]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/intel_pm.c
Merge remote-tracking branches 'asoc/topic/atmel', 'asoc/topic/bcm2835' and 'asoc...
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /**
35 * RC6 is a special power stage which allows the GPU to enter an very
36 * low-voltage mode when idle, using down to 0V while at this stage. This
37 * stage is entered automatically when the GPU is idle when RC6 support is
38 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39 *
40 * There are different RC6 modes available in Intel GPU, which differentiate
41 * among each other with the latency required to enter and leave RC6 and
42 * voltage consumed by the GPU in different states.
43 *
44 * The combination of the following flags define which states GPU is allowed
45 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46 * RC6pp is deepest RC6. Their support by hardware varies according to the
47 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48 * which brings the most power savings; deeper states save more power, but
49 * require higher latency to switch to and wake up.
50 */
51 #define INTEL_RC6_ENABLE (1<<0)
52 #define INTEL_RC6p_ENABLE (1<<1)
53 #define INTEL_RC6pp_ENABLE (1<<2)
54
55 static void bxt_init_clock_gating(struct drm_device *dev)
56 {
57 struct drm_i915_private *dev_priv = dev->dev_private;
58
59 /* WaDisableSDEUnitClockGating:bxt */
60 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
61 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
62
63 /*
64 * FIXME:
65 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
66 */
67 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
68 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
69
70 /*
71 * Wa: Backlight PWM may stop in the asserted state, causing backlight
72 * to stay fully on.
73 */
74 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
75 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
76 PWM1_GATING_DIS | PWM2_GATING_DIS);
77 }
78
79 static void i915_pineview_get_mem_freq(struct drm_device *dev)
80 {
81 struct drm_i915_private *dev_priv = dev->dev_private;
82 u32 tmp;
83
84 tmp = I915_READ(CLKCFG);
85
86 switch (tmp & CLKCFG_FSB_MASK) {
87 case CLKCFG_FSB_533:
88 dev_priv->fsb_freq = 533; /* 133*4 */
89 break;
90 case CLKCFG_FSB_800:
91 dev_priv->fsb_freq = 800; /* 200*4 */
92 break;
93 case CLKCFG_FSB_667:
94 dev_priv->fsb_freq = 667; /* 167*4 */
95 break;
96 case CLKCFG_FSB_400:
97 dev_priv->fsb_freq = 400; /* 100*4 */
98 break;
99 }
100
101 switch (tmp & CLKCFG_MEM_MASK) {
102 case CLKCFG_MEM_533:
103 dev_priv->mem_freq = 533;
104 break;
105 case CLKCFG_MEM_667:
106 dev_priv->mem_freq = 667;
107 break;
108 case CLKCFG_MEM_800:
109 dev_priv->mem_freq = 800;
110 break;
111 }
112
113 /* detect pineview DDR3 setting */
114 tmp = I915_READ(CSHRDDR3CTL);
115 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
116 }
117
118 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
119 {
120 struct drm_i915_private *dev_priv = dev->dev_private;
121 u16 ddrpll, csipll;
122
123 ddrpll = I915_READ16(DDRMPLL1);
124 csipll = I915_READ16(CSIPLL0);
125
126 switch (ddrpll & 0xff) {
127 case 0xc:
128 dev_priv->mem_freq = 800;
129 break;
130 case 0x10:
131 dev_priv->mem_freq = 1066;
132 break;
133 case 0x14:
134 dev_priv->mem_freq = 1333;
135 break;
136 case 0x18:
137 dev_priv->mem_freq = 1600;
138 break;
139 default:
140 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
141 ddrpll & 0xff);
142 dev_priv->mem_freq = 0;
143 break;
144 }
145
146 dev_priv->ips.r_t = dev_priv->mem_freq;
147
148 switch (csipll & 0x3ff) {
149 case 0x00c:
150 dev_priv->fsb_freq = 3200;
151 break;
152 case 0x00e:
153 dev_priv->fsb_freq = 3733;
154 break;
155 case 0x010:
156 dev_priv->fsb_freq = 4266;
157 break;
158 case 0x012:
159 dev_priv->fsb_freq = 4800;
160 break;
161 case 0x014:
162 dev_priv->fsb_freq = 5333;
163 break;
164 case 0x016:
165 dev_priv->fsb_freq = 5866;
166 break;
167 case 0x018:
168 dev_priv->fsb_freq = 6400;
169 break;
170 default:
171 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
172 csipll & 0x3ff);
173 dev_priv->fsb_freq = 0;
174 break;
175 }
176
177 if (dev_priv->fsb_freq == 3200) {
178 dev_priv->ips.c_m = 0;
179 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
180 dev_priv->ips.c_m = 1;
181 } else {
182 dev_priv->ips.c_m = 2;
183 }
184 }
185
186 static const struct cxsr_latency cxsr_latency_table[] = {
187 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
188 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
189 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
190 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
191 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
192
193 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
194 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
195 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
196 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
197 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
198
199 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
200 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
201 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
202 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
203 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
204
205 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
206 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
207 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
208 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
209 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
210
211 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
212 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
213 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
214 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
215 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
216
217 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
218 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
219 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
220 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
221 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
222 };
223
224 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
225 int is_ddr3,
226 int fsb,
227 int mem)
228 {
229 const struct cxsr_latency *latency;
230 int i;
231
232 if (fsb == 0 || mem == 0)
233 return NULL;
234
235 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
236 latency = &cxsr_latency_table[i];
237 if (is_desktop == latency->is_desktop &&
238 is_ddr3 == latency->is_ddr3 &&
239 fsb == latency->fsb_freq && mem == latency->mem_freq)
240 return latency;
241 }
242
243 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
244
245 return NULL;
246 }
247
248 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
249 {
250 u32 val;
251
252 mutex_lock(&dev_priv->rps.hw_lock);
253
254 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
255 if (enable)
256 val &= ~FORCE_DDR_HIGH_FREQ;
257 else
258 val |= FORCE_DDR_HIGH_FREQ;
259 val &= ~FORCE_DDR_LOW_FREQ;
260 val |= FORCE_DDR_FREQ_REQ_ACK;
261 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
262
263 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
264 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
265 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
266
267 mutex_unlock(&dev_priv->rps.hw_lock);
268 }
269
270 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
271 {
272 u32 val;
273
274 mutex_lock(&dev_priv->rps.hw_lock);
275
276 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
277 if (enable)
278 val |= DSP_MAXFIFO_PM5_ENABLE;
279 else
280 val &= ~DSP_MAXFIFO_PM5_ENABLE;
281 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
282
283 mutex_unlock(&dev_priv->rps.hw_lock);
284 }
285
286 #define FW_WM(value, plane) \
287 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
288
289 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
290 {
291 struct drm_device *dev = dev_priv->dev;
292 u32 val;
293
294 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
295 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
296 POSTING_READ(FW_BLC_SELF_VLV);
297 dev_priv->wm.vlv.cxsr = enable;
298 } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
299 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
300 POSTING_READ(FW_BLC_SELF);
301 } else if (IS_PINEVIEW(dev)) {
302 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
303 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
304 I915_WRITE(DSPFW3, val);
305 POSTING_READ(DSPFW3);
306 } else if (IS_I945G(dev) || IS_I945GM(dev)) {
307 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
308 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
309 I915_WRITE(FW_BLC_SELF, val);
310 POSTING_READ(FW_BLC_SELF);
311 } else if (IS_I915GM(dev)) {
312 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
313 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
314 I915_WRITE(INSTPM, val);
315 POSTING_READ(INSTPM);
316 } else {
317 return;
318 }
319
320 DRM_DEBUG_KMS("memory self-refresh is %s\n",
321 enable ? "enabled" : "disabled");
322 }
323
324
325 /*
326 * Latency for FIFO fetches is dependent on several factors:
327 * - memory configuration (speed, channels)
328 * - chipset
329 * - current MCH state
330 * It can be fairly high in some situations, so here we assume a fairly
331 * pessimal value. It's a tradeoff between extra memory fetches (if we
332 * set this value too high, the FIFO will fetch frequently to stay full)
333 * and power consumption (set it too low to save power and we might see
334 * FIFO underruns and display "flicker").
335 *
336 * A value of 5us seems to be a good balance; safe for very low end
337 * platforms but not overly aggressive on lower latency configs.
338 */
339 static const int pessimal_latency_ns = 5000;
340
341 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
342 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
343
344 static int vlv_get_fifo_size(struct drm_device *dev,
345 enum pipe pipe, int plane)
346 {
347 struct drm_i915_private *dev_priv = dev->dev_private;
348 int sprite0_start, sprite1_start, size;
349
350 switch (pipe) {
351 uint32_t dsparb, dsparb2, dsparb3;
352 case PIPE_A:
353 dsparb = I915_READ(DSPARB);
354 dsparb2 = I915_READ(DSPARB2);
355 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
356 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
357 break;
358 case PIPE_B:
359 dsparb = I915_READ(DSPARB);
360 dsparb2 = I915_READ(DSPARB2);
361 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
362 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
363 break;
364 case PIPE_C:
365 dsparb2 = I915_READ(DSPARB2);
366 dsparb3 = I915_READ(DSPARB3);
367 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
368 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
369 break;
370 default:
371 return 0;
372 }
373
374 switch (plane) {
375 case 0:
376 size = sprite0_start;
377 break;
378 case 1:
379 size = sprite1_start - sprite0_start;
380 break;
381 case 2:
382 size = 512 - 1 - sprite1_start;
383 break;
384 default:
385 return 0;
386 }
387
388 DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
389 pipe_name(pipe), plane == 0 ? "primary" : "sprite",
390 plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
391 size);
392
393 return size;
394 }
395
396 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
397 {
398 struct drm_i915_private *dev_priv = dev->dev_private;
399 uint32_t dsparb = I915_READ(DSPARB);
400 int size;
401
402 size = dsparb & 0x7f;
403 if (plane)
404 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
405
406 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
407 plane ? "B" : "A", size);
408
409 return size;
410 }
411
412 static int i830_get_fifo_size(struct drm_device *dev, int plane)
413 {
414 struct drm_i915_private *dev_priv = dev->dev_private;
415 uint32_t dsparb = I915_READ(DSPARB);
416 int size;
417
418 size = dsparb & 0x1ff;
419 if (plane)
420 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
421 size >>= 1; /* Convert to cachelines */
422
423 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
424 plane ? "B" : "A", size);
425
426 return size;
427 }
428
429 static int i845_get_fifo_size(struct drm_device *dev, int plane)
430 {
431 struct drm_i915_private *dev_priv = dev->dev_private;
432 uint32_t dsparb = I915_READ(DSPARB);
433 int size;
434
435 size = dsparb & 0x7f;
436 size >>= 2; /* Convert to cachelines */
437
438 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
439 plane ? "B" : "A",
440 size);
441
442 return size;
443 }
444
445 /* Pineview has different values for various configs */
446 static const struct intel_watermark_params pineview_display_wm = {
447 .fifo_size = PINEVIEW_DISPLAY_FIFO,
448 .max_wm = PINEVIEW_MAX_WM,
449 .default_wm = PINEVIEW_DFT_WM,
450 .guard_size = PINEVIEW_GUARD_WM,
451 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
452 };
453 static const struct intel_watermark_params pineview_display_hplloff_wm = {
454 .fifo_size = PINEVIEW_DISPLAY_FIFO,
455 .max_wm = PINEVIEW_MAX_WM,
456 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
457 .guard_size = PINEVIEW_GUARD_WM,
458 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
459 };
460 static const struct intel_watermark_params pineview_cursor_wm = {
461 .fifo_size = PINEVIEW_CURSOR_FIFO,
462 .max_wm = PINEVIEW_CURSOR_MAX_WM,
463 .default_wm = PINEVIEW_CURSOR_DFT_WM,
464 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
465 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
466 };
467 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
468 .fifo_size = PINEVIEW_CURSOR_FIFO,
469 .max_wm = PINEVIEW_CURSOR_MAX_WM,
470 .default_wm = PINEVIEW_CURSOR_DFT_WM,
471 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
472 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
473 };
474 static const struct intel_watermark_params g4x_wm_info = {
475 .fifo_size = G4X_FIFO_SIZE,
476 .max_wm = G4X_MAX_WM,
477 .default_wm = G4X_MAX_WM,
478 .guard_size = 2,
479 .cacheline_size = G4X_FIFO_LINE_SIZE,
480 };
481 static const struct intel_watermark_params g4x_cursor_wm_info = {
482 .fifo_size = I965_CURSOR_FIFO,
483 .max_wm = I965_CURSOR_MAX_WM,
484 .default_wm = I965_CURSOR_DFT_WM,
485 .guard_size = 2,
486 .cacheline_size = G4X_FIFO_LINE_SIZE,
487 };
488 static const struct intel_watermark_params valleyview_wm_info = {
489 .fifo_size = VALLEYVIEW_FIFO_SIZE,
490 .max_wm = VALLEYVIEW_MAX_WM,
491 .default_wm = VALLEYVIEW_MAX_WM,
492 .guard_size = 2,
493 .cacheline_size = G4X_FIFO_LINE_SIZE,
494 };
495 static const struct intel_watermark_params valleyview_cursor_wm_info = {
496 .fifo_size = I965_CURSOR_FIFO,
497 .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
498 .default_wm = I965_CURSOR_DFT_WM,
499 .guard_size = 2,
500 .cacheline_size = G4X_FIFO_LINE_SIZE,
501 };
502 static const struct intel_watermark_params i965_cursor_wm_info = {
503 .fifo_size = I965_CURSOR_FIFO,
504 .max_wm = I965_CURSOR_MAX_WM,
505 .default_wm = I965_CURSOR_DFT_WM,
506 .guard_size = 2,
507 .cacheline_size = I915_FIFO_LINE_SIZE,
508 };
509 static const struct intel_watermark_params i945_wm_info = {
510 .fifo_size = I945_FIFO_SIZE,
511 .max_wm = I915_MAX_WM,
512 .default_wm = 1,
513 .guard_size = 2,
514 .cacheline_size = I915_FIFO_LINE_SIZE,
515 };
516 static const struct intel_watermark_params i915_wm_info = {
517 .fifo_size = I915_FIFO_SIZE,
518 .max_wm = I915_MAX_WM,
519 .default_wm = 1,
520 .guard_size = 2,
521 .cacheline_size = I915_FIFO_LINE_SIZE,
522 };
523 static const struct intel_watermark_params i830_a_wm_info = {
524 .fifo_size = I855GM_FIFO_SIZE,
525 .max_wm = I915_MAX_WM,
526 .default_wm = 1,
527 .guard_size = 2,
528 .cacheline_size = I830_FIFO_LINE_SIZE,
529 };
530 static const struct intel_watermark_params i830_bc_wm_info = {
531 .fifo_size = I855GM_FIFO_SIZE,
532 .max_wm = I915_MAX_WM/2,
533 .default_wm = 1,
534 .guard_size = 2,
535 .cacheline_size = I830_FIFO_LINE_SIZE,
536 };
537 static const struct intel_watermark_params i845_wm_info = {
538 .fifo_size = I830_FIFO_SIZE,
539 .max_wm = I915_MAX_WM,
540 .default_wm = 1,
541 .guard_size = 2,
542 .cacheline_size = I830_FIFO_LINE_SIZE,
543 };
544
545 /**
546 * intel_calculate_wm - calculate watermark level
547 * @clock_in_khz: pixel clock
548 * @wm: chip FIFO params
549 * @pixel_size: display pixel size
550 * @latency_ns: memory latency for the platform
551 *
552 * Calculate the watermark level (the level at which the display plane will
553 * start fetching from memory again). Each chip has a different display
554 * FIFO size and allocation, so the caller needs to figure that out and pass
555 * in the correct intel_watermark_params structure.
556 *
557 * As the pixel clock runs, the FIFO will be drained at a rate that depends
558 * on the pixel size. When it reaches the watermark level, it'll start
559 * fetching FIFO line sized based chunks from memory until the FIFO fills
560 * past the watermark point. If the FIFO drains completely, a FIFO underrun
561 * will occur, and a display engine hang could result.
562 */
563 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
564 const struct intel_watermark_params *wm,
565 int fifo_size,
566 int pixel_size,
567 unsigned long latency_ns)
568 {
569 long entries_required, wm_size;
570
571 /*
572 * Note: we need to make sure we don't overflow for various clock &
573 * latency values.
574 * clocks go from a few thousand to several hundred thousand.
575 * latency is usually a few thousand
576 */
577 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
578 1000;
579 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
580
581 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
582
583 wm_size = fifo_size - (entries_required + wm->guard_size);
584
585 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
586
587 /* Don't promote wm_size to unsigned... */
588 if (wm_size > (long)wm->max_wm)
589 wm_size = wm->max_wm;
590 if (wm_size <= 0)
591 wm_size = wm->default_wm;
592
593 /*
594 * Bspec seems to indicate that the value shouldn't be lower than
595 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
596 * Lets go for 8 which is the burst size since certain platforms
597 * already use a hardcoded 8 (which is what the spec says should be
598 * done).
599 */
600 if (wm_size <= 8)
601 wm_size = 8;
602
603 return wm_size;
604 }
605
606 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
607 {
608 struct drm_crtc *crtc, *enabled = NULL;
609
610 for_each_crtc(dev, crtc) {
611 if (intel_crtc_active(crtc)) {
612 if (enabled)
613 return NULL;
614 enabled = crtc;
615 }
616 }
617
618 return enabled;
619 }
620
621 static void pineview_update_wm(struct drm_crtc *unused_crtc)
622 {
623 struct drm_device *dev = unused_crtc->dev;
624 struct drm_i915_private *dev_priv = dev->dev_private;
625 struct drm_crtc *crtc;
626 const struct cxsr_latency *latency;
627 u32 reg;
628 unsigned long wm;
629
630 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
631 dev_priv->fsb_freq, dev_priv->mem_freq);
632 if (!latency) {
633 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
634 intel_set_memory_cxsr(dev_priv, false);
635 return;
636 }
637
638 crtc = single_enabled_crtc(dev);
639 if (crtc) {
640 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
641 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
642 int clock = adjusted_mode->crtc_clock;
643
644 /* Display SR */
645 wm = intel_calculate_wm(clock, &pineview_display_wm,
646 pineview_display_wm.fifo_size,
647 pixel_size, latency->display_sr);
648 reg = I915_READ(DSPFW1);
649 reg &= ~DSPFW_SR_MASK;
650 reg |= FW_WM(wm, SR);
651 I915_WRITE(DSPFW1, reg);
652 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
653
654 /* cursor SR */
655 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
656 pineview_display_wm.fifo_size,
657 pixel_size, latency->cursor_sr);
658 reg = I915_READ(DSPFW3);
659 reg &= ~DSPFW_CURSOR_SR_MASK;
660 reg |= FW_WM(wm, CURSOR_SR);
661 I915_WRITE(DSPFW3, reg);
662
663 /* Display HPLL off SR */
664 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
665 pineview_display_hplloff_wm.fifo_size,
666 pixel_size, latency->display_hpll_disable);
667 reg = I915_READ(DSPFW3);
668 reg &= ~DSPFW_HPLL_SR_MASK;
669 reg |= FW_WM(wm, HPLL_SR);
670 I915_WRITE(DSPFW3, reg);
671
672 /* cursor HPLL off SR */
673 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
674 pineview_display_hplloff_wm.fifo_size,
675 pixel_size, latency->cursor_hpll_disable);
676 reg = I915_READ(DSPFW3);
677 reg &= ~DSPFW_HPLL_CURSOR_MASK;
678 reg |= FW_WM(wm, HPLL_CURSOR);
679 I915_WRITE(DSPFW3, reg);
680 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
681
682 intel_set_memory_cxsr(dev_priv, true);
683 } else {
684 intel_set_memory_cxsr(dev_priv, false);
685 }
686 }
687
688 static bool g4x_compute_wm0(struct drm_device *dev,
689 int plane,
690 const struct intel_watermark_params *display,
691 int display_latency_ns,
692 const struct intel_watermark_params *cursor,
693 int cursor_latency_ns,
694 int *plane_wm,
695 int *cursor_wm)
696 {
697 struct drm_crtc *crtc;
698 const struct drm_display_mode *adjusted_mode;
699 int htotal, hdisplay, clock, pixel_size;
700 int line_time_us, line_count;
701 int entries, tlb_miss;
702
703 crtc = intel_get_crtc_for_plane(dev, plane);
704 if (!intel_crtc_active(crtc)) {
705 *cursor_wm = cursor->guard_size;
706 *plane_wm = display->guard_size;
707 return false;
708 }
709
710 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
711 clock = adjusted_mode->crtc_clock;
712 htotal = adjusted_mode->crtc_htotal;
713 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
714 pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
715
716 /* Use the small buffer method to calculate plane watermark */
717 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
718 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
719 if (tlb_miss > 0)
720 entries += tlb_miss;
721 entries = DIV_ROUND_UP(entries, display->cacheline_size);
722 *plane_wm = entries + display->guard_size;
723 if (*plane_wm > (int)display->max_wm)
724 *plane_wm = display->max_wm;
725
726 /* Use the large buffer method to calculate cursor watermark */
727 line_time_us = max(htotal * 1000 / clock, 1);
728 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
729 entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
730 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
731 if (tlb_miss > 0)
732 entries += tlb_miss;
733 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
734 *cursor_wm = entries + cursor->guard_size;
735 if (*cursor_wm > (int)cursor->max_wm)
736 *cursor_wm = (int)cursor->max_wm;
737
738 return true;
739 }
740
741 /*
742 * Check the wm result.
743 *
744 * If any calculated watermark values is larger than the maximum value that
745 * can be programmed into the associated watermark register, that watermark
746 * must be disabled.
747 */
748 static bool g4x_check_srwm(struct drm_device *dev,
749 int display_wm, int cursor_wm,
750 const struct intel_watermark_params *display,
751 const struct intel_watermark_params *cursor)
752 {
753 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
754 display_wm, cursor_wm);
755
756 if (display_wm > display->max_wm) {
757 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
758 display_wm, display->max_wm);
759 return false;
760 }
761
762 if (cursor_wm > cursor->max_wm) {
763 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
764 cursor_wm, cursor->max_wm);
765 return false;
766 }
767
768 if (!(display_wm || cursor_wm)) {
769 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
770 return false;
771 }
772
773 return true;
774 }
775
776 static bool g4x_compute_srwm(struct drm_device *dev,
777 int plane,
778 int latency_ns,
779 const struct intel_watermark_params *display,
780 const struct intel_watermark_params *cursor,
781 int *display_wm, int *cursor_wm)
782 {
783 struct drm_crtc *crtc;
784 const struct drm_display_mode *adjusted_mode;
785 int hdisplay, htotal, pixel_size, clock;
786 unsigned long line_time_us;
787 int line_count, line_size;
788 int small, large;
789 int entries;
790
791 if (!latency_ns) {
792 *display_wm = *cursor_wm = 0;
793 return false;
794 }
795
796 crtc = intel_get_crtc_for_plane(dev, plane);
797 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
798 clock = adjusted_mode->crtc_clock;
799 htotal = adjusted_mode->crtc_htotal;
800 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
801 pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
802
803 line_time_us = max(htotal * 1000 / clock, 1);
804 line_count = (latency_ns / line_time_us + 1000) / 1000;
805 line_size = hdisplay * pixel_size;
806
807 /* Use the minimum of the small and large buffer method for primary */
808 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
809 large = line_count * line_size;
810
811 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
812 *display_wm = entries + display->guard_size;
813
814 /* calculate the self-refresh watermark for display cursor */
815 entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
816 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
817 *cursor_wm = entries + cursor->guard_size;
818
819 return g4x_check_srwm(dev,
820 *display_wm, *cursor_wm,
821 display, cursor);
822 }
823
824 #define FW_WM_VLV(value, plane) \
825 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
826
827 static void vlv_write_wm_values(struct intel_crtc *crtc,
828 const struct vlv_wm_values *wm)
829 {
830 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
831 enum pipe pipe = crtc->pipe;
832
833 I915_WRITE(VLV_DDL(pipe),
834 (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
835 (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
836 (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
837 (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
838
839 I915_WRITE(DSPFW1,
840 FW_WM(wm->sr.plane, SR) |
841 FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
842 FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
843 FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
844 I915_WRITE(DSPFW2,
845 FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
846 FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
847 FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
848 I915_WRITE(DSPFW3,
849 FW_WM(wm->sr.cursor, CURSOR_SR));
850
851 if (IS_CHERRYVIEW(dev_priv)) {
852 I915_WRITE(DSPFW7_CHV,
853 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
854 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
855 I915_WRITE(DSPFW8_CHV,
856 FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
857 FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
858 I915_WRITE(DSPFW9_CHV,
859 FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
860 FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
861 I915_WRITE(DSPHOWM,
862 FW_WM(wm->sr.plane >> 9, SR_HI) |
863 FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
864 FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
865 FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
866 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
867 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
868 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
869 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
870 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
871 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
872 } else {
873 I915_WRITE(DSPFW7,
874 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
875 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
876 I915_WRITE(DSPHOWM,
877 FW_WM(wm->sr.plane >> 9, SR_HI) |
878 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
879 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
880 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
881 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
882 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
883 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
884 }
885
886 /* zero (unused) WM1 watermarks */
887 I915_WRITE(DSPFW4, 0);
888 I915_WRITE(DSPFW5, 0);
889 I915_WRITE(DSPFW6, 0);
890 I915_WRITE(DSPHOWM1, 0);
891
892 POSTING_READ(DSPFW1);
893 }
894
895 #undef FW_WM_VLV
896
897 enum vlv_wm_level {
898 VLV_WM_LEVEL_PM2,
899 VLV_WM_LEVEL_PM5,
900 VLV_WM_LEVEL_DDR_DVFS,
901 };
902
903 /* latency must be in 0.1us units. */
904 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
905 unsigned int pipe_htotal,
906 unsigned int horiz_pixels,
907 unsigned int bytes_per_pixel,
908 unsigned int latency)
909 {
910 unsigned int ret;
911
912 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
913 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
914 ret = DIV_ROUND_UP(ret, 64);
915
916 return ret;
917 }
918
919 static void vlv_setup_wm_latency(struct drm_device *dev)
920 {
921 struct drm_i915_private *dev_priv = dev->dev_private;
922
923 /* all latencies in usec */
924 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
925
926 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
927
928 if (IS_CHERRYVIEW(dev_priv)) {
929 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
930 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
931
932 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
933 }
934 }
935
936 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
937 struct intel_crtc *crtc,
938 const struct intel_plane_state *state,
939 int level)
940 {
941 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
942 int clock, htotal, pixel_size, width, wm;
943
944 if (dev_priv->wm.pri_latency[level] == 0)
945 return USHRT_MAX;
946
947 if (!state->visible)
948 return 0;
949
950 pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
951 clock = crtc->config->base.adjusted_mode.crtc_clock;
952 htotal = crtc->config->base.adjusted_mode.crtc_htotal;
953 width = crtc->config->pipe_src_w;
954 if (WARN_ON(htotal == 0))
955 htotal = 1;
956
957 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
958 /*
959 * FIXME the formula gives values that are
960 * too big for the cursor FIFO, and hence we
961 * would never be able to use cursors. For
962 * now just hardcode the watermark.
