
2284 * inadequate for high resolution displays. Adjust them.
2285 */
2286 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2287 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2288 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2289
2290 if (!changed)
2291 return;
2292
2293 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2294 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2295 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2296 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2297 }
2298
2299 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
2300 {
2301 intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
2302
2303 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2304 sizeof(dev_priv->wm.pri_latency));
2305 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2306 sizeof(dev_priv->wm.pri_latency));
2307
2308 intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
2309 intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
2310
2311 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2312 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2313 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2314
2315 if (IS_GEN6(dev_priv))
2316 snb_wm_latency_quirk(dev_priv);
2317 }
2318
2319 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
2320 {
2321 intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
2322 intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
2323 }
2324
2325 static bool ilk_validate_pipe_wm(struct drm_device *dev,
2326 struct intel_pipe_wm *pipe_wm)
2327 {
2328 /* LP0 watermark maximums depend on this pipe alone */
2329 const struct intel_wm_config config = {
2330 .num_pipes_active = 1,
2331 .sprites_enabled = pipe_wm->sprites_enabled,
2332 .sprites_scaled = pipe_wm->sprites_scaled,
2333 };
2334 struct ilk_wm_maximums max;
2335
2336 /* LP0 watermarks always use 1/2 DDB partitioning */
2337 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2338
2339 /* At least LP0 must be valid */
2340 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
2341 DRM_DEBUG_KMS("LP0 watermark invalid\n");
2342 return false;
2343 }
2344
2345 return true;
2346 }
2347
2348 /* Compute new watermarks for the pipe */
2349 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2350 {
2351 struct drm_atomic_state *state = cstate->base.state;
2352 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2353 struct intel_pipe_wm *pipe_wm;
2354 struct drm_device *dev = state->dev;
2355 const struct drm_i915_private *dev_priv = to_i915(dev);
2356 struct intel_plane *intel_plane;
2357 struct intel_plane_state *pristate = NULL;
2358 struct intel_plane_state *sprstate = NULL;
2359 struct intel_plane_state *curstate = NULL;
2360 int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
2361 struct ilk_wm_maximums max;
2362
2363 pipe_wm = &cstate->wm.ilk.optimal;
2364
2365 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2366 struct intel_plane_state *ps;
2367
2368 ps = intel_atomic_get_existing_plane_state(state,
2369 intel_plane);
2370 if (!ps)
2371 continue;
2372
2373 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2374 pristate = ps;
2375 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2376 sprstate = ps;
2377 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2378 curstate = ps;
2379 }
2380
2381 pipe_wm->pipe_enabled = cstate->base.active;
2382 if (sprstate) {
2383 pipe_wm->sprites_enabled = sprstate->base.visible;
2384 pipe_wm->sprites_scaled = sprstate->base.visible &&
2385 (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
2386 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2387 }
2388
2389 usable_level = max_level;
2390
2391 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2392 if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
2393 usable_level = 1;
2394
2395 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2396 if (pipe_wm->sprites_scaled)
2397 usable_level = 0;
2398
2399 ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2400 pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
2401
2402 memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2403 pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2404
2405 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2406 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2407
2408 if (!ilk_validate_pipe_wm(dev, pipe_wm))
2409 return -EINVAL;
2410
2411 ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
2412
2413 for (level = 1; level <= max_level; level++) {
2414 struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2415
2416 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2417 pristate, sprstate, curstate, wm);
2418
2419 /*
2420 * Disable any watermark level that exceeds the
2421 * register maximums since such watermarks are
2422 * always invalid.
2423 */
2424 if (level > usable_level)
2425 continue;
2426
2427 if (ilk_validate_wm_level(level, &max, wm))
2428 pipe_wm->wm[level] = *wm;
2429 else
2430 usable_level = level;
2431 }
2432
2433 return 0;
2434 }
2435
2436 /*
2437 * Build a set of 'intermediate' watermark values that satisfy both the old
2438 * state and the new state. These can be programmed to the hardware
2439 * immediately.
2440 */
2441 static int ilk_compute_intermediate_wm(struct drm_device *dev,
2442 struct intel_crtc *intel_crtc,
2443 struct intel_crtc_state *newstate)
2444 {
2445 struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2446 struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2447 int level, max_level = ilk_wm_max_level(to_i915(dev));
2448
2449 /*
2450 * Start with the final, target watermarks, then combine with the
2451 * currently active watermarks to get values that are safe both before
2452 * and after the vblank.
2453 */
2454 *a = newstate->wm.ilk.optimal;
2455 a->pipe_enabled |= b->pipe_enabled;
2456 a->sprites_enabled |= b->sprites_enabled;
2457 a->sprites_scaled |= b->sprites_scaled;
2458
2459 for (level = 0; level <= max_level; level++) {
2460 struct intel_wm_level *a_wm = &a->wm[level];
2461 const struct intel_wm_level *b_wm = &b->wm[level];
2462
2463 a_wm->enable &= b_wm->enable;
2464 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
2465 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
2466 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
2467 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
2468 }
2469
2470 /*
2471 * We need to make sure that these merged watermark values are
2472 * actually a valid configuration themselves. If they're not,
2473 * there's no safe way to transition from the old state to
2474 * the new state, so we need to fail the atomic transaction.
2475 */
2476 if (!ilk_validate_pipe_wm(dev, a))
2477 return -EINVAL;
2478
2479 /*
2480 * If our intermediate WM are identical to the final WM, then we can
2481 * omit the post-vblank programming; only update if it's different.
2482 */
2483 if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2484 newstate->wm.need_postvbl_update = false;
2485
2486 return 0;
2487 }
2488
2489 /*
2490 * Merge the watermarks from all active pipes for a specific level.
2491 */
2492 static void ilk_merge_wm_level(struct drm_device *dev,
2493 int level,
2494 struct intel_wm_level *ret_wm)
2495 {
2496 const struct intel_crtc *intel_crtc;
2497
2498 ret_wm->enable = true;
2499
2500 for_each_intel_crtc(dev, intel_crtc) {
2501 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2502 const struct intel_wm_level *wm = &active->wm[level];
2503
2504 if (!active->pipe_enabled)
2505 continue;
2506
2507 /*
2508 * The watermark values may have been used in the past,
2509 * so we must maintain them in the registers for some
2510 * time even if the level is now disabled.
2511 */
2512 if (!wm->enable)
2513 ret_wm->enable = false;
2514
2515 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2516 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2517 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2518 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2519 }
2520 }
2521
2522 /*
2523 * Merge all low power watermarks for all active pipes.
2524 */
2525 static void ilk_wm_merge(struct drm_device *dev,
2526 const struct intel_wm_config *config,
2527 const struct ilk_wm_maximums *max,
2528 struct intel_pipe_wm *merged)
2529 {
2530 struct drm_i915_private *dev_priv = to_i915(dev);
2531 int level, max_level = ilk_wm_max_level(dev_priv);
2532 int last_enabled_level = max_level;
2533
2534 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2535 if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
2536 config->num_pipes_active > 1)
2537 last_enabled_level = 0;
2538
2539 /* ILK: FBC WM must be disabled always */
2540 merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
2541
2542 /* merge each WM1+ level */
2543 for (level = 1; level <= max_level; level++) {
2544 struct intel_wm_level *wm = &merged->wm[level];
2545
2546 ilk_merge_wm_level(dev, level, wm);
2547
2548 if (level > last_enabled_level)
2549 wm->enable = false;
2550 else if (!ilk_validate_wm_level(level, max, wm))
2551 /* make sure all following levels get disabled */
2552 last_enabled_level = level - 1;
2553
2554 /*
2555 * The spec says it is preferred to disable
2556 * FBC WMs instead of disabling a WM level.
2557 */
2558 if (wm->fbc_val > max->fbc) {
2559 if (wm->enable)
2560 merged->fbc_wm_enabled = false;
2561 wm->fbc_val = 0;
2562 }
2563 }
2564
2565 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2566 /*
2567 * FIXME this is racy. FBC might get enabled later.
2568 * What we should check here is whether FBC can be
2569 * enabled sometime later.
2570 */
2571 if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
2572 intel_fbc_is_active(dev_priv)) {
2573 for (level = 2; level <= max_level; level++) {
2574 struct intel_wm_level *wm = &merged->wm[level];
2575
2576 wm->enable = false;
2577 }
2578 }
2579 }
2580
2581 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2582 {
2583 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2584 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2585 }
2586
2587 /* The value we need to program into the WM_LPx latency field */
2588 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2589 {
2590 struct drm_i915_private *dev_priv = to_i915(dev);
2591
2592 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2593 return 2 * level;
2594 else
2595 return dev_priv->wm.pri_latency[level];
2596 }
2597
2598 static void ilk_compute_wm_results(struct drm_device *dev,
2599 const struct intel_pipe_wm *merged,
2600 enum intel_ddb_partitioning partitioning,
2601 struct ilk_wm_values *results)
2602 {
2603 struct drm_i915_private *dev_priv = to_i915(dev);
2604 struct intel_crtc *intel_crtc;
2605 int level, wm_lp;
2606
2607 results->enable_fbc_wm = merged->fbc_wm_enabled;
2608 results->partitioning = partitioning;
2609
2610 /* LP1+ register values */
2611 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2612 const struct intel_wm_level *r;
2613
2614 level = ilk_wm_lp_to_level(wm_lp, merged);
2615
2616 r = &merged->wm[level];
2617
2618 /*
2619 * Maintain the watermark values even if the level is
2620 * disabled. Doing otherwise could cause underruns.
2621 */
2622 results->wm_lp[wm_lp - 1] =
2623 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2624 (r->pri_val << WM1_LP_SR_SHIFT) |
2625 r->cur_val;
2626
2627 if (r->enable)
2628 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2629
2630 if (INTEL_GEN(dev_priv) >= 8)
2631 results->wm_lp[wm_lp - 1] |=
2632 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2633 else
2634 results->wm_lp[wm_lp - 1] |=
2635 r->fbc_val << WM1_LP_FBC_SHIFT;
2636
2637 /*
2638 * Always set WM1S_LP_EN when spr_val != 0, even if the
2639 * level is disabled. Doing otherwise could cause underruns.
2640 */
2641 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
2642 WARN_ON(wm_lp != 1);
2643 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2644 } else
2645 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2646 }
2647
2648 /* LP0 register values */
2649 for_each_intel_crtc(dev, intel_crtc) {
2650 enum pipe pipe = intel_crtc->pipe;
2651 const struct intel_wm_level *r =
2652 &intel_crtc->wm.active.ilk.wm[0];
2653
2654 if (WARN_ON(!r->enable))
2655 continue;
2656
2657 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2658
2659 results->wm_pipe[pipe] =
2660 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2661 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2662 r->cur_val;
2663 }
2664 }
2665
2666 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2667 * case both are at the same level. Prefer r1 in case they're the same. */
2668 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2669 struct intel_pipe_wm *r1,
2670 struct intel_pipe_wm *r2)
2671 {
2672 int level, max_level = ilk_wm_max_level(to_i915(dev));
2673 int level1 = 0, level2 = 0;
2674
2675 for (level = 1; level <= max_level; level++) {
2676 if (r1->wm[level].enable)
2677 level1 = level;
2678 if (r2->wm[level].enable)
2679 level2 = level;
2680 }
2681
2682 if (level1 == level2) {
2683 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2684 return r2;
2685 else
2686 return r1;
2687 } else if (level1 > level2) {
2688 return r1;
2689 } else {
2690 return r2;
2691 }
2692 }
2693
2694 /* dirty bits used to track which watermarks need changes */
2695 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2696 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2697 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2698 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2699 #define WM_DIRTY_FBC (1 << 24)
2700 #define WM_DIRTY_DDB (1 << 25)
2701
2702 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2703 const struct ilk_wm_values *old,
2704 const struct ilk_wm_values *new)
2705 {
2706 unsigned int dirty = 0;
2707 enum pipe pipe;
2708 int wm_lp;
2709
2710 for_each_pipe(dev_priv, pipe) {
2711 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2712 dirty |= WM_DIRTY_LINETIME(pipe);
2713 /* Must disable LP1+ watermarks too */
2714 dirty |= WM_DIRTY_LP_ALL;
2715 }
2716
2717 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2718 dirty |= WM_DIRTY_PIPE(pipe);
2719 /* Must disable LP1+ watermarks too */
2720 dirty |= WM_DIRTY_LP_ALL;
2721 }
2722 }
2723
2724 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2725 dirty |= WM_DIRTY_FBC;
2726 /* Must disable LP1+ watermarks too */
2727 dirty |= WM_DIRTY_LP_ALL;
2728 }
2729
2730 if (old->partitioning != new->partitioning) {
2731 dirty |= WM_DIRTY_DDB;
2732 /* Must disable LP1+ watermarks too */
2733 dirty |= WM_DIRTY_LP_ALL;
2734 }
2735
2736 /* LP1+ watermarks already deemed dirty, no need to continue */
2737 if (dirty & WM_DIRTY_LP_ALL)
2738 return dirty;
2739
2740 /* Find the lowest numbered LP1+ watermark in need of an update... */
2741 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2742 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2743 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2744 break;
2745 }
2746
2747 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2748 for (; wm_lp <= 3; wm_lp++)
2749 dirty |= WM_DIRTY_LP(wm_lp);
2750
2751 return dirty;
2752 }
2753
2754 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2755 unsigned int dirty)
2756 {
2757 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2758 bool changed = false;
2759
2760 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2761 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2762 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2763 changed = true;
2764 }
2765 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2766 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2767 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2768 changed = true;
2769 }
2770 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2771 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2772 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2773 changed = true;
2774 }
2775
2776 /*
2777 * Don't touch WM1S_LP_EN here.
2778 * Doing so could cause underruns.
2779 */
2780
2781 return changed;
2782 }
2783
2784 /*
2785 * The spec says we shouldn't write when we don't need, because every write
2786 * causes WMs to be re-evaluated, expending some power.
2787 */
2788 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2789 struct ilk_wm_values *results)
2790 {
2791 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2792 unsigned int dirty;
2793 uint32_t val;
2794
2795 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2796 if (!dirty)
2797 return;
2798
2799 _ilk_disable_lp_wm(dev_priv, dirty);
2800
2801 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2802 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2803 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2804 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2805 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2806 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2807
2808 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2809 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2810 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2811 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2812 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2813 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2814
2815 if (dirty & WM_DIRTY_DDB) {
2816 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2817 val = I915_READ(WM_MISC);
2818 if (results->partitioning == INTEL_DDB_PART_1_2)
2819 val &= ~WM_MISC_DATA_PARTITION_5_6;
2820 else
2821 val |= WM_MISC_DATA_PARTITION_5_6;
2822 I915_WRITE(WM_MISC, val);
2823 } else {
2824 val = I915_READ(DISP_ARB_CTL2);
2825 if (results->partitioning == INTEL_DDB_PART_1_2)
2826 val &= ~DISP_DATA_PARTITION_5_6;
2827 else
2828 val |= DISP_DATA_PARTITION_5_6;
2829 I915_WRITE(DISP_ARB_CTL2, val);
2830 }
2831 }
2832
2833 if (dirty & WM_DIRTY_FBC) {
2834 val = I915_READ(DISP_ARB_CTL);
2835 if (results->enable_fbc_wm)
2836 val &= ~DISP_FBC_WM_DIS;
2837 else
2838 val |= DISP_FBC_WM_DIS;
2839 I915_WRITE(DISP_ARB_CTL, val);
2840 }
2841
2842 if (dirty & WM_DIRTY_LP(1) &&
2843 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2844 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2845
2846 if (INTEL_GEN(dev_priv) >= 7) {
2847 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2848 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2849 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2850 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2851 }
2852
2853 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2854 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2855 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2856 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2857 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2858 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2859
2860 dev_priv->wm.hw = *results;
2861 }
2862
2863 bool ilk_disable_lp_wm(struct drm_device *dev)
2864 {
2865 struct drm_i915_private *dev_priv = to_i915(dev);
2866
2867 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2868 }
2869
2870 #define SKL_SAGV_BLOCK_TIME 30 /* µs */
2871
2872 /*
2873 * Return the index of a plane in the SKL DDB and wm result arrays. Primary
2874 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2875 * other universal planes are in indices 1..n. Note that this may leave unused
2876 * indices between the top "sprite" plane and the cursor.
2877 */
2878 static int
2879 skl_wm_plane_id(const struct intel_plane *plane)
2880 {
2881 switch (plane->base.type) {
2882 case DRM_PLANE_TYPE_PRIMARY:
2883 return 0;
2884 case DRM_PLANE_TYPE_CURSOR:
2885 return PLANE_CURSOR;
2886 case DRM_PLANE_TYPE_OVERLAY:
2887 return plane->plane + 1;
2888 default:
2889 MISSING_CASE(plane->base.type);
2890 return plane->plane;
2891 }
2892 }
2893
2894 /*
2895 * FIXME: We still don't have the proper code detect if we need to apply the WA,
2896 * so assume we'll always need it in order to avoid underruns.
2897 */
2898 static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
2899 {
2900 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2901
2902 if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
2903 IS_KABYLAKE(dev_priv))
2904 return true;
2905
2906 return false;
2907 }
2908
2909 static bool
2910 intel_has_sagv(struct drm_i915_private *dev_priv)
2911 {
2912 if (IS_KABYLAKE(dev_priv))
2913 return true;
2914
2915 if (IS_SKYLAKE(dev_priv) &&
2916 dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
2917 return true;
2918
2919 return false;
2920 }
2921
2922 /*
2923 * SAGV dynamically adjusts the system agent voltage and clock frequencies
2924 * depending on power and performance requirements. The display engine access
2925 * to system memory is blocked during the adjustment time. Because of the
2926 * blocking time, having this enabled can cause full system hangs and/or pipe
2927 * underruns if we don't meet all of the following requirements:
2928 *
2929 * - <= 1 pipe enabled
2930 * - All planes can enable watermarks for latencies >= SAGV engine block time
2931 * - We're not using an interlaced display configuration
2932 */
2933 int
2934 intel_enable_sagv(struct drm_i915_private *dev_priv)
2935 {
2936 int ret;
2937
2938 if (!intel_has_sagv(dev_priv))
2939 return 0;
2940
2941 if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2942 return 0;
2943
2944 DRM_DEBUG_KMS("Enabling the SAGV\n");
2945 mutex_lock(&dev_priv->rps.hw_lock);
2946
2947 ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
2948 GEN9_SAGV_ENABLE);
2949
2950 /* We don't need to wait for the SAGV when enabling */
2951 mutex_unlock(&dev_priv->rps.hw_lock);
2952
2953 /*
2954 * Some skl systems, pre-release machines in particular,
2955 * don't actually have an SAGV.
2956 */
2957 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2958 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2959 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2960 return 0;
2961 } else if (ret < 0) {
2962 DRM_ERROR("Failed to enable the SAGV\n");
2963 return ret;
2964 }
2965
2966 dev_priv->sagv_status = I915_SAGV_ENABLED;
2967 return 0;
2968 }
2969
2970 int
2971 intel_disable_sagv(struct drm_i915_private *dev_priv)
2972 {
2973 int ret;
2974
2975 if (!intel_has_sagv(dev_priv))
2976 return 0;
2977
2978 if (dev_priv->sagv_status == I915_SAGV_DISABLED)
2979 return 0;
2980
2981 DRM_DEBUG_KMS("Disabling the SAGV\n");
2982 mutex_lock(&dev_priv->rps.hw_lock);
2983
2984 /* bspec says to keep retrying for at least 1 ms */
2985 ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
2986 GEN9_SAGV_DISABLE,
2987 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
2988 1);
2989 mutex_unlock(&dev_priv->rps.hw_lock);
2990
2991 /*
2992 * Some skl systems, pre-release machines in particular,
2993 * don't actually have an SAGV.
