]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/intel_pm.c
Merge tag 'drm-intel-next-2014-12-19' of git://anongit.freedesktop.org/drm-intel...
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /**
35 * RC6 is a special power stage which allows the GPU to enter an very
36 * low-voltage mode when idle, using down to 0V while at this stage. This
37 * stage is entered automatically when the GPU is idle when RC6 support is
38 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39 *
40 * There are different RC6 modes available in Intel GPU, which differentiate
41 * among each other with the latency required to enter and leave RC6 and
42 * voltage consumed by the GPU in different states.
43 *
44 * The combination of the following flags define which states GPU is allowed
45 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46 * RC6pp is deepest RC6. Their support by hardware varies according to the
47 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48 * which brings the most power savings; deeper states save more power, but
49 * require higher latency to switch to and wake up.
50 */
51 #define INTEL_RC6_ENABLE (1<<0)
52 #define INTEL_RC6p_ENABLE (1<<1)
53 #define INTEL_RC6pp_ENABLE (1<<2)
54
55 static void gen9_init_clock_gating(struct drm_device *dev)
56 {
57 struct drm_i915_private *dev_priv = dev->dev_private;
58
59 /*
60 * WaDisableSDEUnitClockGating:skl
61 * This seems to be a pre-production w/a.
62 */
63 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
64 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
65
66 /*
67 * WaDisableDgMirrorFixInHalfSliceChicken5:skl
68 * This is a pre-production w/a.
69 */
70 I915_WRITE(GEN9_HALF_SLICE_CHICKEN5,
71 I915_READ(GEN9_HALF_SLICE_CHICKEN5) &
72 ~GEN9_DG_MIRROR_FIX_ENABLE);
73
74 /* Wa4x4STCOptimizationDisable:skl */
75 I915_WRITE(CACHE_MODE_1,
76 _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
77 }
78
79
80 static void i915_pineview_get_mem_freq(struct drm_device *dev)
81 {
82 struct drm_i915_private *dev_priv = dev->dev_private;
83 u32 tmp;
84
85 tmp = I915_READ(CLKCFG);
86
87 switch (tmp & CLKCFG_FSB_MASK) {
88 case CLKCFG_FSB_533:
89 dev_priv->fsb_freq = 533; /* 133*4 */
90 break;
91 case CLKCFG_FSB_800:
92 dev_priv->fsb_freq = 800; /* 200*4 */
93 break;
94 case CLKCFG_FSB_667:
95 dev_priv->fsb_freq = 667; /* 167*4 */
96 break;
97 case CLKCFG_FSB_400:
98 dev_priv->fsb_freq = 400; /* 100*4 */
99 break;
100 }
101
102 switch (tmp & CLKCFG_MEM_MASK) {
103 case CLKCFG_MEM_533:
104 dev_priv->mem_freq = 533;
105 break;
106 case CLKCFG_MEM_667:
107 dev_priv->mem_freq = 667;
108 break;
109 case CLKCFG_MEM_800:
110 dev_priv->mem_freq = 800;
111 break;
112 }
113
114 /* detect pineview DDR3 setting */
115 tmp = I915_READ(CSHRDDR3CTL);
116 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
117 }
118
119 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
120 {
121 struct drm_i915_private *dev_priv = dev->dev_private;
122 u16 ddrpll, csipll;
123
124 ddrpll = I915_READ16(DDRMPLL1);
125 csipll = I915_READ16(CSIPLL0);
126
127 switch (ddrpll & 0xff) {
128 case 0xc:
129 dev_priv->mem_freq = 800;
130 break;
131 case 0x10:
132 dev_priv->mem_freq = 1066;
133 break;
134 case 0x14:
135 dev_priv->mem_freq = 1333;
136 break;
137 case 0x18:
138 dev_priv->mem_freq = 1600;
139 break;
140 default:
141 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
142 ddrpll & 0xff);
143 dev_priv->mem_freq = 0;
144 break;
145 }
146
147 dev_priv->ips.r_t = dev_priv->mem_freq;
148
149 switch (csipll & 0x3ff) {
150 case 0x00c:
151 dev_priv->fsb_freq = 3200;
152 break;
153 case 0x00e:
154 dev_priv->fsb_freq = 3733;
155 break;
156 case 0x010:
157 dev_priv->fsb_freq = 4266;
158 break;
159 case 0x012:
160 dev_priv->fsb_freq = 4800;
161 break;
162 case 0x014:
163 dev_priv->fsb_freq = 5333;
164 break;
165 case 0x016:
166 dev_priv->fsb_freq = 5866;
167 break;
168 case 0x018:
169 dev_priv->fsb_freq = 6400;
170 break;
171 default:
172 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
173 csipll & 0x3ff);
174 dev_priv->fsb_freq = 0;
175 break;
176 }
177
178 if (dev_priv->fsb_freq == 3200) {
179 dev_priv->ips.c_m = 0;
180 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
181 dev_priv->ips.c_m = 1;
182 } else {
183 dev_priv->ips.c_m = 2;
184 }
185 }
186
187 static const struct cxsr_latency cxsr_latency_table[] = {
188 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
189 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
190 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
191 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
192 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
193
194 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
195 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
196 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
197 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
198 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
199
200 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
201 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
202 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
203 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
204 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
205
206 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
207 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
208 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
209 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
210 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
211
212 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
213 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
214 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
215 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
216 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
217
218 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
219 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
220 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
221 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
222 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
223 };
224
225 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
226 int is_ddr3,
227 int fsb,
228 int mem)
229 {
230 const struct cxsr_latency *latency;
231 int i;
232
233 if (fsb == 0 || mem == 0)
234 return NULL;
235
236 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
237 latency = &cxsr_latency_table[i];
238 if (is_desktop == latency->is_desktop &&
239 is_ddr3 == latency->is_ddr3 &&
240 fsb == latency->fsb_freq && mem == latency->mem_freq)
241 return latency;
242 }
243
244 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
245
246 return NULL;
247 }
248
249 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
250 {
251 struct drm_device *dev = dev_priv->dev;
252 u32 val;
253
254 if (IS_VALLEYVIEW(dev)) {
255 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
256 } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
257 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
258 } else if (IS_PINEVIEW(dev)) {
259 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
260 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
261 I915_WRITE(DSPFW3, val);
262 } else if (IS_I945G(dev) || IS_I945GM(dev)) {
263 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
264 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
265 I915_WRITE(FW_BLC_SELF, val);
266 } else if (IS_I915GM(dev)) {
267 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
268 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
269 I915_WRITE(INSTPM, val);
270 } else {
271 return;
272 }
273
274 DRM_DEBUG_KMS("memory self-refresh is %s\n",
275 enable ? "enabled" : "disabled");
276 }
277
278 /*
279 * Latency for FIFO fetches is dependent on several factors:
280 * - memory configuration (speed, channels)
281 * - chipset
282 * - current MCH state
283 * It can be fairly high in some situations, so here we assume a fairly
284 * pessimal value. It's a tradeoff between extra memory fetches (if we
285 * set this value too high, the FIFO will fetch frequently to stay full)
286 * and power consumption (set it too low to save power and we might see
287 * FIFO underruns and display "flicker").
288 *
289 * A value of 5us seems to be a good balance; safe for very low end
290 * platforms but not overly aggressive on lower latency configs.
291 */
292 static const int pessimal_latency_ns = 5000;
293
294 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
295 {
296 struct drm_i915_private *dev_priv = dev->dev_private;
297 uint32_t dsparb = I915_READ(DSPARB);
298 int size;
299
300 size = dsparb & 0x7f;
301 if (plane)
302 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
303
304 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
305 plane ? "B" : "A", size);
306
307 return size;
308 }
309
310 static int i830_get_fifo_size(struct drm_device *dev, int plane)
311 {
312 struct drm_i915_private *dev_priv = dev->dev_private;
313 uint32_t dsparb = I915_READ(DSPARB);
314 int size;
315
316 size = dsparb & 0x1ff;
317 if (plane)
318 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
319 size >>= 1; /* Convert to cachelines */
320
321 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
322 plane ? "B" : "A", size);
323
324 return size;
325 }
326
327 static int i845_get_fifo_size(struct drm_device *dev, int plane)
328 {
329 struct drm_i915_private *dev_priv = dev->dev_private;
330 uint32_t dsparb = I915_READ(DSPARB);
331 int size;
332
333 size = dsparb & 0x7f;
334 size >>= 2; /* Convert to cachelines */
335
336 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
337 plane ? "B" : "A",
338 size);
339
340 return size;
341 }
342
343 /* Pineview has different values for various configs */
344 static const struct intel_watermark_params pineview_display_wm = {
345 .fifo_size = PINEVIEW_DISPLAY_FIFO,
346 .max_wm = PINEVIEW_MAX_WM,
347 .default_wm = PINEVIEW_DFT_WM,
348 .guard_size = PINEVIEW_GUARD_WM,
349 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
350 };
351 static const struct intel_watermark_params pineview_display_hplloff_wm = {
352 .fifo_size = PINEVIEW_DISPLAY_FIFO,
353 .max_wm = PINEVIEW_MAX_WM,
354 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
355 .guard_size = PINEVIEW_GUARD_WM,
356 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
357 };
358 static const struct intel_watermark_params pineview_cursor_wm = {
359 .fifo_size = PINEVIEW_CURSOR_FIFO,
360 .max_wm = PINEVIEW_CURSOR_MAX_WM,
361 .default_wm = PINEVIEW_CURSOR_DFT_WM,
362 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
363 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
364 };
365 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
366 .fifo_size = PINEVIEW_CURSOR_FIFO,
367 .max_wm = PINEVIEW_CURSOR_MAX_WM,
368 .default_wm = PINEVIEW_CURSOR_DFT_WM,
369 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
370 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
371 };
372 static const struct intel_watermark_params g4x_wm_info = {
373 .fifo_size = G4X_FIFO_SIZE,
374 .max_wm = G4X_MAX_WM,
375 .default_wm = G4X_MAX_WM,
376 .guard_size = 2,
377 .cacheline_size = G4X_FIFO_LINE_SIZE,
378 };
379 static const struct intel_watermark_params g4x_cursor_wm_info = {
380 .fifo_size = I965_CURSOR_FIFO,
381 .max_wm = I965_CURSOR_MAX_WM,
382 .default_wm = I965_CURSOR_DFT_WM,
383 .guard_size = 2,
384 .cacheline_size = G4X_FIFO_LINE_SIZE,
385 };
386 static const struct intel_watermark_params valleyview_wm_info = {
387 .fifo_size = VALLEYVIEW_FIFO_SIZE,
388 .max_wm = VALLEYVIEW_MAX_WM,
389 .default_wm = VALLEYVIEW_MAX_WM,
390 .guard_size = 2,
391 .cacheline_size = G4X_FIFO_LINE_SIZE,
392 };
393 static const struct intel_watermark_params valleyview_cursor_wm_info = {
394 .fifo_size = I965_CURSOR_FIFO,
395 .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
396 .default_wm = I965_CURSOR_DFT_WM,
397 .guard_size = 2,
398 .cacheline_size = G4X_FIFO_LINE_SIZE,
399 };
400 static const struct intel_watermark_params i965_cursor_wm_info = {
401 .fifo_size = I965_CURSOR_FIFO,
402 .max_wm = I965_CURSOR_MAX_WM,
403 .default_wm = I965_CURSOR_DFT_WM,
404 .guard_size = 2,
405 .cacheline_size = I915_FIFO_LINE_SIZE,
406 };
407 static const struct intel_watermark_params i945_wm_info = {
408 .fifo_size = I945_FIFO_SIZE,
409 .max_wm = I915_MAX_WM,
410 .default_wm = 1,
411 .guard_size = 2,
412 .cacheline_size = I915_FIFO_LINE_SIZE,
413 };
414 static const struct intel_watermark_params i915_wm_info = {
415 .fifo_size = I915_FIFO_SIZE,
416 .max_wm = I915_MAX_WM,
417 .default_wm = 1,
418 .guard_size = 2,
419 .cacheline_size = I915_FIFO_LINE_SIZE,
420 };
421 static const struct intel_watermark_params i830_a_wm_info = {
422 .fifo_size = I855GM_FIFO_SIZE,
423 .max_wm = I915_MAX_WM,
424 .default_wm = 1,
425 .guard_size = 2,
426 .cacheline_size = I830_FIFO_LINE_SIZE,
427 };
428 static const struct intel_watermark_params i830_bc_wm_info = {
429 .fifo_size = I855GM_FIFO_SIZE,
430 .max_wm = I915_MAX_WM/2,
431 .default_wm = 1,
432 .guard_size = 2,
433 .cacheline_size = I830_FIFO_LINE_SIZE,
434 };
435 static const struct intel_watermark_params i845_wm_info = {
436 .fifo_size = I830_FIFO_SIZE,
437 .max_wm = I915_MAX_WM,
438 .default_wm = 1,
439 .guard_size = 2,
440 .cacheline_size = I830_FIFO_LINE_SIZE,
441 };
442
443 /**
444 * intel_calculate_wm - calculate watermark level
445 * @clock_in_khz: pixel clock
446 * @wm: chip FIFO params
447 * @pixel_size: display pixel size
448 * @latency_ns: memory latency for the platform
449 *
450 * Calculate the watermark level (the level at which the display plane will
451 * start fetching from memory again). Each chip has a different display
452 * FIFO size and allocation, so the caller needs to figure that out and pass
453 * in the correct intel_watermark_params structure.
454 *
455 * As the pixel clock runs, the FIFO will be drained at a rate that depends
456 * on the pixel size. When it reaches the watermark level, it'll start
457 * fetching FIFO line sized based chunks from memory until the FIFO fills
458 * past the watermark point. If the FIFO drains completely, a FIFO underrun
459 * will occur, and a display engine hang could result.
460 */
461 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
462 const struct intel_watermark_params *wm,
463 int fifo_size,
464 int pixel_size,
465 unsigned long latency_ns)
466 {
467 long entries_required, wm_size;
468
469 /*
470 * Note: we need to make sure we don't overflow for various clock &
471 * latency values.
472 * clocks go from a few thousand to several hundred thousand.
473 * latency is usually a few thousand
474 */
475 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
476 1000;
477 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
478
479 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
480
481 wm_size = fifo_size - (entries_required + wm->guard_size);
482
483 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
484
485 /* Don't promote wm_size to unsigned... */
486 if (wm_size > (long)wm->max_wm)
487 wm_size = wm->max_wm;
488 if (wm_size <= 0)
489 wm_size = wm->default_wm;
490
491 /*
492 * Bspec seems to indicate that the value shouldn't be lower than
493 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
494 * Lets go for 8 which is the burst size since certain platforms
495 * already use a hardcoded 8 (which is what the spec says should be
496 * done).
497 */
498 if (wm_size <= 8)
499 wm_size = 8;
500
501 return wm_size;
502 }
503
504 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
505 {
506 struct drm_crtc *crtc, *enabled = NULL;
507
508 for_each_crtc(dev, crtc) {
509 if (intel_crtc_active(crtc)) {
510 if (enabled)
511 return NULL;
512 enabled = crtc;
513 }
514 }
515
516 return enabled;
517 }
518
519 static void pineview_update_wm(struct drm_crtc *unused_crtc)
520 {
521 struct drm_device *dev = unused_crtc->dev;
522 struct drm_i915_private *dev_priv = dev->dev_private;
523 struct drm_crtc *crtc;
524 const struct cxsr_latency *latency;
525 u32 reg;
526 unsigned long wm;
527
528 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
529 dev_priv->fsb_freq, dev_priv->mem_freq);
530 if (!latency) {
531 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
532 intel_set_memory_cxsr(dev_priv, false);
533 return;
534 }
535
536 crtc = single_enabled_crtc(dev);
537 if (crtc) {
538 const struct drm_display_mode *adjusted_mode;
539 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
540 int clock;
541
542 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
543 clock = adjusted_mode->crtc_clock;
544
545 /* Display SR */
546 wm = intel_calculate_wm(clock, &pineview_display_wm,
547 pineview_display_wm.fifo_size,
548 pixel_size, latency->display_sr);
549 reg = I915_READ(DSPFW1);
550 reg &= ~DSPFW_SR_MASK;
551 reg |= wm << DSPFW_SR_SHIFT;
552 I915_WRITE(DSPFW1, reg);
553 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
554
555 /* cursor SR */
556 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
557 pineview_display_wm.fifo_size,
558 pixel_size, latency->cursor_sr);
559 reg = I915_READ(DSPFW3);
560 reg &= ~DSPFW_CURSOR_SR_MASK;
561 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
562 I915_WRITE(DSPFW3, reg);
563
564 /* Display HPLL off SR */
565 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
566 pineview_display_hplloff_wm.fifo_size,
567 pixel_size, latency->display_hpll_disable);
568 reg = I915_READ(DSPFW3);
569 reg &= ~DSPFW_HPLL_SR_MASK;
570 reg |= wm & DSPFW_HPLL_SR_MASK;
571 I915_WRITE(DSPFW3, reg);
572
573 /* cursor HPLL off SR */
574 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
575 pineview_display_hplloff_wm.fifo_size,
576 pixel_size, latency->cursor_hpll_disable);
577 reg = I915_READ(DSPFW3);
578 reg &= ~DSPFW_HPLL_CURSOR_MASK;
579 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
580 I915_WRITE(DSPFW3, reg);
581 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
582
583 intel_set_memory_cxsr(dev_priv, true);
584 } else {
585 intel_set_memory_cxsr(dev_priv, false);
586 }
587 }
588
589 static bool g4x_compute_wm0(struct drm_device *dev,
590 int plane,
591 const struct intel_watermark_params *display,
592 int display_latency_ns,
593 const struct intel_watermark_params *cursor,
594 int cursor_latency_ns,
595 int *plane_wm,
596 int *cursor_wm)
597 {
598 struct drm_crtc *crtc;
599 const struct drm_display_mode *adjusted_mode;
600 int htotal, hdisplay, clock, pixel_size;
601 int line_time_us, line_count;
602 int entries, tlb_miss;
603
604 crtc = intel_get_crtc_for_plane(dev, plane);
605 if (!intel_crtc_active(crtc)) {
606 *cursor_wm = cursor->guard_size;
607 *plane_wm = display->guard_size;
608 return false;
609 }
610
611 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
612 clock = adjusted_mode->crtc_clock;
613 htotal = adjusted_mode->crtc_htotal;
614 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
615 pixel_size = crtc->primary->fb->bits_per_pixel / 8;
616
617 /* Use the small buffer method to calculate plane watermark */
618 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
619 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
620 if (tlb_miss > 0)
621 entries += tlb_miss;
622 entries = DIV_ROUND_UP(entries, display->cacheline_size);
623 *plane_wm = entries + display->guard_size;
624 if (*plane_wm > (int)display->max_wm)
625 *plane_wm = display->max_wm;
626
627 /* Use the large buffer method to calculate cursor watermark */
628 line_time_us = max(htotal * 1000 / clock, 1);
629 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
630 entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
631 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
632 if (tlb_miss > 0)
633 entries += tlb_miss;
634 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
635 *cursor_wm = entries + cursor->guard_size;
636 if (*cursor_wm > (int)cursor->max_wm)
637 *cursor_wm = (int)cursor->max_wm;
638
639 return true;
640 }
641
642 /*
643 * Check the wm result.
644 *
645 * If any calculated watermark values is larger than the maximum value that
646 * can be programmed into the associated watermark register, that watermark
647 * must be disabled.
648 */
649 static bool g4x_check_srwm(struct drm_device *dev,
650 int display_wm, int cursor_wm,
651 const struct intel_watermark_params *display,
652 const struct intel_watermark_params *cursor)
653 {
654 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
655 display_wm, cursor_wm);
656
657 if (display_wm > display->max_wm) {
658 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
659 display_wm, display->max_wm);
660 return false;
661 }
662
663 if (cursor_wm > cursor->max_wm) {
664 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
665 cursor_wm, cursor->max_wm);
666 return false;
667 }
668
669 if (!(display_wm || cursor_wm)) {
670 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
671 return false;
672 }
673
674 return true;
675 }
676
677 static bool g4x_compute_srwm(struct drm_device *dev,
678 int plane,
679 int latency_ns,
680 const struct intel_watermark_params *display,
681 const struct intel_watermark_params *cursor,
682 int *display_wm, int *cursor_wm)
683 {
684 struct drm_crtc *crtc;
685 const struct drm_display_mode *adjusted_mode;
686 int hdisplay, htotal, pixel_size, clock;
687 unsigned long line_time_us;
688 int line_count, line_size;
689 int small, large;
690 int entries;
691
692 if (!latency_ns) {
693 *display_wm = *cursor_wm = 0;
694 return false;
695 }
696
697 crtc = intel_get_crtc_for_plane(dev, plane);
698 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
699 clock = adjusted_mode->crtc_clock;
700 htotal = adjusted_mode->crtc_htotal;
701 hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
702 pixel_size = crtc->primary->fb->bits_per_pixel / 8;
703
704 line_time_us = max(htotal * 1000 / clock, 1);
705 line_count = (latency_ns / line_time_us + 1000) / 1000;
706 line_size = hdisplay * pixel_size;
707
708 /* Use the minimum of the small and large buffer method for primary */
709 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
710 large = line_count * line_size;
711
712 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
713 *display_wm = entries + display->guard_size;
714
715 /* calculate the self-refresh watermark for display cursor */
716 entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
717 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
718 *cursor_wm = entries + cursor->guard_size;
719
720 return g4x_check_srwm(dev,
721 *display_wm, *cursor_wm,
722 display, cursor);
723 }
724
725 static bool vlv_compute_drain_latency(struct drm_crtc *crtc,
726 int pixel_size,
727 int *prec_mult,
728 int *drain_latency)
729 {
730 struct drm_device *dev = crtc->dev;
731 int entries;
732 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
733
734 if (WARN(clock == 0, "Pixel clock is zero!\n"))
735 return false;
736
737 if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
738 return false;
739
740 entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
741 if (IS_CHERRYVIEW(dev))
742 *prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_32 :
743 DRAIN_LATENCY_PRECISION_16;
744 else
745 *prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_64 :
746 DRAIN_LATENCY_PRECISION_32;
747 *drain_latency = (64 * (*prec_mult) * 4) / entries;
748
749 if (*drain_latency > DRAIN_LATENCY_MASK)
750 *drain_latency = DRAIN_LATENCY_MASK;
751
752 return true;
753 }
754
755 /*
756 * Update drain latency registers of memory arbiter
757 *
758 * Valleyview SoC has a new memory arbiter and needs drain latency registers
759 * to be programmed. Each plane has a drain latency multiplier and a drain
760 * latency value.
761 */
762
763 static void vlv_update_drain_latency(struct drm_crtc *crtc)
764 {
765 struct drm_device *dev = crtc->dev;
766 struct drm_i915_private *dev_priv = dev->dev_private;
767 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
768 int pixel_size;
769 int drain_latency;
770 enum pipe pipe = intel_crtc->pipe;
771 int plane_prec, prec_mult, plane_dl;
772 const int high_precision = IS_CHERRYVIEW(dev) ?
773 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_64;
774
775 plane_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_PLANE_PRECISION_HIGH |
776 DRAIN_LATENCY_MASK | DDL_CURSOR_PRECISION_HIGH |
777 (DRAIN_LATENCY_MASK << DDL_CURSOR_SHIFT));
778
779 if (!intel_crtc_active(crtc)) {
780 I915_WRITE(VLV_DDL(pipe), plane_dl);
781 return;
782 }
783
784 /* Primary plane Drain Latency */
785 pixel_size = crtc->primary->fb->bits_per_pixel / 8; /* BPP */
786 if (vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
787 plane_prec = (prec_mult == high_precision) ?
788 DDL_PLANE_PRECISION_HIGH :
789 DDL_PLANE_PRECISION_LOW;
790 plane_dl |= plane_prec | drain_latency;
791 }
792
793 /* Cursor Drain Latency
794 * BPP is always 4 for cursor
795 */
796 pixel_size = 4;
797
798 /* Program cursor DL only if it is enabled */
799 if (intel_crtc->cursor_base &&
800 vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
801 plane_prec = (prec_mult == high_precision) ?