963 */
964 wm = 63;
965 } else {
966 wm = vlv_wm_method2(clock, htotal, width, pixel_size,
967 dev_priv->wm.pri_latency[level] * 10);
968 }
969
970 return min_t(int, wm, USHRT_MAX);
971 }
972
973 static void vlv_compute_fifo(struct intel_crtc *crtc)
974 {
975 struct drm_device *dev = crtc->base.dev;
976 struct vlv_wm_state *wm_state = &crtc->wm_state;
977 struct intel_plane *plane;
978 unsigned int total_rate = 0;
979 const int fifo_size = 512 - 1;
980 int fifo_extra, fifo_left = fifo_size;
981
982 for_each_intel_plane_on_crtc(dev, crtc, plane) {
983 struct intel_plane_state *state =
984 to_intel_plane_state(plane->base.state);
985
986 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
987 continue;
988
989 if (state->visible) {
990 wm_state->num_active_planes++;
991 total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
992 }
993 }
994
995 for_each_intel_plane_on_crtc(dev, crtc, plane) {
996 struct intel_plane_state *state =
997 to_intel_plane_state(plane->base.state);
998 unsigned int rate;
999
1000 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1001 plane->wm.fifo_size = 63;
1002 continue;
1003 }
1004
1005 if (!state->visible) {
1006 plane->wm.fifo_size = 0;
1007 continue;
1008 }
1009
1010 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1011 plane->wm.fifo_size = fifo_size * rate / total_rate;
1012 fifo_left -= plane->wm.fifo_size;
1013 }
1014
1015 fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1016
1017 /* spread the remainder evenly */
1018 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1019 int plane_extra;
1020
1021 if (fifo_left == 0)
1022 break;
1023
1024 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1025 continue;
1026
1027 /* give it all to the first plane if none are active */
1028 if (plane->wm.fifo_size == 0 &&
1029 wm_state->num_active_planes)
1030 continue;
1031
1032 plane_extra = min(fifo_extra, fifo_left);
1033 plane->wm.fifo_size += plane_extra;
1034 fifo_left -= plane_extra;
1035 }
1036
1037 WARN_ON(fifo_left != 0);
1038 }
1039
1040 static void vlv_invert_wms(struct intel_crtc *crtc)
1041 {
1042 struct vlv_wm_state *wm_state = &crtc->wm_state;
1043 int level;
1044
1045 for (level = 0; level < wm_state->num_levels; level++) {
1046 struct drm_device *dev = crtc->base.dev;
1047 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1048 struct intel_plane *plane;
1049
1050 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1051 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1052
1053 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1054 switch (plane->base.type) {
1055 int sprite;
1056 case DRM_PLANE_TYPE_CURSOR:
1057 wm_state->wm[level].cursor = plane->wm.fifo_size -
1058 wm_state->wm[level].cursor;
1059 break;
1060 case DRM_PLANE_TYPE_PRIMARY:
1061 wm_state->wm[level].primary = plane->wm.fifo_size -
1062 wm_state->wm[level].primary;
1063 break;
1064 case DRM_PLANE_TYPE_OVERLAY:
1065 sprite = plane->plane;
1066 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1067 wm_state->wm[level].sprite[sprite];
1068 break;
1069 }
1070 }
1071 }
1072 }
1073
1074 static void vlv_compute_wm(struct intel_crtc *crtc)
1075 {
1076 struct drm_device *dev = crtc->base.dev;
1077 struct vlv_wm_state *wm_state = &crtc->wm_state;
1078 struct intel_plane *plane;
1079 int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1080 int level;
1081
1082 memset(wm_state, 0, sizeof(*wm_state));
1083
1084 wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1085 wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1086
1087 wm_state->num_active_planes = 0;
1088
1089 vlv_compute_fifo(crtc);
1090
1091 if (wm_state->num_active_planes != 1)
1092 wm_state->cxsr = false;
1093
1094 if (wm_state->cxsr) {
1095 for (level = 0; level < wm_state->num_levels; level++) {
1096 wm_state->sr[level].plane = sr_fifo_size;
1097 wm_state->sr[level].cursor = 63;
1098 }
1099 }
1100
1101 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1102 struct intel_plane_state *state =
1103 to_intel_plane_state(plane->base.state);
1104
1105 if (!state->visible)
1106 continue;
1107
1108 /* normal watermarks */
1109 for (level = 0; level < wm_state->num_levels; level++) {
1110 int wm = vlv_compute_wm_level(plane, crtc, state, level);
1111 int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1112
1113 /* hack */
1114 if (WARN_ON(level == 0 && wm > max_wm))
1115 wm = max_wm;
1116
1117 if (wm > plane->wm.fifo_size)
1118 break;
1119
1120 switch (plane->base.type) {
1121 int sprite;
1122 case DRM_PLANE_TYPE_CURSOR:
1123 wm_state->wm[level].cursor = wm;
1124 break;
1125 case DRM_PLANE_TYPE_PRIMARY:
1126 wm_state->wm[level].primary = wm;
1127 break;
1128 case DRM_PLANE_TYPE_OVERLAY:
1129 sprite = plane->plane;
1130 wm_state->wm[level].sprite[sprite] = wm;
1131 break;
1132 }
1133 }
1134
1135 wm_state->num_levels = level;
1136
1137 if (!wm_state->cxsr)
1138 continue;
1139
1140 /* maxfifo watermarks */
1141 switch (plane->base.type) {
1142 int sprite, level;
1143 case DRM_PLANE_TYPE_CURSOR:
1144 for (level = 0; level < wm_state->num_levels; level++)
1145 wm_state->sr[level].cursor =
1146 wm_state->wm[level].cursor;
1147 break;
1148 case DRM_PLANE_TYPE_PRIMARY:
1149 for (level = 0; level < wm_state->num_levels; level++)
1150 wm_state->sr[level].plane =
1151 min(wm_state->sr[level].plane,
1152 wm_state->wm[level].primary);
1153 break;
1154 case DRM_PLANE_TYPE_OVERLAY:
1155 sprite = plane->plane;
1156 for (level = 0; level < wm_state->num_levels; level++)
1157 wm_state->sr[level].plane =
1158 min(wm_state->sr[level].plane,
1159 wm_state->wm[level].sprite[sprite]);
1160 break;
1161 }
1162 }
1163
1164 /* clear any (partially) filled invalid levels */
1165 for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1166 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1167 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1168 }
1169
1170 vlv_invert_wms(crtc);
1171 }
1172
1173 #define VLV_FIFO(plane, value) \
1174 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1175
1176 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1177 {
1178 struct drm_device *dev = crtc->base.dev;
1179 struct drm_i915_private *dev_priv = to_i915(dev);
1180 struct intel_plane *plane;
1181 int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1182
1183 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1184 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1185 WARN_ON(plane->wm.fifo_size != 63);
1186 continue;
1187 }
1188
1189 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1190 sprite0_start = plane->wm.fifo_size;
1191 else if (plane->plane == 0)
1192 sprite1_start = sprite0_start + plane->wm.fifo_size;
1193 else
1194 fifo_size = sprite1_start + plane->wm.fifo_size;
1195 }
1196
1197 WARN_ON(fifo_size != 512 - 1);
1198
1199 DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1200 pipe_name(crtc->pipe), sprite0_start,
1201 sprite1_start, fifo_size);
1202
1203 switch (crtc->pipe) {
1204 uint32_t dsparb, dsparb2, dsparb3;
1205 case PIPE_A:
1206 dsparb = I915_READ(DSPARB);
1207 dsparb2 = I915_READ(DSPARB2);
1208
1209 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1210 VLV_FIFO(SPRITEB, 0xff));
1211 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1212 VLV_FIFO(SPRITEB, sprite1_start));
1213
1214 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1215 VLV_FIFO(SPRITEB_HI, 0x1));
1216 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1217 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1218
1219 I915_WRITE(DSPARB, dsparb);
1220 I915_WRITE(DSPARB2, dsparb2);
1221 break;
1222 case PIPE_B:
1223 dsparb = I915_READ(DSPARB);
1224 dsparb2 = I915_READ(DSPARB2);
1225
1226 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1227 VLV_FIFO(SPRITED, 0xff));
1228 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1229 VLV_FIFO(SPRITED, sprite1_start));
1230
1231 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1232 VLV_FIFO(SPRITED_HI, 0xff));
1233 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1234 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1235
1236 I915_WRITE(DSPARB, dsparb);
1237 I915_WRITE(DSPARB2, dsparb2);
1238 break;
1239 case PIPE_C:
1240 dsparb3 = I915_READ(DSPARB3);
1241 dsparb2 = I915_READ(DSPARB2);
1242
1243 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1244 VLV_FIFO(SPRITEF, 0xff));
1245 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1246 VLV_FIFO(SPRITEF, sprite1_start));
1247
1248 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1249 VLV_FIFO(SPRITEF_HI, 0xff));
1250 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1251 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1252
1253 I915_WRITE(DSPARB3, dsparb3);
1254 I915_WRITE(DSPARB2, dsparb2);
1255 break;
1256 default:
1257 break;
1258 }
1259 }
1260
1261 #undef VLV_FIFO
1262
1263 static void vlv_merge_wm(struct drm_device *dev,
1264 struct vlv_wm_values *wm)
1265 {
1266 struct intel_crtc *crtc;
1267 int num_active_crtcs = 0;
1268
1269 wm->level = to_i915(dev)->wm.max_level;
1270 wm->cxsr = true;
1271
1272 for_each_intel_crtc(dev, crtc) {
1273 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1274
1275 if (!crtc->active)
1276 continue;
1277
1278 if (!wm_state->cxsr)
1279 wm->cxsr = false;
1280
1281 num_active_crtcs++;
1282 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1283 }
1284
1285 if (num_active_crtcs != 1)
1286 wm->cxsr = false;
1287
1288 if (num_active_crtcs > 1)
1289 wm->level = VLV_WM_LEVEL_PM2;
1290
1291 for_each_intel_crtc(dev, crtc) {
1292 struct vlv_wm_state *wm_state = &crtc->wm_state;
1293 enum pipe pipe = crtc->pipe;
1294
1295 if (!crtc->active)
1296 continue;
1297
1298 wm->pipe[pipe] = wm_state->wm[wm->level];
1299 if (wm->cxsr)
1300 wm->sr = wm_state->sr[wm->level];
1301
1302 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1303 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1304 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1305 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1306 }
1307 }
1308
1309 static void vlv_update_wm(struct drm_crtc *crtc)
1310 {
1311 struct drm_device *dev = crtc->dev;
1312 struct drm_i915_private *dev_priv = dev->dev_private;
1313 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1314 enum pipe pipe = intel_crtc->pipe;
1315 struct vlv_wm_values wm = {};
1316
1317 vlv_compute_wm(intel_crtc);
1318 vlv_merge_wm(dev, &wm);
1319
1320 if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1321 /* FIXME should be part of crtc atomic commit */
1322 vlv_pipe_set_fifo_size(intel_crtc);
1323 return;
1324 }
1325
1326 if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1327 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1328 chv_set_memory_dvfs(dev_priv, false);
1329
1330 if (wm.level < VLV_WM_LEVEL_PM5 &&
1331 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1332 chv_set_memory_pm5(dev_priv, false);
1333
1334 if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1335 intel_set_memory_cxsr(dev_priv, false);
1336
1337 /* FIXME should be part of crtc atomic commit */
1338 vlv_pipe_set_fifo_size(intel_crtc);
1339
1340 vlv_write_wm_values(intel_crtc, &wm);
1341
1342 DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1343 "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1344 pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1345 wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1346 wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1347
1348 if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1349 intel_set_memory_cxsr(dev_priv, true);
1350
1351 if (wm.level >= VLV_WM_LEVEL_PM5 &&
1352 dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1353 chv_set_memory_pm5(dev_priv, true);
1354
1355 if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1356 dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1357 chv_set_memory_dvfs(dev_priv, true);
1358
1359 dev_priv->wm.vlv = wm;
1360 }
1361
1362 #define single_plane_enabled(mask) is_power_of_2(mask)
1363
1364 static void g4x_update_wm(struct drm_crtc *crtc)
1365 {
1366 struct drm_device *dev = crtc->dev;
1367 static const int sr_latency_ns = 12000;
1368 struct drm_i915_private *dev_priv = dev->dev_private;
1369 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1370 int plane_sr, cursor_sr;
1371 unsigned int enabled = 0;
1372 bool cxsr_enabled;
1373
1374 if (g4x_compute_wm0(dev, PIPE_A,
1375 &g4x_wm_info, pessimal_latency_ns,
1376 &g4x_cursor_wm_info, pessimal_latency_ns,
1377 &planea_wm, &cursora_wm))
1378 enabled |= 1 << PIPE_A;
1379
1380 if (g4x_compute_wm0(dev, PIPE_B,
1381 &g4x_wm_info, pessimal_latency_ns,
1382 &g4x_cursor_wm_info, pessimal_latency_ns,
1383 &planeb_wm, &cursorb_wm))
1384 enabled |= 1 << PIPE_B;
1385
1386 if (single_plane_enabled(enabled) &&
1387 g4x_compute_srwm(dev, ffs(enabled) - 1,
1388 sr_latency_ns,
1389 &g4x_wm_info,
1390 &g4x_cursor_wm_info,
1391 &plane_sr, &cursor_sr)) {
1392 cxsr_enabled = true;
1393 } else {
1394 cxsr_enabled = false;
1395 intel_set_memory_cxsr(dev_priv, false);
1396 plane_sr = cursor_sr = 0;
1397 }
1398
1399 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1400 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1401 planea_wm, cursora_wm,
1402 planeb_wm, cursorb_wm,
1403 plane_sr, cursor_sr);
1404
1405 I915_WRITE(DSPFW1,
1406 FW_WM(plane_sr, SR) |
1407 FW_WM(cursorb_wm, CURSORB) |
1408 FW_WM(planeb_wm, PLANEB) |
1409 FW_WM(planea_wm, PLANEA));
1410 I915_WRITE(DSPFW2,
1411 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1412 FW_WM(cursora_wm, CURSORA));
1413 /* HPLL off in SR has some issues on G4x... disable it */
1414 I915_WRITE(DSPFW3,
1415 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1416 FW_WM(cursor_sr, CURSOR_SR));
1417
1418 if (cxsr_enabled)
1419 intel_set_memory_cxsr(dev_priv, true);
1420 }
1421
1422 static void i965_update_wm(struct drm_crtc *unused_crtc)
1423 {
1424 struct drm_device *dev = unused_crtc->dev;
1425 struct drm_i915_private *dev_priv = dev->dev_private;
1426 struct drm_crtc *crtc;
1427 int srwm = 1;
1428 int cursor_sr = 16;
1429 bool cxsr_enabled;
1430
1431 /* Calc sr entries for one plane configs */
1432 crtc = single_enabled_crtc(dev);
1433 if (crtc) {
1434 /* self-refresh has much higher latency */
1435 static const int sr_latency_ns = 12000;
1436 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1437 int clock = adjusted_mode->crtc_clock;
1438 int htotal = adjusted_mode->crtc_htotal;
1439 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1440 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1441 unsigned long line_time_us;
1442 int entries;
1443
1444 line_time_us = max(htotal * 1000 / clock, 1);
1445
1446 /* Use ns/us then divide to preserve precision */
1447 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1448 pixel_size * hdisplay;
1449 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1450 srwm = I965_FIFO_SIZE - entries;
1451 if (srwm < 0)
1452 srwm = 1;
1453 srwm &= 0x1ff;
1454 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1455 entries, srwm);
1456
1457 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1458 pixel_size * crtc->cursor->state->crtc_w;
1459 entries = DIV_ROUND_UP(entries,
1460 i965_cursor_wm_info.cacheline_size);
1461 cursor_sr = i965_cursor_wm_info.fifo_size -
1462 (entries + i965_cursor_wm_info.guard_size);
1463
1464 if (cursor_sr > i965_cursor_wm_info.max_wm)
1465 cursor_sr = i965_cursor_wm_info.max_wm;
1466
1467 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1468 "cursor %d\n", srwm, cursor_sr);
1469
1470 cxsr_enabled = true;
1471 } else {
1472 cxsr_enabled = false;
1473 /* Turn off self refresh if both pipes are enabled */
1474 intel_set_memory_cxsr(dev_priv, false);
1475 }
1476
1477 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1478 srwm);
1479
1480 /* 965 has limitations... */
1481 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1482 FW_WM(8, CURSORB) |
1483 FW_WM(8, PLANEB) |
1484 FW_WM(8, PLANEA));
1485 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1486 FW_WM(8, PLANEC_OLD));
1487 /* update cursor SR watermark */
1488 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1489
1490 if (cxsr_enabled)
1491 intel_set_memory_cxsr(dev_priv, true);
1492 }
1493
1494 #undef FW_WM
1495
1496 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1497 {
1498 struct drm_device *dev = unused_crtc->dev;
1499 struct drm_i915_private *dev_priv = dev->dev_private;
1500 const struct intel_watermark_params *wm_info;
1501 uint32_t fwater_lo;
1502 uint32_t fwater_hi;
1503 int cwm, srwm = 1;
1504 int fifo_size;
1505 int planea_wm, planeb_wm;
1506 struct drm_crtc *crtc, *enabled = NULL;
1507
1508 if (IS_I945GM(dev))
1509 wm_info = &i945_wm_info;
1510 else if (!IS_GEN2(dev))
1511 wm_info = &i915_wm_info;
1512 else
1513 wm_info = &i830_a_wm_info;
1514
1515 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1516 crtc = intel_get_crtc_for_plane(dev, 0);
1517 if (intel_crtc_active(crtc)) {
1518 const struct drm_display_mode *adjusted_mode;
1519 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1520 if (IS_GEN2(dev))
1521 cpp = 4;
1522
1523 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1524 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1525 wm_info, fifo_size, cpp,
1526 pessimal_latency_ns);
1527 enabled = crtc;
1528 } else {
1529 planea_wm = fifo_size - wm_info->guard_size;
1530 if (planea_wm > (long)wm_info->max_wm)
1531 planea_wm = wm_info->max_wm;
1532 }
1533
1534 if (IS_GEN2(dev))
1535 wm_info = &i830_bc_wm_info;
1536
1537 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1538 crtc = intel_get_crtc_for_plane(dev, 1);
1539 if (intel_crtc_active(crtc)) {
1540 const struct drm_display_mode *adjusted_mode;
1541 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1542 if (IS_GEN2(dev))
1543 cpp = 4;
1544
1545 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1546 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1547 wm_info, fifo_size, cpp,
1548 pessimal_latency_ns);
1549 if (enabled == NULL)
1550 enabled = crtc;
1551 else
1552 enabled = NULL;
1553 } else {
1554 planeb_wm = fifo_size - wm_info->guard_size;
1555 if (planeb_wm > (long)wm_info->max_wm)
1556 planeb_wm = wm_info->max_wm;
1557 }
1558
1559 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1560
1561 if (IS_I915GM(dev) && enabled) {
1562 struct drm_i915_gem_object *obj;
1563
1564 obj = intel_fb_obj(enabled->primary->state->fb);
1565
1566 /* self-refresh seems busted with untiled */
1567 if (obj->tiling_mode == I915_TILING_NONE)
1568 enabled = NULL;
1569 }
1570
1571 /*
1572 * Overlay gets an aggressive default since video jitter is bad.
1573 */
1574 cwm = 2;
1575
1576 /* Play safe and disable self-refresh before adjusting watermarks. */
1577 intel_set_memory_cxsr(dev_priv, false);
1578
1579 /* Calc sr entries for one plane configs */
1580 if (HAS_FW_BLC(dev) && enabled) {
1581 /* self-refresh has much higher latency */
1582 static const int sr_latency_ns = 6000;
1583 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1584 int clock = adjusted_mode->crtc_clock;
1585 int htotal = adjusted_mode->crtc_htotal;
1586 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1587 int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1588 unsigned long line_time_us;
1589 int entries;
1590
1591 line_time_us = max(htotal * 1000 / clock, 1);
1592
1593 /* Use ns/us then divide to preserve precision */
1594 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1595 pixel_size * hdisplay;
1596 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1597 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1598 srwm = wm_info->fifo_size - entries;
1599 if (srwm < 0)
1600 srwm = 1;
1601
1602 if (IS_I945G(dev) || IS_I945GM(dev))
1603 I915_WRITE(FW_BLC_SELF,
1604 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1605 else if (IS_I915GM(dev))
1606 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1607 }
1608
1609 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1610 planea_wm, planeb_wm, cwm, srwm);
1611
1612 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1613 fwater_hi = (cwm & 0x1f);
1614
1615 /* Set request length to 8 cachelines per fetch */
1616 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1617 fwater_hi = fwater_hi | (1 << 8);
1618
1619 I915_WRITE(FW_BLC, fwater_lo);
1620 I915_WRITE(FW_BLC2, fwater_hi);
1621
1622 if (enabled)
1623 intel_set_memory_cxsr(dev_priv, true);
1624 }
1625
1626 static void i845_update_wm(struct drm_crtc *unused_crtc)
1627 {
1628 struct drm_device *dev = unused_crtc->dev;
1629 struct drm_i915_private *dev_priv = dev->dev_private;
1630 struct drm_crtc *crtc;
1631 const struct drm_display_mode *adjusted_mode;
1632 uint32_t fwater_lo;
1633 int planea_wm;
1634
1635 crtc = single_enabled_crtc(dev);
1636 if (crtc == NULL)
1637 return;
1638
1639 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1640 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1641 &i845_wm_info,
1642 dev_priv->display.get_fifo_size(dev, 0),
1643 4, pessimal_latency_ns);
1644 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1645 fwater_lo |= (3<<8) | planea_wm;
1646
1647 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1648
1649 I915_WRITE(FW_BLC, fwater_lo);
1650 }
1651
1652 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1653 {
1654 uint32_t pixel_rate;
1655
1656 pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1657
1658 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1659 * adjust the pixel_rate here. */
1660
1661 if (pipe_config->pch_pfit.enabled) {
1662 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1663 uint32_t pfit_size = pipe_config->pch_pfit.size;
1664
1665 pipe_w = pipe_config->pipe_src_w;
1666 pipe_h = pipe_config->pipe_src_h;
1667
1668 pfit_w = (pfit_size >> 16) & 0xFFFF;
1669 pfit_h = pfit_size & 0xFFFF;
1670 if (pipe_w < pfit_w)
1671 pipe_w = pfit_w;
1672 if (pipe_h < pfit_h)
1673 pipe_h = pfit_h;
1674
1675 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1676 pfit_w * pfit_h);
1677 }
1678
1679 return pixel_rate;
1680 }
1681
1682 /* latency must be in 0.1us units. */
1683 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1684 uint32_t latency)
1685 {
1686 uint64_t ret;
1687
1688 if (WARN(latency == 0, "Latency value missing\n"))
1689 return UINT_MAX;
1690
1691 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1692 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1693
1694 return ret;
1695 }
1696
1697 /* latency must be in 0.1us units. */
1698 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1699 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1700 uint32_t latency)
1701 {
1702 uint32_t ret;
1703
1704 if (WARN(latency == 0, "Latency value missing\n"))
1705 return UINT_MAX;
1706
1707 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1708 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1709 ret = DIV_ROUND_UP(ret, 64) + 2;
1710 return ret;
1711 }
1712
1713 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1714 uint8_t bytes_per_pixel)
1715 {
1716 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1717 }
1718
1719 struct ilk_wm_maximums {
1720 uint16_t pri;
1721 uint16_t spr;
1722 uint16_t cur;
1723 uint16_t fbc;
1724 };
1725
1726 /*
1727 * For both WM_PIPE and WM_LP.
1728 * mem_value must be in 0.1us units.
1729 */
1730 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1731 const struct intel_plane_state *pstate,
1732 uint32_t mem_value,
1733 bool is_lp)
1734 {
1735 int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1736 uint32_t method1, method2;
1737
1738 if (!cstate->base.active || !pstate->visible)
1739 return 0;
1740
1741 method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1742
1743 if (!is_lp)
1744 return method1;
1745
1746 method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1747 cstate->base.adjusted_mode.crtc_htotal,
1748 drm_rect_width(&pstate->dst),
1749 bpp,
1750 mem_value);
1751
1752 return min(method1, method2);
1753 }
1754
1755 /*
1756 * For both WM_PIPE and WM_LP.
1757 * mem_value must be in 0.1us units.
1758 */
1759 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1760 const struct intel_plane_state *pstate,
1761 uint32_t mem_value)
1762 {
1763 int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1764 uint32_t method1, method2;
1765
1766 if (!cstate->base.active || !pstate->visible)
1767 return 0;
1768
1769 method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1770 method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1771 cstate->base.adjusted_mode.crtc_htotal,
1772 drm_rect_width(&pstate->dst),
1773 bpp,
1774 mem_value);
1775 return min(method1, method2);
1776 }
1777
1778 /*
1779 * For both WM_PIPE and WM_LP.
1780 * mem_value must be in 0.1us units.
1781 */
1782 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1783 const struct intel_plane_state *pstate,
1784 uint32_t mem_value)
1785 {
1786 /*
1787 * We treat the cursor plane as always-on for the purposes of watermark
1788 * calculation. Until we have two-stage watermark programming merged,
1789 * this is necessary to avoid flickering.