2994 */
2995 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2996 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2997 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2998 return 0;
2999 } else if (ret < 0) {
3000 DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
3001 return ret;
3002 }
3003
3004 dev_priv->sagv_status = I915_SAGV_DISABLED;
3005 return 0;
3006 }
3007
3008 bool intel_can_enable_sagv(struct drm_atomic_state *state)
3009 {
3010 struct drm_device *dev = state->dev;
3011 struct drm_i915_private *dev_priv = to_i915(dev);
3012 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3013 struct intel_crtc *crtc;
3014 struct intel_plane *plane;
3015 struct intel_crtc_state *cstate;
3016 struct skl_plane_wm *wm;
3017 enum pipe pipe;
3018 int level, latency;
3019
3020 if (!intel_has_sagv(dev_priv))
3021 return false;
3022
3023 /*
3024 * SKL workaround: bspec recommends we disable the SAGV when we have
3025 * more then one pipe enabled
3026 *
3027 * If there are no active CRTCs, no additional checks need be performed
3028 */
3029 if (hweight32(intel_state->active_crtcs) == 0)
3030 return true;
3031 else if (hweight32(intel_state->active_crtcs) > 1)
3032 return false;
3033
3034 /* Since we're now guaranteed to only have one active CRTC... */
3035 pipe = ffs(intel_state->active_crtcs) - 1;
3036 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3037 cstate = to_intel_crtc_state(crtc->base.state);
3038
3039 if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3040 return false;
3041
3042 for_each_intel_plane_on_crtc(dev, crtc, plane) {
3043 wm = &cstate->wm.skl.optimal.planes[skl_wm_plane_id(plane)];
3044
3045 /* Skip this plane if it's not enabled */
3046 if (!wm->wm[0].plane_en)
3047 continue;
3048
3049 /* Find the highest enabled wm level for this plane */
3050 for (level = ilk_wm_max_level(dev_priv);
3051 !wm->wm[level].plane_en; --level)
3052 { }
3053
3054 latency = dev_priv->wm.skl_latency[level];
3055
3056 if (skl_needs_memory_bw_wa(intel_state) &&
3057 plane->base.state->fb->modifier ==
3058 I915_FORMAT_MOD_X_TILED)
3059 latency += 15;
3060
3061 /*
3062 * If any of the planes on this pipe don't enable wm levels
3063 * that incur memory latencies higher then 30µs we can't enable
3064 * the SAGV
3065 */
3066 if (latency < SKL_SAGV_BLOCK_TIME)
3067 return false;
3068 }
3069
3070 return true;
3071 }
3072
3073 static void
3074 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3075 const struct intel_crtc_state *cstate,
3076 struct skl_ddb_entry *alloc, /* out */
3077 int *num_active /* out */)
3078 {
3079 struct drm_atomic_state *state = cstate->base.state;
3080 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3081 struct drm_i915_private *dev_priv = to_i915(dev);
3082 struct drm_crtc *for_crtc = cstate->base.crtc;
3083 unsigned int pipe_size, ddb_size;
3084 int nth_active_pipe;
3085
3086 if (WARN_ON(!state) || !cstate->base.active) {
3087 alloc->start = 0;
3088 alloc->end = 0;
3089 *num_active = hweight32(dev_priv->active_crtcs);
3090 return;
3091 }
3092
3093 if (intel_state->active_pipe_changes)
3094 *num_active = hweight32(intel_state->active_crtcs);
3095 else
3096 *num_active = hweight32(dev_priv->active_crtcs);
3097
3098 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3099 WARN_ON(ddb_size == 0);
3100
3101 ddb_size -= 4; /* 4 blocks for bypass path allocation */
3102
3103 /*
3104 * If the state doesn't change the active CRTC's, then there's
3105 * no need to recalculate; the existing pipe allocation limits
3106 * should remain unchanged. Note that we're safe from racing
3107 * commits since any racing commit that changes the active CRTC
3108 * list would need to grab _all_ crtc locks, including the one
3109 * we currently hold.
3110 */
3111 if (!intel_state->active_pipe_changes) {
3112 /*
3113 * alloc may be cleared by clear_intel_crtc_state,
3114 * copy from old state to be sure
3115 */
3116 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3117 return;
3118 }
3119
3120 nth_active_pipe = hweight32(intel_state->active_crtcs &
3121 (drm_crtc_mask(for_crtc) - 1));
3122 pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
3123 alloc->start = nth_active_pipe * ddb_size / *num_active;
3124 alloc->end = alloc->start + pipe_size;
3125 }
3126
3127 static unsigned int skl_cursor_allocation(int num_active)
3128 {
3129 if (num_active == 1)
3130 return 32;
3131
3132 return 8;
3133 }
3134
3135 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
3136 {
3137 entry->start = reg & 0x3ff;
3138 entry->end = (reg >> 16) & 0x3ff;
3139 if (entry->end)
3140 entry->end += 1;
3141 }
3142
3143 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3144 struct skl_ddb_allocation *ddb /* out */)
3145 {
3146 enum pipe pipe;
3147 int plane;
3148 u32 val;
3149
3150 memset(ddb, 0, sizeof(*ddb));
3151
3152 for_each_pipe(dev_priv, pipe) {
3153 enum intel_display_power_domain power_domain;
3154
3155 power_domain = POWER_DOMAIN_PIPE(pipe);
3156 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3157 continue;
3158
3159 for_each_universal_plane(dev_priv, pipe, plane) {
3160 val = I915_READ(PLANE_BUF_CFG(pipe, plane));
3161 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
3162 val);
3163 }
3164
3165 val = I915_READ(CUR_BUF_CFG(pipe));
3166 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
3167 val);
3168
3169 intel_display_power_put(dev_priv, power_domain);
3170 }
3171 }
3172
3173 /*
3174 * Determines the downscale amount of a plane for the purposes of watermark calculations.
3175 * The bspec defines downscale amount as:
3176 *
3177 * """
3178 * Horizontal down scale amount = maximum[1, Horizontal source size /
3179 * Horizontal destination size]
3180 * Vertical down scale amount = maximum[1, Vertical source size /
3181 * Vertical destination size]
3182 * Total down scale amount = Horizontal down scale amount *
3183 * Vertical down scale amount
3184 * """
3185 *
3186 * Return value is provided in 16.16 fixed point form to retain fractional part.
3187 * Caller should take care of dividing & rounding off the value.
3188 */
3189 static uint32_t
3190 skl_plane_downscale_amount(const struct intel_plane_state *pstate)
3191 {
3192 uint32_t downscale_h, downscale_w;
3193 uint32_t src_w, src_h, dst_w, dst_h;
3194
3195 if (WARN_ON(!pstate->base.visible))
3196 return DRM_PLANE_HELPER_NO_SCALING;
3197
3198 /* n.b., src is 16.16 fixed point, dst is whole integer */
3199 src_w = drm_rect_width(&pstate->base.src);
3200 src_h = drm_rect_height(&pstate->base.src);
3201 dst_w = drm_rect_width(&pstate->base.dst);
3202 dst_h = drm_rect_height(&pstate->base.dst);
3203 if (drm_rotation_90_or_270(pstate->base.rotation))
3204 swap(dst_w, dst_h);
3205
3206 downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3207 downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3208
3209 /* Provide result in 16.16 fixed point */
3210 return (uint64_t)downscale_w * downscale_h >> 16;
3211 }
3212
3213 static unsigned int
3214 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
3215 const struct drm_plane_state *pstate,
3216 int y)
3217 {
3218 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3219 uint32_t down_scale_amount, data_rate;
3220 uint32_t width = 0, height = 0;
3221 struct drm_framebuffer *fb;
3222 u32 format;
3223
3224 if (!intel_pstate->base.visible)
3225 return 0;
3226
3227 fb = pstate->fb;
3228 format = fb->format->format;
3229
3230 if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
3231 return 0;
3232 if (y && format != DRM_FORMAT_NV12)
3233 return 0;
3234
3235 width = drm_rect_width(&intel_pstate->base.src) >> 16;
3236 height = drm_rect_height(&intel_pstate->base.src) >> 16;
3237
3238 if (drm_rotation_90_or_270(pstate->rotation))
3239 swap(width, height);
3240
3241 /* for planar format */
3242 if (format == DRM_FORMAT_NV12) {
3243 if (y) /* y-plane data rate */
3244 data_rate = width * height *
3245 fb->format->cpp[0];
3246 else /* uv-plane data rate */
3247 data_rate = (width / 2) * (height / 2) *
3248 fb->format->cpp[1];
3249 } else {
3250 /* for packed formats */
3251 data_rate = width * height * fb->format->cpp[0];
3252 }
3253
3254 down_scale_amount = skl_plane_downscale_amount(intel_pstate);
3255
3256 return (uint64_t)data_rate * down_scale_amount >> 16;
3257 }
3258
3259 /*
3260 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
3261 * a 8192x4096@32bpp framebuffer:
3262 * 3 * 4096 * 8192 * 4 < 2^32
3263 */
3264 static unsigned int
3265 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
3266 unsigned *plane_data_rate,
3267 unsigned *plane_y_data_rate)
3268 {
3269 struct drm_crtc_state *cstate = &intel_cstate->base;
3270 struct drm_atomic_state *state = cstate->state;
3271 struct drm_plane *plane;
3272 const struct intel_plane *intel_plane;
3273 const struct drm_plane_state *pstate;
3274 unsigned int rate, total_data_rate = 0;
3275 int id;
3276
3277 if (WARN_ON(!state))
3278 return 0;
3279
3280 /* Calculate and cache data rate for each plane */
3281 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
3282 id = skl_wm_plane_id(to_intel_plane(plane));
3283 intel_plane = to_intel_plane(plane);
3284
3285 /* packed/uv */
3286 rate = skl_plane_relative_data_rate(intel_cstate,
3287 pstate, 0);
3288 plane_data_rate[id] = rate;
3289
3290 total_data_rate += rate;
3291
3292 /* y-plane */
3293 rate = skl_plane_relative_data_rate(intel_cstate,
3294 pstate, 1);
3295 plane_y_data_rate[id] = rate;
3296
3297 total_data_rate += rate;
3298 }
3299
3300 return total_data_rate;
3301 }
3302
3303 static uint16_t
3304 skl_ddb_min_alloc(const struct drm_plane_state *pstate,
3305 const int y)
3306 {
3307 struct drm_framebuffer *fb = pstate->fb;
3308 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3309 uint32_t src_w, src_h;
3310 uint32_t min_scanlines = 8;
3311 uint8_t plane_bpp;
3312
3313 if (WARN_ON(!fb))
3314 return 0;
3315
3316 /* For packed formats, no y-plane, return 0 */
3317 if (y && fb->format->format != DRM_FORMAT_NV12)
3318 return 0;
3319
3320 /* For Non Y-tile return 8-blocks */
3321 if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
3322 fb->modifier != I915_FORMAT_MOD_Yf_TILED)
3323 return 8;
3324
3325 src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
3326 src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3327
3328 if (drm_rotation_90_or_270(pstate->rotation))
3329 swap(src_w, src_h);
3330
3331 /* Halve UV plane width and height for NV12 */
3332 if (fb->format->format == DRM_FORMAT_NV12 && !y) {
3333 src_w /= 2;
3334 src_h /= 2;
3335 }
3336
3337 if (fb->format->format == DRM_FORMAT_NV12 && !y)
3338 plane_bpp = fb->format->cpp[1];
3339 else
3340 plane_bpp = fb->format->cpp[0];
3341
3342 if (drm_rotation_90_or_270(pstate->rotation)) {
3343 switch (plane_bpp) {
3344 case 1:
3345 min_scanlines = 32;
3346 break;
3347 case 2:
3348 min_scanlines = 16;
3349 break;
3350 case 4:
3351 min_scanlines = 8;
3352 break;
3353 case 8:
3354 min_scanlines = 4;
3355 break;
3356 default:
3357 WARN(1, "Unsupported pixel depth %u for rotation",
3358 plane_bpp);
3359 min_scanlines = 32;
3360 }
3361 }
3362
3363 return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
3364 }
3365
3366 static void
3367 skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
3368 uint16_t *minimum, uint16_t *y_minimum)
3369 {
3370 const struct drm_plane_state *pstate;
3371 struct drm_plane *plane;
3372
3373 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
3374 struct intel_plane *intel_plane = to_intel_plane(plane);
3375 int id = skl_wm_plane_id(intel_plane);
3376
3377 if (id == PLANE_CURSOR)
3378 continue;
3379
3380 if (!pstate->visible)
3381 continue;
3382
3383 minimum[id] = skl_ddb_min_alloc(pstate, 0);
3384 y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3385 }
3386
3387 minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
3388 }
3389
3390 static int
3391 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3392 struct skl_ddb_allocation *ddb /* out */)
3393 {
3394 struct drm_atomic_state *state = cstate->base.state;
3395 struct drm_crtc *crtc = cstate->base.crtc;
3396 struct drm_device *dev = crtc->dev;
3397 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3398 enum pipe pipe = intel_crtc->pipe;
3399 struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
3400 uint16_t alloc_size, start;
3401 uint16_t minimum[I915_MAX_PLANES] = {};
3402 uint16_t y_minimum[I915_MAX_PLANES] = {};
3403 unsigned int total_data_rate;
3404 int num_active;
3405 int id, i;
3406 unsigned plane_data_rate[I915_MAX_PLANES] = {};
3407 unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
3408
3409 /* Clear the partitioning for disabled planes. */
3410 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3411 memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
3412
3413 if (WARN_ON(!state))
3414 return 0;
3415
3416 if (!cstate->base.active) {
3417 alloc->start = alloc->end = 0;
3418 return 0;
3419 }
3420
3421 skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3422 alloc_size = skl_ddb_entry_size(alloc);
3423 if (alloc_size == 0) {
3424 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3425 return 0;
3426 }
3427
3428 skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
3429
3430 /*
3431 * 1. Allocate the mininum required blocks for each active plane
3432 * and allocate the cursor, it doesn't require extra allocation
3433 * proportional to the data rate.
3434 */
3435
3436 for (i = 0; i < I915_MAX_PLANES; i++) {
3437 alloc_size -= minimum[i];
3438 alloc_size -= y_minimum[i];
3439 }
3440
3441 ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
3442 ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3443
3444 /*
3445 * 2. Distribute the remaining space in proportion to the amount of
3446 * data each plane needs to fetch from memory.
3447 *
3448 * FIXME: we may not allocate every single block here.
3449 */
3450 total_data_rate = skl_get_total_relative_data_rate(cstate,
3451 plane_data_rate,
3452 plane_y_data_rate);
3453 if (total_data_rate == 0)
3454 return 0;
3455
3456 start = alloc->start;
3457 for (id = 0; id < I915_MAX_PLANES; id++) {
3458 unsigned int data_rate, y_data_rate;
3459 uint16_t plane_blocks, y_plane_blocks = 0;
3460
3461 if (id == PLANE_CURSOR)
3462 continue;
3463
3464 data_rate = plane_data_rate[id];
3465
3466 /*
3467 * allocation for (packed formats) or (uv-plane part of planar format):
3468 * promote the expression to 64 bits to avoid overflowing, the
3469 * result is < available as data_rate / total_data_rate < 1
3470 */
3471 plane_blocks = minimum[id];
3472 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3473 total_data_rate);
3474
3475 /* Leave disabled planes at (0,0) */
3476 if (data_rate) {
3477 ddb->plane[pipe][id].start = start;
3478 ddb->plane[pipe][id].end = start + plane_blocks;
3479 }
3480
3481 start += plane_blocks;
3482
3483 /*
3484 * allocation for y_plane part of planar format:
3485 */
3486 y_data_rate = plane_y_data_rate[id];
3487
3488 y_plane_blocks = y_minimum[id];
3489 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3490 total_data_rate);
3491
3492 if (y_data_rate) {
3493 ddb->y_plane[pipe][id].start = start;
3494 ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3495 }
3496
3497 start += y_plane_blocks;
3498 }
3499
3500 return 0;
3501 }
3502
3503 /*
3504 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3505 * for the read latency) and cpp should always be <= 8, so that
3506 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3507 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3508 */
3509 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3510 {
3511 uint32_t wm_intermediate_val, ret;
3512
3513 if (latency == 0)
3514 return UINT_MAX;
3515
3516 wm_intermediate_val = latency * pixel_rate * cpp / 512;
3517 ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3518
3519 return ret;
3520 }
3521
3522 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3523 uint32_t latency, uint32_t plane_blocks_per_line)
3524 {
3525 uint32_t ret;
3526 uint32_t wm_intermediate_val;
3527
3528 if (latency == 0)
3529 return UINT_MAX;
3530
3531 wm_intermediate_val = latency * pixel_rate;
3532 ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3533 plane_blocks_per_line;
3534
3535 return ret;
3536 }
3537
3538 static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
3539 struct intel_plane_state *pstate)
3540 {
3541 uint64_t adjusted_pixel_rate;
3542 uint64_t downscale_amount;
3543 uint64_t pixel_rate;
3544
3545 /* Shouldn't reach here on disabled planes... */
3546 if (WARN_ON(!pstate->base.visible))
3547 return 0;
3548
3549 /*
3550 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
3551 * with additional adjustments for plane-specific scaling.
3552 */
3553 adjusted_pixel_rate = ilk_pipe_pixel_rate(cstate);
3554 downscale_amount = skl_plane_downscale_amount(pstate);
3555
3556 pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
3557 WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));
3558
3559 return pixel_rate;
3560 }
3561
3562 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3563 struct intel_crtc_state *cstate,
3564 struct intel_plane_state *intel_pstate,
3565 uint16_t ddb_allocation,
3566 int level,
3567 uint16_t *out_blocks, /* out */
3568 uint8_t *out_lines, /* out */
3569 bool *enabled /* out */)
3570 {
3571 struct drm_plane_state *pstate = &intel_pstate->base;
3572 struct drm_framebuffer *fb = pstate->fb;
3573 uint32_t latency = dev_priv->wm.skl_latency[level];
3574 uint32_t method1, method2;
3575 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3576 uint32_t res_blocks, res_lines;
3577 uint32_t selected_result;
3578 uint8_t cpp;
3579 uint32_t width = 0, height = 0;
3580 uint32_t plane_pixel_rate;
3581 uint32_t y_tile_minimum, y_min_scanlines;
3582 struct intel_atomic_state *state =
3583 to_intel_atomic_state(cstate->base.state);
3584 bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3585
3586 if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3587 *enabled = false;
3588 return 0;
3589 }
3590
3591 if (apply_memory_bw_wa && fb->modifier == I915_FORMAT_MOD_X_TILED)
3592 latency += 15;
3593
3594 width = drm_rect_width(&intel_pstate->base.src) >> 16;
3595 height = drm_rect_height(&intel_pstate->base.src) >> 16;
3596
3597 if (drm_rotation_90_or_270(pstate->rotation))
3598 swap(width, height);
3599
3600 cpp = fb->format->cpp[0];
3601 plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
3602
3603 if (drm_rotation_90_or_270(pstate->rotation)) {
3604 int cpp = (fb->format->format == DRM_FORMAT_NV12) ?
3605 fb->format->cpp[1] :
3606 fb->format->cpp[0];
3607
3608 switch (cpp) {
3609 case 1:
3610 y_min_scanlines = 16;
3611 break;
3612 case 2:
3613 y_min_scanlines = 8;
3614 break;
3615 case 4:
3616 y_min_scanlines = 4;
3617 break;
3618 default:
3619 MISSING_CASE(cpp);
3620 return -EINVAL;
3621 }
3622 } else {
3623 y_min_scanlines = 4;
3624 }
3625
3626 if (apply_memory_bw_wa)
3627 y_min_scanlines *= 2;
3628
3629 plane_bytes_per_line = width * cpp;
3630 if (fb->modifier == I915_FORMAT_MOD_Y_TILED ||
3631 fb->modifier == I915_FORMAT_MOD_Yf_TILED) {
3632 plane_blocks_per_line =
3633 DIV_ROUND_UP(plane_bytes_per_line * y_min_scanlines, 512);
3634 plane_blocks_per_line /= y_min_scanlines;
3635 } else if (fb->modifier == DRM_FORMAT_MOD_NONE) {
3636 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512)
3637 + 1;
3638 } else {
3639 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3640 }
3641
3642 method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
3643 method2 = skl_wm_method2(plane_pixel_rate,
3644 cstate->base.adjusted_mode.crtc_htotal,
3645 latency,
3646 plane_blocks_per_line);
3647
3648 y_tile_minimum = plane_blocks_per_line * y_min_scanlines;
3649
3650 if (fb->modifier == I915_FORMAT_MOD_Y_TILED ||
3651 fb->modifier == I915_FORMAT_MOD_Yf_TILED) {
3652 selected_result = max(method2, y_tile_minimum);
3653 } else {
3654 if ((cpp * cstate->base.adjusted_mode.crtc_htotal / 512 < 1) &&
3655 (plane_bytes_per_line / 512 < 1))
3656 selected_result = method2;
3657 else if ((ddb_allocation / plane_blocks_per_line) >= 1)
3658 selected_result = min(method1, method2);
3659 else
3660 selected_result = method1;
3661 }
3662
3663 res_blocks = selected_result + 1;
3664 res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3665
3666 if (level >= 1 && level <= 7) {
3667 if (fb->modifier == I915_FORMAT_MOD_Y_TILED ||
3668 fb->modifier == I915_FORMAT_MOD_Yf_TILED) {
3669 res_blocks += y_tile_minimum;
3670 res_lines += y_min_scanlines;
3671 } else {
3672 res_blocks++;
3673 }
3674 }
3675
3676 if (res_blocks >= ddb_allocation || res_lines > 31) {
3677 *enabled = false;
3678
3679 /*
3680 * If there are no valid level 0 watermarks, then we can't
3681 * support this display configuration.
3682 */
3683 if (level) {
3684 return 0;
3685 } else {
3686 DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3687 DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
3688 to_intel_crtc(cstate->base.crtc)->pipe,
3689 skl_wm_plane_id(to_intel_plane(pstate->plane)),
3690 res_blocks, ddb_allocation, res_lines);
3691
3692 return -EINVAL;
3693 }
3694 }
3695
3696 *out_blocks = res_blocks;
3697 *out_lines = res_lines;
3698 *enabled = true;
3699
3700 return 0;
3701 }
3702
3703 static int
3704 skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3705 struct skl_ddb_allocation *ddb,
3706 struct intel_crtc_state *cstate,
3707 struct intel_plane *intel_plane,
3708 int level,
3709 struct skl_wm_level *result)
3710 {
3711 struct drm_atomic_state *state = cstate->base.state;
3712 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3713 struct drm_plane *plane = &intel_plane->base;
3714 struct intel_plane_state *intel_pstate = NULL;
3715 uint16_t ddb_blocks;
3716 enum pipe pipe = intel_crtc->pipe;
3717 int ret;
3718 int i = skl_wm_plane_id(intel_plane);
3719
3720 if (state)
3721 intel_pstate =
3722 intel_atomic_get_existing_plane_state(state,
3723 intel_plane);
3724
3725 /*
3726 * Note: If we start supporting multiple pending atomic commits against
3727 * the same planes/CRTC's in the future, plane->state will no longer be
3728 * the correct pre-state to use for the calculations here and we'll
3729 * need to change where we get the 'unchanged' plane data from.