802 DDL_CURSOR_PRECISION_HIGH :
803 DDL_CURSOR_PRECISION_LOW;
804 plane_dl |= plane_prec | (drain_latency << DDL_CURSOR_SHIFT);
805 }
806
807 I915_WRITE(VLV_DDL(pipe), plane_dl);
808 }
809
810 #define single_plane_enabled(mask) is_power_of_2(mask)
811
812 static void valleyview_update_wm(struct drm_crtc *crtc)
813 {
814 struct drm_device *dev = crtc->dev;
815 static const int sr_latency_ns = 12000;
816 struct drm_i915_private *dev_priv = dev->dev_private;
817 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
818 int plane_sr, cursor_sr;
819 int ignore_plane_sr, ignore_cursor_sr;
820 unsigned int enabled = 0;
821 bool cxsr_enabled;
822
823 vlv_update_drain_latency(crtc);
824
825 if (g4x_compute_wm0(dev, PIPE_A,
826 &valleyview_wm_info, pessimal_latency_ns,
827 &valleyview_cursor_wm_info, pessimal_latency_ns,
828 &planea_wm, &cursora_wm))
829 enabled |= 1 << PIPE_A;
830
831 if (g4x_compute_wm0(dev, PIPE_B,
832 &valleyview_wm_info, pessimal_latency_ns,
833 &valleyview_cursor_wm_info, pessimal_latency_ns,
834 &planeb_wm, &cursorb_wm))
835 enabled |= 1 << PIPE_B;
836
837 if (single_plane_enabled(enabled) &&
838 g4x_compute_srwm(dev, ffs(enabled) - 1,
839 sr_latency_ns,
840 &valleyview_wm_info,
841 &valleyview_cursor_wm_info,
842 &plane_sr, &ignore_cursor_sr) &&
843 g4x_compute_srwm(dev, ffs(enabled) - 1,
844 2*sr_latency_ns,
845 &valleyview_wm_info,
846 &valleyview_cursor_wm_info,
847 &ignore_plane_sr, &cursor_sr)) {
848 cxsr_enabled = true;
849 } else {
850 cxsr_enabled = false;
851 intel_set_memory_cxsr(dev_priv, false);
852 plane_sr = cursor_sr = 0;
853 }
854
855 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
856 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
857 planea_wm, cursora_wm,
858 planeb_wm, cursorb_wm,
859 plane_sr, cursor_sr);
860
861 I915_WRITE(DSPFW1,
862 (plane_sr << DSPFW_SR_SHIFT) |
863 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
864 (planeb_wm << DSPFW_PLANEB_SHIFT) |
865 (planea_wm << DSPFW_PLANEA_SHIFT));
866 I915_WRITE(DSPFW2,
867 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
868 (cursora_wm << DSPFW_CURSORA_SHIFT));
869 I915_WRITE(DSPFW3,
870 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
871 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
872
873 if (cxsr_enabled)
874 intel_set_memory_cxsr(dev_priv, true);
875 }
876
877 static void cherryview_update_wm(struct drm_crtc *crtc)
878 {
879 struct drm_device *dev = crtc->dev;
880 static const int sr_latency_ns = 12000;
881 struct drm_i915_private *dev_priv = dev->dev_private;
882 int planea_wm, planeb_wm, planec_wm;
883 int cursora_wm, cursorb_wm, cursorc_wm;
884 int plane_sr, cursor_sr;
885 int ignore_plane_sr, ignore_cursor_sr;
886 unsigned int enabled = 0;
887 bool cxsr_enabled;
888
889 vlv_update_drain_latency(crtc);
890
891 if (g4x_compute_wm0(dev, PIPE_A,
892 &valleyview_wm_info, pessimal_latency_ns,
893 &valleyview_cursor_wm_info, pessimal_latency_ns,
894 &planea_wm, &cursora_wm))
895 enabled |= 1 << PIPE_A;
896
897 if (g4x_compute_wm0(dev, PIPE_B,
898 &valleyview_wm_info, pessimal_latency_ns,
899 &valleyview_cursor_wm_info, pessimal_latency_ns,
900 &planeb_wm, &cursorb_wm))
901 enabled |= 1 << PIPE_B;
902
903 if (g4x_compute_wm0(dev, PIPE_C,
904 &valleyview_wm_info, pessimal_latency_ns,
905 &valleyview_cursor_wm_info, pessimal_latency_ns,
906 &planec_wm, &cursorc_wm))
907 enabled |= 1 << PIPE_C;
908
909 if (single_plane_enabled(enabled) &&
910 g4x_compute_srwm(dev, ffs(enabled) - 1,
911 sr_latency_ns,
912 &valleyview_wm_info,
913 &valleyview_cursor_wm_info,
914 &plane_sr, &ignore_cursor_sr) &&
915 g4x_compute_srwm(dev, ffs(enabled) - 1,
916 2*sr_latency_ns,
917 &valleyview_wm_info,
918 &valleyview_cursor_wm_info,
919 &ignore_plane_sr, &cursor_sr)) {
920 cxsr_enabled = true;
921 } else {
922 cxsr_enabled = false;
923 intel_set_memory_cxsr(dev_priv, false);
924 plane_sr = cursor_sr = 0;
925 }
926
927 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
928 "B: plane=%d, cursor=%d, C: plane=%d, cursor=%d, "
929 "SR: plane=%d, cursor=%d\n",
930 planea_wm, cursora_wm,
931 planeb_wm, cursorb_wm,
932 planec_wm, cursorc_wm,
933 plane_sr, cursor_sr);
934
935 I915_WRITE(DSPFW1,
936 (plane_sr << DSPFW_SR_SHIFT) |
937 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
938 (planeb_wm << DSPFW_PLANEB_SHIFT) |
939 (planea_wm << DSPFW_PLANEA_SHIFT));
940 I915_WRITE(DSPFW2,
941 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
942 (cursora_wm << DSPFW_CURSORA_SHIFT));
943 I915_WRITE(DSPFW3,
944 (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
945 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
946 I915_WRITE(DSPFW9_CHV,
947 (I915_READ(DSPFW9_CHV) & ~(DSPFW_PLANEC_MASK |
948 DSPFW_CURSORC_MASK)) |
949 (planec_wm << DSPFW_PLANEC_SHIFT) |
950 (cursorc_wm << DSPFW_CURSORC_SHIFT));
951
952 if (cxsr_enabled)
953 intel_set_memory_cxsr(dev_priv, true);
954 }
955
956 static void valleyview_update_sprite_wm(struct drm_plane *plane,
957 struct drm_crtc *crtc,
958 uint32_t sprite_width,
959 uint32_t sprite_height,
960 int pixel_size,
961 bool enabled, bool scaled)
962 {
963 struct drm_device *dev = crtc->dev;
964 struct drm_i915_private *dev_priv = dev->dev_private;
965 int pipe = to_intel_plane(plane)->pipe;
966 int sprite = to_intel_plane(plane)->plane;
967 int drain_latency;
968 int plane_prec;
969 int sprite_dl;
970 int prec_mult;
971 const int high_precision = IS_CHERRYVIEW(dev) ?
972 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_64;
973
974 sprite_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_SPRITE_PRECISION_HIGH(sprite) |
975 (DRAIN_LATENCY_MASK << DDL_SPRITE_SHIFT(sprite)));
976
977 if (enabled && vlv_compute_drain_latency(crtc, pixel_size, &prec_mult,
978 &drain_latency)) {
979 plane_prec = (prec_mult == high_precision) ?
980 DDL_SPRITE_PRECISION_HIGH(sprite) :
981 DDL_SPRITE_PRECISION_LOW(sprite);
982 sprite_dl |= plane_prec |
983 (drain_latency << DDL_SPRITE_SHIFT(sprite));
984 }
985
986 I915_WRITE(VLV_DDL(pipe), sprite_dl);
987 }
988
989 static void g4x_update_wm(struct drm_crtc *crtc)
990 {
991 struct drm_device *dev = crtc->dev;
992 static const int sr_latency_ns = 12000;
993 struct drm_i915_private *dev_priv = dev->dev_private;
994 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
995 int plane_sr, cursor_sr;
996 unsigned int enabled = 0;
997 bool cxsr_enabled;
998
999 if (g4x_compute_wm0(dev, PIPE_A,
1000 &g4x_wm_info, pessimal_latency_ns,
1001 &g4x_cursor_wm_info, pessimal_latency_ns,
1002 &planea_wm, &cursora_wm))
1003 enabled |= 1 << PIPE_A;
1004
1005 if (g4x_compute_wm0(dev, PIPE_B,
1006 &g4x_wm_info, pessimal_latency_ns,
1007 &g4x_cursor_wm_info, pessimal_latency_ns,
1008 &planeb_wm, &cursorb_wm))
1009 enabled |= 1 << PIPE_B;
1010
1011 if (single_plane_enabled(enabled) &&
1012 g4x_compute_srwm(dev, ffs(enabled) - 1,
1013 sr_latency_ns,
1014 &g4x_wm_info,
1015 &g4x_cursor_wm_info,
1016 &plane_sr, &cursor_sr)) {
1017 cxsr_enabled = true;
1018 } else {
1019 cxsr_enabled = false;
1020 intel_set_memory_cxsr(dev_priv, false);
1021 plane_sr = cursor_sr = 0;
1022 }
1023
1024 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1025 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1026 planea_wm, cursora_wm,
1027 planeb_wm, cursorb_wm,
1028 plane_sr, cursor_sr);
1029
1030 I915_WRITE(DSPFW1,
1031 (plane_sr << DSPFW_SR_SHIFT) |
1032 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1033 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1034 (planea_wm << DSPFW_PLANEA_SHIFT));
1035 I915_WRITE(DSPFW2,
1036 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1037 (cursora_wm << DSPFW_CURSORA_SHIFT));
1038 /* HPLL off in SR has some issues on G4x... disable it */
1039 I915_WRITE(DSPFW3,
1040 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1041 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1042
1043 if (cxsr_enabled)
1044 intel_set_memory_cxsr(dev_priv, true);
1045 }
1046
1047 static void i965_update_wm(struct drm_crtc *unused_crtc)
1048 {
1049 struct drm_device *dev = unused_crtc->dev;
1050 struct drm_i915_private *dev_priv = dev->dev_private;
1051 struct drm_crtc *crtc;
1052 int srwm = 1;
1053 int cursor_sr = 16;
1054 bool cxsr_enabled;
1055
1056 /* Calc sr entries for one plane configs */
1057 crtc = single_enabled_crtc(dev);
1058 if (crtc) {
1059 /* self-refresh has much higher latency */
1060 static const int sr_latency_ns = 12000;
1061 const struct drm_display_mode *adjusted_mode =
1062 &to_intel_crtc(crtc)->config.adjusted_mode;
1063 int clock = adjusted_mode->crtc_clock;
1064 int htotal = adjusted_mode->crtc_htotal;
1065 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1066 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1067 unsigned long line_time_us;
1068 int entries;
1069
1070 line_time_us = max(htotal * 1000 / clock, 1);
1071
1072 /* Use ns/us then divide to preserve precision */
1073 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1074 pixel_size * hdisplay;
1075 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1076 srwm = I965_FIFO_SIZE - entries;
1077 if (srwm < 0)
1078 srwm = 1;
1079 srwm &= 0x1ff;
1080 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1081 entries, srwm);
1082
1083 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1084 pixel_size * to_intel_crtc(crtc)->cursor_width;
1085 entries = DIV_ROUND_UP(entries,
1086 i965_cursor_wm_info.cacheline_size);
1087 cursor_sr = i965_cursor_wm_info.fifo_size -
1088 (entries + i965_cursor_wm_info.guard_size);
1089
1090 if (cursor_sr > i965_cursor_wm_info.max_wm)
1091 cursor_sr = i965_cursor_wm_info.max_wm;
1092
1093 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1094 "cursor %d\n", srwm, cursor_sr);
1095
1096 cxsr_enabled = true;
1097 } else {
1098 cxsr_enabled = false;
1099 /* Turn off self refresh if both pipes are enabled */
1100 intel_set_memory_cxsr(dev_priv, false);
1101 }
1102
1103 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1104 srwm);
1105
1106 /* 965 has limitations... */
1107 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1108 (8 << DSPFW_CURSORB_SHIFT) |
1109 (8 << DSPFW_PLANEB_SHIFT) |
1110 (8 << DSPFW_PLANEA_SHIFT));
1111 I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
1112 (8 << DSPFW_PLANEC_SHIFT_OLD));
1113 /* update cursor SR watermark */
1114 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1115
1116 if (cxsr_enabled)
1117 intel_set_memory_cxsr(dev_priv, true);
1118 }
1119
1120 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1121 {
1122 struct drm_device *dev = unused_crtc->dev;
1123 struct drm_i915_private *dev_priv = dev->dev_private;
1124 const struct intel_watermark_params *wm_info;
1125 uint32_t fwater_lo;
1126 uint32_t fwater_hi;
1127 int cwm, srwm = 1;
1128 int fifo_size;
1129 int planea_wm, planeb_wm;
1130 struct drm_crtc *crtc, *enabled = NULL;
1131
1132 if (IS_I945GM(dev))
1133 wm_info = &i945_wm_info;
1134 else if (!IS_GEN2(dev))
1135 wm_info = &i915_wm_info;
1136 else
1137 wm_info = &i830_a_wm_info;
1138
1139 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1140 crtc = intel_get_crtc_for_plane(dev, 0);
1141 if (intel_crtc_active(crtc)) {
1142 const struct drm_display_mode *adjusted_mode;
1143 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1144 if (IS_GEN2(dev))
1145 cpp = 4;
1146
1147 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1148 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1149 wm_info, fifo_size, cpp,
1150 pessimal_latency_ns);
1151 enabled = crtc;
1152 } else {
1153 planea_wm = fifo_size - wm_info->guard_size;
1154 if (planea_wm > (long)wm_info->max_wm)
1155 planea_wm = wm_info->max_wm;
1156 }
1157
1158 if (IS_GEN2(dev))
1159 wm_info = &i830_bc_wm_info;
1160
1161 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1162 crtc = intel_get_crtc_for_plane(dev, 1);
1163 if (intel_crtc_active(crtc)) {
1164 const struct drm_display_mode *adjusted_mode;
1165 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1166 if (IS_GEN2(dev))
1167 cpp = 4;
1168
1169 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1170 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1171 wm_info, fifo_size, cpp,
1172 pessimal_latency_ns);
1173 if (enabled == NULL)
1174 enabled = crtc;
1175 else
1176 enabled = NULL;
1177 } else {
1178 planeb_wm = fifo_size - wm_info->guard_size;
1179 if (planeb_wm > (long)wm_info->max_wm)
1180 planeb_wm = wm_info->max_wm;
1181 }
1182
1183 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1184
1185 if (IS_I915GM(dev) && enabled) {
1186 struct drm_i915_gem_object *obj;
1187
1188 obj = intel_fb_obj(enabled->primary->fb);
1189
1190 /* self-refresh seems busted with untiled */
1191 if (obj->tiling_mode == I915_TILING_NONE)
1192 enabled = NULL;
1193 }
1194
1195 /*
1196 * Overlay gets an aggressive default since video jitter is bad.
1197 */
1198 cwm = 2;
1199
1200 /* Play safe and disable self-refresh before adjusting watermarks. */
1201 intel_set_memory_cxsr(dev_priv, false);
1202
1203 /* Calc sr entries for one plane configs */
1204 if (HAS_FW_BLC(dev) && enabled) {
1205 /* self-refresh has much higher latency */
1206 static const int sr_latency_ns = 6000;
1207 const struct drm_display_mode *adjusted_mode =
1208 &to_intel_crtc(enabled)->config.adjusted_mode;
1209 int clock = adjusted_mode->crtc_clock;
1210 int htotal = adjusted_mode->crtc_htotal;
1211 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1212 int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1213 unsigned long line_time_us;
1214 int entries;
1215
1216 line_time_us = max(htotal * 1000 / clock, 1);
1217
1218 /* Use ns/us then divide to preserve precision */
1219 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1220 pixel_size * hdisplay;
1221 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1222 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1223 srwm = wm_info->fifo_size - entries;
1224 if (srwm < 0)
1225 srwm = 1;
1226
1227 if (IS_I945G(dev) || IS_I945GM(dev))
1228 I915_WRITE(FW_BLC_SELF,
1229 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1230 else if (IS_I915GM(dev))
1231 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1232 }
1233
1234 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1235 planea_wm, planeb_wm, cwm, srwm);
1236
1237 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1238 fwater_hi = (cwm & 0x1f);
1239
1240 /* Set request length to 8 cachelines per fetch */
1241 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1242 fwater_hi = fwater_hi | (1 << 8);
1243
1244 I915_WRITE(FW_BLC, fwater_lo);
1245 I915_WRITE(FW_BLC2, fwater_hi);
1246
1247 if (enabled)
1248 intel_set_memory_cxsr(dev_priv, true);
1249 }
1250
1251 static void i845_update_wm(struct drm_crtc *unused_crtc)
1252 {
1253 struct drm_device *dev = unused_crtc->dev;
1254 struct drm_i915_private *dev_priv = dev->dev_private;
1255 struct drm_crtc *crtc;
1256 const struct drm_display_mode *adjusted_mode;
1257 uint32_t fwater_lo;
1258 int planea_wm;
1259
1260 crtc = single_enabled_crtc(dev);
1261 if (crtc == NULL)
1262 return;
1263
1264 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1265 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1266 &i845_wm_info,
1267 dev_priv->display.get_fifo_size(dev, 0),
1268 4, pessimal_latency_ns);
1269 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1270 fwater_lo |= (3<<8) | planea_wm;
1271
1272 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1273
1274 I915_WRITE(FW_BLC, fwater_lo);
1275 }
1276
1277 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1278 struct drm_crtc *crtc)
1279 {
1280 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1281 uint32_t pixel_rate;
1282
1283 pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1284
1285 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1286 * adjust the pixel_rate here. */
1287
1288 if (intel_crtc->config.pch_pfit.enabled) {
1289 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1290 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1291
1292 pipe_w = intel_crtc->config.pipe_src_w;
1293 pipe_h = intel_crtc->config.pipe_src_h;
1294 pfit_w = (pfit_size >> 16) & 0xFFFF;
1295 pfit_h = pfit_size & 0xFFFF;
1296 if (pipe_w < pfit_w)
1297 pipe_w = pfit_w;
1298 if (pipe_h < pfit_h)
1299 pipe_h = pfit_h;
1300
1301 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1302 pfit_w * pfit_h);
1303 }
1304
1305 return pixel_rate;
1306 }
1307
1308 /* latency must be in 0.1us units. */
1309 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1310 uint32_t latency)
1311 {
1312 uint64_t ret;
1313
1314 if (WARN(latency == 0, "Latency value missing\n"))
1315 return UINT_MAX;
1316
1317 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1318 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1319
1320 return ret;
1321 }
1322
1323 /* latency must be in 0.1us units. */
1324 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1325 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1326 uint32_t latency)
1327 {
1328 uint32_t ret;
1329
1330 if (WARN(latency == 0, "Latency value missing\n"))
1331 return UINT_MAX;
1332
1333 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1334 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1335 ret = DIV_ROUND_UP(ret, 64) + 2;
1336 return ret;
1337 }
1338
1339 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1340 uint8_t bytes_per_pixel)
1341 {
1342 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1343 }
1344
1345 struct skl_pipe_wm_parameters {
1346 bool active;
1347 uint32_t pipe_htotal;
1348 uint32_t pixel_rate; /* in KHz */
1349 struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1350 struct intel_plane_wm_parameters cursor;
1351 };
1352
1353 struct ilk_pipe_wm_parameters {
1354 bool active;
1355 uint32_t pipe_htotal;
1356 uint32_t pixel_rate;
1357 struct intel_plane_wm_parameters pri;
1358 struct intel_plane_wm_parameters spr;
1359 struct intel_plane_wm_parameters cur;
1360 };
1361
1362 struct ilk_wm_maximums {
1363 uint16_t pri;
1364 uint16_t spr;
1365 uint16_t cur;
1366 uint16_t fbc;
1367 };
1368
1369 /* used in computing the new watermarks state */
1370 struct intel_wm_config {
1371 unsigned int num_pipes_active;
1372 bool sprites_enabled;
1373 bool sprites_scaled;
1374 };
1375
1376 /*
1377 * For both WM_PIPE and WM_LP.
1378 * mem_value must be in 0.1us units.
1379 */
1380 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1381 uint32_t mem_value,
1382 bool is_lp)
1383 {
1384 uint32_t method1, method2;
1385
1386 if (!params->active || !params->pri.enabled)
1387 return 0;
1388
1389 method1 = ilk_wm_method1(params->pixel_rate,
1390 params->pri.bytes_per_pixel,
1391 mem_value);
1392
1393 if (!is_lp)
1394 return method1;
1395
1396 method2 = ilk_wm_method2(params->pixel_rate,
1397 params->pipe_htotal,
1398 params->pri.horiz_pixels,
1399 params->pri.bytes_per_pixel,
1400 mem_value);
1401
1402 return min(method1, method2);
1403 }
1404
1405 /*
1406 * For both WM_PIPE and WM_LP.
1407 * mem_value must be in 0.1us units.
1408 */
1409 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1410 uint32_t mem_value)
1411 {
1412 uint32_t method1, method2;
1413
1414 if (!params->active || !params->spr.enabled)
1415 return 0;
1416
1417 method1 = ilk_wm_method1(params->pixel_rate,
1418 params->spr.bytes_per_pixel,
1419 mem_value);
1420 method2 = ilk_wm_method2(params->pixel_rate,
1421 params->pipe_htotal,
1422 params->spr.horiz_pixels,
1423 params->spr.bytes_per_pixel,
1424 mem_value);
1425 return min(method1, method2);
1426 }
1427
1428 /*
1429 * For both WM_PIPE and WM_LP.
1430 * mem_value must be in 0.1us units.
1431 */
1432 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1433 uint32_t mem_value)
1434 {
1435 if (!params->active || !params->cur.enabled)
1436 return 0;
1437
1438 return ilk_wm_method2(params->pixel_rate,
1439 params->pipe_htotal,
1440 params->cur.horiz_pixels,
1441 params->cur.bytes_per_pixel,
1442 mem_value);
1443 }
1444
1445 /* Only for WM_LP. */
1446 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1447 uint32_t pri_val)
1448 {
1449 if (!params->active || !params->pri.enabled)
1450 return 0;
1451
1452 return ilk_wm_fbc(pri_val,
1453 params->pri.horiz_pixels,
1454 params->pri.bytes_per_pixel);
1455 }
1456
1457 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1458 {
1459 if (INTEL_INFO(dev)->gen >= 8)
1460 return 3072;
1461 else if (INTEL_INFO(dev)->gen >= 7)
1462 return 768;
1463 else
1464 return 512;
1465 }
1466
1467 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1468 int level, bool is_sprite)
1469 {
1470 if (INTEL_INFO(dev)->gen >= 8)
1471 /* BDW primary/sprite plane watermarks */
1472 return level == 0 ? 255 : 2047;
1473 else if (INTEL_INFO(dev)->gen >= 7)
1474 /* IVB/HSW primary/sprite plane watermarks */
1475 return level == 0 ? 127 : 1023;
1476 else if (!is_sprite)
1477 /* ILK/SNB primary plane watermarks */
1478 return level == 0 ? 127 : 511;
1479 else
1480 /* ILK/SNB sprite plane watermarks */
1481 return level == 0 ? 63 : 255;
1482 }
1483
1484 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1485 int level)
1486 {
1487 if (INTEL_INFO(dev)->gen >= 7)
1488 return level == 0 ? 63 : 255;
1489 else
1490 return level == 0 ? 31 : 63;
1491 }
1492
1493 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1494 {
1495 if (INTEL_INFO(dev)->gen >= 8)
1496 return 31;
1497 else
1498 return 15;
1499 }
1500
1501 /* Calculate the maximum primary/sprite plane watermark */
1502 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1503 int level,
1504 const struct intel_wm_config *config,
1505 enum intel_ddb_partitioning ddb_partitioning,
1506 bool is_sprite)
1507 {
1508 unsigned int fifo_size = ilk_display_fifo_size(dev);
1509
1510 /* if sprites aren't enabled, sprites get nothing */
1511 if (is_sprite && !config->sprites_enabled)
1512 return 0;
1513
1514 /* HSW allows LP1+ watermarks even with multiple pipes */
1515 if (level == 0 || config->num_pipes_active > 1) {
1516 fifo_size /= INTEL_INFO(dev)->num_pipes;
1517
1518 /*
1519 * For some reason the non self refresh
1520 * FIFO size is only half of the self
1521 * refresh FIFO size on ILK/SNB.
1522 */
1523 if (INTEL_INFO(dev)->gen <= 6)
1524 fifo_size /= 2;
1525 }
1526
1527 if (config->sprites_enabled) {
1528 /* level 0 is always calculated with 1:1 split */
1529 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1530 if (is_sprite)
1531 fifo_size *= 5;
1532 fifo_size /= 6;
1533 } else {
1534 fifo_size /= 2;
1535 }
1536 }
1537
1538 /* clamp to max that the registers can hold */
1539 return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1540 }
1541
1542 /* Calculate the maximum cursor plane watermark */
1543 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1544 int level,
1545 const struct intel_wm_config *config)
1546 {
1547 /* HSW LP1+ watermarks w/ multiple pipes */
1548 if (level > 0 && config->num_pipes_active > 1)
1549 return 64;
1550
1551 /* otherwise just report max that registers can hold */
1552 return ilk_cursor_wm_reg_max(dev, level);
1553 }
1554
1555 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1556 int level,
1557 const struct intel_wm_config *config,
1558 enum intel_ddb_partitioning ddb_partitioning,
1559 struct ilk_wm_maximums *max)
1560 {
1561 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1562 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1563 max->cur = ilk_cursor_wm_max(dev, level, config);
1564 max->fbc = ilk_fbc_wm_reg_max(dev);
1565 }
1566
1567 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1568 int level,
1569 struct ilk_wm_maximums *max)
1570 {
1571 max->pri = ilk_plane_wm_reg_max(dev, level, false);
1572 max->spr = ilk_plane_wm_reg_max(dev, level, true);
1573 max->cur = ilk_cursor_wm_reg_max(dev, level);
1574 max->fbc = ilk_fbc_wm_reg_max(dev);
1575 }
1576
1577 static bool ilk_validate_wm_level(int level,
1578 const struct ilk_wm_maximums *max,
1579 struct intel_wm_level *result)
1580 {
1581 bool ret;
1582
1583 /* already determined to be invalid? */
1584 if (!result->enable)
1585 return false;
1586
1587 result->enable = result->pri_val <= max->pri &&
1588 result->spr_val <= max->spr &&
1589 result->cur_val <= max->cur;
1590
1591 ret = result->enable;
1592
1593 /*
1594 * HACK until we can pre-compute everything,
1595 * and thus fail gracefully if LP0 watermarks
1596 * are exceeded...