1790 */
1791 int cpp = 4;
1792 int width = pstate->visible ? pstate->base.crtc_w : 64;
1793
1794 if (!cstate->base.active)
1795 return 0;
1796
1797 return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1798 cstate->base.adjusted_mode.crtc_htotal,
1799 width, cpp, mem_value);
1800 }
1801
1802 /* Only for WM_LP. */
1803 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1804 const struct intel_plane_state *pstate,
1805 uint32_t pri_val)
1806 {
1807 int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1808
1809 if (!cstate->base.active || !pstate->visible)
1810 return 0;
1811
1812 return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
1813 }
1814
1815 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1816 {
1817 if (INTEL_INFO(dev)->gen >= 8)
1818 return 3072;
1819 else if (INTEL_INFO(dev)->gen >= 7)
1820 return 768;
1821 else
1822 return 512;
1823 }
1824
1825 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1826 int level, bool is_sprite)
1827 {
1828 if (INTEL_INFO(dev)->gen >= 8)
1829 /* BDW primary/sprite plane watermarks */
1830 return level == 0 ? 255 : 2047;
1831 else if (INTEL_INFO(dev)->gen >= 7)
1832 /* IVB/HSW primary/sprite plane watermarks */
1833 return level == 0 ? 127 : 1023;
1834 else if (!is_sprite)
1835 /* ILK/SNB primary plane watermarks */
1836 return level == 0 ? 127 : 511;
1837 else
1838 /* ILK/SNB sprite plane watermarks */
1839 return level == 0 ? 63 : 255;
1840 }
1841
1842 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1843 int level)
1844 {
1845 if (INTEL_INFO(dev)->gen >= 7)
1846 return level == 0 ? 63 : 255;
1847 else
1848 return level == 0 ? 31 : 63;
1849 }
1850
1851 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1852 {
1853 if (INTEL_INFO(dev)->gen >= 8)
1854 return 31;
1855 else
1856 return 15;
1857 }
1858
1859 /* Calculate the maximum primary/sprite plane watermark */
1860 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1861 int level,
1862 const struct intel_wm_config *config,
1863 enum intel_ddb_partitioning ddb_partitioning,
1864 bool is_sprite)
1865 {
1866 unsigned int fifo_size = ilk_display_fifo_size(dev);
1867
1868 /* if sprites aren't enabled, sprites get nothing */
1869 if (is_sprite && !config->sprites_enabled)
1870 return 0;
1871
1872 /* HSW allows LP1+ watermarks even with multiple pipes */
1873 if (level == 0 || config->num_pipes_active > 1) {
1874 fifo_size /= INTEL_INFO(dev)->num_pipes;
1875
1876 /*
1877 * For some reason the non self refresh
1878 * FIFO size is only half of the self
1879 * refresh FIFO size on ILK/SNB.
1880 */
1881 if (INTEL_INFO(dev)->gen <= 6)
1882 fifo_size /= 2;
1883 }
1884
1885 if (config->sprites_enabled) {
1886 /* level 0 is always calculated with 1:1 split */
1887 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1888 if (is_sprite)
1889 fifo_size *= 5;
1890 fifo_size /= 6;
1891 } else {
1892 fifo_size /= 2;
1893 }
1894 }
1895
1896 /* clamp to max that the registers can hold */
1897 return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1898 }
1899
1900 /* Calculate the maximum cursor plane watermark */
1901 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1902 int level,
1903 const struct intel_wm_config *config)
1904 {
1905 /* HSW LP1+ watermarks w/ multiple pipes */
1906 if (level > 0 && config->num_pipes_active > 1)
1907 return 64;
1908
1909 /* otherwise just report max that registers can hold */
1910 return ilk_cursor_wm_reg_max(dev, level);
1911 }
1912
1913 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1914 int level,
1915 const struct intel_wm_config *config,
1916 enum intel_ddb_partitioning ddb_partitioning,
1917 struct ilk_wm_maximums *max)
1918 {
1919 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1920 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1921 max->cur = ilk_cursor_wm_max(dev, level, config);
1922 max->fbc = ilk_fbc_wm_reg_max(dev);
1923 }
1924
1925 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1926 int level,
1927 struct ilk_wm_maximums *max)
1928 {
1929 max->pri = ilk_plane_wm_reg_max(dev, level, false);
1930 max->spr = ilk_plane_wm_reg_max(dev, level, true);
1931 max->cur = ilk_cursor_wm_reg_max(dev, level);
1932 max->fbc = ilk_fbc_wm_reg_max(dev);
1933 }
1934
1935 static bool ilk_validate_wm_level(int level,
1936 const struct ilk_wm_maximums *max,
1937 struct intel_wm_level *result)
1938 {
1939 bool ret;
1940
1941 /* already determined to be invalid? */
1942 if (!result->enable)
1943 return false;
1944
1945 result->enable = result->pri_val <= max->pri &&
1946 result->spr_val <= max->spr &&
1947 result->cur_val <= max->cur;
1948
1949 ret = result->enable;
1950
1951 /*
1952 * HACK until we can pre-compute everything,
1953 * and thus fail gracefully if LP0 watermarks
1954 * are exceeded...
1955 */
1956 if (level == 0 && !result->enable) {
1957 if (result->pri_val > max->pri)
1958 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1959 level, result->pri_val, max->pri);
1960 if (result->spr_val > max->spr)
1961 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1962 level, result->spr_val, max->spr);
1963 if (result->cur_val > max->cur)
1964 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1965 level, result->cur_val, max->cur);
1966
1967 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1968 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1969 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1970 result->enable = true;
1971 }
1972
1973 return ret;
1974 }
1975
1976 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1977 const struct intel_crtc *intel_crtc,
1978 int level,
1979 struct intel_crtc_state *cstate,
1980 struct intel_plane_state *pristate,
1981 struct intel_plane_state *sprstate,
1982 struct intel_plane_state *curstate,
1983 struct intel_wm_level *result)
1984 {
1985 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1986 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1987 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1988
1989 /* WM1+ latency values stored in 0.5us units */
1990 if (level > 0) {
1991 pri_latency *= 5;
1992 spr_latency *= 5;
1993 cur_latency *= 5;
1994 }
1995
1996 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
1997 pri_latency, level);
1998 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
1999 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2000 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2001 result->enable = true;
2002 }
2003
2004 static uint32_t
2005 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2006 {
2007 struct drm_i915_private *dev_priv = dev->dev_private;
2008 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2009 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
2010 u32 linetime, ips_linetime;
2011
2012 if (!intel_crtc->active)
2013 return 0;
2014
2015 /* The WM are computed with base on how long it takes to fill a single
2016 * row at the given clock rate, multiplied by 8.
2017 * */
2018 linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2019 adjusted_mode->crtc_clock);
2020 ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2021 dev_priv->cdclk_freq);
2022
2023 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2024 PIPE_WM_LINETIME_TIME(linetime);
2025 }
2026
2027 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2028 {
2029 struct drm_i915_private *dev_priv = dev->dev_private;
2030
2031 if (IS_GEN9(dev)) {
2032 uint32_t val;
2033 int ret, i;
2034 int level, max_level = ilk_wm_max_level(dev);
2035
2036 /* read the first set of memory latencies[0:3] */
2037 val = 0; /* data0 to be programmed to 0 for first set */
2038 mutex_lock(&dev_priv->rps.hw_lock);
2039 ret = sandybridge_pcode_read(dev_priv,
2040 GEN9_PCODE_READ_MEM_LATENCY,
2041 &val);
2042 mutex_unlock(&dev_priv->rps.hw_lock);
2043
2044 if (ret) {
2045 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2046 return;
2047 }
2048
2049 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2050 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2051 GEN9_MEM_LATENCY_LEVEL_MASK;
2052 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2053 GEN9_MEM_LATENCY_LEVEL_MASK;
2054 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2055 GEN9_MEM_LATENCY_LEVEL_MASK;
2056
2057 /* read the second set of memory latencies[4:7] */
2058 val = 1; /* data0 to be programmed to 1 for second set */
2059 mutex_lock(&dev_priv->rps.hw_lock);
2060 ret = sandybridge_pcode_read(dev_priv,
2061 GEN9_PCODE_READ_MEM_LATENCY,
2062 &val);
2063 mutex_unlock(&dev_priv->rps.hw_lock);
2064 if (ret) {
2065 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2066 return;
2067 }
2068
2069 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2070 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2071 GEN9_MEM_LATENCY_LEVEL_MASK;
2072 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2073 GEN9_MEM_LATENCY_LEVEL_MASK;
2074 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2075 GEN9_MEM_LATENCY_LEVEL_MASK;
2076
2077 /*
2078 * WaWmMemoryReadLatency:skl
2079 *
2080 * punit doesn't take into account the read latency so we need
2081 * to add 2us to the various latency levels we retrieve from
2082 * the punit.
2083 * - W0 is a bit special in that it's the only level that
2084 * can't be disabled if we want to have display working, so
2085 * we always add 2us there.
2086 * - For levels >=1, punit returns 0us latency when they are
2087 * disabled, so we respect that and don't add 2us then
2088 *
2089 * Additionally, if a level n (n > 1) has a 0us latency, all
2090 * levels m (m >= n) need to be disabled. We make sure to
2091 * sanitize the values out of the punit to satisfy this
2092 * requirement.
2093 */
2094 wm[0] += 2;
2095 for (level = 1; level <= max_level; level++)
2096 if (wm[level] != 0)
2097 wm[level] += 2;
2098 else {
2099 for (i = level + 1; i <= max_level; i++)
2100 wm[i] = 0;
2101
2102 break;
2103 }
2104 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2105 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2106
2107 wm[0] = (sskpd >> 56) & 0xFF;
2108 if (wm[0] == 0)
2109 wm[0] = sskpd & 0xF;
2110 wm[1] = (sskpd >> 4) & 0xFF;
2111 wm[2] = (sskpd >> 12) & 0xFF;
2112 wm[3] = (sskpd >> 20) & 0x1FF;
2113 wm[4] = (sskpd >> 32) & 0x1FF;
2114 } else if (INTEL_INFO(dev)->gen >= 6) {
2115 uint32_t sskpd = I915_READ(MCH_SSKPD);
2116
2117 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2118 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2119 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2120 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2121 } else if (INTEL_INFO(dev)->gen >= 5) {
2122 uint32_t mltr = I915_READ(MLTR_ILK);
2123
2124 /* ILK primary LP0 latency is 700 ns */
2125 wm[0] = 7;
2126 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2127 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2128 }
2129 }
2130
2131 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2132 {
2133 /* ILK sprite LP0 latency is 1300 ns */
2134 if (INTEL_INFO(dev)->gen == 5)
2135 wm[0] = 13;
2136 }
2137
2138 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2139 {
2140 /* ILK cursor LP0 latency is 1300 ns */
2141 if (INTEL_INFO(dev)->gen == 5)
2142 wm[0] = 13;
2143
2144 /* WaDoubleCursorLP3Latency:ivb */
2145 if (IS_IVYBRIDGE(dev))
2146 wm[3] *= 2;
2147 }
2148
2149 int ilk_wm_max_level(const struct drm_device *dev)
2150 {
2151 /* how many WM levels are we expecting */
2152 if (INTEL_INFO(dev)->gen >= 9)
2153 return 7;
2154 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2155 return 4;
2156 else if (INTEL_INFO(dev)->gen >= 6)
2157 return 3;
2158 else
2159 return 2;
2160 }
2161
2162 static void intel_print_wm_latency(struct drm_device *dev,
2163 const char *name,
2164 const uint16_t wm[8])
2165 {
2166 int level, max_level = ilk_wm_max_level(dev);
2167
2168 for (level = 0; level <= max_level; level++) {
2169 unsigned int latency = wm[level];
2170
2171 if (latency == 0) {
2172 DRM_ERROR("%s WM%d latency not provided\n",
2173 name, level);
2174 continue;
2175 }
2176
2177 /*
2178 * - latencies are in us on gen9.
2179 * - before then, WM1+ latency values are in 0.5us units
2180 */
2181 if (IS_GEN9(dev))
2182 latency *= 10;
2183 else if (level > 0)
2184 latency *= 5;
2185
2186 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2187 name, level, wm[level],
2188 latency / 10, latency % 10);
2189 }
2190 }
2191
2192 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2193 uint16_t wm[5], uint16_t min)
2194 {
2195 int level, max_level = ilk_wm_max_level(dev_priv->dev);
2196
2197 if (wm[0] >= min)
2198 return false;
2199
2200 wm[0] = max(wm[0], min);
2201 for (level = 1; level <= max_level; level++)
2202 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2203
2204 return true;
2205 }
2206
2207 static void snb_wm_latency_quirk(struct drm_device *dev)
2208 {
2209 struct drm_i915_private *dev_priv = dev->dev_private;
2210 bool changed;
2211
2212 /*
2213 * The BIOS provided WM memory latency values are often
2214 * inadequate for high resolution displays. Adjust them.
2215 */
2216 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2217 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2218 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2219
2220 if (!changed)
2221 return;
2222
2223 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2224 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2225 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2226 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2227 }
2228
2229 static void ilk_setup_wm_latency(struct drm_device *dev)
2230 {
2231 struct drm_i915_private *dev_priv = dev->dev_private;
2232
2233 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2234
2235 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2236 sizeof(dev_priv->wm.pri_latency));
2237 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2238 sizeof(dev_priv->wm.pri_latency));
2239
2240 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2241 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2242
2243 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2244 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2245 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2246
2247 if (IS_GEN6(dev))
2248 snb_wm_latency_quirk(dev);
2249 }
2250
2251 static void skl_setup_wm_latency(struct drm_device *dev)
2252 {
2253 struct drm_i915_private *dev_priv = dev->dev_private;
2254
2255 intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2256 intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2257 }
2258
2259 /* Compute new watermarks for the pipe */
2260 static int ilk_compute_pipe_wm(struct intel_crtc *intel_crtc,
2261 struct drm_atomic_state *state)
2262 {
2263 struct intel_pipe_wm *pipe_wm;
2264 struct drm_device *dev = intel_crtc->base.dev;
2265 const struct drm_i915_private *dev_priv = dev->dev_private;
2266 struct intel_crtc_state *cstate = NULL;
2267 struct intel_plane *intel_plane;
2268 struct drm_plane_state *ps;
2269 struct intel_plane_state *pristate = NULL;
2270 struct intel_plane_state *sprstate = NULL;
2271 struct intel_plane_state *curstate = NULL;
2272 int level, max_level = ilk_wm_max_level(dev);
2273 /* LP0 watermark maximums depend on this pipe alone */
2274 struct intel_wm_config config = {
2275 .num_pipes_active = 1,
2276 };
2277 struct ilk_wm_maximums max;
2278
2279 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
2280 if (IS_ERR(cstate))
2281 return PTR_ERR(cstate);
2282
2283 pipe_wm = &cstate->wm.optimal.ilk;
2284
2285 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2286 ps = drm_atomic_get_plane_state(state,
2287 &intel_plane->base);
2288 if (IS_ERR(ps))
2289 return PTR_ERR(ps);
2290
2291 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2292 pristate = to_intel_plane_state(ps);
2293 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2294 sprstate = to_intel_plane_state(ps);
2295 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2296 curstate = to_intel_plane_state(ps);
2297 }
2298
2299 config.sprites_enabled = sprstate->visible;
2300 config.sprites_scaled = sprstate->visible &&
2301 (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2302 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2303
2304 pipe_wm->pipe_enabled = cstate->base.active;
2305 pipe_wm->sprites_enabled = config.sprites_enabled;
2306 pipe_wm->sprites_scaled = config.sprites_scaled;
2307
2308 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2309 if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2310 max_level = 1;
2311
2312 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2313 if (config.sprites_scaled)
2314 max_level = 0;
2315
2316 ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2317 pristate, sprstate, curstate, &pipe_wm->wm[0]);
2318
2319 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2320 pipe_wm->linetime = hsw_compute_linetime_wm(dev,
2321 &intel_crtc->base);
2322
2323 /* LP0 watermarks always use 1/2 DDB partitioning */
2324 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2325
2326 /* At least LP0 must be valid */
2327 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2328 return -EINVAL;
2329
2330 ilk_compute_wm_reg_maximums(dev, 1, &max);
2331
2332 for (level = 1; level <= max_level; level++) {
2333 struct intel_wm_level wm = {};
2334
2335 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2336 pristate, sprstate, curstate, &wm);
2337
2338 /*
2339 * Disable any watermark level that exceeds the
2340 * register maximums since such watermarks are
2341 * always invalid.
2342 */
2343 if (!ilk_validate_wm_level(level, &max, &wm))
2344 break;
2345
2346 pipe_wm->wm[level] = wm;
2347 }
2348
2349 return 0;
2350 }
2351
2352 /*
2353 * Merge the watermarks from all active pipes for a specific level.
2354 */
2355 static void ilk_merge_wm_level(struct drm_device *dev,
2356 int level,
2357 struct intel_wm_level *ret_wm)
2358 {
2359 const struct intel_crtc *intel_crtc;
2360
2361 ret_wm->enable = true;
2362
2363 for_each_intel_crtc(dev, intel_crtc) {
2364 const struct intel_crtc_state *cstate =
2365 to_intel_crtc_state(intel_crtc->base.state);
2366 const struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
2367 const struct intel_wm_level *wm = &active->wm[level];
2368
2369 if (!active->pipe_enabled)
2370 continue;
2371
2372 /*
2373 * The watermark values may have been used in the past,
2374 * so we must maintain them in the registers for some
2375 * time even if the level is now disabled.
2376 */
2377 if (!wm->enable)
2378 ret_wm->enable = false;
2379
2380 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2381 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2382 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2383 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2384 }
2385 }
2386
2387 /*
2388 * Merge all low power watermarks for all active pipes.
2389 */
2390 static void ilk_wm_merge(struct drm_device *dev,
2391 const struct intel_wm_config *config,
2392 const struct ilk_wm_maximums *max,
2393 struct intel_pipe_wm *merged)
2394 {
2395 struct drm_i915_private *dev_priv = dev->dev_private;
2396 int level, max_level = ilk_wm_max_level(dev);
2397 int last_enabled_level = max_level;
2398
2399 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2400 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2401 config->num_pipes_active > 1)
2402 return;
2403
2404 /* ILK: FBC WM must be disabled always */
2405 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2406
2407 /* merge each WM1+ level */
2408 for (level = 1; level <= max_level; level++) {
2409 struct intel_wm_level *wm = &merged->wm[level];
2410
2411 ilk_merge_wm_level(dev, level, wm);
2412
2413 if (level > last_enabled_level)
2414 wm->enable = false;
2415 else if (!ilk_validate_wm_level(level, max, wm))
2416 /* make sure all following levels get disabled */
2417 last_enabled_level = level - 1;
2418
2419 /*
2420 * The spec says it is preferred to disable
2421 * FBC WMs instead of disabling a WM level.
2422 */
2423 if (wm->fbc_val > max->fbc) {
2424 if (wm->enable)
2425 merged->fbc_wm_enabled = false;
2426 wm->fbc_val = 0;
2427 }
2428 }
2429
2430 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2431 /*
2432 * FIXME this is racy. FBC might get enabled later.
2433 * What we should check here is whether FBC can be
2434 * enabled sometime later.
2435 */
2436 if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2437 intel_fbc_is_active(dev_priv)) {
2438 for (level = 2; level <= max_level; level++) {
2439 struct intel_wm_level *wm = &merged->wm[level];
2440
2441 wm->enable = false;
2442 }
2443 }
2444 }
2445
2446 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2447 {
2448 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2449 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2450 }
2451
2452 /* The value we need to program into the WM_LPx latency field */
2453 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2454 {
2455 struct drm_i915_private *dev_priv = dev->dev_private;
2456
2457 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2458 return 2 * level;
2459 else
2460 return dev_priv->wm.pri_latency[level];
2461 }
2462
2463 static void ilk_compute_wm_results(struct drm_device *dev,
2464 const struct intel_pipe_wm *merged,
2465 enum intel_ddb_partitioning partitioning,
2466 struct ilk_wm_values *results)
2467 {
2468 struct intel_crtc *intel_crtc;
2469 int level, wm_lp;
2470
2471 results->enable_fbc_wm = merged->fbc_wm_enabled;
2472 results->partitioning = partitioning;
2473
2474 /* LP1+ register values */
2475 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2476 const struct intel_wm_level *r;
2477
2478 level = ilk_wm_lp_to_level(wm_lp, merged);
2479
2480 r = &merged->wm[level];
2481
2482 /*
2483 * Maintain the watermark values even if the level is
2484 * disabled. Doing otherwise could cause underruns.
2485 */
2486 results->wm_lp[wm_lp - 1] =
2487 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2488 (r->pri_val << WM1_LP_SR_SHIFT) |
2489 r->cur_val;
2490
2491 if (r->enable)
2492 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2493
2494 if (INTEL_INFO(dev)->gen >= 8)
2495 results->wm_lp[wm_lp - 1] |=
2496 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2497 else
2498 results->wm_lp[wm_lp - 1] |=
2499 r->fbc_val << WM1_LP_FBC_SHIFT;
2500
2501 /*
2502 * Always set WM1S_LP_EN when spr_val != 0, even if the
2503 * level is disabled. Doing otherwise could cause underruns.
2504 */
2505 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2506 WARN_ON(wm_lp != 1);
2507 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2508 } else
2509 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2510 }
2511
2512 /* LP0 register values */
2513 for_each_intel_crtc(dev, intel_crtc) {
2514 const struct intel_crtc_state *cstate =
2515 to_intel_crtc_state(intel_crtc->base.state);
2516 enum pipe pipe = intel_crtc->pipe;
2517 const struct intel_wm_level *r = &cstate->wm.optimal.ilk.wm[0];
2518
2519 if (WARN_ON(!r->enable))
2520 continue;
2521
2522 results->wm_linetime[pipe] = cstate->wm.optimal.ilk.linetime;
2523
2524 results->wm_pipe[pipe] =
2525 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2526 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2527 r->cur_val;
2528 }
2529 }
2530
2531 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2532 * case both are at the same level. Prefer r1 in case they're the same. */
2533 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2534 struct intel_pipe_wm *r1,
2535 struct intel_pipe_wm *r2)
2536 {
2537 int level, max_level = ilk_wm_max_level(dev);
2538 int level1 = 0, level2 = 0;
2539
2540 for (level = 1; level <= max_level; level++) {
2541 if (r1->wm[level].enable)
2542 level1 = level;
2543 if (r2->wm[level].enable)
2544 level2 = level;
2545 }
2546
2547 if (level1 == level2) {
2548 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2549 return r2;
2550 else
2551 return r1;
2552 } else if (level1 > level2) {
2553 return r1;
2554 } else {
2555 return r2;
2556 }
2557 }
2558
2559 /* dirty bits used to track which watermarks need changes */
2560 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2561 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2562 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2563 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2564 #define WM_DIRTY_FBC (1 << 24)
2565 #define WM_DIRTY_DDB (1 << 25)
2566
2567 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2568 const struct ilk_wm_values *old,
2569 const struct ilk_wm_values *new)
2570 {
2571 unsigned int dirty = 0;
2572 enum pipe pipe;
2573 int wm_lp;
2574
2575 for_each_pipe(dev_priv, pipe) {
2576 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2577 dirty |= WM_DIRTY_LINETIME(pipe);
2578 /* Must disable LP1+ watermarks too */
2579 dirty |= WM_DIRTY_LP_ALL;
2580 }
2581
2582 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2583 dirty |= WM_DIRTY_PIPE(pipe);
2584 /* Must disable LP1+ watermarks too */
2585 dirty |= WM_DIRTY_LP_ALL;
2586 }
2587 }
2588
2589 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2590 dirty |= WM_DIRTY_FBC;
2591 /* Must disable LP1+ watermarks too */
2592 dirty |= WM_DIRTY_LP_ALL;
2593 }
2594
2595 if (old->partitioning != new->partitioning) {
2596 dirty |= WM_DIRTY_DDB;
2597 /* Must disable LP1+ watermarks too */
2598 dirty |= WM_DIRTY_LP_ALL;
2599 }
2600
2601 /* LP1+ watermarks already deemed dirty, no need to continue */
2602 if (dirty & WM_DIRTY_LP_ALL)
2603 return dirty;
2604
2605 /* Find the lowest numbered LP1+ watermark in need of an update... */
2606 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2607 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2608 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2609 break;
2610 }
2611
2612 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2613 for (; wm_lp <= 3; wm_lp++)
2614 dirty |= WM_DIRTY_LP(wm_lp);
2615
2616 return dirty;
2617 }
2618
2619 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2620 unsigned int dirty)
2621 {
2622 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2623 bool changed = false;
2624
2625 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2626 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2627 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2628 changed = true;
2629 }
2630 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2631 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2632 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2633 changed = true;
2634 }
2635 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2636 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2637 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2638 changed = true;
2639 }
2640
2641 /*
2642 * Don't touch WM1S_LP_EN here.
2643 * Doing so could cause underruns.
2644 */
2645
2646 return changed;
2647 }
2648
2649 /*
2650 * The spec says we shouldn't write when we don't need, because every write
2651 * causes WMs to be re-evaluated, expending some power.
2652 */
2653 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2654 struct ilk_wm_values *results)
2655 {
2656 struct drm_device *dev = dev_priv->dev;
2657 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2658 unsigned int dirty;
2659 uint32_t val;
2660
2661 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2662 if (!dirty)
2663 return;
2664
2665 _ilk_disable_lp_wm(dev_priv, dirty);
2666
2667 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2668 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2669 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2670 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2671 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2672 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2673
2674 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2675 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2676 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2677 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2678 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2679 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2680
2681 if (dirty & WM_DIRTY_DDB) {
2682 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2683 val = I915_READ(WM_MISC);
2684 if (results->partitioning == INTEL_DDB_PART_1_2)
2685 val &= ~WM_MISC_DATA_PARTITION_5_6;
2686 else
2687 val |= WM_MISC_DATA_PARTITION_5_6;
2688 I915_WRITE(WM_MISC, val);
2689 } else {
2690 val = I915_READ(DISP_ARB_CTL2);
2691 if (results->partitioning == INTEL_DDB_PART_1_2)
2692 val &= ~DISP_DATA_PARTITION_5_6;
2693 else
2694 val |= DISP_DATA_PARTITION_5_6;
2695 I915_WRITE(DISP_ARB_CTL2, val);
2696 }
2697 }
2698
2699 if (dirty & WM_DIRTY_FBC) {
2700 val = I915_READ(DISP_ARB_CTL);
2701 if (results->enable_fbc_wm)
2702 val &= ~DISP_FBC_WM_DIS;
2703 else
2704 val |= DISP_FBC_WM_DIS;
2705 I915_WRITE(DISP_ARB_CTL, val);
2706 }
2707
2708 if (dirty & WM_DIRTY_LP(1) &&
2709 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2710 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2711
2712 if (INTEL_INFO(dev)->gen >= 7) {
2713 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2714 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2715 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2716 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2717 }
2718
2719 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2720 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2721 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2722 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2723 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2724 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2725
2726 dev_priv->wm.hw = *results;
2727 }
2728
2729 static bool ilk_disable_lp_wm(struct drm_device *dev)
2730 {
2731 struct drm_i915_private *dev_priv = dev->dev_private;
2732
2733 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2734 }
2735
2736 /*
2737 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2738 * different active planes.
2739 */
2740
2741 #define SKL_DDB_SIZE 896 /* in blocks */
2742 #define BXT_DDB_SIZE 512
2743
2744 /*
2745 * Return the index of a plane in the SKL DDB and wm result arrays. Primary
2746 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2747 * other universal planes are in indices 1..n. Note that this may leave unused
2748 * indices between the top "sprite" plane and the cursor.