3730 *
3731 * For now this is fine because we only allow one queued commit against
3732 * a CRTC. Even if the plane isn't modified by this transaction and we
3733 * don't have a plane lock, we still have the CRTC's lock, so we know
3734 * that no other transactions are racing with us to update it.
3735 */
3736 if (!intel_pstate)
3737 intel_pstate = to_intel_plane_state(plane->state);
3738
3739 WARN_ON(!intel_pstate->base.fb);
3740
3741 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3742
3743 ret = skl_compute_plane_wm(dev_priv,
3744 cstate,
3745 intel_pstate,
3746 ddb_blocks,
3747 level,
3748 &result->plane_res_b,
3749 &result->plane_res_l,
3750 &result->plane_en);
3751 if (ret)
3752 return ret;
3753
3754 return 0;
3755 }
3756
3757 static uint32_t
3758 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3759 {
3760 uint32_t pixel_rate;
3761
3762 if (!cstate->base.active)
3763 return 0;
3764
3765 pixel_rate = ilk_pipe_pixel_rate(cstate);
3766
3767 if (WARN_ON(pixel_rate == 0))
3768 return 0;
3769
3770 return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3771 pixel_rate);
3772 }
3773
3774 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3775 struct skl_wm_level *trans_wm /* out */)
3776 {
3777 if (!cstate->base.active)
3778 return;
3779
3780 /* Until we know more, just disable transition WMs */
3781 trans_wm->plane_en = false;
3782 }
3783
3784 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
3785 struct skl_ddb_allocation *ddb,
3786 struct skl_pipe_wm *pipe_wm)
3787 {
3788 struct drm_device *dev = cstate->base.crtc->dev;
3789 const struct drm_i915_private *dev_priv = to_i915(dev);
3790 struct intel_plane *intel_plane;
3791 struct skl_plane_wm *wm;
3792 int level, max_level = ilk_wm_max_level(dev_priv);
3793 int ret;
3794
3795 /*
3796 * We'll only calculate watermarks for planes that are actually
3797 * enabled, so make sure all other planes are set as disabled.
3798 */
3799 memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
3800
3801 for_each_intel_plane_mask(&dev_priv->drm,
3802 intel_plane,
3803 cstate->base.plane_mask) {
3804 wm = &pipe_wm->planes[skl_wm_plane_id(intel_plane)];
3805
3806 for (level = 0; level <= max_level; level++) {
3807 ret = skl_compute_wm_level(dev_priv, ddb, cstate,
3808 intel_plane, level,
3809 &wm->wm[level]);
3810 if (ret)
3811 return ret;
3812 }
3813 skl_compute_transition_wm(cstate, &wm->trans_wm);
3814 }
3815 pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3816
3817 return 0;
3818 }
3819
3820 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3821 i915_reg_t reg,
3822 const struct skl_ddb_entry *entry)
3823 {
3824 if (entry->end)
3825 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3826 else
3827 I915_WRITE(reg, 0);
3828 }
3829
3830 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
3831 i915_reg_t reg,
3832 const struct skl_wm_level *level)
3833 {
3834 uint32_t val = 0;
3835
3836 if (level->plane_en) {
3837 val |= PLANE_WM_EN;
3838 val |= level->plane_res_b;
3839 val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
3840 }
3841
3842 I915_WRITE(reg, val);
3843 }
3844
3845 static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
3846 const struct skl_plane_wm *wm,
3847 const struct skl_ddb_allocation *ddb,
3848 int plane)
3849 {
3850 struct drm_crtc *crtc = &intel_crtc->base;
3851 struct drm_device *dev = crtc->dev;
3852 struct drm_i915_private *dev_priv = to_i915(dev);
3853 int level, max_level = ilk_wm_max_level(dev_priv);
3854 enum pipe pipe = intel_crtc->pipe;
3855
3856 for (level = 0; level <= max_level; level++) {
3857 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane, level),
3858 &wm->wm[level]);
3859 }
3860 skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane),
3861 &wm->trans_wm);
3862
3863 skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane),
3864 &ddb->plane[pipe][plane]);
3865 skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane),
3866 &ddb->y_plane[pipe][plane]);
3867 }
3868
3869 static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
3870 const struct skl_plane_wm *wm,
3871 const struct skl_ddb_allocation *ddb)
3872 {
3873 struct drm_crtc *crtc = &intel_crtc->base;
3874 struct drm_device *dev = crtc->dev;
3875 struct drm_i915_private *dev_priv = to_i915(dev);
3876 int level, max_level = ilk_wm_max_level(dev_priv);
3877 enum pipe pipe = intel_crtc->pipe;
3878
3879 for (level = 0; level <= max_level; level++) {
3880 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
3881 &wm->wm[level]);
3882 }
3883 skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
3884
3885 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3886 &ddb->plane[pipe][PLANE_CURSOR]);
3887 }
3888
3889 bool skl_wm_level_equals(const struct skl_wm_level *l1,
3890 const struct skl_wm_level *l2)
3891 {
3892 if (l1->plane_en != l2->plane_en)
3893 return false;
3894
3895 /* If both planes aren't enabled, the rest shouldn't matter */
3896 if (!l1->plane_en)
3897 return true;
3898
3899 return (l1->plane_res_l == l2->plane_res_l &&
3900 l1->plane_res_b == l2->plane_res_b);
3901 }
3902
3903 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
3904 const struct skl_ddb_entry *b)
3905 {
3906 return a->start < b->end && b->start < a->end;
3907 }
3908
3909 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry **entries,
3910 const struct skl_ddb_entry *ddb,
3911 int ignore)
3912 {
3913 int i;
3914
3915 for (i = 0; i < I915_MAX_PIPES; i++)
3916 if (i != ignore && entries[i] &&
3917 skl_ddb_entries_overlap(ddb, entries[i]))
3918 return true;
3919
3920 return false;
3921 }
3922
3923 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3924 const struct skl_pipe_wm *old_pipe_wm,
3925 struct skl_pipe_wm *pipe_wm, /* out */
3926 struct skl_ddb_allocation *ddb, /* out */
3927 bool *changed /* out */)
3928 {
3929 struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3930 int ret;
3931
3932 ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
3933 if (ret)
3934 return ret;
3935
3936 if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
3937 *changed = false;
3938 else
3939 *changed = true;
3940
3941 return 0;
3942 }
3943
3944 static uint32_t
3945 pipes_modified(struct drm_atomic_state *state)
3946 {
3947 struct drm_crtc *crtc;
3948 struct drm_crtc_state *cstate;
3949 uint32_t i, ret = 0;
3950
3951 for_each_crtc_in_state(state, crtc, cstate, i)
3952 ret |= drm_crtc_mask(crtc);
3953
3954 return ret;
3955 }
3956
3957 static int
3958 skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
3959 {
3960 struct drm_atomic_state *state = cstate->base.state;
3961 struct drm_device *dev = state->dev;
3962 struct drm_crtc *crtc = cstate->base.crtc;
3963 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3964 struct drm_i915_private *dev_priv = to_i915(dev);
3965 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3966 struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
3967 struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3968 struct drm_plane_state *plane_state;
3969 struct drm_plane *plane;
3970 enum pipe pipe = intel_crtc->pipe;
3971 int id;
3972
3973 WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));
3974
3975 drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
3976 id = skl_wm_plane_id(to_intel_plane(plane));
3977
3978 if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][id],
3979 &new_ddb->plane[pipe][id]) &&
3980 skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][id],
3981 &new_ddb->y_plane[pipe][id]))
3982 continue;
3983
3984 plane_state = drm_atomic_get_plane_state(state, plane);
3985 if (IS_ERR(plane_state))
3986 return PTR_ERR(plane_state);
3987 }
3988
3989 return 0;
3990 }
3991
3992 static int
3993 skl_compute_ddb(struct drm_atomic_state *state)
3994 {
3995 struct drm_device *dev = state->dev;
3996 struct drm_i915_private *dev_priv = to_i915(dev);
3997 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3998 struct intel_crtc *intel_crtc;
3999 struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4000 uint32_t realloc_pipes = pipes_modified(state);
4001 int ret;
4002
4003 /*
4004 * If this is our first atomic update following hardware readout,
4005 * we can't trust the DDB that the BIOS programmed for us. Let's
4006 * pretend that all pipes switched active status so that we'll
4007 * ensure a full DDB recompute.
4008 */
4009 if (dev_priv->wm.distrust_bios_wm) {
4010 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
4011 state->acquire_ctx);
4012 if (ret)
4013 return ret;
4014
4015 intel_state->active_pipe_changes = ~0;
4016
4017 /*
4018 * We usually only initialize intel_state->active_crtcs if we
4019 * we're doing a modeset; make sure this field is always
4020 * initialized during the sanitization process that happens
4021 * on the first commit too.
4022 */
4023 if (!intel_state->modeset)
4024 intel_state->active_crtcs = dev_priv->active_crtcs;
4025 }
4026
4027 /*
4028 * If the modeset changes which CRTC's are active, we need to
4029 * recompute the DDB allocation for *all* active pipes, even
4030 * those that weren't otherwise being modified in any way by this
4031 * atomic commit. Due to the shrinking of the per-pipe allocations
4032 * when new active CRTC's are added, it's possible for a pipe that
4033 * we were already using and aren't changing at all here to suddenly
4034 * become invalid if its DDB needs exceeds its new allocation.
4035 *
4036 * Note that if we wind up doing a full DDB recompute, we can't let
4037 * any other display updates race with this transaction, so we need
4038 * to grab the lock on *all* CRTC's.
4039 */
4040 if (intel_state->active_pipe_changes) {
4041 realloc_pipes = ~0;
4042 intel_state->wm_results.dirty_pipes = ~0;
4043 }
4044
4045 /*
4046 * We're not recomputing for the pipes not included in the commit, so
4047 * make sure we start with the current state.
4048 */
4049 memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
4050
4051 for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
4052 struct intel_crtc_state *cstate;
4053
4054 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
4055 if (IS_ERR(cstate))
4056 return PTR_ERR(cstate);
4057
4058 ret = skl_allocate_pipe_ddb(cstate, ddb);
4059 if (ret)
4060 return ret;
4061
4062 ret = skl_ddb_add_affected_planes(cstate);
4063 if (ret)
4064 return ret;
4065 }
4066
4067 return 0;
4068 }
4069
4070 static void
4071 skl_copy_wm_for_pipe(struct skl_wm_values *dst,
4072 struct skl_wm_values *src,
4073 enum pipe pipe)
4074 {
4075 memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
4076 sizeof(dst->ddb.y_plane[pipe]));
4077 memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
4078 sizeof(dst->ddb.plane[pipe]));
4079 }
4080
4081 static void
4082 skl_print_wm_changes(const struct drm_atomic_state *state)
4083 {
4084 const struct drm_device *dev = state->dev;
4085 const struct drm_i915_private *dev_priv = to_i915(dev);
4086 const struct intel_atomic_state *intel_state =
4087 to_intel_atomic_state(state);
4088 const struct drm_crtc *crtc;
4089 const struct drm_crtc_state *cstate;
4090 const struct intel_plane *intel_plane;
4091 const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
4092 const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
4093 int id;
4094 int i;
4095
4096 for_each_crtc_in_state(state, crtc, cstate, i) {
4097 const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4098 enum pipe pipe = intel_crtc->pipe;
4099
4100 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4101 const struct skl_ddb_entry *old, *new;
4102
4103 id = skl_wm_plane_id(intel_plane);
4104 old = &old_ddb->plane[pipe][id];
4105 new = &new_ddb->plane[pipe][id];
4106
4107 if (skl_ddb_entry_equal(old, new))
4108 continue;
4109
4110 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
4111 intel_plane->base.base.id,
4112 intel_plane->base.name,
4113 old->start, old->end,
4114 new->start, new->end);
4115 }
4116 }
4117 }
4118
4119 static int
4120 skl_compute_wm(struct drm_atomic_state *state)
4121 {
4122 struct drm_crtc *crtc;
4123 struct drm_crtc_state *cstate;
4124 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4125 struct skl_wm_values *results = &intel_state->wm_results;
4126 struct skl_pipe_wm *pipe_wm;
4127 bool changed = false;
4128 int ret, i;
4129
4130 /*
4131 * If this transaction isn't actually touching any CRTC's, don't
4132 * bother with watermark calculation. Note that if we pass this
4133 * test, we're guaranteed to hold at least one CRTC state mutex,
4134 * which means we can safely use values like dev_priv->active_crtcs
4135 * since any racing commits that want to update them would need to
4136 * hold _all_ CRTC state mutexes.
4137 */
4138 for_each_crtc_in_state(state, crtc, cstate, i)
4139 changed = true;
4140 if (!changed)
4141 return 0;
4142
4143 /* Clear all dirty flags */
4144 results->dirty_pipes = 0;
4145
4146 ret = skl_compute_ddb(state);
4147 if (ret)
4148 return ret;
4149
4150 /*
4151 * Calculate WM's for all pipes that are part of this transaction.
4152 * Note that the DDB allocation above may have added more CRTC's that
4153 * weren't otherwise being modified (and set bits in dirty_pipes) if
4154 * pipe allocations had to change.
4155 *
4156 * FIXME: Now that we're doing this in the atomic check phase, we
4157 * should allow skl_update_pipe_wm() to return failure in cases where
4158 * no suitable watermark values can be found.
4159 */
4160 for_each_crtc_in_state(state, crtc, cstate, i) {
4161 struct intel_crtc_state *intel_cstate =
4162 to_intel_crtc_state(cstate);
4163 const struct skl_pipe_wm *old_pipe_wm =
4164 &to_intel_crtc_state(crtc->state)->wm.skl.optimal;
4165
4166 pipe_wm = &intel_cstate->wm.skl.optimal;
4167 ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
4168 &results->ddb, &changed);
4169 if (ret)
4170 return ret;
4171
4172 if (changed)
4173 results->dirty_pipes |= drm_crtc_mask(crtc);
4174
4175 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4176 /* This pipe's WM's did not change */
4177 continue;
4178
4179 intel_cstate->update_wm_pre = true;
4180 }
4181
4182 skl_print_wm_changes(state);
4183
4184 return 0;
4185 }
4186
4187 static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
4188 struct intel_crtc_state *cstate)
4189 {
4190 struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
4191 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
4192 struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4193 const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
4194 enum pipe pipe = crtc->pipe;
4195 int plane;
4196
4197 if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
4198 return;
4199
4200 I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
4201
4202 for_each_universal_plane(dev_priv, pipe, plane)
4203 skl_write_plane_wm(crtc, &pipe_wm->planes[plane], ddb, plane);
4204
4205 skl_write_cursor_wm(crtc, &pipe_wm->planes[PLANE_CURSOR], ddb);
4206 }
4207
4208 static void skl_initial_wm(struct intel_atomic_state *state,
4209 struct intel_crtc_state *cstate)
4210 {
4211 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4212 struct drm_device *dev = intel_crtc->base.dev;
4213 struct drm_i915_private *dev_priv = to_i915(dev);
4214 struct skl_wm_values *results = &state->wm_results;
4215 struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4216 enum pipe pipe = intel_crtc->pipe;
4217
4218 if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
4219 return;
4220
4221 mutex_lock(&dev_priv->wm.wm_mutex);
4222
4223 if (cstate->base.active_changed)
4224 skl_atomic_update_crtc_wm(state, cstate);
4225
4226 skl_copy_wm_for_pipe(hw_vals, results, pipe);
4227
4228 mutex_unlock(&dev_priv->wm.wm_mutex);
4229 }
4230
4231 static void ilk_compute_wm_config(struct drm_device *dev,
4232 struct intel_wm_config *config)
4233 {
4234 struct intel_crtc *crtc;
4235
4236 /* Compute the currently _active_ config */
4237 for_each_intel_crtc(dev, crtc) {
4238 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
4239
4240 if (!wm->pipe_enabled)
4241 continue;
4242
4243 config->sprites_enabled |= wm->sprites_enabled;
4244 config->sprites_scaled |= wm->sprites_scaled;
4245 config->num_pipes_active++;
4246 }
4247 }
4248
4249 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4250 {
4251 struct drm_device *dev = &dev_priv->drm;
4252 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4253 struct ilk_wm_maximums max;
4254 struct intel_wm_config config = {};
4255 struct ilk_wm_values results = {};
4256 enum intel_ddb_partitioning partitioning;
4257
4258 ilk_compute_wm_config(dev, &config);
4259
4260 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
4261 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4262
4263 /* 5/6 split only in single pipe config on IVB+ */
4264 if (INTEL_GEN(dev_priv) >= 7 &&
4265 config.num_pipes_active == 1 && config.sprites_enabled) {
4266 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
4267 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4268
4269 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4270 } else {
4271 best_lp_wm = &lp_wm_1_2;
4272 }
4273
4274 partitioning = (best_lp_wm == &lp_wm_1_2) ?
4275 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4276
4277 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4278
4279 ilk_write_wm_values(dev_priv, &results);
4280 }
4281
4282 static void ilk_initial_watermarks(struct intel_atomic_state *state,
4283 struct intel_crtc_state *cstate)
4284 {
4285 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4286 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4287
4288 mutex_lock(&dev_priv->wm.wm_mutex);
4289 intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4290 ilk_program_watermarks(dev_priv);
4291 mutex_unlock(&dev_priv->wm.wm_mutex);
4292 }
4293
4294 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
4295 struct intel_crtc_state *cstate)
4296 {
4297 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4298 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4299
4300 mutex_lock(&dev_priv->wm.wm_mutex);
4301 if (cstate->wm.need_postvbl_update) {
4302 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4303 ilk_program_watermarks(dev_priv);
4304 }
4305 mutex_unlock(&dev_priv->wm.wm_mutex);
4306 }
4307
4308 static inline void skl_wm_level_from_reg_val(uint32_t val,
4309 struct skl_wm_level *level)
4310 {
4311 level->plane_en = val & PLANE_WM_EN;
4312 level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
4313 level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
4314 PLANE_WM_LINES_MASK;
4315 }
4316
4317 void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
4318 struct skl_pipe_wm *out)
4319 {
4320 struct drm_device *dev = crtc->dev;
4321 struct drm_i915_private *dev_priv = to_i915(dev);
4322 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4323 struct intel_plane *intel_plane;
4324 struct skl_plane_wm *wm;
4325 enum pipe pipe = intel_crtc->pipe;
4326 int level, id, max_level;
4327 uint32_t val;
4328
4329 max_level = ilk_wm_max_level(dev_priv);
4330
4331 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
4332 id = skl_wm_plane_id(intel_plane);
4333 wm = &out->planes[id];
4334
4335 for (level = 0; level <= max_level; level++) {
4336 if (id != PLANE_CURSOR)
4337 val = I915_READ(PLANE_WM(pipe, id, level));
4338 else
4339 val = I915_READ(CUR_WM(pipe, level));
4340
4341 skl_wm_level_from_reg_val(val, &wm->wm[level]);
4342 }
4343
4344 if (id != PLANE_CURSOR)
4345 val = I915_READ(PLANE_WM_TRANS(pipe, id));
4346 else
4347 val = I915_READ(CUR_WM_TRANS(pipe));
4348
4349 skl_wm_level_from_reg_val(val, &wm->trans_wm);
4350 }
4351
4352 if (!intel_crtc->active)
4353 return;
4354
4355 out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
4356 }
4357
4358 void skl_wm_get_hw_state(struct drm_device *dev)
4359 {
4360 struct drm_i915_private *dev_priv = to_i915(dev);
4361 struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4362 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4363 struct drm_crtc *crtc;
4364 struct intel_crtc *intel_crtc;
4365 struct intel_crtc_state *cstate;
4366
4367 skl_ddb_get_hw_state(dev_priv, ddb);
4368 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4369 intel_crtc = to_intel_crtc(crtc);
4370 cstate = to_intel_crtc_state(crtc->state);
4371
4372 skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
4373
4374 if (intel_crtc->active)
4375 hw->dirty_pipes |= drm_crtc_mask(crtc);
4376 }
4377
4378 if (dev_priv->active_crtcs) {
4379 /* Fully recompute DDB on first atomic commit */
4380 dev_priv->wm.distrust_bios_wm = true;
4381 } else {
4382 /* Easy/common case; just sanitize DDB now if everything off */
4383 memset(ddb, 0, sizeof(*ddb));
4384 }
4385 }
4386
4387 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4388 {
4389 struct drm_device *dev = crtc->dev;
4390 struct drm_i915_private *dev_priv = to_i915(dev);
4391 struct ilk_wm_values *hw = &dev_priv->wm.hw;
4392 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4393 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4394 struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4395 enum pipe pipe = intel_crtc->pipe;
4396 static const i915_reg_t wm0_pipe_reg[] = {
4397 [PIPE_A] = WM0_PIPEA_ILK,
4398 [PIPE_B] = WM0_PIPEB_ILK,
4399 [PIPE_C] = WM0_PIPEC_IVB,
4400 };
4401
4402 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4403 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4404 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4405
4406 memset(active, 0, sizeof(*active));
4407
4408 active->pipe_enabled = intel_crtc->active;
4409
4410 if (active->pipe_enabled) {
4411 u32 tmp = hw->wm_pipe[pipe];
4412
4413 /*
4414 * For active pipes LP0 watermark is marked as
4415 * enabled, and LP1+ watermaks as disabled since
4416 * we can't really reverse compute them in case
4417 * multiple pipes are active.