1597 */
1598 if (level == 0 && !result->enable) {
1599 if (result->pri_val > max->pri)
1600 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1601 level, result->pri_val, max->pri);
1602 if (result->spr_val > max->spr)
1603 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1604 level, result->spr_val, max->spr);
1605 if (result->cur_val > max->cur)
1606 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1607 level, result->cur_val, max->cur);
1608
1609 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1610 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1611 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1612 result->enable = true;
1613 }
1614
1615 return ret;
1616 }
1617
1618 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1619 int level,
1620 const struct ilk_pipe_wm_parameters *p,
1621 struct intel_wm_level *result)
1622 {
1623 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1624 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1625 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1626
1627 /* WM1+ latency values stored in 0.5us units */
1628 if (level > 0) {
1629 pri_latency *= 5;
1630 spr_latency *= 5;
1631 cur_latency *= 5;
1632 }
1633
1634 result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
1635 result->spr_val = ilk_compute_spr_wm(p, spr_latency);
1636 result->cur_val = ilk_compute_cur_wm(p, cur_latency);
1637 result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
1638 result->enable = true;
1639 }
1640
1641 static uint32_t
1642 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1643 {
1644 struct drm_i915_private *dev_priv = dev->dev_private;
1645 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1646 struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
1647 u32 linetime, ips_linetime;
1648
1649 if (!intel_crtc_active(crtc))
1650 return 0;
1651
1652 /* The WM are computed with base on how long it takes to fill a single
1653 * row at the given clock rate, multiplied by 8.
1654 * */
1655 linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1656 mode->crtc_clock);
1657 ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1658 intel_ddi_get_cdclk_freq(dev_priv));
1659
1660 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
1661 PIPE_WM_LINETIME_TIME(linetime);
1662 }
1663
1664 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
1665 {
1666 struct drm_i915_private *dev_priv = dev->dev_private;
1667
1668 if (IS_GEN9(dev)) {
1669 uint32_t val;
1670 int ret, i;
1671 int level, max_level = ilk_wm_max_level(dev);
1672
1673 /* read the first set of memory latencies[0:3] */
1674 val = 0; /* data0 to be programmed to 0 for first set */
1675 mutex_lock(&dev_priv->rps.hw_lock);
1676 ret = sandybridge_pcode_read(dev_priv,
1677 GEN9_PCODE_READ_MEM_LATENCY,
1678 &val);
1679 mutex_unlock(&dev_priv->rps.hw_lock);
1680
1681 if (ret) {
1682 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
1683 return;
1684 }
1685
1686 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
1687 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
1688 GEN9_MEM_LATENCY_LEVEL_MASK;
1689 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
1690 GEN9_MEM_LATENCY_LEVEL_MASK;
1691 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
1692 GEN9_MEM_LATENCY_LEVEL_MASK;
1693
1694 /* read the second set of memory latencies[4:7] */
1695 val = 1; /* data0 to be programmed to 1 for second set */
1696 mutex_lock(&dev_priv->rps.hw_lock);
1697 ret = sandybridge_pcode_read(dev_priv,
1698 GEN9_PCODE_READ_MEM_LATENCY,
1699 &val);
1700 mutex_unlock(&dev_priv->rps.hw_lock);
1701 if (ret) {
1702 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
1703 return;
1704 }
1705
1706 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
1707 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
1708 GEN9_MEM_LATENCY_LEVEL_MASK;
1709 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
1710 GEN9_MEM_LATENCY_LEVEL_MASK;
1711 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
1712 GEN9_MEM_LATENCY_LEVEL_MASK;
1713
1714 /*
1715 * punit doesn't take into account the read latency so we need
1716 * to add 2us to the various latency levels we retrieve from
1717 * the punit.
1718 * - W0 is a bit special in that it's the only level that
1719 * can't be disabled if we want to have display working, so
1720 * we always add 2us there.
1721 * - For levels >=1, punit returns 0us latency when they are
1722 * disabled, so we respect that and don't add 2us then
1723 *
1724 * Additionally, if a level n (n > 1) has a 0us latency, all
1725 * levels m (m >= n) need to be disabled. We make sure to
1726 * sanitize the values out of the punit to satisfy this
1727 * requirement.
1728 */
1729 wm[0] += 2;
1730 for (level = 1; level <= max_level; level++)
1731 if (wm[level] != 0)
1732 wm[level] += 2;
1733 else {
1734 for (i = level + 1; i <= max_level; i++)
1735 wm[i] = 0;
1736
1737 break;
1738 }
1739 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1740 uint64_t sskpd = I915_READ64(MCH_SSKPD);
1741
1742 wm[0] = (sskpd >> 56) & 0xFF;
1743 if (wm[0] == 0)
1744 wm[0] = sskpd & 0xF;
1745 wm[1] = (sskpd >> 4) & 0xFF;
1746 wm[2] = (sskpd >> 12) & 0xFF;
1747 wm[3] = (sskpd >> 20) & 0x1FF;
1748 wm[4] = (sskpd >> 32) & 0x1FF;
1749 } else if (INTEL_INFO(dev)->gen >= 6) {
1750 uint32_t sskpd = I915_READ(MCH_SSKPD);
1751
1752 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
1753 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
1754 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
1755 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
1756 } else if (INTEL_INFO(dev)->gen >= 5) {
1757 uint32_t mltr = I915_READ(MLTR_ILK);
1758
1759 /* ILK primary LP0 latency is 700 ns */
1760 wm[0] = 7;
1761 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
1762 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
1763 }
1764 }
1765
1766 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
1767 {
1768 /* ILK sprite LP0 latency is 1300 ns */
1769 if (INTEL_INFO(dev)->gen == 5)
1770 wm[0] = 13;
1771 }
1772
1773 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
1774 {
1775 /* ILK cursor LP0 latency is 1300 ns */
1776 if (INTEL_INFO(dev)->gen == 5)
1777 wm[0] = 13;
1778
1779 /* WaDoubleCursorLP3Latency:ivb */
1780 if (IS_IVYBRIDGE(dev))
1781 wm[3] *= 2;
1782 }
1783
1784 int ilk_wm_max_level(const struct drm_device *dev)
1785 {
1786 /* how many WM levels are we expecting */
1787 if (IS_GEN9(dev))
1788 return 7;
1789 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1790 return 4;
1791 else if (INTEL_INFO(dev)->gen >= 6)
1792 return 3;
1793 else
1794 return 2;
1795 }
1796
1797 static void intel_print_wm_latency(struct drm_device *dev,
1798 const char *name,
1799 const uint16_t wm[8])
1800 {
1801 int level, max_level = ilk_wm_max_level(dev);
1802
1803 for (level = 0; level <= max_level; level++) {
1804 unsigned int latency = wm[level];
1805
1806 if (latency == 0) {
1807 DRM_ERROR("%s WM%d latency not provided\n",
1808 name, level);
1809 continue;
1810 }
1811
1812 /*
1813 * - latencies are in us on gen9.
1814 * - before then, WM1+ latency values are in 0.5us units
1815 */
1816 if (IS_GEN9(dev))
1817 latency *= 10;
1818 else if (level > 0)
1819 latency *= 5;
1820
1821 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
1822 name, level, wm[level],
1823 latency / 10, latency % 10);
1824 }
1825 }
1826
1827 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
1828 uint16_t wm[5], uint16_t min)
1829 {
1830 int level, max_level = ilk_wm_max_level(dev_priv->dev);
1831
1832 if (wm[0] >= min)
1833 return false;
1834
1835 wm[0] = max(wm[0], min);
1836 for (level = 1; level <= max_level; level++)
1837 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
1838
1839 return true;
1840 }
1841
1842 static void snb_wm_latency_quirk(struct drm_device *dev)
1843 {
1844 struct drm_i915_private *dev_priv = dev->dev_private;
1845 bool changed;
1846
1847 /*
1848 * The BIOS provided WM memory latency values are often
1849 * inadequate for high resolution displays. Adjust them.
1850 */
1851 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
1852 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
1853 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
1854
1855 if (!changed)
1856 return;
1857
1858 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
1859 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
1860 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
1861 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
1862 }
1863
1864 static void ilk_setup_wm_latency(struct drm_device *dev)
1865 {
1866 struct drm_i915_private *dev_priv = dev->dev_private;
1867
1868 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
1869
1870 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
1871 sizeof(dev_priv->wm.pri_latency));
1872 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
1873 sizeof(dev_priv->wm.pri_latency));
1874
1875 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
1876 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
1877
1878 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
1879 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
1880 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
1881
1882 if (IS_GEN6(dev))
1883 snb_wm_latency_quirk(dev);
1884 }
1885
1886 static void skl_setup_wm_latency(struct drm_device *dev)
1887 {
1888 struct drm_i915_private *dev_priv = dev->dev_private;
1889
1890 intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
1891 intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
1892 }
1893
1894 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
1895 struct ilk_pipe_wm_parameters *p)
1896 {
1897 struct drm_device *dev = crtc->dev;
1898 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1899 enum pipe pipe = intel_crtc->pipe;
1900 struct drm_plane *plane;
1901
1902 if (!intel_crtc_active(crtc))
1903 return;
1904
1905 p->active = true;
1906 p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
1907 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
1908 p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
1909 p->cur.bytes_per_pixel = 4;
1910 p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
1911 p->cur.horiz_pixels = intel_crtc->cursor_width;
1912 /* TODO: for now, assume primary and cursor planes are always enabled. */
1913 p->pri.enabled = true;
1914 p->cur.enabled = true;
1915
1916 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
1917 struct intel_plane *intel_plane = to_intel_plane(plane);
1918
1919 if (intel_plane->pipe == pipe) {
1920 p->spr = intel_plane->wm;
1921 break;
1922 }
1923 }
1924 }
1925
1926 static void ilk_compute_wm_config(struct drm_device *dev,
1927 struct intel_wm_config *config)
1928 {
1929 struct intel_crtc *intel_crtc;
1930
1931 /* Compute the currently _active_ config */
1932 for_each_intel_crtc(dev, intel_crtc) {
1933 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
1934
1935 if (!wm->pipe_enabled)
1936 continue;
1937
1938 config->sprites_enabled |= wm->sprites_enabled;
1939 config->sprites_scaled |= wm->sprites_scaled;
1940 config->num_pipes_active++;
1941 }
1942 }
1943
1944 /* Compute new watermarks for the pipe */
1945 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
1946 const struct ilk_pipe_wm_parameters *params,
1947 struct intel_pipe_wm *pipe_wm)
1948 {
1949 struct drm_device *dev = crtc->dev;
1950 const struct drm_i915_private *dev_priv = dev->dev_private;
1951 int level, max_level = ilk_wm_max_level(dev);
1952 /* LP0 watermark maximums depend on this pipe alone */
1953 struct intel_wm_config config = {
1954 .num_pipes_active = 1,
1955 .sprites_enabled = params->spr.enabled,
1956 .sprites_scaled = params->spr.scaled,
1957 };
1958 struct ilk_wm_maximums max;
1959
1960 pipe_wm->pipe_enabled = params->active;
1961 pipe_wm->sprites_enabled = params->spr.enabled;
1962 pipe_wm->sprites_scaled = params->spr.scaled;
1963
1964 /* ILK/SNB: LP2+ watermarks only w/o sprites */
1965 if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
1966 max_level = 1;
1967
1968 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
1969 if (params->spr.scaled)
1970 max_level = 0;
1971
1972 ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
1973
1974 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1975 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
1976
1977 /* LP0 watermarks always use 1/2 DDB partitioning */
1978 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
1979
1980 /* At least LP0 must be valid */
1981 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
1982 return false;
1983
1984 ilk_compute_wm_reg_maximums(dev, 1, &max);
1985
1986 for (level = 1; level <= max_level; level++) {
1987 struct intel_wm_level wm = {};
1988
1989 ilk_compute_wm_level(dev_priv, level, params, &wm);
1990
1991 /*
1992 * Disable any watermark level that exceeds the
1993 * register maximums since such watermarks are
1994 * always invalid.
1995 */
1996 if (!ilk_validate_wm_level(level, &max, &wm))
1997 break;
1998
1999 pipe_wm->wm[level] = wm;
2000 }
2001
2002 return true;
2003 }
2004
2005 /*
2006 * Merge the watermarks from all active pipes for a specific level.
2007 */
2008 static void ilk_merge_wm_level(struct drm_device *dev,
2009 int level,
2010 struct intel_wm_level *ret_wm)
2011 {
2012 const struct intel_crtc *intel_crtc;
2013
2014 ret_wm->enable = true;
2015
2016 for_each_intel_crtc(dev, intel_crtc) {
2017 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2018 const struct intel_wm_level *wm = &active->wm[level];
2019
2020 if (!active->pipe_enabled)
2021 continue;
2022
2023 /*
2024 * The watermark values may have been used in the past,
2025 * so we must maintain them in the registers for some
2026 * time even if the level is now disabled.
2027 */
2028 if (!wm->enable)
2029 ret_wm->enable = false;
2030
2031 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2032 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2033 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2034 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2035 }
2036 }
2037
2038 /*
2039 * Merge all low power watermarks for all active pipes.
2040 */
2041 static void ilk_wm_merge(struct drm_device *dev,
2042 const struct intel_wm_config *config,
2043 const struct ilk_wm_maximums *max,
2044 struct intel_pipe_wm *merged)
2045 {
2046 int level, max_level = ilk_wm_max_level(dev);
2047 int last_enabled_level = max_level;
2048
2049 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2050 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2051 config->num_pipes_active > 1)
2052 return;
2053
2054 /* ILK: FBC WM must be disabled always */
2055 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2056
2057 /* merge each WM1+ level */
2058 for (level = 1; level <= max_level; level++) {
2059 struct intel_wm_level *wm = &merged->wm[level];
2060
2061 ilk_merge_wm_level(dev, level, wm);
2062
2063 if (level > last_enabled_level)
2064 wm->enable = false;
2065 else if (!ilk_validate_wm_level(level, max, wm))
2066 /* make sure all following levels get disabled */
2067 last_enabled_level = level - 1;
2068
2069 /*
2070 * The spec says it is preferred to disable
2071 * FBC WMs instead of disabling a WM level.
2072 */
2073 if (wm->fbc_val > max->fbc) {
2074 if (wm->enable)
2075 merged->fbc_wm_enabled = false;
2076 wm->fbc_val = 0;
2077 }
2078 }
2079
2080 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2081 /*
2082 * FIXME this is racy. FBC might get enabled later.
2083 * What we should check here is whether FBC can be
2084 * enabled sometime later.
2085 */
2086 if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2087 for (level = 2; level <= max_level; level++) {
2088 struct intel_wm_level *wm = &merged->wm[level];
2089
2090 wm->enable = false;
2091 }
2092 }
2093 }
2094
2095 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2096 {
2097 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2098 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2099 }
2100
2101 /* The value we need to program into the WM_LPx latency field */
2102 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2103 {
2104 struct drm_i915_private *dev_priv = dev->dev_private;
2105
2106 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2107 return 2 * level;
2108 else
2109 return dev_priv->wm.pri_latency[level];
2110 }
2111
2112 static void ilk_compute_wm_results(struct drm_device *dev,
2113 const struct intel_pipe_wm *merged,
2114 enum intel_ddb_partitioning partitioning,
2115 struct ilk_wm_values *results)
2116 {
2117 struct intel_crtc *intel_crtc;
2118 int level, wm_lp;
2119
2120 results->enable_fbc_wm = merged->fbc_wm_enabled;
2121 results->partitioning = partitioning;
2122
2123 /* LP1+ register values */
2124 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2125 const struct intel_wm_level *r;
2126
2127 level = ilk_wm_lp_to_level(wm_lp, merged);
2128
2129 r = &merged->wm[level];
2130
2131 /*
2132 * Maintain the watermark values even if the level is
2133 * disabled. Doing otherwise could cause underruns.
2134 */
2135 results->wm_lp[wm_lp - 1] =
2136 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2137 (r->pri_val << WM1_LP_SR_SHIFT) |
2138 r->cur_val;
2139
2140 if (r->enable)
2141 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2142
2143 if (INTEL_INFO(dev)->gen >= 8)
2144 results->wm_lp[wm_lp - 1] |=
2145 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2146 else
2147 results->wm_lp[wm_lp - 1] |=
2148 r->fbc_val << WM1_LP_FBC_SHIFT;
2149
2150 /*
2151 * Always set WM1S_LP_EN when spr_val != 0, even if the
2152 * level is disabled. Doing otherwise could cause underruns.
2153 */
2154 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2155 WARN_ON(wm_lp != 1);
2156 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2157 } else
2158 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2159 }
2160
2161 /* LP0 register values */
2162 for_each_intel_crtc(dev, intel_crtc) {
2163 enum pipe pipe = intel_crtc->pipe;
2164 const struct intel_wm_level *r =
2165 &intel_crtc->wm.active.wm[0];
2166
2167 if (WARN_ON(!r->enable))
2168 continue;
2169
2170 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2171
2172 results->wm_pipe[pipe] =
2173 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2174 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2175 r->cur_val;
2176 }
2177 }
2178
2179 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2180 * case both are at the same level. Prefer r1 in case they're the same. */
2181 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2182 struct intel_pipe_wm *r1,
2183 struct intel_pipe_wm *r2)
2184 {
2185 int level, max_level = ilk_wm_max_level(dev);
2186 int level1 = 0, level2 = 0;
2187
2188 for (level = 1; level <= max_level; level++) {
2189 if (r1->wm[level].enable)
2190 level1 = level;
2191 if (r2->wm[level].enable)
2192 level2 = level;
2193 }
2194
2195 if (level1 == level2) {
2196 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2197 return r2;
2198 else
2199 return r1;
2200 } else if (level1 > level2) {
2201 return r1;
2202 } else {
2203 return r2;
2204 }
2205 }
2206
2207 /* dirty bits used to track which watermarks need changes */
2208 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2209 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2210 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2211 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2212 #define WM_DIRTY_FBC (1 << 24)
2213 #define WM_DIRTY_DDB (1 << 25)
2214
2215 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2216 const struct ilk_wm_values *old,
2217 const struct ilk_wm_values *new)
2218 {
2219 unsigned int dirty = 0;
2220 enum pipe pipe;
2221 int wm_lp;
2222
2223 for_each_pipe(dev_priv, pipe) {
2224 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2225 dirty |= WM_DIRTY_LINETIME(pipe);
2226 /* Must disable LP1+ watermarks too */
2227 dirty |= WM_DIRTY_LP_ALL;
2228 }
2229
2230 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2231 dirty |= WM_DIRTY_PIPE(pipe);
2232 /* Must disable LP1+ watermarks too */
2233 dirty |= WM_DIRTY_LP_ALL;
2234 }
2235 }
2236
2237 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2238 dirty |= WM_DIRTY_FBC;
2239 /* Must disable LP1+ watermarks too */
2240 dirty |= WM_DIRTY_LP_ALL;
2241 }
2242
2243 if (old->partitioning != new->partitioning) {
2244 dirty |= WM_DIRTY_DDB;
2245 /* Must disable LP1+ watermarks too */
2246 dirty |= WM_DIRTY_LP_ALL;
2247 }
2248
2249 /* LP1+ watermarks already deemed dirty, no need to continue */
2250 if (dirty & WM_DIRTY_LP_ALL)
2251 return dirty;
2252
2253 /* Find the lowest numbered LP1+ watermark in need of an update... */
2254 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2255 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2256 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2257 break;
2258 }
2259
2260 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2261 for (; wm_lp <= 3; wm_lp++)
2262 dirty |= WM_DIRTY_LP(wm_lp);
2263
2264 return dirty;
2265 }
2266
2267 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2268 unsigned int dirty)
2269 {
2270 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2271 bool changed = false;
2272
2273 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2274 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2275 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2276 changed = true;
2277 }
2278 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2279 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2280 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2281 changed = true;
2282 }
2283 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2284 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2285 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2286 changed = true;
2287 }
2288
2289 /*
2290 * Don't touch WM1S_LP_EN here.
2291 * Doing so could cause underruns.
2292 */
2293
2294 return changed;
2295 }
2296
2297 /*
2298 * The spec says we shouldn't write when we don't need, because every write
2299 * causes WMs to be re-evaluated, expending some power.
2300 */
2301 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2302 struct ilk_wm_values *results)
2303 {
2304 struct drm_device *dev = dev_priv->dev;
2305 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2306 unsigned int dirty;
2307 uint32_t val;
2308
2309 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2310 if (!dirty)
2311 return;
2312
2313 _ilk_disable_lp_wm(dev_priv, dirty);
2314
2315 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2316 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2317 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2318 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2319 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2320 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2321
2322 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2323 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2324 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2325 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2326 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2327 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2328
2329 if (dirty & WM_DIRTY_DDB) {
2330 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2331 val = I915_READ(WM_MISC);
2332 if (results->partitioning == INTEL_DDB_PART_1_2)
2333 val &= ~WM_MISC_DATA_PARTITION_5_6;
2334 else
2335 val |= WM_MISC_DATA_PARTITION_5_6;
2336 I915_WRITE(WM_MISC, val);
2337 } else {
2338 val = I915_READ(DISP_ARB_CTL2);
2339 if (results->partitioning == INTEL_DDB_PART_1_2)
2340 val &= ~DISP_DATA_PARTITION_5_6;
2341 else
2342 val |= DISP_DATA_PARTITION_5_6;
2343 I915_WRITE(DISP_ARB_CTL2, val);
2344 }
2345 }
2346
2347 if (dirty & WM_DIRTY_FBC) {
2348 val = I915_READ(DISP_ARB_CTL);
2349 if (results->enable_fbc_wm)
2350 val &= ~DISP_FBC_WM_DIS;
2351 else
2352 val |= DISP_FBC_WM_DIS;
2353 I915_WRITE(DISP_ARB_CTL, val);
2354 }
2355
2356 if (dirty & WM_DIRTY_LP(1) &&
2357 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2358 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2359
2360 if (INTEL_INFO(dev)->gen >= 7) {
2361 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2362 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2363 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2364 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2365 }
2366
2367 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2368 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2369 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2370 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2371 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2372 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2373
2374 dev_priv->wm.hw = *results;
2375 }
2376
2377 static bool ilk_disable_lp_wm(struct drm_device *dev)
2378 {
2379 struct drm_i915_private *dev_priv = dev->dev_private;
2380
2381 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2382 }
2383
2384 /*
2385 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2386 * different active planes.