2749 */
2750 static int
2751 skl_wm_plane_id(const struct intel_plane *plane)
2752 {
2753 switch (plane->base.type) {
2754 case DRM_PLANE_TYPE_PRIMARY:
2755 return 0;
2756 case DRM_PLANE_TYPE_CURSOR:
2757 return PLANE_CURSOR;
2758 case DRM_PLANE_TYPE_OVERLAY:
2759 return plane->plane + 1;
2760 default:
2761 MISSING_CASE(plane->base.type);
2762 return plane->plane;
2763 }
2764 }
2765
2766 static void
2767 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2768 const struct intel_crtc_state *cstate,
2769 const struct intel_wm_config *config,
2770 struct skl_ddb_entry *alloc /* out */)
2771 {
2772 struct drm_crtc *for_crtc = cstate->base.crtc;
2773 struct drm_crtc *crtc;
2774 unsigned int pipe_size, ddb_size;
2775 int nth_active_pipe;
2776
2777 if (!cstate->base.active) {
2778 alloc->start = 0;
2779 alloc->end = 0;
2780 return;
2781 }
2782
2783 if (IS_BROXTON(dev))
2784 ddb_size = BXT_DDB_SIZE;
2785 else
2786 ddb_size = SKL_DDB_SIZE;
2787
2788 ddb_size -= 4; /* 4 blocks for bypass path allocation */
2789
2790 nth_active_pipe = 0;
2791 for_each_crtc(dev, crtc) {
2792 if (!to_intel_crtc(crtc)->active)
2793 continue;
2794
2795 if (crtc == for_crtc)
2796 break;
2797
2798 nth_active_pipe++;
2799 }
2800
2801 pipe_size = ddb_size / config->num_pipes_active;
2802 alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2803 alloc->end = alloc->start + pipe_size;
2804 }
2805
2806 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2807 {
2808 if (config->num_pipes_active == 1)
2809 return 32;
2810
2811 return 8;
2812 }
2813
2814 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2815 {
2816 entry->start = reg & 0x3ff;
2817 entry->end = (reg >> 16) & 0x3ff;
2818 if (entry->end)
2819 entry->end += 1;
2820 }
2821
2822 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2823 struct skl_ddb_allocation *ddb /* out */)
2824 {
2825 enum pipe pipe;
2826 int plane;
2827 u32 val;
2828
2829 memset(ddb, 0, sizeof(*ddb));
2830
2831 for_each_pipe(dev_priv, pipe) {
2832 enum intel_display_power_domain power_domain;
2833
2834 power_domain = POWER_DOMAIN_PIPE(pipe);
2835 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2836 continue;
2837
2838 for_each_plane(dev_priv, pipe, plane) {
2839 val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2840 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2841 val);
2842 }
2843
2844 val = I915_READ(CUR_BUF_CFG(pipe));
2845 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2846 val);
2847
2848 intel_display_power_put(dev_priv, power_domain);
2849 }
2850 }
2851
2852 static unsigned int
2853 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
2854 const struct drm_plane_state *pstate,
2855 int y)
2856 {
2857 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2858 struct drm_framebuffer *fb = pstate->fb;
2859
2860 /* for planar format */
2861 if (fb->pixel_format == DRM_FORMAT_NV12) {
2862 if (y) /* y-plane data rate */
2863 return intel_crtc->config->pipe_src_w *
2864 intel_crtc->config->pipe_src_h *
2865 drm_format_plane_cpp(fb->pixel_format, 0);
2866 else /* uv-plane data rate */
2867 return (intel_crtc->config->pipe_src_w/2) *
2868 (intel_crtc->config->pipe_src_h/2) *
2869 drm_format_plane_cpp(fb->pixel_format, 1);
2870 }
2871
2872 /* for packed formats */
2873 return intel_crtc->config->pipe_src_w *
2874 intel_crtc->config->pipe_src_h *
2875 drm_format_plane_cpp(fb->pixel_format, 0);
2876 }
2877
2878 /*
2879 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2880 * a 8192x4096@32bpp framebuffer:
2881 * 3 * 4096 * 8192 * 4 < 2^32
2882 */
2883 static unsigned int
2884 skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
2885 {
2886 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2887 struct drm_device *dev = intel_crtc->base.dev;
2888 const struct intel_plane *intel_plane;
2889 unsigned int total_data_rate = 0;
2890
2891 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2892 const struct drm_plane_state *pstate = intel_plane->base.state;
2893
2894 if (pstate->fb == NULL)
2895 continue;
2896
2897 if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2898 continue;
2899
2900 /* packed/uv */
2901 total_data_rate += skl_plane_relative_data_rate(cstate,
2902 pstate,
2903 0);
2904
2905 if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
2906 /* y-plane */
2907 total_data_rate += skl_plane_relative_data_rate(cstate,
2908 pstate,
2909 1);
2910 }
2911
2912 return total_data_rate;
2913 }
2914
2915 static void
2916 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
2917 struct skl_ddb_allocation *ddb /* out */)
2918 {
2919 struct drm_crtc *crtc = cstate->base.crtc;
2920 struct drm_device *dev = crtc->dev;
2921 struct drm_i915_private *dev_priv = to_i915(dev);
2922 struct intel_wm_config *config = &dev_priv->wm.config;
2923 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2924 struct intel_plane *intel_plane;
2925 enum pipe pipe = intel_crtc->pipe;
2926 struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2927 uint16_t alloc_size, start, cursor_blocks;
2928 uint16_t minimum[I915_MAX_PLANES];
2929 uint16_t y_minimum[I915_MAX_PLANES];
2930 unsigned int total_data_rate;
2931
2932 skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
2933 alloc_size = skl_ddb_entry_size(alloc);
2934 if (alloc_size == 0) {
2935 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2936 memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
2937 sizeof(ddb->plane[pipe][PLANE_CURSOR]));
2938 return;
2939 }
2940
2941 cursor_blocks = skl_cursor_allocation(config);
2942 ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
2943 ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
2944
2945 alloc_size -= cursor_blocks;
2946 alloc->end -= cursor_blocks;
2947
2948 /* 1. Allocate the mininum required blocks for each active plane */
2949 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2950 struct drm_plane *plane = &intel_plane->base;
2951 struct drm_framebuffer *fb = plane->state->fb;
2952 int id = skl_wm_plane_id(intel_plane);
2953
2954 if (fb == NULL)
2955 continue;
2956 if (plane->type == DRM_PLANE_TYPE_CURSOR)
2957 continue;
2958
2959 minimum[id] = 8;
2960 alloc_size -= minimum[id];
2961 y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
2962 alloc_size -= y_minimum[id];
2963 }
2964
2965 /*
2966 * 2. Distribute the remaining space in proportion to the amount of
2967 * data each plane needs to fetch from memory.
2968 *
2969 * FIXME: we may not allocate every single block here.
2970 */
2971 total_data_rate = skl_get_total_relative_data_rate(cstate);
2972
2973 start = alloc->start;
2974 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2975 struct drm_plane *plane = &intel_plane->base;
2976 struct drm_plane_state *pstate = intel_plane->base.state;
2977 unsigned int data_rate, y_data_rate;
2978 uint16_t plane_blocks, y_plane_blocks = 0;
2979 int id = skl_wm_plane_id(intel_plane);
2980
2981 if (pstate->fb == NULL)
2982 continue;
2983 if (plane->type == DRM_PLANE_TYPE_CURSOR)
2984 continue;
2985
2986 data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
2987
2988 /*
2989 * allocation for (packed formats) or (uv-plane part of planar format):
2990 * promote the expression to 64 bits to avoid overflowing, the
2991 * result is < available as data_rate / total_data_rate < 1
2992 */
2993 plane_blocks = minimum[id];
2994 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
2995 total_data_rate);
2996
2997 ddb->plane[pipe][id].start = start;
2998 ddb->plane[pipe][id].end = start + plane_blocks;
2999
3000 start += plane_blocks;
3001
3002 /*
3003 * allocation for y_plane part of planar format:
3004 */
3005 if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
3006 y_data_rate = skl_plane_relative_data_rate(cstate,
3007 pstate,
3008 1);
3009 y_plane_blocks = y_minimum[id];
3010 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3011 total_data_rate);
3012
3013 ddb->y_plane[pipe][id].start = start;
3014 ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3015
3016 start += y_plane_blocks;
3017 }
3018
3019 }
3020
3021 }
3022
3023 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3024 {
3025 /* TODO: Take into account the scalers once we support them */
3026 return config->base.adjusted_mode.crtc_clock;
3027 }
3028
3029 /*
3030 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3031 * for the read latency) and bytes_per_pixel should always be <= 8, so that
3032 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3033 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3034 */
3035 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
3036 uint32_t latency)
3037 {
3038 uint32_t wm_intermediate_val, ret;
3039
3040 if (latency == 0)
3041 return UINT_MAX;
3042
3043 wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
3044 ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3045
3046 return ret;
3047 }
3048
3049 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3050 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3051 uint64_t tiling, uint32_t latency)
3052 {
3053 uint32_t ret;
3054 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3055 uint32_t wm_intermediate_val;
3056
3057 if (latency == 0)
3058 return UINT_MAX;
3059
3060 plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3061
3062 if (tiling == I915_FORMAT_MOD_Y_TILED ||
3063 tiling == I915_FORMAT_MOD_Yf_TILED) {
3064 plane_bytes_per_line *= 4;
3065 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3066 plane_blocks_per_line /= 4;
3067 } else {
3068 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3069 }
3070
3071 wm_intermediate_val = latency * pixel_rate;
3072 ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3073 plane_blocks_per_line;
3074
3075 return ret;
3076 }
3077
3078 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3079 const struct intel_crtc *intel_crtc)
3080 {
3081 struct drm_device *dev = intel_crtc->base.dev;
3082 struct drm_i915_private *dev_priv = dev->dev_private;
3083 const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3084
3085 /*
3086 * If ddb allocation of pipes changed, it may require recalculation of
3087 * watermarks
3088 */
3089 if (memcmp(new_ddb->pipe, cur_ddb->pipe, sizeof(new_ddb->pipe)))
3090 return true;
3091
3092 return false;
3093 }
3094
3095 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3096 struct intel_crtc_state *cstate,
3097 struct intel_plane *intel_plane,
3098 uint16_t ddb_allocation,
3099 int level,
3100 uint16_t *out_blocks, /* out */
3101 uint8_t *out_lines /* out */)
3102 {
3103 struct drm_plane *plane = &intel_plane->base;
3104 struct drm_framebuffer *fb = plane->state->fb;
3105 uint32_t latency = dev_priv->wm.skl_latency[level];
3106 uint32_t method1, method2;
3107 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3108 uint32_t res_blocks, res_lines;
3109 uint32_t selected_result;
3110 uint8_t bytes_per_pixel;
3111
3112 if (latency == 0 || !cstate->base.active || !fb)
3113 return false;
3114
3115 bytes_per_pixel = drm_format_plane_cpp(fb->pixel_format, 0);
3116 method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
3117 bytes_per_pixel,
3118 latency);
3119 method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
3120 cstate->base.adjusted_mode.crtc_htotal,
3121 cstate->pipe_src_w,
3122 bytes_per_pixel,
3123 fb->modifier[0],
3124 latency);
3125
3126 plane_bytes_per_line = cstate->pipe_src_w * bytes_per_pixel;
3127 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3128
3129 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3130 fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3131 uint32_t min_scanlines = 4;
3132 uint32_t y_tile_minimum;
3133 if (intel_rotation_90_or_270(plane->state->rotation)) {
3134 int bpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3135 drm_format_plane_cpp(fb->pixel_format, 1) :
3136 drm_format_plane_cpp(fb->pixel_format, 0);
3137
3138 switch (bpp) {
3139 case 1:
3140 min_scanlines = 16;
3141 break;
3142 case 2:
3143 min_scanlines = 8;
3144 break;
3145 case 8:
3146 WARN(1, "Unsupported pixel depth for rotation");
3147 }
3148 }
3149 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3150 selected_result = max(method2, y_tile_minimum);
3151 } else {
3152 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3153 selected_result = min(method1, method2);
3154 else
3155 selected_result = method1;
3156 }
3157
3158 res_blocks = selected_result + 1;
3159 res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3160
3161 if (level >= 1 && level <= 7) {
3162 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3163 fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3164 res_lines += 4;
3165 else
3166 res_blocks++;
3167 }
3168
3169 if (res_blocks >= ddb_allocation || res_lines > 31)
3170 return false;
3171
3172 *out_blocks = res_blocks;
3173 *out_lines = res_lines;
3174
3175 return true;
3176 }
3177
3178 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3179 struct skl_ddb_allocation *ddb,
3180 struct intel_crtc_state *cstate,
3181 int level,
3182 struct skl_wm_level *result)
3183 {
3184 struct drm_device *dev = dev_priv->dev;
3185 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3186 struct intel_plane *intel_plane;
3187 uint16_t ddb_blocks;
3188 enum pipe pipe = intel_crtc->pipe;
3189
3190 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3191 int i = skl_wm_plane_id(intel_plane);
3192
3193 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3194
3195 result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3196 cstate,
3197 intel_plane,
3198 ddb_blocks,
3199 level,
3200 &result->plane_res_b[i],
3201 &result->plane_res_l[i]);
3202 }
3203 }
3204
3205 static uint32_t
3206 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3207 {
3208 if (!cstate->base.active)
3209 return 0;
3210
3211 if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3212 return 0;
3213
3214 return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3215 skl_pipe_pixel_rate(cstate));
3216 }
3217
3218 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3219 struct skl_wm_level *trans_wm /* out */)
3220 {
3221 struct drm_crtc *crtc = cstate->base.crtc;
3222 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3223 struct intel_plane *intel_plane;
3224
3225 if (!cstate->base.active)
3226 return;
3227
3228 /* Until we know more, just disable transition WMs */
3229 for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3230 int i = skl_wm_plane_id(intel_plane);
3231
3232 trans_wm->plane_en[i] = false;
3233 }
3234 }
3235
3236 static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
3237 struct skl_ddb_allocation *ddb,
3238 struct skl_pipe_wm *pipe_wm)
3239 {
3240 struct drm_device *dev = cstate->base.crtc->dev;
3241 const struct drm_i915_private *dev_priv = dev->dev_private;
3242 int level, max_level = ilk_wm_max_level(dev);
3243
3244 for (level = 0; level <= max_level; level++) {
3245 skl_compute_wm_level(dev_priv, ddb, cstate,
3246 level, &pipe_wm->wm[level]);
3247 }
3248 pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3249
3250 skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3251 }
3252
3253 static void skl_compute_wm_results(struct drm_device *dev,
3254 struct skl_pipe_wm *p_wm,
3255 struct skl_wm_values *r,
3256 struct intel_crtc *intel_crtc)
3257 {
3258 int level, max_level = ilk_wm_max_level(dev);
3259 enum pipe pipe = intel_crtc->pipe;
3260 uint32_t temp;
3261 int i;
3262
3263 for (level = 0; level <= max_level; level++) {
3264 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3265 temp = 0;
3266
3267 temp |= p_wm->wm[level].plane_res_l[i] <<
3268 PLANE_WM_LINES_SHIFT;
3269 temp |= p_wm->wm[level].plane_res_b[i];
3270 if (p_wm->wm[level].plane_en[i])
3271 temp |= PLANE_WM_EN;
3272
3273 r->plane[pipe][i][level] = temp;
3274 }
3275
3276 temp = 0;
3277
3278 temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3279 temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3280
3281 if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3282 temp |= PLANE_WM_EN;
3283
3284 r->plane[pipe][PLANE_CURSOR][level] = temp;
3285
3286 }
3287
3288 /* transition WMs */
3289 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3290 temp = 0;
3291 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3292 temp |= p_wm->trans_wm.plane_res_b[i];
3293 if (p_wm->trans_wm.plane_en[i])
3294 temp |= PLANE_WM_EN;
3295
3296 r->plane_trans[pipe][i] = temp;
3297 }
3298
3299 temp = 0;
3300 temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3301 temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3302 if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3303 temp |= PLANE_WM_EN;
3304
3305 r->plane_trans[pipe][PLANE_CURSOR] = temp;
3306
3307 r->wm_linetime[pipe] = p_wm->linetime;
3308 }
3309
3310 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3311 i915_reg_t reg,
3312 const struct skl_ddb_entry *entry)
3313 {
3314 if (entry->end)
3315 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3316 else
3317 I915_WRITE(reg, 0);
3318 }
3319
3320 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3321 const struct skl_wm_values *new)
3322 {
3323 struct drm_device *dev = dev_priv->dev;
3324 struct intel_crtc *crtc;
3325
3326 for_each_intel_crtc(dev, crtc) {
3327 int i, level, max_level = ilk_wm_max_level(dev);
3328 enum pipe pipe = crtc->pipe;
3329
3330 if (!new->dirty[pipe])
3331 continue;
3332
3333 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3334
3335 for (level = 0; level <= max_level; level++) {
3336 for (i = 0; i < intel_num_planes(crtc); i++)
3337 I915_WRITE(PLANE_WM(pipe, i, level),
3338 new->plane[pipe][i][level]);
3339 I915_WRITE(CUR_WM(pipe, level),
3340 new->plane[pipe][PLANE_CURSOR][level]);
3341 }
3342 for (i = 0; i < intel_num_planes(crtc); i++)
3343 I915_WRITE(PLANE_WM_TRANS(pipe, i),
3344 new->plane_trans[pipe][i]);
3345 I915_WRITE(CUR_WM_TRANS(pipe),
3346 new->plane_trans[pipe][PLANE_CURSOR]);
3347
3348 for (i = 0; i < intel_num_planes(crtc); i++) {
3349 skl_ddb_entry_write(dev_priv,
3350 PLANE_BUF_CFG(pipe, i),
3351 &new->ddb.plane[pipe][i]);
3352 skl_ddb_entry_write(dev_priv,
3353 PLANE_NV12_BUF_CFG(pipe, i),
3354 &new->ddb.y_plane[pipe][i]);
3355 }
3356
3357 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3358 &new->ddb.plane[pipe][PLANE_CURSOR]);
3359 }
3360 }
3361
3362 /*
3363 * When setting up a new DDB allocation arrangement, we need to correctly
3364 * sequence the times at which the new allocations for the pipes are taken into
3365 * account or we'll have pipes fetching from space previously allocated to
3366 * another pipe.
3367 *
3368 * Roughly the sequence looks like:
3369 * 1. re-allocate the pipe(s) with the allocation being reduced and not
3370 * overlapping with a previous light-up pipe (another way to put it is:
3371 * pipes with their new allocation strickly included into their old ones).
3372 * 2. re-allocate the other pipes that get their allocation reduced
3373 * 3. allocate the pipes having their allocation increased
3374 *
3375 * Steps 1. and 2. are here to take care of the following case:
3376 * - Initially DDB looks like this:
3377 * | B | C |
3378 * - enable pipe A.
3379 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3380 * allocation
3381 * | A | B | C |
3382 *
3383 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3384 */
3385
3386 static void
3387 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3388 {
3389 int plane;
3390
3391 DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3392
3393 for_each_plane(dev_priv, pipe, plane) {
3394 I915_WRITE(PLANE_SURF(pipe, plane),
3395 I915_READ(PLANE_SURF(pipe, plane)));
3396 }
3397 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3398 }
3399
3400 static bool
3401 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3402 const struct skl_ddb_allocation *new,
3403 enum pipe pipe)
3404 {
3405 uint16_t old_size, new_size;
3406
3407 old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3408 new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3409
3410 return old_size != new_size &&
3411 new->pipe[pipe].start >= old->pipe[pipe].start &&
3412 new->pipe[pipe].end <= old->pipe[pipe].end;
3413 }
3414
3415 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3416 struct skl_wm_values *new_values)
3417 {
3418 struct drm_device *dev = dev_priv->dev;
3419 struct skl_ddb_allocation *cur_ddb, *new_ddb;
3420 bool reallocated[I915_MAX_PIPES] = {};
3421 struct intel_crtc *crtc;
3422 enum pipe pipe;
3423
3424 new_ddb = &new_values->ddb;
3425 cur_ddb = &dev_priv->wm.skl_hw.ddb;
3426
3427 /*
3428 * First pass: flush the pipes with the new allocation contained into
3429 * the old space.
3430 *
3431 * We'll wait for the vblank on those pipes to ensure we can safely
3432 * re-allocate the freed space without this pipe fetching from it.
3433 */
3434 for_each_intel_crtc(dev, crtc) {
3435 if (!crtc->active)
3436 continue;
3437
3438 pipe = crtc->pipe;
3439
3440 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3441 continue;
3442
3443 skl_wm_flush_pipe(dev_priv, pipe, 1);
3444 intel_wait_for_vblank(dev, pipe);
3445
3446 reallocated[pipe] = true;
3447 }
3448
3449
3450 /*
3451 * Second pass: flush the pipes that are having their allocation
3452 * reduced, but overlapping with a previous allocation.
3453 *
3454 * Here as well we need to wait for the vblank to make sure the freed
3455 * space is not used anymore.
3456 */
3457 for_each_intel_crtc(dev, crtc) {
3458 if (!crtc->active)
3459 continue;
3460
3461 pipe = crtc->pipe;
3462
3463 if (reallocated[pipe])
3464 continue;
3465
3466 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3467 skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3468 skl_wm_flush_pipe(dev_priv, pipe, 2);
3469 intel_wait_for_vblank(dev, pipe);
3470 reallocated[pipe] = true;
3471 }
3472 }
3473
3474 /*
3475 * Third pass: flush the pipes that got more space allocated.
3476 *
3477 * We don't need to actively wait for the update here, next vblank
3478 * will just get more DDB space with the correct WM values.
3479 */
3480 for_each_intel_crtc(dev, crtc) {
3481 if (!crtc->active)
3482 continue;
3483
3484 pipe = crtc->pipe;
3485
3486 /*
3487 * At this point, only the pipes more space than before are
3488 * left to re-allocate.
3489 */
3490 if (reallocated[pipe])
3491 continue;
3492
3493 skl_wm_flush_pipe(dev_priv, pipe, 3);
3494 }
3495 }
3496
3497 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3498 struct skl_ddb_allocation *ddb, /* out */
3499 struct skl_pipe_wm *pipe_wm /* out */)
3500 {
3501 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3502 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3503
3504 skl_allocate_pipe_ddb(cstate, ddb);
3505 skl_compute_pipe_wm(cstate, ddb, pipe_wm);
3506
3507 if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3508 return false;
3509
3510 intel_crtc->wm.active.skl = *pipe_wm;
3511
3512 return true;
3513 }
3514
3515 static void skl_update_other_pipe_wm(struct drm_device *dev,
3516 struct drm_crtc *crtc,
3517 struct skl_wm_values *r)
3518 {
3519 struct intel_crtc *intel_crtc;
3520 struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3521
3522 /*
3523 * If the WM update hasn't changed the allocation for this_crtc (the
3524 * crtc we are currently computing the new WM values for), other
3525 * enabled crtcs will keep the same allocation and we don't need to
3526 * recompute anything for them.
3527 */
3528 if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3529 return;
3530
3531 /*
3532 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3533 * other active pipes need new DDB allocation and WM values.
3534 */
3535 for_each_intel_crtc(dev, intel_crtc) {
3536 struct skl_pipe_wm pipe_wm = {};
3537 bool wm_changed;
3538
3539 if (this_crtc->pipe == intel_crtc->pipe)
3540 continue;
3541
3542 if (!intel_crtc->active)
3543 continue;
3544
3545 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3546 &r->ddb, &pipe_wm);
3547
3548 /*
3549 * If we end up re-computing the other pipe WM values, it's
3550 * because it was really needed, so we expect the WM values to
3551 * be different.
3552 */
3553 WARN_ON(!wm_changed);
3554
3555 skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
3556 r->dirty[intel_crtc->pipe] = true;
3557 }
3558 }
3559
3560 static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
3561 {
3562 watermarks->wm_linetime[pipe] = 0;
3563 memset(watermarks->plane[pipe], 0,
3564 sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3565 memset(watermarks->plane_trans[pipe],
3566 0, sizeof(uint32_t) * I915_MAX_PLANES);
3567 watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3568
3569 /* Clear ddb entries for pipe */
3570 memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3571 memset(&watermarks->ddb.plane[pipe], 0,
3572 sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3573 memset(&watermarks->ddb.y_plane[pipe], 0,
3574 sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3575 memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
3576 sizeof(struct skl_ddb_entry));
3577
3578 }
3579
3580 static void skl_update_wm(struct drm_crtc *crtc)
3581 {
3582 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3583 struct drm_device *dev = crtc->dev;
3584 struct drm_i915_private *dev_priv = dev->dev_private;
3585 struct skl_wm_values *results = &dev_priv->wm.skl_results;
3586 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3587 struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
3588
3589
3590 /* Clear all dirty flags */
3591 memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3592
3593 skl_clear_wm(results, intel_crtc->pipe);
3594
3595 if (!skl_update_pipe_wm(crtc, &results->ddb, pipe_wm))
3596 return;
3597
3598 skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
3599 results->dirty[intel_crtc->pipe] = true;
3600
3601 skl_update_other_pipe_wm(dev, crtc, results);
3602 skl_write_wm_values(dev_priv, results);
3603 skl_flush_wm_values(dev_priv, results);
3604
3605 /* store the new configuration */
3606 dev_priv->wm.skl_hw = *results;
3607 }
3608
3609 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
3610 {
3611 struct drm_device *dev = dev_priv->dev;
3612 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3613 struct ilk_wm_maximums max;
3614 struct intel_wm_config *config = &dev_priv->wm.config;
3615 struct ilk_wm_values results = {};
3616 enum intel_ddb_partitioning partitioning;
3617
3618 ilk_compute_wm_maximums(dev, 1, config, INTEL_DDB_PART_1_2, &max);
3619 ilk_wm_merge(dev, config, &max, &lp_wm_1_2);
3620
3621 /* 5/6 split only in single pipe config on IVB+ */
3622 if (INTEL_INFO(dev)->gen >= 7 &&
3623 config->num_pipes_active == 1 && config->sprites_enabled) {
3624 ilk_compute_wm_maximums(dev, 1, config, INTEL_DDB_PART_5_6, &max);
3625 ilk_wm_merge(dev, config, &max, &lp_wm_5_6);
3626
3627 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3628 } else {
3629 best_lp_wm = &lp_wm_1_2;
3630 }
3631
3632 partitioning = (best_lp_wm == &lp_wm_1_2) ?
3633 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3634
3635 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3636
3637 ilk_write_wm_values(dev_priv, &results);
3638 }
3639
3640 static void ilk_update_wm(struct drm_crtc *crtc)
3641 {
3642 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3643 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3644 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3645
3646 WARN_ON(cstate->base.active != intel_crtc->active);
3647
3648 /*
3649 * IVB workaround: must disable low power watermarks for at least
3650 * one frame before enabling scaling. LP watermarks can be re-enabled
3651 * when scaling is disabled.