4418 */
4419 active->wm[0].enable = true;
4420 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
4421 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
4422 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
4423 active->linetime = hw->wm_linetime[pipe];
4424 } else {
4425 int level, max_level = ilk_wm_max_level(dev_priv);
4426
4427 /*
4428 * For inactive pipes, all watermark levels
4429 * should be marked as enabled but zeroed,
4430 * which is what we'd compute them to.
4431 */
4432 for (level = 0; level <= max_level; level++)
4433 active->wm[level].enable = true;
4434 }
4435
4436 intel_crtc->wm.active.ilk = *active;
4437 }
4438
4439 #define _FW_WM(value, plane) \
4440 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
4441 #define _FW_WM_VLV(value, plane) \
4442 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
4443
4444 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
4445 struct vlv_wm_values *wm)
4446 {
4447 enum pipe pipe;
4448 uint32_t tmp;
4449
4450 for_each_pipe(dev_priv, pipe) {
4451 tmp = I915_READ(VLV_DDL(pipe));
4452
4453 wm->ddl[pipe].primary =
4454 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4455 wm->ddl[pipe].cursor =
4456 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4457 wm->ddl[pipe].sprite[0] =
4458 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4459 wm->ddl[pipe].sprite[1] =
4460 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4461 }
4462
4463 tmp = I915_READ(DSPFW1);
4464 wm->sr.plane = _FW_WM(tmp, SR);
4465 wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
4466 wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
4467 wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
4468
4469 tmp = I915_READ(DSPFW2);
4470 wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
4471 wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
4472 wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
4473
4474 tmp = I915_READ(DSPFW3);
4475 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4476
4477 if (IS_CHERRYVIEW(dev_priv)) {
4478 tmp = I915_READ(DSPFW7_CHV);
4479 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4480 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4481
4482 tmp = I915_READ(DSPFW8_CHV);
4483 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
4484 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
4485
4486 tmp = I915_READ(DSPFW9_CHV);
4487 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
4488 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
4489
4490 tmp = I915_READ(DSPHOWM);
4491 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4492 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4493 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4494 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
4495 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4496 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4497 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4498 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4499 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4500 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4501 } else {
4502 tmp = I915_READ(DSPFW7);
4503 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4504 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4505
4506 tmp = I915_READ(DSPHOWM);
4507 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4508 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4509 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4510 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4511 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4512 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4513 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4514 }
4515 }
4516
4517 #undef _FW_WM
4518 #undef _FW_WM_VLV
4519
4520 void vlv_wm_get_hw_state(struct drm_device *dev)
4521 {
4522 struct drm_i915_private *dev_priv = to_i915(dev);
4523 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4524 struct intel_plane *plane;
4525 enum pipe pipe;
4526 u32 val;
4527
4528 vlv_read_wm_values(dev_priv, wm);
4529
4530 for_each_intel_plane(dev, plane) {
4531 switch (plane->base.type) {
4532 int sprite;
4533 case DRM_PLANE_TYPE_CURSOR:
4534 plane->wm.fifo_size = 63;
4535 break;
4536 case DRM_PLANE_TYPE_PRIMARY:
4537 plane->wm.fifo_size = vlv_get_fifo_size(dev_priv, plane->pipe, 0);
4538 break;
4539 case DRM_PLANE_TYPE_OVERLAY:
4540 sprite = plane->plane;
4541 plane->wm.fifo_size = vlv_get_fifo_size(dev_priv, plane->pipe, sprite + 1);
4542 break;
4543 }
4544 }
4545
4546 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4547 wm->level = VLV_WM_LEVEL_PM2;
4548
4549 if (IS_CHERRYVIEW(dev_priv)) {
4550 mutex_lock(&dev_priv->rps.hw_lock);
4551
4552 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4553 if (val & DSP_MAXFIFO_PM5_ENABLE)
4554 wm->level = VLV_WM_LEVEL_PM5;
4555
4556 /*
4557 * If DDR DVFS is disabled in the BIOS, Punit
4558 * will never ack the request. So if that happens
4559 * assume we don't have to enable/disable DDR DVFS
4560 * dynamically. To test that just set the REQ_ACK
4561 * bit to poke the Punit, but don't change the
4562 * HIGH/LOW bits so that we don't actually change
4563 * the current state.
4564 */
4565 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4566 val |= FORCE_DDR_FREQ_REQ_ACK;
4567 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4568
4569 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4570 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4571 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4572 "assuming DDR DVFS is disabled\n");
4573 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4574 } else {
4575 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4576 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4577 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4578 }
4579
4580 mutex_unlock(&dev_priv->rps.hw_lock);
4581 }
4582
4583 for_each_pipe(dev_priv, pipe)
4584 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4585 pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4586 wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4587
4588 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4589 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4590 }
4591
4592 void ilk_wm_get_hw_state(struct drm_device *dev)
4593 {
4594 struct drm_i915_private *dev_priv = to_i915(dev);
4595 struct ilk_wm_values *hw = &dev_priv->wm.hw;
4596 struct drm_crtc *crtc;
4597
4598 for_each_crtc(dev, crtc)
4599 ilk_pipe_wm_get_hw_state(crtc);
4600
4601 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4602 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4603 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4604
4605 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4606 if (INTEL_GEN(dev_priv) >= 7) {
4607 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4608 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4609 }
4610
4611 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4612 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4613 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4614 else if (IS_IVYBRIDGE(dev_priv))
4615 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4616 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4617
4618 hw->enable_fbc_wm =
4619 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4620 }
4621
4622 /**
4623 * intel_update_watermarks - update FIFO watermark values based on current modes
4624 *
4625 * Calculate watermark values for the various WM regs based on current mode
4626 * and plane configuration.
4627 *
4628 * There are several cases to deal with here:
4629 * - normal (i.e. non-self-refresh)
4630 * - self-refresh (SR) mode
4631 * - lines are large relative to FIFO size (buffer can hold up to 2)
4632 * - lines are small relative to FIFO size (buffer can hold more than 2
4633 * lines), so need to account for TLB latency
4634 *
4635 * The normal calculation is:
4636 * watermark = dotclock * bytes per pixel * latency
4637 * where latency is platform & configuration dependent (we assume pessimal
4638 * values here).
4639 *
4640 * The SR calculation is:
4641 * watermark = (trunc(latency/line time)+1) * surface width *
4642 * bytes per pixel
4643 * where
4644 * line time = htotal / dotclock
4645 * surface width = hdisplay for normal plane and 64 for cursor
4646 * and latency is assumed to be high, as above.
4647 *
4648 * The final value programmed to the register should always be rounded up,
4649 * and include an extra 2 entries to account for clock crossings.
4650 *
4651 * We don't use the sprite, so we can ignore that. And on Crestline we have
4652 * to set the non-SR watermarks to 8.
4653 */
4654 void intel_update_watermarks(struct intel_crtc *crtc)
4655 {
4656 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4657
4658 if (dev_priv->display.update_wm)
4659 dev_priv->display.update_wm(crtc);
4660 }
4661
4662 /*
4663 * Lock protecting IPS related data structures
4664 */
4665 DEFINE_SPINLOCK(mchdev_lock);
4666
4667 /* Global for IPS driver to get at the current i915 device. Protected by
4668 * mchdev_lock. */
4669 static struct drm_i915_private *i915_mch_dev;
4670
4671 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4672 {
4673 u16 rgvswctl;
4674
4675 assert_spin_locked(&mchdev_lock);
4676
4677 rgvswctl = I915_READ16(MEMSWCTL);
4678 if (rgvswctl & MEMCTL_CMD_STS) {
4679 DRM_DEBUG("gpu busy, RCS change rejected\n");
4680 return false; /* still busy with another command */
4681 }
4682
4683 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4684 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4685 I915_WRITE16(MEMSWCTL, rgvswctl);
4686 POSTING_READ16(MEMSWCTL);
4687
4688 rgvswctl |= MEMCTL_CMD_STS;
4689 I915_WRITE16(MEMSWCTL, rgvswctl);
4690
4691 return true;
4692 }
4693
4694 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4695 {
4696 u32 rgvmodectl;
4697 u8 fmax, fmin, fstart, vstart;
4698
4699 spin_lock_irq(&mchdev_lock);
4700
4701 rgvmodectl = I915_READ(MEMMODECTL);
4702
4703 /* Enable temp reporting */
4704 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4705 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4706
4707 /* 100ms RC evaluation intervals */
4708 I915_WRITE(RCUPEI, 100000);
4709 I915_WRITE(RCDNEI, 100000);
4710
4711 /* Set max/min thresholds to 90ms and 80ms respectively */
4712 I915_WRITE(RCBMAXAVG, 90000);
4713 I915_WRITE(RCBMINAVG, 80000);
4714
4715 I915_WRITE(MEMIHYST, 1);
4716
4717 /* Set up min, max, and cur for interrupt handling */
4718 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4719 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4720 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4721 MEMMODE_FSTART_SHIFT;
4722
4723 vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4724 PXVFREQ_PX_SHIFT;
4725
4726 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4727 dev_priv->ips.fstart = fstart;
4728
4729 dev_priv->ips.max_delay = fstart;
4730 dev_priv->ips.min_delay = fmin;
4731 dev_priv->ips.cur_delay = fstart;
4732
4733 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4734 fmax, fmin, fstart);
4735
4736 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4737
4738 /*
4739 * Interrupts will be enabled in ironlake_irq_postinstall
4740 */
4741
4742 I915_WRITE(VIDSTART, vstart);
4743 POSTING_READ(VIDSTART);
4744
4745 rgvmodectl |= MEMMODE_SWMODE_EN;
4746 I915_WRITE(MEMMODECTL, rgvmodectl);
4747
4748 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4749 DRM_ERROR("stuck trying to change perf mode\n");
4750 mdelay(1);
4751
4752 ironlake_set_drps(dev_priv, fstart);
4753
4754 dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4755 I915_READ(DDREC) + I915_READ(CSIEC);
4756 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4757 dev_priv->ips.last_count2 = I915_READ(GFXEC);
4758 dev_priv->ips.last_time2 = ktime_get_raw_ns();
4759
4760 spin_unlock_irq(&mchdev_lock);
4761 }
4762
4763 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4764 {
4765 u16 rgvswctl;
4766
4767 spin_lock_irq(&mchdev_lock);
4768
4769 rgvswctl = I915_READ16(MEMSWCTL);
4770
4771 /* Ack interrupts, disable EFC interrupt */
4772 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4773 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4774 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4775 I915_WRITE(DEIIR, DE_PCU_EVENT);
4776 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4777
4778 /* Go back to the starting frequency */
4779 ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4780 mdelay(1);
4781 rgvswctl |= MEMCTL_CMD_STS;
4782 I915_WRITE(MEMSWCTL, rgvswctl);
4783 mdelay(1);
4784
4785 spin_unlock_irq(&mchdev_lock);
4786 }
4787
4788 /* There's a funny hw issue where the hw returns all 0 when reading from
4789 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4790 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4791 * all limits and the gpu stuck at whatever frequency it is at atm).
4792 */
4793 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4794 {
4795 u32 limits;
4796
4797 /* Only set the down limit when we've reached the lowest level to avoid
4798 * getting more interrupts, otherwise leave this clear. This prevents a
4799 * race in the hw when coming out of rc6: There's a tiny window where
4800 * the hw runs at the minimal clock before selecting the desired
4801 * frequency, if the down threshold expires in that window we will not
4802 * receive a down interrupt. */
4803 if (IS_GEN9(dev_priv)) {
4804 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4805 if (val <= dev_priv->rps.min_freq_softlimit)
4806 limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4807 } else {
4808 limits = dev_priv->rps.max_freq_softlimit << 24;
4809 if (val <= dev_priv->rps.min_freq_softlimit)
4810 limits |= dev_priv->rps.min_freq_softlimit << 16;
4811 }
4812
4813 return limits;
4814 }
4815
4816 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4817 {
4818 int new_power;
4819 u32 threshold_up = 0, threshold_down = 0; /* in % */
4820 u32 ei_up = 0, ei_down = 0;
4821
4822 new_power = dev_priv->rps.power;
4823 switch (dev_priv->rps.power) {
4824 case LOW_POWER:
4825 if (val > dev_priv->rps.efficient_freq + 1 &&
4826 val > dev_priv->rps.cur_freq)
4827 new_power = BETWEEN;
4828 break;
4829
4830 case BETWEEN:
4831 if (val <= dev_priv->rps.efficient_freq &&
4832 val < dev_priv->rps.cur_freq)
4833 new_power = LOW_POWER;
4834 else if (val >= dev_priv->rps.rp0_freq &&
4835 val > dev_priv->rps.cur_freq)
4836 new_power = HIGH_POWER;
4837 break;
4838
4839 case HIGH_POWER:
4840 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
4841 val < dev_priv->rps.cur_freq)
4842 new_power = BETWEEN;
4843 break;
4844 }
4845 /* Max/min bins are special */
4846 if (val <= dev_priv->rps.min_freq_softlimit)
4847 new_power = LOW_POWER;
4848 if (val >= dev_priv->rps.max_freq_softlimit)
4849 new_power = HIGH_POWER;
4850 if (new_power == dev_priv->rps.power)
4851 return;
4852
4853 /* Note the units here are not exactly 1us, but 1280ns. */
4854 switch (new_power) {
4855 case LOW_POWER:
4856 /* Upclock if more than 95% busy over 16ms */
4857 ei_up = 16000;
4858 threshold_up = 95;
4859
4860 /* Downclock if less than 85% busy over 32ms */
4861 ei_down = 32000;
4862 threshold_down = 85;
4863 break;
4864
4865 case BETWEEN:
4866 /* Upclock if more than 90% busy over 13ms */
4867 ei_up = 13000;
4868 threshold_up = 90;
4869
4870 /* Downclock if less than 75% busy over 32ms */
4871 ei_down = 32000;
4872 threshold_down = 75;
4873 break;
4874
4875 case HIGH_POWER:
4876 /* Upclock if more than 85% busy over 10ms */
4877 ei_up = 10000;
4878 threshold_up = 85;
4879
4880 /* Downclock if less than 60% busy over 32ms */
4881 ei_down = 32000;
4882 threshold_down = 60;
4883 break;
4884 }
4885
4886 I915_WRITE(GEN6_RP_UP_EI,
4887 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4888 I915_WRITE(GEN6_RP_UP_THRESHOLD,
4889 GT_INTERVAL_FROM_US(dev_priv,
4890 ei_up * threshold_up / 100));
4891
4892 I915_WRITE(GEN6_RP_DOWN_EI,
4893 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4894 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4895 GT_INTERVAL_FROM_US(dev_priv,
4896 ei_down * threshold_down / 100));
4897
4898 I915_WRITE(GEN6_RP_CONTROL,
4899 GEN6_RP_MEDIA_TURBO |
4900 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4901 GEN6_RP_MEDIA_IS_GFX |
4902 GEN6_RP_ENABLE |
4903 GEN6_RP_UP_BUSY_AVG |
4904 GEN6_RP_DOWN_IDLE_AVG);
4905
4906 dev_priv->rps.power = new_power;
4907 dev_priv->rps.up_threshold = threshold_up;
4908 dev_priv->rps.down_threshold = threshold_down;
4909 dev_priv->rps.last_adj = 0;
4910 }
4911
4912 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4913 {
4914 u32 mask = 0;
4915
4916 if (val > dev_priv->rps.min_freq_softlimit)
4917 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4918 if (val < dev_priv->rps.max_freq_softlimit)
4919 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4920
4921 mask &= dev_priv->pm_rps_events;
4922
4923 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4924 }
4925
4926 /* gen6_set_rps is called to update the frequency request, but should also be
4927 * called when the range (min_delay and max_delay) is modified so that we can
4928 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4929 static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4930 {
4931 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4932 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4933 return;
4934
4935 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4936 WARN_ON(val > dev_priv->rps.max_freq);
4937 WARN_ON(val < dev_priv->rps.min_freq);
4938
4939 /* min/max delay may still have been modified so be sure to
4940 * write the limits value.
4941 */
4942 if (val != dev_priv->rps.cur_freq) {
4943 gen6_set_rps_thresholds(dev_priv, val);
4944
4945 if (IS_GEN9(dev_priv))
4946 I915_WRITE(GEN6_RPNSWREQ,
4947 GEN9_FREQUENCY(val));
4948 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4949 I915_WRITE(GEN6_RPNSWREQ,
4950 HSW_FREQUENCY(val));
4951 else
4952 I915_WRITE(GEN6_RPNSWREQ,
4953 GEN6_FREQUENCY(val) |
4954 GEN6_OFFSET(0) |
4955 GEN6_AGGRESSIVE_TURBO);
4956 }
4957
4958 /* Make sure we continue to get interrupts
4959 * until we hit the minimum or maximum frequencies.
4960 */
4961 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4962 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4963
4964 POSTING_READ(GEN6_RPNSWREQ);
4965
4966 dev_priv->rps.cur_freq = val;
4967 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4968 }
4969
4970 static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4971 {
4972 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4973 WARN_ON(val > dev_priv->rps.max_freq);
4974 WARN_ON(val < dev_priv->rps.min_freq);
4975
4976 if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4977 "Odd GPU freq value\n"))
4978 val &= ~1;
4979
4980 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4981
4982 if (val != dev_priv->rps.cur_freq) {
4983 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4984 if (!IS_CHERRYVIEW(dev_priv))
4985 gen6_set_rps_thresholds(dev_priv, val);
4986 }
4987
4988 dev_priv->rps.cur_freq = val;
4989 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4990 }
4991
4992 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4993 *
4994 * * If Gfx is Idle, then
4995 * 1. Forcewake Media well.
4996 * 2. Request idle freq.
4997 * 3. Release Forcewake of Media well.
4998 */
4999 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
5000 {
5001 u32 val = dev_priv->rps.idle_freq;
5002
5003 if (dev_priv->rps.cur_freq <= val)
5004 return;
5005
5006 /* Wake up the media well, as that takes a lot less
5007 * power than the Render well. */
5008 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5009 valleyview_set_rps(dev_priv, val);
5010 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5011 }
5012
5013 void gen6_rps_busy(struct drm_i915_private *dev_priv)
5014 {
5015 mutex_lock(&dev_priv->rps.hw_lock);
5016 if (dev_priv->rps.enabled) {
5017 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
5018 gen6_rps_reset_ei(dev_priv);
5019 I915_WRITE(GEN6_PMINTRMSK,
5020 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5021
5022 gen6_enable_rps_interrupts(dev_priv);
5023
5024 /* Ensure we start at the user's desired frequency */
5025 intel_set_rps(dev_priv,
5026 clamp(dev_priv->rps.cur_freq,
5027 dev_priv->rps.min_freq_softlimit,
5028 dev_priv->rps.max_freq_softlimit));
5029 }
5030 mutex_unlock(&dev_priv->rps.hw_lock);
5031 }
5032
5033 void gen6_rps_idle(struct drm_i915_private *dev_priv)
5034 {
5035 /* Flush our bottom-half so that it does not race with us
5036 * setting the idle frequency and so that it is bounded by
5037 * our rpm wakeref. And then disable the interrupts to stop any
5038 * futher RPS reclocking whilst we are asleep.
5039 */
5040 gen6_disable_rps_interrupts(dev_priv);
5041
5042 mutex_lock(&dev_priv->rps.hw_lock);
5043 if (dev_priv->rps.enabled) {
5044 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5045 vlv_set_rps_idle(dev_priv);
5046 else
5047 gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5048 dev_priv->rps.last_adj = 0;
5049 I915_WRITE(GEN6_PMINTRMSK,
5050 gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5051 }
5052 mutex_unlock(&dev_priv->rps.hw_lock);
5053
5054 spin_lock(&dev_priv->rps.client_lock);
5055 while (!list_empty(&dev_priv->rps.clients))
5056 list_del_init(dev_priv->rps.clients.next);
5057 spin_unlock(&dev_priv->rps.client_lock);
5058 }
5059
5060 void gen6_rps_boost(struct drm_i915_private *dev_priv,
5061 struct intel_rps_client *rps,
5062 unsigned long submitted)
5063 {
5064 /* This is intentionally racy! We peek at the state here, then
5065 * validate inside the RPS worker.
5066 */
5067 if (!(dev_priv->gt.awake &&
5068 dev_priv->rps.enabled &&
5069 dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5070 return;
5071
5072 /* Force a RPS boost (and don't count it against the client) if
5073 * the GPU is severely congested.