2387 */
2388
2389 #define SKL_DDB_SIZE 896 /* in blocks */
2390
2391 static void
2392 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2393 struct drm_crtc *for_crtc,
2394 const struct intel_wm_config *config,
2395 const struct skl_pipe_wm_parameters *params,
2396 struct skl_ddb_entry *alloc /* out */)
2397 {
2398 struct drm_crtc *crtc;
2399 unsigned int pipe_size, ddb_size;
2400 int nth_active_pipe;
2401
2402 if (!params->active) {
2403 alloc->start = 0;
2404 alloc->end = 0;
2405 return;
2406 }
2407
2408 ddb_size = SKL_DDB_SIZE;
2409
2410 ddb_size -= 4; /* 4 blocks for bypass path allocation */
2411
2412 nth_active_pipe = 0;
2413 for_each_crtc(dev, crtc) {
2414 if (!intel_crtc_active(crtc))
2415 continue;
2416
2417 if (crtc == for_crtc)
2418 break;
2419
2420 nth_active_pipe++;
2421 }
2422
2423 pipe_size = ddb_size / config->num_pipes_active;
2424 alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2425 alloc->end = alloc->start + pipe_size;
2426 }
2427
2428 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2429 {
2430 if (config->num_pipes_active == 1)
2431 return 32;
2432
2433 return 8;
2434 }
2435
2436 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2437 {
2438 entry->start = reg & 0x3ff;
2439 entry->end = (reg >> 16) & 0x3ff;
2440 if (entry->end)
2441 entry->end += 1;
2442 }
2443
2444 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2445 struct skl_ddb_allocation *ddb /* out */)
2446 {
2447 struct drm_device *dev = dev_priv->dev;
2448 enum pipe pipe;
2449 int plane;
2450 u32 val;
2451
2452 for_each_pipe(dev_priv, pipe) {
2453 for_each_plane(pipe, plane) {
2454 val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2455 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2456 val);
2457 }
2458
2459 val = I915_READ(CUR_BUF_CFG(pipe));
2460 skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
2461 }
2462 }
2463
2464 static unsigned int
2465 skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p)
2466 {
2467 return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2468 }
2469
2470 /*
2471 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2472 * a 8192x4096@32bpp framebuffer:
2473 * 3 * 4096 * 8192 * 4 < 2^32
2474 */
2475 static unsigned int
2476 skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
2477 const struct skl_pipe_wm_parameters *params)
2478 {
2479 unsigned int total_data_rate = 0;
2480 int plane;
2481
2482 for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2483 const struct intel_plane_wm_parameters *p;
2484
2485 p = &params->plane[plane];
2486 if (!p->enabled)
2487 continue;
2488
2489 total_data_rate += skl_plane_relative_data_rate(p);
2490 }
2491
2492 return total_data_rate;
2493 }
2494
2495 static void
2496 skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2497 const struct intel_wm_config *config,
2498 const struct skl_pipe_wm_parameters *params,
2499 struct skl_ddb_allocation *ddb /* out */)
2500 {
2501 struct drm_device *dev = crtc->dev;
2502 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2503 enum pipe pipe = intel_crtc->pipe;
2504 struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2505 uint16_t alloc_size, start, cursor_blocks;
2506 unsigned int total_data_rate;
2507 int plane;
2508
2509 skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2510 alloc_size = skl_ddb_entry_size(alloc);
2511 if (alloc_size == 0) {
2512 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2513 memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
2514 return;
2515 }
2516
2517 cursor_blocks = skl_cursor_allocation(config);
2518 ddb->cursor[pipe].start = alloc->end - cursor_blocks;
2519 ddb->cursor[pipe].end = alloc->end;
2520
2521 alloc_size -= cursor_blocks;
2522 alloc->end -= cursor_blocks;
2523
2524 /*
2525 * Each active plane get a portion of the remaining space, in
2526 * proportion to the amount of data they need to fetch from memory.
2527 *
2528 * FIXME: we may not allocate every single block here.
2529 */
2530 total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
2531
2532 start = alloc->start;
2533 for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2534 const struct intel_plane_wm_parameters *p;
2535 unsigned int data_rate;
2536 uint16_t plane_blocks;
2537
2538 p = &params->plane[plane];
2539 if (!p->enabled)
2540 continue;
2541
2542 data_rate = skl_plane_relative_data_rate(p);
2543
2544 /*
2545 * promote the expression to 64 bits to avoid overflowing, the
2546 * result is < available as data_rate / total_data_rate < 1
2547 */
2548 plane_blocks = div_u64((uint64_t)alloc_size * data_rate,
2549 total_data_rate);
2550
2551 ddb->plane[pipe][plane].start = start;
2552 ddb->plane[pipe][plane].end = start + plane_blocks;
2553
2554 start += plane_blocks;
2555 }
2556
2557 }
2558
2559 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_config *config)
2560 {
2561 /* TODO: Take into account the scalers once we support them */
2562 return config->adjusted_mode.crtc_clock;
2563 }
2564
2565 /*
2566 * The max latency should be 257 (max the punit can code is 255 and we add 2us
2567 * for the read latency) and bytes_per_pixel should always be <= 8, so that
2568 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
2569 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
2570 */
2571 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2572 uint32_t latency)
2573 {
2574 uint32_t wm_intermediate_val, ret;
2575
2576 if (latency == 0)
2577 return UINT_MAX;
2578
2579 wm_intermediate_val = latency * pixel_rate * bytes_per_pixel;
2580 ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
2581
2582 return ret;
2583 }
2584
2585 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2586 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2587 uint32_t latency)
2588 {
2589 uint32_t ret, plane_bytes_per_line, wm_intermediate_val;
2590
2591 if (latency == 0)
2592 return UINT_MAX;
2593
2594 plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
2595 wm_intermediate_val = latency * pixel_rate;
2596 ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
2597 plane_bytes_per_line;
2598
2599 return ret;
2600 }
2601
2602 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
2603 const struct intel_crtc *intel_crtc)
2604 {
2605 struct drm_device *dev = intel_crtc->base.dev;
2606 struct drm_i915_private *dev_priv = dev->dev_private;
2607 const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
2608 enum pipe pipe = intel_crtc->pipe;
2609
2610 if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
2611 sizeof(new_ddb->plane[pipe])))
2612 return true;
2613
2614 if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
2615 sizeof(new_ddb->cursor[pipe])))
2616 return true;
2617
2618 return false;
2619 }
2620
2621 static void skl_compute_wm_global_parameters(struct drm_device *dev,
2622 struct intel_wm_config *config)
2623 {
2624 struct drm_crtc *crtc;
2625 struct drm_plane *plane;
2626
2627 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2628 config->num_pipes_active += intel_crtc_active(crtc);
2629
2630 /* FIXME: I don't think we need those two global parameters on SKL */
2631 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2632 struct intel_plane *intel_plane = to_intel_plane(plane);
2633
2634 config->sprites_enabled |= intel_plane->wm.enabled;
2635 config->sprites_scaled |= intel_plane->wm.scaled;
2636 }
2637 }
2638
2639 static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
2640 struct skl_pipe_wm_parameters *p)
2641 {
2642 struct drm_device *dev = crtc->dev;
2643 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2644 enum pipe pipe = intel_crtc->pipe;
2645 struct drm_plane *plane;
2646 int i = 1; /* Index for sprite planes start */
2647
2648 p->active = intel_crtc_active(crtc);
2649 if (p->active) {
2650 p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2651 p->pixel_rate = skl_pipe_pixel_rate(&intel_crtc->config);
2652
2653 /*
2654 * For now, assume primary and cursor planes are always enabled.
2655 */
2656 p->plane[0].enabled = true;
2657 p->plane[0].bytes_per_pixel =
2658 crtc->primary->fb->bits_per_pixel / 8;
2659 p->plane[0].horiz_pixels = intel_crtc->config.pipe_src_w;
2660 p->plane[0].vert_pixels = intel_crtc->config.pipe_src_h;
2661
2662 p->cursor.enabled = true;
2663 p->cursor.bytes_per_pixel = 4;
2664 p->cursor.horiz_pixels = intel_crtc->cursor_width ?
2665 intel_crtc->cursor_width : 64;
2666 }
2667
2668 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2669 struct intel_plane *intel_plane = to_intel_plane(plane);
2670
2671 if (intel_plane->pipe == pipe &&
2672 plane->type == DRM_PLANE_TYPE_OVERLAY)
2673 p->plane[i++] = intel_plane->wm;
2674 }
2675 }
2676
2677 static bool skl_compute_plane_wm(struct skl_pipe_wm_parameters *p,
2678 struct intel_plane_wm_parameters *p_params,
2679 uint16_t ddb_allocation,
2680 uint32_t mem_value,
2681 uint16_t *out_blocks, /* out */
2682 uint8_t *out_lines /* out */)
2683 {
2684 uint32_t method1, method2, plane_bytes_per_line, res_blocks, res_lines;
2685 uint32_t result_bytes;
2686
2687 if (mem_value == 0 || !p->active || !p_params->enabled)
2688 return false;
2689
2690 method1 = skl_wm_method1(p->pixel_rate,
2691 p_params->bytes_per_pixel,
2692 mem_value);
2693 method2 = skl_wm_method2(p->pixel_rate,
2694 p->pipe_htotal,
2695 p_params->horiz_pixels,
2696 p_params->bytes_per_pixel,
2697 mem_value);
2698
2699 plane_bytes_per_line = p_params->horiz_pixels *
2700 p_params->bytes_per_pixel;
2701
2702 /* For now xtile and linear */
2703 if (((ddb_allocation * 512) / plane_bytes_per_line) >= 1)
2704 result_bytes = min(method1, method2);
2705 else
2706 result_bytes = method1;
2707
2708 res_blocks = DIV_ROUND_UP(result_bytes, 512) + 1;
2709 res_lines = DIV_ROUND_UP(result_bytes, plane_bytes_per_line);
2710
2711 if (res_blocks > ddb_allocation || res_lines > 31)
2712 return false;
2713
2714 *out_blocks = res_blocks;
2715 *out_lines = res_lines;
2716
2717 return true;
2718 }
2719
2720 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
2721 struct skl_ddb_allocation *ddb,
2722 struct skl_pipe_wm_parameters *p,
2723 enum pipe pipe,
2724 int level,
2725 int num_planes,
2726 struct skl_wm_level *result)
2727 {
2728 uint16_t latency = dev_priv->wm.skl_latency[level];
2729 uint16_t ddb_blocks;
2730 int i;
2731
2732 for (i = 0; i < num_planes; i++) {
2733 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
2734
2735 result->plane_en[i] = skl_compute_plane_wm(p, &p->plane[i],
2736 ddb_blocks,
2737 latency,
2738 &result->plane_res_b[i],
2739 &result->plane_res_l[i]);
2740 }
2741
2742 ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
2743 result->cursor_en = skl_compute_plane_wm(p, &p->cursor, ddb_blocks,
2744 latency, &result->cursor_res_b,
2745 &result->cursor_res_l);
2746 }
2747
2748 static uint32_t
2749 skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
2750 {
2751 if (!intel_crtc_active(crtc))
2752 return 0;
2753
2754 return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
2755
2756 }
2757
2758 static void skl_compute_transition_wm(struct drm_crtc *crtc,
2759 struct skl_pipe_wm_parameters *params,
2760 struct skl_wm_level *trans_wm /* out */)
2761 {
2762 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2763 int i;
2764
2765 if (!params->active)
2766 return;
2767
2768 /* Until we know more, just disable transition WMs */
2769 for (i = 0; i < intel_num_planes(intel_crtc); i++)
2770 trans_wm->plane_en[i] = false;
2771 trans_wm->cursor_en = false;
2772 }
2773
2774 static void skl_compute_pipe_wm(struct drm_crtc *crtc,
2775 struct skl_ddb_allocation *ddb,
2776 struct skl_pipe_wm_parameters *params,
2777 struct skl_pipe_wm *pipe_wm)
2778 {
2779 struct drm_device *dev = crtc->dev;
2780 const struct drm_i915_private *dev_priv = dev->dev_private;
2781 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2782 int level, max_level = ilk_wm_max_level(dev);
2783
2784 for (level = 0; level <= max_level; level++) {
2785 skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
2786 level, intel_num_planes(intel_crtc),
2787 &pipe_wm->wm[level]);
2788 }
2789 pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
2790
2791 skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
2792 }
2793
2794 static void skl_compute_wm_results(struct drm_device *dev,
2795 struct skl_pipe_wm_parameters *p,
2796 struct skl_pipe_wm *p_wm,
2797 struct skl_wm_values *r,
2798 struct intel_crtc *intel_crtc)
2799 {
2800 int level, max_level = ilk_wm_max_level(dev);
2801 enum pipe pipe = intel_crtc->pipe;
2802 uint32_t temp;
2803 int i;
2804
2805 for (level = 0; level <= max_level; level++) {
2806 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
2807 temp = 0;
2808
2809 temp |= p_wm->wm[level].plane_res_l[i] <<
2810 PLANE_WM_LINES_SHIFT;
2811 temp |= p_wm->wm[level].plane_res_b[i];
2812 if (p_wm->wm[level].plane_en[i])
2813 temp |= PLANE_WM_EN;
2814
2815 r->plane[pipe][i][level] = temp;
2816 }
2817
2818 temp = 0;
2819
2820 temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
2821 temp |= p_wm->wm[level].cursor_res_b;
2822
2823 if (p_wm->wm[level].cursor_en)
2824 temp |= PLANE_WM_EN;
2825
2826 r->cursor[pipe][level] = temp;
2827
2828 }
2829
2830 /* transition WMs */
2831 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
2832 temp = 0;
2833 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
2834 temp |= p_wm->trans_wm.plane_res_b[i];
2835 if (p_wm->trans_wm.plane_en[i])
2836 temp |= PLANE_WM_EN;
2837
2838 r->plane_trans[pipe][i] = temp;
2839 }
2840
2841 temp = 0;
2842 temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
2843 temp |= p_wm->trans_wm.cursor_res_b;
2844 if (p_wm->trans_wm.cursor_en)
2845 temp |= PLANE_WM_EN;
2846
2847 r->cursor_trans[pipe] = temp;
2848
2849 r->wm_linetime[pipe] = p_wm->linetime;
2850 }
2851
2852 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
2853 const struct skl_ddb_entry *entry)
2854 {
2855 if (entry->end)
2856 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
2857 else
2858 I915_WRITE(reg, 0);
2859 }
2860
2861 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
2862 const struct skl_wm_values *new)
2863 {
2864 struct drm_device *dev = dev_priv->dev;
2865 struct intel_crtc *crtc;
2866
2867 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
2868 int i, level, max_level = ilk_wm_max_level(dev);
2869 enum pipe pipe = crtc->pipe;
2870
2871 if (!new->dirty[pipe])
2872 continue;
2873
2874 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
2875
2876 for (level = 0; level <= max_level; level++) {
2877 for (i = 0; i < intel_num_planes(crtc); i++)
2878 I915_WRITE(PLANE_WM(pipe, i, level),
2879 new->plane[pipe][i][level]);
2880 I915_WRITE(CUR_WM(pipe, level),
2881 new->cursor[pipe][level]);
2882 }
2883 for (i = 0; i < intel_num_planes(crtc); i++)
2884 I915_WRITE(PLANE_WM_TRANS(pipe, i),
2885 new->plane_trans[pipe][i]);
2886 I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);
2887
2888 for (i = 0; i < intel_num_planes(crtc); i++)
2889 skl_ddb_entry_write(dev_priv,
2890 PLANE_BUF_CFG(pipe, i),
2891 &new->ddb.plane[pipe][i]);
2892
2893 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
2894 &new->ddb.cursor[pipe]);
2895 }
2896 }
2897
2898 /*
2899 * When setting up a new DDB allocation arrangement, we need to correctly
2900 * sequence the times at which the new allocations for the pipes are taken into
2901 * account or we'll have pipes fetching from space previously allocated to
2902 * another pipe.
2903 *
2904 * Roughly the sequence looks like:
2905 * 1. re-allocate the pipe(s) with the allocation being reduced and not
2906 * overlapping with a previous light-up pipe (another way to put it is:
2907 * pipes with their new allocation strickly included into their old ones).
2908 * 2. re-allocate the other pipes that get their allocation reduced
2909 * 3. allocate the pipes having their allocation increased
2910 *
2911 * Steps 1. and 2. are here to take care of the following case:
2912 * - Initially DDB looks like this:
2913 * | B | C |
2914 * - enable pipe A.
2915 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
2916 * allocation
2917 * | A | B | C |
2918 *
2919 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
2920 */
2921
2922 static void
2923 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
2924 {
2925 struct drm_device *dev = dev_priv->dev;
2926 int plane;
2927
2928 DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
2929
2930 for_each_plane(pipe, plane) {
2931 I915_WRITE(PLANE_SURF(pipe, plane),
2932 I915_READ(PLANE_SURF(pipe, plane)));
2933 }
2934 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
2935 }
2936
2937 static bool
2938 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
2939 const struct skl_ddb_allocation *new,
2940 enum pipe pipe)
2941 {
2942 uint16_t old_size, new_size;
2943
2944 old_size = skl_ddb_entry_size(&old->pipe[pipe]);
2945 new_size = skl_ddb_entry_size(&new->pipe[pipe]);
2946
2947 return old_size != new_size &&
2948 new->pipe[pipe].start >= old->pipe[pipe].start &&
2949 new->pipe[pipe].end <= old->pipe[pipe].end;
2950 }
2951
2952 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
2953 struct skl_wm_values *new_values)
2954 {
2955 struct drm_device *dev = dev_priv->dev;
2956 struct skl_ddb_allocation *cur_ddb, *new_ddb;
2957 bool reallocated[I915_MAX_PIPES] = {false, false, false};
2958 struct intel_crtc *crtc;
2959 enum pipe pipe;
2960
2961 new_ddb = &new_values->ddb;
2962 cur_ddb = &dev_priv->wm.skl_hw.ddb;
2963
2964 /*
2965 * First pass: flush the pipes with the new allocation contained into
2966 * the old space.
2967 *
2968 * We'll wait for the vblank on those pipes to ensure we can safely
2969 * re-allocate the freed space without this pipe fetching from it.
2970 */
2971 for_each_intel_crtc(dev, crtc) {
2972 if (!crtc->active)
2973 continue;
2974
2975 pipe = crtc->pipe;
2976
2977 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
2978 continue;
2979
2980 skl_wm_flush_pipe(dev_priv, pipe, 1);
2981 intel_wait_for_vblank(dev, pipe);
2982
2983 reallocated[pipe] = true;
2984 }
2985
2986
2987 /*
2988 * Second pass: flush the pipes that are having their allocation
2989 * reduced, but overlapping with a previous allocation.
2990 *
2991 * Here as well we need to wait for the vblank to make sure the freed
2992 * space is not used anymore.
2993 */
2994 for_each_intel_crtc(dev, crtc) {
2995 if (!crtc->active)
2996 continue;
2997
2998 pipe = crtc->pipe;
2999
3000 if (reallocated[pipe])
3001 continue;
3002
3003 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3004 skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3005 skl_wm_flush_pipe(dev_priv, pipe, 2);
3006 intel_wait_for_vblank(dev, pipe);
3007 reallocated[pipe] = true;
3008 }
3009 }
3010
3011 /*
3012 * Third pass: flush the pipes that got more space allocated.
3013 *
3014 * We don't need to actively wait for the update here, next vblank
3015 * will just get more DDB space with the correct WM values.
3016 */
3017 for_each_intel_crtc(dev, crtc) {
3018 if (!crtc->active)
3019 continue;
3020
3021 pipe = crtc->pipe;
3022
3023 /*
3024 * At this point, only the pipes more space than before are
3025 * left to re-allocate.
3026 */
3027 if (reallocated[pipe])
3028 continue;
3029
3030 skl_wm_flush_pipe(dev_priv, pipe, 3);
3031 }
3032 }
3033
3034 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3035 struct skl_pipe_wm_parameters *params,
3036 struct intel_wm_config *config,
3037 struct skl_ddb_allocation *ddb, /* out */
3038 struct skl_pipe_wm *pipe_wm /* out */)
3039 {
3040 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3041
3042 skl_compute_wm_pipe_parameters(crtc, params);
3043 skl_allocate_pipe_ddb(crtc, config, params, ddb);
3044 skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3045
3046 if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3047 return false;
3048
3049 intel_crtc->wm.skl_active = *pipe_wm;
3050 return true;
3051 }
3052
3053 static void skl_update_other_pipe_wm(struct drm_device *dev,
3054 struct drm_crtc *crtc,
3055 struct intel_wm_config *config,
3056 struct skl_wm_values *r)
3057 {
3058 struct intel_crtc *intel_crtc;
3059 struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3060
3061 /*
3062 * If the WM update hasn't changed the allocation for this_crtc (the
3063 * crtc we are currently computing the new WM values for), other
3064 * enabled crtcs will keep the same allocation and we don't need to
3065 * recompute anything for them.
3066 */
3067 if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3068 return;
3069
3070 /*
3071 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3072 * other active pipes need new DDB allocation and WM values.
3073 */
3074 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3075 base.head) {
3076 struct skl_pipe_wm_parameters params = {};
3077 struct skl_pipe_wm pipe_wm = {};
3078 bool wm_changed;
3079
3080 if (this_crtc->pipe == intel_crtc->pipe)
3081 continue;
3082
3083 if (!intel_crtc->active)
3084 continue;
3085
3086 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3087 &params, config,
3088 &r->ddb, &pipe_wm);
3089
3090 /*
3091 * If we end up re-computing the other pipe WM values, it's
3092 * because it was really needed, so we expect the WM values to
3093 * be different.
3094 */
3095 WARN_ON(!wm_changed);
3096
3097 skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
3098 r->dirty[intel_crtc->pipe] = true;
3099 }
3100 }
3101
3102 static void skl_update_wm(struct drm_crtc *crtc)
3103 {
3104 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3105 struct drm_device *dev = crtc->dev;
3106 struct drm_i915_private *dev_priv = dev->dev_private;
3107 struct skl_pipe_wm_parameters params = {};
3108 struct skl_wm_values *results = &dev_priv->wm.skl_results;
3109 struct skl_pipe_wm pipe_wm = {};
3110 struct intel_wm_config config = {};
3111
3112 memset(results, 0, sizeof(*results));
3113
3114 skl_compute_wm_global_parameters(dev, &config);
3115
3116 if (!skl_update_pipe_wm(crtc, &params, &config,
3117 &results->ddb, &pipe_wm))
3118 return;
3119
3120 skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
3121 results->dirty[intel_crtc->pipe] = true;
3122
3123 skl_update_other_pipe_wm(dev, crtc, &config, results);
3124 skl_write_wm_values(dev_priv, results);
3125 skl_flush_wm_values(dev_priv, results);
3126
3127 /* store the new configuration */
3128 dev_priv->wm.skl_hw = *results;
3129 }
3130
3131 static void
3132 skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3133 uint32_t sprite_width, uint32_t sprite_height,
3134 int pixel_size, bool enabled, bool scaled)
3135 {
3136 struct intel_plane *intel_plane = to_intel_plane(plane);
3137
3138 intel_plane->wm.enabled = enabled;
3139 intel_plane->wm.scaled = scaled;
3140 intel_plane->wm.horiz_pixels = sprite_width;
3141 intel_plane->wm.vert_pixels = sprite_height;
3142 intel_plane->wm.bytes_per_pixel = pixel_size;
3143
3144 skl_update_wm(crtc);
3145 }
3146
3147 static void ilk_update_wm(struct drm_crtc *crtc)
3148 {
3149 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3150 struct drm_device *dev = crtc->dev;
3151 struct drm_i915_private *dev_priv = dev->dev_private;
3152 struct ilk_wm_maximums max;
3153 struct ilk_pipe_wm_parameters params = {};
3154 struct ilk_wm_values results = {};
3155 enum intel_ddb_partitioning partitioning;
3156 struct intel_pipe_wm pipe_wm = {};
3157 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3158 struct intel_wm_config config = {};
3159
3160 ilk_compute_wm_parameters(crtc, &params);
3161
3162 intel_compute_pipe_wm(crtc, &params, &pipe_wm);
3163
3164 if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3165 return;
3166
3167 intel_crtc->wm.active = pipe_wm;
3168
3169 ilk_compute_wm_config(dev, &config);
3170
3171 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3172 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3173
3174 /* 5/6 split only in single pipe config on IVB+ */
3175 if (INTEL_INFO(dev)->gen >= 7 &&
3176 config.num_pipes_active == 1 && config.sprites_enabled) {
3177 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3178 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3179
3180 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3181 } else {
3182 best_lp_wm = &lp_wm_1_2;
3183 }
3184
3185 partitioning = (best_lp_wm == &lp_wm_1_2) ?
3186 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3187
3188 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3189
3190 ilk_write_wm_values(dev_priv, &results);
3191 }
3192
3193 static void
3194 ilk_update_sprite_wm(struct drm_plane *plane,
3195 struct drm_crtc *crtc,
3196 uint32_t sprite_width, uint32_t sprite_height,
3197 int pixel_size, bool enabled, bool scaled)
3198 {
3199 struct drm_device *dev = plane->dev;
3200 struct intel_plane *intel_plane = to_intel_plane(plane);
3201
3202 intel_plane->wm.enabled = enabled;
3203 intel_plane->wm.scaled = scaled;
3204 intel_plane->wm.horiz_pixels = sprite_width;
3205 intel_plane->wm.vert_pixels = sprite_width;
3206 intel_plane->wm.bytes_per_pixel = pixel_size;
3207
3208 /*
3209 * IVB workaround: must disable low power watermarks for at least
3210 * one frame before enabling scaling. LP watermarks can be re-enabled
3211 * when scaling is disabled.