3652 *
3653 * WaCxSRDisabledForSpriteScaling:ivb
3654 */
3655 if (cstate->disable_lp_wm) {
3656 ilk_disable_lp_wm(crtc->dev);
3657 intel_wait_for_vblank(crtc->dev, intel_crtc->pipe);
3658 }
3659
3660 intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
3661
3662 ilk_program_watermarks(dev_priv);
3663 }
3664
3665 static void skl_pipe_wm_active_state(uint32_t val,
3666 struct skl_pipe_wm *active,
3667 bool is_transwm,
3668 bool is_cursor,
3669 int i,
3670 int level)
3671 {
3672 bool is_enabled = (val & PLANE_WM_EN) != 0;
3673
3674 if (!is_transwm) {
3675 if (!is_cursor) {
3676 active->wm[level].plane_en[i] = is_enabled;
3677 active->wm[level].plane_res_b[i] =
3678 val & PLANE_WM_BLOCKS_MASK;
3679 active->wm[level].plane_res_l[i] =
3680 (val >> PLANE_WM_LINES_SHIFT) &
3681 PLANE_WM_LINES_MASK;
3682 } else {
3683 active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
3684 active->wm[level].plane_res_b[PLANE_CURSOR] =
3685 val & PLANE_WM_BLOCKS_MASK;
3686 active->wm[level].plane_res_l[PLANE_CURSOR] =
3687 (val >> PLANE_WM_LINES_SHIFT) &
3688 PLANE_WM_LINES_MASK;
3689 }
3690 } else {
3691 if (!is_cursor) {
3692 active->trans_wm.plane_en[i] = is_enabled;
3693 active->trans_wm.plane_res_b[i] =
3694 val & PLANE_WM_BLOCKS_MASK;
3695 active->trans_wm.plane_res_l[i] =
3696 (val >> PLANE_WM_LINES_SHIFT) &
3697 PLANE_WM_LINES_MASK;
3698 } else {
3699 active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
3700 active->trans_wm.plane_res_b[PLANE_CURSOR] =
3701 val & PLANE_WM_BLOCKS_MASK;
3702 active->trans_wm.plane_res_l[PLANE_CURSOR] =
3703 (val >> PLANE_WM_LINES_SHIFT) &
3704 PLANE_WM_LINES_MASK;
3705 }
3706 }
3707 }
3708
3709 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3710 {
3711 struct drm_device *dev = crtc->dev;
3712 struct drm_i915_private *dev_priv = dev->dev_private;
3713 struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3714 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3715 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3716 struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
3717 enum pipe pipe = intel_crtc->pipe;
3718 int level, i, max_level;
3719 uint32_t temp;
3720
3721 max_level = ilk_wm_max_level(dev);
3722
3723 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3724
3725 for (level = 0; level <= max_level; level++) {
3726 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3727 hw->plane[pipe][i][level] =
3728 I915_READ(PLANE_WM(pipe, i, level));
3729 hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3730 }
3731
3732 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3733 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3734 hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3735
3736 if (!intel_crtc->active)
3737 return;
3738
3739 hw->dirty[pipe] = true;
3740
3741 active->linetime = hw->wm_linetime[pipe];
3742
3743 for (level = 0; level <= max_level; level++) {
3744 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3745 temp = hw->plane[pipe][i][level];
3746 skl_pipe_wm_active_state(temp, active, false,
3747 false, i, level);
3748 }
3749 temp = hw->plane[pipe][PLANE_CURSOR][level];
3750 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3751 }
3752
3753 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3754 temp = hw->plane_trans[pipe][i];
3755 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3756 }
3757
3758 temp = hw->plane_trans[pipe][PLANE_CURSOR];
3759 skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3760
3761 intel_crtc->wm.active.skl = *active;
3762 }
3763
3764 void skl_wm_get_hw_state(struct drm_device *dev)
3765 {
3766 struct drm_i915_private *dev_priv = dev->dev_private;
3767 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3768 struct drm_crtc *crtc;
3769
3770 skl_ddb_get_hw_state(dev_priv, ddb);
3771 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3772 skl_pipe_wm_get_hw_state(crtc);
3773 }
3774
3775 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3776 {
3777 struct drm_device *dev = crtc->dev;
3778 struct drm_i915_private *dev_priv = dev->dev_private;
3779 struct ilk_wm_values *hw = &dev_priv->wm.hw;
3780 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3781 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3782 struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
3783 enum pipe pipe = intel_crtc->pipe;
3784 static const i915_reg_t wm0_pipe_reg[] = {
3785 [PIPE_A] = WM0_PIPEA_ILK,
3786 [PIPE_B] = WM0_PIPEB_ILK,
3787 [PIPE_C] = WM0_PIPEC_IVB,
3788 };
3789
3790 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3791 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3792 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3793
3794 active->pipe_enabled = intel_crtc->active;
3795
3796 if (active->pipe_enabled) {
3797 u32 tmp = hw->wm_pipe[pipe];
3798
3799 /*
3800 * For active pipes LP0 watermark is marked as
3801 * enabled, and LP1+ watermaks as disabled since
3802 * we can't really reverse compute them in case
3803 * multiple pipes are active.
3804 */
3805 active->wm[0].enable = true;
3806 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3807 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3808 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3809 active->linetime = hw->wm_linetime[pipe];
3810 } else {
3811 int level, max_level = ilk_wm_max_level(dev);
3812
3813 /*
3814 * For inactive pipes, all watermark levels
3815 * should be marked as enabled but zeroed,
3816 * which is what we'd compute them to.
3817 */
3818 for (level = 0; level <= max_level; level++)
3819 active->wm[level].enable = true;
3820 }
3821
3822 intel_crtc->wm.active.ilk = *active;
3823 }
3824
3825 #define _FW_WM(value, plane) \
3826 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3827 #define _FW_WM_VLV(value, plane) \
3828 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3829
3830 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3831 struct vlv_wm_values *wm)
3832 {
3833 enum pipe pipe;
3834 uint32_t tmp;
3835
3836 for_each_pipe(dev_priv, pipe) {
3837 tmp = I915_READ(VLV_DDL(pipe));
3838
3839 wm->ddl[pipe].primary =
3840 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3841 wm->ddl[pipe].cursor =
3842 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3843 wm->ddl[pipe].sprite[0] =
3844 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3845 wm->ddl[pipe].sprite[1] =
3846 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3847 }
3848
3849 tmp = I915_READ(DSPFW1);
3850 wm->sr.plane = _FW_WM(tmp, SR);
3851 wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3852 wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3853 wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3854
3855 tmp = I915_READ(DSPFW2);
3856 wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3857 wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
3858 wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
3859
3860 tmp = I915_READ(DSPFW3);
3861 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3862
3863 if (IS_CHERRYVIEW(dev_priv)) {
3864 tmp = I915_READ(DSPFW7_CHV);
3865 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3866 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3867
3868 tmp = I915_READ(DSPFW8_CHV);
3869 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
3870 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
3871
3872 tmp = I915_READ(DSPFW9_CHV);
3873 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
3874 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
3875
3876 tmp = I915_READ(DSPHOWM);
3877 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3878 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3879 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3880 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
3881 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3882 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3883 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3884 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3885 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3886 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3887 } else {
3888 tmp = I915_READ(DSPFW7);
3889 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3890 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3891
3892 tmp = I915_READ(DSPHOWM);
3893 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3894 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3895 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3896 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3897 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3898 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3899 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3900 }
3901 }
3902
3903 #undef _FW_WM
3904 #undef _FW_WM_VLV
3905
3906 void vlv_wm_get_hw_state(struct drm_device *dev)
3907 {
3908 struct drm_i915_private *dev_priv = to_i915(dev);
3909 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
3910 struct intel_plane *plane;
3911 enum pipe pipe;
3912 u32 val;
3913
3914 vlv_read_wm_values(dev_priv, wm);
3915
3916 for_each_intel_plane(dev, plane) {
3917 switch (plane->base.type) {
3918 int sprite;
3919 case DRM_PLANE_TYPE_CURSOR:
3920 plane->wm.fifo_size = 63;
3921 break;
3922 case DRM_PLANE_TYPE_PRIMARY:
3923 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
3924 break;
3925 case DRM_PLANE_TYPE_OVERLAY:
3926 sprite = plane->plane;
3927 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
3928 break;
3929 }
3930 }
3931
3932 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
3933 wm->level = VLV_WM_LEVEL_PM2;
3934
3935 if (IS_CHERRYVIEW(dev_priv)) {
3936 mutex_lock(&dev_priv->rps.hw_lock);
3937
3938 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
3939 if (val & DSP_MAXFIFO_PM5_ENABLE)
3940 wm->level = VLV_WM_LEVEL_PM5;
3941
3942 /*
3943 * If DDR DVFS is disabled in the BIOS, Punit
3944 * will never ack the request. So if that happens
3945 * assume we don't have to enable/disable DDR DVFS
3946 * dynamically. To test that just set the REQ_ACK
3947 * bit to poke the Punit, but don't change the
3948 * HIGH/LOW bits so that we don't actually change
3949 * the current state.
3950 */
3951 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
3952 val |= FORCE_DDR_FREQ_REQ_ACK;
3953 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
3954
3955 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
3956 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
3957 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
3958 "assuming DDR DVFS is disabled\n");
3959 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
3960 } else {
3961 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
3962 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
3963 wm->level = VLV_WM_LEVEL_DDR_DVFS;
3964 }
3965
3966 mutex_unlock(&dev_priv->rps.hw_lock);
3967 }
3968
3969 for_each_pipe(dev_priv, pipe)
3970 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
3971 pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
3972 wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
3973
3974 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
3975 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
3976 }
3977
3978 void ilk_wm_get_hw_state(struct drm_device *dev)
3979 {
3980 struct drm_i915_private *dev_priv = dev->dev_private;
3981 struct ilk_wm_values *hw = &dev_priv->wm.hw;
3982 struct drm_crtc *crtc;
3983
3984 for_each_crtc(dev, crtc)
3985 ilk_pipe_wm_get_hw_state(crtc);
3986
3987 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
3988 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
3989 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3990
3991 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3992 if (INTEL_INFO(dev)->gen >= 7) {
3993 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
3994 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
3995 }
3996
3997 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3998 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
3999 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4000 else if (IS_IVYBRIDGE(dev))
4001 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4002 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4003
4004 hw->enable_fbc_wm =
4005 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4006 }
4007
4008 /**
4009 * intel_update_watermarks - update FIFO watermark values based on current modes
4010 *
4011 * Calculate watermark values for the various WM regs based on current mode
4012 * and plane configuration.
4013 *
4014 * There are several cases to deal with here:
4015 * - normal (i.e. non-self-refresh)
4016 * - self-refresh (SR) mode
4017 * - lines are large relative to FIFO size (buffer can hold up to 2)
4018 * - lines are small relative to FIFO size (buffer can hold more than 2
4019 * lines), so need to account for TLB latency
4020 *
4021 * The normal calculation is:
4022 * watermark = dotclock * bytes per pixel * latency
4023 * where latency is platform & configuration dependent (we assume pessimal
4024 * values here).
4025 *
4026 * The SR calculation is:
4027 * watermark = (trunc(latency/line time)+1) * surface width *
4028 * bytes per pixel
4029 * where
4030 * line time = htotal / dotclock
4031 * surface width = hdisplay for normal plane and 64 for cursor
4032 * and latency is assumed to be high, as above.
4033 *
4034 * The final value programmed to the register should always be rounded up,
4035 * and include an extra 2 entries to account for clock crossings.
4036 *
4037 * We don't use the sprite, so we can ignore that. And on Crestline we have
4038 * to set the non-SR watermarks to 8.
4039 */
4040 void intel_update_watermarks(struct drm_crtc *crtc)
4041 {
4042 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4043
4044 if (dev_priv->display.update_wm)
4045 dev_priv->display.update_wm(crtc);
4046 }
4047
4048 /**
4049 * Lock protecting IPS related data structures
4050 */
4051 DEFINE_SPINLOCK(mchdev_lock);
4052
4053 /* Global for IPS driver to get at the current i915 device. Protected by
4054 * mchdev_lock. */
4055 static struct drm_i915_private *i915_mch_dev;
4056
4057 bool ironlake_set_drps(struct drm_device *dev, u8 val)
4058 {
4059 struct drm_i915_private *dev_priv = dev->dev_private;
4060 u16 rgvswctl;
4061
4062 assert_spin_locked(&mchdev_lock);
4063
4064 rgvswctl = I915_READ16(MEMSWCTL);
4065 if (rgvswctl & MEMCTL_CMD_STS) {
4066 DRM_DEBUG("gpu busy, RCS change rejected\n");
4067 return false; /* still busy with another command */
4068 }
4069
4070 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4071 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4072 I915_WRITE16(MEMSWCTL, rgvswctl);
4073 POSTING_READ16(MEMSWCTL);
4074
4075 rgvswctl |= MEMCTL_CMD_STS;
4076 I915_WRITE16(MEMSWCTL, rgvswctl);
4077
4078 return true;
4079 }
4080
4081 static void ironlake_enable_drps(struct drm_device *dev)
4082 {
4083 struct drm_i915_private *dev_priv = dev->dev_private;
4084 u32 rgvmodectl = I915_READ(MEMMODECTL);
4085 u8 fmax, fmin, fstart, vstart;
4086
4087 spin_lock_irq(&mchdev_lock);
4088
4089 /* Enable temp reporting */
4090 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4091 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4092
4093 /* 100ms RC evaluation intervals */
4094 I915_WRITE(RCUPEI, 100000);
4095 I915_WRITE(RCDNEI, 100000);
4096
4097 /* Set max/min thresholds to 90ms and 80ms respectively */
4098 I915_WRITE(RCBMAXAVG, 90000);
4099 I915_WRITE(RCBMINAVG, 80000);
4100
4101 I915_WRITE(MEMIHYST, 1);
4102
4103 /* Set up min, max, and cur for interrupt handling */
4104 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4105 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4106 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4107 MEMMODE_FSTART_SHIFT;
4108
4109 vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4110 PXVFREQ_PX_SHIFT;
4111
4112 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4113 dev_priv->ips.fstart = fstart;
4114
4115 dev_priv->ips.max_delay = fstart;
4116 dev_priv->ips.min_delay = fmin;
4117 dev_priv->ips.cur_delay = fstart;
4118
4119 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4120 fmax, fmin, fstart);
4121
4122 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4123
4124 /*
4125 * Interrupts will be enabled in ironlake_irq_postinstall
4126 */
4127
4128 I915_WRITE(VIDSTART, vstart);
4129 POSTING_READ(VIDSTART);
4130
4131 rgvmodectl |= MEMMODE_SWMODE_EN;
4132 I915_WRITE(MEMMODECTL, rgvmodectl);
4133
4134 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4135 DRM_ERROR("stuck trying to change perf mode\n");
4136 mdelay(1);
4137
4138 ironlake_set_drps(dev, fstart);
4139
4140 dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4141 I915_READ(DDREC) + I915_READ(CSIEC);
4142 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4143 dev_priv->ips.last_count2 = I915_READ(GFXEC);
4144 dev_priv->ips.last_time2 = ktime_get_raw_ns();
4145
4146 spin_unlock_irq(&mchdev_lock);
4147 }
4148
4149 static void ironlake_disable_drps(struct drm_device *dev)
4150 {
4151 struct drm_i915_private *dev_priv = dev->dev_private;
4152 u16 rgvswctl;
4153
4154 spin_lock_irq(&mchdev_lock);
4155
4156 rgvswctl = I915_READ16(MEMSWCTL);
4157
4158 /* Ack interrupts, disable EFC interrupt */
4159 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4160 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4161 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4162 I915_WRITE(DEIIR, DE_PCU_EVENT);
4163 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4164
4165 /* Go back to the starting frequency */
4166 ironlake_set_drps(dev, dev_priv->ips.fstart);
4167 mdelay(1);
4168 rgvswctl |= MEMCTL_CMD_STS;
4169 I915_WRITE(MEMSWCTL, rgvswctl);
4170 mdelay(1);
4171
4172 spin_unlock_irq(&mchdev_lock);
4173 }
4174
4175 /* There's a funny hw issue where the hw returns all 0 when reading from
4176 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4177 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4178 * all limits and the gpu stuck at whatever frequency it is at atm).
4179 */
4180 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4181 {
4182 u32 limits;
4183
4184 /* Only set the down limit when we've reached the lowest level to avoid
4185 * getting more interrupts, otherwise leave this clear. This prevents a
4186 * race in the hw when coming out of rc6: There's a tiny window where
4187 * the hw runs at the minimal clock before selecting the desired
4188 * frequency, if the down threshold expires in that window we will not
4189 * receive a down interrupt. */
4190 if (IS_GEN9(dev_priv->dev)) {
4191 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4192 if (val <= dev_priv->rps.min_freq_softlimit)
4193 limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4194 } else {
4195 limits = dev_priv->rps.max_freq_softlimit << 24;
4196 if (val <= dev_priv->rps.min_freq_softlimit)
4197 limits |= dev_priv->rps.min_freq_softlimit << 16;
4198 }
4199
4200 return limits;
4201 }
4202
4203 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4204 {
4205 int new_power;
4206 u32 threshold_up = 0, threshold_down = 0; /* in % */
4207 u32 ei_up = 0, ei_down = 0;
4208
4209 new_power = dev_priv->rps.power;
4210 switch (dev_priv->rps.power) {
4211 case LOW_POWER:
4212 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4213 new_power = BETWEEN;
4214 break;
4215
4216 case BETWEEN:
4217 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4218 new_power = LOW_POWER;
4219 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4220 new_power = HIGH_POWER;
4221 break;
4222
4223 case HIGH_POWER:
4224 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4225 new_power = BETWEEN;
4226 break;
4227 }
4228 /* Max/min bins are special */
4229 if (val <= dev_priv->rps.min_freq_softlimit)
4230 new_power = LOW_POWER;
4231 if (val >= dev_priv->rps.max_freq_softlimit)
4232 new_power = HIGH_POWER;
4233 if (new_power == dev_priv->rps.power)
4234 return;
4235
4236 /* Note the units here are not exactly 1us, but 1280ns. */
4237 switch (new_power) {
4238 case LOW_POWER:
4239 /* Upclock if more than 95% busy over 16ms */
4240 ei_up = 16000;
4241 threshold_up = 95;
4242
4243 /* Downclock if less than 85% busy over 32ms */
4244 ei_down = 32000;
4245 threshold_down = 85;
4246 break;
4247
4248 case BETWEEN:
4249 /* Upclock if more than 90% busy over 13ms */
4250 ei_up = 13000;
4251 threshold_up = 90;
4252
4253 /* Downclock if less than 75% busy over 32ms */
4254 ei_down = 32000;
4255 threshold_down = 75;
4256 break;
4257
4258 case HIGH_POWER:
4259 /* Upclock if more than 85% busy over 10ms */
4260 ei_up = 10000;
4261 threshold_up = 85;
4262
4263 /* Downclock if less than 60% busy over 32ms */
4264 ei_down = 32000;
4265 threshold_down = 60;
4266 break;
4267 }
4268
4269 I915_WRITE(GEN6_RP_UP_EI,
4270 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4271 I915_WRITE(GEN6_RP_UP_THRESHOLD,
4272 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4273
4274 I915_WRITE(GEN6_RP_DOWN_EI,
4275 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4276 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4277 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4278
4279 I915_WRITE(GEN6_RP_CONTROL,
4280 GEN6_RP_MEDIA_TURBO |
4281 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4282 GEN6_RP_MEDIA_IS_GFX |
4283 GEN6_RP_ENABLE |
4284 GEN6_RP_UP_BUSY_AVG |
4285 GEN6_RP_DOWN_IDLE_AVG);
4286
4287 dev_priv->rps.power = new_power;
4288 dev_priv->rps.up_threshold = threshold_up;
4289 dev_priv->rps.down_threshold = threshold_down;
4290 dev_priv->rps.last_adj = 0;
4291 }
4292
4293 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4294 {
4295 u32 mask = 0;
4296
4297 if (val > dev_priv->rps.min_freq_softlimit)
4298 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4299 if (val < dev_priv->rps.max_freq_softlimit)
4300 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4301
4302 mask &= dev_priv->pm_rps_events;
4303
4304 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4305 }
4306
4307 /* gen6_set_rps is called to update the frequency request, but should also be
4308 * called when the range (min_delay and max_delay) is modified so that we can
4309 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4310 static void gen6_set_rps(struct drm_device *dev, u8 val)
4311 {
4312 struct drm_i915_private *dev_priv = dev->dev_private;
4313
4314 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4315 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
4316 return;
4317
4318 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4319 WARN_ON(val > dev_priv->rps.max_freq);
4320 WARN_ON(val < dev_priv->rps.min_freq);
4321
4322 /* min/max delay may still have been modified so be sure to
4323 * write the limits value.
4324 */
4325 if (val != dev_priv->rps.cur_freq) {
4326 gen6_set_rps_thresholds(dev_priv, val);
4327
4328 if (IS_GEN9(dev))
4329 I915_WRITE(GEN6_RPNSWREQ,
4330 GEN9_FREQUENCY(val));
4331 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4332 I915_WRITE(GEN6_RPNSWREQ,
4333 HSW_FREQUENCY(val));
4334 else
4335 I915_WRITE(GEN6_RPNSWREQ,
4336 GEN6_FREQUENCY(val) |
4337 GEN6_OFFSET(0) |
4338 GEN6_AGGRESSIVE_TURBO);
4339 }
4340
4341 /* Make sure we continue to get interrupts
4342 * until we hit the minimum or maximum frequencies.
4343 */
4344 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4345 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4346
4347 POSTING_READ(GEN6_RPNSWREQ);
4348
4349 dev_priv->rps.cur_freq = val;
4350 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4351 }
4352
4353 static void valleyview_set_rps(struct drm_device *dev, u8 val)
4354 {
4355 struct drm_i915_private *dev_priv = dev->dev_private;
4356
4357 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4358 WARN_ON(val > dev_priv->rps.max_freq);
4359 WARN_ON(val < dev_priv->rps.min_freq);
4360
4361 if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4362 "Odd GPU freq value\n"))
4363 val &= ~1;
4364
4365 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4366
4367 if (val != dev_priv->rps.cur_freq) {
4368 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4369 if (!IS_CHERRYVIEW(dev_priv))
4370 gen6_set_rps_thresholds(dev_priv, val);
4371 }
4372
4373 dev_priv->rps.cur_freq = val;
4374 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4375 }
4376
4377 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4378 *
4379 * * If Gfx is Idle, then
4380 * 1. Forcewake Media well.
4381 * 2. Request idle freq.
4382 * 3. Release Forcewake of Media well.
4383 */
4384 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4385 {
4386 u32 val = dev_priv->rps.idle_freq;
4387
4388 if (dev_priv->rps.cur_freq <= val)
4389 return;
4390
4391 /* Wake up the media well, as that takes a lot less
4392 * power than the Render well. */
4393 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4394 valleyview_set_rps(dev_priv->dev, val);
4395 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4396 }
4397
4398 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4399 {
4400 mutex_lock(&dev_priv->rps.hw_lock);
4401 if (dev_priv->rps.enabled) {
4402 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4403 gen6_rps_reset_ei(dev_priv);
4404 I915_WRITE(GEN6_PMINTRMSK,
4405 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4406 }
4407 mutex_unlock(&dev_priv->rps.hw_lock);
4408 }
4409
4410 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4411 {
4412 struct drm_device *dev = dev_priv->dev;
4413
4414 mutex_lock(&dev_priv->rps.hw_lock);
4415 if (dev_priv->rps.enabled) {
4416 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4417 vlv_set_rps_idle(dev_priv);
4418 else
4419 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4420 dev_priv->rps.last_adj = 0;
4421 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4422 }
4423 mutex_unlock(&dev_priv->rps.hw_lock);
4424
4425 spin_lock(&dev_priv->rps.client_lock);
4426 while (!list_empty(&dev_priv->rps.clients))
4427 list_del_init(dev_priv->rps.clients.next);
4428 spin_unlock(&dev_priv->rps.client_lock);
4429 }
4430
4431 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4432 struct intel_rps_client *rps,
4433 unsigned long submitted)
4434 {
4435 /* This is intentionally racy! We peek at the state here, then
4436 * validate inside the RPS worker.
4437 */
4438 if (!(dev_priv->mm.busy &&
4439 dev_priv->rps.enabled &&
4440 dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4441 return;
4442
4443 /* Force a RPS boost (and don't count it against the client) if
4444 * the GPU is severely congested.