5074 */
5075 if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5076 rps = NULL;
5077
5078 spin_lock(&dev_priv->rps.client_lock);
5079 if (rps == NULL || list_empty(&rps->link)) {
5080 spin_lock_irq(&dev_priv->irq_lock);
5081 if (dev_priv->rps.interrupts_enabled) {
5082 dev_priv->rps.client_boost = true;
5083 schedule_work(&dev_priv->rps.work);
5084 }
5085 spin_unlock_irq(&dev_priv->irq_lock);
5086
5087 if (rps != NULL) {
5088 list_add(&rps->link, &dev_priv->rps.clients);
5089 rps->boosts++;
5090 } else
5091 dev_priv->rps.boosts++;
5092 }
5093 spin_unlock(&dev_priv->rps.client_lock);
5094 }
5095
5096 void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5097 {
5098 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5099 valleyview_set_rps(dev_priv, val);
5100 else
5101 gen6_set_rps(dev_priv, val);
5102 }
5103
5104 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
5105 {
5106 I915_WRITE(GEN6_RC_CONTROL, 0);
5107 I915_WRITE(GEN9_PG_ENABLE, 0);
5108 }
5109
5110 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5111 {
5112 I915_WRITE(GEN6_RP_CONTROL, 0);
5113 }
5114
5115 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5116 {
5117 I915_WRITE(GEN6_RC_CONTROL, 0);
5118 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5119 I915_WRITE(GEN6_RP_CONTROL, 0);
5120 }
5121
5122 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5123 {
5124 I915_WRITE(GEN6_RC_CONTROL, 0);
5125 }
5126
5127 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5128 {
5129 /* we're doing forcewake before Disabling RC6,
5130 * This what the BIOS expects when going into suspend */
5131 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5132
5133 I915_WRITE(GEN6_RC_CONTROL, 0);
5134
5135 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5136 }
5137
5138 static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
5139 {
5140 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5141 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
5142 mode = GEN6_RC_CTL_RC6_ENABLE;
5143 else
5144 mode = 0;
5145 }
5146 if (HAS_RC6p(dev_priv))
5147 DRM_DEBUG_DRIVER("Enabling RC6 states: "
5148 "RC6 %s RC6p %s RC6pp %s\n",
5149 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
5150 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
5151 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5152
5153 else
5154 DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
5155 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
5156 }
5157
5158 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5159 {
5160 struct i915_ggtt *ggtt = &dev_priv->ggtt;
5161 bool enable_rc6 = true;
5162 unsigned long rc6_ctx_base;
5163 u32 rc_ctl;
5164 int rc_sw_target;
5165
5166 rc_ctl = I915_READ(GEN6_RC_CONTROL);
5167 rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
5168 RC_SW_TARGET_STATE_SHIFT;
5169 DRM_DEBUG_DRIVER("BIOS enabled RC states: "
5170 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
5171 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
5172 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
5173 rc_sw_target);
5174
5175 if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5176 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5177 enable_rc6 = false;
5178 }
5179
5180 /*
5181 * The exact context size is not known for BXT, so assume a page size
5182 * for this check.
5183 */
5184 rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5185 if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
5186 (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
5187 ggtt->stolen_reserved_size))) {
5188 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5189 enable_rc6 = false;
5190 }
5191
5192 if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
5193 ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
5194 ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
5195 ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5196 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5197 enable_rc6 = false;
5198 }
5199
5200 if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
5201 !I915_READ(GEN8_PUSHBUS_ENABLE) ||
5202 !I915_READ(GEN8_PUSHBUS_SHIFT)) {
5203 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
5204 enable_rc6 = false;
5205 }
5206
5207 if (!I915_READ(GEN6_GFXPAUSE)) {
5208 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
5209 enable_rc6 = false;
5210 }
5211
5212 if (!I915_READ(GEN8_MISC_CTRL0)) {
5213 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5214 enable_rc6 = false;
5215 }
5216
5217 return enable_rc6;
5218 }
5219
5220 int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5221 {
5222 /* No RC6 before Ironlake and code is gone for ilk. */
5223 if (INTEL_INFO(dev_priv)->gen < 6)
5224 return 0;
5225
5226 if (!enable_rc6)
5227 return 0;
5228
5229 if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5230 DRM_INFO("RC6 disabled by BIOS\n");
5231 return 0;
5232 }
5233
5234 /* Respect the kernel parameter if it is set */
5235 if (enable_rc6 >= 0) {
5236 int mask;
5237
5238 if (HAS_RC6p(dev_priv))
5239 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
5240 INTEL_RC6pp_ENABLE;
5241 else
5242 mask = INTEL_RC6_ENABLE;
5243
5244 if ((enable_rc6 & mask) != enable_rc6)
5245 DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
5246 "(requested %d, valid %d)\n",
5247 enable_rc6 & mask, enable_rc6, mask);
5248
5249 return enable_rc6 & mask;
5250 }
5251
5252 if (IS_IVYBRIDGE(dev_priv))
5253 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5254
5255 return INTEL_RC6_ENABLE;
5256 }
5257
5258 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5259 {
5260 /* All of these values are in units of 50MHz */
5261
5262 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
5263 if (IS_BROXTON(dev_priv)) {
5264 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5265 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
5266 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
5267 dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
5268 } else {
5269 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5270 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
5271 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
5272 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
5273 }
5274 /* hw_max = RP0 until we check for overclocking */
5275 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5276
5277 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5278 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
5279 IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5280 u32 ddcc_status = 0;
5281
5282 if (sandybridge_pcode_read(dev_priv,
5283 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
5284 &ddcc_status) == 0)
5285 dev_priv->rps.efficient_freq =
5286 clamp_t(u8,
5287 ((ddcc_status >> 8) & 0xff),
5288 dev_priv->rps.min_freq,
5289 dev_priv->rps.max_freq);
5290 }
5291
5292 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5293 /* Store the frequency values in 16.66 MHZ units, which is
5294 * the natural hardware unit for SKL
5295 */
5296 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
5297 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
5298 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
5299 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
5300 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
5301 }
5302 }
5303
5304 static void reset_rps(struct drm_i915_private *dev_priv,
5305 void (*set)(struct drm_i915_private *, u8))
5306 {
5307 u8 freq = dev_priv->rps.cur_freq;
5308
5309 /* force a reset */
5310 dev_priv->rps.power = -1;
5311 dev_priv->rps.cur_freq = -1;
5312
5313 set(dev_priv, freq);
5314 }
5315
5316 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
5317 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
5318 {
5319 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5320
5321 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5322 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5323 /*
5324 * BIOS could leave the Hw Turbo enabled, so need to explicitly
5325 * clear out the Control register just to avoid inconsitency
5326 * with debugfs interface, which will show Turbo as enabled
5327 * only and that is not expected by the User after adding the
5328 * WaGsvDisableTurbo. Apart from this there is no problem even
5329 * if the Turbo is left enabled in the Control register, as the
5330 * Up/Down interrupts would remain masked.
5331 */
5332 gen9_disable_rps(dev_priv);
5333 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5334 return;
5335 }
5336
5337 /* Program defaults and thresholds for RPS*/
5338 I915_WRITE(GEN6_RC_VIDEO_FREQ,
5339 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
5340
5341 /* 1 second timeout*/
5342 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
5343 GT_INTERVAL_FROM_US(dev_priv, 1000000));
5344
5345 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
5346
5347 /* Leaning on the below call to gen6_set_rps to program/setup the
5348 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
5349 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5350 reset_rps(dev_priv, gen6_set_rps);
5351
5352 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5353 }
5354
5355 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
5356 {
5357 struct intel_engine_cs *engine;
5358 enum intel_engine_id id;
5359 uint32_t rc6_mask = 0;
5360
5361 /* 1a: Software RC state - RC0 */
5362 I915_WRITE(GEN6_RC_STATE, 0);
5363
5364 /* 1b: Get forcewake during program sequence. Although the driver
5365 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5366 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5367
5368 /* 2a: Disable RC states. */
5369 I915_WRITE(GEN6_RC_CONTROL, 0);
5370
5371 /* 2b: Program RC6 thresholds.*/
5372
5373 /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5374 if (IS_SKYLAKE(dev_priv))
5375 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
5376 else
5377 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
5378 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5379 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5380 for_each_engine(engine, dev_priv, id)
5381 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5382
5383 if (HAS_GUC(dev_priv))
5384 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
5385
5386 I915_WRITE(GEN6_RC_SLEEP, 0);
5387
5388 /* 2c: Program Coarse Power Gating Policies. */
5389 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
5390 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
5391
5392 /* 3a: Enable RC6 */
5393 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5394 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5395 DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5396 /* WaRsUseTimeoutMode:bxt */
5397 if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5398 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
5399 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5400 GEN7_RC_CTL_TO_MODE |
5401 rc6_mask);
5402 } else {
5403 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
5404 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5405 GEN6_RC_CTL_EI_MODE(1) |
5406 rc6_mask);
5407 }
5408
5409 /*
5410 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5411 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5412 */
5413 if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5414 I915_WRITE(GEN9_PG_ENABLE, 0);
5415 else
5416 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
5417 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5418
5419 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5420 }
5421
5422 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5423 {
5424 struct intel_engine_cs *engine;
5425 enum intel_engine_id id;
5426 uint32_t rc6_mask = 0;
5427
5428 /* 1a: Software RC state - RC0 */
5429 I915_WRITE(GEN6_RC_STATE, 0);
5430
5431 /* 1c & 1d: Get forcewake during program sequence. Although the driver
5432 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5433 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5434
5435 /* 2a: Disable RC states. */
5436 I915_WRITE(GEN6_RC_CONTROL, 0);
5437
5438 /* 2b: Program RC6 thresholds.*/
5439 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5440 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5441 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5442 for_each_engine(engine, dev_priv, id)
5443 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5444 I915_WRITE(GEN6_RC_SLEEP, 0);
5445 if (IS_BROADWELL(dev_priv))
5446 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
5447 else
5448 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5449
5450 /* 3: Enable RC6 */
5451 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5452 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5453 intel_print_rc6_info(dev_priv, rc6_mask);
5454 if (IS_BROADWELL(dev_priv))
5455 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5456 GEN7_RC_CTL_TO_MODE |
5457 rc6_mask);
5458 else
5459 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5460 GEN6_RC_CTL_EI_MODE(1) |
5461 rc6_mask);
5462
5463 /* 4 Program defaults and thresholds for RPS*/
5464 I915_WRITE(GEN6_RPNSWREQ,
5465 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5466 I915_WRITE(GEN6_RC_VIDEO_FREQ,
5467 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5468 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
5469 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
5470
5471 /* Docs recommend 900MHz, and 300 MHz respectively */
5472 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5473 dev_priv->rps.max_freq_softlimit << 24 |
5474 dev_priv->rps.min_freq_softlimit << 16);
5475
5476 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
5477 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
5478 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
5479 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
5480
5481 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5482
5483 /* 5: Enable RPS */
5484 I915_WRITE(GEN6_RP_CONTROL,
5485 GEN6_RP_MEDIA_TURBO |
5486 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5487 GEN6_RP_MEDIA_IS_GFX |
5488 GEN6_RP_ENABLE |
5489 GEN6_RP_UP_BUSY_AVG |
5490 GEN6_RP_DOWN_IDLE_AVG);
5491
5492 /* 6: Ring frequency + overclocking (our driver does this later */
5493
5494 reset_rps(dev_priv, gen6_set_rps);
5495
5496 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5497 }
5498
5499 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5500 {
5501 struct intel_engine_cs *engine;
5502 enum intel_engine_id id;
5503 u32 rc6vids, rc6_mask = 0;
5504 u32 gtfifodbg;
5505 int rc6_mode;
5506 int ret;
5507
5508 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5509
5510 /* Here begins a magic sequence of register writes to enable
5511 * auto-downclocking.
5512 *
5513 * Perhaps there might be some value in exposing these to
5514 * userspace...
5515 */
5516 I915_WRITE(GEN6_RC_STATE, 0);
5517
5518 /* Clear the DBG now so we don't confuse earlier errors */
5519 gtfifodbg = I915_READ(GTFIFODBG);
5520 if (gtfifodbg) {
5521 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5522 I915_WRITE(GTFIFODBG, gtfifodbg);
5523 }
5524
5525 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5526
5527 /* disable the counters and set deterministic thresholds */
5528 I915_WRITE(GEN6_RC_CONTROL, 0);
5529
5530 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5531 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5532 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5533 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5534 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5535
5536 for_each_engine(engine, dev_priv, id)
5537 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5538
5539 I915_WRITE(GEN6_RC_SLEEP, 0);
5540 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5541 if (IS_IVYBRIDGE(dev_priv))
5542 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5543 else
5544 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5545 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5546 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5547
5548 /* Check if we are enabling RC6 */
5549 rc6_mode = intel_enable_rc6();
5550 if (rc6_mode & INTEL_RC6_ENABLE)
5551 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5552
5553 /* We don't use those on Haswell */
5554 if (!IS_HASWELL(dev_priv)) {
5555 if (rc6_mode & INTEL_RC6p_ENABLE)
5556 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5557
5558 if (rc6_mode & INTEL_RC6pp_ENABLE)
5559 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5560 }
5561
5562 intel_print_rc6_info(dev_priv, rc6_mask);
5563
5564 I915_WRITE(GEN6_RC_CONTROL,
5565 rc6_mask |
5566 GEN6_RC_CTL_EI_MODE(1) |
5567 GEN6_RC_CTL_HW_ENABLE);
5568
5569 /* Power down if completely idle for over 50ms */
5570 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5571 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5572
5573 reset_rps(dev_priv, gen6_set_rps);
5574
5575 rc6vids = 0;
5576 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5577 if (IS_GEN6(dev_priv) && ret) {
5578 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5579 } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5580 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5581 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5582 rc6vids &= 0xffff00;
5583 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5584 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5585 if (ret)
5586 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5587 }
5588
5589 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5590 }
5591
5592 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5593 {
5594 int min_freq = 15;
5595 unsigned int gpu_freq;
5596 unsigned int max_ia_freq, min_ring_freq;
5597 unsigned int max_gpu_freq, min_gpu_freq;
5598 int scaling_factor = 180;
5599 struct cpufreq_policy *policy;
5600
5601 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5602
5603 policy = cpufreq_cpu_get(0);
5604 if (policy) {
5605 max_ia_freq = policy->cpuinfo.max_freq;
5606 cpufreq_cpu_put(policy);
5607 } else {
5608 /*
5609 * Default to measured freq if none found, PCU will ensure we
5610 * don't go over
5611 */
5612 max_ia_freq = tsc_khz;
5613 }
5614
5615 /* Convert from kHz to MHz */
5616 max_ia_freq /= 1000;
5617
5618 min_ring_freq = I915_READ(DCLK) & 0xf;
5619 /* convert DDR frequency from units of 266.6MHz to bandwidth */
5620 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5621
5622 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5623 /* Convert GT frequency to 50 HZ units */
5624 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5625 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5626 } else {
5627 min_gpu_freq = dev_priv->rps.min_freq;
5628 max_gpu_freq = dev_priv->rps.max_freq;
5629 }
5630
5631 /*
5632 * For each potential GPU frequency, load a ring frequency we'd like
5633 * to use for memory access. We do this by specifying the IA frequency
5634 * the PCU should use as a reference to determine the ring frequency.
5635 */
5636 for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5637 int diff = max_gpu_freq - gpu_freq;
5638 unsigned int ia_freq = 0, ring_freq = 0;
5639
5640 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5641 /*
5642 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5643 * No floor required for ring frequency on SKL.
5644 */
5645 ring_freq = gpu_freq;
5646 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
5647 /* max(2 * GT, DDR). NB: GT is 50MHz units */
5648 ring_freq = max(min_ring_freq, gpu_freq);
5649 } else if (IS_HASWELL(dev_priv)) {
5650 ring_freq = mult_frac(gpu_freq, 5, 4);
5651 ring_freq = max(min_ring_freq, ring_freq);
5652 /* leave ia_freq as the default, chosen by cpufreq */
5653 } else {
5654 /* On older processors, there is no separate ring
5655 * clock domain, so in order to boost the bandwidth
5656 * of the ring, we need to upclock the CPU (ia_freq).
5657 *
5658 * For GPU frequencies less than 750MHz,
5659 * just use the lowest ring freq.
5660 */
5661 if (gpu_freq < min_freq)
5662 ia_freq = 800;
5663 else
5664 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5665 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5666 }
5667
5668 sandybridge_pcode_write(dev_priv,
5669 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5670 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5671 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5672 gpu_freq);
5673 }
5674 }
5675
5676 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5677 {
5678 u32 val, rp0;
5679
5680 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5681
5682 switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5683 case 8:
5684 /* (2 * 4) config */
5685 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5686 break;
5687 case 12:
5688 /* (2 * 6) config */
5689 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5690 break;
5691 case 16:
5692 /* (2 * 8) config */
5693 default:
5694 /* Setting (2 * 8) Min RP0 for any other combination */
5695 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5696 break;
5697 }
5698
5699 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5700
5701 return rp0;
5702 }
5703
5704 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5705 {
5706 u32 val, rpe;
5707
5708 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5709 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5710
5711 return rpe;
5712 }
5713
5714 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5715 {
5716 u32 val, rp1;
5717
5718 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5719 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5720
5721 return rp1;
5722 }
5723
5724 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5725 {
5726 u32 val, rp1;
5727
5728 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5729
5730 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5731
5732 return rp1;
5733 }
5734
5735 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5736 {
5737 u32 val, rp0;
5738
5739 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5740
5741 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5742 /* Clamp to max */
5743 rp0 = min_t(u32, rp0, 0xea);
5744
5745 return rp0;
5746 }
5747
5748 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5749 {
5750 u32 val, rpe;
5751
5752 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5753 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5754 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5755 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5756
5757 return rpe;
5758 }
5759
5760 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5761 {
5762 u32 val;
5763
5764 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5765 /*
5766 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5767 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5768 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5769 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5770 * to make sure it matches what Punit accepts.
5771 */
5772 return max_t(u32, val, 0xc0);
5773 }
5774
5775 /* Check that the pctx buffer wasn't move under us. */
5776 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5777 {
5778 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5779
5780 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5781 dev_priv->vlv_pctx->stolen->start);
5782 }
5783
5784
5785 /* Check that the pcbr address is not empty. */
5786 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5787 {
5788 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5789
5790 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5791 }
5792
5793 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5794 {
5795 struct i915_ggtt *ggtt = &dev_priv->ggtt;
5796 unsigned long pctx_paddr, paddr;
5797 u32 pcbr;
5798 int pctx_size = 32*1024;
5799
5800 pcbr = I915_READ(VLV_PCBR);
5801 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5802 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5803 paddr = (dev_priv->mm.stolen_base +
5804 (ggtt->stolen_size - pctx_size));
5805
5806 pctx_paddr = (paddr & (~4095));
5807 I915_WRITE(VLV_PCBR, pctx_paddr);
5808 }
5809
5810 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5811 }
5812
5813 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5814 {
5815 struct drm_i915_gem_object *pctx;
5816 unsigned long pctx_paddr;
5817 u32 pcbr;
5818 int pctx_size = 24*1024;
5819
5820 pcbr = I915_READ(VLV_PCBR);
5821 if (pcbr) {
5822 /* BIOS set it up already, grab the pre-alloc'd space */
5823 int pcbr_offset;
5824
5825 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5826 pctx = i915_gem_object_create_stolen_for_preallocated(&dev_priv->drm,
5827 pcbr_offset,
5828 I915_GTT_OFFSET_NONE,
5829 pctx_size);
5830 goto out;
5831 }
5832
5833 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5834
5835 /*
5836 * From the Gunit register HAS:
5837 * The Gfx driver is expected to program this register and ensure
5838 * proper allocation within Gfx stolen memory. For example, this
5839 * register should be programmed such than the PCBR range does not
5840 * overlap with other ranges, such as the frame buffer, protected
5841 * memory, or any other relevant ranges.