3212 *
3213 * WaCxSRDisabledForSpriteScaling:ivb
3214 */
3215 if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3216 intel_wait_for_vblank(dev, intel_plane->pipe);
3217
3218 ilk_update_wm(crtc);
3219 }
3220
3221 static void skl_pipe_wm_active_state(uint32_t val,
3222 struct skl_pipe_wm *active,
3223 bool is_transwm,
3224 bool is_cursor,
3225 int i,
3226 int level)
3227 {
3228 bool is_enabled = (val & PLANE_WM_EN) != 0;
3229
3230 if (!is_transwm) {
3231 if (!is_cursor) {
3232 active->wm[level].plane_en[i] = is_enabled;
3233 active->wm[level].plane_res_b[i] =
3234 val & PLANE_WM_BLOCKS_MASK;
3235 active->wm[level].plane_res_l[i] =
3236 (val >> PLANE_WM_LINES_SHIFT) &
3237 PLANE_WM_LINES_MASK;
3238 } else {
3239 active->wm[level].cursor_en = is_enabled;
3240 active->wm[level].cursor_res_b =
3241 val & PLANE_WM_BLOCKS_MASK;
3242 active->wm[level].cursor_res_l =
3243 (val >> PLANE_WM_LINES_SHIFT) &
3244 PLANE_WM_LINES_MASK;
3245 }
3246 } else {
3247 if (!is_cursor) {
3248 active->trans_wm.plane_en[i] = is_enabled;
3249 active->trans_wm.plane_res_b[i] =
3250 val & PLANE_WM_BLOCKS_MASK;
3251 active->trans_wm.plane_res_l[i] =
3252 (val >> PLANE_WM_LINES_SHIFT) &
3253 PLANE_WM_LINES_MASK;
3254 } else {
3255 active->trans_wm.cursor_en = is_enabled;
3256 active->trans_wm.cursor_res_b =
3257 val & PLANE_WM_BLOCKS_MASK;
3258 active->trans_wm.cursor_res_l =
3259 (val >> PLANE_WM_LINES_SHIFT) &
3260 PLANE_WM_LINES_MASK;
3261 }
3262 }
3263 }
3264
3265 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3266 {
3267 struct drm_device *dev = crtc->dev;
3268 struct drm_i915_private *dev_priv = dev->dev_private;
3269 struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3270 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3271 struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3272 enum pipe pipe = intel_crtc->pipe;
3273 int level, i, max_level;
3274 uint32_t temp;
3275
3276 max_level = ilk_wm_max_level(dev);
3277
3278 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3279
3280 for (level = 0; level <= max_level; level++) {
3281 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3282 hw->plane[pipe][i][level] =
3283 I915_READ(PLANE_WM(pipe, i, level));
3284 hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
3285 }
3286
3287 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3288 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3289 hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));
3290
3291 if (!intel_crtc_active(crtc))
3292 return;
3293
3294 hw->dirty[pipe] = true;
3295
3296 active->linetime = hw->wm_linetime[pipe];
3297
3298 for (level = 0; level <= max_level; level++) {
3299 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3300 temp = hw->plane[pipe][i][level];
3301 skl_pipe_wm_active_state(temp, active, false,
3302 false, i, level);
3303 }
3304 temp = hw->cursor[pipe][level];
3305 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3306 }
3307
3308 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3309 temp = hw->plane_trans[pipe][i];
3310 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3311 }
3312
3313 temp = hw->cursor_trans[pipe];
3314 skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3315 }
3316
3317 void skl_wm_get_hw_state(struct drm_device *dev)
3318 {
3319 struct drm_i915_private *dev_priv = dev->dev_private;
3320 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3321 struct drm_crtc *crtc;
3322
3323 skl_ddb_get_hw_state(dev_priv, ddb);
3324 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3325 skl_pipe_wm_get_hw_state(crtc);
3326 }
3327
3328 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3329 {
3330 struct drm_device *dev = crtc->dev;
3331 struct drm_i915_private *dev_priv = dev->dev_private;
3332 struct ilk_wm_values *hw = &dev_priv->wm.hw;
3333 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3334 struct intel_pipe_wm *active = &intel_crtc->wm.active;
3335 enum pipe pipe = intel_crtc->pipe;
3336 static const unsigned int wm0_pipe_reg[] = {
3337 [PIPE_A] = WM0_PIPEA_ILK,
3338 [PIPE_B] = WM0_PIPEB_ILK,
3339 [PIPE_C] = WM0_PIPEC_IVB,
3340 };
3341
3342 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3343 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3344 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3345
3346 active->pipe_enabled = intel_crtc_active(crtc);
3347
3348 if (active->pipe_enabled) {
3349 u32 tmp = hw->wm_pipe[pipe];
3350
3351 /*
3352 * For active pipes LP0 watermark is marked as
3353 * enabled, and LP1+ watermaks as disabled since
3354 * we can't really reverse compute them in case
3355 * multiple pipes are active.
3356 */
3357 active->wm[0].enable = true;
3358 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3359 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3360 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3361 active->linetime = hw->wm_linetime[pipe];
3362 } else {
3363 int level, max_level = ilk_wm_max_level(dev);
3364
3365 /*
3366 * For inactive pipes, all watermark levels
3367 * should be marked as enabled but zeroed,
3368 * which is what we'd compute them to.
3369 */
3370 for (level = 0; level <= max_level; level++)
3371 active->wm[level].enable = true;
3372 }
3373 }
3374
3375 void ilk_wm_get_hw_state(struct drm_device *dev)
3376 {
3377 struct drm_i915_private *dev_priv = dev->dev_private;
3378 struct ilk_wm_values *hw = &dev_priv->wm.hw;
3379 struct drm_crtc *crtc;
3380
3381 for_each_crtc(dev, crtc)
3382 ilk_pipe_wm_get_hw_state(crtc);
3383
3384 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
3385 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
3386 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3387
3388 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3389 if (INTEL_INFO(dev)->gen >= 7) {
3390 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
3391 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
3392 }
3393
3394 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3395 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
3396 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3397 else if (IS_IVYBRIDGE(dev))
3398 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
3399 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3400
3401 hw->enable_fbc_wm =
3402 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3403 }
3404
3405 /**
3406 * intel_update_watermarks - update FIFO watermark values based on current modes
3407 *
3408 * Calculate watermark values for the various WM regs based on current mode
3409 * and plane configuration.
3410 *
3411 * There are several cases to deal with here:
3412 * - normal (i.e. non-self-refresh)
3413 * - self-refresh (SR) mode
3414 * - lines are large relative to FIFO size (buffer can hold up to 2)
3415 * - lines are small relative to FIFO size (buffer can hold more than 2
3416 * lines), so need to account for TLB latency
3417 *
3418 * The normal calculation is:
3419 * watermark = dotclock * bytes per pixel * latency
3420 * where latency is platform & configuration dependent (we assume pessimal
3421 * values here).
3422 *
3423 * The SR calculation is:
3424 * watermark = (trunc(latency/line time)+1) * surface width *
3425 * bytes per pixel
3426 * where
3427 * line time = htotal / dotclock
3428 * surface width = hdisplay for normal plane and 64 for cursor
3429 * and latency is assumed to be high, as above.
3430 *
3431 * The final value programmed to the register should always be rounded up,
3432 * and include an extra 2 entries to account for clock crossings.
3433 *
3434 * We don't use the sprite, so we can ignore that. And on Crestline we have
3435 * to set the non-SR watermarks to 8.
3436 */
3437 void intel_update_watermarks(struct drm_crtc *crtc)
3438 {
3439 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3440
3441 if (dev_priv->display.update_wm)
3442 dev_priv->display.update_wm(crtc);
3443 }
3444
3445 void intel_update_sprite_watermarks(struct drm_plane *plane,
3446 struct drm_crtc *crtc,
3447 uint32_t sprite_width,
3448 uint32_t sprite_height,
3449 int pixel_size,
3450 bool enabled, bool scaled)
3451 {
3452 struct drm_i915_private *dev_priv = plane->dev->dev_private;
3453
3454 if (dev_priv->display.update_sprite_wm)
3455 dev_priv->display.update_sprite_wm(plane, crtc,
3456 sprite_width, sprite_height,
3457 pixel_size, enabled, scaled);
3458 }
3459
3460 static struct drm_i915_gem_object *
3461 intel_alloc_context_page(struct drm_device *dev)
3462 {
3463 struct drm_i915_gem_object *ctx;
3464 int ret;
3465
3466 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3467
3468 ctx = i915_gem_alloc_object(dev, 4096);
3469 if (!ctx) {
3470 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
3471 return NULL;
3472 }
3473
3474 ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
3475 if (ret) {
3476 DRM_ERROR("failed to pin power context: %d\n", ret);
3477 goto err_unref;
3478 }
3479
3480 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
3481 if (ret) {
3482 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
3483 goto err_unpin;
3484 }
3485
3486 return ctx;
3487
3488 err_unpin:
3489 i915_gem_object_ggtt_unpin(ctx);
3490 err_unref:
3491 drm_gem_object_unreference(&ctx->base);
3492 return NULL;
3493 }
3494
3495 /**
3496 * Lock protecting IPS related data structures
3497 */
3498 DEFINE_SPINLOCK(mchdev_lock);
3499
3500 /* Global for IPS driver to get at the current i915 device. Protected by
3501 * mchdev_lock. */
3502 static struct drm_i915_private *i915_mch_dev;
3503
3504 bool ironlake_set_drps(struct drm_device *dev, u8 val)
3505 {
3506 struct drm_i915_private *dev_priv = dev->dev_private;
3507 u16 rgvswctl;
3508
3509 assert_spin_locked(&mchdev_lock);
3510
3511 rgvswctl = I915_READ16(MEMSWCTL);
3512 if (rgvswctl & MEMCTL_CMD_STS) {
3513 DRM_DEBUG("gpu busy, RCS change rejected\n");
3514 return false; /* still busy with another command */
3515 }
3516
3517 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3518 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3519 I915_WRITE16(MEMSWCTL, rgvswctl);
3520 POSTING_READ16(MEMSWCTL);
3521
3522 rgvswctl |= MEMCTL_CMD_STS;
3523 I915_WRITE16(MEMSWCTL, rgvswctl);
3524
3525 return true;
3526 }
3527
3528 static void ironlake_enable_drps(struct drm_device *dev)
3529 {
3530 struct drm_i915_private *dev_priv = dev->dev_private;
3531 u32 rgvmodectl = I915_READ(MEMMODECTL);
3532 u8 fmax, fmin, fstart, vstart;
3533
3534 spin_lock_irq(&mchdev_lock);
3535
3536 /* Enable temp reporting */
3537 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3538 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3539
3540 /* 100ms RC evaluation intervals */
3541 I915_WRITE(RCUPEI, 100000);
3542 I915_WRITE(RCDNEI, 100000);
3543
3544 /* Set max/min thresholds to 90ms and 80ms respectively */
3545 I915_WRITE(RCBMAXAVG, 90000);
3546 I915_WRITE(RCBMINAVG, 80000);
3547
3548 I915_WRITE(MEMIHYST, 1);
3549
3550 /* Set up min, max, and cur for interrupt handling */
3551 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3552 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3553 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3554 MEMMODE_FSTART_SHIFT;
3555
3556 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3557 PXVFREQ_PX_SHIFT;
3558
3559 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3560 dev_priv->ips.fstart = fstart;
3561
3562 dev_priv->ips.max_delay = fstart;
3563 dev_priv->ips.min_delay = fmin;
3564 dev_priv->ips.cur_delay = fstart;
3565
3566 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3567 fmax, fmin, fstart);
3568
3569 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3570
3571 /*
3572 * Interrupts will be enabled in ironlake_irq_postinstall
3573 */
3574
3575 I915_WRITE(VIDSTART, vstart);
3576 POSTING_READ(VIDSTART);
3577
3578 rgvmodectl |= MEMMODE_SWMODE_EN;
3579 I915_WRITE(MEMMODECTL, rgvmodectl);
3580
3581 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3582 DRM_ERROR("stuck trying to change perf mode\n");
3583 mdelay(1);
3584
3585 ironlake_set_drps(dev, fstart);
3586
3587 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3588 I915_READ(0x112e0);
3589 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3590 dev_priv->ips.last_count2 = I915_READ(0x112f4);
3591 dev_priv->ips.last_time2 = ktime_get_raw_ns();
3592
3593 spin_unlock_irq(&mchdev_lock);
3594 }
3595
3596 static void ironlake_disable_drps(struct drm_device *dev)
3597 {
3598 struct drm_i915_private *dev_priv = dev->dev_private;
3599 u16 rgvswctl;
3600
3601 spin_lock_irq(&mchdev_lock);
3602
3603 rgvswctl = I915_READ16(MEMSWCTL);
3604
3605 /* Ack interrupts, disable EFC interrupt */
3606 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3607 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3608 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3609 I915_WRITE(DEIIR, DE_PCU_EVENT);
3610 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3611
3612 /* Go back to the starting frequency */
3613 ironlake_set_drps(dev, dev_priv->ips.fstart);
3614 mdelay(1);
3615 rgvswctl |= MEMCTL_CMD_STS;
3616 I915_WRITE(MEMSWCTL, rgvswctl);
3617 mdelay(1);
3618
3619 spin_unlock_irq(&mchdev_lock);
3620 }
3621
3622 /* There's a funny hw issue where the hw returns all 0 when reading from
3623 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3624 * ourselves, instead of doing a rmw cycle (which might result in us clearing
3625 * all limits and the gpu stuck at whatever frequency it is at atm).
3626 */
3627 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3628 {
3629 u32 limits;
3630
3631 /* Only set the down limit when we've reached the lowest level to avoid
3632 * getting more interrupts, otherwise leave this clear. This prevents a
3633 * race in the hw when coming out of rc6: There's a tiny window where
3634 * the hw runs at the minimal clock before selecting the desired
3635 * frequency, if the down threshold expires in that window we will not
3636 * receive a down interrupt. */
3637 limits = dev_priv->rps.max_freq_softlimit << 24;
3638 if (val <= dev_priv->rps.min_freq_softlimit)
3639 limits |= dev_priv->rps.min_freq_softlimit << 16;
3640
3641 return limits;
3642 }
3643
3644 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3645 {
3646 int new_power;
3647
3648 new_power = dev_priv->rps.power;
3649 switch (dev_priv->rps.power) {
3650 case LOW_POWER:
3651 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3652 new_power = BETWEEN;
3653 break;
3654
3655 case BETWEEN:
3656 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3657 new_power = LOW_POWER;
3658 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3659 new_power = HIGH_POWER;
3660 break;
3661
3662 case HIGH_POWER:
3663 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3664 new_power = BETWEEN;
3665 break;
3666 }
3667 /* Max/min bins are special */
3668 if (val == dev_priv->rps.min_freq_softlimit)
3669 new_power = LOW_POWER;
3670 if (val == dev_priv->rps.max_freq_softlimit)
3671 new_power = HIGH_POWER;
3672 if (new_power == dev_priv->rps.power)
3673 return;
3674
3675 /* Note the units here are not exactly 1us, but 1280ns. */
3676 switch (new_power) {
3677 case LOW_POWER:
3678 /* Upclock if more than 95% busy over 16ms */
3679 I915_WRITE(GEN6_RP_UP_EI, 12500);
3680 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3681
3682 /* Downclock if less than 85% busy over 32ms */
3683 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3684 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3685
3686 I915_WRITE(GEN6_RP_CONTROL,
3687 GEN6_RP_MEDIA_TURBO |
3688 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3689 GEN6_RP_MEDIA_IS_GFX |
3690 GEN6_RP_ENABLE |
3691 GEN6_RP_UP_BUSY_AVG |
3692 GEN6_RP_DOWN_IDLE_AVG);
3693 break;
3694
3695 case BETWEEN:
3696 /* Upclock if more than 90% busy over 13ms */
3697 I915_WRITE(GEN6_RP_UP_EI, 10250);
3698 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3699
3700 /* Downclock if less than 75% busy over 32ms */
3701 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3702 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3703
3704 I915_WRITE(GEN6_RP_CONTROL,
3705 GEN6_RP_MEDIA_TURBO |
3706 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3707 GEN6_RP_MEDIA_IS_GFX |
3708 GEN6_RP_ENABLE |
3709 GEN6_RP_UP_BUSY_AVG |
3710 GEN6_RP_DOWN_IDLE_AVG);
3711 break;
3712
3713 case HIGH_POWER:
3714 /* Upclock if more than 85% busy over 10ms */
3715 I915_WRITE(GEN6_RP_UP_EI, 8000);
3716 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3717
3718 /* Downclock if less than 60% busy over 32ms */
3719 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3720 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3721
3722 I915_WRITE(GEN6_RP_CONTROL,
3723 GEN6_RP_MEDIA_TURBO |
3724 GEN6_RP_MEDIA_HW_NORMAL_MODE |
3725 GEN6_RP_MEDIA_IS_GFX |
3726 GEN6_RP_ENABLE |
3727 GEN6_RP_UP_BUSY_AVG |
3728 GEN6_RP_DOWN_IDLE_AVG);
3729 break;
3730 }
3731
3732 dev_priv->rps.power = new_power;
3733 dev_priv->rps.last_adj = 0;
3734 }
3735
3736 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3737 {
3738 u32 mask = 0;
3739
3740 if (val > dev_priv->rps.min_freq_softlimit)
3741 mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3742 if (val < dev_priv->rps.max_freq_softlimit)
3743 mask |= GEN6_PM_RP_UP_THRESHOLD;
3744
3745 mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
3746 mask &= dev_priv->pm_rps_events;
3747
3748 /* IVB and SNB hard hangs on looping batchbuffer
3749 * if GEN6_PM_UP_EI_EXPIRED is masked.
3750 */
3751 if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
3752 mask |= GEN6_PM_RP_UP_EI_EXPIRED;
3753
3754 if (IS_GEN8(dev_priv->dev))
3755 mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
3756
3757 return ~mask;
3758 }
3759
3760 /* gen6_set_rps is called to update the frequency request, but should also be
3761 * called when the range (min_delay and max_delay) is modified so that we can
3762 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3763 void gen6_set_rps(struct drm_device *dev, u8 val)
3764 {
3765 struct drm_i915_private *dev_priv = dev->dev_private;
3766
3767 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3768 WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3769 WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3770
3771 /* min/max delay may still have been modified so be sure to
3772 * write the limits value.
3773 */
3774 if (val != dev_priv->rps.cur_freq) {
3775 gen6_set_rps_thresholds(dev_priv, val);
3776
3777 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3778 I915_WRITE(GEN6_RPNSWREQ,
3779 HSW_FREQUENCY(val));
3780 else
3781 I915_WRITE(GEN6_RPNSWREQ,
3782 GEN6_FREQUENCY(val) |
3783 GEN6_OFFSET(0) |
3784 GEN6_AGGRESSIVE_TURBO);
3785 }
3786
3787 /* Make sure we continue to get interrupts
3788 * until we hit the minimum or maximum frequencies.
3789 */
3790 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3791 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3792
3793 POSTING_READ(GEN6_RPNSWREQ);
3794
3795 dev_priv->rps.cur_freq = val;
3796 trace_intel_gpu_freq_change(val * 50);
3797 }
3798
3799 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3800 *
3801 * * If Gfx is Idle, then
3802 * 1. Mask Turbo interrupts
3803 * 2. Bring up Gfx clock
3804 * 3. Change the freq to Rpn and wait till P-Unit updates freq
3805 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3806 * 5. Unmask Turbo interrupts
3807 */
3808 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3809 {
3810 struct drm_device *dev = dev_priv->dev;
3811
3812 /* Latest VLV doesn't need to force the gfx clock */
3813 if (dev->pdev->revision >= 0xd) {
3814 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3815 return;
3816 }
3817
3818 /*
3819 * When we are idle. Drop to min voltage state.
3820 */
3821
3822 if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3823 return;
3824
3825 /* Mask turbo interrupt so that they will not come in between */
3826 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3827
3828 vlv_force_gfx_clock(dev_priv, true);
3829
3830 dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3831
3832 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3833 dev_priv->rps.min_freq_softlimit);
3834
3835 if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3836 & GENFREQSTATUS) == 0, 100))
3837 DRM_ERROR("timed out waiting for Punit\n");
3838
3839 vlv_force_gfx_clock(dev_priv, false);
3840
3841 I915_WRITE(GEN6_PMINTRMSK,
3842 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3843 }
3844
3845 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3846 {
3847 struct drm_device *dev = dev_priv->dev;
3848
3849 mutex_lock(&dev_priv->rps.hw_lock);
3850 if (dev_priv->rps.enabled) {
3851 if (IS_CHERRYVIEW(dev))
3852 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3853 else if (IS_VALLEYVIEW(dev))
3854 vlv_set_rps_idle(dev_priv);
3855 else
3856 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3857 dev_priv->rps.last_adj = 0;
3858 }
3859 mutex_unlock(&dev_priv->rps.hw_lock);
3860 }
3861
3862 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3863 {
3864 struct drm_device *dev = dev_priv->dev;
3865
3866 mutex_lock(&dev_priv->rps.hw_lock);
3867 if (dev_priv->rps.enabled) {
3868 if (IS_VALLEYVIEW(dev))
3869 valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3870 else
3871 gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3872 dev_priv->rps.last_adj = 0;
3873 }
3874 mutex_unlock(&dev_priv->rps.hw_lock);
3875 }
3876
3877 void valleyview_set_rps(struct drm_device *dev, u8 val)
3878 {
3879 struct drm_i915_private *dev_priv = dev->dev_private;
3880
3881 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3882 WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3883 WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3884
3885 if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
3886 "Odd GPU freq value\n"))
3887 val &= ~1;
3888
3889 if (val != dev_priv->rps.cur_freq)
3890 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3891
3892 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3893
3894 dev_priv->rps.cur_freq = val;
3895 trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3896 }
3897
3898 static void gen9_disable_rps(struct drm_device *dev)
3899 {
3900 struct drm_i915_private *dev_priv = dev->dev_private;
3901
3902 I915_WRITE(GEN6_RC_CONTROL, 0);
3903 }
3904
3905 static void gen6_disable_rps(struct drm_device *dev)
3906 {
3907 struct drm_i915_private *dev_priv = dev->dev_private;
3908
3909 I915_WRITE(GEN6_RC_CONTROL, 0);
3910 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3911 }
3912
3913 static void cherryview_disable_rps(struct drm_device *dev)
3914 {
3915 struct drm_i915_private *dev_priv = dev->dev_private;
3916
3917 I915_WRITE(GEN6_RC_CONTROL, 0);
3918 }
3919
3920 static void valleyview_disable_rps(struct drm_device *dev)
3921 {
3922 struct drm_i915_private *dev_priv = dev->dev_private;
3923
3924 /* we're doing forcewake before Disabling RC6,
3925 * This what the BIOS expects when going into suspend */
3926 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3927
3928 I915_WRITE(GEN6_RC_CONTROL, 0);
3929
3930 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3931 }
3932
3933 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3934 {
3935 if (IS_VALLEYVIEW(dev)) {
3936 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
3937 mode = GEN6_RC_CTL_RC6_ENABLE;
3938 else
3939 mode = 0;
3940 }
3941 if (HAS_RC6p(dev))
3942 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
3943 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3944 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3945 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3946
3947 else
3948 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
3949 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
3950 }
3951
3952 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3953 {
3954 /* No RC6 before Ironlake */
3955 if (INTEL_INFO(dev)->gen < 5)
3956 return 0;
3957
3958 /* RC6 is only on Ironlake mobile not on desktop */
3959 if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
3960 return 0;
3961
3962 /* Respect the kernel parameter if it is set */
3963 if (enable_rc6 >= 0) {
3964 int mask;
3965
3966 if (HAS_RC6p(dev))
3967 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
3968 INTEL_RC6pp_ENABLE;
3969 else
3970 mask = INTEL_RC6_ENABLE;
3971
3972 if ((enable_rc6 & mask) != enable_rc6)
3973 DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
3974 enable_rc6 & mask, enable_rc6, mask);
3975
3976 return enable_rc6 & mask;
3977 }
3978
3979 /* Disable RC6 on Ironlake */
3980 if (INTEL_INFO(dev)->gen == 5)
3981 return 0;
3982
3983 if (IS_IVYBRIDGE(dev))
3984 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3985
3986 return INTEL_RC6_ENABLE;
3987 }
3988
3989 int intel_enable_rc6(const struct drm_device *dev)
3990 {
3991 return i915.enable_rc6;
3992 }
3993
3994 static void gen6_init_rps_frequencies(struct drm_device *dev)
3995 {
3996 struct drm_i915_private *dev_priv = dev->dev_private;
3997 uint32_t rp_state_cap;
3998 u32 ddcc_status = 0;
3999 int ret;
4000
4001 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4002 /* All of these values are in units of 50MHz */
4003 dev_priv->rps.cur_freq = 0;
4004 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4005 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
4006 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
4007 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4008 /* hw_max = RP0 until we check for overclocking */
4009 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
4010
4011 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4012 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4013 ret = sandybridge_pcode_read(dev_priv,
4014 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4015 &ddcc_status);
4016 if (0 == ret)
4017 dev_priv->rps.efficient_freq =
4018 (ddcc_status >> 8) & 0xff;
4019 }
4020
4021 /* Preserve min/max settings in case of re-init */
4022 if (dev_priv->rps.max_freq_softlimit == 0)
4023 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4024
4025 if (dev_priv->rps.min_freq_softlimit == 0) {
4026 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4027 dev_priv->rps.min_freq_softlimit =
4028 /* max(RPe, 450 MHz) */
4029 max(dev_priv->rps.efficient_freq, (u8) 9);
4030 else
4031 dev_priv->rps.min_freq_softlimit =
4032 dev_priv->rps.min_freq;
4033 }
4034 }
4035
4036 static void gen9_enable_rps(struct drm_device *dev)
4037 {
4038 struct drm_i915_private *dev_priv = dev->dev_private;
4039 struct intel_engine_cs *ring;
4040 uint32_t rc6_mask = 0;
4041 int unused;
4042
4043 /* 1a: Software RC state - RC0 */
4044 I915_WRITE(GEN6_RC_STATE, 0);
4045
4046 /* 1b: Get forcewake during program sequence. Although the driver
4047 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4048 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4049
4050 /* 2a: Disable RC states. */
4051 I915_WRITE(GEN6_RC_CONTROL, 0);
4052
4053 /* 2b: Program RC6 thresholds.*/
4054 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4055 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4056 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4057 for_each_ring(ring, dev_priv, unused)
4058 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4059 I915_WRITE(GEN6_RC_SLEEP, 0);
4060 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4061
4062 /* 3a: Enable RC6 */
4063 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4064 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4065 DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4066 "on" : "off");
4067 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4068 GEN6_RC_CTL_EI_MODE(1) |
4069 rc6_mask);
4070
4071 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4072
4073 }
4074
4075 static void gen8_enable_rps(struct drm_device *dev)
4076 {
4077 struct drm_i915_private *dev_priv = dev->dev_private;
4078 struct intel_engine_cs *ring;
4079 uint32_t rc6_mask = 0;
4080 int unused;
4081
4082 /* 1a: Software RC state - RC0 */
4083 I915_WRITE(GEN6_RC_STATE, 0);
4084
4085 /* 1c & 1d: Get forcewake during program sequence. Although the driver
4086 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4087 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4088
4089 /* 2a: Disable RC states. */
4090 I915_WRITE(GEN6_RC_CONTROL, 0);
4091
4092 /* Initialize rps frequencies */
4093 gen6_init_rps_frequencies(dev);
4094
4095 /* 2b: Program RC6 thresholds.*/
4096 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4097 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4098 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4099 for_each_ring(ring, dev_priv, unused)
4100 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4101 I915_WRITE(GEN6_RC_SLEEP, 0);
4102 if (IS_BROADWELL(dev))
4103 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4104 else
4105 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4106
4107 /* 3: Enable RC6 */
4108 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4109 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4110 intel_print_rc6_info(dev, rc6_mask);
4111 if (IS_BROADWELL(dev))
4112 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4113 GEN7_RC_CTL_TO_MODE |
4114 rc6_mask);
4115 else
4116 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4117 GEN6_RC_CTL_EI_MODE(1) |
4118 rc6_mask);
4119
4120 /* 4 Program defaults and thresholds for RPS*/
4121 I915_WRITE(GEN6_RPNSWREQ,
4122 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4123 I915_WRITE(GEN6_RC_VIDEO_FREQ,
4124 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4125 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4126 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4127
4128 /* Docs recommend 900MHz, and 300 MHz respectively */
4129 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4130 dev_priv->rps.max_freq_softlimit << 24 |
4131 dev_priv->rps.min_freq_softlimit << 16);
4132
4133 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4134 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4135 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4136 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4137
4138 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4139
4140 /* 5: Enable RPS */
4141 I915_WRITE(GEN6_RP_CONTROL,
4142 GEN6_RP_MEDIA_TURBO |
4143 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4144 GEN6_RP_MEDIA_IS_GFX |
4145 GEN6_RP_ENABLE |
4146 GEN6_RP_UP_BUSY_AVG |
4147 GEN6_RP_DOWN_IDLE_AVG);
4148
4149 /* 6: Ring frequency + overclocking (our driver does this later */
4150
4151 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4152 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4153
4154 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4155 }
4156
4157 static void gen6_enable_rps(struct drm_device *dev)
4158 {
4159 struct drm_i915_private *dev_priv = dev->dev_private;
4160 struct intel_engine_cs *ring;
4161 u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4162 u32 gtfifodbg;
4163 int rc6_mode;
4164 int i, ret;
4165
4166 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4167
4168 /* Here begins a magic sequence of register writes to enable
4169 * auto-downclocking.