4445 */
4446 if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4447 rps = NULL;
4448
4449 spin_lock(&dev_priv->rps.client_lock);
4450 if (rps == NULL || list_empty(&rps->link)) {
4451 spin_lock_irq(&dev_priv->irq_lock);
4452 if (dev_priv->rps.interrupts_enabled) {
4453 dev_priv->rps.client_boost = true;
4454 queue_work(dev_priv->wq, &dev_priv->rps.work);
4455 }
4456 spin_unlock_irq(&dev_priv->irq_lock);
4457
4458 if (rps != NULL) {
4459 list_add(&rps->link, &dev_priv->rps.clients);
4460 rps->boosts++;
4461 } else
4462 dev_priv->rps.boosts++;
4463 }
4464 spin_unlock(&dev_priv->rps.client_lock);
4465 }
4466
4467 void intel_set_rps(struct drm_device *dev, u8 val)
4468 {
4469 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4470 valleyview_set_rps(dev, val);
4471 else
4472 gen6_set_rps(dev, val);
4473 }
4474
4475 static void gen9_disable_rps(struct drm_device *dev)
4476 {
4477 struct drm_i915_private *dev_priv = dev->dev_private;
4478
4479 I915_WRITE(GEN6_RC_CONTROL, 0);
4480 I915_WRITE(GEN9_PG_ENABLE, 0);
4481 }
4482
4483 static void gen6_disable_rps(struct drm_device *dev)
4484 {
4485 struct drm_i915_private *dev_priv = dev->dev_private;
4486
4487 I915_WRITE(GEN6_RC_CONTROL, 0);
4488 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4489 }
4490
4491 static void cherryview_disable_rps(struct drm_device *dev)
4492 {
4493 struct drm_i915_private *dev_priv = dev->dev_private;
4494
4495 I915_WRITE(GEN6_RC_CONTROL, 0);
4496 }
4497
4498 static void valleyview_disable_rps(struct drm_device *dev)
4499 {
4500 struct drm_i915_private *dev_priv = dev->dev_private;
4501
4502 /* we're doing forcewake before Disabling RC6,
4503 * This what the BIOS expects when going into suspend */
4504 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4505
4506 I915_WRITE(GEN6_RC_CONTROL, 0);
4507
4508 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4509 }
4510
4511 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4512 {
4513 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
4514 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4515 mode = GEN6_RC_CTL_RC6_ENABLE;
4516 else
4517 mode = 0;
4518 }
4519 if (HAS_RC6p(dev))
4520 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4521 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4522 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4523 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
4524
4525 else
4526 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4527 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4528 }
4529
4530 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4531 {
4532 /* No RC6 before Ironlake and code is gone for ilk. */
4533 if (INTEL_INFO(dev)->gen < 6)
4534 return 0;
4535
4536 /* Respect the kernel parameter if it is set */
4537 if (enable_rc6 >= 0) {
4538 int mask;
4539
4540 if (HAS_RC6p(dev))
4541 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4542 INTEL_RC6pp_ENABLE;
4543 else
4544 mask = INTEL_RC6_ENABLE;
4545
4546 if ((enable_rc6 & mask) != enable_rc6)
4547 DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4548 enable_rc6 & mask, enable_rc6, mask);
4549
4550 return enable_rc6 & mask;
4551 }
4552
4553 if (IS_IVYBRIDGE(dev))
4554 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4555
4556 return INTEL_RC6_ENABLE;
4557 }
4558
4559 int intel_enable_rc6(const struct drm_device *dev)
4560 {
4561 return i915.enable_rc6;
4562 }
4563
4564 static void gen6_init_rps_frequencies(struct drm_device *dev)
4565 {
4566 struct drm_i915_private *dev_priv = dev->dev_private;
4567 uint32_t rp_state_cap;
4568 u32 ddcc_status = 0;
4569 int ret;
4570
4571 /* All of these values are in units of 50MHz */
4572 dev_priv->rps.cur_freq = 0;
4573 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4574 if (IS_BROXTON(dev)) {
4575 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4576 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4577 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
4578 dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
4579 } else {
4580 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4581 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
4582 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
4583 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4584 }
4585
4586 /* hw_max = RP0 until we check for overclocking */
4587 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
4588
4589 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4590 if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
4591 IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4592 ret = sandybridge_pcode_read(dev_priv,
4593 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4594 &ddcc_status);
4595 if (0 == ret)
4596 dev_priv->rps.efficient_freq =
4597 clamp_t(u8,
4598 ((ddcc_status >> 8) & 0xff),
4599 dev_priv->rps.min_freq,
4600 dev_priv->rps.max_freq);
4601 }
4602
4603 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4604 /* Store the frequency values in 16.66 MHZ units, which is
4605 the natural hardware unit for SKL */
4606 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4607 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4608 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4609 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4610 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4611 }
4612
4613 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4614
4615 /* Preserve min/max settings in case of re-init */
4616 if (dev_priv->rps.max_freq_softlimit == 0)
4617 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4618
4619 if (dev_priv->rps.min_freq_softlimit == 0) {
4620 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4621 dev_priv->rps.min_freq_softlimit =
4622 max_t(int, dev_priv->rps.efficient_freq,
4623 intel_freq_opcode(dev_priv, 450));
4624 else
4625 dev_priv->rps.min_freq_softlimit =
4626 dev_priv->rps.min_freq;
4627 }
4628 }
4629
4630 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4631 static void gen9_enable_rps(struct drm_device *dev)
4632 {
4633 struct drm_i915_private *dev_priv = dev->dev_private;
4634
4635 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4636
4637 gen6_init_rps_frequencies(dev);
4638
4639 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4640 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4641 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4642 return;
4643 }
4644
4645 /* Program defaults and thresholds for RPS*/
4646 I915_WRITE(GEN6_RC_VIDEO_FREQ,
4647 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4648
4649 /* 1 second timeout*/
4650 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4651 GT_INTERVAL_FROM_US(dev_priv, 1000000));
4652
4653 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4654
4655 /* Leaning on the below call to gen6_set_rps to program/setup the
4656 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4657 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4658 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4659 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4660
4661 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4662 }
4663
4664 static void gen9_enable_rc6(struct drm_device *dev)
4665 {
4666 struct drm_i915_private *dev_priv = dev->dev_private;
4667 struct intel_engine_cs *ring;
4668 uint32_t rc6_mask = 0;
4669 int unused;
4670
4671 /* 1a: Software RC state - RC0 */
4672 I915_WRITE(GEN6_RC_STATE, 0);
4673
4674 /* 1b: Get forcewake during program sequence. Although the driver
4675 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4676 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4677
4678 /* 2a: Disable RC states. */
4679 I915_WRITE(GEN6_RC_CONTROL, 0);
4680
4681 /* 2b: Program RC6 thresholds.*/
4682
4683 /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4684 if (IS_SKYLAKE(dev))
4685 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4686 else
4687 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4688 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4689 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4690 for_each_ring(ring, dev_priv, unused)
4691 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4692
4693 if (HAS_GUC_UCODE(dev))
4694 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4695
4696 I915_WRITE(GEN6_RC_SLEEP, 0);
4697
4698 /* 2c: Program Coarse Power Gating Policies. */
4699 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4700 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4701
4702 /* 3a: Enable RC6 */
4703 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4704 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4705 DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4706 "on" : "off");
4707 /* WaRsUseTimeoutMode */
4708 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
4709 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4710 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
4711 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4712 GEN7_RC_CTL_TO_MODE |
4713 rc6_mask);
4714 } else {
4715 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4716 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4717 GEN6_RC_CTL_EI_MODE(1) |
4718 rc6_mask);
4719 }
4720
4721 /*
4722 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4723 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4724 */
4725 if ((IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) ||
4726 ((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) && (INTEL_REVID(dev) <= SKL_REVID_F0)))
4727 I915_WRITE(GEN9_PG_ENABLE, 0);
4728 else
4729 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4730 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4731
4732 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4733
4734 }
4735
4736 static void gen8_enable_rps(struct drm_device *dev)
4737 {
4738 struct drm_i915_private *dev_priv = dev->dev_private;
4739 struct intel_engine_cs *ring;
4740 uint32_t rc6_mask = 0;
4741 int unused;
4742
4743 /* 1a: Software RC state - RC0 */
4744 I915_WRITE(GEN6_RC_STATE, 0);
4745
4746 /* 1c & 1d: Get forcewake during program sequence. Although the driver
4747 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4748 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4749
4750 /* 2a: Disable RC states. */
4751 I915_WRITE(GEN6_RC_CONTROL, 0);
4752
4753 /* Initialize rps frequencies */
4754 gen6_init_rps_frequencies(dev);
4755
4756 /* 2b: Program RC6 thresholds.*/
4757 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4758 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4759 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4760 for_each_ring(ring, dev_priv, unused)
4761 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4762 I915_WRITE(GEN6_RC_SLEEP, 0);
4763 if (IS_BROADWELL(dev))
4764 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4765 else
4766 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4767
4768 /* 3: Enable RC6 */
4769 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4770 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4771 intel_print_rc6_info(dev, rc6_mask);
4772 if (IS_BROADWELL(dev))
4773 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4774 GEN7_RC_CTL_TO_MODE |
4775 rc6_mask);
4776 else
4777 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4778 GEN6_RC_CTL_EI_MODE(1) |
4779 rc6_mask);
4780
4781 /* 4 Program defaults and thresholds for RPS*/
4782 I915_WRITE(GEN6_RPNSWREQ,
4783 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4784 I915_WRITE(GEN6_RC_VIDEO_FREQ,
4785 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4786 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4787 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4788
4789 /* Docs recommend 900MHz, and 300 MHz respectively */
4790 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4791 dev_priv->rps.max_freq_softlimit << 24 |
4792 dev_priv->rps.min_freq_softlimit << 16);
4793
4794 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4795 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4796 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4797 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4798
4799 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4800
4801 /* 5: Enable RPS */
4802 I915_WRITE(GEN6_RP_CONTROL,
4803 GEN6_RP_MEDIA_TURBO |
4804 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4805 GEN6_RP_MEDIA_IS_GFX |
4806 GEN6_RP_ENABLE |
4807 GEN6_RP_UP_BUSY_AVG |
4808 GEN6_RP_DOWN_IDLE_AVG);
4809
4810 /* 6: Ring frequency + overclocking (our driver does this later */
4811
4812 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4813 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4814
4815 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4816 }
4817
4818 static void gen6_enable_rps(struct drm_device *dev)
4819 {
4820 struct drm_i915_private *dev_priv = dev->dev_private;
4821 struct intel_engine_cs *ring;
4822 u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4823 u32 gtfifodbg;
4824 int rc6_mode;
4825 int i, ret;
4826
4827 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4828
4829 /* Here begins a magic sequence of register writes to enable
4830 * auto-downclocking.
4831 *
4832 * Perhaps there might be some value in exposing these to
4833 * userspace...
4834 */
4835 I915_WRITE(GEN6_RC_STATE, 0);
4836
4837 /* Clear the DBG now so we don't confuse earlier errors */
4838 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4839 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4840 I915_WRITE(GTFIFODBG, gtfifodbg);
4841 }
4842
4843 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4844
4845 /* Initialize rps frequencies */
4846 gen6_init_rps_frequencies(dev);
4847
4848 /* disable the counters and set deterministic thresholds */
4849 I915_WRITE(GEN6_RC_CONTROL, 0);
4850
4851 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4852 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4853 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4854 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4855 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4856
4857 for_each_ring(ring, dev_priv, i)
4858 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4859
4860 I915_WRITE(GEN6_RC_SLEEP, 0);
4861 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4862 if (IS_IVYBRIDGE(dev))
4863 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4864 else
4865 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4866 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4867 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4868
4869 /* Check if we are enabling RC6 */
4870 rc6_mode = intel_enable_rc6(dev_priv->dev);
4871 if (rc6_mode & INTEL_RC6_ENABLE)
4872 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4873
4874 /* We don't use those on Haswell */
4875 if (!IS_HASWELL(dev)) {
4876 if (rc6_mode & INTEL_RC6p_ENABLE)
4877 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4878
4879 if (rc6_mode & INTEL_RC6pp_ENABLE)
4880 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4881 }
4882
4883 intel_print_rc6_info(dev, rc6_mask);
4884
4885 I915_WRITE(GEN6_RC_CONTROL,
4886 rc6_mask |
4887 GEN6_RC_CTL_EI_MODE(1) |
4888 GEN6_RC_CTL_HW_ENABLE);
4889
4890 /* Power down if completely idle for over 50ms */
4891 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4892 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4893
4894 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4895 if (ret)
4896 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4897
4898 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
4899 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
4900 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4901 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4902 (pcu_mbox & 0xff) * 50);
4903 dev_priv->rps.max_freq = pcu_mbox & 0xff;
4904 }
4905
4906 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4907 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4908
4909 rc6vids = 0;
4910 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
4911 if (IS_GEN6(dev) && ret) {
4912 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
4913 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
4914 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
4915 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
4916 rc6vids &= 0xffff00;
4917 rc6vids |= GEN6_ENCODE_RC6_VID(450);
4918 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
4919 if (ret)
4920 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
4921 }
4922
4923 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4924 }
4925
4926 static void __gen6_update_ring_freq(struct drm_device *dev)
4927 {
4928 struct drm_i915_private *dev_priv = dev->dev_private;
4929 int min_freq = 15;
4930 unsigned int gpu_freq;
4931 unsigned int max_ia_freq, min_ring_freq;
4932 unsigned int max_gpu_freq, min_gpu_freq;
4933 int scaling_factor = 180;
4934 struct cpufreq_policy *policy;
4935
4936 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4937
4938 policy = cpufreq_cpu_get(0);
4939 if (policy) {
4940 max_ia_freq = policy->cpuinfo.max_freq;
4941 cpufreq_cpu_put(policy);
4942 } else {
4943 /*
4944 * Default to measured freq if none found, PCU will ensure we
4945 * don't go over
4946 */
4947 max_ia_freq = tsc_khz;
4948 }
4949
4950 /* Convert from kHz to MHz */
4951 max_ia_freq /= 1000;
4952
4953 min_ring_freq = I915_READ(DCLK) & 0xf;
4954 /* convert DDR frequency from units of 266.6MHz to bandwidth */
4955 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4956
4957 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4958 /* Convert GT frequency to 50 HZ units */
4959 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
4960 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
4961 } else {
4962 min_gpu_freq = dev_priv->rps.min_freq;
4963 max_gpu_freq = dev_priv->rps.max_freq;
4964 }
4965
4966 /*
4967 * For each potential GPU frequency, load a ring frequency we'd like
4968 * to use for memory access. We do this by specifying the IA frequency
4969 * the PCU should use as a reference to determine the ring frequency.
4970 */
4971 for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
4972 int diff = max_gpu_freq - gpu_freq;
4973 unsigned int ia_freq = 0, ring_freq = 0;
4974
4975 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4976 /*
4977 * ring_freq = 2 * GT. ring_freq is in 100MHz units
4978 * No floor required for ring frequency on SKL.
4979 */
4980 ring_freq = gpu_freq;
4981 } else if (INTEL_INFO(dev)->gen >= 8) {
4982 /* max(2 * GT, DDR). NB: GT is 50MHz units */
4983 ring_freq = max(min_ring_freq, gpu_freq);
4984 } else if (IS_HASWELL(dev)) {
4985 ring_freq = mult_frac(gpu_freq, 5, 4);
4986 ring_freq = max(min_ring_freq, ring_freq);
4987 /* leave ia_freq as the default, chosen by cpufreq */
4988 } else {
4989 /* On older processors, there is no separate ring
4990 * clock domain, so in order to boost the bandwidth
4991 * of the ring, we need to upclock the CPU (ia_freq).
4992 *
4993 * For GPU frequencies less than 750MHz,
4994 * just use the lowest ring freq.
4995 */
4996 if (gpu_freq < min_freq)
4997 ia_freq = 800;
4998 else
4999 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5000 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5001 }
5002
5003 sandybridge_pcode_write(dev_priv,
5004 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5005 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5006 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5007 gpu_freq);
5008 }
5009 }
5010
5011 void gen6_update_ring_freq(struct drm_device *dev)
5012 {
5013 struct drm_i915_private *dev_priv = dev->dev_private;
5014
5015 if (!HAS_CORE_RING_FREQ(dev))
5016 return;
5017
5018 mutex_lock(&dev_priv->rps.hw_lock);
5019 __gen6_update_ring_freq(dev);
5020 mutex_unlock(&dev_priv->rps.hw_lock);
5021 }
5022
5023 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5024 {
5025 struct drm_device *dev = dev_priv->dev;
5026 u32 val, rp0;
5027
5028 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5029
5030 switch (INTEL_INFO(dev)->eu_total) {
5031 case 8:
5032 /* (2 * 4) config */
5033 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5034 break;
5035 case 12:
5036 /* (2 * 6) config */
5037 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5038 break;
5039 case 16:
5040 /* (2 * 8) config */
5041 default:
5042 /* Setting (2 * 8) Min RP0 for any other combination */
5043 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5044 break;
5045 }
5046
5047 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5048
5049 return rp0;
5050 }
5051
5052 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5053 {
5054 u32 val, rpe;
5055
5056 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5057 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5058
5059 return rpe;
5060 }
5061
5062 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5063 {
5064 u32 val, rp1;
5065
5066 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5067 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5068
5069 return rp1;
5070 }
5071
5072 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5073 {
5074 u32 val, rp1;
5075
5076 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5077
5078 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5079
5080 return rp1;
5081 }
5082
5083 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5084 {
5085 u32 val, rp0;
5086
5087 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5088
5089 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5090 /* Clamp to max */
5091 rp0 = min_t(u32, rp0, 0xea);
5092
5093 return rp0;
5094 }
5095
5096 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5097 {
5098 u32 val, rpe;
5099
5100 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5101 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5102 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5103 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5104
5105 return rpe;
5106 }
5107
5108 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5109 {
5110 u32 val;
5111
5112 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5113 /*
5114 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5115 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5116 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5117 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5118 * to make sure it matches what Punit accepts.
5119 */
5120 return max_t(u32, val, 0xc0);
5121 }
5122
5123 /* Check that the pctx buffer wasn't move under us. */
5124 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5125 {
5126 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5127
5128 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5129 dev_priv->vlv_pctx->stolen->start);
5130 }
5131
5132
5133 /* Check that the pcbr address is not empty. */
5134 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5135 {
5136 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5137
5138 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5139 }
5140
5141 static void cherryview_setup_pctx(struct drm_device *dev)
5142 {
5143 struct drm_i915_private *dev_priv = dev->dev_private;
5144 unsigned long pctx_paddr, paddr;
5145 struct i915_gtt *gtt = &dev_priv->gtt;
5146 u32 pcbr;
5147 int pctx_size = 32*1024;
5148
5149 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5150
5151 pcbr = I915_READ(VLV_PCBR);
5152 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5153 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5154 paddr = (dev_priv->mm.stolen_base +
5155 (gtt->stolen_size - pctx_size));
5156
5157 pctx_paddr = (paddr & (~4095));
5158 I915_WRITE(VLV_PCBR, pctx_paddr);
5159 }
5160
5161 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5162 }
5163
5164 static void valleyview_setup_pctx(struct drm_device *dev)
5165 {
5166 struct drm_i915_private *dev_priv = dev->dev_private;
5167 struct drm_i915_gem_object *pctx;
5168 unsigned long pctx_paddr;
5169 u32 pcbr;
5170 int pctx_size = 24*1024;
5171
5172 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5173
5174 pcbr = I915_READ(VLV_PCBR);
5175 if (pcbr) {
5176 /* BIOS set it up already, grab the pre-alloc'd space */
5177 int pcbr_offset;
5178
5179 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5180 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5181 pcbr_offset,
5182 I915_GTT_OFFSET_NONE,
5183 pctx_size);
5184 goto out;
5185 }
5186
5187 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5188
5189 /*
5190 * From the Gunit register HAS:
5191 * The Gfx driver is expected to program this register and ensure
5192 * proper allocation within Gfx stolen memory. For example, this
5193 * register should be programmed such than the PCBR range does not
5194 * overlap with other ranges, such as the frame buffer, protected
5195 * memory, or any other relevant ranges.
5196 */
5197 pctx = i915_gem_object_create_stolen(dev, pctx_size);
5198 if (!pctx) {
5199 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5200 return;
5201 }
5202
5203 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5204 I915_WRITE(VLV_PCBR, pctx_paddr);
5205
5206 out:
5207 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5208 dev_priv->vlv_pctx = pctx;
5209 }
5210
5211 static void valleyview_cleanup_pctx(struct drm_device *dev)
5212 {
5213 struct drm_i915_private *dev_priv = dev->dev_private;
5214
5215 if (WARN_ON(!dev_priv->vlv_pctx))
5216 return;
5217
5218 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
5219 dev_priv->vlv_pctx = NULL;
5220 }
5221
5222 static void valleyview_init_gt_powersave(struct drm_device *dev)
5223 {
5224 struct drm_i915_private *dev_priv = dev->dev_private;
5225 u32 val;
5226
5227 valleyview_setup_pctx(dev);
5228
5229 mutex_lock(&dev_priv->rps.hw_lock);
5230
5231 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5232 switch ((val >> 6) & 3) {
5233 case 0:
5234 case 1:
5235 dev_priv->mem_freq = 800;
5236 break;
5237 case 2:
5238 dev_priv->mem_freq = 1066;
5239 break;
5240 case 3:
5241 dev_priv->mem_freq = 1333;
5242 break;
5243 }
5244 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5245
5246 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5247 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5248 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5249 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5250 dev_priv->rps.max_freq);
5251
5252 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5253 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5254 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5255 dev_priv->rps.efficient_freq);
5256
5257 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5258 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5259 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5260 dev_priv->rps.rp1_freq);
5261
5262 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5263 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5264 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5265 dev_priv->rps.min_freq);
5266
5267 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5268
5269 /* Preserve min/max settings in case of re-init */
5270 if (dev_priv->rps.max_freq_softlimit == 0)
5271 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5272
5273 if (dev_priv->rps.min_freq_softlimit == 0)
5274 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5275
5276 mutex_unlock(&dev_priv->rps.hw_lock);
5277 }
5278
5279 static void cherryview_init_gt_powersave(struct drm_device *dev)
5280 {
5281 struct drm_i915_private *dev_priv = dev->dev_private;
5282 u32 val;
5283
5284 cherryview_setup_pctx(dev);
5285
5286 mutex_lock(&dev_priv->rps.hw_lock);
5287
5288 mutex_lock(&dev_priv->sb_lock);
5289 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5290 mutex_unlock(&dev_priv->sb_lock);
5291
5292 switch ((val >> 2) & 0x7) {
5293 case 3:
5294 dev_priv->mem_freq = 2000;
5295 break;
5296 default:
5297 dev_priv->mem_freq = 1600;
5298 break;
5299 }
5300 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5301
5302 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5303 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5304 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5305 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5306 dev_priv->rps.max_freq);
5307
5308 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5309 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5310 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5311 dev_priv->rps.efficient_freq);
5312
5313 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5314 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5315 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5316 dev_priv->rps.rp1_freq);
5317
5318 /* PUnit validated range is only [RPe, RP0] */
5319 dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5320 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5321 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5322 dev_priv->rps.min_freq);
5323
5324 WARN_ONCE((dev_priv->rps.max_freq |
5325 dev_priv->rps.efficient_freq |
5326 dev_priv->rps.rp1_freq |
5327 dev_priv->rps.min_freq) & 1,
5328 "Odd GPU freq values\n");
5329
5330 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5331
5332 /* Preserve min/max settings in case of re-init */
5333 if (dev_priv->rps.max_freq_softlimit == 0)
5334 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5335
5336 if (dev_priv->rps.min_freq_softlimit == 0)
5337 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5338
5339 mutex_unlock(&dev_priv->rps.hw_lock);
5340 }
5341
5342 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5343 {
5344 valleyview_cleanup_pctx(dev);
5345 }
5346
5347 static void cherryview_enable_rps(struct drm_device *dev)
5348 {
5349 struct drm_i915_private *dev_priv = dev->dev_private;
5350 struct intel_engine_cs *ring;
5351 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5352 int i;
5353
5354 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5355
5356 gtfifodbg = I915_READ(GTFIFODBG);
5357 if (gtfifodbg) {
5358 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5359 gtfifodbg);
5360 I915_WRITE(GTFIFODBG, gtfifodbg);
5361 }
5362
5363 cherryview_check_pctx(dev_priv);
5364
5365 /* 1a & 1b: Get forcewake during program sequence. Although the driver
5366 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5367 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5368
5369 /* Disable RC states. */
5370 I915_WRITE(GEN6_RC_CONTROL, 0);
5371
5372 /* 2a: Program RC6 thresholds.*/
5373 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5374 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5375 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5376
5377 for_each_ring(ring, dev_priv, i)
5378 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5379 I915_WRITE(GEN6_RC_SLEEP, 0);
5380
5381 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5382 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5383
5384 /* allows RC6 residency counter to work */
5385 I915_WRITE(VLV_COUNTER_CONTROL,
5386 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5387 VLV_MEDIA_RC6_COUNT_EN |
5388 VLV_RENDER_RC6_COUNT_EN));
5389
5390 /* For now we assume BIOS is allocating and populating the PCBR */
5391 pcbr = I915_READ(VLV_PCBR);
5392
5393 /* 3: Enable RC6 */
5394 if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5395 (pcbr >> VLV_PCBR_ADDR_SHIFT))
5396 rc6_mode = GEN7_RC_CTL_TO_MODE;
5397
5398 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5399
5400 /* 4 Program defaults and thresholds for RPS*/
5401 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5402 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5403 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5404 I915_WRITE(GEN6_RP_UP_EI, 66000);
5405 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5406
5407 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5408
5409 /* 5: Enable RPS */
5410 I915_WRITE(GEN6_RP_CONTROL,
5411 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5412 GEN6_RP_MEDIA_IS_GFX |
5413 GEN6_RP_ENABLE |
5414 GEN6_RP_UP_BUSY_AVG |
5415 GEN6_RP_DOWN_IDLE_AVG);
5416
5417 /* Setting Fixed Bias */
5418 val = VLV_OVERRIDE_EN |
5419 VLV_SOC_TDP_EN |
5420 CHV_BIAS_CPU_50_SOC_50;
5421 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5422
5423 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5424
5425 /* RPS code assumes GPLL is used */
5426 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5427
5428 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5429 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5430
5431 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5432 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5433 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5434 dev_priv->rps.cur_freq);
5435
5436 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5437 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5438 dev_priv->rps.efficient_freq);
5439
5440 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5441
5442 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5443 }
5444
5445 static void valleyview_enable_rps(struct drm_device *dev)
5446 {
5447 struct drm_i915_private *dev_priv = dev->dev_private;
5448 struct intel_engine_cs *ring;
5449 u32 gtfifodbg, val, rc6_mode = 0;
5450 int i;
5451
5452 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5453
5454 valleyview_check_pctx(dev_priv);
5455
5456 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5457 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5458 gtfifodbg);
5459 I915_WRITE(GTFIFODBG, gtfifodbg);
5460 }
5461
5462 /* If VLV, Forcewake all wells, else re-direct to regular path */
5463 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5464
5465 /* Disable RC states. */
5466 I915_WRITE(GEN6_RC_CONTROL, 0);
5467
5468 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5469 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5470 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5471 I915_WRITE(GEN6_RP_UP_EI, 66000);
5472 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5473
5474 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5475
5476 I915_WRITE(GEN6_RP_CONTROL,
5477 GEN6_RP_MEDIA_TURBO |
5478 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5479 GEN6_RP_MEDIA_IS_GFX |
5480 GEN6_RP_ENABLE |
5481 GEN6_RP_UP_BUSY_AVG |
5482 GEN6_RP_DOWN_IDLE_CONT);
5483
5484 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5485 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5486 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5487
5488 for_each_ring(ring, dev_priv, i)
5489 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5490
5491 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5492
5493 /* allows RC6 residency counter to work */
5494 I915_WRITE(VLV_COUNTER_CONTROL,
5495 _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5496 VLV_RENDER_RC0_COUNT_EN |
5497 VLV_MEDIA_RC6_COUNT_EN |
5498 VLV_RENDER_RC6_COUNT_EN));
5499
5500 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5501 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5502
5503 intel_print_rc6_info(dev, rc6_mode);
5504
5505 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5506
5507 /* Setting Fixed Bias */
5508 val = VLV_OVERRIDE_EN |
5509 VLV_SOC_TDP_EN |
5510 VLV_BIAS_CPU_125_SOC_875;
5511 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5512
5513 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5514
5515 /* RPS code assumes GPLL is used */
5516 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5517
5518 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5519 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5520
5521 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5522 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5523 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5524 dev_priv->rps.cur_freq);
5525
5526 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5527 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5528 dev_priv->rps.efficient_freq);
5529
5530 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5531
5532 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5533 }
5534
5535 static unsigned long intel_pxfreq(u32 vidfreq)
5536 {
5537 unsigned long freq;
5538 int div = (vidfreq & 0x3f0000) >> 16;
5539 int post = (vidfreq & 0x3000) >> 12;
5540 int pre = (vidfreq & 0x7);
5541
5542 if (!pre)
5543 return 0;
5544
5545 freq = ((div * 133333) / ((1<<post) * pre));
5546
5547 return freq;
5548 }
5549
5550 static const struct cparams {
5551 u16 i;
5552 u16 t;
5553 u16 m;
5554 u16 c;
5555 } cparams[] = {
5556 { 1, 1333, 301, 28664 },
5557 { 1, 1066, 294, 24460 },
5558 { 1, 800, 294, 25192 },
5559 { 0, 1333, 276, 27605 },
5560 { 0, 1066, 276, 27605 },
5561 { 0, 800, 231, 23784 },
5562 };
5563
5564 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5565 {
5566 u64 total_count, diff, ret;
5567 u32 count1, count2, count3, m = 0, c = 0;
5568 unsigned long now = jiffies_to_msecs(jiffies), diff1;
5569 int i;
5570
5571 assert_spin_locked(&mchdev_lock);
5572
5573 diff1 = now - dev_priv->ips.last_time1;
5574
5575 /* Prevent division-by-zero if we are asking too fast.