5842 */
5843 pctx = i915_gem_object_create_stolen(&dev_priv->drm, pctx_size);
5844 if (!pctx) {
5845 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5846 goto out;
5847 }
5848
5849 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5850 I915_WRITE(VLV_PCBR, pctx_paddr);
5851
5852 out:
5853 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5854 dev_priv->vlv_pctx = pctx;
5855 }
5856
5857 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5858 {
5859 if (WARN_ON(!dev_priv->vlv_pctx))
5860 return;
5861
5862 i915_gem_object_put(dev_priv->vlv_pctx);
5863 dev_priv->vlv_pctx = NULL;
5864 }
5865
5866 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
5867 {
5868 dev_priv->rps.gpll_ref_freq =
5869 vlv_get_cck_clock(dev_priv, "GPLL ref",
5870 CCK_GPLL_CLOCK_CONTROL,
5871 dev_priv->czclk_freq);
5872
5873 DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
5874 dev_priv->rps.gpll_ref_freq);
5875 }
5876
5877 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5878 {
5879 u32 val;
5880
5881 valleyview_setup_pctx(dev_priv);
5882
5883 vlv_init_gpll_ref_freq(dev_priv);
5884
5885 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5886 switch ((val >> 6) & 3) {
5887 case 0:
5888 case 1:
5889 dev_priv->mem_freq = 800;
5890 break;
5891 case 2:
5892 dev_priv->mem_freq = 1066;
5893 break;
5894 case 3:
5895 dev_priv->mem_freq = 1333;
5896 break;
5897 }
5898 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5899
5900 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5901 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5902 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5903 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5904 dev_priv->rps.max_freq);
5905
5906 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5907 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5908 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5909 dev_priv->rps.efficient_freq);
5910
5911 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5912 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5913 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5914 dev_priv->rps.rp1_freq);
5915
5916 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5917 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5918 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5919 dev_priv->rps.min_freq);
5920 }
5921
5922 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5923 {
5924 u32 val;
5925
5926 cherryview_setup_pctx(dev_priv);
5927
5928 vlv_init_gpll_ref_freq(dev_priv);
5929
5930 mutex_lock(&dev_priv->sb_lock);
5931 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5932 mutex_unlock(&dev_priv->sb_lock);
5933
5934 switch ((val >> 2) & 0x7) {
5935 case 3:
5936 dev_priv->mem_freq = 2000;
5937 break;
5938 default:
5939 dev_priv->mem_freq = 1600;
5940 break;
5941 }
5942 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5943
5944 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5945 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5946 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5947 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5948 dev_priv->rps.max_freq);
5949
5950 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5951 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5952 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5953 dev_priv->rps.efficient_freq);
5954
5955 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5956 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5957 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5958 dev_priv->rps.rp1_freq);
5959
5960 /* PUnit validated range is only [RPe, RP0] */
5961 dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5962 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5963 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5964 dev_priv->rps.min_freq);
5965
5966 WARN_ONCE((dev_priv->rps.max_freq |
5967 dev_priv->rps.efficient_freq |
5968 dev_priv->rps.rp1_freq |
5969 dev_priv->rps.min_freq) & 1,
5970 "Odd GPU freq values\n");
5971 }
5972
5973 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5974 {
5975 valleyview_cleanup_pctx(dev_priv);
5976 }
5977
5978 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5979 {
5980 struct intel_engine_cs *engine;
5981 enum intel_engine_id id;
5982 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5983
5984 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5985
5986 gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
5987 GT_FIFO_FREE_ENTRIES_CHV);
5988 if (gtfifodbg) {
5989 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5990 gtfifodbg);
5991 I915_WRITE(GTFIFODBG, gtfifodbg);
5992 }
5993
5994 cherryview_check_pctx(dev_priv);
5995
5996 /* 1a & 1b: Get forcewake during program sequence. Although the driver
5997 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5998 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5999
6000 /* Disable RC states. */
6001 I915_WRITE(GEN6_RC_CONTROL, 0);
6002
6003 /* 2a: Program RC6 thresholds.*/
6004 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
6005 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6006 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6007
6008 for_each_engine(engine, dev_priv, id)
6009 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6010 I915_WRITE(GEN6_RC_SLEEP, 0);
6011
6012 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
6013 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6014
6015 /* allows RC6 residency counter to work */
6016 I915_WRITE(VLV_COUNTER_CONTROL,
6017 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
6018 VLV_MEDIA_RC6_COUNT_EN |
6019 VLV_RENDER_RC6_COUNT_EN));
6020
6021 /* For now we assume BIOS is allocating and populating the PCBR */
6022 pcbr = I915_READ(VLV_PCBR);
6023
6024 /* 3: Enable RC6 */
6025 if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
6026 (pcbr >> VLV_PCBR_ADDR_SHIFT))
6027 rc6_mode = GEN7_RC_CTL_TO_MODE;
6028
6029 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6030
6031 /* 4 Program defaults and thresholds for RPS*/
6032 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6033 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
6034 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
6035 I915_WRITE(GEN6_RP_UP_EI, 66000);
6036 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
6037
6038 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6039
6040 /* 5: Enable RPS */
6041 I915_WRITE(GEN6_RP_CONTROL,
6042 GEN6_RP_MEDIA_HW_NORMAL_MODE |
6043 GEN6_RP_MEDIA_IS_GFX |
6044 GEN6_RP_ENABLE |
6045 GEN6_RP_UP_BUSY_AVG |
6046 GEN6_RP_DOWN_IDLE_AVG);
6047
6048 /* Setting Fixed Bias */
6049 val = VLV_OVERRIDE_EN |
6050 VLV_SOC_TDP_EN |
6051 CHV_BIAS_CPU_50_SOC_50;
6052 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
6053
6054 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6055
6056 /* RPS code assumes GPLL is used */
6057 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
6058
6059 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6060 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6061
6062 reset_rps(dev_priv, valleyview_set_rps);
6063
6064 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6065 }
6066
6067 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6068 {
6069 struct intel_engine_cs *engine;
6070 enum intel_engine_id id;
6071 u32 gtfifodbg, val, rc6_mode = 0;
6072
6073 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6074
6075 valleyview_check_pctx(dev_priv);
6076
6077 gtfifodbg = I915_READ(GTFIFODBG);
6078 if (gtfifodbg) {
6079 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
6080 gtfifodbg);
6081 I915_WRITE(GTFIFODBG, gtfifodbg);
6082 }
6083
6084 /* If VLV, Forcewake all wells, else re-direct to regular path */
6085 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6086
6087 /* Disable RC states. */
6088 I915_WRITE(GEN6_RC_CONTROL, 0);
6089
6090 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6091 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
6092 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
6093 I915_WRITE(GEN6_RP_UP_EI, 66000);
6094 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
6095
6096 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6097
6098 I915_WRITE(GEN6_RP_CONTROL,
6099 GEN6_RP_MEDIA_TURBO |
6100 GEN6_RP_MEDIA_HW_NORMAL_MODE |
6101 GEN6_RP_MEDIA_IS_GFX |
6102 GEN6_RP_ENABLE |
6103 GEN6_RP_UP_BUSY_AVG |
6104 GEN6_RP_DOWN_IDLE_CONT);
6105
6106 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
6107 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6108 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6109
6110 for_each_engine(engine, dev_priv, id)
6111 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6112
6113 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6114
6115 /* allows RC6 residency counter to work */
6116 I915_WRITE(VLV_COUNTER_CONTROL,
6117 _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
6118 VLV_RENDER_RC0_COUNT_EN |
6119 VLV_MEDIA_RC6_COUNT_EN |
6120 VLV_RENDER_RC6_COUNT_EN));
6121
6122 if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6123 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
6124
6125 intel_print_rc6_info(dev_priv, rc6_mode);
6126
6127 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6128
6129 /* Setting Fixed Bias */
6130 val = VLV_OVERRIDE_EN |
6131 VLV_SOC_TDP_EN |
6132 VLV_BIAS_CPU_125_SOC_875;
6133 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
6134
6135 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6136
6137 /* RPS code assumes GPLL is used */
6138 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
6139
6140 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6141 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6142
6143 reset_rps(dev_priv, valleyview_set_rps);
6144
6145 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6146 }
6147
6148 static unsigned long intel_pxfreq(u32 vidfreq)
6149 {
6150 unsigned long freq;
6151 int div = (vidfreq & 0x3f0000) >> 16;
6152 int post = (vidfreq & 0x3000) >> 12;
6153 int pre = (vidfreq & 0x7);
6154
6155 if (!pre)
6156 return 0;
6157
6158 freq = ((div * 133333) / ((1<<post) * pre));
6159
6160 return freq;
6161 }
6162
6163 static const struct cparams {
6164 u16 i;
6165 u16 t;
6166 u16 m;
6167 u16 c;
6168 } cparams[] = {
6169 { 1, 1333, 301, 28664 },
6170 { 1, 1066, 294, 24460 },
6171 { 1, 800, 294, 25192 },
6172 { 0, 1333, 276, 27605 },
6173 { 0, 1066, 276, 27605 },
6174 { 0, 800, 231, 23784 },
6175 };
6176
6177 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6178 {
6179 u64 total_count, diff, ret;
6180 u32 count1, count2, count3, m = 0, c = 0;
6181 unsigned long now = jiffies_to_msecs(jiffies), diff1;
6182 int i;
6183
6184 assert_spin_locked(&mchdev_lock);
6185
6186 diff1 = now - dev_priv->ips.last_time1;
6187
6188 /* Prevent division-by-zero if we are asking too fast.
6189 * Also, we don't get interesting results if we are polling
6190 * faster than once in 10ms, so just return the saved value
6191 * in such cases.
6192 */
6193 if (diff1 <= 10)
6194 return dev_priv->ips.chipset_power;
6195
6196 count1 = I915_READ(DMIEC);
6197 count2 = I915_READ(DDREC);
6198 count3 = I915_READ(CSIEC);
6199
6200 total_count = count1 + count2 + count3;
6201
6202 /* FIXME: handle per-counter overflow */
6203 if (total_count < dev_priv->ips.last_count1) {
6204 diff = ~0UL - dev_priv->ips.last_count1;
6205 diff += total_count;
6206 } else {
6207 diff = total_count - dev_priv->ips.last_count1;
6208 }
6209
6210 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6211 if (cparams[i].i == dev_priv->ips.c_m &&
6212 cparams[i].t == dev_priv->ips.r_t) {
6213 m = cparams[i].m;
6214 c = cparams[i].c;
6215 break;
6216 }
6217 }
6218
6219 diff = div_u64(diff, diff1);
6220 ret = ((m * diff) + c);
6221 ret = div_u64(ret, 10);
6222
6223 dev_priv->ips.last_count1 = total_count;
6224 dev_priv->ips.last_time1 = now;
6225
6226 dev_priv->ips.chipset_power = ret;
6227
6228 return ret;
6229 }
6230
6231 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
6232 {
6233 unsigned long val;
6234
6235 if (INTEL_INFO(dev_priv)->gen != 5)
6236 return 0;
6237
6238 spin_lock_irq(&mchdev_lock);
6239
6240 val = __i915_chipset_val(dev_priv);
6241
6242 spin_unlock_irq(&mchdev_lock);
6243
6244 return val;
6245 }
6246
6247 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
6248 {
6249 unsigned long m, x, b;
6250 u32 tsfs;
6251
6252 tsfs = I915_READ(TSFS);
6253
6254 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
6255 x = I915_READ8(TR1);
6256
6257 b = tsfs & TSFS_INTR_MASK;
6258
6259 return ((m * x) / 127) - b;
6260 }
6261
6262 static int _pxvid_to_vd(u8 pxvid)
6263 {
6264 if (pxvid == 0)
6265 return 0;
6266
6267 if (pxvid >= 8 && pxvid < 31)
6268 pxvid = 31;
6269
6270 return (pxvid + 2) * 125;
6271 }
6272
6273 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6274 {
6275 const int vd = _pxvid_to_vd(pxvid);
6276 const int vm = vd - 1125;
6277
6278 if (INTEL_INFO(dev_priv)->is_mobile)
6279 return vm > 0 ? vm : 0;
6280
6281 return vd;
6282 }
6283
6284 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6285 {
6286 u64 now, diff, diffms;
6287 u32 count;
6288
6289 assert_spin_locked(&mchdev_lock);
6290
6291 now = ktime_get_raw_ns();
6292 diffms = now - dev_priv->ips.last_time2;
6293 do_div(diffms, NSEC_PER_MSEC);
6294
6295 /* Don't divide by 0 */
6296 if (!diffms)
6297 return;
6298
6299 count = I915_READ(GFXEC);
6300
6301 if (count < dev_priv->ips.last_count2) {
6302 diff = ~0UL - dev_priv->ips.last_count2;
6303 diff += count;
6304 } else {
6305 diff = count - dev_priv->ips.last_count2;
6306 }
6307
6308 dev_priv->ips.last_count2 = count;
6309 dev_priv->ips.last_time2 = now;
6310
6311 /* More magic constants... */
6312 diff = diff * 1181;
6313 diff = div_u64(diff, diffms * 10);
6314 dev_priv->ips.gfx_power = diff;
6315 }
6316
6317 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
6318 {
6319 if (INTEL_INFO(dev_priv)->gen != 5)
6320 return;
6321
6322 spin_lock_irq(&mchdev_lock);
6323
6324 __i915_update_gfx_val(dev_priv);
6325
6326 spin_unlock_irq(&mchdev_lock);
6327 }
6328
6329 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6330 {
6331 unsigned long t, corr, state1, corr2, state2;
6332 u32 pxvid, ext_v;
6333
6334 assert_spin_locked(&mchdev_lock);
6335
6336 pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6337 pxvid = (pxvid >> 24) & 0x7f;
6338 ext_v = pvid_to_extvid(dev_priv, pxvid);
6339
6340 state1 = ext_v;
6341
6342 t = i915_mch_val(dev_priv);
6343
6344 /* Revel in the empirically derived constants */
6345
6346 /* Correction factor in 1/100000 units */
6347 if (t > 80)
6348 corr = ((t * 2349) + 135940);
6349 else if (t >= 50)
6350 corr = ((t * 964) + 29317);
6351 else /* < 50 */
6352 corr = ((t * 301) + 1004);
6353
6354 corr = corr * ((150142 * state1) / 10000 - 78642);
6355 corr /= 100000;
6356 corr2 = (corr * dev_priv->ips.corr);
6357
6358 state2 = (corr2 * state1) / 10000;
6359 state2 /= 100; /* convert to mW */
6360
6361 __i915_update_gfx_val(dev_priv);
6362
6363 return dev_priv->ips.gfx_power + state2;
6364 }
6365
6366 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
6367 {
6368 unsigned long val;
6369
6370 if (INTEL_INFO(dev_priv)->gen != 5)
6371 return 0;
6372
6373 spin_lock_irq(&mchdev_lock);
6374
6375 val = __i915_gfx_val(dev_priv);
6376
6377 spin_unlock_irq(&mchdev_lock);
6378
6379 return val;
6380 }
6381
6382 /**
6383 * i915_read_mch_val - return value for IPS use
6384 *
6385 * Calculate and return a value for the IPS driver to use when deciding whether
6386 * we have thermal and power headroom to increase CPU or GPU power budget.
6387 */
6388 unsigned long i915_read_mch_val(void)
6389 {
6390 struct drm_i915_private *dev_priv;
6391 unsigned long chipset_val, graphics_val, ret = 0;
6392
6393 spin_lock_irq(&mchdev_lock);
6394 if (!i915_mch_dev)
6395 goto out_unlock;
6396 dev_priv = i915_mch_dev;
6397
6398 chipset_val = __i915_chipset_val(dev_priv);
6399 graphics_val = __i915_gfx_val(dev_priv);
6400
6401 ret = chipset_val + graphics_val;
6402
6403 out_unlock:
6404 spin_unlock_irq(&mchdev_lock);
6405
6406 return ret;
6407 }
6408 EXPORT_SYMBOL_GPL(i915_read_mch_val);
6409
6410 /**
6411 * i915_gpu_raise - raise GPU frequency limit
6412 *
6413 * Raise the limit; IPS indicates we have thermal headroom.
6414 */
6415 bool i915_gpu_raise(void)
6416 {
6417 struct drm_i915_private *dev_priv;
6418 bool ret = true;
6419
6420 spin_lock_irq(&mchdev_lock);
6421 if (!i915_mch_dev) {
6422 ret = false;
6423 goto out_unlock;
6424 }
6425 dev_priv = i915_mch_dev;
6426
6427 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
6428 dev_priv->ips.max_delay--;
6429
6430 out_unlock:
6431 spin_unlock_irq(&mchdev_lock);
6432
6433 return ret;
6434 }
6435 EXPORT_SYMBOL_GPL(i915_gpu_raise);
6436
6437 /**
6438 * i915_gpu_lower - lower GPU frequency limit
6439 *
6440 * IPS indicates we're close to a thermal limit, so throttle back the GPU
6441 * frequency maximum.
6442 */
6443 bool i915_gpu_lower(void)
6444 {
6445 struct drm_i915_private *dev_priv;
6446 bool ret = true;
6447
6448 spin_lock_irq(&mchdev_lock);
6449 if (!i915_mch_dev) {
6450 ret = false;
6451 goto out_unlock;
6452 }
6453 dev_priv = i915_mch_dev;
6454
6455 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6456 dev_priv->ips.max_delay++;
6457
6458 out_unlock:
6459 spin_unlock_irq(&mchdev_lock);
6460
6461 return ret;
6462 }
6463 EXPORT_SYMBOL_GPL(i915_gpu_lower);
6464
6465 /**
6466 * i915_gpu_busy - indicate GPU business to IPS
6467 *
6468 * Tell the IPS driver whether or not the GPU is busy.
6469 */
6470 bool i915_gpu_busy(void)
6471 {
6472 bool ret = false;
6473
6474 spin_lock_irq(&mchdev_lock);
6475 if (i915_mch_dev)
6476 ret = i915_mch_dev->gt.awake;
6477 spin_unlock_irq(&mchdev_lock);
6478
6479 return ret;
6480 }
6481 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6482
6483 /**
6484 * i915_gpu_turbo_disable - disable graphics turbo
6485 *
6486 * Disable graphics turbo by resetting the max frequency and setting the
6487 * current frequency to the default.
6488 */
6489 bool i915_gpu_turbo_disable(void)
6490 {
6491 struct drm_i915_private *dev_priv;
6492 bool ret = true;
6493
6494 spin_lock_irq(&mchdev_lock);
6495 if (!i915_mch_dev) {
6496 ret = false;
6497 goto out_unlock;
6498 }
6499 dev_priv = i915_mch_dev;
6500
6501 dev_priv->ips.max_delay = dev_priv->ips.fstart;
6502
6503 if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6504 ret = false;
6505
6506 out_unlock:
6507 spin_unlock_irq(&mchdev_lock);
6508
6509 return ret;
6510 }
6511 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6512
6513 /**
6514 * Tells the intel_ips driver that the i915 driver is now loaded, if
6515 * IPS got loaded first.
6516 *
6517 * This awkward dance is so that neither module has to depend on the
6518 * other in order for IPS to do the appropriate communication of
6519 * GPU turbo limits to i915.
6520 */
6521 static void
6522 ips_ping_for_i915_load(void)
6523 {
6524 void (*link)(void);
6525
6526 link = symbol_get(ips_link_to_i915_driver);
6527 if (link) {
6528 link();
6529 symbol_put(ips_link_to_i915_driver);
6530 }
6531 }
6532
6533 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6534 {
6535 /* We only register the i915 ips part with intel-ips once everything is
6536 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6537 spin_lock_irq(&mchdev_lock);
6538 i915_mch_dev = dev_priv;
6539 spin_unlock_irq(&mchdev_lock);
6540
6541 ips_ping_for_i915_load();
6542 }
6543
6544 void intel_gpu_ips_teardown(void)
6545 {
6546 spin_lock_irq(&mchdev_lock);
6547 i915_mch_dev = NULL;
6548 spin_unlock_irq(&mchdev_lock);
6549 }
6550
6551 static void intel_init_emon(struct drm_i915_private *dev_priv)
6552 {
6553 u32 lcfuse;
6554 u8 pxw[16];
6555 int i;
6556
6557 /* Disable to program */
6558 I915_WRITE(ECR, 0);
6559 POSTING_READ(ECR);
6560
6561 /* Program energy weights for various events */
6562 I915_WRITE(SDEW, 0x15040d00);
6563 I915_WRITE(CSIEW0, 0x007f0000);
6564 I915_WRITE(CSIEW1, 0x1e220004);
6565 I915_WRITE(CSIEW2, 0x04000004);
6566
6567 for (i = 0; i < 5; i++)
6568 I915_WRITE(PEW(i), 0);
6569 for (i = 0; i < 3; i++)
6570 I915_WRITE(DEW(i), 0);
6571
6572 /* Program P-state weights to account for frequency power adjustment */
6573 for (i = 0; i < 16; i++) {
6574 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6575 unsigned long freq = intel_pxfreq(pxvidfreq);
6576 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6577 PXVFREQ_PX_SHIFT;
6578 unsigned long val;
6579
6580 val = vid * vid;
6581 val *= (freq / 1000);
6582 val *= 255;
6583 val /= (127*127*900);
6584 if (val > 0xff)
6585 DRM_ERROR("bad pxval: %ld\n", val);
6586 pxw[i] = val;
6587 }
6588 /* Render standby states get 0 weight */
6589 pxw[14] = 0;
6590 pxw[15] = 0;
6591
6592 for (i = 0; i < 4; i++) {
6593 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6594 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6595 I915_WRITE(PXW(i), val);
6596 }
6597
6598 /* Adjust magic regs to magic values (more experimental results) */
6599 I915_WRITE(OGW0, 0);
6600 I915_WRITE(OGW1, 0);
6601 I915_WRITE(EG0, 0x00007f00);
6602 I915_WRITE(EG1, 0x0000000e);
6603 I915_WRITE(EG2, 0x000e0000);
6604 I915_WRITE(EG3, 0x68000300);
6605 I915_WRITE(EG4, 0x42000000);
6606 I915_WRITE(EG5, 0x00140031);
6607 I915_WRITE(EG6, 0);
6608 I915_WRITE(EG7, 0);
6609
6610 for (i = 0; i < 8; i++)
6611 I915_WRITE(PXWL(i), 0);
6612
6613 /* Enable PMON + select events */
6614 I915_WRITE(ECR, 0x80000019);
6615
6616 lcfuse = I915_READ(LCFUSE02);
6617
6618 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6619 }
6620
6621 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6622 {
6623 /*
6624 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6625 * requirement.
6626 */
6627 if (!i915.enable_rc6) {
6628 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6629 intel_runtime_pm_get(dev_priv);
6630 }
6631
6632 mutex_lock(&dev_priv->drm.struct_mutex);
6633 mutex_lock(&dev_priv->rps.hw_lock);
6634
6635 /* Initialize RPS limits (for userspace) */
6636 if (IS_CHERRYVIEW(dev_priv))
6637 cherryview_init_gt_powersave(dev_priv);
6638 else if (IS_VALLEYVIEW(dev_priv))
6639 valleyview_init_gt_powersave(dev_priv);
6640 else if (INTEL_GEN(dev_priv) >= 6)
6641 gen6_init_rps_frequencies(dev_priv);
6642
6643 /* Derive initial user preferences/limits from the hardware limits */
6644 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
6645 dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;
6646
6647 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
6648 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
6649
6650 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6651 dev_priv->rps.min_freq_softlimit =
6652 max_t(int,
6653 dev_priv->rps.efficient_freq,
6654 intel_freq_opcode(dev_priv, 450));
6655
6656 /* After setting max-softlimit, find the overclock max freq */
6657 if (IS_GEN6(dev_priv) ||
6658 IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
6659 u32 params = 0;
6660
6661 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
6662 if (params & BIT(31)) { /* OC supported */
6663 DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
6664 (dev_priv->rps.max_freq & 0xff) * 50,
6665 (params & 0xff) * 50);
6666 dev_priv->rps.max_freq = params & 0xff;
6667 }
6668 }
6669
6670 /* Finally allow us to boost to max by default */
6671 dev_priv->rps.boost_freq = dev_priv->rps.max_freq;
6672
6673 mutex_unlock(&dev_priv->rps.hw_lock);
6674 mutex_unlock(&dev_priv->drm.struct_mutex);
6675
6676 intel_autoenable_gt_powersave(dev_priv);
6677 }
6678
6679 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6680 {
6681 if (IS_VALLEYVIEW(dev_priv))
6682 valleyview_cleanup_gt_powersave(dev_priv);
6683
6684 if (!i915.enable_rc6)
6685 intel_runtime_pm_put(dev_priv);
6686 }
6687
6688 /**
6689 * intel_suspend_gt_powersave - suspend PM work and helper threads
6690 * @dev_priv: i915 device
6691 *
6692 * We don't want to disable RC6 or other features here, we just want
6693 * to make sure any work we've queued has finished and won't bother
6694 * us while we're suspended.