4170 *
4171 * Perhaps there might be some value in exposing these to
4172 * userspace...
4173 */
4174 I915_WRITE(GEN6_RC_STATE, 0);
4175
4176 /* Clear the DBG now so we don't confuse earlier errors */
4177 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4178 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4179 I915_WRITE(GTFIFODBG, gtfifodbg);
4180 }
4181
4182 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4183
4184 /* Initialize rps frequencies */
4185 gen6_init_rps_frequencies(dev);
4186
4187 /* disable the counters and set deterministic thresholds */
4188 I915_WRITE(GEN6_RC_CONTROL, 0);
4189
4190 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4191 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4192 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4193 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4194 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4195
4196 for_each_ring(ring, dev_priv, i)
4197 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4198
4199 I915_WRITE(GEN6_RC_SLEEP, 0);
4200 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4201 if (IS_IVYBRIDGE(dev))
4202 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4203 else
4204 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4205 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4206 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4207
4208 /* Check if we are enabling RC6 */
4209 rc6_mode = intel_enable_rc6(dev_priv->dev);
4210 if (rc6_mode & INTEL_RC6_ENABLE)
4211 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4212
4213 /* We don't use those on Haswell */
4214 if (!IS_HASWELL(dev)) {
4215 if (rc6_mode & INTEL_RC6p_ENABLE)
4216 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4217
4218 if (rc6_mode & INTEL_RC6pp_ENABLE)
4219 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4220 }
4221
4222 intel_print_rc6_info(dev, rc6_mask);
4223
4224 I915_WRITE(GEN6_RC_CONTROL,
4225 rc6_mask |
4226 GEN6_RC_CTL_EI_MODE(1) |
4227 GEN6_RC_CTL_HW_ENABLE);
4228
4229 /* Power down if completely idle for over 50ms */
4230 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4231 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4232
4233 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4234 if (ret)
4235 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4236
4237 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
4238 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
4239 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4240 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4241 (pcu_mbox & 0xff) * 50);
4242 dev_priv->rps.max_freq = pcu_mbox & 0xff;
4243 }
4244
4245 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4246 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4247
4248 rc6vids = 0;
4249 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
4250 if (IS_GEN6(dev) && ret) {
4251 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
4252 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
4253 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
4254 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
4255 rc6vids &= 0xffff00;
4256 rc6vids |= GEN6_ENCODE_RC6_VID(450);
4257 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
4258 if (ret)
4259 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
4260 }
4261
4262 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4263 }
4264
4265 static void __gen6_update_ring_freq(struct drm_device *dev)
4266 {
4267 struct drm_i915_private *dev_priv = dev->dev_private;
4268 int min_freq = 15;
4269 unsigned int gpu_freq;
4270 unsigned int max_ia_freq, min_ring_freq;
4271 int scaling_factor = 180;
4272 struct cpufreq_policy *policy;
4273
4274 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4275
4276 policy = cpufreq_cpu_get(0);
4277 if (policy) {
4278 max_ia_freq = policy->cpuinfo.max_freq;
4279 cpufreq_cpu_put(policy);
4280 } else {
4281 /*
4282 * Default to measured freq if none found, PCU will ensure we
4283 * don't go over
4284 */
4285 max_ia_freq = tsc_khz;
4286 }
4287
4288 /* Convert from kHz to MHz */
4289 max_ia_freq /= 1000;
4290
4291 min_ring_freq = I915_READ(DCLK) & 0xf;
4292 /* convert DDR frequency from units of 266.6MHz to bandwidth */
4293 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4294
4295 /*
4296 * For each potential GPU frequency, load a ring frequency we'd like
4297 * to use for memory access. We do this by specifying the IA frequency
4298 * the PCU should use as a reference to determine the ring frequency.
4299 */
4300 for (gpu_freq = dev_priv->rps.max_freq; gpu_freq >= dev_priv->rps.min_freq;
4301 gpu_freq--) {
4302 int diff = dev_priv->rps.max_freq - gpu_freq;
4303 unsigned int ia_freq = 0, ring_freq = 0;
4304
4305 if (INTEL_INFO(dev)->gen >= 8) {
4306 /* max(2 * GT, DDR). NB: GT is 50MHz units */
4307 ring_freq = max(min_ring_freq, gpu_freq);
4308 } else if (IS_HASWELL(dev)) {
4309 ring_freq = mult_frac(gpu_freq, 5, 4);
4310 ring_freq = max(min_ring_freq, ring_freq);
4311 /* leave ia_freq as the default, chosen by cpufreq */
4312 } else {
4313 /* On older processors, there is no separate ring
4314 * clock domain, so in order to boost the bandwidth
4315 * of the ring, we need to upclock the CPU (ia_freq).
4316 *
4317 * For GPU frequencies less than 750MHz,
4318 * just use the lowest ring freq.
4319 */
4320 if (gpu_freq < min_freq)
4321 ia_freq = 800;
4322 else
4323 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
4324 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
4325 }
4326
4327 sandybridge_pcode_write(dev_priv,
4328 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4329 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
4330 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
4331 gpu_freq);
4332 }
4333 }
4334
4335 void gen6_update_ring_freq(struct drm_device *dev)
4336 {
4337 struct drm_i915_private *dev_priv = dev->dev_private;
4338
4339 if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
4340 return;
4341
4342 mutex_lock(&dev_priv->rps.hw_lock);
4343 __gen6_update_ring_freq(dev);
4344 mutex_unlock(&dev_priv->rps.hw_lock);
4345 }
4346
4347 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4348 {
4349 u32 val, rp0;
4350
4351 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4352 rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
4353
4354 return rp0;
4355 }
4356
4357 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4358 {
4359 u32 val, rpe;
4360
4361 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
4362 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
4363
4364 return rpe;
4365 }
4366
4367 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
4368 {
4369 u32 val, rp1;
4370
4371 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4372 rp1 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
4373
4374 return rp1;
4375 }
4376
4377 static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
4378 {
4379 u32 val, rpn;
4380
4381 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4382 rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
4383 return rpn;
4384 }
4385
4386 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
4387 {
4388 u32 val, rp1;
4389
4390 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4391
4392 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
4393
4394 return rp1;
4395 }
4396
4397 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4398 {
4399 u32 val, rp0;
4400
4401 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4402
4403 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
4404 /* Clamp to max */
4405 rp0 = min_t(u32, rp0, 0xea);
4406
4407 return rp0;
4408 }
4409
4410 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4411 {
4412 u32 val, rpe;
4413
4414 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4415 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4416 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4417 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
4418
4419 return rpe;
4420 }
4421
4422 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4423 {
4424 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4425 }
4426
4427 /* Check that the pctx buffer wasn't move under us. */
4428 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
4429 {
4430 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4431
4432 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
4433 dev_priv->vlv_pctx->stolen->start);
4434 }
4435
4436
4437 /* Check that the pcbr address is not empty. */
4438 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
4439 {
4440 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4441
4442 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
4443 }
4444
4445 static void cherryview_setup_pctx(struct drm_device *dev)
4446 {
4447 struct drm_i915_private *dev_priv = dev->dev_private;
4448 unsigned long pctx_paddr, paddr;
4449 struct i915_gtt *gtt = &dev_priv->gtt;
4450 u32 pcbr;
4451 int pctx_size = 32*1024;
4452
4453 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4454
4455 pcbr = I915_READ(VLV_PCBR);
4456 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
4457 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4458 paddr = (dev_priv->mm.stolen_base +
4459 (gtt->stolen_size - pctx_size));
4460
4461 pctx_paddr = (paddr & (~4095));
4462 I915_WRITE(VLV_PCBR, pctx_paddr);
4463 }
4464
4465 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4466 }
4467
4468 static void valleyview_setup_pctx(struct drm_device *dev)
4469 {
4470 struct drm_i915_private *dev_priv = dev->dev_private;
4471 struct drm_i915_gem_object *pctx;
4472 unsigned long pctx_paddr;
4473 u32 pcbr;
4474 int pctx_size = 24*1024;
4475
4476 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4477
4478 pcbr = I915_READ(VLV_PCBR);
4479 if (pcbr) {
4480 /* BIOS set it up already, grab the pre-alloc'd space */
4481 int pcbr_offset;
4482
4483 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
4484 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
4485 pcbr_offset,
4486 I915_GTT_OFFSET_NONE,
4487 pctx_size);
4488 goto out;
4489 }
4490
4491 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4492
4493 /*
4494 * From the Gunit register HAS:
4495 * The Gfx driver is expected to program this register and ensure
4496 * proper allocation within Gfx stolen memory. For example, this
4497 * register should be programmed such than the PCBR range does not
4498 * overlap with other ranges, such as the frame buffer, protected
4499 * memory, or any other relevant ranges.
4500 */
4501 pctx = i915_gem_object_create_stolen(dev, pctx_size);
4502 if (!pctx) {
4503 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
4504 return;
4505 }
4506
4507 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
4508 I915_WRITE(VLV_PCBR, pctx_paddr);
4509
4510 out:
4511 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4512 dev_priv->vlv_pctx = pctx;
4513 }
4514
4515 static void valleyview_cleanup_pctx(struct drm_device *dev)
4516 {
4517 struct drm_i915_private *dev_priv = dev->dev_private;
4518
4519 if (WARN_ON(!dev_priv->vlv_pctx))
4520 return;
4521
4522 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
4523 dev_priv->vlv_pctx = NULL;
4524 }
4525
4526 static void valleyview_init_gt_powersave(struct drm_device *dev)
4527 {
4528 struct drm_i915_private *dev_priv = dev->dev_private;
4529 u32 val;
4530
4531 valleyview_setup_pctx(dev);
4532
4533 mutex_lock(&dev_priv->rps.hw_lock);
4534
4535 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4536 switch ((val >> 6) & 3) {
4537 case 0:
4538 case 1:
4539 dev_priv->mem_freq = 800;
4540 break;
4541 case 2:
4542 dev_priv->mem_freq = 1066;
4543 break;
4544 case 3:
4545 dev_priv->mem_freq = 1333;
4546 break;
4547 }
4548 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4549
4550 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
4551 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4552 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4553 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4554 dev_priv->rps.max_freq);
4555
4556 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
4557 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4558 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4559 dev_priv->rps.efficient_freq);
4560
4561 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
4562 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
4563 vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4564 dev_priv->rps.rp1_freq);
4565
4566 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
4567 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4568 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4569 dev_priv->rps.min_freq);
4570
4571 /* Preserve min/max settings in case of re-init */
4572 if (dev_priv->rps.max_freq_softlimit == 0)
4573 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4574
4575 if (dev_priv->rps.min_freq_softlimit == 0)
4576 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4577
4578 mutex_unlock(&dev_priv->rps.hw_lock);
4579 }
4580
4581 static void cherryview_init_gt_powersave(struct drm_device *dev)
4582 {
4583 struct drm_i915_private *dev_priv = dev->dev_private;
4584 u32 val;
4585
4586 cherryview_setup_pctx(dev);
4587
4588 mutex_lock(&dev_priv->rps.hw_lock);
4589
4590 mutex_lock(&dev_priv->dpio_lock);
4591 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
4592 mutex_unlock(&dev_priv->dpio_lock);
4593
4594 switch ((val >> 2) & 0x7) {
4595 case 0:
4596 case 1:
4597 dev_priv->rps.cz_freq = 200;
4598 dev_priv->mem_freq = 1600;
4599 break;
4600 case 2:
4601 dev_priv->rps.cz_freq = 267;
4602 dev_priv->mem_freq = 1600;
4603 break;
4604 case 3:
4605 dev_priv->rps.cz_freq = 333;
4606 dev_priv->mem_freq = 2000;
4607 break;
4608 case 4:
4609 dev_priv->rps.cz_freq = 320;
4610 dev_priv->mem_freq = 1600;
4611 break;
4612 case 5:
4613 dev_priv->rps.cz_freq = 400;
4614 dev_priv->mem_freq = 1600;
4615 break;
4616 }
4617 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4618
4619 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
4620 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4621 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4622 vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4623 dev_priv->rps.max_freq);
4624
4625 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
4626 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4627 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4628 dev_priv->rps.efficient_freq);
4629
4630 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
4631 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4632 vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4633 dev_priv->rps.rp1_freq);
4634
4635 dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
4636 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4637 vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4638 dev_priv->rps.min_freq);
4639
4640 WARN_ONCE((dev_priv->rps.max_freq |
4641 dev_priv->rps.efficient_freq |
4642 dev_priv->rps.rp1_freq |
4643 dev_priv->rps.min_freq) & 1,
4644 "Odd GPU freq values\n");
4645
4646 /* Preserve min/max settings in case of re-init */
4647 if (dev_priv->rps.max_freq_softlimit == 0)
4648 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4649
4650 if (dev_priv->rps.min_freq_softlimit == 0)
4651 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4652
4653 mutex_unlock(&dev_priv->rps.hw_lock);
4654 }
4655
4656 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
4657 {
4658 valleyview_cleanup_pctx(dev);
4659 }
4660
4661 static void cherryview_enable_rps(struct drm_device *dev)
4662 {
4663 struct drm_i915_private *dev_priv = dev->dev_private;
4664 struct intel_engine_cs *ring;
4665 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4666 int i;
4667
4668 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4669
4670 gtfifodbg = I915_READ(GTFIFODBG);
4671 if (gtfifodbg) {
4672 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4673 gtfifodbg);
4674 I915_WRITE(GTFIFODBG, gtfifodbg);
4675 }
4676
4677 cherryview_check_pctx(dev_priv);
4678
4679 /* 1a & 1b: Get forcewake during program sequence. Although the driver
4680 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4681 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4682
4683 /* 2a: Program RC6 thresholds.*/
4684 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4685 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4686 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4687
4688 for_each_ring(ring, dev_priv, i)
4689 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4690 I915_WRITE(GEN6_RC_SLEEP, 0);
4691
4692 /* TO threshold set to 1750 us ( 0x557 * 1.28 us) */
4693 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4694
4695 /* allows RC6 residency counter to work */
4696 I915_WRITE(VLV_COUNTER_CONTROL,
4697 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
4698 VLV_MEDIA_RC6_COUNT_EN |
4699 VLV_RENDER_RC6_COUNT_EN));
4700
4701 /* For now we assume BIOS is allocating and populating the PCBR */
4702 pcbr = I915_READ(VLV_PCBR);
4703
4704 /* 3: Enable RC6 */
4705 if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
4706 (pcbr >> VLV_PCBR_ADDR_SHIFT))
4707 rc6_mode = GEN7_RC_CTL_TO_MODE;
4708
4709 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4710
4711 /* 4 Program defaults and thresholds for RPS*/
4712 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4713 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4714 I915_WRITE(GEN6_RP_UP_EI, 66000);
4715 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4716
4717 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4718
4719 /* WaDisablePwrmtrEvent:chv (pre-production hw) */
4720 I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
4721 I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);
4722
4723 /* 5: Enable RPS */
4724 I915_WRITE(GEN6_RP_CONTROL,
4725 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4726 GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
4727 GEN6_RP_ENABLE |
4728 GEN6_RP_UP_BUSY_AVG |
4729 GEN6_RP_DOWN_IDLE_AVG);
4730
4731 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4732
4733 /* RPS code assumes GPLL is used */
4734 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
4735
4736 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
4737 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4738
4739 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4740 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4741 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4742 dev_priv->rps.cur_freq);
4743
4744 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4745 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4746 dev_priv->rps.efficient_freq);
4747
4748 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4749
4750 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4751 }
4752
4753 static void valleyview_enable_rps(struct drm_device *dev)
4754 {
4755 struct drm_i915_private *dev_priv = dev->dev_private;
4756 struct intel_engine_cs *ring;
4757 u32 gtfifodbg, val, rc6_mode = 0;
4758 int i;
4759
4760 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4761
4762 valleyview_check_pctx(dev_priv);
4763
4764 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4765 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4766 gtfifodbg);
4767 I915_WRITE(GTFIFODBG, gtfifodbg);
4768 }
4769
4770 /* If VLV, Forcewake all wells, else re-direct to regular path */
4771 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4772
4773 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4774 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4775 I915_WRITE(GEN6_RP_UP_EI, 66000);
4776 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4777
4778 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4779 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
4780
4781 I915_WRITE(GEN6_RP_CONTROL,
4782 GEN6_RP_MEDIA_TURBO |
4783 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4784 GEN6_RP_MEDIA_IS_GFX |
4785 GEN6_RP_ENABLE |
4786 GEN6_RP_UP_BUSY_AVG |
4787 GEN6_RP_DOWN_IDLE_CONT);
4788
4789 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
4790 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4791 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4792
4793 for_each_ring(ring, dev_priv, i)
4794 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4795
4796 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4797
4798 /* allows RC6 residency counter to work */
4799 I915_WRITE(VLV_COUNTER_CONTROL,
4800 _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
4801 VLV_RENDER_RC0_COUNT_EN |
4802 VLV_MEDIA_RC6_COUNT_EN |
4803 VLV_RENDER_RC6_COUNT_EN));
4804
4805 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4806 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
4807
4808 intel_print_rc6_info(dev, rc6_mode);
4809
4810 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4811
4812 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4813
4814 /* RPS code assumes GPLL is used */
4815 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
4816
4817 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
4818 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4819
4820 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4821 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4822 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4823 dev_priv->rps.cur_freq);
4824
4825 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4826 vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4827 dev_priv->rps.efficient_freq);
4828
4829 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4830
4831 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4832 }
4833
4834 void ironlake_teardown_rc6(struct drm_device *dev)
4835 {
4836 struct drm_i915_private *dev_priv = dev->dev_private;
4837
4838 if (dev_priv->ips.renderctx) {
4839 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
4840 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
4841 dev_priv->ips.renderctx = NULL;
4842 }
4843
4844 if (dev_priv->ips.pwrctx) {
4845 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
4846 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
4847 dev_priv->ips.pwrctx = NULL;
4848 }
4849 }
4850
4851 static void ironlake_disable_rc6(struct drm_device *dev)
4852 {
4853 struct drm_i915_private *dev_priv = dev->dev_private;
4854
4855 if (I915_READ(PWRCTXA)) {
4856 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
4857 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
4858 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
4859 50);
4860
4861 I915_WRITE(PWRCTXA, 0);
4862 POSTING_READ(PWRCTXA);
4863
4864 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4865 POSTING_READ(RSTDBYCTL);
4866 }
4867 }
4868
4869 static int ironlake_setup_rc6(struct drm_device *dev)
4870 {
4871 struct drm_i915_private *dev_priv = dev->dev_private;
4872
4873 if (dev_priv->ips.renderctx == NULL)
4874 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
4875 if (!dev_priv->ips.renderctx)
4876 return -ENOMEM;
4877
4878 if (dev_priv->ips.pwrctx == NULL)
4879 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
4880 if (!dev_priv->ips.pwrctx) {
4881 ironlake_teardown_rc6(dev);
4882 return -ENOMEM;
4883 }
4884
4885 return 0;
4886 }
4887
4888 static void ironlake_enable_rc6(struct drm_device *dev)
4889 {
4890 struct drm_i915_private *dev_priv = dev->dev_private;
4891 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
4892 bool was_interruptible;
4893 int ret;
4894
4895 /* rc6 disabled by default due to repeated reports of hanging during
4896 * boot and resume.
4897 */
4898 if (!intel_enable_rc6(dev))
4899 return;
4900
4901 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4902
4903 ret = ironlake_setup_rc6(dev);
4904 if (ret)
4905 return;
4906
4907 was_interruptible = dev_priv->mm.interruptible;
4908 dev_priv->mm.interruptible = false;
4909
4910 /*
4911 * GPU can automatically power down the render unit if given a page
4912 * to save state.
4913 */
4914 ret = intel_ring_begin(ring, 6);
4915 if (ret) {
4916 ironlake_teardown_rc6(dev);
4917 dev_priv->mm.interruptible = was_interruptible;
4918 return;
4919 }
4920
4921 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
4922 intel_ring_emit(ring, MI_SET_CONTEXT);
4923 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4924 MI_MM_SPACE_GTT |
4925 MI_SAVE_EXT_STATE_EN |
4926 MI_RESTORE_EXT_STATE_EN |
4927 MI_RESTORE_INHIBIT);
4928 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
4929 intel_ring_emit(ring, MI_NOOP);
4930 intel_ring_emit(ring, MI_FLUSH);
4931 intel_ring_advance(ring);
4932
4933 /*
4934 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
4935 * does an implicit flush, combined with MI_FLUSH above, it should be
4936 * safe to assume that renderctx is valid
4937 */
4938 ret = intel_ring_idle(ring);
4939 dev_priv->mm.interruptible = was_interruptible;
4940 if (ret) {
4941 DRM_ERROR("failed to enable ironlake power savings\n");
4942 ironlake_teardown_rc6(dev);
4943 return;
4944 }
4945
4946 I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4947 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4948
4949 intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
4950 }
4951
4952 static unsigned long intel_pxfreq(u32 vidfreq)
4953 {
4954 unsigned long freq;
4955 int div = (vidfreq & 0x3f0000) >> 16;
4956 int post = (vidfreq & 0x3000) >> 12;
4957 int pre = (vidfreq & 0x7);
4958
4959 if (!pre)
4960 return 0;
4961
4962 freq = ((div * 133333) / ((1<<post) * pre));
4963
4964 return freq;
4965 }
4966
4967 static const struct cparams {
4968 u16 i;
4969 u16 t;
4970 u16 m;
4971 u16 c;
4972 } cparams[] = {
4973 { 1, 1333, 301, 28664 },
4974 { 1, 1066, 294, 24460 },
4975 { 1, 800, 294, 25192 },
4976 { 0, 1333, 276, 27605 },
4977 { 0, 1066, 276, 27605 },
4978 { 0, 800, 231, 23784 },
4979 };
4980
4981 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4982 {
4983 u64 total_count, diff, ret;
4984 u32 count1, count2, count3, m = 0, c = 0;
4985 unsigned long now = jiffies_to_msecs(jiffies), diff1;
4986 int i;
4987
4988 assert_spin_locked(&mchdev_lock);
4989
4990 diff1 = now - dev_priv->ips.last_time1;
4991
4992 /* Prevent division-by-zero if we are asking too fast.