5576 * Also, we don't get interesting results if we are polling
5577 * faster than once in 10ms, so just return the saved value
5578 * in such cases.
5579 */
5580 if (diff1 <= 10)
5581 return dev_priv->ips.chipset_power;
5582
5583 count1 = I915_READ(DMIEC);
5584 count2 = I915_READ(DDREC);
5585 count3 = I915_READ(CSIEC);
5586
5587 total_count = count1 + count2 + count3;
5588
5589 /* FIXME: handle per-counter overflow */
5590 if (total_count < dev_priv->ips.last_count1) {
5591 diff = ~0UL - dev_priv->ips.last_count1;
5592 diff += total_count;
5593 } else {
5594 diff = total_count - dev_priv->ips.last_count1;
5595 }
5596
5597 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5598 if (cparams[i].i == dev_priv->ips.c_m &&
5599 cparams[i].t == dev_priv->ips.r_t) {
5600 m = cparams[i].m;
5601 c = cparams[i].c;
5602 break;
5603 }
5604 }
5605
5606 diff = div_u64(diff, diff1);
5607 ret = ((m * diff) + c);
5608 ret = div_u64(ret, 10);
5609
5610 dev_priv->ips.last_count1 = total_count;
5611 dev_priv->ips.last_time1 = now;
5612
5613 dev_priv->ips.chipset_power = ret;
5614
5615 return ret;
5616 }
5617
5618 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5619 {
5620 struct drm_device *dev = dev_priv->dev;
5621 unsigned long val;
5622
5623 if (INTEL_INFO(dev)->gen != 5)
5624 return 0;
5625
5626 spin_lock_irq(&mchdev_lock);
5627
5628 val = __i915_chipset_val(dev_priv);
5629
5630 spin_unlock_irq(&mchdev_lock);
5631
5632 return val;
5633 }
5634
5635 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5636 {
5637 unsigned long m, x, b;
5638 u32 tsfs;
5639
5640 tsfs = I915_READ(TSFS);
5641
5642 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5643 x = I915_READ8(TR1);
5644
5645 b = tsfs & TSFS_INTR_MASK;
5646
5647 return ((m * x) / 127) - b;
5648 }
5649
5650 static int _pxvid_to_vd(u8 pxvid)
5651 {
5652 if (pxvid == 0)
5653 return 0;
5654
5655 if (pxvid >= 8 && pxvid < 31)
5656 pxvid = 31;
5657
5658 return (pxvid + 2) * 125;
5659 }
5660
5661 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5662 {
5663 struct drm_device *dev = dev_priv->dev;
5664 const int vd = _pxvid_to_vd(pxvid);
5665 const int vm = vd - 1125;
5666
5667 if (INTEL_INFO(dev)->is_mobile)
5668 return vm > 0 ? vm : 0;
5669
5670 return vd;
5671 }
5672
5673 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5674 {
5675 u64 now, diff, diffms;
5676 u32 count;
5677
5678 assert_spin_locked(&mchdev_lock);
5679
5680 now = ktime_get_raw_ns();
5681 diffms = now - dev_priv->ips.last_time2;
5682 do_div(diffms, NSEC_PER_MSEC);
5683
5684 /* Don't divide by 0 */
5685 if (!diffms)
5686 return;
5687
5688 count = I915_READ(GFXEC);
5689
5690 if (count < dev_priv->ips.last_count2) {
5691 diff = ~0UL - dev_priv->ips.last_count2;
5692 diff += count;
5693 } else {
5694 diff = count - dev_priv->ips.last_count2;
5695 }
5696
5697 dev_priv->ips.last_count2 = count;
5698 dev_priv->ips.last_time2 = now;
5699
5700 /* More magic constants... */
5701 diff = diff * 1181;
5702 diff = div_u64(diff, diffms * 10);
5703 dev_priv->ips.gfx_power = diff;
5704 }
5705
5706 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5707 {
5708 struct drm_device *dev = dev_priv->dev;
5709
5710 if (INTEL_INFO(dev)->gen != 5)
5711 return;
5712
5713 spin_lock_irq(&mchdev_lock);
5714
5715 __i915_update_gfx_val(dev_priv);
5716
5717 spin_unlock_irq(&mchdev_lock);
5718 }
5719
5720 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5721 {
5722 unsigned long t, corr, state1, corr2, state2;
5723 u32 pxvid, ext_v;
5724
5725 assert_spin_locked(&mchdev_lock);
5726
5727 pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5728 pxvid = (pxvid >> 24) & 0x7f;
5729 ext_v = pvid_to_extvid(dev_priv, pxvid);
5730
5731 state1 = ext_v;
5732
5733 t = i915_mch_val(dev_priv);
5734
5735 /* Revel in the empirically derived constants */
5736
5737 /* Correction factor in 1/100000 units */
5738 if (t > 80)
5739 corr = ((t * 2349) + 135940);
5740 else if (t >= 50)
5741 corr = ((t * 964) + 29317);
5742 else /* < 50 */
5743 corr = ((t * 301) + 1004);
5744
5745 corr = corr * ((150142 * state1) / 10000 - 78642);
5746 corr /= 100000;
5747 corr2 = (corr * dev_priv->ips.corr);
5748
5749 state2 = (corr2 * state1) / 10000;
5750 state2 /= 100; /* convert to mW */
5751
5752 __i915_update_gfx_val(dev_priv);
5753
5754 return dev_priv->ips.gfx_power + state2;
5755 }
5756
5757 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5758 {
5759 struct drm_device *dev = dev_priv->dev;
5760 unsigned long val;
5761
5762 if (INTEL_INFO(dev)->gen != 5)
5763 return 0;
5764
5765 spin_lock_irq(&mchdev_lock);
5766
5767 val = __i915_gfx_val(dev_priv);
5768
5769 spin_unlock_irq(&mchdev_lock);
5770
5771 return val;
5772 }
5773
5774 /**
5775 * i915_read_mch_val - return value for IPS use
5776 *
5777 * Calculate and return a value for the IPS driver to use when deciding whether
5778 * we have thermal and power headroom to increase CPU or GPU power budget.
5779 */
5780 unsigned long i915_read_mch_val(void)
5781 {
5782 struct drm_i915_private *dev_priv;
5783 unsigned long chipset_val, graphics_val, ret = 0;
5784
5785 spin_lock_irq(&mchdev_lock);
5786 if (!i915_mch_dev)
5787 goto out_unlock;
5788 dev_priv = i915_mch_dev;
5789
5790 chipset_val = __i915_chipset_val(dev_priv);
5791 graphics_val = __i915_gfx_val(dev_priv);
5792
5793 ret = chipset_val + graphics_val;
5794
5795 out_unlock:
5796 spin_unlock_irq(&mchdev_lock);
5797
5798 return ret;
5799 }
5800 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5801
5802 /**
5803 * i915_gpu_raise - raise GPU frequency limit
5804 *
5805 * Raise the limit; IPS indicates we have thermal headroom.
5806 */
5807 bool i915_gpu_raise(void)
5808 {
5809 struct drm_i915_private *dev_priv;
5810 bool ret = true;
5811
5812 spin_lock_irq(&mchdev_lock);
5813 if (!i915_mch_dev) {
5814 ret = false;
5815 goto out_unlock;
5816 }
5817 dev_priv = i915_mch_dev;
5818
5819 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5820 dev_priv->ips.max_delay--;
5821
5822 out_unlock:
5823 spin_unlock_irq(&mchdev_lock);
5824
5825 return ret;
5826 }
5827 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5828
5829 /**
5830 * i915_gpu_lower - lower GPU frequency limit
5831 *
5832 * IPS indicates we're close to a thermal limit, so throttle back the GPU
5833 * frequency maximum.
5834 */
5835 bool i915_gpu_lower(void)
5836 {
5837 struct drm_i915_private *dev_priv;
5838 bool ret = true;
5839
5840 spin_lock_irq(&mchdev_lock);
5841 if (!i915_mch_dev) {
5842 ret = false;
5843 goto out_unlock;
5844 }
5845 dev_priv = i915_mch_dev;
5846
5847 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5848 dev_priv->ips.max_delay++;
5849
5850 out_unlock:
5851 spin_unlock_irq(&mchdev_lock);
5852
5853 return ret;
5854 }
5855 EXPORT_SYMBOL_GPL(i915_gpu_lower);
5856
5857 /**
5858 * i915_gpu_busy - indicate GPU business to IPS
5859 *
5860 * Tell the IPS driver whether or not the GPU is busy.
5861 */
5862 bool i915_gpu_busy(void)
5863 {
5864 struct drm_i915_private *dev_priv;
5865 struct intel_engine_cs *ring;
5866 bool ret = false;
5867 int i;
5868
5869 spin_lock_irq(&mchdev_lock);
5870 if (!i915_mch_dev)
5871 goto out_unlock;
5872 dev_priv = i915_mch_dev;
5873
5874 for_each_ring(ring, dev_priv, i)
5875 ret |= !list_empty(&ring->request_list);
5876
5877 out_unlock:
5878 spin_unlock_irq(&mchdev_lock);
5879
5880 return ret;
5881 }
5882 EXPORT_SYMBOL_GPL(i915_gpu_busy);
5883
5884 /**
5885 * i915_gpu_turbo_disable - disable graphics turbo
5886 *
5887 * Disable graphics turbo by resetting the max frequency and setting the
5888 * current frequency to the default.
5889 */
5890 bool i915_gpu_turbo_disable(void)
5891 {
5892 struct drm_i915_private *dev_priv;
5893 bool ret = true;
5894
5895 spin_lock_irq(&mchdev_lock);
5896 if (!i915_mch_dev) {
5897 ret = false;
5898 goto out_unlock;
5899 }
5900 dev_priv = i915_mch_dev;
5901
5902 dev_priv->ips.max_delay = dev_priv->ips.fstart;
5903
5904 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5905 ret = false;
5906
5907 out_unlock:
5908 spin_unlock_irq(&mchdev_lock);
5909
5910 return ret;
5911 }
5912 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
5913
5914 /**
5915 * Tells the intel_ips driver that the i915 driver is now loaded, if
5916 * IPS got loaded first.
5917 *
5918 * This awkward dance is so that neither module has to depend on the
5919 * other in order for IPS to do the appropriate communication of
5920 * GPU turbo limits to i915.
5921 */
5922 static void
5923 ips_ping_for_i915_load(void)
5924 {
5925 void (*link)(void);
5926
5927 link = symbol_get(ips_link_to_i915_driver);
5928 if (link) {
5929 link();
5930 symbol_put(ips_link_to_i915_driver);
5931 }
5932 }
5933
5934 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
5935 {
5936 /* We only register the i915 ips part with intel-ips once everything is
5937 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5938 spin_lock_irq(&mchdev_lock);
5939 i915_mch_dev = dev_priv;
5940 spin_unlock_irq(&mchdev_lock);
5941
5942 ips_ping_for_i915_load();
5943 }
5944
5945 void intel_gpu_ips_teardown(void)
5946 {
5947 spin_lock_irq(&mchdev_lock);
5948 i915_mch_dev = NULL;
5949 spin_unlock_irq(&mchdev_lock);
5950 }
5951
5952 static void intel_init_emon(struct drm_device *dev)
5953 {
5954 struct drm_i915_private *dev_priv = dev->dev_private;
5955 u32 lcfuse;
5956 u8 pxw[16];
5957 int i;
5958
5959 /* Disable to program */
5960 I915_WRITE(ECR, 0);
5961 POSTING_READ(ECR);
5962
5963 /* Program energy weights for various events */
5964 I915_WRITE(SDEW, 0x15040d00);
5965 I915_WRITE(CSIEW0, 0x007f0000);
5966 I915_WRITE(CSIEW1, 0x1e220004);
5967 I915_WRITE(CSIEW2, 0x04000004);
5968
5969 for (i = 0; i < 5; i++)
5970 I915_WRITE(PEW(i), 0);
5971 for (i = 0; i < 3; i++)
5972 I915_WRITE(DEW(i), 0);
5973
5974 /* Program P-state weights to account for frequency power adjustment */
5975 for (i = 0; i < 16; i++) {
5976 u32 pxvidfreq = I915_READ(PXVFREQ(i));
5977 unsigned long freq = intel_pxfreq(pxvidfreq);
5978 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5979 PXVFREQ_PX_SHIFT;
5980 unsigned long val;
5981
5982 val = vid * vid;
5983 val *= (freq / 1000);
5984 val *= 255;
5985 val /= (127*127*900);
5986 if (val > 0xff)
5987 DRM_ERROR("bad pxval: %ld\n", val);
5988 pxw[i] = val;
5989 }
5990 /* Render standby states get 0 weight */
5991 pxw[14] = 0;
5992 pxw[15] = 0;
5993
5994 for (i = 0; i < 4; i++) {
5995 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5996 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5997 I915_WRITE(PXW(i), val);
5998 }
5999
6000 /* Adjust magic regs to magic values (more experimental results) */
6001 I915_WRITE(OGW0, 0);
6002 I915_WRITE(OGW1, 0);
6003 I915_WRITE(EG0, 0x00007f00);
6004 I915_WRITE(EG1, 0x0000000e);
6005 I915_WRITE(EG2, 0x000e0000);
6006 I915_WRITE(EG3, 0x68000300);
6007 I915_WRITE(EG4, 0x42000000);
6008 I915_WRITE(EG5, 0x00140031);
6009 I915_WRITE(EG6, 0);
6010 I915_WRITE(EG7, 0);
6011
6012 for (i = 0; i < 8; i++)
6013 I915_WRITE(PXWL(i), 0);
6014
6015 /* Enable PMON + select events */
6016 I915_WRITE(ECR, 0x80000019);
6017
6018 lcfuse = I915_READ(LCFUSE02);
6019
6020 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6021 }
6022
6023 void intel_init_gt_powersave(struct drm_device *dev)
6024 {
6025 struct drm_i915_private *dev_priv = dev->dev_private;
6026
6027 i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
6028 /*
6029 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6030 * requirement.
6031 */
6032 if (!i915.enable_rc6) {
6033 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6034 intel_runtime_pm_get(dev_priv);
6035 }
6036
6037 if (IS_CHERRYVIEW(dev))
6038 cherryview_init_gt_powersave(dev);
6039 else if (IS_VALLEYVIEW(dev))
6040 valleyview_init_gt_powersave(dev);
6041 }
6042
6043 void intel_cleanup_gt_powersave(struct drm_device *dev)
6044 {
6045 struct drm_i915_private *dev_priv = dev->dev_private;
6046
6047 if (IS_CHERRYVIEW(dev))
6048 return;
6049 else if (IS_VALLEYVIEW(dev))
6050 valleyview_cleanup_gt_powersave(dev);
6051
6052 if (!i915.enable_rc6)
6053 intel_runtime_pm_put(dev_priv);
6054 }
6055
6056 static void gen6_suspend_rps(struct drm_device *dev)
6057 {
6058 struct drm_i915_private *dev_priv = dev->dev_private;
6059
6060 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6061
6062 gen6_disable_rps_interrupts(dev);
6063 }
6064
6065 /**
6066 * intel_suspend_gt_powersave - suspend PM work and helper threads
6067 * @dev: drm device
6068 *
6069 * We don't want to disable RC6 or other features here, we just want
6070 * to make sure any work we've queued has finished and won't bother
6071 * us while we're suspended.
6072 */
6073 void intel_suspend_gt_powersave(struct drm_device *dev)
6074 {
6075 struct drm_i915_private *dev_priv = dev->dev_private;
6076
6077 if (INTEL_INFO(dev)->gen < 6)
6078 return;
6079
6080 gen6_suspend_rps(dev);
6081
6082 /* Force GPU to min freq during suspend */
6083 gen6_rps_idle(dev_priv);
6084 }
6085
6086 void intel_disable_gt_powersave(struct drm_device *dev)
6087 {
6088 struct drm_i915_private *dev_priv = dev->dev_private;
6089
6090 if (IS_IRONLAKE_M(dev)) {
6091 ironlake_disable_drps(dev);
6092 } else if (INTEL_INFO(dev)->gen >= 6) {
6093 intel_suspend_gt_powersave(dev);
6094
6095 mutex_lock(&dev_priv->rps.hw_lock);
6096 if (INTEL_INFO(dev)->gen >= 9)
6097 gen9_disable_rps(dev);
6098 else if (IS_CHERRYVIEW(dev))
6099 cherryview_disable_rps(dev);
6100 else if (IS_VALLEYVIEW(dev))
6101 valleyview_disable_rps(dev);
6102 else
6103 gen6_disable_rps(dev);
6104
6105 dev_priv->rps.enabled = false;
6106 mutex_unlock(&dev_priv->rps.hw_lock);
6107 }
6108 }
6109
6110 static void intel_gen6_powersave_work(struct work_struct *work)
6111 {
6112 struct drm_i915_private *dev_priv =
6113 container_of(work, struct drm_i915_private,
6114 rps.delayed_resume_work.work);
6115 struct drm_device *dev = dev_priv->dev;
6116
6117 mutex_lock(&dev_priv->rps.hw_lock);
6118
6119 gen6_reset_rps_interrupts(dev);
6120
6121 if (IS_CHERRYVIEW(dev)) {
6122 cherryview_enable_rps(dev);
6123 } else if (IS_VALLEYVIEW(dev)) {
6124 valleyview_enable_rps(dev);
6125 } else if (INTEL_INFO(dev)->gen >= 9) {
6126 gen9_enable_rc6(dev);
6127 gen9_enable_rps(dev);
6128 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
6129 __gen6_update_ring_freq(dev);
6130 } else if (IS_BROADWELL(dev)) {
6131 gen8_enable_rps(dev);
6132 __gen6_update_ring_freq(dev);
6133 } else {
6134 gen6_enable_rps(dev);
6135 __gen6_update_ring_freq(dev);
6136 }
6137
6138 WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6139 WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6140
6141 WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6142 WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6143
6144 dev_priv->rps.enabled = true;
6145
6146 gen6_enable_rps_interrupts(dev);
6147
6148 mutex_unlock(&dev_priv->rps.hw_lock);
6149
6150 intel_runtime_pm_put(dev_priv);
6151 }
6152
6153 void intel_enable_gt_powersave(struct drm_device *dev)
6154 {
6155 struct drm_i915_private *dev_priv = dev->dev_private;
6156
6157 /* Powersaving is controlled by the host when inside a VM */
6158 if (intel_vgpu_active(dev))
6159 return;
6160
6161 if (IS_IRONLAKE_M(dev)) {
6162 mutex_lock(&dev->struct_mutex);
6163 ironlake_enable_drps(dev);
6164 intel_init_emon(dev);
6165 mutex_unlock(&dev->struct_mutex);
6166 } else if (INTEL_INFO(dev)->gen >= 6) {
6167 /*
6168 * PCU communication is slow and this doesn't need to be
6169 * done at any specific time, so do this out of our fast path
6170 * to make resume and init faster.
6171 *
6172 * We depend on the HW RC6 power context save/restore
6173 * mechanism when entering D3 through runtime PM suspend. So
6174 * disable RPM until RPS/RC6 is properly setup. We can only
6175 * get here via the driver load/system resume/runtime resume
6176 * paths, so the _noresume version is enough (and in case of
6177 * runtime resume it's necessary).
6178 */
6179 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6180 round_jiffies_up_relative(HZ)))
6181 intel_runtime_pm_get_noresume(dev_priv);
6182 }
6183 }
6184
6185 void intel_reset_gt_powersave(struct drm_device *dev)
6186 {
6187 struct drm_i915_private *dev_priv = dev->dev_private;
6188
6189 if (INTEL_INFO(dev)->gen < 6)
6190 return;
6191
6192 gen6_suspend_rps(dev);
6193 dev_priv->rps.enabled = false;
6194 }
6195
6196 static void ibx_init_clock_gating(struct drm_device *dev)
6197 {
6198 struct drm_i915_private *dev_priv = dev->dev_private;
6199
6200 /*
6201 * On Ibex Peak and Cougar Point, we need to disable clock
6202 * gating for the panel power sequencer or it will fail to
6203 * start up when no ports are active.
6204 */
6205 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6206 }
6207
6208 static void g4x_disable_trickle_feed(struct drm_device *dev)
6209 {
6210 struct drm_i915_private *dev_priv = dev->dev_private;
6211 enum pipe pipe;
6212
6213 for_each_pipe(dev_priv, pipe) {
6214 I915_WRITE(DSPCNTR(pipe),
6215 I915_READ(DSPCNTR(pipe)) |
6216 DISPPLANE_TRICKLE_FEED_DISABLE);
6217
6218 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6219 POSTING_READ(DSPSURF(pipe));
6220 }
6221 }
6222
6223 static void ilk_init_lp_watermarks(struct drm_device *dev)
6224 {
6225 struct drm_i915_private *dev_priv = dev->dev_private;
6226
6227 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6228 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6229 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6230
6231 /*
6232 * Don't touch WM1S_LP_EN here.
6233 * Doing so could cause underruns.
6234 */
6235 }
6236
6237 static void ironlake_init_clock_gating(struct drm_device *dev)
6238 {
6239 struct drm_i915_private *dev_priv = dev->dev_private;
6240 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6241
6242 /*
6243 * Required for FBC
6244 * WaFbcDisableDpfcClockGating:ilk
6245 */
6246 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6247 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6248 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6249
6250 I915_WRITE(PCH_3DCGDIS0,
6251 MARIUNIT_CLOCK_GATE_DISABLE |
6252 SVSMUNIT_CLOCK_GATE_DISABLE);
6253 I915_WRITE(PCH_3DCGDIS1,
6254 VFMUNIT_CLOCK_GATE_DISABLE);
6255
6256 /*
6257 * According to the spec the following bits should be set in
6258 * order to enable memory self-refresh
6259 * The bit 22/21 of 0x42004
6260 * The bit 5 of 0x42020
6261 * The bit 15 of 0x45000
6262 */
6263 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6264 (I915_READ(ILK_DISPLAY_CHICKEN2) |
6265 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6266 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6267 I915_WRITE(DISP_ARB_CTL,
6268 (I915_READ(DISP_ARB_CTL) |
6269 DISP_FBC_WM_DIS));
6270
6271 ilk_init_lp_watermarks(dev);
6272
6273 /*
6274 * Based on the document from hardware guys the following bits
6275 * should be set unconditionally in order to enable FBC.
6276 * The bit 22 of 0x42000
6277 * The bit 22 of 0x42004
6278 * The bit 7,8,9 of 0x42020.
6279 */
6280 if (IS_IRONLAKE_M(dev)) {
6281 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6282 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6283 I915_READ(ILK_DISPLAY_CHICKEN1) |
6284 ILK_FBCQ_DIS);
6285 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6286 I915_READ(ILK_DISPLAY_CHICKEN2) |
6287 ILK_DPARB_GATE);
6288 }
6289
6290 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6291
6292 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6293 I915_READ(ILK_DISPLAY_CHICKEN2) |
6294 ILK_ELPIN_409_SELECT);
6295 I915_WRITE(_3D_CHICKEN2,
6296 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6297 _3D_CHICKEN2_WM_READ_PIPELINED);
6298
6299 /* WaDisableRenderCachePipelinedFlush:ilk */
6300 I915_WRITE(CACHE_MODE_0,
6301 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6302
6303 /* WaDisable_RenderCache_OperationalFlush:ilk */
6304 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6305
6306 g4x_disable_trickle_feed(dev);
6307
6308 ibx_init_clock_gating(dev);
6309 }
6310
6311 static void cpt_init_clock_gating(struct drm_device *dev)
6312 {
6313 struct drm_i915_private *dev_priv = dev->dev_private;
6314 int pipe;
6315 uint32_t val;
6316
6317 /*
6318 * On Ibex Peak and Cougar Point, we need to disable clock
6319 * gating for the panel power sequencer or it will fail to
6320 * start up when no ports are active.
6321 */
6322 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6323 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6324 PCH_CPUNIT_CLOCK_GATE_DISABLE);
6325 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6326 DPLS_EDP_PPS_FIX_DIS);
6327 /* The below fixes the weird display corruption, a few pixels shifted
6328 * downward, on (only) LVDS of some HP laptops with IVY.
6329 */
6330 for_each_pipe(dev_priv, pipe) {
6331 val = I915_READ(TRANS_CHICKEN2(pipe));
6332 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6333 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6334 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6335 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6336 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6337 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6338 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6339 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6340 }
6341 /* WADP0ClockGatingDisable */
6342 for_each_pipe(dev_priv, pipe) {
6343 I915_WRITE(TRANS_CHICKEN1(pipe),
6344 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6345 }
6346 }
6347
6348 static void gen6_check_mch_setup(struct drm_device *dev)
6349 {
6350 struct drm_i915_private *dev_priv = dev->dev_private;
6351 uint32_t tmp;
6352
6353 tmp = I915_READ(MCH_SSKPD);
6354 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6355 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6356 tmp);
6357 }
6358
6359 static void gen6_init_clock_gating(struct drm_device *dev)
6360 {
6361 struct drm_i915_private *dev_priv = dev->dev_private;
6362 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6363
6364 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6365
6366 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6367 I915_READ(ILK_DISPLAY_CHICKEN2) |
6368 ILK_ELPIN_409_SELECT);
6369
6370 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6371 I915_WRITE(_3D_CHICKEN,
6372 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6373
6374 /* WaDisable_RenderCache_OperationalFlush:snb */
6375 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6376
6377 /*
6378 * BSpec recoomends 8x4 when MSAA is used,
6379 * however in practice 16x4 seems fastest.