6695 */
6696 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
6697 {
6698 if (INTEL_GEN(dev_priv) < 6)
6699 return;
6700
6701 if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
6702 intel_runtime_pm_put(dev_priv);
6703
6704 /* gen6_rps_idle() will be called later to disable interrupts */
6705 }
6706
6707 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
6708 {
6709 dev_priv->rps.enabled = true; /* force disabling */
6710 intel_disable_gt_powersave(dev_priv);
6711
6712 gen6_reset_rps_interrupts(dev_priv);
6713 }
6714
6715 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6716 {
6717 if (!READ_ONCE(dev_priv->rps.enabled))
6718 return;
6719
6720 mutex_lock(&dev_priv->rps.hw_lock);
6721
6722 if (INTEL_GEN(dev_priv) >= 9) {
6723 gen9_disable_rc6(dev_priv);
6724 gen9_disable_rps(dev_priv);
6725 } else if (IS_CHERRYVIEW(dev_priv)) {
6726 cherryview_disable_rps(dev_priv);
6727 } else if (IS_VALLEYVIEW(dev_priv)) {
6728 valleyview_disable_rps(dev_priv);
6729 } else if (INTEL_GEN(dev_priv) >= 6) {
6730 gen6_disable_rps(dev_priv);
6731 } else if (IS_IRONLAKE_M(dev_priv)) {
6732 ironlake_disable_drps(dev_priv);
6733 }
6734
6735 dev_priv->rps.enabled = false;
6736 mutex_unlock(&dev_priv->rps.hw_lock);
6737 }
6738
6739 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6740 {
6741 /* We shouldn't be disabling as we submit, so this should be less
6742 * racy than it appears!
6743 */
6744 if (READ_ONCE(dev_priv->rps.enabled))
6745 return;
6746
6747 /* Powersaving is controlled by the host when inside a VM */
6748 if (intel_vgpu_active(dev_priv))
6749 return;
6750
6751 mutex_lock(&dev_priv->rps.hw_lock);
6752
6753 if (IS_CHERRYVIEW(dev_priv)) {
6754 cherryview_enable_rps(dev_priv);
6755 } else if (IS_VALLEYVIEW(dev_priv)) {
6756 valleyview_enable_rps(dev_priv);
6757 } else if (INTEL_GEN(dev_priv) >= 9) {
6758 gen9_enable_rc6(dev_priv);
6759 gen9_enable_rps(dev_priv);
6760 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6761 gen6_update_ring_freq(dev_priv);
6762 } else if (IS_BROADWELL(dev_priv)) {
6763 gen8_enable_rps(dev_priv);
6764 gen6_update_ring_freq(dev_priv);
6765 } else if (INTEL_GEN(dev_priv) >= 6) {
6766 gen6_enable_rps(dev_priv);
6767 gen6_update_ring_freq(dev_priv);
6768 } else if (IS_IRONLAKE_M(dev_priv)) {
6769 ironlake_enable_drps(dev_priv);
6770 intel_init_emon(dev_priv);
6771 }
6772
6773 WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6774 WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6775
6776 WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6777 WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6778
6779 dev_priv->rps.enabled = true;
6780 mutex_unlock(&dev_priv->rps.hw_lock);
6781 }
6782
6783 static void __intel_autoenable_gt_powersave(struct work_struct *work)
6784 {
6785 struct drm_i915_private *dev_priv =
6786 container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
6787 struct intel_engine_cs *rcs;
6788 struct drm_i915_gem_request *req;
6789
6790 if (READ_ONCE(dev_priv->rps.enabled))
6791 goto out;
6792
6793 rcs = dev_priv->engine[RCS];
6794 if (rcs->last_context)
6795 goto out;
6796
6797 if (!rcs->init_context)
6798 goto out;
6799
6800 mutex_lock(&dev_priv->drm.struct_mutex);
6801
6802 req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
6803 if (IS_ERR(req))
6804 goto unlock;
6805
6806 if (!i915.enable_execlists && i915_switch_context(req) == 0)
6807 rcs->init_context(req);
6808
6809 /* Mark the device busy, calling intel_enable_gt_powersave() */
6810 i915_add_request_no_flush(req);
6811
6812 unlock:
6813 mutex_unlock(&dev_priv->drm.struct_mutex);
6814 out:
6815 intel_runtime_pm_put(dev_priv);
6816 }
6817
6818 void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
6819 {
6820 if (READ_ONCE(dev_priv->rps.enabled))
6821 return;
6822
6823 if (IS_IRONLAKE_M(dev_priv)) {
6824 ironlake_enable_drps(dev_priv);
6825 intel_init_emon(dev_priv);
6826 } else if (INTEL_INFO(dev_priv)->gen >= 6) {
6827 /*
6828 * PCU communication is slow and this doesn't need to be
6829 * done at any specific time, so do this out of our fast path
6830 * to make resume and init faster.
6831 *
6832 * We depend on the HW RC6 power context save/restore
6833 * mechanism when entering D3 through runtime PM suspend. So
6834 * disable RPM until RPS/RC6 is properly setup. We can only
6835 * get here via the driver load/system resume/runtime resume
6836 * paths, so the _noresume version is enough (and in case of
6837 * runtime resume it's necessary).
6838 */
6839 if (queue_delayed_work(dev_priv->wq,
6840 &dev_priv->rps.autoenable_work,
6841 round_jiffies_up_relative(HZ)))
6842 intel_runtime_pm_get_noresume(dev_priv);
6843 }
6844 }
6845
6846 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
6847 {
6848 /*
6849 * On Ibex Peak and Cougar Point, we need to disable clock
6850 * gating for the panel power sequencer or it will fail to
6851 * start up when no ports are active.
6852 */
6853 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6854 }
6855
6856 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
6857 {
6858 enum pipe pipe;
6859
6860 for_each_pipe(dev_priv, pipe) {
6861 I915_WRITE(DSPCNTR(pipe),
6862 I915_READ(DSPCNTR(pipe)) |
6863 DISPPLANE_TRICKLE_FEED_DISABLE);
6864
6865 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6866 POSTING_READ(DSPSURF(pipe));
6867 }
6868 }
6869
6870 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6871 {
6872 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6873 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6874 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6875
6876 /*
6877 * Don't touch WM1S_LP_EN here.
6878 * Doing so could cause underruns.
6879 */
6880 }
6881
6882 static void ironlake_init_clock_gating(struct drm_i915_private *dev_priv)
6883 {
6884 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6885
6886 /*
6887 * Required for FBC
6888 * WaFbcDisableDpfcClockGating:ilk
6889 */
6890 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6891 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6892 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6893
6894 I915_WRITE(PCH_3DCGDIS0,
6895 MARIUNIT_CLOCK_GATE_DISABLE |
6896 SVSMUNIT_CLOCK_GATE_DISABLE);
6897 I915_WRITE(PCH_3DCGDIS1,
6898 VFMUNIT_CLOCK_GATE_DISABLE);
6899
6900 /*
6901 * According to the spec the following bits should be set in
6902 * order to enable memory self-refresh
6903 * The bit 22/21 of 0x42004
6904 * The bit 5 of 0x42020
6905 * The bit 15 of 0x45000
6906 */
6907 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6908 (I915_READ(ILK_DISPLAY_CHICKEN2) |
6909 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6910 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6911 I915_WRITE(DISP_ARB_CTL,
6912 (I915_READ(DISP_ARB_CTL) |
6913 DISP_FBC_WM_DIS));
6914
6915 ilk_init_lp_watermarks(dev_priv);
6916
6917 /*
6918 * Based on the document from hardware guys the following bits
6919 * should be set unconditionally in order to enable FBC.
6920 * The bit 22 of 0x42000
6921 * The bit 22 of 0x42004
6922 * The bit 7,8,9 of 0x42020.
6923 */
6924 if (IS_IRONLAKE_M(dev_priv)) {
6925 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6926 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6927 I915_READ(ILK_DISPLAY_CHICKEN1) |
6928 ILK_FBCQ_DIS);
6929 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6930 I915_READ(ILK_DISPLAY_CHICKEN2) |
6931 ILK_DPARB_GATE);
6932 }
6933
6934 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6935
6936 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6937 I915_READ(ILK_DISPLAY_CHICKEN2) |
6938 ILK_ELPIN_409_SELECT);
6939 I915_WRITE(_3D_CHICKEN2,
6940 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6941 _3D_CHICKEN2_WM_READ_PIPELINED);
6942
6943 /* WaDisableRenderCachePipelinedFlush:ilk */
6944 I915_WRITE(CACHE_MODE_0,
6945 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6946
6947 /* WaDisable_RenderCache_OperationalFlush:ilk */
6948 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6949
6950 g4x_disable_trickle_feed(dev_priv);
6951
6952 ibx_init_clock_gating(dev_priv);
6953 }
6954
6955 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
6956 {
6957 int pipe;
6958 uint32_t val;
6959
6960 /*
6961 * On Ibex Peak and Cougar Point, we need to disable clock
6962 * gating for the panel power sequencer or it will fail to
6963 * start up when no ports are active.
6964 */
6965 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6966 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6967 PCH_CPUNIT_CLOCK_GATE_DISABLE);
6968 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6969 DPLS_EDP_PPS_FIX_DIS);
6970 /* The below fixes the weird display corruption, a few pixels shifted
6971 * downward, on (only) LVDS of some HP laptops with IVY.
6972 */
6973 for_each_pipe(dev_priv, pipe) {
6974 val = I915_READ(TRANS_CHICKEN2(pipe));
6975 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6976 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6977 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6978 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6979 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6980 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6981 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6982 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6983 }
6984 /* WADP0ClockGatingDisable */
6985 for_each_pipe(dev_priv, pipe) {
6986 I915_WRITE(TRANS_CHICKEN1(pipe),
6987 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6988 }
6989 }
6990
6991 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
6992 {
6993 uint32_t tmp;
6994
6995 tmp = I915_READ(MCH_SSKPD);
6996 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6997 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6998 tmp);
6999 }
7000
7001 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
7002 {
7003 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7004
7005 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7006
7007 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7008 I915_READ(ILK_DISPLAY_CHICKEN2) |
7009 ILK_ELPIN_409_SELECT);
7010
7011 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7012 I915_WRITE(_3D_CHICKEN,
7013 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
7014
7015 /* WaDisable_RenderCache_OperationalFlush:snb */
7016 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7017
7018 /*
7019 * BSpec recoomends 8x4 when MSAA is used,
7020 * however in practice 16x4 seems fastest.
7021 *
7022 * Note that PS/WM thread counts depend on the WIZ hashing
7023 * disable bit, which we don't touch here, but it's good
7024 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7025 */
7026 I915_WRITE(GEN6_GT_MODE,
7027 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7028
7029 ilk_init_lp_watermarks(dev_priv);
7030
7031 I915_WRITE(CACHE_MODE_0,
7032 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7033
7034 I915_WRITE(GEN6_UCGCTL1,
7035 I915_READ(GEN6_UCGCTL1) |
7036 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
7037 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7038
7039 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
7040 * gating disable must be set. Failure to set it results in
7041 * flickering pixels due to Z write ordering failures after
7042 * some amount of runtime in the Mesa "fire" demo, and Unigine
7043 * Sanctuary and Tropics, and apparently anything else with
7044 * alpha test or pixel discard.
7045 *
7046 * According to the spec, bit 11 (RCCUNIT) must also be set,
7047 * but we didn't debug actual testcases to find it out.
7048 *
7049 * WaDisableRCCUnitClockGating:snb
7050 * WaDisableRCPBUnitClockGating:snb
7051 */
7052 I915_WRITE(GEN6_UCGCTL2,
7053 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
7054 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
7055
7056 /* WaStripsFansDisableFastClipPerformanceFix:snb */
7057 I915_WRITE(_3D_CHICKEN3,
7058 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7059
7060 /*
7061 * Bspec says:
7062 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
7063 * 3DSTATE_SF number of SF output attributes is more than 16."
7064 */
7065 I915_WRITE(_3D_CHICKEN3,
7066 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
7067
7068 /*
7069 * According to the spec the following bits should be
7070 * set in order to enable memory self-refresh and fbc:
7071 * The bit21 and bit22 of 0x42000
7072 * The bit21 and bit22 of 0x42004
7073 * The bit5 and bit7 of 0x42020
7074 * The bit14 of 0x70180
7075 * The bit14 of 0x71180
7076 *
7077 * WaFbcAsynchFlipDisableFbcQueue:snb
7078 */
7079 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7080 I915_READ(ILK_DISPLAY_CHICKEN1) |
7081 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7082 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7083 I915_READ(ILK_DISPLAY_CHICKEN2) |
7084 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7085 I915_WRITE(ILK_DSPCLK_GATE_D,
7086 I915_READ(ILK_DSPCLK_GATE_D) |
7087 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
7088 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7089
7090 g4x_disable_trickle_feed(dev_priv);
7091
7092 cpt_init_clock_gating(dev_priv);
7093
7094 gen6_check_mch_setup(dev_priv);
7095 }
7096
7097 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
7098 {
7099 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
7100
7101 /*
7102 * WaVSThreadDispatchOverride:ivb,vlv
7103 *
7104 * This actually overrides the dispatch
7105 * mode for all thread types.
7106 */
7107 reg &= ~GEN7_FF_SCHED_MASK;
7108 reg |= GEN7_FF_TS_SCHED_HW;
7109 reg |= GEN7_FF_VS_SCHED_HW;
7110 reg |= GEN7_FF_DS_SCHED_HW;
7111
7112 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
7113 }
7114
7115 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
7116 {
7117 /*
7118 * TODO: this bit should only be enabled when really needed, then
7119 * disabled when not needed anymore in order to save power.
7120 */
7121 if (HAS_PCH_LPT_LP(dev_priv))
7122 I915_WRITE(SOUTH_DSPCLK_GATE_D,
7123 I915_READ(SOUTH_DSPCLK_GATE_D) |
7124 PCH_LP_PARTITION_LEVEL_DISABLE);
7125
7126 /* WADPOClockGatingDisable:hsw */
7127 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
7128 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7129 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7130 }
7131
7132 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
7133 {
7134 if (HAS_PCH_LPT_LP(dev_priv)) {
7135 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
7136
7137 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7138 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7139 }
7140 }
7141
7142 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
7143 int general_prio_credits,
7144 int high_prio_credits)
7145 {
7146 u32 misccpctl;
7147
7148 /* WaTempDisableDOPClkGating:bdw */
7149 misccpctl = I915_READ(GEN7_MISCCPCTL);
7150 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
7151
7152 I915_WRITE(GEN8_L3SQCREG1,
7153 L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
7154 L3_HIGH_PRIO_CREDITS(high_prio_credits));
7155
7156 /*
7157 * Wait at least 100 clocks before re-enabling clock gating.
7158 * See the definition of L3SQCREG1 in BSpec.
7159 */
7160 POSTING_READ(GEN8_L3SQCREG1);
7161 udelay(1);
7162 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
7163 }
7164
7165 static void kabylake_init_clock_gating(struct drm_i915_private *dev_priv)
7166 {
7167 gen9_init_clock_gating(dev_priv);
7168
7169 /* WaDisableSDEUnitClockGating:kbl */
7170 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7171 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7172 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7173
7174 /* WaDisableGamClockGating:kbl */
7175 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7176 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7177 GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7178
7179 /* WaFbcNukeOnHostModify:kbl */
7180 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7181 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7182 }
7183
7184 static void skylake_init_clock_gating(struct drm_i915_private *dev_priv)
7185 {
7186 gen9_init_clock_gating(dev_priv);
7187
7188 /* WAC6entrylatency:skl */
7189 I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
7190 FBC_LLC_FULLY_OPEN);
7191
7192 /* WaFbcNukeOnHostModify:skl */
7193 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7194 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7195 }
7196
7197 static void broadwell_init_clock_gating(struct drm_i915_private *dev_priv)
7198 {
7199 enum pipe pipe;
7200
7201 ilk_init_lp_watermarks(dev_priv);
7202
7203 /* WaSwitchSolVfFArbitrationPriority:bdw */
7204 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7205
7206 /* WaPsrDPAMaskVBlankInSRD:bdw */
7207 I915_WRITE(CHICKEN_PAR1_1,
7208 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7209
7210 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7211 for_each_pipe(dev_priv, pipe) {
7212 I915_WRITE(CHICKEN_PIPESL_1(pipe),
7213 I915_READ(CHICKEN_PIPESL_1(pipe)) |
7214 BDW_DPRS_MASK_VBLANK_SRD);
7215 }
7216
7217 /* WaVSRefCountFullforceMissDisable:bdw */
7218 /* WaDSRefCountFullforceMissDisable:bdw */
7219 I915_WRITE(GEN7_FF_THREAD_MODE,
7220 I915_READ(GEN7_FF_THREAD_MODE) &
7221 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7222
7223 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7224 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7225
7226 /* WaDisableSDEUnitClockGating:bdw */
7227 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7228 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7229
7230 /* WaProgramL3SqcReg1Default:bdw */
7231 gen8_set_l3sqc_credits(dev_priv, 30, 2);
7232
7233 /*
7234 * WaGttCachingOffByDefault:bdw
7235 * GTT cache may not work with big pages, so if those
7236 * are ever enabled GTT cache may need to be disabled.
7237 */
7238 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7239
7240 /* WaKVMNotificationOnConfigChange:bdw */
7241 I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
7242 | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7243
7244 lpt_init_clock_gating(dev_priv);
7245 }
7246
7247 static void haswell_init_clock_gating(struct drm_i915_private *dev_priv)
7248 {
7249 ilk_init_lp_watermarks(dev_priv);
7250
7251 /* L3 caching of data atomics doesn't work -- disable it. */
7252 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
7253 I915_WRITE(HSW_ROW_CHICKEN3,
7254 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
7255
7256 /* This is required by WaCatErrorRejectionIssue:hsw */
7257 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7258 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7259 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7260
7261 /* WaVSRefCountFullforceMissDisable:hsw */
7262 I915_WRITE(GEN7_FF_THREAD_MODE,
7263 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7264
7265 /* WaDisable_RenderCache_OperationalFlush:hsw */
7266 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7267
7268 /* enable HiZ Raw Stall Optimization */
7269 I915_WRITE(CACHE_MODE_0_GEN7,
7270 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7271
7272 /* WaDisable4x2SubspanOptimization:hsw */
7273 I915_WRITE(CACHE_MODE_1,
7274 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7275
7276 /*
7277 * BSpec recommends 8x4 when MSAA is used,
7278 * however in practice 16x4 seems fastest.
7279 *
7280 * Note that PS/WM thread counts depend on the WIZ hashing
7281 * disable bit, which we don't touch here, but it's good
7282 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7283 */
7284 I915_WRITE(GEN7_GT_MODE,
7285 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7286
7287 /* WaSampleCChickenBitEnable:hsw */
7288 I915_WRITE(HALF_SLICE_CHICKEN3,
7289 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
7290
7291 /* WaSwitchSolVfFArbitrationPriority:hsw */
7292 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7293
7294 /* WaRsPkgCStateDisplayPMReq:hsw */
7295 I915_WRITE(CHICKEN_PAR1_1,
7296 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7297
7298 lpt_init_clock_gating(dev_priv);
7299 }
7300
7301 static void ivybridge_init_clock_gating(struct drm_i915_private *dev_priv)
7302 {
7303 uint32_t snpcr;
7304
7305 ilk_init_lp_watermarks(dev_priv);
7306
7307 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7308
7309 /* WaDisableEarlyCull:ivb */
7310 I915_WRITE(_3D_CHICKEN3,
7311 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7312
7313 /* WaDisableBackToBackFlipFix:ivb */
7314 I915_WRITE(IVB_CHICKEN3,
7315 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7316 CHICKEN3_DGMG_DONE_FIX_DISABLE);
7317
7318 /* WaDisablePSDDualDispatchEnable:ivb */
7319 if (IS_IVB_GT1(dev_priv))
7320 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7321 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7322
7323 /* WaDisable_RenderCache_OperationalFlush:ivb */
7324 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7325
7326 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7327 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
7328 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
7329
7330 /* WaApplyL3ControlAndL3ChickenMode:ivb */
7331 I915_WRITE(GEN7_L3CNTLREG1,
7332 GEN7_WA_FOR_GEN7_L3_CONTROL);
7333 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7334 GEN7_WA_L3_CHICKEN_MODE);
7335 if (IS_IVB_GT1(dev_priv))
7336 I915_WRITE(GEN7_ROW_CHICKEN2,
7337 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7338 else {
7339 /* must write both registers */
7340 I915_WRITE(GEN7_ROW_CHICKEN2,
7341 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7342 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
7343 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7344 }
7345
7346 /* WaForceL3Serialization:ivb */
7347 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7348 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7349
7350 /*
7351 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7352 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7353 */
7354 I915_WRITE(GEN6_UCGCTL2,
7355 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7356
7357 /* This is required by WaCatErrorRejectionIssue:ivb */
7358 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7359 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7360 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7361
7362 g4x_disable_trickle_feed(dev_priv);
7363
7364 gen7_setup_fixed_func_scheduler(dev_priv);
7365
7366 if (0) { /* causes HiZ corruption on ivb:gt1 */
7367 /* enable HiZ Raw Stall Optimization */
7368 I915_WRITE(CACHE_MODE_0_GEN7,
7369 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7370 }
7371
7372 /* WaDisable4x2SubspanOptimization:ivb */
7373 I915_WRITE(CACHE_MODE_1,
7374 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7375
7376 /*
7377 * BSpec recommends 8x4 when MSAA is used,
7378 * however in practice 16x4 seems fastest.