4993 * Also, we don't get interesting results if we are polling
4994 * faster than once in 10ms, so just return the saved value
4995 * in such cases.
4996 */
4997 if (diff1 <= 10)
4998 return dev_priv->ips.chipset_power;
4999
5000 count1 = I915_READ(DMIEC);
5001 count2 = I915_READ(DDREC);
5002 count3 = I915_READ(CSIEC);
5003
5004 total_count = count1 + count2 + count3;
5005
5006 /* FIXME: handle per-counter overflow */
5007 if (total_count < dev_priv->ips.last_count1) {
5008 diff = ~0UL - dev_priv->ips.last_count1;
5009 diff += total_count;
5010 } else {
5011 diff = total_count - dev_priv->ips.last_count1;
5012 }
5013
5014 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5015 if (cparams[i].i == dev_priv->ips.c_m &&
5016 cparams[i].t == dev_priv->ips.r_t) {
5017 m = cparams[i].m;
5018 c = cparams[i].c;
5019 break;
5020 }
5021 }
5022
5023 diff = div_u64(diff, diff1);
5024 ret = ((m * diff) + c);
5025 ret = div_u64(ret, 10);
5026
5027 dev_priv->ips.last_count1 = total_count;
5028 dev_priv->ips.last_time1 = now;
5029
5030 dev_priv->ips.chipset_power = ret;
5031
5032 return ret;
5033 }
5034
5035 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5036 {
5037 struct drm_device *dev = dev_priv->dev;
5038 unsigned long val;
5039
5040 if (INTEL_INFO(dev)->gen != 5)
5041 return 0;
5042
5043 spin_lock_irq(&mchdev_lock);
5044
5045 val = __i915_chipset_val(dev_priv);
5046
5047 spin_unlock_irq(&mchdev_lock);
5048
5049 return val;
5050 }
5051
5052 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5053 {
5054 unsigned long m, x, b;
5055 u32 tsfs;
5056
5057 tsfs = I915_READ(TSFS);
5058
5059 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5060 x = I915_READ8(TR1);
5061
5062 b = tsfs & TSFS_INTR_MASK;
5063
5064 return ((m * x) / 127) - b;
5065 }
5066
5067 static int _pxvid_to_vd(u8 pxvid)
5068 {
5069 if (pxvid == 0)
5070 return 0;
5071
5072 if (pxvid >= 8 && pxvid < 31)
5073 pxvid = 31;
5074
5075 return (pxvid + 2) * 125;
5076 }
5077
5078 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5079 {
5080 struct drm_device *dev = dev_priv->dev;
5081 const int vd = _pxvid_to_vd(pxvid);
5082 const int vm = vd - 1125;
5083
5084 if (INTEL_INFO(dev)->is_mobile)
5085 return vm > 0 ? vm : 0;
5086
5087 return vd;
5088 }
5089
5090 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5091 {
5092 u64 now, diff, diffms;
5093 u32 count;
5094
5095 assert_spin_locked(&mchdev_lock);
5096
5097 now = ktime_get_raw_ns();
5098 diffms = now - dev_priv->ips.last_time2;
5099 do_div(diffms, NSEC_PER_MSEC);
5100
5101 /* Don't divide by 0 */
5102 if (!diffms)
5103 return;
5104
5105 count = I915_READ(GFXEC);
5106
5107 if (count < dev_priv->ips.last_count2) {
5108 diff = ~0UL - dev_priv->ips.last_count2;
5109 diff += count;
5110 } else {
5111 diff = count - dev_priv->ips.last_count2;
5112 }
5113
5114 dev_priv->ips.last_count2 = count;
5115 dev_priv->ips.last_time2 = now;
5116
5117 /* More magic constants... */
5118 diff = diff * 1181;
5119 diff = div_u64(diff, diffms * 10);
5120 dev_priv->ips.gfx_power = diff;
5121 }
5122
5123 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5124 {
5125 struct drm_device *dev = dev_priv->dev;
5126
5127 if (INTEL_INFO(dev)->gen != 5)
5128 return;
5129
5130 spin_lock_irq(&mchdev_lock);
5131
5132 __i915_update_gfx_val(dev_priv);
5133
5134 spin_unlock_irq(&mchdev_lock);
5135 }
5136
5137 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5138 {
5139 unsigned long t, corr, state1, corr2, state2;
5140 u32 pxvid, ext_v;
5141
5142 assert_spin_locked(&mchdev_lock);
5143
5144 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5145 pxvid = (pxvid >> 24) & 0x7f;
5146 ext_v = pvid_to_extvid(dev_priv, pxvid);
5147
5148 state1 = ext_v;
5149
5150 t = i915_mch_val(dev_priv);
5151
5152 /* Revel in the empirically derived constants */
5153
5154 /* Correction factor in 1/100000 units */
5155 if (t > 80)
5156 corr = ((t * 2349) + 135940);
5157 else if (t >= 50)
5158 corr = ((t * 964) + 29317);
5159 else /* < 50 */
5160 corr = ((t * 301) + 1004);
5161
5162 corr = corr * ((150142 * state1) / 10000 - 78642);
5163 corr /= 100000;
5164 corr2 = (corr * dev_priv->ips.corr);
5165
5166 state2 = (corr2 * state1) / 10000;
5167 state2 /= 100; /* convert to mW */
5168
5169 __i915_update_gfx_val(dev_priv);
5170
5171 return dev_priv->ips.gfx_power + state2;
5172 }
5173
5174 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5175 {
5176 struct drm_device *dev = dev_priv->dev;
5177 unsigned long val;
5178
5179 if (INTEL_INFO(dev)->gen != 5)
5180 return 0;
5181
5182 spin_lock_irq(&mchdev_lock);
5183
5184 val = __i915_gfx_val(dev_priv);
5185
5186 spin_unlock_irq(&mchdev_lock);
5187
5188 return val;
5189 }
5190
5191 /**
5192 * i915_read_mch_val - return value for IPS use
5193 *
5194 * Calculate and return a value for the IPS driver to use when deciding whether
5195 * we have thermal and power headroom to increase CPU or GPU power budget.
5196 */
5197 unsigned long i915_read_mch_val(void)
5198 {
5199 struct drm_i915_private *dev_priv;
5200 unsigned long chipset_val, graphics_val, ret = 0;
5201
5202 spin_lock_irq(&mchdev_lock);
5203 if (!i915_mch_dev)
5204 goto out_unlock;
5205 dev_priv = i915_mch_dev;
5206
5207 chipset_val = __i915_chipset_val(dev_priv);
5208 graphics_val = __i915_gfx_val(dev_priv);
5209
5210 ret = chipset_val + graphics_val;
5211
5212 out_unlock:
5213 spin_unlock_irq(&mchdev_lock);
5214
5215 return ret;
5216 }
5217 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5218
5219 /**
5220 * i915_gpu_raise - raise GPU frequency limit
5221 *
5222 * Raise the limit; IPS indicates we have thermal headroom.
5223 */
5224 bool i915_gpu_raise(void)
5225 {
5226 struct drm_i915_private *dev_priv;
5227 bool ret = true;
5228
5229 spin_lock_irq(&mchdev_lock);
5230 if (!i915_mch_dev) {
5231 ret = false;
5232 goto out_unlock;
5233 }
5234 dev_priv = i915_mch_dev;
5235
5236 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5237 dev_priv->ips.max_delay--;
5238
5239 out_unlock:
5240 spin_unlock_irq(&mchdev_lock);
5241
5242 return ret;
5243 }
5244 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5245
5246 /**
5247 * i915_gpu_lower - lower GPU frequency limit
5248 *
5249 * IPS indicates we're close to a thermal limit, so throttle back the GPU
5250 * frequency maximum.
5251 */
5252 bool i915_gpu_lower(void)
5253 {
5254 struct drm_i915_private *dev_priv;
5255 bool ret = true;
5256
5257 spin_lock_irq(&mchdev_lock);
5258 if (!i915_mch_dev) {
5259 ret = false;
5260 goto out_unlock;
5261 }
5262 dev_priv = i915_mch_dev;
5263
5264 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5265 dev_priv->ips.max_delay++;
5266
5267 out_unlock:
5268 spin_unlock_irq(&mchdev_lock);
5269
5270 return ret;
5271 }
5272 EXPORT_SYMBOL_GPL(i915_gpu_lower);
5273
5274 /**
5275 * i915_gpu_busy - indicate GPU business to IPS
5276 *
5277 * Tell the IPS driver whether or not the GPU is busy.
5278 */
5279 bool i915_gpu_busy(void)
5280 {
5281 struct drm_i915_private *dev_priv;
5282 struct intel_engine_cs *ring;
5283 bool ret = false;
5284 int i;
5285
5286 spin_lock_irq(&mchdev_lock);
5287 if (!i915_mch_dev)
5288 goto out_unlock;
5289 dev_priv = i915_mch_dev;
5290
5291 for_each_ring(ring, dev_priv, i)
5292 ret |= !list_empty(&ring->request_list);
5293
5294 out_unlock:
5295 spin_unlock_irq(&mchdev_lock);
5296
5297 return ret;
5298 }
5299 EXPORT_SYMBOL_GPL(i915_gpu_busy);
5300
5301 /**
5302 * i915_gpu_turbo_disable - disable graphics turbo
5303 *
5304 * Disable graphics turbo by resetting the max frequency and setting the
5305 * current frequency to the default.
5306 */
5307 bool i915_gpu_turbo_disable(void)
5308 {
5309 struct drm_i915_private *dev_priv;
5310 bool ret = true;
5311
5312 spin_lock_irq(&mchdev_lock);
5313 if (!i915_mch_dev) {
5314 ret = false;
5315 goto out_unlock;
5316 }
5317 dev_priv = i915_mch_dev;
5318
5319 dev_priv->ips.max_delay = dev_priv->ips.fstart;
5320
5321 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5322 ret = false;
5323
5324 out_unlock:
5325 spin_unlock_irq(&mchdev_lock);
5326
5327 return ret;
5328 }
5329 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
5330
5331 /**
5332 * Tells the intel_ips driver that the i915 driver is now loaded, if
5333 * IPS got loaded first.
5334 *
5335 * This awkward dance is so that neither module has to depend on the
5336 * other in order for IPS to do the appropriate communication of
5337 * GPU turbo limits to i915.
5338 */
5339 static void
5340 ips_ping_for_i915_load(void)
5341 {
5342 void (*link)(void);
5343
5344 link = symbol_get(ips_link_to_i915_driver);
5345 if (link) {
5346 link();
5347 symbol_put(ips_link_to_i915_driver);
5348 }
5349 }
5350
5351 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
5352 {
5353 /* We only register the i915 ips part with intel-ips once everything is
5354 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5355 spin_lock_irq(&mchdev_lock);
5356 i915_mch_dev = dev_priv;
5357 spin_unlock_irq(&mchdev_lock);
5358
5359 ips_ping_for_i915_load();
5360 }
5361
5362 void intel_gpu_ips_teardown(void)
5363 {
5364 spin_lock_irq(&mchdev_lock);
5365 i915_mch_dev = NULL;
5366 spin_unlock_irq(&mchdev_lock);
5367 }
5368
5369 static void intel_init_emon(struct drm_device *dev)
5370 {
5371 struct drm_i915_private *dev_priv = dev->dev_private;
5372 u32 lcfuse;
5373 u8 pxw[16];
5374 int i;
5375
5376 /* Disable to program */
5377 I915_WRITE(ECR, 0);
5378 POSTING_READ(ECR);
5379
5380 /* Program energy weights for various events */
5381 I915_WRITE(SDEW, 0x15040d00);
5382 I915_WRITE(CSIEW0, 0x007f0000);
5383 I915_WRITE(CSIEW1, 0x1e220004);
5384 I915_WRITE(CSIEW2, 0x04000004);
5385
5386 for (i = 0; i < 5; i++)
5387 I915_WRITE(PEW + (i * 4), 0);
5388 for (i = 0; i < 3; i++)
5389 I915_WRITE(DEW + (i * 4), 0);
5390
5391 /* Program P-state weights to account for frequency power adjustment */
5392 for (i = 0; i < 16; i++) {
5393 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5394 unsigned long freq = intel_pxfreq(pxvidfreq);
5395 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5396 PXVFREQ_PX_SHIFT;
5397 unsigned long val;
5398
5399 val = vid * vid;
5400 val *= (freq / 1000);
5401 val *= 255;
5402 val /= (127*127*900);
5403 if (val > 0xff)
5404 DRM_ERROR("bad pxval: %ld\n", val);
5405 pxw[i] = val;
5406 }
5407 /* Render standby states get 0 weight */
5408 pxw[14] = 0;
5409 pxw[15] = 0;
5410
5411 for (i = 0; i < 4; i++) {
5412 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5413 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5414 I915_WRITE(PXW + (i * 4), val);
5415 }
5416
5417 /* Adjust magic regs to magic values (more experimental results) */
5418 I915_WRITE(OGW0, 0);
5419 I915_WRITE(OGW1, 0);
5420 I915_WRITE(EG0, 0x00007f00);
5421 I915_WRITE(EG1, 0x0000000e);
5422 I915_WRITE(EG2, 0x000e0000);
5423 I915_WRITE(EG3, 0x68000300);
5424 I915_WRITE(EG4, 0x42000000);
5425 I915_WRITE(EG5, 0x00140031);
5426 I915_WRITE(EG6, 0);
5427 I915_WRITE(EG7, 0);
5428
5429 for (i = 0; i < 8; i++)
5430 I915_WRITE(PXWL + (i * 4), 0);
5431
5432 /* Enable PMON + select events */
5433 I915_WRITE(ECR, 0x80000019);
5434
5435 lcfuse = I915_READ(LCFUSE02);
5436
5437 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5438 }
5439
5440 void intel_init_gt_powersave(struct drm_device *dev)
5441 {
5442 i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
5443
5444 if (IS_CHERRYVIEW(dev))
5445 cherryview_init_gt_powersave(dev);
5446 else if (IS_VALLEYVIEW(dev))
5447 valleyview_init_gt_powersave(dev);
5448 }
5449
5450 void intel_cleanup_gt_powersave(struct drm_device *dev)
5451 {
5452 if (IS_CHERRYVIEW(dev))
5453 return;
5454 else if (IS_VALLEYVIEW(dev))
5455 valleyview_cleanup_gt_powersave(dev);
5456 }
5457
5458 static void gen6_suspend_rps(struct drm_device *dev)
5459 {
5460 struct drm_i915_private *dev_priv = dev->dev_private;
5461
5462 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5463
5464 /*
5465 * TODO: disable RPS interrupts on GEN9+ too once RPS support
5466 * is added for it.
5467 */
5468 if (INTEL_INFO(dev)->gen < 9)
5469 gen6_disable_rps_interrupts(dev);
5470 }
5471
5472 /**
5473 * intel_suspend_gt_powersave - suspend PM work and helper threads
5474 * @dev: drm device
5475 *
5476 * We don't want to disable RC6 or other features here, we just want
5477 * to make sure any work we've queued has finished and won't bother
5478 * us while we're suspended.
5479 */
5480 void intel_suspend_gt_powersave(struct drm_device *dev)
5481 {
5482 struct drm_i915_private *dev_priv = dev->dev_private;
5483
5484 if (INTEL_INFO(dev)->gen < 6)
5485 return;
5486
5487 gen6_suspend_rps(dev);
5488
5489 /* Force GPU to min freq during suspend */
5490 gen6_rps_idle(dev_priv);
5491 }
5492
5493 void intel_disable_gt_powersave(struct drm_device *dev)
5494 {
5495 struct drm_i915_private *dev_priv = dev->dev_private;
5496
5497 if (IS_IRONLAKE_M(dev)) {
5498 ironlake_disable_drps(dev);
5499 ironlake_disable_rc6(dev);
5500 } else if (INTEL_INFO(dev)->gen >= 6) {
5501 intel_suspend_gt_powersave(dev);
5502
5503 mutex_lock(&dev_priv->rps.hw_lock);
5504 if (INTEL_INFO(dev)->gen >= 9)
5505 gen9_disable_rps(dev);
5506 else if (IS_CHERRYVIEW(dev))
5507 cherryview_disable_rps(dev);
5508 else if (IS_VALLEYVIEW(dev))
5509 valleyview_disable_rps(dev);
5510 else
5511 gen6_disable_rps(dev);
5512
5513 dev_priv->rps.enabled = false;
5514 mutex_unlock(&dev_priv->rps.hw_lock);
5515 }
5516 }
5517
5518 static void intel_gen6_powersave_work(struct work_struct *work)
5519 {
5520 struct drm_i915_private *dev_priv =
5521 container_of(work, struct drm_i915_private,
5522 rps.delayed_resume_work.work);
5523 struct drm_device *dev = dev_priv->dev;
5524
5525 mutex_lock(&dev_priv->rps.hw_lock);
5526
5527 /*
5528 * TODO: reset/enable RPS interrupts on GEN9+ too, once RPS support is
5529 * added for it.
5530 */
5531 if (INTEL_INFO(dev)->gen < 9)
5532 gen6_reset_rps_interrupts(dev);
5533
5534 if (IS_CHERRYVIEW(dev)) {
5535 cherryview_enable_rps(dev);
5536 } else if (IS_VALLEYVIEW(dev)) {
5537 valleyview_enable_rps(dev);
5538 } else if (INTEL_INFO(dev)->gen >= 9) {
5539 gen9_enable_rps(dev);
5540 } else if (IS_BROADWELL(dev)) {
5541 gen8_enable_rps(dev);
5542 __gen6_update_ring_freq(dev);
5543 } else {
5544 gen6_enable_rps(dev);
5545 __gen6_update_ring_freq(dev);
5546 }
5547 dev_priv->rps.enabled = true;
5548
5549 if (INTEL_INFO(dev)->gen < 9)
5550 gen6_enable_rps_interrupts(dev);
5551
5552 mutex_unlock(&dev_priv->rps.hw_lock);
5553
5554 intel_runtime_pm_put(dev_priv);
5555 }
5556
5557 void intel_enable_gt_powersave(struct drm_device *dev)
5558 {
5559 struct drm_i915_private *dev_priv = dev->dev_private;
5560
5561 if (IS_IRONLAKE_M(dev)) {
5562 mutex_lock(&dev->struct_mutex);
5563 ironlake_enable_drps(dev);
5564 ironlake_enable_rc6(dev);
5565 intel_init_emon(dev);
5566 mutex_unlock(&dev->struct_mutex);
5567 } else if (INTEL_INFO(dev)->gen >= 6) {
5568 /*
5569 * PCU communication is slow and this doesn't need to be
5570 * done at any specific time, so do this out of our fast path
5571 * to make resume and init faster.
5572 *
5573 * We depend on the HW RC6 power context save/restore
5574 * mechanism when entering D3 through runtime PM suspend. So
5575 * disable RPM until RPS/RC6 is properly setup. We can only
5576 * get here via the driver load/system resume/runtime resume
5577 * paths, so the _noresume version is enough (and in case of
5578 * runtime resume it's necessary).
5579 */
5580 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
5581 round_jiffies_up_relative(HZ)))
5582 intel_runtime_pm_get_noresume(dev_priv);
5583 }
5584 }
5585
5586 void intel_reset_gt_powersave(struct drm_device *dev)
5587 {
5588 struct drm_i915_private *dev_priv = dev->dev_private;
5589
5590 if (INTEL_INFO(dev)->gen < 6)
5591 return;
5592
5593 gen6_suspend_rps(dev);
5594 dev_priv->rps.enabled = false;
5595 }
5596
5597 static void ibx_init_clock_gating(struct drm_device *dev)
5598 {
5599 struct drm_i915_private *dev_priv = dev->dev_private;
5600
5601 /*
5602 * On Ibex Peak and Cougar Point, we need to disable clock
5603 * gating for the panel power sequencer or it will fail to
5604 * start up when no ports are active.
5605 */
5606 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5607 }
5608
5609 static void g4x_disable_trickle_feed(struct drm_device *dev)
5610 {
5611 struct drm_i915_private *dev_priv = dev->dev_private;
5612 int pipe;
5613
5614 for_each_pipe(dev_priv, pipe) {
5615 I915_WRITE(DSPCNTR(pipe),
5616 I915_READ(DSPCNTR(pipe)) |
5617 DISPPLANE_TRICKLE_FEED_DISABLE);
5618 intel_flush_primary_plane(dev_priv, pipe);
5619 }
5620 }
5621
5622 static void ilk_init_lp_watermarks(struct drm_device *dev)
5623 {
5624 struct drm_i915_private *dev_priv = dev->dev_private;
5625
5626 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5627 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5628 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5629
5630 /*
5631 * Don't touch WM1S_LP_EN here.
5632 * Doing so could cause underruns.
5633 */
5634 }
5635
5636 static void ironlake_init_clock_gating(struct drm_device *dev)
5637 {
5638 struct drm_i915_private *dev_priv = dev->dev_private;
5639 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5640
5641 /*
5642 * Required for FBC
5643 * WaFbcDisableDpfcClockGating:ilk
5644 */
5645 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
5646 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
5647 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5648
5649 I915_WRITE(PCH_3DCGDIS0,
5650 MARIUNIT_CLOCK_GATE_DISABLE |
5651 SVSMUNIT_CLOCK_GATE_DISABLE);
5652 I915_WRITE(PCH_3DCGDIS1,
5653 VFMUNIT_CLOCK_GATE_DISABLE);
5654
5655 /*
5656 * According to the spec the following bits should be set in
5657 * order to enable memory self-refresh
5658 * The bit 22/21 of 0x42004
5659 * The bit 5 of 0x42020
5660 * The bit 15 of 0x45000
5661 */
5662 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5663 (I915_READ(ILK_DISPLAY_CHICKEN2) |
5664 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5665 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5666 I915_WRITE(DISP_ARB_CTL,
5667 (I915_READ(DISP_ARB_CTL) |
5668 DISP_FBC_WM_DIS));
5669
5670 ilk_init_lp_watermarks(dev);
5671
5672 /*
5673 * Based on the document from hardware guys the following bits
5674 * should be set unconditionally in order to enable FBC.
5675 * The bit 22 of 0x42000
5676 * The bit 22 of 0x42004
5677 * The bit 7,8,9 of 0x42020.
5678 */
5679 if (IS_IRONLAKE_M(dev)) {
5680 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
5681 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5682 I915_READ(ILK_DISPLAY_CHICKEN1) |
5683 ILK_FBCQ_DIS);
5684 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5685 I915_READ(ILK_DISPLAY_CHICKEN2) |
5686 ILK_DPARB_GATE);
5687 }
5688
5689 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5690
5691 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5692 I915_READ(ILK_DISPLAY_CHICKEN2) |
5693 ILK_ELPIN_409_SELECT);
5694 I915_WRITE(_3D_CHICKEN2,
5695 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5696 _3D_CHICKEN2_WM_READ_PIPELINED);
5697
5698 /* WaDisableRenderCachePipelinedFlush:ilk */
5699 I915_WRITE(CACHE_MODE_0,
5700 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5701
5702 /* WaDisable_RenderCache_OperationalFlush:ilk */
5703 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5704
5705 g4x_disable_trickle_feed(dev);
5706
5707 ibx_init_clock_gating(dev);
5708 }
5709
5710 static void cpt_init_clock_gating(struct drm_device *dev)
5711 {
5712 struct drm_i915_private *dev_priv = dev->dev_private;
5713 int pipe;
5714 uint32_t val;
5715
5716 /*
5717 * On Ibex Peak and Cougar Point, we need to disable clock
5718 * gating for the panel power sequencer or it will fail to
5719 * start up when no ports are active.
5720 */
5721 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5722 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
5723 PCH_CPUNIT_CLOCK_GATE_DISABLE);
5724 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5725 DPLS_EDP_PPS_FIX_DIS);
5726 /* The below fixes the weird display corruption, a few pixels shifted
5727 * downward, on (only) LVDS of some HP laptops with IVY.