6380 *
6381 * Note that PS/WM thread counts depend on the WIZ hashing
6382 * disable bit, which we don't touch here, but it's good
6383 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6384 */
6385 I915_WRITE(GEN6_GT_MODE,
6386 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6387
6388 ilk_init_lp_watermarks(dev);
6389
6390 I915_WRITE(CACHE_MODE_0,
6391 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6392
6393 I915_WRITE(GEN6_UCGCTL1,
6394 I915_READ(GEN6_UCGCTL1) |
6395 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6396 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6397
6398 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6399 * gating disable must be set. Failure to set it results in
6400 * flickering pixels due to Z write ordering failures after
6401 * some amount of runtime in the Mesa "fire" demo, and Unigine
6402 * Sanctuary and Tropics, and apparently anything else with
6403 * alpha test or pixel discard.
6404 *
6405 * According to the spec, bit 11 (RCCUNIT) must also be set,
6406 * but we didn't debug actual testcases to find it out.
6407 *
6408 * WaDisableRCCUnitClockGating:snb
6409 * WaDisableRCPBUnitClockGating:snb
6410 */
6411 I915_WRITE(GEN6_UCGCTL2,
6412 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6413 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6414
6415 /* WaStripsFansDisableFastClipPerformanceFix:snb */
6416 I915_WRITE(_3D_CHICKEN3,
6417 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6418
6419 /*
6420 * Bspec says:
6421 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6422 * 3DSTATE_SF number of SF output attributes is more than 16."
6423 */
6424 I915_WRITE(_3D_CHICKEN3,
6425 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6426
6427 /*
6428 * According to the spec the following bits should be
6429 * set in order to enable memory self-refresh and fbc:
6430 * The bit21 and bit22 of 0x42000
6431 * The bit21 and bit22 of 0x42004
6432 * The bit5 and bit7 of 0x42020
6433 * The bit14 of 0x70180
6434 * The bit14 of 0x71180
6435 *
6436 * WaFbcAsynchFlipDisableFbcQueue:snb
6437 */
6438 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6439 I915_READ(ILK_DISPLAY_CHICKEN1) |
6440 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6441 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6442 I915_READ(ILK_DISPLAY_CHICKEN2) |
6443 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6444 I915_WRITE(ILK_DSPCLK_GATE_D,
6445 I915_READ(ILK_DSPCLK_GATE_D) |
6446 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
6447 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6448
6449 g4x_disable_trickle_feed(dev);
6450
6451 cpt_init_clock_gating(dev);
6452
6453 gen6_check_mch_setup(dev);
6454 }
6455
6456 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6457 {
6458 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6459
6460 /*
6461 * WaVSThreadDispatchOverride:ivb,vlv
6462 *
6463 * This actually overrides the dispatch
6464 * mode for all thread types.
6465 */
6466 reg &= ~GEN7_FF_SCHED_MASK;
6467 reg |= GEN7_FF_TS_SCHED_HW;
6468 reg |= GEN7_FF_VS_SCHED_HW;
6469 reg |= GEN7_FF_DS_SCHED_HW;
6470
6471 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6472 }
6473
6474 static void lpt_init_clock_gating(struct drm_device *dev)
6475 {
6476 struct drm_i915_private *dev_priv = dev->dev_private;
6477
6478 /*
6479 * TODO: this bit should only be enabled when really needed, then
6480 * disabled when not needed anymore in order to save power.
6481 */
6482 if (HAS_PCH_LPT_LP(dev))
6483 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6484 I915_READ(SOUTH_DSPCLK_GATE_D) |
6485 PCH_LP_PARTITION_LEVEL_DISABLE);
6486
6487 /* WADPOClockGatingDisable:hsw */
6488 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6489 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6490 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6491 }
6492
6493 static void lpt_suspend_hw(struct drm_device *dev)
6494 {
6495 struct drm_i915_private *dev_priv = dev->dev_private;
6496
6497 if (HAS_PCH_LPT_LP(dev)) {
6498 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6499
6500 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6501 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6502 }
6503 }
6504
6505 static void broadwell_init_clock_gating(struct drm_device *dev)
6506 {
6507 struct drm_i915_private *dev_priv = dev->dev_private;
6508 enum pipe pipe;
6509 uint32_t misccpctl;
6510
6511 ilk_init_lp_watermarks(dev);
6512
6513 /* WaSwitchSolVfFArbitrationPriority:bdw */
6514 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6515
6516 /* WaPsrDPAMaskVBlankInSRD:bdw */
6517 I915_WRITE(CHICKEN_PAR1_1,
6518 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6519
6520 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6521 for_each_pipe(dev_priv, pipe) {
6522 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6523 I915_READ(CHICKEN_PIPESL_1(pipe)) |
6524 BDW_DPRS_MASK_VBLANK_SRD);
6525 }
6526
6527 /* WaVSRefCountFullforceMissDisable:bdw */
6528 /* WaDSRefCountFullforceMissDisable:bdw */
6529 I915_WRITE(GEN7_FF_THREAD_MODE,
6530 I915_READ(GEN7_FF_THREAD_MODE) &
6531 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6532
6533 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6534 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6535
6536 /* WaDisableSDEUnitClockGating:bdw */
6537 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6538 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6539
6540 /*
6541 * WaProgramL3SqcReg1Default:bdw
6542 * WaTempDisableDOPClkGating:bdw
6543 */
6544 misccpctl = I915_READ(GEN7_MISCCPCTL);
6545 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6546 I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6547 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6548
6549 /*
6550 * WaGttCachingOffByDefault:bdw
6551 * GTT cache may not work with big pages, so if those
6552 * are ever enabled GTT cache may need to be disabled.
6553 */
6554 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6555
6556 lpt_init_clock_gating(dev);
6557 }
6558
6559 static void haswell_init_clock_gating(struct drm_device *dev)
6560 {
6561 struct drm_i915_private *dev_priv = dev->dev_private;
6562
6563 ilk_init_lp_watermarks(dev);
6564
6565 /* L3 caching of data atomics doesn't work -- disable it. */
6566 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6567 I915_WRITE(HSW_ROW_CHICKEN3,
6568 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6569
6570 /* This is required by WaCatErrorRejectionIssue:hsw */
6571 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6572 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6573 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6574
6575 /* WaVSRefCountFullforceMissDisable:hsw */
6576 I915_WRITE(GEN7_FF_THREAD_MODE,
6577 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6578
6579 /* WaDisable_RenderCache_OperationalFlush:hsw */
6580 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6581
6582 /* enable HiZ Raw Stall Optimization */
6583 I915_WRITE(CACHE_MODE_0_GEN7,
6584 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6585
6586 /* WaDisable4x2SubspanOptimization:hsw */
6587 I915_WRITE(CACHE_MODE_1,
6588 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6589
6590 /*
6591 * BSpec recommends 8x4 when MSAA is used,
6592 * however in practice 16x4 seems fastest.
6593 *
6594 * Note that PS/WM thread counts depend on the WIZ hashing
6595 * disable bit, which we don't touch here, but it's good
6596 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6597 */
6598 I915_WRITE(GEN7_GT_MODE,
6599 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6600
6601 /* WaSampleCChickenBitEnable:hsw */
6602 I915_WRITE(HALF_SLICE_CHICKEN3,
6603 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6604
6605 /* WaSwitchSolVfFArbitrationPriority:hsw */
6606 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6607
6608 /* WaRsPkgCStateDisplayPMReq:hsw */
6609 I915_WRITE(CHICKEN_PAR1_1,
6610 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6611
6612 lpt_init_clock_gating(dev);
6613 }
6614
6615 static void ivybridge_init_clock_gating(struct drm_device *dev)
6616 {
6617 struct drm_i915_private *dev_priv = dev->dev_private;
6618 uint32_t snpcr;
6619
6620 ilk_init_lp_watermarks(dev);
6621
6622 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6623
6624 /* WaDisableEarlyCull:ivb */
6625 I915_WRITE(_3D_CHICKEN3,
6626 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6627
6628 /* WaDisableBackToBackFlipFix:ivb */
6629 I915_WRITE(IVB_CHICKEN3,
6630 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6631 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6632
6633 /* WaDisablePSDDualDispatchEnable:ivb */
6634 if (IS_IVB_GT1(dev))
6635 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6636 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6637
6638 /* WaDisable_RenderCache_OperationalFlush:ivb */
6639 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6640
6641 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6642 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6643 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6644
6645 /* WaApplyL3ControlAndL3ChickenMode:ivb */
6646 I915_WRITE(GEN7_L3CNTLREG1,
6647 GEN7_WA_FOR_GEN7_L3_CONTROL);
6648 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6649 GEN7_WA_L3_CHICKEN_MODE);
6650 if (IS_IVB_GT1(dev))
6651 I915_WRITE(GEN7_ROW_CHICKEN2,
6652 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6653 else {
6654 /* must write both registers */
6655 I915_WRITE(GEN7_ROW_CHICKEN2,
6656 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6657 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6658 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6659 }
6660
6661 /* WaForceL3Serialization:ivb */
6662 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6663 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6664
6665 /*
6666 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6667 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6668 */
6669 I915_WRITE(GEN6_UCGCTL2,
6670 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6671
6672 /* This is required by WaCatErrorRejectionIssue:ivb */
6673 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6674 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6675 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6676
6677 g4x_disable_trickle_feed(dev);
6678
6679 gen7_setup_fixed_func_scheduler(dev_priv);
6680
6681 if (0) { /* causes HiZ corruption on ivb:gt1 */
6682 /* enable HiZ Raw Stall Optimization */
6683 I915_WRITE(CACHE_MODE_0_GEN7,
6684 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6685 }
6686
6687 /* WaDisable4x2SubspanOptimization:ivb */
6688 I915_WRITE(CACHE_MODE_1,
6689 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6690
6691 /*
6692 * BSpec recommends 8x4 when MSAA is used,
6693 * however in practice 16x4 seems fastest.
6694 *
6695 * Note that PS/WM thread counts depend on the WIZ hashing
6696 * disable bit, which we don't touch here, but it's good
6697 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6698 */
6699 I915_WRITE(GEN7_GT_MODE,
6700 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6701
6702 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6703 snpcr &= ~GEN6_MBC_SNPCR_MASK;
6704 snpcr |= GEN6_MBC_SNPCR_MED;
6705 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6706
6707 if (!HAS_PCH_NOP(dev))
6708 cpt_init_clock_gating(dev);
6709
6710 gen6_check_mch_setup(dev);
6711 }
6712
6713 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6714 {
6715 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6716
6717 /*
6718 * Disable trickle feed and enable pnd deadline calculation
6719 */
6720 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6721 I915_WRITE(CBR1_VLV, 0);
6722 }
6723
6724 static void valleyview_init_clock_gating(struct drm_device *dev)
6725 {
6726 struct drm_i915_private *dev_priv = dev->dev_private;
6727
6728 vlv_init_display_clock_gating(dev_priv);
6729
6730 /* WaDisableEarlyCull:vlv */
6731 I915_WRITE(_3D_CHICKEN3,
6732 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6733
6734 /* WaDisableBackToBackFlipFix:vlv */
6735 I915_WRITE(IVB_CHICKEN3,
6736 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6737 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6738
6739 /* WaPsdDispatchEnable:vlv */
6740 /* WaDisablePSDDualDispatchEnable:vlv */
6741 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6742 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6743 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6744
6745 /* WaDisable_RenderCache_OperationalFlush:vlv */
6746 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6747
6748 /* WaForceL3Serialization:vlv */
6749 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6750 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6751
6752 /* WaDisableDopClockGating:vlv */
6753 I915_WRITE(GEN7_ROW_CHICKEN2,
6754 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6755
6756 /* This is required by WaCatErrorRejectionIssue:vlv */
6757 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6758 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6759 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6760
6761 gen7_setup_fixed_func_scheduler(dev_priv);
6762
6763 /*
6764 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6765 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6766 */
6767 I915_WRITE(GEN6_UCGCTL2,
6768 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6769
6770 /* WaDisableL3Bank2xClockGate:vlv
6771 * Disabling L3 clock gating- MMIO 940c[25] = 1
6772 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6773 I915_WRITE(GEN7_UCGCTL4,
6774 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6775
6776 /*
6777 * BSpec says this must be set, even though
6778 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6779 */
6780 I915_WRITE(CACHE_MODE_1,
6781 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6782
6783 /*
6784 * BSpec recommends 8x4 when MSAA is used,
6785 * however in practice 16x4 seems fastest.
6786 *
6787 * Note that PS/WM thread counts depend on the WIZ hashing
6788 * disable bit, which we don't touch here, but it's good
6789 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6790 */
6791 I915_WRITE(GEN7_GT_MODE,
6792 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6793
6794 /*
6795 * WaIncreaseL3CreditsForVLVB0:vlv
6796 * This is the hardware default actually.
6797 */
6798 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6799
6800 /*
6801 * WaDisableVLVClockGating_VBIIssue:vlv
6802 * Disable clock gating on th GCFG unit to prevent a delay
6803 * in the reporting of vblank events.
6804 */
6805 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6806 }
6807
6808 static void cherryview_init_clock_gating(struct drm_device *dev)
6809 {
6810 struct drm_i915_private *dev_priv = dev->dev_private;
6811
6812 vlv_init_display_clock_gating(dev_priv);
6813
6814 /* WaVSRefCountFullforceMissDisable:chv */
6815 /* WaDSRefCountFullforceMissDisable:chv */
6816 I915_WRITE(GEN7_FF_THREAD_MODE,
6817 I915_READ(GEN7_FF_THREAD_MODE) &
6818 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6819
6820 /* WaDisableSemaphoreAndSyncFlipWait:chv */
6821 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6822 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6823
6824 /* WaDisableCSUnitClockGating:chv */
6825 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6826 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6827
6828 /* WaDisableSDEUnitClockGating:chv */
6829 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6830 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6831
6832 /*
6833 * GTT cache may not work with big pages, so if those
6834 * are ever enabled GTT cache may need to be disabled.
6835 */
6836 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6837 }
6838
6839 static void g4x_init_clock_gating(struct drm_device *dev)
6840 {
6841 struct drm_i915_private *dev_priv = dev->dev_private;
6842 uint32_t dspclk_gate;
6843
6844 I915_WRITE(RENCLK_GATE_D1, 0);
6845 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6846 GS_UNIT_CLOCK_GATE_DISABLE |
6847 CL_UNIT_CLOCK_GATE_DISABLE);
6848 I915_WRITE(RAMCLK_GATE_D, 0);
6849 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6850 OVRUNIT_CLOCK_GATE_DISABLE |
6851 OVCUNIT_CLOCK_GATE_DISABLE;
6852 if (IS_GM45(dev))
6853 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6854 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6855
6856 /* WaDisableRenderCachePipelinedFlush */
6857 I915_WRITE(CACHE_MODE_0,
6858 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6859
6860 /* WaDisable_RenderCache_OperationalFlush:g4x */
6861 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6862
6863 g4x_disable_trickle_feed(dev);
6864 }
6865
6866 static void crestline_init_clock_gating(struct drm_device *dev)
6867 {
6868 struct drm_i915_private *dev_priv = dev->dev_private;
6869
6870 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6871 I915_WRITE(RENCLK_GATE_D2, 0);
6872 I915_WRITE(DSPCLK_GATE_D, 0);
6873 I915_WRITE(RAMCLK_GATE_D, 0);
6874 I915_WRITE16(DEUC, 0);
6875 I915_WRITE(MI_ARB_STATE,
6876 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6877
6878 /* WaDisable_RenderCache_OperationalFlush:gen4 */
6879 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6880 }
6881
6882 static void broadwater_init_clock_gating(struct drm_device *dev)
6883 {
6884 struct drm_i915_private *dev_priv = dev->dev_private;
6885
6886 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6887 I965_RCC_CLOCK_GATE_DISABLE |
6888 I965_RCPB_CLOCK_GATE_DISABLE |
6889 I965_ISC_CLOCK_GATE_DISABLE |
6890 I965_FBC_CLOCK_GATE_DISABLE);
6891 I915_WRITE(RENCLK_GATE_D2, 0);
6892 I915_WRITE(MI_ARB_STATE,
6893 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6894
6895 /* WaDisable_RenderCache_OperationalFlush:gen4 */
6896 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6897 }
6898
6899 static void gen3_init_clock_gating(struct drm_device *dev)
6900 {
6901 struct drm_i915_private *dev_priv = dev->dev_private;
6902 u32 dstate = I915_READ(D_STATE);
6903
6904 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6905 DSTATE_DOT_CLOCK_GATING;
6906 I915_WRITE(D_STATE, dstate);
6907
6908 if (IS_PINEVIEW(dev))
6909 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6910
6911 /* IIR "flip pending" means done if this bit is set */
6912 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6913
6914 /* interrupts should cause a wake up from C3 */
6915 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6916
6917 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
6918 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6919
6920 I915_WRITE(MI_ARB_STATE,
6921 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6922 }
6923
6924 static void i85x_init_clock_gating(struct drm_device *dev)
6925 {
6926 struct drm_i915_private *dev_priv = dev->dev_private;
6927
6928 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6929
6930 /* interrupts should cause a wake up from C3 */
6931 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
6932 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6933
6934 I915_WRITE(MEM_MODE,
6935 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6936 }
6937
6938 static void i830_init_clock_gating(struct drm_device *dev)
6939 {
6940 struct drm_i915_private *dev_priv = dev->dev_private;
6941
6942 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6943
6944 I915_WRITE(MEM_MODE,
6945 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
6946 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6947 }
6948
6949 void intel_init_clock_gating(struct drm_device *dev)
6950 {
6951 struct drm_i915_private *dev_priv = dev->dev_private;
6952
6953 if (dev_priv->display.init_clock_gating)
6954 dev_priv->display.init_clock_gating(dev);
6955 }
6956
6957 void intel_suspend_hw(struct drm_device *dev)
6958 {
6959 if (HAS_PCH_LPT(dev))
6960 lpt_suspend_hw(dev);
6961 }
6962
6963 /* Set up chip specific power management-related functions */
6964 void intel_init_pm(struct drm_device *dev)
6965 {
6966 struct drm_i915_private *dev_priv = dev->dev_private;
6967
6968 intel_fbc_init(dev_priv);
6969
6970 /* For cxsr */
6971 if (IS_PINEVIEW(dev))
6972 i915_pineview_get_mem_freq(dev);
6973 else if (IS_GEN5(dev))
6974 i915_ironlake_get_mem_freq(dev);
6975
6976 /* For FIFO watermark updates */
6977 if (INTEL_INFO(dev)->gen >= 9) {
6978 skl_setup_wm_latency(dev);
6979
6980 if (IS_BROXTON(dev))
6981 dev_priv->display.init_clock_gating =
6982 bxt_init_clock_gating;
6983 dev_priv->display.update_wm = skl_update_wm;
6984 } else if (HAS_PCH_SPLIT(dev)) {
6985 ilk_setup_wm_latency(dev);
6986
6987 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6988 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6989 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6990 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6991 dev_priv->display.update_wm = ilk_update_wm;
6992 dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
6993 } else {
6994 DRM_DEBUG_KMS("Failed to read display plane latency. "
6995 "Disable CxSR\n");
6996 }
6997
6998 if (IS_GEN5(dev))
6999 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7000 else if (IS_GEN6(dev))
7001 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7002 else if (IS_IVYBRIDGE(dev))
7003 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7004 else if (IS_HASWELL(dev))
7005 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7006 else if (INTEL_INFO(dev)->gen == 8)
7007 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7008 } else if (IS_CHERRYVIEW(dev)) {
7009 vlv_setup_wm_latency(dev);
7010
7011 dev_priv->display.update_wm = vlv_update_wm;
7012 dev_priv->display.init_clock_gating =
7013 cherryview_init_clock_gating;
7014 } else if (IS_VALLEYVIEW(dev)) {
7015 vlv_setup_wm_latency(dev);
7016
7017 dev_priv->display.update_wm = vlv_update_wm;
7018 dev_priv->display.init_clock_gating =
7019 valleyview_init_clock_gating;
7020 } else if (IS_PINEVIEW(dev)) {
7021 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7022 dev_priv->is_ddr3,
7023 dev_priv->fsb_freq,
7024 dev_priv->mem_freq)) {
7025 DRM_INFO("failed to find known CxSR latency "
7026 "(found ddr%s fsb freq %d, mem freq %d), "
7027 "disabling CxSR\n",
7028 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7029 dev_priv->fsb_freq, dev_priv->mem_freq);
7030 /* Disable CxSR and never update its watermark again */
7031 intel_set_memory_cxsr(dev_priv, false);
7032 dev_priv->display.update_wm = NULL;
7033 } else
7034 dev_priv->display.update_wm = pineview_update_wm;
7035 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7036 } else if (IS_G4X(dev)) {
7037 dev_priv->display.update_wm = g4x_update_wm;
7038 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7039 } else if (IS_GEN4(dev)) {
7040 dev_priv->display.update_wm = i965_update_wm;
7041 if (IS_CRESTLINE(dev))
7042 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7043 else if (IS_BROADWATER(dev))
7044 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7045 } else if (IS_GEN3(dev)) {
7046 dev_priv->display.update_wm = i9xx_update_wm;
7047 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7048 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7049 } else if (IS_GEN2(dev)) {
7050 if (INTEL_INFO(dev)->num_pipes == 1) {
7051 dev_priv->display.update_wm = i845_update_wm;
7052 dev_priv->display.get_fifo_size = i845_get_fifo_size;
7053 } else {
7054 dev_priv->display.update_wm = i9xx_update_wm;
7055 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7056 }
7057
7058 if (IS_I85X(dev) || IS_I865G(dev))
7059 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7060 else
7061 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7062 } else {
7063 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7064 }
7065 }
7066
7067 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7068 {
7069 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7070
7071 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7072 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7073 return -EAGAIN;
7074 }
7075
7076 I915_WRITE(GEN6_PCODE_DATA, *val);
7077 I915_WRITE(GEN6_PCODE_DATA1, 0);
7078 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7079
7080 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7081 500)) {
7082 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7083 return -ETIMEDOUT;
7084 }
7085
7086 *val = I915_READ(GEN6_PCODE_DATA);
7087 I915_WRITE(GEN6_PCODE_DATA, 0);
7088
7089 return 0;
7090 }
7091
7092 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7093 {
7094 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7095
7096 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7097 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7098 return -EAGAIN;
7099 }
7100
7101 I915_WRITE(GEN6_PCODE_DATA, val);
7102 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7103
7104 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7105 500)) {
7106 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7107 return -ETIMEDOUT;
7108 }
7109
7110 I915_WRITE(GEN6_PCODE_DATA, 0);
7111
7112 return 0;
7113 }
7114
7115 static int vlv_gpu_freq_div(unsigned int czclk_freq)
7116 {
7117 switch (czclk_freq) {
7118 case 200:
7119 return 10;
7120 case 267:
7121 return 12;
7122 case 320:
7123 case 333:
7124 return 16;
7125 case 400:
7126 return 20;
7127 default:
7128 return -1;
7129 }
7130 }
7131
7132 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7133 {
7134 int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7135
7136 div = vlv_gpu_freq_div(czclk_freq);
7137 if (div < 0)
7138 return div;
7139
7140 return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7141 }
7142
7143 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7144 {
7145 int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7146
7147 mul = vlv_gpu_freq_div(czclk_freq);
7148 if (mul < 0)
7149 return mul;
7150
7151 return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7152 }
7153
7154 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7155 {
7156 int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7157
7158 div = vlv_gpu_freq_div(czclk_freq) / 2;
7159 if (div < 0)
7160 return div;
7161
7162 return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7163 }
7164
7165 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7166 {
7167 int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7168
7169 mul = vlv_gpu_freq_div(czclk_freq) / 2;
7170 if (mul < 0)
7171 return mul;
7172
7173 /* CHV needs even values */
7174 return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7175 }
7176
7177 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7178 {
7179 if (IS_GEN9(dev_priv->dev))
7180 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7181 GEN9_FREQ_SCALER);
7182 else if (IS_CHERRYVIEW(dev_priv->dev))
7183 return chv_gpu_freq(dev_priv, val);
7184 else if (IS_VALLEYVIEW(dev_priv->dev))
7185 return byt_gpu_freq(dev_priv, val);
7186 else
7187 return val * GT_FREQUENCY_MULTIPLIER;
7188 }
7189
7190 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7191 {
7192 if (IS_GEN9(dev_priv->dev))
7193 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7194 GT_FREQUENCY_MULTIPLIER);
7195 else if (IS_CHERRYVIEW(dev_priv->dev))
7196 return chv_freq_opcode(dev_priv, val);
7197 else if (IS_VALLEYVIEW(dev_priv->dev))
7198 return byt_freq_opcode(dev_priv, val);
7199 else
7200 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7201 }
7202
7203 struct request_boost {
7204 struct work_struct work;
7205 struct drm_i915_gem_request *req;
7206 };
7207
7208 static void __intel_rps_boost_work(struct work_struct *work)
7209 {
7210 struct request_boost *boost = container_of(work, struct request_boost, work);
7211 struct drm_i915_gem_request *req = boost->req;
7212
7213 if (!i915_gem_request_completed(req, true))
7214 gen6_rps_boost(to_i915(req->ring->dev), NULL,
7215 req->emitted_jiffies);
7216
7217 i915_gem_request_unreference__unlocked(req);
7218 kfree(boost);
7219 }
7220
7221 void intel_queue_rps_boost_for_request(struct drm_device *dev,
7222 struct drm_i915_gem_request *req)
7223 {
7224 struct request_boost *boost;
7225
7226 if (req == NULL || INTEL_INFO(dev)->gen < 6)
7227 return;
7228
7229 if (i915_gem_request_completed(req, true))
7230 return;
7231
7232 boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7233 if (boost == NULL)
7234 return;
7235
7236 i915_gem_request_reference(req);
7237 boost->req = req;
7238
7239 INIT_WORK(&boost->work, __intel_rps_boost_work);
7240 queue_work(to_i915(dev)->wq, &boost->work);
7241 }
7242
7243 void intel_pm_setup(struct drm_device *dev)
7244 {
7245 struct drm_i915_private *dev_priv = dev->dev_private;
7246
7247 mutex_init(&dev_priv->rps.hw_lock);
7248 spin_lock_init(&dev_priv->rps.client_lock);
7249
7250 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7251 intel_gen6_powersave_work);
7252 INIT_LIST_HEAD(&dev_priv->rps.clients);
7253 INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7254 INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7255
7256 dev_priv->pm.suspended = false;
7257 atomic_set(&dev_priv->pm.wakeref_count, 0);
7258 atomic_set(&dev_priv->pm.atomic_seq, 0);
7259 }