7379 *
7380 * Note that PS/WM thread counts depend on the WIZ hashing
7381 * disable bit, which we don't touch here, but it's good
7382 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7383 */
7384 I915_WRITE(GEN7_GT_MODE,
7385 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7386
7387 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
7388 snpcr &= ~GEN6_MBC_SNPCR_MASK;
7389 snpcr |= GEN6_MBC_SNPCR_MED;
7390 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7391
7392 if (!HAS_PCH_NOP(dev_priv))
7393 cpt_init_clock_gating(dev_priv);
7394
7395 gen6_check_mch_setup(dev_priv);
7396 }
7397
7398 static void valleyview_init_clock_gating(struct drm_i915_private *dev_priv)
7399 {
7400 /* WaDisableEarlyCull:vlv */
7401 I915_WRITE(_3D_CHICKEN3,
7402 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7403
7404 /* WaDisableBackToBackFlipFix:vlv */
7405 I915_WRITE(IVB_CHICKEN3,
7406 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7407 CHICKEN3_DGMG_DONE_FIX_DISABLE);
7408
7409 /* WaPsdDispatchEnable:vlv */
7410 /* WaDisablePSDDualDispatchEnable:vlv */
7411 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7412 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
7413 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7414
7415 /* WaDisable_RenderCache_OperationalFlush:vlv */
7416 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7417
7418 /* WaForceL3Serialization:vlv */
7419 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7420 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7421
7422 /* WaDisableDopClockGating:vlv */
7423 I915_WRITE(GEN7_ROW_CHICKEN2,
7424 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7425
7426 /* This is required by WaCatErrorRejectionIssue:vlv */
7427 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7428 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7429 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7430
7431 gen7_setup_fixed_func_scheduler(dev_priv);
7432
7433 /*
7434 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7435 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7436 */
7437 I915_WRITE(GEN6_UCGCTL2,
7438 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7439
7440 /* WaDisableL3Bank2xClockGate:vlv
7441 * Disabling L3 clock gating- MMIO 940c[25] = 1
7442 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7443 I915_WRITE(GEN7_UCGCTL4,
7444 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7445
7446 /*
7447 * BSpec says this must be set, even though
7448 * WaDisable4x2SubspanOptimization isn't listed for VLV.
7449 */
7450 I915_WRITE(CACHE_MODE_1,
7451 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7452
7453 /*
7454 * BSpec recommends 8x4 when MSAA is used,
7455 * however in practice 16x4 seems fastest.
7456 *
7457 * Note that PS/WM thread counts depend on the WIZ hashing
7458 * disable bit, which we don't touch here, but it's good
7459 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7460 */
7461 I915_WRITE(GEN7_GT_MODE,
7462 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7463
7464 /*
7465 * WaIncreaseL3CreditsForVLVB0:vlv
7466 * This is the hardware default actually.
7467 */
7468 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7469
7470 /*
7471 * WaDisableVLVClockGating_VBIIssue:vlv
7472 * Disable clock gating on th GCFG unit to prevent a delay
7473 * in the reporting of vblank events.
7474 */
7475 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7476 }
7477
7478 static void cherryview_init_clock_gating(struct drm_i915_private *dev_priv)
7479 {
7480 /* WaVSRefCountFullforceMissDisable:chv */
7481 /* WaDSRefCountFullforceMissDisable:chv */
7482 I915_WRITE(GEN7_FF_THREAD_MODE,
7483 I915_READ(GEN7_FF_THREAD_MODE) &
7484 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7485
7486 /* WaDisableSemaphoreAndSyncFlipWait:chv */
7487 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7488 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7489
7490 /* WaDisableCSUnitClockGating:chv */
7491 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7492 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7493
7494 /* WaDisableSDEUnitClockGating:chv */
7495 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7496 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7497
7498 /*
7499 * WaProgramL3SqcReg1Default:chv
7500 * See gfxspecs/Related Documents/Performance Guide/
7501 * LSQC Setting Recommendations.
7502 */
7503 gen8_set_l3sqc_credits(dev_priv, 38, 2);
7504
7505 /*
7506 * GTT cache may not work with big pages, so if those
7507 * are ever enabled GTT cache may need to be disabled.
7508 */
7509 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7510 }
7511
7512 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
7513 {
7514 uint32_t dspclk_gate;
7515
7516 I915_WRITE(RENCLK_GATE_D1, 0);
7517 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7518 GS_UNIT_CLOCK_GATE_DISABLE |
7519 CL_UNIT_CLOCK_GATE_DISABLE);
7520 I915_WRITE(RAMCLK_GATE_D, 0);
7521 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7522 OVRUNIT_CLOCK_GATE_DISABLE |
7523 OVCUNIT_CLOCK_GATE_DISABLE;
7524 if (IS_GM45(dev_priv))
7525 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7526 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7527
7528 /* WaDisableRenderCachePipelinedFlush */
7529 I915_WRITE(CACHE_MODE_0,
7530 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7531
7532 /* WaDisable_RenderCache_OperationalFlush:g4x */
7533 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7534
7535 g4x_disable_trickle_feed(dev_priv);
7536 }
7537
7538 static void crestline_init_clock_gating(struct drm_i915_private *dev_priv)
7539 {
7540 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7541 I915_WRITE(RENCLK_GATE_D2, 0);
7542 I915_WRITE(DSPCLK_GATE_D, 0);
7543 I915_WRITE(RAMCLK_GATE_D, 0);
7544 I915_WRITE16(DEUC, 0);
7545 I915_WRITE(MI_ARB_STATE,
7546 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7547
7548 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7549 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7550 }
7551
7552 static void broadwater_init_clock_gating(struct drm_i915_private *dev_priv)
7553 {
7554 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7555 I965_RCC_CLOCK_GATE_DISABLE |
7556 I965_RCPB_CLOCK_GATE_DISABLE |
7557 I965_ISC_CLOCK_GATE_DISABLE |
7558 I965_FBC_CLOCK_GATE_DISABLE);
7559 I915_WRITE(RENCLK_GATE_D2, 0);
7560 I915_WRITE(MI_ARB_STATE,
7561 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7562
7563 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7564 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7565 }
7566
7567 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
7568 {
7569 u32 dstate = I915_READ(D_STATE);
7570
7571 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7572 DSTATE_DOT_CLOCK_GATING;
7573 I915_WRITE(D_STATE, dstate);
7574
7575 if (IS_PINEVIEW(dev_priv))
7576 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7577
7578 /* IIR "flip pending" means done if this bit is set */
7579 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7580
7581 /* interrupts should cause a wake up from C3 */
7582 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7583
7584 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7585 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7586
7587 I915_WRITE(MI_ARB_STATE,
7588 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7589 }
7590
7591 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
7592 {
7593 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7594
7595 /* interrupts should cause a wake up from C3 */
7596 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7597 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7598
7599 I915_WRITE(MEM_MODE,
7600 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7601 }
7602
7603 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
7604 {
7605 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7606
7607 I915_WRITE(MEM_MODE,
7608 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7609 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7610 }
7611
7612 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
7613 {
7614 dev_priv->display.init_clock_gating(dev_priv);
7615 }
7616
7617 void intel_suspend_hw(struct drm_i915_private *dev_priv)
7618 {
7619 if (HAS_PCH_LPT(dev_priv))
7620 lpt_suspend_hw(dev_priv);
7621 }
7622
7623 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
7624 {
7625 DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
7626 }
7627
7628 /**
7629 * intel_init_clock_gating_hooks - setup the clock gating hooks
7630 * @dev_priv: device private
7631 *
7632 * Setup the hooks that configure which clocks of a given platform can be
7633 * gated and also apply various GT and display specific workarounds for these
7634 * platforms. Note that some GT specific workarounds are applied separately
7635 * when GPU contexts or batchbuffers start their execution.
7636 */
7637 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7638 {
7639 if (IS_SKYLAKE(dev_priv))
7640 dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7641 else if (IS_KABYLAKE(dev_priv))
7642 dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7643 else if (IS_BROXTON(dev_priv))
7644 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7645 else if (IS_BROADWELL(dev_priv))
7646 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7647 else if (IS_CHERRYVIEW(dev_priv))
7648 dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
7649 else if (IS_HASWELL(dev_priv))
7650 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7651 else if (IS_IVYBRIDGE(dev_priv))
7652 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7653 else if (IS_VALLEYVIEW(dev_priv))
7654 dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
7655 else if (IS_GEN6(dev_priv))
7656 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7657 else if (IS_GEN5(dev_priv))
7658 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7659 else if (IS_G4X(dev_priv))
7660 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7661 else if (IS_CRESTLINE(dev_priv))
7662 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7663 else if (IS_BROADWATER(dev_priv))
7664 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7665 else if (IS_GEN3(dev_priv))
7666 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7667 else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7668 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7669 else if (IS_GEN2(dev_priv))
7670 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7671 else {
7672 MISSING_CASE(INTEL_DEVID(dev_priv));
7673 dev_priv->display.init_clock_gating = nop_init_clock_gating;
7674 }
7675 }
7676
7677 /* Set up chip specific power management-related functions */
7678 void intel_init_pm(struct drm_i915_private *dev_priv)
7679 {
7680 intel_fbc_init(dev_priv);
7681
7682 /* For cxsr */
7683 if (IS_PINEVIEW(dev_priv))
7684 i915_pineview_get_mem_freq(dev_priv);
7685 else if (IS_GEN5(dev_priv))
7686 i915_ironlake_get_mem_freq(dev_priv);
7687
7688 /* For FIFO watermark updates */
7689 if (INTEL_GEN(dev_priv) >= 9) {
7690 skl_setup_wm_latency(dev_priv);
7691 dev_priv->display.initial_watermarks = skl_initial_wm;
7692 dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
7693 dev_priv->display.compute_global_watermarks = skl_compute_wm;
7694 } else if (HAS_PCH_SPLIT(dev_priv)) {
7695 ilk_setup_wm_latency(dev_priv);
7696
7697 if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
7698 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7699 (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
7700 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7701 dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7702 dev_priv->display.compute_intermediate_wm =
7703 ilk_compute_intermediate_wm;
7704 dev_priv->display.initial_watermarks =
7705 ilk_initial_watermarks;
7706 dev_priv->display.optimize_watermarks =
7707 ilk_optimize_watermarks;
7708 } else {
7709 DRM_DEBUG_KMS("Failed to read display plane latency. "
7710 "Disable CxSR\n");
7711 }
7712 } else if (IS_CHERRYVIEW(dev_priv)) {
7713 vlv_setup_wm_latency(dev_priv);
7714 dev_priv->display.update_wm = vlv_update_wm;
7715 } else if (IS_VALLEYVIEW(dev_priv)) {
7716 vlv_setup_wm_latency(dev_priv);
7717 dev_priv->display.update_wm = vlv_update_wm;
7718 } else if (IS_PINEVIEW(dev_priv)) {
7719 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
7720 dev_priv->is_ddr3,
7721 dev_priv->fsb_freq,
7722 dev_priv->mem_freq)) {
7723 DRM_INFO("failed to find known CxSR latency "
7724 "(found ddr%s fsb freq %d, mem freq %d), "
7725 "disabling CxSR\n",
7726 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7727 dev_priv->fsb_freq, dev_priv->mem_freq);
7728 /* Disable CxSR and never update its watermark again */
7729 intel_set_memory_cxsr(dev_priv, false);
7730 dev_priv->display.update_wm = NULL;
7731 } else
7732 dev_priv->display.update_wm = pineview_update_wm;
7733 } else if (IS_G4X(dev_priv)) {
7734 dev_priv->display.update_wm = g4x_update_wm;
7735 } else if (IS_GEN4(dev_priv)) {
7736 dev_priv->display.update_wm = i965_update_wm;
7737 } else if (IS_GEN3(dev_priv)) {
7738 dev_priv->display.update_wm = i9xx_update_wm;
7739 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7740 } else if (IS_GEN2(dev_priv)) {
7741 if (INTEL_INFO(dev_priv)->num_pipes == 1) {
7742 dev_priv->display.update_wm = i845_update_wm;
7743 dev_priv->display.get_fifo_size = i845_get_fifo_size;
7744 } else {
7745 dev_priv->display.update_wm = i9xx_update_wm;
7746 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7747 }
7748 } else {
7749 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7750 }
7751 }
7752
7753 static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
7754 {
7755 uint32_t flags =
7756 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
7757
7758 switch (flags) {
7759 case GEN6_PCODE_SUCCESS:
7760 return 0;
7761 case GEN6_PCODE_UNIMPLEMENTED_CMD:
7762 case GEN6_PCODE_ILLEGAL_CMD:
7763 return -ENXIO;
7764 case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7765 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7766 return -EOVERFLOW;
7767 case GEN6_PCODE_TIMEOUT:
7768 return -ETIMEDOUT;
7769 default:
7770 MISSING_CASE(flags)
7771 return 0;
7772 }
7773 }
7774
7775 static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
7776 {
7777 uint32_t flags =
7778 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
7779
7780 switch (flags) {
7781 case GEN6_PCODE_SUCCESS:
7782 return 0;
7783 case GEN6_PCODE_ILLEGAL_CMD:
7784 return -ENXIO;
7785 case GEN7_PCODE_TIMEOUT:
7786 return -ETIMEDOUT;
7787 case GEN7_PCODE_ILLEGAL_DATA:
7788 return -EINVAL;
7789 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7790 return -EOVERFLOW;
7791 default:
7792 MISSING_CASE(flags);
7793 return 0;
7794 }
7795 }
7796
7797 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7798 {
7799 int status;
7800
7801 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7802
7803 /* GEN6_PCODE_* are outside of the forcewake domain, we can
7804 * use te fw I915_READ variants to reduce the amount of work
7805 * required when reading/writing.
7806 */
7807
7808 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7809 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7810 return -EAGAIN;
7811 }
7812
7813 I915_WRITE_FW(GEN6_PCODE_DATA, *val);
7814 I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
7815 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7816
7817 if (intel_wait_for_register_fw(dev_priv,
7818 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7819 500)) {
7820 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7821 return -ETIMEDOUT;
7822 }
7823
7824 *val = I915_READ_FW(GEN6_PCODE_DATA);
7825 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7826
7827 if (INTEL_GEN(dev_priv) > 6)
7828 status = gen7_check_mailbox_status(dev_priv);
7829 else
7830 status = gen6_check_mailbox_status(dev_priv);
7831
7832 if (status) {
7833 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
7834 status);
7835 return status;
7836 }
7837
7838 return 0;
7839 }
7840
7841 int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7842 u32 mbox, u32 val)
7843 {
7844 int status;
7845
7846 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7847
7848 /* GEN6_PCODE_* are outside of the forcewake domain, we can
7849 * use te fw I915_READ variants to reduce the amount of work
7850 * required when reading/writing.
7851 */
7852
7853 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7854 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7855 return -EAGAIN;
7856 }
7857
7858 I915_WRITE_FW(GEN6_PCODE_DATA, val);
7859 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7860
7861 if (intel_wait_for_register_fw(dev_priv,
7862 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7863 500)) {
7864 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7865 return -ETIMEDOUT;
7866 }
7867
7868 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7869
7870 if (INTEL_GEN(dev_priv) > 6)
7871 status = gen7_check_mailbox_status(dev_priv);
7872 else
7873 status = gen6_check_mailbox_status(dev_priv);
7874
7875 if (status) {
7876 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
7877 status);
7878 return status;
7879 }
7880
7881 return 0;
7882 }
7883
7884 static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
7885 u32 request, u32 reply_mask, u32 reply,
7886 u32 *status)
7887 {
7888 u32 val = request;
7889
7890 *status = sandybridge_pcode_read(dev_priv, mbox, &val);
7891
7892 return *status || ((val & reply_mask) == reply);
7893 }
7894
7895 /**
7896 * skl_pcode_request - send PCODE request until acknowledgment
7897 * @dev_priv: device private
7898 * @mbox: PCODE mailbox ID the request is targeted for
7899 * @request: request ID
7900 * @reply_mask: mask used to check for request acknowledgment
7901 * @reply: value used to check for request acknowledgment
7902 * @timeout_base_ms: timeout for polling with preemption enabled
7903 *
7904 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
7905 * reports an error or an overall timeout of @timeout_base_ms+10 ms expires.
7906 * The request is acknowledged once the PCODE reply dword equals @reply after
7907 * applying @reply_mask. Polling is first attempted with preemption enabled
7908 * for @timeout_base_ms and if this times out for another 10 ms with
7909 * preemption disabled.
7910 *
7911 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
7912 * other error as reported by PCODE.
7913 */
7914 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
7915 u32 reply_mask, u32 reply, int timeout_base_ms)
7916 {
7917 u32 status;
7918 int ret;
7919
7920 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7921
7922 #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
7923 &status)
7924
7925 /*
7926 * Prime the PCODE by doing a request first. Normally it guarantees
7927 * that a subsequent request, at most @timeout_base_ms later, succeeds.
7928 * _wait_for() doesn't guarantee when its passed condition is evaluated
7929 * first, so send the first request explicitly.
7930 */
7931 if (COND) {
7932 ret = 0;
7933 goto out;
7934 }
7935 ret = _wait_for(COND, timeout_base_ms * 1000, 10);
7936 if (!ret)
7937 goto out;
7938
7939 /*
7940 * The above can time out if the number of requests was low (2 in the
7941 * worst case) _and_ PCODE was busy for some reason even after a
7942 * (queued) request and @timeout_base_ms delay. As a workaround retry
7943 * the poll with preemption disabled to maximize the number of
7944 * requests. Increase the timeout from @timeout_base_ms to 10ms to
7945 * account for interrupts that could reduce the number of these
7946 * requests.
7947 */
7948 DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
7949 WARN_ON_ONCE(timeout_base_ms > 3);
7950 preempt_disable();
7951 ret = wait_for_atomic(COND, 10);
7952 preempt_enable();
7953
7954 out:
7955 return ret ? ret : status;
7956 #undef COND
7957 }
7958
7959 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7960 {
7961 /*
7962 * N = val - 0xb7
7963 * Slow = Fast = GPLL ref * N
7964 */
7965 return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7966 }
7967
7968 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7969 {
7970 return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7971 }
7972
7973 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7974 {
7975 /*
7976 * N = val / 2
7977 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
7978 */
7979 return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7980 }
7981
7982 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7983 {
7984 /* CHV needs even values */
7985 return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7986 }
7987
7988 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7989 {
7990 if (IS_GEN9(dev_priv))
7991 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7992 GEN9_FREQ_SCALER);
7993 else if (IS_CHERRYVIEW(dev_priv))
7994 return chv_gpu_freq(dev_priv, val);
7995 else if (IS_VALLEYVIEW(dev_priv))
7996 return byt_gpu_freq(dev_priv, val);
7997 else
7998 return val * GT_FREQUENCY_MULTIPLIER;
7999 }
8000
8001 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
8002 {
8003 if (IS_GEN9(dev_priv))
8004 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
8005 GT_FREQUENCY_MULTIPLIER);
8006 else if (IS_CHERRYVIEW(dev_priv))
8007 return chv_freq_opcode(dev_priv, val);
8008 else if (IS_VALLEYVIEW(dev_priv))
8009 return byt_freq_opcode(dev_priv, val);
8010 else
8011 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
8012 }
8013
8014 struct request_boost {
8015 struct work_struct work;
8016 struct drm_i915_gem_request *req;
8017 };
8018
8019 static void __intel_rps_boost_work(struct work_struct *work)
8020 {
8021 struct request_boost *boost = container_of(work, struct request_boost, work);
8022 struct drm_i915_gem_request *req = boost->req;
8023
8024 if (!i915_gem_request_completed(req))
8025 gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
8026
8027 i915_gem_request_put(req);
8028 kfree(boost);
8029 }
8030
8031 void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
8032 {
8033 struct request_boost *boost;
8034
8035 if (req == NULL || INTEL_GEN(req->i915) < 6)
8036 return;
8037
8038 if (i915_gem_request_completed(req))
8039 return;
8040
8041 boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
8042 if (boost == NULL)
8043 return;
8044
8045 boost->req = i915_gem_request_get(req);
8046
8047 INIT_WORK(&boost->work, __intel_rps_boost_work);
8048 queue_work(req->i915->wq, &boost->work);
8049 }
8050
8051 void intel_pm_setup(struct drm_device *dev)
8052 {
8053 struct drm_i915_private *dev_priv = to_i915(dev);
8054
8055 mutex_init(&dev_priv->rps.hw_lock);
8056 spin_lock_init(&dev_priv->rps.client_lock);
8057
8058 INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
8059 __intel_autoenable_gt_powersave);
8060 INIT_LIST_HEAD(&dev_priv->rps.clients);
8061
8062 dev_priv->pm.suspended = false;
8063 atomic_set(&dev_priv->pm.wakeref_count, 0);
8064 }