5728 */
5729 for_each_pipe(dev_priv, pipe) {
5730 val = I915_READ(TRANS_CHICKEN2(pipe));
5731 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5732 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5733 if (dev_priv->vbt.fdi_rx_polarity_inverted)
5734 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5735 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5736 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5737 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5738 I915_WRITE(TRANS_CHICKEN2(pipe), val);
5739 }
5740 /* WADP0ClockGatingDisable */
5741 for_each_pipe(dev_priv, pipe) {
5742 I915_WRITE(TRANS_CHICKEN1(pipe),
5743 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5744 }
5745 }
5746
5747 static void gen6_check_mch_setup(struct drm_device *dev)
5748 {
5749 struct drm_i915_private *dev_priv = dev->dev_private;
5750 uint32_t tmp;
5751
5752 tmp = I915_READ(MCH_SSKPD);
5753 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
5754 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
5755 tmp);
5756 }
5757
5758 static void gen6_init_clock_gating(struct drm_device *dev)
5759 {
5760 struct drm_i915_private *dev_priv = dev->dev_private;
5761 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5762
5763 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5764
5765 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5766 I915_READ(ILK_DISPLAY_CHICKEN2) |
5767 ILK_ELPIN_409_SELECT);
5768
5769 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5770 I915_WRITE(_3D_CHICKEN,
5771 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5772
5773 /* WaDisable_RenderCache_OperationalFlush:snb */
5774 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5775
5776 /*
5777 * BSpec recoomends 8x4 when MSAA is used,
5778 * however in practice 16x4 seems fastest.
5779 *
5780 * Note that PS/WM thread counts depend on the WIZ hashing
5781 * disable bit, which we don't touch here, but it's good
5782 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5783 */
5784 I915_WRITE(GEN6_GT_MODE,
5785 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5786
5787 ilk_init_lp_watermarks(dev);
5788
5789 I915_WRITE(CACHE_MODE_0,
5790 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5791
5792 I915_WRITE(GEN6_UCGCTL1,
5793 I915_READ(GEN6_UCGCTL1) |
5794 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5795 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5796
5797 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5798 * gating disable must be set. Failure to set it results in
5799 * flickering pixels due to Z write ordering failures after
5800 * some amount of runtime in the Mesa "fire" demo, and Unigine
5801 * Sanctuary and Tropics, and apparently anything else with
5802 * alpha test or pixel discard.
5803 *
5804 * According to the spec, bit 11 (RCCUNIT) must also be set,
5805 * but we didn't debug actual testcases to find it out.
5806 *
5807 * WaDisableRCCUnitClockGating:snb
5808 * WaDisableRCPBUnitClockGating:snb
5809 */
5810 I915_WRITE(GEN6_UCGCTL2,
5811 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5812 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5813
5814 /* WaStripsFansDisableFastClipPerformanceFix:snb */
5815 I915_WRITE(_3D_CHICKEN3,
5816 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5817
5818 /*
5819 * Bspec says:
5820 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
5821 * 3DSTATE_SF number of SF output attributes is more than 16."
5822 */
5823 I915_WRITE(_3D_CHICKEN3,
5824 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
5825
5826 /*
5827 * According to the spec the following bits should be
5828 * set in order to enable memory self-refresh and fbc:
5829 * The bit21 and bit22 of 0x42000
5830 * The bit21 and bit22 of 0x42004
5831 * The bit5 and bit7 of 0x42020
5832 * The bit14 of 0x70180
5833 * The bit14 of 0x71180
5834 *
5835 * WaFbcAsynchFlipDisableFbcQueue:snb
5836 */
5837 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5838 I915_READ(ILK_DISPLAY_CHICKEN1) |
5839 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
5840 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5841 I915_READ(ILK_DISPLAY_CHICKEN2) |
5842 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5843 I915_WRITE(ILK_DSPCLK_GATE_D,
5844 I915_READ(ILK_DSPCLK_GATE_D) |
5845 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
5846 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5847
5848 g4x_disable_trickle_feed(dev);
5849
5850 cpt_init_clock_gating(dev);
5851
5852 gen6_check_mch_setup(dev);
5853 }
5854
5855 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
5856 {
5857 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
5858
5859 /*
5860 * WaVSThreadDispatchOverride:ivb,vlv
5861 *
5862 * This actually overrides the dispatch
5863 * mode for all thread types.
5864 */
5865 reg &= ~GEN7_FF_SCHED_MASK;
5866 reg |= GEN7_FF_TS_SCHED_HW;
5867 reg |= GEN7_FF_VS_SCHED_HW;
5868 reg |= GEN7_FF_DS_SCHED_HW;
5869
5870 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
5871 }
5872
5873 static void lpt_init_clock_gating(struct drm_device *dev)
5874 {
5875 struct drm_i915_private *dev_priv = dev->dev_private;
5876
5877 /*
5878 * TODO: this bit should only be enabled when really needed, then
5879 * disabled when not needed anymore in order to save power.
5880 */
5881 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
5882 I915_WRITE(SOUTH_DSPCLK_GATE_D,
5883 I915_READ(SOUTH_DSPCLK_GATE_D) |
5884 PCH_LP_PARTITION_LEVEL_DISABLE);
5885
5886 /* WADPOClockGatingDisable:hsw */
5887 I915_WRITE(_TRANSA_CHICKEN1,
5888 I915_READ(_TRANSA_CHICKEN1) |
5889 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5890 }
5891
5892 static void lpt_suspend_hw(struct drm_device *dev)
5893 {
5894 struct drm_i915_private *dev_priv = dev->dev_private;
5895
5896 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
5897 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
5898
5899 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
5900 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
5901 }
5902 }
5903
5904 static void broadwell_init_clock_gating(struct drm_device *dev)
5905 {
5906 struct drm_i915_private *dev_priv = dev->dev_private;
5907 enum pipe pipe;
5908
5909 I915_WRITE(WM3_LP_ILK, 0);
5910 I915_WRITE(WM2_LP_ILK, 0);
5911 I915_WRITE(WM1_LP_ILK, 0);
5912
5913 /* WaSwitchSolVfFArbitrationPriority:bdw */
5914 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5915
5916 /* WaPsrDPAMaskVBlankInSRD:bdw */
5917 I915_WRITE(CHICKEN_PAR1_1,
5918 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
5919
5920 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5921 for_each_pipe(dev_priv, pipe) {
5922 I915_WRITE(CHICKEN_PIPESL_1(pipe),
5923 I915_READ(CHICKEN_PIPESL_1(pipe)) |
5924 BDW_DPRS_MASK_VBLANK_SRD);
5925 }
5926
5927 /* WaVSRefCountFullforceMissDisable:bdw */
5928 /* WaDSRefCountFullforceMissDisable:bdw */
5929 I915_WRITE(GEN7_FF_THREAD_MODE,
5930 I915_READ(GEN7_FF_THREAD_MODE) &
5931 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5932
5933 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5934 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5935
5936 /* WaDisableSDEUnitClockGating:bdw */
5937 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5938 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5939
5940 lpt_init_clock_gating(dev);
5941 }
5942
5943 static void haswell_init_clock_gating(struct drm_device *dev)
5944 {
5945 struct drm_i915_private *dev_priv = dev->dev_private;
5946
5947 ilk_init_lp_watermarks(dev);
5948
5949 /* L3 caching of data atomics doesn't work -- disable it. */
5950 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
5951 I915_WRITE(HSW_ROW_CHICKEN3,
5952 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
5953
5954 /* This is required by WaCatErrorRejectionIssue:hsw */
5955 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5956 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5957 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5958
5959 /* WaVSRefCountFullforceMissDisable:hsw */
5960 I915_WRITE(GEN7_FF_THREAD_MODE,
5961 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
5962
5963 /* WaDisable_RenderCache_OperationalFlush:hsw */
5964 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5965
5966 /* enable HiZ Raw Stall Optimization */
5967 I915_WRITE(CACHE_MODE_0_GEN7,
5968 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5969
5970 /* WaDisable4x2SubspanOptimization:hsw */
5971 I915_WRITE(CACHE_MODE_1,
5972 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5973
5974 /*
5975 * BSpec recommends 8x4 when MSAA is used,
5976 * however in practice 16x4 seems fastest.
5977 *
5978 * Note that PS/WM thread counts depend on the WIZ hashing
5979 * disable bit, which we don't touch here, but it's good
5980 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5981 */
5982 I915_WRITE(GEN7_GT_MODE,
5983 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5984
5985 /* WaSwitchSolVfFArbitrationPriority:hsw */
5986 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5987
5988 /* WaRsPkgCStateDisplayPMReq:hsw */
5989 I915_WRITE(CHICKEN_PAR1_1,
5990 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5991
5992 lpt_init_clock_gating(dev);
5993 }
5994
5995 static void ivybridge_init_clock_gating(struct drm_device *dev)
5996 {
5997 struct drm_i915_private *dev_priv = dev->dev_private;
5998 uint32_t snpcr;
5999
6000 ilk_init_lp_watermarks(dev);
6001
6002 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6003
6004 /* WaDisableEarlyCull:ivb */
6005 I915_WRITE(_3D_CHICKEN3,
6006 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6007
6008 /* WaDisableBackToBackFlipFix:ivb */
6009 I915_WRITE(IVB_CHICKEN3,
6010 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6011 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6012
6013 /* WaDisablePSDDualDispatchEnable:ivb */
6014 if (IS_IVB_GT1(dev))
6015 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6016 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6017
6018 /* WaDisable_RenderCache_OperationalFlush:ivb */
6019 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6020
6021 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6022 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6023 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6024
6025 /* WaApplyL3ControlAndL3ChickenMode:ivb */
6026 I915_WRITE(GEN7_L3CNTLREG1,
6027 GEN7_WA_FOR_GEN7_L3_CONTROL);
6028 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6029 GEN7_WA_L3_CHICKEN_MODE);
6030 if (IS_IVB_GT1(dev))
6031 I915_WRITE(GEN7_ROW_CHICKEN2,
6032 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6033 else {
6034 /* must write both registers */
6035 I915_WRITE(GEN7_ROW_CHICKEN2,
6036 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6037 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6038 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6039 }
6040
6041 /* WaForceL3Serialization:ivb */
6042 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6043 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6044
6045 /*
6046 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6047 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6048 */
6049 I915_WRITE(GEN6_UCGCTL2,
6050 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6051
6052 /* This is required by WaCatErrorRejectionIssue:ivb */
6053 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6054 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6055 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6056
6057 g4x_disable_trickle_feed(dev);
6058
6059 gen7_setup_fixed_func_scheduler(dev_priv);
6060
6061 if (0) { /* causes HiZ corruption on ivb:gt1 */
6062 /* enable HiZ Raw Stall Optimization */
6063 I915_WRITE(CACHE_MODE_0_GEN7,
6064 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6065 }
6066
6067 /* WaDisable4x2SubspanOptimization:ivb */
6068 I915_WRITE(CACHE_MODE_1,
6069 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6070
6071 /*
6072 * BSpec recommends 8x4 when MSAA is used,
6073 * however in practice 16x4 seems fastest.
6074 *
6075 * Note that PS/WM thread counts depend on the WIZ hashing
6076 * disable bit, which we don't touch here, but it's good
6077 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6078 */
6079 I915_WRITE(GEN7_GT_MODE,
6080 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6081
6082 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6083 snpcr &= ~GEN6_MBC_SNPCR_MASK;
6084 snpcr |= GEN6_MBC_SNPCR_MED;
6085 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6086
6087 if (!HAS_PCH_NOP(dev))
6088 cpt_init_clock_gating(dev);
6089
6090 gen6_check_mch_setup(dev);
6091 }
6092
6093 static void valleyview_init_clock_gating(struct drm_device *dev)
6094 {
6095 struct drm_i915_private *dev_priv = dev->dev_private;
6096
6097 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6098
6099 /* WaDisableEarlyCull:vlv */
6100 I915_WRITE(_3D_CHICKEN3,
6101 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6102
6103 /* WaDisableBackToBackFlipFix:vlv */
6104 I915_WRITE(IVB_CHICKEN3,
6105 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6106 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6107
6108 /* WaPsdDispatchEnable:vlv */
6109 /* WaDisablePSDDualDispatchEnable:vlv */
6110 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6111 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6112 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6113
6114 /* WaDisable_RenderCache_OperationalFlush:vlv */
6115 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6116
6117 /* WaForceL3Serialization:vlv */
6118 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6119 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6120
6121 /* WaDisableDopClockGating:vlv */
6122 I915_WRITE(GEN7_ROW_CHICKEN2,
6123 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6124
6125 /* This is required by WaCatErrorRejectionIssue:vlv */
6126 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6127 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6128 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6129
6130 gen7_setup_fixed_func_scheduler(dev_priv);
6131
6132 /*
6133 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6134 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6135 */
6136 I915_WRITE(GEN6_UCGCTL2,
6137 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6138
6139 /* WaDisableL3Bank2xClockGate:vlv
6140 * Disabling L3 clock gating- MMIO 940c[25] = 1
6141 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6142 I915_WRITE(GEN7_UCGCTL4,
6143 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6144
6145 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6146
6147 /*
6148 * BSpec says this must be set, even though
6149 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6150 */
6151 I915_WRITE(CACHE_MODE_1,
6152 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6153
6154 /*
6155 * WaIncreaseL3CreditsForVLVB0:vlv
6156 * This is the hardware default actually.
6157 */
6158 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6159
6160 /*
6161 * WaDisableVLVClockGating_VBIIssue:vlv
6162 * Disable clock gating on th GCFG unit to prevent a delay
6163 * in the reporting of vblank events.
6164 */
6165 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6166 }
6167
6168 static void cherryview_init_clock_gating(struct drm_device *dev)
6169 {
6170 struct drm_i915_private *dev_priv = dev->dev_private;
6171
6172 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6173
6174 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6175
6176 /* WaVSRefCountFullforceMissDisable:chv */
6177 /* WaDSRefCountFullforceMissDisable:chv */
6178 I915_WRITE(GEN7_FF_THREAD_MODE,
6179 I915_READ(GEN7_FF_THREAD_MODE) &
6180 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6181
6182 /* WaDisableSemaphoreAndSyncFlipWait:chv */
6183 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6184 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6185
6186 /* WaDisableCSUnitClockGating:chv */
6187 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6188 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6189
6190 /* WaDisableSDEUnitClockGating:chv */
6191 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6192 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6193 }
6194
6195 static void g4x_init_clock_gating(struct drm_device *dev)
6196 {
6197 struct drm_i915_private *dev_priv = dev->dev_private;
6198 uint32_t dspclk_gate;
6199
6200 I915_WRITE(RENCLK_GATE_D1, 0);
6201 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6202 GS_UNIT_CLOCK_GATE_DISABLE |
6203 CL_UNIT_CLOCK_GATE_DISABLE);
6204 I915_WRITE(RAMCLK_GATE_D, 0);
6205 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6206 OVRUNIT_CLOCK_GATE_DISABLE |
6207 OVCUNIT_CLOCK_GATE_DISABLE;
6208 if (IS_GM45(dev))
6209 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6210 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6211
6212 /* WaDisableRenderCachePipelinedFlush */
6213 I915_WRITE(CACHE_MODE_0,
6214 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6215
6216 /* WaDisable_RenderCache_OperationalFlush:g4x */
6217 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6218
6219 g4x_disable_trickle_feed(dev);
6220 }
6221
6222 static void crestline_init_clock_gating(struct drm_device *dev)
6223 {
6224 struct drm_i915_private *dev_priv = dev->dev_private;
6225
6226 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6227 I915_WRITE(RENCLK_GATE_D2, 0);
6228 I915_WRITE(DSPCLK_GATE_D, 0);
6229 I915_WRITE(RAMCLK_GATE_D, 0);
6230 I915_WRITE16(DEUC, 0);
6231 I915_WRITE(MI_ARB_STATE,
6232 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6233
6234 /* WaDisable_RenderCache_OperationalFlush:gen4 */
6235 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6236 }
6237
6238 static void broadwater_init_clock_gating(struct drm_device *dev)
6239 {
6240 struct drm_i915_private *dev_priv = dev->dev_private;
6241
6242 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6243 I965_RCC_CLOCK_GATE_DISABLE |
6244 I965_RCPB_CLOCK_GATE_DISABLE |
6245 I965_ISC_CLOCK_GATE_DISABLE |
6246 I965_FBC_CLOCK_GATE_DISABLE);
6247 I915_WRITE(RENCLK_GATE_D2, 0);
6248 I915_WRITE(MI_ARB_STATE,
6249 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6250
6251 /* WaDisable_RenderCache_OperationalFlush:gen4 */
6252 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6253 }
6254
6255 static void gen3_init_clock_gating(struct drm_device *dev)
6256 {
6257 struct drm_i915_private *dev_priv = dev->dev_private;
6258 u32 dstate = I915_READ(D_STATE);
6259
6260 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6261 DSTATE_DOT_CLOCK_GATING;
6262 I915_WRITE(D_STATE, dstate);
6263
6264 if (IS_PINEVIEW(dev))
6265 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6266
6267 /* IIR "flip pending" means done if this bit is set */
6268 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6269
6270 /* interrupts should cause a wake up from C3 */
6271 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6272
6273 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
6274 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6275
6276 I915_WRITE(MI_ARB_STATE,
6277 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6278 }
6279
6280 static void i85x_init_clock_gating(struct drm_device *dev)
6281 {
6282 struct drm_i915_private *dev_priv = dev->dev_private;
6283
6284 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6285
6286 /* interrupts should cause a wake up from C3 */
6287 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
6288 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6289
6290 I915_WRITE(MEM_MODE,
6291 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6292 }
6293
6294 static void i830_init_clock_gating(struct drm_device *dev)
6295 {
6296 struct drm_i915_private *dev_priv = dev->dev_private;
6297
6298 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6299
6300 I915_WRITE(MEM_MODE,
6301 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
6302 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6303 }
6304
6305 void intel_init_clock_gating(struct drm_device *dev)
6306 {
6307 struct drm_i915_private *dev_priv = dev->dev_private;
6308
6309 dev_priv->display.init_clock_gating(dev);
6310 }
6311
6312 void intel_suspend_hw(struct drm_device *dev)
6313 {
6314 if (HAS_PCH_LPT(dev))
6315 lpt_suspend_hw(dev);
6316 }
6317
6318 /* Set up chip specific power management-related functions */
6319 void intel_init_pm(struct drm_device *dev)
6320 {
6321 struct drm_i915_private *dev_priv = dev->dev_private;
6322
6323 intel_fbc_init(dev_priv);
6324
6325 /* For cxsr */
6326 if (IS_PINEVIEW(dev))
6327 i915_pineview_get_mem_freq(dev);
6328 else if (IS_GEN5(dev))
6329 i915_ironlake_get_mem_freq(dev);
6330
6331 /* For FIFO watermark updates */
6332 if (INTEL_INFO(dev)->gen >= 9) {
6333 skl_setup_wm_latency(dev);
6334
6335 dev_priv->display.init_clock_gating = gen9_init_clock_gating;
6336 dev_priv->display.update_wm = skl_update_wm;
6337 dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
6338 } else if (HAS_PCH_SPLIT(dev)) {
6339 ilk_setup_wm_latency(dev);
6340
6341 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6342 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6343 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6344 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6345 dev_priv->display.update_wm = ilk_update_wm;
6346 dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6347 } else {
6348 DRM_DEBUG_KMS("Failed to read display plane latency. "
6349 "Disable CxSR\n");
6350 }
6351
6352 if (IS_GEN5(dev))
6353 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6354 else if (IS_GEN6(dev))
6355 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6356 else if (IS_IVYBRIDGE(dev))
6357 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6358 else if (IS_HASWELL(dev))
6359 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6360 else if (INTEL_INFO(dev)->gen == 8)
6361 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
6362 } else if (IS_CHERRYVIEW(dev)) {
6363 dev_priv->display.update_wm = cherryview_update_wm;
6364 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6365 dev_priv->display.init_clock_gating =
6366 cherryview_init_clock_gating;
6367 } else if (IS_VALLEYVIEW(dev)) {
6368 dev_priv->display.update_wm = valleyview_update_wm;
6369 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6370 dev_priv->display.init_clock_gating =
6371 valleyview_init_clock_gating;
6372 } else if (IS_PINEVIEW(dev)) {
6373 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6374 dev_priv->is_ddr3,
6375 dev_priv->fsb_freq,
6376 dev_priv->mem_freq)) {
6377 DRM_INFO("failed to find known CxSR latency "
6378 "(found ddr%s fsb freq %d, mem freq %d), "
6379 "disabling CxSR\n",
6380 (dev_priv->is_ddr3 == 1) ? "3" : "2",
6381 dev_priv->fsb_freq, dev_priv->mem_freq);
6382 /* Disable CxSR and never update its watermark again */
6383 intel_set_memory_cxsr(dev_priv, false);
6384 dev_priv->display.update_wm = NULL;
6385 } else
6386 dev_priv->display.update_wm = pineview_update_wm;
6387 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6388 } else if (IS_G4X(dev)) {
6389 dev_priv->display.update_wm = g4x_update_wm;
6390 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6391 } else if (IS_GEN4(dev)) {
6392 dev_priv->display.update_wm = i965_update_wm;
6393 if (IS_CRESTLINE(dev))
6394 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6395 else if (IS_BROADWATER(dev))
6396 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6397 } else if (IS_GEN3(dev)) {
6398 dev_priv->display.update_wm = i9xx_update_wm;
6399 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6400 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6401 } else if (IS_GEN2(dev)) {
6402 if (INTEL_INFO(dev)->num_pipes == 1) {
6403 dev_priv->display.update_wm = i845_update_wm;
6404 dev_priv->display.get_fifo_size = i845_get_fifo_size;
6405 } else {
6406 dev_priv->display.update_wm = i9xx_update_wm;
6407 dev_priv->display.get_fifo_size = i830_get_fifo_size;
6408 }
6409
6410 if (IS_I85X(dev) || IS_I865G(dev))
6411 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6412 else
6413 dev_priv->display.init_clock_gating = i830_init_clock_gating;
6414 } else {
6415 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6416 }
6417 }
6418
6419 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
6420 {
6421 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6422
6423 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6424 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6425 return -EAGAIN;
6426 }
6427
6428 I915_WRITE(GEN6_PCODE_DATA, *val);
6429 I915_WRITE(GEN6_PCODE_DATA1, 0);
6430 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6431
6432 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6433 500)) {
6434 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6435 return -ETIMEDOUT;
6436 }
6437
6438 *val = I915_READ(GEN6_PCODE_DATA);
6439 I915_WRITE(GEN6_PCODE_DATA, 0);
6440
6441 return 0;
6442 }
6443
6444 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
6445 {
6446 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6447
6448 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6449 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6450 return -EAGAIN;
6451 }
6452
6453 I915_WRITE(GEN6_PCODE_DATA, val);
6454 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6455
6456 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6457 500)) {
6458 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6459 return -ETIMEDOUT;
6460 }
6461
6462 I915_WRITE(GEN6_PCODE_DATA, 0);
6463
6464 return 0;
6465 }
6466
6467 static int vlv_gpu_freq_div(unsigned int czclk_freq)
6468 {
6469 switch (czclk_freq) {
6470 case 200:
6471 return 10;
6472 case 267:
6473 return 12;
6474 case 320:
6475 case 333:
6476 return 16;
6477 case 400:
6478 return 20;
6479 default:
6480 return -1;
6481 }
6482 }
6483
6484 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
6485 {
6486 int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6487
6488 div = vlv_gpu_freq_div(czclk_freq);
6489 if (div < 0)
6490 return div;
6491
6492 return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
6493 }
6494
6495 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
6496 {
6497 int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6498
6499 mul = vlv_gpu_freq_div(czclk_freq);
6500 if (mul < 0)
6501 return mul;
6502
6503 return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
6504 }
6505
6506 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6507 {
6508 int div, czclk_freq = dev_priv->rps.cz_freq;
6509
6510 div = vlv_gpu_freq_div(czclk_freq) / 2;
6511 if (div < 0)
6512 return div;
6513
6514 return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
6515 }
6516
6517 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6518 {
6519 int mul, czclk_freq = dev_priv->rps.cz_freq;
6520
6521 mul = vlv_gpu_freq_div(czclk_freq) / 2;
6522 if (mul < 0)
6523 return mul;
6524
6525 /* CHV needs even values */
6526 return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
6527 }
6528
6529 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6530 {
6531 int ret = -1;
6532
6533 if (IS_CHERRYVIEW(dev_priv->dev))
6534 ret = chv_gpu_freq(dev_priv, val);
6535 else if (IS_VALLEYVIEW(dev_priv->dev))
6536 ret = byt_gpu_freq(dev_priv, val);
6537
6538 return ret;
6539 }
6540
6541 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6542 {
6543 int ret = -1;
6544
6545 if (IS_CHERRYVIEW(dev_priv->dev))
6546 ret = chv_freq_opcode(dev_priv, val);
6547 else if (IS_VALLEYVIEW(dev_priv->dev))
6548 ret = byt_freq_opcode(dev_priv, val);
6549
6550 return ret;
6551 }
6552
6553 void intel_pm_setup(struct drm_device *dev)
6554 {
6555 struct drm_i915_private *dev_priv = dev->dev_private;
6556
6557 mutex_init(&dev_priv->rps.hw_lock);
6558
6559 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6560 intel_gen6_powersave_work);
6561
6562 dev_priv->pm.suspended = false;
6563 }